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I N T R O D U C T I O N

WHAT IS PROBABILITY?

Some types of mathematics are as old as the written word.
Geometry is probably older. We have written records from cul-
tures that arose early in world history in which we can find geom-
etry problems and solutions. Ancient scholars were working on
geometry even as they were developing a system of writing to
express their geometric insights. We can also point to cultures that
never developed their own written language but did develop their
own arithmetic. At least in some cultures, ’rithmetic is the oldest
of the three Rs.

Arithmetic and geometry are branches of knowledge that con-
cern aspects of our perception—number and shape—that are both
abstract and concrete. For example, three birds and three books
are both concrete manifestations of the abstract idea of the num-
ber 3. Similarly, we all recognize that soccer balls and bubbles have
something in common: Both are concrete manifestations of the
abstract idea of a sphere. These “simple” observations have been
made by many people living in many different cultures at many
different times in our history. Our ancestors may have begun to
think about geometry and arithmetic almost as soon as they began
to think at all.

Probability is different. Unlike geometry and arithmetic, whose
origins lie in prehistoric times, the theory of probability is a com-
paratively recent discovery. We know when probability, as a branch
of mathematics, was discovered. The theory of probability has its
origins in the Renaissance with the work of Girolamo Cardano and
later Galileo Galilei, but their work had little impact on those who
lived later. The investigation of probability begins in earnest with
an exchange of letters conducted by two French mathematicians,
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Pierre de Fermat and Blaise Pascal. Mathematicians have been
studying probability ever since.

One might think that the discovery of a new branch of mathe-
matics means the solution of a new and difficult equation or the
discovery of a new and exotic geometric shape. For probability,
however, this is false. Many of the solutions to important problems
early in the history of probability involved little more than simple
arithmetic. This is not to say that just anyone could have solved
these problems. These “simple” problems challenged some of the
best minds of the day, because despite the elementary arithmetic
involved in their solution, the concepts on which the solutions
were based were new and challenging.

Despite the challenging nature of the subject, many mathemati-
cians have found that time spent studying probability is time 
well spent. In fact, ever since its discovery less than 500 years ago
probability has continued to attract the attention of some of the
foremost mathematicians of each generation. Part of the fascination
with probability can be traced to the interesting and surprising
discoveries that have been made by using this branch of mathe-
matics. Often these discoveries have shed new light on ordinary
and familiar phenomena. For many of us that is what makes 
probability so interesting and challenging. Probability theory
enables us to see and think about the world in new ways.

Although it is a relatively new branch of mathematics, probabil-
ity theory is now one of the most used and useful of all the math-
ematical disciplines. It permeates our culture. One reason that
probability has proved so useful is that it allows us to be very spe-
cific about the chance that some event will, or will not, occur. We
tend to think of these kinds of events as random, but the adjective
random often tells us more about ourselves than about the actual
event.

To see this, it helps to look at a specific example. Consider, for
example, the problem of forecasting the weather, an endeavor in
which just about every prediction is expressed in the language of
probability. When a meteorologist forecasts an 80 percent chance
of rain tomorrow, that does not indicate that the meteorologist
believes that weather is “random.” Nor does it mean that there is
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no physical explanation for the rain, or that the laws of cause and
effect do not apply to weather. It does mean that, given the current
state of meteorological theory and the current set of measurements
available from satellites and weather stations, the meteorologist
still has some uncertainty about what the weather will be tomor-
row. Presumably, as the physics of weather becomes better under-
stood and better databases become available, the meteorologist’s
uncertainty about tomorrow’s weather will continue to diminish
and weather forecasting will continue to improve.

This leaves open the question of how we evaluate the meteorol-
ogist’s prediction. For example, if the meteorologist predicts an 80
percent chance of rain and it does not rain, was the meteorologist
wrong? Or more to the point: Was the meteorologist inaccurate?
We can answer this question only if we know the meteorologist’s
record over the long run. On those days that follow a prediction 
of an 80 percent chance of rain, we should—if the meteorologist 
is accurate—find that it rained about 80 percent of the time. If,
however, we discover that it rained 100 percent of the time or that
it rained 60 percent of the time, we know that the 80 percent fore-
cast is not a particularly accurate one. The theory of probability
challenges us to think and learn in new ways.

With this example in mind, let us consider how probability can
be used. Suppose we are trying to understand some process, which
may be the weather or anything else. Ideally, we would like to pre-
dict the result of the process. That, however, is not always possible.
We may not understand the process well enough to predict how it
will turn out. Although we may not know enough to predict 
the precise result, we may, nevertheless, be able to list the possible
outcomes of the process. To return to our meteorology example, we
could list the possible outcomes as the elements of a set, such as
{rain, no rain}. If we wanted to know more, we could make our 
list of possible outcomes more detailed. A more detailed weather
list might consist of these possible outcomes: {rain with wind, 
rain without wind, no rain with wind, no rain without wind}. The
list we make depends on what we know. What is important from 
the point of view of probability is that our list be a complete one—
that is, if one event on the list does not occur, then some other
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event on the list must occur. One goal, then, is to determine the
probability of each event on the list, but by itself accomplishing
that goal is often not sufficient for many practical problems. It is
often important to determine the factors on which our probability
estimates depend because probabilities change. They reflect what
we know. For example, what are the chances that it will rain
tomorrow if we know that 100 miles west of our location it rained
today? Information about probabilities does not allow us to pre-
dict with certainty what will happen next, but it does allow us to
predict the frequency of some event or chain of events over the
long run, and this ability can be very useful.

Ideas in the theory of probability are often subtle and even today
are not widely appreciated. But although the ideas that underlie
probability are somewhat obscure, the results of the theory of
probability are used throughout our society. When engineers eval-
uate the safety of a nuclear reactor, they use probability theory to
determine the likelihood that a particular component will fail and
that the backup system or systems will fail as well. When engineers
design a phone network they use probability theory to determine
whether or not the network’s capacity is large enough to handle
the expected traffic. When health officials decide to recommend
(or not to recommend) a vaccine for general use, their decision 
is based in part on a probabilistic analysis of the dangers that the
vaccine poses to individuals as well as its value in ensuring the
health of the general population. Probability theory plays an
essential role in engineering design, safety analysis, and decision
making throughout our culture.

The first part of this book traces the history of the theory of
probability. We will look at some of the main ideas of the subject
as well as the people who discovered them. We will also examine
some applications of the theory that have proved important from
the point of view of technology and public health. That latter part
of the book is about statistics, which, as we will see, is the flip side
of the theory of probability. We begin, however, with the history
of some early “random event generators.”
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PART ONE

WHAT IS PROBABILITY?





3

1
the idea of randomness

For most of us, the word random is part of our daily speech. We
feel as if we know what random means, but the idea of random-
ness—random behavior, random phenomena, and random fluctu-
ations—is an elusive one. How can we create random patterns?
How can we recognize random patterns when we are confronted
with them?

Central to the idea of randomness is the idea of unpredictabili-
ty. A random pattern is often described as one that cannot be pre-
dicted. It is, however, difficult to build a theory—mathematical or
otherwise—based on what something is not. Furthermore, this
type of definition often tells us less about the pattern than it tells
us about ourselves. A sequence of numbers may seem random, for
example, but upon further study we may notice a pattern that
would enable us to make better predictions of future numbers in
the sequence: The pattern remains the same, but it is no longer as
random as it first appeared. Does randomness lie simply in the eye
of the beholder?

There is no generally agreed upon definition of randomness, but
there have been several attempts to make explicit the mathemati-
cal nature of randomness. One of the best-known definitions of
randomness is expressed in terms of random sequences of num-
bers. The precise definition is fairly technical, but the idea is not.
To appreciate the idea behind the definition, imagine a very long
sequence of numbers and imagine creating a computer program to
describe the sequence. If every possible program that describes the
sequence of numbers is at least as long as the sequence itself, then
the sequence is random. Consider, for example, the sequence that



begins with the number 0 and consists of alternating 0s and 1s {0,
1, 0, 1, 0, 1, . . .}. This sequence can be infinitely long, but it can
be accurately described in only a few words. (In fact, we have
already described it.) We conclude that the sequence is not ran-
dom. Now suppose that we flip a coin and record the results so
obtained in the following way: Each time we get “heads” we write
the number 1, and each time we get “tails” we write the number 
0. If we do this many times, we produce a very long sequence. The
only way we can store the exact sequence—the precise series of 1s
and 0s obtained by flipping the coin—is to store each of the num-
bers in the order in which it appeared. There is no way to com-
press all of the information about the sequence into a short
description as we did for the sequence {0, 1, 0, 1, 0, 1, . . .}.
Furthermore, a careful analysis of any part of the series will not—
provided the coin is fair—enable us to predict future elements of
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the series with better than 50 percent accuracy. This sequence is
random. Random sequences are incompressible.

Not every mathematician agrees with this definition of random-
ness; nor is it entirely satisfactory from a logical viewpoint. As the
simpler definition given earlier did, it, too, defines randomness—
or at least random sequences—in terms of what they are not: They
are not compressible. There are, nevertheless, some positive char-
acteristics of this more mathematical definition. Part of this defi-
nition’s attraction lies in the fact that it enables researchers to
investigate degrees of randomness. If a sequence can be partly
compressed, then it is less random than it first seemed. If this more
modern definition is not the best one possible, it is, at least, a step
in the right direction.

Although the notion of randomness is difficult to define, it is,
nevertheless, an idea that has made its way into our daily lives in a
variety of ways. Most modern board games, for example, incorpo-
rate some aspect of randomness. Often this involves rolling one or
more dice. Dice are a common choice for a randomizing agent, a
device used to produce a random sequence or pattern, because the
patterns obtained by rolling dice are stable enough to make the
overall flow of the game predictable: We do not know which num-
ber will appear on the next roll of the dice, but we do know that
over the long run all numbers will appear with predictable fre-
quencies. This type of stability makes it possible to plan game
strategy rationally.

The other application of random processes that is of special
interest to us is the use of random processes as an aid in decision
making. Athletic teams, for example, use a random process as an aid
in decision making whenever they toss a coin to determine which
team takes possession of the ball first. Other, similar uses are also
common. For example, in choosing between two alternatives, such
as whether to go to the movies or the park, we may well use a coin:
“Heads we go to the movie; tails we go to the park.” Flipping a coin
is often perceived as a method to decide impartially between two
competing alternatives. On a more sophisticated level, computer
programs sometimes incorporate a random number generator—
a secondary program designed to choose a number “at random”
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from some predetermined set—into the main program so that the
computer can perform certain calculations without introducing
bias. “Fairness” is key: Coins, dice, cards, and random number gen-
erators are usually perceived as devices that generate numbers
unpredictably and without bias.

The incorporation of randomness into recreational activities and
decision-making processes is not new, of course, but in many ways
the interpretations and expectations that we have about the
processes are. There is ample evidence that the earliest of civiliza-
tions used random processes in just the same way that we do today,
but their expectations were quite different from ours. In fact, in
many cases, they simultaneously used random processes even as
they denied the existence of randomness.

Randomness before the Theory of Probability
How old is the search for random patterns? Archaeologists have
found prehistoric artifacts that appear as if they could have been
used in the same way that we use dice today. Bits of bone and care-
fully marked stones that have been unearthed at prehistoric sites
were clearly created or at least put aside for a purpose. These
objects evidently had meaning to the user, and they resemble
objects that were later used in board games by, for example, the
ancient Egyptians. This evidence is, however, difficult to interpret.
Without a written record it is difficult to know what the artifacts
meant to the user.

One of the earliest devices for producing random patterns for
which there is direct evidence is the astragalus, a bone found in the
heels of deer, sheep, dogs, and other mammals. When thrown, the
astragalus can land on any of four easy-to-distinguish sides. Many
astragali have been found at prehistoric sites, and it is certain that
they were used in ancient Egypt 5,000 years ago in games of
chance. There are pictures of Egyptians throwing astragali while
playing board games. Unfortunately, the only record of these early
games is a pictorial one. We do not know how the game was
played or how the patterns produced by throwing the astragali
were interpreted.
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The earliest game of chance that we understand well enough to
play ourselves is one from Mesopotamia. The Mesopotamian civ-
ilization was located inside what is now Iraq. It was one of the old-
est, perhaps the oldest, literate civilization in history. The earliest
written records we have from this culture are about 5,000 years
old. Babylon was the most famous city in Mesopotamia, and
another important city was Ur. While excavating graves at Ur dur-
ing the early 20th century archaeologists uncovered a board game
that had been buried with its user. The board game, which is beau-
tifully crafted, is about 4,500 years old. We can be sure that it is a
board game—we even know the rules—because ancient references
to the game have also been unearthed. This game is called the
Game of 20 Squares. It is played by two people, each of whom
relies on a combination of luck and a little strategy to win. The
luck part involves rolling dice, to determine how many squares
each player can move his or her piece. The skill part involves
choosing which piece to move. (You can play this most ancient of
all known board games on the website maintained by the British
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Museum at http://www.mesopotamia.co.uk/tombs/challenge/
ch_set.html. They call it the Royal Game of Ur.) What is impor-
tant to us is that the game develops in a more or less random way,
because the number of spaces each player can jump is determined
by a throw of a set of dice.

The Game of 20 Squares was played for millennia over a wide
area of the world, including Egypt and India as well as
Mesopotamia. It was one of the most successful board games of all
time, but it did not inspire a theory of probability. There is no
indication that anyone tried to devise an optimal strategy for win-
ning the game based on the probability of certain outcomes of the
dice.

Two thousand five hundred years after the invention of the Game
of 20 Squares, Mesopotamian culture was on the wane. The dom-
inant culture in the area was Rome, and the inhabitants of ancient
Rome loved to gamble. Gambling, or gaming, can be described as
the board game minus the board. Skill is eliminated as a factor, and
participants simply bet on the outcome of the throw.

Gambling, then as now, however, was associated with many
social problems, and the Romans had strict laws that limited gam-
bling to certain holidays. These laws were widely ignored, and the
emperors were some of the worst offenders. The emperors
Augustus (63 B.C.E.–A.D. 14) and Vitellius (A.D. 15–69) were well
known as inveterate gamblers. They enjoyed watching the random
patterns emerging as they threw their astragali again and again—
astragali were more popular than dice as devices for creating ran-
dom patterns—and they enjoyed cheering when the patterns went
their way.

The rules of the games were simple enough. A popular game
involved “throwing” several astragali. When a player threw an
unlucky pattern he or she placed money into the pot. The pattern
continued with each player’s adding money to the pot until a 
player threw a “lucky” combination of astragali; then she or he
won all of the money in the pot, and afterward the game began
again. It does not appear that the Romans were interested in
thinking about randomness on a deeper level, although they had
plenty of opportunities to do so. In the following excerpt of a let-
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ter that Emperor Augustus sent to one of his friends he describes
how he spent the day of a festival:

We spent the Quinquatria very merrily, my dear Tiberius, for we
played all day long and kept the gaming-board warm. Your
brother made a great outcry about his luck, but after all did not
come out far behind in the long run; for after losing heavily, he
unexpectedly and little by little got back a good deal. For my
part, I lost twenty thousand sesterces, but because I was extrav-
agantly generous in my play, as usual. If I had demanded of
everyone the stakes which I let go, or had kept all that I gave
away, I could have won fully fifty thousand. But I like that bet-
ter, for my generosity will exalt me to immortal glory. 

(Suetonius, Suetonius, trans. J. C. Rolfe [Cambridge, Mass.: Harvard
University Press, 1913])

This is clearly a letter from someone who expects nothing more
from gambling than a good time and immortal glory. This attitude
was typical of the times.

In ancient times astragali, dice, the drawing of lots, and other
randomizing agents were also used as aids in decision making. A
list of possible actions was drawn up and each action assigned a
number or pattern; then the dice or astragali were thrown and the
outcome noted. The chosen course of action was determined by
the pattern that appeared. This type of decision making was often
associated with religious practice, because the participants saw the
outcome as an expression of providence. By using what we might
call a randomizing agent the questioner had released control of the
situation and turned over the decision to his or her god, an inter-
pretation of a mode of decision making that is not restricted to
antiquity. Today there are many people who continue to hold that
what are often described as random actions are actually expres-
sions of divine will.

Although there are many instances in antiquity of interpreting a
random outcome as the will of God, there is no more articulate
expression of this idea than a legal opinion written in the highly
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publicized 19th-century crim-
inal trial U.S. v. Holmes (1842).
The judge who wrote the 
opinion was a Supreme Court
justice, Henry Baldwin. He
was sitting in for a Philadelphia
trial judge when he heard this
case. Here are the facts:

A ship, the William Brown,
was carrying 80 passengers
across the North Atlantic
when it struck an iceberg.
There were two boats aboard
the ship that could be used as
lifeboats. One boat was much
smaller than the other. The
William Brown sank with 30
passengers, mostly children,
aboard. After some initial
shuffling, the small boat,

which was outfitted with oars and a sail, carried eight passengers
including the captain. The larger boat, which was only 22 feet
long, carried 42 passengers including a few crew members and the
mate. The larger boat was severely overloaded, leaking, and sit-
ting very low in the water. The passengers had to bail steadily to
prevent it from sinking. It did not have a sail and, in any case, was
too heavily loaded to do anything except drift. The smaller boat
sailed for Canada, where it was rescued by a Canadian fishing ves-
sel. After the larger boat had drifted for about a day on the open
sea, the wind picked up. Waves swamped it even though the pas-
sengers bailed frantically. The mate ordered the crew to lighten
the boat. Two sailors threw some of the passengers overboard,
and they soon drowned. In this way the crew raised the level of
the boat enough that it could ride the waves. This action saved
the crew and the remaining passengers. The boat drifted eastward
and was eventually rescued by a French ship and taken to a
French port.
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Later, when the survivors reached Philadelphia, they spoke in
favor of prosecuting the sailors for murder. It was his misfortune
that Holmes, who was involved in throwing the passengers over-
board, was the only sailor whom the authorities could locate. The
grand jury refused to indict him for murder so he was indicted for
voluntary manslaughter. After much ado Holmes was sentenced to
six months in jail and a $20 fine. (He served the jail sentence but
did not pay the fine because he received a pardon from President
John Tyler.) Explaining the court’s decision, the presiding judge,
Supreme Court justice Henry Baldwin, wrote, in part

there should be consultation, and some mode of selection fixed,
by which those in equal relation may have equal chance for their
life . . . when a sacrifice of one person is necessary to appease the
hunger of others, the selection is by lot. This mode is resorted
to as the fairest mode, and in some sort, as an appeal to God, for
selection of the victim.

The emphasis is ours. It was Justice Baldwin’s thinking that the
sailors, except those whose navigation duties made them indispen-
sable, should have been at the same risk of being thrown over-
board as the passengers. Their mistake, he believed, lay in putting
themselves above the passengers. The sailors, as the passengers
were, should have been subject to a chance procedure whose out-
come would determine who would be thrown overboard. In the
statement cited we can see how Justice Baldwin sees randomness
as an opportunity for a deity to intercede.

Early Difficulties in Developing 
a Theory of Randomness

It is apparent that randomizing agents were an important part of
ancient societies just as they are of today’s. Despite this, ancient
societies did not develop a theory of randomness. There was noth-
ing in any ancient society that corresponded to the theory of prob-
ability. This is not because ancient peoples were not
mathematically sophisticated. Many of them were. Furthermore,
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many of the early problems in the theory of probability were 
not mathematically difficult; they were well within the range of
mathematicians living in China, India, Mesopotamia, Greece, 
and several other places. Why, then, was the development of the
theory of probability delayed until the 16th century?

The first barrier to progress in developing a theory of random-
ness was essentially technical. In antiquity, the principal random-
izing agent was often the astragalus, and the structure of astragali
are decidedly not uniform. An astragalus has an irregular shape.
More importantly, the shape and weight distribution of an astra-
galus depend very much on the age and species of the animal from

12 PROBABILITY AND STATISTICS

RANDOMNESS AND RELIGION TODAY
IN BURKINA FASO

Today, in the country of Burkina Faso, which is located in western Africa,
lives a group of people called the Lobi. (Burkina Faso means “land of the
honest people.”) Traditional Lobi beliefs hold that some men and a few
women can communicate with mystical beings called thila. These people
are “diviners.” The Lobi consult the thila about a wide variety of topics, but
communicating with the thila can take place only with the help of a divin-
er. The role of the diviner in Lobi society is very interesting and in some
ways inspiring, but from our point of view it is the method with which the
diviner communicates with the thila that is of interest. At a certain point
in the ceremony the diviner asks questions of a particular thila, so that the
diviner can be sure that he or she has divined correctly. We can, if we so
choose, understand the verification procedure of the diviner in terms of
random patterns. The diviner uses cowry shells to form a random pattern.
Cowry shells have one flat, open side and one curved, closed side, so a
cowry shell can land either flat side up or curved side up. There are no
other possibilities. The diviner rolls two or more cowry shells. If one shell
lands flat side up and all other shells land curved side up, this pattern is
interpreted as a positive answer by the thila. A no from the thila is under-
stood if any other configuration of cowry shells is rolled. This is a nice
example of how what we might perceive as a random pattern is inter-
preted by others as not random at all. The randomness is, instead, an
opportunity for a deity to communicate directly with the diviner.



which it was obtained. Consequently, the frequency of various
outcomes depends on the particular astragali used. Changing
astragali in the middle of a game amounts to changing the game,
because the change also alters the frequency of various outcomes.
It is not possible to develop uniform data (or a uniform theory) for
astragali in the same way that one can for modern dice. The fact
that astragali were not uniform probably inhibited the develop-
ment of a theory of randomness based on their use. It certainly
would have limited the usefulness of such a theory. (It is also worth
noting that what has been said of astragali can also be said of many
early dice. These often were not exactly cubical; nor did they
always have a uniform weight distribution. No one would use such
asymmetric dice today, but at one time they were common.)

In contrast to these early randomizing agents, modern dice are
uniform in structure: A well-made die is a cube; its weight is dis-
tributed evenly throughout, and as a consequence every such die 
is as likely to land on one side as on another. This is the so-called
fair die. Over the long run the frequencies of all the outcomes
obtained by rolling any such die are the same. This type of stabil-
ity makes it possible to compare a single set of theoretical predic-
tions of frequencies with empirical data obtained from any die
because what is true for one modern die is true for them all. The
existence of good approximations to the ideal “fair” die made a big
difference. Good approximations provided an accurate physical
representation of an ideal concept. As well-made dice replaced the
astragali, and as well-made cards became more affordable, it
became possible to develop a theory of randomness based on
“fair,” well-understood randomizing agents. Furthermore, there
was great interest among gamblers and others in such a theory for
its possible utility.

A second, more fundamental barrier to the development of
probability was the difference between ancient and modern per-
ceptions about the use of random processes as an aid in decision
making. As pointed out in the first section of this chapter, when we
flip a coin to decide between two alternatives, we are often appeal-
ing to a random and unbiased process. We are simply looking 
for a means to distinguish between competing alternatives when
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neither alternative is favored. It may seem that the use of random-
izing agents by the ancients—and the type of selection process
favored by Justice Baldwin in U.S. v. Holmes—is similar to the
more modern conception of such agents, but that similarity is only
superficial. If one perceives that random outcomes are actually
expressions of divine will, then one does not truly believe that the
actions are random at all. This is a more profound barrier to the
development of a theory of probability than the technical differ-
ences between uniform dice and nonuniform astragali, because it
is a conceptual barrier. With the older understanding of random
events as expressions of divine will there is no need to search for
stable frequencies; they have no meaning. No matter what past
data indicate, future frequencies can always change, because every
outcome is the reflection of conscious decisions made by an intel-
ligent being.

The idea that a random process is not random but instead sub-
ject to manipulation by God or even the “skilled” has proved to be
a very tenacious one. It was not until mathematicians began to
reject the ideas of divine intercession and of luck—and the rejec-
tion was very tentative at first—that the theory of probability
began to develop. The shift toward a new type of reasoning—a
new perception of unpredictable phenomena—began to occur in
16th-century Italy with the work of Girolamo Cardano.
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2
the nature of chance

The Italian mathematician
Girolamo Cardano (1501–76),
also known as Jerome Cardan,
was the first to write in a some-
what modern way about the
odds of throwing dice. His
interest in rolling dice is
understandable. He loved to
gamble. He loved to play chess
and bet on the outcome. He
was also a prominent physician
as well as a mathematician,
astrologer, and scientist. He
lived in Italy during the
Renaissance and contributed to
knowledge in a variety of fields.
Cardano was a Renaissance
man—smart, self-confident,
and self-absorbed. He wrote at
length about himself, and he
enjoyed describing and prais-
ing his own accomplishments.
(In retrospect, it is clear that he sometimes claimed credit for ideas
and accomplishments that were not entirely his own.)

Things did not come easily to Girolamo Cardano. He wanted to
be admitted to the College of Physicians in Milan but was refused
twice. He succeeded on his third attempt. The process of gaining

Girolamo Cardano, the first 
mathematician to attempt to 
formulate a mathematical theory 
of probability  (Library of Congress,
Prints and Photographs Division)



admission to the college took
years, but Cardano was not
someone who became easily
discouraged. He believed in
himself, and with good rea-
son. He eventually became 
a well-known and much-
sought-after physician.

Today Cardano is best
remembered as a mathemati-
cian and the author of the
book Ars Magna, a book about
algebra that is still in print
more than 400 years after it
was first published. Some
claim that Cardano’s book 
was the start of the modern
era in mathematics. It certain-
ly made a big impression on
his contemporaries. Cardano, however, wrote many books on many
different subjects, including chess and dice, two games in which 
he seems to have lost a lot of his money. That he had a gambling
problem is clear. In one story he proudly recounts how he was 
able to recoup his losses: “Thus the result was that within twenty
plays I regained my clothes, the rings, and a collar for the boy”
(Ore, Oystein, Cardano, The Gambling Scholar, Princeton, N.J.:
Princeton University Press, 1953. Used with permission). Some of
what he wrote about chance, in particular, was not new even for his
time, but there are places in his book Liber de Ludo Aleae where we
can find the barest beginning of the idea of probability.

Girolamo Cardano expended a great deal of energy thinking
about games of chance. In Liber de Ludo Aleae he writes about dice,
cards, astragali, and backgammon. It was not an easy subject for
him. He was beginning to think about an old problem in a new
way. When Cardano wrote about a single die he clearly had an
ideal, or fair, die in mind. His writings on the subject are not
entirely clear, however, and there are many issues—for example,
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the odds of rolling a particular sequence of numbers—that he does
not address. Nevertheless, he clearly saw that the pastime he loved
had some mathematical basis, because he mathematically com-
pared the odds of various simple outcomes.
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CARDANO’S MISTAKE

Cardano asserted that if one throws a die three times the chance that 
a given number will show at least once is 50 percent. This is now 
recognized as the wrong answer. To understand the right answer, one
needs to know three facts about probability.

1. Each roll of a die is independent of every other roll. Here
independent has a technical meaning: No matter what the
outcome of any past roll—or any series of past rolls—the
probability of every future outcome remains unchanged.

2. The probability that a given event will occur plus the 
probability that the event will not occur always adds up to
1. In symbols, if p is the probability that some event will
occur, then the probability that this event will not occur is
always 1 – p.

3. When two events are independent the probability that both
will occur is the product of their individual probabilities.
Consider, for example, two events, which we will call A and
B. If the probability that A will occur is p and the probability
that B will occur is q, then the probability that A and B will
occur is p × q.

To compute the probability that a number will show at least once in three
throws of a die, it is easier to compute the probability that the number will
fail to show even once and subtract this probability from 1. (See fact 2.) The
probability that the number will not show on a single throw of the die is 5/6.

By the first fact, each throw is independent, so the probability that
the number will not appear on the second throw is also 5/6. The same
is true of the third throw. By the third fact, the probability that the 
number will fail to appear on all three throws is 5/6 × 5/6 × 5/6 or
125/216 or approximately 58 percent. By fact 2, the probability that the
given number will appear at least once is 1 – 0.58 or 42 percent.
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CARDANO ON LUCK AND MATH

Girolamo Cardano is a transitional person in the history of probability. Of
course, every mathematician worthy of note is, in some sense, a transi-
tional figure; each good mathematician corrects past errors and con-
tributes something to future progress. But the statement has a special
meaning for Cardano. Because of his mathematical background he was
able to identify a new way of thinking about games of chance.

Cardano was sometimes able to understand and use probability in
ways that sound modern. For example, he knew that the odds of throw-
ing a 10 with two dice are 1/12. He finds this by counting the number
of favorable outcomes. There are, he tells us, three ways of obtaining a
10 with two dice. One can roll

� (5, 5), that is, a 5 on each die, or

� (6, 4), that is, a 6 on the first die and a 4 on the second, or

� (4, 6), a 4 on the first die and a 6 on the second.

Next notice that there are 36 different outcomes. To see why, imagine
that one red and one green die are used—that way we can distinguish
between them. If 1 is rolled with the red die, that 1 can be paired with
any of six numbers—that is, 1, 2, 3, 4, 5, and 6—rolled on the green die.
So there are six possible outcomes associated with rolling a red 1.
There is, however, nothing special about the number 1. Exactly the same
argument can be used for any other number that appears on the red die.
Summing up all the possibilities we get 36 different possible outcomes.
(See the accompanying chart.)

Divide the sum of favorable outcomes (3) by the number of possible
outcomes (36) and one obtains 3/36 or 1/12. It is a simple result, but it
shows that he understands the principle involved.

What is interesting about Cardano is that although he understands
how to calculate the odds for certain simple outcomes, he does not
quite believe in the calculation. The difficulty that he has in interpreting
his calculations arises from the fact that he cannot quite jettison the very
unscientific idea of luck. Here is an excerpt from a section of Liber de
Ludo Alea entitled “On Timidity in the Throw.”

For this reason it is natural to wonder why those who throw 
the dice timidly are defeated. Does the mind itself have a 
presentiment of evil? But we must free men from error; for
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although this might be thought true, still we have a more mani-
fest reason. For when anyone begins to succumb to adverse
fortune, he is very often accustomed to throw the dice timidly;
but if the adverse fortune persists, it will necessarily fall unfa-
vorably. Then, since he threw it timidly, people think that it fell
unfavorably for that very reason; but this is not so. It is because
fortune is adverse that the die falls unfavorably, and because
the die falls unfavorably he loses, and because he loses he
throws the die timidly.

In Liber de Ludo Aleae we find luck and math side by side. That is part
of what makes the book so interesting to a modern reader.

+ 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

"First" Die

S
e
c
o
n
d

D
i
e

The table shows all 36 possible outcomes that can be obtained by
rolling two dice. The three shaded squares indicate the three possible
ways of rolling a 10:6 on the first die and 4 on the second, 5 on each
die, and 6 on the second die and 4 on the first.



A modern reader can occasionally find it a little frustrating (or a
little humorous) to read the Liber de Ludo Aleae. One begins to
wonder when Cardano will get around to drawing the “obvious”
conclusions. He usually does not. He points out, for example, that
if one chooses any three sides of a die, then the numbers on those
three sides are just as likely to show on one roll of the die as the
numbers on the other three sides. From this he concludes, “I can
as easily throw one, three or five as two, four or six” (ibid.). In a
sense, by marking out three faces of a six-sided die as favorable and
three as unfavorable he turned the problem of rolling a die into a
coin-toss problem: The odds are 50/50, he tells us, that we will roll
either a 1, a 3, or a 5. He was right, of course, and he did go a lit-
tle beyond this simple case, but his understanding of probability,
even as it relates exclusively to dice, was very limited.

Mathematically, he came very close to making deeper discover-
ies, but he never quite made the necessary connections. Moreover,
not every mathematically formulated remark that he wrote about
dice is correct. He concludes, for example, that if one throws a die
three times the chance that a given number will show at least once
is 50 percent, whereas it is actually about 42 percent. To be sure,
he did not get very far in his analysis, but it is important to keep
in mind that he was the first to attempt to formulate probabilistic
descriptions of “random phenomenon.”

We can develop a fuller appreciation of Cardano’s work if we keep
in mind two additional barriers that Cardano faced in addition to the
newness of the subject. First, it would have been hard for anyone to
develop a more comprehensive theory of probability without a good
system of algebraic notation. Without algebra it is much harder to
represent one’s mathematical ideas on paper, and in Cardano’s time
the algebraic notation necessary for expressing basic probability was
still in the process of being developed. (Liber de Ludo Aleae is practi-
cally all prose.) Second, although Cardano stood at the edge of a new
way of thinking about randomness, it is clear that he could not quite
let go of the old ideas. In particular, he could not lose the old pre-
conceptions about the role of luck. He was very sure, for example,
that the attitude of the person throwing the dice affects the outcome
of the throw. (Over a century later the great mathematician Abraham
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de Moivre felt it necessary to include a section in his book The
Doctrine of Chances repudiating the idea that luck is something that
can affect the outcome of a random event.) Although he could com-
pute simple odds, Cardano was unwilling to let the numbers speak
for themselves. Luck, he believed, still played a part.

Despite these shortcomings we find in Cardano’s writings the
first evidence of someone’s attempting to develop a mathematical
description of random patterns.

Galileo Galilei
The Italian scientist Galileo Galilei (1565–1642) was one of the
most successful scientists of all time. His astronomical observa-
tions, especially of Venus, the Sun, and the planet Jupiter, provid-
ed powerful proof that the Earth is not at the center of the
universe. He was one of the first scientists to investigate physics
using a combination of carefully designed experiments and
painstaking mathematical analysis. He played an important role in
establishing the foundations of modern science. He demonstrated
creativity in the pursuit of scientific and mathematical truth and
bravery in the face of adversity. In his article “Thoughts about
Dice-Games,” he also wrote a little about randomness.

Galileo’s observations on dice are not well known. Even Galileo
did not seem to pay much attention to the subject. He states in the
first paragraph that he is writing about dice only because he was
“ordered” to do so. (He does not mention who ordered him.)
Galileo seems to have been the only person of his time thinking
about randomness in a mathematical way. (Cardano died when
Galileo was a boy.) The ideas that Galileo expresses in his paper
are simply and directly stated. Even today this very short paper
makes a nice introduction to the simplest ideas about probability.

Galileo is especially interested in the problem of explaining why
the numbers 10 and 11 appear more frequently in throws of three
dice than do the numbers 9 and 12. The solution is simply a matter
of counting. He begins by noting that there are only 16 different
numbers that can be obtained by rolling three dice: 3, 4, 5, . . ., 18.
These numbers are not all equally likely, however. The number 3,
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he notes, can be obtained in
only one way: three 1s must be
rolled. Other numbers are
more likely to appear than 3
because they can be obtained
by a greater variety of combi-
nations of the dice.

To determine why 10 and 11
are more likely numbers than
9 and 12 when rolling three
dice, Galileo counts all of the
ways that the numbers 10 and
11 can be obtained. He shows,
for example, that there are 27
different ways of rolling a 10
but only 25 different ways of
rolling a 9. To see why this is
true, imagine that the three
dice are identical in every way
except color. Suppose that one
die is green, the second yel-
low, and the third red. Now

that we can easily distinguish the dice, we can see that two green,
one yellow, one red is a different outcome from one green, two
yellow, one red. This is true even though in both instances the dice
add up to 4. With this in mind it is a simple matter of counting 
all possibilities. The accompanying table lists all possible combi-
nations of 9 and 10 for comparison.

Notice, too, that there are 216 different possible outcomes asso-
ciated with rolling three dice: six different “green” numbers, six
yellow, and six red. Since the numbers on the differently colored
dice can occur in any combination the total number of combina-
tions is 6 × 6 × 6 or 216 outcomes.

If we were to study Galileo’s problem ourselves we would prob-
ably conclude our study with the observation that the chances of
rolling a 10 are 27/216, because there are 27 different ways of
rolling a 10 out of a total of 216 distinct possible outcomes. By
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Galileo Galilei. Although he spent
little time thinking about probability,
he saw more deeply into the subject
than anyone before him.  (Library of
Congress, Prints and Photographs
Division)



contrast, the chances of rolling a 9 are 25/216. Galileo does not
go this far. He is content to list the total number of outcomes that
yield a 10 (27 combinations) and the total number of outcomes
that add up to 9 (25 combinations) and then conclude that a 10 is
more likely than a 9. Galileo does not use any of the language that
we would associate with probability or randomness. To him it is a
simple matter of counting and comparing. Nevertheless, Galileo’s
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(1, 2, 6) (1, 3, 6)
(1, 3, 5) (1, 4, 5)
(1, 4, 4) (1, 5, 4)
(1, 5, 3) (1, 6, 3)
(1, 6, 2) (2, 2, 6)
(2, 1, 6) (2, 3, 5)
(2, 2, 5) (2, 4, 4)
(2, 3, 4) (2, 5, 3)
(2, 4, 3) (2, 6, 2)
(2, 5, 2) (3, 1, 6)
(2, 6, 1) (3, 2, 5)
(3, 1, 5) (3, 3, 4)
(3, 2, 4) (3, 4, 3)
(3, 3, 3) (3, 5, 2)
(3, 4, 2) (3, 6, 1)
(3, 5, 1) (4, 1, 5)
(4, 1, 4) (4, 2, 4)
(4, 2, 3) (4, 3, 3)
(4, 3, 2) (4, 4, 2)
(4, 4, 1) (4, 5, 1)
(5, 1, 3) (5, 1, 4)
(5, 2, 2) (5, 2, 3)
(5, 3, 1) (5, 3, 2)
(6, 1, 2) (5, 4, 1)
(6, 2, 1) (6, 1, 3)

(6, 2, 2)
(6, 3, 1)

COMBINATIONS OF THREE

DICE THAT SUM TO 9 
(25 SUCH COMBINATIONS)

COMBINATIONS OF THREE

DICE THAT SUM TO 10 
(27 SUCH COMBINATIONS)



paper is the most advanced treatise on a problem that we would
treat with the mathematics of probability that had been written
up until that time. Perhaps even more importantly, it is free of the
idea of luck—a concept that had marred Cardano’s thinking. It
was an important accomplishment despite the fact that no one,
apparently not even Galileo himself, considered it worthy of
much attention.

Pierre de Fermat and Blaise Pascal
The theory of probability is often said to have begun with the
work of two Frenchmen, Blaise Pascal (1623–62) and Pierre de
Fermat (1601–65). They were both extremely successful mathe-
maticians. Each of them made many discoveries in a variety of
mathematical disciplines, but neither Fermat nor Pascal was pri-
marily a mathematician. Both were mathematical hobbyists; fortu-
nately, they were brilliant hobbyists.

Pierre de Fermat was 22 years older than Pascal. He studied law at
the University of Toulouse and later found work with the government
in the city of Toulouse. This allowed him to work as a lawyer and to
pursue the many interests that he had outside the law. When the law
courts were in session he was busy with the practice of law. When the
courts were out of session he studied mathematics, literature, and lan-
guages. Fermat knew many languages, among them Greek, Latin,
Spanish, Italian, and, of course, French. He was well liked. By all
accounts Fermat was polite and considerate and well educated, but
beneath his genteel exterior he was passionately curious.

Mathematics is a difficult subject to pursue in isolation. The ideas
involved can be conceptually difficult, and the solutions can be
technically difficult. It is easy to get bogged down with details and
miss the forest for the trees. To keep one’s mind fresh it helps to
have access to other people with similar interests. For Fermat,
“keeping fresh” meant sending letters to accomplished mathemati-
cians. He maintained a lively correspondence with many of the best
mathematicians of his time. The letters, many of which were pre-
served, show a modest and inquisitive man in a serious and sus-
tained search for mathematical truth.
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In contrast to Fermat, Blaise
Pascal spent his teenage years
gleaning his mathematical
education from face-to-face
contact with some of the finest
mathematicians in Europe.
He accomplished this by
attending one of the most
famous math “clubs” in the
history of the subject.

In France and Italy during
the time of Fermat and Pascal,
and even during the time of
Cardano, there existed many
formal and informal groups of
like-minded individuals who
met together to discuss new
ideas in science and mathe-
matics. Meetings were held more or less regularly. One of the
most famous of these groups met each week in Paris, Pascal’s
hometown, at the house of Marin Marsenne. Marsenne was a
priest with a love of science, mathematics, and music. He was a
prolific writer and corresponded with many of the leading mathe-
maticians and scientists of his day, but it was the meetings, held
weekly at his house, that made him well known throughout
Europe. Some of the finest mathematicians and scientists of the
time spent one evening each week at what came to be known as the
Marsenne Academy. They talked, they argued, and they learned.
Pierre de Fermat, who lived in far-away Toulouse, was not a mem-
ber, but another mathematician, Etienne Pascal, was frequently in
attendance. In addition to his attendance at the academy, he and
Fermat corresponded on a number of subjects. Although Etienne
Pascal was a good mathematician, he is best remembered today as
the father of Blaise Pascal.

Etienne Pascal, as did Fermat, worked as a civil servant, but his
principal interest was his son’s education. Initially, he instructed
Blaise in languages and literature. He would not teach him 

The Nature of Chance  25

Ancient dice and a shaker made of
bone  (Museum of London/Topham-
HIP/The Image Works)



mathematics, because he did
not want to overwork his son.
It was not until the younger
Pascal began to study geome-
try on his own that his father
relented and began to teach
him math as well. Blaise
Pascal was 12 when he began
to receive instruction in
mathematics. By the time he
was 14 years of age he was
accompanying his father to
the get-togethers at Father
Marsenne’s house.

The meetings had a pro-
found effect on Blaise Pascal’s
thinking. By the time he was
16 he had made an important
discovery in the new field of
projective geometry. (The
mathematician who founded
the field of projective geometry,

Gérard (or Girard) Desargues, attended the meetings regularly,
and Pascal’s discovery was an extension of the work of Desargues.)
The younger Pascal’s interests changed quickly, however, and he
soon stopped studying geometry. By the time he was 18 he was
drawing attention to himself as the inventor of a mechanical 
calculator, which he created to help his father perform calculations
in his capacity as a government official. The Pascaline, as it came
to be called, was neither reliable nor cheap, but he made several
copies and sold some of them. These calculators made a great
impression on Pascal’s contemporaries, and several later calcula-
tors incorporated a number of Pascal’s ideas into their design.

As an adult Pascal was acquainted with a French nobleman, the
chevalier de Méré, a man who loved to gamble. Pascal and de
Méré discussed the mathematical basis for certain problems asso-
ciated with gambling. Pascal eventually turned to Fermat for help
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Blaise Pascal. His brief exchange of
letters with Pierre de Fermat opened
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in the solution of these problems. In 1654, Fermat and Pascal
began a famous series of letters about games of chance.

Some of the problems that Pascal and Fermat discussed con-
cerned “the division of stakes” problem. The idea is simple
enough. Suppose that two players place equal bets on a game of
chance. Suppose that one player pulls ahead of the other and then
they decide to stop the game before it has reached its conclusion.
How should they divide the stakes? If one player is ahead then it
is unreasonable to divide the stakes in half since the player who is
ahead would “probably” have won. As every gambler knows, how-
ever, being ahead in a game of chance is no guarantee of a win: In
fact, sometimes the player who is behind eventually wins anyway.
Nevertheless, over the long run the player who is ahead wins more
often than the player who is behind. The division of the stakes
should reflect this. This problem involves several important prob-
ability concepts and may have been inspired by ideas outside the
field of gambling. (See the sidebar.)

In their letters Pascal and Fermat solve multiple versions of this
type of gambling problem. They began with problems that involve
two players and a single die. Later, they considered three-player
games, but they did not limit themselves to the division of stakes
problem. They also answered questions about the odds of rolling
a particular number at least once in a given number of rolls.
(What, for example, are the odds of rolling a 6 at least once in
eight rolls of a die? See the sidebar Cardano’s Mistake earlier in
this chapter for the solution to a closely related problem.) Their
letters reflect a real excitement about what they were doing.

Unfortunately, Pascal and Fermat corresponded for only several
months about games of chance, and then Pascal stopped working
in mathematics altogether. He joined a religious order and gave up
mathematics for the rest of his life. Several years later, Fermat sent
Pascal one final letter offering to meet him halfway between their
homes to visit, but Pascal refused. In a few more years both men
were dead.

The sophistication of Fermat and Pascal’s work far surpassed
that of the work of Cardano and Galileo. Previously, Cardano
had asserted that what he had discovered about a single die was
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interesting from a theoretical viewpoint but was worthless from
a practical point of view. It is true that neither his discoveries nor
any subsequent discoveries enable a gambler to predict which
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THE DIVISION OF STAKES, 
AN ALTERNATIVE INTERPRETATION

One of the most important problems in early probability theory was
called the division of stakes. The problem was often described in the 
following terms:

Two players agree to a game of chance. They wager equal
amounts of money on the outcome. All money goes to the win-
ner. The game begins but is interrupted before it is completed.
One player is ahead when the game ends. How should the
stakes be divided?

In the main body of the text this is described as a problem that was 
motivated by gambling concerns, but there is another interpretation that
is of interest to us here. Some scholars believe that the division of stakes
problem was motivated by broader economic concerns. During the
Renaissance, lenders and merchants began to develop more sophisti-
cated systems of finance. Lenders sought to loan merchants money for
their businesses in the hope that the merchants would return to them the
capital plus an additional sum (the lender’s profit) at a future date.
(Today we often think of the profit as interest charged on the loan, but
there were other, alternative strategies in practice at the time such as a
share of the merchant’s future profits.) Merchants were expected to risk
their own money on the venture as well, so that the risk was shared.

The question then arose as to what were fair terms for the risk assumed
by each party: In the event that the situation did not develop as the lender
and merchant anticipated how could the “stakes” be fairly divided
between them? Seen in this way, the gambling questions to which these
early theorists addressed themselves—the questions on which the theory
of probability were originally founded—were really problems in insurance
stated in terms of recreational gambling. This would also help to explain
why these types of gambling problems developed when they did. Europe’s
economy underwent a period of rapid change and growth at the 
same time that mathematicians became interested in the division of stakes
problem. Some scholars believe that the two phenomena were related.



numbers will turn up on the next roll of a die; by their nature ran-
dom processes are unpredictable. (If they were predictable they
would not be “random.”) What Fermat and Pascal discovered
instead was that they could (in some simple cases, at least) predict
properties of the random pattern that would emerge if the dice
were rolled many times. For example, although they could not
determine whether or not a gambler would roll a 6 at least once in
eight rolls of a single die—because they could not predict individ-
ual events—they could predict how frequently the gambler would
roll at least one 6 in eight rolls of a single die if the gambler per-
formed this “experiment” many times. This type of insight, which
allows one to compare the likelihood of various outcomes, can be
useful from a practical point of view. Over the course of their brief
correspondence they made a serious effort to apply the results of
the new mathematics to problems in gaming, and in the process
they discovered a new way of thinking about randomness.

We should be careful not to overstate what Fermat and Pascal
did. They solved a set of isolated problems in probability; they
did not develop a broad theory. This is not surprising given the
brief time that they worked on these problems. When putting
their accomplishments into perspective, it helps to compare their
results with Euclidean geometry, a subject with which they were
both very familiar. In Euclidean geometry Greek mathematicians
had identified the objects with which they were concerned,
points, lines, planes, and the like. They made a list of definitions
and axioms that described the basic properties of these objects.
Finally, they used these fundamental properties to deduce still
other properties of the system of points, lines, and planes that
they had imagined into existence. Greek mathematicians
attempted to create a complete mathematical system. They want-
ed to create a purely deductive science. Pascal and Fermat’s work
was not on this level. In fact, mathematicians would not take a
deep look into the ideas underlying the theory of probability until
the 20th century.

Nevertheless, the letters that Pascal and Fermat exchanged
made a strong impression on many mathematicians. At first, their
discoveries just heightened interest in the mathematical theory of
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gambling, but these kinds of results were soon used in surprising
and important ways. Random patterns were soon used in every-
thing from the computation of the number π to the establishment
of rational public health policy. In a very real sense the history of
probability begins with Pascal and Fermat.

Christian Huygens
The short-term effect of the work of Pascal and Fermat was to
inspire discussion among many of the mathematicians in Paris.
One of those to hear and take part in these discussions was a young
Dutch mathematician, Christian Huygens (1629–95). As is
Galileo, Christian Huygens is now remembered primarily as a
physicist and inventor. He developed a new telescope design and
was the first to understand the nature of Saturn’s rings. (Galileo’s
telescope produced blurry images that showed only bumps on
each side of Saturn.) Huygens also developed a new and more
accurate clock design using a pendulum to regulate the motion of
the clock. (Galileo was the first to identify the basic properties of
pendulums.) Huygens helped develop the wave theory of light as
well, and in 1655 on a visit to Paris, he became fascinated with the
discussions among Parisian mathematicians about the mathemati-
cal theory of dice games. He did not meet Pascal, who had already
abandoned math for religion; nor did he meet Fermat. He heard
enough, however, to get him started with his own investigations.

One year after he had first visited Paris he completed a primer
for probability. This was published in 1657. In his book, which was
published in Latin with the name De Ratiociniis in Ludo Aleae (On
reasoning in games of dice), Huygens solves a number of the same
problems that had already been solved by Fermat and Pascal. He
also solved some problems of his own invention. The problems are
ordered and the results of previous problems are used in the solu-
tion of later ones. Again, there is no real attempt to discover the
principles that underlie the problems, but Huygens’s small 
textbook puts the new field of probability in reach of a broader
audience. In contrast to the letters of Fermat and Pascal, Huygens
produced a carefully written text that explains why certain 
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statements are true and how these new ideas can be used. It is the
first mathematical book written on probability, and it remained a
standard introduction to the subject for about half a century.

Jacob Bernoulli
The German mathematician and philosopher Gottfried Leibniz
(1646–1716) and the English mathematician and physicist Isaac
Newton (1643–1727) are credited as the codiscoverers of calculus.
They did not invent the entire subject on their own, however. Many
of the ideas and techniques that make up calculus were already
known to Fermat and others. The great French mathematician and
astronomer Pierre Simon Laplace even described Fermat as the
“true” inventor of the differential calculus—calculus is usually
described as having a differential and an integral part—so Laplace
was giving Fermat credit for discovering half the subject. There is
some truth to the claim. Nevertheless, Leibniz and Newton, work-
ing independently, were the first to assemble all the disparate ideas
that comprise calculus and to see them as part of a greater whole.

The impact calculus made on the mathematics of the time can-
not be overstated. Many problems that were once thought difficult
to solve were now perceived as easy special cases in a much broad-
er mathematical landscape. The frontiers of mathematics were
pushed far back, and for the next several generations mathemati-
cians took full advantage of these new ideas to imagine and solve
many new kinds of problems. Probability theory also benefited
from the new ideas and techniques of calculus. In the theory of
probability, however, Leibniz and Newton had little interest.

The Swiss mathematician Jacob Bernoulli (1654–1705) was a
member of what was certainly the most mathematical family in
history. Several generations of Bernoullis made important contri-
butions to the mathematical sciences. Jacob belonged to the sec-
ond generation of the mathematical Bernoulli clan, and he was
one of the very first mathematicians to recognize the importance
of calculus to probability as well as the importance of probability
to disciplines beyond the study of games of chance. Jacob
Bernoulli was educated as a minister, but ministry seems to have
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A page from Jacob Bernoulli’s Ars Conjectandi. In the column Bernoulli
demonstrates how to compute the first few values of what is now known as
the factorial function.  (Courtesy of Department of Special Collections,
University of Vermont)



been his father’s preference rather than his own. Instead, Bernoulli
was interested in astronomy and mathematics. As is every good
son, however, he was obedient to a point. He first earned a degree
in theology and then left Basel, Switzerland, his hometown, and
traveled around northern Europe meeting scientists and mathe-
maticians. He exchanged ideas and learned as much as he could. At
the age of 27, he returned to Basel and began his life’s work as a
mathematics teacher and scholar. Later, when he designed a crest
(a sort of traditional seal that was popular at the time) for himself,
he used the motto “Against my father’s will I study the stars.”

Bernoulli corresponded with Leibniz for years and developed an
early interest in probability. He was especially impressed by
Christian Huygens’s book De Ratiociniis in Ludo Aleae, described
earlier in this chapter. In fact, Bernoulli’s major work in the field
of probability, called Ars Conjectandi, contains a commentary on
Huygens’s work. (The title of Bernoulli’s book translates to “the
art of conjecturing,” but the book is still usually referred to by its
Latin name.) Bernoulli worked on Ars Conjectandi up until the time
of his death. The book was nearly finished when he died. Jacob’s
nephew Nicolas finished the book after much delay, and it was
published eight years after Bernoulli’s death.

Many of the calculations in Ars Conjectandi center around games
of chance. Games of chance provided a sort of vocabulary in which
Bernoulli—as did Fermat, Pascal, and Huygens—expressed his
ideas about randomness. But in Ars Conjectandi Bernoulli moves
the theory of probability away from being primarily a vehicle for
calculating gambling odds. He considers, for example, how prob-
ability applies to problems in criminal justice and human mortali-
ty. He did not make much progress in these areas, but it is
significant that he recognized that probability theory might help
us understand a variety of areas of human experience.

The most famous result obtained in Ars Conjectandi is a mathe-
matical theorem called the law of large numbers, sometimes called
Bernoulli’s theorem. Bernoulli claims to have struggled with the
ideas contained in the law of large numbers for 20 years. This math-
ematical discovery inspired debate among mathematicians and
philosophers for more than a century after the initial publication of
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Ars Conjectandi. The law of large numbers is still taught as an impor-
tant part of any introductory college course on probability.

In the law of large numbers Bernoulli considered a set of ran-
dom events that are independent of one another. In the theory of
probability two events are said to be independent of one another
when the outcome of one event does not influence the outcome of
the other event. For example, the odds of throwing a 4 with a sin-
gle die are 1/6. This is true every time one throws a die. It does
not matter what one has thrown previously, because previous
throws have no effect on future outcomes. Therefore, each time
one throws a die the odds of throwing a 4 remain 1/6, and what
can be said about a 4 can be said about any of the other numbers
on the die. Mathematicians summarize this situation by saying that
each throw of the die is independent of every other throw.

Next Bernoulli considered ratios and only the ratios that exist
between the number of times a given event occurs and the total
number of trials. (The reliance on ratios is important: When toss-
ing a fair coin the difference in the total number of heads thrown
versus the total number of tails will, in general, become very large
provided the coin is tossed often enough. Both ratios, however,
always tend toward 50 percent.) To return to dice again, Bernoulli
would have considered the ratio formed, for example, by the num-
ber of times a 4 appeared divided by the number of times that the
die was rolled rather than by the total number of 4s obtained:

(Number of 4s)/(Number of throws)

In Ars Conjectandi Bernoulli showed that when the trials are inde-
pendent, the ratio of the number of successful outcomes to the total
number of trials approaches the probability of the successful out-
come. (Here the word successful denotes a particular outcome; it
does not imply that one outcome is more desirable than another.)
Or to put it another way: If we roll the die often enough, the fre-
quency with which we roll the number 4 will be very close to the
probability of its occurrence.

Beyond stating these observations, which may seem obvious and
perhaps not even very mathematical, Bernoulli made explicit the
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way in which the ratio approaches the probability of the given
event. Suppose that we let the letter p represent the probability of
the event in which we are interested. We can imagine a small
interval surrounding p. For example, we can imagine the interval
as consisting of all the numbers on the number line to the left and
right of p that are within 1/1,000 of p. These numbers compose
the interval with p at its center. The law of large numbers states
that if the total number of trials is large enough, then the ratio
formed by the number of successful events to the total number of
trials will almost certainly lie inside this small interval. By almost
certainly we mean that if we want to be 99.99 percent sure that the
ratio will lie inside this interval then we need to perform only a
certain number of trials. We will let the letter n stand for the num-
ber of trials we need to perform. If we throw the die n times (or
more), we can be 99.99 percent sure that the ratio we obtain will
lie inside the interval that we choose. Of course, there is nothing
special about the number 1/1,000 or the percentage 99.99. We
chose them only to be definite. We are free to substitute other
numbers and other percentages. What is important is that
Bernoulli made explicit an important relationship between what
we observe and what we compute for a special class of random
processes.
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The letter p represents the
probability. The Greek letter ε
represents our definition of
“close.” Every point in the
shaded interval is within ε
units of p. The term fn
represents the frequency of the
event of interest after n trials.
While fn can lie inside the
interval centered at p for any
value of n, our confidence that
it is located within the interval
increases as n, the number of
trials, increases.

P is the probability of an event

   is our measure of "closeness."

fn is the measured frequency 
of an event after n trials

fn can lie within the interval for any n, 
however our confidence that fn lies 
with the interval about p increases 
as n increases

fn

P- P+P



The law of large numbers made a huge impression on the math-
ematicians and scientists of the day. In his book Jacob Bernoulli
showed that there was a robust and well-defined structure for the
class of independent random processes. Although it is true that not
every random process is independent, independent random
processes make up an important class of random processes, and in

a certain sense independent
random processes are the
most random of all random
processes. Bernoulli succeed-
ed in demonstrating the exis-
tence of a deep structure
associated with events that
until then had simply been
described as unpredictable.

Bernoulli was also interested
in a sort of converse to the law
of large numbers. Recall that
in the law we assume that we
know the probability and we
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In these computer simulations
three dice are rolled and the
sum is divided by 3. Sixteen 
different outcomes are possible:
1, 4/3, 5/3, 2, . . ., 6. The top
graph shows the probability of
each outcome. The middle 
graph shows the frequency of
each outcome after a trial run 
of 20 throws. The bottom graph
shows the frequency of each 
outcome after a trial run of
10,000 throws.  (Courtesy
Professor Kyle Siegrist and 
The Dice Experiment, 
www.math.uah.edu/psol/applets/
DiceExperiment.html)
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show that the measured frequency with which some event occurs
tends toward the probability. Alternatively, suppose that we do not
know the probability. Suppose, instead, that all we know is the rela-
tive frequency of some event after some set of trials. Bernoulli want-
ed to use these data to estimate the probability of the event. This is
a harder problem, and Bernoulli had less success in solving it.
Nevertheless, he was one of the first to recognize both halves of the
same problem: (1) given the probability predict the frequency, and
(2) given the frequency deduce the probability. The relationship
between these two aspects of the same problem would occupy the
attention of mathematicians for many years.

Bernoulli’s work marks a turning point in the history of proba-
bility. His results inspired many mathematicians to attempt to
apply these ideas to different problems in mathematics and sci-
ence. Other mathematicians began to search for ways of general-
izing Bernoulli’s results. Still others debated the implications of
their meaning. Ars Conjectandi was an important milestone in the
history of probability.

Abraham de Moivre
In France, in 1667, 13 years after the birth of Jacob Bernoulli,
Abraham de Moivre was born. He was a Huguenot, a French
Protestant, and during this time in France the Huguenots enjoyed
limited freedom under a law called the Edict of Nantes. As a
teenager de Moivre studied mathematics in Paris at the Sorbonne.
When de Moivre was 18, however, the edict was repealed, and de
Moivre was promptly imprisoned. He remained in prison for two
years. After he was released, he left for England and never
returned to his native country.

Abraham de Moivre lived by his wits. His skill was his knowl-
edge of mathematics, and he spent his adult life tutoring the rich
and learning more mathematics. Largely self-taught, he first saw
Newton’s major work, Principia Mathematica, it is said, at the home
of one of his students. He later purchased the book and tore out
the pages, learning the entire text one page at a time as he walked
about London from one tutoring job to the next.
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The first page of text from de Moivre’s Doctrine of Chances (Courtesy
of Department of Special Collections, University of Vermont)



Over time de Moivre became friends with many of the major
mathematical figures of the time, including Isaac Newton and the
British mathematician and scientist Edmund Halley (1656–1742).
(Edmund Halley is remembered primarily for his work in astron-
omy—Halley’s comet bears his name—but in the second half of
this book we will see that he was an important figure in the histo-
ry of statistics as well.) The best-known anecdote about de Moivre
involves his friend Isaac Newton. In later life, when people went
to Newton for mathematical help, he would refer them to de
Moivre, saying, “Go to Mr. de Moivre; he knows these things bet-
ter than I do.” That is quite a recommendation.

Although de Moivre made contributions in other areas, especial-
ly algebra, he is today best remembered for his work in probability
theory. As Jacob Bernoulli was, Abraham de Moivre was fascinated
by Christian Huygens’s short work De Ratiociniis in Ludo Aleae. His
own major work is entitled The Doctrine of Chances, or A Method of
Calculating the Probabilities of Events in Play. Published in 1756, it is
a big book and an excellent reference for understanding the state of
the art in probability theory in 18th-century England. De Moivre
began his book with a long introduction, which included a compli-
ment to Huygens and a justification for The Doctrine of Chances. It
is clear that the justification was important to him, and it is easy to
see why: He was pushing back the frontiers of mathematical knowl-
edge through the study of what many people considered a vice.
Gambling, of course, is the vice, and gambling problems and their
solutions are what he wanted to understand in problem after prob-
lem. He used calculus and the latest ideas from the quickly chang-
ing field of algebra. He even claimed to be developing an algebra
of probability, but to a modern reader’s eyes there is not much alge-
bra in the book. Most of the problems contained in The Doctrine of
Chances are very long because very few algebraic symbols are
employed. Instead, most of the book is written out in long, care-
fully crafted sentences. Nevertheless, he is clearly employing the
most advanced mathematics of his time in an attempt to understand
an important new concept.

In a modern sense there is not much theory to de Moivre’s book.
Instead of theorems and proofs, de Moivre conveys his insights
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through a long sequence of problems. This approach to probabil-
ity is reminiscent of the Mesopotamian approach to mathematics
4,000 years before de Moivre’s birth. Mesopotamian scribes
learned mathematics not through a study of general principles, but
rather through the solution of a long sequence of problems, begin-
ning with simple problems and continuing on to increasingly dif-
ficult ones. Similarly, The Doctrine of Chances begins with simple
gambling problems and their solutions. As the text progresses
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DE MOIVRE ON MATH AND LUCK

Early in The Doctrine of Chances de Moivre dismisses the role of luck
in games of chance. What he says is in stark contrast to Cardano’s
words on the subject. (See the sidebar Cardano on Luck and Math.)
Here are de Moivre’s words on the subject:

The Asserters of Luck are very sure from their own Experience,
that at some times they have been very Lucky, and that at other
times they have had a prodigious Run of ill Luck against them,
which whilst it continued obliged them to be very cautious in
engaging with the Fortunate; but how Chance should produce
those extraordinary Events, is what they cannot conceive: They
would be glad, for Instance, to be Satisfied, how they could
lose Fifteen Games together at Piquet, if ill Luck had not
strangely prevailed against them.

But if they will be pleased to consider the Rules delivered in
this Book, they will see, that though the Odds against their los-
ing so many times together be very great, viz. 32767 to 1, yet
that the Possibility of it is not destroyed by the greatness of the
Odds, there being One chance in 32768 that it may so hap-
pen; from whence it follows, that it was still possible to come
to pass without the Intervention of what they call Ill Luck.

Besides, This Accident of losing Fifteen times together at
Piquet, is no more to be imputed to ill Luck, than the Winning with
one single Ticket the biggest Prize, in a Lottery of 32768 Tickets,
is to be imputed to good Luck, since the Chances in both Cases
are perfectly equal. But if it be said that Luck has been concerned
in this latter Case, the Answer will be easy; let us suppose Luck



more complex problems are introduced, and their solutions
require ever more mathematical skill of the reader. The book ends
when the problems end.

Finally, de Moivre introduces a very important and familiar idea:
the bell-shaped, or normal, curve. This is a curve that has since
become both a cultural icon and an important mathematical con-
cept. The distribution of test scores, for example, has been found
to be well approximated by the “bell curve.” De Moivre shows that
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not existing, or at least let us suppose its Influence to be 
suspended, yet the biggest Prize must fall into some Hand or
other, not by Luck, (for by Hypothesis that has been laid aside) but
from the meer necessity of its falling somewhere.

To complete the contrast between the work of Cardano, one of 
the best mathematicians of his day, and de Moivre, one of the best
mathematicians of his day, we include a problem from The Doctrine of
Chances. It is one of the easiest problems. As you read it, note the
absence of any algebraic symbolism in the problem or in the solution.
Algebra, as we know it, was still being developed and problems 
were often somewhat difficult to read because of the lack of algebra-
ic symbolism. De Moivre does use some algebra, however, in express-
ing and solving harder problems. (By the way, the phrase at a venture
means “to take at random.”)

Suppose there is a heap of 13 Cards of one color, and anoth-
er heap of 13 Cards of another color, what is the Probability
that taking a Card at a venture out of each heap, I shall take the
two Aces?

The Probability of taking the Ace out of the first heap is 1/13:
now it being very plain that the taking or not taking the Ace out
of the first heap has no influence in the taking or not taking the
Ace out of the second; it follows, that supposing that Ace taken
out, the Probability of taking the Ace out of the second will also
be 1/13; and therefore, those two Events being independent,
the Probability of their both happening will be

1/13 × 1/13 = 1/169



the curve has a strong connection with other, already-understood
problems in probability. His discovery fits nicely into the general
concept of probability as it was understood at the time, but his
treatment of the curve is not a modern one. He does not use it to
describe what are called continuous distributions, that is, sets of
measurements in which the quantity being measured can vary con-
tinuously. Nevertheless, he makes important observations on the
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THE BELL CURVE

The normal curve, also known as the bell curve, was first discovered in
the 18th century by Abraham de Moivre. It is a useful tool for describing
many random phenomena. Not every random phenomenon can be suc-
cessfully described by using a normal curve, but measurements of many
human activities have what is called a normal distribution, as do many
sets of measurements that are generated from experiments in physics
and chemistry.

Consider, for example, an Olympic javelin thrower. That person will
throw the javelin often enough and consistently enough so that if we keep
a record of each throw, then—over the course of many throws—the fre-
quency with which the thrower makes various distances will be well
approximated by the bell curve. (The normal distribution would not be a
good approximation for the javelin-throwing efforts of most of us because
we do not throw the javelin often enough. The difficulty in using the nor-
mal curve to describe our efforts is that if we practiced with the javelin
every day most of us would find that our performance changed dramati-
cally over time. By the time we accumulated a large number of measure-
ments, the average distance and the variation about the distance would
have changed substantially. This is not generally the case for Olympic
athletes, who, presumably, are at the top of their game most of the time.)

To understand how the javelin thrower’s efforts are approximately
described by the bell curve, we need to keep in mind that the area
beneath the curve is one unit. The x-axis marks the distances the javelin
traveled. If we want to know the probability that the athlete will throw
less than x meters we simply compute the area that is both under the
curve and to the left of x. It follows, then, that the probability that the ath-
lete will throw greater than x meters equals the area that is both beneath
the curve and to the right of x.



shape of the curve and on some of its basic mathematical proper-
ties. To his credit, de Moivre clearly recognizes that he has made
an important discovery, and he devotes a fair amount of space to
exploring the idea and some of its simpler consequences.

Although the Doctrine of Chances offers no broad theoretical con-
clusions, it is a well-written compendium of gaming problems and
the techniques and concepts required to solve them. In addition to
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If we want to know the
probability that the athlete will
throw more than x meters and
less than y meters, we com-
pute the area beneath the
curve that is to the right of x
and to the left of y.

The normal curve has a
number of simple geometric
properties, some of which 
its discoverer, Abraham de
Moivre, noticed immediately.
The curve is symmetric about
the line that is parallel to the
y-axis and passes through
the highest point on the
curve. Notice that if we were
to begin at the highest point
on the curve and travel to the
right we would reach a place
where the curve descends most quickly, and then—though it continues
to go down—we would descend more and more slowly. The technical
name for this “breaking point” is the inflection point. (There is a 
similarly placed inflection point to the left of the highest point on the
curve.) De Moivre recognized these characteristics of the curve about
250 years ago.

Since then mathematicians have learned a great deal more about the
mathematical properties of this curve, and scientists have used it count-
less times to help them understand sets of measurements. The normal
curve is the most studied and widely used curve in the field of probability.
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entire curve is one unit. The highest
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the problems associated with gambling, de Moivre studies prob-
lems of mortality from the point of view of probability. In 1756
The Doctrine of Chances was published along with a second text by
de Moivre, A Treatise of Annuities on Lives, a work that depended
on a paper published by Edmund Halley that analyzed birth and
death rates in Breslau, a city in Central Europe. (We will have
more to say about this paper in the section on statistics.)

Approximately two centuries separated Cardano’s tentative mus-
ings about probability and the importance of luck and de Moivre’s
confident calculations and bold assertions about the nonexistence
of luck. During this time Pascal, Fermat, and Bernoulli discovered
new types of problems and developed important new concepts in
their search for solutions. By the time The Doctrine of Chances was
published many of the most important European mathematicians
had recognized probability as a vital mathematical discipline that
offered insight into a variety of problems, both theoretical and
practical. This was the first new branch of mathematics to be
developed since antiquity.
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3
surprising insights

into probability 
and its uses

During the 18th century, ideas about probability began to change
in several fundamental ways. Previously, the theory of probability
had been tied to the concepts and even the language of games of
chance, but gradually mathematicians and others began to recog-
nize the importance of probability as a tool of science. There was
an urgent need for probability. The germ theory of disease was not
developed until the 19th century, for example, and yet 18th-cen-
tury people were dying in terrible epidemics. Choosing the best
public health strategy from among several alternative strategies
could not, therefore, be based solely on a detailed understanding
of the biological characteristics of the disease at issue. There just
were not enough facts available. Nevertheless, decisions had to be
made. Mathematicians interested in public health turned to the
theory of probability in an attempt to devise more effective health
strategies.

As mathematicians better understood probability they discov-
ered that it could be used to describe processes and phenomena of
all branches of science. Some of their discoveries were surprising
then, and they still surprise many people today. In this chapter we
consider some famous examples.

Finally the definition of probability began to change as math-
ematicians began to think about the foundations of the subject.
Previously, an imprecise idea of the meaning of probability 
was sufficient for the simple applications that mathematicians



considered. In fact, 18th-century mathematicians were still casting
about for a good definition of probability. During the latter part 
of the 18th century, ideas about probability began to broaden and
in some ways conflict with one another. One of the earliest ideas
of probability, an idea that remains both controversial and useful,
was the result of the research of one Thomas Bayes.

Thomas Bayes and Inverse Probability
Thomas Bayes (1702–61) was a British minister and mathemati-
cian. He was born into a well-to-do family. As a youth he did not
attend school but instead was privately tutored. Some scholars
believe it likely that he was tutored by Abraham de Moivre; that
possibility would help account for his skill in mathematics and
his interest in probability. In any case, Thomas Bayes, as his
father, Joshua Bayes, had, grew up to become a Nonconformist
minister. Nonconformist ministers were religious dissidents in
an age that cherished conformity. Early Nonconformists took
the risk of being burned at the stake for their religious beliefs,
but during the time of Thomas Bayes government oppression
had diminished. In Bayes’s time, refusal to conform simply 
meant banishment, both from public office and from the great
universities of England. As a result many Nonconformist 
ministers were educated in Scotland or Holland, especially at the
University of Leiden. Bayes was educated at the University of
Edinburgh.

Bayes lived a quiet life. He worked as a minister. He corre-
sponded with mathematicians. He was eventually elected to the
Royal Society, in which he had contact with other mathematicians
on a regular basis. He was a modest man who was described by his
peers as a fine mathematician, but today not much is known of his
life, personal or professional.

Bayes published his ideas just twice. In 1731 he published
Divine Benevolence: or, An Attempt to prove that the Principal End of
the Divine Providence and Government is the Happiness of his
Creatures. In 1736 he published An Introduction to the Doctrine of
Fluxions, and a Defence of the Mathematicians against the objections of
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the Author of the Analyst. Both works were published anonymous-
ly, and neither was concerned with probability theory. The first
work is a religious tract that drew a lot of attention when it first
appeared. The second is a defense of the fundamental ideas
underlying Isaac Newton’s calculus. Bayes felt compelled to write
the second work because the logical foundations of the calculus
had been attacked by Bishop George Berkeley in a famous work
called The Analyst.

It is clear from the article that Bishop Berkeley felt that the sci-
entific breakthroughs of his time were a threat to religion.
Although he claims in his article that he will investigate the foun-
dations of the subject with “impartiality,” the tone of the article is
hostile to the new mathematical ideas of the age. He meant his
article to be controversial, and it was. Berkeley was an excellent
writer, and he understood just enough about calculus to recognize
which operations are fundamental to the subject. The mathemati-
cians of Berkeley’s day had found a way to employ these operations
successfully to solve important problems, but they were, for the
most part, still a little unclear about the mathematical basis for
why the operations worked. Berkeley recognized weak logic when
he saw it, and it caused him to question the validity of the entire
subject. In response to The Analyst, Bayes attempted to express 
the mathematical ideas on which the calculus is founded in a more
rigorous way. His goal was to prove that Berkeley’s criticisms were
unfounded. An Introduction to the Doctrine of Fluxions, as his reli-
gious writings were, was well received at the time, but neither
work draws much attention today. Today, Bayes is remembered
principally for a work that he never published.

When Bayes died, his family asked another minister, Richard
Price (1723–91), to examine Bayes’s mathematical papers. There
were not many papers to examine, but there was one article about
probability. That article is now known by the title “An Essay
towards Solving a Problem in the Doctrine of Chances.” Price
recognized the importance of the work and had it published, but
despite Price’s best efforts Bayes’s ideas attracted little initial atten-
tion. Over the succeeding centuries, however, the ideas that Bayes
expressed in his manuscript have slowly attracted ever-increasing
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amounts of attention and controversy from mathematicians inter-
ested in probability.

It is in Bayes’s paper that we find the first statement of what is
now called Bayes’s theorem. To understand the idea behind Bayes’s
theorem, imagine that we are faced with a collection of competing
hypotheses. Each hypothesis purports to explain the same phe-
nomena, but only one of the hypotheses can be the correct one.
(This type of situation is common in both the physical and the
social sciences.) We have no way of separating the correct hypoth-
esis from the incorrect ones. What we do have are data. Bayes’s
theorem allows us to use the data and some additional assumptions to
compute probabilities for each of the hypotheses. Just knowing the
probabilities does not enable us to isolate the correct hypothesis
from the incorrect ones, but it does enable us to identify which
hypothesis or hypotheses are most likely to be true.

To make the idea more concrete, suppose that we know that
there are three balls in a container. Suppose that we know that one
of three hypotheses holds: (1) There are three white balls in the
container, (2) there are two white balls and one black ball, and (3)
there are one white ball and two black balls. Now suppose that we
reach into the container and draw out a white ball. We note the
color and then replace the ball. We shake the container and again
we reach inside and draw out a white ball. Now we repeat the pro-
cedure a third time and again draw a white ball. Given that we
have just drawn three white balls (and no black ones), and that ini-
tially we had no reason to prefer one hypothesis to the other,
Bayes’s theorem enables us to calculate the probability of the truth
of each of the three hypotheses. Although Bayes’s theorem lets us
assign a probability to the truth of each of the three hypotheses,
not everyone agrees that truth is a random quantity whose proba-
bility can be computed. Nevertheless, this type of probabilistic
reasoning was Bayes’s great insight.

Bayes’s theorem is important because it allows us “to turn a 
probability problem around.” To illustrate what this means, we
introduce a little notation. Let the letter E represent some event.
The probability that the event E occurs is usually written P(E),
and this notation is read as “the probability of event E,” or “the
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probability of E” for short. Sometimes, however, we can make use
of additional information when calculating the probability of E.
Suppose, for instance, that we know another event A has occurred.
We can use our knowledge of A to recompute the probability that
E has occurred. This is called the conditional probability of E given
A, and it is written P(E|A). What Bayes’s theorem gives us is a
method for computing P(A|E) provided we know P(E|A) and some
additional information. This is why we say that the probability has
been “turned around”: Given P(E|A) we find P(A|E). To be sure,
we need to know considerably more than P(E|A) to compute
P(A|E), but if we know enough then we can use Bayes’s theorem to
find P(A|E), and this can be a very useful thing to know.

To give the matter some urgency, imagine that E represents
some disease and A represents a symptom associated with the dis-
ease. We can often use a medical textbook or other source to find
the probability that the patient will exhibit symptom A given that
the patient has disease E. In other words, we can just look up
P(A|E). This is easy, but not especially helpful from a diagnostic
point of view, since one symptom can be associated with several
different diseases. Usually, the diagnostician is faced with the
problem of determining the disease given the symptoms rather
than the other way around. So what is really wanted is the proba-
bility that the patient has disease E given symptom A—that is,
P(E|A)—and this is precisely what Bayes’s theorem enables us 
to compute.

The algebra required to prove Bayes’s theorem is neither diffi-
cult nor extensive. It is covered in almost every introductory
course in probability. Perhaps it was because the math was so easy
that Bayes’s theorem initially escaped serious scrutiny. When a
student first encounters Bayes’s theorem it seems almost obvious,
especially when expressed in modern notation. As time went on,
however, Bayes’s theorem attracted criticism from mathematicians
for two reasons. First, as previously mentioned, Bayes’s theorem
requires additional assumptions. (In the ball problem, for example,
we assumed that initially all three hypotheses were equally likely.)
These extra assumptions generally involve some judgment on the
part of the researcher. The researcher must make decisions about
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the value of certain critical terms in the necessary equations.
These decisions are of a subjective nature. They are not subject to
proof, and different researchers may make different decisions.
(Once these decisions are made, however, the rest of the work is
determined by the mathematics involved.)

Subjective judgments can be tricky because they can have the
effect of introducing the researcher’s own bias into the situation,
and in some cases different subjective judgments can lead to very
different conclusions. Some scientists object to this approach—
now known as Bayesian analysis—although there are other scien-
tists who assert that making use of the expertise of the researcher
is not necessarily bad, and in any case it simply cannot be pre-
vented. These disagreements matter because they are disagree-
ments about how and when probability can be reliably used.

The way we understand the theory of probability helps to deter-
mine what types of problems we can solve and how we solve them.
It can also affect the types of results we obtain. The ongoing dis-
putes about the reasonableness of the Reverend Bayes’s ideas are
an important example of mathematicians’ striving to understand
the logical underpinnings of the theory of probability. Their dis-
cussions and debates about the philosophy of probability continue
to reverberate throughout mathematics. Today, those scientists
and statisticians who find the ideas first introduced by Thomas
Bayes reasonable describe themselves as Bayesians. Those who
disagree are often described as frequentists, because they prefer to
work with probabilities that are determined by frequencies. The
discussion between the two groups continues.

Buffon and the Needle Problem
The French naturalist and mathematician Georges-Louis Leclerc
de Buffon, also known as comte de Buffon (1707–88), was the first
to connect probability to a problem in geometry. As many of his
contemporaries did, Buffon received a very broad education. He
seems to have developed an early interest in math but originally
studied law, apparently at his father’s suggestion. He soon expanded
his horizons through the study of botany, mathematics, and medicine
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but left college—or rather was
forced to leave college—
because of a duel. After leaving
college in Angers, France,
Buffon traveled throughout
Europe. He lived for a time in
Italy and also in England. In
England he was elected to the
Royal Society, but when his
mother died he returned to
France and settled down on his
family’s estate.

Buffon was intellectually
ambitious. He was interested in
physics, mathematics, forestry,
geology, zoology—almost every
branch of science—and he
sought to learn as much as he
could about each one. His
major work was an attempt to
write a series of books that
would describe all of nature. It
is called Histoire naturelle
générale et particulière. In this work there is plenty of evidence of
Buffon’s independent thinking. He believes, for example, that
the true age of Earth is 75,000 years—among his contempo-
raries, Earth’s age was generally believed to be about 6,000
years—and he accompanied his estimate with an account of geo-
logical history. Buffon also wrote volumes about animals of all
sorts, including species that had become extinct, another unusu-
al idea for the time. Buffon developed a theory of “organic mol-
ecules.” These are not molecules in the sense that we
understand the term; Buffon asserted the existence of small
building-block-type objects that assembled themselves into a
living organism guided by some interior plan, so there is some
overlap with contemporary ideas about proteins and cells.
Buffon had originally planned a 50-volume set, but though he
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worked furiously on the project for years, he completed only 36
volumes before his health deteriorated. His writings were both
controversial and influential.

Buffon’s efforts were widely recognized and respected in his
own time. It is said that an English privateer captured a ship that
contained numerous specimens that had been gathered from
around the world and addressed to Buffon. (Privateers were pri-
vately owned vessels commissioned by one country to harass the
shipping of another.) The privateers recognized Buffon’s name.
They probably had little appreciation for the contents of the
boxes, but because of Buffon’s stature they forwarded the boxes
on to Paris. When Buffon died, 20,000 people turned out for his
funeral.

In mathematics Buffon was interested in probability, calculus, and
geometry. He wrote about calculus and its relationship to probabil-
ity. He also translated a work by Newton on the calculus, but he is
best known for a remarkable discovery called Buffon’s needle prob-
lem. Imagine a smooth flat floor with parallel lines drawn across it.
The lines are all one unit apart, and one unit can represent a foot, a
meter, an inch, or a centimeter. Imagine that we have a thin rod, or
needle. We will let the letter r represent the length of the needle,
where we assume that r is less than one unit. (The length, r, of the
“needle” must be less than the distance between two lines so that it
cannot cross two lines at the same time.)

Now toss the needle at random on the floor and keep track of
whether or not the needle comes to rest across a line or not.
(Buffon accomplished this by tossing a rod over his shoulder.) If
we let the letter h represent the number of times that the needle
crosses a line and the letter n represent the total number of toss-
es, then by Bernoulli’s theorem, as we continue to throw the 
needle, the ratio h/n will tend toward the probability that the
needle crosses a line. What Buffon showed is that the more we
throw the needle the closer the ratio h/n gets to the number 2r/π.
We conclude that the probability that the needle crosses the line
is 2r/π. Furthermore, using our ratio h/n of the number of “hits”
to the number of throws, we obtain an equation that allows us to
solve for π: π = 2rn/h.
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This was a famous and surprising result, because it allowed one
to represent a well-known and decidedly nonrandom quantity, the
number π, as the limit of a very large number of random throws.
Buffon’s discovery pointed to still more new ideas and applications
of probability. Ever since Buffon published his discovery, people
have thrown needles onto lined paper hundreds or even thousands
of times and kept track of the ratio h/n to observe Buffon’s random
process in action.

Daniel Bernoulli and Smallpox
Applications of the mathematical theory of probability to prob-
lems in science and technology can be very controversial.
Although the theory of probability as a mathematical discipline is
as rigorous as that of any other branch of mathematics, this rigor
is no guarantee that the results obtained from the theory will be
“reasonable.” The application of any mathematical theory to a
real-world problem rests on certain additional assumptions about
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the relationship between the theory and the application. The
mathematically derived conclusions might be logically rigorous
consequences of the assumptions, but that is no guarantee that the
conclusions themselves will coincide with reality.

The sometimes-tenuous nature of the connections between
the mathematical theory of probability and scientific and tech-
nological applications accounts for the frequent disputes about
the reasonableness of deductions derived with the help of the
theory. Some of the results are of a technical nature, but others
center on deeper questions about philosophic notions of chance
and probability. Historically, one of the first such disputes 
arose when probability theory was first used to help formulate a
government health policy. The issue under discussion was 
the prevention of smallpox. The discussion, which took place
centuries ago, still sounds remarkably modern. Today, the same
sorts of issues are sources of concern again. As we will later see,
the discussion that began in the 18th century never really ended.
It continues to this day.

Smallpox is at least as old as civilization. The ancient Egyptians
suffered from smallpox, and so did the Hittites, Greeks, Romans,
and Ottomans. Nor was the disease localized to northern Africa
and the Mideast. Chinese records from 3,000 years ago describe
the disease, and so do ancient Sanskrit texts of India. Slowly, out of
these centuries of pain and loss, knowledge about the disease accu-
mulated. The Greeks knew that if one survived smallpox, one did
not become infected again. This is called acquired immunity. The
Islamic doctor ar-Razi, who lived about 11 centuries ago, wrote the
historically important Treatise on the Small Pox and Measles. He
describes the disease and indicates (correctly) that it is transmitted
from person to person. By the time of the Swiss mathematician and
scientist Daniel Bernoulli (1700–82), scientists and laypeople alike
had discovered something else important about the disease:
Resistance to smallpox can be conferred through a process called
variolation. To understand the problem that Bernoulli tried to solve
it helps to know a little more about smallpox and variolation.

Smallpox is caused by a virus. It is often described as a disease
that was fatal to about a third of those who became infected, but
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there were different strains of the disease. Some strains killed only
a small percentage of those who became infected; other strains
killed well over half of those who became ill. Those who survive
smallpox are sick for about a month. There is an incubation 
period of about seven to 17 days, during which the infected 
person feels fine and is not contagious. The first symptoms are a
headache, a severe backache, and generalized flulike symptoms.
Next a rash, consisting of small red spots, appears on the tongue
and mouth. When these sores break, the person is highly 
contagious. The rash spreads to the face, arms, legs, and trunk 
of the body. By the fifth day the bumps become raised and very
hard. Fever increases. Scabs begin to form over the bumps.
Sometime between the 11th and 14th days the fever begins to
drop, and sometime around the third week the scabs begin to 
fall off. Around the 27th day after the first symptoms appear the
scabs have all fallen off and the person is no longer contagious.
Numerous pitted scars mark the skin of a person who has 
recovered from smallpox. The scars remain for life.

Before the discovery of a smallpox vaccine in the last years of the
18th century by the British doctor Edward Jenner, there were only
two strategies for dealing with smallpox. One strategy was to do
nothing and hope to escape infection. This strategy carried a sig-
nificant risk because smallpox was widespread in the 18th century
and was a major cause of mor-
tality. Moreover, there was no
successful treatment for some-
one who had contracted the
disease. The other strategy for
coping with smallpox was a
technique called variolation.
This was a primitive method
of using live smallpox virus to
confer immunity on an other-
wise healthy person. Various
methods of inoculation were
used, but the idea is simple
enough: Transfer a milder,
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weakened form of the disease from someone who is already
infected to an otherwise healthy person. The healthy person will
generally become sick, but not sick enough to die. When that
person recovers he or she will have acquired immunity against all
future infections. In particular, the more virulent strains of the
disease will pose no risk. This is how variolation works in theory.
In practice, variolation has risks as well as benefits. The most
obvious risk was that some of those who were variolated died of
the procedure. The problem, then, was to determine whether
variolation, on balance, was a better strategy than inaction in the
hope of escaping infection. The answer, as it turned out, was by
no means obvious.

Enter Daniel Bernoulli. He was the son of the prominent scien-
tist and mathematician Johann Bernoulli and nephew of Jacob
Bernoulli, author of the law of large numbers. A prominent
mathematician in his own right, Daniel attended universities in
Heidelberg and Strasbourg, Germany, and Basel, Switzerland. He
studied philosophy, logic, and medicine, and he received an M.D.
degree. Almost immediately after graduation, however, he began
to contribute to the development of mathematics and physics. 
He soon moved to Saint Petersburg, Russia, where he lived for a 
number of years and became a member of the Academy of
Sciences. Daniel Bernoulli eventually returned to Basel, where he
found a position teaching anatomy and botany.

Bernoulli decided to use probability theory to study the effect of
variolation on mortality, but to do so he had to phrase the prob-
lem in a way that made it susceptible to mathematical analysis.
Moreover, the problem had to be more than mathematical; it had
to be phrased in a way that would make his results, whatever they
turned out to be, relevant to the formulation of public health pol-
icy. Suppose, he said, that a large group of infants were variolated.
Those babies who survived the procedure could live their life free
of the threat of smallpox. Some of the babies, however, would cer-
tainly die within a month of being variolated as a result of the pro-
cedure itself. On the other hand, if the infants were not variolated,
many of them—but probably not all of them—would eventually
contract the smallpox, and some of those could be expected to die
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of the disease. There were substantial risks associated with either
strategy. Which strategy, variolation or no variolation, was more
likely to benefit the public health?

In 1760 Bernoulli read the paper, “An attempt at a new analysis
of the mortality caused by smallpox and of the advantages of inoc-
ulation to prevent it,” to the Paris Academy of Sciences. In this
paper Bernoulli summarized what evidence was available about the
probability of dying of smallpox. He presented his mathematical
model and his results. What he discovered is that life expectancy
would increase by almost 10 percent among the variolated.

Bernoulli decided that variolation was a valuable tool for pro-
tecting the public health. He recommended it, and he was sup-
ported in this belief by many scholars and philosophers around
Europe. Others disagreed. Some disagreed with his reasoning;
others simply disagreed with his conclusions. The French mathe-
matician and scientist Jean le Rond d’Alembert scrutinized
Bernoulli’s paper and, although he concluded that Bernoulli’s rec-
ommendation for variolation was a good one, did not entirely
agree with Bernoulli’s analysis. D’Alembert wrote a well-known
critique of Bernoulli’s well-known paper. D’Alembert’s response to
Bernoulli’s ideas illustrates the difficulty of interpreting real-world
problems in the language of probability theory.

Jean le Rond d’Alembert and the Evaluation of Risk
D’Alembert was the biological son of socially prominent parents,
but they did not raise him. As an infant he was placed with a local
couple of modest means, and it was they who raised him.
D’Alembert’s biological father contributed to his son’s well-being
by ensuring that d’Alembert received an excellent education, but
d’Alembert’s loyalty was always to his adoptive parents. After
d’Alembert achieved some prominence, his biological mother
tried to establish contact with him, but d’Alembert had little inter-
est in meeting her. He continued to live with his stepparents until
he was middle-aged.

As with most of the mathematicians discussed in this chapter,
d’Alembert’s education was very broad. As a young man he
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learned about medicine, science, law, and mathematics. During
his life he was best known for his collaboration with the French
writer and philosopher Denis Diderot. Together, they produced
a 28-volume encyclopedia that was one of the great intellectual
works of the Enlightenment. One of d’Alembert’s contributions
to the project was to write most of the entries on science and
mathematics.

As we have indicated previously, d’Alembert’s disagreement with
Bernoulli focused more on Bernoulli’s interpretation of his math-
ematics than on the mathematics itself. His critique is a nice exam-
ple of the difficulties that arise in using probabilistic reasoning.
D’Alembert disagreed with Bernoulli’s reasoning that an increase
in the average life span of the population justified the variolation
of infants. The reason is that the risk of variolation to the infant is
immediate, whereas lack of variolation usually poses no immediate
danger. There must be more of a balance, he argues, between the
immediate loss of one’s life and the possible extension of that same
life. The problem, as d’Alembert saw it, is that variolation adds
years to the wrong end of one’s life. Essentially, he argues that it
would be better to live part of one’s normal life expectancy and
then die of smallpox than to risk one’s entire life at the outset.

D’Alembert also considered a number of related scenarios. Each
scenario illustrated the difficulty of balancing the immediate risk
of variolation with the longer-term risk of smallpox. He points
out, for example, that Bernoulli’s calculations also show that a 30-
year-old man who is not variolated can expect to live (on average)
to the age of 54 years and four months. A 30-year-old man who is
successfully variolated can expect to live to the age of 57 years.
This, argues d’Alembert, is, again, the wrong comparison to make.
The risk of dying of variolation was estimated at 1/200, and it is
the 1/200 chance of almost immediate death that should be of
more concern to the 30-year-old than the possibility of adding a
few years to the end of what was, for the time, a long life.
D’Alembert questioned whether it was wise for a 30-year-old man
to risk everything to extend his life to a time when, in d’Alembert’s
opinion, he would be least able to enjoy himself. To illustrate his
point, d’Alembert asks the reader to imagine a gambler who is
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faced with a wager that involves a 1/200 probability of losing
everything against a modest increase in total wealth. Worse, the
payoff for the wager will only occur many years later, when, pre-
sumably, the winner will be less able to use the new wealth effec-
tively. When expressed in these terms Bernoulli’s reasoning seems
less persuasive.

D’Alembert goes further. He offers a second, more exaggerated
example. Imagine, he says, that

� the only cause of death is smallpox, and that variolation
as an infant ensures that each person surviving the 
treatment lives healthily to the age of 100.

� Further, suppose that variolation carries a 1 in 5 risk of
death.

� Finally, suppose that among those who forgo variolation,
the average life expectancy is 50 years.

It is not difficult to show that among the variolated, the average
life expectancy is 80 years. The reason is that we have to take into
account that 1/5 of the target group who received treatment died
in infancy. The conclusion is that the average life expectancy of
the variolated exceeds that of the unvariolated by 30 years. Was
the 1 in 5 chance of dying in infancy worth the additional gain?
Again, is it wise to risk everything at the outset for a gain that will
be realized only far in the future? In this hypothetical situation is
variolation a good bet? D’Alembert responds by saying that what
is good for the state—a population of healthy, long-lived individ-
uals—is not always what is best for the individual.

D’Alembert’s is an important insight, although one should keep
in mind that d’Alembert eventually concluded on other grounds
that variolation is still the right strategy. In particular, he says that
if variolation is performed skillfully then the risk of death from the
procedure can be made as small as 1 in 3,000. Since this was the
average death rate for smallpox in Paris at the time, he concluded
that variolation is, under these circumstances, a good bet. The
risks associated with both strategies are, he says, equal, but with
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variolation one achieves complete protection from smallpox for
the rest of one’s life. D’Alembert’s argument would be more con-
vincing if he had done more research and less speculation about
the actual risks involved. In any case, his article reminds us that
differentiating right from wrong and true from false by using
probabilistic reasoning can be both subtle and difficult.

It is interesting that both Bernoulli and d’Alembert missed what
was probably the main danger associated with variolation. When a
person is variolated, that person becomes sick with smallpox and
can infect others. Though the variolated person may not be so sick
that he or she dies, the effect on those who subsequently become
infected as a result of the initial variolation is much harder to pre-
dict. They may suffer and perhaps die of a more malignant form of
the disease. So in practice, though variolation benefited the indi-
vidual, it might have posed too high a risk for society at large since
each variolation was another possible source for a new epidemic.

Leonhard Euler and Lotteries
There were many good mathematicians during the 18th century.
The discoveries of Newton and Leibniz, Fermat and Descartes,
Pascal and Galileo, among others, had opened up a new mathe-
matical landscape, and they had provided many of the conceptual
tools required to explore it. Many individuals took advantage of
these opportunities and made creative and useful discoveries in
one or more branches of mathematics. Some of their stories are
recounted in this series, but in the 18th century one individual
stood out from all others. He was the Swiss mathematician and
scientist Leonhard Euler (1707–83). Some histories of mathemat-
ics even call the time when Euler was active the Age of Euler.

Almost every branch of mathematics that existed in the 18th cen-
tury includes a set of theorems attributed to Euler. He was unique.
Many mathematicians make contributions to their chosen field when
they are young and the subject and its challenges are new to them but
later lose interest or enthusiasm for their chosen field. By contrast,
Euler lived a long life, and his output, as measured by the number of
publications that he wrote, continued to increase right to the end. In

60 PROBABILITY AND STATISTICS



the years from 1733 to 1743,
for example, he published 49
papers. During the last decade
of his life, beginning in 1773,
he published 355. It is worth
noting that he was blind the last
17 years of his life and even that
had no apparent effect on his
ever-increasing output.

Euler’s father, Paul Euler,
was a minister with a mathe-
matical background. His
mother, Margaret Brucker,
was a member of a family of
scholars. Paul studied mathe-
matics at the University of
Basel. He anticipated that his
son, Leonhard, would also
become a minister, but this
idea did not prevent the
father from tutoring his
young son in mathematics. These classes were enough to get 
the son started on a lifetime of mathematical exploration. By the
time he was 13 years of age Leonhard Euler was a student at the
University of Basel, and by the time he was 16 he had earned a
master’s degree. He studied languages, theology, philosophy, and
mathematics at Basel. Later, he briefly studied medicine as well.

Euler spent most of his adult life in two cities. He lived in Saint
Petersburg, Russia, where he was a member of the Academy of
Sciences from 1726 until 1741. For a period of time both Euler
and his friends, Daniel and Nicolaus Bernoulli, worked at the
academy together. In 1741 Euler left Saint Petersburg for Berlin
to work at the Berlin Academy of Sciences under the patronage of
Frederick the Great. Euler was not happy in Berlin, and in 1766
he returned to Russia, where he lived the rest of his life.

Euler’s contributions to probability involved the study of games
of chance and research on certain specialized functions that would
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later play an important role in the mathematical expression of
probability. With respect to games of chance, for example, Euler
considered the following problem: There are two players. Each
player has a deck of cards. The cards are turned up in pairs, one
from each deck. If the cards are always different, then one player
wins the game and the bet. If it should happen that one pair of
identical cards are turned face up simultaneously, then the second
player wins. Euler computed the odds of winning for each player.
This kind of problem was similar in spirit to those already consid-
ered by de Moivre. Euler’s best-known work on probability
involved the analysis of various state lottery schemes.

While in Berlin, Euler wrote several articles on lotteries appar-
ently at the behest of Frederick the Great. It was a common prac-
tice then as now for governments to raise money by sponsoring
lotteries. One state under Frederick’s control, for example, spon-
sored a lottery to raise money to pay off its war debts. The goal of
all these lotteries was, of course, to turn a profit for the lottery’s
sponsor rather than the players. Euler investigated the odds of
winning various types of lotteries as well as the risk that the state
incurred in offering large prizes. He wrote at least two reports to
Frederick on the risks associated with various schemes.

Part of the difficulty in this type of work is that these kinds of
problems can be computationally intensive. That was certainly the
case for a few of the problems that Euler undertook to solve. To 

make his work easier Euler invented the symbol [ p
q ] to represent 

the expression 
p(p–1)(p–2) . . . (p–q+1)

, an expression that 
q(q–1)(q–2) . . . 1

commonly arises in problems involving probability. It represents
the number of ways that distinct subsets with q elements can 
be chosen from a set of p objects. Although the expression is 

now usually written as ( p
q ) the basic notation originates with Euler.

Euler also was one of the first to make progress in the study 
of the so-called beta function and in hypergeometrical series.
These functions play an important role in the theory of probabil-
ity. The mathematical properties of these functions are not easy to
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identify. They are generally expressed in terms of fairly compli-
cated formulas, and that, in part, is what makes them difficult to
use. All contemporary mathematicians interested in probability
acquire some skill in manipulating these functions, but Euler was
one of the first to make headway in understanding their basic
mathematical properties. He did not study these functions because
of their value to the theory of probability, but his discoveries have
found a lasting place in this branch of mathematics.

Euler’s work in the theory of probability extended our under-
standing about games of chance, but he did not branch out into
new applications of the theory. Eighteenth-century probability
theory was marked by many divergent lines of thought. There was
still a lot of work done on games of chance, but the new ideas were
being extended to other areas of science as well. Bernoulli’s 
work on smallpox is the most prominent example. Mathematicians
and scientists were inspired by the tremendous advances in the
physical sciences, and many of them tried to apply quantitative
methods, and especially probabilistic methods, to problems in 
the social sciences. Even theology was not exempt from attempts
to prove various ideas through the use of clever probabilistic 
techniques. The field of probability had fragmented. Many new
ideas were developed during this time, but there was no unifying
concept. There was no broad treatment of probability that joined
all these ideas in a single conceptual framework. D’Alembert, in
particular, generated a lot of heat criticizing the work of others,
but criticizing others was easy because there was a general lack 
of insight into the underpinnings of the subject. It would be 
many years before the first axiomatic treatment of probability was
completed.
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4
randomness in a 

deterministic universe

Probability theory in the 18th century consisted of scattered
results, ideas, and techniques. All of these concepts came together
early in the 19th century in the mind of the French mathematician
and astronomer Pierre-Simon Laplace (1749–1827). Laplace’s
ideas about probability influenced mathematicians throughout the
19th century, and his major work in probability, Théorie analytique
des probabilités (Analytic theory of probability), was a major source
of inspiration for generations of mathematicians.

Not much is known about Laplace’s early life. He was born in
Normandy. Some scholars describe his parents as well off, and
others have described them as peasants. Laplace himself did not
talk much about his background. What is known is that at the age
of 16 he entered the University of Caen to study mathematics.
After a few years in university he made his way to Paris. He had
acquired some letters of recommendation—it is not known who
wrote the letters—and his goal was to use these letters to intro-
duce himself to d’Alembert, perhaps the best-known Paris-based
mathematician of the time.

Laplace could not have known much about d’Alembert, but he
soon discovered that d’Alembert placed little value on letters of
recommendation. D’Alembert refused to meet with Laplace.
Fortunately, Laplace was not easily discouraged. He took a new
tack. He wrote an exposition of the principles of mechanics, that
branch of physics that deals with motions and forces, and he sent
it to d’Alembert. It must have been an effective letter. D’Alembert
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quickly helped Laplace find a
job teaching at the École
Militaire in Paris.

These were turbulent times
in France. There was contin-
uing turmoil brought about
by the French Revolution and
later by the military adven-
tures of Napoléon Bonaparte
(1769–1821). Laplace’s friend
Antoine-Laurent Lavoisier,
the scientist who first 
formulated the principle of
conservation of mass, was
executed during this time.
Many scientists and mathe-
maticians found it difficult
and dangerous to continue
their research. Laplace, by
contrast, always seemed to
find it relatively easy to work.
He was, for example, a friend
of Napoléon’s for as long as Napoléon remained in power, but he
was discreet about their friendship as soon as Napoléon was
gone. Laplace’s ability to adapt enabled him to study mathemat-
ics almost uninterrupted at a time when many of his colleagues
became caught up in the furor.

Although our interest in Laplace is due to his contributions to
the theory of probability, he is perhaps better remembered for his
work in astronomy. But these two fields were not pursued inde-
pendently. His work in astronomy contributed to his understand-
ing of probability, and vice versa. To understand Laplace’s
accomplishments it is helpful to consider his astronomical discov-
eries in a historical context.

Laplace’s astronomical work is an extension of the work of the
British mathematician and physicist Isaac Newton (1643–1727).
Newton developed a mathematical model to describe how the
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proved to be an important source 
of problems for those interested in
probability theory.  (Courtesy of the
National Aeronautics and Space
Administration)



force of the Sun’s gravity affected the motions of the planets. In
particular, he was able to use his model to make predictions about
how the planets would move under the gravitational attraction
exerted by the Sun. When Newton’s model was compared to what
was already known about how planets move, it was discovered that
the agreement between his model and the existing data was good.
Newton’s model was a good reflection of reality in the sense that
he used it successfully to predict the motion of the planets.

Additional measurements later revealed small discrepancies
between Newton’s predictions and the orbital paths of the planets.
The discrepancies, called perturbations, arose because of gravita-
tional interactions between planets themselves. The continually
shifting positions of the planets relative to each other made devel-
oping a mathematical model sophisticated enough to account for
the perturbations difficult. This was Laplace’s contribution.
Laplace applied his considerable analytical talents to the problem
of planetary motion and managed to account for all of the differ-
ent forces involved as well as their effects. He showed that the
solar system is stable in the sense that the cumulative long-term
effects of the perturbations do not disrupt its structure. (This was
a matter of debate at the time.) Laplace concluded that the paths
of planets can be reliably predicted far into the future as well as
described far into the past.

This idea of predictability was also central to Laplace’s under-
standing of probability. Laplace had a firm belief in the concept of
cause and effect. He had a deterministic view of nature. Of course,
contemporary scientists also subscribe to these same ideas, but
ideas of cause and effect no longer play as central a role today as
they did in the philosophy of Laplace. Nowadays scientists readi-
ly concede that there are aspects of nature that are not only
unknown but are also, in principle, unknowable. This is a very
strong statement, and it is one with which Laplace would have 
certainly disagreed. It was Laplace’s view that if one had the 
correct equations and one knew everything about the state of the
universe for one instant in time, then one could compute all future
and past states of the universe. He had, after all, already done this
for the solar system.
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If one accepts Laplace’s idea that the universe is entirely deter-
ministic, then there are no random processes. There are no chance
outcomes. Probability theory, as envisioned by Laplace, reduces to
a set of techniques required to account for errors in measurement.
Uncertainty about the outcome of any process is, in this view of
nature, solely a function of our own ignorance. The more we
know, the less uncertain we are. In theory at least, we can elimi-
nate all of our uncertainty provided we know enough.

Laplace wrote two works on probability. The first, published in
1812, is Théorie analytique des probabilités (Analytic theory of prob-
ability). This book was written for mathematicians. Another
account of the same ideas, written for a broader audience, Essai
philosophique sur les probabilités (A Philosophical essay on probabil-
ity), was published two years later. These works discuss a theory of
errors, theology, mechanics, public health, actuarial science, and
more, and all from a probabilistic viewpoint.

In the Essai Laplace discusses how measurements can be ana-
lyzed by using probability theory to obtain the most probable
“true” value. We have noted that de Moivre discovered the nor-
mal, or bell-shaped, curve that represents the distribution of many
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Laplace’s estimate of Saturn’s mass (as a fraction of the Sun’s mass) was
expressed in the language of probability theory in order to take into
account uncertainties in the measurements on which the calculations were
based.  (Courtesy of the National Aeronautics and Space Administration)



random quantities. Laplace does not spend much time discussing
the curve or what it represents. He evidently considered the mat-
ter fully understood. Instead, he discusses sets of measurements on
the masses of Jupiter and Saturn. He analyzes these measurements
from the point of view of probability theory. He computes the
mean and the variance. (The mean is the average, or center, value
of a set of measurements. The variance is a measure of the extent
to which the measurements are dispersed about the mean.)

From his analysis he both computes the probable masses of
Jupiter and Saturn and more importantly specifies limits on the
accuracy of his computations. He says, for example, that the mass
of Saturn is 1/3,512 that of the Sun and that the odds are 1:11,000
that his estimate is off by more than 1 percent of the computed
mass of Saturn. He applies these same methods to a variety of
other problems of interest to astronomers. He is interested in the
problem of how inaccurate measurements can make the identifi-
cation of small perturbations in planetary motion difficult to iden-
tify. He is eager to show how probabilistic methods can be used to
distinguish perturbations that have a physical cause from scat-
tered, inaccurate measurements. His ability to do just that, as pre-
viously mentioned, was one of his great accomplishments in
astronomy.

Laplace revisits the question of variolation as first discussed by
Daniel Bernoulli and restates d’Alembert’s criticisms, but by the
time Laplace wrote these words the urgency of the situation had
subsided. Jenner had discovered his smallpox vaccine and pub-
lished his results in the last years of the 18th century. Because vac-
cination is much safer than variolation, the specifics of Bernoulli’s
analysis were of largely academic interest. Laplace goes further,
however; he discusses the probable effect on the population of the
elimination of a deadly disease and considers the rate at which the
population will increase. This is an early attempt to come to terms
with the problems of unrestricted population growth. Laplace was
interested in reconciling the policy of mass vaccination and the
concept of a population’s increasing without limit.

Laplace also revisited and extended Buffon’s needle problem.
Recall that Buffon had found a way of computing the number π by
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randomly tossing a straight rod onto a floor marked with many
equally spaced parallel lines. Buffon had discovered how to rep-
resent π as the limit of data collected during this random process.
Laplace extended the problem to tossing the rod onto a floor
marked by two sets of parallel lines that cross at right angles to
each other. Laplace’s formula is slightly more complicated, but
the idea is the same. If we count how often the rod lies across one
or more lines and divide that number by the total number of
tosses, then we can input his information into a formula that will
converge to the number π. Or, to put it in another way: The
approximation to π so obtained becomes increasingly accurate as
the number of tosses increases. This result has inspired many
mathematicians and nonmathematicians to spend hours tossing 
a needle onto carefully lined paper and recording the results. 
It was, at the time, considered a remarkable demonstration of 
the power of probability—a probabilistic representation of a
decidedly nonprobabilistic quantity.

There is much more to Laplace’s work. For example, by
Laplace’s time the ideas of the Reverend Thomas Bayes had been
largely forgotten. Laplace revisited Bayes’s theorem, and, as he
had with Buffon’s needle problem, Laplace extended the work of
Bayes. Recall that if we are given data and a set of explanatory
hypotheses, Bayes’s theorem helps us to determine which hypoth-
esis of a competing set of hypotheses is most likely to be true.
Laplace saw much more deeply into Bayes’s theorem and its uses,
and he explains how to use the theorem while minimizing the
effect of researcher bias.

Another important contribution of Laplace is now known as the
central limit theorem. The central limit theorem generalizes de
Moivre’s results on the normal distribution. The goal is to
describe sums of random variables as the number of terms in the
sum becomes large. It is a theorem that has found a wide variety
of applications.

A nice example of how Laplace sometimes tried to use probabil-
ity to understand science—an approach that was new at the time—
is his attempt to understand atmospheric tides. Philosophers had
long discussed the cause of ocean tides, although they made little
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headway understanding the cause of the tides until Newton pro-
posed his law of gravity. Tides are due to the gravitational forces
exerted by the Moon and Sun on Earth’s oceans. The Moon has
the greater effect on the tides because of its close proximity to
Earth. Its gravitational attraction distorts the shape of the ocean,
resulting in a regular rise and fall of the surface of the water. The
cycle is repeated approximately every 12 hours. The Sun causes
tides in the same general way. Its gravitational field is much
stronger than the Moon’s, but the Sun’s greater distance makes its
effect on the oceans somewhat weaker than that of the Moon.

When the Moon, Earth, and Sun are aligned, the effects of the
Moon’s and Sun’s gravitational fields add to each other and the
tides are especially high. Tides that occur under these circum-
stances are called spring tides, although they can occur at any time
of year. When the Moon, Earth, and Sun form a right triangle, the
effect of the Sun’s gravitational field partially cancels that of the
Moon’s, and tides are generally lower. These tides are called neap
tides. All of these explanations had been deduced in a rough sort
of way soon after Newton had described his law of gravity.

Newton and others had speculated that if the Sun and Moon
affect oceanic tides then they must affect the atmosphere as well.
The effect would be subtler, but it should be measurable. Laplace
set out to identify atmospheric tides, distortions in the barometric
pressure caused by the gravitational fields of the Moon and Sun.
Multiple measurements were made on days when the Earth,
Moon, and Sun were aligned to produce spring tides, and these
measurements were compared with sequences of measurements
made during days when the Earth, Moon, and Sun formed a right
triangle in space to produce neap tides. Since the effect of these
two different geometrical arrangements could be detected in the
height of the ocean, Laplace thought that it should be possible to
detect their effect on the atmosphere as well.

Atmospheric pressure is affected by other factors than the relative
position of the Moon and Sun, of course. Atmospheric pressure can
vary quite a bit over the course of a single day, depending on the
local weather. In fact, changes due to a passing high-pressure or
low-pressure air mass can overwhelm any variation due to tidal
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effects. This is a “random” effect in the sense that the presence of
a high- or low-pressure air mass cannot be predicted far ahead of
time. Consequently, there were relatively large, random fluctua-
tions in his measurements of this very subtle phenomenon. This is
the reason that Laplace needed to analyze large data sets. He made
several assumptions in his analysis; the one of most interest to us is
that he assumed that each pressure measurement (and more than
one measurement was made per day) was independent of every
other measurement. This is exactly the type of assumption used by
Laplace to analyze astronomical data sets, but it was a major source
of error in his analysis of atmospheric tides. The atmospheric 
pressure in the morning is correlated with the pressure later during
the day in the sense that measuring the atmospheric pressure in the
morning gives us some indication of what the pressure will be later
that day. The two pressures need not be the same, of course. In 
fact, they sometimes vary widely, but on average if we know the
morning pressure we have some insight into what the barometric
pressure will probably be later in the day.

In the end, Laplace’s attempt to identify atmospheric tides was
not successful. The effect that he was trying to identify was simply
not large enough to enable him to identify it from the available
data. He concluded that the differences that he did observe might
have been due to chance and that to isolate the barometric effects
of the Moon and Sun on the atmosphere, he would have to ana-
lyze a much larger sample.

Siméon-Denis Poisson
Probability theory arose out of the consideration of games of chance.
Fair dice and well-shuffled cards have historically formed a sort of
vocabulary of randomness. Sets of astronomical measurements, elec-
toral procedures, and public health policy have all been described in
terms of ideas and probabilities that are also well suited to various
games of chance. There are, however, random processes that do not
conform to these types of probabilities. One of the first to recognize
this fact and develop another useful probability curve was the French
mathematician and physicist Siméon-Denis Poisson (1781–1840).
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Poisson was born into a family of modest means, who worked
very hard to be sure that he had a good start in life. His father had
a modest government position, but he supported the goals of the
French Revolution, and when the revolution occurred he
advanced rapidly. The family wanted Poisson to study medicine.
As any good son is, Siméon-Denis Poisson was obedient to a
point. He attempted to study medicine but showed little interest
in the subject. Furthermore, he seems to have been remarkably
uncoordinated, and that trait would have made work as a surgeon
impossible. He eventually left medicine. Later, he enrolled in the
École Polytechnique in Paris, where his aptitude for mathematics
and science became apparent. While there, he was a student of
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THE POISSON DISTRIBUTION

Imagine that we want to
describe the number of phone
calls arriving at some destina-
tion of interest, or, perhaps,
the number of automobiles
passing a particular location
on a busy highway. We will
call the arrival of each phone
call or automobile an event.
Imagine that we observe the
situation for some fixed peri-
od, which we will represent
by the letter t. (The symbol t
can represent a minute, an
hour, a day, or a year.) The
number of calls that arrive
during the time interval t is
random in the sense that it is
unpredictable. Now imagine that we divide the time interval t into n equal
subintervals. Each small interval of time will equal t/n units. No matter
how large t is, t/n will be very short, provided that we make n large
enough. To use Poisson’s distribution our random process must 
conform to three simple criteria:
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A Poisson distribution. The probabil-
ity that an event will occur in the
interval between 0 and x1 equals the
area beneath the curve and between
the p-axis and the line x = x1.



Laplace, who recognized in Poisson a great talent. After gradua-
tion Laplace helped him find a teaching position at École
Polytechnique. Poisson was a devoted mathematician and
researcher, and he is often quoted as asserting that life is good only
for two things: to study mathematics and to teach it.

Poisson wrote hundreds of scientific and mathematical papers.
He made important contributions to the study of electricity, mag-
netism, heat, mechanics, and several branches of mathematics
including probability theory. His name was posthumously
attached to a number of important discoveries, but he received
accolades while he was alive as well. In fact, most of Poisson’s 
contributions were recognized during his life. His peers and the
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� For a sufficiently short period—represented by the fraction
t/n—either one event will occur or none will occur. This con-
dition rules out the possibility of two or more events’ occur-
ring in a single subinterval of time. This restriction is reason-
able provided we choose n so large that the time interval t/n
is very small, where the meaning of large and small depends
on the context of the problem.

� The probability of one event’s occurring in any given interval
t/n is proportional to the length of the interval. (In other
words, if we wait twice as long we will be twice as likely to
observe an event.)

� Whatever happens in one subinterval (for instance, whether
a phone call is received or not received) will have no influ-
ence on the occurrence of an event in any other subinterval.

If these three criteria are satisfied, then the phenomenon of interest
is called a Poisson process. Once it has been established that a par-
ticular process is a Poisson process then mathematicians, engineers,
and scientists can use all of the mathematics that has been devel-
oped to describe such processes. The Poisson process has become
a standard tool of the mathematician interested in probability, the net-
work design engineer, and others interested in applications of proba-
bility. It has even been used to predict the number of boulders of a
given size per square kilometer on the Moon. Poisson processes are
everywhere.



broader public knew about and were supportive of his work in
science and mathematics. Poisson, however, made one important
discovery of interest to us that was not widely recognized during
his life. This was also his major contribution to the theory of
probability. It is called the Poisson distribution.

The Poisson probability distribution was first described in
Recherches sur la probabilité des jugements en matière criminelle et en
matière civile (Researches on the probability of criminal and civil
verdicts). The goal of the text is to analyze the relationship
between the likelihood of conviction of the accused and the likeli-
hood of the individual’s actually having committed the crime.
(Estimates of this type enable one to determine approximately
how many innocent people are locked away in jail. Unfortunately,
they give no insight into which people are innocent.) It was 
during the course of his analysis that Poisson briefly described a
new kind of probability curve or distribution.

Poisson’s distribution enables the user to calculate the likelihood
that a certain event will occur k times in a given time interval,
where k represents any whole number greater than or equal to 0.
This discovery passed without much notice during Poisson’s time.
Perhaps the reason it did not draw much attention was that he
could not find an eye-catching application for his insight, but con-
ditions have changed. Poisson processes are now widely used;
Poisson distributions are, for example, employed when developing
probabilistic models of telephone networks, in which they are used
to predict the probability that k phone calls will arrive at a partic-
ular point on the network in a given interval of time. They are also
used in the design of traffic networks in a similar sort of way. (Car
arrival times are studied instead of message arrival times.) Neither
of these applications could have been foreseen by Poisson or his
contemporaries, of course.
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5
random processes

The universe is not entirely deterministic: Not every “effect” is
the result of an identifiable “cause.” These ideas began to find
favor late in the 19th century. As scientists learned more about
nature they were able to identify phenomena—for example, the
motion of an individual molecule in a gas or liquid, or the turbu-
lent flow of a fluid—for which the information necessary to iden-
tify a cause was not simply unknown but perhaps unknowable.
Scientists began to look at nature in a new way. They began to
develop the concept of a random, or stochastic, process. In this
view of nature, scientists can specify the probability of certain
outcomes of a process, but this is all they can do. For example,
when studying the motion of molecules in a gas they may predict
that there is a 75 percent chance that a molecule that is currently
in region A will be found in region B after a given amount of time
has elapsed. Or they may predict that the velocity of a turbulent
fluid at a particular location at a particular time will lie within a
particular range of velocities 80 percent of the time. In some
instances, at least, these predictions are the best, most accurate
predictions possible. For certain applications, at least, prediction
in the sense that Laplace understood the term had become a relic
of the past.

This kind of understanding of natural phenomena has as much
in common with our understanding of games of chance as it has
with the deterministic physics of Newton, Euler, and Laplace. The
goal of these new scientists, then, was to state the sharpest possi-
ble probabilities for a range of outcomes, rather than to predict
the unique outcome for a given cause. This was a profound shift



in scientific thinking, and it began with the work of the British
botanist Robert Brown (1773–1858).

Brown, like many figures in the history of mathematics, was the
son of a minister. He studied medicine at the Universities of
Aberdeen and Edinburgh. As a young man he led an adventurous
life. He was stationed in Iceland while serving in the British army,
and later he served as ship’s naturalist aboard HMS Investigator. It
was as a member of Investigator’s crew that he visited Australia.
During this visit he collected thousands of specimens, and on his
return to England he set to work classifying the collection and
writing about what he found. In 1810 he published part of the
results of his work as naturalist, but, because sales of the first 
volume were meager, he never completed the project.

Today, Brown is remembered for his observations of the motion
of pollen in water made many years after his return to England. In
1828 he described his discoveries in a little pamphlet with the
enormous title “A brief account of microscopical observations
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made in the months of June, July and August, 1827, on the 
particles contained in the pollen of plants; and on the general 
existence of active molecules in organic and inorganic bodies.” In
this work Brown describes what he saw when he used a microscope
to observe pollen particles that were about 0.0002 inch (0.0056
mm) in diameter immersed in water. He saw the particles occa-
sionally turning on their axis and moving randomly about in the
water. Prolonged observation indicated to him that the movements
were not caused by currents or the evaporation of the water. At
first, Brown referred to Buffon: He assumed that the particles
moved because of the motion of the “organic molecules” whose
existence had been described in Buffon’s Histoire naturelle générale
et particulière. Further research, however, changed his mind. Brown
observed the same phenomenon with particles that could not be
alive. He observed 100-year-old pollen. He ground up glass and
granite and observed that the particles moved through the water
just as the pollen had. He even observed ground-up fragments of
the Sphinx. Every sufficiently small particle suspended in water
behaved in essentially the same way: (1) Each particle was as likely
to move in one direction as in another, (2) future motion was not
influenced by past motion, and (3) the motion never stopped.

That the motions might indeed be random was not a popular
hypothesis. Scientists of the time believed that these motions would
eventually be explained by some yet-to-be-discovered deterministic
theory much as planetary orbits had already been explained. Brown,
however, continued to gather data. He was remarkably thorough.
When it was suggested that the motions were due to mutual attrac-
tion between particles, he observed single grains suspended in indi-
vidual droplets that were themselves suspended in oil. The oil
prevented evaporation of the water, and the continued motion of
isolated grains disproved the hypothesis that the motion was caused
by forces between particles. Through his experiments Brown gained
considerable insight into what did not cause the motion of these
grains, but no one at the time had a convincing theory of what did
cause their motion. Interest among his contemporaries, never
strong to begin with, began to wane. For the next 30 or so years
Brown’s experiments, which described the process now known as
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Brownian motion, were pushed aside. Scientists were not yet ready
to consider fundamentally random events.

James Clerk Maxwell
A pioneering attempt to consider a phenomenon governed by 
the rules of chance occurred in 1876 in a paper published by 
the British physicist James Clerk Maxwell (1831–79). Maxwell 
was born into a middle-class family. His mother died of cancer
when he was nine. He was tutored at home for a while and later
attended various schools. From an early age he was something of
a freethinker. He paid little attention to exams, but he published
his first paper when he was only 14. That paper was on 
mathematics. Maxwell enjoyed mathematics from an early age

but would never become a
great mathematician. In fact,
he published articles that con-
tained incorrect mathematics.
His future was not in mathe-
matics; it was in science, and
in science his physical insight
was second to none. He is
widely regarded as the most
important physicist of his
century.

Maxwell is important to the
history of probability because
he discovered a new and
important use for probability.
This did not involve much in
the way of new mathematics.
Instead, Maxwell found a new
application for existing mathe-
matics: He used probability
theory in the study of gases. To
understand his contribution,
we need to keep in mind that
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most prominent scientists of the 
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the atomic theory of matter was still open to debate during
Maxwell’s lifetime. Maxwell supposed that every gas was composed
of molecules that were in constant motion. He supposed that they
frequently collided with one another. The collisions, of course,
changed both the direction and the speed of the molecules
involved, but Maxwell went much further than this simple obser-
vation. To understand Maxwell’s model, consider the following:

� Imagine large numbers of small, widely separated parti-
cles that collide elastically (that is another way of saying
that when they collide, they change direction and speed
but produce no heat). A good model of an elastic 
collision is the collision of two billiard balls.

� Suppose that these molecules are enclosed in a contain-
er in such a way that they are completely isolated from
the surrounding environment (again, in much the same
way that billiard balls roll on a level, smooth billiard
table).

� Finally, imagine that when these particles collide with
the walls of the container, these collisions, too, are elastic.

Maxwell discovered that the velocity with which each molecule
is moving at some instant can vary widely from molecule to 
molecule, but the probability that a particular molecule’s velocity
falls within a given range at a certain instant can be predicted. This
function, which enables one to determine the probability that the
velocity of a randomly chosen molecule lies in some range, is
called the velocity distribution. The idea is easier to appreciate,
however, when expressed in terms of speeds: Given two speeds, s1

and s2, with s1 less than s2, the speed distribution enables one to
determine the probability that the speed s of a randomly chosen
molecule is greater than s1 and less than s2. Furthermore, in this
model the physical properties of the gas, such as its pressure, can
be obtained from the average (random) motion of the molecules
of which the gas is composed. The discovery that the velocities
and speeds of the individual particles followed a certain type of
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probability distribution enabled
him to describe many of 
the basic physical properties
of gases provided that the 
gases under consideration are
at low pressure and high 
temperature.

Here was a profound phys-
ical theory about the motion
of individual particles that
could be explained only in
the language of probability. It
was hopeless to describe the
motions of trillions of mole-
cules with the deterministic
approach that had character-

ized most scientific inquiry since Newton. To use Newton’s 
laws to describe the motion of a body we need to know the 
position and velocity of each body at some instant of time.
Maxwell’s kinetic theory of gases recognizes that the individual
motions of the molecules are too complex to be described that
way, but more importantly Maxwell recognized that properties
of the gas are group properties. There are many arrangements 
of individual molecules in a gas that cause the same pressure 
and temperature. Maxwell recognized that the motions of the
individual molecules are less important than the properties of 
the mass as a whole. Therefore, what was required to understand
the gas was a probabilistic description of the motion of the 
molecules as a whole, not a deterministic description of each
individual molecule. Furthermore, Maxwell showed that in the
case of certain gases, the velocity of the molecules of the gas has
a comparatively simple probabilistic description: The velocities
of molecules in a gas that conform to the three “axioms” listed
conform to something called the Maxwell–Boltzmann velocity
distribution. The probabilistic description of gases that grew 
out of Maxwell’s investigations is now known as the
Maxwell–Boltzmann distribution law, after Maxwell and the
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To compute the probability that a
randomly chosen molecule will have a
speed not less than ν1 and not greater
than ν2, find the area beneath the
curve and between the horizontal
lines ν = ν1 and ν = ν2.



Austrian physicist Ludwig Boltzmann, the two scientists who
contributed most to the development of these insights.

Brownian Motion Revisited
As scientists became accustomed to thinking of nature in the lan-
guage of probability, a new, qualitative description of Brownian
motion began to evolve. The general idea is that a particle that is
small and light and continually bombarded by molecules traveling
at varying velocities will experience forces of different magnitudes
at different points along its surface. Sometimes these forces will be
equally distributed about the exterior of the particle. When this
happens the forces balance, or cancel, each other. When the forces
do not cancel, the forces exerted on one side of the particle will
exceed those exerted on the other side and the particle will “jump”
from one position in the water to the next. Because the location on
the surface at which the stronger forces are exerted is random, the
particle may first jump in one direction one instant and then in a
different direction the next, or it may jump several times in the
same general direction. Understanding the cause of Brownian
motion, however, was not enough to enable scientists to make
quantitative predictions about the motion of the particle.

A quantitative explanation of Brownian motion was proposed
independently by two scientists at essentially the same time. One
was the German physicist Albert Einstein (1879–1955). He pub-
lished his paper in 1905. The second person to propose the cor-
rect quantitative explanation for Brownian motion was the Polish
physicist Marian Smoluchowski (1872–1917), who published his
paper in 1906. Smoluchowski, who was educated at the University
of Vienna, made contributions in several areas of physics. Perhaps
his best-known contribution was to the understanding of
Brownian motion. Unfortunately, that contribution is eclipsed by
that of the much better known Albert Einstein, but they arrived at
essentially the same conclusions by using different methods of rea-
soning at essentially the same time. We will study Smoluchowski’s
ideas because from our point of view the approach taken by
Smoluchowski is more accessible.
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Smoluchowski begins his
paper on Brownian motion by
reviewing previous theories
about the nature of the phe-
nomenon. Since Brown had
first published his observa-
tions, a number of theories
had been proposed to explain
the motion of the particles.
One popular theory held that
small convection currents
inside the fluid simply carry
the particles from one location
to the next. Smoluchowski
cites existing evidence that
disproved this possibility. In
the same way, he carefully
describes and dismisses all
common, competing theories.

When Smoluchowski final-
ly begins to describe his own
ideas, he expresses himself in

a language that would have been familiar to de Moivre. Of
course, the mathematics had advanced considerably, but the con-
cept had its roots in games of chance. Essentially, he considers a
process—which for the purposes of computation is equivalent to
a game—with two equally likely outcomes, favorable and unfa-
vorable (winning/losing). The goal is to compute the odds that
after running the process (playing the game) n times, where the
letter n represents any positive whole number, the observer will
witness m favorable outcomes, where m is any nonnegative
whole number less than or equal to n.

Smoluchowski calculates an average velocity of the particle from
the average velocities of the molecules that surround it.
Smoluchowski’s model predicts a particle that is in continual
motion along a very specific random path. The path is like a 
chain. All steps, or links in the chain, have identical length, but the
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direction of each step is random. When m steps, where m is some
number greater than 1, happen to line up so that motion of the
particle is more or less in one direction, we have the same sort of
situation that Brown had observed 79 years earlier: a particle
“darting” first in one direction and then in another while the
lengths of the jumps vary.

Brownian motion has since become an important part of
mathematical analysis and science, but even before these ideas
found practical applications, they were still recognized as
important. These results helped reveal a new aspect of nature,
an aspect in which randomness could not be ignored. This was
new, because although Maxwell had developed a model for gases
that relied on probability theory, a model that revealed a new
way of looking at nature, there was a competing model, called
the continuum model, that did not rely on any notion of ran-
domness and was just as accurate as Maxwell’s model in practi-
cal problems. From the point of view of applications, Maxwell’s
model was interesting, but it was not necessary, in the sense that
the physical properties of gases could not be predicted without
it. By contrast, the motion of a particle suspended in a fluid and
battered by the surrounding molecular medium is inherently
random. No nonrandom theory could account for it. Brownian
motion defies the sort of cause-and-effect analysis that is char-
acteristic of the science of the 19th century. To analyze these
new classes of random phenomena new mathematical tools were
needed. Brownian motion was the beginning. The need for
probabilistic models in the physical sciences has continued to
grow ever since.

Markov Processes
At about the same time that Smoluchowski was pondering
Brownian motion the Russian mathematician Andrey
Andreyevich Markov (1856–1922) had ceased studying number
theory and analysis, that branch of mathematics that grew out of
calculus, and begun to think about what we now call random or
stochastic processes. Born in Ryazan, a city about 100 miles (160
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km) southeast of Moscow,
Markov spent most of his life
in Saint Petersburg. He had a
comfortable childhood, but
he was not a very apt student.
In fact, he seems to have been
a poor student in every sub-
ject except mathematics. It
was by choice: Markov always
did as he pleased; throughout
his life he was something of a
rebel.

Markov was educated at
Saint Petersburg University,
a home to many distin-

guished mathematicians then and now. Later Markov taught at
Saint Petersburg. During this time the political situation in
Russia was unstable and dangerous. Markov allied himself with
the dissidents and against the czar, and he found a way to incor-
porate his mathematics into his politics. When the czarist gov-
ernment organized a celebration of the 300th anniversary of the
Romanovs, the ruling family of Russia, Markov organized a coun-
tercelebration of the 200th anniversary of the release of Jacob
Bernoulli’s great work on probability theory, Ars Conjectandi.

In probability Markov contributed to the understanding of the
central limit theorem and the law of large numbers, also called
Bernoulli’s theorem. His best-known contribution is his research
into the study of a class of random, or stochastic, processes called
Markov chains. (When a mathematical discovery is named after a
mathematician, the name is usually chosen by others, often after
the death of the individual responsible for the discovery. It 
was characteristic of Markov that he named the Markov chains 
after himself.) Markov chains have the following three important
properties:

� The Markov chain or process is a sequence of random
events.
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A MARKOV CHAIN

Mathematically, a Markov chain is the simplest of all Markov-type
processes. As an illustration of a Markov chain, imagine a particle mov-
ing back and forth along the real number line in discrete steps. Imagine
that the particle begins its motion at the point 0 and that it can move only
one unit of distance to the left or to the right at each step. In particular,
after its first step it will be located at either x = 1 or x = –1. Suppose
that the probability that it moves to the right at each step is p, and the
probability that it moves to the left is 1 – p, where p is any number
between 0 and 1.

If we set p equal to 1/2 then we can model this Markov process by
moving back and forth along a line, one step at a time, and using a coin
to determine in which direction to step: “Heads” indicates a step for-
ward. “Tails” indicates a step back. Flip the coin. Take the step. Repeat
forever. This is a simple mathematical model for Brownian motion in one
dimension.

Having used the Markov chain to create a mathematical model of one-
dimensional Brownian motion, we are now in a position to begin a quan-
titative examination of it. We might, for example, ask what is the proba-
bility that we will remain in some interval centered about the point 0 after
we have taken n steps? Or, alternatively, what is the probability that after
we flip the coin enough times we will move away from 0 and never
return?

This simple Markov chain has been studied extensively. Although it
is very simple, it has a number of more sophisticated extensions.
Physically, these extensions can be used to study the phenomenon of
diffusion, the process by which different gases or liquids intermingle
as a result of the random motion of the molecules. Diffusive process-
es also occur in the life sciences; for example, the motion of species
across the landscape is sometimes described by using diffusion
equations. Mathematically, one-dimensional Markov chains have been
generalized in a variety of ways. The most obvious generalization
enables the particle to move in two or more dimensions. A more sub-
tle generalization involves changing the model so that the particle
moves continuously through time and space: In other words, there
are no discrete steps; the particle flows randomly from one position
to the next. Motions of this type are called continuous Markov
processes. The study of Markov chains and continuous Markov
processes continues to occupy the attention of mathematicians and
scientists.



� The probability of future events is determined once we
know the present state.

� The probability of future events is not influenced by the
process through which the present state arose.

To predict the future position of a particle undergoing Brownian
motion these are just the assumptions we would need to make.
The sequence of random events is just the sequence of steps, or
“links,” in the Markov chain that the particle traverses as it moves
along its random path. The probability that it will pass through a
future location is determined by its present position and the prob-
abilities, called transition probabilities, that govern its motion.
The path that it took to arrive at its present location has no influ-
ence on its future motions.

Markov’s interest in stochastic processes was very general. He
did not develop his ideas in response to the problem of Brownian
motion, although his ideas have been successfully applied to the
study of Brownian motion. Much of Markov’s motivation
stemmed from his desire to make probability theory as rigorous as
possible. Although he apparently enjoyed thinking about applica-
tions of his work, he made only one attempt to apply his ideas on
probability: He made a probabilistic analysis of some literary
works in which he modeled them as random sequences of charac-
ters. More generally, Markov worked to discover the mathematics
needed to describe classes of abstract random processes. Over the
last century his ideas have become a vital part of many branches 
of science. Today, Markov processes are used to describe stock
market behavior, numerous problems in the biological and social
sciences, and, of course, Brownian motion. They are also funda-
mental to the study of the theory of digital communication.
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6
probability as a 

mathematical discipline

The discoveries of Einstein, Smoluchowski, and Maxwell were
just the beginning. During the first few decades of the 20th cen-
tury it became apparent that there were many phenomena that
could only be described using probability. It could be proved that
some of these phenomena were intrinsically random. There was
no choice but to use probability theory in creating a mathemati-
cal model of these processes. Laplace’s philosophy, that the uni-
verse was deterministic and that the principal role of probability
was to aid in the analysis of collections of measurements, had
been found wanting. It is not that Laplace and others were
wrong, but that their conception of nature and of the role of
probability in the description of nature was too limited.
Mathematicians and scientists needed a broader, more useful
definition of probability.

Scientists in fields ranging from meteorology to theoretical
physics had only limited success in using probability, however,
because, from a mathematical perspective, the theory of probabil-
ity was seriously deficient. Although many new concepts and com-
putational techniques had been developed since the time of Jacob
Bernoulli and Abraham de Moivre, there was no conceptual unity
to the subject. Probability was still a haphazard collection of ideas
and techniques. The time was right again to ask the question,
What is the mathematical basis of probability?

It may seem that discovering a mathematical basis for the theo-
ry of probability should have been one of the first goals in the



development of the subject. It was not. One reason for the delay
in confronting this fundamental question was that the naïve ideas
about probability that grew out of the study of games of chance
had been adequate for solving many of the problems that mathe-
maticians considered for the first few centuries after Pascal and
Fermat. Another reason for the delay is that the mathematics nec-
essary to construct a strong foundation for the theory of probabil-
ity is fairly advanced. Before the 20th century the necessary
mathematics did not exist. It was during the first part of the 20th
century that the mathematics needed to express these fundamen-
tal ideas was first developed. The mathematicians who prepared
the groundwork for a more rigorous study of probability were not
especially interested in probability themselves, however; they were
interested in the problem of measuring the volume occupied by
arbitrary sets of points. It was during the early part of the 20th
century that the French mathematicians Emile Borel (1871–1956)
and Henri-Léon Lebesgue (1875–1941) revolutionized much of
mathematics with their ideas about measure theory.
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Measure theory is a collection of ideas and techniques that
enable the user to measure the volume or area occupied by sets
of points. It is a simple enough idea: We isolate the collection of
points in which we are interested and then use the necessary
mathematics to determine the area or volume occupied by the
collection. Measure theory is closely related to integration,
which is an important concept in calculus, and centuries earlier
Isaac Newton and Gottfried Leibniz, the codiscoverers of calcu-
lus, had developed many important ideas and techniques with
respect to integration. In the latter half of the 19th century, how-
ever, problems arose where the concepts and techniques pio-
neered by Newton and Leibniz proved to be inadequate. The old
ideas were just too narrow to be of use in the solution of these
new problems. Integration, one of the fundamental operations in
all of mathematics, had to be revisited, and the concepts and
techniques had to be expanded to meet the needs of the new sci-
ences and mathematics. This was the great accomplishment of
Borel and especially of Lebesgue, who found a way to extend the
classical ideas of Newton and Leibniz. All of the old results were
preserved and the new concepts and techniques were brought to
bear on situations that previously had been unsolvable.

The fundamental work of Lebesgue and Borel was largely
complete when the Russian mathematician Andrei Nikolayevich
Kolmogorov (1903–87) began to think about probability.
Kolmogorov was one of the major mathematicians of the 20th
century, and his ideas about probability have done more to
shape the subject into what it is today than any other mathe-
matician’s. He was born in Tambov, a city located about halfway
between Moscow and Volgograd (formerly Stalingrad).
Kolmogorov enrolled in Moscow State University when he was
17 and was soon working on problems in advanced mathemat-
ics. Eight years later he graduated from Moscow State
University and joined the faculty. Shortly after he joined the
faculty he began to think about probability. Kolmogorov would
continue to research probability and related problems for 
the rest of his life. (Kolmogorov’s interests were actually 
much broader than the field of probability. He was a prolific
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mathematician and also con-
tributed to our understanding
of the theory of complexity,
information theory, turbu-
lence, Markov processes,
measure theory, geometry,
topology, set theory, and
other areas besides.)

Kolmogorov found a way 
to apply measure theory, 
pioneered by Borel and
Lebesgue, to the study of
probability theory. The idea
is, in retrospect, simple
enough. He imagines a large
set, which we will represent
with the letter U. The set U
contains many subsets. On
the set U Kolmogorov defines

a measure that allows him to determine the size of various subsets
of U. The measure must be chosen so that the size of U equals 1.
All that is left is to reinterpret this model in the language of prob-
ability theory.

The set U represents all possible events or outcomes for the
process of interest. (This is why it is critical that the measure of
U equals 1: The probability that some outcome occurs—that is,
that something happens—is always 1.) Subsets of U represent pos-
sible events. Because no subset of U can have a measure larger
than U—a part is never larger than the whole—the probability of
an event is never greater than 1. If A and B are two nonoverlap-
ping subsets of U—and now A and B also represent two events—
then the probability that either event A occurs or event B occurs
is just the measure of A plus the measure of B. Geometrically, this
is the size of the two sets. Alternatively, if we want to know the
probability that both events A and B occur then we just compute
the size of the intersection of the two sets. (See the accompany-
ing illustration.)
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Kolmogorov’s insight allowed him to bring the field of probabil-
ity into the much larger and more highly developed branch of
mathematics called analysis, of which measure theory is only a part.
Analysis, which arose out of calculus, is the study of functions,
equations, and sets of functions. By expressing probability in the
language of measure theory all of the results of analysis could now
be applied to probability. The practical effect of Kolmogorov’s
work was widespread and immediate. Scientists and mathemati-
cians began to employ probability theory in new ways. From a
practical point of view Kolmogorov’s innovation stimulated the use
of probability as a tool in the study of the atom, meteorology, and
the motion of fluids with internal structure, such as liquids with
bubbles or liquids with solids suspended in them. (The study of
such fluids has many important practical applications, ranging from
coolants in nuclear plants to the motion of oil through soil.)
Mathematically, Kolmogorov’s innovation allowed mathematicians
interested in probability to axiomatize their subject in much the
same way that Euclid had attempted to axiomatize geometry more
than two millennia earlier. That is, Kolmogorov was able to state
the mathematical basis of the theory of probability in terms of a list
of fundamental properties called axioms.

Axioms define what it is that mathematicians study. Each branch
of mathematics is defined by a set of axioms. It is from the axioms
that mathematicians deduce theorems, which are logical conse-
quences of the axioms. The axioms are the final answer to the
mathematical question, Why is this true? Any statement in math-
ematics is, in the end, true because it is a logical consequence of
the axioms that define the subject. Because mathematics is a
deductive subject—mathematicians draw specific logical conclu-
sions from general principles—Kolmogorov’s axiomatic approach
allowed probability to be developed in a mathematically coherent
way. Although others had tried, Kolmogorov was the first who
successfully created an axiomatic basis for probability.
Kolmogorov provided a framework that allowed those mathemati-
cians who accepted his axioms to deduce theorems about proba-
bility rigorously. One especially important advantage of
Kolmogorov’s work was that it allowed probability to be applied to
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situations that were very abstract, situations that had previously
resisted analysis.

Kolmogorov made other contributions to probability as well. In
particular, he greatly expanded the results of Markov.
Kolmogorov’s extensions of Markov’s work facilitated the study of
Brownian motion and, more generally, the process of diffusion.
(Diffusion occurs when molecules or particles in random motion
intermix.) The mathematics of diffusion has been an important
tool in the study of many problems in physics, chemistry, and cer-
tain aspects of the life sciences.

Kolmogorov also contributed to branches of knowledge in
which probability theory plays an important part. One application
of probability in which Kolmogorov had a particular interest was
the field of information theory, the study of certain fundamental
principles that govern the transmission and storage of informa-
tion. The discipline emerged shortly after World War II with the
work of the American engineer Claude Shannon (1916–2001).
Kolmogorov developed a somewhat different approach to infor-
mation theory that shared ideas with those first developed by
Shannon but was more general in concept. Especially interesting
and potentially useful was his idea of the information content of
abstract mathematical sets. In particular, Kolmogorov found a way
to compute the amount of information that could be represented
by a function or group of functions whose properties are impre-
cisely known. Since all measurements are imprecise, this method
has clear applications to the problem of interpreting data. His
information theoretic ideas generated many interesting and
important papers, especially by the mathematicians of the former
Soviet Union.

The other contribution of Kolmogorov we mention here is a
field of mathematics that is now named after him: Kolmogorov
complexity. Kolmogorov complexity involves the attempt to quan-
tify the amount of complexity in an arbitrary object. That object
may be a physical object or a computer program. The first step
involved in this process is to describe the object or process in bina-
ry code. Once this has been done for two objects we have two
strings of digits, both of which are expressed in a common “alpha-
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bet,” that is, binary code. At this point the strings are compressed,
meaning that all of the information is retained but all of the redun-
dant digits and sequences of digits are removed. At this point the
strings have been made as short as possible. Now researchers are,
in principle, able to compare the complexity of the two objects by
using objective criteria. An objective criterion for complexity and
information content is useful because random sequences of digits
cannot be compressed. Consequently, the theory of complexity
allows the user to distinguish between information and noise—
that is, signals that carry no information—even when the message
itself is opaque. If this sounds too abstract to be useful, it is not.
Kolmogorov complexity has been used to gain insight into every-
thing from the trading of stocks—in which the “signals” are fluc-
tuations that reliably presage market changes, and the “noises” are
random fluctuations that presage nothing—to the structure of
language. More work remains to be done, however, because in
practice, the difficulties involved in finding a reasonable measure
of complexity have not been entirely resolved.

It should be pointed out that, although Kolmogorov had a pro-
found influence on the development of the subject of probability,
not every mathematician has found his formulation of the subject
useful enough. We have mentioned this problem in the
Introduction and we mention it again here, near the end of our
history of probability, because disputes about the meaning of
probability continue. Kolmogorov found a way to axiomatize
probability as he understood it. Although other mathematicians and
scientists have not always found his formulation of the subject 
adequate for their needs, this does not mean that Kolmogorov was
wrong. He was, for Kolmogorov, right: If we accept his axioms
then we must accept all of the statements about probability that
are logical consequences of his axioms. Kolmogorov’s highly
abstract formulation, however, offers few clues to the relationship
between his probability measures and the concrete, random
processes that scientists seek to understand through observation
and measurement. In other words, the relationship between
Kolmogorov’s mathematical formulation of the theory of 
probability and the world around us is not always clear. This is a
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problem of which Kolmogorov himself was aware. His formula-
tion of the theory of probability helps us to understand how to
manipulate probabilities, but it provides less insight into how we
obtain probabilities, or what the probabilities so obtained can rea-
sonably represent.

Theory and Practice
The debate about the relationship between mathematical proba-
bility and random phenomena is a lively one that continues into
our own time. There is a natural tension between the mathemat-
ics of the theory of probability and real-world phenomena. The
fact that the debate has lasted so long indicates that the issue is a
complex one. Essentially, the question centers around the connec-
tion between what we see and what we compute.

The relationship between data and probabilities has been a 
matter for research and debate ever since Jacob Bernoulli demon-
strated that over the long run the frequency of occurrence of a 
random event will approach the probability of that event. Although
it was an important first step, Bernoulli’s discovery was far from the
last word on the subject. In order to use probability to solve prob-
lems in science, scientists needed to identify other, deeper relations
between the quantities that they measure and the probabilities with
which they make computations. Because these relationships are not
always obvious, there are different schools of thought on the nature
of probability. Identifying the “right” relationships between theory
and practice is important because in more complicated research sit-
uations, the answers researchers obtain sometimes depend on their
concept of probability. This variation from researcher to researcher
calls into question the validity of their results. The physical prop-
erties of any phenomenon are, after all, the same no matter which
method is used to reveal those properties.

One group of mathematicians interested in probability calls its
members Bayesians. This school of thought goes back to the ideas
of Bayes and Laplace. Bayesian probability is sometimes described
as a measure of one’s certainty. Briefly, Bayesians tend to ask the
most natural-sounding questions about a process. They are also
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free to ask questions that frequentists, those mathematicians who
subscribe to a different point of view (described later), would
never ask. To illustrate this point, consider the question, What is
the probability that humans will land on Mars before 2050?

The question may sound reasonable, but we cannot estimate the
probability of such a mission by examining the number of previous
manned Mars landings, because this kind of mission has never
occurred. In fact, this kind of mission has never even been attempt-
ed. Consequently, if we are to answer the question at all, we have
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to talk about probabilities separately from frequencies. We are left
with the problem of trying to quantify our degree of belief.
Methods to facilitate this type of approach exist, but not every
mathematician agrees that the methods are valid. The idea is to
consider a collection of competing hypotheses. The hypotheses
should be exhaustive in the sense that one and only one hypothesis
can be true. The next step is to use existing data or other theoreti-
cal considerations to assign numbers to the competing hypotheses.
Each number represents a degree of plausibility. As more information
is gained, the new information can be used to “update” the initial
probabilities: Knowing more enables us to decrease our level of
uncertainty. This part of the calculation can be done in a rigorous
way, but the initial probabilities depend on the subjective judgment
of the researcher. As more information is added to the model, the
probabilities change and, presumably, improve. The method yields
one or more hypotheses that are the most likely or—to put it
another way—the most plausible. If there is a single hypothesis that
is the most plausible, then this hypothesis is accepted as the correct
one—pending, of course, the introduction of additional informa-
tion into the equations. There is nothing new about this under-
standing of probability. Mathematicians have been familiar with it
in one form or another for centuries. Ideas about probability began
to change, however, in the second half of the 19th century with the
work of the British priest and mathematician John Venn
(1834–1923).

Venn was one of the originators of what has become known as
the frequentist’s view of probability. He attended Gonville and
Caius College, Cambridge. After graduation he was ordained a
priest, but he was soon back at Cambridge, where he worked as a
lecturer in moral science. Today, Venn is best remembered for the
diagrams he invented to represent operations on sets—we used his
diagrams to describe Kolmogorov’s ideas on probability—but
Venn was just as interested in the theory of probability. In 1866
Venn introduced what is now called the frequentist definition of
probability. Venn’s goal was to connect the ideas of probability and
frequency. He defined the probability of an event as its long-term
frequency. This concept of probability, although it sounds reason-
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able, is not quite correct. Defining probabilities in terms of fre-
quencies turned out to be more difficult than it first appeared.

The shortcoming in Venn’s conception of probability stemmed
from his omission of the concept of randomness. Long-term fre-
quencies are not enough. To see the problem, consider the
sequence 5, 6, 5, 6, 5, 6, . . ., which consists solely of alternating 5s
and 6s. The frequency of a 5 is 50 percent, but after we know one
number, we know the order of every other number in the
sequence, so, in particular, if we observe a 6, the probability that
the next number is a 5 is not 50 percent; it is 100 percent.

This shortcoming in Venn’s definition was eventually corrected
by the mathematician Richard von Mises (1883–1953). He was
born in what is now Lvov in Ukraine, which was then part of the
Austro-Hungarian Empire. Von Mises was educated in Vienna
before World War I, and during the First World War he served as
a pilot. After the war he moved to Germany, where he taught
mathematics. In the 1930s von Mises fled to Turkey to escape Nazi
persecution. In 1938, when the Turkish leader Kemal Atatürk
died, von Mises moved to the United States, where he lived until
his death.

Von Mises recognized that long-term frequencies alone were
not enough to establish a concept of probability. He had the idea
of adding the requirement that a sequence must also be random in
the sense that we should not be able to use our knowledge of past
events to eliminate all uncertainty about future outcomes. For
example, in a numerical series consisting of 50 percent 5s and 50
percent 6s, it should not be possible to predict upcoming digits
with complete accuracy even if we know everything about the pre-
ceding digits. This emphasis on frequencies of randomly occur-
ring digits “over the long run” provided an alternative to the
Bayesian approach. An alternative was needed because many
mathematicians of the time objected to Bayesian probability.

One major philosophical objection to the Bayesian view was that
“degree of plausibility” of a hypothesis seemed to be a fairly thin
reed on which to construct a rigorous mathematical discipline.
Other objections were technical. Technically, the Bayesian empha-
sis on the calculation of probabilities of competing hypotheses
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depended on certain subjective judgments by the researcher.
These subjective decisions seemed (to the frequentists) to leave lit-
tle room for the development of an objective science. They argued
that Bayesian probability ought to be replaced with a more “objec-
tive” approach.

This so-called objective approach, the frequentist approach, also
involves its own set of assumptions. Here the main additional
assumption is that the existing data represent some larger collec-
tion or ensemble of well-defined outcomes. These results have not
yet been obtained as part of any experiment; they are, instead, a
sort of theoretical context in which the existing results can be
interpreted. The observed data are interpreted as a random selec-
tion of points from this larger ensemble. Frequentists prefer to
assume that a particular hypothesis is true and then investigate
how well the existing data agree with the (presumably true)
hypothesis. This, at least, provides them with a testable hypothe-
sis. If the agreement is good there is no reason to reject the
hypothesis.

The frequentist view of probability quickly displaced the
Bayesian view of probability, but in 1939 the British astronomer,
geophysicist, and mathematician Harold Jeffreys (1891–1989)
began to argue that the Bayesian approach had merit and that the
frequentist view of probability had its own difficulties.

Jeffreys was born in a small town with the delicious name
Fatfield in northeast England. He attended Rutherford College
and Armstrong College, both of which are located in Newcastle-
upon-Tyne. Jeffreys spent most of his working life at Saint John’s
College, Cambridge. He was an eclectic scientist, who made inter-
esting contributions to several branches of science and mathemat-
ics. In mathematics he is probably best remembered for a
well-received book on mathematical physics, Methods of
Mathematical Physics, which was published in 1946, and for his
Theory of Probability, published in 1939. By the time Theory of
Probability was released the frequentists had (for the moment) won
the debate. Their view of probability and its relationship to data
had gained almost universal acceptance. In his book, however,
Jeffreys criticized the frequentist approach and used Bayesian
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methods to examine many problems that formed a standard part
of the education of any frequentist.

Initially, Jeffreys was a lone voice pointing to the possibility that
there is, at least, something right about Bayesian probability, and
when the book was published, it did not sway many minds. In 
retrospect, it is clear that Jeffreys fired the first shot in a resurgence
of interest in Bayesian methods. In the intervening decades more
and more mathematicians have become interested in this alterna-
tive understanding of what probability is. Nowadays the Internet is
full of discussion groups that debate the merits of both sides.
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7
three applications 
of the theory of 

probability

Discussions about the philosophy of probability and the impor-
tance of developing an axiomatic basis for the subject might
make probability appear irrelevant to the lives of most of us.
Discussions about the use of probability in estimating the num-
ber π or computing the mass of Saturn might make probability
appear to have only academic importance. But probability is now
one of the most used and useful branches in all of mathematics.
It also plays a vital role in many areas of society. In this section
we outline three contemporary applications of this mathematical
discipline.

Nuclear Reactor Safety
Commercial nuclear power reactors are highly complex machines.
Their purpose is to turn large quantities of heat energy into large
quantities of electrical energy. The electrical energy is then trans-
mitted along power lines so that we, the consumers, can consume it.
The huge amounts of thermal energy produced and the large forces
necessary to convert that energy into electrical energy must be care-
fully controlled. Safe operation of a reactor requires a very thorough
knowledge of the way these power plants work. Nuclear reactors
are, perhaps, the most thoroughly analyzed machines ever built.
The goal of much of this analysis is to ensure that each nuclear plant
operates in the manner in which it was intended: Each plant is



designed to produce electrical
power without endangering
lives or unduly disrupting the
environment. One of the ana-
lytical tools used to predict
nuclear plant performance is
probability theory.

When a reactor is produc-
ing electrical power much 
of the actual machinery in 
the plant is idle. These are 
the backup systems. They are
supposed to be idle. They 
are designed to be brought
on-line only when another
system in the plant fails. Each
system is individually tested
and the data collected are used
to evaluate the reliability of
that system. Engineers can 
use these data to predict the
probability of a fault within
the system. Knowing the
probability of failure of each

individual system is not, however, enough to predict reliably how
the plant will operate. The goal of collecting this information is to
use it to develop a probabilistic model of the way the plant as a
whole will work in the event of a failure of one of its components.
To understand how this is done we can imagine each safety system
in the plant as occupying a place on an organizational chart. At the
top of the chart are the primary systems, those systems that should
be working whenever the plant is producing power. Beneath each
primary system is a treelike structure that shows how the functions
of that primary system will be passed along to one or more 
backup systems should the primary system fail. Beneath the 
secondary systems we might also find tertiary systems that would
be put on-line in the event of failure of the secondary systems.
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The goal of the safety analyst is to imagine what failures, either
mechanical or human, may occur in the operation of each system.
These failures are played out in numerous scenarios in which the
analyst computes how a failure in one system at one level would be
distributed to one or more systems at the next level down. With this
understanding of the safety architecture of the plant, a catastrophic
failure would involve numerous individually unlikely failures work-
ing their way down the event tree from top to bottom. The analyst
uses data about the individual systems, including the control system
that transfers functions between the nodes of the event tree, to esti-
mate the probability that a failure could work its way along the tree
from top to bottom. These event trees are used to evaluate and
compare different designs for possible future construction. They are
also used to evaluate the safety of plants currently in operation.
Decisions about when a particular nuclear plant is safe enough to
operate are crucial to all of us. Probability theory provides one
important technique by which these decisions are made.

Markov Chains and Information Theory
The theory of digital communication began shortly after World
War II with the work of the engineer and mathematician Claude
Shannon (1916–2001). In 1948, while at Bell Labs, he published a
series of papers, A Mathematical Theory of Communication. His goal
in these papers was to characterize mathematically the transmis-
sion of information. Doing this, of course, requires a mathemati-
cally acceptable definition of what information is. The definition
has to be applicable to everything that we want to call a “message.”
Shannon liked concrete examples, and his paper has numerous
“artificial languages,” simple examples of messages consisting of
strings of letters arranged so that each letter appears with a preas-
signed frequency. But his work is much broader than his examples
indicate. Shannon’s definition of information is really a statement
about the amount of order or predictability in any message. It has
nothing to do with the actual content, and today information the-
ory is applied to problems in genetics and linguistics as well as dig-
ital communications.
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According to Shannon the transmission of information requires
(1) a source of information (the source generates a string of sym-
bols, usually a sequence of numbers or letters), (2) a transmitter
that encodes or changes the sequence generated by the source into
a form suitable for transmission, (3) a channel along which the
information is conveyed, and (4) a receiver that decodes the infor-
mation conveyed across the channel and displays it for the recipi-
ent. Central to Shannon’s model is the presence of noise in the
channel, where noise means occasional, random changes in the
information stream.

In Shannon’s mathematical model the sequence of symbols that
is generated at the source is a Markov process. In a long message
the probability of the next symbol is determined by the order of
the symbols just received. (The probability of moving from the set
of received symbols to the next, new symbol is usually described as
a type of Markov chain.)
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Goldstone Deep Space Network is used to communicate with interplanetary
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Shannon’s discovery of this definition of information allowed
him to show that information as he defined it obeys certain laws that
are in some ways analogous to those laws that describe the rate of
change of other physical quantities such as mass, momentum, and
energy. By employing the theory of probability, and especially the
theory of Markov chains, he was able to show that information can
be transmitted with extremely high accuracy even when the chan-
nel is noisy, provided that the information is correctly encoded at
the transmitter. This was a surprising result since before
Shannon’s work, it was generally assumed that on a noisy channel
parts of the transmitted message would inevitably be lost.
Shannon’s discovery led to the search for optimal error-correcting
codes, codes that were as fast as theoretically possible and that still
preserved the message in the presence of noise. Error-correcting
codes are now routinely used throughout our society. They make
it possible, for example, for the Voyager space probes, now located
at the farthest reaches of our solar system, to continue to commu-
nicate with Earth successfully by using 23-watt radios. More gen-
erally, Shannon’s discoveries are the foundation of all work in
digital communication, because they made it possible to develop a
successful mathematical model for the transmission and storage of
information.

Smallpox in Modern Historical Times
Smallpox has long been a public health scourge. It had been a
major source of mortality in the Eastern Hemisphere for thousands
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of years. It spread throughout North, Central, and South America
with the arrival of European colonists, explorers, and conquerors.
The disease is rapidly transmitted between individuals, and there
has never been an effective treatment for those unfortunate enough
to become infected. Generally, about one-third of all those who
were infected died, although among Native Americans, in particu-
lar, the fatality rate was much higher. Throughout history a great
deal of thought has been given to controlling and eliminating
smallpox.

The technique of variolation, the dangerous but often effective
technique of conferring resistance to smallpox, was of profound
importance. (See the section on Daniel Bernoulli and Jean
d’Alembert earlier in this volume for background on variolation.)
One of the peculiar aspects of variolation is that it depends on the
existence of individuals infected with smallpox so that the small-
pox “matter” from the infected individual can be used to induce
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immunity in the healthy individual. The great breakthrough
occurred with the work of the British surgeon and scientist
Edward Jenner (1749–1823). Jenner was aware that a person who
has been infected with cowpox, an illness that is not life-threaten-
ing, is thereafter protected from smallpox. He devised an experi-
ment: He found a woman who was sick with cowpox. He removed
some matter from a lesion on her finger and infected an eight-
year-old boy. The boy contracted a mild fever and a small lesion.
When the boy recovered, Jenner infected him with smallpox, but
the boy did not become sick. Jenner had discovered a safe means
to induce immunity to smallpox in a way that did not depend on
the existence of other individuals infected with smallpox. Because
protection is permanent and smallpox can be transferred only
from person to person, Jenner’s discovery set the stage for the
eventual elimination of the disease.

Widespread inoculation wiped out smallpox in the United States
in the late 1940s. Because smallpox was still present in other coun-
tries at that time there was still a danger that the disease could be
reintroduced into the United States, and so for decades, at great
cost, the United States continued the practice of widespread inoc-
ulation. The benefits of this public health policy were obvious:
Smallpox is a scourge and the vaccine is extremely effective. There
were also risks associated with this procedure, but at the time the
risks were so small compared with the benefits that they received
little attention. Remember: Millions of people lived in the United
States, there was continual movement of people across the nation’s
borders, and for years not one person in the United States had
died of smallpox. It is easy to see why the risks associated with the
vaccine drew little attention. But the risks were present. In partic-
ular, there was a very low but predictable fatality rate associated
with the vaccination.

As years passed without any additional cases, public health offi-
cials began to reassess the vaccination program. One new source
of concern was the mortality rate associated with vaccination.
Although the rate was quite low, it still exceeded the actual 
number of smallpox cases in the United States, which had been
zero since late 1949. The tremendous success of the vaccination
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program introduced a new question: Was the vaccination program
itself now causing more deaths than it was preventing?

A second source of concern to public health officials was the cost
of the general vaccination program itself. Inoculating the entire
population against smallpox was expensive. Critics began to ask
whether this money might not be better spent elsewhere, curing
or preventing other more immediate threats to the public health.
The theory of probability was used to compare the risks to the
public health of continuing the program of mass inoculation ver-
sus discontinuing it. Two questions were particularly prominent in
the analysis: First, what was the probability of another outbreak of
smallpox in the United States? Second, if an outbreak did occur,
what was the probability that the disease could be quickly con-
tained? Analysis of the available data showed that the risk of addi-
tional outbreaks was low and that the public health services could
probably quickly contain any such outbreaks. Though the mathe-
matics involved had advanced considerably, the questions were
still reminiscent of Daniel Bernoulli’s attempt to determine the
efficacy of variolation centuries earlier and of d’Alembert’s critique
of Bernoulli’s reasoning. In 1972 the United States discontinued
its program of routine inoculation against the smallpox virus.

In 1977 the last naturally occurring case of smallpox was record-
ed. The world was smallpox-free. As a naturally occurring disease,
smallpox had been destroyed. In 1980, amid much fanfare, the
World Health Organization declared that the smallpox danger was
over. There was not a single infected human being on the planet.
Because smallpox can be contracted only from another infected
individual, smallpox had been wiped out as a naturally occurring
threat. That would have marked the end of the smallpox danger to
humanity had not humans made a conscious decision to preserve
the smallpox virus. Today, smallpox continues to exist in a few lab-
oratories, where it is maintained for research purposes.

After the destruction of the World Trade Center in 2001, con-
cern about bioterrorism increased. Public health officials began to
contemplate a new possibility: After the elimination of smallpox as
a public health threat, people might now deliberately reintroduce
the disease into the general population as a weapon of war. Officials
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were once again faced with the same questions about the relative
risk of smallpox attack versus the risk of the vaccine itself. Public
health officials were faced with the decision of whether or not to
reintroduce a program of mass vaccination that might cause more
deaths than it prevented. (The vaccine will prevent no deaths if
there is never an attempt to reintroduce the disease into the gener-
al population.) Once again we face the same sorts of questions that
Bernoulli and d’Alembert contemplated centuries ago.
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I N T R O D U C T I O N

THE AGE OF INFORMATION

We are awash in a sea of data. Words, numbers, images, meas-
urements, and sounds have been translated into trillions of strings
of binary digits suitable for transmission, manipulation, and 
storage. At one time, generating large amounts of data involved a
lot of work. The U.S. Census is a good example. Every 10 years
census workers fan out across the nation collecting information
on how many people live in the United States and where they
make their home. For most of the history of the census, this
information was collated and printed in thick, multivolume sets of
books. These old books are not only a snapshot of the United
States at a particular time in history; they are also a window into
the way people used to work with large data sets. If we thumb
through an old volume of the U.S. Census, we find page after
page after page of tables. The size of the data set is numbing. It 
is difficult to see how a single individual could comprehend such
a huge collection of numbers and facts or analyze them to reveal
the patterns that they contain. Large data sets preceded the 
existence of the techniques necessary to understand them. To a
certain extent they probably still do.

Our ideas of what constitutes a “large” data set have changed as
well. Today, almost anyone can, over the course of a few months,
generate a data set with a size similar to that of the U.S. Census by
using a laptop computer. Simply attach a few sensors or measure-
ment devices to a computer and make a measurement every frac-
tion of a second and store the results. Such homegrown data sets
may not be as valuable as census data, but their existence shows
that our conception of what it means to collect a large data set has
changed radically.



Collecting useful data is not easy, but it is just the first step. Data
are the foundation of any science, but data alone are not enough.
For large data sets, simply having access to the measurements pro-
vides little insight into what the measurements mean.
Information, no matter how carefully collected, must mean some-
thing before it has value. Some of the questions we might ask of a
data set are obvious. What is the largest value in the set? The
smallest? What is the average value, and how spread out are the
values about the average? Other questions, such as the existence of
relationships among different classes of values, are not at all obvi-
ous. All such questions are important, however, because each ques-
tion gives the investigator more insight into what the data are
supposed to represent.

Statistics is a set of ideas and techniques that enable the user to
collect data efficiently and then to discover what the data mean.
Statistics is an applied discipline. In colleges and universities it is
sometimes offered through a separate department from the
department of mathematics. There is, nevertheless, a lot of math-
ematics in statistics. Research statisticians routinely work on diffi-
cult mathematical problems—problems whose solutions require
real mathematical insight—and they have discovered a great deal
of mathematics in the course of their research. The difference
between mathematics and statistics is that statistics is not a purely
deductive discipline. It involves art as well as science, individual
judgment as well as careful, logical deductions.

Practical considerations motivated the development of the sci-
ence of statistics. Statistics is used as an aid in decision making. It
is used to control manufacturing processes and to measure the
success of those processes. It is used to calculate premiums on
insurance policies. It is used to identify criminals. In the health sci-
ences, finding a new statistical relationship between two or more
variables is considered ample grounds to write and publish yet
another paper. Statistics is used to formulate economic policy and
to make decisions about trading stocks and bonds. It would be dif-
ficult to find a branch of science, a medium or big business, or a
governmental department that does not collect, analyze, and use
statistics. It is the essential science.
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8
the beginnings 
of statistics

In the winter of 1085 William the Conqueror, duke of Normandy
and king of England, was in Gloucester, which is located by the
Severn River in western England. He met with his advisers and
out of this meeting arose the idea of obtaining a “description of
England.” The level of detail and the efficiency with which the
data were obtained make the description one of the great accom-
plishments of the European Middle Ages. The description, which
is preserved in two volumes, was known locally as the Domesday
Book, the record against which one had no appeal. (Domesday was
the Middle English spelling of doomsday.)

The data were collected and ordered geographically. The infor-
mation consists of a long list of manors, their owners, the size of
the property, the size of the arable property, the number of teams
of oxen, other similar measurements, and a final estimate of the
value of the property.

Groups of commissioners fanned out to the various counties.
They set up a formal panel of inquiry in the principal town of each
county. It was serious business. Representatives from each locality
were called before the commissioners and asked a series of ques-
tions. All representatives had to swear to the truthfulness of their
answers. The information was collected, ordered, and sent to
Winchester, the capital of England at the time. Finally, the list was
compiled and summarized into the text called the Domesday Book.
The Domesday Book survives and is on public display at the Office
of Public Records in London.



The Domesday Book is, essentially, a record of William’s newly
acquired holdings—he had conquered England in 1066—and it
is generally thought that one reason for creating the record was
its value as a tool for determining tax rates. The book itself,
however, gives no indication of its intended use, and William
died in 1087 before he could use the book for anything.
Nevertheless, if a government official wanted to know how
many teams of oxen, a common measure of wealth, were at a
particular location in Nottinghamshire, he could find out by
consulting the text. Insofar as anyone wanted answers to these
extremely simple questions, the list was useful. Today it is
tempting to summarize the list with statistical language—to cal-
culate averages and correlations—to mine the data for the infor-
mation they provide about life almost 1,000 years ago on a cold,
backward fragment of land off the coast of the continent of
Europe, but this is not how William and his contemporaries
could have used the book. To be sure, this information would
have been valuable to William. It could have assisted him in cal-
culating tax rates and identifying which areas of the country
were efficiently managed and which needed improvement. Most
of the information that was so carefully collected by William
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was, however, unavailable to him. Without statistics there was
no way to discover most of the information that lay concealed
within the data—information that his commissioners had so
carefully collected.

The Domesday Book is unusual because it was so well done. In
its approach to information, however, it is typical: Much more
information is collected than is revealed by the prestatistical
analysis of the time.

The Beginning of Statistics
The history of statistics is unusual in that it begins with the work
of a single person, the British shopkeeper and natural philosopher
John Graunt (1620–74). Little is known of Graunt’s early life. It is
known that he was a successful businessman, a city councilman, an
officer of a water company, and a member of the militia. He also
had an inquiring mind. He reportedly rose early each day to spend
some time studying before opening his shop. What his initial
motivation was for these early morning study sessions is not
known, but they eventually led him to consider human mortality.
Many people think about life and death, of course, but perhaps for
the first time in history, Graunt sought systematic, quantitative
information on the subject. He turned an analytic eye on who
lived, who died, and why, and what is more, he was the first per-
son in history to find answers.

His sources were the Bills of Mortality. These were lists of chris-
tenings and deaths that a clerk in each parish would compile week-
ly. In addition to simply noting that someone died, each entry also
listed a cause of death. The practice of issuing Bills of Mortality
had begun several decades before Graunt began to consider them.
Apparently, the practice had been initiated in 1592 in response to
the high mortality rate caused by the plague. At first the bills were
issued sporadically, but in 1603 their issue became standard, and
thereafter each parish submitted a bill each week. Graunt analyzed
the data from 1604 to 1661. His sole publication, Natural and
Political Observations Mentioned in a following Index, and made upon
the Bills of Mortality, is an extraordinarily creative piece of research.
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In Observations he describes the criteria he used to analyze a prob-
lem, and he lists some of the facts that he discovered through a
careful study of the bills.

What possessed Graunt to labor over 57 years of Bills of
Mortality? What was the reason for what he called his “buzzling
and groping”? Graunt lists several reasons. His haughtiest, and in
some ways his most personally revealing, reason is that if one
cannot understand the reason for his questions then one is prob-
ably unfit to ask them. Another personally revealing answer is
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Some examples from the list of causes of mortality for the year 1632, 
compiled from the London Bills of Mortality by John Graunt. In a period
when record keeping was increasing and societies had little understanding
of the nature of disease, mathematicians began to turn to statistics for
insight into health risks.

CAUSES VICTIMS

Convulsion 241
Cut of the Stone 5
Dead in the Street,

and starved 6
Dropsie, and Swelling 267
Drowned 34
Executed, and prest

to death 18
Falling Sickness 7
Fever 1108
Fistula 13
Flocks, and Small Pox 531
French Pox 12
Gangrene 5
Gout 4
Grief 11
Jaundies 43
Jawfaln 8
Impostume 74
Kil’d by several accidents 46

CAUSES VICTIMS

Piles 1
Plague 8
Planet 13
Pleurisie, and Spleen 36
Purples, and spotted

Feaver 38
Quinsie 7
Rising of the Lights 98
Sciatica 1
Scurvey, and Itch 9
Suddenly 62
Surfet 86
Swine Pox 6
Teeth 470
Thrush, and Sore

mouth 40
Tympany 13
Tissick 34
Vomiting 1
Worms 27



that he enjoys deducing new facts from a study of what we would
call the “raw data” of the Bills of Mortality. He gives other, more
scientific reasons for his fascination with the bills. These show
that he fully understood the importance of what he had done.
Graunt had learned how to use data to estimate risk.

The evaluation of risk is not something that can be done by
simply glancing through the Bills of Mortality. This, he says, was
what most people did with them, looking for odd facts, unusual
deaths, and so forth. Instead, the evaluation of risk can be done
only by collating the data and performing the necessary compu-
tations. This could not have been easy. Over a half-century of
data collected from numerous parishes yielded a record of
229,250 deaths. In addition to the total number of deaths, he
made a list of all the ways people died. There were plague, small-
pox, “bit with a mad dog,” measles, murder, execution, “dead in
the street and starved,” suicide, stillbirth, drowning, “burnt and
scalded,” and a host of other causes. Each cause is carefully 
listed, and many are analyzed. He discusses, for example,
whether a cough is the correct “cause” of death of a 75-year-old
man or whether old age is not a better diagnosis for anyone 
in that age group. All of this goes to the accuracy of diagnoses
and the reliability of the data. It is in some ways a very modern
analysis. After he describes his thinking on these matters, he
begins his search for the truth.

Murder, then as now, was always a popular topic of conversa-
tion. Any murder diverts our attention and causes us to assess
our own safety. How great a danger was death by murder to the
people of Graunt’s place and time? To answer that question he
turned to the Bills of Mortality. He computed that only 86 of the
total of 229,250 died of murder. Murder, he shows, is not a sig-
nificant cause of mortality. In Graunt’s hands the Bills of
Mortality also reveal that the popular wisdom that plagues
accompany the beginning of the reign of a king is false. Each
short paragraph of his analysis uses data to dismiss certain com-
mon fallacies and to discover new truths. All of this information,
he tells us, will enable his contemporaries to “better understand
the hazard they are in.”
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Graunt also examines the birth rates and discovers a fact that
would fascinate many subsequent generations of scientists: More
male babies are born than female. He writes at length about this
discovery. Males, he tells us, are more likely to die in war, die on
the open seas, face the death penalty, and so on, but because males
have a higher birthrate the numbers of adult women and adult
men are roughly equal.

It should be emphasized that all of this information was already
in the Bills of Mortality. Graunt’s great insight was to analyze the
bills systematically, to extract information from data, and to use
mathematics to reveal relationships among numbers. This was
new.

Unlike so many new ideas, Graunt’s observations were immedi-
ately recognized as highly original and valuable. Graunt was a
shopkeeper, not a scholar, and his research was of a type that could
not be easily classified. The Royal Society, the most prestigious
scientific organization in his country, might not have been dis-
posed to admit him as a member, but King Charles II himself
interceded on Graunt’s behalf. Not only did Graunt become a
member, but also the society was instructed to admit “any more
such Tradesmen” and “without any more ado.” The Observations
was published in several editions and influenced research in
England and on the Continent. This was the beginning of a new
era, an era in which people thought statistically. Nowadays we
learn to think statistically as children, but it has not always been
so. John Graunt was the first.

Edmund Halley
The name of the British mathematician and scientist Edmund
Halley (1656–1742) is permanently linked with Halley’s comet.
Halley was not the first person to observe this comet, but he was
the first to predict its reappearance. He had studied records of a
number of comets and formed the opinion that one of the comets
in the record was periodic. In 1705 he published his calculations
that indicated that the comet would return in 1758. Although
Halley did not live long enough to see his prediction verified, the
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comet was again sighted in
1758 just as he had calculated.
His name has been associated
with the comet ever since. An
adventurous spirit, Halley did
much more than predict the
return of a comet.

Halley was born into a 
prosperous family at a time
when society’s interest in 
science and mathematics 
was very high. There was, 
for example, a demand from
many quarters for high-
quality astronomical observa-
tions and mathematical mod-
els that would enable ships at
sea to determine their position
better. British ships were now
sailing around the globe, and
the ability to establish one’s
position from astronomical observations had become a matter of
some urgency. All of this influenced, or perhaps coincided with,
young Edmund Halley’s interests. He was fascinated with mathe-
matics and astronomy from an early age, and his family was in a
position to outfit him with a number of high-quality astronomical
instruments. He became quite proficient in using them, and when
he arrived at Queen’s College, Oxford, to begin his studies, he had
enough equipment to establish his own observatory. He even
brought his own 24-foot (7.3-m) telescope to college.

While at Queen’s College, Halley visited the Royal Greenwich
Observatory, a place that occupied an important position in English
scientific life. He met the head of the observatory, John Flamsteed,
who was an important scientific figure of the time. Flamsteed was
involved in making precise measurements of the position of all stars
visible from Greenwich, England. Halley soon embarked on his own
version of the project: He left Queen’s College without graduating
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and took a number of high-quality astronomical instruments to the
volcanic island of Saint Helena, a British possession located about
1,000 miles off the coast of Africa in the South Atlantic Ocean. Once
there, he established his own temporary observatory on the island.

Halley chose Saint Helena because it is located well south of the
equator. The stars visible from Saint Helena are different from the
stars visible from Greenwich. His goal was to make a star chart for
the Southern Hemisphere to complement the one Flamsteed was
engaged in making for the Northern Hemisphere. Although his
work was hampered by cloudy nights, Halley succeeded in making
accurate measurements of more than 300 stars. Halley’s work was
exemplary, and he was later awarded a master’s degree from
Queen’s College at the behest of King Charles II.

Working with large data sets was something for which Halley
had a particular aptitude. He had a practical and theoretical inter-
est in the winds and the oceans. (In addition to his trip to Saint
Helena he later took a second, more dangerous trip to the
Southern Ocean and wrote a beautiful description of the huge ice-
bergs he encountered there.) Another of his big projects involved
collecting as many meteorological data as he could. He used the
data to create a map of the world’s oceans showing the directions
of the prevailing winds. This was the first map of its type to be
published, and the information it contained was of interest to
every ship’s captain of the time.

The data analysis of most interest to a history of statistics, howev-
er, was Halley’s paper on mortality rates in the city of Breslau. (The
city of Breslau is today called Wrocl/aw and is located in western
Poland.) Halley was aware of the work of Graunt, but his interests
were more specific than those of Graunt, whose paper was a very
broad inquiry. Halley wanted insight into life expectancy. The
phrase life expectancy usually conjures up images of cradle-to-grave
average life spans, along the lines of “How long can a baby born
today be expected to live?” But Halley’s questions were considerably
more detailed. He wanted to know, for example, the probability that
a 40-year-old man would live seven additional years. He examined
this and several related problems. For example: For a randomly 
chosen individual of age n years, where n represents any given age,
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he wanted to know the probability that this randomly chosen indi-
vidual would live one additional year. One more example: Given a
group of individuals, all of whom are the same age, in how many
years will only half of them remain alive? These types of questions
are much more detailed than those considered by Graunt. They are
the types of questions that must be answered by insurance compa-
nies in order to set life insurance premiums rationally. Today, 
the individuals who search for the answers to these and related
questions are called actuaries, and the branch of science in which
they work is called actuarial science. Halley’s paper, “An Estimate
of the Degrees of the Mortality of Mankind, Drawn from Curious
Tables of the Births and Funerals at the City of Breslaw; with 
an Attempt to Ascertain the Price of Annuities upon Lives,” is gen-
erally recognized as the first serious attempt at actuarial science.

For the application Halley had in mind, the Bills of Mortality
that had been collected by Graunt had a serious shortcoming, or
at least Halley suspected them of having a shortcoming. The
problem was that London’s population was too mobile. Halley had
no way of knowing who was moving in or out or how the contin-
ual migration was changing the population. London was growing,
but Graunt’s Bills of Mortality showed that deaths were more
common than births during this time. This could happen only if
there were an influx of people from the countryside. Without
more information about who was moving in and out it was diffi-
cult to make reliable deductions from these data. Halley decided
to search for a large city that kept good records and also had a sta-
ble population. This meant that he needed to use a population
who, for the most part, died near where they were born. He found
that the city of Breslau satisfied these conditions.

As a matter of policy the city of Breslau compiled monthly bills
of mortality that recorded several facts about each individual listed
in the bill. Of special interest to Halley were the individual’s age at
the time of death and the date of death. Halley had access to
records for five consecutive years (1687–91). These records 
were carefully compiled, but, as in the London Bills of Mortality
and other similar records, most of the information that these bills
contained was hidden from view because it had not been subjected
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to a statistical analysis. Halley uncovered quite a bit of information
over the course of his analysis. He did this by constructing a table
that lists the number of people of each age who were alive in the
city at a given time. As the numbers in the age column increase, the
numbers of people who are that age decrease. It is from this table
that he drew his deductions. His analysis is an interesting insight
into life in Breslau and probably much of Europe at this time. The
following are some of the facts that Halley uncovered:

1. Breslau had a birthrate of 1,238 births per year and a
death rate of 1,174 per year. Halley discovered that of
those born, 348 infants died in their first year. (In more
modern terminology, this represents an approximately
28 percent first-year mortality rate.)
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BRESLAU TABLE FOR NUMBER AND INFINITY

AGE LIVING AGE LIVING AGE LIVING AGE LIVING AGE LIVING

1 1,000 18 610 35 490 52 324 69 152
2 855 19 604 36 481 53 313 70 142
3 799 20 598 37 472 54 302 71 131
4 760 21 592 38 463 55 292 72 120
5 732 22 586 39 454 56 282 73 109
6 710 23 580 40 445 57 272 74 98
7 692 24 574 41 436 58 262 75 88
8 680 25 567 42 427 59 262 76 78
9 670 26 560 43 417 60 242 77 68

10 661 27 553 44 407 61 232 78 58
11 653 28 546 45 397 62 222 79 49
12 646 29 539 46 387 63 212 80 41
13 640 30 531 47 377 64 202 81 34
14 632 31 523 48 367 65 192 82 28
15 628 32 515 49 357 66 182 83 23
16 622 33 507 50 346 67 172 84 19
17 616 34 499 51 335 68 162 * *

(de Moivre’s The Doctrine of Chaos)



2. Of the 1,238 born each year, on average 692 lived to see
their seventh birthday. (This is a mortality rate of
approximately 44 percent.)

3. The mortality rate can be analyzed by age. Halley
divides the ages into different groupings and calculates
the mortality rate for each. For example, for people
between the ages of nine and 25 the death rate is rough-
ly 1 percent per year, a rate, he remarks, that roughly
coincides with that in London. He continues his calcu-
lations until “there be none left to die.”*

4. In Breslau, population 34,000, it was possible to raise
an army of 9/34 of the total population, or 9,000 men,
where the population of men suitable for fighting con-
sists of males between the ages of 18 and 56.

5. Halley also demonstrates how to compute the odds
that an individual of any age will live an additional
year, or, for that matter, to any proposed age. He uses
the example of a man of age 40. His method is
straightforward: He notes how many individual men
are alive at age 40 (445) and how many are alive at age
47 (377). The conclusion is that during this time
(assuming no migration into or out of the city) 68 died.
Dividing 377 by 68 shows that at age 40, an individual
has a roughly 11 to 2 chance of surviving until age 47.
He also considers the following related, but more gen-
eral problem: Given an age—for purposes of illustra-
tion he chooses age 30—compute to what year the
individual of age 30 has a 50/50 chance of surviving. In
Halley’s table, individuals of age 30 have a 50/50
chance of surviving to a time older than age 57 but less
than age 58.

Halley then goes on to make other deductions from the data,
including deductions relevant to calculating insurance rates. At
this point the mathematics becomes somewhat more complicated,
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and he provides geometrical proofs that his reasoning is sound. He
closes in a more philosophical vein. He points out that although
the people of his era (as of ours) often talk about the shortness of
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INSURANCE

Historically, the insurance industry has been one of the most important
users of statistics as well as a source of innovation in statistical tech-
niques. What, then, is insurance?

Each of us makes plans for the future. Experience shows that those
plans do not always work out. This is not always bad. Sometimes our
plans are changed for the better. Sometimes, of course, they change for
the worse. When they change for the worse, the losses we suffer can
take a variety of forms. A change of plan can mean a loss of time, confi-
dence, property, opportunity, or even life itself. Insurance is a method for
compensating the insured for financial losses. The key behind the idea
of insurance is that in order for an item to be insurable, it must have a
well-defined cash value. Although there have been companies that have
attempted to insure against, for example, “pain and suffering,” historically

Flood damage along the Kansas River, 1903. Insurers expect the 
occasional disaster. This is why they are careful to distribute their 
risk.  (Photograph by Sean Linehan, courtesy of National Oceanic
and Atmospheric Administration/Department of Commerce)



life and how wronged they feel when they or someone they know
fails to achieve old age, they have little sense of how long one can
really expect to live. The data indicate that the average life span,

The Beginnings of Statistics  127

these companies have found it difficult to arrive at a reasonable cash
value for a given amount of pain and suffering.

In order to insure an item, the insurer must have enough information on
the item to estimate the probability that the item will be lost. (Here item
could mean a possession, such as a house, or even one’s life.) Insurers
expect to pay for the occasional lost item. What they depend upon is that
the losses they suffer will “balance out” in the sense that the insurers will
make more money in premiums than they will lose in payments. This is
where mortality tables like those studied by Graunt and Halley, as well as
other conceptually similar sources of information, become important. From
mortality tables, for example, life insurance companies attempt to calculate
the probability that a randomly chosen individual will live to a certain age.
The premiums are then calculated, in part, on the basis of the information
in the tables. It is essentially a bet: If the insured lives to the specified age,
then the life insurance company has earned a profit and the insured loses
the money spent on premiums. If, however, the insured dies early, then the
life insurance company suffers a loss and the insured—or at least the
insured’s beneficiary—collects the money. A great deal of effort has gone
into computing premiums that are profitable to the insurer, and it is rare
that a life insurance company fails to make its yearly profit.

In themselves, the tables do not contain enough information to enable
the insurer to set rates. Other criteria have to be satisfied. Principal
among these is the condition of randomness. No insurer will pay on a
nonrandom loss. One cannot insure one’s house against fire and then
proceed to burn it down. Another general criterion is that the pool of
individuals must be sufficiently dispersed so that they cannot all suffer a
simultaneous loss. Many houses in New Orleans, Louisiana, have flood
insurance, for example, but no commercial insurer specializes in provid-
ing flood insurance to the residents of New Orleans, since a single flood
would bankrupt the insurer.

The science of insurance is called actuarial science, and it is a highly
developed specialty. Actuaries are thoroughly versed in the mathematics
of probability and statistics. In addition, they are familiar with concepts
involved in pensions, annuities, and the general business of insurance. It
is an oft-repeated expression that nothing is less certain than life and that
nothing is more certain than the profits of a life insurance company.



the time at which half of those born have died, in Breslau at this
time was just 17 years of age.

Halley’s analysis of the Breslau data was his main contribution to
the development of statistics, but even taken together with his
other accomplishments in science, it is an inadequate measure of
what he accomplished. Halley contributed to science and mathe-
matics in other, less obvious ways. As many mathematicians pro-
filed in this series had, Halley had an unusual facility with
languages. During his lifetime some of the works of Apollonius
were known only in Arabic translation. (Islamic mathematicians,
in addition to producing a great body of work in the field of alge-
bra, had produced a number of Arabic translations of important
Greek and Hindu texts.) Halley learned Arabic in order to trans-
late some of the work of Apollonius, and this he did.

Finally, Halley’s name is connected with that of the British
physicist and mathematician Isaac Newton (1643–1727). Halley
had approached Newton to discuss problems relating to calculat-
ing the orbits of the planets, a problem that had, to his knowledge,
not yet been solved. Newton, however, had already calculated that
planets must, under the influence of gravity, follow elliptical
orbits, but he had kept the discovery to himself for many years.
When Halley learned of Newton’s calculations, he immediately
recognized the importance of the discovery and convinced
Newton to publish the work. The result was Philosophiae Naturalis
Principia Mathematica (Mathematical principles of natural philoso-
phy), one of the most influential works in the history of science. It
was Halley, not Newton, who oversaw publication. Halley wrote
the introduction, proofread the manuscript, and—though he was
practically broke at the time—paid for publication.

The mathematics that John Graunt and Edmund Halley used in
their analysis of bills of mortality is, for the most part, exceeding-
ly simple. Simple math is, in fact, characteristic of a lot of basic sta-
tistics. There are no new mathematical techniques in either
Graunt’s or Halley’s papers. Their analyses consist, after all, of
basic arithmetic, easily solved not only in our time but in Graunt’s
and Halley’s as well. Furthermore, Halley was an excellent math-
ematician, so there can be little doubt that he, at least, found all of
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these calculations trivial. (Less is known about Graunt’s abilities,
simply because less is known about Graunt in general.)

What is new in both these papers is that the authors are extract-
ing new statistical relationships from their data sets. They are dis-
covering new facts about life and death in the cities of London and
Breslau, and these are some of the first instances of anyone’s thinking of
performing this type of statistical analysis. Graunt’s analysis is, in fact,
the first instance of statistical analysis.

Statistics enable the user to extract meaning from data.
Numbers, especially large collections of numbers, are usually not
informative in themselves. The statistician’s goal is to reveal the
information that is contained in the numbers. Without statistical
analysis collecting data is hardly worth the effort, but carefully col-
lected data can, in the hands of a skillful statistician, reveal many
new facts and insights. The works of Graunt and Halley are two of
the most significant analyses in the early history of statistics.

The Beginnings of Statistics  129



9
data analysis and the
problem of precision

John Graunt and Edmund Halley drew a number of insightful
conclusions from their analyses of bills of mortality, but one prob-
lem they did not consider in a systematic way was the problem of
precision. Graunt and Halley mentioned it, but the problems that
they studied did not lend themselves to a rigorous mathematical
discussion of precision. The problem of drawing precise conclu-
sions from numerical data was first treated in the early 19th 
century by the French mathematician Adrien-Marie Legendre (or
Le Gendre; 1752–1833).

Little is known of Legendre’s early life. He would have had it no
other way. He wanted to let his mathematical work speak for itself,
and he had no interest at all in sharing personal details. To this day
it is not clear where he was born. Some accounts indicate he was
born in Paris; other cite Toulouse as his birthplace. It is certain
that he was born into a wealthy family and that he grew up in
Paris. He received an excellent education in mathematics and
physics at Collége Mazarin in Paris.

He worked as an academic at the École Militaire and the École
Normale, two distinguished institutions. As were those of most
French mathematicians and, indeed, many French citizens of the
time, Legendre’s life was adversely impacted by the political chaos of
the French Revolution (1789–99) and its aftermath. In Legendre’s
case, he lost his fortune. He eventually settled his financial affairs and
lived frugally on his salary. As an old man he lost his position in a
political dispute and lived the brief remainder of his life in poverty.
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Legendre made many sig-
nificant contributions to
higher mathematics. He
enjoyed problems in mathe-
matical physics, the mathe-
matical analysis of equations
that arise in physics. In 
the course of studying the 
equations that describe how
bodies interact gravitational-
ly, he invented what are now
called Legendre functions.
In addition to his more
advanced work, he authored
a famous textbook on ele-
mentary geometry, Éléments
de géométrie. This book was a
reexamination of the ancient Greek text Elements, by Euclid of
Alexandria, the most famous and long-lived textbook in history.
Legendre simplified the presentation, added new results, and
created what was, for Legendre’s time, a much better textbook.
His book became the standard text on Euclidean geometry
throughout much of Europe and the United States for about
100 years.

In middle age Legendre began to consider the problem of pre-
dicting the orbit of a comet from measurements, and this is where
he made his contribution to statistics. His paper on this topic is
called “Nouvelles méthodes pour la détermination des orbites des
comètes” (New methods for the determination of comet orbits).
The problem that Legendre wanted to solve is related to making
the best use of measurements. He was faced with a collection of
measurements, and he wanted to use them to determine the orbit
of a comet. It might seem to be a straightforward problem: Make
the required number of measurements and then perform the nec-
essary computations. The problem is that every measurement
contains some error, and as measurements accumulate so do
errors. Minimizing the number of measurements is, however, no
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Method of least squares. This tech-
nique enables one to obtain the best
linear approximation to the data at
hand.



answer to the problem of uncertainty: With only a small set of
observations, it is more difficult to estimate the size of the errors
present in the data.

The solution to the problem of too few measurements is, of
course, to make many more measurements. The more measure-
ments one makes, the more information one has about the size of
the error. It may seem, therefore, that having more information is
always good, but before Legendre’s work large numbers of meas-
urements presented their own problem. There was no rational
way to make use of large numbers of measurements. What
Legendre did was to find a way of using the entire collection of
measurements to compute a set of values that were optimal in the
sense that (loosely speaking) the computed values minimized the
amount of variation present in the data set. Usually these comput-
ed values are different from all of the measured ones. That does
not matter. What is important is that Legendre’s method yields a
set of values that makes the best use of the data at hand. His
method for doing this is now called the method of least squares.

The value of Legendre’s discovery was immediately recognized.
The math involved in implementing the method of least squares is
not especially difficult, and this, too, is important. Not every sci-
entist has a strong mathematical background, but all scientists who
work with measurements—that is, the great majority of all scien-
tists—can benefit from procedures that enable them to make the
best use of the data. As a consequence Legendre’s book on
cometary orbits was reprinted a number of times, and his ideas on
the method of least squares quickly spread throughout the scien-
tific community.

In 1809 the German mathematician and physicist Carl
Friedrich Gauss (1777–1855) published a paper written in Latin,
“Theoria Motus Corporum in Sectionibus Conicus Solem
Ambientium” (Motion of the heavenly bodies moving about 
the Sun in conic sections). This paper, as did that of Legendre,
analyzed the problem of how to make best use of a series of
measurements to predict the orbital path of a celestial object. (In
this case, it was an asteroid rather than a comet.) As Legendre’s
paper did, this paper described the method of least squares, and,

132 PROBABILITY AND STATISTICS



as Legendre had, this author also claimed to have invented the
method.

Carl Friedrich Gauss, one of the great mathematicians of the
19th century, is the other originator of the method of least
squares. Gauss was born in Brunswick and demonstrated his talent
for mathematics at an early age. Fortunately, his abilities were
quickly recognized, and he was awarded a stipend from the duke
of Brunswick. In secondary school, Gauss studied mathematics
and ancient languages.

The stipend continued as Gauss studied mathematics at the
University of Göttingen (1795–99) and even after he received his
doctorate from the university at Helmstedt in 1799. After gradua-
tion he could have found work on the strength of his thesis—for
his degree he proved a remarkable result now called the funda-
mental theorem of algebra—but he did not look for employment
because he was still receiving his stipend. Eventually, the duke of
Brunswick died, and the support that Gauss had been receiving
was discontinued. It was then that Gauss found a position at the
University of Göttingen, where he taught an occasional mathe-
matics course and was head of the university’s astronomical obser-
vatory. He remained in this position for the rest of his life.

Gauss believed it was very important to publish only papers that
were very polished. It was not uncommon for him to wait years to
publish a result. Later, when another mathematician would publish
something new and creative, Gauss would claim that he had already
discovered the result. This type of behavior by most people is
quickly dismissed, but it was often shown that Gauss had, in fact,
originated the idea as he claimed. Gauss, however, was hard-
pressed to prove that he had had the idea before Legendre, who
vigorously objected to Gauss’s claiming priority over this important
idea. There are two points of which we can be sure: First, Legendre
published first and so influenced the course of statistics. Second,
Gauss’s tremendous personal prestige has ensured that some 
historical accounts attribute the method of least squares to him.

Legendre and Gauss were two of the foremost mathematicians
and scientists of their time, and both were at home with the most
advanced mathematics of their age. Mathematically, however, the
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method of least squares is not among these advanced techniques.
It is typical of much of the statistics of the time: It is conceptually
important, but mathematically simple. It is extremely useful and,
as for so many statistical innovations, its usefulness was recognized
immediately. It soon found its way into every branch of science
that employed statistics. The method of least squares is still an
important part of any introductory statistics course today.
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THE MISUSE OF STATISTICS

When a set of measurements is analyzed statistically, we can learn a
great deal about the set of measurements. This is true for every set of
measurements, because every set of measurements has a statistical
structure. It has a mean or average value and a variance, which is a
measure of how widely scattered the measurements are about the
mean. If the data points can be represented as points on a plane we can
construct a line that is the “best fit” for those points, in the sense that
the points are closer to the best-fit line than they are to any other line on
the plane. If the data points can be represented as points in a three-
dimensional space we can—subject to certain restrictions—find a surface
that is the best fit for the given points. All these concepts and tech-
niques—among many others—help us understand the structure of the
data set.

Usually, however, it is not the data set as such in which scientists have
an interest. Measurements are collected and analyzed because they are
supposed to be representative of an even larger set of measurements
that for reasons of time or money were not collected. This larger, unmea-
sured population is what the researcher really wants to understand. The
smaller data set is supposed to give the researcher insight into the larg-
er population. It is in this conceptual jump from the smaller collection of
measurements to the larger, purely theoretical population that
researchers often err.

Mistakes arise in a variety of ways. For instance, during the 19th
century a number of studies of the head size of criminals were made.
The scientists of the time were searching for a difference in head size
or shape that would indicate a predisposition to a life of crime. The
head sizes of a group of “criminals”—which usually meant a collection
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of prisoners—were compared with the head sizes of a group of indi-
viduals who were not incarcerated. Of course, researchers found dif-
ferences. Given any two sets of independent measurements, compar-
isons will always yield differences between them. The question is not
whether there will be differences, but whether the differences are sig-
nificant. Definitive conclusions notwithstanding, the study of the rela-
tionship between head size and criminal activity has since been large-
ly abandoned.

Another area of statistical abuse has been in the area of intelligence
testing. During the last 100 years, intelligence testing has become a
small industry. Researchers have administered intelligence tests to
groups of students and, on the basis of the tests, decided that the stu-
dents who took the tests are less intelligent than, more intelligent than,
or as intelligent as the general population. These conclusions were
sometimes motivated by the statistical assumption that the students
were a good cross section of the general population, an assumption that
is a common source of error. Sometimes, for example, the students were
nonnative speakers of English, the language in which the test was
administered. No one can be expected to score well on a test if he or
she cannot read the language in which the test is written. Clearly, the
test was designed for a population to which the students did not belong.
The results of the test, though they may have had a significant impact on
the student’s educational opportunities, could not reflect the ability of
the students who were not fluent in English. There have been numerous
instances of this type of error.

Any statistical conclusions that are drawn from an invalid statistical
hypothesis such as this are suspect. Unfortunately, designing a stan-
dardized test that does not do a disservice to some part of the popula-
tion has proved to be extremely difficult.



10
the birth of 

modern statistics

The analysis of measurements in the physical sciences contributed
to the early development of statistics. Physical scientists such as
Laplace and Legendre required statistics as a tool to analyze the
measurements they made. But physics and chemistry in the 19th
century required only a modest amount of statistics to analyze the
data that scientists collected. In part, this was due to the nature of
the experiments and observations: As a rule, experiments in the
physical sciences are easier to control. As a consequence they tend
to yield data sets that are simpler to analyze.

Statistics took a huge leap forward as researchers turned their
attention to the life sciences. In the life sciences and social sci-
ences, randomness is an integral part of the subject. Carefully con-
trolled experiments are often not possible; complex data sets are
unavoidable. This difference between the physical sciences—
physics and chemistry—and the life sciences is worth examining
further to understand why statistics, an applied subject, developed
largely in response to problems in the social sciences, the manu-
facturing sector, and especially the life sciences.

Physical science in the 19th century was founded on conserva-
tion laws: conservation of mass, conservation of momentum, and
conservation of energy. These laws are expressed as equations—
statements of equality between two quantities. No scientist would
say that energy is “probably” conserved or that mass is “usually”
conserved during a chemical reaction. These quantities are always
conserved. By contrast, the great discovery in the life sciences of
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the 19th century, the theory of evolution, is a statistical theory:
Certain gene frequencies are more likely to increase from one gen-
eration to the next than are other gene frequencies. Chance events
play an integral part in which genes are passed from one genera-
tion to the next. But even in conditions in which chance events are
less important, ecological systems are so complicated that identi-
fying cause-and-effect relationships is often a hopeless task.
Measurements made of such complex systems cannot be under-
stood without a great deal of statistical insight.

The scientists who contributed most to the development of
the science of statistics were—characteristically—multifaceted,
multitalented, and fractious. They were very much involved in
statistical applications. For them, statistics was not an isolated
discipline; it was a tool to be used in the study of other subjects.
These scientists, who were often experts in fields other than sta-
tistics, developed statistics in parallel with their studies in the
life sciences, social sciences, manufacturing processes, and other
disciplines.

Karl Pearson
One of the most historically important and creative statisticians
was the British mathematician, lawyer, writer, art historian, and
social activist Karl Pearson (1857–1936).

Karl Pearson was educated at King’s College, Cambridge, where
he studied mathematics. He also spent some time in Germany as
a student at the universities at Heidelberg and Berlin. It was
apparently on this trip abroad that his horizons expanded. While
in Germany he studied math and physics, but he also studied phi-
losophy and German literature. He became interested in the writ-
ings of Karl Marx, one of the founders of communist philosophy.
On his return to Great Britain he studied law for a few years, but
although he was qualified, he never showed much interest in a
career in law. He did, however, begin to publish books. His first
books, The New Werther and The Trinity: A Nineteenth Century
Passion Play, were criticisms of orthodox Christianity. Because he
is remembered as a statistician, one would think that he soon

The Birth of Modern Statistics  137



began to publish papers on statistics, but that occurred still later. In
fact, one of his first research papers was on a topic in art history.

Pearson gave a lot of thought to issues of social justice. In an age
when women’s rights were very much restricted, Pearson argued
for greater rights for women. He also advocated more openness in
discussions of sex and sexuality—at the time, a very radical idea to
advocate. Nor did his fascination with Marxism diminish. He
wrote about socialism and prominent socialists wrote about him.
Vladimir Ilyich Lenin, the founder of the Soviet Union and one of
the most influential socialists of all time, followed Pearson’s writ-
ings and wrote complimentary remarks about Pearson’s ideas.

Pearson was hired to teach applied mathematics at University
College, London, but his mathematical output at this time was not
great. He did, however, continue to pursue his other interests. The
turning point in his life as a mathematician occurred when he was
hired as professor of geometry at Gresham College. In this capac-
ity he became interested in graphical representations of statistical
data. One problem of particular interest to him was the problem
of curve fitting. To understand the idea, imagine a set of data relat-
ing two quantities. The quantities may, for example, be the height
and weight of a collection of people, or the temperature and pres-
sure of air inside a closed container as the volume of the contain-
er is varied. Each pair of measurements can be represented as an
ordered pair of numbers, and each ordered pair of numbers can be
represented as a point on a plane. If we now graph the set of all
such points, they will form a pattern on the plane. This is the type
of geometric pattern Pearson sought to analyze.

No set of measurements is complete. Even when the researcher
collects many measurements, the assumption is that there are
many more such measurements that could have been collected but
were not. Consequently, the pattern of data that appears on the
plane, however large and detailed it may at first appear, is assumed
to be a modest representation of a much larger, more detailed pat-
tern that could have been collected but, for whatever reason, was
not. It is this larger, hypothetical set of points that the researcher
wants to understand, because it is from this larger, “parent” set
that all measurements are presumed to be drawn.
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One way to understand a set of two-dimensional measure-
ments is to draw a curve to represent the set. The curve can
reveal a more precise mathematical relationship between the
two measured quantities. After the curve that best represents
the “few” points that have been plotted has been found, the
researcher uses the curve to discover relationships between 
the two quantities represented by the data points. Finding the
curve that best represents the data points is the problem of
curve fitting.

For theoretical or practical reasons the researcher is always
restricted to a particular family of curves. These curves cannot
possibly pass through every data point that has been plotted on the
plane. In fact, the curve that the researcher finally chooses may
very well miss every point that has been plotted. Whether or not
the curve hits any points is not in itself important. The goal is to
find a curve that, when properly measured, is “close” to as many
points as possible. (See the accompanying diagram for an illustra-
tion of this idea.) This means that the researcher must have a 
rigorous definition of what it means to say that the set of all points
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Curve fitting. The goal of the researcher is to choose, from a predetermined
family of curves, the curve that best represents the data at hand.
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off the curve is close to the curve. Furthermore, the researcher
must show that the curve chosen is the best of all possible curves
in the family of curves under consideration. These were new prob-
lems during Pearson’s time, and in his position as professor of
geometry, Pearson was kept busy seeking their solution. His ideas
on this topic constitute one of his early contributions to statistics.

While at Gresham College, Pearson had contact with the
British academic Walter Frank Raphael Weldon (1860–1906),
and they became friends. Weldon also had very wide ranging
interests, one of which was Charles Darwin’s theory of evolution.
Darwin proposed that species could change over time. According
to Darwin these changes were hereditary. In particular, that
means that the changes did not occur to individuals; rather, they
occurred between generations, as the hereditary material was
transmitted from one generation to the next. Darwin called this
process of change natural selection, the tendency of some individ-
uals to be more successful than others in passing on their heredi-
tary traits to the next generation.

Weldon recognized that natural selection depended on the exis-
tence of many small differences between individuals of the same
species. Previously, these small differences had been largely
ignored as naturalists sought to develop an orderly system to cat-
egorize plants and animals by species. For purposes of categoriza-
tion small individual differences must be ignored; to take them
into account would make any classification scheme too complicat-
ed to use. For purposes of evolution, however, small individual dif-
ferences, and their effect on the bearer’s ability to transmit these
differences to the next generation, were the key to understanding
the process.

Developing a coherent way of describing a large set of small dif-
ferences was precisely what Weldon needed, but Weldon was no
mathematician. This was Pearson’s contribution: He worked to
make sense out of the great wealth of variation that is present
among the individuals of most species. The ideas with which
Weldon was struggling were exactly the ones that allowed Pearson
to test his ideas—the ideas that he had been developing as a pro-
fessor of geometry. Pearson and Weldon began to collaborate.
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In his attempt to make sense of large and complicated data sets
Pearson invented several concepts of modern statistics. In fact,
Pearson’s ideas depended on the data sets being large. Large data
sets may seem more difficult to analyze than small ones, but in sta-
tistics the opposite is usually true. Many statistical techniques
depend on the fact that the data set is large. Some of these tech-
niques were pioneered by Pearson.

Notice that Pearson’s ideas about curve fitting were purely
mathematical. Some of his contemporaries even criticized Pearson
for being too mathematical. For Pearson, each curve represented
a mathematical relationship between two variables. It reflected the
distribution of points in a plane. The curve did not necessarily
depend on any deeper insight into the problem from which the
data were obtained. Consequently, Pearson sought and found a
test to measure how probable it was that the curve was a reason-
able statement about the relationship between the two variables.
The idea is to assume that the curve is actually a good representa-
tion for a carefully defined, larger set of points, and then to imag-
ine randomly drawing a representative sample from this larger set.
Finally, one compares the fit of the random sample to the fit of the
experimentally derived measurements to obtain a probabilistic
measure of the accuracy of the fit of the calculated curve. This was
Pearson’s version of what is now called the χ2 test (pronounced kı̄-
squared); χ is the Greek letter chi. As for so many other discover-
ies in statistics, the value of the χ2 test was quickly recognized.
Although it is no longer used in quite the way that Pearson pre-
ferred, the χ2 test is still one of the most widely used statistical
techniques for testing the reasonableness of a hypothesis.

In addition to Weldon, Pearson collaborated extensively with
another scientist, the British eugenicist and anthropologist Francis
Galton (1822–1911). As in his work with Weldon, Pearson studied
inherited characteristics with Galton. At the time, only one person
had any real insight into the nature of heredity, the Austrian sci-
entist and monk Gregor Mendel (1822–84). Mendel had worked
hard to discover the mechanism of heredity, and he had published
his ideas, but his ideas attracted little attention. In fact, they had to
be rediscovered in the early years of the 20th century.
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Pearson, as all of his peers did, worked on problems in heredity
without any real understanding of the subject. This is both the
strength and weakness of statistical methods. In the right hands
statistical techniques enable one to discover interesting and some-
times important correlations between different variables. But they
are no substitute for theoretical insight. Pearson is best remem-
bered for his insight into statistical methods rather than for what
his methods uncovered.

R. A. Fisher
If anyone contributed more to the development of modern statis-
tical thought than Pearson, it was the British statistician and
geneticist Ronald Aylmer Fisher (1890–1962). As did Pearson,
Fisher had very broad interests. He graduated from Cambridge
University in 1912 with a degree in astronomy. This is probably
where he first became interested in statistics. Astronomers make
many measurements and then use statistical ideas and techniques
to interpret these measurements. One of the books that Fisher
read at Cambridge was Theory of Errors by George Biddel Airy, a
prominent British astronomer. He did not work as an astronomer,
however. After graduation Fisher worked briefly as a mathematics
teacher, but he decided to leave teaching and work as a scientist.
He had an opportunity to work for Pearson, who was already
prominent in the field, but he turned it down; Fisher and Pearson
did not get along. Instead, Fisher was hired as a biologist at the
Rothamsted Agricultural Experiment Station.

Rothamsted was founded in 1843 by a fertilizer manufacturer
named John Bennet Lawes. In conjunction with the chemist,
Joseph Henry Gilbert, Lawes began to make a series of long-term
experiments on the effects of fertilizers on crop yield. (Some of
these experiments have been running continuously for well over a
century.) As the years went by, bacteriologists, chemists, botanists,
and others, were added to the staff. All of these scientists running
all of these experiments generated a huge collection of data. They
were, for the most part, data without a strong theoretical context
in which to be placed. In 1919, when Fisher began to work at
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Rothamsted, it was the ideal environment for someone with an
interest in statistics. (Rothamsted is not as well known today as it
was when Fisher began work there. This is, in part, because
Rothamsted has merged with other research centers to form the
Institute for Arable Crops Research [IACR]. It is, however, still an
important research center.)

During his time at Rothamsted, Fisher was highly successful,
both as a mathematician and as a scientist. Faced with a surfeit of
data, a great variety of questions, and only a weak theoretical con-
text to tie the two together, Fisher began his life’s work. He
pushed back the frontiers of statistical thinking, and he used his
insights to solve certain mathematical problems in genetics. (We
will have more to say about this later.) His book Statistical Methods
for Research Workers, published in 1925, may well be the most suc-
cessful book on statistics ever written. It was in print for 50 years.
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A researcher at the United States Department of Agriculture. Fisher’s
work on statistics continues to have an important influence on researchers
today.  (Photo by Keith Weller, ARS/USDA)



Fisher is often described as one of the founders of modern sta-
tistics. As a statistician he made contributions that were very
wide ranging. He was the first to investigate the problem of mak-
ing sound deductions from small collections of measurements.
This was a new topic in statistics. Recall that Pearson had used
large data sets. In fact, every statistician would prefer to use large
data sets—and the larger the better. The reason is that more
information, properly understood, cannot lead to less certainty,
so one cannot do worse with more. The hope, of course, is that
more information will lead to less uncertainty. Despite the desir-
ability of large data sets, the researcher cannot always specify the
sample size with which he or she will work. Large data sets are
not always available, so having techniques for working with small
data sets is valuable.

Drawing sound conclusions from small data sets often involves
some fairly subtle reasoning. Consider the problem of finding
the mean, or average value, of a character from a small number
of measurements. If we calculate the average or mean value of a
small set of measurements derived from a few experiments, we
can expect the mean to be unstable: That is, if we repeat the
experiments, make the same measurements, and compute a new
mean, we can expect to see large fluctuations in the mean from
one set of experiments to the next. For example, if we roll a die
three times and calculate the average number points that appear
and we repeat the entire procedure several times, we will proba-
bly notice significant variation of the mean from one set of trials
to the next. The die has not changed, of course; it is just that the
sample size is too small to reflect reliably the average we would
see if we rolled the die many times. Nevertheless, small sets of
measurements are sometimes all that is available. Worse, it is not
always possible to expand the set. Under these conditions the
researcher must draw the best conclusions possible from the data
at hand.

To illustrate how a small data set can contain information about
the mean of the much larger (theoretical) set from which it is
drawn, let the letter m represent the mean of some larger,
unknown set. Suppose that we have only two elements, chosen
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randomly, from the parent set. We will call those two numbers x1

and x2. To be definite, we will suppose that x1 lies to the right of m.
There is a 50/50 chance that x2 lies to the left of m since, roughly
speaking, the average of a set of measurements lies at the center of
the set. (Of course, we can say the same thing if x1 lies to the left
of m.) Consequently, there is a 50/50 chance that the mean, or
average value, of the parent set lies between any two numbers cho-
sen at random from the set. This is a simple example of the type
of deduction that one can make from small data sets, and it is an
example that Fisher himself described.

Fisher was also interested in developing more sensitive tests of
significance. To appreciate the problem, suppose that we are given
two separate sets of measurements. We may imagine both sets of
measurements as representing numbers randomly drawn from the
same parent set; that, in any case, would be our hypothesis. (If our
hypothesis is incorrect then the two samples were drawn from two
separate, nonidentical parent sets.) The question, then, is whether
or not our hypothesis is reasonable. The difficulty here is that
even if the hypothesis is correct, the two samples will almost cer-
tainly not be identical. Because they were randomly drawn, there
will almost certainly be a difference in their average values as well
as in their variation about the average. To determine whether the
variation that we see between the two sets is significant—in which
case our hypothesis is false—or whether the variation is just the
result of the randomness of the draw—in which case our hypoth-
esis is true—we need a rational criterion. Fisher was very interest-
ed in this problem, especially for the case of small sample sizes,
and he made contributions to solving it for various situations.

Another topic in which Fisher had an interest was the problem
of experimental design. This is not a topic to which many nonsci-
entists give much thought. Many of us imagine that conceiving the
idea for the experiment is the major hurdle to overcome, and that
once the experiment is imagined, all that is left is to perform it. In
fact, the idea for the experiment is only the first step. An experi-
ment is like a question: The way that one phrases the question has
a lot to do with the answers one gets. Furthermore, experiments
can be both time-consuming and expensive, so it is important to
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make the best, most efficient experiments possible since time and
money limit the number of experiments that can be performed.

Fisher described some of his ideas about experimental design in
a famous, nontechnical article, “Mathematics of a Lady Tasting
Tea.” This is a very readable introduction to the problems involved
in designing productive experiments. In this article Fisher suppos-
es that a woman claims that she can—on the basis of taste alone—
determine whether the tea was added to the cup first and then the
milk, or whether the milk was added first. The idea is to determine
experimentally whether she is correct or incorrect in her assertion.
Furthermore, Fisher supposes that he must make his determination
after exactly eight “taste tests.” (This is a small sample size.)

Initially, Fisher supposes that he will offer the lady four cups in
which the milk has been added first—we will call this MT (milk
then tea)—and four cups in which the tea was poured first—we
will call this TM (tea then milk). Furthermore, he assumes the
lady is also aware of this restriction, so she too knows her answers
must contain four “milk then tea” (MT) and four “tea then milk”
(TM). There are 70 different ways of ordering four MT symbols
and four TM symbols. Because there are 70 different possible
answers, there is a 1/70 chance that she will simply guess all the
right answers. Fisher then compares this design with other possi-
ble experimental designs consisting of eight taste tests. He points
out that if the lady is simply offered eight cups, where the number
of MTs can vary from 0 to 8, and the remaining choices are TMs,
then the lady has only a 1/256 chance of guessing the correct
answer. This may appear to be a more discriminating test, but if
she is offered eight consecutive MTs, then she and the researcher
miss their opportunity to test whether she can really distinguish
the two tastes. In the search for a more discriminating test, she is
deprived of the opportunity to demonstrate her remarkable abili-
ty. This kind of situation is characteristic of much experimental
design. In particular, there is no one best way of performing an
experiment. The design that is eventually chosen always reflects
personal preferences as well as research aims. The goal of Fisher’s
research in this area was to develop rational criteria to evaluate the
success of various experimental designs.
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Fisher goes on to discuss other techniques for increasing accu-
racy and for minimizing other factors that may adversely affect the
outcome of the experiment. For example, if all cups are prepared
simultaneously, and if the woman is presented with all four MTs at
the end of the test, then the experimenter has established a corre-
lation between a cooler drink and the “milk then tea” order. This
must be avoided because we wish to test her ability to distinguish
MT from TM, not warm from cool. (If she happens to prefer one
temperature to another, this may well affect her decision about the
order in which the liquids that made up the drink were poured.)

Fisher’s method of minimizing the impact of these additional
factors is not to eliminate them all—this is impossible. Instead, he
advocates randomizing every conceivable variable except the one
of interest. The hope is that randomizing all factors except the one
being studied will cause the effect of all other factors on the out-
come of the experiment to diminish and the desired factor to stand
out. All of these various complications point to the fact that
designing a fair experiment is difficult. Though the tone of this
article is lighthearted, “Mathematics of a Lady Tasting Tea” pres-
ents a nice insight into the kinds of problems one encounters
whenever one designs an experiment.

Fisher used many of these ideas in his study of population genet-
ics. In addition to helping establish the field of modern statistics,
Fisher also did a great deal to establish the field of population
genetics. His book Genetical Theory of Natural Selection is one of the
great classics in the field.

Population genetics is a highly mathematical branch of genetics.
It centers on the problem of mathematically modeling the distri-
bution of genes within a population and calculating how gene fre-
quencies change over time. Scientists in this discipline are
sometimes interested in providing mathematical explanations for
how certain complexes of genes arose, or they may be interested
in describing how the frequency of certain genes changes in
response to changes in the environment. The emphasis in popula-
tion genetics is less on the individual—whose genes cannot
change—than on the species to which the individual belongs.
(Genetically speaking, individuals do not change—we die with the
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genes with which we were
born; the genetic makeup of
species, however, does change
over time.)

Fisher was well placed to
contribute to this field.
Gregor Mendel’s work had, by
this time, been rediscovered
and improved upon. Many
advances were being made in
understanding the way traits
were inherited, and there was
a great deal of interest in
applying these insights to the
field of natural selection. Even
early in the 20th century,
many scientists had accepted
the validity of Charles
Darwin’s ideas about how
species change over time but
were unsure of how traits were
passed from one generation to
the next. Understanding the
mechanism of heredity from a

statistical point of view was critical if scientists were to understand
how, and how fast, changes in the environment affected gene fre-
quencies. Fisher sought answers to these problems through an
approach that used probability and statistics.

One type of problem that is important in population genetics is
determining how changes in gene frequencies are related to popu-
lation size. Population size is a critical factor in determining how a
species changes from one generation to the next. A species with
many individuals is better able to harbor many different combina-
tions of genes; therefore, when the environment changes, it is more
likely that there will be some individuals already present who are
better adapted to the new environment. This idea is an important
part of evolutionary theory. Although large species are generally
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better able to adapt to rapid changes, scientists are not always inter-
ested in studying the species with the most individuals. Sometimes
the species of most interest are the most rare. Developing methods
for drawing reliable conclusions about small populations becomes
critical for understanding the evolution of rare species. Some of
these methods were developed by Fisher himself.

Fisher remained at the Rothamsted Agricultural Experiment
Station from 1919 to 1933. He then moved on to the University
of London and later Cambridge University. In his last years of life,
Fisher moved to Australia, where he continued his work. It is not
often that one encounters someone who is so successful in two dis-
tinct fields. Fisher’s contributions to statistics and the genetic basis
of evolutionary change are especially noteworthy because he made
them at a time when most scientists were drawn to ever-increasing
specialization.

Fisher and Pearson did much to establish the foundation of
modern statistics. To be sure, the types of problems on which they
worked are elementary by modern standards. Mathematics has
advanced considerably in the intervening years, and so has com-
putational technology. (By the time the first computer was con-
structed Pearson had died, and Fisher was in his 50s.)
Nevertheless, many of the ideas and techniques that they devel-
oped are still used regularly today in fields as diverse as the insur-
ance industry and biological research.
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11
the theory of sampling

There is a tendency, especially in a history of mathematics, to con-
vey the impression that mathematics was invented by mathemati-
cians. This is not entirely true. If we look at the biographies of
prominent mathematicians in this series we see that Girolamo
Cardano was a physician. Galileo Galilei, Edmund Halley, and
Isaac Newton were physicists. Rene Descartes, Blaise Pascal, and
Gottfried Leibniz, though very important to the history of math-
ematics, were more philosophers than mathematicians. Pierre
Fermat and François Viète were lawyers. Marin Mersenne,
Thomas Bayes, John Wallis, and Bernhard Bolzano were members
of the clergy. John Graunt was a businessman. Karl Pearson was a
social activist, and R. A. Fisher was a geneticist. Of course, all of
them contributed to the development of mathematics, but
whether they were specialists in mathematics—that is, mathemati-
cians as we now understand the term—or whether their principal
interests and energies were directed elsewhere is not always so
clear.

One very important branch of statistics, sampling theory, was
developed largely by people for whom mathematics was almost an
afterthought. Their discoveries are vital to a variety of applica-
tions, including the ways in which societies make decisions about
the distribution of resources, television networks decide which
shows to keep and which to cancel, seed companies improve their
seed lines, and national economies are managed. The theory of
sampling as a separate discipline within statistics began, however,
with problems related to manufacturing, and so, historically
speaking, it is a fairly recent invention.
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The Problem
To appreciate how the theory of sampling arose, it helps to know a
little about the problems it was designed to address. For most of
human history every object was hand-crafted. Each complicated
object was made by a specialist. There have been exceptions. The
Egyptians, who constructed their largest, best-known pyramids
over the course of just a few centuries, must have cut, transported,
and piled the millions of large stone blocks required to make these
monuments in a way that used at least a few assembly-line tech-
niques. They also apparently standardized the construction of bows
and arrows so that the weapons of one soldier were interchangeable
with those of another. For the most part, however, societies were
neither large enough nor organized enough to require the sort of
mass production technology that dominates modern life.

The situation began to change during the Industrial Revolution.
One of the first critical suggestions was offered by Eli Whitney,
who is celebrated in American schools as the inventor of the cot-
ton gin long after the purpose of a cotton gin has been forgotten.
(A cotton gin is a device for separating cottonseeds from cotton
fiber. Its invention made cotton the principal cash crop in the
southern United States for many years.) Whitney suggested that
guns—flintlock guns, to be specific—be manufactured in such a
way that the parts from different rifles could be interchanged 
with one another. In 1798 the federal government awarded him a 
contract to produce 10,000 muskets using his Uniformity System,
an early version of mass production.

This approach was in stark contrast to traditional methods.
Previously, each part of a gun was created to fit the other parts of
a particular gun. Of course, all guns of a certain type had charac-
teristics in common. They were of roughly the same dimensions,
and they worked on the same basic physical principles. But it was
usually not possible to use one gun as a source of spare parts for
another, even when both guns were created at roughly the same
time by the same craftsperson. There was too much variation in
the product. Whitney’s new method of manufacturing guns was
meant to overcome this shortcoming, but it also pointed to a new
method of manufacturing other objects as well.
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This new manufacturing method required standardization of
design and materials. It also required that the manufacturing
process be sufficiently controlled that an object made at the begin-
ning of the week would be “identical enough” to the object made
at the end of the week to make them interchangeable. This change
in the concept of manufacturing has changed the world. We are
still grappling with its implications for labor and for our standard
of living.

Throughout the 19th century, industrial engineers on both
sides of the Atlantic worked to implement the new ideas.
“Simple” objects such as nuts and bolts, textiles, and pulleys
began to be manufactured according to standard designs using
methods that greatly increased the quantity of finished goods,
where the quantity is measured both in numbers and in the 
number of units per person engaged in the manufacturing
process. Nor was this increase in production due solely to what
was happening on the factory floor. Much of the culture and
technology of the time was aimed at facilitating manufacturing
operations. Steamships were plying the world’s oceans transport-
ing raw materials to the manufacturing sites and finished goods
from the manufacturing sites to consumers around the world. A
great deal of money was changing hands, and this served to
accelerate progress further.

Late in the 19th century the American engineer and inventor
Frederick Winslow Taylor (1856–1915) began to search for more
efficient production processes. Taylor, who had a degree in engi-
neering from Stevens Institute of Technology, Hoboken, New
Jersey, was interested in improving the human processes by which
goods were manufactured. He studied the physical motions of
workers involved in a manufacturing process and sought to stream-
line them. He called his ideas “scientific management.” Taylor was
quite successful. As a consequence of his work, productivity—the
amount of goods produced per worker—soared again.

Many of these “hard” and “soft” technologies meshed together
in the mind and factories of the American industrialist Henry Ford
(1863–1947). Ford was engaged in producing what was, and
arguably still is, the most technologically sophisticated consumer
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item ever made, the automobile. To accomplish this he joined
techniques of mass production and scientific management to pro-
duce huge numbers of cars at a cost that many people could afford.
This was a tremendous technical accomplishment because it
involved the coordination of large numbers of workers, the acqui-
sition of huge numbers of parts, and the design of an industrial
process such that the quality of the final product was controlled
from day to day and week to week.

Ford’s manufacturing technologies were quickly emulated and
improved upon in many places around the world. Large, complex
manufacturing concerns were producing ever-increasing amounts
of consumer goods. As the complexity of the manufactured goods
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increased, controlling the quality of the items produced became
increasingly difficult. How could one maintain control of the 
various processes and materials involved so that the quality of 
the finished product was uniform? How, in effect, could the 
right hand know what the left hand was doing?

Walter Shewhart and Statistical Quality Control
Walter Shewhart (1891–1967) was the first to present a complete
and coherent approach to the issue of quality control. He was an
American who was interested in science and engineering. He
attended the University of Illinois and earned a Ph.D. in physics
from the University of California at Berkeley in 1917. It is, how-
ever, hard to categorize Walter Shewhart. Because his goal was to
secure “economic control” over manufacturing processes, he had
to have a thorough knowledge of statistics, economics, and engi-
neering. He was the first person to create a comprehensive and
unified treatment of statistical quality control. His accomplish-
ment was quickly recognized by some and ignored by others.
Many encyclopedias and other reference books fail even to men-
tion Shewhart. On the other hand, various quality control organ-
izations often credit him with inventing the concept of statistical
quality control. There are an increasing number of tributes to him
on the Internet, some of which are more like shrines than biogra-
phies. His friend Edward Deming remarked as late as 1990 that it
would be 50 years before Shewhart’s contributions would be wide-
ly understood and appreciated. There is little doubt that his con-
tributions were not fully appreciated for the first half-century after
Shewhart published his ideas.

After earning his Ph.D., Shewhart worked briefly as an academ-
ic, but he soon left for a job at Western Electric Company. Six
years later he found a position at Bell Telephone Laboratories, one
of the premier scientific research establishments of the 20th cen-
tury. He received numerous awards and honors as his ideas
became better known. He sometimes lectured at academic institu-
tions, including the University of London, Stevens Institute of
Technology, Rutgers, and a variety of other institutions, academic
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and industrial, but he remained employed at Bell Labs until his
retirement in 1956.

Shewhart wrote that early (19th-century) attempts at mass 
production had tried to eliminate variability; a more effective goal,
he said, was to control variability. The idea apparently occurred to
him while he was working at Western Electric. Western Electric
manufactured telephony equipment, such as amplifiers, for Bell
Telephone. Telephony equipment was often buried underground at
this time, so for economic reasons equipment failure rates had to
be reduced to an absolute minimum. This was a major goal at
Western Electric. The company had made great efforts to improve
the quality of their product, and for a while they made progress in
this regard. Eventually, however, despite the fact that the 
company was still spending a great deal of money and effort on
improving the quality of its manufactured goods, progress in qual-
ity control began to slow. Undeterred, the manufacturer continued
to search for mistakes in production. When engineers found them,
they adjusted the manufacturing process to eliminate the cause of
the problem. They did this again and again, and over time Western
Electric engineers noticed a remarkable fact about their efforts at
quality control: As they adjusted control of the manufacturing
process in response to the defects their testing had detected, the
quality of the manufactured product actually decreased.

The quality control problems at Western Electric did not result
from lack of effort; the problem was lack of stability. A stable man-
ufacturing process is vital for a quality product. Western Electric
management, however, did not need only to find a method for
detecting instabilities in quality; more importantly, they also need-
ed to identify the causes of variation. Causes are critical. Shewhart
hypothesized that variation has two causes: random or chance cause
variation, which is also called common cause variation, and assign-
able cause variation, which is also called special cause variation.
Assignable cause variation is variation that can be identified with 
a specific cause—machinery that is out of alignment, variation in
the quality of materials, sloppy work habits, poor supervision—
anything that can be associated with a cause. Assignable cause 
variation can be eliminated, and the goal of the manufacturer was,
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according to Shewhart, to eliminate assignable cause variation.
After assignable cause variation was eliminated, only the random
or chance cause variation was left. There is always some random
variation associated with any process. The goal for chance varia-
tion was, therefore, not to eliminate it, because that would be
impossible. The best that one could hope for was to control it. Any
manufacturing concern that could eliminate assignable cause vari-
ation and control random variation—and do this in an economical
way—could exert economic control over the manufacturing
process.

This is a very delicate problem. The goal is not simply to iden-
tify faulty pieces and reject them before they reach the end of the
assembly line, because every rejected piece costs the company
money. Simply identifying the rejects does not place the process
under economic control. Instead, the manufacturer must manufac-
ture as few faulty units as possible. Second, and just as important,
the manufacturer must be able to recognize when this level of effi-
cient manufacturing has been attained. Although this may seem
simple to do, it usually is not.

Everything in Shewhart’s analysis of production control is 
subject to the sometimes-conflicting constraints of economy and
quality. Consider, for example, the problem of producing air
bags for automobiles. The bags must deploy under the right 
circumstances, and they must not deploy when they are not
needed. Control of the manufacture and installation of air bags
is vital. The best way to test the air bags is to install them and
crash the cars in which they are installed. Unfortunately, this
type of testing can be very expensive. Worse, it destroys the air
bag being tested as well as the car in which it is installed. The
conflict between economy and reliability testing is, in this case,
obvious. Once the manufacturer has identified when it has begun
to make a product that is largely free of defect, it must be able to
maintain the stability of the process. Finally, the manufacturer
must also be able to place the manufacturing processes under
economic control.

When a manufacturer identifies faulty product, how can it
determine whether the defects are related to assignable cause 
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variation or random, chance cause variation? One of Shewhart’s
most useful ideas in this regard was the control chart. This idea
has been refined quite a bit, so that today there is not one control
chart—sometimes called a Shewhart chart—but many. Despite
this diversity, there are three basic components of every control
chart. The first component is a horizontal line across the center of
the chart that represents the average or mean value of the proper-
ty being measured. Second, there are a line above and a line below
the centerline. These lines define the upper and lower bounds 
for acceptable variation. The third basic component is a record of
the data collected. The data are plotted over time. See the accom-
panying diagram to see how a control chart might look.

In manufacturing processes in which economic control is
exerted, the points on the control chart should be randomly 
distributed. There should be, for example, no “general trends” 
in the data: That is, there should be no runs of continually
increasing or decreasing sets of points. Similarly, there should be
no long runs of points that all fall on one side or the other of the
centerline. Nor should there be a long run in which the points
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regularly alternate from one side of the line to the other. These
patterns are good indicators of nonrandom, or assignable cause,
variation in the product quality—the type of variation that must
be removed from the manufacturing process. This is one of the
great advantages of using a control chart: It enables the user to
identify assignable cause variation given only the results of tests
on the product.

There is one more characteristic of a process that is under eco-
nomic control. It is, perhaps, the easiest to notice: All of the data
on the chart should remain between the upper and lower bounds
of variation. The control chart makes visible the problem of eco-
nomic control of a manufacturing process. Once it has been estab-
lished that the process is under economic control, the next step is
to reduce the random variations in product quality.

Sometimes even more constraints are placed on the chart than
those mentioned here. Those constraints can make use of the
charts problematic, because they disturb the balance between costs
and quality. If too many constraints are placed on what acceptable
data should look like, then the control chart will sometimes detect
fictitious control problems. Keep in mind that there is always
some variation in the manufacturing process. It cannot be pre-
vented. If the control chart yields a “false positive” finding on the
issue of assignable cause variation, for example, then management
has no alternative but to begin to reevaluate the manufacturing
process and to make whatever changes are needed to eliminate the
variation. If, however, the variation is fictitious, then doing so is,
at minimum, a waste of time. Recall, however, what Western
Electric engineers discovered so long ago: Adjusting control of the
manufacturing process has, in the short term, the effect of decreas-
ing quality rather than increasing it. Consequently, false positive
findings need to be prevented.

The advantage of using a simpler control chart is that it is less
likely to detect false positive findings, in part because simpler con-
trol charts are less likely to detect anything at all. On the other
hand, an insensitive chart may well miss actual assignable cause
variation, the identification of which is one of the advantages of
the chart.
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As with most ideas in statistics, the successful use of this concept
involves subjective judgments as well as science. Nevertheless, the
control chart quickly found its way into many manufacturing con-
cerns. It is a straightforward expression of a deep insight into the
idea of quality control. Despite its simplicity it enables large and
complex organizations to separate random from assignable cause
variation and to monitor the former while eliminating the latter. It
was a very big breakthrough.

Nonetheless, it would be inaccurate simply to identify Walter
Shewhart with his control chart, as is sometimes done. His control
chart is a nice illustration of his ideas, but his ideas go deeper than
is immediately apparent. He combined statistics with economics
and engineering to create the branch of knowledge now known as
quality control or statistical quality control. Shewhart’s ideas
quantify what is meant by variation in manufactured goods, and by
variation in general. As manufacturing tolerances become ever
more exact, Shewhart’s ideas have remained valid. They have
made the existence of large, complex, well-regulated manufactur-
ing concerns possible.

William Edwards Deming
Shewhart’s control charts can be applied to practically any process
managed by any organization, public or private, provided the
product created by the organization can be unambiguously repre-
sented with numerical measurements. Of course, any technique
has its limitations. It is worth remembering that there are some
services, usually managed by governmental or not-for-profit
organizations, in which the “product” is not so easy to measure.
The care of the severely disabled, for example, is difficult to quan-
tify because the product, which is the standard of care, does not
easily translate into straightforward numerical measurements.
Every long-term, profit-making enterprise, however, is amenable
to analysis using Shewhart’s control charts because every profit-
making organization has a bottom line: A company’s profit–loss
statement is, in the end, a numerical description of the success or
failure of the company in terms that are clearly understood by all
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interested parties. It may seem, then, that Shewhart, in a very gen-
eral way, solved the problem of quality control. He almost did. He
gives a clear statement of the control chart. The statistical proce-
dures necessary to analyze the data on the chart can be obtained
from the work of Pearson and Fisher. There was, however, still
one missing piece: a comprehensive theory for obtaining repre-
sentative samples. This was one of the contributions of the
American statistician and philosopher William Edwards Deming
(1900–93).

Deming was born into a poor family. His family moved several
times during his youth as his father searched for employment. It
was not an easy life, but the son was ambitious. He obtained a
bachelor’s degree from the University of Wyoming, where he
majored in electrical engineering, and a Ph.D. in mathematical
physics from Yale University in New Haven, Connecticut. (He
was especially interested in the problem of Brownian motion. See
Chapter 5 for a discussion of this random phenomenon.)

Deming worked his way through school. This might have
seemed like a hardship at the time, but in retrospect it turned out
to be the best thing that could have happened to him. For two
summers Deming worked at the Western Electric Company in
Chicago. Walter Shewhart was also working at Western Electric at
the time, and the two met. Western Electric had been struggling
with quality control problems, and Shewhart had begun to think
about the ideas of chance variation and assignable cause variation.
Deming had arrived at exactly the right time, and, apparently, he
recognized it. Shewhart became Deming’s mentor, and Shewhart’s
discoveries formed the basis of much of Deming’s later research.
He never forgot his debt to Shewhart. Never an arrogant man,
Deming was still quoting and praising Shewhart’s 1931 master-
piece, Economic Control of Manufactured Product, in his public
speeches more than 50 years after the publication of Shewhart’s
book.

Despite his summer jobs at Western Electric and his great
admiration for Shewhart’s ideas, Deming never again worked in a
manufacturing environment. His first job after completing his
education was with the U.S. Department of Agriculture. The
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department provided a rich source of problems for someone
interested in statistics, and Deming remained there for more than
10 years. In 1939 he moved to the U.S. Census Bureau. His work
at the Census Bureau changed his life and, as we will soon see,
may have changed the world. One of Deming’s duties at the
Census Bureau was to provide guidance on problems associated
with sampling.

Sampling theory is a branch of statistics. It is concerned with
the problem of obtaining a sample, or subset, from a larger set 
in such a way that one can make accurate deductions about the
makeup of the larger set by analyzing the sample. This is a 
central aspect of constructing a good control chart. The product
must be sampled in such a way that the objects tested are a good
representation of the entire set of objects. Designing a method
that ensures accurate sampling is not an easy problem.
Mathematically, the difficulty arises because one does not know
the properties of the larger set. (If one did, then it would not 
be necessary to sample it.) The sampling is further constrained 
by costs and time factors. This is certainly true of the work at 
the U.S. Department of Agriculture. Deming’s work in the 1940
census was highly praised, and it resulted in Some Theory of
Sampling, published in 1950 and still in print 50 years later, and an
invitation to Japan to assist in the first postwar Japanese census.

Deming’s Some Theory of Sampling, despite the inclusion of the
word some, is a very hefty book about many aspects of sampling 
theory. The theory is described from the point of view of practical
applications. In his book Deming gives careful attention to the 
concepts that make successful sampling possible. One of these is
the importance of carefully defining the universe, or parent set,
from which the sample is drawn. Sometimes the universe is given
as part of the problem. In an industrial operation the universe 
is the set of all objects produced during a production run. Other
times—for example, when trying to sample the set of all consumers
considering buying an automobile in the next year—the universe is
more difficult to specify with accuracy sufficient to be useful.
Without a clear and unambiguous definition of what a universe is,
it is not possible to obtain a representative sample of it.
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Once the universe is defined, the next problem is to develop
techniques for obtaining a representative sample from it. No
problem could be more important for obtaining an accurate sta-
tistical description of the parent set. This problem is, for many
applications, far from solved even now. For example, in certain
regions of the country predictions of the outcome of the 2000
presidential elections and the 2002 midterm elections were inac-
curate. Researchers defined the universe of likely voters and sam-
pled the voting preferences of this group for statistical analysis,
but in certain areas the actual voting patterns were different from
those predicted. Even now, it is not entirely clear why the analyses
were inaccurate. One possible conclusion is that the universe of all
voters in each of these elections was different from the universe
the researchers defined. Another possible conclusion is that the
statisticians correctly identified the set of likely voters but failed to
obtain a representative sample.

In his book Deming carefully considers the problem of sampling
error, but statistics is an applied field of knowledge; the problems
associated with sampling theory are practical as well as theoretical.
To be sure Deming covers the mathematical ideas associated with
the subject, but he is equally interested in the problems associated
with obtaining a sample economically and quickly. His conception
of the field of sampling theory is characteristically broad.

Deming’s presentation is heavily influenced by his time at the
Census Bureau and the Department of Agriculture. For example,
sometimes the Department of Agriculture carried out preliminary
surveys whose results depended on sampling theory before mak-
ing an exhaustive survey, that is, a survey that polled every single
element in the parent set. This enabled the statistician to compare
predictions based on samples with the results from the more
exhaustive surveys. These surveys are analyzed in some detail.
When the results were good, the surveys could be used to guide
future statistical work; when the results were bad, the surveys
served as examples of approaches to avoid. Deming’s extremely
pragmatic overall approach to the theory of sampling was three-
fold: (1) to specify the reliability of the survey to be carried out—
that is, the precision desired; (2) to design the survey so that it will
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achieve the sought-after precision at the least possible cost; and (3)
to appraise the results.

Deming’s approach is remarkable for both its clarity and its
emphasis on economics. Money and time are issues in any scientif-
ic undertaking. This has always been true, but it is not until
Shewhart and Deming that we see scientists so explicitly linking the
search for knowledge to economic considerations. We are accus-
tomed to these ideas now. They are contained in any cost/benefit
analysis undertaken by any institution, public or private. Shewhart
and Deming, however, were pioneers in formulating these concepts
in a way that was explicit enough for planners and policy makers to
manipulate them to get the greatest benefit for the least cost,
whether that cost is measured in time, money, or both.

At about the same time that Some Theory of Sampling was 
published, Deming was invited to Japan to assist in the national
census there. On his second census-related visit to that country,
Deming was invited to give several lectures to Japanese industrial-
ists, engineers, and plant managers on methods for achievement of
quality in industrial production. In one particularly important
meeting a number of Japan’s leading industrialists attended one of
his lectures. Deming’s ideas on the importance of Shewhart’s
charts and the statistical theories involved in their implementation
made a huge impression, and these ideas were implemented in
Japanese industry long before they found a home in American or
European industry. At that time Japanese industry was being
rebuilt after the devastation of the Second World War. Japanese
industrialists took Deming’s advice to heart because it offered 
the possibility of a rational and superior method for controlling
variation in the quality of manufactured goods.

It is worth noting that within a generation after their destruc-
tion, Japanese industries were famous throughout the world for
the very high level of economic control that they had learned to
exert over the manufacturing process. In certain important indus-
tries, this advantage is maintained to the present day. For the
remainder of his life, Deming always received a warm and enthu-
siastic audience among Japanese academics and industrialists, but
for a long time his ideas were not recognized in the West.
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By the 1970s North American and European industries that
were in direct competition with Japanese industries had begun to
see severely eroded profits and market share. These industries
were often selling less even as demand for their type of product
increased; they were being crowded out by more successful
Japanese firms. By the 1980s, Shewhart’s and Deming’s statistical
approach to quality control was drawing a great deal of interest
from Western industrialists. Shewhart had died decades earlier,
and Deming was already in his 80s, but he was determined to
spread the word. He developed a famous four-day seminar that he
delivered throughout the world at academic, government, and
business institutions. In it he described the difference between
random variation and assignable cause variation, explained the use
of Shewhart’s control charts, and gave a very inclusive definition of
statistical quality control management. This time people in the
West were willing to listen and sometimes to follow his advice.

As his health failed Deming also began to present the lecture “A
System of Profound Knowledge.” His lecture incorporated the
theory of variation, psychology, a theory of knowledge, and system
theory, which involves insights into what organizations are, how
they make decisions, and how they work the way they do.

William Edwards Deming and Walter Shewhart found a way to
use statistical thinking to create a new way of understanding
processes. Their insights began with manufacturing processes, but
their influence has spread beyond that realm. Because the value of
their insights was recognized in Japan, Deming and Shewhart con-
tributed substantially to the postwar growth of Japanese industry.
The success of Japanese industry initially caused a great deal of
economic hardship in North American and European industries as
companies in those regions struggled to identify their problems
and correct them. Over time, however, the ideas of Shewhart and
Deming have become central to the control of quality and the effi-
ciency of production in industries throughout the world. They
have changed the lives of many people around the globe.
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11
three applications 

of statistics

Statistics is an applied science that developed in response to specif-
ic problems. Unlike in many branches of science, in which the
majority of expert practitioners are to be found in academia, many
of the most knowledgeable statisticians are to be found in positions
of government and industry. This is just a reflection of the impor-
tance of the discipline to the formation of rational policy. To obtain
some feeling for the scope and history of the subject, it is helpful 
to see how statistics has been applied to solve problems in health,
government, and marketing.

The Birth of Epidemiology
Epidemiology is a branch of medicine that is concerned with the
incidence, spread, and control of disease. It depends in a critical
way on the use of statistics to give insight into how disease is trans-
mitted from individual to individual and place to place.
Epidemiology is a fairly new branch of medicine. Its first great
breakthrough was in the fight against the disease cholera. This
famous application of statistics offers insight into the strengths
and weaknesses of statistical methods.

Cholera is an ancient disease. It is caused by a bacterium, called
Vibrio cholerae, that for most of the history of humankind remained
within the borders of the Indian subcontinent. Cholera is a dra-
matic disease. Its onset is sudden and violent, and the disease is
sometimes fatal. The death rate of cholera varies widely from area



to area and outbreak to outbreak. It can be much higher or much
lower than 50 percent.

Cholera is a disease of dehydration, and its progression has
often been described as occurring in three stages. The onset of
the disease is marked by violent vomiting and severe diarrhea. In
a brief period the infected person can lose as much as 10 percent
of his or her body weight. The first stage concludes with what
early-19th-century physicians called “rice water diarrhea,” which
consists of a clear liquid containing what we now know are frag-
ments of the lining of the patient’s damaged intestine. During
the second stage, which these physicians called the “collapse
stage,” vomiting and diarrhea cease, the body temperature drops,
the pulse becomes very weak, lips and fingernails turn blue, and
the blood is very thick and dark—almost black. It is during the
second stage that the majority of deaths occur. The third or
“recovery stage” is marked by fever.

Outbreaks can be devastating. In 1781 in the Indian city of
Haridwar, which is located on the banks of the Ganges River,
there was an outbreak of cholera in which 20,000 individuals died
in eight days. Although this was a particularly severe outbreak, it
was typical in the sense that it was confined to the Indian subcon-
tinent. In the year 1817 the situation changed.

The more recent history of cholera is described in terms of pan-
demics, outbreaks of the disease that occur over very large geo-
graphical areas. The first pandemic began in 1817. In that year
cholera spread across the Indian subcontinent. By 1819 cholera
could be found in what is now Sri Lanka. By 1820 East Africans
were dying of cholera for the first time. By 1821 cholera was pres-
ent on the Arabian Peninsula, and by 1822 Japan and China were
suffering from cholera. In 1823 cholera began to make its way into
Russia, with an outbreak in the city of Astrakhan in which there
was a total of 392 reported cases and 205 fatalities. The disease
then disappeared everywhere except the Indian subcontinent,
where it is endemic. During this time not a single effective strate-
gy for combating cholera was developed.

The second pandemic lasted from 1826 until 1837. Many histo-
rians believe that the second pandemic began at Haridwar at one
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of the great religious festivals that occur there. It is thought that
religious pilgrims from Bengal introduced the disease to the festi-
val at Haridwar, and from Haridwar it was dispersed throughout
India. The disease followed rivers and trade routes. Again it
appeared in the Russian city of Astrakhan. Within 24 hours of the
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Nineteenth-century cartoon satirizing the sometimes-ridiculous measures
taken by people to protect themselves from cholera. Before Snow’s work, 
however, no one understood how cholera was transmitted. The efforts of
many physicians of the time were, in retrospect, no more effective than the
efforts of this figure.  (Library of Congress, Prints and Photographs Division)



first reported cases there were 200 deaths. Among the first to die
were the civil governor and the chief of police. Panic ensued. The
social order collapsed as much of the population fled into the sur-
rounding countryside, taking the disease with them. Between July
4 and August 27, 1830, there were 3,633 cases of cholera record-
ed at Astrakhan. About 90 percent of those who became ill at
Astrakhan died.

Cholera made its way northward along the Volga River and
then spread out. As it did so it became less deadly. By the time it
reached Moscow the death rate was 50 percent of those who
became infected. The Moscow outbreak attracted a great deal of
attention throughout Europe, which had never had a cholera
outbreak before. From Russia, cholera moved for the first time
into the Baltic states and Poland. From Poland it moved from
country to country as far west as France and Great Britain. It
crossed the Atlantic Ocean, and for the first time cholera
appeared in Canada and New York and then moved south and
west. By the time the outbreak was over in 1837, cholera had
become a worldwide epidemic.

Cholera inspired a great deal of fear, but statistical techniques
were not applied to the study of cholera until the third pandemic
(1846–63). Medically speaking, the second pandemic was note-
worthy because a successful treatment for cholera was first devel-
oped at this time. Unfortunately, physicians were not conducting
carefully designed statistical experiments to compare various
methods of treatment. Some applied leeches for the treatment of
cholera, some administered laxatives, and one British physician,
Thomas Latta, used a saline fluid injection to rehydrate patients
who were on the verge of death. Since some people always get bet-
ter, even with leeches, and since there were no objective statistical
criteria to compare the different approaches, Latta’s innovation
was ignored by the medical establishment of his time.

Although a treatment of cholera is important, it turns out that
the prevention of cholera is an easier, more economical way of
protecting the public health. This was discovered during the third
pandemic well before the germ theory of disease was discovered,
and it shows in a very dramatic way both the power and the weak-
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ness of statistical methods. The scientist who made this discovery
was the British physician John Snow (1813–58).

John Snow was the son of a farmer. He attended school until he
was 14 and then was apprenticed to a surgeon. During the second
pandemic he served as an assistant. He was ambitious, and over the
course of many years he worked his way up into the medical estab-
lishment. He graduated from the University of London in 1844,
and in 1850 he was admitted to the Royal College of Physicians.
Snow thought long and hard about the problem of cholera. He
was especially interested in the process through which cholera is
transmitted. He learned as much as he could about outbreaks that
occurred during the second pandemic, and he studied previous
patterns of transmission. He was as thorough as one man working
alone could be.

The geographic patterns of transmission of cholera were quite
complicated. Sometimes it struck one area and entirely missed
neighboring population centers. Its transmission as a function of
time was also very complicated. For example, in 1848, during the
third pandemic, cholera caused 1,908 deaths in England and
Wales. In 1849 there were 53,293 deaths due to cholera, but dur-
ing the next two years no deaths in either England or Wales were
attributed to cholera. Cholera returned in 1853 and 1854, when
there were, respectively, 4,419 and 20,097 deaths attributed to the
disease. Although the third pandemic continued until 1863 there
were no further deaths in England or Wales during the pandemic.

John Snow began his studies of the mechanism of cholera trans-
mission under a serious handicap: Although no one understood
how cholera was transmitted, a number of prominent individuals
championed incorrect ideas. When Snow proposed his idea that
cholera is transmitted through drinking water, there was no short-
age of individuals to tell him that he was wrong. To be sure, Snow
had collected and analyzed as much information on past outbreaks
as he could. In 1849 he even published “a slender pamphlet” that
described his theory, but it did not sway many minds. Instead, his
idea that cholera, or at least the cause of cholera, was in the water
was greeted with a great deal of skepticism. He did not become
discouraged, but he realized that to convince others, and to save
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lives, he would need to acquire better data. Snow’s big break-
through occurred during a cholera outbreak in the Broadstreet
area of London, beginning on August 31, 1853.

It was an especially virulent outbreak. During the first three days
127 people living in this compact neighborhood died. Within a
week of the outbreak of the disease the majority of the survivors
had locked their homes and businesses and fled. By September 10
there were 500 fatalities.

Meanwhile, Snow had already begun his investigation. The
compactness of the outbreak gave Snow some hope that he could
link the fatalities to a single polluted water source. He diligently
began to interview families of victims on the first day of the epi-
demic. He discovered that most of the families of the deceased got
their water from the pump on Broadstreet, but several deaths were
more difficult to explain. An elderly woman living some distance
from Broadstreet also died of cholera. She was an isolated case in
her neighborhood with no apparent connection to the outbreak on
Broadstreet. Snow discovered, however, that she had once lived in
the Broadstreet area and liked the taste of the water enough to
have a bottle of it taken to her daily. All of his detective work, his
statistical correlations, and his theories failed to convince the
authorities, however. By the time they reluctantly agreed to
remove the handle from the Broadstreet pump, the epidemic was
already substantially over.

Snow received additional help when a minister in the area, the
Reverend Henry Whitehead (1825–96), decided to investigate the
outbreak himself. Initially, Whitehead did not accept Snow’s the-
ory. Determined to prove him wrong Whitehead interviewed as
many people as he could—occasionally he visited them several
times—until he had found each victim’s name and age and had
determined whether the individual drank water from the
Broadstreet well, the hour the illness began, and what the sanitary
conditions were. It was an enormous amount of information.
More than 600 people had died over the course of the outbreak.
The results of Snow’s and Whitehead’s efforts were a collection of
tables, a complete analysis by Snow, and a map relating the loca-
tions of the cases to the position of the well. They even discovered
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the initial case: A five-month-old girl had contracted cholera
shortly before the onset of the outbreak. Her family’s cesspool was
located three feet from the pump.

Snow died before the germ theory of disease was accepted. He
died, in fact, before his theory that cholera is transmitted through
drinking water was widely accepted. The statistics did not identi-
fy what cholera was. Snow’s theory was not an explanation in a sci-
entific sense. It was a correlation between water and disease.
Correlations, not explanations, however, are what statistical
research excels at revealing.

In 1866, during the fourth pandemic there was a cholera 
outbreak in London. A government official and statistician
named William Farr, who was familiar with Snow’s theory on the
mechanism of transmission of cholera, examined the water supply
to the area. He traced the water consumed by those individuals
infected with cholera to some ponds used by a local water supply
company. Farr found these ponds polluted with sewage. He used
his influence within the government to prevent the company
from distributing water from the pond. The epidemic quickly
died out. This was the first time that statistics enabled a govern-
ment to halt an epidemic.

The U.S. Census

The actual Enumeration shall be made within three Years after
the first Meeting of the Congress of the United States, and with-
in every subsequent Term of ten Years, in such Manner as they
shall by Law Direct. (The United States Constitution, article 1,
section 2)

The United States Census is one of the great statistical studies 
carried out anywhere. Originally, the census began with a simple
goal. After the American War of Independence the American states
formed a loose association called a confederation. The structure of
the new country was described in a document called the Articles of
Confederation, and from 1781 until 1789 the new nation struggled

Three Applications of Statistics  171



to function with the system of government defined by the articles.
The experiment was a failure. Under the Articles of Confederation
the central government was too weak to govern.

In 1787 delegates from the various states met to correct the prob-
lem. One of the more contentious issues they faced was the prob-
lem of representation. States with large populations wanted
representatives apportioned on the basis of population. Not sur-
prisingly, states with small populations expressed concern that they
would be ignored under this system of government. The compro-
mise to which the delegates finally agreed included one legislative
body, the House of Representatives, in which each state would be
represented by a number of delegates roughly proportional to its
population, and a second legislative body, the Senate, in which each
state would be represented by two delegates regardless of popula-
tion. This compromise required fairly detailed information about
the size and distribution of the U.S. population, so the men who
drafted the Constitution included a section mandating that a 
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census, or count, of the U.S. population be made every 10 years,
beginning in 1790. The U.S. government has fulfilled this consti-
tutional requirement every 10 years since 1790 during years of war
and peace, prosperity and hardship.

The first census, the 1790 census, set the pattern for succeeding
surveys. The census was taken very seriously. Census administra-
tors divided the nation into districts and arranged for a count to be
made in each district. All reports were made part of the public
record. Hefty fines were established for any census worker
involved in filing a false report, and any citizen involved in sup-
plying false information to a census worker faced a substantial fine
as well. Information was to be taken from each person at his or her
place of residence. Any individual without a fixed place of resi-
dence was counted at the location he or she occupied on the first
Monday of August. The final tally was 3,929,214.

The United States has always been geographically large, cultur-
ally diverse, and economically complex. Even in the 1790s, many
thought that a simple head count did not provide enough infor-
mation about the nation to help establish policies. Policy makers
wanted to know more, and a few questions about the characteris-
tics of the U.S. population were added to the survey. Most of this
additional information was not required to decide how to appor-
tion representatives; it was extra information that was designed to
shed more light on who lived in the United States. For the 1790
census workers counted (1) the number of free white males older
than 15 years of age, (2) the number of free white females, (3) the
number of slaves, (4) the number of free white males younger than
age 16, (5) the number of all other free persons, and (6) the names
of heads of households. This was just the beginning. Every 10
years the demand for information about the U.S. population
increased. Remarkably, this information was all collected by a
small staff and the legions of census takers who were briefly hired
every 10 years to collect the information.

The old volumes make for interesting and sometimes uncomfort-
able reading. Information about race uses the language of slavery
decades after slavery was eradicated as an institution. Nor was 
race the only equal-rights issue. There was an enumeration of
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“imbeciles” and the “insane.” These labels were sometimes used for
purposes of repression. Large percentages of racial minorities in
some districts were routinely described as insane. To their credit,
census officials acknowledged at the time that these data were inac-
curate and revealed more about the census taker than the population
that was surveyed. Despite their flaws the early censuses reveal a
great deal about the characteristics of a rapidly growing nation.

As the nation became larger and more complex, the task of the
statisticians became increasingly difficult. This difficulty was not
due only to the fact that the nation was getting larger. There was
also an ever-increasing demand for raw data and statistical analy-
ses of the state of the nation. Policy makers wanted information
about the manufacturing sector, the agricultural sector of the
economy, and demographics of the U.S. population so that they
could better formulate policy.

Even in the late 19th century and early 20th century the amount
of data collected was enormous. The United States Census was
one of the first institutions to make systematic use of data pro-
cessing equipment, the most famous of which is the Hollerith tab-
ulator. For the census of 1890, the superintendent of the Census
contracted for six Hollerith tabulators. Individual information,
such as age, sex, color, and place of birth, was punched into a card.
The cards were then run through the tabulator, which read the
card and recorded the information. Data processing equipment
increased accuracy and efficiency. It also enabled statisticians to
identify correlations between various characteristics of the popu-
lation more easily. With new technology and better statistical
techniques the amount of information that could be gleaned from
the raw data collected by the census takers continued to increase.
Nevertheless, it barely kept pace with the amount of raw data to
be analyzed. For more than 100 years all of this was accomplished
by a Census staff that was largely organized for a particular census
and then disbanded once the report was written.

By 1900 the job of constructing a statistical description of the
United States had turned into an enormous task, and a permanent
Census Office was established in 1902. In 1903 its name was
changed to the Census Bureau. The demand for information
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required that the bureau work continually, taking surveys, analyz-
ing data, and publishing the findings.

By the 1920 census the volume of data that was being collected
and analyzed was impressive even by today’s standards. It is partic-
ularly impressive when one remembers that the computer had not
yet been invented. The 1920 census involved a workforce of
90,000 and questionnaires for 107.5 million people, 6.5 million
farms, 450,000 manufacturers, and 22,000 mining and quarrying
companies. There were 300 million punched cards. The report
entailed the calculation of 500,000 “percentages, averages and
other rates,” and the publication of 12 large, or quarto, volumes of
1,000 pages apiece. The Information Age began earlier than many
of us realize.
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The Hollerith tabulator. Designed for the United States Census, it was 
a breakthrough in electric data processing equipment.  (Courtesy of IBM
Corporate Archives)



The decennial census is now only one part of the mission of the
U.S. Census Bureau, but it is still an important one. Each question
that appears on the decennial census, the one census that is 
mandated by the Constitution, is required as a matter of law. This
information is used to manage and evaluate federal programs and
to draw state and federal legislative districts. Some of the infor-
mation is used to monitor or satisfy legal requirements that have
been imposed by U.S. court decisions. It is also routinely used for
planning and decision-making purposes by many companies.

Because of the size and importance of the census, the bureau
goes to great lengths to collect and analyze information in a time-
ly manner. The 2000 census, for example, was published in 49 lan-
guages. Some of the languages, including German and French,
were predictable. Some of them, such as Chamarro, Dinka, and
Ilocano, are less well known. The volume of data has required the
bureau to automate the process as much as possible. During the
decennial census the bureau makes an electronic image of every
questionnaire that is returned. All returned envelopes are auto-
matically sorted, and households that did not comply are auto-
matically identified so that a census worker can interview the
residents. The information collected is fed through data-analysis
software that provides a statistical snapshot of the United States
that is as complete as possible.

In addition to the decennial census, the Census Bureau man-
ages a number of surveys and performs numerous statistical
analyses. The bureau publishes a Census of Manufacturers, an
American Housing Survey, a Consumer Expenditure Survey, a
Survey of Income and Program Participation, and numerous
other surveys of interest to economic planners. It is important
to realize that each such activity is an application of statistics.
The Census Bureau collects massive amounts of data and pro-
vides statistical analyses of the data it obtains. The bureau does
not use this information; it is not a policy arm of the govern-
ment. Instead, it provides information to the many interested
governmental and private institutions that need it as an aid in
their decision-making processes. This is one of the main reasons
statistics are valuable.
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Political Polling
The polling industry is an important application of the ideas
described in this book. Opinion polls are a part of daily life. They
often form the central topic of news shows. The question, Are you
better off since the current president took office? has been asked
of likely voters for many years by people running for office. This
question is frequently used in polls commissioned by incumbents
as well. The commissioning of polls is a very large business, and
the results of the polls affect everything from commercial adver-
tising to the political discourse of nations. It has not always been
so. In the 19th century in the United States there were only the
most informal methods of sampling opinion. During election
years some hotels would provide a space on the hotel registry for
guests to express their presidential preferences. Newspapers occa-
sionally sampled public opinion by sending out reporters to ask
questions of the “general public.” There was nothing scientific
about the sampling methods employed by these news organiza-
tions—and there was nothing very impressive about the accuracy
of the surveys, either.

The first scientific use of a political poll occurred in Iowa in
1932. Viola “Ola” Babcock Miller, a leader in the suffrage move-
ment, was running for secretary of state of Iowa. (She was suc-
cessful in her bid to become Iowa’s first female secretary of state.)
While she was running, her son-in-law approached her about the
possibility of conducting a political poll for her campaign. As a
Ph.D. student he had developed a method of surveying readership
of newspaper stories and advertisements, and he was eager to test
his ideas by forecasting a political contest. Miller agreed to allow
the test, and the poll correctly indicated that she would win. The
name of Miller’s son-in-law was George H. Gallup (1901–84),
founder of the Gallup poll. The era of public opinion research had
begun.

Not everyone was quick to notice the importance of Gallup’s
ideas, but Gallup himself was confident of his ability to predict the
behavior of large groups of people on the basis of the analysis of
small samples. In the 1936 presidential election he sought to
obtain further exposure for his ideas on scientific polling.
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President Franklin D. Roosevelt was running for reelection
against Alfred M. Landon, the Republican challenger. The maga-
zine Literary Digest had gained some fame for accurate straw polls
in elections preceding the 1936 contest. (A straw poll acquires its
data by using nonscientific methods.) The Digest worked under
the belief that the bigger the sample, the more accurate the results,
and to that end it sent out 10 million questionnaires. It received 2
million responses. Of course, the respondents were not randomly
selected. No matter what procedure the Digest used to obtain
addresses, the respondents were self-selected in the sense that only
those who cared enough about the poll to register their opinions
had their opinions registered. The Digest’s straw poll indicated a
convincing win for Landon.

Young Gallup, fresh from his success in his mother-in-law’s cam-
paign, launched his own survey of attitudes about the 1936 presi-
dential election. His results, based on a much smaller but
scientifically selected sample, indicated that Roosevelt would win
the election with 55.7 percent of the vote. Despite the prestige of
the Digest, Gallup made his prediction with as much fanfare as he
could generate. The result of the election was a landslide win for
Roosevelt, who garnered 62.5 percent of the vote. By contempo-
rary standards Gallup’s approximately 7 percent error left a lot to
be desired, but by the standards of the time it was a remarkable
achievement. Within four years President Roosevelt was commis-
sioning his own polls to track American attitudes about the
progress of the Second World War.

In the years since Roosevelt’s reelection over Landon, polling
has become increasingly important. Initially, polling was used to
reveal public attitudes and behavior: How would a particular seg-
ment of the population vote? What marketing strategy would sell
the most cigarettes? What do people look for when buying a car?
If polling can predict the outcome of elections, then it can be used
to devise commercial marketing strategies as well. From a mathe-
matical point of view there is no difference, and this has been a
source of concern for some. The former presidential candidate
Adlai Stevenson remarked, “The idea that you can merchandise
candidates for high office like breakfast cereal is the ultimate
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indignity to the democratic process,” and, of course, this is pre-
cisely what polling enables one to do. Merchandising political can-
didates with the same techniques used to merchandise breakfast
cereal not only can happen, it has become a standard part of the
process in both state and federal elections.

The accuracy, and hence the value, of carefully conducted polls
has on occasion been called into question. One of the most spec-
tacular failures of political polling techniques involved the 1948
presidential election in which President Harry Truman was
opposed by Governor Thomas Dewey. Many people considered
Truman the underdog in the election. In fact, polls taken seven
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history of U.S. presidential elections, Dewey was widely forecast to win over
Truman in the 1948 election.  (©1948 The Washington Post. Reprinted
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months before the election indicated that he had only a 34 percent
approval rating. During the election campaign, polling organiza-
tions used something called quota sampling to obtain what they
hoped would be a representative sample of the electorate. Quota
sampling generally involves census data. A population of inter-
est—in this case, prospective voters—is broken down into various
groups, for example, women, men, and people older than age 65,
and each group is sampled separately. The difficult part involves
identifying the population of likely voters. After the population is
segmented, interviewers are allowed to choose individuals from
each subgroup. Leaving the choice of individuals to the interview-
er means the poll designer loses control over the process.
Individual choices can lead to individual biases, and such was the
case during the Truman–Dewey campaign. On the eve of the elec-
tion, Dewey was widely predicted to win by a landslide, but it was
Truman who won the election.

Nor did all the failures of political polling occur 50 years ago.
The 2000 presidential elections and the 2002 midterm elections
are both examples of U.S. elections that had outcomes that were
not clearly foreseen by the political polls. Accounting for an
inaccurate forecast is an inexact science. Sometimes, bad fore-
casting is explained away by blaming the electorate. A volatile
electorate—that is, a significant percentage of people who decide
how to cast their votes at the last minute—is often identified as
the culprit. A good poll, however, should be able to identify
“volatility” before the election instead of afterward. Alternatively,
some believe that the poll itself can influence the outcome of 
an election. This is the so-called bandwagon effect. The theory
is that once people believe they know the winner, they are more
likely to vote for the winner. George Gallup searched for 
this effect in past elections, but he dismissed the idea that the
bandwagon effect played a significant role.

Mathematically, there are several difficulties that must be over-
come in order to obtain reliable forecasts. The first difficulty
involves obtaining a clear definition of the set of interest. This is
not always easy: The characteristics of the parent set, or what
Deming called the universe, are not known. Who, for example,
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belongs to the set of “likely” voters? Is it the set of all people who
voted in two of the last three presidential elections? This criterion
cannot be applied even to registered voters younger than age 25
because, depending on when the survey is taken, they could not
have been registered long enough to vote in the previous two pres-
idential elections. Furthermore, some elections simply attract
more interest than others. The set of likely voters can vary signif-
icantly from one election to the next. Identifying likely voters is
not easy.

Another problem arises when one tries to obtain a representative
sample of the set of all likely voters. In theory, the best sample is a
randomly drawn sample, but achieving a randomly drawn sample
turns out to be quite difficult. Many people, for example, simply
will not answer polling questions. One reason is fatigue. During
an election cycle many people are contacted by phone at home
multiple times—and often during supper—by interviewers who
are attempting to collect data for a variety of surveys. Eventually,
many people stop cooperating. Noncompliance is a serious prob-
lem in attempting to obtain a random sample because noncompli-
ance may be correlated with voting preferences. When this is true,
certain voting preferences are underrepresented in the sample.
Some analysts believe that during the 2002 midterm elections
Republican voters were more likely to use call screening technol-
ogy to weed out phone surveys, and that this was one reason that
Republican turnout was higher than predicted. Can we be sure
that this explanation is correct? No. Unless they pick up their
phone and answer, or they respond to a mail survey, or researchers
find some other economical method of surveying their prefer-
ences, it is very difficult to prove or disprove the truth of the state-
ment. The insights about the accuracy and economics of sampling
contained in Deming’s book Some Theory of Sampling are as valid
today as they were a half-century ago.

The “luck of the draw” is a common theme in literature. We are
subject to the vagaries of “fortune,” whether that is expressed in
good weather or bad, sickness or health. Even the genes that, in
part, make us who we are were inherited at random from our par-
ents. Given a set of genes, the effect of the set on the phenotype
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of the organism is often predictable. However, given the parents
of the organism, predicting which genes will be inherited requires
probability (as a general rule). Although random phenomena are
important to all of us—they are some of the principal factors that
determine how we live our lives—for the better part of humanity’s
5,000-year recorded history people simply endured and wondered
about what “fate” had in store for them.

Less than 400 years ago something remarkable happened.
People began to develop the conceptual tools necessary to under-
stand randomness and uncertainty. The value of the work of Pascal
and Fermat in probability and of Graunt and Halley in statistics
was quickly recognized by their peers, and the race to understand
the nature of chance and unpredictable variation began.

During the intervening years, the ideas and language of proba-
bility and statistics have become a part of our everyday experience.
News reports, weather reports, and sports facts—everything that
we are accustomed to classifying as “news”—are now regularly
expressed in the language of statistics and probability. No other
branch of mathematics has had such success in capturing the pop-
ular imagination. No other branch of mathematics has proved so
useful for expressing the ideas that are important to so many peo-
ple. Probability is used to estimate the safety of everything from
vaccines to bridges; statistics is used to help formulate public pol-
icy and even to tell us what we as a people are thinking and doing.
Probability and statistics now lie at the heart of the way we under-
stand the world.

Despite the utility of this type of mathematics no mathematician
would assert that we have done more than scratch the surface of
these remarkable disciplines. As our appreciation for the intercon-
nectivity of complex systems increases, the need for increasingly
sophisticated statistical techniques to analyze the data sets that
purport to describe these systems is keenly felt by all researchers.
New uses for probability continue to be discovered even as math-
ematicians continue to debate the connections between the math-
ematical discipline of probability and its real-world applications.

The history of probability and statistics has just begun.
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C H R O N O L O G Y

ca. 3000 B.C.E.
Hieroglyphic numerals are in use in Egypt.

ca. 2500 B.C.E.
Construction of the Great Pyramid of Khufu takes place.

ca. 2400 B.C.E.
An almost complete system of positional notation is in use in
Mesopotamia.

ca. 1800 B.C.E.
The Code of Hammurabi is promulgated.

ca. 1650 B.C.E.
The Egyptian scribe Ahmes copies what is now known as the Ahmes
(or Rhind) papyrus from an earlier version of the same document.

ca. 1200 B.C.E.
The Trojan War is fought.

ca. 740 B.C.E.
Homer composes the Odyssey and the Iliad, his epic poems about
the Trojan War.

ca. 585 B.C.E.
Thales of Miletus carries out his research into geometry, marking
the beginning of mathematics as a deductive science.

ca. 540 B.C.E.
Pythagoras of Samos establishes the Pythagorean school of 
philosophy.

ca. 500 B.C.E.
Rod numerals are in use in China.
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ca. 420 B.C.E.
Zeno of Elea proposes his philosophical paradoxes.

ca. 399 B.C.E.
Socrates dies.

ca. 360 B.C.E.
Eudoxus, author of the method of exhaustion, carries out his
research into mathematics.

ca. 350 B.C.E.
The Greek mathematician Menaechmus writes an important work
on conic sections.

ca. 347 B.C.E.
Plato dies.

332 B.C.E.
Alexandria, Egypt, center of Greek mathematics, is established.

ca. 300 B.C.E.
Euclid of Alexandria writes Elements, one of the most influential
mathematics books of all time.

ca. 260 B.C.E.
Aristarchus of Samos discovers a method for computing the ratio of
the Earth–Moon distance to the Earth–Sun distance.

ca. 230 B.C.E.
Eratosthenes of Cyrene computes the circumference of Earth.

Apollonius of Perga writes Conics.

Archimedes of Syracuse writes The Method, Equilibrium of Planes,
and other works.

206 B.C.E.
The Han dynasty is established; Chinese mathematics flourishes.

ca. A.D. 150
Ptolemy of Alexandria writes Almagest, the most influential astron-
omy text of antiquity.
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ca. A.D. 250
Diophantus of Alexandria writes Arithmetica, an important step for-
ward for algebra.

ca. 320
Pappus of Alexandria writes his Collection, one of the last influential
Greek mathematical treatises.

415
The death of the Alexandrian philosopher and mathematician
Hypatia marks the end of the Greek mathematical tradition.

ca. 476
The astronomer and mathematician Aryabhata is born; Indian
mathematics flourishes.

ca. 630
The Hindu mathematician and astronomer Brahmagupta writes
Brahma-sphuta-siddhānta, which contains a description of place-
value notation.

641
The Library of Alexandria is burned.

ca. 775
Scholars in Baghdad begin to translate Hindu and Greek works into
Arabic.

ca. 830
Mohammed ibn-Mūsā al-Khwārizmı̄ writes Hisāb al-jabr wa’l
muqābala, a new approach to algebra.

833
Al-Ma’mūn, founder of the House of Wisdom in Baghdad, Iraq, dies.

ca. 840
The Jainist mathematician Mahavira writes Ganita Sara Samgraha,
an important mathematical textbook.

1123
Omar Khayyam, author of Al-jabr w’al muqābala and the Rubáiyát,
the last great classical Islamic mathematician, dies.
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ca. 1144
Bhaskara II writes the Lilavati and the Vija-Ganita, two of the last
great works in the classical Indian mathematical tradition.

1071
William the Conqueror quells the last of the English rebellions.

1086
An intensive survey of the wealth of England is carried out and
summarized in the tables and lists of the Domesday Book.

ca. 1202
Leonardo of Pisa (Fibonacci), author of Liber abaci, arrives in
Europe.

1360
Nicholas Oresme, a French mathematician and Roman Catholic
bishop, represents distance as the area beneath a velocity line.

1471
The German artist Albrecht Dürer is born.

1482
Leonardo da Vinci begins his diaries.

ca. 1541
Niccolò Fontana, an Italian mathematician also known as Tartaglia,
discovers a general method for factoring third-degree algebraic
equations.

1543
Copernicus publishes De Revolutionibus, marking the start of the
Copernican Revolution.

1545
Girolamo Cardano, an Italian mathematician and physician, pub-
lishes Ars Magna, marking the beginning of modern algebra. Later
he publishes Liber de Ludo Aleae, the first book on probability.

ca. 1554
Sir Walter Raleigh, the explorer, adventurer, amateur mathemati-
cian, and patron of the mathematician Thomas Harriot, is born.
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1579
François Viète, a French mathematician, publishes Canon
Mathematicus, marking the beginning of modern algebraic 
notation.

1585
The Dutch mathematician and engineer Simon Stevin publishes
“La disme.”

1609
Johannes Kepler, the proponent of Kepler’s laws of planetary
motion, publishes Astronomia Nova.

Galileo Galilei begins his astronomical observations.

1621
The English mathematician and astronomer Thomas Harriot dies.
His only work, Artis Analyticae Praxis, is published in 1631.

ca. 1630
The French lawyer and mathematician Pierre de Fermat begins a
lifetime of mathematical research. He is the first person to claim to
have proved “Fermat’s last theorem.”

1636
Gérard (Girard) Desargues, a French mathematician and engineer,
publishes Traité de la section perspective, which marks the beginning
of projective geometry.

1637
René Descartes, a French philosopher and mathematician, publishes
Discours de la méthode, permanently changing both algebra and
geometry.

1638
Galileo Galilei publishes Dialogues Concerning Two New Sciences
while under arrest.

1640
Blaise Pascal, a French philosopher, scientist, and mathematician,
publishes Essaie sur les coniques, an extension of the work of
Desargues.
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1642
Blaise Pascal manufactures an early mechanical calculator, the
Pascaline.

1648
The Thirty Years’ War, a series of conflicts that involved much of
Europe, ends.

1649
Oliver Cromwell takes control of the English government after a
civil war.

1654
Pierre de Fermat and Blaise Pascal exchange a series of letters about
probability, thereby inspiring many mathematicians to study the
subject.

1655
John Wallis, an English mathematician and clergyman, publishes
Arithmetica Infinitorum, an important work that presages calculus.

1657
Christian Huygens, a Dutch mathematician, astronomer, and
physicist, publishes Ratiociniis in Ludo Aleae, a highly influential text
in probability theory.

1662
John Graunt, an English businessman and a pioneer in statistics,
publishes his research on the London Bills of Mortality.

1673
Gottfried Leibniz, a German philosopher and mathematician, con-
structs a mechanical calculator that can perform addition, subtrac-
tion, multiplication, division, and extraction of roots.

1683
Seki Kowa, a Japanese mathematician, discovers the theory of
determinants.

1684
Gottfried Leibniz publishes the first paper on calculus, Nova
Methodus pro Maximis et Minimis.
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1687
Isaac Newton, a British mathematician and physicist, publishes
Philosophiae Naturalis Principia Mathematica, beginning a new era in
science.

1693
Edmund Halley, a British mathematician and astronomer, under-
takes a statistical study of the mortality rate in Breslau, Germany.

1698
Thomas Savery, an English engineer and inventor, patents the first
steam engine.

1705
Jacob Bernoulli, a Swiss mathematician, dies. His major work on
probability, Ars Conjectandi, is published in 1713.

1712
The first Newcomen steam engine is installed.

1718
Abraham de Moivre, a French mathematician, publishes The
Doctrine of Chances, the most advanced text of the time on the
theory of probability.

1743
The Anglo-Irish Anglican bishop and philosopher George Berkeley
publishes The Analyst, an attack on the new mathematics pioneered
by Isaac Newton and Gottfried Leibniz.

The French mathematician and philosopher Jean le Rond
d’Alembert begins work on the Encyclopédie, one of the great works
of the Enlightenment.

1748
Leonhard Euler, a Swiss mathematician, publishes his Introductio.

1749
The French mathematician and scientist George-Louis Leclerc
Buffon publishes the first volume of Histoire naturelle.
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1750
Gabriel Cramer, a Swiss mathematician, publishes “Cramer’s rule,”
a procedure for solving systems of linear equations.

1760
Daniel Bernoulli, a Swiss mathematician and scientist, publishes his
probabilistic analysis of the risks and benefits of variolation against
smallpox.

1761
Thomas Bayes, an English theologian and mathematician, dies. His
“Essay Towards Solving a Problem in the Doctrine of Chances” is
published two years later.

The English scientist Joseph Black proposes the idea of latent
heat.

1762
Catherine II (Catherine the Great) is proclaimed empress of Russia.

1769
James Watt obtains his first steam engine patent.

1775
American colonists and British troops fight battles at Lexington and
Concord, Massachusetts.

1778
Voltaire (François-Marie Arouet), a French writer and philosopher,
dies.

1781
William Herschel, a German-born British musician and
astronomer, discovers Uranus.

1789
Unrest in France culminates in the French Revolution.

1793
The Reign of Terror, a period of brutal, state-sanctioned repression,
begins in France.
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1794
The French mathematician Adrien-Marie Legendre (or Le Gendre)
publishes his Éléments de géométrie, a text that will influence mathe-
matics education for decades.

Antoine-Laurent Lavoisier, a French scientist and discoverer of 
the law of conservation of matter, is executed by the French 
government.

1798
Benjamin Thompson (Count Rumford), a British physicist, proposes
the equivalence of heat and work.

1799
Napoléon seizes control of the French government.

Caspar Wessel, a Norwegian mathematician and surveyor, publish-
es the first geometric representation of the complex numbers.

1801
Carl Friedrich Gauss, a German mathematician, publishes
Disquisitiones Arithmeticae.

1805
Adrien-Marie Legendre, a French mathematician, publishes
“Nouvelles methodes pour la determination des orbietes des
comets,” which contains the first description of the method of least
squares.

1806
Jean-Robert Argand, a French bookkeeper, accountant, and math-
ematician, develops the Argand diagram to represent complex
numbers.

1812
Pierre-Simon Laplace, a French mathematician, publishes Theorie
analytique des probabilities, the most influential 19th-century work
on the theory of probability.

1815
Napoléon suffers final defeat at the battle of Waterloo.
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Jean-Victor Poncelet, a French mathematician and the “father of
projective geometry,” publishes Traité des propriétés projectives des 
figures.

1824
The French engineer Sadi Carnot publishes Réflections, wherein he
describes the Carnot engine.

Niels Henrik Abel, a Norwegian mathematician, publishes his
proof of the impossibility of algebraically solving a general fifth-
degree equation.

1826
Nikolay Ivanovich Lobachevsky, a Russian mathematician and “the
Copernicus of geometry,” announces his theory of non-Euclidean
geometry.

1828
Robert Brown, a Scottish botanist, publishes the first description 
of Brownian motion in “A Brief Account of Microscopical
Observations.”

1830
Charles Babbage, a British mathematician and inventor, begins
work on his analytical engine, the first attempt at a modern 
computer.

1832
Janos Bolyai, a Hungarian mathematician, publishes Absolute Science
of Space.

The French mathematician Evariste Galois is killed in a duel.

1843
James Prescott Joule publishes his measurement of the mechanical
equivalent of heat.

1846
The planet Neptune is discovered by the French mathematician
Urbain-Jean-Joseph Le Verrier through a mathematical analysis of
the orbit of Uranus.
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1847
Georg Christian von Staudt publishes Geometrie der Lage, which
shows that projective geometry can be expressed without any
concept of length.

1848
Bernhard Bolzano, a Czech mathematician and theologian, dies.
His study of infinite sets, Paradoxien des Unendlichen, is published
for the first time in 1851.

1850
Rudolph Clausius, a German mathematician and physicist, publishes
his first paper on the theory of heat.

1851
William Thomson (Lord Kelvin), a British scientist, publishes “On
the Dynamical Theory of Heat.”

1854
George Boole, a British mathematician, publishes Laws of Thought.
The mathematics contained therein will make possible the design
of computer logic circuits.

The German mathematician Bernhard Riemann gives the historic
lecture “On the Hypotheses That Form the Foundations of
Geometry.” The ideas therein will play an integral part in the 
theory of relativity.

1855
John Snow, a British physician, publishes “On the Mode of
Communication of Cholera,” the first successful epidemiological
study of a disease.

1859
James Clerk Maxwell, a British physicist, proposes a probabilistic
model for the distribution of molecular velocities in a gas.

Charles Darwin, a British biologist, publishes On the Origin of
Species by Means of Natural Selection.

1861
The American Civil War begins.
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1866
The Austrian biologist and monk Gregor Mendel publishes his
ideas on the theory of heredity in “Versuche über Pflanzen-
hybriden.”

1867
The Canadian Articles of Confederation unify the British colonies
of North America.

1871
Otto von Bismarck is appointed first chancellor of the German
Empire.

1872
The German mathematician Felix Klein announces his Erlanger
Programm, an attempt to categorize all geometries with the use of
group theory.

Lord Kelvin (William Thomson) develops an early analog comput-
er to predict tides.

Richard Dedekind, a German mathematician, rigorously establish-
es the connection between real numbers and the real number line.

1874
Georg Cantor, a German mathematician, publishes “Über eine
Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen,” a pio-
neering paper that shows that not all infinite sets are the same size.

1890
The Hollerith tabulator, an important innovation in calculating
machines, is installed by the United States Census for use in the
1890 census.

1899
The German mathematician David Hilbert publishes the definitive
axiomatic treatment of Euclidean geometry.

1900
David Hilbert announces his list of mathematics problems for the
20th century.
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The Russian mathematician Andrey Andreyevich Markov begins
his research into the theory of probability.

1901
Henri-Léon Lebesgue, a French mathematician, develops his the-
ory of integration.

1905
Ernst Zermelo, a German mathematician, undertakes the task of
axiomatizing set theory.

Albert Einstein, a German-born American physicist, begins to pub-
lish his discoveries in physics.

1906
Marian Smoluchowski, a Polish scientist, publishes his insights into
Brownian motion.

1908
The Hardy-Weinberg law, containing ideas fundamental to popu-
lation genetics, is published.

1910
Bertrand Russell, a British logician and philosopher, and Alfred
North Whitehead, a British mathematician and philosopher, pub-
lish Principia Mathematica, an important work on the foundations of
mathematics.

1914
World War I begins.

1917
Vladimir Ilyich Lenin leads a revolution that results in the founding
of the Union of Soviet Socialist Republics.

1918
World War I ends.

The German mathematician Emmy Noether presents her ideas on
the role of symmetries in physics.
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1929
Andrey Nikolayevich Kolmogorov, a Russian mathematician,
publishes General Theory of Measure and Probability Theory,
putting the theory of probability on a firm axiomatic basis for 
the first time.

1930
Ronald Aylmer Fisher, a British geneticist and statistician, publish-
es Genetical Theory of Natural Selection, an important early attempt
to express the theory of natural selection in mathematics.

1931
Kurt Gödel, an Austrian-born American mathematician, publishes
his incompleteness proof.

The Differential Analyzer, an important development in 
analog computers, is developed at Massachusetts Institute of
Technology.

1933
Karl Pearson, a British innovator in statistics, retires from
University College, London.

1935
George Horace Gallup, a U.S. statistician, founds the American
Institute of Public Opinion.

1937
The British mathematician Alan Turing publishes his insights on
the limits of computability.

1939
World War II begins.

William Edwards Deming joins the United States Census Bureau.

1945
World War II ends.

1946
The Electronic Numerical Integrator and Calculator (ENIAC)
computer begins operation at the University of Pennsylvania.
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1948
While working at Bell Telephone Labs in the United States, Claude
Shannon publishes “A Mathematical Theory of Communication,”
marking the beginning of the Information Age.

1951
The Universal Automatic Computer (UNIVAC I) is installed at the
U.S. Bureau of the Census.

1954
FORTRAN (FORmula TRANslator), one of the first high-level 
computer languages, is introduced.

1956
The American Walter Shewhart, innovator in the field of quality
control, retires from Bell Telephone Laboratories.

1957
Olga Oleinik publishes “Discontinuous solutions to nonlinear 
differential equations,” a milestone in mathematical physics.

1964
IBM Corporation introduces the IBM System/360 computer for
government agencies and large businesses.

1965
Andrey Nikolayevich Kolmogorov establishes the branch of math-
ematics now known as Kolmogorov complexity.

1966
APL (A Programming Language) is implemented on the IBM
System/360 computer.

1972
Amid much fanfare, the French mathematician and philosopher
René Thom establishes a new field of mathematics called catastro-
phe theory.

1973
The C computer language, developed at Bell Laboratories, is essen-
tially completed.
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1975
The French geophysicist Jean Morlet helps develop a new kind of
analysis based on what he calls “wavelets.”

1977
Digital Equipment Corporation introduces the VAX computer.

1981
IBM Corporation introduces the IBM personal computer (PC).

1989
The Belgian mathematician Ingrid Daubechies develops what has
become the mathematical foundation for today’s wavelet research.

1991
The Union of Soviet Socialist Republics dissolves into 15 separate
nations.

1995
The British mathematician Andrew Wiles publishes the first proof
of Fermat’s last theorem.

Cray Research introduces the CRAY E-1200, a machine that sus-
tains a rate of one terraflop (1 trillion calculations per second) on
real-world applications.

The JAVA computer language is introduced commercially by Sun
Microsystems.

1997
René Thom declares the mathematical field of catastrophe theory
“dead.”

2002
Experimental Mathematics celebrates its 10th anniversary. It is a 
refereed journal dedicated to the experimental aspects of mathe-
matical research.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena create a brief,
elegant algorithm to test whether a number is prime, thereby solv-
ing an important centuries-old problem.
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2003
Grigory Perelman produces what may be the first complete proof
of the Poincaré conjecture, a statement on the most fundamental
properties of three-dimensional shapes.
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G L O S S A R Y

assignable cause variation variation in the quality of a product or
process that is due to nonrandom factors

axiom a statement accepted as true to serve as a basis for deductive
reasoning. Today the words axiom and postulate are synonyms

Bayesian of or relating to that part of the theory of probability
concerned with estimating probabilities through the use of prior
knowledge

Bayes’s theorem the first theorem on conditional probabilities. If
one knows the probability of event A given that event B has already
occurred and certain auxiliary information, Bayes’s theorem allows
one to compute the probability of event B given that event A is known
to have occurred. Bayes’s theorem marks the beginning of the study
of inverse probability

Brownian motion random motion of microscopic particles immersed
in a liquid or gas that is due to impacts of the surrounding molecules

chance cause variation variation in quality of a product or process
due to random factors

control chart a statistical tool designed to help measure the degree
of economic control exerted over an industrial process; also known as
a Shewhart control chart

curve fitting any of several mathematical methods for determining
which curve—chosen from a well-defined set of curves—best repre-
sents a data set

determinism in science, the philosophical principle that future and
past states of a system can be predicted from certain equations and
knowledge of the present state of the system
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economic control cost-efficient management of a process

epidemiology the branch of medicine that studies the distribution
of disease in human populations. Statistics is one of the principal
investigative tools of researchers in this field of science

frequentist of or relating to that part of the theory of probability
concerned with estimating probabilities by using the measured fre-
quencies of previous outcomes

independent not influenced by another event. In probability two
events are independent of one another if the occurrence or nonoc-
currence of one event has no effect on the probability of occurrence
or nonoccurrence of the other event

information theory a statistical theory of information that provides
a set of methods for measuring the amount of information present in
a message and the efficiency with which the message is encoded

inverse probability the concept of probability that arose out of
Bayes’s theorem

law of large numbers a theorem that asserts that over the course
of many trials the frequency with which any particular event occurs
approaches the probability of the event

Markov chain a random process consisting of a set of discrete states
or a chain of events in which the probability of future states does not
depend on the occurrence or nonoccurrence of past states

mean the center or average of a set of measurements

measure theory a branch of mathematics that generalizes the
problems of measuring length, area, and volume to the more general
problem of measuring the space occupied by arbitrary sets of points

normal curve a curve used to estimate the probability of occur-
rence of events for many common random processes; also known as
the bell curve or normal distribution

normal distribution see NORMAL CURVE
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Poisson distribution a curve used to estimate the probability of
events for certain types of random processes

probability the branch of mathematics concerned with the study of
chance

random pattern a collection of events whose outcomes could not
have been known before their occurrence

representative sample a segment of a larger population whose
properties reflect the statistical structure of the larger, parent set from
which it was drawn

statistics the branch of mathematics dedicated to the collection
and analysis of data

tests of significance a collection of statistical methods for deter-
mining whether observed variation in a sample represents chance
variation that always occurs when random samples are drawn from 
a parent population or whether the observed variation is due to 
nonrandom causes

universe in sampling theory, the set that contains all elements 
relevant to a particular statistical analysis

variance a measure of the variation about the mean in a set of 
measurements
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MODERN WORKS

Best, Joel. Damned Lies and Statistics: Untangling Numbers from the
Media, Politicians, and Activists. Berkeley: University of California
Press, 2001. A critical and creative examination of the uses and
abuses of statistics and statistical reasoning.

Borel, Émile. Probabilities and Life. New York: Dover Publications,
1962. A short, carefully written introduction to probability and its
applications.

Boyer, Carl B., and Uta C. Merzbach. A History of Mathematics. New
York: John Wiley & Sons, 1991. Boyer was one of the preeminent
mathematics historians of the 20th century. This work contains
much interesting biographical information. The mathematical
information assumes a fairly strong background of the reader.

Bruno, Leonard C. Math and Mathematicians: The History of Mathematics
Discoveries around the World, 2 vols. Detroit, Mich.: U.X.L, 1999.
Despite its name there is little mathematics in this two-volume set.
What you will find is a very large number of brief biographies of many
individuals who are important in the history of mathematics.

Courant, Richard, and Herbert Robbins. What Is Mathematics? An
Elementary Approach to Ideas and Mathematics. New York: Oxford
University Press, 1941. A classic and exhaustive answer to the ques-
tion posed in the title. Courant was an important and influential
20th-century mathematician.

Cushman, Jean. Do You Want to Bet? Your Chance to Find Out about
Probability. New York: Clarion Books, 1991. A simple and sometimes
silly introduction to some of the basic concepts of probability—this
is still a good place to begin.
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David, Florence N. Games, Gods and Gambling: A History of Probability
and Statistical Ideas. New York: Dover Publications, 1998. This is an
excellent account of the early history of probability and statistics. In
addition to an analysis of the early history of the subject, this book
also contains Galileo’s writings on probability, Fermat’s and Pascal’s
correspondence on probability, and a brief excerpt from Abraham
de Moivre’s Doctrine of Chances. Highly recommended.

Dewdney, Alexander K. 200% of Nothing: An Eye-Opening Tour
through the Twists and Turns of Math Abuse and Innumeracy. New
York: John Wiley & Sons, 1993. A critical look at how mathemati-
cal reasoning has been abused to distort truth.

Eastaway, Robert, and Jeremy Wyndham. Why Do Buses Come in
Threes? The Hidden Mathematics of Everyday Life. New York: John
Wiley & Sons, 1998. Nineteen lighthearted essays on the mathe-
matics underlying everything from luck to scheduling problems.

Eves, Howard. An Introduction to the History of Mathematics. New
York: Holt, Rinehart & Winston, 1953. This well-written history of
mathematics places special emphasis on early mathematics. It is
unusual because the history is accompanied by numerous mathe-
matical problems. (The solutions are in the back of the book.)

Freudenthal, Hans. Mathematics Observed. New York: McGraw-Hill,
1967. A collection of seven survey articles about math topics from
computability to geometry to physics (some more technical than
others).

Gardner, Martin. The Colossal Book of Mathematics. New York:
Norton, 2001. Martin Gardner had a gift for seeing things mathe-
matically. This “colossal” book contains sections on geometry, alge-
bra, probability, logic, and more.

Gardner, Martin. Order and Surprise. Buffalo, N.Y.: Prometheus
Books, 1983. A worthwhile contribution to the subject of probabil-
ity in a highly readable form.

Gigerenzer, Gerd. Calculated Risks: How to Know When Numbers
Deceive You. New York: Simon & Schuster, 2002. A fascinating
look at how mathematics is used to gain insight into everything
from breast cancer screening to acquired immunodeficiency 
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syndrome (AIDS) counseling to deoxyribonucleic acid (DNA)
fingerprinting.

Guillen, Michael. Bridges to Infinity: The Human Side of Mathematics.
Los Angeles: Jeremy P. Tarcher, 1983. This book consists of an
engaging nontechnical set of essays on mathematical topics, includ-
ing non-Euclidean geometry, transfinite numbers, and catastrophe
theory.

Hoffman, Paul. Archimedes’ Revenge: The Joys and Perils of
Mathematics. New York: Ballantine, 1989. A relaxed, sometimes
silly look at an interesting and diverse set of math problems rang-
ing from prime numbers and cryptography to Turing machines and
the mathematics of democratic processes.

Kline, Morris. Mathematics for the Nonmathematician. New York:
Dover Publications, 1985. An articulate, not very technical
overview of many important mathematical ideas.

Kline, Morris. Mathematics in Western Culture. New York: Oxford
University Press, 1953. An excellent overview of the development
of Western mathematics in its cultural context, this book is aimed
at an audience with a firm grasp of high-school-level mathematics.

Nahin, Paul J. Dueling Idiots and Other Probability Puzzlers.
Princeton, N.J.: Princeton University Press, 2000. This is a 
collection of entertaining “puzzlers” analyzed from a mathemati-
cal perspective.

Orkin, Michael. Can You Win? The Real Odds for Casino Gambling,
Sports Betting, and Lotteries. New York: W. H. Freeman, 1991. An
enlightening, updated look at the first of all applications of the the-
ory of probability.

Packel, Edward W. The Mathematics of Games and Gambling.
Washington, D.C.: Mathematical Association of America, 1981. A
good introduction to the mathematics underlying two of
humankind’s oldest forms of recreation and disappointment.

Pappas, Theoni. The Joy of Mathematics. San Carlos, Calif.: World
Wide/Tetra, 1986. Aimed at a younger audience, this work searches
for interesting applications of mathematics in the world around us.
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Pierce, John R. An Introduction to Information Theory: Symbols, Signals
and Noise. New York: Dover Publications, 1961. Despite the sound
of the title, this is not a textbook. Among other topics, Pierce, for-
merly of Bell Laboratories, describes some of the mathematics
involved in measuring the amount of information present in a
text—an important application of probability theory.

Salsburg, David. The Lady Tasting Tea: How Statistics Revolutionized
Science in the Twentieth Century. New York: W. H. Freeman, 2001.
A very detailed look at the history of statistics and statistical think-
ing in the 20th century.

Sawyer, Walter W. What Is Calculus About? New York: Random House,
1961. A highly readable description of a sometimes-intimidating, 
historically important subject. Absolutely no calculus background 
is required.

Schiffer, M., and Leon Bowden. The Role of Mathematics in Science.
Washington, D.C.: Mathematical Association of America, 1984.
The first few chapters of this book, ostensibly written for high
school students, will be accessible to many students; the last few
chapters will find a much narrower audience.

Stewart, Ian. From Here to Infinity. New York: Oxford University
Press, 1996. A well-written, very readable overview of several
important contemporary ideas in geometry, algebra, computability,
chaos, and mathematics in nature.

Swetz, Frank J., editor. From Five Fingers to Infinity: A Journey through
the History of Mathematics. Chicago: Open Court, 1994. This is a
fascinating, though not especially focused, look at the history of
mathematics. Highly recommended.

Tabak, John. Math and the Laws of Nature. History of Mathematics.
New York: Facts On File, 2004. More information about the rela-
tionships that exist between random processes and the laws of
nature.

Thomas, David A. Math Projects for Young Scientists. New York:
Franklin Watts, 1988. This project-oriented text gives an introduc-
tion to several historically important geometry problems.
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Weaver, Jefferson H. What Are the Odds? The Chances of
Extraordinary Events in Everyday Life. Amherst, N.Y.: Prometheus,
2001. A lighthearted treatment of probability and statistics and
their applications to romance, death, war, and the chance of
becoming a rock star.

ORIGINAL SOURCES

It can sometimes deepen our appreciation of an important mathe-
matical discovery to read the discoverer’s own description. Often
this is not possible, because the description is too technical.
Fortunately, there are exceptions. Sometimes the discovery is
accessible because the idea does not require a lot of technical 
background to appreciate it. Sometimes, the discoverer writes a
nontechnical account of the technical idea that she or he has 
discovered. Here are some classic papers:

Bernoulli, J. The Law of Large Numbers. In The World of
Mathematics. Vol. 3, edited by James Newman. New York: Dover
Publications, 1956. This excerpt contains Jacob Bernoulli’s own
description of one of the great discoveries in the history of prob-
ability and statistics.

Fermat, Pierre de, and Pascal, Blaise. The exchange of letters
between Pierre de Fermat and Blaise Pascal marks the 
beginning of the modern theory of probability. These letters
have been translated and appear as an appendix in the book
Games, Gods and Gambling: A History of Probability and
Statistical Ideas by Florence N. David (New York: Dover
Publications, 1998).

Fisher, R. A. Mathematics of a Lady Tasting Tea. In The World of
Mathematics. Vol. 3, edited by James R. Newman. New York:
Dover Publications, 1956. A wonderful, largely nontechnical
account of the challenges involved in designing an experiment to
test a hypothesis.
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Graunt, J. Foundations of Vital Statistics. In The World of
Mathematics. Vol. 3, edited by James R. Newman. New York:
Dover Publications, 1956. This excerpt from a 1662 paper
marks the beginning of the modern theory of statistics. It is still
remarkable for its clarity of thought and careful analysis.

Halley, Edmund. First Life Insurance Tables. In The World 
of Mathematics. Vol. 3, edited by James R. Newman. New
York: Dover Publications, 1956. Part of Edmund Halley’s
groundbreaking statistical survey of the bills of mortality of
Breslau.

Hardy, Godfrey H. A Mathematician’s Apology. Cambridge, U.K.:
Cambridge University Press, 1940. Hardy was an excellent
mathematician and a good writer. In this oft-quoted and very
brief book Hardy seeks to explain and sometimes justify his life
as a mathematician.

Laplace, P. Concerning Probability. In The World of Mathematics.
Vol. 2, edited by James R. Newman. New York: Dover
Publications, 1956. A nontechnical introduction to some 
fundamental ideas in the field of probability by one of the 
great innovators in the field.

INTERNET RESOURCES

Athena Earth and Space Science for K–12. Available on-line.
URL: http://inspire.ospi.wednet.edu:8001/. Updated May 13,
1999. Funded by the National Aeronautics and Space
Administration’s (NASA) Public Use of Remote Sensing Data,
this site contains many interesting applications of mathematics
to the study of natural phenomena.

Autenfeld, Robert B. “W. Edwards Deming: The Story of a Truly
Remarkable Person.” Available on-line. URL: http://www.
iqfnet.org/IQF/Ff4203.pdf. Downloaded June 2, 2003. This is a
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sympathetic and very detailed biography of Deming. It has a
good deal of interesting information.

The British Museum. Available on-line. URL: http://www.
thebritishmuseum.ac.uk/compass/. Updated June 2, 2003.
The British Museum is one of the world’s great museums. It
has an extensive collection of images of ancient artifacts
accompanied by informative captions. See, for example, the
Royal Game of Ur, also called the Game of 20 Squares, 
from ancient Mesopotamia. A virtual version of this, one of
humanity’s oldest known games of chance, can be played at
this site as well.

The Eisenhower National Clearinghouse for Mathematics and
Science Education. Available on-line. URL: http://www.enc.
org/. Updated on June 2, 2003. As its name suggests, this site is
a “clearinghouse” for a comprehensive set of links to interesting
sites in math and science.

Electronic Bookshelf. Available on-line. URL: http://hilbert.
dartmouth.edu/~matc/eBookshelf/art/index.html. Updated on
May 21, 2002. This site is maintained by Dartmouth College. It
is both visually beautiful and informative, and it has links to
many creative presentations on computer science, the history of
mathematics, and mathematics. It also treats a number of other
topics from a mathematical perspective.

Eric Weisstein’s World of Mathematics. Available on-line.
URL: http://mathworld.wolfram.com/. Updated on April 10,
2002. This site has brief overviews of a great many topics 
in mathematics. The level of presentation varies substantially
from topic to topic.

Euler, Leonhard. “Reflections on a Singular Kind of Lottery
Named the Genoise Lottery.” Avialable on-line. URL: http://
cerebro.xu.edu/math/Sources/Euler/E812.pdf. This is one of
Euler’s own papers on the mathematics of lotteries. It begins 
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easily enough, but it quickly demonstrates how difficult the 
calculations associated with this subject can become.

Faber, Vance, et al. This is MEGA Mathematics! Available on-
line. URL: http://www.c3.lanl.gov/mega-math. Updated June 2,
2003. Maintained by the Los Alamos National Laboratories, one
of the premier scientific establishments in the world, this site has
a number of unusual offerings. It is well worth a visit.

Fife, Earl, and Larry Husch. Math Archives. “History of
Mathematics.” Available on-line. URL: http://archives.
math.utk.edu/topics/history.html. Updated January 2002.
Information on mathematics, mathematicians, and mathemati-
cal organizations.

Frerichs, Ralph R. John Snow Site. Available on-line. URL:
http://www.ph.ucla.edu/epi/snow.html. Updated May 8, 2003.
This site is associated with the University of California at Los
Angeles Department of Epidemiology. It gives an excellent
description of John Snow and the cholera outbreak at
Broadstreet.

Gangolli, Ramesh. Asian Contributions to Mathematics. Available
on-line. URL: http://www.pps.k12.or.us/depts-c/mc-me/
be-as-ma.pdf. Updated on June 2, 2003. As its name implies, this
well-written on-line book focuses on the history of mathematics
in Asia and its effect on the world history of mathematics. It 
also includes information on the work of Asian Americans, a
welcome contribution to the field.

Heinlow, Lance, and Karen Pagel. “Math History.” Online
Resource. Available on-line. URL: http://www.amatyc.org/
Online Resource/index.html. Updated May 14, 2003. Created
under the auspices of the American Mathematical Association of
Two-Year Colleges, this site is a very extensive collection of links
to mathematical and math-related topics.
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Johnston, Ian. “The Beginnings of Modern Probability
Theory.” Available on-line. URL: http://www.mala.bc.ca/
~johnstoi/darwin/section4.htm. Updated April 2003. Part of
a much larger online installation entitled . . . And Still We 
Evolve: A Handbook on the History of Modern Science, this site,
maintained by Malaspina University-College, is thorough
and accessible.

The Math Forum @ Drexel. The Math Forum Student Center.
Available on-line. URL: http://mathforum.org/students/.
Updated June 2, 2003. Probably the best website for information
about the kinds of mathematics that students encounter in their
school-related studies. You will find interesting and challenging
problems and solutions for students in grades K–12 as well as a
fair amount of college-level information.

Melville, Duncan J. Mesopotamian Mathematics. Available on-
line. URL: http://it.stlawu.edu/ca.dmelvill/mesomath/. Updated
March 17, 2003. This creative site is devoted to many aspects of
Mesopotamian mathematics. It also has a link to a “cuneiform
calculator,” which can be fun to use.

O’Connor, John L., and Edmund F. Robertson. The MacTutor
History of Mathematics Archive. Available on-line. URL:
http://www.gap.dcs.st-and.ac.uk/~history/index.html. Updated
May 2003. This is a valuable resource for anyone interested in
learning more about the history of mathematics. It contains 
an extraordinary collection of biographies of mathematicians
in different cultures and times. In addition, it provides 
information about the historical development of certain key
mathematical ideas.

Probabilistic safety assessment: an analytical tool for assessing
nuclear safety. Available on-line. URL: http://www.nea.fr/html/
brief/brief-08.html. Updated April 2003. This site, maintained
by the French Nuclear Energy Agency, gives an interesting and
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nontechnical overview of how probability theory can be used to
enhance nuclear safety.

United States Census. Available on-line. URL: http://www.
census.gov/. Updated June 2, 2003. The U.S. Census Bureau 
produces an astonishing number of detailed statistical reports.
This is an excellent source of insight into how statistics is used in 
practical situations.

PERIODICALS, THROUGH THE MAIL AND ON-LINE

+Plus

URL: http://pass.maths.org.uk
A site with numerous interesting articles about all aspects of high
school math. They send an email every few weeks to their sub-
scribers to keep them informed about new articles at the site.

Chance

URL: http://www.stat.duke.edu/chance/
This on-line magazine describes itself as The Scientific American of
probability and statistics. It is an excellent source of ideas and con-
tains many entertaining articles.

Function

Business Manager
Department of Mathematics and Statistics
Monash University
Victoria 3800
Australia
function@maths.monash.edu.au
Published five times per year, this refereed journal is aimed at
older high school students.



The Math Goodies Newsletter

http://www.mathgoodies.com/newsletter/
A popular, free e-newsletter that is sent out twice per month.

Parabola: A Mathematics Magazine for Secondary Students

Australian Mathematics Trust
University of Canberra
ACT 2601
Australia
Published twice a year by the Australian Mathematics Trust 
in association with the University of New South Wales, Parabola
is a source of short high-quality articles on many aspects of
mathematics. Some back issues are also available free on-line.
See URL: http://www.maths.unsw.edu.au/Parabola/index.html.

Pi in the Sky

http://www.pims.math.ca/pi/
Part of the Pacific Institute for the Mathematical Sciences, this
high school mathematics magazine is available over the Internet.

Scientific American

415 Madison Avenue
New York, NY 10017
A serious and widely read monthly magazine, Scientific American
regularly carries high-quality articles on mathematics and mathe-
matically intensive branches of science. This is the one “popular”
source of high-quality mathematical information that you will find
at a newsstand.
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