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Abstract 
 The theory of motion control has evolved since the late 18th century. Simply, 

motion control is defined as accurately controlling the movement of an object based on 

speed, distance, load, inertia or a combination of all these factors. Due to high system 

complexity and difficult software language implementation, the traditional programmable 

logic controller based motion control systems have gradually been replaced by PC based 

control systems. In this project, the control to a 3D stepper motor system is accomplished 

from a PC and an intuitive and easy to use graphical user interface is designed using 

Visual Basic. The hardware system involved in this project contains an ISA pc card, an 

indexer, four drive controllers, three linear motion tables and one rotary table which as a 

whole allows users to implement linear and rotary motion in the x, y, z and θ directions. 

The purpose of the GUI design is to simplify the control process, save users time from 

learning a control language and to provide a visualized window for control under the 

Windows2000 and XP operating system. The functions include basic, real time click-go 

control and motor status feedback. Automatic parameter calculations of loop motion and 

hardware system parameter setting windows are integrated into the software. Also the 

velocity profile on each axis can be created by user clicks on the specified picture area. 

As part of this project, a data acquisition experiment is included to testify the usability of 

the GUI and collect human face data that could be used in other face recognition projects. 

In this experiment, the rotary axis is controlled to conduct 180 degree half circle motion 

with a 4.5 foot long shaft. In this structure the different modalities of cameras are 

mounted so that when sitting in the center, a person can have his/her face scanned and 

different face views can be acquired. As a whole, the stepper motor system, together with 

its graphical user interface, provides a high-accuracy, easily controlled platform with 

comparatively low system complexity that is suitable for future applications such as data 

collection, robot navigation or camera controlling. 
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1. Introduction 

 Since human society entered the industrial age in the 18th century, motion control, 

especially precision motion control, has steadily gathered attention in terms of research, 

development and its application to produce innovation. Precision motion control, in 

electronic terms, means to accurately control the movement of an object based on speed, 

distance, load, inertia or a combination of all these factors. Driven by the requirements 

for much higher product performance, higher reliability, longer life and lower cost, 

numerous advances have been made recently, especially with the help of digital 

computers. With the emergence of nanoscience at the end of the last century, technology 

in this field advanced a higher level. Today, high precision motion control has become an 

essential requirement in advanced manufacturing systems such as machine tools, 

micromanipulators, surface mounted robots, etc. 

 

 Generally, motion control systems can be separated into several parts: the 

mechanical device being moved, the motor (servo or stepper) with or without feedback, 

motion control I/O, motor driver, intellectual controller unit, and programming/operating 

interface software. Traditional motion control systems utilize PLC technology to fulfill 

the control task which typically comprises a number of hardware and software elements: 

PC for process visualization, hard PLC with coprocessor cards, I/O via field bus, motion 

control via parallel cabling and a selection of software operating systems and 

programming languages. The standard PLC system is shown by the Figure 1. (a). 

  

Widely used in electrical systems, the PLC based control system has many 

advantages. First, the photoelectric isolation on all I/O modules, self-diagnosis function 

and the redundant system achieved by the dual-cpu in large scale PLC systems lends the 

whole platform high reliability. Additionally, the PLC system has abundant I/O interface 

module capabilities according to different signal requirements so that it is adaptive in 

various situations. However, despite its advantages, the challenges of the traditional 

motion controller system are many. As shown in Figure 1, the PLC system with motion 

control has a number of separate components that are required for each individual 

function. For instance, PLC is used for logic control; the motion controller platform is 
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used to control the motor drives; a programming PC runs the various configuration 

software packages; an operator interface provides graphic information; separate software 

packages are used to program the PLC, motion controller, and operator interface. In many 

cases, an additional PC is required to run supervisory control software or data acquisition 

(SCADA) to collect or filter production data [1]. Generally, the PLC control system 

contains multiple hardware platforms, multiple databases, and multiple software 

packages to program and configure each part of the hardware which causes complexity in 

connecting components and exchanging data and commands between them. Such 

complexity notably prevents PLC from being used in recent highly integrated industrial 

applications. In recent years, as microprocessors made computers less expensive and 

more competitive in performance, the shift from PLC to PC-based control has been 

accomplished for applications requiring single axis or multi-axis coordinated motion 

control by combining PLC-based logic and motion control into a single PC platform with 

common programming language [1]. The PC control system takes advantage of clear 

visualization, easy data manipulation, storage and reporting characteristics, which may be 

difficult to implement in PLC. These advantages lead to the fact that numerous small 

scale PC control systems are in operation today, especially in the areas of data 

acquisition, process monitoring and batch control. The sample composition of a PC 

control system is shown in Figure 1(b). 

                  
                    (a) PLC motion control                                       (b) PC-based motion control  

Figure 1.1 Comparison of PLC and PC-based motion control [1] 
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 In motion systems, the motor is one of the key devices for the reason that it 

provides brute motive force. There are many types of electric motors, each with its own 

power drive requirements. Three common types are: alternating current (AC) servo 

motors, direct current (DC) servo motors and stepper motors. 

 

 AC servo motors operate from alternating current power resources. They can be 

inexpensive to build and operate. They are reliable and usually operate at standard line 

voltages and frequencies. However the control to the speed of AC motors is difficult to 

implement and limits AC motors to most simple motion. 

 

 DC servo motors are suitable for complex motion tasks because the speed and 

torque in DC motors are easy to control by varying the voltage and current. Yet, due to 

the feedback characteristic, motion systems using this kind of motor are expensive and 

highly complex. This is also the main reason to use a step motor when considering the 

trade-off of price and system performance. 

 

After many years’ innovations in the attempt to provide higher resolution and 

lower cost, the step motor has become a popular solution for achieving controllable 

motion due to its unique feature of the output shaft rotating in a discrete number of steps. 

Now advanced stepper drives can provide microstepping, a relatively new stepper motor 

technology that controls the current in the motor winding to a degree that further 

subdivides the number of positions between inner motor poles. This greatly increases the 

resolution of the stepper motor while at the same time retains the comparatively low 

price. When combined with a suitable controller, a step motor system can be tailored to 

meet the requirement of a wide variety of applications, such as X, Y, Z positioning and 

rotary indexing tables; the accuracy makes step motors particularly attractive for 

scientific and laboratory applications. Furthermore, they provide a simple open-loop 

technique for positioning with easy configuration and no need for tuning. Also the fact 

that step motors are brushless means the maintenance requirements are minimal and the 

relatively high torque produced by these motors makes the system stable when stopped. 



 7

Other benefits such as simplicity and low cost make step motor system even more 

competitive in small control systems. 

 

The remainder of this report is organized as follows: In chapter 2, an introduction 

to the step motor system is provided. A brief working theory and classification of step 

motors will be included in this chapter. Chapter 3 mainly describes graphical user 

interface design essentials including those does and don’ts, followed by the 3D motor 

system (from Compumotor Division, Parker Hannifin Corporation) specifications and 

interface implementation in chapter 4. Chapter 5 shows the system setup for the human 

face data acquisition experiment. Conclusions and references are in the last of this paper. 
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2. Technology of the step motor system 
 

 Step motors (sometimes also known as stepping motors, or steppers) can be 

defined as “electromagnetic incremental-motion actuators which convert digital pulse 

input to analog output motion” [2]. Thus, step motors can be viewed as electrical motors 

that are driven by digital pulses rather than a continuous voltage or current. When used in 

a open-loop control design, step motors translate a train of pulses into shaft revolutions 

and each pulse equals one rotary increment, which is a portion of one complete rotation. 

This process is clearly shown in Figure 2.1. 

       
(a) One pulse equals one step                       (b) Pulse count equals step count 

Figure 2.1 Theory of the stepper motor system [3] 

 

 Unlike DC or servo motors, step motors are synchronous devices. Any torque 

generated by the system is only the result of the load applied. These motors rely on input 

signals to step the rotor through discrete angles. A step motor system often contains three 

basic elements, as shown in the following figure: 

                        

 
Figure 2.2 Stepper motor system overview 

 The indexer (also called the controller) is a microprocessor that directly processes 

the sophisticated high-level commands and provides step pulses and direction outputs to 

User Interface Motor Indexer Driver 

High level  
Commands 

   Step 
  Pulses 

  Motor 
Current 
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the driver. Usually, it is a programmable device and the programming process is 

accomplished with hardware switch settings. Most of applications require that the indexer 

manage other functions including acceleration, deceleration, drive resolution and distance 

as well. Microprocessor-based indexers offer flexibility that they can operate in either 

stand-alone mode or interfaced to a host computer. 

 

 The main function of the driver (also called the amplifier) is to convert the 

indexer output signal into the power (voltage or current) necessary to drive the motor 

winding. One step pulse from the driver is required by one step advance of the motor 

shaft. In other word, the speed and torque performance of the step motor is based on the 

flow of current from the driver to the motor winding. Inductance, the most important 

parameter of the driver, refers to the time it takes for the current to energized the winding. 

In most industrial applications, driver circuits are designed to supply a greater amount of 

voltage than the voltage that drives the motors. 

 

 Generally speaking, the step motor itself consists of two parts, the stator and the 

rotor. The winding is the main part of the stator. Three-phase, four-phase and five-phase 

step motors have three, four and five windings, respectively. When in the working mode, 

the windings are energized in a specific order that is called the phase sequence. The rotor 

mainly composes a magnetic shaft. When the windings are energizing-deenergizing 

under the effect of the phase sequence signal, an electromagnetic field is generated 

around the rotor. Hence, the rotor starts rotating driven by the regular varied 

electromagnetic force.  

 

 Precision is probably one of the most important requirements to justify a step 

motor and is mainly determined by the numbers of step per revolution. Usually a step 

motor can work under full, half and microstep work modes which are dependent on the 

design of the driver. Normally full step mode is achieved by energizing both windings 

while reversing the current alternatively. Essentially, one digital input from the driver is 

equivalent to one step. The standard step motor has 200 rotor teeth, which means 200 full 

steps per revolution, or 1.8 degrees/full step angle. In half step mode, one winding is 
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energized and then two windings are energized alternately, causing the rotor to rotate half 

the distance, making the half step angle 0.9 degrees. Furthermore, microstepping is a new 

technology that emerged recently and it controls the current in the motor winding to a 

degree that further subdivides the number of positions between poles. In most of the 

advanced control systems, microstepping technology is used to achieve smaller step 

angles and higher accuracy. On the whole, the fractional stepping method effectively 

lowers vibration that can be exhibited when step motors are working under full step 

operation at certain speeds.  It also reduces the amount of jumpiness that is inherent in 

running in full step mode. 

 

 Depending on different classification methods, there are several types of step 

motors. Basically, from the point of view of the design method and working theory, there 

are three types of step motors that are more popularly used than others: the variable-

reluctance type of step motor (VR), permanent-magnet step motor (PM), and hybrid step 

motor. 

 

2.1 Variable-reluctance (VR) step motor 

 The variable reluctance step motor is characterized as having soft iron multiple 

rotors and a wound stator. The following figure shows the simplest design of VR step 

motors 

                        
Figure 2.3 VR stepper motor [4] 

  

 As shown by the Figure 2.3, the rotor (inner part) in this motor has 4 teeth and the 

stator has 6 poles, which each winding wraps around two opposite poles. When winding 

number 1 is energized, the x teeth are attracted to poles numbered 1. When winding 1 is 
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turned off and winding 2 is turned on, the rotor will rotate 30 degrees so that the y teeth 

will line up with poles numbered 2. Simply applying power to 3 windings in the sequence 

will make this rotor rotate continuously. Based on the difference in construction methods, 

there are two basic types of VR step motor. The first one is a multiple-stator-stack VR 

step motor. Motors usually come in the form of three-phase or four-phase construction. 

The three-phase, multiple-stator-stack, VR step motor has three electrically and 

magnetically independent stator and rotor segments mounted on a common shaft. In order 

to make the motor rotate, the stator or rotor must be radically offset from each other. 

Most of the early VR step motors are of this type of construction. However, in recent 

years, the multiple-stator-stack, VR step motors have become less popular compared to 

single-stator-stack types due to their high cost of manufacturing and inefficiency. 

Compared with multiple-stator-stack, VR step motors, the single-stator-stack step motor 

is more compact in size and simpler to construct. However, only certain step resolutions 

can be obtained with this arrangement by specific combinations of the rotor and stator 

teeth. Realistically, it can provide step angles that range from 1.8 degrees to 30 degrees. 

The biggest difference compared with multiple-stator-stack, VR step motors is that, in the 

single stack version, the winding of each electrical phase shares the same lamination 

stack, whereas in a multiple stack motor, each electrical phase is wound on a separate 

stack length of laminations. This construction method lends single-stator-stack motor 

characteristics such as: 

• Small step angle possible 

• No holding torque with the winding de-energized 

• High slew speed possible. 

 

2.2 Permanent-magnet step motor 

 The permanent-magnet step motor is also referred to a “can-stack” motor. Usually 

PM step motors incorporate a permanent magnet rotor (referred to PMR), coil winding 

and magnetically conductive stators as shown in the Figure 2.4. When the coil winding is 

energized, an electromagnetic field is formed on the stator which causes the rotor to align 

itself with the field. The magnetic field can be altered by sequentially energizing the 

stator coils which generate rotary motion. 
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 Another PM type step motor is the permanent-magnetic-stator (PMS) motor. The 

difference is quite obvious. The rotor of this kind of motor is a toothed, soft iron structure 

that completes the magnetic circuit 

                
Figure 2.4 PMR and PMS stepper motor [5] 

  The most commercially realistic types of PM motor are in two-to-24-pole 

configurations, which means the motor has 24 poles on the rotor and two stator sections. 

PM step motors are characterized by their simplicity in construction and are low in cost. 

Usually they are only used for low-speed applications due to their relatively low torque. 

  

2.3 Hybrid step motor 

 Besides the two step motor types discussed previously, hybrid step motors are the 

most widely used in all variety of industrial applications. Hybrid motors combine the best 

characteristics of the variable reluctance and permanent magnet motors. They are 

constructed with multi-toothed stator poles and a serrated permanent magnet rotor. When 

energized, electrical current in the coils around each stator creates an electromagnetic 

pole in the stator and the teeth in the rotor line up with the serrated teeth in the stator. 

Compared with the other two types, hybrid step motors offer finer resolution. Standard 

hybrid motors have 200 to 400 rotor teeth and rotate at 0.9- 1.8 step angles. They also 

exhibit high static and dynamic torque. 

  

 



 13

3 GUI design essentials 
A GUI (graphical user interface) can be defined as a program interface that takes 

advantage of the computer’s graphics capabilities to make the program easier to use. 

Well-designed graphical user interfaces can free the user from understanding intricate 

theories, learning complex command languages, and implementing complicated 

algorithms, etc. According to the encyclopedia, the first graphical user interface was 

designed in the 1970s by Xerox Corporation’s Palo Alto Research Center. But it was not 

until the 1980s and the emergence of the Apple Macintosh that graphical user interfaces 

became popular. One of the main reasons for their slow acceptance was the fact that they 

require considerable CPU power and a high-quality monitor, which was not cheap until 

recently. 

 

Nowadays, the GUI has become a widely accepted standard. To some extent, the 

operating system, such as Windows 2000 or Macintosh, can also be looked at as a large 

GUI. From the user’s point of view, the interface stands for the software. Since an 

intelligent interface allows users to perform tasks in their own ways, it must be easy to 

learn and use. Despite their popularity, there are still some basic principles for all good 

interfaces that only are exhibited by a few programs. Common problems that are easily 

neglected by the designer can be summarized by the following three aspects: 

 

1. Forgetting the user 

Developers often design for what they know, not what the users know. This 

problem occurs in many areas but even is more fatal in the interface design because it 

immediately makes the user feel incapable of using the product. 

 

2. Controlling the user 

One evidence of the designer’s preference for control is to continually attempt to 

gray or blacken items during user navigation. This is contradictory to event-driven design 

in which the user rather than the software dictates what events will occur. 

 

3. Too many features at the top level 
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Sometimes the designer’s attempt to put everything on the first screen not only 

prevents users from using a desired feature, but also makes the interface look 

disorganized and disturbing. A good GUI with an abundance of functions may only have 

the most frequently used features on the top window, with most others hidden in a drop-

down panel, accessible when needed.     

  

From the designer’s point of view, to avoid such problems is quite critical when 

making the interface friendly and useful for the user. As a matter of fact, the GUI is the 

type of software that makes the computer transparent to those users who may not want to 

be a programmer. The best way to achieve this transparency is to understand the user’s 

own model of what the task requires and interpret that into the user interface. It requires 

more than graphic design skills to create quality user interfaces. Clarity and consistency 

are important factors at the design time. Using some general representations such as 

“File”, “Edit” or “View” is always a good way to provide convenience for those who 

have prior knowledge from other successful applications. Also visual or acoustic 

feedback maybe very helpful to let people how much longer their operation will take. 

   

In order to make the final product meet the user’s expectations and requirements, 

there are three necessary phases that constitute the process of intelligent interface design 

[6]. They are: Analysis, Design and Construction. Although these names can also be used 

to refer to software development, they have different meanings and steps when referring 

to interface design [7]. Their relationship is shown in Figure3.1. 

 
Figure 3.1 The phases of intelligent interface design [6] 
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Analysis 

 

 The purpose of the analysis phase is to document and verify information about 

people who will be using the interface, their current tasks, their concepts and terminology 

when performing work, requirements for the interface, and vision of their future work 

when the new interface is in place.  Work in this phase can be further divided into four 

steps:  

  

 1. Identify the current state and scope. The designer may not be the first person to 

do the analysis work, so it is critical to know what has and has not been done to avoid 

redundancy. Additionally, to decide the scope of the analysis means to identify high-level 

user activities, not the concrete flow or steps when performing tasks. The design 

constraints, for example, from the hardware, software, programming environment and 

project features, should also be taken into account.  

 

 2. Develop user profiles. As mentioned earlier, one of the common mistakes at 

design time is for the designer to assume users know what they know. User profiles are 

documents that help the designer understand those important design trade-offs, for 

example, the user experience with hardware and software environments that the project 

will use; user experience with the kind of software that the project will develop; user task 

experience; expected frequency of use and job turnover period. If the turnover frequency 

is quite high and frequency of use is low, the user will never be an expert with the 

software. Thus, the ease of learning feature should be more important. Otherwise, the 

designer should pay more attention to ease of use. 

  

 3. Gather data and document tasks, problems and opportunities. This is a more 

detailed step compared to step 1. The designer is now able to gather information that 

contains important clues to what the interface organization and conceptual design should 

be. One must also clarify how much of the future work is going to be ideal and how much 

is going to conform to constraints. 
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 4. Develop usability specifications and user scenarios. A usability specification is 

defined as “usable or user-friendly for the interface” [6]. It provides powerful means for 

communicating what usability, easy-of-use, and user-friendly really mean for a software 

and its interface [6]. Many key attributes are included, such as ease of learning, rapid task 

performance, accurate task performance and perceived ease of use.  

  

 A user case scenario is an outline of tasks that describe how users will do their 

work; the purpose is to give the designer a hand in conceptual design so that the clear 

flow of screens can be developed. In order to create the best flow with good efficiency, 

information about frequency of tasks must be documented. Additionally exceptions and 

critical tasks should also be noted in these scenarios.  

 

Design 

 

 As shown in the Figure 3.1, the next step after analysis is design. In this phase, the 

designer takes everything that has been learned from analysis and creates a high level 

construction. It is important for the users to be able to predict what will happen next and 

decide what they will do next. They need to have a mental model of how the software 

works. Hence, a conceptual model needs to be created for the screen where users will 

perform their tasks, and then translate into appearance and organization.  

 

 The main objective of the design phase includes identifying the user objects, 

actions and metaphors that should be represented in the interface so that the user can 

understand the interface.  

 

 1. Choose major user objects. Major user objects are those that the users have to 

manipulate as they move through their workflow. These are usually related to underlying 

software objects or the objects described in analysis and design. It’s of the most 

importance that those objects that are critical and frequently used are obvious and clear to 

the users.  
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 2. Select Metaphors and Representations. Metaphors are the tools designer use to 

“link complex software with the user’s world and are visual or conceptual representations 

of major objects and their associated actions” [6]. It’s helpful when the interface contains 

any functions new to the users. A simple form can be seen as a metaphor but it’s critical 

for the designer to decide which represents the underlying functions best. Thus the 

designer must make sure the metaphor supports the user’s primary assumption and 

reflects the major objects.  

  

 3. Create a high-level interface design. So far, the designer holds a scene in his 

mind about objects, metaphors, and so on. Thus, the task is to convey these ideas into 

things such as style, the main window and mockups on the computer screen. In effect, the 

first thing to do is to select or adapt a style for the whole interface. The next few steps are 

concerned with the main windows. Main windows provide not only a set of user-

performed actions, but also one or a few recognizable home bases. As a consequence, 

main windows and related user actions should be identified to represent those major user 

objects and major actions. Also, it should be decided how flexible the interface is for 

different users and tasks.  

 The last point in high-level design is to review and revise. That is, improve the 

interface before trying it out with users. This includes identifying conceptual design 

problems such as confusing objects or action names, high-level design problems such as 

confusing organization of windows and task flow and interface designer 

misunderstanding about system scope and design constraints. 

 

Construction 

 The final step of GUI design is construction. Now the designer has identified the 

users information, their current working concept and requirements for the GUI. The 

major objects and representations have been selected and the designer already has an idea 

in mind about the GUI style. The remaining task is to construct a detailed and realistic 

version of the interface. The main processes in this step can be included: (1) create a 

computer-based prototype, (2) further iterate design and test with users, (3) document the 

complete and final design.  
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4. System integration and GUI design  
 This and the next chapter conclude my accomplishments to this project. In 4.1, I 

will describe how individual hardware components are combined to form the complete 

motion system. The process of GUI design and functions is presented in Chapter 4.2. 

  

4.1 Hardware description 

 The 3D multi-axis step motor system used in this project consists of the following 

components: 

• Four S57-102 series rotary stepper motors  

• Three linear motion tables (100 series) and one rotary motion table (300 series) 

• Four Digiplan PDS series controllers 

• One AT6400-Aux1 step and direction indexer 

• One AT6400 PC ISA card 

 

The motor, controller, indexer and the PC card are manufactured by Compumotor 

Division, Parker Hannifin Corporation. The positioning tables are from the Lintech 

Company. The motors are physically mounted on the positioning tables with transmission 

shafts. The terminal user controls the motion of the stepper motor by sending parameters 

and commands through the controller using a set of particular syntax defined by the 

Parker Hannifin Corporation. The complete system connection is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Stepper motor system  
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This is a typical step motor system as described earlier and contains regular 

components such as an indexer and driver (same as controller). A PC card is installed in 

the host computer functioning as a connection between the hardware system and the 

computer. Here, a high level command is translated to machine language that is 

understandable to the indexer. Step pulse output is generated in the indexer and sent to 

the driver. Finally, the analog current from the driver is input to the step motor to produce 

motion. The system delay is confined to an unnoticeable scale so that real time control 

can be achieved. The main features of this system are: 

• 3D system with freedom in the x, y, z directions  

• Base rotation function provided by the rotary motor 

• Total travel length on linear positioning table: 10 inches 

• Highly accurate. The minimum step: 1.05 microns (linear table), 0.0814 degrees 

(rotating table). 

• Maximum speed: 5 inches on linear axis (120000 steps), about 20 degrees on 

rotary axis (40000 steps). 

 These step motors are of permanent magnet design. The technical specification of 

the motor is as follows: 

 

Compumotor S series rotary step motor (model: s57-102): 

 Dimensions: 

                                 Length: 4.0 (+0.72) inches 

                                                Radius: 1.118 (+0.084) inches 

 Step pulse input: 

   200 nanosecond pulse minimum 

   40% duty cycle 

 Accuracy: 5 arcminutes (0.0833 degree) typically (unloaded) 

 Repeatability: 5 arcseconds (0.00138 degree) typically (unloaded) 

 Hysteresis: < 2 arcminutes (0.0334 degree) unloaded 
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 Maximum speed: 50 rps 

 

Lintech 100 series linear positioning table: 

 Dimensions: 

                                16.0x3.188 inches 

 Travel Length: 10 inches 

 Load Capacity: 703 kg within 50 km of travel 

    238 kg within 1270 km of travel 

 Orthogonality: < 30 arcseconds in multi-axis system 

 

+ Lintech 300 series rotary positioning table: 

 Dimensions: 

          6x6 inches 

 Table Top Radius: 3 inches 

 Load Capacity: 102 kg within 1 million revolutions 

     45 kg within 1 million revolutions when inverted 

 Maximum Speed: 10 rpm 

 

4.2 GUI design process 
 This subsection describes the process of GUI design of the 3D stepper motor 

system and will include some sample images. 

 

4.2.1 Introduction of motion architect 

 As mentioned earlier, the system manufacturer provides a set of software called 

motion architect. It is a windows-based application development system to help design, 

develop and debug programs for the 6000 series motion controller. This software can be 

downloaded from www.compumotor.com. The manual is located under 
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http://www.compumotor.com/manuals/software/MAmanual.pdf. The software provides 

functions including system configuration, combination code generator, program editor, 

terminal emulator, and program tester. With communication to the PC card and the 

indexer, the program can be used to control the system upon selection of the type of 

motor controller. The generator automatically generates controller code for the basic 

system set-up parameters such as distances and speeds. The editor is used to provide a 

programmable environment to create blocks or lines of code. The source code files with a 

prg extension can be downloaded to the bus controller for immediate execution. Copying 

the code contents to the terminal window can also reach the same goal. The most 

frequently used tool in the set is the terminal emulator. Similar to the DOS command 

window, the terminal module allows users to type in and execute controller code with 

direct communication with the hardware. Another function is that code files can be 

transferred to and from the controller. Lastly, the test panel provides users a function to 

customize the panel with multiple windows to monitor controller output and 

programmable buttons for input. The sample picture of this software packages is shown 

in Figure 4.2. 

 
Figure 4.2 Motion architect interface, windows (from top to bottom, left to right): Main 

window, code generator, editor, terminal and test panel 
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 Overall, the motion architect provides a set of tools to help users achieve basic 

control of the motor system. However, despite its simplicity and ease of use, the 

deficiencies are obvious. For instance, the equipments in the IRIS lab are configured with 

three linear motion axises and a 360 degrees rotating table to form a 3-dimensional 

system with freedom in the x, y, z directions and an angle (θ) which specifies rotating 

degrees. To control such a complicated system for a given distance and speed, a more 

intelligent and convenient tool is needed to avoid typing hundreds of commands at the 

terminal windows to conduct a loop motion. Also the motion architect software was 

developed in the 90’s at the early stage of computer-aided design, which led to interface 

development in Windows32 style. Although a patch for the latest version provides 

compatibility to the windows 9x and 2000, the interface still looks out of date and some 

polishing work needed to be accomplished. Hence, the objective of GUI design is to 

make it suitable for complicated motion control and provide an intuitive and visualized 

window. 

 

4.2.2 New interface design 

 Programming of motion control software, together with interface design, is 

accomplished in Visual Basic 6.0 under Windows 2000. VB was chosen because it is 

easier to learn and easier to use in interface designing processes. By using user selected 

parameters or settings, the software will generate a series of sentences in MCL (motion 

control language) syntax. They are downloaded to the motion controller by calling a 

function: SendAT6400Block (%device address, $command, 0). There are several 

dynamic link library files that are provided by the manufacturer involved in this process. 

The most important ones, nt6400.dll and win6400.dll, have to be put in system folders to 

ensure the proper operation of the program. The other necessary files include winrt.sys 

and at6400.bas. In this case, VB is more suitable than other programming environment 

such as VC++ because no bottom level communication with hardware is needed. 

 

 According to the Chapter 2 GUI design essentials, there are three design steps. 

When matched with his project, the results in the analysis and design steps can be 

summarized by the following description. The users of this GUI are the graduate or 
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undergraduate students working in the IRIS Lab and they should have a background in 

engineering and computer operation. The GUI aims at dealing with applications such as 

using one or more axises to achieve precision control of a robot or mount various kinds of 

cameras to capture 3D image data. Most of the time, the real time high precision control 

of the distance and speed parameters are of more concern than other functions. Thus, 

these two factors should be considered as major parameters at design time. Also the style 

of the interface is selected to comply with commonly used Microsoft Windows products. 

XP-style buttons are applied in each sub window. The main window contains most, 

frequently-used functions including the current status of each axis, click and go button 

and distance setting. At the same time, the problem of “too many features at top level” is 

avoided and the interface looks clear so that the user will not feel confused at first glance. 

 

 There are several individual windows in the GUI. In Visual Basic, each window 

corresponds to a file with a frm extension name. Among them, much time and endeavor 

were devoted to the main window (AT6400.frm), loop control window (ln.frm) and speed 

control window (spdctrl1-4.frm). In order to make the GUI clear to other students who 

are totally new to the 3D system, I will describe how this GUI works step by step and 

make code comments in appendix. Figure 4.3 shows the flowchart for this software. 
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Figure 4.3 Flowchart of the GUI 
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Step 1 

 
Figure 4.4 Initializing window 

 Figure 4.4 is the first window shown after launching the executable file. The user 

will be asked to make a choice if downloading the device operating environment is 

needed. This downloading is the prerequisite step to connect, program or send commands 

to the controller and should be done every time the host computer is restarted (i.e. when 

the LED on AT6400 indexer is red). After downloading, the LED will turn to green. The 

device environment file AT6400.ops should be put under c:\windows\system path. 

 

Step 2 

 
Figure 4.5 Address setting 

 No matter what choice the user selects in the previous window, the next window 

will ask the user to set the device hardware address, as shown in Figure 4.5. This address 

is where the users want the computer to find the PC card and should match with the 

switch setting located on the PC card (DIP Switch sw1). This varies on different 
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computers. In the testing computer, it is set to 776 (decimal). Occasionally, a card 

controller error message will occur due to a conflict in memory or specified address 

dominated by other peripheral cards. If there is no conflict in the computer system, the 

user can download the environment file from the terminal window of the motion architect 

or simply restart the computer. Otherwise, a new I/O address needs to be allocated to the 

PC card. 

 

Step 3 

 
Figure 4.6 Main control window 

 Figure 4.6 displays the main window of the GUI developed. If communication has 

been set up with the device, the load position status will be shown on the screen. There 

are four columns which dominate the upper part of the interface. Each corresponds to a 

motion axis. Load position and moving speed of each axis are shown on the screen. Three 

end-of-travel hardware limits are located in each linear table (none in the rotary table). 

They are backward, home and forward.  The backward and forward switch is located at 

the end of the axis and the home switch is close to the backward switch. Usually this is 
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set as original starting point (also referred to home position). Three buttons at the bottom 

of each column simply control the single motion behavior of each axis. The units for the 

motor position are in steps. This complies with the default manufacturer hardware 

settings. The complete moving distance of each linear table ranges from approximately –

5,000 to +235,000 steps (about 8 inches, hence 30,000 steps=1 inch). All limits are 

default enabled which means when the load hits the end limit, continuing motion in the 

same direction will be inhibited. 

 

 From the main window, the user can implement basic movement control of the 

system. The next moving distance is easy to set through the distance frame located at the 

bottom-left corner. Also if the user has learned the system’s motion control language, 

more commands can be issued through the command textbox. The “Estop” button is used 

to kill the motion on all axises immediately and the “Home all” button returns all axises 

to their original points. In sometime particular cases, for instance, the user disables the 

hardware limits and sets the motor to continuous mode (the motor will keep turning at a 

constant speed until a stop command is issued), the program will disregard the limit and 

the motor will keep spinning even if the load has reached the end of the table. In such a 

case, the position shown on the screen keeps increasing as the motor spins. Thus it is no 

longer accurate. Then the “Return” button is used to clear the encoded position to 0 while 

the load does not move.  

 

Step 4 

 Other than distance, there are more parameters such as velocity or acceleration 

rate that users need to change. They can all be accessed from the menu. More settings 

such as the pulse width and driver resolution are under “setting”. According to the 

manufacturer’s manual, pulse width is defined as the time the pulse is active. In order to 

drive the motor in our system (model s57-102), this parameter should be no less than 1.0 

µs. Another setting is driver resolution, which is how many steps the motor will advance 

per revolution (default 4000 steps/rev). In fact, values in the speed and acceleration 

window are all comparative values. They must be multiplied by driver resolution to get 

real values. 
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Step 5 

 As a major advantage compared with motion architect, the loop motion with 

specified speed control is an important part in this GUI. This feature simplifies the whole 

process by embedding parameter calculation and hundreds of commands can be 

downloaded into the program. The user needs to specify several values, for instance, 

starting position, ending position and loop times, to achieve loop control. For some 

simple cases, three speed profiles has been included into my GUI, as shown in the Figure 

4.7. 

        

 
Figure 4.7 Simple speed-position profiles integrated in GUI 
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 For simple speed requirements cases as shown above, the user needs only to click 

on the axis on which he intends to apply the profile and input a loop time. The motion 

will be conducted on the corresponding axis. 

The window shown in Figure 4.8 is the customized loop control window. Among 

the inputs, “times” is the key value that decides if motion is going to happen in an axis. 

The first time check on “copy” will set the parameters for that axis including starting and 

ending position, loop times and speed curves into a sample buffer. The second time check 

on “copy” of other axises will copy every parameter in that buffer into corresponding 

axises so that movements in both axises will happen simultaneously and with the same 

speed and distance. If no speed curve is specified, the value in that velocity slider bar will 

be used as default. The user can also set the time interval between every time the load 

reaches its end and starts motion in the contrary direction. 

 
Figure 4.8 Loop motion control window 

 

Step 6 

In case the user needs to specify a different moving speed for different parts of the 

motion, a speed control window for each individual axis was designed. First, a work 

mode needs to be specified to decide which action among adding, deleting and dragging a 

point is about to happen. The picture box allows the user to set a speed-position curve. 
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The x-axis is the motor position and y is the moving speed. In add mode, the user can 

click and add a new point anywhere in the picture box as shown in Figure 4.9. Once a 

mouse click is detected, the program will line up this point with its nearest neighbors (if 

this is the first point, the program will connect it with the original and the maximum 

point). At the same time, a new record with the coordinates of the new point will be 

added to the list box on the right. p means position and v means velocity. The preset 

maximum motion range is 220,000. Accordingly, the position shown in the list box is in 

that scale. Practically, when the user needs to change the whole moving distance to other 

values like 100,000, a scale factor will be automatically multiplied to generate the 

acceleration rate and time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Speed control window 

 

The other two modes are “delete” and “drag”. In the delete mode, the user needs 

to click on the points within the range of a red circle. The previous lines that connect the 

point to its nearest neighbors are replaced by a new line between those neighbors. At the 
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same time, the corresponding record in the list box is deleted. A similar operation 

happens in drag mode. The user selects a point by clicking on the red circle and moving 

the mouse. The coordinates will be changed. In order to avoid program confusion, the 

moving range is limited within the x coordinate of its neighbors. The button “Change” at 

the upper right corner allows the user to input a value in the textbox above to specify an 

exact desired position. 

 

Step 7 

 Once the speed curves are specified, the motors will start rotating after the user 

clicks the “Go” button in the loop window. The program will first check the current load 

position and the initial position from which the loop will start. An initializing movement 

will be made if the values are not equal. Then the program will generate a series of codes 

including the distance, the acceleration rate and the moving time. 

 

 

 

 

 

 

 

 

 

 

5 Data Acquisition Experiment 
 In order to testify to the usability of the GUI, a data acquisition experiment 

followed the design process. The main idea was to utilize the rotary motor to perform 180 

degrees scanning of human faces so that different angle views of face profiles could be 

acquired and used in a face recognition project. Figure 5.1 shows the hardware platform 

sketch and an actual photograph of this setup is shown in Figure 5.2 
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Figure 5.1 Sketch of data acquisition platform 
 
 
 

 
 

Figure 5.2 Sample picture of data acquisition platform 
 

 As can be seen from the Figure 5.2, the whole setup is connected to a metal frame 

that is made of 80/20 aluminum sticks. In order to maximally reduce moving vibration, 

heavy-duty materials such as 2”x 8”x 8’ woods and 1”x3’ metal shafts were used. The 

motor was placed on top of the setup and a timing belt used to convey motion. The Figure 

5.3 shows the inside of the setup.  

Rotating bar

Person

Camera

Black background 

Motor

78 inches 
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Figure 5.3 Inner structure of platform 

  

During scanning, the motor is controlled in rotation from the host computer. With 

a person sitting beneath the shaft, the cameras start rotating and real time video data are 

sent to a video capturing computer through the RCA ports. Two frame grabbers, which 

are connected to two individual cameras, transfer the video to image frames. 

Henceforward, after 180-degree scanning (side to side), multiple views of human face 

data are acquired. 

  

In order to provide a comparatively large image gallery for the face recognition 

project, we considered changing the illumination conditions and having people show 

different expressions. Besides the regular room lights, two extra spot lights were placed 

in the front of the person so that the lights could be turned on and off in sequence 

enabling us to capture able to get face images under different illumination conditions. A 

list of all conditions under which we acquired images from includes: 

 

 Different camera modalities 

 Thermal camera 

 Color camera 

 

 Difference illumination conditions 

 Both spot lights on, room light on 
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 Left spot light on, right off, room light on 

 Left spot light off, right on, room light on 

 Both spot lights off, room light on 

 All off 

 

 Different face expressions 

 Anxiety/ Astonished 

 Smiling 

 Angry/ Worried 

 

Sample results from this process are shown following: (video and thermal images 

in the same column indicate+ both are taken at the same moment) 

 

Illumination part: 

1.Both lights on 

 

 
 
2. Left light on 
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3. Right light on 
 

 

 
 
4. Both lights off 
 

 

 
 
5. Complete dark 
 

 

 
 
Expression: 
1. Anxiety/ Astonished 
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2. Smiling 
 

 

 
 
3. Angry/ Worried 
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6. Conclusion 

 
 The design of a graphical user interface for a 3D stepper motor system is 

proposed in this paper. The hardware system architecture and software implementation 

process is outlined. The complete system consists of four PM type stepper motors, with 

three mounted on a linear motion table, one mounted on a rotary motion table, four 

motion controllers, one hardware indexer and one PC card. The hardware specifications 

are included. All system movements are controlled by a host computer using the GUI 

described in this paper. Besides simple movement and basic parameter setting functions, 

the GUI provides windows for easy loop motion control with the preset speed-position 

curve. A data acquisition experiment followed to testify to the usability of the GUI. The 

results show the ability for easy control and accurate positioning. A hardware setup was 

designed for acquisition purposes. However, a vibration problem remains. Stability of the 

setup affects the quality of the result images. 

 

 In the future, the GUI, together with the hardware system, can be used in more 

applications to fulfill the tasks of data acquisition, robot navigation and camera 

surveillance, and so on. More GUI functions such as the polynomial speed-positioning 

curve and more convenient input methods can also be considered as an extension. 

Additionally, the textbox in main window which lets user type MCL sentences allows the 

user to realize more functionalities inherited from the manufacturer’s control software 

package. 
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Appendix ----Comments of Visual Basic Source code 

 In order to make this GUI more understandable, a short explanation of the 

algorithm is provided. Focus is on the use of motor control language (referred to as MCL) 

in Visual Basic and how to realize real time control to the system so that it is easier for 

other people to understand this program and make changes. 

 As mentioned earlier, the information exchange between the computer and the 

controller is achieved by downloading sequences of code sentences in the format of 

MCL. The function, SendAT6400Block (Device_Address%, cmd$, 0) is called every 

time when the downloading process takes place. “cmd” is a string that stores the 

sentences written in MCL. The main function of the GUI is to generate several “cmd” 

strings under different circumstances. The figure below shows a sample cmd string that is 

going to be downloaded to chip. 

 

 
Figure 1 Sample of control code sequences 

 

 At design time, the MLC source codes is always output to a message box before 

downloading for clarity and ease in checking. In the Figure 1, colons are used to separate 

two sentences. Generally, there are two types of syntax in MCL. The first one is similar 

to “d 20000, 30000, 40000, 50000”, where “d” is the command to set the moving 

distance on individual axis. “20000, 30000, 40000, 50000” means the motor will move 

20000, 30000, 40000, 50000 steps in axis 1, 2, 3 and 4, respectively. An example of the 

second syntax would be “go0010”. Each binary bit after “go” stands for the command 

settings for one axis.  In this example “go0010” means to initiate motion in axis 3, while 

at the mean time, other axises remain still. Another frequently used command is “mc” 

and its usage is of the second type of syntax. It sets two motion modes of the motor. 

When “mc” is set to 1, the continuous mode is enabled and all movements in that axis 
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will be at a specific velocity with distance command establishing the direction. On the 

other hand, all movements will be for a specific distance in the preset mode (mc0). 

 One of the areas that contains a number of commands is the loop control window. 

When the “Go” button in the loop control window is pressed, the program will first check 

how many “time” text boxes are not zero. At the beginning of each time loop, all axises 

will go to the initial positions, which are the values in the “From” text box. Those that are 

not involved in the loop will be commanded to return to their home position. After the 

number of moving axises is detected, the program will determine if there is specified 

speed control curve for each axis. If not, the default speed and acceleration rate will be 

applied. Also if the speed profiles between axises are detected to be identical, movements 

in those axises will happen at the same time. The whole string is stored in the variable 

“cmd”. When dealing with complex situations, such as desired motion in several axises 

with different speed requirements for each, the string can be very long. In order to 

prevent buffer overloads, the string is cut into several parts to download. 

 All the MCL commands used in this GUI are indicated below for quick reference. 

Commands Description Usage 
! Immediate command identifier N/A 

@ Global command identifier (applied on all axises) N/A 
A Represents acceleration rate A2,2,2,2 

AD Represents deceleration rate ad2,2,2,2 
CMDDIR Defines directions cmddir0101 

COMEXC 
Enables continuous command mode (1 means next 

command is executed before motion is finished)  comexc1 
D Distance  D2000,2000,2000,2000 

DRIVE Drive enable (1: energize, 0: de-energize) drive1111 

DRES Drive Resolution 
dres 
4000,4000,4000,4000 

ERRLVL Error detection level errlvl0 
GO Initializes motion go1101 
K Kill motion N/A 

MC Preset/Continuous mode enable mc0000 
L Starts a loop L1 

LH 
Enables hardware limits (0: disable both, 1: disable 

cw, 2: disable ccw, 3: enable both) lh3,3,0,3 
LN Loop ends N/A 

PULSE Pulse width pulse 1,1,1,1 
RESET Reset parameters to factory default N/A 

T Waiting time T 3 
 

(Note: To download the string, all commands must be followed by a “:”, or they will not 

be executed) 


