
 1

3D stepper motor system and its GUI
design

A report for project-in-lieu-of-thesis
for masters degree

Student Name: Meng Lian

Advisor: M.A. Abidi

Imaging, Robotics, and Intelligent Systems Laboratory

Dept. of Electrical and Computer Engineering

The University of Tennessee

Email: mlian@utk.edu

 2

Table of Content

Abstract 3

1. Introduction 4

2. Technology of the step motor system 8

 2.1 Variable-reluctance step motor 10

 2.2 Permanent-magnet step motor 11

 2.3 Hybrid step motor 12

3 GUI design essentials 13

4. System integration and GUI design 18

 4.1 Hardware description 18

 4.2 GUI design process 20

 4.2.1 Original control software—motion architect 20

 4.2.3 New interface 22

5 Data acquisition experiments 31

6. Conclusion 36

7. References 37

Appendix

 Comments on Visual Basic source code 39

 3

Abstract
 The theory of motion control has evolved since the late 18th century. Simply,

motion control is defined as accurately controlling the movement of an object based on

speed, distance, load, inertia or a combination of all these factors. Due to high system

complexity and difficult software language implementation, the traditional programmable

logic controller based motion control systems have gradually been replaced by PC based

control systems. In this project, the control to a 3D stepper motor system is accomplished

from a PC and an intuitive and easy to use graphical user interface is designed using

Visual Basic. The hardware system involved in this project contains an ISA pc card, an

indexer, four drive controllers, three linear motion tables and one rotary table which as a

whole allows users to implement linear and rotary motion in the x, y, z and θ directions.

The purpose of the GUI design is to simplify the control process, save users time from

learning a control language and to provide a visualized window for control under the

Windows2000 and XP operating system. The functions include basic, real time click-go

control and motor status feedback. Automatic parameter calculations of loop motion and

hardware system parameter setting windows are integrated into the software. Also the

velocity profile on each axis can be created by user clicks on the specified picture area.

As part of this project, a data acquisition experiment is included to testify the usability of

the GUI and collect human face data that could be used in other face recognition projects.

In this experiment, the rotary axis is controlled to conduct 180 degree half circle motion

with a 4.5 foot long shaft. In this structure the different modalities of cameras are

mounted so that when sitting in the center, a person can have his/her face scanned and

different face views can be acquired. As a whole, the stepper motor system, together with

its graphical user interface, provides a high-accuracy, easily controlled platform with

comparatively low system complexity that is suitable for future applications such as data

collection, robot navigation or camera controlling.

 4

1. Introduction

 Since human society entered the industrial age in the 18th century, motion control,

especially precision motion control, has steadily gathered attention in terms of research,

development and its application to produce innovation. Precision motion control, in

electronic terms, means to accurately control the movement of an object based on speed,

distance, load, inertia or a combination of all these factors. Driven by the requirements

for much higher product performance, higher reliability, longer life and lower cost,

numerous advances have been made recently, especially with the help of digital

computers. With the emergence of nanoscience at the end of the last century, technology

in this field advanced a higher level. Today, high precision motion control has become an

essential requirement in advanced manufacturing systems such as machine tools,

micromanipulators, surface mounted robots, etc.

 Generally, motion control systems can be separated into several parts: the

mechanical device being moved, the motor (servo or stepper) with or without feedback,

motion control I/O, motor driver, intellectual controller unit, and programming/operating

interface software. Traditional motion control systems utilize PLC technology to fulfill

the control task which typically comprises a number of hardware and software elements:

PC for process visualization, hard PLC with coprocessor cards, I/O via field bus, motion

control via parallel cabling and a selection of software operating systems and

programming languages. The standard PLC system is shown by the Figure 1. (a).

Widely used in electrical systems, the PLC based control system has many

advantages. First, the photoelectric isolation on all I/O modules, self-diagnosis function

and the redundant system achieved by the dual-cpu in large scale PLC systems lends the

whole platform high reliability. Additionally, the PLC system has abundant I/O interface

module capabilities according to different signal requirements so that it is adaptive in

various situations. However, despite its advantages, the challenges of the traditional

motion controller system are many. As shown in Figure 1, the PLC system with motion

control has a number of separate components that are required for each individual

function. For instance, PLC is used for logic control; the motion controller platform is

 5

used to control the motor drives; a programming PC runs the various configuration

software packages; an operator interface provides graphic information; separate software

packages are used to program the PLC, motion controller, and operator interface. In many

cases, an additional PC is required to run supervisory control software or data acquisition

(SCADA) to collect or filter production data [1]. Generally, the PLC control system

contains multiple hardware platforms, multiple databases, and multiple software

packages to program and configure each part of the hardware which causes complexity in

connecting components and exchanging data and commands between them. Such

complexity notably prevents PLC from being used in recent highly integrated industrial

applications. In recent years, as microprocessors made computers less expensive and

more competitive in performance, the shift from PLC to PC-based control has been

accomplished for applications requiring single axis or multi-axis coordinated motion

control by combining PLC-based logic and motion control into a single PC platform with

common programming language [1]. The PC control system takes advantage of clear

visualization, easy data manipulation, storage and reporting characteristics, which may be

difficult to implement in PLC. These advantages lead to the fact that numerous small

scale PC control systems are in operation today, especially in the areas of data

acquisition, process monitoring and batch control. The sample composition of a PC

control system is shown in Figure 1(b).

 (a) PLC motion control (b) PC-based motion control

Figure 1.1 Comparison of PLC and PC-based motion control [1]

 6

 In motion systems, the motor is one of the key devices for the reason that it

provides brute motive force. There are many types of electric motors, each with its own

power drive requirements. Three common types are: alternating current (AC) servo

motors, direct current (DC) servo motors and stepper motors.

 AC servo motors operate from alternating current power resources. They can be

inexpensive to build and operate. They are reliable and usually operate at standard line

voltages and frequencies. However the control to the speed of AC motors is difficult to

implement and limits AC motors to most simple motion.

 DC servo motors are suitable for complex motion tasks because the speed and

torque in DC motors are easy to control by varying the voltage and current. Yet, due to

the feedback characteristic, motion systems using this kind of motor are expensive and

highly complex. This is also the main reason to use a step motor when considering the

trade-off of price and system performance.

After many years’ innovations in the attempt to provide higher resolution and

lower cost, the step motor has become a popular solution for achieving controllable

motion due to its unique feature of the output shaft rotating in a discrete number of steps.

Now advanced stepper drives can provide microstepping, a relatively new stepper motor

technology that controls the current in the motor winding to a degree that further

subdivides the number of positions between inner motor poles. This greatly increases the

resolution of the stepper motor while at the same time retains the comparatively low

price. When combined with a suitable controller, a step motor system can be tailored to

meet the requirement of a wide variety of applications, such as X, Y, Z positioning and

rotary indexing tables; the accuracy makes step motors particularly attractive for

scientific and laboratory applications. Furthermore, they provide a simple open-loop

technique for positioning with easy configuration and no need for tuning. Also the fact

that step motors are brushless means the maintenance requirements are minimal and the

relatively high torque produced by these motors makes the system stable when stopped.

 7

Other benefits such as simplicity and low cost make step motor system even more

competitive in small control systems.

The remainder of this report is organized as follows: In chapter 2, an introduction

to the step motor system is provided. A brief working theory and classification of step

motors will be included in this chapter. Chapter 3 mainly describes graphical user

interface design essentials including those does and don’ts, followed by the 3D motor

system (from Compumotor Division, Parker Hannifin Corporation) specifications and

interface implementation in chapter 4. Chapter 5 shows the system setup for the human

face data acquisition experiment. Conclusions and references are in the last of this paper.

 8

2. Technology of the step motor system

 Step motors (sometimes also known as stepping motors, or steppers) can be

defined as “electromagnetic incremental-motion actuators which convert digital pulse

input to analog output motion” [2]. Thus, step motors can be viewed as electrical motors

that are driven by digital pulses rather than a continuous voltage or current. When used in

a open-loop control design, step motors translate a train of pulses into shaft revolutions

and each pulse equals one rotary increment, which is a portion of one complete rotation.

This process is clearly shown in Figure 2.1.

(a) One pulse equals one step (b) Pulse count equals step count

Figure 2.1 Theory of the stepper motor system [3]

 Unlike DC or servo motors, step motors are synchronous devices. Any torque

generated by the system is only the result of the load applied. These motors rely on input

signals to step the rotor through discrete angles. A step motor system often contains three

basic elements, as shown in the following figure:

Figure 2.2 Stepper motor system overview

 The indexer (also called the controller) is a microprocessor that directly processes

the sophisticated high-level commands and provides step pulses and direction outputs to

User Interface Motor Indexer Driver

High level
Commands

 Step
 Pulses

 Motor
Current

 9

the driver. Usually, it is a programmable device and the programming process is

accomplished with hardware switch settings. Most of applications require that the indexer

manage other functions including acceleration, deceleration, drive resolution and distance

as well. Microprocessor-based indexers offer flexibility that they can operate in either

stand-alone mode or interfaced to a host computer.

 The main function of the driver (also called the amplifier) is to convert the

indexer output signal into the power (voltage or current) necessary to drive the motor

winding. One step pulse from the driver is required by one step advance of the motor

shaft. In other word, the speed and torque performance of the step motor is based on the

flow of current from the driver to the motor winding. Inductance, the most important

parameter of the driver, refers to the time it takes for the current to energized the winding.

In most industrial applications, driver circuits are designed to supply a greater amount of

voltage than the voltage that drives the motors.

 Generally speaking, the step motor itself consists of two parts, the stator and the

rotor. The winding is the main part of the stator. Three-phase, four-phase and five-phase

step motors have three, four and five windings, respectively. When in the working mode,

the windings are energized in a specific order that is called the phase sequence. The rotor

mainly composes a magnetic shaft. When the windings are energizing-deenergizing

under the effect of the phase sequence signal, an electromagnetic field is generated

around the rotor. Hence, the rotor starts rotating driven by the regular varied

electromagnetic force.

 Precision is probably one of the most important requirements to justify a step

motor and is mainly determined by the numbers of step per revolution. Usually a step

motor can work under full, half and microstep work modes which are dependent on the

design of the driver. Normally full step mode is achieved by energizing both windings

while reversing the current alternatively. Essentially, one digital input from the driver is

equivalent to one step. The standard step motor has 200 rotor teeth, which means 200 full

steps per revolution, or 1.8 degrees/full step angle. In half step mode, one winding is

 10

energized and then two windings are energized alternately, causing the rotor to rotate half

the distance, making the half step angle 0.9 degrees. Furthermore, microstepping is a new

technology that emerged recently and it controls the current in the motor winding to a

degree that further subdivides the number of positions between poles. In most of the

advanced control systems, microstepping technology is used to achieve smaller step

angles and higher accuracy. On the whole, the fractional stepping method effectively

lowers vibration that can be exhibited when step motors are working under full step

operation at certain speeds. It also reduces the amount of jumpiness that is inherent in

running in full step mode.

 Depending on different classification methods, there are several types of step

motors. Basically, from the point of view of the design method and working theory, there

are three types of step motors that are more popularly used than others: the variable-

reluctance type of step motor (VR), permanent-magnet step motor (PM), and hybrid step

motor.

2.1 Variable-reluctance (VR) step motor

 The variable reluctance step motor is characterized as having soft iron multiple

rotors and a wound stator. The following figure shows the simplest design of VR step

motors

Figure 2.3 VR stepper motor [4]

 As shown by the Figure 2.3, the rotor (inner part) in this motor has 4 teeth and the

stator has 6 poles, which each winding wraps around two opposite poles. When winding

number 1 is energized, the x teeth are attracted to poles numbered 1. When winding 1 is

 11

turned off and winding 2 is turned on, the rotor will rotate 30 degrees so that the y teeth

will line up with poles numbered 2. Simply applying power to 3 windings in the sequence

will make this rotor rotate continuously. Based on the difference in construction methods,

there are two basic types of VR step motor. The first one is a multiple-stator-stack VR

step motor. Motors usually come in the form of three-phase or four-phase construction.

The three-phase, multiple-stator-stack, VR step motor has three electrically and

magnetically independent stator and rotor segments mounted on a common shaft. In order

to make the motor rotate, the stator or rotor must be radically offset from each other.

Most of the early VR step motors are of this type of construction. However, in recent

years, the multiple-stator-stack, VR step motors have become less popular compared to

single-stator-stack types due to their high cost of manufacturing and inefficiency.

Compared with multiple-stator-stack, VR step motors, the single-stator-stack step motor

is more compact in size and simpler to construct. However, only certain step resolutions

can be obtained with this arrangement by specific combinations of the rotor and stator

teeth. Realistically, it can provide step angles that range from 1.8 degrees to 30 degrees.

The biggest difference compared with multiple-stator-stack, VR step motors is that, in the

single stack version, the winding of each electrical phase shares the same lamination

stack, whereas in a multiple stack motor, each electrical phase is wound on a separate

stack length of laminations. This construction method lends single-stator-stack motor

characteristics such as:

• Small step angle possible

• No holding torque with the winding de-energized

• High slew speed possible.

2.2 Permanent-magnet step motor

 The permanent-magnet step motor is also referred to a “can-stack” motor. Usually

PM step motors incorporate a permanent magnet rotor (referred to PMR), coil winding

and magnetically conductive stators as shown in the Figure 2.4. When the coil winding is

energized, an electromagnetic field is formed on the stator which causes the rotor to align

itself with the field. The magnetic field can be altered by sequentially energizing the

stator coils which generate rotary motion.

 12

 Another PM type step motor is the permanent-magnetic-stator (PMS) motor. The

difference is quite obvious. The rotor of this kind of motor is a toothed, soft iron structure

that completes the magnetic circuit

Figure 2.4 PMR and PMS stepper motor [5]

 The most commercially realistic types of PM motor are in two-to-24-pole

configurations, which means the motor has 24 poles on the rotor and two stator sections.

PM step motors are characterized by their simplicity in construction and are low in cost.

Usually they are only used for low-speed applications due to their relatively low torque.

2.3 Hybrid step motor

 Besides the two step motor types discussed previously, hybrid step motors are the

most widely used in all variety of industrial applications. Hybrid motors combine the best

characteristics of the variable reluctance and permanent magnet motors. They are

constructed with multi-toothed stator poles and a serrated permanent magnet rotor. When

energized, electrical current in the coils around each stator creates an electromagnetic

pole in the stator and the teeth in the rotor line up with the serrated teeth in the stator.

Compared with the other two types, hybrid step motors offer finer resolution. Standard

hybrid motors have 200 to 400 rotor teeth and rotate at 0.9- 1.8 step angles. They also

exhibit high static and dynamic torque.

 13

3 GUI design essentials
A GUI (graphical user interface) can be defined as a program interface that takes

advantage of the computer’s graphics capabilities to make the program easier to use.

Well-designed graphical user interfaces can free the user from understanding intricate

theories, learning complex command languages, and implementing complicated

algorithms, etc. According to the encyclopedia, the first graphical user interface was

designed in the 1970s by Xerox Corporation’s Palo Alto Research Center. But it was not

until the 1980s and the emergence of the Apple Macintosh that graphical user interfaces

became popular. One of the main reasons for their slow acceptance was the fact that they

require considerable CPU power and a high-quality monitor, which was not cheap until

recently.

Nowadays, the GUI has become a widely accepted standard. To some extent, the

operating system, such as Windows 2000 or Macintosh, can also be looked at as a large

GUI. From the user’s point of view, the interface stands for the software. Since an

intelligent interface allows users to perform tasks in their own ways, it must be easy to

learn and use. Despite their popularity, there are still some basic principles for all good

interfaces that only are exhibited by a few programs. Common problems that are easily

neglected by the designer can be summarized by the following three aspects:

1. Forgetting the user

Developers often design for what they know, not what the users know. This

problem occurs in many areas but even is more fatal in the interface design because it

immediately makes the user feel incapable of using the product.

2. Controlling the user

One evidence of the designer’s preference for control is to continually attempt to

gray or blacken items during user navigation. This is contradictory to event-driven design

in which the user rather than the software dictates what events will occur.

3. Too many features at the top level

 14

Sometimes the designer’s attempt to put everything on the first screen not only

prevents users from using a desired feature, but also makes the interface look

disorganized and disturbing. A good GUI with an abundance of functions may only have

the most frequently used features on the top window, with most others hidden in a drop-

down panel, accessible when needed.

From the designer’s point of view, to avoid such problems is quite critical when

making the interface friendly and useful for the user. As a matter of fact, the GUI is the

type of software that makes the computer transparent to those users who may not want to

be a programmer. The best way to achieve this transparency is to understand the user’s

own model of what the task requires and interpret that into the user interface. It requires

more than graphic design skills to create quality user interfaces. Clarity and consistency

are important factors at the design time. Using some general representations such as

“File”, “Edit” or “View” is always a good way to provide convenience for those who

have prior knowledge from other successful applications. Also visual or acoustic

feedback maybe very helpful to let people how much longer their operation will take.

In order to make the final product meet the user’s expectations and requirements,

there are three necessary phases that constitute the process of intelligent interface design

[6]. They are: Analysis, Design and Construction. Although these names can also be used

to refer to software development, they have different meanings and steps when referring

to interface design [7]. Their relationship is shown in Figure3.1.

Figure 3.1 The phases of intelligent interface design [6]

 15

Analysis

 The purpose of the analysis phase is to document and verify information about

people who will be using the interface, their current tasks, their concepts and terminology

when performing work, requirements for the interface, and vision of their future work

when the new interface is in place. Work in this phase can be further divided into four

steps:

 1. Identify the current state and scope. The designer may not be the first person to

do the analysis work, so it is critical to know what has and has not been done to avoid

redundancy. Additionally, to decide the scope of the analysis means to identify high-level

user activities, not the concrete flow or steps when performing tasks. The design

constraints, for example, from the hardware, software, programming environment and

project features, should also be taken into account.

 2. Develop user profiles. As mentioned earlier, one of the common mistakes at

design time is for the designer to assume users know what they know. User profiles are

documents that help the designer understand those important design trade-offs, for

example, the user experience with hardware and software environments that the project

will use; user experience with the kind of software that the project will develop; user task

experience; expected frequency of use and job turnover period. If the turnover frequency

is quite high and frequency of use is low, the user will never be an expert with the

software. Thus, the ease of learning feature should be more important. Otherwise, the

designer should pay more attention to ease of use.

 3. Gather data and document tasks, problems and opportunities. This is a more

detailed step compared to step 1. The designer is now able to gather information that

contains important clues to what the interface organization and conceptual design should

be. One must also clarify how much of the future work is going to be ideal and how much

is going to conform to constraints.

 16

 4. Develop usability specifications and user scenarios. A usability specification is

defined as “usable or user-friendly for the interface” [6]. It provides powerful means for

communicating what usability, easy-of-use, and user-friendly really mean for a software

and its interface [6]. Many key attributes are included, such as ease of learning, rapid task

performance, accurate task performance and perceived ease of use.

 A user case scenario is an outline of tasks that describe how users will do their

work; the purpose is to give the designer a hand in conceptual design so that the clear

flow of screens can be developed. In order to create the best flow with good efficiency,

information about frequency of tasks must be documented. Additionally exceptions and

critical tasks should also be noted in these scenarios.

Design

 As shown in the Figure 3.1, the next step after analysis is design. In this phase, the

designer takes everything that has been learned from analysis and creates a high level

construction. It is important for the users to be able to predict what will happen next and

decide what they will do next. They need to have a mental model of how the software

works. Hence, a conceptual model needs to be created for the screen where users will

perform their tasks, and then translate into appearance and organization.

 The main objective of the design phase includes identifying the user objects,

actions and metaphors that should be represented in the interface so that the user can

understand the interface.

 1. Choose major user objects. Major user objects are those that the users have to

manipulate as they move through their workflow. These are usually related to underlying

software objects or the objects described in analysis and design. It’s of the most

importance that those objects that are critical and frequently used are obvious and clear to

the users.

 17

 2. Select Metaphors and Representations. Metaphors are the tools designer use to

“link complex software with the user’s world and are visual or conceptual representations

of major objects and their associated actions” [6]. It’s helpful when the interface contains

any functions new to the users. A simple form can be seen as a metaphor but it’s critical

for the designer to decide which represents the underlying functions best. Thus the

designer must make sure the metaphor supports the user’s primary assumption and

reflects the major objects.

 3. Create a high-level interface design. So far, the designer holds a scene in his

mind about objects, metaphors, and so on. Thus, the task is to convey these ideas into

things such as style, the main window and mockups on the computer screen. In effect, the

first thing to do is to select or adapt a style for the whole interface. The next few steps are

concerned with the main windows. Main windows provide not only a set of user-

performed actions, but also one or a few recognizable home bases. As a consequence,

main windows and related user actions should be identified to represent those major user

objects and major actions. Also, it should be decided how flexible the interface is for

different users and tasks.

 The last point in high-level design is to review and revise. That is, improve the

interface before trying it out with users. This includes identifying conceptual design

problems such as confusing objects or action names, high-level design problems such as

confusing organization of windows and task flow and interface designer

misunderstanding about system scope and design constraints.

Construction

 The final step of GUI design is construction. Now the designer has identified the

users information, their current working concept and requirements for the GUI. The

major objects and representations have been selected and the designer already has an idea

in mind about the GUI style. The remaining task is to construct a detailed and realistic

version of the interface. The main processes in this step can be included: (1) create a

computer-based prototype, (2) further iterate design and test with users, (3) document the

complete and final design.

 18

4. System integration and GUI design
 This and the next chapter conclude my accomplishments to this project. In 4.1, I

will describe how individual hardware components are combined to form the complete

motion system. The process of GUI design and functions is presented in Chapter 4.2.

4.1 Hardware description

 The 3D multi-axis step motor system used in this project consists of the following

components:

• Four S57-102 series rotary stepper motors

• Three linear motion tables (100 series) and one rotary motion table (300 series)

• Four Digiplan PDS series controllers

• One AT6400-Aux1 step and direction indexer

• One AT6400 PC ISA card

The motor, controller, indexer and the PC card are manufactured by Compumotor

Division, Parker Hannifin Corporation. The positioning tables are from the Lintech

Company. The motors are physically mounted on the positioning tables with transmission

shafts. The terminal user controls the motion of the stepper motor by sending parameters

and commands through the controller using a set of particular syntax defined by the

Parker Hannifin Corporation. The complete system connection is shown in Figure 4.1.

Figure 4.1 Stepper motor system

 19

This is a typical step motor system as described earlier and contains regular

components such as an indexer and driver (same as controller). A PC card is installed in

the host computer functioning as a connection between the hardware system and the

computer. Here, a high level command is translated to machine language that is

understandable to the indexer. Step pulse output is generated in the indexer and sent to

the driver. Finally, the analog current from the driver is input to the step motor to produce

motion. The system delay is confined to an unnoticeable scale so that real time control

can be achieved. The main features of this system are:

• 3D system with freedom in the x, y, z directions

• Base rotation function provided by the rotary motor

• Total travel length on linear positioning table: 10 inches

• Highly accurate. The minimum step: 1.05 microns (linear table), 0.0814 degrees

(rotating table).

• Maximum speed: 5 inches on linear axis (120000 steps), about 20 degrees on

rotary axis (40000 steps).

 These step motors are of permanent magnet design. The technical specification of

the motor is as follows:

Compumotor S series rotary step motor (model: s57-102):

 Dimensions:

 Length: 4.0 (+0.72) inches

 Radius: 1.118 (+0.084) inches

 Step pulse input:

 200 nanosecond pulse minimum

 40% duty cycle

 Accuracy: 5 arcminutes (0.0833 degree) typically (unloaded)

 Repeatability: 5 arcseconds (0.00138 degree) typically (unloaded)

 Hysteresis: < 2 arcminutes (0.0334 degree) unloaded

 20

 Maximum speed: 50 rps

Lintech 100 series linear positioning table:

 Dimensions:

 16.0x3.188 inches

 Travel Length: 10 inches

 Load Capacity: 703 kg within 50 km of travel

 238 kg within 1270 km of travel

 Orthogonality: < 30 arcseconds in multi-axis system

+ Lintech 300 series rotary positioning table:

 Dimensions:

 6x6 inches

 Table Top Radius: 3 inches

 Load Capacity: 102 kg within 1 million revolutions

 45 kg within 1 million revolutions when inverted

 Maximum Speed: 10 rpm

4.2 GUI design process
 This subsection describes the process of GUI design of the 3D stepper motor

system and will include some sample images.

4.2.1 Introduction of motion architect

 As mentioned earlier, the system manufacturer provides a set of software called

motion architect. It is a windows-based application development system to help design,

develop and debug programs for the 6000 series motion controller. This software can be

downloaded from www.compumotor.com. The manual is located under

 21

http://www.compumotor.com/manuals/software/MAmanual.pdf. The software provides

functions including system configuration, combination code generator, program editor,

terminal emulator, and program tester. With communication to the PC card and the

indexer, the program can be used to control the system upon selection of the type of

motor controller. The generator automatically generates controller code for the basic

system set-up parameters such as distances and speeds. The editor is used to provide a

programmable environment to create blocks or lines of code. The source code files with a

prg extension can be downloaded to the bus controller for immediate execution. Copying

the code contents to the terminal window can also reach the same goal. The most

frequently used tool in the set is the terminal emulator. Similar to the DOS command

window, the terminal module allows users to type in and execute controller code with

direct communication with the hardware. Another function is that code files can be

transferred to and from the controller. Lastly, the test panel provides users a function to

customize the panel with multiple windows to monitor controller output and

programmable buttons for input. The sample picture of this software packages is shown

in Figure 4.2.

Figure 4.2 Motion architect interface, windows (from top to bottom, left to right): Main

window, code generator, editor, terminal and test panel

 22

 Overall, the motion architect provides a set of tools to help users achieve basic

control of the motor system. However, despite its simplicity and ease of use, the

deficiencies are obvious. For instance, the equipments in the IRIS lab are configured with

three linear motion axises and a 360 degrees rotating table to form a 3-dimensional

system with freedom in the x, y, z directions and an angle (θ) which specifies rotating

degrees. To control such a complicated system for a given distance and speed, a more

intelligent and convenient tool is needed to avoid typing hundreds of commands at the

terminal windows to conduct a loop motion. Also the motion architect software was

developed in the 90’s at the early stage of computer-aided design, which led to interface

development in Windows32 style. Although a patch for the latest version provides

compatibility to the windows 9x and 2000, the interface still looks out of date and some

polishing work needed to be accomplished. Hence, the objective of GUI design is to

make it suitable for complicated motion control and provide an intuitive and visualized

window.

4.2.2 New interface design

 Programming of motion control software, together with interface design, is

accomplished in Visual Basic 6.0 under Windows 2000. VB was chosen because it is

easier to learn and easier to use in interface designing processes. By using user selected

parameters or settings, the software will generate a series of sentences in MCL (motion

control language) syntax. They are downloaded to the motion controller by calling a

function: SendAT6400Block (%device address, $command, 0). There are several

dynamic link library files that are provided by the manufacturer involved in this process.

The most important ones, nt6400.dll and win6400.dll, have to be put in system folders to

ensure the proper operation of the program. The other necessary files include winrt.sys

and at6400.bas. In this case, VB is more suitable than other programming environment

such as VC++ because no bottom level communication with hardware is needed.

 According to the Chapter 2 GUI design essentials, there are three design steps.

When matched with his project, the results in the analysis and design steps can be

summarized by the following description. The users of this GUI are the graduate or

 23

undergraduate students working in the IRIS Lab and they should have a background in

engineering and computer operation. The GUI aims at dealing with applications such as

using one or more axises to achieve precision control of a robot or mount various kinds of

cameras to capture 3D image data. Most of the time, the real time high precision control

of the distance and speed parameters are of more concern than other functions. Thus,

these two factors should be considered as major parameters at design time. Also the style

of the interface is selected to comply with commonly used Microsoft Windows products.

XP-style buttons are applied in each sub window. The main window contains most,

frequently-used functions including the current status of each axis, click and go button

and distance setting. At the same time, the problem of “too many features at top level” is

avoided and the interface looks clear so that the user will not feel confused at first glance.

 There are several individual windows in the GUI. In Visual Basic, each window

corresponds to a file with a frm extension name. Among them, much time and endeavor

were devoted to the main window (AT6400.frm), loop control window (ln.frm) and speed

control window (spdctrl1-4.frm). In order to make the GUI clear to other students who

are totally new to the 3D system, I will describe how this GUI works step by step and

make code comments in appendix. Figure 4.3 shows the flowchart for this software.

 24

Figure 4.3 Flowchart of the GUI

Start -- Initialize

Downloading operating system?

Choose device address

Main Window

Choose device address

Downloading

Single axis motion?

Click and Go

Loop window

Speed Control? Speed
Control
Window

Ok and Loop

Exit

 25

Step 1

Figure 4.4 Initializing window

 Figure 4.4 is the first window shown after launching the executable file. The user

will be asked to make a choice if downloading the device operating environment is

needed. This downloading is the prerequisite step to connect, program or send commands

to the controller and should be done every time the host computer is restarted (i.e. when

the LED on AT6400 indexer is red). After downloading, the LED will turn to green. The

device environment file AT6400.ops should be put under c:\windows\system path.

Step 2

Figure 4.5 Address setting

 No matter what choice the user selects in the previous window, the next window

will ask the user to set the device hardware address, as shown in Figure 4.5. This address

is where the users want the computer to find the PC card and should match with the

switch setting located on the PC card (DIP Switch sw1). This varies on different

 26

computers. In the testing computer, it is set to 776 (decimal). Occasionally, a card

controller error message will occur due to a conflict in memory or specified address

dominated by other peripheral cards. If there is no conflict in the computer system, the

user can download the environment file from the terminal window of the motion architect

or simply restart the computer. Otherwise, a new I/O address needs to be allocated to the

PC card.

Step 3

Figure 4.6 Main control window

 Figure 4.6 displays the main window of the GUI developed. If communication has

been set up with the device, the load position status will be shown on the screen. There

are four columns which dominate the upper part of the interface. Each corresponds to a

motion axis. Load position and moving speed of each axis are shown on the screen. Three

end-of-travel hardware limits are located in each linear table (none in the rotary table).

They are backward, home and forward. The backward and forward switch is located at

the end of the axis and the home switch is close to the backward switch. Usually this is

 27

set as original starting point (also referred to home position). Three buttons at the bottom

of each column simply control the single motion behavior of each axis. The units for the

motor position are in steps. This complies with the default manufacturer hardware

settings. The complete moving distance of each linear table ranges from approximately –

5,000 to +235,000 steps (about 8 inches, hence 30,000 steps=1 inch). All limits are

default enabled which means when the load hits the end limit, continuing motion in the

same direction will be inhibited.

 From the main window, the user can implement basic movement control of the

system. The next moving distance is easy to set through the distance frame located at the

bottom-left corner. Also if the user has learned the system’s motion control language,

more commands can be issued through the command textbox. The “Estop” button is used

to kill the motion on all axises immediately and the “Home all” button returns all axises

to their original points. In sometime particular cases, for instance, the user disables the

hardware limits and sets the motor to continuous mode (the motor will keep turning at a

constant speed until a stop command is issued), the program will disregard the limit and

the motor will keep spinning even if the load has reached the end of the table. In such a

case, the position shown on the screen keeps increasing as the motor spins. Thus it is no

longer accurate. Then the “Return” button is used to clear the encoded position to 0 while

the load does not move.

Step 4

 Other than distance, there are more parameters such as velocity or acceleration

rate that users need to change. They can all be accessed from the menu. More settings

such as the pulse width and driver resolution are under “setting”. According to the

manufacturer’s manual, pulse width is defined as the time the pulse is active. In order to

drive the motor in our system (model s57-102), this parameter should be no less than 1.0

µs. Another setting is driver resolution, which is how many steps the motor will advance

per revolution (default 4000 steps/rev). In fact, values in the speed and acceleration

window are all comparative values. They must be multiplied by driver resolution to get

real values.

 28

Step 5

 As a major advantage compared with motion architect, the loop motion with

specified speed control is an important part in this GUI. This feature simplifies the whole

process by embedding parameter calculation and hundreds of commands can be

downloaded into the program. The user needs to specify several values, for instance,

starting position, ending position and loop times, to achieve loop control. For some

simple cases, three speed profiles has been included into my GUI, as shown in the Figure

4.7.

Figure 4.7 Simple speed-position profiles integrated in GUI

 29

 For simple speed requirements cases as shown above, the user needs only to click

on the axis on which he intends to apply the profile and input a loop time. The motion

will be conducted on the corresponding axis.

The window shown in Figure 4.8 is the customized loop control window. Among

the inputs, “times” is the key value that decides if motion is going to happen in an axis.

The first time check on “copy” will set the parameters for that axis including starting and

ending position, loop times and speed curves into a sample buffer. The second time check

on “copy” of other axises will copy every parameter in that buffer into corresponding

axises so that movements in both axises will happen simultaneously and with the same

speed and distance. If no speed curve is specified, the value in that velocity slider bar will

be used as default. The user can also set the time interval between every time the load

reaches its end and starts motion in the contrary direction.

Figure 4.8 Loop motion control window

Step 6

In case the user needs to specify a different moving speed for different parts of the

motion, a speed control window for each individual axis was designed. First, a work

mode needs to be specified to decide which action among adding, deleting and dragging a

point is about to happen. The picture box allows the user to set a speed-position curve.

 30

The x-axis is the motor position and y is the moving speed. In add mode, the user can

click and add a new point anywhere in the picture box as shown in Figure 4.9. Once a

mouse click is detected, the program will line up this point with its nearest neighbors (if

this is the first point, the program will connect it with the original and the maximum

point). At the same time, a new record with the coordinates of the new point will be

added to the list box on the right. p means position and v means velocity. The preset

maximum motion range is 220,000. Accordingly, the position shown in the list box is in

that scale. Practically, when the user needs to change the whole moving distance to other

values like 100,000, a scale factor will be automatically multiplied to generate the

acceleration rate and time.

Figure 4.9 Speed control window

The other two modes are “delete” and “drag”. In the delete mode, the user needs

to click on the points within the range of a red circle. The previous lines that connect the

point to its nearest neighbors are replaced by a new line between those neighbors. At the

 31

same time, the corresponding record in the list box is deleted. A similar operation

happens in drag mode. The user selects a point by clicking on the red circle and moving

the mouse. The coordinates will be changed. In order to avoid program confusion, the

moving range is limited within the x coordinate of its neighbors. The button “Change” at

the upper right corner allows the user to input a value in the textbox above to specify an

exact desired position.

Step 7

 Once the speed curves are specified, the motors will start rotating after the user

clicks the “Go” button in the loop window. The program will first check the current load

position and the initial position from which the loop will start. An initializing movement

will be made if the values are not equal. Then the program will generate a series of codes

including the distance, the acceleration rate and the moving time.

5 Data Acquisition Experiment
 In order to testify to the usability of the GUI, a data acquisition experiment

followed the design process. The main idea was to utilize the rotary motor to perform 180

degrees scanning of human faces so that different angle views of face profiles could be

acquired and used in a face recognition project. Figure 5.1 shows the hardware platform

sketch and an actual photograph of this setup is shown in Figure 5.2

 32

Figure 5.1 Sketch of data acquisition platform

Figure 5.2 Sample picture of data acquisition platform

 As can be seen from the Figure 5.2, the whole setup is connected to a metal frame

that is made of 80/20 aluminum sticks. In order to maximally reduce moving vibration,

heavy-duty materials such as 2”x 8”x 8’ woods and 1”x3’ metal shafts were used. The

motor was placed on top of the setup and a timing belt used to convey motion. The Figure

5.3 shows the inside of the setup.

Rotating bar

Person

Camera

Black background

Motor

78 inches

 33

Figure 5.3 Inner structure of platform

During scanning, the motor is controlled in rotation from the host computer. With

a person sitting beneath the shaft, the cameras start rotating and real time video data are

sent to a video capturing computer through the RCA ports. Two frame grabbers, which

are connected to two individual cameras, transfer the video to image frames.

Henceforward, after 180-degree scanning (side to side), multiple views of human face

data are acquired.

In order to provide a comparatively large image gallery for the face recognition

project, we considered changing the illumination conditions and having people show

different expressions. Besides the regular room lights, two extra spot lights were placed

in the front of the person so that the lights could be turned on and off in sequence

enabling us to capture able to get face images under different illumination conditions. A

list of all conditions under which we acquired images from includes:

 Different camera modalities

 Thermal camera

 Color camera

 Difference illumination conditions

 Both spot lights on, room light on

 34

 Left spot light on, right off, room light on

 Left spot light off, right on, room light on

 Both spot lights off, room light on

 All off

 Different face expressions

 Anxiety/ Astonished

 Smiling

 Angry/ Worried

Sample results from this process are shown following: (video and thermal images

in the same column indicate+ both are taken at the same moment)

Illumination part:

1.Both lights on

2. Left light on

 35

3. Right light on

4. Both lights off

5. Complete dark

Expression:
1. Anxiety/ Astonished

 36

2. Smiling

3. Angry/ Worried

 37

6. Conclusion

 The design of a graphical user interface for a 3D stepper motor system is

proposed in this paper. The hardware system architecture and software implementation

process is outlined. The complete system consists of four PM type stepper motors, with

three mounted on a linear motion table, one mounted on a rotary motion table, four

motion controllers, one hardware indexer and one PC card. The hardware specifications

are included. All system movements are controlled by a host computer using the GUI

described in this paper. Besides simple movement and basic parameter setting functions,

the GUI provides windows for easy loop motion control with the preset speed-position

curve. A data acquisition experiment followed to testify to the usability of the GUI. The

results show the ability for easy control and accurate positioning. A hardware setup was

designed for acquisition purposes. However, a vibration problem remains. Stability of the

setup affects the quality of the result images.

 In the future, the GUI, together with the hardware system, can be used in more

applications to fulfill the tasks of data acquisition, robot navigation and camera

surveillance, and so on. More GUI functions such as the polynomial speed-positioning

curve and more convenient input methods can also be considered as an extension.

Additionally, the textbox in main window which lets user type MCL sentences allows the

user to realize more functionalities inherited from the manufacturer’s control software

package.

 38

Reference

[1] “Integrating PC-based logic and motion control” White paper, Entivity Incorporation

[2] Benjamin C, Kuo. “Incremental motion control-step motors and control systems”,

1979

[3] Technical paper “Introduction to stepper motor system”. Anaheim Automation

Corporation

[4] Douglas W. Jones “Control of stepping motor. Tutorial”

http://www.cs.uiowa.edu/~jones/step/types.html

[5] http://www.sdp-si.com/D220/PDF/D220T155.pdf

[6] Susan Weinschenk, Pamela Jamar, Sarah C. Yeo. “GUI design essentials”. 1997

[7] Mark Minasi. “Secret of effective GUI design”, 1994

 [8] Tan Kok Kiong, Lee Tong Heng, Dou Huifang and Huang Sunan. “Precision motion

control: design and implementation”, 2001

[9] Igor Aleksander, Henri Farreny, Malik Ghallab Technology. “Decision and

Intelligence (volume 6)”, 1987

[10] J. Randolph Andrews. “Motion control terminal blocks: the next step in distributed

motion control”, Incremental Motion Control Systems and Devices Symposium, 1999

[11] Parker Hannifin Corporation technical paper. “Linear motor basics”

 39

[12] Hayer control system Ltd technical essay. “The advantages of PC-based control

systems”. 2000

[13] Lorenzo Sciavicco, Bruno Siciliano. “A survey on robot control technology”, 2001

[14] www.Compumotor.com

[15] www.motorola.com

 40

Appendix ----Comments of Visual Basic Source code

 In order to make this GUI more understandable, a short explanation of the

algorithm is provided. Focus is on the use of motor control language (referred to as MCL)

in Visual Basic and how to realize real time control to the system so that it is easier for

other people to understand this program and make changes.

 As mentioned earlier, the information exchange between the computer and the

controller is achieved by downloading sequences of code sentences in the format of

MCL. The function, SendAT6400Block (Device_Address%, cmd$, 0) is called every

time when the downloading process takes place. “cmd” is a string that stores the

sentences written in MCL. The main function of the GUI is to generate several “cmd”

strings under different circumstances. The figure below shows a sample cmd string that is

going to be downloaded to chip.

Figure 1 Sample of control code sequences

 At design time, the MLC source codes is always output to a message box before

downloading for clarity and ease in checking. In the Figure 1, colons are used to separate

two sentences. Generally, there are two types of syntax in MCL. The first one is similar

to “d 20000, 30000, 40000, 50000”, where “d” is the command to set the moving

distance on individual axis. “20000, 30000, 40000, 50000” means the motor will move

20000, 30000, 40000, 50000 steps in axis 1, 2, 3 and 4, respectively. An example of the

second syntax would be “go0010”. Each binary bit after “go” stands for the command

settings for one axis. In this example “go0010” means to initiate motion in axis 3, while

at the mean time, other axises remain still. Another frequently used command is “mc”

and its usage is of the second type of syntax. It sets two motion modes of the motor.

When “mc” is set to 1, the continuous mode is enabled and all movements in that axis

 41

will be at a specific velocity with distance command establishing the direction. On the

other hand, all movements will be for a specific distance in the preset mode (mc0).

 One of the areas that contains a number of commands is the loop control window.

When the “Go” button in the loop control window is pressed, the program will first check

how many “time” text boxes are not zero. At the beginning of each time loop, all axises

will go to the initial positions, which are the values in the “From” text box. Those that are

not involved in the loop will be commanded to return to their home position. After the

number of moving axises is detected, the program will determine if there is specified

speed control curve for each axis. If not, the default speed and acceleration rate will be

applied. Also if the speed profiles between axises are detected to be identical, movements

in those axises will happen at the same time. The whole string is stored in the variable

“cmd”. When dealing with complex situations, such as desired motion in several axises

with different speed requirements for each, the string can be very long. In order to

prevent buffer overloads, the string is cut into several parts to download.

 All the MCL commands used in this GUI are indicated below for quick reference.

Commands Description Usage
! Immediate command identifier N/A

@ Global command identifier (applied on all axises) N/A
A Represents acceleration rate A2,2,2,2

AD Represents deceleration rate ad2,2,2,2
CMDDIR Defines directions cmddir0101

COMEXC
Enables continuous command mode (1 means next

command is executed before motion is finished) comexc1
D Distance D2000,2000,2000,2000

DRIVE Drive enable (1: energize, 0: de-energize) drive1111

DRES Drive Resolution
dres
4000,4000,4000,4000

ERRLVL Error detection level errlvl0
GO Initializes motion go1101
K Kill motion N/A

MC Preset/Continuous mode enable mc0000
L Starts a loop L1

LH
Enables hardware limits (0: disable both, 1: disable

cw, 2: disable ccw, 3: enable both) lh3,3,0,3
LN Loop ends N/A

PULSE Pulse width pulse 1,1,1,1
RESET Reset parameters to factory default N/A

T Waiting time T 3

(Note: To download the string, all commands must be followed by a “:”, or they will not

be executed)

