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Probability and Hypothesis Testing 
 
1.1 PROBABILITY AND INFERENCE 
 
The area of descriptive statistics is concerned with meaningful and efficient ways of presenting 
data. When it comes to inferential statistics, though, our goal is to make some statement about a 
characteristic of a population based on what we know about a sample drawn from that 
population. Generally speaking, there are two kinds of statements one can make. One type 
concerns parameter estimation, and the other hypothesis testing. 
 
Parameter Estimation 
 
In parameter estimation, one is interested in determining the magnitude of some population 
characteristic. Consider, for example an economist who wishes to estimate the average monthly 
amount of money spent on food by unmarried college students. Rather than testing all college 
students, he/she can test a sample of college students, and then apply the techniques of inferential 
statistics to estimate the population parameter. The conclusion of such a study would be 
something like: 
 

The probability is 0.95 that the population mean falls within the interval of £130-£150. 
 
Hypothesis Testing 
 
In the hypothesis testing situation, an experimenter wishes to test the hypothesis that some 
treatment has the effect of changing a population parameter. For example, an educational 
psychologist believes that a new method of teaching mathematics is superior to the usual way of 
teaching. The hypothesis to be tested is that all students will perform better (i.e., receive higher 
grades) if the new method is employed. Again, the experimenter does not test everyone in 
the population. Rather, he/she draws a sample from the population. Half of the subjects are 
taught with the Old method, and half with the New method.  Finally, the experimenter compares 
the mean test results of the two groups.  It is not enough, however, to simply state that the mean 
is higher for New than Old (assuming that to be the case). After carrying out the appropriate 
inference test, the experimenter would hope to conclude with a statement like: 
 

The probability that the New-Old mean difference is due to chance (rather than to the 
different teaching methods) is less than 0.01. 

 
Note that in both parameter estimation and hypothesis testing, the conclusions that are drawn 
have to do with probabilities. Therefore, in order to really understand parameter estimation and 
hypothesis testing, one has to know a little bit about basic probability. 
 
1.2 RANDOM SAMPLING 
 
Random sampling is important because it allows us to apply the laws of probability to sample 
data, and to draw inferences about the corresponding populations. 
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Sampling With Replacement 
 
A sample is random if each member of the population is equally likely to be selected each 
time a selection is made. When N is small, the distinction between with and without 
replacement is very important. If one samples with replacement, the probability of a particular 
element being selected is constant from trial to trial (e.g., 1/10 if N = 10). But if one draws 
without replacement, the probability of being selected goes up substantially as more 
subjects/elements are drawn. 
 

e.g., if N = 10 
Trial 1:  p(being selected) = 1/10 = .1 
Trial 2:  p(being selected) = 1/9 = .11111 
Trial 3:  p(being selected) = 1/8 = .125 
etc. 

 
Sampling Without Replacement 
 
When the population N is very large, the distinction between with and without replacement is less 
important. Although the probability of a particular subject being selected does go up as more 
subjects are selected (without replacement), the rise in probability is minuscule when N is large. 
For all practical purposes then, each member of the population is equally likely to be selected on 
any trial. 
 

e.g., if N = 1,000,000 
Trial 1:  p(being selected) = 1 / 1,000,000 
Trial 2:  p(being selected) = 1 / 999,999 
Trial 3:  p(being selected) = 1 / 999,998 
etc. 

 
1.3 PROBABILITY BASICS 
 
Probability Values 
 
A probability must fall in the range 0.00 - 1.00 . If the probability of event A = 0.00, then A is 
certain not to occur. If the probability of event A = 1.00, then A is certain to occur. 
 
Every event has a complement: For example, the complement of event A is the event not A, 
which is usually symbolized as A . The probability of an event plus the probability of its 
complement must be equal to 1. That is, 
 

( ) ( ) 1

( ) 1 ( )

p A p A

p A p A

+ =

= −
 

 
This is just the same thing as saying that the event (A) must either happen or not happen. 
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Computing Probabilities 
 
A priori probability. The a priori method of computing probability is also known as the classical 
method. It might help to think of it as the expected probability value (e.g., like expected 
frequencies used in calculating the chi-squared statistic). 
 

number of events classifiable as ( )
total number of possible events

Ap A =  

 
 
A posteriori probability. The a posteriori method is sometimes called the empirical method. 
Whereas the a priori method corresponds to expected frequencies, the empirical method 
corresponds to observed frequencies. 
 

number of times  has occurred( )
total number of events

Ap A =  

 
 
EXAMPLE: Consider a fair six-sided die (die = singular of dice). What is the probability of 
rolling a 6? According to the a priori method, p(6) = 1/6. But to compute p(6) according to the 
empirical method, we would have to roll the die some number of times (preferably a large 
number), count the number of sixes, and divide by the number of rolls. As alluded to earlier, 
statistics like chi-squared involve comparison of a priori and empirical probabilities. 
 
1.4 METHODS OF COUNTING: COMBINATIONS & PERMUTATIONS 
 
The preceding definitions indicate that calculating a probability value entails counting. The 
number of things (or events) to be counted is often enormous. Therefore, conventional methods 
of counting are often inadequate.  We now turn to some useful methods of counting large 
numbers of events. 
 
Permutations 
 
An ordered arrangement of r distinct objects is called a permutation. For example, there are 6 
permutations of the numbers 1, 2, and 3: 
 

1,2,3 1,3,2 
2,1,3 2,3,1 
3,1,2 3,2,1 

 
In general, there are “r-factorial” permutations of r objects. In this case, r = 3, and 3-factorial = 
3x2x1 = 6.  “Factorial” is symbolized with an exclamation mark, the formula would look like 
this:  3! = 3x2x1 = 6. 
 
Note that one is not always interested in taking all r cases at a time. If we had 4 numbers rather 
than 3, for example, the number of permutations of those 4 numbers would be 4! = 4x3x2x1 = 
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24. But what if we only wished to take the numbers 2 at a time? In this case, there would be only 
12 permutations: 
 

1,2 1,3 1,4 
2,1 2,3 2,4 
3,1 3,2 3,4 
4,1 4,2 4,3 

 
The number of ways of ordering n distinct objects taken r at a time is given by the following: 
 

!( 1)( 2)...( 1)
( )!

n
r

nP n n n n r
n r

= − − − + =
−

 

 
EXAMPLE: Suppose that there are 10 horses in a race, and that event A has been defined as 
correct selection the top 3 finishers in the correct order (i.e., correct selection of the Win, Place 
and Show horses). What is the probability of A?  
 

number of ways to pick top 3 horse in correct order( )
number of permutations of 10 horses chosen 3 at a time

1 1         .0013910! 720
(10 3)!

p A =

= = =

−

 

 
Note that there is often more than one way to solve a probability problem, and that some ways 
are easier than others. Later on we will solve this same problem in another way that I find more 
intuitively appealing. 
 
 
Combinations 
 
A combination is similar to a permutation, but differs in that order is not important. ABC and 
BCA are different permutations, but ABC is the same combination as BCA. The number of 
combinations of n things taken r at a time is given by: 
 

!
! !( )!

n
n r
r

P nC
r r n r

= =
−

 

 
EXAMPLE:  A camp counselor is supervising 6 campers, 3 girls and 3 boys.  The counselor 
chooses 3 campers to chop wood and 3 to wash the dishes.  If the assignment of children to 
chores is random, what is the probability that the 3 girls will be asked to wash dishes, and the 3 
boys to chop wood? 
 
Solution:  Let A = assignment of 3 girls to dishwashing and 3 boys to wood-chopping.  There is 
only 1 way for A to happen.  The total number of possible outcomes = the number of 
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combinations of 6 campers chosen 3 at a time.  So, 
 

6
3

1 1 1 1( ) 0.056! 720 20
3!3! 36

p A
C

= = = = =  

 
Thus, if the assignment of campers to chores was random, the probability of 3 girls being 
assigned to dish-washing and 3 boys to wood-chopping is 0.05 (or 5%). 
 
NOTE: There are always r! permutations for every combination. 
 
A More General Combinatorial Formula 
 
The number of ways of partitioning n• distinct objects into k distinct groups containing 

1 2, ,... kn n n  objects respectively is given by: 
 

1 2, ,...
11 2

         where 
! !... !k

k
n
n n n i

ik

nC n n
n n n

• •
•

=

= = ∑  

 
 
EXAMPLE:  How many ways can an ice hockey coach assign 12 forwards to 4 forward lines 
(where each line consists of 3 players)? 
 

12
3,3,3,3

12! 369,600
3!3!3!3!

C = =  

 
NOTE: The formula for combinations is a special case of this more general formula with k = 2. 
 
 
Venn Diagrams 
 
Venn diagrams are commonly used to illustrate probabilities and relationships between events. A 
few words of explanation may be helpful. 
 
The first part of a Venn diagram is a rectangle that represents the sample space. The sample 
space encompasses all possible outcomes in the situation being considered. For example, if you 
are considering all possible outcomes when drawing one card from a standard deck of playing 
cards, the sample space consists of the 52 cards. 
 
Inside of the sample space, circles are drawn to represent the various events that have been 
defined. If the sample space is 52 playing cards, event A might be getting a red card, and event B 
might be getting a King. Event A in this case would consist of 26 outcomes (the 26 red cards); 
and event B would consist of 4 outcomes (the 4 Kings). Note that there would be two outcomes 
common to A and B, the King of Hearts and the King of Diamonds. This would be represented 
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in the Venn diagram by making the two circles overlap. 
 
 

 
 
One other important about Venn diagrams is this: If they are drawn to scale (which is not the 
case here), the probability of event A is equal to the area of circle A divided by the area of the 
entire sample space. In the example above, event A was getting a red card when drawing one 
card from a standard deck. In this case, p(A) = .5; and so a Venn diagram drawn to scale would 
show circle A taking up exactly half of the sample space. 
 
ADDITION RULE: How to calculate p(A or B) 
 
Definition of "or" 
 
In everyday use, the word "or" is typically used in the exclusive sense.  That is, when we say "A 
or B", we usually mean one or the other, but not both.  In probability (and logic) though, "or" is 
inclusive. In other words, "A or B" includes the possibility of "A and B": 
 

 
“or” in probability (and logic) = “and/or” in everyday language 

 
 
Finally, note that because or is inclusive, p(A or B) is often expressed as ( )p A B∪ , which stands 
for “A union B”.   
 
EXAMPLE: Imagine drawing 1 card at random from a well-shuffled deck of playing cards. And 
define events A, B, and C as follows: 
 

A = the card is a face card (Jack, Queen, King) 
B = the card is a red card (Hearts, Diamonds) 
C = A or B 

 
In this example, C is true if the card drawn is either a face card (A), or a red card (B), or both a 
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face card and a red card (both A and B). 
 
Addition Rule: General Case 
 
To calculate p(A or B), begin by adding p(A) and p(B). Note however, that if events A and B 
intersect (see the Venn diagram on p. 6), events that fall in the intersection (A and B) have been 
counted twice. Therefore, they must be subtracted once. Thus, the formula for computing the 
probability of (A or B) is as follows: 
 

(  or ) ( ) ( ) (  and )p A B p A p B p A B= + −  
 
Special Case for Mutually Exclusive Events 
 
Two events are mutually exclusive if they cannot occur together. In other words, A and B are 
mutually exclusive if the occurrence of A precludes the occurrence of B, and vice versa. In other 
words, if events A and B are mutually exclusive, then p(A and B) = 0; and if p(A and B) = 0, then 
events A and B are mutually exclusive. 
 
Therefore, when the addition rule is applied to mutually exclusive events, it simplifies to: 
 

(  or ) ( ) ( )p A B p A p B= +  
 
 
NOTE: In a Venn diagram, mutually exclusive events are non-overlapping. 
 
 
Addition Rule for more than 2 mutually exclusive events 
 
The addition rule may also be applied in situations where there are more than two events, 
provided that the occurrence of one of the events precludes the occurrence of all others. The rule 
is as follows: 
 

(  or  or ...or ) ( ) ( ) ( )... ( )p A B C Z p A p B p C p Z= + + +  
 
 
Mutually exclusive and exhaustive sets of events 
 
A set of events is exhaustive if it includes all possible outcomes. For example, when rolling a 6-
sided die, the set of outcomes of 1,2,3,4,5, or 6 is exhaustive, because it contains all possible 
outcomes. The outcomes in this set are also mutually exclusive, because the occurrence of one 
number precludes all others. When a set of events is exhaustive, and the outcomes in that set are 
mutually exclusive, then the sum of the probabilities for the events must equal 1. For a fair 6-
sided die, for example, if we let X = the number showing, X would have the following probability 
distribution: 
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X  ( )p X  ( )p X∑  
1 1/6 1/6 
2 1/6 2/6 
3 1/6 3/6 
4 1/6 4/6 
5 1/6 5/6 
6 1/6 6/6 = 1 

 
 
CONDITIONAL PROBABILITY 
 
The concept of conditional probability is very important in hypothesis testing. It is standard to 
use the word "given" when talking about conditional probability. For example, one might want to 
know the probability of event A given that event B has occurred. This conditional probability is 
written symbolically as follows: 
 

( | )p A B  
 
When you are given (or told) that event B (or any other event) has occurred, this allows you to 
delimit, or reduce the sample space. In the following Venn Diagram that illustrates conditional 
probability, for example, when computing p(A|B), we can immediately delimit the sample space 
to the area occupied by circle B. In effect, circle B has become the sample space, and anything 
outside of it does not exist. And so, when a Venn diagram is drawn to scale, p(A|B) is equal to 
the ratio of the area in the (A and B) intersection divided by the area of circle B. 
 
 

 
 

Venn diagram illustrating conditional probability 
 
 
Putting these ideas into symbols, we get the following: 
 

(  and ) (  and )( | )      and     ( | )
( ) ( )

p A B p A Bp A B p B A
p B p A

= =  
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NOTE: In calculating conditional probabilities, always divide by the probability of that which 

was given. 
 
 
MULTIPLICATION RULE 
 
General Rule 
 
Related to conditional probability is the question of how to compute p(A and B).  Note the 
formulae for computing conditional probabilities can be rearranged to isolate the expression 
p(A and B): 
 

(1)  (  and ) ( ) ( | )p A B p A p B A=  
(2)  (  and ) ( ) ( | )p A B p B p A B=  

 
These two equations represent the general multiplication rule. 
 
Special Case for Independent Events 
 
There is also a special multiplication rule for independent events. Before looking at it, let us 
define independence. Two events, A and B, are independent if the occurrence of one has no 
effect on the probability of occurrence of the other. Thus, A and B are independent if, and only 
if: 
 

( | ) ( | ) ( )    and

( | ) ( | ) ( )

p A B p A B p A

p B A p B A p B

= =

= =
 

 
And conversely, if A and B are independent, then the two equations shown above must be true. 
 
So then, if A and B are independent, ( | ) ( )p A B p A=  and ( | ) ( )p B A p B= .  Therefore, the 
equations that represent the general multiplication rule (shown above) simplify to the following 
special multiplication rule for two independent events: 
 

(  and ) ( ) ( )p A B p A p B=  
 
If you have more than 2 events, and they are all independent of each other, the special 
multiplication rule can be extended as follows: 
 

(  and  and ... and ) ( ) ( )... ( )p A B C Z p A p B p Z=  
 
 
Three or more related events 
 
When you have two related events, the general multiplication rule tells you that 
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(  and ) ( ) ( | )p A B p A p B A= . When you have 3 events that are all related to one another, this can 
be extended as follows: 
 

(  and  and ) ( ) ( | ) ( | )p A B C p A p B A p C AB=  
 
And for 4 related events: 
 

(  and  and  and ) ( ) ( | ) ( | ) ( | )p A B C D p A p B A p C AB p D ABC=  
 
These extensions to the general multiplication rule are useful in situations that entail sampling 
without replacement. For example, if you draw 5 cards from a standard playing deck without 
replacement, what is the probability that all 5 will be Diamonds? The probability that the first 
card drawn is a Diamond is 13/52, or .25. If the first card is in fact a Diamond, note that the 
number of remaining Diamonds is now 12. And of course, the number of cards remaining is 51. 
Therefore, the probability that the 2nd card is a Diamond, given that the first card was a 
Diamond, is 12/51. Using the same logic, the probability that the 3rd card is a Diamond, given 
that the first two were both Diamonds, is 11/50, and so on. So the solution to this problem is 
given by: 
 

13 12 11 10 9(all 5 are Diamonds) .0005
52 51 50 49 48

p      = =     
     

 

 
For another example of how to use these extensions of the general multiplication, let us return to 
the horse racing problem described in the section on permutations. The problem stated that there 
are 10 horses in a race. Given that you have no other information, what is the probability that you 
will correctly pick the top 3 finishers (in the right order)? We first solved this problem by using 
the formula for permutations. But given what we now know, there is another way to solve the 
problem that may be more intuitively appealing. The probability of picking the winner is 1/10. 
The probability of picking the 2nd place finisher given that we have successfully picked the 
winner is 1/9. And finally, the probability of picking the 3rd place finisher given that we have 
picked the top two horses correctly, is 1/8. So the probability of picking the top 3 finishers in the 
right order is: 
 

1 1 1 1(top 3 horses in right order) .00139
10 9 8 720

p    = = =   
   

 

 
In my opinion, this is a much easier and more understandable solution than the first one we 
looked at. 
 
 
 
GENERAL POINT: A general point worth emphasizing again is that there is usually more than 
one way to solve a probability problem, and that some ways are easier than others—sometimes a 
lot easier. 
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Mutually Exclusive Events 
 
Two events, A and B, are mutually exclusive if both cannot occur at the same time. Thus, if A 
and B are mutually exclusive, p(A and B) = 0. Note also that if you are told that p(A and B) = 0, 
you can conclude that A and B are mutually exclusive. 
 
NOTE: Because p(A and B) = 0 for mutually exclusive events, p(A|B) and p(B|A) must both be 
equal to 0 as well (see section on conditional probability). 
 
 
A TAXONOMY OF EVENTS 
 
In the preceding sections, I have been throwing around terms such as independent, mutually 
exclusive, and related. There often seems to be a great deal of confusion about what these terms 
mean. Students are prone to thinking that independence and mutual exclusivity are the same 
thing. They are not, of course. One way to avoid this confusion is to lay out the different kinds of 
events in a chart such as this: 
 

 
 
From this chart, it should be clear that independence is not the same thing as mutual exclusivity. 
If events A and B are not independent, then they are related. (Think of related and independent 
are opposites.) Because mutually exclusive events are related events, they cannot be 
independent. This chart also illustrates that overlap is a necessary but not a sufficient condition 
for two events to be independent. That is, if two events do not overlap, they definitely are not 
independent. But if they do overlap, they may or may not be independent.  The following points, 
some of which are repeated, are also noteworthy in this context: 
 

1. Sampling with replacement produces a situation in which successive trials are 
independent. 
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2. Sampling without replacement produces a situation in which successive trials are related. 
3. The complementary events A and not A are mutually exclusive and exhaustive. Therefore, 

the following are true: 
 

( ) ( ) 1

( ) 1 ( )

p A p A

p A p A

+ =

= −
 

 
It was suggested earlier that there is often more than one way to figure out the probability of 
some event, but that some ways are easier than others. If you are finding that direct calculation of 
p(A) is very difficult or confusing, always remember that an alternative approach is to figure out 
p(A) and subtract it from 1. In some cases, this approach will be much easier. Consider the 
following problem, for example: 
 

If you roll 3 fair 6-sided dice, what is the probability that at least one 2 or one 4 will be 
showing? 

 
One way to approach this is by directly calculating the probability of the event in question. For 
example, I could define the following events: 
 

Let A = 2 or 4 showing on die 1 p(A)=1/3 
Let B = 2 or 4 showing on die 2 p(A)=1/3 
Let C = 2 or 4 showing on die 3 p(A)=1/3 

 
And now the event I am interested in is (A or B or C). I could apply the rules of probability to 
come up with following: 
 

(  or  or ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p A B C p A p B p C p AB p AC p BC p ABC= + + − − − +  
 
I have left out several steps, which you don't need to worry about.1  The important point is that 
this method is relatively cumbersome.  A much easier method for solving this problem falls out 
if you recognize that the complement of at least one 2 or one 4 is no 2's and no 4's. In other 
words, if there are NOT no 2's and no 4's, then there must be at least one 2 or one 4. So the 
answer is 1 - p(no 2's and no 4's). With this approach, I would define events as follows: 
 

Let A = no 2's and no 4's on 1st die  p(A) = 2/3 
Let B = no 2's and no 4's on 2nd die  p(B) = 2/3 
Let C = no 2's and no 4's on 3rd die  p(C) = 2/3 

 
In order for there to be no 2's or 4's, all 3 of these events must occur. If we assume that the 3 dice 
are all independent of each other, which seems reasonable, then p(ABC) = p(A) p(B) p(C) = 8/27. 
And the answer to the original question is 1- 8/27, or .7037. 
 
 
                                                 
1 If you’re curious about where this formula comes from, draw yourself a Venn diagram with 3 overlapping circles 
for events A-C, and see if you can figure it out. 
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PROBABILITY AND CONTINUOUS VARIABLES 
 
Most of the cases we have looked at so far in our discussion of probability have concerned 
discrete variables. Thus, we have thought about probability of some event A as the number of 
outcomes that we can classify as A divided by the total number of possible outcomes. 
 
Many of the dependent variables measured in experiments are continuous rather than discrete, 
however. When a variable is continuous, we must conceptualize the probability of A in a slightly 
different way. Specifically, 
 

area under the curve that corresponds to( )
total area under the curve

Ap A =  

 
Note that if you are dealing with a normally distributed continuous variable, you can carry out 
the appropriate z-transformations and make use of a table of the standard normal distribution to 
find probability values. 
 
 
THE BINOMIAL DISTRIBUTION 
 
Definition: The binomial distribution is a discrete probability distribution that results from a 
series of N Bernoulli trials. For each trial in a Bernoulli series, there are only two possible 
outcomes. These outcomes are often referred to as success (S) and failure (F). These two 
outcomes are mutually exclusive and exhaustive, and there is independence between trials. 
Because of the independence between trials, the probability of a success (p) remains constant 
from trial to trial.2 
 
Example 1: Tossing a Fair Coin N Times 
 
When the number of Bernoulli trials is very small, it is quite easy to generate a binomial 
distribution without recourse to any kind of formula: You can just list all possible outcomes, and 
apply the special multiplication rule for independent events. Consider the following examples 
where we toss a fair coin N times, and let X = the number of Heads obtained. 
 
a) Fair coin with N=1 toss 
 

X p(X)  Sequences that yield X 
0 0.5  { T } 
1 0.5  { H } 
 1.0   

 

                                                 
2 Coin flipping is often used to illustrate the binomial distribution. Independence between trials refers to the fact that 
the coin has no memory.  That is, if the coin is fair, the probability of a Head is .5 every time it is flipped, regardless 
of what has happened on previous trials. 
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When N = 1, we have a 50:50 chance of getting a Head, and a 50:50 chance of getting a Tail. 
 
b) Fair coin with N = 2 tosses 
 

X p(X)  Sequences that yield X 
0 0.25  { TT } 
1 0.50  { HT, TH } 
2 0.25  { HH } 
 1.00   

 
When N = 2, four different sequences are possible: TT, HT, TH, or HH. Given that the two 
tosses are independent, each of these sequences is equally likely.  There is one way to get X=0; 
two ways to get X=1; and one way to get X=2. 
 
c) Fair coin with N = 3 tosses 
 

X p(X)  Sequences that yield X 
0 0.125  { TTT } 
1 0.375  { HTT, THT, TTH } 
2 0.375  { HHT, HTH, THH } 
3 0.125  { HHH } 
 1.00   

 
In this case, there are 8 equally likely sequences of Heads and Tails, as shown above. Because 
there are 3 such sequences that yield X = 2, p(x=2) = 3/8 = .375. 
 
 
Example 2: Tossing a Biased Coin N Times 
 
Now let us assume that we have biased coin. Heads and Tails are not equally likely when we flip 
this coin. Let p = .8 and q = .2, where p stands for the probability of a Head, and q the probability 
of a Tail. Toss this biased coin N times, and let x = the number of Heads obtained for: 
 
a) Biased coin with N=1 toss 
 

X p(X)  Sequences that yield X 
0 0.2  { T } 
1 0.8  { H } 
 1.0   
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b) Biased coin with N = 2 tosses 
 

X p(X)  Sequences that yield X 
0 0.04  { TT } 
1 0.32  { HT, TH } 
2 0.64  { HH } 
 1.00   

 
When N = 2, four different sequences are possible: TT, HT, TH, or HH. What is the probability 
of a particular sequence occurring? If you remember that the trials are independent (i.e., the coin 
has no memory for what happened on the previous toss), then you can use the special 
multiplication rule for independent events to figure out the probability of any sequence. Take for 
example getting a Tail on both trials: 
 

p(Tails on both trials) = p(Tail on trial 1)p(Tail on trial 2) = (.2)(.2) = .04 
 
Applying the special multiplication rule to all of the possible sequences we get the following: 
 

(TT) (.2)(.2) .04
(HT) (.8)(.2) .16
(TH) (.2)(.8) .16
(HH) (.8)(.8) .64

p
p
p
p

= =
= =
= =
= =

 

 
Note that the only way for X=0 to occur is if the sequence TT occurs. The probability of this 
sequence is equal to .04, as shown above. Likewise, the only way for X=2 to occur is if the 
sequence HH occurs. The probability of this sequence is equal to .64, as shown above. 
 
That leaves X=1. There are 2 ways we could solve p(X=1). The easier way is to recognize that 
the sum of the probabilities in any binomial distribution has to be equal to 1, and that we the final 
probability can be obtained by subtraction.  Putting that into symbols, we have: 
 

( 1) 1 [ ( 0) ( 2)] 1 [.04 .64] .32p X p X p X= = − = + = = − + =  
 
The other way to solve p(x=1) is to recognize that the two sequences that yield X=1 are mutually 
exclusive sequences. In other words, you know that if the sequence HT occurred when you 
tossed a coin twice, the sequence TH could not possibly have occurred. The occurrence of one 
precludes occurrence of the other, which is exactly what we mean by mutual exclusivity. We 
also know that X=1 if HT occurs, or if TH occurs. So p(X=1) is really equal to p(HT or TH). 
Applying the special addition rule for mutually exclusive events, we get 
 

(HT or TH) (HT) (TH) .16 .16 .32p p p= + = + =  
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c) Biased coin with N = 3 tosses 
 

X p(X)  Sequences that yield X 
0 0.008  { TTT } 
1 0.096  { HTT, THT, TTH } 
2 0.384  { HHT, HTH, THH } 
3 0.512  { HHH } 
 1.00   

 
In this case there are 8 possible sequences. Applying the special multiplication rule, we can 
arrive at these probabilities for the 8 sequences: 
 

0 3

1 2

1 2

1 2

2 1

2

(TTT) (.2)(.2)(.2) (.8) (.2) .008
(HTT) (.8)(.2)(.2) (.8) (.2) .032
(THT) (.2)(.8)(.2) (.8) (.2) .032
(TTH) (.2)(.2)(.8) (.8) (.2) .032
(HHT) (.8)(.8)(.2) (.8) (.2) .128
(HTH) (.8)(.2)(.8) (.8)

p
p
p
p
p
p

= = =

= = =

= = =

= = =

= = =

= = 1

2 1

3 0

(.2) .128
(THH) (.2)(.8)(.8) (.8) (.2) .128
(HHH) (.8)(.8)(.8) (.8) (.2) .512

p
p

=

= = =

= = =

 

 
And application of the special addition rule for mutually exclusive events allows us to calculate 
the probability values shown in the preceding table. For example, 
 

( 1) (HTT or THT or TTH)
              (HTT) (THT) (TTH)
              .032 .032 .032 .096

p X p
p p p

= =
= + +
= + + =

 

 
 
A formula for calculating binomial probabilities 
 
In the examples above, note that each sequence that yields a particular value of X has the same 
probability of occurrence. This is the case for all binomial distributions. And because of it, you 
don’t have to compute the probability of each sequence and then add them up. Rather, you can 
compute the probability of one sequence, and multiply by the number of sequences. In the case 
we have just considered, for example, 
 

( 1) (3 sequences)(.032 per sequence) .096p X = = =  
 
When the number of trials in a Bernoulli series becomes even just a bit larger (e.g., 5 or more), 
the number of possible sequences of successes and failures becomes very large. And so, in these 
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cases, it is not at all convenient to generate binomial distributions in the manner shown above. 
Fortunately, there is a fairly straightforward formula that can be used instead. It is shown below: 
 

!( )
!( )!)

X N XNp X p q
X N X

−=
−

 

 
where   N = the number of trials in the Bernoulli series 

X = the number of “successes” in N trials 
p = the probability of success on each trial 
q = 1 - p = probability of failure on each trial 

 
To confirm that it works, you should use it to work out the following binomial distributions: 
 

1) Let N = 3, p = .5 
2) Let N = 3, p = .8 
3) Let N = 4, p = .5 
4) Let N = 4, p = .8 

 
Note that the first two are distributions that we worked out earlier, so you can compare your 
answers. 
 
The formula shown above can be broken into two parts. You should recognize the first part, 
N!/[X!(N-X)!], as giving the number of combinations of N things taken x at a time. In this 
context, it may be more helpful to think of it as giving the number of sequences of successes and 
failures that will result in there being X successes and (N-X) failures. To make this a little more 
concrete, think about flipping a fair coin 10 times: 
 

Let N = 10 
Let X = the number of Heads 
Let p = .5, q = .5 

 
To calculate the probability of exactly 6 heads, for example, the first thing you have to know is 
how many sequences of Heads and Tails result in exactly 6 Heads? The answer is: 10!/(6!4!) = 
210. There are 210 sequences of Heads and Tails that result in exactly 6 Heads. 
 
Note that these sequences are all mutually exclusive. That is to say, the occurrence of one 
sequence excludes all others from occurring. Therefore, if we knew the probability of each 
sequence, we could figure out the probability of getting sequence 1 or sequence 2 or...sequence 
210 by adding up the probabilities for each one (special addition rule for mutually exclusive 
events). 
 
Note as well that each one of these sequences has the same probability of occurrence. 
Furthermore, that probability is given by the second part of our formula, X N Xp q − . 
 
And so, conceptually, the formula for computing binomial probability 
could be stated as: (the number of sequences of Successes and Failures that results 
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in X Successes and (N-X) Failures) multiplied by (the probability of each of those sequences). 
 
 

!( )   
!( )!

X N XNp X p q
X N X

−   = ×   − 
 

 
 
 
 

 The probability of 
each one of those 
sequences. 

The number of 
sequences of 
Successes and 
Failures that results 
in X Successes and 
N-X Failures 

  

 
 
It is also possible to generate binomial probabilities using the binomial expansion. For example, 
for N = 4,  
 

4 4 0 3 1 2 2 1 3 0 4

4 3 1 2 2 1 3 4

( ) 4 6 4
            4 6 4
p q p q p q p q p q p q

p p q p q p q q
+ = + + + +

= + + + +
 

 
But many students find the formula I gave first easier to understand.  
 
Note as well that some (older) statistics textbooks have Tables of the binomial distribution, but 
usually only for particular values of p and q (e.g., multiples of .05). 
 
 
 
HYPOTHESIS TESTING 
 
Suppose I have two coins in my pocket.  One is a fair coin—i.e., p(Head) = p(Tail) = 0.5.  The 
other coin is biased toward Tails:  p(Head) = .15, p(Tail) = .85. 
 
I then place the two coins on a table, and allow you to choose one of them.  You take the selected 
coin, and flip it 11 times, noting each time whether it showed Heads or Tails. 
 

Let X = the number of Heads observed in 11 flips.  

Let hypothesis A be that you selected and flipped the fair coin. 

Let hypothesis B be that you selected and flipped the biased coin. 

 
Under what circumstances would you decide that hypothesis A is true? 
Under what circumstances would you decide that hypothesis B is true? 
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FAIR COIN 
 
p = p(Head) = 0.5 
q = p(Tail) = 0.5 

 

 
 

 
 
BIASED COIN 
 
p = p(Head) = 0.15 
q = p(Tail) = 0.85 

 
 
A good way to start is to think about what kinds of outcomes you would expect for each 
hypothesis. For example, if hypothesis A is true (i.e., the coin is fair), you expect the number of 
Heads to be somewhere in the middle of the 0-11 range. But if hypothesis B is true (i.e., the coin 
is biased towards tails), you probably expect the number of Heads to be quite small.  
 
Note as well that a very large number of Heads is improbable in either case, but is less probable 
if the coin is biased towards tails.  
 
In general terms, therefore, we will decide that the coin is biased towards tails (hypothesis B) if 
the number of Heads is quite low; otherwise, we will decide that the coin is fair (hypothesis A). 
 

IF the number of heads is LOW 

THEN decide that the coin is biased 

ELSE decide that the coin is fair. 

 
But an obvious problem now confronts us: That is, how low is low?  Where do we draw the line 
between low and middling?  
 
The answer is really quite simple. The key is to recognize that the variable X (the number of 
Heads) has a binomial distribution. Furthermore, if hypothesis A is true, X will have a binomial 
distribution with N = 11, p = .5, and q = .5. But if hypothesis B is true, then X will have a 
binomial distribution with N = 11, p = .15, and q = .85.  
 
We can generate these two distributions using the formula you learned earlier. 
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Two Binomial Distributions with N = 11 and X = # of Heads 
 

X  ( | )Ap X H  ( | )Bp X H   
0 .0005 .1673  
1 .0054 .3248  
2 .0269 .2866  
3 .0806 .1517  
4 .1611 .0536  
5 .2256 .0132  
6 .2256 .0023  
7 .1611 .0003  
8 .0806 .0000  
9 .0269 .0000  
10 .0054 .0000  
11 .0005 .0000  
 1.0000 1.0000  

 
Note that each of these binomial probability distributions 

is really a conditional probability distribution. 
 
We are now in a position to compare conditional probabilities for particular experimental 
outcomes. For example, if we actually did carry out the coin tossing experiment and obtained 3 
Heads (X=3), we would know that the probability of getting exactly 3 Heads is lower if 
hypothesis A is true (.0806) than it is if hypothesis B is true (.1517). Therefore, we might decide 
that hypothesis B is true if the outcome was X = 3 Heads. 
 
But what if we had obtained 4 Heads (X=4) rather than 3? In this case the probability of exactly 4 
Heads is higher if hypothesis A is true (.1611) than it is if hypothesis B is true (.0536). So in this 
case, we would probably decide that hypothesis A is true (i.e., the coin is fair). 
 
A decision rule to minimize the overall probability of error 
 
In more general terms, we have been comparing the (conditional) probability of a particular 
outcome if hypothesis A is true to the (conditional) probability of that same outcome if 
hypothesis B is true. And we have gone with whichever hypothesis yields the higher conditional 
probability for the outcome. We could represent this decision rule symbolically as follows: 
 

if p(X | A) > p(X | B) then choose A 
if p(X | A) < p(X | B) then choose B 

Note that even if the coin is biased towards tails, it is possible for the number of Heads to be very 
large; and if the coin is fair, it is possible to observe very few Heads. No matter which hypothesis 
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we choose, therefore, there is always the possibility of making an error.3  However, the use of the 
decision rule described here will minimize the overall probability of error. In the present 
example, this rule would lead us to decide that the coin is biased if the number of Heads was 3 or 
less; but for any other outcome, we would conclude that the coin is fair (see below). 
 

Decision rule to minimize the overall probability of error 
 

X  ( | )Ap X H  ( | )Bp X H   
0 .0005 .1673  
1 .0054 .3248  
2 .0269 .2866 Choose B 
3 .0806 .1517  
4 .1611 .0536  
5 .2256 .0132  
6 .2256 .0023  
7 .1611 .0003 Choose A 
8 .0806 .0000  
9 .0269 .0000  
10 .0054 .0000  
11 .0005 .0000  
 1.0000 1.0000  

 
 
Null and Alternative Hypotheses 
 
In any experiment, there are two hypotheses that attempt to explain the results. They are the 
alternative hypothesis and the null hypothesis. 
 
Alternative Hypothesis ( 1H  or AH ).  In experiments that entail manipulation of an independent 
variable, the alternative hypothesis states that the results of the experiment are due to the effect 
of the independent variable. In the coin tossing example above, 1H  would state that the biased 
coin had been selected, and that p(Head) = 0.15. 
 
Null Hypothesis ( 0H ). The null hypothesis is the complement of the alternative hypothesis. In 
other words, if 1H  is not true, then 0H  must be true, and vice versa. In the foregoing coin tossing 
situation, H0 asserts that the fair coin was selected, and that p(Head) = 0.50. 
 
Thus, the decision rule to minimize the overall p(error) can be restated as follows: 
 

                                                 
3 For the moment, the distinction between Type I and Type II errors is not important.  We will get to that shortly. 
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if p(X | 0H ) > p(X | 1H ) then do not reject 0H  

if p(X | 0H ) < p(X | 1H ) then reject 0H  

 
Rejecting 0H  is essentially the same thing as choosing 1H , but note that many statisticians are 
very careful about the terminology surrounding this topic.  According to statistical purists, it is 
only proper to reject the null hypothesis or fail to reject the null hypothesis.  Acceptance of either 
hypothesis is strictly forbidden. 
 
Rejection Region 
 
As implied by the foregoing, the rejection region is a range containing outcomes that lead to 
rejection of 0H . In the coin tossing example above, the rejection region consists of 0, 1, 2, and 3. 
For X > 3, we would fail to reject 0H . 
 
Type I and Type II Errors 
 
When one is making a decision about 0H  (i.e., either to reject or fail to reject it), it is possible to 
make two different types of errors. 
 
Type I Error.  A Type I Error occurs when 0H  is TRUE, but the experimenter decides to reject 

0H . In other words, the experimenter attributes the results of the experiment to the effect of the 
independent variable, when in fact the independent variable had no effect. The probability of 
Type I error is symbolized by the Greek letter alpha: 
 

p(Type I Error) = α 
 
Type II Error. A Type II Error occurs when 0H  is FALSE (or 1H  is TRUE), and the 
experimenter fails to reject 0H . In this case, the experimenter concludes that the independent 
variable has no effect when in fact it does. The probability of Type II error is symbolized by the 
Greek letter beta: 
 

p(Type II Error) = β 
 
 
The two types of errors are often illustrated using a 2x2 table as shown below. 
 
 

 THE TRUE STATE OF NATURE 

YOUR DECISION 0H  is TRUE 0H  is FALSE 

Reject 0H  Type I error (α ) Correct rejection of 0H  

Fail to reject 0H  Correct failure to reject 0H  Type II error ( β ) 
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EXAMPLE: To illustrate how to calculate α and β, let us return to the coin tossing experiment 
discussed earlier. 
 

Decision rule to minimize the overall probability of error4 
 

X  0( | )p X H  1( | )p X H   
0 .0005 .1673  
1 .0054 .3248  
2 .0269 .2866 Reject 0H  
3 .0806 .1517  
4 .1611 .0536  
5 .2256 .0132  
6 .2256 .0023  
7 .1611 .0003 Fail to reject 0H  
8 .0806 .0000  
9 .0269 .0000  
10 .0054 .0000  
11 .0005 .0000  
 1.0000 1.0000  

 
α = .0005 + .0054 + .0269 + .0806 = .1134 
β = .0536 + .0132 + .0023 + .0003 + ... = .0694 

 
 
Let us begin with α, the probability of Type I error. According to the definitions given above, 
Type I error can only occur if the null hypothesis is TRUE. And if the null hypothesis is true, 
then we know that we should be taking our probability values from the distribution that is 
conditional on 0H  being true. In this case, that means we want the distribution on the left 
(binomial with N = 11, p = .5). 
 
We now know which distribution to use, but still have to decide which region to take values 
from, above the line or below the line. We know that 0H  is true, and we know that an error has 
been made. In other words, we have rejected 0H . We could reject 0H  for any value of X equal to 
or less than 3. And so, the probability of Type I error is the sum of the probabilities in the 
rejection region (from the distribution that is conditional on H0 being true): 
 

α = .0005 + .0054 + .0269 + .0806 = .1134 

                                                 
4 See Appendix A for a graphical representation of the information shown in this table. 
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REVIEW.  Why can we add up probabilities like this to calculate α?  Because we want to know 
the probability of (X=0) or (X=1) or (X=2) or (X=3), and because these outcomes are all 
mutually exclusive of the others. Therefore, we are entitled to use the special addition rule for 
mutually exclusive events. We will use it again in calculating β. 
 
From the definitions given earlier, we know that a Type II error can only occur if 0H  is FALSE. 
So in calculating β, the probability of Type II error, we must take probability values from the 
distribution that is conditional on 1H  being true—i.e., the right-hand distribution (binomial with 
N = 11, p = .15, q = .85).  If 1H  is true, but an error has been made, the decision must have been 
FAIL to reject 0H . That means that we are looking at outcomes outside of the rejection region, 
and in the distribution that is conditional on H1 being true. The probability of Type II error is the 
sum of the probabilities in that region: 
 

β = .0536 + .0132 + .0023 + .0003 + ... = .0694 
 
 
Decision Rule to Control α 
 
The decision rule to minimize overall probability of error is rarely if ever used in psychological 
or medical research. Perhaps many of you have never heard of it before. There are at least two 
reasons for its scarcity.  The first reason is that in order to minimize overall probability of an 
error, you must be able to specify exactly the sampling distribution of the statistic given that 1H  

is true. This is rarely possible. (Note that in situations where you cannot specify the distribution 
that is conditional on 1H  being true, you cannot calculate β either. We will return to this later.) 
 
The second reason is that the two types of errors are said to have different costs associated with 
them. In many kinds of research, Type I Errors are considered by many to be more costly in 
terms of wasted time, effort, and money.  (We will return to this point later too.) 
 
Therefore, in most hypothesis testing situations, the experimenter will want to ensure that the 
probability of a Type I error is less than some pre-determined (but arbitrary) value. In 
psychology and related disciplines, it is common to set α = 0.05, or sometimes α = 0.01. To 
ensure that p(Type I Error) ≤ α, one must ensure that the sum of the probabilities in the rejection 
region (assuming H0 to be true) is equal to or less than α. 
 
 
EXAMPLE: For the coin tossing example described above, find the decision rule and calculate 
β for: 
 

a) α = 0.05 
b) α = 0.01 
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a) In order to find the rejection region that maintains α ≤ .05, we need to start with the most 
extreme outcome that is favourable to H1, and work back towards the middle of the distribution. 
In this case, that means starting with X = 0: 
 

X  0( | )p X H  0( | )p X H∑  
0 .0005 .0005  
1 .0054 .0059 Reject 0H  
2 .0269 .0327  
3 .0806 .1133  

 
Here, the right hand column shows the sum of the probabilities from 0 to X. As soon as that sum 
is greater than .05, we know we have gone one step to far, and must back up. In this case, the 
sum of the probabilities exceeds .05 when we get to X=3. Therefore, the .05 rejection region 
consists of X values less than 3 (X=0, X=1, and X=2). Note that the actual α level is .0328, which 
is well below .05. 
 
If X=3 is no longer in the rejection region, then it must now fall into the region used to calculate 
β.  The probability that X = 3 given that 1H is true = .1517 (see the previous table).  So β will be 
equal to the β value we calculated before plus .1517: 
 

β = .1517 +.0536 + .0132 + .0023 + .0003 + ... = .2211 
 
 
b) To find the .01 rejection region, we go through the same steps, but stop and go back one step 
as soon as the sum of the probabilities exceeds .01. 
 

X  0( | )p X H  0( | )p X H∑  
0 .0005 .0005  
1 .0054 .0059 Reject 0H  
2 .0269 .0327  
3 .0806 .1133  

 
In this case, we are left with a rejection region consisting of only two outcomes:  X=0 and X=1. 
The actual α level is .0059, which is well below the .01 level we were aiming for.  Again, 
because we have subtracted one outcome from the rejection region, that outcome must go into 
the FAIL to reject region. And from the earlier table, we see that p(X=2 | H1) = .2866. Therefore, 
 

β = .2866 + .1517 + .0536...+ .0000 = .5077 
 
Finally, note that the more severely α is limited (e.g., .01 is more severe than .05), the more 
β will increase. And the more β increases, the less sensitive (or powerful) the experiment. (We 
will address the issue of power soon.) 
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Directional and Non-directional Alternative Hypotheses 
 
We now turn to the issue of directional (or one-tailed) and non-directional (or two-tailed) 
alternative hypotheses. Perhaps the best way to understand what this means is by considering 
some examples. In each case, set α ≤ .05, toss a coin 13 times, count the number of Heads, and 
let the null hypothesis be that it is a fair coin. In each example, we will entertain a different 
alternative hypothesis. 
 
Example:  H0: p ≤ 0.5 (i.e., the coin is fair, or biased towards Tails) 

H1: p > 0.5 (i.e., the coin is biased towards Heads) 
 
NOTE: As mentioned earlier, H0 and H1 are complementary. That is, they must encompass all 
possibilities. So in this case, according to H0, p ≤ .5 rather than p = .5. In other words, because 
the alternative hypothesis states that the coin is biased towards Heads, the null hypothesis must 
state that it is fair or biased towards Tails. In generating the H0 probability distribution, however, 
we use p = .5. This provides what you could think of as a worst case for the null hypothesis.  
That is, if you can reject the null hypothesis with p = .5, you would certainly be able to reject it 
with any value of p < .5. 
 
Let us once again think about what kinds of outcomes are expected under the two hypotheses. If 
the null hypothesis is true (i.e., the coin is not biased towards Heads), we do not expect a 
particularly large number of Heads. But if the alternative hypothesis is true (i.e., the coin is 
biased towards Heads), we do expect to see a large number of Heads. So only a relatively large 
number of Heads will lead to rejection of H0. 
 

X  0( | )p X H  0( | )p X H∑   
0 .0001 .0001  
1 .0016 .0017  
2 .0095 .0112  
3 .0349 .0461  
4 .0873 .1334  
5 .1571 .2905  
6 .2095 .5000  
7 .2095 .7095  
8 .1571 .8666  
9 .0873 .9539  
10 .0349 .9888  
11 .0095 .9983  
12 .0016 .9999  
13 .0001 1.0000  
 1.0000   
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If H0 is true, then X, the number of Heads, will have a binomial distribution with N = 13 and p = 
.5 (see above). 
 
Because a large number of Heads will lead to rejection of H0, let us begin constructing our 
rejection region with X = 13, and working back towards the middle of the distribution. As soon 
as the sum of the probabilities exceeds .05, we will stop and go back one step: 
 
 

X  0( | )p X H  0( | )p X H∑   
13 .0001 .0001  
12 .0016 .0017  
11 .0095 .0112 Reject 0H  
10 .0349 .0461  
9 .0873 .1334  
8 .1571 .2905 Fail to reject 0H  

etc    
 
So in this case we would reject H0 if the number of Heads was 10 or greater, and the probability 
of Type I error would be .0461. 
 
 
Example 2:  H0: p ≥ 0.5 (i.e., the coin is fair, or biased towards Heads) 

H1: p < 0.5 (i.e., the coin is biased towards Tails) 
 
Again, if H0 is true, X, the number of Heads will have a binomial distribution with N = 13 and p = 
.5. But this time, we would expect a small number of Heads if the alternative hypothesis is true. 
Therefore, we start constructing the rejection region with X = 0, and work towards the middle of 
the distribution: 
 

X  0( | )p X H  0( | )p X H∑   
0 .0001 .0001  
1 .0016 .0017  
2 .0095 .0112 Reject 0H  
3 .0349 .0461  
4 .0873 .1334  
5 .1571 .2905 Fail to reject 0H  

etc    
 
 
Now we would reject H0 if the number of Heads was 3 or less; and again, the probability of Type 
I error would be .0461. 
 



B. Weaver (31-Oct-2005)   Probability & Hypothesis Testing  28 
 

Example 3:  H0: p = 0.5 (i.e., the coin is fair) 
H1: p ≠ 0.5 (i.e., the coin is biased) 

 
As in the previous two examples, X, the number of Heads, will have a binomial distribution with 
N = 13 and p = .5 if the null hypothesis is true. But this example differs in terms of what we 
expect if the alternative hypothesis is true. The alternative hypothesis is that the coin is biased, 
but no direction of bias is specified. Therefore, we expect either a small or a large number of 
heads under the alternative hypothesis. In other words, our rejection region must be two-tailed. 
In order to construct a two-tailed rejection region, we must work with pairs of outcomes rather 
than individual outcomes. We start with the most extreme pair (0,13), and work towards the 
middle of the distribution: 
 
 

X  0( | )p X H  0( | )p X H∑   
0 .0001 .0001  
1 .0016 .0017 Reject 0H  
2 .0095 .0112  
3 .0349 .0461  
4 .0873 .1334  
5 .1571 .2905  
6 .2095 .5000 Fail to reject 0H  
7 .2095 .7095  
8 .1571 .8666  
9 .0873 .9539  
10 .0349 .9888  
11 .0095 .9983  
12 .0016 .9999 Reject 0H  
13 .0001 1.0000  
 1.0000   

 
It turns out that we can reject H0  if the number of Heads is less than 3 or greater than 10; 
otherwise we cannot reject H0. The probability of Type I error is the sum of the probabilities in 
the rejection region, or .0224, which is well below .05. 
 
Note that X = 10 was included in the rejection region in Example 1; and X = 3 was included in 
the rejection region in Example 2. But if we include the pair (3,10) in the rejection region in this 
example, α rises to .0922. Therefore, this pair of values cannot be included if we wish to control 
α at the .05 level, 2-tailed. 
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NOTE: It is the ALTERNATIVE HYPOTHESIS that is either directional or non-directional. 
Note as well that in the three examples we have just considered, it is not possible to calculate β, 
because H1 is not precise enough to specify a particular binomial distribution. 
 
 
STATISTICAL POWER 
 
We are now in a position to define “power”. The power of a statistical test is the conditional 
probability that a false null hypothesis will be correctly rejected.  Note that power is also 
equal to 1 - β. 
 
As we saw earlier, it is only possible to calculate β when the sampling distribution 
conditional on H1 is known. The sampling distribution conditional on H1 is rarely known in 
psychological research. Therefore, it is worth bearing in mind that power analysis (which is 
becoming increasingly trendy these days) is necessarily based on assumptions about the nature of 
the sampling distribution under the alternative hypothesis, and that the power estimates that are 
produced are only as good as those initial assumptions. 
 
 
 

 
 
 



B. Weaver (31-Oct-2005)   Probability & Hypothesis Testing  30 
 

Appendix A: Graphical Illustration of alpha, beta, and power 
 
The figure shown below illustrates the same information that was presented in tabular form on 
page 23.  Alpha = p(Type I error), beta = p(Type II error), and 1-beta = power. 
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Appendix B: The Likelihood Ratio 
 
Earlier, we stated our decision rule for minimizing the overall probability of an error as follows: 
 

if p(X | H0) > p(X | H1) then do not reject H0 

if p(X | H0) < p(X | H1) then reject H0 

 
This way of stating the rule implies that we simply use the difference between two conditional 
probabilities as the basis of our decision. In actual practice, we (or at least statisticians) use the 
ratio of these probabilities. The so-called likelihood ratio (l) is computed as follows: 
 

0

1

( | )
( | )

p X Hl
p X H

=  

 
Note as well that: 
 

if p(X | H0 ) < p(X | H1 ), then 0

1

( | ) 1.0
( | )

p X H
p X H

<  

 
and 

if p(X | H0 ) > p(X | H1 ), then 0

1

( | ) 1.0
( | )

p X H
p X H

>  

 
 
Therefore our decision rule to minimize the overall probability of an error can be restated as 
follows: 
 

if l < 1 then reject H0; if l > 1 then do not reject H0 
 
 
 


