
c© 2008 Elsevier Science B. V.. This is the author’s version of the work. It is posted at http://www.
brucker.ch/bibliography/abstract/brucker.ea-verifying-2008 by permission of Elsevier Science B. V.
for your personal use. Not for redistribution. The definitive version was published in Electronic Notes in
Theoretical Computer Science 220 (2008) 15–27 , doi: 10.1016/j.entcs.2008.11.003.

Verifying Test-Hypotheses

An Experiment in Test and Proof

Achim D. Brucker1

SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

Lukas Brügger2,4

Information Security, ETH Zurich, 8092 Zurich, Switzerland

Burkhart Wolff3

Universität des Saarlandes, 66041 Saarbrücken, Germany

Abstract

HOL-TestGen is a specification and test case generation environment extending the interactive theorem
prover Isabelle/HOL. The HOL-TestGen method is two-staged: first, the original formula, called test
specification, is partitioned into test cases by transformation into a normal form called test theorem. Second,
the test cases are analyzed for ground instances (the test data) satisfying the constraints of the test cases.
Test data were used in an automatically generated test-driver running the program under test. Particular
emphasis is put on the control of explicit test hypotheses which can be proven over concrete programs.
As such, explicit test hypotheses establish a logical link between a validation by test and a validation by
proof. Since HOL-TestGen generates explicit test hypotheses and makes them amenable to formal proof,
the system is in a unique position to explore the relations between them at an example.

Keywords: symbolic test case generations, black box testing, theorem proving, formal verification,
Isabelle/HOL

1 Introduction

Today, essentially two software validation techniques are used: software verifica-
tion and software testing. As far as symbolic verification methods and model-based
testing techniques are concerned, the interest among researchers in the mutual fer-
tilization of these fields is growing.

1 Email: achim.brucker@sap.com
2 Email: lukas.bruegger@inf.ethz.ch
3 Email: wolff@wjpserver.cs.uni-sb.de
4 This work was partially funded by BT Group plc.

http://www.brucker.ch/bibliography/abstract/brucker.ea-verifying-2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-verifying-2008
http://dx.doi.org/10.1016/j.entcs.2008.11.003
http://www.brucker.ch/
http://www.infsec.ethz.ch/people/lukasbru/
http://www.infsec.ethz.ch/people/wolffb/
mailto:achim.brucker@sap.com
mailto:lukas.bruegger@inf.ethz.ch
mailto:wolff@wjpserver.cs.uni-sb.de

16 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

The HOL-TestGen system [4,3,2] is designed to explore and exploit the com-
plementary assets of these approaches. Built on top of a widely-used interactive
theorem prover, it provides automatic procedures for test case generation and test
data selection, as well as interactive means to perform logical massages of the inter-
mediate results by derived rules. The core of HOL-TestGen is a test case generation
procedure that decomposes a test specification (TS), i. e., a test-property over a pro-
gram under test, into a semantically equivalent test theorem of the form:

JTC1; . . . ; TCn; THYP H1; . . . ; THYP HmK =⇒ TS

where the TCi (i ∈ 1...n) are the test cases (i. e., test input that still contains,
possibly constrained, variables) and THYP is a constant (semantically defined as
identity) used to mark the explicit test hypotheses Hj (j ∈ 1...m) that are underlying
this test. Thus, a test theorem has the following meaning:

If the program under test passes the tests with a witness for all test cases TCi

successfully, and if it satisfies all test hypotheses THj , it is correct with respect
to the test specification TS.

In this sense, the test theorem bridges the gap between test and verification. Fur-
thermore, testing can be viewed as systematic weakening of specifications.

Establishing a formal link between test and proof, explicit hypotheses are an
ideal candidate for addressing some key-questions:

(i) What is the nature of the relation between test and proof? Do standard test
hypotheses make sense?

(ii) Does a test approximate a full-blown verification? Is the underlying test-
method complete in this sense?

(iii) Can tests contribute or even facilitate proofs?

This paper consists of two parts: In part one, we introduce HOL-TestGen

to make this paper self-contained, and show its explicit test hypotheses genera-
tion using a small example. In part two, we perform the standard workflow of
HOL-TestGen on a standard algorithm (insertion sort), and verify the resulting
test hypotheses by formal Isabelle/HOL proofs, and evaluate them by some empiri-
cal data.

2 Foundations

2.1 Isabelle

Isabelle [9] is a generic theorem prover. New object logics can be introduced by
specifying their syntax and natural deduction inference rules. Among other logics,
Isabelle supports first-order logic, Zermelo-Fraenkel set theory and Higher-order
logic (HOL), which we choose as framework for HOL-TestGen.

While Isabelle/HOL is usually denoted as a proof assistant, we use it as symbolic
computation environment. Implementations on Isabelle/HOL can re-use existing

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 17

powerful deduction mechanisms such as higher-order resolution and rewriting, and
the overall environment provides a large collection of components ranging from
documentation generators and code generators to (generic) decision procedures for
datatypes and Presburger Arithmetic.

Isabelle can easily be controlled by a programming interface on its implementa-
tion level in SML in a logically safe way, as well as on the Isar level, i. e., a tactic proof
language in which interactive and automated proofs can be mixed arbitrarily. Doc-
uments in the Isar format, enriched by the commands provided by HOL-TestGen,
can be processed incrementally within Proof General (see Section 3) as well as in
batch mode. These documents can be seen as a formal and technically checked test
plan of a program under test.

Isabelle processes rules and theorems of the form A1 =⇒ . . . =⇒ An =⇒ An+1,
also denoted as JA1; . . . ; AnK =⇒ An+1. They can be understood as a rule of the
form “from assumptions A1 to An, infer conclusion An+1.” Further, Isabelle pro-
vides a built-in meta-quantifier

∧
x1, . . . , xm. JA1; . . . ; AnK =⇒ An+1 for represent-

ing “fresh free variables not occurring elsewhere” thus avoiding the usual provisos
on logical rules. In particular, the presentation of subgoals uses this format. We
will refer to assumptions Ai also as constraints in this paper.

2.2 Higher-order Logic

Higher-order logic (HOL) [6,1] is a classical logic with equality enriched by total
polymorphic higher-order functions. It is more expressive than first-order logic,
since e. g., induction schemes can be expressed inside the logic. Pragmatically, HOL

can be viewed as a combination of a typed functional programming language like
SML or Haskell extended by logical quantifiers. Thus, it often allows a very natural
way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, multisets,
orderings, and various arithmetic theories. Furthermore, it provides the means for
defining datatypes and recursive function definitions over them in a style similar to
a functional programming language.

3 The HOL-TestGen System: An Overview

HOL-TestGen is an interactive (semi-automated) test tool for specification based
tests. Its theory and implementation has been described elsewhere [4,2]; here, we
briefly review the main concepts and outline the standard workflow. The latter is
divided into four phases: writing the test specification TS, generation of test cases
TC (which contain, possibly constrained, variables) along with a test theorem for
the TS, generation of test data TD, i. e., constraint-free instances of test cases where
all variables have been replaced by ground instances, and the test execution (result
verification) phase involving runs of the “real code” of the program under test;
Figure 1 illustrates the overall workflow. Once a test theory is completed, documents
can be generated that represent a formal test plan. The test plan containing the test
theory, test specifications, configurations of the test data and test script generation

18 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

program under test

test harness

test script

(Test Result)
Test Trace

test data

test cases

test specification HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 1. Overview of the Standard Workflow of HOL-TestGen

Figure 2. A HOL-TestGen Session Using Proof General

commands, possibly extended by proofs for rules that support the overall process, is
written in an extension of the Isar language. It can be processed in batch mode, but
also using the Proof General interface interactively (see upper window in Figure 2).
This interface allows for interactively stepping through a test theory in the upper
sub-window while the sub-window below shows the corresponding system state.
This may be a proof state in a test theorem development, a list of generated test
data or a list of test hypotheses. After test data generation, HOL-TestGen produces
a test script driving the test using the provided test harness. The test script together
with the test harness stimulate the code for the program under test built into the
test executable. Executing the test executable runs the test and yields a test trace
showing errors in the implementation (see lower window in Figure 2).

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 19

4 Test Case Generation with Explicit Test-Hypotheses

In this section, we describe the test case generation procedure of HOL-TestGen.
It is driven by an exhaustive backward-application of a standard tableaux calculus
combined with certain normal-form computations eliminating redundancy. Inter-
leaved with this partitioning process (similar to the DNF-based approach of Dick
and Faivre [7]), test hypothesis rules are generated on the fly and applied to cer-
tain subgoals in a backward manner. In the following, we present two well-known
kinds of test hypotheses. Following the terminology of Gaudel [8], these are called
uniformity and regularity hypotheses.

4.1 Inserting Uniformity Hypotheses

Uniformity hypotheses have the form:

THYP(∃x1 . . . xn. P x1, . . . , xn → ∀x1 . . . xn. P x1 . . . xn)

where THYP is a constant defined as the identity; this constant is used as a marker
to protect this type of formulae from other decomposition steps in the generation
procedure. Semantically, this kind of hypothesis expresses that whenever there is a
successful test for a test case, it is assumed that the program will behave correctly
for all data of this test case.

The derived rule in natural deduction format, expressing this kind of test theo-
rem transformation, reads as follows:

P ?X1 . . .?Xn THYP(∃x1 . . . xn. P x1 . . . xn → ∀x1 . . . xn. P x1 . . . xn)

∀x1 . . . xn. P x1 . . . xn

Here, the ?Xi are just meta variables, i. e., place-holders for arbitrary terms. This
rule can also be applied for arbitrary formulae just containing free variables since
universal quantifiers may be introduced for them beforehand.

Tactically, these hypotheses are introduced at the end of the test case generation
process, i. e., when all other rules can no longer be applied. Using a uniformity
hypothesis for each (non-THYP) clause allows for the replacement of free variables
by meta-variables which can be instantiated by ground terms during the test data
selection phase later. This transformation is logically sound.

For example, assume the following test specification:

if x < 0 then PUT x else PUT− x

where PUT is a place-holder for the program under test. The case generation pro-
duces the following test theorem:

test : if 0 ≤x then PUT x else PUT −x
1: 0 ≤ ?X1 =⇒ PUT ?X1
2: THYP((∃ x. 0 ≤x −→ PUT x)
−→ (∀ x. 0 ≤x −→ PUT x))\\

20 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

3: ?X2 < 0 =⇒ PUT −X2\\
4: THYP((∃ x. x < 0 −→ PUT −x)
−→ (∀ x. x<0 −→ PUT−x))

The test data selection phase will easily generate instances of the test cases, e. g.,
PUT 3 and PUT (−(−4)), (satisfying the constraints) to be used in a black-box test.
If we have the implementation of PUT in our hands, we could also verify the test
hypotheses; provided that execution paths in the concrete program correspond to
classes of test cases, we gain knowledge from the test for the verification.

4.2 Inserting Regularity Hypotheses

In the following, we address the problem of test case generation for quantifiers (or,
equivalently: free variables) ranging over recursive datatypes such as lists or trees.
As an introductory example, we consider the datatype for lists which is defined as
follows in Isabelle/HOL:

datatype int list = Nil (” [] ”)
| Cons int ”int list ” (infixr ”#” 65)

This statement is part of the Isabelle/HOL library and represents (together with
automatically derived theorems like l = [] ∨ ∃ a, l ’. l = a#l’ or the induction
theorem) the (background) test theory for the current example. Moreover, there
are ways to define the alternative syntax [x1, x2, x3] for (Cons x1 (Cons x2 (Cons
x3 []))) or x1#x2#x3.

Now assume we want to test a program PUT running over lists, i. e., the test
specification looks as follows:

PUT (l :: int list)

When generating the test cases for recursive data structures, HOL-TestGen

generates instead of a regularity hypothesis (following the terminology introduced
by Gaudel [8]), a so called data exhaustion theorem. This theorem is generated
on-the-fly, its form depends on the structure of the corresponding datatype. The
intuitive meaning of such a regularity hypothesis is: assuming that a predicate P

is true for all data x whose size (denoted by |x|) is less than a given depth k, P is
always true. For the user-defined value k = 2 and for the type list, we get:[

x = []
]

··
P (x)

∧
a.

[
x = [a]

]
··

P (x)
∧

a b.

[
x = [a, b]

]
··

P (x) THYP
(
∀x. 2 < |x| → P (x)

)
P (x)

The equalities introduced by this rule lead to the following test theorem (we omit
the uniformity hypotheses insertion here):

test : PUT l
1: PUT []
2: PUT [?X1]

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 21

3: PUT [?X2,?X3]
4: THYP(∀ x. 2 < |x| −→P(x))
5: ...

and, again, it is an easy game for a random-based test data selection method to
provide instances (i. e., test data) for these constraint free test cases.

5 Test of our Running Example

In the following we proceed with our example of a standard sorting algorithm by the
usual workflow for HOL-TestGen: we give the test theory, the test specification,
generate the test theorem, and extract test data.

The recursive definition of the predicate “ is sorted ” can be given in HOL similarly
as in a functional programming language:

consts is sorted :: ”int list ⇒ bool”
primrec ”is sorted [] = True”

” is sorted (x#xs) = (case xs of [] ⇒ True
| y#ys ⇒((x < y) ∨ (x = y))

∧ is sorted xs)”

We proceed by the test specification and the subsequent test case generation. The
test specification simply says, that whatever list we give PUT, it should yield a sorted
list in the sense given above. 5

test spec ”is sorted(PUT (l :: int list))”
apply(gen test cases ”PUT”)

The test case generation, based on the (implicit) default value k = 3 (depth of the
data exhaustion theorem), results in the test theorem:

1: is sorted (PUT [])
2: is sorted (PUT [?X1])
3: THYP ((∃ x. is sorted (PUT [x])) −→ (∀ x. is sorted (PUT [x])))
4: is sorted (PUT [?X2, ?X3])
5: THYP ((∃ x xa. is sorted (PUT [xa, x]))
−→ (∀ x xa. is sorted (PUT [xa, x])))

6: is sorted (PUT [?X4, ?X5, ?X6])
7: THYP ((∃ x xa xb. is sorted (PUT [xb, xa, x]))
−→ (∀ x xa xb. is sorted (PUT [xb, xa, x])))

8: THYP (3 < |l| −→ is sorted (PUT l))

Since all test cases are unconstrained, the test data selection phase picks just arbi-
trary integer values for the meta-variables ?X1, . . . , ?X6.

It turns out that uniformity and regularity hypotheses are an amazingly flexible

5 This test specification is not complete, e. g., it does not require that the result is sorted permutation of
the input.

22 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

form of systematic weakening of specifications. Our procedure can in particular
handle them by using refined constraint solving techniques, test specifications that
involve preconditions like:

test spec ”is sorted l −→ is sorted (PUT (a, l :: int list))”

That means that tests which are constrained to lists l which are sorted. Thus,
HOL-TestGen has been used for substantial case studies involving the unit tests
of red-black tree library implementations as well as firewalls [3,5]. In the latter,
regularity hypotheses can be used to establish coverage of an automaton accepting
a (protocol) language.

6 Validating Explicit Hypotheses

Now we will focus on the following questions:

(i) What is the nature of the relation between test and proof? Do standard test
hypotheses make “sense”?

(ii) Does a test approximate a full-blown verification? Is the underlying test-
method complete in this sense?

(iii) Can tests contribute or even facilitate proofs?

We address these questions by an attempt to test the hypotheses, and an attempt
to formally verify them. With respect to the latter, we will specify the insertion-sort
algorithm and use it in a (post-hoc) white-box setting. This verification will shed
some light on the role of tests and proofs.

6.1 Refining Test-Classes by Testing Test-Hypotheses

Re-feeding explicit test hypotheses into the testing process is easy in principle:
just remove the THYP operator, which protects the formula inside from further
decomposition during test case generation, and generate another test theorem from
it. Figure 3 illustrates the case of a refinement of a uniformity hypothesis. Refining
a specific uniformity hypothesis, i. e., a specific partition of the uniformity space,
results in both more fine-grained uniformity spaces (and thus test data) and a new
partition of the regularity space (right side of Figure 3).

While the approach leads to the construction of more test cases and there-
fore more distinct test data in principle, the presented example will not work for
HOL-TestGen since our system treats test classes induced by basic types like in-
teger as atomic. A list of integer of length two is therefore not further separated.
This kind of incompleteness of HOL-TestGen, however, is merely a weakness than
a serious limitation and can be overcome easily by, for example, adding case splits
over integer variables via x < k∨k ≤ x where k is a random value. Nevertheless, the
approach works with the existing HOL-TestGen in the red-black tree example [3],
where trees were refined in each test case.

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 23

Uniformity Space

Test Data

Regularity Space

Regularity
Space

Figure 3. Refining Test Data Spaces by Testing Hypothesis.

6.2 Verifying Test-Hypothesis by Formal Proof

As a prerequisite, we have to give a program for our test: this reflects the change to
a white-box testing scenario. As in all white-box test procedures, we make the meta-
assumption that the program under test is the same function as its presentation
inside the tool—and thus amenable to analysis on this presentation.

In our case, the functional program can be easily defined by:

consts ins :: ”[int , int list] ⇒ int list ”
primrec ”ins x [] = [x]”

”ins x (y#ys) = (if (x < y) then x#(ins y ys) else (y#(ins x ys)))”

consts sort :: ”int list ⇒ int list ”
primrec ”sort [] = []”

”sort (x#xs) = ins x (sort xs)”

The proof of the uniform hypotheses (where PUT is now instantiated with sort, i. e.,
our presentation of the program) is straightforward and actually automatic. For the
sake of this paper, we present the essential proof steps for one of the test hypotheses
of the test theorem shown in Section 5 in detail. For example, we prove with Isabelle
the second uniformity hypothesis (c.f. line 5 in the test theorem for is sorted shown
on page 21) as follows:

lemma uniformity 2 verified: ”THYP ((∃ x xa. is sorted (sort [xa, x]))
−→ (∀ x xa. is sorted (sort [xa, x]))) ”

We standardize the test-hypothesis to the core and get:∧
x xa x’ xa ’’. is sorted (sort [xa’, x ’]) =⇒ is sorted (sort [xa, x])

The only way to proceed is by discarding the assumption (see discussion below):∧
x xa. is sorted (sort [xa, x])

24 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

Unfolding sort yields:∧
x xa. is sorted (ins xa (ins x []))

and after unfolding of ins we get:∧
x xa. is sorted (if xa < x then [xa, x] else [x, xa])

Case-splitting results in:

1:
∧

x xa. xa < x =⇒ is sorted [xa, x]
2:
∧

x xa. ¬ xa < x =⇒ is sorted [x, xa]

Evaluation of is sorted yields:

1:
∧

x xa. xa < x
=⇒ case [x] of [] ⇒ True

| y # ys ⇒ (xa < y ∨xa = y)
∧ (case [] of [] ⇒ True

| y # ys ⇒ (x < y ∨x = y) ∧True)
2:
∧

x xa. ¬ xa < x
=⇒ case [xa] of [] ⇒ True

| y # ys ⇒ x < y ∨x = y)
∧ (case [] of [] ⇒ True

| y # ys ⇒ (xa < y ∨xa = y) ∧True)

which can be reduced to:

1:
∧

x xa. ¬ xa < x =⇒x < xa ∨x = xa

which results by arithmetic reasoning in True.
The proof reveals that the test is in itself irrelevant for the proof of uniformity:

the existential part has to be discarded since it leads to nowhere. Only in the
exceptional case that the quantifier ranges over a singleton set and therefore x =
x′ and xa = xa′ the assumption can be used; in this case, the test is just the
verification. In all other cases, the assumption ranges over different variables than
the conclusion. This fact is inherently related to the scheme of uniformity hypothesis
and not specific to our example.

The three uniformity test hypotheses together can be combined to

lemma separation for sort:
”∀ l. | l | <= 3 −→ is sorted (sort l)”

which states that the depth parameter of the data separation theorem is in fact ex-
hausted by the uniformity statements; this result is independent from the definition
of sort and could be generated by HOL-TestGen together with the data separation
theorem.

Altogether, we can now verify the regularity hypothesis. Without explaining
the tactical Isabelle-commands in detail, we show the full straightforward induction
proof:

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 25

lemma regularity verified: ”THYP (3 < |l| −→ is sorted (sort l)) ”
proof −

have anchor:
”
∧

a l. | l | = 3 =⇒ is sorted (ins a (sort l))”
by(auto intro !: separation for sort [THEN spec, THEN mp]

is sorted invariant ins)
have step:

”
∧

a l. is sorted (sort l) =⇒ is sorted (ins a (sort l))”
by(erule is sorted invariant ins)

This introduces two sub-lemmas called “anchor” and “step,” establishing that for
all lists of size three, the desired property holds and under the assumption that
a sub-list is sorted, the desired property hold for arbitrary lists. As the names of
theses two sub-lemmas suggest, they represent the anchor and the step of the main
induction. In the following we turn to the proof of the main hypothesis:

show ?thesis
apply(simp only: THYP def)

The proof which results in:

1: 3 < |l | −→ is sorted (sort l)

We continue the proof by induction l:

apply(induct l, auto)

resulting in:

1:
∧

a l . [[2 < |l |; ¬ 3 < |l |]] =⇒ is sorted (ins a (sort l))
2:
∧

a l . [[2 < |l |; is sorted (sort l)]] =⇒ is sorted (ins a (sort l))

finally, we use the sub-lemmas ”anchor” and ”step” and conclude our proof:

apply(subgoal tac ”|l| = 3”)
apply(auto elim!: anchor step)

done

Overall, this script follows the structure that can be expected in an informal proof
sketch. Here, the lemma is sorted invariant ins is just the invariant over the inner
loop of the sorting algorithm:

lemma is sorted invariant ins[rule format]:
” is sorted l −→ is sorted (ins a l)”

which is just established by another straightforward induction.
To complete the comparison, we briefly show the direct proof of the test speci-

fication:

lemma testspec proven: ”is sorted (sort l)”
apply(induct l, simp all)

26 A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27

apply(erule is sorted invariant ins)
done

7 Conclusion

We have presented the verification of our concept of explicit test hypotheses as
generated by our HOL-TestGen system at a small but paradigmatic example. It
shows how tests and (post-hoc) verifications can work seamlessly together.

With respect to our three initial questions, we can give the following summary:
Test hypotheses establish a logical link between individual test data and disjoint
test cases. Test hypotheses can be seen as a kind of proof obligation that is proven
in later stages of validation if needed. Test hypotheses can give the test engineer a
further means to control the quality of a test, an experience that is well confirmed
in several larger case studies [3,5] done with our system.

Uniformity is often criticized to be an unsound concept. But it is amazingly easy
to be verified in a concrete situation, and plays the role of an induction anchor.

The good news is that testing test hypotheses can indeed be used to approximate
verification—our methodology is therefore complete in this sense. The bad news
is, that our example offers no hope for the desire to use tests to simplify proofs.
We believe that our example proof stands here for a wide class of similar, e. g.,
recursively defined, problems: It can be expected that uniformity will always be
established independently from a test, and regularity will boil down to an induc-
tion, where uniformity clauses are indeed relevant for establishing the anchor, but
contribute nothing to the step.

References

[1] P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Kluwer
Academic Publishers, Dordrecht, 2nd edition, 2002.

[2] A. D. Brucker and B. Wolff. HOL-TestGen 1.0.0 user guide. Technical Report 482, ETH Zurich, Apr.
2005.

[3] A. D. Brucker and B. Wolff. Interactive testing using HOL-TestGen. In W. Grieskamp and C. Weise,
editors, Formal Approaches to Testing of Software, number 3997 in Lecture Notes in Computer Science.
Springer-Verlag, 2005.

[4] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive functions. In
J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing of Software, number 3395 in Lecture
Notes in Computer Science, pages 16–32. Springer-Verlag, 2005.

[5] A. D. Brucker and B. Wolff. Test-sequence generation with HOL-TestGen – with an application to
firewall testing. In B. Meyer and Y. Gurevich, editors, Test and Proof 2007: Tests And Proofs, number
4454 in Lecture Notes in Computer Science, pages 149–168. Springer-Verlag, 2007.

[6] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68, June
1940.

[7] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-based
specications. In J. Woodcock and P. Larsen, editors, Formal Methods Europe 93: Industrial-Strength
Formal Methods, volume 670 of Lecture Notes in Computer Science, pages 268–284, Heidelberg, Apr.
1993. Springer-Verlag.

[8] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors,
tapsoft’95: Theory and Practice of Software Development, number 915 in Lecture Notes in Computer
Science, pages 82–96. Springer-Verlag, Heidelberg, 1995.

A.D. Brucker et al./ Electronic Notes in Theoretical Computer Science 220 (2008) 15–27 27

[9] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-Order Logic,
volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2002.

	1 Introduction
	2 Foundations
	2.1 Isabelle
	2.2 Higher-order Logic

	3 The HOL-TestGen System: An Overview
	4 Test Case Generation with Explicit Test-Hypotheses
	4.1 Inserting Uniformity Hypotheses
	4.2 Inserting Regularity Hypotheses

	5 Test of our Running Example
	6 Validating Explicit Hypotheses
	6.1 Refining Test-Classes by Testing Test-Hypotheses
	6.2 Verifying Test-Hypothesis by Formal Proof

	7 Conclusion
	References

@Article{	 brucker.ea:verifying:2008,
 abstract	= {\testgen is a specification and test case generation
		 environment extending the interactive theorem prover
		 Isabelle/\acs{hol}. The \testgen method is two-staged:
		 first, the original formula, called \emph{test
		 specification}, is partitioned into \emph{test cases} by
		 transformation into a normal form called \emph{test
		 theorem}. Second, the test cases are analyzed for ground
		 instances (the \emph{test data}) satisfying the constraints
		 of the test cases. Particular emphasis is put on the
		 control of explicit test hypotheses which can be proven
		 over concrete programs.
		
		 As such, explicit test hypotheses establish a logical link
		 between validation by test and by proof. Since \testgen
		 generates explicit test hypotheses and makes them amenable
		 to formal proof, the system is in a unique position to
		 explore the relations between them at an example.},
 keywords	= {symbolic test case generations, black box testing, theorem
		 proving, formal verification, Isabelle/HOL},
 location	= {Budapest, Hungary},
 author	= {Achim D. Brucker and Lukas Br{\"u}gger and Burkhart Wolff},
 journal	= {Electronic Notes in Theoretical Computer Science},
 volume	= {220},
 number	= {1},
 issn		= {1571-0661},
 note		= {Proceedings of the Fourth Workshop on Model Based Testing
		 (MBT 2008)},
 publisher	= {Elsevier Science Publishers},
 address	= {Amsterdam},
 language	= {USenglish},
 editor	= {Bernd Finkbeiner and Yuri Gurevich and Alexander K.
		 Petrenko},
 title		= {Verifying Test-Hypotheses: An Experiment in Test and
		 Proof},
 categories	= {holtestgen},
 pages		= {15--27},
 classification= {workshop},
 year		= {2008},
 pdf		= {http://www.brucker.ch/bibliography/download/2008/brucker.ea-verifying-2008.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2008/brucker.ea-verifying-2008.ps.gz},
 public	= {yes},
 doi		= {10.1016/j.entcs.2008.11.003},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-verifying-2008}
		
}

%0 Journal Article
%T Verifying Test-Hypotheses: An Experiment in Test and Proof
%A Brucker, Achim D.
%A Brügger, Lukas
%A Wolff, Burkhart
%J Electronic Notes in Theoretical Computer Science
%D 2008
%V 220
%N 1
%I Elsevier Science Publishers
%C Amsterdam
%@ 1571-0661
%F brucker.ea:verifying:2008
%O Proceedings of the Fourth Workshop on Model Based Testing (MBT 2008)
%X \testgen is a specification and test case generation environment extending the interactive theorem prover Isabelle/\acshol. The \testgen method is two-staged: first, the original formula, called test specification, is partitioned into test cases by transformation into a normal form called test theorem. Second, the test cases are analyzed for ground instances (the test data) satisfying the constraints of the test cases. Particular emphasis is put on the control of explicit test hypotheses which can be proven over concrete programs. As such, explicit test hypotheses establish a logical link between validation by test and by proof. Since \testgen generates explicit test hypotheses and makes them amenable to formal proof, the system is in a unique position to explore the relations between them at an example.
%K symbolic test case generations, black box testing, theorem proving, formal verification, Isabelle/HOL
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-verifying-2008
%P 15-27

TY - JOUR
AU - Brucker, Achim D.
AU - Brügger, Lukas
AU - Wolff, Burkhart
PY - 2008//
TI - Verifying Test-Hypotheses: An Experiment in Test and Proof
JO - Electronic Notes in Theoretical Computer Science
SP - 15
EP - 27
VL - 220
IS - 1
PB - Elsevier Science Publishers
CY - Amsterdam
KW - symbolic test case generations, black box testing, theorem proving, formal verification, Isabelle/HOL
AB - \testgen is a specification and test case generation environment extending the interactive theorem prover Isabelle/\acshol. The \testgen method is two-staged: first, the original formula, called test specification, is partitioned into test cases by transformation into a normal form called test theorem. Second, the test cases are analyzed for ground instances (the test data) satisfying the constraints of the test cases. Particular emphasis is put on the control of explicit test hypotheses which can be proven over concrete programs. As such, explicit test hypotheses establish a logical link between validation by test and by proof. Since \testgen generates explicit test hypotheses and makes them amenable to formal proof, the system is in a unique position to explore the relations between them at an example.
SN - 1571-0661
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-verifying-2008
N1 - Proceedings of the Fourth Workshop on Model Based Testing (MBT 2008)
ID - brucker.ea:verifying:2008
ER -

