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Syllabus for Circuit Theory ECNG1000

1. Introduction to Circuit Theory

2. Techniques of Circuit Analysis

(i)

(ii)
(iii)
(iv)
(v)
(Vi)

Nodal Analysis

Mesh Analysis

Linearity and Superposition

Source Transformations

CKSOSYAYyQa YR b2NIl2yQa ¢KS2NBYa
Maximum Power Transfer Theorem

3. Natural response and complete response to sotiree and dc excited RL and RC
circuits. Sourcédree RLC circuitd-orced Response of RCEcuits.

0)
(i)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
()

The simple RL circuit

Properties of the exponential response

The simple RC circuit

The unitstep forcing function

The natural and forced responses of RL and RC circuits
The sourcdtree parallel circuit

The overdamped parallel RLC circuit

Criticd Damping

The underdamped parallel RLC circuit

The natural and forced responses of RLC circuits

4. AC Steadystate Analysis
I.  Sinusoidal and Complex Forcing Functions
ii. Phasors
li. Impedance

5. The Laplace Transform

6. SteadyState Power Analysis
I.  Instantaneous and Avega power in ac circuits
ii. Effective or rms values
iii. Real Power, Reactive Power, Complex Power
iv.  Power Factor correction in ac circuits
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Syllabus for Circuit Theory (P 24G)} ELET2470

1. Introduction to Circuit Theory

2. Techniques of Circuit Analysis

(i)

(ii)
(iii)
(iv)
(v)
(Vi)

Nodal Analysis

Mesh Analysis

Linearity and Superposition

Source Transformations

CKSOSYAYyQa YR b2NIl2yQa ¢KS2NBYa
Maximum Power Transfer Theorem

3. Natural response and complete response to sotiree and dc excited RL and RC
circuits. Sourcdree RLC circuitd-orced Response of RLC Giscu

0)
(i)
(iii)
(iv)
(v)
(vi)
(vii)
(vii)
(ix)
()

The simple RL circuit

Properties of the exponential response

The simple RC circuit

The unitstep forcing function

The natural and forced responses of RL and RC circuits
The sourcdtree parallel circuit

The overdamped parallel RLC circuit

Critical Darping

The underdamped parallel RLC circuit

The natural and forced responses of RLC circuits
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ELECTRIC CIRCUIT ANALYSIS

e Electric circuit analysis is the portal through which students of electric phenomena
begin their journey.

e Itis the firg course taken in their majors by most electrical engineering and electrical
technology students.

e Itis the primary exposure to electrical engineering, sometimes the only exposure, for
students in many related disciplines, such as computer, mechanicahiamedical
engineering.

e Virtually all electrical engineering specialty areas, including electronics, power
systems, communications, and digital design, rely heavily on circuit analysis.

e The only study within the electrical disciplines that is arguablyenfiandamental
than circuits is electromagnetic field (EMgIél theory, which forms thecientific
foundation upon which circuit analysis stands.

Definition: An electric circuit, or electric network, is a collection of electrical elements
interconnected m some way.

PASSIVE AND ACTIVE ELEMENTS

Circuit elements may be classified into two broad categories, passive elements and
active elements by considieigthe energy delivered to or by them.

A circuit element is said to be passive if it cannot deliver neolrgy than has
previously been supplied to it by the rest of the circuit.

An active element is any element that is not passive. Examples are generators, batteries,
and electronic devices that require power supplies.

Anideal voltage sourcés an electic device that generates a prescribed voltage at its
terminals irrespective of the current flowing through it. The amount of current supplied
by the source is determined by the circuit connected to it.

V(1) C) v (t) Qrcuit

General symbol for améal voltage sources(t) may be a constant (DC source)
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V(@) —— vt) Qrcuit

A special case: DC voltage source (ideal battery)

V(t) @ v(t) Qrcuit

A special case: sinusoidal voltage soukgé) = V cosmt

Anideal current sourcerovides a prescribed current to any circuit connected to it. The
voltage generated by the source is determined by the circuit connected to it.
i |

s s

-

is, IS Qrcuit

Symbol for an ideal current source

Summary

Anideal/independent voltage sourcas a twaeterminal element, such as a battery or a
generator that maintains a specified voltage between its terminals regardless of the rest
of the circuit it is inserted into.

Anideal/independent current sourcas a two termnal element through which a

specified current flows.
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There exists another category of sources, however, whose output (current or voltage) is
a function of some other voltage or current in a circuit. These are cadipdndent(or
controlled) sources

O O
+ ,
VS - IS T
O O
Source Type Relationship
Voltage controlled voltage source (VCVS) Vs = [Ns
Current controlled voltage source (CCVS) Vs = Ik
Voltage controlled current source (VCCS) is =gy
Current controlled current source (CCCS) is=fix
Summary

Adependent or controlled voltage sources a voltage source whose terminal voltage
depends on, or is controlled by, a voltage or a current defined at some other location in the
circuit. Controlled voltage sources are categorized by tpe tyf controlling variable.
Avoltage-controlled voltage sourcés controlled by a voltage arairrent-controlled

voltage source by a current.

Adependent or controlled current sources a current source whose current depends on, or
is controlled by, a vtage or a current defined at some other location in the circuit.

Anelectrical networkis a collection of elements through which current flows.

The following definitions introduce some important elements of a network.

Branch

Abranchis any portion of aircuit with two terminals connected to it. A branch may consist
of one or more circuit elements.

Node

A point of connection of two or more circuit elements, together with all the connecting
wires in unbroken contact with this point is called@de. Sinply anodeis the junction of
two or more brancheg(The junction of only two branches is usually referred to a&/el
node)
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It is sometimes convenient to use the concept alupernode A supernode is obtained by
defining a region that encloses n@than one node. Supernodes can be treated in exactly
the same way as nodes.

Loop
A loop is any closed connection of branches.

Mesh
A meshis a loop that does not contain other loops.

CIRCUIT THEORY

There are two branches of circuit theory, and they alesely linked to the fundamental
concepts of input, circuit, and output.

Circuit Analysig; is the process of determining the output from a circuit for a given input.
Circuit Design (circuit synthesisg the process of discovering a circuit that gikies to that
output when the input is applied to it. This is really a creative human activity.

Kirchh2 F¥Qa +aKVvli)F 3S [ I &
The algebraic sum of voltage drops around any closed path is zero.

S
Il
=

Kirchh2 F¥TQa / dfCNByYy 0 [ | &

The sum ofthe currents entering any node equals the sum of the currents leaving the node.

Passive Sign Convention

+ i(t)

w
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Voltage ¢ Current Relationships for Energy Absorbed

Example:
11
| =4A + 12V -
>
1
I —

(o

Compute the power that is absorbed or supplied by the elements in the network.

Solution:

If the positive current enters the positive terminal, the element is absorbing energy.

Pssv= (36)*¢4) =-144 W

P, = (12)*(4) = 48 W

P, = (24)*(2) = 48W

Pos= (11X)*(-2) = 1*4*(2) =-8 W
P, = (28*(2) =56 W

Voltage Division

i(t)
Rl +
VR1
wo [+
N
R v.

ByKVL;-v(t) +Vri+ \o=0

Butvri= Ri(t); W= R(t), therefore v(t)= R(t) + Ri(t) or
o v(t)
=Rz

LM
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So

v(t) Ry

R1 10(t) 1R1+R2 R1+R2v()
v(t R

V2 = Ryi(t) = R, & __ : v(t)

Ri+R, R;+R,

Current Division

It) 'm(t)J R Im(t)J R,

By KCL, 1) = ki®) + k) =5 + 1=V (5 + 1)

R, Ry
Or
R R,

1=V +
Ry + R, Ry +R,

Loop Analysis

+V. - Vo

R R;
'V2+ 'V5+
Loop 1: Vi+\V5+VqVe1=0
Loop2: Va2t i+ V¢ V3=0

LM
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Mesh Anaysis

A mesh is a special kind of loop that does not contain any loops within it.

Example Problem: Find the mesh currents in the circuit below giverl@ V; Y=9 V;
Va=1V;RI p 2fKTMWI KD 4sIKTp wKP

By KVL;
Mesh 1: -Vi+Riz+ VW + R(i1¢iz) =0
Mesh 2: Vo + Riz+ 5+ Riz + R(i2Giy) = 0
Rearranging the linear system of equets, we obtain
15|1 C 10|2 =1
-10i + 20p=8

Givingi=05A and ,%#0.65A

Example Problem: Etcircuit below is a simplified DC circuit model of a thneee

electrical distribution service to residential and commercial buildings. The two ideal sources
and the resistances Rnd R represent the equivalent circuit of the distribution systeny R

and Rrepresent 116V lighting and utility loads of 800 W and 300 W respectively.
Resistance fRepresents a 224/ heating load of about 3 KW. Determine the voltages

across the three loads.
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+
v, ) R
i3
-+ i R
VSZ

Ry
Given that V1=V =110 V; R=RT M ® ol Hilp, WK
Mesh 1: -Vs1+ Rii+ R(i1¢i3) =0
Mesh 2: -Vs2+ R(i2¢i3) + Ri=0

Mesh 3: Riis+ R(is ¢ in) + R(isCiy) = 0
Rearranging, we obtajn
‘(R + R)ix + Rig=-Vs;
(R + R)iz + Rig =-Vs2
Rii+Ri>¢(R+R+R)k=0

—-16.3 0 15 1[4 —-110
In matrixform 0 —41.3 40 ||i2| =]|-110
15 40 =711 Lis 0
Which can be expressed as [R][l] = [V]
With a solution [I] = [R]V]
We find : ip=17.11 A i,=13.57A i3=11.26 A
Giving Vr1= R(Il C |3) =87.75V

Vro= Rz(lz C |3) =024V
Vkr3= Riz=180.16 V

LM
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Mesh Analysis with Current Sources

© P DY

Find the mesh currents in the circuit agiven | = 0.5 A; V=6 \;IR 0 KTy wKT
RI' ¢ 4TKTn wK

Mesh 1: The current source forces the mesh current to be equal to i
il =1

Mesh 2: -V + R(i2¢i1) + R@i2qiz) =0

Mesh 3: Ris + R(isqi2) + R(i3qi) =0

Rearranging the equations and substitutthg known value of;j we obtain:
14i, ¢ 6i3=10

-6i,+ 13§=1.5

Hencei=0.95A andz;# 0.55A
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Example Find \{ and \4.

2V
4kQ
vl e
2 kO 6 kQ
: i
2 mA Q) 1 2
Mesh 1: i1=2X10A

Mesh 2: 2k(bgil)) g2+ 6ki=0
From above, i,=0.75mA and ¥ 6kp=4.5V

Now by Ohms law V; = 4ki + 2k(i ¢ i) = 10.5V

LM
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Example

Mesh 1:
Mesh 2:

Mesh 3:

Find \.

4 mA
2kQ 6 kO
i1
i
4kQ 3
| (v
I 4 kQ
2mA( | 2
i1:4mA
i2:-2 mA

k(s C iz) + 2K(@ C i) +6Ki ¢ 3 =0

Hence4=0.25 mA andV,+ 6kic3 =0

Vo = 6k ¢ 3 =-1.5V

LM
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Example: Find ¢
1kQ

6V
o
NIV

1kQ
iy i< ok 2 2kQ
2mA( 1

Mesh 1: i1=2 mA
Mesh 2: (Supernode approachRemove arrent source

-6 + 1ki+ 2Kb + 2k(b C ir) +1k(C i) = 0

6V 1 kO

o

Subjecttoi iz =4mA
From above we get, = 13—0 mA andi; = — % mA. Thereforeyi=h Cir = %mA
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Circuits Containing Dependent Sources

Example Find .

2 kO v 3V
e
+
i 4kQ I
2V, D 6kQ v,
Mesh 1: -2V + 2k + 4k(i ¢i) =0  or 6kiy ¢ 4kip = 24
Mesh 2: -3 + 6ki2 + 4k(igi1)=0  or -4kip +10k =3

But V=4k(iciy)

Thereforej= 2} ;

LM
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Example

Mesh 1:

Mesh 2:
Mesh 3:

And

Solving, we getl; = 18—1 mA andV, = ? %

Find \.

6 kQ

VX T il
2000
-V +
MK,
4 kQ
D) O
2mA( 1
A
1= 2000
i2: 2 mA

-3+ 2k@ i) +6ki=0

Vi = 4K(i Qi)

Nodal Analysis

Node volage analysis is the most general method for the analysis of electric circuits.

node voltage methods based on defining the voltage atakanode as an independent
variable One of the nodes is selected aseterence node(usuallyg but not necessarily

ground) and each of the other node voltages is referenced to this node.

hyOS y2RS @2t il 3Sa

nodes to determine the current flowing in each branch.

LM
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+R - +R, -
\A Va ; Vi R V
i i i
1 + Jz 3
R,
VC
. Vg — Vp
l:
R

By KCL,lﬁ |2C i3: 0

va_vb_vb_vc_vb_vd_o
Ry R, Rs

In a circuit containing nodes, we can write, at most,¢ 1 independent equations

Circuits containing onlywdependent current sources

2 (1)

Let

LM

R_l
175
R_l
2—62
R_l
3_63
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At nodelby KCL; ia+ii+i2=0
-ia+t Gi(V1-0) + (V1T V) =0
At node2 by KCL; -io+ig+i3=0
-G2(V1T Va) +ig+ G(V21 0)=0
So,
Gl + Gz _Gz ] [VI]_[ iA
_GZ Gz + G3 V2 a _iB

Summary

Step 1:  Select a reference node (usually ground). This node usually has most elements
tied to it. All other nodes will be referencéd this node.

Step 2. Define the remaining-1 node voltages as the independent or dependent
variables

Step 3.  Apply KCL at each node labelled as an independent variable, expressing each
current in terms of the adjacent node voltages.

Node Analysisvith Voltage Sources

Apply KCL at the two nodes associated with the independent variapEsd\\L.

At node b:
=0

_(Va—Vb)_l_Vb—O_l_Vb—Vc
Ry R, R3
Note \{ =\,

20|Page
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At node c:

which can be rewritten as:

and solved.

Example Find V.
9 kQ

12 kQ \Y/ 12 kQ

Atnodel: V=12V

Atnode3: Vz;=-6V

At node 2:
Vo=V, V, Vp—=V;3
12k 6k 12k
Solving,
V, = 3 V
2792

6V

Independent Voltage Source connected between two-neierence nodes.

LM
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Example: Determine the values of\and \4.
6V

i o Va
O

6mAQ> _ BkO _ 120 D4mA

6mAQ> _ b 12k0 D 4 mA

At node 1:
Vi W
— 1_3 —_— - 4 1_32
6 x10 +6k+12k+ X 10 0

Subjectto: V1¢VL=6V

SolutionisY =10V and =4V

22|Page
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Example: Find, |

Vl
+
2 kQ C) 12V 2 kQ
V2 1kQ V3 1 kQ V4
- 2kQ +
6v (. | ' 12V
I0
Supernode
Vl
+
2 kQ _ )12y 2 kQ
v, 1kQ 1kQ v,
V3
- 2kQ +
ov 2 | (e
I0
At the supernode
Vi—V, V3=V, V3=V, V3 Vi—-V,
% Tt T Tzt O
Subject to: Vi¢Vzs=12V

We observe that ¥=-6 V and Y=12 V

LM
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Solving for ¥, gives

Vo=—=V
3 7

and

V3

=T 7™
Circuits containing Dependent Sources
Example: Determine the valu®f .

Vv, 3kQ v,

2kQ CD?’V 6KO

Solution: We observe V=3V andi

V2
L, =—
Y 6k
At node 2:
Vo=V
— —2I,=0
3k ek
Solving, we get: V=6V,
. -1
I, = 3 —1mA

LM
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Example: Find unknown nod voltageV, given the following | = 0.5 AR, = 5Q;
R=20Q; R=4Q andv, =2 X v

v, R, v R,
+
\/X | Vv, Rs
At node with voltage V:
V-1, V-V
—1 =0
R, R,
At node with voltage ¥
V3 - V v3
— = 0
R, R3

Substituting the dependent source relationship into the first equation, we obtain:

0.7V — 0.9v; = 0.5
—0.5V — 0.75v5 = 0

Yielding V =5V ang ¥ 3.33 V

25|Page
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Example: Find.i
6 kQ

2V,

+
6V
12kQ= i 6kQ = v, C)

pernode

6 kQ

+
6V
12kQ Jio 6k = v, C)

At the supernode:
V1 - V3 V1 Vz V2 - V3 _

6k T2 Ter Tz 0

Subject to: ViqVo=2V
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So,

ol w

9 .
Vl—EVandlo—m—

Linearity

A resistor is a linear element because its current voltage relationship has a linear

characteristici.e. v(t) = Ri(t)

Linearity requires both additivity and homogeneity (scaling). In the case of a resistive
element, if i(t) isapplied to a resistor, then the voltage across the resistof(3 ¥ Rj(t ).

Similarly if i(t) is applied, the voltage across the resistor,{$)\= Ri(t).

However if i(t) + b(t) is applied, the voltage across the resistor is
v(t) = Ri(t) + Ra(t) = w(t) + (1)
This demonstrates thadditive property.
If the current is scaled by a constant K, the voltage is also scaled by the constant K since
R Ki(t) = K Ri(t) = K v(t). This demonstratesogeneity.

A linear circuit is one only indepdeant sources, linear dependent sources and linear
elements. Capacitors and inductors are circuit elements that have a linearonpuuat

relationship provided that their initial storage energy is zero.
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Example to demonstrate Linearity

v 2ke ke

LTS

out

Assume Y= 1V =V,, then
1
Izzﬁzo.SmA
Vi=4kp+ V=3V and
Vi
~ 3k
By KCLeEh+b=15mA andV,=2kh+V =6V

I =1mA

The assumption thatd: = 1V produced a source voltage, Uf 6 V.

BUT we knovby observatior, = 12 V, thereforgéhe actual output voltage,

12
Vour = (?) 1W=2V

Superposition Principle

In any linear circuit containing multiple independent sources, the current or voltage at any

point in the network may be calculated as the algebraic sum of the individual edgrgnbg

of each source acting alone

N.B. When determining the contribution due to any independent source, all remaining

voltage sources are made zero by replacing them with a short circuit and any remaining

current sources are made zero by replacing theitih an open circuit.

LM
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Use the circuit to examine the concept of superposition.

3kQ 6 kQ
V,(t) C-D @ 3kO @ C-D Vy(t)
Mesh 1: -V1+ 3kh + 3k(1 ¢ I2) =0 or Y= 6kl ¢ 3kb
Mesh 2: 6kl +\Vo+ 3k (3¢ l) =0 or Y= 3kl ¢ 9Kl
Solving fort) yields:
i W

L(t) = % "1tk
which implies that(t) has a component due to;{) and a component due toyf).
Each source acting alone would produce the following:
Set \(t) =0
3kQ 6 kQ

w2 ) e

Vi(t) _ Vi(t)
3k + 2k 5k

HOE

3kQ

6 kQ
3kQ @ V(1)
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=V, (0) _ =2V, (1)
6k+(%/)k 15k

By current division:

L) =

=2V, ()3 _ -V ()

3k
HORE = AR

3k + 3k 15k 6 15k
Now
I (t —1’+1”——V1 V2

Example: Determine the currentiin the circuit below usinthe principle of
superposition.

5Q 2Q

o) (am )

Step 1: Zero the current source by replacement by an open circuit.

5Q 2Q

4Q

Then

10
P =——  =0.9094
i5 = go5og = 0.909

30|Page
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Step 2: Zero the voltage source by replacing it by a short circuit.

5Q 2Q

40
) = > 2=-09094
T TE et T T
Thereforei, =i, +i; =0
Example: Use superposition to find.V
3V
2kQ
B )
\_ .
6 kQ
1kQ CDZ mA Vv,
Step 1: Remove (short circuit) the 3 V source
2kQ
+
IO
6 kQ
1kQ (Dz mA v, ¥
-3 X2 = A
°T3%6 “T3™M
3l1|Page
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and V) =1,x6k=4V

Step 2remove (open circuit) the 2 mA current source

2 X
N
+
1kQ 6kQ VOQP
/A 6 X3=2V
° T 142+6° 7
Hencel, =V, + V)’ '=44+2=6V
As a check: using KCL and recognizing the supernode, we have:
Vi -3 Yo —
ﬁ —2x10 + ok =0
But \, ¢ V1 = 3 V which implies thato\: 6 V
Example: Find Mising the Superposition Principle.
+
W e
2k 6ka Vo
2kQ
2mA( 1
32|Page
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Step 1: Remove (opetircuit) the current source.

+
v " o
2kQ 6 kQ VoQ
2kQ
Or
+
* 6 kQ Ve
6v( *
v, 4 kQ -
2kQ
2kQ
8
Req=(6+2)//4=§kﬂ
v, = (8/3) 24
(8/3)+2 7
and
v = 6 x V. 181/
° T e+2 1T 7

LM
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Step 2: Remove (shoitircuit) voltage source.

4 kQ
282 6kQ V@
2mAQ> 2kQ
Or
+
8/6 kQ
2mAQ> 6 kQ A
2kQ
b
10
5
Io =1E)—/3)X 2 Z; mA
(*Y/3) +6
and
30

Vo=Vo+ V5 =—V

LM
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Source Transformabn

Real sources diffdrom ideal models In general a practical voltage source does not
produce a constant voltage regardless of the load resistance or the current it delivers, nor
does a practical current source deliver a constant current regardlaebe dbad resistance

or the voltage across its terminals. Practical sources contain internal resistance.

R,
O ©;
+
IL IL
' v, JF{ (1) <R R
—o
@) (b)
2
po—zxn = (Y 2 v 1
L_L>< L_<RV+RL) R_Ll+RV/R
L

If R, » Ry then
2

P, = Z— which is the power delivered by an ideal source.
L

Similarly,

2
) RL = IZRL

i

R, + R;

PL=I£XRL=< RL
1+7

If R; > R, then P, = I?R; which is the power delivered by an ideal current source.

Equivalent Sources
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O
+0o

o v, 'LJ Ro(1) SRy "R

@ (b)
For circuit )V = I,R, +V},
For circuit (b} = I, + - or IR, = Ryl +V;
1

For the networks in (a) and (b) to be equivalent, their terminal characteristics must be
identical, i.e.V = IR; and R; = Ry.

Example: Determire \, usingthe Source Transformatiorethnique

. 3V
-

+

1kQ 2 mA 6k V,
. 3V
N

N .

+

Mesh 1: -6 + 3kig 3 + 6kl = 0 which yields I-mA and Y= 6kl =6 V
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Example: Use Source transformation to find,.V

3kQ 2kQ

4 kQ

12V<D 6 kQ CD 2 mA 8kQ VY,
2 kO 4KO

+

4mA<D 3kQ 6 kQ CD 2mA gk VY,
2 kO 4 kO

+

4mA 2kQ 2 mA 8kQ VY,
2 kO 2 kO 4 kO

+

8V 2 mA 8kQ V,

37|Page
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4 kQ

2mA<E> 4 kO <]:>2mA 8k VY,

4 kQ

4 mACD 4 kQ I, 8k V,

10=(4x104)( )=1nm

F¥4+8
and V,=1,x8k =8V
TRGSYAYQ YR b2NI2yQad ¢KS2NBYa

In this section we will discuss one of the most important topics in the analysis of electric
circuits; the concept of aaquivalent circuit Very complicad circuits can be viewed in

terms of much simpler equivalent source and load circuits.

Suppose we are given a circuit and we wish to determine the current, voltage or power that

Ad RSEAQGSNBR (G2 a2YS NBaAAAG2N) 2hatwaiden G ySih g2 N
replace the entire network, excluding the load, by an equivalent circuit, that contains only

an independent voltage source in series with a resistor in such a way that e |

relationship at the load is unchanged.
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The Tkvenin Theorem
When viewed from the loacgny network composed of ideal voltage and current sources

and of linear resistors, may be represented by an equivalent circuit consisting of an ideal

voltage source ¥4in series with an equivalent resistancge;R

The NortonTheorem

When viewed from the loadny network composed of ideal voltage and current sources,
and of linear resistors, may be represented by an equivalent circuit consisting of an ideal

current sourceplin series with an equivalent resistange R

+
Source v Load Vo, @ Vv Load
- :

(@ IfidaN diRy 2F¢KSBY/VEA

Theorem
i LN
. g | +
Source v Load N % Re v Load
: S
(b) |ffdaN iRy 2F0 2NBy @
Theorem

Determination of Norton or Tievenin Equivalent Resistance

Method
Find the equivalent resistance presented by the circuit at its terminals by setting all sources
in the circuit equal to zero and computing the effective resistance betwthe terminals

Voltage sources are replaced by shoircuits and current sources are replaced by open

circuits.
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Example

@)

(b)

@

(b)
O

@

(b)

(@)

RU/R2 ‘T
Ry,

(b)
O

Rru= R+ R//R>
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Example:

Find theThéveninEquivalent Resistance seen by the loathfhe circuit
belowgiven that: R=20Q; R=20Q; =5 A; R=10Q; R, = 20Q; R = 10Q

R,

Rs

Rs Rz (1)

(@)

(b)

Rru= [(R//R>) + R)/IR4] +R = 200.

LM
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Example: Find theThéveninEquivalent Resistance of the circuit belas/seen by the
load resistance R

2Q 1Q

@

5v<f> 20 1@) 20 R

(b)

1Q
O

@)
20 20 20 ‘W
Ry,

(b)
O

Ru= ((2//2) + 1)/I2 = 10

Note: TheThéveninand the Norton equivalent resistances are one and the same quantity.

Computing theThévenin Voltage

The equivalentThévenin) source voltge is equal to the openircuit voltage present at the

load terminals.

Step 1: Remove the load, leaving the load terminals ofmércuited.

Step 2: Define the opercircuit voltage VW across the open load terminals.

Step 3: Apply any preferred method (g. node analysis, mesh analysis) to solve for
Voc

Step 4: TheThéveninvoltage is Yu= Vi

42|Page
LM



Example:

Using voltage division;

LM

Computing therhéveninvoltage.

R R

Viw =Voc = mVs
1
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Example: Determine theThévenin equivalent circuit for the network shown below.

3kQ 2kQ e
+
6 kQ
12v<> <D2mA
3kQ 2kQ e
6 kQ
3kOQ 2kQ e
+
12v<_) 6 kQ
3kQ 2KQ e
6 kQ
2mA

Step 1: Remove load and independent sources to find R

Rru= (3//6) + 2 + 4 = 8K

LM
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Step 2: Qe the superposition technique to fingdy

V/:=2mAXx4kQ=8V

LM

Voo = 3¢ x12=8V
2kQ 4kQ
O
+
2k
T )2mA +@
O

VOC = VO’C + VOHC = 16V
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Example: Fnd theThéveninand Norton equivalet circuits for the network shown
below.

2kQ /3_%
\_/

1kQ Q)ZmA R=6k

2kQ

1kQ ‘T

Ry
2kQ
N
1kQ Q)ZmA +Q
2kQ /3_%
N
1kQ ()}
R.,=3kQ
Vo, =9V, R =6k0 hy=3m R,=3kQ R =6kQ

Rul 0o WKF2mA x3kQ=6V ;ByKVE3+ Vi =00rV.=3V
Hencel,, =V, .+ V). =9V
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Example: UseThéveninQ a

GKS2NBY 4Ji2

RSGSN¥YAYS +

4kQ
e
: 2kQ
6 kO
2kQ
2mA<T>
4kQ
2kQ
2kQ
Rn
+
4kQ
6V
2kQ
Q.
2kQ
4k *
2kQ
Q.
2kQ
2mA 1
R, =10/3kQ
1, =3.2 _ _
V., =32/3V R=6ka m R,=10/3kQ = R =6kQ
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R —1OQ
TH =73

4
Volcsz6=4V

20
Voi = 1@2//0) + 21 x2mA =—V

1A 144 32
Voc=Voc+Voc=?V

Circuitscontaining only Dependent Sources
If dependent sources are present, thi&évenin equivalent circuit will be determined by

calculating W and kg i.e. Ry= Wd Isc

If there are no independent sources then both &d kcwill be necessarily zero andR

therefore cannot be determined by,d Isc
If Voc = O then the equivalentircuit is merely the unknown resistanceR

If we apply an external source to the network (a test sourggynd determine the current |

which flows into the network fromy/then Ry= /1t

Vs can be set to &/ so that Ry= 1/k.
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Example: Determine theThéveninequivalent circuitas seen frona-b for the network

below.
_VX +
1kQ
T
2 kQ 1kQ
V, Oa
I2 Io
J e 1V
1kQ
2V, 2kQ
O

Solution: Apply a test source of\lat terminals &. Compute currengland RTH = 1l

Applying KVL around the outer loop1 + V, + V; = 0 from which we obtain y=-V;

At node 1 using KCL:

V1 V1—2Vx Vl—l_
T Tt 0

Therefore

and

IL,=—=2mA

S|nce10 = 11 + 12 + 13, then
15
I, =— mA

Rry = 14kﬂ
TH = 1¢
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Example: Determine theThéveninequivalent circuit as seen fromb for the network

below.
2 kQ V 3kQ Vv, a
1
O
2000 | 1kQ b 2k 1mA
X
O
b
We observe
Rpy = V2
T™H ™ 1mA
At node 1:
Vl_ZOOOIx £+V1_V2=0
2k 1k 3k
At node 2:
Vo=Vy VW,
—~ _1mA =
3k T2x  1mA=0
R = Vs _ 10 Q.
™™ 1ma~ 7

Maximum Power Transfer Theorem

The reduction of any linear resistive network toTigveninor Norton equivalent circuits

a very convenient conceptualization, as fattlas allows relatively easy computation of load

related quantities. The power absorbed by a load is one such computation.

TheThéveninor Nortonmodelimpliesthat some of the generated power i®sorbed by the

internal circuits and resistance within the source. Siiig power loss is unavoidabibe

guestion to be answered is how power can be transferred to the load from the source under
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the most ideal circumstances? We wish to know the vafuead resistance that will

absorb maximum power from the source.

Considetthe network above.

The power absorbed by the load is:

P, = ITZ‘RL
and the load current is given by:
V.
IT = al
Rs + R,

Therefore

P, = ( % )2 R
" \Rg+R,/) Tt
To find the value of Rhat maximizes the expression for @ssuming Yand R are

constant),we differentiate with respect to Rand set equal to zero.

dP,  (Rs+R)*V¢ — VSR 2(Rs +Ry) 0
dRr, (Rs + R)* B
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TheMaximum Power Transfer Theorem

An independent voltage source in series with a resggd? or an independent current
source in parallel with a resistancg Relivers maximum power to the load resistancé®R
the condition R= R,

To transfer maximum power to a load, the equivalent source and load resistances must be

matchedi.e. equal to each other.

FirstOrder Transient Circuits

Introducing the study of circuits characterized by a single storage element. Although the
circuits have an elementary appearance, they have significant practical applications. They
find use as couplingetworks in electronic amplifiers; as compensating networks in

automatic control systems; as equalizing networks in communication channels.

The study of these circuits will enable us to predict the accuracy with which the output of an
amplifier can follow a input which is changing rapidly with time or to predict how quickly

the speed of a motor will change in response to a change in its field current. The knowledge
of the performance of the simple RL and RC circuits will enable us to suggest modifications

to the amplifier or motor in order to obtain a more desirable response.

The analysis of such circuits is dependent upon the formulation and solution of integro
differential equations which characterize the circuits. The special type of equation we
obtainis a homogeneous linear differential equation which is simply a differential equation

in which everyterm is of the first degree in the dependent variable or one of its derivatives.
A solution is obtained when an expression is found for the dependerdbiaras a function
of time, which satisfies the differential equation and also satisfies the prescribed energy

distribution in the inductor or capacitor ata prescribed instant of time, usually t = 0.

The solution of the differential equation representsegsponse of the circuit and it is known

08 Ylye ylIYSao {AyOS (KAA NBaLRyaS RSLISYRa
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types of elements, their sizes, the interconnection of the elements), it is often called the
natural response. It is alsdwious that any real circuit cannot store energy forever as the
resistances necessarily associated with the inductors and capacitors will all convert all
stored energy to heat. The response must eventually die out and is therefore referred to as
the trangent response(Mathematicians calihe solution of a homogeneous linear
differential equation acomplementary function When we consider independent sources
acting on a circuit, part of the response will partake of the nature of the particular source
used.

In summary, The analysis of Fir€rder circuits involves an examination and description of
the behaviour of a circuit a& function of time after a sudden change in the network occurs
due to switches opening or closing. When only a single storage elasergsent in the
network, the network can be described by a fister differential equation.

Because a storage element is present, the circuit response to a sudden change will go

through a transition period prior to settling down to a steastate vaue.

General Form of the Response Equations

In the study of firstorder transient circuits it will be shown that the solution of these circuits
(i.e. finding a voltage or current) requires the solution of adider differential equation of
the form:

dx(t) B
= T ax(t) = f(t)

A fundamental theorem of differential equations states that(t) = x,(t) is any solution

to the differential equation and(t) = x.(t) is any solubn to the homogeneous equation,

dx(t)
dt
then x(t) = x,,(t) + x.(t) is a solution of the original differential equation. The terp(t)

+ax(t) =0

is called theparticular integral solutioror forced responsandx,.(t) is called the

complementaryor natural response

The general solutioof the differential equation then consists of two parts that are obtained

by solving the two equations:

dx(t)

T ax(t) =A
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where f(t) = A (a constant)

dx(t)

T ax(t) =0

Since the righthand side of equation (i) is constant, it is reagble to assume that the
solutionx, (t) must also be a constant. If we assumgt) = K; and substitute in equation

(i), we obtain

A
K1 = E
Rewriting equation (ii),
dxc(t)/
dt .
_ yields d[lnxc(t)] _
@® dt
Inx.(t) = —at+c

And

x.(t) = Kye™#t

The complete solution isx(t) = x,(t) + x.(t) = % + Kye %t

Generally

t
x(t) =K +Kye' =

Where K4 steady state solution which is the valaéx(t) ast — oo

Andz£ time constant of the circuit

The Differential Equation Approach
StateVariable approach write the equation for the voltage across the capacitor and/or the
equation for the current through the inductor. These quantitiestaged across the

capacitor;current through the inductor) do no change instantaneously.

54|Page
LM



The Simple RL Circuit

ORI

Using KVL:

di(t) | ..
L7+Rl(t) = Vs

The solution to the above differential equation is of the forn(t) = K; + Kze_T

If we substitute in the differential equation, we get:
-t -t

K, -t ~t
—L—eT +RKy + RKze™ =,

Equating the constant and exponential terms, we get:

Vs
RKl _ VS OT' Kl = E
And
2
—L—=RK, or T=—
Therefore
14 —t
i(t) = ES + K,e't
If I(0) = 0 then
Vs Vs
E‘l‘Kz - 0 OTKZ = _ﬁ
Hence
V. V. -t
i(t) = ﬁ_ﬁseT

LM

t
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The Simple RC Circuit

R
> v(t)

N |
/
(@]

D

Using KCL

dv(t) v(t)—Vs
Car TTR T

which can be rewritten as:

dv(t) N v(t) Vs
dt RC R

If we substitute in the differential equation, we get

KZ -t K1 KZ -t

——er Rc+ﬁe =
Equating like terms, we get:
Ki Vs
RC - RC or K =V,
1
"= ke

Hence

—t
v(t) =V, +Ky,et

If the capacitor is initially unchargekdenv(0) =0,
Therefore0 =V, + K, or K, = =V,

-t
T

v(t) = Vs — Ve

LM

1

= 1/5(1 — e 'rRC

—t
We know the solution is of the form: v(t) =K, + Kyet

)
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Example: The switch has been in position (1) for a long time. At t = 0 the switch is
moved to position (2). Calaik i(t) for t > Ogiven that R=6 IQ; R = 3 K2;

C = 10QF.
G 5w
(@
12V C’D C R
(1) R
+
Fort=0
12V oy -0
® R
2

Fort=0"
12VCD C R

Fort=0
The capacitor is fully charged(t) is not changing and conducts no current.
So by voltage division

v(0-) 12

3 —6+30rv(0—)=4V

For t =0"
At node with v(t) by KCL,

v(t) +C dv(t) 4 v(t) _

0
R, dt | R,
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Substituting we get ,

dv(t)
dt

+5v(t) =0

-t
whose solution i®f the formv(t) = K,e*

Substituting in the differential equation, we get:
KZ __t CKZ __t Kz -t

R—ler—Ter +R—297=0
Therefore
L L« L R PP
Ri T R, R, + R,

v(t) = Kye >t but v(0) = v(0+) = 4 =K

v(t) 4
v(t) = 4e>tand i(t) = v® — e 5t mA
R, 3

LM
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Example: Find i(t) fort >0

R =2kQ R, =6 kQ 4 kQ

i(t)

L O
36V<’> “TC=100pF " f=g

12V

2kQ 6 kQ 4 kQ

+ i(0-)

o 12V
Sep 1l BV T
t :p - C—) VC(O_) o)

R=2k2  R=6kQ 4k
* i(t)
Sep 2 36V V-~ c=100uF v
t =0+
2 kQ
36V ~~C=100uF =& 6k
Ve(t) is of the formve(t) = K 1 + Koet'®
59|Page

LM



Step 1Find 1£(0-)

By KVL:36 + (2 + 4 + 6)ki(0 -) +12 = 0 which gives(0-) =2 mA
Ve(0-) 236 = (0-) x2mA =32V

Step 2: Write differential equation with y(t)

ve = Vs dvc(t) Ve
+C +—=0
R, dt R,
which can be rewritten as:
dvc(t) vC VS‘ vC

— =0
dt " R.C R.CTR.C

or

Ry R,

dvc(t)+vc(1 1)= |74

dt ' C R.C

Substitutingvq(t) = K 1 + K2e'" in the above differential equation we get;
K, -t R;+R, R,+R, -t V

_— — K =
T ¢ TRR,C PR, 2T TRC
Therefore
RitRy _ Ve 216
R.R,C 1T R T
R,R,C
= 0.15
R, +R, s
Sincev¢(0-) = 32 V, we have
216
32 - T + KZ
Or
Kz = 5
216 —t
vc(t) = ? + 5015V
And
] v(t) 36 5 -t
= = —+4+—¢015MmA
i(t) ‘ 3 +6e m
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Example: Findv(t).

120
+v(t) - 1Q
YT Y Y
40 4H
O
24V _
60 "t=0 20
120
+v(t) - @) 10
Sep1 YT
4Q 4H

t=0- bt

I o
+
24V<> 6Q "(t=0 20

Sep?2

t=0+ -

4Q

24v<+> 60 10| an 120

V() - v, ()
R=4Q if)
V=24V R=40Q iL(t)l 4H
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v(t) is of the formj(t)= Ki + K"

Stepl: Rroa= 4 + (3//6) = &)
1=t 44
RTotal
. 6 8
lL(O_)_6+—3><4_§A
Step21>0
VsG wi(t) = Ri(t) and
di (t)
=1L
v, (1) dt
. v .
i(t) = R_Z + i
Now
di(t) .
L Cth + Ryi(t) =V,
or
di; (t) v )
L ;t +R1R—§+R11L =V,
Substituting forvi(t), R1, R andL and rearrangig, we get:
di(¢) 1.
at + El(t) =3

Substituting fori(t),
KZ -t Kl -t Kz -t

—TQT —78’5 +7€T =3

Equating like terms, we get:
Ky = 6 andt = 2 which gives
—t
lL(t) = 6 + I{zeT

Recall
8
iL(0-) =iy, (0+) = 34
Therefore
8
§A =6+K,
or
K = 10
27 3
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di () 20 -t
=1 = —e2
v (t) dt 3 e

Hence

20 =t
v(t) =V, —vL—24—?eZ

SecondOrder Circuits

Second order systems occur very frequently in nature. Theyglaaracterized by the ability
of a system to store energy in one of two formpotential or kineticg and to dissipate this
energy. Secondrder systems always contain two energy storage elements.

Secondorder circuits are characterized linear secesrder differential equations.

Consider the RLC circuits shown below. Assume that energy may have been initially stored

in both the inductor and capacitor.

vt) R +V§°) ]
¢ — AN
it) C

it) D R i"(to)l L —~C vd(t) CD L

L

For the parallel RLC circuit, we have by KCL:

v 1t dv
i Lf v(x)dx + i, (ty) + C = i,(t)

For the series RLC circuit, we have by KVL.:

1t di
Rl+Ejt L(x)dx+vc(t0)+LE= v (t)

0

If the two equations are differentiated with respect torte, we obtain:
d’v 1dv v dig
dt? Rdt L dt
And
Ld2i+Rdi+ [ dvg
a2 dt € dt

We know that itx(t) = x,,(t) is a solution to the secondrder differential equation
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d?x(t) N dx(t)
atcz Mg
And ifx(t) = x.(t) is a solution to the homogeneous equation

d?x(t) dx(t)
e +a, Tt +a,x(t) =0

+axx(t) = f(¢)

Then
x(8) = x,(8) + x.(t)
is a solution to the original equation.

If f(t) is a constant, i.e. a constant forcing functigt) = A, then

A
x(t) = o xc(t)

For the homogeneous equation:
d?x(t) dx(t)
+a,
dt? dt
where a and g are constants, we can rewrite the equation in tioem:

d?x(t) dx(t)
T LT

The solution of the above differential equation is of the form:
x(t) = Kest

Substituting this expression into the differeriteguation, we get:

+a,x(t) =0

+ wox(t) = 0 where a; = 2{wy and a, = w3

s2KeSt + 2{wysKest + wiKest = 0
Dividing byK et yields:
s2+2{wes + w3 =0
The above equation is called the characteristic equatiga;called the exponential damping
ratio, andw, is referred to as the undamped natural frequency.
Now

_ —wo V4P w§ — 4wf
2

s=—(wyt we(?—1

giving two values af as:
s1=—(wo + wey/{? — 1
Sz = —(wo — woy/{? — 1
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In general the complementg solution is of thdorm:
x.(t) = KjeS1t + K,es2t
where K and Kk are constants that can be evaluated via the initial conditions

dx(0)
dt
The form of the solution of the homogeneous equation is dependerthervalue ofZ.

x(0) and

If £> 1, the roots of the characteristic equationahd 3, also called the natural frequencies
because they determine the natural (unforced) response ofrteevork, are real and

unequal; i€ < 1, the roots are complex numbers{i 1, the roots are real and equal.

Case 1£>1
The circuit imverdamped The natural frequencies and s, are real and unequal and
x.(t) = K;e51t + K,es2t

where K and k are found from the initial conditions. The natlirasponse is the sum of
two decaying exponentials.
Case2, <1
This is thaunderdampedtase The roots of the characteristic equation can be written as:

s1= —{wo +jwey1 =% = —0 +jwq

52 = =W — jwoy/1 = {% = —0 — jwq
where

j=v-1, o ={w, and wd=a)0\/1—7(2
x.(t) = e $@ot (A1 cos wg+/1 — (2t + A, sin womt)

whereA,and A, are constants
Case3, =1
This is thecriticallydamped case wherg, = s, == —{w,
For a characteristic equation with repeated roots, the general solution is of the form:
x.(t) = Bie*1t + B,eS2t where

B, and B, are constants to be determined from the initial conditions.
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Example: Consider the parallel circuit shown beidvere R=22; C=1/5F,L=5H
v(t)

R L C —
Te vd0)

The seconérder differential equation that describes the voltagg)is:

dv 1dv v

a2 rcae T
or

P LA,

dt? ST

Assume that the initial conditions on the storage elements/af@)- - 1 Aand
vq0) = 4 V, find the node voltage/?) and the inductor current.

The damping term is:

1
“~2RC
And the undamped natural frequency is:
1
Wqo = \/?

The characteristic equation for the network is:
s2+255+1=0
and the roots ares; = -2 and sy = -0.5.
Since the roots are real and unequal, the circugMerdampedand
v(t) = Kje %t + K,e 05t
ve(0)=v(t) =K, +K, =4

Also
dv(t) B B
ek —2K,e”%t — 0.5K,e 0>t
By KCL, we can write;
dv(t) wv(t) . _
It +T+ i, (t)=0

or
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dv(t) 1 i, (t)

a - rc'W¢

Att=0
dv(0) 1 i,(0) _
T —R—Cv(o) ——c - —25x4-5(-1)=-5
Since
dv(0) B 1 i,(0)

a - re'@ ¢

then

—2K, — 0.5K, = =5
Solving forK; and K; yieldsK; = 2 andK>= 2, and therefore

v(t) = 2e72t + 2705ty
The inductor current is related to(t)by

i (t) = %f v(t) dt = %I[Ze‘“ + 2e7%5t]dt

1 4
iL(t) = —EG_Zt —ge‘O'StA

Example The series RLC circuit shown has the following paramefers0.04 E
L=1H; R=6Q;/(0)=4 A and vd0) = -4 V. Findexpressions for the

current and capacitor voltage.

L(0)

+
C 1~ v0)

The equation for the current in the circuit is given by:
d?i N R di N [ 0
dt2  Ldt LC
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The damping term is:

_ R
)
and the undamped natal frequency is:
1
Wy = —
°"JIC

Substituting the values of the circuit elements, we get;
d?i di

FIERIPT:

+25i=0
The characteristic equation is:

s2+65+25=0
and it has roots

SZ - _3 —]4
Since the roots are comptethe circuit isinderdampedand theexpression foi(t) is:
i(t) = K,e 3tcos4t + K,e 3t sin 4t

Using the initial condition

i(0) =4 =K,
and
di
— = —4K, e 3'sin4t — 3K, e 3'cos 4t + 4K,e 3t cos 4t — 3K,e 3 sin 4t
dt
di(0)
= —3K; + 4K,
We can fina‘% using KVL.
di(0
Ri0) + 159D L 0y =0
dt
or
di(0) R v, (0) 6 4
g p O =g @WAg= 20
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hence

giving

Therefore
i(t) = 4e 3cos4t — 2e 3sin4t A
and from above

di(t)
dt
v.(t) = —4 e 3tcos4t + 22e 3t sin4t V

v.(t) = —Ri(t) — L

Example: Consider the circuit shown belgweterminei(t) and 1(t) given that

R = 10Q; R = 8Q; C=1/8F, L=2H; Q) =% A
i(t)
R
i ¢ L
+ +
v{0) ;<C v(t) R,

The two equations that describe the network are:

di ,
La + Ryi(t)+v(t) =0
and
L dv(@®) 1
i(t)y=C T +R—2v(t)

Substituting the second equation into thed yields;

v=20

d?v ( 1 Rl) dv R, +R,

e T \getT)ac T RIc
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Substituting the values of the elemenie get;

Y 6% o=
TR T

The characteristic equation:is

s*+6s+9=0

And the roots &e: $=-3

$=-3
Since the roots are real and repeated, the circudrigcally damped

v(t) = Kje 3t + Kyte ™3t

Since
v(t) = ve(t) thenv(0) =v:(0) =1= K;
Also,

dv(t
d(t ) = —3K,e 3 + K,e 3t — 3K,te 3¢

Recall from above:

dv(t) i(t) 1
dt C R,C

v(t)

Equating the two expressions and evaluating att = 0, we get:

i(t) 1 _ _ _
T R W = 3kKe 3+ Kyte 3t — 3K, te ™"
O _ 1 0y =3k, +K
C  R,c VT TR
or
1
5 1
t2_ 1=-3K, +K,
1/8 8 X 1/8
3 = _3K1 +K2

Givingk; =1and K, =6
Hence

v(t) =e 3t +6te 3tV

LM
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By KCL:

dv(t) 1

i(t)y=C T +R—2v(t)

Substituting forv(t) we get:
1 1
i(t) = 3 (=3e7 3t + 673t — 18te 3t) + 3 (e 3t +6te™3) A

or

1 3
P — - ,=3t _ 2 4 -3t
i(t) S e > te™t A

Example of a series RLC circuit with a step function
Consider the circuit showgsimilar to one previously analyzedexcept with aconstant
forcing function present. The following are the circuit parameters:

C=004FEL=1H;R=6Q;/(0)=4Aandvd0) = -4 V. Findvgt) fort> 0.

i,(0)

R EEE—

— L

i(t)
12u(t) v(
- C — vy0)

NI

We will recall that general solution will consist of a par@ecidolution plus a complementary
solution.
We have already determined that the complementary solution is of the form:
K; e 3tcos 4t + K,e 3t sin4t
The particular solution is a constant since the input is a constant. The general s@ution
ve(t) = Kze 3tcos 4t + Ke 3t sin4dt + K
When the circuit has reached the steashyate condition, the inductor is a shectrcuit, the
capacitor is an opewircuit and hence the final value af(t) will be 12 V .
ve(o0) =12V
Substituting in the equation above, we get:
ve(0) =12V = K;
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Therefore
ve(t) = Kze 3tcos 4t + Kye 3t sin4dt + 12
Using the initial conditions, we can calcul&teand K,.
vc(0) = K3 +12 = —4o0r K; =—16
Sincei, = C % or

dve(0) _i(0) 4

a ¢ —ooa 0
Therefore
dv;t(t) = —3K; e~3'cos 4t — 4K, e 3tsin 4t — 3K, e 3! sin 4t + 4 K,e 3 cos4t
and
dv;t(o) = —3K; + 4K, = 100

henceK, = 13. The general solution fov. (t)is:

ve(t) = 12 — 16 e 3t cos4t + 13e 3t sin4t V

Example of a series RLC circuit with a step function
Consider the circuit shown below. Given the following:

R=10Q; R=2Q; C=14F, L=2H; i(0) =% A

Determine the output voltage v(t).

ltzo L R 10,
24v<JD % i +

+

12 VCD v — ¢ =R vt

We assume the switch has been connected to the 12 V supply for a long time so that the

circuit is in steady state att =0
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For t > 0, the equations thatedcribe the circuit are:

di 24
L—+ Ryi(t) + v(t) =

dt LC
and
i(t) = ¢ d‘;(tt) + Rizv(t)
Combining these equations, we get:
e et D) e RO = Iz

Substituting thevalues of the circuit elements, we get:

dzv(t) +7 dv(t) + 12v(t) = 48
dt? dt v(®) =

The characteristic equation:is

s2+75s+12=0
And the roots are: s =-3
S=-4
The circuit imverdampedand therefore the general solution is:

v(t) = Kie 3t + Kye ™ + K,

10Q i,(0)
t=o0 i(®) *
24V V(o) 2Q
Now
U(OO) = K3 = 4‘
Hence

v(t) = Kie 3t + Kye ™ + 4
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10Q
AN
(=0 ) ’
12V CD V40) 2Q v(0)
Now
i(O—)=KO—)=10+2=1A=iAUH
and v,(0-)=v(0-)=2x%xi(0—-)=2V
hence
or
K+ K, = =2
Now
dv(0)
dt = _3K1 - 4‘K2
10Q
AN
: i(O0+)
t=0+ oy o+
12V C-D v(oH T

v(0+) _c dv(0) N v(0 +)

i;(0+)=ic(04+)+

R, dt R,
dv(0) 04+ v(0+)
dt C R,C
v _1 2
e 1/, 2x1/,
—3K, — 4K, = 0

Solving foiK; andK, we getK; = —8 andK, = 6.
The general solution for the voltage response is:

v(t) =4 —8e 3t + 6™

LM

2Q

v(0+)
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Sinusoial forcing Functions
Consider the sinusoidal waw€t) = X,,sin(wt) where X, is the amplitude of the sine
Type equationhereg I @S> . A& (GKS NIRAFY 2NJ Fy3dz I NI FNJ
the sine function.
¢CKS FdzyOiAz2zy NBLISIFGa A0aStF SOSNE H- NIRAFYA
x(wt + 21) = x(wt)
Or
x[w(t+T)] = x(wt)
Consider the general expression for a sinusoidal function:
x1(t) = X, sin(wt + 0)
and
x2(t) = X, sin(wt + @)

If & # @ the functions are said to be out of phase

A Simple RL Circuit withsinusoidal forcing function

t=0 R
>0
v(t)=V,_cos ot i(t)J L
By KVL:
di(t
L 40 + Ri(t) = V,, cos wt

dt
Since the forcing function 1§, cos wt, we assume that the forced response component of

the current i(t) is of the form i(t) = A cos(wt + @) which can be rewritten as:
i(t) = Acos®coswt— Asin@sinwt
i(t) = Ay coswt + A, sin wt

Substituting in the differential equation, we get:
d
L Tx (A;coswt + A, sinwt) + R(A;cos wt + A, sinwt) =V, cos wt
—AjwL sin wt + A, wL cos wt + R A;cos wt + RA, sinwt = V,,, cos wt

Equating coefficients of sine and cosine, we get:
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—AiwL+A,R=0
AR + A,wL =V,
Solvingfor A, and4, gives:
RV,
R? + w?L?

Ay

Hence

wlV, .
5 Sin wt

. _ m
i6) = R? + w2l

m
RT+wiz 5T

Now
i(t) = Acos(wt + @)
where

RV,
wlLV,,
wl

tan@ = — —
an @ R

Acos@ =

Asin@ = —

Since

R2y, 2 (wL)?V,?
A 2+ (Asin@)? = A% = - 7
( cos Q)) + ( sSin @) (Rz + szZ)z + (Rz + wZLZ)Z

2
A=

(RZ + wZLZ)Z
And

A=

VR? + w?L?
Therefore
wL

cos (wt —tan™?! —)

i(t) = 7

Vm
If L =Qthen® = 0 and i(t)is in phase with v(t).
If R =0, the® = —90° and the current lags the voltage by 90°.

If L and R are both present, the current lags the voltage by some angle bebvaad 90°.
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It should become clear that solving a simple @o@p circuit containing one resistor and one
inductoris complicated when compared to a singd®p circuit containing only two
resistors.
wSOFft 9dzf SNBY =8l wizh jishdty Y
Hence

Re(e/®t) = cos wt
and

Im(e’®t) = sinwt
Suppose a forcing function is(t) = V,,,e/“t, we can rewrite

v(t) =V, cos wt + jV,, sin wt
The complex forcing function can be viewed as two forcing functions, a real one and an
imaginary one. Because lgfearity, the superposition principle can be applied and hence
the current response can be written as:
i(t) = I, cos(wt + @) + jI,, sin(wt + @)
where
I, cos(wt + @) is the response due to V,, cos wt
And
jl, sin(wt + @) is the response due to jV,, sin wt

The expression for the current containing both a real and an imaginary term can be written
08 9dzZ SNN& Sljdz2 GA2Yy | &y

i(t) = Imej(wtw)

We can apply,,e/“* and calculate the respondg,e/ (@9

Redo example wit simple RL circuit.
The forcing function is now
Vel
The forced response will be of the form
i(t) = ]mej(wt+<2))
Substituting in the differential equation:

di(t) ] .
LT + Rl(t) = Vmef“’t
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We get:

. d[]mej(wtﬂb)]

P + leej(wtﬂb) — Vmejwt

Or
RI,e/ @D 4 joLl, el @0 = 1 ejwt
Dividing bye/®t we get:

Rl e’® + jolLl,,e’® =V,

Rewrite as:
. v,
[ el —__™m
m T Rt ol
In polar form:
e = e ()
VR? + (wL)?
Hence
Vi
[y = ———o—
VR? + (wl)?
And
@ tan-1 (wL)
= —tan _—
M\

Since the actual forcing function wa, cos wt rather thanV,,.e/“¢, our actual response is
the real part of the complex response .

i(t) = Re[l,,e/@t+D)]

) Vi . wL
i(t) =1, cos(wt + ) = ———=cos (wt —tan~?! ?)

JRZ + (wL)?

PHASORS
Assume that the forcing function for adiar network is of the form:

v(t) = V,el®t

Then all steadstate voltages or currents in the network will have the same form and same

frequency. As we note thieequency w, the e/®t can be suppressed as it is common to
every term in theequations that describe the network. All voltages and currents can be
fully described by a magnitude and pha3éat is a voltage(t) = V;, cos(wt + 6) can be
written in exponential form asz(t) = V;, cos(wt + 8) = Re[V,,e/@t*9)] or as a complex
number:v(t) = Re( V.20 ef“’t). As we are only interested in the real pa# thisis the
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