In‘[roducnon of

Linear Circuit .
_ Analysis and
“Modellingt

. " From DC to'RF
”

L

Luis Moura « 1zzat Darwazeh W
)



Mewnes

An imprint of Elsevier

Linacre House, Jordan Hill. Oxford QX2 8DP
30 Corporate Drive, Burlington, MA 01803

First publizhed 2005
Copyright ©) Luis Moura and lzzar Darwazeh, 2005, All rights reserved

The right of Luis Moura and lzzal Darwazeh wo be ientified as the authors
of this work has been asserted in accordance with the Copyright, Designs and
Patents Act 1988,

Mo part of this publicanon may be reproduced 1n any materal form
{including photocopying or storing in any medium by elecironic means
and whether or not transiently or incidentally to some other ase of this
publication) without the wrtten permission of the copynght holders
excepl in accondance with the provisions of the Copyright, Design and
Patents Act 1988 or under the terms of & hcense issued by the Copyright
Licensing Agency Lid, 50 Totenham Couri Road, London, England W1P
4LP Applications for the copyright holders” written permission (o
reproduce any part of this publication should be addressed to the
publishers

British Library Cataloguing in Publication Dats
A catalogue record for this book is available from the British Labrary

ISBN 07506 59317

Working together to grow
libraries in developing countries

www.clsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER JOOKAID




Contents

Preface

Acknowledgements
Elunenhrj electrical cireuii ml}ruii

l el

1.5
1.6
1.7
1.8
1.9

Introduction . . . . . .

Voltage and current . |

1.2.1  Voltage sources |

1.2.2  Curent sources . .
Electrical passive elements . . .

1.3.1 Ruilmamimnmumu..............

1.32 Capacitance . ,
1.3.3  Inductance
Kirchhoff s laws

14.1  Series and paraliel EDmhIIlII‘Jl:Ills- uf passwt elemu i

142 Other types of circuit element connections .
143 Electnical nerwork analysis - Nodal analysis . .

144 Resistive voltage and current dividers . . . . . . . .
145 Controlledsources . . . . ... ............

Thévenin's theorem . . . . . . . . . .
MNoron’s theprem . .

Superposition theorem

Bibliography

Problems

Complex numbers: An introduction

21
221
23

Definition . ., . . .

Elnmnmvnlgehﬂ
231 KldiBom . ..l i e

2,32 Subtraction . .

233 Multiplication
234 Diwision . . . .. ... e
235 Complex equations . . . . ... ...

236 Quadratic equations

Polar representation . . . ,

-

00 LA LA L el = e




v

241 Multiphication and division . . . . ... ..ol 40
25 The exponential form . . . . . . 41
251 Trigonometric functions :nd :he e:pﬂumml fmm 42
26 Powersandroots . ...... 43
1.7 Bibliography FREE L N e A
2R Problemd: ;oo P dih SNEEEE GE G P 46
Frequency domain electrical signal lﬂdmhmlyﬂi 48
11 Introducton . . .. .. .0 s b r e nmani e s A s 48
12 Sinusoidal AC electrical analysis . . . . .. .. ... 48
121 Effective electrical values 49
3221 I-¥V ch:mmmsfctpluweelemem 50
323 Phasoramalysis .. . .0 b e ciiiie sd e e e e s 54
324 The gencralised impedance . . - .« ¢ oo 500w a 56
3125 Maximumpowertransfer . . o . 000200 e s 64
3.3  Generalised frequency domain analysis 65
331 The Fourier series . . . . s BS
332 Fourier coefficients, pi'murs lnd lmc !pﬂ,lﬂ ..... 72
3133  FElectrical signal and circuit bandwidths . . . . . . . . 73
134 Lineardistottion . .. ... ......-. ™
SAE TMEDEIIR 5 i s s e e e 2 e D 80
336 TheFouriertransform . . ... ... ......... BR
137 Transfer function and impulse response . . . . . . .. 98
138 mmunluumnpnmnn.___..._.......Im
34 Bibliography 106
35 Problems 10
Maturul and forced responses circuil analysis 109
4.1  Introduction . 109
42 'nrn:d-rmm.nnﬂysls ' SRS R )
43  Transient analysis using Fourlermmifnnns v pavicww L3
431 Differentiation theorem . A R R 113
43,2 Integrationtheorem . . . . ... ... .- 14
433  [-V characteristics for passive elements . . . . . . . . 114
44 Thelaplacetransform . . .. .- v vn oo rans 117
441  Theorems of the Laplace transform . . . . .. . ... 119
442 Parial-fractionexpansion . . . ... .. .00 ... 123
4.5 Analysis using Loplace transforms . . . ... .. ... 127
451 Solving differential equations . . . . . . .. ... 127
452 [-V characteristics for passive elements . . . . . . .. 128
453 Natwral response ] 130
454 Response to the siep fun:tl:m ....... 136
A6 BIRBOGIMERY oo b e ows e S 147
47 TProblems . vsvev s e s ww s b e b s e 147



CONTENTS

5 Electrical two-port network analysis

3.1
52

6.5
6.6

DO . . e R R e e e & e s

2.2 Electrical admittance representation . . . . . . . .,

5.23  Electrical chain representation . . , |

524 Cooversion between electrical r:pn:l.ml,atmm: T

525 Miller's theorem . . . .

Cmr:puln'—ndudclccmuhn.nlym...............
. la7

Biblhiography
PO | i S e e s e e TR

Modelling the amplification process. . . . . . . . ... ...

Operational amplifiers

6.3.1 Dptn-hmpmdfmdhu:licnmmﬁ

6.3.2  Other examples and applications . . , . . .
Active devices .

6.4.1 The;unchmwp—ndmdc
6.4.2 The bipolar junction transistor . . . . .. ... ...
6.43  The insulated gate field-effect transistor . . . . . | |
6.44 The common-emitter amplifier . . . . . . . ... ...
6.4.5 The differential pair amplifier . . . .. .......

Bibliography
Problems . |

7 RF circuit analysis technigues

7.1
T
73

T4

7.3

16
7.7

Introduction

Lumped versus distributed .

Electrical model for ideal ransmission lines | |
7.3.1  Voltage Standing Wave Ratio - VEWR

732 The Afdtransformer . . . . . .. .. .. .. ...

7.33  Lossy ransmission lines . . . . . . . .. ..

134 Ml:mmplrmummnnhm
.. 248
. 254

Scattering paramerers . g
741 S-parameters and power waves

742 Pow#w.mmdg:neﬁhmds-pumm R T
7.4.3  Conversions between different two-port parameters . .
o 264
751 The mpudlnu: m&zuﬂeﬂmﬂmmcurm pl-nr.a -

The Smith charnt |

7.5.2 Representation of impedances
7.5.3  Introduction o impedance mus:hmg

Bibliography
Problems

159

.. 212
i o 276
. ZT6

vii

150
150
150
150
153
157

I61
163

167

169
169
169
177
177
179
183
183
183
192
196
215

. 221
. 221

. 24
. 24
. 227

239

. 242

247

258
263



viii

CONTENTS

8 Noise in electronic circuits 21
Bl TorodmCion: . i .oa o oea s e e R e m
£32 Ra.ndumvlnlhlls L i
8.2.1 Moments-:tfanndnmvm:l:lc.............lﬂﬁ
§22 Thecharacteristicfunction . . . . . .. - ..., ... 288
#.2.1  The central limit theorem . R W 290
824 B:unnllﬁmmndﬂmh.mu\s............l‘?!

£.3 Swochastic processes . . . . . . . . .
831 Enscmble averages .o 293
$.32 Swtionary random processes . . . . .. ococeeoo ... 296
£33 Ergodic andomprocesses . . . ... ... .- .. .. 296
834 POWErSpeCITUM . . . « v v v s n v 4 r bt m o s oo 298
835 Cross-power spectmum . . . . - ¢+ =+« . 301
£3.6 Caussian random processes . . . . . ., o
£17 Fiheredrandomgignals . . . . . .. ..ol 303

8.4 Moise in electronic circuits . . . . .. L. . . 305
B4l Thermalnoise. . o o o v v s v 0 0 s vn v a s s NS
£4.2 FElectronic shot-noise . . . . . .. ... ..., 306
43 1ffmoiee . .. .0t e e s baa i s iiea 306
44 Noise models for passive devices -
4.5 Noise models for active devices . ., . R i
B4.6 The equivalent inpul noise sources . . . . . . . . . . .
BAT Thenaisefigure. . . . .. .. 0. revaannana

8.5 Cummenidednui*s:umd:l!insmduulym
B.5.1 Noise representations , . . . G a
B8.52 Calculntmnuflh:cnrr:lllmn malrces . ., . ... ..
§.5.3 Elemenlary two-port inlerconnections . . . . . . . . .
854 Transformation matrices . . .

8.6 Bibliography

8.7 Problems .. ...

A Mathematical formulae for electrical engineering

B Elementary matrix algebra
C  Two-port electrical parameters

Index

§ 86§ 8 BERSBRESS



Preface

The mathematical representation and analysis of circuits, signals and noise are
key tools for electronic engineers. These tools have changed dramatically in
recent years but the theoretical basis remain unchanged. Nowadays, the most
complicated circuits can be analysed quickly using computer-based simulation.
However, good appreciation of the fundamentals on which simulation tools are
based is essential to make the best use of them.

In this book we address the theoretical basis of circuit analysis across a
broad spectrum of applications encountered in today’s electronic systems, es-
pecially for communications. Throughout the book we follow a mathematical-
based approach to explain the different concepts using plenty of examples to
illustrate these concepts.

This book is aimed at engineering and sciences students and other profes-
sionals who want solid grounding in circuit analysis. The basics covered in the
first four chapters are suitable for first year undergraduates. The material cov-
ered in Chapters five and six is more specialist and provides a good background
at an intermediate level, especially for those aiming to learn about electronic
circuits and their building blocks. The last two chapters are more advanced and
require good grounding in the concepts covered earlier in the book. These two
chapters are suited to students in the final year of their engineering degree and
to post-graduates.

In the first chapter we begin by reviewing the fundamental laws and theo-
rems applicable to electrical circuits. In Chapter two we include a review of
complex numbers, crucial for dealing with AC signals and circuits.

The varied and complex nature of signals and electronic systems require a
thorough understanding of the mathematical description of signals and the cir-
cuits that process them. Frequency domain circuit and signal analysis, based on
the application of Fourier techniques, are discussed in Chapter three with spe-
cial emphasis on the use of these techniques in the context of circuits. Chapter
four then considers time domain analysis and Laplace techniques, again with
similar emphasis.

Chapter five covers the analysis techniques used in two-port circuits and
also covers various circuit representations and parameters. These techniques
are important for computer-based analysis of linear electronic circuits. In this
chapter the treatment is frequency-domain-based.



Chapter six introduces basic electronic amplifier building blocks and de-
scribes frequency-domain-based analysis techniques for common circuits and
circuit topologies. We deal with bipolar and field-effect transistor circuits as
well as operational amplifiers.

Radio-frequency and microwave circuit analysis techniques are presented
in Chapter seven where we cover transmission lines, S-parameters and the con-
cept and application of the Smith chart. Chapter eight discusses the mathemat-
ical representation of noise and its origins, analysis and effects in electronic
circuits. The analysis techniques outlined in this chapter also provide the basis
for an efficient computer-aided analysis method.

Appendix A and B provide a synopsis of frequently used mathematical
formulae and a review of matrix algebra. Appendix C gives a summary of
various two-port circuit parameters and their conversion formulae.

In writing this book we have strived to make it suitable for teaching and
self-study. Concepts are illustrated using examples and the reader’s acquired
knowledge can be tested using the problems at the end of each chapter. The
examples provided are worked in detail throughout the book and the problems
are solved in the solution manual provided as a web resource. For both exam-
ples and problems we guide the reader through the solution steps to facilitate
understanding.

Luis Moura
Izzat Darwazeh
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1.1 Introduction

1.2 Voltage and
current

1 Elementary electrical circuit analysis

Analogue electronic circuits deal with signal processing techniques such as
amplification and filtering of electrical and electronic! signals. Such signals are
voltages or currents. In order to understand how these signals can be processed
we need to appreciate the basic relationships associated with electrical currents
and voltages in each electrical component as well as in any combination that
make the complete electrical circuit. We start by defining the basic electrical
quantities — voltage and current — and by presenting the main passive electrical
devices; resistors, capacitors and inductors.

The fundamental tools for electrical circuit analysis — Kirchhoff’s laws —
are discussed in section 1.4. Then, three very important electrical network the-
orems; Thévenin’s theorem, Norton’s theorem and the superposition theorem
are presented.

The unit system used in this book is the International System of Units (SI)
[1]. The relevant units of this system will be mentioned as the physical quanti-

femto- | pico- | nano- | micro | milli- | kilo- | mega- | giga | tera

® P (n) () m  &® | M |G D
1015 | 10712 | 1079 | 1078 | 1073 | 108 108 | 10° | 1012

Table 1.1: Powers of ten.

ties are introduced. In this book detailed definition of the different units is not
provided as this can be found in other sources, for example {2, 3], which ad-
dress the physical and electromagnetic nature of circuit elements. At this stage
it is relevant to mention that the SI system incorporates the decimal prefix to
relate larger and smaller units to the basic units using these prefixes to indicate
the various powers of ten. Table 1.1 shows the powers of ten most frequently
encountered in circuit analysis.

By definition electrical current is the rate of flow (with time) of electrical
charges passing a given point of an electrical circuit. This definition can be
expressed as follows:
dq(t)
i(t) = ——* 1.1
® = & (L1
I'The term “electronic signals’ is sometimes used to describe low-power signals. In this book,

the terms ‘electrical’ and ‘electronic’ signals are used interchangeably to describe signals pro-
cessed by a circuit.
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1. Elementary electrical circuit analysis

where i(t) represents the electrical current as a function of time represented by
t. The unit for the current is the ampere (A). ¢(t) represents the quantity of
flowing electrical charge as a function of time and its unit is the coulomb (C).
The elementary electrical charge is the charge of the electron which is equal to
1.6 x 1071° C.

At this stage it is relevant to mention that in this chapter we represent con-
stant quantities by uppercase letters while quantities that vary with time are
represented by the lower case. Hence, a constant electrical current is repre-
sented by I while an electrical current varying with time is represented by 4(¢).

Electrical current has a a very intuitive hydraulic analogue; water flow. Fig-
ure 1.1 a) shows a voltage source which is connected to a resistance, R, creating
a current flow, I, in this circuit. Figure 1.1 b) shows an hydraulic equivalent
system. The water pump together with the water reservoirs maintain a constant
water pressure across the ends of the pipe. This pressure is equivalent to the
voltage potential difference at the resistance terminals generated by the voltage
source. The water flowing through the pipe is a consequence of the pressure
difference. It is common sense that the narrower the pipe the greater the water
resistance and the lower the water flow through it. Similarly, the larger the
electrical resistance the smaller the electrical current flowing through the resis-
tance. Hence, it is clear that the equivalent to the pipe water resistance is the
electrical resistance R.

The electrical current, I, is related to the potential difference, or voltage V/,
and to the resistance R by Ohm’s law:

(1.2)

The unit for resistance is the ohm (also represented by the Greek symbol €2).
The unit for the potential difference is the volt (or simply V)2. Ohm’s law
states that the current that flows through a resistor is inversely proportional to
the value of that resistance and directly proportional to the voltage across the
resistance. This law is of fundamental importance for electrical and electronic
circuit analysis.

Now we discuss voltage and current sources. The main purpose of each of
these sources is to provide power and energy to the circuit to which the source
is connected.

1.2.1

Figure 1.2 a) shows the symbols used to represent voltage sources. The plus
sign, the anode terminal, indicates the higher potential and the minus sign, the
cathode terminal, indicates the lower potential. The positive flow of current
supplied by a voltage source is from the anode, through the exterior circuit,
such as the resistance in figure 1.1 a), to the cathode. Note that the positive
current flow is conventionally taken to be in the opposite direction to the flow
of electrons. An ideal constant voltage source has a voltage—current, V-1,

Voltage sources

21t is common practice to use the letter V' to represent the voltage, as well as its unit. This
practice is followed in this book.
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Figure 1.3: Practical volt-
age source. a) V-I charac-
teristic. b) Electrical model.

characteristic like that illustrated in figure 1.2 b). From this figure we observe
that an ideal voltage source is able to maintain a constant voltage V across its
terminals regardless of the value of the current supplied to (positive current) or
the current absorbed from (negative current) an electrical circuit.
When a voltage source, such as that shown in figure 1.1 a), provides a
constant voltage at its terminals it is called a direct current (or DC) voltage
source. No practical DC voltage source is able to maintain the same voltage
across its terminals when the current increases. A typical V-I characteristic
of a practical voltage source is as shown in figure 1.3 a). From this figure
we observe that as the current [ increases up to a value I, the voltage drops
from V; to V, in a linear manner. A practical voltage source can be modelled
according to the circuit of figure 1.3 b) which consists of an ideal voltage source
and a resistance R, whose value is given by:
R, = LV 13)

e
This resistance is called the ‘source output resistance’. Examples of DC volt-
age sources are the batteries used in radios, in cellular phones and automobiles.

An alternating (AC) voltage source provides a time varying voltage at its
terminals which is usually described by a sine function as follows:

vs(t) = Vi sin(wt) 14

where V is the amplitude and w is the angular frequency in radians per second.
An ideal AC voltage source has a VI characteristic similar to that of the ideal
DC voltage source in the sense that it is able to maintain the AC voltage regard-
less of the amount of current supplied or absorbed from a circuit. In practice
AC voltage sources have a non-zero output resistance. An example of an AC
voltage source is the domestic mains supply.

Example 1.2.1 Determine the output resistance of a voltage source with V; =
12V,V,=112Vand I, = 34 A.

Solution: The output resistance is calculated according to:

V; - Vx
I
= 0.0240

= 24 mQ

R =

1.2.2 Current sources

Figure 1.4 a) shows the symbol for the ideal current source®. The arrow indi-
cates the positive flow of the current. Figure 1.4 b) shows the current—voltage,

3 Although the symbol of a current source is shown with its terminals in an open-circuit situa-
tion, the practical operation of a current source requires an electrical path between its terminals or
the output voltage will become infinite.
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Figure 1.4: Ideal current
source. a) Symbol. b) [-V
characteristic.

Figure 1.5: Practical cur-
rent source. a) I-V charac-
teristic. b) Equivalent
circuit.

1. Elementary electrical circuit analysis

I-V, characteristic of an ideal current source. From this figure it is clear that an
ideal current source is able to provide a given current regardless of the voltage
at its terminals. Practical current sources have an I-V characteristic like that
represented in figure 1.5 a). As the voltage across the current source increases
up to a value V,; the current tends to decrease in a linear fashion. Figure 1.5 b)
shows the equivalent circuit for a practical current source including a resistance
R which is once again called the ‘source output resistance’. The value of this
resistance is:
Ve

Rs = I.-L (1.5)

Examples of simple current sources are difficult to provide at this stage. Most
current sources are implemented using active devices such as transistors. Ac-
tive devices are studied in detail in Chapter 6 where it is shown that, for ex-
ample, the field-effect transistor, in specific configurations, displays current
source behaviour.

Example 1.2.2 Determine the output resistance of a current source whose out-
put current falls from 2 A to 1.99 A when its output voltage increases from 0
to 100 V.

Solution: The output resistance is calculated according to:
Va
I, -1,
100
= 10kQ

R, =

Power supplied by a source

As mentioned previously, the main purpose of a voltage or current source is to
provide power to a circuit. The instantaneous power delivered by either source
is given by the product of the current supplied with the voltage at its terminals,
that is,

ps(t) = o(t)i(t) (1.6)

The unit for power is the watt (W) when the voltage is expressed in volts (V)
and the current is expressed in amperes (A). If the voltage and current are
constant then eqn 1.6 can be written as:

P, = VI .7n

Often it is of interest to calculate the average power, P4y, , supplied by a source
during a period of time T". This average power can be calculated by the suc-
cessive addition of all values of the instantaneous power, p,(t), during the time
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0 10 t (ms)

Figure 1.6: Instantaneous
and average power.

1.3 Electrical
passive
elements

interval T' and then dividing the outcome by the time interval T'. That is, P4y,
can be calculated as follows*:
to+T
/ ps(t) dt
¢

o

Py, =

Nl =

to+T
= / u(t)i(t) dt (1.8)
to

where ¢, is a chosen instant of time. For a periodic signal (voltage or current)
T is usually chosen as the period of the signal.

Example 1.2.3 A 12 volt DC source supplies a transistor circuit with periodic
current of the form; i(t) = 3 + 2 cos(27100¢) mA. Plot the instantaneous
power and the average power supplied by this source in the time period 0 <
t < 0.0ls.

Solution: The instantaneous power is calculated using eqn 1.6:

ps(t) = 12 x[3+42cos(27100t)]1073
= 36424 cos(27100¢t) (mW)

This is plotted in figure 1.6. The average power is calculated according to eqn
1.8:

1 0.01
Pay, = —— 12 x [3 + 2cos(27100¢)] 1073 dt
Oool 0
0.01
= 100x 12 x 1073 |3¢ in(27100¢
0 x 12 x 10 [3 +2ﬂ_10051n(7r00)0

= 36 mW

Note that the same average power will be obtained if eqn 1.8 is applied over
any time interval 7" as long as T is a multiple of the period of the waveform.

The main passive electrical elements are the resistor, the capacitor and the in-
ductor. For each of these elements we study the voltage—current relationship
and we also present hydraulic analogies as suggested by Wilmshurst [4].

1.3.1 Resistance and conductance

The resistance’ has been presented in the previous section. Ohm’s law relates
the voltage at the terminals of a resistor with the current which flows through
it according to eqn 1.2. The hydraulic analogue for a resistance has also been
presented above in figure 1.1. It is worth mentioning that if the voltage varies

4Recall that the integral operation is basically an addition operation.

SStrictly speaking, the suffix -or designates the name of the element (like resistor) while the
suffix -ance designates the element property (like resistance). Often these two are used inter-
changeably.
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Figure 1.7: Voltage and cur-
rent in a resistance.

1. Elementary electrical circuit analysis

with time then the current varies with time in exactly the same manner, as
illustrated in figure 1.7. Therefore, the resistance appears as a scaling factor
which relates the amplitude of the two electrical quantities; current and voltage.
So, we can generalise eqn 1.2 as follows:

()

i(t) = = (1.9
and

v(t) = Rit) (1.10)

Figure 1.7 illustrates this concept.

Example 1.3.1 Consider a current i(t) = 0.5 sin(wt) A flowing through a
resistor of 10 ). Determine an expression for the voltage across the resistor.

Solution: Using eqn 1.10 we obtain the voltage v(t) as

v(t) = Ri(t)
= b5sin(wt) V

Often it is useful to express Ohm’s law as follows:
I = GV (1.11)

where G = R~! is known as the ‘conductance’. The unit of the conductance
is the siemen (S) and is equal to (1 ohm )~1.

A resistance dissipates power and generates heat. When a resistance is
driven by a DC source this power dissipation, Pg, is given by:

Pr = VI (1.12)

where V represents the voltage across the resistance terminals and 7 is the
current that flows through it. Using Ohm’s law we can express eqn 1.12 as
follows:

Pr = RI? (1.13)
2
= % (1.14)

These two eqns (1.13 and 1.14) appear to be contradictory in terms of the role
the resistance plays in determining the level of power dissipation. Does the
dissipated power increase with increasing the resistance (eqn 1.13) or does it
decrease (eqn 1.14)? The answer to this question relates to the way we view
the circuit and to what quantity we measure across the resistor. Let us consider
the case where a resistor is connected across the terminals of an ideal voltage
source. Here, the stimulus is the voltage that results in a current through the
resistor. In this situation the larger the resistance the smaller the current is and,
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according to eqn 1.12, there is less power dissipation in the resistance. Note
that, in the extreme situation of B — oo the resistance behaves as an open
circuit (the current is zero) and there is no power dissipation. On the other
hand, if the resistance is driven by an ideal current source, then the voltage
across the resistor is the resulting effect. Hence, the larger the resistance, the
larger the voltage developed across its terminals and, according to eqn 1.12,
the power dissipation increases.

For time-varying sources the instantaneous power dissipated in a resistor

is given by:
pr(t) = v(t)i(t) (1.15)
= Ri2(t) (1.16)
_ )
= R (1.17)

where v(t) represents the voltage across the resistance and i(t) is the current
that flows through it. The average power dissipated in a period of time 7" can
be expressed as follows:

1 to+T
PAVR = f/ pR(t)dt (1.18)
to
to+T
= %/ i2(t) dt (1.19)
to
1 to+T
= &7 v (t) dt (1.20)
to

where £, is a chosen instant of time. When the resistor is driven by a periodic
signal, T" is normally chosen to be its period.

Example 1.3.2 An AC voltage v(t) = A sin(wt), with A = 10V, is applied
to a resistance R = 50 2. Determine the average power dissipated.

Solution: According to eqn 1.20 we can write:

1 T
P - 2 .2
AVR TR J, Vi sin®(wt) dt
EV_X 71— cos(2wt) it
T R J, 2
V2 1 T
= t — —sin(2wt
9T R { 75 Sin(2w )L
Since the period of the AC waveform is T' = 27 /w, the last eqn can be written
as:
1 V2
P — -4 121
AVR 7 3 (1.21)
= 1W




Figure 1.8: The capacitor.
a) In an electrical circuit.
b) Hydraulic analogue.

1. Elementary electrical circuit analysis

1.3.2 Capacitance

Figure 1.8 a) shows a capacitor connected to a voltage source. A capacitor is
usually implemented using two metal plates separated by an insulator. This
means that the capacitor does not allow the passage of direct current. How-
ever, when a voltage is applied across the terminals of an uncharged capacitor
electronic charge can be added to one of the metal plates and removed from
the other. This charge is proportional to the applied voltage and defines the
capacitance according to the following eqn:

g(t) =Co(t) (1.22)

where C is the capacitance and v(t) is the voltage applied across its terminals.
The capacitance can be seen to have the ability to accumulate charge. The unit
for the capacitance is the farad (F) when, in eqn 1.22, v(t) is expressed in volts
and ¢(t) is expressed in coulombs. In other words, a capacitor of one farad will
store one coulomb of charge if a potential difference of one volt exists across
its plates. From eqns 1.1 and 1.22 we can relate the current through a capacitor
with the voltage across its terminals according to the following eqn:

dv(t)
dt

i(t)y=C (1.23)

Figure 1.8 b) shows a hydraulic analogue for the capacitor which is an elas-
tic membrane covering the section of a water pipe. In this analogy the voltage
becomes the water pressure, the capacitor becomes the membrane elasticity,
and the charge becomes the water volume displaced by the membrane. Let us
consider that there is water on both sides of the elastic membrane. This mem-
brane does not allow the direct crossing of water between the two sides of the
pipe. However, if there is a pulsed increase of the water pressure in one side
of the membrane, as illustrated in fig 1.8 b), the stretching of this membrane
causes an effective travelling of the pulse from one side of the membrane to the
other (with no water passing through the membrane!). This process is concep-
tually similar to the flow of charges (current) in the metal plates of a capacitor.
Note that if there is too much pressure on the membrane it will eventually
breakdown and the same can happen to a capacitor if too much voltage is ap-
plied to it.

Integrating eqn 1.23 we obtain an expression for the voltage in terms of the
current, that is:

t
o) = é /O i(t) dt + Vi, (124)

where V,,, represents the initial voltage across the terminals of the capacitor at
t=0.

Unlike the resistor the capacitor does not dissipate any power. In fact be-
cause this circuit element is able to accumulate charge on its metal plates it
stores energy. To illustrate this we return to the hydraulic analogue; if two
shutters are inserted across each side of the pipe in order to stop the stretched
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Figure 1.9: The inductance.
a) In an electrical circuit.
b) Hydraulic analogue.

membrane relaxing to its original state this is equivalent to the disconnection
of a charged capacitor from the circuit. The energy stored in a capacitor can be
written as

Ec = %CW (joule) (1.25)

where V is the voltage across the capacitor terminals.

1.3.3 Inductance

Figure 1.9 a) shows an inductor connected to a current source. The inductor
is usually formed by a coil of a metal wire. The passage of current, i(t), in a
metal wire induces a magnetic flux which in turn (according to Faraday’s law)
results in a voltage, v(t), developing across the terminals, such that:

di(t)
dt

v(t)y =L (1.26)
where L is the inductance of the wire. The unit for the inductance is the henry
(H) when, in eqn 1.26, v(t) is expressed in volts and the current rate of change,
di(t)/dt, is expressed in amperes per second. Thus, an inductance of one henry
will have a potential difference of one volt across its terminals when the current
passing through it is changing at a rate of one ampere per second. Figure
1.9 b) shows a hydraulic analogue for the inductor which consists of paddles
connected to a flywheel. In this analogy the voltage becomes the water pressure
and the current becomes the rate of water flow. The inductance becomes the
flywheel moment of inertia. The flywheel requires water pressure to change
the speed of the paddles which, in turn, change the rate of the water flow.
In figure 1.9 b) we illustrate the situation where the application of a pulse of
water pressure causes an increase in the speed of the water flow which will
be maintained constant by the flywheel inertia until a different level of water
pressure is applied. In electrical terms this means that the voltage difference at
the terminals of an inductor is proportional to the rate of variation of the current
that flows through it.

Integrating eqn 1.26 we obtain an expression for the current that flows in
the inductor in terms of the voltage at its terminals, that is:

t
i) = %/O o() dt + Lo (127)

where I}, represents the initial current in the inductor at ¢ = 0.
Like the capacitor, the inductor does not dissipate energy and is capable of

storing energy. However, the energy is now stored in terms of the magnetic
flux created by the current. This energy can be written as

E, = %LP (joule) (1.28)

where [ is the current through the inductor.
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1.4 Kirchhoff’s
laws

Figure 1.10:  Kirchhoff’s
current law. a) IHlustration
of the current law. b) Equiv-
alent representation.
l 6A | TA l[ 1
b

|
|
{

]
%

"

Figure 1.11: Circuit for the
application of the current
law.

1. Elementary electrical circuit analysis

Kirchhoff’s laws provide the basis of all circuit analysis techniques as long as
such circuits can be described by lumped elements such as resistors, capaci-
tors, etc. There are two Kirchhoff’s laws: the current law and the voltage law.
These two laws are quite simple in terms of concept. However, the application
of these laws requires careful attention to the algebraic sign conventions of the
current and voltage.

The current law

The current law states that the sum of currents entering a node is equal to
the sum of the currents leaving the node. A node is a point at which two or
more electrical elements have a common connection. Figure 1.10 a) shows an
example of a node where the currents I; and I, are entering the node while the
current I3 is leaving the node. According to the current law, we can write:

L+1=1I3
which can also be expressed as:
L+L+(-I3)=0

This is equivalent to reversing the direction of the current I3, as shown in figure
1.10 b). Hence, the current law can also be stated as follows: the sum of all
currents flowing into a node, taking into account their algebraic signs, is zero.

Example 1.4.1 Consider the circuit of figure 1.11. Determine the currents I,
I 2 and I 3.

Solution: From figure 1.11 we can write the following eqns for nodes X, Y
and Z, respectively:

64+7+0 = 3+4+5
3+4 = I,
S+I, = I3

Solving to obtain I, I and I3 we obtain:

L = -1A
I, = TA
I, = 12A

Note that the current /; is negative which means that the direction of the current
is the opposite of that shown in the figure.

The voltage law

The voltage law states that the sum of all voltages around any closed electrical
loop, taking into account polarities®, is zero. Figure 1.12 shows a circuit with

61n this book we use curved arrows to indicate the potential difference between two points in a
circuit, with the arrow head pointing to the lower potential.
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Figure 1.12:
voltage law.

Kirchhoff’s

+ lr+
+ \\ PN '
_ Jev o
‘<,/ v

Figure 1.13: Circuit for the
application of the voltage
law.

two closed loops. By applying the voltage law we can write the following
equations for loop 1 and loop 2, respectively:

vR(t)+vL(t)—vs(t) = 0
Uc(t)—’UR(t) =0

It should be noted that since the connections of the elements are assumed as
ideal (zero resistance), voltage differences are observed only across the various
elements. Hence, for example, node z is, from an electrical point-of-view, the
same at the low end of the voltage source and at the low-end of the inductor.

Example 1.4.2 Consider the circuit of figure 1.13. Determine the voltages V1
and V5.

Solution: From figure 1.13 and starting from point  we can apply the
voltage law to the upper and lower loop, respectively, as indicated below:

Va+5-2 = 0
24+V1-6 = 0

Solving we get:

Vo = -3V
Vi = 4V

We observe that Vs is negative meaning that the polarity of the voltage drop is
opposite to that chosen originally.

1.4.1 Series and parallel combinations of passive elements

Two connected elements are said to be in series if the same current flows
through each and in parallel if they share the same voltage across their termi-
nals. We study now the series and parallel combinations of resistors, capacitors
and inductors.

Resistance

Figure 1.14 a) shows two resistors in a series connection. These two resistors
can be replaced by a resistor with an equivalent resistance, R4, as shown in
figure 1.14 b). Hence, R., must draw the same amount of current I as the
series combination. Applying Kirchhoff’s voltage law to the circuit of figure
1.14 a) we obtain:
—V:i+Vi4+Vo = 0 (1.29)
that is
vV, =

1+V; (1.30)
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Vi iy

] Ity
R,

Figure 1.14: a) Series com-
bination of two resistors.
b) Equivalent resistance.
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Figure 1.15: a) Parallel
combination of two resis-
tors. b) Equivalent resis-
tance {conductance).

1. Elementary electrical circuit analysis

Since the current that flows through both resistors is the same we can write the
last eqn as follows:

Vo = R{I+RyI
= (Ri+Ry)I (1.31)
Applying Ohm’s law to the circuit of figure 1.14 b) we obtain:
Vo = Regl (1.32)
therefore
R,, = Ri+HR (1.33)

It can be shown (see problem 1.4) that the above can be generalised for the
series combination of N resistors as follows:

N
Ry = Y Rx
k=1

that is, the equivalent resistance is obtained by the addition of all resistances
that make the series connection.

Figure 1.15 a) shows two resistors in a parallel connection. Each resistor
Ry can be expressed as a conductance Gy = R;l. Applying Kirchhoff’s
current law to the circuit of figure 1.15 a) we obtain:

(1.34)

I, = L+ (1.35)

Since the voltage across each conductance is the same we can write the last eqn
as follows:

I, = GiV+GyV
(G1+Gy)V (1.36)
Applying Ohm’s law to the circuit of figure 1.15 b) we obtain:
I, = GV (1.37)
so that
Geg = G1+G2 (1.38)

It can be shown (see problem 1.5) that this result can be generalised for the
parallel combination of NV resistors as follows:

N
Geg = ZGk
k=1

that is, the equivalent conductance is the addition of each conductance that
composes the parallel connection.

(1.39)
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The equivalent resistance, R.,, for the parallel combination of two resist-
ances can be obtained by re-writing eqn 1.38 as follows:

1 1 1
= — 4 — 1.40
- RTE (1.40)
or,
Ri R,
R, = ———= 1.41
? R+ Ry ( )

Often, we use the notation || to indicate the parallel connection of resistances,
that is, R;||Rz means R, in parallel with Ry,

Example 1.4.3 Consider two resistances R = 3 k2 and Ry = 200 2.

1. Determine the equivalent resistance, R.4, for the series connection of R;
and R2.

2. Determine the equivalent resistance, 2.4, for the parallel connection of
Rl and Rz.

Solution:
1. According to eqn 1.33 the equivalent resistance is R., = 3.2 k2.
2. According to eqn 1.41 the equivalent resistance is R.q = 188 (2.

It should be remembered that for the series connection of resistances the equiv-
alent resistance is larger than the largest resistance in the series chain whilst for
the parallel connection the equivalent resistance is smaller than the smallest re-
sistance in the connection.

n(t) ™ (0}
g8 i
_)uit) F ;
ua(t) Cs
a)
i(t) 4
- Ceq

Figure 1.16: a) Series com-
bination of two capacitors.
b) Equivalent capacitor.

Capacitance

Figure 1.16 a) shows two capacitors in a series connection. These can be re-
placed by a capacitor with an equivalent capacitance, Ceq, as shown in figure
1.16 b). Applying Kirchhoff’s voltage law to the circuit of figure 1.16 a) we
obtain:

vst) = vit)+va(t) (1.42)

Since the current that flows through both capacitors is the same then, according
to eqn 1.24, we can rewrite the above eqn as follows:

vs(t) Cil/o i(t)dt+0%/0 i(t) dt

= <i+—1—> /t i(t)dt (1.43)
-\ G/ Sy ’



14

Figure 1.17: a) Parallel
combination of two capaci-
tors. b) Equivalent capaci-
tor.

1. Elementary electrical circuit analysis

Here we assume that the initial voltage across each capacitor is zero. Applying
eqn 1.24 to the capacitor of the circuit of figure 1.16 b) we obtain:

t
valt) = Cquo i(t)dt (1.44)

From eqns 1.44 and 1.43 we conclude that

1 1 1

Con = a + 52 (1.45)
that is:
GGy
Ceqg = Ci 1 G (1.46)

It can be shown (see problem 1.7) that eqn 1.45 can be generalised for the
series combination of N capacitors as follows:

N
1 1
- ¥ = 1.47
CEq k=1 Ck ( )

Figure 1.17 a) shows two capacitors in a parallel connection. Applying
Kirchhoff’s current law to the circuit of figure 1.17 a) we obtain:

i) = iy(t) +ia(t) (1.48)

Since the voltage across each capacitor is the same then, using eqn 1.23, we
can write the above eqn as follows:

] _ du(t) dv(t)
’Ls(t) = 0t + a1
(C1+ C2) is(t—t) (1.49)

Applying eqn 1.23 to the capacitor of the circuit of figure 1.15 b) we obtain:

. _ dv(?)
is(t) = Ceq 7t (1.50)
so that
Ceq = C1+C (1.51)

It can be shown (see problem 1.8) that the above eqn can be generalised for the
parallel combination of N capacitors as follows:

Ceq = D Ck (1.52)
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Figure 1.18: a) Series com-
bination of two inductors.
b) Equivalent inductor.

Example 1.4.4 Consider two capacitances C; = 0.3 pFand Cy = 1 pF.

1. Determine the equivalent capacitance, Cq, for the series connection of
Cl and CQ.

2. Determine the equivalent capacitance, C.q, for the parallel connection
of C 1 and 02.

Solution:
1. According to eqn 1.46 the equivalent capacitance is C.q = 0.2 uF.
2. According to eqn 1.51 the equivalent capacitance is Ceq = 1.3 pF.

It should be noted that, for capacitors, the series connection results in a de-
creased value for the equivalent capacitance while the parallel connection re-
sults in an increased value for the equivalent capacitance.

Inductance

Figure 1.18 a) shows two inductors’ in a series connection. These two induc-
tors can be replaced by a single inductor with an equivalent inductance, L.,,
as shown in figure 1.18 b). Applying Kirchhoff’s voltage law to the circuit of
figure 1.18 a) we obtain:

vs(t) = vi(t) + va(t) (1.53)

Since the current that flows through both inductors is the same then, according
to eqn 1.26, we can rewrite the last eqn as follows:

di(t) di(t)
= L1 —*+1L
va(®) TR AT
di(t
= (L1+ L) ditt) (1.54)
dt
Applying eqn 1.26 to the equivalent inductor in figure 1.14 b) we obtain:
di(t)
’Us(t) = Leq Tt— (155)
Comparing this eqn with eqn 1.54 we conclude that
Ly, = Li+1Ly (1.56)

It can be shown (see problem 1.10) that the last eqn can be generalised for the
series combination of N inductors as follows:

N
Ly = Y Lk
k=1

7We assume the inductors to be uncoupled, that is they are sufficiently far apart or mounted in
such a way so that their magnetic fluxes do not interact.

(1.57)
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u(t) L G

Figure 1.19: a) Parallel
combination of two induc-
tors. b) Equivalent inductor.

1. Elementary electrical circuit analysis

Figure 1.19 a) shows two inductors in a parallel connection. Applying
Kirchhoft’s current law to the circuit of figure 1.19 a) we obtain:

is(t) = i1(t) +1ia2(t)

Since the voltage across each inductor is the same, we can apply eqn 1.27 to
eqn 1.58 as follows:

(1.58)

1 [t 1t
— vtdt+—/vtdt
A (t) L /. (t)

(-Ll—l . L%) /Ot o(t) dt

where we assume that the initial current in each inductor is zero. Applying eqn
1.27 to the equivalent inductor of figure 1.15 b) we obtain:

is(t)

I

(1.59)

1 t
i) = / o(t) dt (1.60)
Leg Jo
Comparing the last eqn with eqn 1.59 we conclude that
1 1 1
= — 4+ — 1.61
Leq Ll * L2 ( 6 )

The equivalent inductance, L., for the parallel combination of two induc-
tances can be obtained from eqn 1.61 as follows:
Ly Ly
Li+ L,

It can be shown (see problem 1.11) that the above eqn can be generalised for
the parallel combination of N inductors as follows:

Leg =

(1.62)

1 N

Leg

—1— (1.63)
Ly
k=1

Example 1.4.5 Consider two inductances L; = 1.5 mH and Ly = 1 mH.

1. Determine the equivalent inductance, L4, for the series connection of
L1 and LQ.

2. Determine the equivalent capacitance, L., for the parallel connection of
L1 and L2.

Solution:
1. According to eqn 1.56 the equivalent inductance is Coq = 2.5 mH.
2. According to eqn 1.62 the equivalent inductance is Ceq = 0.6 mH.

It is interesting to note that like resistors (but unlike capacitors) the series con-
nection of inductors increases the value of the equivalent inductance while the
parallel connection decreases it.
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1.4.2 Other types of circuit element connections

Circuit elements can be connected in combinations which are neither parallel
nor series. For example, take the circuit of figure 1.20 a) for which we want
to determine the equivalent resistance, R.,, between terminals Aand B. In

Figure 1.20: a) Resistive circuit. b) Calculation of the equivalent resistance, R.q, by applying a test voltage
source, V;. ¢) Calculation of the equivalent resistance, R.,, by applying a test current source, I;.

Figure 1.21: Calculation of
R,

this circuit there is not a single combination of two resistances which share the
same current through or the same voltage across their terminals and, therefore,
there is not a single parallel or series connection. This means that we cannot
directly apply the rules discussed previously, for parallel and series connections
of resistances, to determine R.,. However, the calculation of the equivalent
resistance can be done by applying a test voltage source, V;, to the terminals
of the circuit as shown in figure 1.20 b). Then, we determine the current I,
supplied by this source. Finally, by calculating the ratio V; /I, we can find the
equivalent resistance, R4, effectively applying Ohm’s law. Alternatively, we
can apply a test current source, I, to the circuit as illustrated in figure 1.20 c¢).
Again, by calculating the ratio V;/I; we obtain R.,. In general, this procedure
can be applied to any circuit.

Example 1.4.6 Determine the equivalent resistance, Rq, of the circuit of fig-
ure 1.20 between terminals A and B.

Solution: We apply a test voltage source to the circuit as shown in figure 1.21.
This figure also shows the definition of the voltages across and currents through
each resistance. Applying Kirchhoff’s current law we can write:

L =5L+1
L =I1;+13
(1.64)
L=I,+1I5
I3=1,+1I;
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and applying Kirchhoff’s voltage law we can write

Vi=Vi+Vy
(1.65)
Vi=Va+ V3

These two sets of eqns can be rewritten as:

L=+ g

Vi _ Vi Y

B=RTR (1.66)
V. . Vi
R TR

Vi=Vi+Vy

Vi=Va+ V3

Solving, to obtain V;/I; = Req, we get:

i _ RyR5(Ri+ Ry) + RiRa2(Rs + Ry)

I, - Rz(Rs + R3 + R4) + R5(R4 + R+ R3) + R, (R3 + R4)
R3R4(R2 + Rs) + R1R3(R4 + R5)

Ry(Rs+ R34+ Ry)+ Rs(Ry+ Ry + R3) + Ri(R3s + Ry)

49.5 O

1.4.3 Electrical network analysis — Nodal analysis

There are various electrical analysis methods, all derived from Kirchhoff’s
laws, to analyse electrical circuits. One of most effective and computation-
ally efficient is the Nodal analysis method. Therefore, we now illustrate the
application of this method to resistive electrical networks.

Figure 1.22 a) shows a circuit for which we want to determine the current
14. Since the resistance R is short-circuited the voltage across this resistance
is zero and, according to Ohm’s law, the current that flows through R is zero.
Hence, the circuit of figure 1.22 a) can be replaced by its equivalent represented
in figure 1.22 b). First, we indicate the voltages at each node. These voltages
indicate the potential difference between the node being considered and a ref-
erence node which can be chosen arbitrarily. This node is traditionally called
‘node zero’ (0) or the ‘ground terminal’ and is often chosen as the node with
the highest number of attached electrical elements. For this circuit there are
three nodes (X, Y, Z) plus the reference node zero, as shown in figure 1.22 b).
Then, we consider, in an arbitrary manner, the current direction in each branch,
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R3 R;
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Figure 1.23: Expressing the
current across Ry in terms

Of(VX - Vy)/R1.

0
b)

Figure 1.22: a) Resistive electrical network. b} Equivalent circuit.

as indicated in figure 1.22 b). The current that flows through each resistance
can be expressed, according to Ohm’s law, as the ratio of the voltage across
that resistance and the resistance value. Figure 1.23 illustrates this procedure
for the current I; that flows through R;; since the voltages V and V4 have
been defined, referenced to ground, then by applying Kirchhoff’s voltage law
we can express the voltage across R;, Vi, as the difference between Vx and
Vy . Hence we can write:
Vx —Vy

I = 7 (1.67)
Applying this technique to the remaining currents, as defined in the circuit of
figure 1.22 b), we can write:

Vz—Vy

= = 1.
I3 s (1.68)
W
Iy = — 1.69
4 R (1.69)
Vz
Is = = 1.7
5 Rs (1.70)

Applying Kirchhoff’s current law to nodes Y and Z we can write:

L+Iy+Is = I (L.71)
Iv+Is+Iy = 0 (1.72)

These two eqns can be expressed, using eqns 1.67-1.70, as follows:

Vx — Wy Vz - W Vy
—— + T - = — 1.73
R + Iy + s Fa (1.73)
2w V2 _ (1.74)

R3 Rs
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Figure 1.24: a) Resistive

voltage divider. b) Resistive
current divider.

1. Elementary electrical circuit analysis

Note that the only two unknown quantities are Vy- and Vz. Solving the last two
eqns in order to obtain Vy and V; we get:

R3Vxy + Iy RsR1 + Vx Rs

Vv = R 1.75
Y “RsRs+ RyRs + RiRy + R1R3 + Ry Rs (1.75)
= 56V
R4Vx — RsRyly — Iy RsR;
V, = R 1.76
Z RaRy + RyRs + RiRs + RiR3 + RiRs (1.76)
— 40V

Since I4 = I, eqn 1.68 gives us [4 = —6 mA.

1.4.4 Resistive voltage and current dividers

Resistive voltage and current dividers are simple yet very important circuits
which allow us to obtain fractions of a source voltage or current, respectively.
In addition, these circuits play a major role in the calculation of voltage and
current gains in electronic amplifier analysis.

Resistive voltage divider

Figure 1.24 a) shows the resistive voltage divider formed by resistances R; and
R,. For this circuit we observe that the current flowing through R; and Rs is
the same. Hence, we can write:

V; - Vo Vo
= = 1.77
R R, (1.77)
Solving this eqn in order to obtain V, we get:
Ry
Vo = Vog—"— 1.78
Ri+Re (1.78)

We observe that if Ry = Ry then V, = 0.5V,. Also, if R; >> Ry then V,
tends to zero. On the other hand, if R; << R, then V, tends to V.

Resistive current divider

Figure 1.24 b) shows the resistive current divider formed by resistances R; and
R,. For this circuit the voltage across each resistor is the same. Hence, we can
write the following set of eqns:

v Vv
I, = —+— 1.79
R R (L79)
v
I, = — 1.80
2 (1.80)
Rearranging, we obtain [,:
R
I, Iy ——— 1.81
R+ R, ( )

We can conclude that if By = Ry then I, = 0.5 . Also, if R; >> R then
I, tends to I;. On the other hand, if R; << R, then I, tends to zero.
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Figure 1.25: a) Voltage-

controlled voltage source.
b) Voltage-controlled cur-
rent source. c¢) Current-
controlled voltage source.
d) Current-controlled cur-
rent source.
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Figure 1.26: Circuit con-
taining a voltage-controlled
current source.

1.4.5 Controlled sources

The voltage and the current sources presented in section 1.2 are called indepen-
dent sources. Other types can be controlled by either a voltage or current exist-
ing elsewhere in the circuit. These controlled (or dependent) sources are often
used to model the gain of transistors operating in their linear region and also to
model the gain of linear electronic amplifiers, as will be discussed in Chapter
6. There are four types of controlled sources, drawn as diamond shapes, as
illustrated in figure 1.25.

e Voltage-controlled voltage sources: the output of the source is a voltage,
V., and the quantity that controls it is also a voltage, V;. A, is the ratio
V,»/V; and is called the ‘voltage gain’ of the source. A, is dimensionless;

e Voltage-controlled current sources: the output of the source is a current,
I,,, but the quantity that controls it is a voltage, V;. G, is the ratio I,/ V;
and is called the ‘transconductance gain’ of the source. The dimension
of G, is the siemen;

e Current-controlled voltage sources: the output of the source is a voltage,
V5, but the controlling quantity is a current I;. R, is the ratio V,/I; and
is called the ‘transresistance gain’ of the source. The dimension of R,
is the ohm;

e Current-controlled current sources: the output of the source is a current,
I,,, and the controlling quantity is also a current, I;. A, is the ratio [, /I;
and is called the ‘current gain’ of the source. A; is dimensionless.

It is important to note that the output characteristics of each of the dependent
sources is exactly the same as those of its corresponding independent source
(see figures 1.2 b) and 1.4 b)) but with I and V values being controlled by a
quantity occurring somewhere else in the circuit.

Example 1.4.7 Consider the circuit of figure 1.26 containing a voltage-control-
led current source. Determine the voltage across the resistance Ro.

Solution: According to Kirchhoff’s current law the current that flows through
R; is the sum of I with the current supplied by the voltage-controlled current
source, (7,, V1, that is:

L, = I,+G,., W

Since Vi = Ry I, we can write the last eqn as follows:
L, = L,Q+G,R)

Finally;

Ry I,

Ry I; (14 G Ry)

= 81V
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1.5 Thévenin ’S Thévenin’s theorem states that any two-terminal electrical network, such as that
theorem depicted in figure 1.27 a) consisting of resistances and independent sources

(voltage or current or both) can be replaced by an equivalent ideal voltage

*2( source in series with an equivalent resistance, as shown in figure 1.27 b). The
value of the equivalent voltage source, Vrp, known as the Thévenin voltage,
Network v is the open-circuit voltage at the output terminals. Ry, is the Thévenin resist-
— ance ‘looking into’ the terminals of the network when all independent voltage
) sources are replaced by short-circuits and all independent current sources are

replaced by open-circuits.

Electrical

X
By Example 1.5.1 Determine the Thévenin equivalent circuit for the circuit of
Vrn figure 1.28 a) where the two terminals to be considered are X and Y.

Solution: The calculation of the Thévenin voltage can be performed by analysis
of the circuit of figure 1.28 b). Note that V7, is equal to V4. We can write the
following set of eqns:

Figure 1.27: a) Generic

DC electrical network. b) I, = L+
Thévenin equivalent circuit. V. = Vg—Vi
L = I3

These can be rewritten as follows:

\% Ve — V;
IT' = —C + u
R, R,
Vs = VB - VA
Va = Vec-Vg
R3 Ry
300Q) TV
©14) B0 L VEN%_@ Vi N R
R X - Vg X YYVY X
! Vs I Vs 11 V.
ir 2R & L. pd 5ZR, ()
. = (100 Q) :F (809) |} 2|5 31:F 3 :F " Zh
’ Y ' Y : ﬂ
a b) ) d
) Ry & % )

Figure 1.28: a) Electrical network. b) Calculation of the Thévenin voltage. c) Calculation of the Thévenin
resistance. d) Thévenin equivalent circuit.

Solving, in order to obtain the voltages V4, Vg and V> we get:

I’I‘R2_V9
Vo = Rz3——i—r 1.82
A 3R3+R1+R2 ( )

11V
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1.6 Norton’s
theorem

I.RsR3 + R1Vs + RV

Vg = 1.83
B R3+ R+ Ry (1.83)
= K81V
I.Rs+V,+I.R;
Ve = R 1.84
¢ > Rs+ Ry + Ry (1.84)
= 86V

Since the Thévenin voltage is the voltage across points X and Y it is the same
as V4, that is, Vpp, = 1.1 V. The calculation of the Thévenin equivalent resis-
tance can be carried out by analysing the circuit of figure 1.28 c) where it can
be seen that the voltage source, V;, has been replaced by a short-circuit and the
current source, I, has been replaced by an open-circuit. The calculation of the
Thévenin resistance can be calculated by applying a test voltage, V;, between
terminals X and Y, the terminals where the resistance is to be determined. The
ratio between V; and the current supplied by this test voltage source, I, is the
required resistance. Applying Kirchhoff’s current law to the circuit of figure
1.28 ¢) we can write:

L=5L+13 (1.85)

From this figure we can also observe that the voltage V; is applied to R3 and
also to the series combination of B, and R». Hence we can write:

Vi Vi
L= ——— 4+ = 1.86
TR+ R R (1.80)
Solving for V;/1; we obtain:
R3(R1 + Ry)
R = 1.87
R e D 480
= 495Q

It should be noted that this resistance could also be calculated by close inspec-
tion of figure 1.28 c) after recognising that the resistance R, is the parallel
combination of Rz with the series combination of R, and R».

Norton’s theorem states that any two-terminal electrical network, such as that
depicted in figure 1.29 a) consisting of resistances and independent sources
(voltage or current or both) can be replaced by an equivalent independent cur-
rent source in parallel with an equivalent resistance, as shown in figure 1.29 b).
The value of the current source is the current flowing from X to Y when X
to Y are short-circuited. The equivalent resistance (Norton resistance), Ry
is the resistance ‘looking into’ the terminals of the network when the indepen-
dent voltage sources are replaced by short-circuits and the independent cur-
rent sources are replaced by open-circuits. Norton’s theorem is the dual of
Thévenin’s since the equivalent voltage source, Vry, is replaced by an equiva-
lent current source, Iy, and the series resistance, Ry, is replaced by a parallel
resistance, Ry;.
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X
Electrical
Network v
a)
X
Iy Ry
Y
b)
Figure 1.29: a) Generic

electrical network. b) Nor-
ton equivalent circuit.

X
Iy Ryt
(0023A) <= (495 Q)
Y
b)

Figure 1.30: a) Equivalent
circuit for the calculation
of the short-circuit current
Iny = I. b) Norton equiv-
alent circuit.

1. Elementary electrical circuit analysis

Example 1.6.1 Determine the Norton equivalent circuit for the circuit of figure
1.28 a) where the two terminals to be considered are X and Y.

Solution: The calculation of the Norton short-circuit current, I, can be per-
formed by analysing the circuit of figure 1.30 a) for which we can write the
following set of eqns:

Ine = I, (1.88)
I, = L +1 (1.89)
Ve = V, (1.90)

Note that since Rj3 is short-circuited, the voltage across its terminals is zero
and there is no current flowing through this resistance. Eqn 1.89 can be written
as follows:

Ve-Vs Vo
I, = —+4+ = 1.91
R R (151)
Since Vg = V, we have that:
Ve-Vs Ve
I. —= 1.92
R | R (152)
Solving in order to obtain V> we can write:
R1 R, Ry
Ve T 1% 1.93
© = RitR " TR+R (1.93)
= 7.7V
The Norton equivalent short-circuit current is,
Ve —Vs
I = —— 1.94
Nt R (1.94)
= 0.023 A

The Norton equivalent resistance is determined in a fashion similar to that used
to calculate the Thévenin resistance in example 1.5.1. Consequently, the Nor-
ton equivalent circuit for the circuit of 1.28 a) is as shown in figure 1.30 b).

It is useful to note the straightforward equivalence between the Thévenin
and Norton theorems. If, for example, the Thévenin equivalent circuit is known
then the equivalent Norton circuit can be obtained as shown in figures 1.31 a)
and 1.31 b), that is:

Vrn
I = — 1.9
Nt Ron (1.95)
Ry: = Rra (1.96)
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X X YVVY X

Vi Rrp = Ry

- INt = Rp RNt .
C_ Vrn = T) G)IM & _DVTh = Ini Iy

Ryi=Rrw| v Y Y

b) c) d)

Figure 1.31: a) Thévenin circuit. b) Equivalent Norton circuit. c) Norton circuit. d) Equivalent Thévenin

circuit.

1.7 Super-
position
theorem

On the other hand, if the Norton equivalent circuit is known then the Thévenin
equivalent circuit can be obtained as shown in figures 1.31 ¢) and 1.31 d), that
1s:

Vrr = IntBne (1.97)
Ry, = Ry (1.98)

It is left to the reader to prove these equivalences.

We emphasise that the discussion of Thévenin and Norton theorems pre-
sented above applies to circuit networks containing only independent sources
(voltage and current). However, there are algebraic techniques which allow us
to obtain Thévenin and Norton equivalent circuits when the networks include
dependent sources [5].

The superposition theorem is of considerable importance since it can provide
useful insight into the relative contribution of a given independent source to
the current flowing through or the voltage across a given circuit element. The
superposition theorem also plays a major role in the frequency domain circuit
analysis, discussed in Chapter 3, and in the noise analysis of linear electronic
circuits presented in Chapter 8.

The superposition theorem applies to linear circuits and it can be stated
as follows: “In a network containing several current and/or voltage sources,
the voltage across (or the current flowing through) any circuit element can be
obtained from the algebraic sum of the voltages (currents) caused by each in-
dependent source considered individually with all other independent voltage
sources considered as short-circuits and all other independent current sources
considered as open-circuits”. As stated above, the superposition theorem does
not allow for the substitution of controlled voltage sources and controlled cur-
rent sources by short-circuits and open-circuits, respectively. In this respect the

superposition theorem applies only to independent sources®.

Example 1.7.1 Apply the superposition theorem to determine the equivalent
Thévenin voltage of the circuit of figure 1.28 a) where the two terminals to be

8Using mathematical manipulation techniques it possible to apply the superposition theorem to
dependent sources [5].
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Figure 1.32: Application of
the superposition theorem to
the circuit of figure 1.28 a).
a) The contribution from V.
b) The contribution from I,..
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considered are the X and Y terminals.

Solution: Figure 1.32 a) shows the equivalent circuit for the calculation of the
contribution of V; to the Thévenin voltage across the terminals X and Y. Note
that the positive current supplied by the voltage source flows as indicated in
this figure. Since all resistances are in series the current can be determined,
according to Ohm’s law, as follows:

Vs

Ri+ Ry + R3
= 33.3mA

I =

The contribution to the Thévenin voltage is the voltage across R3 and can be
expressed as follows:

Vrn, = —IR3
Vs R3
Ri+ Ry + R3
= =27V

Figure 1.32 b) shows the equivalent circuit derived to calculate the contribu-
tion of I, to the Thévenin voltage. The current that flows through R3 can be
calculated using the current divider concept. Hence, since R, is in a series
connection with Rz we can write:

R,
H = I, ————
! Ri+ Ry + R3
= 47.6 mA

and this contribution to the Thévenin voltage, the voltage across Rj3, can be
expressed as follows:

Vrn, = ©LiR3

_ g Ry R
T Ri+ Ry + R3
= 38V

Adding Vry, and Vpp, we obtain the Thévenin voltage as:
Vrp, = 11V

Note that the superposition theorem allows us to identify the contribution of
each independent source in a clear manner. While the contribution of V to the
Thévenin voltage is negative (—2.7 V), the contribution of I,. to Vipy, is positive
(3.8 V). This results in a net voltage Vrp of 1.1 V.
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(Cambridge University Press).

2. J.D. Kraus, Electromagnetics with applications, 1999 (McGraw-Hill)
5th edition.
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1.9 Problems 1.1 Avoltage v(t) = 10 sin(2 7 100 t+/4) volts is applied across the termi-
nals of a 1 uF capacitor. Sketch the current through the capacitor as a function
of time from ¢t = 0 to £ = 20 ms.

1.2 A current i(t) = 20 cos(27 5000t) mA flows through a 3 mH inductor.
Sketch the voltage across the inductor as a function of time from ¢ = 0 to
t =500 us.

1.3 Find the current through and the voltage across each resistance for the
circuits of figure 1.33. Take V; =2V, Vo =3V, [; =02Aand I, = 0.5 A.

AL
100 Q 120
T Wi 150 ©
I} Rl C) RS
L

e)

Figure 1.33: Circuits of problem 1.3.

1.4 Show that the equivalent resistance for the series combination of NV resist-
ances is given by eqn 1.34.
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1.5 Show that the equivalent conductance for the parallel combination of N
resistances satisfies eqn 1.39.

1.6 For each circuit of figure 1.34 determine the equivalent resistance and
conductance between points A and B.

A
A
40
60 2
R] RS
B
a) B
Rl R1 100
A A
100
40 Q Ry
Ry
R 40 Q
B y o)
170 © B
b)
170 ©

Figure 1.34: Circuits of problem 1.6.

1.7 Show that the equivalent capacitance for the series combination of N
capacitances satisfies eqn 1.47.

1.8 Show that the equivalent capacitance for the parallel combination of N
capacitances satisfies eqn 1.52.

1.9 For each circuit of figure 1.35 determine the equivalent capacitance be-
tween points A and B.

1.10 Show that the equivalent inductance for the series combination of N
inductors is given by eqn 1.57.

1.11 Show that the equivalent inductance for the parallel combination of N
inductors satisfies eqn 1.63.
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S

A

|
|

1 uF 3 uF 6 uF ! c
22 M [ o) Cs C, Cy 1
A || || II B 2 uF 2 uF 7 uF | 3uF 9 uF
@a @ o 1
Cs 4 pF
i B

—

¢)

|—-—e——o

8)

*B
b)

Figure 1.35: Circuits of problem 1.9.

Figure 1.36: Circuits of problem 1.12.

1.12 For each circuit of figure 1.36 determine the equivalent inductance be-
tween points A and B.

1.13 For each circuit of figure 1.37 determine the voltage across and the cur-

rent through R,.
T
0-% 40 € B0
D 60 Q2
\ R R,
Ry

Figure 1.37: Circuits of problem 1.13.
1.14 For each circuit of figure 1.38 determine the voltage across and the cur-
rent through R;.

1.15 For the circuits b) and c) of figure 1.38 determine the Thévenin equiva-
lent circuits at points A and B.
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R,

Rl A R5 B
68 0
R 0V
5V 130 Q 0 Rg
02A R, 60 Q
Ry 4Q
a) 100
<)
Figure 1.38: Circuits of problems 1.14, 1.15 and 1.16.
1.16 For the circuits b) and c) of figure 1.38 determine the Norton equivalent
circuits at points A and B.
1.17 For the circuits of figure 1.39 determine the voltage across and the cur-
rent through R3. Use values of 4, = 12, G, = 0.5 S, A, = 10 and
R, =40Q.
Ry Al
VVVY
0.25 A 450 GmV Rs
Ry R K 100
90 ©
T I 70Q
|
a)
Rnl
+ -
Ry
720
10V

Q)

Figure 1.39: Circuits of problem 1.17.

1.18 Apply the superposition theorem to the circuits of figure 1.40 to deter-
mine the voltage across and the current through R». G, = 0.9 S, 4, = 10.
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& AVe
Wl $
120 ©2 !
5 02 A
R(
900 N
(5 15V & v
- ' 250 2 R Ry * 0.1A
AAA— AMA— 200 ] d
mAAA A/ + = S
210 50 Q g v e
; 10V <r <r
‘ v -
()
N 9

Figure 1.40: Circuits of problem 1.18.



2.1 Introduction

2.2 Definition

Real axis
O30l T A X
a)

Y 4 Imaginary axis
21

2 4

-3 0 1 Real
axis

b}

Figure 2.1: a) The real axis.
b) The complex plane.

2 Complex numbers: An introduction

Complex numbers play a major role in alternating current (AC) circuit analysis
through the use of the phasor concept and associated analysis. This simplifies
the analysis of circuits by representing voltage and current quantities in terms
of magnitude and phase. Phasor analysis is also the foundation of frequency
domain signal analysis and is used extensively in the remaining chapters of this
book.

Phasors are basically a convenient representation of complex numbers. In
this chapter we introduce complex numbers and the different ways of repre-
senting them. Following this introduction, we define complex numbers. In
section 2.3 we describe the elementary algebraic operations for these types of
numbers. Then, in section 2.4 we discuss the polar representation of complex
numbers and in section 2.5 we introduce the exponential representation which
is basically the phasor representation. Finally, in section 2.6, we present the
calculation of powers and roots of complex numbers.

Real numbers can be integers (e.g. —1, 0, +2), fractional numbers (e.g. —1/2,
1/3,5/6) and irrational numbers (e.g. /3, 7). We can represent all real num-
bers on a single axis, the so-called real axis as illustrated in figure 2.1 a).

Complex numbers are quantities which are represented in a plane as shown
in figure 2.1 b). This plane is called the ‘complex plane’ and it is defined by two
orthogonal axes, X and Y'; the real axis and the imaginary axis!, respectively.
The representation of the complex plane using two orthogonal axes is also
called the Argand diagram. Every complex number, 2, can be defined by a pair
of real numbers (or pair of coordinates),  and y, which identify the position
of z in the complex plane:

z=(z,y) 2.1

In eqn 2.1 z is called the ‘real part’ of the complex number while y is called
the ‘imaginary part’ of the complex number. In figure 2.1 b) we illustrate the
representation of the complex numbers z; = (1,2) and z, = (—/3,4/3). It
should be noted that all real numbers can be represented as complex numbers
where the y coordinate is zero and they have the general form (z, 0).

IThe imaginary axis is also represented here by j Y.
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Imaginary axis
A
K
i Real axis
— + -
1 X

vy
ix 11
B o
. i
a)
jY?Imaginary axis
Lammm g xd

v

/
! Real axis
— e e -

Pxl=—1! 1 X
b)

Figure 2.2: a) The number 1
multiplied by j. b) The num-
ber (§ x 1) multiplied by j.

ij Imaginary axis
X z=r+jy
Yl *

Real axis
X

i

¥y T

Figure 2.3: Representation
of z=zxz+7jy.

7Y ¥ Imaginary axis

e “u

Real axis

Figure 2.4: Multiplication
by —j.

The complex number j

The complex number j is introduced here as an ‘operator’ so that when a num-
ber is multiplied by ; the outcome is that number rotated by 90 degrees (7/2
radians) counter-clockwise in the complex plane. Let us consider the number
1 multiplied by j. According to the definition of 7, the multiplication of 1 by
j results in a 90 degrees counter-clockwise rotation of this number in the com-
plex plane, as shown in figure 2.2 a). If we multiply (j x 1) by j again there is
another 90 degrees counter-clockwise rotation, as shown in figure 2.2 b). From
this figure we arrive at the central definition of the complex number j:

-2

3° = -1 (2.2)

which means that j = \/—1. Note that j is a complex number located on the
imaginary axis, that is, its real part is zero. This is expected since real numbers
do not encompass square roots of negative numbers. Complex numbers located
on the imaginary axis (with zero real part) are usually referred to as ‘imaginary
numbers’.

The introduction of the j number allows the representation of complex
numbers, which were formerly represented as z = (z,y), as shown below:

z=zx+jy 2.3)

This is called the Cartesian (or rectangular) representation of complex num-
bers. We emphasise that the representation of complex numbers given by eqn
2.3 is equivalent to the representation of complex numbers given by eqn 2.1.
In fact, eqn 2.3 indicates that the complex number z is the addition of a real
number z and an imaginary number j y, the latter results from the 90 degrees
counter-clockwise rotation of the real number y as illustrated by figure 2.3.
Also, note that the imaginary axis, 7 Y, can be seen as the counter-clockwise
90 degrees rotation of the real axis, X.

Example 2.2.1 Show that the multiplication of a number by (—7) is equivalent
to the rotation of this number by 90 degrees in the clockwise direction.

Solution: We illustrate the operation mentioned above using the number 1.
Thus, 1 X (—j) can be written as 7 x (—1) which, in turn, can be expressed,
according to eqn 2.2, as (1x5) x (j2). Hence the multiplication by j three times
corresponds to the rotation by 270 degrees counter-clockwise in the complex
plane. This is equivalent to rotating by 90 degrees clockwise, as shown in
figure 2.4.

Equality of two complex numbers

Two compiex numbers 21 = x1 + jy1 and zo = x5 + j y» are said to be equal
when both their real and imaginary parts are equal, that is:

Real (z1) = Real (z1) i.e.
Imag (z;) = Imag (z1) i.e.

1 = X9

24
Y1 = Y2 @4

Z1 = 29 <:>{
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2.3 Elementary
algebra

7 Y4 Imaginary axis
j2 2
j e
X
2 3 5 Rel
. axis
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Figure 2.5: Addition of z; =
3+j2andzo =2 —3.

iy Imaginary axis
i3 g3
52 72
—23 .
X
22 12 3 Real
s axis
7 2o

Figure 2.6: Subtraction of
29 =2—jfromz; =3+j2

2. Complex numbers: An introduction

where Real (2;) indicates the real part of z; and Imag (2 ) indicates the imag-
inary part of z;.

We discuss now the addition, subtraction, multiplication and division of com-
plex numbers.

2.3.1 Addition

The addition of two complex numbers z; = 1 + jy1 and 20 = 3 + jy2
results in a third complex number z3 = x3 + j y3 whose real part, z3, is the
sum of the real parts of z; and 2z, and its imaginary part, ys, is the sum of the
imaginary parts of z; and 2. Hence we can write:

23 = 21+ 29
= (z1+z2)+7(+9y2) (2.5)
that is:
T3 = T1+ T2 (2.6)
ys = ynit+ye 2.7

It is possible to represent the addition of two complex numbers on the Argand

diagram. Figure 2.5 illustrates the additionof z; = 3+ j2with 2o =2 — j
which is equal to 23 = 5 4 j 1. Note that the addition of these two numbers
is similar to the addition of two vectors, each is defined by one of the complex
numbers, using the parallelogram rule.

2.3.2 Subtraction

The subtraction of two complex numbers 21 = z1 + jy; and 290 = 3 + Y2
results in a complex number 23 = 3 + j y3. 3 is the subtraction of the real
parts of z; and z; and ys3 is the subtraction of the imaginary parts of z; and 25.
Thus, we can write:

zZ3 = 21 =22
= (x1—22)+7(y1 —y2) (2.8)
that is:
T3 = T1—I2 (29)
Ys = Y1—Y2 (2.10)

Figure 2.6 illustrates the subtraction of 29 = 2 — j from 2; = 3 + j 2 which
is equal to z3 = 1 + j 3. In order to be able to apply the parallelogram rule we
first need to represent the vector defined by {—23) in the Argand plane. Then,
we can add z; with (—z2) as described above. Note that (—z3) = 52 25 can be
represented in the Argand diagram by rotating 22 by 180 degrees.
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7Y | Imaginary axis
j2 ,123
J ,'21
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Figure 2.7: Multiplication of
21 =24 7 withzo = 2.
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Figure 2.8: Multiplication of
71 =24+ jwithzy = 2.
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2.3.3 Multiplication

‘We discuss now the multiplication of complex numbers where we distinguish
between three situations: multiplication of a complex number by a real number,
multiplication of a complex number by an imaginary number and multiplica-
tion of a complex number by another complex number.

Multiplication by a real number

The multiplication of a complex number z; 21 + jy1 by a real number
23 = x5 results in a complex number 23 = 3 + j y3 whose real part, x3, is the
multiplication of the real part of z; with z, and its imaginary part, y3, is the
multiplication of the imaginary part of z; with z2. Hence we can write:

23 = 21 X222
= (z122)+j (y122) .11
that is:
Tz = IT1Z2 (2.12)
Ys = U172 (2.13)

Figure 2.7 illustrates the multiplication of z; = 2 + j with 25 = 2 which is
equal to 23 = 4 + j 2. This multiplication is similar to scaling the magnitude
of the vector defined by z; by an amount given by z».

Multiplication by an imaginary number

The multiplication of a complex number 2z; r1 + jy1 by an imaginary
number z; = j ys results in a complex number 23 = x3 + j y3:

zZ3 21 X 29

T1iy2 + 52y v

= (~y1y2) +j(e1y2) (recallthat j*=-1)  (214)

that is:
T3 —Y1 Y2 2.15)
ys = 19 (2.16)

Figure 2.8 illustrates the multiplication of z; = 2 + j with z5 = j 2 which is
equal to z3 = —2 + 7 4. This multiplication is effectively a 90 degrees rotation
of the vector defined by z; followed by a scaling of this vector by an amount
given by |ya| = 2. The 90 degrees rotation of the vector defined by z; is
counter clockwise if yo > 0. If yo < 0 the 90 degrees rotation of this vector is
clockwise.
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Figure 2.9: Complex num-

bers and their conjugates.

2. Complex numbers: An introduction

Multiplication by a complex number

The multiplication of a complex number z; = x; + j y1 by another complex
number zo = z2 + J Y2 results in a different complex number z3 = 3 + j y3.
The result is clearly the combination of the two multiplication cases considered
above. In other words it is addition of the multiplication of a complex number
by a real number and the multiplication of a complex number by an imaginary
number. z3 can be calculated as follows:

23 = 21 X 29
(1 +Jy1) x (T2 +jyo)
T1Zo4+T1iYs +jyr 2 + 52 Y1 Y2

Il

= (z1z2—y1y2) +7(z1y2 + 31 22) 217

that is
r3 = T1Z2—Y1Y2 (2.18)
Yys = T1Y2t+ T2y 2.19)

For example the multiplicationof 2; =2+ jby zo =2+ j21is

7z = (24])x(2+72)
= 4+j4+j2+5%2
= 246

Complex conjugate

Two complex numbers are said to be the conjugate of each other when they
have the same real part but have imaginary parts of opposite sign. For example,
the complex conjugate of z; = 1 + 72 is 1 — 72 and the complex conjugate
of zg = —3 — j /2 is =3 + j /2 as illustrated by figure 2.9. It is common
to represent the complex conjugate of z by z*. It is interesting to note the
following results which apply to complex conjugates:

¢ The addition of a complex number, 2, to its conjugate is a real number
equal to twice the real part of z.

z+2" = (@+jy)+(z-jy)
- 2z (2.20)

¢ The subtraction of a complex number, z, from its conjugate is an imagi-
nary number equal to twice the imaginary part of 2.

*

z—2" = (z+jy)—(z-Jy)
= 2jy (2.21)

o The multiplication of a complex number, z, with its conjugate is a real
number equal to the addition of the squares of its real part and imaginary
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part.

ZXz (z+Jjy) x(z—jy)

2 —zjy+jye+([Gy)(—iy)

x? —j%2y%  (recall that j% = —1)

2 — (-y*)

= 22442 (2.22)

2.3.4 Division

The division of a complex number z; = z; + 7 y1 by a complex number z; =
g + jyo results in another complex number z3 = 3 + jys. In order to
calculate z3 we use the fact that a complex number multiplied by its conjugate
is a real number (see also eqn 2.22). z3 = z1/z; can then be calculated as

follows:
21
23 = —
22
= A2
z Z
_ (@m+ju)(wa—Jya) (2.23)
(z2+Jy2) (22 — jy2)
Using eqn 2.22 we can write eqn 2.23 as follows:
1 +jy )z —
R Jy;)( 3 jy2) 2.24)
T3t Y2
Expanding the numerator we obtain:
by = T —jpnitinz -ty
73 + 93
Ti1Za+Y1Y2 | N1T2— Y21
% 5 (2.25)
T3t Y3 T3t Y3
that is
r1 T2 +
Ty = 2T AP (2.26)
3t Y3
Y122 — Y21
Y3 — 55 (2.27)
3 + 3

For example, the division of 3 + j 4 by 1 — j 2 can be calculated as follows:
3+74
1-342
3+j4 9 1+72
1—-72 14352
3+j6+54+5%8
1+4
= —-1+4+7j2

zZ3 =
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2.3.5 Complex equations

The solution of complex equations involves the calculation of two unknown
quantities; the real part and the imaginary part. For example, let us solve the
following complex equation:

3z2=42"4+9+57 (2.28)

If we expand z into its components x and j y, the last eqn can be written as
follows:

3z+j3y=42x—4jy+9+5j (2.29)

Grouping the real parts and the imaginary parts we have:
Br—4z-9)+5j8y+4y—5)=0 (2.30)

Both real and imaginary parts must each be equal to zero:

Jx—4x—-9 = 0

(2.31)
3y+4y—-5 = 0
that is
r = -9
(2.32)
_
vy = 7
2.3.6 Quadratic equations
Quadratic equations have the general form:
az?+bzx+c = 0 (2.33)

where a, b, and ¢ are real numbers and x is the unknown variable which is to
be determined. This eqn has two solutions which can be expressed as follows:

_ 2 _
_ bi\/2b 4dac (2.34)
a

The solutions are real numbers if 52 —4 g ¢ > 0. However, when b2 —4ac < 0
the square root of a negative number is required. Using complex numbers the
solutions can be written as follows:

b+ /—(—b?+4ac)
2a

bt/ (dac_ 2
J* (dac—b?) (2.35)
2a

where now we have 4 a ¢ — b2 > (. Therefore, the last eqn can be written as

—b++/52V4ac— b2
2a
~btjvdac—b?

= 5o (2.36)
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2.4 Polar repre-
sentation

Y T Imaginary axis

Figure 2.10: Cartesian and
polar representations  for
complex numbers.

Equation 2.36 indicates that when b2 — 4ac < 0 the two solutions for this
quadratic eqn are complex numbers. It should also be noted that these are
complex conjugates.

Example 2.3.1 Solve the following quadratic eqns:
1. 32242z+5=0
2. 322-3z-6=0

Solution:

1. Wehavea = 3,b=1, ¢ = 5, and b®> — 4a ¢ = —59. Therefore the two
solutions are complex and given by eqn 2.36:

21 = —l-{-j@
6 6

L 1V
6 6

2. Nowwehave a = 3,b = —3, ¢ = —6, and b* — 4a ¢ = 81. Therefore
the two solutions are real and given by eqn 2.34

Z1 = -1

2222

So far the representation of a complex number z, has used a Cartesian (or
rectangular) representation where a complex number is identified by its coor-
dinates on the real and the imaginary axes using one of the following notations:
z = (z,y) = = + j y. This representation is illustrated again in figure 2.10. A
complex number also defines a vector represented by its length, r, and by the
angle, 8, of the vector with the real axis. When z is represented by  and 6 (usu-
ally written as z = rZ6) it is said to be represented by its ‘polar coordinates’.
The length of the vector, r, is often called the ‘modulus’, |z|, or magnitude
of the complex number z. The angle 8 is usually called the ‘argument’ of z.
When z is represented in its Cartesian form (z = = + j y) the modulus of z can
be determined from Pythagoras’s theorem:

lZl=r = a2 +y? (2.37)
Note that |z| can also be obtained as follows (see also eqn 2.22);
2l = Vaxz* (2.38)

The argument of 2, 6, can be determined using the following trigonometric
relationship:

tan(f) = % (2.39)
that is:
- -1(Y
0 = tan (x) (2.40)
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Example 2.4.1 Represent z = 5 + j v/3 in polar coordinates

Solution: From eqn 2.37, r is the magnitude of z;

r = 25+ =28

and from 2.40

6 = tan! (?) = 0.3 rad

Thus 2z = v/28 £0.3 rad.

Conversion between polar and Cartesian

Using basic trigonometry, a complex number in polar form, z = /8, can be
converted to Cartesian form, z = (z,y) = z + J y, as follows:

z = r cos(f) (2.41)
y = r sin(f) (2.42)

Example 2.4.2 Represent z = 3 Z7/4 rad in rectangular coordinates

Solution: According to eqns 2.41 and 2.42 z can be written as:

z=3cm(%)+j3ﬁn(%>=21+j21

2.4.1 Multiplication and division

The polar representation is very attractive since it considerably simplifies the
multiplication and division of complex numbers. To multiply two complex
numbers in the polar form we multiply the moduli and we add the arguments,
that is, if we want to multiply z; = r146; with 25 = r,/6, we obtain a
complex number 23 = r3/6f3 where:

z3 =11 X 12Z(01 + 62) (2.43)

that is
Ty = 71 XT2 (2.44)
03 = 61+62 (2.45)

For example, the multiplication of z; = 2.3 £2.3 rad with 22 = 4.0 £0.4 rad
is equal to z3 = 9.2 /2.7 rad.
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2.5 The
exponential
form

The division of two complex numbers represented in the polar form is done
by dividing the moduli and subtracting the arguments, that is, dividing z; =
11401 by 23 = ro /05 gives a complex number z3 = r3/6f3 where:

2= L /(0) ~ 6) (2.46)
T2
that is
T1
ry = 2.47)
T2
0, = 6,6, (2.48)

For example, the division of z; = 2.3 £2.3 rad by 22 = 4.0 £0.4 rad is equal
to z3 = 0.6 £1.9 rad.

It is worth mentioning that to add or subtract two complex numbers ex-
pressed in polar form it is necessary to convert them first to a Cartesian (rect-
angular) form. The addition or the subtraction can then be effected as described
in section 2.3. The result can, of course, be converted back to a polar represen-
tation.

Example 2.4.3 Determine the result of the addition of z; = 4.2 Z7/9 with
29=15/-3r/4.

Solution: According to eqns 2.41 and 2.42 z; and 2z, can be written as follows:

21 = 394514
2o = —11-3411

Hence 21 + z0 = 2.8 + 0.3 = 2.82 Z0.11 rad.

The exponential form of a complex number is similar to the polar represen-
tation discussed above. In order to obtain this exponential form we start by
expanding cos(6) and sin(6) in Maclaurin series (see appendix A) we have

62 94 92n
cos(f) = 1~§+E+"'+(_1)ﬁ+"' (2.49)
) g3 g5 g2n+1
Now, cos(f) + j sin{6) can be written as
o 92 94 ) 93 05
cos(f) + j sin(f) = <1_§+Z!—+”'>+J (9—§+5+...>
) 62 6 o 6
= 1+]9_§_J§+Z+15+“' 2.51)

The series can be written as

GOP , GO GO, (0P

cos(B) +jsin(d) = 1456+ 51 3 YRR = +...
=¥ U k,) (2.52)

k=0
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Recognising eqn 2.52 as the Maclaurin series of exp(j §) we arrive at Euler’s
formula:

eje

= cos(f) + j sin(f) (2.53)
Using eqns 2.41, 2.42 and 2.53 we can write a complex number z = r £6 as

z r cos(§) + jr sin(6)
r[cos(8) + j sin(8)]

rel? (2.54)

One advantage of the exponential representation of complex numbers is its
simplicity. This exponential form is also called the ‘phasor representation’ of
complex numbers and it plays a major role in the representation of signals and
systems in the frequency domain as discussed in the next chapter.

It is interesting to note that setting § = 7/2 and § = —7/2 in eqn 2.53 we
get the useful relationships:

j o= €% (2.55)
—j = e7J% (2.56)

Example 2.5.1 Determine the exponential form of z = (3 + j5) 1.

Solution: According to eqns 2.37, 2.40 and 2.54, z can be written as follows:

1
3+75

1

VE 15 e ten (579
1

/34 eJ 1.03
1 e—j 1.03

V34

2.5.1 Trigonometric functions and the exponential form

It is possible to express the trigonometric functions using the exponential rep-
resentation of complex numbers. Let us consider a complex number withr = 1
and its complex conjugate in the exponential form:

e?
—j8

cos(6) + j sin(6) 2.57)
cos(—8) + j sin(—6)
= cos(f) — J sin(6) (2.58)

€
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2.6 Powers and
roots

Adding eqn 2.57 to eqn 2.58 we obtain:
el +e7% = 2cos(h)
that is:
i0 . -8
cos(f) = 3—23— (2.59)

On the other hand if we subtract eqn 2.58 from eqn 2.57 we obtain:
ef—e7% = 24sin(9)

that is:
ei0 _ g—ib
in() = —— 2.60
sin(6) 5 (2.60)
It is a trivial matter to show that:
1 el — e3¢

tan(60) = = ZF e

2.61)

A very useful theorem for the calculation of the powers and roots of complex
numbers is De Moivre’s theorem which states that:

[cos(8) + j sin(B)]* = cos(nb)+ j sin(nb) (2.62)

Therefore, a complex number 2™ can be written as:

P— (r e’ a)n (2.63)
= rrelfn (2.64)
= 1" cos(nf) + jr" sin(n6) (2.65)

These eqns are valid for all real values of n. This means that De Moivre’s for-
mula allows us to calculate the powers and roots of complex numbers. How-
ever, we must bear in mind that there is usually more than one solution when
finding the roots of a complex number.

Powers of a complex number

The calculation of the powers of a complex number results from the straight-
forward application of eqn 2.64 or 2.65. For example, the calculation of the
cube of z = e/ ™/ is:

2= (s

= 927 ej 3mr/4

= 27 cos(3n/4) + 727 sin(37/4)

The powers of complex numbers have many uses in obtaining trigonometric
identities, as the following example illustrates.
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Example 2.6.1 Express sin(2¢) in terms of cos(¢) and of sin(¢)
Solution: From eqn 2.57 we can write
eI?% = cos(2¢)+j sin(2 ) (2.66)
therefore, sin(2¢) can be expressed as:
sin(2¢) = Imag [e/27]
= Imag [(ej ¢)2]
= Imag|[(cos(¢) + j sin(¢))*]

= Tmag[cos(4)? + 2] cos(¢) sin(¢) — sin(¢)?]
= 2 cos(¢) sin(¢) (2.67)

1 roots of unity

We consider now the solution of 2™ = 1 which is equivalent to determining
the n-roots of the number 1 in the complex plane. Note that 1 can be seen as a
complex number with modulus one and argument zero. Other arguments with
multiples of 27 (27, +47, 167, etc.) are also valid since the addition (or the
subtraction) of 27 to the argument of a complex number does not change its
position in the complex plane or change its value. Therefore, z™ = 1 can be
expressed as follows:

2t = 27NN e {..,-2,-1,0,+1,42,...}  (2.68)

To solve this eqn we take both sides to the power of 1/n, that is:

1 .
574 Imaginary axs (zMVr = 27N/ N e {..,-2,-1,0,+1,42,...} (2.69)
it We can find the n different roots by setting N to 0, 1, 2, ..., (n — 1) in the
’:’, . last eqn. Note that other values of N result in repeated roots. To illustrate this
; ‘2 /5 Ly X concept consider the example below.
-1 /1 Real
\ ’ axis
o\ Example 2.6.2 Find the solutions of 2° = 1.
i “T
Solution: z° = 1 can be expressed as follows:
Figure 2.11: Solutions of 22 = TN 2.70)

25 =1
with N € {...,~2,~1,0,+1,+2,...}. Taking the 5th root we obtain

z = ¢l2mN/5 2.71)
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jY
22

Y

Imaginary axis

21

23

Figure 2.12:
2 =4474.

‘1 Real
axis

Solutions of

Substituting N € {0,1,2,3,4} in the last eqn, we obtain (see also figure
2.11):

N=90 7z =270/ =1

N=1 2y = I 2TY/5 = 127 /5
N=2 23=ej2"2/5=€j4”/5
N=3 2y = I273/5 — 367 /5
N=4 zs:ej27r4/5:ej81r/5

Note that, for this example there is a basic set of five roots. For values of N
greater than four we start to obtain repetitions of the roots. For example, by
setting N = 5in eqn 2.71 we obtain z = €7 2™ = 1. Note that this is the same
root as for N = 0.

The n roots of a general complex number

The calculation of the n roots of a general complex number, w, can be seen as
the calculation of the solutions of the following eqn:

2" = w 2.72)
Expressing w in an exponential form gives:
w = ryet (2.73)
We can write eqn 2.72 as follows:
2" = el e tiTN (2.74)

where we use the fact that the addition of a multiple of 27 to the argument of a
complex number does not change its value. Taking the n roots of both sides of
eqn 2.74 we obtain

2 = (ry)™ efw/nti2nN/n (2.75)

The n different roots are determined by setting N t0o 0, 1, 2, ..., (n — 1).

Example 2.6.3 Find the solutions of 2% = 4 + j 4.

Solution: First, we represent 4 + j 4 in an exponential form; 4 /2 e/ ™/, Then,
2% = 4 + j 4 can be written as follows:

2 = 42 /AN (2.76)
taking the cubic root we obtain

2 = (4V2)3 /124527 N/3 Q.17
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substituting N € {0, 1,2} in the last eqn we obtain:

N=0 : 2z =(4v2)3¢ /12
N=1 : 2z =(4V2)5¢37/4
N=2 : z3= (4\/5)% eI ™17/12

Figure 2.12 shows these roots represented in the Argand diagram.

2.7 Bibliography 1. M. Attenborough, Mathematics for Electrical Engineering and Comput-
ing, 2003 (Newnes).

2. C.R. Wylie and L.C. Barrett, Advanced Engineering Mathematics, 1995
(McGraw-Hill International Editions), 6th edition.

2.8 Problems 21 Represent the following complex numbers in the Argand diagram:
l. z1=1+4j4
2. 2p=1-j4
3. 23=—2+j25
4, zg=—1—jV3

2.2 Perform the following algebraic operations:

L (1+j4)+(1—34)
2. (—2+571)—(-2-31)
3. (j2.5) x (1 —j4.5)

4. (2-374)/(-3-38)
5. (—0.45,4) — (0.8,3.1)
6. (1.4,2) + (0.8,3.1)

7. (=5,0) x (0.8,3.1)

8. (—0.45,4)/(0.8,3.1)

2.3 Solve the following quadratic equations:

1. 22432434=90

2.422-22-5=0
3. —22242=5

4. 22462+9=0
5.

622+3V724+27=0
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2.4 Represent the following numbers in the polar representation:

1.
2.
3.
4,

1.
2.
3.

z=1+4+7j1
z=—14+72
z2=2-7503
z=—VT-jV3
2.5 Represent the following numbers in the Cartesian representation:
z=0.5227
2=154—-7m/3
z=0.5467/4
z2=054~-37/2

4.

2.6 Calculate the following:

1.
2.
3,
4, 2.1e777/5 [(9el77/5)
5.
6

4e37/2 % 0.5e737/2
4e7™/2 /(0.5€737/2)

3.4e~I7/5 x 5e=iT

48em/9 4 G.5i57/2

. 0.9eI7/3 _ (05ei37/2

2.7 Solve the following equations:

2.
3.
4.

22 =1
22=j
22=1+j1

2eIT™ 5 = 5efn/4

47



3.1 Introduction

3.2 Sinusoidal
AC electrical
analysis

3 Frequency domain electrical signal and
circuit analysis

In this chapter we present the main electrical analysis techniques for time
varying signals. We start by discussing sinusoidal alternating current (AC)
signals! and circuits. Phasor analysis is presented and it is shown that this
greatly simplifies this analysis since it allows the introduction of the ‘gener-
alised impedance’. The generalised impedance allows us to analyse AC cir-
cuits using all the circuit techniques and methods for DC circuits discussed in
Chapter 1. In section 3.3 we extend the phasor analysis technique to analyse
circuits driven by non-sinusoidal signals. This is done by first discussing the
Fourier series which presents periodic signals as a sum of phasors. The Fourier
series is a very important tool since it forms the basis of fundamental concepts
in signal processing such as spectra and bandwidth. Finally, we present the
Fourier transform which allows the analysis of virtually any time-varying sig-
nal (periodic and non periodic) in the frequency domain.

AC sinusoidal electrical sources are time-varying voltages and currents de-
scribed by functions of the form:

vs(t) = Vi sin(wt) 3.1
I, sin(wt) (3.2)

.
n
—
-
~—
I

where V; and I, are the peak-amplitudes of the voltage and of the current
waveforms, respectively, as illustrated in figure 3.1. w represents the angu-
lar frequency, in radians/second, equal to 27 /T where T is the period of the
waveform in seconds. The repetition rate of the waveform, that is the linear
frequency, is equal to 1/7 in hertz. The quantity (w t) is an angle, in radians,
usually called the instantaneous phase. Note that w T corresponds to 2 7 rad.
Here we interchangeably use the terms voltage/current sinusoidal signal or
waveform, to designate the AC sinusoidal quantities.

By definition, all transient phenomena (such as those resulting, for exam-
ple, from switching-on the circuit) have vanished in an AC circuit in its steady-
state condition. Thus, the time origin in eqns 3.1 and 3.2 can be ‘moved’ so

L Any signal varying with time is effectively an AC signal. We limit our definition of an AC
signal here to a sinusoidal signal at specific frequency. This is particularly helpful to calculate
impedances at specific frequencies as will be seen later in this chapter.
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a) AC volt-

Figure 3.1:
age (current) waveform ver-

sus time. b) AC voltage
(current) waveform versus
phase.

4 /vs(t) )

Figure 3.2: Phase difference
(¢ = w/3) between an AC
voltage and an AC current.
a) The current lags the volt-
age. b) The voltage leads the
current.

vs(t) and i,(t) are equally well described by cosine functions, that is:

vs(t)
is(t) =

Vs cos{wt)
I, cos{wt)

(3.3)
(3.4)

While the choice of the absolute time origin is of no relevance in AC analysis,
the relative time difference between waveforms, which can also be quantified
in terms of phase difference, is of vital importance. Figure 3.2 a) illustrates the
constant phase difference between a voltage waveform and a current waveform
at the same angular frequency w. If any two AC electrical waveforms have
different angular frequencies, w; and wo, then the phase difference between
these two waveforms is a linear function of time; (w; —w2) t. Assuming a time
origin for the voltage waveform we can write the waveforms of figure 3.2 a)
as:

vs(t) =
Lo =

Vs sin(wt)
I sin(wt — ¢)

(3.5)
(3.6)

where ¢ = 7/3. In this situation it is said that the current waveform lags the
voltage waveform by ¢. In fact, the current waveform crosses the phase axis
(point A) later than the voltage waveform. On the other hand, if we choose
the time origin for the current waveform, as illustrated in figure 3.2 b), we can
write these waveforms as follows:

vs(t) =
is (t) =

V, sin(wt + @)
I sin(wt)

3.7
(3.8)

and it is said that the voltage waveform leads the current waveform.

3.2.1 Effective electrical values

By definition, the effective value of any voltage waveform is the DC voltage
that, when applied to a resistance, would produce as much power dissipation
(heat) as that caused by that voltage waveform. Hence, if we represent the
AC voltage waveform by V; sin(wt) and the effective voltage by V., then,
according to eqn 1.20, we can write:

r) e - r ]
T/, R

1 [T fof V2 sin?(wt)
& = d = = St 39
TEERTES @)
The last eqn can be written as follows:
lVlefT 1v? T1—cos(2wt) &t
T R T R Jy 2
V2 1 T
= T |t—— 2wt 1
=3 Veff 5T [t 2wsm( w )JO (3.10$)
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Figure 3.3: Voltage AC

waveforms and its corre-
sponding effective voltage.

Figure 3.4: Triangular volt-
age waveform and its corre-
sponding effective voltage.

3. Frequency domain electrical signal and circuit analysis

Since w = 27/T the last eqn can be written as:

V2
2 _ s
Veff = 5 3.1

or Vesr =Vs/ V2 ~0.707 V. Figure 3.3 illustrates the effective voltage of an
AC voltage waveform.

In a similar way it can be shown that the effective value of a sinusoidal
current with peak-amplitude I, is Iys = I,/ V2. The effective value of a
sinusoidal voltage and/or current is also called the root-mean-square (RMS)
value.

Example 3.2.1 Show that the effective value of a triangular voltage waveform,
like that shown in figure 3.4, with peak amplitude V; is Ve5r = V/ V3.

Solution: Following the procedure described above we can write:

Tv2 T 2
L Ve g l/ vs(t) 4
TJ), R TJ), R

Looking at figure 3.3 we see that the triangular waveform is symmetrical.
Therefore, it is sufficient to consider the period of integration from £ = 0 to
t =T/4, giving

Vs 4 (Mree
R :7/0 T?R
Vesz V243 T3 T/4
© "R T RIS [?L
V2
2 _ s
@ Vi o= & (3.12)

thatis, Vosr = Vi/V3 ~ 0.577 Vs.

3.2.2 I-V characteristics for passive elements

We now study the AC current—voltage (/-V') relationships for the main passive
elements, presented in Chapter 1. We use cosine functions to represent AC
currents and voltages waveforms. However, the same results would be obtained
if sine functions were used instead.

Resistance

Assuming a current, i(t) = I cos(wt) passing through a resistance R, the
voltage developed across its terminals is, according to Ohm’s law:

vg(t) Ri{t)
= RI, cos{wt)
V; cos{wt)

(3.13)
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B
o .
. \
N .
N [y

N

Figure 3.5: Voltage and cur-
rent in a resistance.

Figure 3.6: Voltage and cur-
rent in a capacitor.

with
V., =RI, (3.14)

Dividing both sides by /2 we obtain the RMS (or effective) value for the AC
voltage as

I

Vs = Rﬁ
= RIL,,, (3.15)

where I, is the RMS (or effective) value for the AC current. From eqn 3.13
and figure 3.5 we observe that the voltage and the current are in phase, that is,
the phase difference between the voltage and the current is zero.

Capacitance

If a current, ¢(t) = I, cos{wt) passes through a capacitance C, the voltage
developed across its terminals is (see also eqn 1.24)

1

t
wl) = & [ iwd+v. (3.16)
(¢}

C

Note that since we are assuming steady-state conditions in the AC analysis we
may set the initial condition V., = 0, that is

ve(t) = (3.17)

1 t

c /0 I, cos(wt)dt
Performing the integration we obtain:

I, .

— t

e sin(wt)

= wI—IC cos(wt—%)

= V. cos (wt— g)

'Uc(t) =

(3.18)

where
I,
wC

Ve = (3.19)

In terms of RMS magnitudes we have:

174 _ Ixeff
ceft T wC

= Xcl, (3.20)

eff

where I,,,, = I,/v/2. The quantity X¢ = (wC)~? is called the capacitive
reactance and is measured in ohms. It is important to note that the amplitude
of v (t) is inversely proportional to the capacitance and the angular frequency
of the AC current. From eqn 3.18 and figure 3.6 we observe that the voltage
waveform lags the current waveform by 7 /2 radians or 90 degrees.
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AT
+ UL(t) -

i(t)
v

Figure 3.7: Voltage and cur-
rent in an inductor.

Ve
T
5C
wk
/
R
0 w

Figure 3.8: Veyss/less ver-
sus w for passive elements.

3. Frequency domain electrical signal and circuit analysis

Inductance

When a current, i(t) = I, cos(wt) passes through an inductance L, the voltage
developed across its terminals is, according to eqn 1.26, given by:

i(t

’UL(t) = L%

= —Lwl, sin(wt)dt
™

= Lwl, cos(wt+-2—>

i
=V cos (wt+ 5) (321
with V; = Lw I.. In terms of RMS values we have:
Viess Ip;pw L
= XpI,, (3.22)
where I;,,, = I, / V2. The quantity X; = w L is called the inductive react-

ance which is also measured in Ohms. Note that now the amplitude of the
voltage vy, (t) is proportional to the inductance and the angular frequency of
the AC current. From eqn 3.21 and figure 3.7 we observe that the voltage
waveform leads the current waveform by 7/2 radians or 90 degrees.

Figure 3.8 illustrates the ratio V.5 ¢/l versus the frequency, w, for the three
passive elements discussed above. It is interesting to note that at DC (w = 0)
the capacitor behaves as an open-circuit and the inductor behaves as a short-
circuit. On the other hand, for very high frequencies (w — o) the capacitor
behaves as a short-circuit and the inductor behaves as an-open circuit.

A note about voltage polarity and current direction in AC circuits

Although voltages and currents in AC circuits continuously change polarity
and direction it is important to set references for these two quantities. The
convention we follow in this book is illustrated above. When the current flows
from the positive to the negative terminal of a circuit element it is implied that
the current and voltage are in phase for a resistor as in figure 3.5; the current
leads the voltage by 90 degrees for a capacitor as in figure 3.6 and lags by the
same amount for an inductor as in figure 3.7.

Kirchhoff’s laws

Kirchhoff’s laws presented in Chapter 1 (see section 1.4) can be applied to de-
termine the voltage across or the current through any circuit element. However,
we must bear in mind that the voltages and the currents in AC circuits will, in
general, exhibit phase differences when capacitors or inductors are present.
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Figure 3.9: RL circuit.

Example 3.2.2 Determine the amplitude of the current i(¢) in the RL circuit
of figure 3.9. Also, determine the phase difference between this current and the
voltage source.

Solution: Since the circuit contains an inductor we expect that the current will
exhibit a phase difference, ¢, with respect to the source voltage. Hence, the
current #(t) can be expressed as follows:

i(t) = I cos(wt+ @) (3.23)

This current flows through the resistance inducing a voltage difference at its
terminals which is in phase with 7 (¢):

vr(t) = Rit)
= RI;cos(wt+ o) (3.24)

On the other hand, the flow of i(¢) through the inductor causes a voltage dif-
ference across its terminals which is in quadrature with i(t), as expressed by
eqn 3.21:

vp(t) = XpIs cos (wt+¢+ g) (3.25)

with X; = w L. According to Kirchhoff’s voltage law we can write:

Il

vs(t) vr(t) + vi(t)

= RI;cos(wt+ @)+ X I cos (wt+¢+ g)
= RI cos(wt+ @)+ Xy I, cos(wt+ ¢) cos (g)

—X1, I sin (wt + ¢) sin (g)

= RI;cos(wt+ @) — X I sin(wt + ¢) (3.26)

The last eqn can be written as follows (see also appendix A):

Vi cos{wt) = 1/R%*+ X2 I, cos(wt+ ¢+ ) (3.27)

where

Y = tan! (%) (3.28)

In order for eqn 3.27 to be an equality the amplitude and the phase of the cosine
functions on both sides of this eqn must be equal. That 1s:

V, = JRE+XZII,

wt+ o+

3.29)
wt
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Solving the last set of eqns in order to obtain I; and ¢ we have:

Vs

kT URron 430
= 37mA

¢ = ¥ (3.31)

= —0.38 rad (—21.8°)

3.2.3 Phasor analysis

In principle any AC circuit can be analysed by applying Kirchhoff’s laws with
the trigonometric rules, as in the example 3.2.2 above. However, the appli-
cation of these trigonometric rules to analyse complex AC circuits can be a
cumbersome task. Fortunately, the use of the complex exponential (the phasor)
and complex algebra, discussed in the previous chapter, provides a consider-
able simplification of AC circuit analysis.

From Euler’s formula (see also section 2.5) a cosine alternating voltage
waveform can be represented using the complex exponential function as fol-
lows:

I@t+d) | g=i(wite)

Vs cos(wt+¢) = Vi 5 (3.32)

where we can see that the voltage expressed by eqn 3.32 is the addition of two
complex conjugated exponential functions (phasors). Note that either of these
two complex exponential functions carries all the phase information, w ¢ and
¢, of the voltage waveform. In fact, the simplicity of analysis using phasors
arises from each AC voltage and current being mathematically represented and
manipulated as a single complex exponential function. However, in order to
obtain the corresponding time domain waveform we must take the real part of
the complex exponential waveform. Thus, the voltage waveform of eqn 3.32
can be expressed as:

V, cos(wt+¢) = Real [Vs el t+¢)} (3.33)

In order to illustrate that phasor analysis is similar to AC analysis using trigono-
metric rules we reconsider the current—voltage relationships for the passive ele-
ments using the complex exponential representation. We determine the voltage
developed across each element when an AC current, i(¢), flows through them,
i(t) being expressed by its complex exponential representation, I(jw,t), as
follows:

i(t) = Real [I(jw,t)] (3.34)
I, elvt (3.35)

—~
—
.,
€

o
~—

Ii
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Mt) R
+ V({jw,t) —

Figure 3.10: Complex V-1
relationship for a resistance.

Z=(GuwCy™
I{jw,t)
il
+ V{ijw,t) -

Figure 3.11: Complex V-
I relationship for a capaci-
tance.

Resistance

The complex voltage (see also figure 3.10) across the resistance terminals is de-
termined by applying Ohm’s law to the phasors representing the voltage across
and the current flowing through the resistance, that is:

VR(jw,t) = RI(jw,t)
= RIe%t (3.36)

Taking the real part of Vi(j w,t) we obtain the corresponding voltage wave-
form;

vgr(t) = RI, cos{wt) (3.37)

This eqn is the same as eqn 3.13.

Capacitance

Assuming a complex representation for the current flowing through a capacitor,
I(j w,t), the complex voltage across the capacitance is given by:

t

Vel(jwt) = é [Gw,t)dt (338)
0]
1 ,
— Jwt
j—w C I e (3.39)
1 .

The quantity (jwC)~! is called the capacitive (complex) impedance. This
impedance can be seen as? (—j) times the capacitive reactance X¢ = (wC) ™!
discussed in section 3.2.2. Note that (—j) accounts for the —90° phase differ-
ence between the voltage and the current.

Taking the real part of Vo{(jw,t) we obtain the corresponding voltage
waveform at the capacitor terminals;

1 .
’UC'(t) = Real [m IZCJWtdt:l

1 .
= Real |— Le/@?™/2) 4
ca [ C €

where we used the following equalities (see also section 2.5):
—j = eIm/? (3.41)
Now v (t) can be written as

velt) = uf_zC cos (wt - g—) (3.42)

Note that eqn 3.42 is the same as eqn 3.18.

ZRecall that j—1 = —j.
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Figure 3.12: Complex V-
I relationship for an induc-
tance.

I{jw,?) Z

V{jw,t)

Figure 3.13: Symbol of the
general impedance.
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Inductance

Assuming a complex representation for the current flowing through the induc-
tor, I(j w, t), the complex voltage across the inductance is given by:

. dI{(jw,t
Vi(jw,t) = L%
= jwL L%t (3.43)
= jwl I(jw,t) (3.44)

The quantity Z = jwlL is called the inductive (complex) impedance. This
impedance can be seen as j times the inductive reactance X = wL discussed
in section 3.2.2. Note that now j accounts for the 90° phase difference between
the voltage and the current. Taking the real part of V,(j w, t) we obtain

ve(t) = Real [jwl Iet
= Real [wL Ixej(“’t“'ﬂ)]

= LwL cos (wt + g) (3.45)

We note again that eqn 3.45 is the same as eqn 3.21.

3.2.4 The generalised impedance

The greatest advantage of using phasors in AC circuit analysis is that they
allow for an Ohm’s law type of relationship between the phasors describing
the voltage and the current for each passive element:

Vijw,t)

Where Z is called the generalised impedance:
e 7 = R for aresistance
e Z = (jwC)~! for a capacitance
e Z = jw L for an inductance

The generalised impedance concept is of great importance since it permits an
extrapolation of the DC circuit analysis techniques discussed in Chapter 1 to
the analysis of AC circuits. This means, for example, that we can apply the
Nodal analysis technique to analyse AC circuits as illustrated by the next ex-
ample. Figure 3.13 shows the symbol used to represent a general impedance.

Example 3.2.3 Using the phasor analysis described above, determine the am-
plitude and phase of the current in the circuit of figure 3.9 and show that the
results are the same as those obtained in example 3.2.2.



3. Frequency domain electrical signal and circuit analysis 57

Solution: The phasor describing the current can be written as follows:
IGwt) = IdWite (3.47)
Applying Kirchhoff’s voltage law we can write:
Viel“t = RIS 4 ju LI, eIt (3.48)
or
Vee't = (R+jwL)I,ed@t+e) (3.49)

The impedance R + jw L can be expressed in the exponential form (see also
section 2.5) as follows

R+jwl = VRZ+w?L? et (%) (3.50)
Hence eqn 3.49 can be written as:
Vielwt = VREfw?L? I JWiteran () 351y

In order for eqn 3.51 to be an equality the amplitude and the phase of the
complex voltages on both sides of this eqn must be equal. That is:

Vo = VR?+w?L?];

(3.52)
wt = wt+o+
Solving, we have:
Vs
Iy, = ——/]/m—m—— 353
Ny (3:33)
37 mA
o = ¢ (3.54)

= —0.38 rad (-21.8°)

Note that these values are equal to those obtained in example 3.2.2.

The rotating and the stationary phasor

The concept of the rotating phasor arises from the time dependence of the
complex exponential which characterises AC voltages and currents. Let us
consider the phasor representation for an AC voltage as shown below

V(jw,t) = V,ed@ite) (3.55)

This rotating phasor can be represented in the Argand diagram, as illustrated
in figure 3.14 a). Note that each instantaneous value for the rotating phasor,
(that is, its position in the Argand diagram) is located on a circle whose radius
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Imaginary axis
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PR S
A
S SO\ wt+ ¢
V, sin(wt + ¢) B
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Vs sin(¢) I ¢ ' Axis

Figure 3.14: The complex
phasor represented in the
Argand diagram.

a) Instantaneous value of the
rotating phasor.

b) The stationary phasor.
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is given by the voltage amplitude, V;, with an angle wt + ¢ at each instant of
time. Each position in this circle is reached by the phasor every 2 /w seconds.

The rotating phasor described by eqn 3.55 can be decomposed into the
product of a stationary (or static) phasor with a rotating phasor as expressed by
the eqn below:

V(jw,t) = V,el® x elvt (3.56)
Static phasor Rotating phasor
= Vs x & (3.57)

where Vg represents the static phasor. In the rest of this chapter, and unless
stated otherwise, static phasors are represented by capital letters with capital
sub-scripts.

In AC circuits where currents and voltages feature the same single tone or
angular frequency, w, both sides of the eqns describing the voltage and current
relationships contain the complex exponential describing the rotating phasor,
exp(j wt), as illustrated by eqns 3.48, 3.49, and 3.51 of example 3.2.3. Thus,
the phasor analysis of an AC circuit can be further simplified if we apply Ohm’s
law and the concept of the generalised impedance to only the static phasor to
represent AC voltages and currents. Note that this mathematical manipula-
tion is reasonable since, in AC circuits, what is important is to determine the
amplitude and the relative phase difference between the AC quantities, both
described by the static phasor. In the rest of this chapter a phasor will mean a
static phasor.

Example 3.2.4 Determine the amplitude and phase of the current in the circuit
of figure 3.9 using the static phasor concept described above and show that the
results are the same as those obtained in example 3.2.2.

Solution: The static phasor describing the current can be written as follows:

Is = I,¢e¢ (3.58)
while the static phasor describing the source voltage can be written as:
Vs = Vel?
= Vi (3.59)
Applying Kirchhoff’s voltage law we can write:
Vs = (R+jwlL)Is (3.60)
= VR w212 e (F) I (3.61)
that is
Is = =5 it ()
VEE o212
o W i)
VRE 12 2

= 37.0x1073¢77038 A
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Note that this result is equivalent to those obtained in examples 3.2.2 and 3.2.3.

Series and parallel connection of complex impedances

As mentioned previously the concept of the generalised impedance greatly sim-
plifies the analysis of AC circuits. It is also important to note that the series of
various impedances Zi, k = 1,2,... N, can be characterised by an equivalent
impedance, Z,, which is the sum of these impedances:

N
Zeg = Y. % (3.62)
k=1

For example, in the circuit of figure 3.9 we observe that the impedance of the
resistance is in a series connection with the impedance of the inductor. Hence,
an equivalent impedance for this connection can be obtained adding them:

Ze = R+jwl (3.63)

The real part of an impedance is called the resistance while the imaginary part
of the impedance is called the reactance.

For a parallel connection of various electrical elements it is sometimes eas-
ier to work with the inverse of the complex impedance, the ‘admittance’, Y;

1
Y=— 3.64
7 (3.64)
The parallel connection of admittances Yz, k = 1,2,... N, can be charac-

terised by an equivalent admittance, Y.q, which is equal to their sum:

N
Yoq = Y Y (3.65)
k=1

It follows that the paraliel connection of two impedances Z; and Z5 can be
represented by an equivalent impedance Z., given by
Z1 2o

Log = ———"r 3.66
eq 7 1 7 (3.66)

Example 3.2.5 Consider the AC circuit represented in figure 3.15 a). Deter-
mine the amplitude and the phase of the voltage across the resistance Ro. Then,
determine the average power dissipated in R5.

Solution: v (t) and i52(t) can be expressed in their phasor representations as

follows:
vs1(t) = Real [Vgye/*!]
Vo1 = Vgelt
is2(t) = Real [Ig2€’*"]

ISZ = IsZ e_j7
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L Z,
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Figure 3.15: a) AC circuit. b) Equivalent circuit represented as complex impedances.

where we have used the following equality: sin(wt) = cos{(wt — 7/2). The
impedances associated with the two inductances and two capacitances are cal-
culated as follows:

ZL1 = ijl

w=5x103rad/s
= 75150

Zy, = jwls

w=5x103 rad/s
= j50Q
1
JwC1 | =5 x10% radss
= —j66.7Q
1

JwCa | ,_5x103 rad/s
= —j20Q

Zo, =

Zo, =

2

From figure 3.15 a) we observe that the impedance associated with the capaci-
tance Cs is in a parallel connection with the resistance R;. We can determine
an equivalent impedance for this parallel connection as follows (see eqn 3.66):

Zeo, By

ZC2 + Ry
32-51959Q

Zc, Ry

I
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Also, we can see that Ry is in a series connection with the inductance Ly. The
equivalent impedance for this connection can be calculated as shown below:

Zp,L, = Ro+7Zg,
— 1004550 Q

Figure 3.15 b) shows the reduced AC circuit with the various impedances as-
sociated with the inductances and capacitances as well as the phasor currents
and phasor voltages at each node referenced to node 0. Applying Kirchhoff’s
current law we can write:

Ip+1Is2 = Ip
Ic+1Ig = Ip

These can be rewritten after applying Ohm’s law to the various impedances as
shown below:

VSl — VX VX - VY
U7X e, = XYY
Zc, Ry 52 Zc,
VSl"VY_I_VX‘VY _ Vy
Zr, Zc, ZRr,L,

Solving in order to obtain Vy-, we have:

Vs1 (ZLI + ch + ZCQRI) + ZLJSgZCle

% Z
Y fiala ZR2L2 (ZLI + ch + ZCzR1) + ZL1 (Zcle + ZC1)

Substituting complex values in the last eqn we obtain:
Vv = 35€2%V
The current that flows through Ry is Ip given by:

Vy
ZRyL,
= 32x107°%/1%0 A

Ip =

and the voltage across the resistance Ry is given by:

Ve, = Rplp
3.2¢7180 v

that is, the AC voltage across the resistance R has a peak amplitude of 3.2 V.
The phase of this voltage is 1.80 rad (103°).

The average power dissipated by R2 can be calculated according to eqn
1.20 (see also section 1.3):

1 to+T
Pava, = BT /t v}, (t) dt (3.67)
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Figure 3.16: a) Thévenin
equivalent AC circuit. b)
Norton equivalent AC cir-
cuit.
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with T = 2 /w = 1.3 x 1073 = 1.3 ms. ¢, is chosen to be zero. vg, (t) can
be obtained from its phasor value as follows:

Real [Vg, /*"]
Real [3.2 eI1:80 ej“’t]

= 32cos(wt+1.80)V

VR, (t)

Il

The average power dissipated by R4 can be calculated as shown below:

3.22
TR,

T
Pavy, / cos®(wt + 1.80) dt
0

It is left to the reader to show that the P4y, is equal to:
322 1
2 Ry
= 0.05W

PAVR2

It is important to note that the average power dissipated in the resistance can
also be calculated directly from the phasor representation of the current flowing
through and the voltage across R as follows (see problem 3.2):

1 1
Pave, = 5Real Vg, I}}Q]ziReal Vi, Ir,) (3.68)
]‘|VR2|2
= —1r2l 3.69
5 R, (3.69)
1
= §|IR2|2R2 (3.70)
= 0.05W

where the current flowing through R is Ir, = Ip.

Thévenin and Norton theorems

Thévenin and Norton equivalent AC circuits can be obtained in a way similar
to that described for DC resistive circuits. The main difference is that now the
Thévenin equivalent AC circuit comprises an ideal AC voltage source in series
with a complex impedance as shown in figure 3.16 a). The Norton equivalent
AC circuit is constituted by an ideal AC current source in parallel with a com-
plex impedance as illustrated in figure 3.16 b).

Example 3.2.6 Consider the AC circuit represented in figure 3.17 a). Deter-
mine the Thévenin equivalent AC circuit at the terminals X and Y.

Solution: Figure 3.17 b) shows the equivalent circuit for the calculation of the
open-circuit voltage between terminals X and Y. Firstly, the impedances for
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the capacitance and inductance are calculated for w = 104 rad/s, as shown

below:
ZL = _](UL
w=104rad/s
= 7400 Q
1
Zo = T
JwC —104 radss
= —71000 Q

The phasor associated with the voltage v,(t) is Vg = 3e™7™/5 V.

Note that the impedance associated with the capacitance is in a parallel
connection with the resistance. Hence, we can replace these two impedances
by an equivalent impedance given by:

Zre = ZiC+RR (3.71)
= 400 - ;800 Q

The voltage between terminals X and Y can be obtained from the voltage

X

—{1

ZRe

\_/ — o (400 ©) (400 — j 80‘097)

. Y - I
a) ¢ 5
7 ) Zrh,
T e T X T 1
| ' Zrh,

NN (200 + 7 600 )
{/\ Z S A

s RC \ Vg
N (400 — 5800 Q) NS

T (are iy

b) d)

Figure 3.17: a)} AC circuit. b) Calculation of the Thévenin voltage. c¢) Calculation of the Thévenin
Impedance. d) Equivalent Thévenin circuit.
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impedance divider (see also section 1.4.4) formed by the impedances Zg¢ and
Zy, as follows:

v Zre

S 55—
Zrc+ ZL

47¢710v

Vra

Il

Figure 3.17 c) shows the equivalent circuit for the calculation of the Thévenin
impedance, where the AC voltage source has been replaced by a short-circuit.
From this figure it is clear that the impedance Z, is in a parallel connection
with Zgc. Hence Z7, can be calculated as follows:

Zrc ZL

Zre + 27,
= 200+ 5600 Q

Zrh

Figure 3.17 d) shows the Thévenin equivalent circuit for the circuit of 3.17
a). The Thévenin voltage vpp(¢) can be determined from its phasor, Viry,, as
follows:

vrh(t) = Real [Vs ejwqw=1o4 rad/s
= 4.7 cos(10*t - 1.0) V

3.2.5 Maximum power transfer

Whenever an AC signal is processed by an electrical network containing at
least one resistance there is loss of power in the resistances. Since it is often
important to ensure that this loss is minimal we consider the conditions which
ensure maximum power transfer from two adjacent parts of a circuit. For this
purpose we consider the circuit shown in figure 3.18 where the section of the
circuit providing the power is modelled as an AC voltage source with an output
impedance Zs and the section where the power is transmitted is modelled as
an impedance Z;. We assume that the source impedance Zs has a resistive
part given by Rg and a reactive part described by j Xg. Similarly, the load
impedance has a resistive component, K, and a reactive component given by
7 Xr. The current Ig supplied by the source is given by

VL
I¢ = ———— 3.72
§ 7L + Zs (372)

and the average power dissipated in the load, P, is given by (see eqn 3.70):

P, = —/—/—Rg

V2 Ry
= -5 3.73
2 (Rs+ R+ (Xg+ X1)? ( )
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3.3 Generalised
frequency
domain

analysis

From the last eqn we observe that the value of X ;, which maximises the average
power in the load is such that it minimises the denominator, that is:

X, = —Xg (3.74)

Under this condition the average power in the load is given by

V2 R.
pp = = b 375
L 2 (Rs+ Ryp)? (3.75)

In order to find the value of R which maximises the power in the load we cal-
culate d Py, /d Ry, and then we determine the value of Ry, for whichd P /d Ry,
is zero;

s Cmempr 6o
Clearly, the value for Ry, which sets d Pr,/d Ry, = 0 is
R; = Rg 377
Hence, the maximum average power delivered to the load is;
Prmer = 8V§L (3.78)

It is clear that maximum power transfer occurs when Z; = Z3.

The analysis presented in the previous sections can be considered as a particu-
lar case of frequency domain analysis of single frequency signals. As discussed
previously, those single frequency signals can be expressed in terms of phasors
which, in turn, give rise to phasor analysis. It was seen that phasor analysis
allows the application of Ohm’s law to the generalised impedance associated
with any passive element considerably simplifying electrical circuit analysis.

The analysis of circunits where the signal sources can assume other time-
varying (that is non-sinusoidal) waveforms can be a cumbersome task since
this gives rise to differential-integral equations. Therefore, it would be most
convenient to be able to apply phasor analysis to such circuits. This analy-
sis can indeed be employed using the ‘Fourier transform’ which allows us to
express almost any time varying voltage and current waveform as a ‘sum’ of
phasors.

For reasons of simplicity, before we discuss the Fourier transform we present
the Fourier series which can be seen as a special case of the Fourier transform.

The term ‘signal’ will be used to express either a voltage or a current wave-
form and we use the terms signal, waveform or function interchangeably to
designate voltage or current quantities, which vary with time.

3.3.1 The Fourier series

The Fourier series is used to express periodic signals in terms of sums of sine
and cosine waveforms or in terms of sums of phasors. A periodic signal, with
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period T, is by definition a signal which repeats its shape and amplitude every
T seconds, that is:

z(tLkT) = z(t), k=1,2,... (3.79)

Examples of periodic waveforms are presented in figure 3.19 where we have
drawn a sine wave, a periodic rectangular waveform, and a periodic triangular
waveform. From this figure it is clear that the waveforms repeat their shape
and amplitude every T seconds.

In order to show how the Fourier series provides representations of periodic
waves as sums of sine or cosine waves we present, in figure 3.20 a), the first two
non-zero terms (sine waves) of the Fourier series for the periodic rectangular
waveform of figure 3.19 b). Figure 3.20 b) shows that the sum of these two
sine waves starts to resemble the rectangular waveform. It will be shown that
the addition of all the terms (harmonics) of a particular series converges to
the periodic rectangular waveform. In a similar way, figure 3.20 c) represents
the first two non-zero terms of the Fourier series of the triangular waveform.
Figure 3.20 d) shows that the sum of just these two sine waves produces a good
approximation to the triangular waveform.

Since sine and cosine functions can be expressed as a sum of complex
exponential functions (phasors), the Fourier series of a periodic waveform z(t)
with period T" can be expressed as a weighted sum, as shown below:

z(t) = ) Cpel?rit (3.80)

n=—oo

where the weights or Fourier coefficients, C),, of the series can be determined
as follows:

1 [rrT -
Cn = = z(t)e 92 Tt gt (3.81)
T J;,
Here ¢, is a time instant which can be chosen to facilitate the calculation of
these coefficients.

The existence of a convergent Fourier series of a periodic signal z(t) re-
quires only that the area of z(t) per period to be finite and that z(t) has a
finite number of discontinuities and a finite number of maxima and minima per
period. All periodic signals studied here and are to be found in any electri-
cal system satisfy these requirements and, therefore, have a convergent Fourier
series.

From eqn 3.80 we observe that the phasors which compose the periodic
signal z(¢) have an angular frequency 27n /T which, for [n| > 1 is a multiple,
or harmonic, of the fundamental angular frequency w = 27 /7. Note that, for
n = ( the coefficient Cj is given by:

1 to+T
Co = = z(t) dt (3.82)
T to
This eqn indicates that Cj represents the average value of the waveform over
its period T and represents the DC component of z(t).
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Figure 3.20: a) The first two non-zero terms of the Fourier series for the
periodic rectangular waveform. b} The sum of first two non-zero terms of the
Fourier series as an approximation to the periodic rectangular waveform. c)
The first two non-zero terms of the Fourier series for the periodic triangular
waveform. d) The sum of first two non-zero terms of the Fourier series as an
approximation to the periodic triangular waveform.

As an example we determine the Fourier series of the periodic rectangular
waveform shown in figure 3.19 b). Using eqn 3.81 with ¢, = 0 we can write:

1 [T P
C, = T/O x(t)e 7277 gt

1 T/2 ; n T : n
= = (/ Ae—ﬂ’f?tdt+/ (—A)e’JZ”Ttdt) (3.83)
T 0 T/2

where A is the peak amplitude. The last eqn can be written as follows:

T/2 T
C, = l AT e I27F 1t / —AT e I2mFt
T \—j27mn 0 —Jj27n /2
_ 124 (e—jZW%%_1)+ ;A (e—j2n%T_e~j27r%§)
“io2nn —j27n
2A ,
_ (1—edmm) (3.84)

j2nn
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where we have used the following equality:
e 92™ — 1, n=0,41,42,43,... (3.895)
However, we note that:

e_j,mz{ -1 if n==1,43,+5,...

1 if n=0,42 +4 +6,... (3.86)

and, therefore, the coefficients given by eqn 3.84 can be written as follows:

A X{2 if n=+1,4345,...

Cn =701 0 if n=0,+2,+4,46,...

(3.87)
Note that for n = 0 the last eqn cannot be determined as the result would be a
non-defined number; 0/0. Hence, Cp must be determined from eqn 3.82:

Cy = = / Adt — = Adt=0 (3.88)
° T Jo T Jr2

confirming that the average value of x(t) is zero as is clear from figure 3.19 b).
From the above, eqn 3.87, can be written as follows:
. — { 224 if |n|is odd

0 if |n|iseven (3:89)

It is clear that all even harmonics of the Fourier series are zero. Also, we
observe that C', = C”,,, a fact that applies to any real (non-complex) periodic

signal. The coefficients C',, can be written, in a general form, using the complex
exponential form as follows:

Cn = |Cnle? 4(Cn) (3.90)
and eqn 3.80 can be written as follows:
o .
z(t) = Z |Cn|ej2""%t+J Z£(Cr) (3.91)
n=—oo

eI 2T R 47 £(Cr) 4 =i 27 % t—5 £(Cn)

2

- C’0 + i 2 ICnl
n=1

> n
= Co+ n; 2|C,| cos (2”T t+£(Cn)) (3.92)

Expressing the coefficients C, of eqn 3.89 in a complex exponential form (see
also eqn 3.90) we have:

24¢79% if |n|isodd
e 77 if |n|iso
Cn = { 0 if |n|iseven (3-93)
Hence, :c(t) can be written, using eqn 3.92, as shown below:
o0
4 A n T
t) = =2 (2 Zi- —) 3.94
z(t) Z —cos (27 5 (3.94)

n=1
(n odd)
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Figure 3.20 a) shows the first and the third harmonics of the rectangular signal

as:
4A 1 T
44 3 i
1‘3(t> = g COSs (2 WT t— E) (396)

from which figure 3.20 b) was derived.

Example 3.3.1 Determine the Fourier series of the periodic triangular wave-
form, y(¢), shown in figure 3.19 c).

Solution: From figure 3.19 b) we observe that the average value of this wave-
form is zero. Hence, Cy = 0. Using eqn 3.81 with £, = 0 we can write:

1 /T N
C, = T/o y(t)e I2TF gt

T/4
_ 1(// LAY aepig
T\ J T
3T/4 4 -
/ (2,4— ﬁ) e I2TEE gt
T/4 T

T
4A N n
/ (—t —4A> e‘JZ"Ttdt> 3.97)
sria \ T

with A representing the peak amplitude of the triangular waveform. Solving
the integrals the coefficients can be written as follows:

_+_

+

A . n - kY 1
Co = = (267778 —1-2e77%F £e7i270) (308)
V3

Using the result of eqn 3.85 we express the coefficients C,, as follows:

Co = 24 o-in3 (L—e7™™) (3.99)

T2 n?

and using the result of eqn 3.86 we can write these coefficients as:

Cp = (3.100)

44 e7i™% if |n|isodd

men . .

0 if |n]iseven
From eqn 3.92 the Fourier series for the triangular periodic waveform can be
written as:

. 8A n n
y(t) = Z WQ—nQCOS(27T-I:t——2~> (3.101)

n=1
(n odd)
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Figure 3.20 c) shows the first and the third harmonics given by

8A 1 ™
yi(t) = 7 Cos <2ﬂT t— 5) (3.102)
8A 3 37

Figure 3.20 d) clearly shows that the sum of these two harmonics, y; (£) +ys(2),
approximates the triangular periodic signal.

Normalised power

As discussed in section 1.3.1 the instantaneous power dissipated in a resistance
R with a voltage v(t) applied to its terminals is v2(¢)/R while the instanta-
neous power dissipated caused by a current (¢) is 2(t) R. Since signals can
be voltages or currents it is appropriate to define a normalised power by setting
R = 1. Then, the instantaneous power associated with a signal z(t) is equal
to:

p(t) = z*(t) (3.104)

Thus, if z(t) represents a voltage, the instantaneous power dissipated in a resis-
tance R is obtained by dividing p(¢) by R while if z(¢) represents a current the
instantaneous power dissipated in that resistance R is obtained by multiplying
p(t) by R. It is also relevant to define a normalised average power (once again,
R = 1)) by integrating eqn 3.104 as follows:

1 to+T

Pay = = z2(t)dt (3.105)
T/,

Example 3.3.2 Determine an expression for the average power associated with
the periodic rectangular waveform shown in figure 3.19 c).

Solution: The average power associated with the periodic rectangular wave-

form is the normalised average power (R = 1) which can be determined
according to eqn 3.105, that is:

1 T/2 T
Pav = = / Azdt-i-/ (—A)dt
0 T/2

= A? (Watts) (3.106)

where A is the amplitude of the waveform.
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Parseval’s power theorem

Parseval’s theorem relates the average power associated with a periodic signal,
z(t), with its Fourier coefficients, C,,:

1 to+T et
f/ 22(t)dt = C3+) 2|Cy|? (3.107)
to

n=1

The proof of this theorem can be obtained as follows: The Fourier series indi-
cates that z(t) can be seen as a sum of a DC component with sinusoidal com-
ponents as indicated by eqn 3.92. Hence, the average power associated with
z(t) can be seen as the addition of the average power associated with the DC
component with the average power associated with each of these components.
It is known that the average power associated with a DC signal is the square
of the amplitude of that DC signal. Also, it is known that the average power
associated with a sinusoidal component is equal to half the square of its peak
amplitude. Since the amplitude of each Fourier component of x(¢) is equal to
2| Cy, | then the average power associated with each of these AC components

is equal to:
2|C, |)?
P, = HGD
= 2/Cf, n21 (3.108)
and the total average power of z(t) is:
Pay, = C3+) 2|CnP (3.109)

n=1

Example 3.3.3 Show that the fundamental and the third harmonic of the Fourier
series of the periodic rectangular waveform, shown in figure 3.19 ¢), contain
approximately 90% of the power associated with this waveform.

Solution: According to eqn 3.106 the power associated with the rectangular
periodic waveform with amplitude 4-A is A2 W. From eqn 3.108 the power as-
sociated with the fundamental component and the third harmonic of the Fourier
series of the periodic rectangular waveform can be calculated as follows (see

also eqn 3.89):
2 2
P — 2<E) +2<%>
T 3

= 0947 W)

Time delay

If a periodic signal z(¢) has a Fourier series with coefficients C,, we can obtain
the Fourier series coefficients, C,, of a replica of z(¢) delayed by 7 seconds,
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Figure 3.21: a) Phasor. b)
Line spectrum of a phasor.
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i.e. z(t — 1) with |7| < T'/2, as follows:
to+T ) n
C, = / z(t—T)e I T gt (3.110)
to

using the change of variable ¢ =t — 7, we can write:

dt = dt
t=t, ; t'=t,—7
t=t,+T ; t'=t,—7+T

and eqn 3.110 can be written as

to+T ) , )
C;L — / x(t/)e-—JZ‘n%t dr' e—]2w%~r
i

3
o

= Cpe 27 F7 (3.111)

where t,, = t, — 7. Note that the delay 7 adds an extra linear phase to the
Fourier series coefficients C,,.

3.3.2 Fourier coefficients, phasors and line spectra

Each phasor which composes the Fourier series of a periodic signal can be seen
as the product of a static phasor with a rotating phasor as indicated below:

[Cn|ej2"% t+5 £(Crn) |C| el £(Cn) o el 27Tt (3.112)
.
Static phasor ~ Rotating phasor

Comparing this eqn with eqn 3.56 we can identify each complex coefficient,
Cn, as the static phasor corresponding to a rotating phasor with angular fre-
quency w = 27 n/T. The phasor (static and rotating components), which is
shown in figure 3.21 a) can be represented in the frequency domain by asso-
ciating its amplitude, |C,,|, and its phase, Z(C,,), with its angular frequency
w = 2an/T (or with its linear frequency f = n/T). This gives rise to the
so called line-spectrum, as illustrated in figure 3.21 b). This frequency repre-
sentation consists of two plots; amplitude versus frequency and phase versus
frequency.

Since the Fourier series expresses periodic signals as a sum of phasors we
are now in a position to represent the line spectrum of any periodic signal. As
an example, the line spectrum of the periodic square wave with period T" can
be represented with C'), given by eqn 3.89. Figure 3.22 shows the line spectrum
representing the fundamental component, the third and the fifth harmonics for
this waveform. As mentioned previously, all the frequencies represented are
integer multiples of the fundamental frequency w = 27 /T. Hence, the spec-
tral lines have a uniform spacing of 27 /T. It is also important to note that the
line spectrum of figure 3.22 has positive and negative frequencies. Negative
frequencies have no physical meaning and their appearance is a consequence
of the mathematical representation of sine and of cosine functions by complex
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Figure 3.23: Periodic volt-
age applied to an RC circuit.
b) The periodic voltage v(t).
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exponentials because these trigonometric functions (sine and cosine) are rep-
resented by the sum of a pair of complex conjugated phasors (see also eqns
2.59, 2.60 and 3.92). We also note that the line spectrum has been plotted as a
function of the angular frequency w = 27 f. However, we frequently plot line
spectra versus the linear frequency f = w/(27).

‘ Amplitude |C, |

(volt)
24 24
T kig
24 24
2,4 3 3m 24
5w I | B
! T T T T 1 T y T l -
—5x21 _axar —2r 2n 3x2r sxor W
T =5 T T T 7 (rad/s)
‘ Phase £C,, (rad)
——————————————————— T o
% (90°)
27 3x2m 5x2m
T T T
T T Y T ' T T —
—5x2m —3x2m —2r w
T T T (rad/s)
= (—90°)

Figure 3.22: Line spectrum of the rectangular waveform.

3.3.3 Electrical signal and circuit bandwidths

We discuss now the concepts of signal and electrical system bandwidths. In
order to do so we consider the RC circuit of figure 3.23 which is driven by a
square-wave voltage v, (t) as shown in figure 3.23 b). This voltage waveform

can be expressed as:
t—kT
T

where V, (V) is the amplitude and T is the period. 7/T is called the ‘duty-
cycle’ of the waveform and is equal to 1/2 in this case. The function rect (¢/7)
is defined as follows:

1 _ 1t _1
(t) Lo —a<7<3
rect -7‘_‘ =
0,

elsewhere

(3.113)

o
Z V, rect

k=—o

vs(t) =

(3.114)
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The Fourier coefficients for v4(t), Vs, , can be obtained from eqn 3.81 where
to is chosen to be —T/2, that is:

T/2 o
Vs, = —/ Vrect( ) eI E gy
T/2
1 ‘I'/2 . n
= —/ Voe 72Tt

/2
_ .TVa [e_j”%t]
—3T27n —r/2

Va ejfr%'r _e—jﬂ'%T

™n 25
Vo . n
= —sin <7r T T) (3.115)

The last eqn can be written as follows:

V, T sin (71' T 7')

Ve = =lPBVTT) 3.11
Sn T ﬂ;T ( 6)
VoT . nr
= 2l sine (?) (.117)

where the function sinc(z) is defined as follows:

sinc(z) 2 S0 2) (3.118)
T
Since 7/T = 1/2, eqn 3.117 can be further simplified to:
Vo . n
Vs, = ~psinc (5) (3.119)

It is left to the reader to show that the DC component of v,(t), Vg,, is equal to
Vor/T =V, /2.
The voltage signal vs(t) can be written as follows:

vst) = i %sinc(g) el 2T Bt (3.120)

n=—oo

Once again, it is left to the reader to show that the periodic square waveform
of figure 3.19 b) can be seen as a particular case of the rectangular waveform
of figure 3.23 b) when 7/T = 1/2. Hint, assume that the average (or DC)
component is zero and use a delay of 7'/4.

The signal bandwidth is a very important characteristic of any time vary-
ing waveform since it indicates the spectral content and, of course, its mini-
mum and maximum frequency components. From eqn 3.120 we observe that
the spectrum and therefore the bandwidth of the periodic square wave is in-
finite. However, it is clear that very high order harmonics have very small
amplitudes and its impact on the series can be neglected. So a question arises;
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Fundamental+3rd +5th harmonics
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Figure 3.24: Rectangular
periodic waveform. a) Ap-
proximation by the various
components. b) Line spec-
trum of the approximation.

where do we truncate the Fourier series in order to determine the significant
bandwidth of the signal? The criteria to perform such a truncation can vary
depending on the application. One of these can be stated as the range of fre-
quencies which contain a large percentage of the average power associated
with this signal. For example, if this criterion defines this percentage as 95%
of the total, then the bandwidth for the signal of figure 3.23 b) is 3/T". In fact,
|Vso |2 + 2|Vs, |2 + 2|Vs,|? = 0.95 x V.2/2 where V.2/2 is the total average
power associated with this signal. It is also important to realise that the signal
bandwidth is a measure of how fast a signal varies in time. In order to illustrate
this idea we consider figure 3.24 a) where we see that the addition of higher
order harmonics increases the ‘slope’ of the reconstructed signal and that it
varies more rapidly with time.

Now that we have determined the Fourier components of the input voltage
signal, v,(t), of the circuit of figure 3.23 a) we are in a position to determine
the output voltage v.(t). This voltage can be determined using the AC pha-
sor analysis, discussed in section 3.2.3, and then applying the superposition
theorem to all the voltage components (phasors) of the input signal v(t).

The voltage phasor at the terminals of the capacitor, V, is determined us-
ing phasor analysis. This voltage can be obtained noting that the impedance
associated with the capacitor and the resistor form an impedance voltage di-
vider. Thus V> can be expressed as follows:

Ze

Ve = V. 3.121
C Z+R'S ( )

where Z, = (jwC)~! is the impedance associated with the capacitor. Hence,
we can write:
1

. 1
Vo 1+ijCVS (3.122)

If we divide the phasor which represents the circuit output quantity, V¢, by
the phasor which represents the circuit input quantity, Vs, we obtain the circuit
transfer function which, for the circuit of figure 3.23 a), can be written as
follows:

1

or
H(f) = S E— (3.124)
o 1+j727nfRC ’

The transfer function of a circuit is of particular relevance to electrical and
electronic circuit analysis since it relates the output with the input by indicating
how the amplitude and phase of the input phasors are modified. Figure 3.25
shows the magnitude (on a logarithmic scale) and phase of H(f), given by
egn 3.124, versus the frequency f, also on a logarithmic scale, for various
values of the product RC. RC is called the ‘time constant’ of the circuit.
Close inspection of the transfer function H (f) allows us to identify two distinct
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Figure 3.25: Magnitude and phase of the transfer function of the RC circuit of
figure 3.23.

frequency ranges. The first is for 27 f RC << 1, thatis for f << (2rRC)~ L.
Over this frequency range we can write:

H(f) ~ 1 forf<< (2nrRC)™! (3.125)

indicating that the circuit does not significantly change the amplitudes or phases
of those components of the input signal with frequencies smaller than (2x RC') ~1.

The second frequency range is identified as 2w f RC >> 1. Now we can
write:

1

H(f) T2 fRC

for f >> (2rRC) ™! (3.126)

indicating that the circuit significantly attenuates the amplitudes of those com-
ponents of the input signal with frequencies larger than (27 RC) ~1. The atten-
uation of these high frequency components means that the circuit preferentially
allows the passage of low-frequency components. Hence, this circuit is also
called a low-pass filter. The frequency f. = (2 RC)~! is called the cut-off
frequency of the filter and it establishes its bandwidth. A more detailed discus-
sion of the definition of circuit bandwidth is presented in section 3.3.5. Note
that for frequencies f >> f. this circuit introduces a phase shift of —7 /2.

We are now in a position to apply the superposition theorem in order to
obtain the output voltage. This can be effected by substituting the phasor Vs in
eqn 3.124 by the sum of phasors (Fourier series) which represents the square
wave and by evaluating the circuit transfer function at each frequency f =



3. Frequency domain electrical signal and circuit analysis 77

n/T. That is:

Vo. = [H(fljog x Vs, (3.127)

_ « Vs
1+j2nfRC f=2 "
1

-V
1+j27r2RC °

where the phasors V-, are the coefficients of the Fourier series representing the
voltage v.(¢) and the phasors Vg are the coefficients representing the periodic
square voltage vs(t). The phasors Vi, can be written as:

1 Vo . (n
VCn = m@‘ 7 sinc (5) (V) (3128)

Which can also be written in the complex exponential form as:

V. ej("—;—%)—j tan~1 (27 ZRC)

= for |n| odd
wn\/l+(”TnRC)
Ve, = ‘—g& forn=0
0 for |n| even and |n| > 1

(3.129)
Figure 3.25 shows that if the low-pass filter features a time constant such that
2w RC = 10 s, corresponding to f. = 0.1 Hz, all frequency components of the
input signal, with the exception of the DC component, are severely attenuated.
Although for 2rRC = 1 s (f. = 1 Hz) the fundamental frequency component
is slightly attenuated, all higher order harmonics are considerably attenuated.
This implies that for both situations described above the output voltage will be
significantly different from the input voltage. On the other hand, for 2r RC =
0.1 s (f. = 10 Hz) the fundamental, the third and the fifth order frequency
components are hardly attenuated although higher-order harmonics suffer great
attenuation. Note that, for this last situation (f. = 10 Hz), the significant
bandwidth of the input voltage signal does not suffer significant attenuation.
This means that the output voltage is very similar to the input voltage.
Since the Fourier coefficients of v.(t) are known, this voltage can be writ-
ten using eqn 3.92, that is:

| 7A— 2V,
v(t) = —+

2 (:jdld) n V 1+ (%TRRC)Z

¢n_{ L~ Z_tan~! (27 ZRC) forn odd

cos (2 ™ ; t+ ¢n) (3.130)

10 for n even G.131)

Figure 3.26 illustrates the output voltage v.(t) for the three time constants dis-
cussed above. As expected, for the two situations where 27 RC = 10 s and
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1N

Figure 3.26: Waveforms for v.(t). a) 2nRC = 0.15. b) 2rRC = 15. ¢) 2nRC = 10 5.

2nrRC = 1 s the output voltage v.(¢) is very different from the input voltage
due to the filtering effect of the input signal frequency components. However,
for 2n RC' = 0.1 s the output voltage is very similar to the input signal since
the main frequency components are not significantly attenuated.

It is also interesting to note that the effect of filtering all frequency com-
ponents (2r RC = 10 s) of the square voltage waveform results in a near-
triangular periodic waveform, such as that of figure 3.19 c), with an average
value (DC component) equal to the DC value of the input square wave input
voltage (sec next example).

The waveforms of v.(t) illustrated in figure 3.26 can be interpreted as the
repetitive charging (towards V,) and discharging (towards 0) of the capacitor.
At the higher cut-off frequency (2r RC = 0.1 s) the capacitor can charge and
discharge in a rapid manner almost following the input signal. However, as
the cut-off frequency (or bandwidth) of the filter is decreased the charging and
discharging of the capacitor takes more time. It is as if the output voltage is
suffering from an ‘electrical inertia’ which opposes to the time-variations of
that signal. In fact, the bandwidth of a circuit can actually be viewed as a
qualitative measure of this ‘electrical inertia’.

Example 3.3.4 Consider the circuit of figure 3.23 a). Show that if the cut-
off frequency is such that f. << T~! then the resulting output voltage is a
near-triangular waveform as shown in figure 3.26 a).

Solution: If (2rRC)~! << T~! this means that;

2mnRC

7 >> 1, n>1 (3.132)

and we can write the Fourier coefficients of the output voltage, expressed by
eqn 3.128, as follows:

ﬁﬁ_ﬁﬁ sinc (%) ifn#0
Vo, ~ (3.133)

n
Yo ifn=0
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Figure 3.27: Magnitude and
phase of a transfer function
of a distortionless system.

This eqn can be written in exponential form as follows:

Yol L e=inm/2 if n|is odd

2RC =w?n
Ve,=¢ % ifn=0 (3.134)
0 if [n|iseven and |n| > 0

Comparing the last eqn for |n| odd with eqn 3.100 for |n| odd we observe that
they are similar in the sense that they exhibit the same behaviour as |n/| in-
creases (note the existence of the term 1/ n? in both equations). The difference
lies in the amplitude and in the average value for the output triangular wave-
form which now is V, /2.

3.3.4 Linear distortion

Linear distortion is usually associated with the unwanted filtering of a signal
while non-linear distortion is associated with non-linear effects in circuits. To
illustrate linear distortion let us consider the transmission of a periodic signal
y(t) through an electrical channel with a transfer function H(f). The output
signal, z(t), is said undistorted if it is a replica of y(t), that is if z(¢) differs
from y(¢) by a multiplying constant A, representing an amplification (4 > 1)
or attenuation (4 < 1), and a time delay, t4. Hence, z(¢) can be written as

2(t) = Ay(t — tq) (3.135)

The relevant question is: what must H{f) be in order to have such a distor-
tionless transmission? To answer this we assume that y(¢) has a Fourier series
given by:

y(t) = > Cy, &7 F'dt (3.136)

n=—oo

From eqn 3.135 and from the time delay property of Fourier series (see eqn
3.111) we can write the Fourier coefficients of z(¢) as follows:

Cz, = ACy, 2™t (3.137)

From eqn 3.127 we can determine H(f) as follows:

[H(f)]fz% = g—in

n

= Ael?TTte (3.138)
that is

H(f) = Ael2rite (3.139)
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Figure 3.27 shows the magnitude and the phase of this transfer function. From
this figure we conclude that a distortionless system must provide the same am-
plification (or attenuation) to all frequency components of the input signal and
must provide a linear phase shift to all these components.

The application of a sequence of rectangular pulses to an RC circuit illus-
trates what can be considered as linear distortion. Now, let us consider the
transmission of those same pulses through an electrical channel which is mod-
elled as the RC circuit of figure 3.23 a). From the discussion above we saw that
if the cut-off frequency of the RC circuit is smaller than the third harmonic fre-
quency of the input signal, then the output signal is significantly different from
the input signal. Severe linear distortion occurs since the various frequency
components of the input signal are attenuated by different amounts and suf-
fer different phase shifts. However, if the cut-off frequency of the RC circuit
is larger than the third harmonic frequency then the output signal is approxi-
mately equal to the input signal, as illustrated by figure 3.26 c). This is because
the most significant frequency components of the input signal are affected by
the same (unity) gain. Note that, in this situation, the phase shift is zero indi-
cating that there is no delay between the input and output signals.

3.3.5 Bode plots

In the previous section we saw that the complex® nature of a transfer function,
H(f) (or H(w)), implies that the graphical representation of H(f) requires
two plots; the magnitude of H(f), |[H(f)|, and the phase of H(f), ZH(f),
versus frequency, as illustrated in figure 3.25.

Often, it is advantageous to represent the transfer function, |H(f)|, on a
logarithmic scale, given by

|Has(f)] = 20logyo [H(f)| (dB) (3.140)

Here, |Hgp(f)| and frequency are represented on logarithmic scales. The unit
of the transfer function expressed in such a logarithmic scale is the decibel
(dB).

The main advantage of this representation is that we can determine the
asymptotes of the transfer function which, in turn facilitate its graphical rep-
resentation. Note that the logarithmic operation also emphasises small differ-
ences in the transfer function which, if plotted in the linear scale, would not
be so clearly visible. In order to illustrate this we again consider the transfer
function of the RC circuit of figure 3.23, given by

1
H = — 3.141
() 1+j2xnfRC ( )
We can express this as
Ha() = 20 logw | 1575
wlJ = 80 T r FRC

3As in complex numbers described in Chapter 2.
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1
1+ (27 fRCO)?

= 20logy (1) —20logy, (1+ (27 f RC)?)

= —10logyy (1+ (27 fRC)?) (3.142)

=

We can now identify the two asymptotes of | Hgg(f)|, noting that

1+ (27 fRC)Y? ~1 if2rfRC<<1 (3.143)
1+27fRCY? ~(2nfRC)? if2nfRC >>1 (3.144)

Hence, we can write

|Hag(f)] =~ —10log;o(1)
1

~ 0dB if f<< 57RO (3.145)
|Haw(f)] =~ —10logyo(27 f RC)?
~ —20log;(2n fRC) if f>> 27r1RC (3.146)
The phase of H(f) is given by
ZH(f) = e itan '2rfRC) (3.147)
and it can also be approximated by asymptotes:
0 if f <3 Xs50m

LH(f)~Q —Flogo(27nfRC) =% if oo < f < smge

: 10
if f> 575G

|
bl

(3.148)
Figure 3.28 a) shows |Hgg(f)| versus the frequency. In this figure we also
show the corresponding values of | H(f)|. A gain of —20 dB (corresponding to
an attenuation of 20 dB) is equivalent to a linear gain of 0.1 (or an attenuation
of 10 times).

The two asymptotes given by eqns 3.145 and 3.146 are represented in fig-
ure 3.28 a), by dashed lines. Since the X-axis is also logarithmic the asymptote
given by eqn 3.146 is represented as a line whose slope is —20 dB/decade. A
decade is a frequency range over which the ratio between the maximum and
minimum frequency is 10. Note that this slope can be inferred by inspection
of figure 3.28 a) where we observe that for f = (27 RC)™! the asymptote
given by eqn 3.146 indicates 0 dB. From this figure we observe that these
two asymptotes approximately describe the entire transfer function. The max-
imum error, A, between H(f) and the asymptotes occurs at the frequency
f =27 RC)™ L Itis given by

A = -20log o2 fRC)j—2rrc)t — |Ha(f)lf=2x rC)-1
~ 3dB
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Figure 3.28: Magnitude and phase of the transfer function of the RC circuit of
figure 3.23 (solid lines) and asymptotes (dashed lines).

The circuit or system bandwidth is very often defined as the range of positive
frequencies for which the magnitude of its transfer function is above the 3 dB
attenuation value. This 3 dB value is equivalent to voltage or current output to
input ratio of 1/v/2 ~ 71% (see figure 3.28 a)) or, alternatively, output to input
power ratio of 50%. Hence, the bandwidth for the RC circuit is from DC to
f = (27 RC)™1, the cut-off frequency.

Figure 3.28 b) shows the angle of the transfer function, ZH( f), and also its
asymptotes given by eqn 3.148. From this figure we observe that for frequen-
cies smaller than one tenth of the cut-off frequency the phase of the transfer
function is close to zero. At the cut-off frequency f = (27 RC) ™! the phase
of the transfer function is —m /4 and for frequencies significantly greater than
this, the phase of the transfer function tends to —u /2.

Poles and zeros of a transfer function

In general, a circuit transfer function can be written as follows:

(L+j2nf/21) A+ 52rf/22) ... (L + 327 f [ zp)
(T+352nf/p1)(1 + j2nf/p2) ... (1 + j2m f [pm)

H(f) (3.149)
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Figure 3.29: CR circuit.

Each z;,7 =1,...,n,is called a zero of the transfer function, and, for j27 f =
—z; the transfer function is zero. Each p;, ¢ = 1,...,m, is called a pole of
the transfer function. At j27f = —p; the transfer function is not defined since
H(jp;/(27)) — £oo depending on the sign of the DC gain, A. For a practical
circuit m > n and m, the number of poles, is called the order of the transfer
function.

This representation of a transfer function is quite advantageous when all
the poles and zeros are real numbers since, in this situation, it greatly simplifies
the calculation of |Hgg(f)]. In fact, if all the poles and zeros of H{ f) are real
numbers we can write:

\He(f)] = En: 10 logyq {1+ <2:f> }

i=1 ’

= 2
— 3" 101logy, 1+< ﬂf) 1 (3.150)
k1 Pk
Let us consider the CR circuit of figure 3.29. Note the new positions of the re-
sistor and capacitor. It can be shown (see problem 3.6) that the transfer function
of this circuit, Hor(f) = Vg/Vs, can be written as:
ji2nfRC
H = 3.151
cr(f) 1+ 727 FRC (3.15D)
Relating this transfer function with eqn 3.149 we observe that Hog(f) has
one pole, equal to (R C) ™1, and a zero located at the origin. Since the pole and
the zero are real numbers we can use eqn 3.150 to determine |Hcpryg (f)] as
follows:

|Horgg ()l = 20 logyo(2r f RC) — 10 logy, (L + (27 f RC)?)
(3.152)

We can identify the two asymptotes of |[Horg, (f)| (see also eqns 3.143 and
3.144) which are given by:

|Horg (f)] =~ 20 logjo(2n fRC) dB if f << 5= (3153)
. 1
|Horg (f)] =~ 0dB, if f>> g—pe (159)
The phase of Hogr(f) is given by
4HCR(f) = ei5—J tan~'(27 f RC) (3.155)

and it can also be approximated by asymptotes:

% lff < 11_0 X 27r1RC'
LHor(f) =< §— 51081027 fRC) toxmrre <[ < s7kc
0 f>nme

(3.156)
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Figure 3.30: Magnitude and phase of the transfer function of the CR circuit of
figure 3.29 (solid lines) and asymptotes (dashed lines).

Figure 3.30 a) shows the magnitude, in dB, of this transfer function given by
eqn 3.152 and the asymptotes given by eqns 3.153 and 3.154. We observe
that this circuit attenuates frequencies smaller than the cut-off frequency, f. =
(27 RC)™1, while it passes the frequency components higher than f.. Hence,
this circuit is called a high-pass filter. Note that, in theory, the bandwidth of this
filter is infinity, although in practice unwanted circuit elements set a maximum
operating frequency to this circuit.

Figure 3.30 b) shows the phase of the transfer function. The three asymp-
totes for this phase given by eqn 3.156 are also shown. At frequencies smaller
than f = (27 RC 10)~! the circuit imposes a phase of 7/2 while at frequen-
cies higher than f = 10 (27 RC) ™! the circuit does not change the phase.
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Figure 3.31: a) RLC circuit.
b) AC equivalent circuit.

Signal filtering as signal shaping

Signal filtering can act as signal shaping as illustrated in example 3.3.4 where a
triangular waveform was obtained from the low-pass filtering of a square-wave.
This shaping is accomplished using at least one energy storage element in an
electronic network, that is by using capacitors or inductors. Capacitive and
inductive impedances are frequency dependent and different frequency com-
ponents of a periodic signal suffer different amounts of attenuation (or ampli-
fication) and different amounts of phase shift giving rise to modified signals.

To further illustrate this idea let us consider the circuit of figure 3.31 where
a square-wave voltage is applied (see figure 3.19 b)). The purpose of this circuit
is to reshape the input signal in order to obtain a sine wave voltage.

The output voltage, v,(t), is the voltage across the capacitor and induc-
tor. Since the input voltage v,(t) can be decomposed as a sum of phasors the
voltage v,(t) can be determined using AC phasor analysis together with the
superposition theorem. We start by calculating the voltage at the output, Vo,
using phasor analysis. Since the capacitor is in a parallel connection with the
inductor we can determine an equivalent impedance,

ZyZ¢
Z = ——— 3.157
Lc 7+ Zo ( )
with
Zo = L (3.158)
¢ - jwC '
Zr = jwl (3.159)
that is:
JjwlL
= — .1
Zre T_LO 3.160)

From figure 3.31 b) we observe that Zr and the resistor form an impedance
voltage divider. Thus the voltage V5 can be expressed as follows:

Zrc
Vo = ——V.
o Zic+ R s
Jjwlk
- ;—:;;2 LC
1—:'220 +R
jwlL
= 1% 3.161
R1-w?LC)+jwl s ( )
The transfer function is, therefore,
jwlL
H = 3.162
ro(w) RI-w?LC)+jwl (3.162)
Clearly, this can also be written as
27 fL
Hrrc(f) j2mf (3.163)

RA+(G2xf2LCY+j2nfL
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The two poles of Hgrc(f) can be determined by setting the denominator of
eqn 3.163 to zero and solving this eqn in order to obtain j 2 7 f, that is

RA+(j2nf)?LC)+j27fL=0 (3.164)
and since L2 — 4 L C R? < 0 we obtain

) —L+tjvALCR? - L2 .
j2w fi = SELO , i=1,2 (3.165)
The two poles of the transfer function are obtained from the last eqn (see also

eqn 3.149) as

pi = —j2nf;
JILCRE =2
+L$]2RL%R Lo iz (3.166)

The two poles given by the last eqn are complex conjugated. This means that
we cannot apply eqn 3.150 and we must determine [Hprrcyy (f)| using the
standard procedure, that is:
27 f L
IHRLCdB(f)| = 20 loglO R(]. _ (271_;')2 LfC) +]27TfL

= 20log;o(2m fL)

— 10 logyo [RE(1— (27 f)?LC)? + (27 f L)?] (3.167)

Figure 3.32 shows a plot of |Hrrcp ()| This figure indicates that the RLC

circuit does not attenuate the component f = (2rv/LC)™! = 1 kHz since
|HrLo, dB((27r\/_ )~1)| = 0 dB. However, it attenuates all frequency com-
ponents around this frequency. Thus, this circuit is called a band-pass filter.
The (3 dB) bandwidth of this circuit is 22 Hz centred in 1 kHz. For band-pass
filters the Quality Factor, @, is defined as the ratio of the central frequency, f,,
to its bandwidth, BW, that is

o

@= BW
The quality factor is a measure of the sharpness of the response of the circuit. A
high quality factor indicates a high frequency selectivity of the band-pass filter.
For this circuit the quality factor is Q = 45. Note that the third and the fifth
harmonics suffer an attenuation greater than 40 dB resulting from the frequency
selectivity of the circuit. This means that these frequency components have an
amplitude (at least) 100 times smaller at the output of the circuit compared to
its original amplitude at the input of the circuit.

We are now in a position to apply the superposition theorem to obtain v, (t).
This can be effected by substituting the phasor Vg in eqn 3.163 by the Fourier
series which represents the periodic square wave and by evaluating the transfer
function of the circuit, Hgr.c(f), at each frequency of these phasors, that is:

Vo, = [HRLC(f)]f—% X Vs,
'/T

g,-L
Vs,
R1—4mZLC)+j2n 2L

(3.168)

(3.169)
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Figure 3.32: Magnitude of the transfer function of the RLC circuit of figure
331

where the phasors Vg, are the coefficients of the Fourier series representing
v,(t) and the phasors Vg, are the coefficients of the Fourier series representing
vs(t). Clearly, Vg, coincide with C,, given by eqn 3.87. However, the units
for these coefficients are volts. The phasors Vo, can be written as:

n
jon 2L
— T - J%;‘% (V) for|n|odd
p— —_— 2_ ) —
Vo, =+¢ R(l1—4nr T2LC)+]27TTL
0 for | n| even

(3.170)
Figures 3.33 a) and 3.33 b) show the magnitude and the phase of the spectral
components of v,(t), respectively, while figures 3.33 ¢) and 3.33 d) show the
magnitude and the phase of the components of v,(t), respectively. It is clear
that the fundamental component (at f = 1/7') is present in the output voltage
but that higher order harmonics are severely attenuated*. Comparing figures
3.33 b) and 3.33 d) it is also clear that the circuit changes the phase of the
higher order harmonics of the input signal.

4These harmonics appear to be zero given the resolution of figure 3.33 ¢).
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Figure 3.33: Spectral representations of: a) magnitude of vs(t); b) phase of
vs(t); ¢) magnitude of v,(t); d) phase of v,(t).

The voltage v,(t) can now be written using eqn 3.92 as:

oo}

Z 21Vo, | cos (277 2+ angle(Von)>

U(t) = T

(3.171)

n=1
(n odd)

Since the harmonics, at frequencies higher than the fundamental, are strongly
attenuated, we can write v,(t) as

Vo(t)

R

1
2 Vo, | cos (2 T t + angle (Vp, ))

= 4cos 27rlt—z
B T 2

Finally figure 3.34 shows v,(¢) and v,(t) given by eqn 3.171. From this figure
it is clear that the output voltage is a sine wave corresponding to the fundamen-
tal component of the input periodic voltage signal v4(t).

(3.172)

3.3.6 The Fourier transform

In the previous section we have seen that the Fourier series is a very powerful
signal analysis tool since it allows us to decompose periodic signals into a sum
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Figure 3.35: Periodic volt-
age rectangular waveform.

Time domain

89

of phasors. Such a decomposition, in turn, allows the analysis of electrical cir-
cuits using the AC phasor technique with the superposition theorem. Whilst
the Fourier series applies only to periodic waveforms the Fourier transform is
a far more powerful tool since, in addition to periodic signals, it can represent
non-periodic signals as a ‘sum’ of phasors. In order to illustrate the difference
between the Fourier series and the Fourier transform we recall the Fourier se-
ries of a rectangular waveform like that depicted in figure 3.35 with amplitude
V, and duty-cycle 7/T. Figure 3.36 a) shows the waveform and its correspon-
dent line spectrum (magnitude). If we now increase the period 7" (maintaining
7 and the amplitude constant) we observe that the density of phasors increases
(figure 3.36 b) and 3.36 c)). Note that the amplitude of these phasors decreases

Frequency domain

‘ 7=02s
Ve IVal
AT ERRCCECAERCI =
<~
HRIEISIRIRININITICISIIQINININIRIUINIY RICINIBITICININIEININININISISISICININ]S NP N | S S | I i I | S T | N féHz)
-6 -8 -6 —4 -2 0 2 4 6 8 10 t{s) 15 ~10 5 0 5 10 135
[ 32 [Vl
T=1s
i L ,|J £ (Hz)
10 -8 -6 -4 -2 0 2 4 6 8 0 tfs) -1 -18 -5 0 5 10 15
. T=5s Val
= ) 1 (1)
0 -8 5 4 -2 0 2 4 6 8 10 't(s) -15 -10 -3 0 10 15
b v, VNt
T— o0
It f (Hz)
10 -8 -6 4 2 0 2 4 6 8 'mt(s) -15 -10 -5 0 5 10 15

Figure 3.36: The Fourier transform of a rectangular pulse.

since the power of the signal decreases. If we let the period tend to infinity
this is equivalent to having a non-periodic signal, that is, we have a situation
where the signal v(t) is just a single rectangular pulse. In this situation the sig-
nal spectrum is no longer discrete and no longer constituted by equally spaced
discrete phasors. Instead the spectrum becomes continuous. In this situation
the spectrum is often referred to as having a continuous spectral density.

The procedure described above, where the period T is increased, can be
written, in mathematical terms, as follows:

where we indicate the explicit dependency of the Fourier coefficients V,, on the
discrete frequency n/T. The last eqn can be written as shown below:

lim
T—oo

u(t) (3.173)

o0

> TVa(g) Orheas

Jim. (3.174)

v(t)
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where Af = 1/T. Equation 3.174 can be written as follows>:
o(t) = / V(f) eI27/t gf (3.175)

The discrete frequencies are described by the discrete variable, n/7T. This
variable tends to a continuous variable, f, describing a continuous frequency
when T — co. V(f), the (continuous) spectrum or the spectral density of v(¢),
can be calculated as follows:

. n
V(f) = Jlim TV, (T) (3.176)
T/2 .
= lim v(t) e 32Tt gt (3.177)
T—oo J /2
Where we chose t, = —T'/2. Finally, the last eqn can be written as:
V(f) = / v(t) eI 2™ft dt (3.178)

A sufficient condition (but not strictly necessary) for the existence of the Fourier
transform of a signal z(t) is that the integral expressed by eqn 3.178 has a finite
value for every value of f.

Example 3.3.5 Consider the single square voltage pulse shown in figure 3.36.
Show that the Fourier transform of this pulse is the same as that obtained from
eqn 3.176, which is derived from the Fourier series of a periodic sequence of
rectangular pulses (see eqn 3.117), when T — oo.

Solution: Using eqn 3.178 we can write

V(f) / V, rect <f> ei2m It gy
oo T

T/2
/ V, e 327t gy
—7/2

V., einfr_e-infr
—j2enf 25
= Vyrsinc(f7) (3.179)

From eqn 3.176 we can write :

) n
o - ()
. Vot . nr
fim T =5 sine ()
= Vyrsinc(fr) (3.180)

5Recall that

b b
dm S rw)ac= [ f@)as
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where n/T — fas T — oo.

From the above it should be clear that the Fourier transform, V' f), repre-
sents a density of phasors which completely characterise v(t) in the frequency
domain. Such a representation is similar to the Fourier series coefficients in the
context of periodic signals. However, it is important to note that whilst the unit
of the voltage phasors (Fourier coefficients), V, is the volt, the unit of the spec-
tral density, V(f), is volt/hertz (or voltxsecond). v(t) and V(f), as given by
eqns 3.175 and 3.178 respectively, form the so-called Fourier transform pair:

5
=

u(t) V(f) (3.181)

where § denotes the Fourier integral operation.

Linearity

The Fourier transform is a linear operator. Given two distinct signals 1 (¢) and
x2(t) with Fourier transforms X (f) and X2 (f), respectively, then the Fourier
transform of y(t) = a x1(t) + bxa(t) is given by;

V(f)

/00 [azy(t) +bao(t)] e 27t dt

= aXi(f) +bX:(f) (3.182)
Duality

Another important property of Fourier transform pairs is the so-called duality.
Let us consider a signal z(¢) with a Fourier transform represented by X (f). If
there is a signal y(t) = X (t) then its Fourier transform is given by

Y(f)

/ X(t) e927 gy

/ X(t) 227 =Nt gt (3.183)

and, according to eqn 3.175 we have that

Y(f) = =(~f) (3.184)

that is

z(-f) (3.185)

Example 3.3.6 Use the duality property of Fourier transform pairs to calculate
the Fourier transform of y(t) = A sinc(t 7).
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Solution: From eqn 3.179 and from eqn 3.185 we can write:

Y(f) = érect (i) (3.186)
n n

Note that the rectangular function is an even function, that is rect(—f) =

rect(f).

Time delay
If a function z(t) has a Fourier transform X (f) then the Fourier transform of
a delayed replica of z(t) by a time 7, z(t — 7), is given by:
o0 .
Flzit—-1)] = / x(t—7)e I2m gy (3.187)
—00

using the change of variable ' = ¢t — 7 we can write:

dt = dt
t——-00 ; t - —00
t—o0 ; t -

and eqn 3.187 can be written as

Flzt—7)] = /oo w(t')e—j%ft’ dt! e—i2miT

— 00

= X(f)ei2riT (3.188)

Note that the delay 7 causes an addition of a linear phase to X (f). If 7 is
negative this means that the signal is advanced in time and the linear phase
added to the spectrum has a positive slope. It is worth noting the similarity
between the delay property of the Fourier transform with the delay property of
the Fourier series (see eqn 3.111).

The Dirac delta function

The Dirac delta function, §(¢) can be visualised as an extremely narrow pulse
located at ¢ = 0. However, the area of this pulse is unity which implies that its
amplitude tends to infinity. A common way of defining this function is to start
with a rectangular waveform with unity area, such as that depicted in figure
3.37 a), which can be expressed as follows:

z(t) = %rect(z) (3.189)

T

with 7 = 1. If we now decrease the value of 7, as shown in figures 3.37 b)
and c) we observe that the width of the rectangle decreases whilst its amplitude
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Figure 3.37: Rectangular function. a) T = 1. b) T = 0.5. ¢} 7 = 0.25. d) 7 — 0 (Dirac delta function).
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Figure 3.38: Illustration of
the sampling property of the
Dirac delta function.

increases in order to preserve unity area. When we let 7 tend to zero we obtain
the Dirac delta function;

5(t) = lim L rect <3> (3.190)

0T T

which is depicted in figure 3.37 d). Note that
/ S(t)dt=1 (3.191)

The area is represented by the bold value next to the arrow representing the
delta function. An important property of the Dirac delta function is called the
sampling property which states that the multiplication of this function, centred
at t,, by a signal v(t) results in a Dirac delta function centred in ¢, with an area
given by the value of v(t) at t = t,, that is:

o(t) X 6(t —to) = v(to) X 8(t —t,) (3.192)

We emphasise that the area of v(t) X 6(t — t,) is equal to v(t,), that is:

/oo v(E) X 6t —to) = v(to) (3.193)

—0o0

Figure 3.38 illustrates this last property expressed by eqns 3.192 and 3.193.

The Fourier transform of a DC signal
Let us calculate the Fourier transform of a DC signal, w(t), with amplitude A.

According to eqn 3.178 this transform would be given by

W(f) =/ AeI2mft gy (3.194)

— o0
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Figure 3.39: a) Representa-
tion of the DC value w(t) =
A. b) Fourier transform of
w(t).
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However, the definite integral cannot be determined because it does not con-
verge for any value of f. Hence, the calculation of this Fourier transform
requires the following mathematical manipulation. We express the DC value
as follows:

w(t) = lir% Asinc(tn) (3.195)
n—

Figure 3.39 a) illustrates eqn 3.195 where we observe that as 7 — 0, w(t) —
A. Taking the Fourier transform of w(t), expressed by eqn 3.195, we obtain

W(f) = / %%Asinc(tn)e—ﬂ"“dt (3.196)

Since the integrand is a continuous function we can change the order of the
limit and the integral, that is

[e e}

W(f) = lim Asinc(tn) e 2" ft dt (3.197)

-0 J_»
From eqn 3.186 we can write W (f) as follows:

A

W(f) = lim —rect (i) (3.198)
n—0 ’I'] T]

This eqn is, by definition (see eqn 3.190), the Dirac delta function multiplied

by A (see also figure 3.39 b)), that is:

W(f) = Ad(f) (3.199)

This type of mathematical manipulation yields what is called the ‘generalised
Fourier transform’ and it allows for the calculation of Fourier transforms of a
broad class of functions such as that illustrated in the next example.

Example 3.3.7 Determine the Fourier transform of the unit-step function de-
picted in figure 3.40.

Solution: The unit-step function is defined as follows:

1 ift>0
u(t) = (3.200)
0 elsewhere

This function can also be seen as the addition of a DC value of 1/2 with the
signum function multiplied by a factor 1/2, as illustrated by figure 3.40, and
can be written as

1 1
u(t) = 3 +3 sign(t) (3.201)
where the signum function, sign(#), is defined as:
1 ift>0
sign(t) = (3.202)

-1 ift <0
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dult) The Fourier transform of u(¢) is the addition of the Fourier transform of a
DC value (discussed above in detail) with the Fourier transform of the signum
function. We need a mathematical manipulation so that the calculation of the
transform of the signum function converges to its correct value. Figure 3.41
shows that sign(¢) can also be written as follows:

~1

N (1—6_5> e~et ift>0
} sign(t) = lin}) (3.203)
(65—1) et ift<0

with o > 0. Figure 3.41 shows eqn 3.203 for a = 0.5, 0.1 and 0.02. From this

+ figure it is clear that as « tends to zero eqn 3.203 tends to eqn 3.202.
b1 sign(t) The Fourier transform of the signum function can now be calculated as
) follows:
’ 0
-~ Sign(f) = lim (eﬁ —1) e*teI2m It gt
t a—0 o
-1 ©© . .
+ él—>mo (1—€_E> e te 2T It gy
Figure 3.40: Unit-step func- 0 0
tion as the addition of a con- - lim |: ( -1 n aes ) et=i27 f t]
stant value with the signum om0 |\ a—2jrf o2—-2jnfa+1
—0o0

Sunction.

+ [e o)
ae « 1 .
___________ ki _ —at—j2nft
1&” + alg})[(a2+2j7rfa+1 a+2j7rf))e .
0.1 1
o = (3.204)
; jmf
sjj where we have used the following equalities:
-l lim e2 = 0 fort<0, (a>0)

—t

Figure 3.41: The signum ligb es = 0 fort >0, (@a>0)
function  obtained  from “
eqn 3.203. « = 0.5, 0.1 and  Using eqns 3.201, 3.199 and 3.204, we can write the Fourier transform of the

0.02. unit step function as follows:
1 1.
U(f) = 596(f)+3Sien(f)
1 1
= 55(f)+j27rf (3.205)

The generalised Fourier transform also allows us to perform the calculation of
the Fourier transforms of periodic functions. Let us consider, for example, a
periodic voltage signal, v(t) with period T which has a Fourier series such that:

w(t) = ) Vpel?TE! (3.206)

n=—oo
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The Fourier transform of v(¢), V/(f), can be related to its Fourier series coeffi-
cients, V,,, as follows:

V() = / o(t) €27 gt
/ Z V e]2rth _]27rftdt

— Z V/ ej21r%te—j27rftdt
_ Z V/ e-i2m(F=8)t gy (3.207)

This integral can be related to the Fourier transform of a DC quantity. Accord-
ing to eqn 3.199 we have

/ 1xe 327/t dt =§(f) (3.208)

and, therefore, the integral of eqn 3.207 can be calculated as
T e R)g =5 (-0
/_ e Ftgi =4 ( f T) (3.209)

Finally, eqn 3.207 which represents the spectrum of the periodic waveform v(%)
can be expressed as

V() = i Vad (f-7) (3.210)

n=—oco

which is a discrete series of phasors as expected.

Example 3.3.8 Determine the spectrum V' (f) of the periodic voltage wave-
form, v(t) of figure 3.35 with 7 = T'/3.

Solution: From eqns 3.117 and 3.210 we can write V(f) as follows:
X Var . nr n
i = 3 () o(f- )

n=—0o0

o0

- ¥ Esmc() (f——) (3.211)

n=—0oc

Rayleigh’s energy theorem

This theorem states that the energy, E., of a signal z(t) can be calculated from
its spectrum X ( f) according to the following eqn:

Egg:/_oo a:(t)?dt:/oo |X () df (3.212)

—00
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Example 3.3.9 Determine the energy of the causal® exponential, w(¢) shown
in figure 3.42, using Rayleigh’s energy theorem. Then, show that this result is
the same as that obtained from the integration of w?(t).

Solution: The causal exponential w(t) of figure 3.42 can be written as:
et fort>0

w(t) = (3.213)
0 elsewhere

where o > 0. Hence, the spectrum of w(¢) can be calculated as

Figure 3.42: Causal expo- > o
nential. w(f) = / w(t)e 72" dt

- 00

0o
— / e—ate—jZﬂ'ftdt
0

o0
— 1 e—j27rft
—o—j2nf 0

1
= — 3214
c+j2nf ( )

From eqn 3.212 the energy of w(t) can be calculated as follows,

Bu = /_Z (27rf)

e ()]

1 T om 1
T o227 <§+§) T 20 (3215

The energy can also be calculated according to:

o0

E, = / wi(t) dt

-0

O
= / e 27t dt
0

1 (o0}
— e—20t
{“20 }0

1
= — 21
20 (3.216)

This result is the same as that given by Rayleigh’s energy theorem.

S A causal signal () is defined as any signal which is zero for £ < 0.
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Figure 3.43: Impulse re-
sponse of an RC circuit.

3. Frequency domain electrical signal and circuit analysis

3.3.7 Transfer function and impulse response

The transfer function, H(w) or H(f), of a circuit has been introduced in sec-
tion 3.3.3 where we saw that it can be obtained from phasor analysis, more
specifically by evaluating the ratio of the phasor of the output signal with that
of the input signal for all frequencies, w or f = w/(2r). There are four funda-
mental types of transfer functions:

o Voltage transfer function: In this situation both input and output pha-
sors are voltages. The transfer function represents a voltage gain (or
voltage attenuation if this gain is less than one) versus the frequency.
This transfer function is dimensionless.

¢ Current transfer function: Both input and output phasors are currents.
Hence, the transfer function represents a current gain (or current atten-
uation if this gain is less than one) versus the frequency. This transfer
function is also dimensionless.

o Impedance transfer function: In this situation the input phasor is a
current whilst the output phasor is a voltage. Note that now the gain
versus the frequency has units of ohms. This transfer function is usually
called ‘transimpedance gain’.

o Admittance transfer function: The input phasor is a voltage whilst
the output phasor is a current. Now the gain versus the frequency, rep-
resented by this transfer function, has units of siemens. This transfer
function is usually called ‘transconductance gain’.

From the discussion about the Fourier series we have concluded that knowledge
of the transfer function of a circuit allows the calculation of the spectrum of the
output signal for a given periodic input signal, using eqn 3.127. In similar way,
the spectrum of the output signal, X,(f), for a given input signal with X;(f)
can be calculated as

X,(f) = H(f) x Xi(f) (3.217)

Taking the inverse Fourier transform of X,(f) and X;(f) we obtain the time
domain representation for the output and input signals respectively. We can
also take the inverse Fourier transform of the transfer function, H(f), which
is defined as the circuit impulse response represented by h(t). The impulse
response of a circuit is the circuit response when a Dirac delta function (with
unit area) is applied to this circuit.

Example 3.3.10 Determine the impulse response of the circuit of figure 3.43.

Solution: The impulse response can be obtained calculating the inverse Fourier
transform of the transfer function H (f) which is given by eqn 3.124:

1
H(f) = 1772 7RC (3.218)
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From example 3.3.9 we know that

et fort>0
-—,12 § (3.219)
otjinf 0 elsewhere
Since H(f) in eqn 3.218 can be written as
H) = ——x— 1 (3.220)
RC ™~ gs+j2rf '
h(t) is given by
%6_% fort >0
h(t) = (3.221)
0 elsewhere
This eqn can also be written as:
1 ¢

where u(t) represents the unit step function defined by eqn 3.200.

From a theoretical point-of-view the impulse response h(t) of a circuit is
obtained applying a Dirac delta function, as illustrated in figure 3.43. It should
be clear to the reader that, in a practical situation, it is not possible to apply
a Dirac delta pulse to a circuit to observe its impulse response; first because
extremely narrow pulses with infinite amplitude are physically impossible to
create and secondly because if this were possible the circuit would most cer-
tainly get damaged with the application of such a pulse! Hence, the application
of a Dirac delta pulse should be understood as a mathematical model or abstrac-
tion which helps us to identify h(t). However, as we show in example 3.3.11,
if we apply a narrow pulse whose bandwidth is much greater than that of the
circuit then the output is a very good estimate of its impulse response, h(t).

Example 3.3.11 Show that if we apply a finite narrow pulse, whose bandwidth

1 Arsindfr) 15 much greater than the circuit bandwidth then the output produced by the
. HH YT >f> fw circuit is a good estimate of its impulse response, h(t).
—fu Iu Solution: Let us consider a circuit with a transfer function H(f)} with maxi-

. mum frequency fys as illustrated in figure 3.44. If we apply, to the circuit, a
Figure 3.44: A narrow pulse  narrow rectangular pulse, z; (t), such that
applied to a circuit.

Frequency domain represen- z:(t) = Arect (E) (3.223)
tation. T

with 7 << f;; then the spectrum of z;(¢), that is X;(f) = Arsinc (f7), is
nearly constant in the frequency range — fa; < f < far, as shown in figure
3.44. Hence, the output spectrum X, (f) is:

Xo = Xl(f)H(f)
~ ArH(f) (3.224)
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Figure 3.45: Square voltage
pulse, v;(t), is applied to an
RC circuit.

3. Frequency domain electrical signal and circuit analysis

Taking the inverse Fourier transform the output signal is z,(¢) ~ A 7 h(¢).

3.3.8 The convolution operation
The time domain waveform for z,(t), in eqn 3.217, can be obtained by calcu-

lating the following inverse Fourier transform:

zo(t) :/_oo H(f)X;(f) &2/t df (3.225)

Since the input signal, in the time domain, is represented by x;(¢), this can be
written as:

zo(t):/oo H(f) /oo z;(N) 27 A 2T tgr (3.226)

o~

X.(f)

Changing the order of integration’ this eqn can be written as follows:

To(t) = /oo z:(\) /jo H(f) 275N gr dx - (3.227)

~

h(t—A)

Because H (f) has an inverse Fourier transform represented by h(t), then z,(t)
can be calculated as:
To(t) =

/ T SOV RE - N dx (3.228)

—00

This represents the convolution operation between z(t) and h(t). This opera-
tion is also represented as follows:
zo(t) = zi(t) * h(t) (3.229)
with * indicating the convolution operation. It can be shown (see problem 3.10)
that
z;(t) * h(t) = h(t) * z;(t) (3.230)
In order to understand the convolution operation we consider the RC circuit
of figure 3.45 where now a single square voltage pulse, v;(t), is applied to its
input. The output voltage v,(¢) can be determined according to eqn 3.228.
However, we shall evaluate v,(t) by first approximating the input square pulse
by a sum of (N + 1) Dirac delta functions, as illustrated in figure 3.46. Now

TThis change of the order of integration is possible whenever the functions are absolutely in-
tegrable. The variety of signals of interest and their corresponding spectra obey this requirement.
See [2] for more details.
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vi(t) (V)
’
(N+1)7!
N+1=6
0.5 0.5 t(s) —0.5 0.5 (s)
a)
s ui(t) (V)
4 u,(t) (V)
(N + 1)1
N+1=21
—0.5 0.5 T'*‘F —-0.5 0:5 F'rw.
b)
p vi(t) (V) b vo(t) (V)
1
N — 1 4
0.5 0.5 t(s) —0.5 0.5 7 ()
c)

Figure 3.46: Illustration of the convolution operation with the input voltage
signal in the circuit of figure 3.45 being approximated as a sum of (N + 1)
Dirac delta functions. a) N+1=6,b) N+1=21,¢) N — <.
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v;(t) is approximated by the following expression:

N+126(t+——k )
NHZ&( N- 2k) (3.231)

Note that the sum of the areas of the (N 4 1) delta functions is equal to the area
of the rectangular pulse, A7 = 1. Using eqn 3.228 the voltage at the output of
the RC circuit, v,(t) is given by

Vi (t)

1

[e 0}

vo(t) = / vi(A) h(t — A) dA (3232)

N
1 o N -2k
Y1 k§=0: /_ K (A+ o ) ht—A)dx (3.233)

where h(t) is given by eqn 3.222 with RC = 0.2 s. From eqn 3.193 we can
write this as,

N
V(1) Z
k=

This eqn is shown in figure 3.46 with (N +1) = 6, (N+1) = 21and N — oo.
From figure 3.46 a) (N + 1 = 6) it is clear that the result of the convolution
between v;(¢) and h(t) can be seen as a weighted sum of the impulse response
h(t) induced by each of the Dirac delta functions which approximates the input
signal v;(¢). By increasing N we increase the number of delta functions and,
of course, we increase their density in the time interval 7. If N — oo then
v;(t) ‘becomes’ the rectangular pulse as shown in figure 3.45 ¢) and v,(¢) is
now a smooth waveform. Note the similarity of v,(¢) obtained now, when the
input voltage is a single rectangular pulse, with the output voltage when the
input voltage is a periodic sequence of rectangular pulses (see also figures 3.23
and 3.26).

Figure 3.47 illustrates the computation of v,(¢) given by eqn 3.232. Accord-
ing to the definition of h{t) we can write

N -2k
(t+ N ) (3.234)

t—

e~ for t—\ >0
h(t —X) = (3.235)
0 for t—A<0

and since RC = 0.2 we have

e 3= for A<t
h(t — X) = (3.236)
0 for A>t

Figure 3.47 a) illustrates the integrand of eqn 3.232 for ¢ = —0.75 s. Note
the inversion of A(—0.75 — A) in the A axis. In this figure it is clear that the
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Figure 3.47: Hlustration of mathematical convolution.
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product of ~(—0.75 — A) with v;(\) is zero and, accordingly, v,(0.75) = 0. In
fact, the output voltage is zero until ¢ > —0.5 s as illustrated by figure 3.47 b).
For —0.5 < t < 0.5 the output voltage can be obtained from the following
expression:

t
vo(t) = 5 / e 2N g | —05<t<05 (3.237)
—0.5
1 t
= 5 [—6—5“—”] , —-05<t<0.5
5 —0.5
= 1-—¢ 50405 —05<t<0.5 (3.238)

Figures 3.47 c), d) and e) illustrate the calculation of eqn 3.237 for t = —0.25,
t = 0 and £ = (.25, respectively. For ¢ > 0.5 the output voltage can be
obtained from the expression indicated below (see figures 3.47 f) and 3.47 g)):

0.5
vo(t) = 5/ e N dx t>0.5
—0.5
1 0.5
= 5 [—e‘s(t_’\)] , t>0.5
5 —0.5
= 7505 _ =5(t+05) > 05 (3.239)

From the above we can write v,(t) as follows;

0 fort < —0.5
vo(t) = { 1— e 5(t+05) for —0.5<t<0.5 (3.240)
e~5(t=05) _ g=5(t+0.5)  fort > 0.5

Example 3.3.12 Determine the waveform resulting from the convolution of
two identical rectangular waveforms x(¢) and z3(t) with amplitude 4 = 1
and width T = 1 s.

Solution: According to the definition of a rectangular waveform (see also eqn
3.114) we can write z1(\) as

A, F<a<i
z1(A) = (3.241)
0, elsewhere
that is
1, F<A<3
z1(A) = (3.242)
0, elsewhere

and z3(t — A) can be written as

A, <y
Z2(t —A) = (3.243)
0, elsewhere

=
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Figure 3.48: Convolution
of two identical rectangular
waveforms.

that is
1, t—1<A<t+3
za(t — A) = (3.244)
0, elsewhere
The convolution of x4 (t) and x2(¢) is given by
o0
yt) = / z1(A) z2(t — A) dA (3.245)
—0oQ

Figure 3.48 a) shows the functions whose product forms the integrand of eqn
3.245 for t = —1 s, that is, this figure shows z1(\) and z2(—1 — A). From
this figure it is clear that the product of these two functions is zero and so is
the result of its integration. Note that for ¢ < —1 the product of z1(\) with
x2(t — A) is zero. Figures 3.48 b), ¢) and d) indicate that for the time interval
—1 <t <1 the two functions overlap. This overlap is maximum for ¢t = 0 as
shown by figure 3.48 c). For the time interval, —1 < ¢ < 0, we can write eqn

3.245 as follows:
t40.5
/ dx
—0.5

-1<t<0

y(t) = -1<t<0

= t41, (3.246)

For the time interval 0 < ¢ < 1 the overlap of the two functions decreases as
illustrated by figure 3.48 d) for ¢ = 0.5. For this time interval we can write eqn

3.245 as follows:
0.5
v = [,
t—0.5

= 1-¢t,

O<t<l
0<t<1 (3.247)

For t > 1 there is no overlap between z1()) and z2(—1 — A) and y(¢) is again
zero. From the above we can write y(t) as

0 if t<-1

14t if —1<t<0
VO =9 1_¢ if o<t<1 (3.248)
0 if t>1

Figure 3.48 f) shows that y(t) represents a triangle. In fact eqn. 3.248 defines
the triangular function, triang(t).

The discussion presented above reveals, once again, the advantage of anal-
ysing circuits and signals in the frequency domain. While time domain anal-
ysis involves the calculation of convolution integrals using the circuit impulse
response and the time domain signal, the frequency domain involves the mul-
tiplication of the circuit transfer functions with the signal spectrum (or signal
Fourier transform) which is, by far, a more simple mathematical operation.



106

3.4 Bibliography

3.5 Problems

3. Frequency domain electrical signal and circuit analysis

This is a consequence of the convolution theorems:

2(0) vy ° X() x Y(f) (3.249)
20) x ult) 5 X() = V() (3.250)

These two theorems state that the convolution of two functions in the time
domain corresponds to multiplication of its Fourier transforms in the frequency
domain while multiplication of two functions in the time domain corresponds
to convolution of its Fourier transforms in the frequency domain.
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3.1 Determine the effective (or RMS) value of each periodic waveform shown
in figure 3.49. Consider V4 = Vg = Vo =2 Vand T = 1 ms. Figures a) and
¢) represent sections of sinusoidal waves.

va(t) vs(t)

$

-~

v (t)
Va Va n Tﬂ Ve n
/\ / T AN
< P ] -
—T/a
~ T ot -7 Tt U U
T/4

b) c)
Figure 3.49: Waveforms of problem 3.1.
3.2 Sown that the average power dissipated by an impedance Z, is P4y =

0.5Real [V4 I}] where V4 is the phasor representing the voltage across Z, and
1 4 is the phasor representing the current through Z;.
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3.3 Using phasor analysis, calculate all voltages across and currents through
each passive element of the circuit of figure 3.50. v(¢) = 10 cos(wt + 7/4) V
and i(t) = 0.15 cos(wt + 7/3) A. The angular frequency w is 30 krad/s.

()
N
100 @ 1k0 10 mH F 0.10,(2) (A)
200 28 o7,p 13 "i _
u(t) u(t) 300 Q ] <: = | w0a
0.9 uF 0.2 uF T LY 2800 :F o :E )
3mH 5mH 1 pF + 6 mH
: Yar1)8
K ® 9 d)

Figure 3.50: Circuits of problem 3.3.
3.4 For the circuit of figure 3.51 find the load Z, for which maximum power
transfer occurs at f = 35 kHz.

3.5 Consider again the waveforms of figure 3.49. Determine the Fourier series
of each waveform and sketch the correspondent line spectrum.

+
D

Figure 3.51: Circuit of problem 3.4.

3.6 Show that the transfer function, H(f) = V,/V;, of the circuit of figure
3.29 can be expressed by eqn 3.151.

3.7 Determine the output voltage, v,(t), for the circuits of figure 3.52. v,(t)
is the periodic sequence of triangular pulses as shown in figure 3.49. Consider
T=01msand Vg =25V.

3.8 Determine the transfer functions, H(f), and the 3 dB bandwidth of the
circuits of figure 3.53. For the circuit of figure 3.53 a) determine the quality
factor.

3.9 Determine the Fourier transforms of the signals shown in figure 3.54.
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100 ©
4 pF
+ Hw +
= vl w(t) _ w14 mn D) wlt)
100 ©
a) b)
H(f) = H(f) = {7
Is 1mH i 410 Q [Io
(D — 3% v
moq | 160 2 -
a)
yold) 4\”30)
2V
1V 1V
ﬁs) -3 -2 2 3 t(ms) -3 -1l1 3 t (msAj
b) c)

Figure 3.55: Circuit of prob-
lem 3.11.

Figure 3.54: Signals of problem 3.9.

3.10 Show that the mathematical convolution satisfies the commutative prop-
erty expressed by eqn 3.230.

3.11 Find the impulse response of the circuit of figure 3.55.
3.12 Consider the circuit of problem 3.11 driven by a rectangular pulse; v; =

Varect(t/T, — 1/2). V, = 2V, T, = 0.5 ms. Determine the output voltage
using the convolution operation.



4.1 Introduction

4.2 Time
domain
analysis

4 Natural and forced responses circuit
analysis

In this chapter we discuss the natural and the forced responses of passive elec-
trical circuits. The natural response of a circuit is its response when the circuit
is not been driven by any signal source and it usually describes how the ener-
gies stored in the capacitors and inductors are transferred and finally dissipated
in resistive elements.

The forced response of an electrical circuit is the combination of the steady-
state response, studied in detail in the last chapter, with the transient response
and is a consequence of the application of a voltage or current signal to a circuit.

The time domain expressions for the voltages or currents in the circuit can
be derived by using Fourier transform techniques, discussed in the last chapter,
or by using the Laplace transform.

We start by presenting the analysis of a circuit with non-zero initial con-
ditions driven by a signal source which is switched-on at a specific instant of
time (usually ¢ = ). Then we show that this analysis can be effected using
Fourier transform techniques. In section 4.4 we present the Laplace transform
and in section 4.5 we use this tool to analyse the natural response and the step
forced responses of RC, RL, LC and RLC circuits.

In the last chapter we saw that the choice of the time origin is not relevant
for the study of the steady-state behaviour of electrical circuits. However, to
address both the natural and the transient responses, the definition of a time
origin, usually associated with the start of an event such as the switching-on of
a circuit, is obviously of fundamental importance. Signals which have a time
origin, that is, they are zero for ¢ < 0, are called causal signals since they have
a physical origin or cause. Figure 4.1 shows two examples of causal voltage
signals which can be expressed as follows:

vg, (t) = %‘i [1 — cos(wt)] u(t) 4.1)

vs,(t) = X@;[u(t—kT)—u<t—kT—%>J 4.2)

where V; represents the amplitude of the signal and w = 27 /T is the angular
frequency where T is the period. u(t) is the unit-step function as described in
the last chapter (eqn 3.200). The multiplication by u(t) in eqn 4.1 guarantees
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vg, (¢
V. 5, (t)
it
T 2T
a)
s, (t)
Ve
H K
T 2T
b)

Figure 4.1: Causal signals.
Examples.

rect (t-_—m)

T/2

Figure 4.2: Rectangular sig-
nal as the sum to two unit-
step functions.

Figure 4.3: RC circuit.

4. Natural and forced responses circuit analysis

causality. The mathematical representation of the causal signal of figure 4.1 b)
and expressed by eqn 4.2 is based on the expression of the rectangular function
as the difference of two unit-step functions (as illustrated in figure 4.2) that is

rect (t_z%) =ult)—u (t— g)

Circuits with non-zero initial conditions

In section 3.3.7, we presented the concept of the impulse response of a circuit.
This, together with the convolution operation, allows us to obtain the output
response of a circuit in the time domain when a particular input signal is driving
the circuit. However, it is important to note that this type of analysis assumed
that no capacitors or inductors were storing energy prior to the application
of the input signal. That is, this type of analysis is valid when all the initial
conditions associated with the capacitors and inductors are zero.

In order to address analysis with non-zero initial conditions driven by causal
signal sources we consider the circuit of figure 4.3 driven by the voltage source
described by eqn 4.1. We want to determine the voltage across the capacitor,
vc(t), in the time domain. This circuit incorporates a switch which is open for
t < 0. We assume that for t < 0 the capacitor has a voltage across its terminals
equal to V,,!. The switch is closed at ¢ = 0 applying vg, (¢) to the RC circuit.
Applying Kirchhoff’s current law to the RC circuit of figure 4.3 we can write,
for ¢ > 0, the following eqn:

vs, (t) — Vo (t) _ dvc(t)
— 5 = C —a 4.3)
This can also be written as
vs, (t) = vc(t) +RC M
dt
or
% 1 —cos(wt)ut) = wve(t)+T1 dvjt(t) 4.4

where 7 = R C. The differential equation defined by 4.4 has a general solution,

for ¢t > 0, which can be written as follows:
Ve Vi wr? o
2 2 1+ w?r?

Al

ve(t) cos(wt)

Vel 1
2 |1+w?r?

18t term

J

sin(wt)D u(t) + Veoe 7 u(t)

- g 2nd term
18t term (cont.)

= 4.5
1+ w?7r? “4.5)

!Note that this corresponds to a stored energy C V.2, /2 (see also eqn 1.25).
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velt) Transient Steady-state
response | response

3

Y
2 a)
2
Contribution by the
Steady-state response
t
0 3r 6T 9T
A
2
b)
Vi
_2'i Contribution by the
Transient response
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Figure 4.4: a) Time domain
voltage across the capaci-
tor of figure 4.3. b) Con-
tribution by the steady-state
regime. c) Contribution by
the transient response. d)
Natural response.

We observe that the first term is related to the application of the input signal
vg, (t) to the RC circuit. In fact, it can be shown that this first term can be
obtained from the convolution operation between the input voltage vg, (¢) and
the circuit impulse response (see example 4.2.1). However, the second term of
eqn 4.5 depends only on the initial voltage of the capacitor, V,.

By using trigonometric identities (appendix A) and taking into consider-
ation the initial condition (! < 0) eqn 4.5 can be written, for all time £, as
follows

'Uc(t) = E

E (1 - \/ﬁsin [wt+tan—1 <£>D u(t)

Contribution by the stead;state response (Fig. 4.4 b)

+ VWi e F u(t)
2 1+ w272
Contribution by the transient response (Fig. 4.4 c)
+ Ve 7 u(t) + Veo u(—t) (4.6)
N — N——

Natural response (Fig. 4.4 d) Initial condition (Fig. 4.4 d)

where we can identify all the different contributions to v (t). The steady-
state response represents the voltage v (t) when all transient phenomena of
the circuit have vanished, as extensively discussed in the previous chapter.

To illustrate the different contributions we plot v (t) and its constituent
parts in figure 4.4. Figure 4.4 a) shows ve(t), given by eqn 4.6, assuming
7 = 10/w and V,, = V,/6. Figures 4.4 b) and 4.4 c) show the contributions
by the steady-state and transient regimes, respectively. Figure 4.4 d) shows the
initial condition and the natural response associated with v (t). The transient
response corresponds to the response of the circuit between the time when the
signal is applied to the circuit and the time where the circuit is considered to be
in steady-state. The combination of the steady-state response with the transient
response is called the ‘forced response’ since it is caused by the forcing signal
source applied to the circuit. The natural response associated with v (t) cor-
responds to the voltage across the capacitor, for ¢ > 0, that would be obtained
if the voltage source vg, (t) was replaced by a short-circuit at t = 0. In fact,
this natural response can be seen as the contribution of the voltage V., to the
overall voltage across the capacitor for ¢ > 0. It is interesting to note that this
contribution can also be obtained by applying the superposition theorem to the
circuit of figure 4.3 resulting in the circuit of figure 4.5. For this circuit we can
write

dve(t) N velt) _ %))

Cdt R

which is a homogeneous first order differential equation with a general solution
given by

ve(t) = Ve 7 (4.8)
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4. Natural and forced responses circuit analysis

Since v (¢) is also the voltage across the resistance R we can obtain the current
i(t) as

A

it) = %e 4.9)

Example 4.2.1 Consider the RC circuit of figure 4.3 driven by the voltage
source described by eqn 4.1. Determine the voltage v (t) obtained by cal-
culating the convolution between vg, (¢) and the circuit impulse response and
show that this result is equal to the first term of eqn 4.5.

Solution: The RC circuit impulse response, h(t), was derived in Chapter 3
and is given by eqn 3.222. The convolution between vg, (t) and h(t) can be
determined as

volt) = /_oo vs, () h(t — A) dA

= /_oo % [1 — cos(w A)] u(N) e u(t — A)dA
_ /t Vs =2
0

5 1 —cos(wA)e” 7 dA

I Y w272 — cos(wA) — wrsin(wA) |
N 2 14+ w?r? o
Vs 1 wT !
= 2 (1 T TTer s - o sin(wt)
w27'2 _t
g ’) , (>0 (4.10)

Comparing this eqn with the first term of eqn 4.5 we observe that they are
identical.

Example 4.2.2 Consider again the RC circuit of figure 4.3 but now driven by
the voltage source described by eqn 4.2. This voltage source corresponds to
the periodic sequence of square pulses, as illustrated in figure 4.1 b). Consider
a period T equal to 7/3 (1 = RC'). Determine the voltage vc (t).

Solution: According to eqn 4.4, and for ¢t > 0, the voltage v (t) satisfies the
following eqn:

%i{u(t—kT)—u(t—kT—%)] = o)+ 2 41y

dt
k=0

This differential equation has a general solution which can be written as fol-
lows:

oo
ve(t) = Ve Ful)+Ve Y (1 - e‘*‘fT) ut — kT)
k=0
nT—-T

) u (t—nT— -72—1> (4.12)

- VSZ (1—8_2—

n=0
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4.3 Transient
analysis

using

Fourier
transforms

where the first term represents the natural response and the last two terms rep-
resent the forced response (given by the sum of the transient and steady-state
responses). Figure 4.6 shows v (t) given by eqn 4.12 where we assume that
V.o is zero. Note the similarity between this waveform, when is in its steady-
state condition, and that shown in figure 3.26 a) of section 3.3.3. In both situ-
ations the cut-off frequency, f. = (27r'r)‘1, of the RC circuit is smaller than
1/T causing the output signal, v¢(t), to approximate a triangular waveform as
discussed in example 3.3.4.

The Fourier transform, studied in detail in the previous chapter, can also be
used to analyse the application of causal signals to electrical circuits. In order
to demonstrate this application we introduce two important theorems which
allow us to take into account the initial conditions of electrical circuits; the dif-
ferentiation and the integration theorems for causal signals.

4.3.1 Differentiation theorem

This theorem states that if a causal signal z(¢) has a Fourier transform X (f)
then the Fourier transform of the time derivative of x(¢) is given by:

3 [%@] = jorf X(f) - z(0) (4.13)

where §[-] designates the Fourier transform operation defined by eqn 3.178. In
order to prove this theorem we consider the Fourier transform of z(¢);

X(f) = /00 x(t)e I3 St gt

— 0

Since z(t) is a causal signal the last eqn can be written as:

X(f) = /oox(t)e_jz’rftdt (4.14)
0

This eqn can be evaluated by integrating (by parts) using the following equality:

/wdz = wz—/zdw

with

w = z(t)

dz = e 92mftgt
Thus, we have

d
dw = 284
dt
s = -1 6—j27rft
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Now eqn 4.14 can be written as:

o0 _1 o0
z(t)e 12t gt = g(t) - e~i2mft
JAEC ) 57 0
1 ©dzt) _jonfi
+ j27rf/0 7 e dt
that is:
1 1 ® dx(t) _.
X\ = 0 —— eI it gy
(£) j27rf$()+j27rf/0 at ©
1 1 dz(t)
= 0) + ——
jzﬂfw()+j27rf3[ dt }
where it is assumed that:
. () _iamft_
Mmoo 7 e =0
Finally, we have the required result
dz(t .
5|99] = sznsx¢)- 20 @15)

4.3.2 Integration theorem

This theorem states that if a causal signal z(¢) has a Fourier transform X (f)
then the Fourier transform of the time integration of z(¢) is given by:

' _ 1 X(f)
3[/ x(A)dA] - o=x+ s @

The proof of this theorem can be performed by noting first that

Il

/0 2(\) dA /_ e ut- N
= z(t) *u(t)

Hence, from eqn 3.249, we can write (see also eqn 3.205)

5[/ "2 | = x(nvw

1 X() .
P GRES SEO NN

2

4.3.3 I-V characteristics for passive elements

These two theorems have a significant influence on the frequency domain cur-
rent—voltage characteristics of electrical components that are capable of storing
energy and when the voltage or the current applied to these elements are causal
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L
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Figure 4.7: I-V charac-

teristics for a) resistances,
b) capacitances, c) induc-
tances.

signals. Recall that for those electrical components capable of storing energy
the I-V relationships for causal voltage and current signals accommodate the
initial conditions. Thus, there will be a voltage associated with the energy
stored in a capacitor and a current associated with the energy stored in an in-
ductor.

Resistance

For resistances the I-V characteristic obeys the linear relationship between

V(f) and I(f)
V(f) = RI(f)

where V(f) and I(f) are the Fourier transforms of the causal voltage and
current applied to the resistance as indicated in figure 4.7 a).

(4.18)

Capacitance

The current through a capacitor can be related to the voltage across its terminals
according to the following eqn:

ity = ¢ 219

a1 (4.19)

Applying the Fourier transform to this eqn we obtain (see also eqn 4.13)

1(f) =

where v(0) is the voltage across the capacitor terminals at ¢ = 0. V(f) and
I{f) represent the Fourier transforms of the voltage across and the current
through the capacitor, respectively. Solving to obtain V(f) we get

I(f) v(0)
jenfC " jonf

_ v(0)
= I(f)ZC(f)+j27Tf

Ji2rn fCV(f)—Cv(0) (4.20)

V(f) =

4.21)

with
1

Zc(f) = i2rfC

Note that Z(f) represents the complex impedance associated with the capa-
citor C as discussed in the last chapter.
Inductance

The voltage across an inductor can be related to the current flowing through it
according to the following eqn:

4.22)
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Figure 4.8: RC equivalent
circuit in the frequency
domain.
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Applying the Fourier transform to this eqn we obtain (see also eqn 4.13)
V(f) = j2rnfLI(f)— Li0) (4.23)

where £(0) is the current flowing through the inductor at £ = 0. V(f) and I(f)
represent the Fourier transforms of the voltage across and the current through
the inductor, respectively. Eqn 4.23 can also be written as:

V(f) = Zu(f)I(f)— Li0) (4.24)
with
Zi(f) = jenflL

where Z7 (f) is the complex impedance of the inductor L.
Solving to obtain I{f) we get
1460 i(0)

I(f) = j%fL+j2ﬂf (4.25)

Example 4.3.1 Use the Fourier transform method to determine the voltage
across the capacitor of the RC circuit of figure 4.3 when driven by the volt-
age source described by eqn 4.2.

Solution: Figure 4.8 shows the equivalent circuit for £ > 0. Since I(f) flows
through both the resistor and the capacitor we can write (see also eqns 4.18 and
4.20):

VSz(f) —VC(f)
R

where Vg, (f) is the Fourier transform of vg, (t). Solving this to obtain Vo (f)
we have:

= j2nfCVe(f) = CVeo

_ Vs, (f) T Veo
Velf) = Tojonsr T1ti2nf7 (4.26)

Vs, {(f) can be obtained, according to eqns 3.188 and 3.205, as follows:

o0

Vs, (f) = Z (e‘”“f’“T_e—j2wf(kT+T/2)>

k=—o0

< (3000+ 557)

Now, eqn 4.26 can be written as

Ve(f) = I%+k§oo (e—j27rfkT_e_jQ,,f(kT+T/2)>
1 1 1
H(f) oo, 1
5 SN+ sy H)
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4.4

The Laplace
transform

where

1

T T

Taking into account eqns 3.214, 4.16 and 3.188, the inverse Fourier transform
of eqn 4.27, v (t), for t > 0, can be calculated as

oo t—kT
vo(t) = Ve 7u(t)+ Z (/o E e u(A) dA

k=—oc T
t—kT-T/2 |
- / —e T u(A)dAr (4.28)
0 T
that is, ve () for ¢ > 0 is given by
vo(t) = Ve 7u(t)+V, Z (1 - e_t_TkT) u(t—kT)

k=0
b _t-nT-T/2 T
- 1/;2(1—e . )u t—nT -3 (4.29)
n=0

Note that this expression for vo(t) is the same as that obtained in example
4.2.2 and is shown in figure 4.6 for T' = 7/3.

We have shown above that the Fourier transform can be used to analyse the
transient behaviour of electrical circuits. Here we introduce the Laplace trans-
form which is highly suited for the analysis of circuits driven by causal signals.

Definition

The unilateral Laplace transform of a causal signal, () is defined as?:
X(s) = / z(t)e stdt (4.30)
0

where s is a complex number which is called the Laplace transform variable.
As an example we calculate the Laplace transform of the unit-step function
which, according to eqn 4.30, is given by

U(s) = /Ooo u(t) et dt

x>
= / 1xe Stdt
0

-1 o0
= —e

S

—st

]

2There is also the bilateral Laplace transform which is defined from —oo to co. Such a trans-
form has special applications and is not used here. In this book when we refer to the Laplace
transform we always mean the unilateral one.
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(1 — lim e_”)

t—oo

[ VR

for Real (s) > 0

(4.31)

(4.32)

We emphasise that the Laplace transform of the unit-step function exists only
for values of s such that their real part is greater than zero, otherwise the limit
in eqn 4.31 does not converge. The range of allowed values for s defines the
so-called Region Of Convergence (ROC) of the Laplace transform. For the

unit-step the ROC is indicated in figure 4.9.

Example 4.4.1 Find the Laplace transform of the following functions
Loz (t) = e /" u(t)
2. z2o(t) = eI @ty t)
3. z3(t) = e "tu(t)
4. z4(t) = cos(27 f,t)ult)
where 7, & and f,, are positive real numbers and  is a complex number.
Solution:

1. The Laplace transform of the causal, real exponential is

/ e /T ut) et dt
0

T _plesT
= — [ T
sT+1 0

= (1— lim e_tlf“)

t—o0

Xl(s)

= ST:— T for Real (s) > —1/7

(4.33)

2. Similarly, the Laplace transform of the causal, complex exponential can

be expressed as

XQ(S)

o .
/ e I xty(t) e~ tdt
0

1
= - for Real (s) > 0
s+ja

(4.34)

3. The Laplace transform of this causal, complex exponential can be ex-

pressed as

X3(s) = / eV tu(t)e *tdt
0

1
= 7 5 for Real (s) > — Real (7)

(4.35)
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4. The Laplace transform of the causal cosine waveform can be expressed

as
oo Lj2w fot —j2mfot
Xa(s) = / £ Te u(t) et dt
o 2
-1 1 1
= — for Real (s} > 0
2 (jzwfo—s+—j27rfo—s> or Real (s)

= m for Real (s) > 0 (4.36)

The inverse Laplace transform
The inverse Laplace transform of X (s) is defined by

1 c+joo
z(t) = —— X(s)e*tds fort >0 (4.37)
J 2w c—joo
where c is a real number which sets the path of integration in the complex
domain. This path of integration must be defined within the ROC of X (s).
The solution of this type of integral is out of the scope of this book and is not
discussed further’. In practice, eqn 4.37 is rarely used and we use instead the
method of partial fractions. In addition, Laplace transform tables like those

presented in appendix A are also used.

4.4.1 Theorems of the Laplace transform

Before presenting the partial fractions expansion method, we discuss some im-
portant theorems associated with the Laplace transform. The proofs of these
are left as an exercise for the reader. All the signals expressed in the time
domain are assumed to be zero for ¢ < 0.

Linearity

Let us consider two causal signals z;(¢) and x2(t) with Laplace transforms
given by X;(s) and X2(s), respectively. If 2(t) = a1 21(t) + 2 z2(t), where
o, and ay are real constants, then its Laplace transform can be written as:

Z(s) = a1 X1(8) + az Xa(s) (4.38)

Time delay

If z(t) = z(t — 7) where 7 represents a positive time delay then the Laplace
transform of z(¢) is given by:

Z(s) = e T X(s) (4.39)

3For a detailed discussion on this subject see, for example, [1].
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Time differentiation

If 2(¢) is a signal resulting from the time differentiation of a causal signal z(¢),
such that

4 ) (4.40)
then the Laplace transform of z(t) is given by:
Z(s) = sX(s)—z(0) (4.41)

The proof of this theorem is similar to that presented in the context of Fourier
transforms in section 4.3.1.

Example 4.4.2 Find the Laplace transform of h(t) = sin(2x f, t) u(t).

Solution: Taking into account that

sin(27 fotyu(t) = % % cos(27 fot) u(t) 4.42)

then using eqns 4.38, 4.36 and 4.41 we have

-1 s
H6) = o, <S @rf)?+s? 1)
27 fo

LI @

Time integration

If z(t) is a signal resulting from the time integration of a causal signal z(¢),
such that

t
2(t) = / 2(\) dA (4.44)
0
then the Laplace transform of z(t) is given by:
Z(s) = @ (4.45)

The proof of this theorem is similar to that presented in the context of Fourier
transforms in section 4.3.2.

Example 4.4.3 Find the inverse Laplace transform of

1

28 = aren
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Solution: Z(s) can be expressed as

Z(s) = Xis) (4.46)
with
1
X(s) = g 4.47)

The inverse Laplace transform of X (s) is, according to eqn 4.33, equal to

o) = %e_t/r u(t) (4.48)

Now, using eqn 4.44 we have

z(t) = /0 %e‘t/" u(t) dr

t
— _ —t/T t '
e u(t) .

i

(1 _ e_t/T> u(t) (4.49)

Time scaling
If z(t) = xz(« t) then the Laplace transform of z(¢) is given by:

Z(s) = éy(z) (4.50)

Convolution

If z(¢) results from the convolution of z(t) with y{t) then the Laplace transform
of z(t) is given by:

Z(s) = X(s)Y(s) @51

Shift in the s domain
Let us consider a causal signal z(t) with Laplace transform X (s). If Z(s) =
X(s+ o) then

2(t) = z(t) e ** (4.52)

Differentiation in the s domain

Let us consider a causal signal x(¢) with Laplace transform X (s). If Z(s) is
such that

Z(s) = e

X(s) (4.53)
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then
z(t) = (-1)" t" z(t) (4.54)

Example 4.4.4 Find the inverse Laplace transform of

1
= — 4.
Gls) = Grap (4.55)
wheren = 0,1,2,....
Solution: Since,
1 (- dv 1
—_— = — 4.
(s +a)t! nt ds® s+a (4.56)

then, by using eqn 4.33, with @ = 1/7, together with eqn 4.54 we can write

g(t) = ge"t“u(t) 4.57)

Time periodicity

Let us consider z(t) to be a causal periodic waveform with period T as illus-
trated in figure 4.10. This can be written as
(9]
z(t) = > or(t—kT) (4.58)
k=0
where z7(t) is zero outside the time interval [0, T]. The Laplace transform of
z(t) is given by:

1
X(s) = T Xals) (4.59)
with
Xr(s) = / r(t) et dt (4.60)
0

Example 4.4.5 Find the Laplace transform of the waveform of figure 4.1 b).

Solution: According to eqn 4.60 we can write:

T/2
Vsr(s) = / Ve Stdt
0
_ ‘/5 —sT/2
= - (1-e772) @.61)
Using eqn 4.59 we have
L 1l—e° T/2
Ve (s) = lze” 4.62)

s 1—esT
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4.4.2 Partial-fraction expansion

The partial-fraction expansion method is used to obtain the inverse Laplace
transform if the s-domain function can be expressed as a ratio of polynomials
in s. To illustrate the application of this method we consider the partial-fraction
expansion of the following
2
X(s) = $“ag+sa; +ap 4.63)
(8 +p2)(s + p1)(s + po)
where each p; is a distinct pole of X (s).
This last eqn can also be written in the partial-fraction form as follows:
K, K Ky

X(s) = + + (4.64)
S+ p2 s+m S+ po

where each K is a constant to be determined by first equating eqns 4.63 and
4.64 as indicated below:
s2ag + sa; + ag B
(s +p2)(s+m)(s+po)
K(s+p1)(s +po) + Ki(s + p2)(s + po) + Ko(s + p2)(s + p1)

(4.65)
(5 +p2)(s + p1)(s + po)
that is
52a2 +say+ap = (K0+K1 +K2)82
+ [Ko(p1+p2) + Ki (po+p2) + K2 (p1 +po)ls
+ Kopips+Kipop2+ Kapipo (4.66)

By equating the coefficients of the powers of s in the last eqn we obtain the
following set of eqns

as = K() + Kl + K2
a1 = Ko (p1 + p2) + K1 (po + p2) + Ko (p1 + po) (4.67)

ao = Kop1p2 + K1 pop2 + K2p1 po
Finally, solving this set of eqns to obtain K, K; and Ko we get

2
Pj @2 — a1 po + ap

Ky, =
(p2 — po)(P1 — Po)
X, pas — a1 p1 + ao
(Pz —pl)(Po —pl)
K, = P%a2—alpz+ao

(p1 - 102)(170 - p2)

Taking the inverse Laplace of eqn 4.64 using eqns 4.35 and 4.38 we can deter-
mine z(t) as

z(t) = (Koe P + K1 e 'P + Ky e 'P?) w(t)
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Example 4.4.6 Determine the inverse Laplace transform of the following func-
tion which occurs in the analysis of a damped simple harmonic oscillator.

w2

Y = n 4.68
(s) T st ol (4.68)

wn, 1s called the natural frequency while 7 is called the damping factor. Con-
sider the following situations: n < 1,7 =1andn > 1.

Solution:

1. 1 < 1. First we express the denominator of Y (s) as a product of the two
poles which can be obtained solving the following quadratic eqn

s2+2nwns+wz = 0 (4.69)
that is (see also eqn 2.36)
s = —nwpTjw, \/1_——772 , “4.70)
Now, eqn 4.68 can be written as

W
(s+nwn+jwnvV1=1)(s+nwn —jwn /1 —-12)

and Y (s) can then be written in the partial-fraction form as

2
n

Y(s) =

K, K
Y(s) = - + =
s+nwep+jwny/1-n2 s+nwn—jwsy/1-72

Equating the last two eqns we have

%21 = (K0+K1)3+K0(nwn—jwn\/l—n2)
+ K (nun+jwavVI-1?)

By equating the coefficients of the powers of s we obtain the following

set of eqns
0=Ki+Kp
wy, = Ko (nwn —Jjwn /1 —772) + K1 (nwn+jwn V1 —772)
4.71)
Solving to obtain K and K; we get
. wp
K. =
o J W
K, = —j—=n
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Using eqns 4.35 and 4.38 we can determine y(t) as
Wi —t(neation/1T7)
t) = — ¢
y(?) (] Wier:
- Wn e——t (nwn—jwn\/l—nz) u(t)
241 —n?

It is left to the reader to show that the last eqn can be written as

yit) = — i (wn 1-7n2 t) et yu(t) (4.72)

V1=n?
2. n = 1. For this situation we can write Y'(s) as follows:

2

w
Y = —n =
(s) Grw)?
Using eqn 4.57 we have
y(t) = wite “ntu(t) (4.73)

3. 1 > 1. In this situation Y'(s) has two real poles;

$i = —nuptwy,Vni-1, i=0,1 4.74)
Hence, Y (s) can be written in the partial-fraction form as
K, K,
s+nwn+wn\/ﬁ * S+ nwn —wn\/ﬁf—_l
Equating this with eqn 4.68 we have
w2 = (Ko+Ky)s+ Ky (nwn — wp, \/nT:I)
+ K; (nwn + wn, m)

From this we can write

Y(s) =

0=K;+ Kp
w?,, = K() <77wn — Wp \/7]2 - 1) +K1 (nwn + wn V 772 - 1)
4.75)
and solving to obtain K and K; we get
Ky, = —_“n__
2+/n%2 -1
K1 = Wn

24/n% -1
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Using eqns 4.33 and 4.38 we can determine y(t) as

R

Wn, e—t (nwn—wn \/172—1) u(t)
2v/n%2 -1
It is left to the reader to show that y(t) can also be written as

y(t) = 2 emtnen giny (wn e — 1t) u(t) (4.76)

V1

The application of this analysis to RLC circuits is discussed later in this chapter.

The discussion presented above applies to s-functions without repeated poles.
In practice this is the most frequently encountered situation. However, let us
consider an s-function which has » 4 1 poles including n identical ones as
shown below:

1

W S} = (4.77)
= G 5+ m)
This function can be written in a partial-fraction form as follows:
K Ki,_, Ky K
W(s) = 2 . +...+ 2 4 —
O = Grpyr Terr T T T Grn Trem
Ko

4.78
s+ po ( )

Now, applying a procedure similar to that described above we can determine
the coefficients K _, and K. Using eqns 4.35 and 4.57 the inverse Laplace
transform of W (s) can be obtained as

Z I({klk— pre et + KoeT P ult) (479

Relationship between Laplace and Fourier transforms

The Laplace transform can be seen as the transformation of time functions
into a sum of generic exponentials of complex arguments, exp(st) with s =
o+j 2w f, instead of the sum of exponentials with purely imaginary arguments,
exp(j 2 ft), obtained from the Fourier transform. For any causal time func-
tion z(¢) whose Laplace transform Region Of Convergence (ROC) includes the
imaginary axis, j 2 7 f, the Fourier transform, X #(f) can be obtained from the
Laplace transform, X (s) as follows:

XF(f) = Xc(s) (4.80)

with s replaced by 727 f.
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4.5 Analysis
using
Laplace
transforms

Example 4.4.7 Use eqn 4.80 to obtain the Fourier transform of
z(t) = exp(—t/7) u(t) where T is a positive real number.

Solution: According to eqn 4.33 the Laplace transform of z(t) is

r
X(s) = 1 for Real (s) > —1/7 4.81)

Since the ROC includes the imaginary axis the Fourier transform of z(t) is

r
sT+1
r

- T 4.82
jorfr+1 (482)

X(f)

s—j327 f

Note that this result is the same as that given by eqn 3.214 replacing o by 1/7.

We are now in position to employ the Laplace transform to analyse the natural
and forced responses of electrical circuits. Again we use the circuit of figure
4.3 driven by the periodic sequence of square pulses of figure 4.1 b) to illustrate
this procedure.

4.5.1 Solving differential equations

The differential equation expressed by eqn 4.11 can be solved in the Laplace
domain, taking into account the time differentiation theorem expressed by
eqn 4.41, as follows:

Var(s) = Vols) +7[sVe(s) — Veol
Vo)1 +s7) = Vot (4.83)

Vs, (s) and V() are the Laplace transforms of vg, (t) and v (t), respectively.
Equation 4.83 can be solved to obtain V> (s) as follows:

LSz(S) Veo T
‘/ = 4 4
c(s) 1+5'r+1+s7' (4.84)

Since Vg, (s) has been determined in example 4.4.5, we can write V() as

Vio 1—e3T2 V7
Vi = 4.
c(s) s(14+4s1) 1—esT +1+sr (485)

The solution of the differential equation expressed by eqn 4.11 can now be
obtained after calculating the inverse Laplace transform of V-(s) given by the
last eqn. From eqn 4.33 we have

VeoT ¢

14+s7 Veo T u(t)




128

rs)_ R

+ Vi{s) -
2)

S 0r

+ V(s) -
b)

LR

A

+ V{s) -
<)

Figure 4.11: Laplace do-

main I-V characteristic for
a) resistance, b) capacit-
ance, c¢) inductance.
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where ; denotes a Laplace transform pair. From eqn 4.49 we have

Vs £ —t/T
s(l+s1) = Ve (1 ¢ ) u(t)
Using eqn 4.39 we have

_ Y ] (1 —e_ST/2> ; Vs (1 —e"t/T> u(t)

s(l+s7
Ve (1- e T (t _ Z)
7

[(1 - e—“i”) u(t)
]

_t—kT-T/2 T
1—e v )u(t—kT——§>]

From the above we can write v (t), fort > 0, as

Finally, from eqn 4.59 we get

V. 1—6—ST/2 o
s(l+s7) 1—esT =

Vs

K

El
I

N

Veoe Fut) +V, Y (1- e 5"
k=0

i _ t—nT-T/2 T
- Vsnz:(:)<l—e e isre )u(t-nT—5> (4.86)

which is the same expression as that obtained in examples 3.3.4 and 4.2.2.

volt) = )u(t—k:r)

4.5.2 I-V characteristics for passive elements

The discussion above illustrates the usefulness of the Laplace transform in
solving linear integral-differential equations in the context of electrical circuit
and signal analysis. Hence, any circuit can be analysed by first applying Kirch-
hoff’s laws, using the time domain relationships between current and voltage
for each electrical element discussed in Chapter 1, and then solving the circuits
equations in the Laplace domain. The voltage across or current through any
circuit element, in the time domain, can of course be obtained by determining
the corresponding inverse Laplace transform.

Although this procedure already provides a significant simplification of the
analysis of circuits it would be useful to apply the Laplace transform directly
to the circuit. This can, in fact, be done by determining the current-voltage
relationships of the passive elements in the Laplace domain.

Resistance

Applying the Laplace transform to Ohm’s law we obtain a linear relationship
between V(s) and I(s)

V(s) = RI(s) (4.87)

where V(s) and I(s) represent the Laplace transforms of the voltage across
and the current through the resistance, respectively.
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Capacitance
Applying Laplace transforms to eqn 4.19 we obtain (see also eqn 4.41)

I(s) = sCV(s)—Cuv(0) (4.88)
where v(0) is the voltage across the capacitor terminals at t = 0. V(s) and I(s)

represent the Laplace transforms of the voltage across and the current through
the capacitor, respectively. Solving eqn 4.88 in order to obtain V' (s) we get

Vis) = IS—(é—,)Jrg%)l (4.89)
= 1(5) Ze(s) + 22 (490)
with
Zes) = g

where Z¢(s) represents the complex impedance, in the Laplace domain, asso-
ciated with the capacitor C'. Note that eqn 4.89 can also be obtained by finding
the Laplace transform of »(¢) in eqn 1.24.

Inductance
Applying Laplace transforms to eqn 4.22 we obtain (see also eqn 4.41)

V(s) = sLI(s)— Li0) (4.91)
where i(0) is the current flowing through the inductor at ¢t = 0. V() and I{s)

represent the Laplace transforms of the voltage across and the current through
the inductor, respectively. Eqn 4.91 can also be written as:

V(s) = Z(s)I(s)~ Li0) 4.92)
with
ZL(S) = sl

where Z.(s) represents the complex impedance of L, in the Laplace domain.
Solving eqn 4.91 we get

I(s) = Vs(ff)Jr@ (4.93)

Note that this last eqn can also be obtained by applying Laplace transforms to
eqn 1.27.
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R
+

Vsz(s) C v (s)
C

Figure 4.12: Analysis of the
RC circuit in the Laplace do-
main (t > 0).
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The generalised impedance in the s domain

There is a straightforward relationship between the generalised impedance pro-
vided by the phasor analysis Z£(f), presented in the last chapter, and the gen-
eralised impedance in the Laplace domain associated with each of the passive
elements, Z,(s):

o for aresistance; Zr(f) = Z.(s) = R;

e for a capacitance; Zx(f) = Z,(8)|s=jors = (j 27 fC)!

e for an inductance; Zx(f) = Z,(8)|s=jons =J 27 f L
Note that these relationships are consistent with the relationship between the
Laplace and Fourier transforms (see eqn 4.80).
Circuit analysis

Figure 4.12 is used to illustrate a partial analysis of the RC circuit in the
Laplace domain. Applying Kirchhoff’s current law we can write (see also
eqn 4.88):

Vs, (8) = Ve (s)

R = sCV{s)—Cue (4.94)

Solving this eqn in order to obtain V(s) we can write

_ VSQ(S) ‘/::OT
Vols) = 1+87‘+1+ST (4.95)

with 7 = R as before. Note that this last eqn, obtained by applying Kirch-
hoff’s current law in the Laplace domain, is the same as eqn 4.85 which is
obtained applying the Laplace transform to the time domain differential equa-
tion expressed by eqn 4.11.

4.5.3 Natural response
RL and RC circuits

We have studied the natural response of the RC circuit in section 4.2. Let us
consider now the RL circuit of figure 4.13 a). The switch is closed for £ < 0
and it is open for ¢ > 0. The equivalent circuit for £ < 0 is shown in figure
4.13 b). Because the inductor is conducting a constant current the voltage
across its terminals is zero. This means that the voltage across R; is zero and,
therefore the voltage V' is applied to K. It follows that the DC current that
flows through R, and the inductor is

|4

Ly = —
l o

For t < 0 the inductor stores energy equal to L I2 /2 (see eqn 1.28). From the
above, it is clear that the initial condition associated with the current through
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Figure 4.13: a) RL circuit.
b) Equivalent circuit for t <
0. c¢) Equivalent circuit for
t>0.

i(t)/ Lo

Figure 4.14: i(t) normalised
to I, versus the time nor-
malised to T.

the inductor, when the switch is closed at ¢ = 0, is I;,. Figure 4.13 c) shows
the equivalent circuit for ¢ > 0 (the switch is open). Now the energy stored by
the inductor will be dissipated by the resistance R; and we can write

VL(s) = Vg(s)

Using the expressions for Vi (s) and Vg, (s), given by eqns 4.91 and 4.87,
respectively,

sLI(s)— LI, = —RyI(s)
Solving the last eqn in order to obtain /(s) we have

TIlo
1+sT

1(s)

with 7 = L/R;. Finally, using eqn 4.33 we obtain
i(t) = Lpe /T ult)

Note that the natural response of this circuit is similar to that discussed for the
RC circuit. Figure 4.14 shows 7(t) normalised to I;, versus the time normalised
to 7. From this figure we observe that the time necessary for the current to go
from 90% of I;, to 10% of I;,, is about 2.2 x 7. It is interesting to find the
voltage vy (t) = vg, (t) developed across the resistor/inductor parallel com-
bination of figure 4.13 c). This can be obtained either by using eqn 4.22 or
simply by finding R; x i(¢). This gives

VL, (t) = —-RiI, e_t/T u(t)

A plot of v (t) normalised to R; I;, versus time normalised to 7 is shown in
figure 4.15. Note that the voltage developed across the inductor is negative at
t = 0 and tends toward zero. Such a voltage is known as the inductor’s back
emf (electro-motive force).

You might like to note that if By — oo then vz, (0) — oo. This is the large
emf produced when i (t) is suddenly reduced to zero and is the basis of the
traditional ignition coil in a car. Modern car ignition systems use capacitive
discharge together with sophisticated electronic circuitry.

Example 4.5.1 Consider the circuit shown in figure 4.16 a). Determine the
voltage across the capacitor and the current flowing through R3 for ¢ > 0.

Solution: The equivalent circuit for ¢ < 0 is shown in figure 4.16 b). In this
situation the capacitor is not conducting and the voltage drop across R is zero.
This means that the voltage across the capacitor terminals is equal to V4 where:

R/

Va = Veim

(4.96)

with R’ = Rj3||R;. The capacitor stores energy equal to C' V2 /2 and the initial
condition is V, being equal to V4.
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Figure 4.15: wvp(t) nor-
malised to (RyI,) versus
the time normalised to 7.
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Figure 4.16: a) RC circuit.
b) Equivalent circuit for t <
0. c¢) Equivalent circuit for
t > 0. d) Equivalent resist-
ance ‘seen’ by C fort > 0.
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Figure 4.16 c) shows the equivalent circuit for ¢ > 0, that is when the
switch is closed. For this situation, the energy stored by the capacitor will be
dissipated by the resistances R;, Rs and Rs.

For this circuit we can write after applying Kirchhoff’s current law, the
following eqns:

Va(s) — Vo(s)

7 = sCVe(s)—CV, 4.97)
2
Va(s) = Vels) _ Va(s)

7 = (4.98)

Solving these two eqns in order to obtain Vi (s) we get:
C(R' 4+ R2) Veo
Ve = 4.

c(s) 1+sC{R"+ Ry) (499

Using eqn 4.33 we have
vet) = Veee ™ uft) (4.100)

where 7/ = C (R’ + Rj). Note the similarity of the expression for the natural
response given by the last eqn and that obtained for the circuit of figure 4.3
(see also eqns 4.6 and 4.8). The effective resistance seen across the capacitor
terminals is given by Ry + R’ = R, + (R1||R3) as shown in figure 4.16 d).

In order to obtain the current flowing through Rj, I3(s), we consider again
eqn 4.98 from which we can write

RI
Vals) = BiR Ve(s)
CR' Vo
= 4.1
1+sC(R +Ry) (4.101)
and the current flowing through Rj is
Va(s)
I =
3(s) R
CR'YV,
= = 4.102
R3[l+sC (R + Ry)| @102
again using eqn 4.33 we obtain
!
cho - 4
is(t) = R 8T u(t) (4.103)

Rs (R +Rs) ¢

Note that the behaviour of the current i3(¢) is similar to that of the voltage
across the capacitor.
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\] t—0+

Fort>0

Figure 4.17: a) LC circuit.
b) Equivalent circuit for
t>0.

:x.f\A

ﬁﬁ%

Figure 4.18: Hydraulic ana-
logue of the LC circuit of fig-
ure 4.17.

LC circuits

Let us consider now the LC circuit of figure 4.17 a). For ¢ < 0 the switch S;
is closed while the switch S» is open. Hence, the DC voltage applied to the
capacitor, V.., is V. There is no voltage across the inductor. Hence, for ¢t < 0
the capacitor stores energy while the inductor is not storing any energy.

At t = 0 the switch S is opened and the switch S5 is closed. Figure 4.17
b) shows the equivalent circuit for ¢ > (. Now the voltage across the capacitor
is the same as the voltage across the inductor; V. Hence, we can write

I(s) Ve
LiI(s)=——+
sLI(s) =C + 5
that is
CVeo
I9 = are
The voltage can be determined as
sLCV,,
Vicls) = @rowi

Using eqns 4.36 and 4.43 we can determine the current and the voltage in the
time domain

i(t) = —CV, sin < LIC ) u(t)

Veo cos (% t) u(?)

These two last equations indicate that the current flows in a sinusoidal manner
between the capacitor and the inductor, with the electrical energy being trans-
ferred periodically between electrostatic energy in the capacitor to magnetic
energy in the inductor. The frequency of this energy transfer (oscillation) is
f = (2nv/LC)~!. This LC circuit has a simple hydraulic analogue where a
water pipe, with its section covered by an elastic membrane, is connected to
a flywheel forming a closed circuit as shown in figure 4.18 (see also section
1.3). We assume that this circuit is completely filled with water. If we rotate
the fly-wheel manually the membrane will be stretched due to the water pres-
sure created in one of its sides. This procedure is ‘equivalent’ to storing energy
in the capacitor of the LC circuit. If we release the flywheel there will be an
oscillatory motion of water flow. If we assume that there are no losses in this
circuit this oscillation will carry on indefinitely. We note that L.C circuits form
the basis of analogue oscillators used in various telecommunication circuits.

vre(t) =

RLC circuits

We consider now the RLC circuit of figure 4.19 a). For t < 0 the switch is
closed and for ¢ > 0 the switch is open. For ¢ < 0 the DC voltage V is
simultaneously applied to the resistance R and to the capacitor C'. The voltage
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Equivalent circuit for t > 0.
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Figure 4.20: i(t) given
eqn 4.106 normalised to
CV.owy versus the time

normalised to w;,*.
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across the capacitor, V,,, is equal to the DC source voltage V. Figure 4.19 b)
shows the equivalent circuit for £ > (0. From this circuit we can write the
following eqn

VR(S) = Vc(s) + VL(S)

that is:
I(s) | Veo
RI(S) _ﬁ_'_T_SLI(S)

Solving in order to get I(s) we have

CVeo
s2LC+sRC+1

I(s) =

This last eqn can be written as follows:

V. 1
I(s) - &L -
R
2
w
= Cv::o =
$24+2nwp s+ w?
with
1 (4.104)
W, = — .
VvLC
1 C
n o= SRy7 (4.105)

The expression for I(s) is similar to that expressed by eqn 4.68 and discussed
in example 4.4.6. Therefore, by using eqns 4.72, 4.73, 4.76 we can obtain the
current of the RLC circuit, for ¢ > 0, as follows:

—¥ngin (wy /1 —n2t) et u(t ifn<1
\/1—n? K
i(t) = CVep X { wite “ntult) ifn=1

—“a_ sinh (wn n? - 1t) e tmen y(t) ifn>1

(4.106)

Figure 4.20 shows ¢(t) normalised to (C V,,w,) versus the time normalised
to w, 1 for three different values of 7. We observe that, in all situations, the
current tends to zero. This is expected since the energy initially stored by the
capacitor is constantly dissipated by the resistance. We also observe that the
value of 7 influences the behaviour of the current. For 7 < 1 the current
exhibits an oscillatory behaviour and the circuit is said to be underdamped. In
this situation the circuit natural response is dominated by the LC combination.
For > 1 this oscillatory behaviour does not occur. For = 1 the circuit is
said to be critically damped and for n > 1 the circuit is said to be overdamped.
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vy
Q

b)

Figure 4.21:

a) RLC. b)
Equivalent circuit for t > 0.

For values of 7 > 1, the transient behaviour of the circuit is dominated by the
combination of the resistance with the capacitance. In fact, if > 2 then the
current i(t), given by eqn 4.106, can first be approximated as follows:

_twn ten
it) ~ CV 2‘*:;; 2_771 e Zn — 622n 2nwnt u(t)
L o2m?-1
- OV, 2‘:}’;2_7’1 g loe T ZH"_ u(t)  (4.107)
where we use the following approximation:
nz—lzn—% ifn>2
However, eqn 4.107 can be further simplified as
it) ~ CVe ;”—n e 5 u(t)
%‘1 e u(t) (4.108)
after assuming that
2nt >> 1

and
e 2wnnt o]

Equation 4.108 is equal to eqn 4.9 regarding the natural response associated
with the current of the RC circuit of figure 4.5. Note that increasing 7 is equiv-
alent to increasing the value of R, assuming that w,, is kept constant. The hy-
draulic equivalent for this circuit is similar to that shown in figure 4.18 where
now we consider losses in the hydraulic pipes. These losses attenuate the os-
cillatory movement of the the water flow. If the resistance to water flow is very
high (very thin pipes) then there will be no oscillatory water movement at all

(n> 1.

Example 4.5.2 Consider the RLC circuit of figure 4.21 a). For ¢ < 0 the
switch is closed. Determine the voltage v(t).

Solution: Since the DC voltage source has been applied to the inductor for
a long time (¢ < 0) the voltage v(t) is zero. Therefore, V; appears across Rj.
The current flowing through this resistance, R;, also flows through the inductor
and it is given by

Note that the voltage across the capacitor is zero. For £ > 0 the switch is open,
resulting in the equivalent circuit shown in 4.21 b) for which we can write:
V(s) Vis)  To

= +sCV(s)+———sL t = 0
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Figure 4.22: RC driven by a
step voltage source.
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Solving this last eqn in order to obtain V'(s) we have

"LIlo
s2LC+sL/R+1

V(s) =

This can also be written in terms of its natural frequency w, and damping
factor, 7, as follows:

w2
Vi(s) = —LIlom
with
1
Wn = \/—E_E (4.109)
and
n = %}%\/g (4.110)

Again, by using eqns 4.72, 4.73, 4.76 we can obtain the voltage v(t), fort > 0,
as follows:

—=n— sin (wn 1-n2 t) e~ y(t)  ifnp<1

v(t) = —LI;, x { wite “rntu(t) ifp=1

—i’*—sinh(wn n2—1t) e~tnen y(t) ifn>1

Vo
(4.111)

Note the similarity of the natural response for the voltage v(t) for this circuit
and the natural response of the current, i(¢) of the previous RLC shown in
figure 4.19 a). However, it should be noted that now the resistance R plays an
opposite role to that played by the resistance of the circuit of figure 4.19. Now,
if we want to decrease the damping factor, 7, we have to increase the value of
R. This is reasonable since, as the resistance R tends to infinity (open circuit),
the circuit of figure 4.19 tends to the lossless circuit of figure 4.17.

4.5.4 Response to the step function

We consider now the response of various passive circuits to the step function.
The circuits are driven by either a step voltage or current source.

RC circuits

Figure 4.22 shows the RC circuit driven by a step voltage source. Assuming
that the capacitor is discharged at £ = 0 we can write the following eqns for
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Figure 4.23: a) ve(t) nor-
malised to V versus the time
normalised to T. b) i(t) nor-
malised to V[ R versus the
time normalised to T.

this circuit in the Laplace domain, as follows:

1(s)

Vels) = —& 4.112)
Vs(s) = RI(s)+ ﬁ(—é) (4.113)

Since the Laplace transform for vg(t) is (see eqn 4.32)
Vs(s) = % 4.114)

we can determine Vo (s) and I(s) as indicated below
Ve(s) ;ﬁ (4.115)
s T

I(s) = %STH (4.116)

with 7 = RC. Using eqns 4.49 and 4.33 we can obtain the time domain
expression for the voltage across and the current through the capacitor:

velt) = Vi (1 —e“%) u(t) @.117)
i(t) = YRs-e—f u(t) (4.118)

Figure 4.23 a) shows v (t) normalised to V; versus the time normalised to 7
and figure 4.23 b) shows i(t) normalised to V,/R versus the time normalised
to 7. Note that, during the transient response the voltage across the capacitor
terminals increases in an exponential manner towards V; while the current i(¢)
tends to zero. In this figure we also show that the time required for the voltage
to go from 10% to 90% of its final value is about 2.2 7 (see figure 4.23 a)). This
time is called the rise-time, t,.. On the other hand, the fall-time, t ¢, is defined
as the time taken by a signal to fall from 90% to 10% of its peak value as is the
case for the current in this example (see figure 4.23 b)). Note that the current
fall-time is equal to the voltage rise-time; 2.2 7.

Example 4.5.3 The rise time of an RC low-pass filter was measured to be
t, = 50 us. Determine its bandwidth. Also determine the delay time of the
circuit, tg4, defined as the time taken for the signal to reach 50% of its peak
value.

Solution: The bandwidth of an RC low-pass filter (see section 3.3.5) is:

1
BW = —
27T

with 7 = RC. This eqn can be written as
22 035

2nt, t,
= TkHz

BW =
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Figure 4.24: CR circuit
driven by a step voltage
source.

Figure 4.25: vg(t) given by
eqn 4.121 normalised to V
versus the time normalised
toT

Figure 4.26: RL circuit
driven by a step voltage
source.
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To find the delay time we solve eqn 4.117 for v (t4) = V, /2. This gives

0.11
t —_ . = —
d 0.77 = Bw

= 15.7 us

Example 4.5.4 Consider the CR circuit of figure 4.24. Determine the output
voltage vg(t).

Solution: We can write the following eqn

SCIVs(s) ~ Vils)] ~ OVip = VL) (4.119)

Assuming that the initial charge on the capacitor is zero (V,, = 0) we have:

TS

\% = V.
R(s) 1+7s s(s)
T
Vs 4.120
l+7s ( )
with 7 = RC. Using eqn 4.33 we can write
vr(t) = Vie 7 u(t) (4.121)

Figure 4.25 shows the voltage vg(¢) normalised to V; versus the time nor-
malised to 7. From this figure we observe the fast rise of the voltage to its peak
and then its exponential decay to zero. Note that the time taken for the voltage
to fall from 90% to 10% of its peak value (fall-time) is about 2.2 7.

RL circuits

Figure 4.26 shows an RL circuit driven by a step voltage source. For this circuit
we can write:
Vs(s) = Vi(s) Vi(s) I
= —= 4.122
R sL + s ( )
Assuming that the initial condition of the inductor is zero (I;, = 0) we can
solve this eqn in order to obtain V7 (s) as

ST T
Vi(s) = sT+1 Vs(s) = sT+1°
where 7 = L/R. Using eqn 4.33 we can write
vp(t) = Vie T u(t) (4.123)

Note the similarity between this last eqn and eqn 4.121. In fact, the time (and
frequency) domain behaviour of this circuit is similar to the CR circuit shown
in figure 4.24.
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Figure 4.27: LR circuit
driven by a step voltage
source.

Figure 4.28: RLC circuit
driven by a step voltage
source.

Example 4.5.5 Consider the LR circuit of figure 4.27 a). Determine the output
voltage vg(t). Assume I;, = 0.

Solution: For this circuit we can write:

Vs(s) - VR(S) _ VR<S)

4.124
sL R ( )
solving this eqn in order to obtain Vz(s) we have
Vs
= — 4.125
Vk(s) s(st+1) ( )

where 7 = L/R. Using eqns 4.49 and 4.34 we can write the time domain
voltage across the resistance

vr(t) = Vi (1 —e—%) u(?) 4.126)

Note that this expression is similar to the voltage across the capacitor (see eqn
4.117) of the RC circuit of figure 4.22.

RLC circuits

Figure 4.28 shows an RLC circuit driven by a step-function voltage source.
Assuming that all initial conditions of the circuit are zero we can write:

I(s) = g:((i)) 4.127)

with Z,,(s) representing the equivalent impedance of the series combination
of the inductor, resistance and capacitance. Z.,(s) is given by

1
Zeq(s) = R+3L+E

and 1/Z,.,(s) can be written as

2
1 swy,

= 5—7—""—— 4.128
Zeg $2+ 20w, + w32 ¢ )

where w,, and 7 are given by eqns 4.104 and 4.105 respectively. Hence, the
current I(s) is given by:

sCw?
) = Vsl g, et
Cd2
= V0 (4.129)

TS24+ 2w, +w?
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Again we use eqns 4.72, 4.73, 4.76 to obtain the current of the circuit in the
time domain, for ¢ > 0, as follows:

\/‘;”—2 sin (wn 1—n2 t) e Wty  ifn<1
-n

i(t) =CV, x{ w2te “rtu(t) ifp=1

\/‘*’—2"—1 sinh (wn n? — 1t> e~tmeny(t) ifn>1
%~
(4.130)

The voltage across the capacitor terminals, v (t), can be obtained from eqn
1.24, that is

(
i e~ tnwn . ) .
[1 i s1n(\/1 nwnt+¢)]u(t) ifn<1

[1 — (twp, +1) e‘“""} u(t) ifp=1
ve(t) =V, x
<1 — e~ tnwn [cosh (wn N2 — lt)
|+ sinh (wn - lt)] ) ut)  ifn>1
4.131)
with
T — 2
¢ = tan™! (%) (4.132)

Figure 4.29 a) shows the current i(¢), given by eqn 4.130, normalised to C V, w,,
versus the time normalised to w_; 1 considering n = 0.1,0.3, 0.7, 1 and 3. From
this figure we observe that, regardless of the value of 7, the current in the RLC
circuit eventually tends, as expected, to zero. As with the natural response we
observe that for values of 7 < 1 (underdamped circuit) the current exhibits
oscillations and its transient behaviour is dominated by the LC combination.
On the other hand, for n > 1 (critically damped and overdamped circuit) there
is no oscillatory behaviour. Figure 4.29 b) shows the voltage across the ca-
pacitor terminals v (t), given by eqn 4.131, normalised to V; versus the time
normalised to w;;1. We observe that for all values of 7 the voltage across the
capacitor terminals tends to Vy; the voltage of the DC source. Very much like
the current, we observe that for values of < 1 the voltage overshoots its final
value exhibiting an oscillatory behaviour. From this figure it is clear that the
amount of overshoot depends on the value of 7; the smaller the value of 7 the
greater the amount of overshoot. The first overshoot is called the peak over-
shoot and can be determined by differentiating eqn 4.131 (n < 1) with respect
to the time and by setting this derivative to zero, that is

sin (\/1_—_n2wn t+ ¢)

dve(t) nw, e tTYn

dt - /1—n2
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Avc(t)/Vs
/7;:0.1
n =03
15 | n =07
10 |
\n—l b =3
05 1 =
twy
0 2 4 6 & 10 12 14
a) b)

Figure 4.29: a) i(t), given by eqn 4.130, normalised to C V w,, versus the time normalised to w,;'. b)

ve(t) given by eqn 4.131, normalised to Vs versus the time normalised to w*.

ve,/ Vs — Viwnpe 1% cos (x/l —n2w, t+ ¢) = 0 (4.133)

The last eqn is zero for (/1 — 72 w, t) =0, =, 27, 37,.. ..
The peak overshoot occurs at

™
to = — (4.134)
. ov wn /—1 — 772
0 02 04 06 08 10 Note that this value applies only for zero initial conditions. Using this value

of t,, ineqn 4.131 (n < 1) we obtain the value of the peak overshoot of

.
] T 4135
+exp ( m)] (4.135)

Figure 4.30 shows the peak overshoot normalised to V; versus the damping
factor 7.

The settling time, tg, is defined as the time that a waveform takes to attain
(and to stay within the limits of) a percentage of its final value. This percentage
is usually taken as 2% or 5%. It is interesting to note that for values of n < 1
the rise time of the waveform is relatively fast but the settling time can be quite
large. Figure 4.31 shows the settling time of vc(t) (normalised to w;; 1) versus
1 with the percentage of the final value being +2% and £5%. From this figure
it can be seen that for £2% the value of # which minimises tg is n = 0.78.
For this situation the minimum settling time is tg = 3.6/w,,. If the percentage
which defines tg is £5%, the value of 1 which minimises tg is n = 0.69 and
Figure 4.31: Sentling time,  the minimum settling time is tg = 2.9/wy,.
normalised to w,; 1, versus - The rise, fall and settling time values and the overshoot characteristics are

used to describe the transient behaviour of different passive and active circuits

Figure 4.30: Peak overshoot

normalised to Vs versus 1.
ve,, = Vs
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[Is(s)
I L/s

AAAA"

o~

Figure 4.32: RLC circuit
driven by a step current
source.

ir{t)/1

HOL
15 n=204

n=07
1.0
N\
twn
0 4 8 12

Figure 4.33: i (t) given by
eqn 4.140, normalised to I,
versus the time normalised
10 W,

4. Natural and forced responses circuit analysis

and are of great importance, for example, in filter design.

Example 4.5.6 Consider the RLC circuit of figure 4.32. Determine the current
in L. Assume that all initial conditions are zero and that R > /L/(4C).

Solution: Since all the initial conditions of the circuit are zero we can determine
the voltage V' (s) across the circuit elements as follows:

Is(s) Zeq(s)

where Z4(s) is the equivalent impedance corresponding to the parallel com-
bination of R with s L and with (s C) 1, that is

V(s) = (4.136)

sLR
Z, = 4.1
a(s) s?RLC+sL+R @137
Now eqn 4.136 can be written as
I 1
V(s) = (4.138)

C 2+ 2nwps+w?

with 77 and w,, given by eqns 4.110 and 4.109, respectively. Since R is greater
than 4/L/(4C) we have ny < 1. Using eqn 4.72 we can write

_Is 1
Cwn \/1_772

The current in the inductor i, (t) can be obtained from eqn 1.27, that is
e——t I Wn

= sin (\/1 T Pwn t + ¢) ] wt)  (4.140)
—n

with ¢ given by eqn 4.132. Figure 4.33 shows the current given by eqn 4.140,
normalised to I, versus the time normalised to w, 1 with n = 0.1, 0.4, 0.7
and 0.9. For large values of t the current source behaves as a DC source.
Since the inductor behaves as a short-circuit for DC sources then, for large ¢,
the voltage across the resistor and across the capacitor tends to zero and the
inductor conducts 1.

v(t) sin (wn 1- 12 t) et y(t)  (4.139)

i) = 1, [1 -

Example 4.5.7 Consider the RLC circuit of figure 4.34. Determine the voltage
across C for all time ¢. Take Vg, =3 Vand Vg, =7 V.

Solution: Figure 4.35 a) shows the equivalent circuit for ¢ < 0. Note that for
t < 0 the inductor behaves as a short-circuit while the capacitor behaves as an
open-circuit. The voltage across the terminals of the capacitor is the voltage
across R; which can be calculated as

V;O - VR1
R,
Ve,
2RI+ Ry

= =35V
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o
+ J» B, i —
Vo T Vs,
< R, -
_ T ]
e .
_ Vr,(s) +
T YVVY Pt
Vi(s) ‘ Iu(s) T Vels)
0777——};)

Figure 4.35: Equivalent cir-
cuit for; a) t < 0;
b)0 <t <0.25ms.

10 ©2

t=0.25 ms

Figure 4.34: RLC circuit.

The current flowing through the inductor also flows through R1 and R3. This
current can be expressed as

Ilo
= —035 A

At t = 0 the switch S3 is open and 51 remains open. Figure 4.35 b) shows the
equivalent circuit for 0 < ¢ < 0.25 ms. For this circuit we can write:

Ve(s) = Vir,(s)+Vi(s)
that is:
I Veo
—§—<Cs1)+T = RllL(S)+SLIL(S)—LIlo

where V., and I, are the initial conditions (at ¢t = 0) associated with the
capacitor and inductor, respectively. Solving this last eqn in order to obtain
I (s) we get:

2

s2+2nw, s+ w2
s

2+ 2nwn s+ w?

[79)

IL(S) = CVg,

+ Ilo

with
1

vLC
= 32 krad/s

1 C
2V T

L
= 0.22

Wy -

Taking the inverse Laplace transform (1 < 1) we obtain the current flowing
through the inductor, i1, (t) for the time interval 0 < ¢t < 0.25 ms, that is,

Wn
Vo

Contribution from V,

iL(t) = sin (wn 1-n? t) e tnwn
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1
+ Iloﬁ COs (wn \/1—772t+¢) e—t"w"
-7

Contribution from I;,

o~

with

- n
(b = tan ! <\/‘—T:—F> (4.141)

The voltage across the capacitor, for 0 < ¢ < 0.25 ms, is given by:

Ir(s Ve
2
wn
= Voo 3 2
s(82+ 20w, s+ w?)
Lo 1 Ver
C 24+2nwps+w2 s

taking the inverse Laplace transform we obtain

V.
ve(t) = 41_0_0 = cos (wn 1—n%t— ¢> e tnwn
Contribution from V,
I, 1

- ——————sin(wn 1—n2t) e"tnwn

C wp+/1-n2

Contribution from I;,

Figure 4.36 a) shows the voltage across the capacitor while figure 4.36 b) shows
the current through the inductor. From these figures we observe that at ¢ = 0.25
ms the voltage across the capacitor is 1.17 V while the current through the
inductor is —17.8 mA. These values are the initial conditions associated with
the capacitor and inductor when the switch S is closed at ¢ = 0.25 ms, that is,
Veor = 1.17V and I}y = —17.8 mA.

Figure 4.37 shows the equivalent circuit for £ > 0.25 ms. Note that when
the switch S is closed at ¢ = 0.25 ms Vg is applied to the circuit as a step-
forcing voltage, that is, vg, () = 3u(t—t,) V with ¢, = 0.25 ms. Using nodal
analysis we can write the following eqns:

Ig,(s) = IL(s) + Ir,(s)

4.142)
IR, (s) = Ic(s)
that is:
V(o) =Vale) _ Vale) T omote | Vill) - Vels)
(4.143)

Vi(s) = Vo(s)

- =5CVo(s) = C Ve st
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p ve(t) (V) $ic(t) (A)

0.11
2- /\ t(s)

. 0 T T T e B
0 I/ I\\ T tiS) O.l/ 1 \2/ 3 4 5 %10

T
1\ 2 3 74 5 x107*
—0.2
__2_
—0.3
— —

Figure 4.36: a) Voltage across the capacitor. b) Current through the inductor.

T VR L

Figure 4.37: Equivalent circuit for t > 0.25 ms.

with

Vs _s
Vs, (s) = <€ to

Vs = 3 V. Solving eqn 4.143 to obtain V(s) we get:

sLw?
Ve(s) = Vi n
a(s) 5.(5) Ro(s?2+2n wl s+ w?)
_ s+ R Cuw?
—+ cho’e sty n
2420 Wi s+ w!?
L 12
- Ilo'e_Sto 2 /w/n 2
54+ 27wy, s+ Wi
with
, R, 1
W, = _—
R+ Ry, LC
= 22.6 krad/s
1 R C
" = ZR 2
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taking the inverse Laplace transform (n < 1) we obtain the voltage across the
capacitor for £ > 0.25 ms, that is,

Ve(t) = Ks._L_w—; sin (w' /1— n2 (t — to)) e—(t—to)n’ Wl
J V1-n7? "

Contribution from vg, (t)

!
+ Vo Ry C——l% sin (w; V1-n2(t- to)) e (t—to}n' wy,
-1

Se— -

Contribution from V.,

Vo, (4 r o
+ —C—Ecos(w;\/l—n’2(t—to)+¢’) e~ (t—to)n'w

1-7

Contribution from V-

!
—13)—"—15 sin (w; V1—-n2(t- to)) e (tto) ' wny
vi="

Contribution from I},

Ilo’ L

with ¢’ given by

7
¢ = tan™? (—ln /2>
vi—n
Figure 4.38 shows the voltage across the capacitor for 0 < ¢t < 1 ms.

"Uct V

6<

4 4

JiwavA

0 YA NN

\/8 \10 %101
—9 1
-

Figure 4.38: Voltage across the capacitor.
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4.7 Problems 4.1 Consider example 4.2.2. Plot ve(t) when the period T is longer than 7
(for example T = 37). Draw comments in relation to the time taken to reach
steady-state.

4.2 Consider the causal signals of figure 4.39. Determine their Laplace trans-
forms and indicate their ROC.

Figure 4.39: Signals of problem 4.2.

4.3 Using the partial fraction expansion method determine the inverse Laplace
transform of the following s functions:

1
Nl = oot
Ll = Grapere
%0 = o
X6 = wa

4.4 Consider the circuits of figure 4.40. Using first Fourier transforms cal-
culate the voltage across R for all time ¢. Then use Laplace transforms to
determine the same voltage. Draw conclusions.

4.5 Consider the circuits of figure 4.41. Determine the current through the
inductor for all time ¢.
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(t=0) 5000
> AAAA .
R AAA
R
Rl I Rl
+ 1k A 2k
—V, 15V > T Y RS
A 1 kQ<F (t=0) :F
L c 1kQ
1 mH 1 uF
a) b)

Figure 4.40: Circuits of problem 4.4.

1 mH

AAAA—
vyy

I
=]
>

2 mH

b)
Figure 4.41: Circuits of problem 4.5.
4.6 Consider the circuits of figure 4.42. Determine the voltage across the

capacitor C for all time ¢. Take vg(t) = 3u(f) volts. Assume zero initial
conditions.

] | €2
1k [} JPP
AAAA—
~YVYY
Ry < 0.2 uF
02k2 2
uslt MR g
i [
b)

Figure 4.42: Circuits of problem 4.6.

4.7 Consider the circuits of figure 4.43. Determine the current through the in-
ductor for all time ¢. Take vg(t) = 4 u(t) volts. Assume zero initial conditions.
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200 Q

A
BRAAA
o
8
T
A
BRAAA)

Figure 4.43: Circuits of problem 4.7.

4.8 Consider the circuit of figure 4.44. Determine the current through the
resistance, the capacitor and the inductor for all time ¢. Take ig(t) = u(t) mA.
Take R = 20 ). Assume zero initial conditions.

b 8" —¢ R

03mH | g8 uF

Figure 4.44: Circuit of problem 4.8 and problem 4.9.

4.9 Consider the circuit of figure 4.44. Determine the value of the resistance
such that the damping factor is 1.



5.1 Introduction

I I,
+ Two-Port +
\Z
Vi Network ?
Input port Output port
(Port 1) (Port 2)

Figure 5.1: Electrical two-
port network.

5.2 Electrical
representa-
tions

S Electrical two-port network analysis

Two-port circuit techniques are usually employed to analyse and characterise
linear electrical and electronic circuits. As its name suggests, a two-port circuit
or network is a circuit with an input port and an output port, as shown in figure
5.1. Hence, two-port circuit analysis techniques can be used to analyse and
characterise circuits ranging from a simple resistive voltage divider to very
complex electronic amplifiers.

The theory of two-port circuits relates the voltage and the current variables
at the ports. Depending upon which two of these four variables (V1, V3, I1, or
I,) are chosen as the independent variables a different set of parameters can
be defined each of which completely characterises the network. Each set of
parameters is defined here as an electrical representation. In this chapter we
consider the impedance, admittance and chain (or ABCD) representations!.
The electrical representations (or parameters) are obtained in the frequency
domain by means of phasor analysis. In section 5.3 we show how these electri-
cal representations are suited for computer-based electrical analysis by means
of a systematic analysis approach.

As mentioned previously a two-port network can be characterised by a set of
parameters which relates current and voltage values at the ports. Figure 5.1
shows the convention for the voltages across each port as well as the direction
of the current that might be present at each port.

5.2.1 Electrical impedance representation

The electrical impedance representation uses the currents /3 and I5 as the exci-
tation signals and the voltages V; and V; as the responses to these excitations.
Hence, the relevant parameters are impedances, the Z-parameters, and these
satisfy the two following eqns:

Vi = Zuh+2Zi2l G.D
Va ZIanh+ 2yl (5.2)

These eqns can be written in a matrix form:

vl = [2]1] (5.3)

IThere are other types of two-port representation not discussed here. The most important of
these is the S-parameter representation discussed in detail in Chapter 7.
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! Network %
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Figure 5.2:  Set-up for

the measurement of the
Z-parameters. a) Z11 and
Zgl. b) Z12 and Zgg.
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Y =R"!
{2 mS)
-~ — e
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L=90
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+ +
4
Vi Y=R' ¥
L oy

Figure 5.3: a) Shunt admit-
tance. b) Calculation of Z11
and of Zs1.

with _
I
[I]= (5.4)
L I2
-
V] = (5.5)
| V2
Z11 Zi2
(Z] = (5.6)
Zo1 Ly

The matrix [Z] is called here the ‘electrical impedance representation’ of the
two-port network. The evaluation of the coefficients Z;;, which have dimen-
sions of impedance, can be effected by performing measurements at the two-
port circuit terminals as illustrated in figure 5.2. Figure 5.2 a) shows the set-up
for the measurements of Z1; and of Z5;. In this situation the output port is
an open-circuit so that I = 0 and a current source I; drives the input port.
Measuring the voltages V; and V, we can determine Z1; and Z; as follows:

Zu'—'E Y

(5.7
I1 12:0

Zy1 is the input impedance (see also section 1.4.2) while Zy; is called the
forward transimpedance gain. It is clear that Z1; and Z3; can be calculated
from eqns 5.1 and 5.2 by setting I> = 0. Figure 5.2 b) shows the set-up for the
measurements of Z12 and of Zs2. Now the input port is an open-circuit so that
I; = 0 and a current source I excites the circuit in port 2. Measuring again
the voltages V7 and V5 we can determine Z12 and Zo9 as follows:

Vi Va

Zya (5.8)

I =0
Zyo is the output impedance while 7y, is called the reverse transimpedance
gain. Note that Z;5 and Z»; can be calculated from eqns 5.1 and 5.2 by setting
I; =0.

It is important to note that Z5; and Z1» also represent impedance transfer
functions (see section 3.3.7).

Example 5.2.1 Determine the Z-parameters of the shunt admittance of figure
5.3 a).

Solution: Figure 5.3 b) shows the equivalent circuit for the calculation of Z1;
and of Z5;. Since I; flows through Y we have

i

Zyy = —
11 I
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Since Vo = V7 we have

V
Zy = -2
21 Il

= Z 11 = R
From symmetry considerations we have:

Zi2 = Zu=R
Zyp = Zu=R

Example 5.2.2 Determine the Z-parameters of the T-network of figure 5.4 a).

Solution: Figure 5.4 b) shows the equivalent circuit for the calculation of Zy;

I 1, and Zs;. Since I; flows through 7, and Z3 we can write:
@uH) ——  (1uh)
<
| @ . Zi = i+ 273
a) L=0 ) 1
1 4‘-/ L (%) c Ly (Zy) ; = v Ll + ]w C
: T (Z3) _.2 _ 1- w2 Ll C
A ) / u;C’ 15
A I (Z) 8 _ 1-wi6x 1077
vl c v jwd x 1079
T "
o) Z91 is calculated as follows:
Figure 5.4: a) T-network. b) Zyr = 3
Calculation of Z11 and of _ 1
Za1. ¢) Calculation of Z2 T jwC
and Of Z22. 1
- jw3x10-°

Figure 5.4 c) shows the equivalent circuit for the calculation of Zs2 and of Z;5.
Since I, flows through Z5 and Z3 we can write:

Zyp = Zo+Z3

1—&)2LQC
jwC

1-w?3x 10715

= 270
jw3x10-9

Z12 is calculated as follows:

Zia = Zj

jwd x 109
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I Iy
¥ +
Vi 27+ 12" Ve

b)

Figure 5.5: a) Series con-
nection of two-port net-
works. b) Equivalent two-
port network.

Series connection

Let us consider the interconnection of a two-port network, characterised by an
impedance representation [Z’], with another two-port network, characterised
by an impedance representation [Z"’], as illustrated in figure 5.5 a). Such an
interconnection is called a series connection as the two networks share the same
input current and the same output current?.

The equivalent two-port network resulting from this interconnection can be
characterised by an equivalent impedance representation, [Z4], which can be
determined according to eqns 5.7 and 5.8, that is;

Z _n

eq1y I—l

(5.9

12 =0

Since port 2 is an open-circuitthen Iy = I = I =0and Iy = I{ = I]/. In
addition, V1 = V{ + V. Therefore, we can write the last eqn as follows:

Vi

1

Ze no o + -
/ I I4=0 Iy I/=0

= Zn+2Z (5.10)

Similarly, it can be shown (see problem 5.2) that:
Zeq,, = Zio + 21 5.1
ZeQzl = Zél -+ Zéll (512)
Zeqyy, = Zhe + Z3y (5.13)

that is

(Zeg) = (2" + (2] (5.14)

5.2.2 Electrical admittance representation

The electrical admittance representation considers the voltages (V5 and 13) to
be the excitation signals and the currents (I; and I5) as the responses to these
excitations. Hence, the Y -parameters satisfy the two following equations:

I, = Ynvi+Yel, (5.15)
ILL, = YaVi+YeW, (5.16)

Equations 5.15 and 5.16 can be written in a matrix form, that is;
I} = [Y][V] (5.17)
where [I] and {V] are defined in eqns 5.4 and 5.5, respectively.

Yii Yo
Y] = (5.18)
Yo Yoo

2The series connection of two-port networks should not be confused with the series connection
of impedances which are one-port-terminal networks.
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Calculation of Y11 and Yay.
¢) Calculation of Yis and
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5. Electrical two-port network analysis

The matrix [Y] is the electrical admittance representation (or the admittance
parameters) of the two-port network.

We can interpret the coefficients Y;;, all of which have dimensions of ad-
mittance, in terms of measurements effected at the two-port circuit terminals
as illustrated in figure 5.6. Figure 5.6 a) shows the set-up for the measurements
of Y7; and of Y5;. In this situation the output port is short-circuited so that
Va2 = 0 and a voltage source V; drives the input port. Measuring the currents
I; and I» gives Y1; and Y5, as follows:

I I,
Yii= — Yo, = = 1
1=y Vet n=y o (5.19)

Y7, is the input admittance while Y5, is the forward transconductance gain.
Figure 5.6 b) shows the set-up for the measurements of Y72 and Y2,. Now the
input port is short-circuited so that V; = 0 and a voltage source V; excites the
circuit in port 2. Measuring again the currents I; and I, we can determine Y7o
and Yy, as:

(5.20)

Y55 is the output admittance while Y74 is the reverse transconductance gain.
Again, we note that Y3; and Y7, also represent admittance transfer func-
tions (see section 3.3.7).

Example 5.2.3 Determine the admittance representation of the II-network of
figure 5.7 a).

Solution: Figure 5.7 b) shows the circuit for the calculation of Y7 and Y5;.
The admittances associated with C7, Cy and L can be written as:

i = juCh

Y = jwCs
1

Y; = ——

3 jwkl

Since Y5 is short-circuited we observe that Y7 is in parallel with Y3. Since V3
is applied to the admittance resulting from the parallel connection of Y7 with

Y3, we can write:
I = Vi1 +Ys)

that is

jwlkL
1-w?3x 10715
jwl0—6




5. Electrical two-port network analysis 155

Vi %* <§Vi |
V 1
i 19"
R; R, o
- | .
‘Il=0 - gm‘/; ‘/2
Vi
R; R,

Figure 5.8: a) Two-port cir-
cuit. b) Calculation of Y11
and of Y21. c¢) Calculation
0fY12 and Of}/Q2.

I is the current that flows through Y3. Since Vj is directly applied to this
admittance we can write:

L=-Y3V;

that is

- s
jwlo—8

Figure 5.7 shows the equivalent circuit for the calculation of Y75 and Y. V5

is applied to the admittance resulting from the parallel connection of Y, with
Y3. We can write:

I, = Va(Ya+7Y3)

that is

Yo =
= Y4+Y3
1—w2L02
jwlkL
B 1—w?10718 S
jwl0~8

I; is the current that flows through Y3. Since V5 is directly applied to this
admittance we can write:
Yio = -V
= Ya

Example 5.2.4 The circuit in figure 5.8 a) describes a basic representation of
an electronic amplifier. This amplifier has an input resistance R; = 2.5 k{2 and
an output resistance R, = 5 k(2. The gain of the amplifier is modelled by the
transconductance g, = 50 mS. Determine its Y -parameters.

Solution: Figure 5.8 b) shows the circuit for the calculation of Y7 and Y3;.
Since V; is the voltage across R; we can write:

I

Vi, = -
11 V1
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I
+ (A "
Vi Y1+[y"] Ve

b)

Figure 59: a) Parallel
connection of two-port net-
works. b) Equivalent two-
port network.
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Also, we have that Iy = g,, V; and that V; = V. Hence,
I
Vi
gm Vi
Vi
= gm
50 mS

Yor =

Figure 5.8 c) shows the circuit for the calculation of Y75 and Y3,. Since V7 =
Vi = 0 the voltage controlled current source presents an infinite impedance.
Hence we have:

[e=]

Yo =

1
Yoo = &

R
0

)

mS

Parallel connection of two-port networks

Let us consider the connection of a two-port network, characterised by an ad-
mittance representation [Y’], with another two-port network, characterised by
an admittance representation [Y /], as illustrated in figure 5.9 a). Such a con-
nection is the parallel combination of the two networks as they have the same
input and output voltages®.

The equivalent two-port network resulting from this connection can be
characterised by an equivalent admittance representation, [Ye4], which can be
determined according to eqns 5.19-5.20, that is;

I

Y;Qu 71

(5.21)

Vz=0
Since port 2 is short-circuited Vo = Vj = V§’ = 0. In addition we have

Vi = V] = V/ and I} = I + I{. Therefore, we can rewrite the last eqn as
follows:

I Iy
Yeaw = Vi =0 i V' vz

= Y +Y] (5.22)

Similarly, it can be shown (see problem 5.4) that:
Yeq,, = Yio+Y)5 (5.23)
Yeq,, = Yy +Y5 (524
Yeq,, = Yo+ Yoy (5.25)

that is

[Yeq] = [Y']+ [Y"] (5.26)

30nce again, the parallel connection of two-port networks should not be confused with the
parallel connection of admittances or impedances which are one-port-terminal networks.
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Figure 5.10: Set-up for the
chain parameters measure-
ment. a) A b) A12. c)

5.2.3 Electrical chain representation

The electrical chain (or cascade) representation (some times referred to as
ABCD parameters) is a very attractive one when analysis is required for cas-
caded circuits, that is when the output port of one circuit is connected to the
input port of another. In this representation the input current I1 and the input
voltage V; are the excitation signals and the output current I» and the output
voltage V; are the responses to these excitations. The chain parameters satisfy
the two following equations:

i = AnVa—-Anh (5.27)
I = AnVo—Axl (5.28)

These egns can be written in a matrix form as follows:

Vi A A Va
— (5.29)
5L Ay A —I
A A
Al = (5.30)
An A

where the matrix [A] is called here the chain electrical representation of the
two-port network. As with the two previous representations the coefficients
A;;, can be interpreted in terms of measurements effected at the two-port cir-
cuit terminals as illustrated in figure 5.10. Figure 5.10 a) shows the set-up for
the measurement of A;; where the output port is an open-circuit. Ay repre-
sents the inverse of the forward voltage gain and can be determined as follows:

An = (5.31)

Va I;=0
Figure 5.10 b) shows the set-up for the measurement of A;, where the output
port is now short-circuited. A;s represents the inverse of the forward transcon-

ductance gain and can be determined as indicated below:

"

Ay =
12 I

(5.32)

Vo=0
Figure 5.10 c) shows the set-up for the measurement of Ay where the out-

put port is an open-circuit. Ag; represents the inverse of the forward tran-
simpedance gain and can be determined as follows:

I

Ay = A (5.33)

I;=0
Figure 5.10 d) shows the set-up for the measurement of Age where the output

port is now short-circuited. Aso represents the inverse of the current gain and
can be determined according to the following equation:

I

Any =
22 A

(5.34)

Vo=0
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Figure 5.11: Calculation of
the chain parameters of a
two-port network (electronic
amplifier model).
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Note that A;; and Ay, are dimensionless whilst 45 and As; have dimensions
of impedance and admittance, respectively.

Example 5.2.5 Determine the chain-parameters of the two-port network of
figure 5.11 a) which represents a simplified model of an electronic amplifier.
R, =10kQ, R, = 1k and g,,, = 40 mS.

Solution: Figure 5.11 b) shows the equivalent circuit for the calculation of Ay;.
From eqn 5.31 we can write:
Vi
—gm Vi R,
= - (gm R, ) -
—(40)7

All =

Al—l1 is the voltage gain of the amplifier and is equal to —40.
Figure 5.11 c) shows the equivalent circuit for the calculation of A;5. From
eqn 5.32 we can write:

Vi
Ay =
12 —gm Vi
= - (gm ) -
= —(40x107%71q
and the transconductance gain of the amplifier is A7 = —40 mS.

Figure 5.11 d) shows the equivalent circuit for the calculation of A3;. From
eqn 5.33 we can write:
Vi
—9m ‘/z Ro Rz
= —(gm R, Ri)-l
—(400 x 10%)7' S

An =

Hence, the transimpedance gain is Ay = —400 k(.
Figure 5.11 e) shows the equivalent circuit for the calculation of A,,. From
eqn 5.34 we can write:

Vi

—gm Vi R;

_(gm Ri)_l
—(400)~1

Ay =

and the current gain is 45, = —400.

Chain/Cascade connection

Let us consider the connection of a two-port network, characterised by a chain
representation [A’], with another two-port network, characterised by a chain
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[A] x [A"] |V,

b)

Figure 5.12: a) Chain con-
nection of two-port net-
works. b) Equivalent two-
port network.

representation [A”], as illustrated in figure 5.12. Such a connection is called a
chain or cascade connection of two-port networks.

The equivalent two-port network resuiting from this connection can be
characterised by an equivalent chain representation, [A.q], which can be de-
termined according to eqns 5.31-5.34, that is;

Wi
A = —= (5.35)
q11 Vs L0
According to eqn 5.27 we can write:
Vi = ALV -ALD (5.36)

Since Vi = V{, V4 = V", Vo = V)’ and I}, = —I{ we can write eqn 5.35 as
follows:

v Iy
! !
A6<111 = 11 W +A12 W 5.37)
2 11Y=0 2 1IY=0
which, according to eqns 5.31 and 5.33, is:
Acgy = ARAL+ARA (5.38)
Similarly, it can be shown (see problem 5.6):
Acg, = A Al +Ap Ay (5.39)
Acgsy = Ag AL+ Ap Az (5.40)
Acgry, = ApAlp+Apdsy (5.41)

Equations 5.38-5.41 can be recognised as those resulting from the product of
matrix [A’] with matrix [A”'], that is;

[Aeq] = [A] x [A"] (5.42)

5.2.4 Conversion between electrical representations

Most two-port circuits can be described by any of the electrical representations
discussed above. This means that it is possible to convert between the different
electrical representations. The formulae for such conversions can be obtained
using elementary matrix algebra. For example, the transformation between the
impedance representation and the admittance representation can be obtained as
follows:

1] = [Y][V] (5.43)

with [I] and [V'] described as in eqns 5.4 and 5.5, respectively. [Y] is the
electrical admittance representation, as in eqn 5.18. Using elementary matrix
algebra we can solve eqn 5.43 to obtain [V]

V] = [Y]7'[1] (5.44)
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Comparing this with eqn 5.3 it is clear that [Z] = [Y'] 72, that is;

Yoo =Y
Y] Y]
2] = (5.45)
—Ya Y
1Yl Y]

where |Y'| is the determinant of the matrix [Y'] defined as:
Y| =YuYs—Y2¥n (5.46)

Similarly, it can be shown (see problem 5.7) that [Y] = [Z] 1.

Example 5.2.6 Determine the electrical chain representation of a two-port net-
work from its electrical impedance representation.

Solution:
Vi = Zuh+2Z12D2 (547)
Voo = Zali+ 22l (5.48)
Solving eqn 5.48 in order to obtain I; we have:

1 Za2
L = —V-=—I 5.49
1 7o 2T 7, 2 (5.49)

Substituting I; in eqn 5.47 we obtain

Z Z11 299 — Z12 2
v, = Ay, fuZm—Zula g (5.50)
Zan Zn

Comparing eqn 5.49 with eqn 5.28 and comparing eqn 5.50 with eqn 5.27 we
can write (see also eqn 5.30)

Z21 Z21

(4] = (5.51)
1 Za2
Z21 Z21

Example 5.2.7 Determine the chain parameters of the shunt admittance of fig-
ure 5.3 a).

Solution: The Z-parameters of the shunt admittance are calculated in example
5.2.1. From eqn 5.51 the chain parameters can be written as follows:

[A] = (5.52)

with Y = 2 mS.

In appendix C we present tables of the conversions between all electrical
representations discussed in this chapter.
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Figure 5.13: a) Parallel
connection of the two-port
network (a) with a series
admittance Y. b) Appli-
cation of Miller’s theorem.
¢) Equivalent circuit for the
parallel connection of a two-
port network with a series
admittance.

5.2.5 Miller’s theorem

Miller’s theorem is used extensively to simplify the analysis of some two-port
network configurations such as that of figure 5.13 a). The theorem states that
if the voltage gain, A,, between port 1 and port 2 is known, then it is possible
to obtain a circuit like that shown in figure 5.13 b) which is equivalent to the
former circuit in terms of input impedance and forward voltage gain. The extra
admittances Y; and Y5, indicated in figure 5.13 b), are given by:

i = Yy(l-A4,) (5.53)
A, -1
Y, = Y5 i (5.54)
with the voltage gain, A, defined as
A, = Ve (5.55)
‘/1 12=O

In order to prove this theorem we consider that the two-port circuit ¢ can
be characterised by an admittance representation such that*:

(5.56)
Y,

azi

Y,

az2

Since Y,,, = 0 the circuit is called unilateral, in the sense that the output
voltage and current are influenced by but do not influence the input voltage
and current. The series admittance Y of figure 5.13 a) can be considered
as the single element two-port network of figure 5.13 c) with the admittance
representation given below (see problem 5.8):

Yy Y
Y] = (5.57)

=Yy Yy

Since these two-port networks are in parallel then, from eqn 5.26, the circuit
of figure 5.13 ¢) can be characterised by an impedance representation [Yays ]
given by:

Ya]1 + Yf —Yf
Yar] = (558)
Yazl - Yf Ya22 + Yf

The forward voltage gain, A,, the input impedance, Z,,, and the output imped-
ance, Z,,;, can be determined from eqn 5.58 as follows (see also eqns 5.15 and
5.16):

Va

4, = 2
Vi Io=0

4For clarity of derivation we take Yg,, to be zero. In other words, the reverse transconductance
gain is determined by Y alone.
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Ya21 - Yf
= Yo 1Y, (5.59)
W

I

I;=0

—1
= P (25|
= [Ya, +Y;(1- A, (5.60)
V2
I ;=0

Ya21 - Yf -
|:Ya22 +Ys (1 + —Yau ¥ Yf>:| (5.61)

Zout =

On the other hand it is possible to show (see problem 5.9) that the circuit
of figure 5.13 b) can be characterised by an admittance representation [YI(/I ]
given by:

Ya,, +Y;(1— A) 0
[Ya ] = (5.62)

Y,
Yoy, Yoo, + Yf - 7{5

with A, given by eqn 5.59. The forward voltage gain, A,, the input impedance,
Zin, and the output impedance, Z,,;, can be determined from eqn 5.62 as
follows:

Va
Vil1,0
Y., - Y;
= oy (5.63)
1
I |},
= (Yo, +Yr(1-A4,)" (5.64)
Vo

I ;=0

1 -1
[ym LY, (1 _ 74_)]

e +FYF\]
Ye,, +Y (1 — 22—)] (5.65)
|: * d Yfl21 - Yf

A, =

Z out —

I

Comparing eqn 5.59 with eqn 5.63, and eqn 5.60 with eqn 5.64 we recognise
that the admittance representation resulting from Miller’s theorem provides the
same forward voltage gain and the same input impedance as those obtained
from applying the standard circuit theory. However, comparing eqn 5.61 with
eqn 5.65 we observe that the output impedance provided by Miller’s theorem
is not the same as that provided by the circuit theory analysis. Hence, this
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Circuit @

method is not applicable to the determination of the output impedance of a
circuit topology like that depicted in figure 5.13 a).

In many practical situations where, for example, voltage amplification is
required we have |Y,,,| >> [Y}| and |Y,,, | >> |Y}|. Under these two condi-
tions we can approximate the voltage gain given by eqn 5.59 by the following
eqn:

Y,

A, =~ v (5.66)

az2

The voltage gain given by the last equation is the voltage gain of the two-port
network a (without the series admittance Y). This approximation turns out to
be one of the most attractive advantages of the use of Miller’s theorem (see [2]
for a more detailed discussion). Miller’s theorem is a very important analysis
tool which is used in Chapter 6 to analyse and to discuss the high-frequency
response of electronic amplifiers.

a)
+ T
Y, 9m Vi
RSV R Y,
Zin _ i
b)

Figure 5.14: Application of
Miller’s theorem: example.

5.3 Computer-
aided

electrical
analysis

Example 5.2.8 Apply Miller’s theorem to the circuit shown in figure 5.14 a)
in order to obtain the input impedance, Z;,. gm = 50 mA/V, Ry = 20 kf2,
R, =25k, and Ry = 5 k€.

Solution: The Y -parameters of circuit a are calculated in example 5.2.4. Yy =
1/Rp = 50 uS. Since |Y,,,| >> |Y| and |Y,,, | >> |Y}| we can write:
Y,

a1
Y1122

—gm RL
= =250

Ay

1

The input impedance Z;,, is given by the parallel connection of R; with Yfl =
[Yf (1 — A,)]"" (see also fig. 5.14 b). That is, the input impedance can be
calculated as follows:

Zin = Ri|llY(1-A)7

_ Ry
= Bl 251
= 7750Q

Note that Miller’s theorem indicates that R is reflected to the input of the cir-
cuit reduced by a factor which is (approximately) the voltage gain. This, in
turn, significantly reduces the input impedance.

In this section we describe a matrix-based method for the computation of the
electrical response of linear electronic circuits. This method is based on the
representation of any complex two-port circuit as an interconnection of ele-
mentary two-port circuits such as admittances, impedances and voltage- and
current-controlled sources. The electrical response of such elementary sub-
circuits can be characterised by one of the electrical representations discussed
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previously. Starting from these basic two-port circuits the electrical analysis
is performed by interconnecting these elementary circuits in order to obtain
the electrical characterisation of the whole circuit. As discussed in the previ-
ous section the types of connection are series, parallel and chain (or cascade).
Depending on the type of connection appropriate electrical representations are
adopted for the two-port sub-circuits in question.
The matrix-based analysis method can be stated as follows:
1. Decompose the circuit to be analysed into its elementary two-port
sub-circuits such as series impedances, shunt admittances, voltage
and current controlled sources, etc.

2. Identify the type of connections between the various elementary two-
port networks mentioned above (parallel, series, chain).

3. Characterise the electrical response of each of the elementary two-
port sub-circuits according to the relevant two-port electrical rep-
resentation (admittance, impedance or chain). Whenever possible
use an electrical representation for the elementary two-port network
taking into account the type of connection with the other elementary
two-port networks:

(a) If the two-port elementary circuits are interconnected in paral-
lel use admittance representations for both elementary circuits;

(b) If the two-port elementary circuits are interconnected in series
use impedance representations for both elementary circuits;

(c) If the two-port elementary circuits are interconnected in chain
use chain representations for both elementary circuits.

4. According to the connections between the various elementary two-
port circuits, reconstruct the overall two-port circuit. Whenever ap-
propriate use the electrical transformation matrices shown in tables
C.1 and C.2 (see appendix C) to obtain the appropriate electrical
representations.

The next example illustrates the application of these steps.

Example 5.3.1 Consider the circuit of figure 5.15 a) which is the equivalent
circuit of an electronic amplifier. Determine the transimpedance, the voltage
and the current gains of this circuit.

Solution: Figure 5.15 b) shows that the amplifier can be decomposed into a
connection of elementary two-port sub-circuits. The two-port circuit composed
by the voltage-controlled current source and E; is in parallel with the series
impedance R;. The two-port circuit resulting from this connection is in series
with the shunt admittance Ry. Finally, the two-port circuit resulting from this
connection is in chain with the shunt admittance represented by R3.

We start by characterising the two-port circuit constituted by the voltage-
controlled current source and R; in its admittance representation. From exam-
ple 5.2.4 we know that the admittance representation for this sub-circuit can be
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VCCS + R,

gm = 50 mA/V

Figure 5.15: Electronic amplifier. a) Equivalent model. b) Decomposition in terms of elementary two-port
circuits.

written as follows:

R7Y 0
[Yvees] = (5.67)
gm 0
According to eqn 5.57 we can write the admittance representation for R as
follows:
R;'  -R{!
[Yr,| = (5.68)
_ Rl—l Rl_l

The two-port network resulting from the parallel connection of [Yy ccog] with
[YR,] can be written, according to eqn 5.26, as follows:

R7'+R{' —Ry!
Yvces+r,) = X ) (5.69)
gm —Ry™ Ry

Since [Yvocs+r, ] is in series with the shunt admittance, R, it is appro-
priate to characterise these two sub-circuits according to impedance represen-
tations. From the example 5.2.1 we can write:

Ry Ry

(ZR,] = (5.70)
Ry, R,
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From eqn 5.45 we can write the impedance representation for VCCS + R,
as follows:

R; R;
1+gm R; 14+gm R;
[Zvees+r,] = (5.71)
Ri(l1—gm Ri1) R;+R;
1+gm Rz‘ 1+gm R,‘

Using eqn 5.14, the impedance representation for the two-port sub-circuit re-
sulting from the series connection of VCCS 4+ R; with Ra can be expressed
as follows:

. — + Ry —‘—-1+;i; o + Ry

1'1'97;'1 Ri

[Zvees+Rri+R:) = Re(lean R (5.72)
i{l—gm R;+R
em s TR ok tRe

Since VCCS + R; + R is in chain with the shunt impedance Rg it is
appropriate to express these two sub-circuits in terms of chain representations.
From eqn 5.51 we have:

[Avces+Rri+Ra] =
Ri+(1+gm Ri) Rz Ri [Ri+(14gm Ri) R2]
R; (1—gm R1)+R2 (1+gm Ri)  Ri(1—gm R1)+R2 (1+gm R:)
= (5.73)
14+gm Ri R;+R1+(14+gm R:) Rz
R; (1—gm R1)+R2 (1+gm Ri) Ri(l—gm R1)+R2 (14gm Ri)
From eqn 5.52, we can write:
1 0
[AR,] = (5.74)
Ry 1

According to eqn 5.42 the overall circuit can be characterised by an equivalent
chain representation [Aeq] given by:

[Aeq] = [Avces+Ri+R.] X [ARs] (5.75)

It is left to the reader to show that the transimpedance gain, R,,, the voltage
gain, A,, and the current gain, A4;, are

R = (Aeg,)” (5.76)
= —17.8kQ

A, = (Aog,)” (5.77)
= —122

4 = (Aeg,)” (5.78)

—40.8




5. Electrical two-port network analysis 167

54 Bibliography 1. W.H. Hayt, J.E. Kemmerly, Engineering Circuit Analysis, 2001 (McGraw-
Hill) 6th edition.

2. L. Moura, Error Analysis in Miller’s Theorems, IEEE Trans. on Circuits
and Systems-I: Fundamental Theory and Applications, Vol. 48, No. 2,
Feb. 2001, pp. 241-249.

5.5 Problems 5.1 Forthe two-port networks of figure 5.16 determine the Z-parameters.

VA
Z2 Zl
a) b)
/
. I . \ ‘ .
Ap =01 A =100
d) e)

Figure 5.16: Two-port networks.

5.2 Show that the series electrical representation of a two-port network which

results from the series connection of two two-port networks characterised by
impedance representations [Z'] and [Z”] can be expressed as the sum of [Z’]
with [Z"] (refer to fig. 5.5).

5.3 For the two-port networks of figure 5.16 determine the Y -parameters.

5.4 Show that the admittance electrical representation of a two-port network
resulting from the paralle] connection of two two-port networks characterised
by admittance representations [Y'] and [Y"] can be expressed as the sum of
[Y'] with [Y"] (refer to fig. 5.9).

5.5 For the two-port networks of figure 5.16 determine the chain parameters.

5.6 Show that the chain electrical representation of a two-port network which

results from the chain connection of two two-port networks characterised by
chain representations [A’] and [A”] can be expressed as the product of [A’]
with [A"] (refer to fig. 5.12).
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5.7 Show that the admittance representation, [Y], can be obtained from the
impedance representation, [Z], according to the following expression: [Y] =
[Z]~1. Y] and [Z] are given by eqns 5.18 and 5.6, respectively.

5.8 Show that the series admittance Yy of figure 5.13 a) can be characterised
by an admittance representation expressed by eqn 5.57.

5.9 Show that the two-port network of figure 5.13 b) can be characterised by
an admittance representation expressed by eqn 5.62.

5.10 Derive expressions which allow for the conversion of chain to admittance
parameters.

5.11 Consider the two-port networks of figure 5.17 with R; = 2.5k}, R, =
10 k2 and g,,, = 40 mS. For each circuit determine

—

. the input impedance (I, = 0)
the output impedance (Vs = 0)
the voltage gain V,,/V; (I, = 0)
the current gain I,/ I (V, = 0)

the transimpedance gain V,, /I (I, = 0)

AR

the transconductance gain I,,/V; (V, = 0)

-

+ o

I

=

Figure 5.18: Two-port net-
work.

I
R
m Vi
R, g R
Vo Vinm V;
- - +
b)

Figure 5.17: Two-port networks.

5.12 Consider the two-port network of figure 5.18. Apply Miller’s theorem to

the resistance R and then obtain an estimate for the circuit input impedance
and voltage gain V,/V;. Assume R; = 2kQ, R, = 5k and g,, = 40 mS,
R, =100 Q and Ry = 47 k2.

5.13 Consider again the two-port network of figure 5.18 (see also problem
5.12). Apply the computer-aided electrical analysis method described in sec-
tion 5.3 to solve this circuit. Then determine the input impedance and voltage
gain V,/V; and compare these values with those obtained applying Miller’s
theorem. Draw conclusions.



6.1 Introduction

6.2 Modelling
the
amplification
process

6 Basic electronic amplifier building
blocks

Linear electronic amplification is one of the most important and fundamental
operations applied to electrical signals. By electrical signals we mean time
varying voltage, current or power signals which represent some information
such as an audio signal. In this chapter we present an introduction to vari-
ous basic electronic amplifier structures. The next section addresses important
amplifier ‘figures of merit’ such as gain, bandwidth and how to model them.
Section 6.3 deals with operational amplifiers, an important integrated-circuit
general purpose amplifier, which can be used for a large variety of applications
ranging from signal (audio and video) amplification to analogue signal pro-
cessing such as filtering. In section 6.4 we present other active devices which
provide amplification. Some amplifier circuit topologies are also analysed in
detail in terms of gain and bandwidth.

The basic role of an electronic amplifier is intuitive: it magnifies the amplitude
of the electrical signals mentioned above. Hence we can identify the three main
types of electronic amplification: voltage amplification, current amplification
and power (voltage and current) amplification. An amplifier is characterised in
terms of figures of merit. Examples of figures of merit are the gain, the band-
width and noise figure. The first two of these are defined below while the noise
figure is discussed in Chapter 8.

Amplifier gain. The gain of an amplifier is the amount of amplification pro-
vided by the amplifier. An amplifier can provide voltage gain, current gain or
both, that is, power gain. If the gain is less than one we refer to it as loss or
attenuation.

Amplifier bandwidth. The bandwidth of an amplifier is the range of fre-
quencies over which the amplifier is operated so as to provide uniform gain.
As discussed in Chapter 3, a signal can be expressed in the frequency domain
by means of a sum of weighted phasors using the Fourier series and transform.
Hence, in order to have distortion-free amplification all the frequency compo-
nents of the signal must be amplified by the same amount. Also, the amplifier
must provide a linear phase shift to all the frequency components of the signal,
as discussed in section 3.3.4.

From the above it is clear that frequency domain tools are well suited to
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Figure 6.1: Notation em-
ployed to describe DC and
AC signals.

——  Ground terminal

a) {(node 0)

Figure 6.2: Representation
of voltages referenced to
ground.
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deal with the analysis of amplifiers. Therefore, and unless stated otherwise,
the analysis of amplifiers presented here is carried out using phasor analysis.

Signal notation

The notation used here is as shown in figure 6.1. The time varying component,
that is, the phasor component, is expressed by a lower case with a lower case
subscript, e.g. 2,, vp. The DC component is expressed by an uppercase symbol
with uppercase subscript, e.g 14, Vp. The total instantaneous quantity, that
is, the signal plus DC component, is expressed by an uppercase letter with a
lowercase subscript, e.g. I, V3.

When a voltage is indicated at a given node, as illustrated in figure 6.2 a),
this means that the voltage is referenced to the ground terminal (or node 0) as
indicated in figure 6.2 b) (see also section 1.4.3). The symbol which represents
the ground terminal is shown in figure 6.2 a).

Typical amplifier transfer functions

Usually, the transfer function of an amplifier, that is the gain of an amplifier
versus frequency, can be characterised as in figure 6.3 a) or figure 6.3 b). The
transfer function depicted in figure 6.3 a) can be decomposed into three main
frequency ranges of operation; the low-frequency, the mid-frequency (also
known as mid-band) and the high-frequency ranges of operation. In many
practical amplifiers, where the low-frequency range and the high frequency
range are sufficiently separated, such a transfer function can be approximated
by the following expression:

Jjw/wr 1
A = ———xA _— 6.1
© T T MM TG ©b

with wy, = 27 fr and wy = 27 fy where fy and fr are the 3 dB high cut-off
and low cut-off frequencies, respectively. A s is the mid-frequency range gain.
This equation can be rewritten as follows:

Apm 11;’5,7; w<wg (low-frequency range)
A=< Ay wy, <w < wpg (mid-frequency range) (6.2)
Am m w > wh (high-frequency range)

where we have dropped the explicit dependency of A with w for the sake of
simpler representation.

Low-frequency response. The fall-off of gain at low frequencies is caused
by two categories of coupling capacitors. The first category, known as AC-
coupling or DC-blocking capacitors, occurs at the input and output of the am-
plifier. The purpose of these capacitors is to block the DC level and to en-
able the connection of different amplifier stages with different DC bias levels.
The second category, known as by-pass capacitors, is used in specific amplifier
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a)

b)

Figure 6.3: Typical transfer functions of electronic amplifiers. a) With AC coupling capacitors. b) Without

AC coupling capacitors.

topologies where gain needs to be stabilised. Both categories of coupling ca-
pacitors normally have large values, typically tens or hundreds of micro-farads.
When an amplifier does not have such coupling capacitors (as in integrated cir-
cuits) then its gain response is typically like that presented in figure 6.3 b).

High-frequency response. The gain fall-off at high frequencies is caused
by internal capacitances which are an intrinsic feature of active devices (the
transistors) which implement the amplifier. Basically, these capacitances result
in effective short-circuiting of voltage signals to ground at high-frequencies.
The values for these capacitances range, typically, from fractions of a pico-
farad to a few tens of pico-farads.

Mid-frequency response. The useful range of operation of an amplifier is
the mid-frequency range which defines the bandwidth of the amplifier. Over
this range the effect of the coupling capacitors and the effect of the parasitic
capacitances can be neglected. This means that the blocking and by-pass ca-
pacitors can be considered as short-circuits whilst the parasitic capacitances
are open-circuits (see also example 6.2.1). It can be observed, from figure 6.3,
that over this frequency range all frequency components are amplified by the
same amount, Ajs, with the exceptions of those frequencies near fr and fg.
From the above it is clear that a given signal which is to be amplified must
have a bandwidth less than or equal to the amplifier bandwidth so that all sig-
nal frequency components are equally amplified. If the bandwidth of the signal
is larger than the bandwidth of the amplifier then linear distortion will occur
(see section 3.3.4).
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3002 v R, 1000

\ i ; TN AL By
20/pE] (A, = 200) 2kS2
1k

- .
Voltage Amplifier

Figure 6.4; Voltage amplifier modelled by a voltage-controlled voltage source,
an input resistance R;, a parasitic capacitance C; and an output resistance
R,.

Example 6.2.1 Consider a voltage amplifier modelled by a voltage-controlled
voltage source, an input resistance R;, a parasitic capacitance C; and an output
resistance R,, as shown in figure 6.4. This amplifier is driven by a voltage
signal source v, with an output resistance R,. C is a DC blocking capacitor.
The amplifier drives a load Rj.

1. Determine the transfer function of the circuit, 4,5 = v, /vs.

2. Show that for the frequency range 10 fr, < f < fg/10 (that is, the cen-
tre of the mid-band) the voltage gain A,,, can be determined assuming
that the blocking capacitor Cp is a short-circuit and that the capacitor C;
is an open-circuit.

Solution:

1. The transfer function for the amplifier A, = v,/v, can be written in
terms of the product of partial voltage gains as follows:

7

Vo U v;

Avys = — X =2 X —
UO

(6.3)

Ui Vs

From figure 6.4 it can be seen that v, is related to v/, by a resistive voltage
divider expression, such that;

Ry

= —21 6.4
v R, + Ry Yo 64
v; 18, in turn, related to v, according to the following equation:
v = T
v R; + R,
jw CB(Rz -+ Rs) v
1 +ijB(Ri + Rs) + jwC; R; — w?2C;Cg R; R, 8
(6.5)

In practical circuits where C is orders of magnitude larger than C; (as
in this example) v; can be expressed by the eqn below:
R jwOs(Ri+Ry)

T Ri+R, " 1+jwCp(Ri+R,) 1+ juwC; Bl

Vi

vs (6.6)
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This equation shows a wide separation between the low and the high
frequency poles.

1
High-frequency pole: N R B
Ci R;+R;
1
Low-frequency pole: N h L
quency p Ca(R:i + Rs)

From the above, the voltage transfer function 4,5 can be expressed in
the format of eqn 6.1, that is,

jWCB(Ri +R5) y R; A Ry
1+ jwCB(R; + R;) R,+R,"°"RL+R,

Low-frequency response ~ Mid-frequency range gain
1

1+ jwC; ks

N e’

Ays

6.7)
R;+R,

High-frequency response

From this eqn we can identify fr, and fy as:

1

= - - @@ 6.8

1 27 Cp(R; + Ry) 6.8)
= 1224Hz

1
I = G RIRY 6.9)

= 34.5MHz
and the mid-frequency range voltage gain is given by:

R; Ry
Ay = A, 6.10
M R;+R,”"R.+R, (6.10)

= 146.5

Figure 6.5 a) shows the three constituent parts of the voltage transfer
function of eqn 6.7 where Low f, Mid f and High f refer to the low-
frequency, mid-frequency and high-frequency constituent parts of the
voltage transfer function, respectively. The product of these three parts
is the overall transfer function as shown in figure 6.5 b).

2. In order to show that in the centre of the mid-band (10 f;, < f < fg/10)
we can consider the blocking capacitor C'g as short-circuit and the ca-
pacitor C; as an open-circuit we consider the impedance voltage dividers
shown in figure 6.6. For the impedance voltage divider of figure 6.6 a)

we can write:
(N RZ ZC.
— = : 6.11
Vs Rz ZCi + Rs ZCi + Rz Rs ( )
Zo, = 1

i

JwC;
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Figure 6.5: a) The three constituent parts of the voltage transfer function of the amplifier of figure 6.4. b)

Voltage transfer function.

R,
R AAAA— Y
Yy

AAAA_
AAA

R
T

MRAAAJ

Figure 6.6: Impedance volt-
age dividers.

Equation 6.11 can be written as follows:

(& R; 1
w = R 17 B
Resistive loss Additional loss(zc,)
R||R; = R?:R;éi
For the impedance voltage divider of figure 6.6 b) we can write:
vo_ o B
Vs Ri+ R+ Zcy
1
Zes = jwCpg
Equation 6.13 can be written as follows:
Vi _ R 1
Vs R;+ R, 14 %BRT
Resistive loss Additional loss(zc,,)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

The plots of figure 6.7 a) and b) show the additional loss caused by Z¢;,
and by Zc,, respectively, for the two impedance voltage dividers il-
lustrated in figure 6.6. From figure 6.7 a) it is clear that for |Z¢,| >
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10 (R;||Rs) the additional loss caused by the capacitance is very small,
that is, for | Z¢,| > 10 (R;||Rs) the electrical response of the impedance
voltage divider of figure 6.6 a) is approximately the same as that obtained
if the capacitor C; was replaced by an open-circuit. On the other hand,
from figure 6.7 b) it can be observed that for |Z¢,| < 10(R; + Rs)
the electrical response of the impedance voltage divider of figure 6.6 b)
is approximately the same as that obtained if the capacitor Cp was re-
placed by a short-circuit. For the frequency range located between 10 f,

0.9 0.9 1
0.8 7 0.8
RZFR 2
b1 't s +
0.7 T T TTTTT T T + 0.7
100 10t 102 1072

a)
Figure 6.7: a) Additional loss caused by Z¢,. b) Additional loss caused by Zc,,.

and fy /10, that is, between 1.2 kHz and 3.5 MHz we can calculate the

R, A following:
_MN\“' ! ‘ﬁlN\N\_
H%,, A, RiL 2.3kQ < |Z¢,| <65MQ , 1.2kHz < f < 3.5 MHz
| i 46m0 < |Zc, | <130Q |, 1.2KkHz < f < 3.5 MHz

ge Amplificr Since {R;||Rs) = 230 and (R; + Rs) = 13002 then, from the last
two eqns, we conclude that, for this frequency range, we have
Figure 6.8: Equivalent
circuit of the amplifier of |Zc,| 2 10 (Ri]|Rs) and  [|Zcg| <10(Ri+ Rs)  (6.17)
figure 6.4 valid for the mid-

I Therefore, the effects of C; and C'g can be neglected for the calculation
requency range.

of A,,,, that is, we can consider the DC blocking capacitor Cg as a
short-circuit and the capacitor C; as an open-circuit. Figure 6.8 shows
the equivalent circuit of the amplifier in this frequency range.

Small-signal amplifier models for the mid-frequency range

Although electronic amplifiers can be very complex circuits it is possible to
characterise them, in the mid-frequency range, by a gain, a resistive input
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d)

Figure 6.9: Small-signal
models  for the mid-
[frequency range. a) Voltage
amplifier. b) Current am-
plifier. ¢) Transimpedance
amplifier. d) Transconduc-
tance amplifier.

Source

i /T
RiA
b 28k
R;
= SRR
Current Amplifier

Figure 6.10: Equivalent cir-
cuit for a current amplifier.
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impedance and a resistive output impedance. The gain is modelled by a voltage-
or current-controlled current or voltage source depending on the type of ampli-
fier. This results in the four different configurations shown in figure 6.9.

For the voltage amplifier it is desirable for the input impedance, R;, to be as
high as possible while the output impedance, R, should be as low as possible.
In order to understand why this is so, we consider again the equivalent circuit
of the voltage amplifier shown in figure 6.8 which is driven by a voltage source,
vs, With an associated output resistance, K. The amplifier drives a resistive
load Ry, The voltage gain A,; = v,/vs can be calculated as follows:

Vo

Ay = 2 (6.18)
Vs
I .
= Doyl b (6.19)
Vo i Us

From figure 6.8 it can be seen that v, is related to v/ by a voltage divider as

Rp

o = —1 6.20
v Ri _I_ RL UO ( )
Also, v; is related to v, by a similar voltage divider,
R;
7 - s . 1
v R +R. v 6.21)
Therefore, the overall voltage gain A, can be expressed as:
R; R
A = ——— x A —_— 6.22
ve R; + R, X vXRi+RL ( )

We see that R, and R, cause resistive loading effects at the input and output
of the amplifier which, in turn, cause a decrease of the overall gain of the
amplifier. For example, let us assume that the amplifier has an intrinsic voltage
gain A, = 100, an input impedance R; = 5 k) and an output impedance
R, =1k If R, = R, and if Ry, = R, the voltage gain A, is 25, that is,
there is a 75 % reduction of the overall gain due to these loading effects! On
the other hand if R; = 5 MQ, R, = 50 , R, = 5kQ and Ry = 1 k€, the
overall gain is A,s ~ A, = 100. It follows that an ideal voltage amplifier has
a gain that does not depend on R or R;. This means that this (ideal) amplifier
has an input impedance which behaves as an open-circuit, R; — 0o, and a zero
output impedance, K, = 0.

Example 6.2.2 Show that an ideal current amplifier has a zero input impedance,
R; = 0, and an output impedance, R, that is infinite.

Solution: Let us consider the equivalent circuit for a current amplifier shown in
figure 6.10. The amplifier is driven by a current source with output impedance,
R;. The amplifier drives a resistive load R,. The overall current gain, A;; can
be written as follows:

Lo
Ais = -
s
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6.3 Operational
amplifiers

a)
R,
1 &—— 3
+ +
<
v; = A, v; Vo
>
- [ _
Y
R; — o0 —
A, — 0
R,— 0
b)
Figure 6.11: Operational

amplifier. a) Circuit symbol.
b) Equivalent circuit.

1o Z:) i;

= — X — X —
/o 13 1s

R, R,

= - A; — 6.23

R.+R " R +R, (6.23)
If we let R; — 0 and R, — oo we obtain
. . R, R,
A A =0 R M R R
= A (6.24)

and the overall current gain A,; is maximised at a value of A;, when R, = 0
and R, — oo.

Operational amplifiers (op-amps) are electronic, integrated-circuit amplifiers
which are important in the implementation of a large variety of analogue cir-
cuits and systems such as audio and video amplifiers, analogue filters, instru-
mentation amplifiers, etc. Figure 6.11 a) shows the op-amp circuit symbol.
Terminal 1 is called the non-inverting terminal while terminal 2 is called the
inverting terminal. Terminal 3 indicates the output of the amplifier. The op-
amp is a voltage amplifier whose input is the voltage across the input terminals
and the output is referred to ground, which is usually the potential midway be-
tween the power rails. These are shown in figure 6.11 a) connected to terminals
4 and 5. Frequently, the circuit symbol for the op-amp omits the terminals for
the connection of the power rails. The differential voltage gain is the ratio of
the output to input voltages and is called the differential open-loop voltage gain.

The ideal op-amp

Although the op-amp is an electronic circuit of some complexity its electri-
cal behaviour can be modelled according to the circuit model shown in figure
6.11 b). The input impedance of an ideal op-amp is infinity, that is the op-amp
does not draw any current from the input source by its input terminals. On
the other hand the output impedance of the amplifier is zero. The differential
voltage gain is infinity. Note that the ideal op-amp amplifies only the voltage
difference between the input terminals. The last ideal characteristic considered
for the ideal op-amp is infinite bandwidth. As will be shown shortly, these
four ideal characteristics make the analysis (and the design) of circuits with
op-amps quite simple.

6.3.1 Open-loop and feedback concepts

The practical op-amp is rarely used as an open-loop amplifier. One of the
main reasons for this being its extremely high voltage gain (typically 10°-10%)
that easily results in output voltage saturation. Rather the op-amp is employed
using feedback. It is the use of feedback which allows the implementation of
a broad variety of circuits using op-amps and some of them are presented in
section 6.3.2.
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The concept of virtual short-circuit between input terminals

Let us consider the circuit of figure 6.12 constituted by an op-amp and a resis-
tive voltage divider (R; and Rp) which implements feedback. This circuit is
commonly called a non-inverting amplifier. For this circuit let us assume that
R; — oo and R, = 0. We can write the following equations:

ve = vi+u; (6.25)
v, = Ay (6.26)

where v represents the feedback voltage and A, is the open-loop gain. Since

Op-amp
+ _Mv_f P

JR Rl o

Feedback network

a) b

Figure 6.12: Non-inverting amplifier. a) Block diagram. b) Equivalent electri-
cal model.

there is no current flowing through the op-amp input terminals (due to its infi-
nite input impedance), v can be related to v, using the resistive voltage divider
expression:

Rs

N - T 6.27

vf Bt Ry " (6.27)
Ry

_ _B 6.28

= BHinm (6:25)

[ represents the fraction of the output voltage which is fed back to the input of
the circuit via the voltage divider. Equation 6.25 can be written as:

ve = 22 1 B, (6.29)
Ay
Solving this last equation to obtain v, we get:
Ay
—_— 6.30

Yo 1254, (6.30)
and eqn 6.26 can be solved to obtain v, as follows;

v = — 6.31)

1+ 84, *
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Yy
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Vo

Figure 6.13: Inverter ampli-

fier

If we now let A, tend towards infinity in eqns 6.30 and 6.31 then we obtain

1
= —’US
B
Ry + Ry
= = 6.32
R v (6.32)
and
. 1
v; = lim =0 (6.33)

AT+ 34,
From eqn 6.32 we can write the closed-loop gain A, ¢ as follows:

Vo Ry + Ry Ry
Ay = - R 1+ ) (6.34)
Equation 6.33 reveals that when the op-amp gain is very large then the voltage
difference between the two input terminals of the op-amp tends to zero. This
gives rise to a ‘virtual short-circuit’ between the two input terminals of the
op-amp. This virtual short-circuit is always valid when the feedback applied
to the op-amp is negative, and is a valuable concept which contributes to the
simplicity of analysis and design of circuits with op-amps.

Another very important result is the one expressed by eqn 6.34 which states
that the voltage gain depends only on the values of the external resistances used
to implement the feedback network. Again, this is a consequence of the large
differential open-loop voltage gain.

6.3.2 Other examples and applications
The inverting amplifier

Figure 6.13 shows another important voltage amplifier topology; the inverting
amplifier. Since there is no current flowing through the input terminals we
have:

i1 =12 (6.35)

Using the concept of virtual short-circuit between the op-amp input terminals
we can write v = 0. Therefore, the voltage v is applied across R; and v,
occurs across Ry. Equation 6.35 can be written as follows:

Us Vo

_— = 6.36
7 o (6.36)
and the closed-loop voltage gain is
v
A = =
v f Ve
R

= -2 (6.37)
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Figure 6.14: Integrator
amplifier.

s (t)

Figure 6.15: Differentiator
amplifier.
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Example 6.3.1 Design two voltage amplifiers with voltage gains of +15 and
—15.

Solution: Considering the non-inverting amplifier and using eqn 6.34 we have
Ro = 14 Ry. Choosing R; = 1 k) we have Ry = 14 k(.

Now for the gain of —15 we choose the inverting amplifier. Using eqn 6.37
we have Ry = 15 R;. Choosing R; = 1 k{2 we have Ry = 15 k(0.

The integrator amplifier

Figure 6.14 shows an integrator amplifier. It should be noted that this amplifier
is a structure that is quite similar to that of the inverting amplifier discussed
previously. The main difference is that R, is replaced by a capacitor, C. We
use now a time domain analysis.

Using the concept of virtual short-circuit we have v/ = 0. Also i1(¢) =
t2(¢). Therefore, we can write;

vs(t) _c do(t)

— = — 6.38
R dt (6.38)
Solving the last equation in order to obtain v, (t) we get;
1 i
’Uo(t) = - ﬁ /(; Vs (t) dt + ‘/co (639)

where V,, is the initial voltage across the capacitor terminals (at ¢ = 0). Equa-
tion 6.39 shows that the output voltage is proportional to the time integral of
the input voltage. Note that the DC gain of such an amplifier is equal to the
open-loop gain and is, therefore, very high. In practice a large resistor is placed
across the capacitor to define a finite DC gain which prevents the saturation of
the output voltage.

Example 6.3.2 Show that if we interchange the positions of the capacitor and
the resistor in figure 6.14 we obtain an amplifier that produces an output that is
proportional to the time differential of the input.

Solution: If we swap the position of the resistor and the capacitor in figure 6.14
we obtain the circuit shown in figure 6.15. Once again we can write v/ = 0 and
i1(t) = i2(t). Hence we have that

dus(t) _ volt)
C TR i (6.40)
that is
_ dvs(t)
w(t) = —RC —= (6.41)

The last equation shows that the output voltage of the amplifier is proportional
to the derivative of v4(t).
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The adder amplifier
Figure 6.16 shows a circuit which allows the addition of voltage signals. Since
o v’ = 0 and each voltage vy, is applied across each resistor Ry we can write
) ‘VVVYO vs
o | [ =k k=12....n (6.42)
"}'%'1 —o Rk
- Ua is In + Vo
f@w;vﬁ—- ) The output current, i,, is the sum of each input current 4:
= Ug 2
ing bo=11+ig+ ... +ipn (6.43)
T v, o that is:
Vo Vst Vs2 Usn
i : —_—— = =t = 6.44
Figure 6.16: The adder R, R & R, (6.44)
amplifier.
The last equation can be written as:
"L v
vo=—R, ¥ == (6.45)
k=1 k

R,
Vo= —— > Usk (6.46)

and the output voltage is proportional to the sum of the input voltages.

The difference amplifier

The circuit shown in figure 6.17 amplifies the difference between the two input
Figure 6.17: The difference voltages v,, and vg,. v’ can be calculated as the voltage given by a voltage
amplifier. divider:

/ Ry

= — 6.47
v Ri+ R, Vsh ( )
Since i = 7; we can write;
Vgg — V' v — v,
= 6.48
R 7 (6.48)
Solving the last eqn in order to obtain v, we get:
R+ Ry , R
o = ——o - L, 6.49
v R v R v ( )
and using eqn 6.47 we can write v, as follows:
R
vo = R—2(va — Usa) (6.50)
1

showing that the output voltage is proportional to the difference of the input
voltages.
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The instrumentation amplifier

The instrumentation amplifier (IA) is a difference amplifier with a very high
input impedance. Since the difference amplifier of figure 6.17 presents a rela-
tively low input impedance equal to 2 R, it is not suitable for this use. Figure
6.18 shows the basic structure of an instrumentation amplifier. From this figure

AAA—
—YVVY
Ry
Vsa AAAA—
mRAAAL WV _
: R ® —e
< R4 + Vo
i R3 Up
AAAA— ’
Ush —YVVY Ry v
Ry

Figure 6.18: Instrumentation amplifier.

we observe that resistances marked R; and R, and the op-amp 3 constitute a
difference amplifier. Hence, from eqn 6.50 we can write:

R
v = R—j(vb —va) (6.51)
Also we can write:
Va — Usa Usa — Ush
= 6.52
s ) (6.52)
VUsa — Ush VUsb — Up
= 6.53
2 R (6.53)
Solving these eqns to obtain v — v, We get:
2R; +R
Vp = Vg = ;Ri (Vsb — Vsa) (6.54)
4
Hence, the output voltage can be written as follows:
Ry 2R3+ R
v = R—j —%4;4- (Vs — Vsa) (6.55)

Note that, in theory the input impedance of this amplifier is infinite when op-
amps 1 and 2 are assumed to be ideal.
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6.4 Active
devices

*—ei

Anode Cathode
a)

Ip
O S~

Anode ; Cathode

o Vb =

b)

Figure 6.19: The diode. a)
Geometry (p—n junction). b)
Symbol.

We now present the main active electronic devices! which are fundamental in
the amplification process: the Bipolar Junction Transistor (BJT) and the Field-
Effect Transistor (FET). We also present and analyse some important amplifier
topologies such as the common-emitter amplifier and the differential-pair am-
plifier.

6.4.1 The junction or p—n diode

The diode is a two terminal device usually manufactured using a silicon (Si)
semiconductor. Figure 6.19 shows the geometry of a diode where we observe
the existence of two regions which form a p—n junction. The p region is Si
doped with an acceptor such as boron while the n region is Si doped with a
donor such as phosphorus.

The electrical model for the diode is expressed as follows:

Ip = Isp (eVD/VT _ 1) (6.56)

where Isp is the ‘reverse saturation current’ of the diode. Isp is of the order
of 10715 ampere and depends on the area of the diode and the temperature.
The voltage V7 is called the thermal voltage given by:

KT

Ve = (6.57)
q

with £ = 1.38 x 1072 joule/kelvin, representing Boltzmann’s constant, T
is the temperature in kelvin and ¢ = 1.6 x 10~! coulomb is the electronic
charge. At room temperature V ~ 25 mV. The DC electrical characteristics
for a typical small area diode are illustrated in figure 6.20. From this figure
we observe that for voltages Vp less than 0.7 volt the diode does not conduct
a significant current. Note that for Vp < 0, Ip is nearly constant and equal to
—Ipg, avery small value and not visible in figure 6.20. However, for a voltage
Vp ~ 0.7 the diode starts conducting. From this figure it is clear that diodes
are a non-linear electronic devices.

The p—n junction forms the basis of the bipolar junction transistor which is
discussed in the next section.

6.4.2 The bipolar junction transistor

The bipolar junction transistor (BJT) is a three terminal active device usually
manufactured using silicon (Si). Figure 6.21 shows the physical structure, sym-
bol and direction of current flow for the NPN transistor while figure 6.22 rep-
resents the PNP transistor. Both transistors are implemented with two p—n
junctions. For the NPN transistor both the emitter and the collector areas are n
type silicon. However, these two regions are not interchangeable as the emit-
ter is usually significantly more heavily doped (n ") than the collector region.

1Qur discussion of active devices is limited to their characteristics and behaviour as circuit
elements. Explanations based on the physical nature of these devices has been limited and is only
used so as to aid understanding of the circuit characteristics and models. Readers are referred to
references [1, 2] for detailed descriptions of the physics of such devices.
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Figure 6.21: Geometry and
symbol for an NPN bipolar
transistor.

.l'

Figure 6.22: Geometry and
symbol for a PNP bipolar
transistor.
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Figure 6.20: Typical DC electrical characteristic for the junction diode.

Also, the collector area is usually greater than the emitter area. The base region
is very thin when compared to the emitter and collector regions. Conversely,
for the PNP transistor both the emitter and the collector areas are p type silicon
and the base region is n type silicon.

Figures 6.21 and 6.22 also indicate the directions of the current flowing
through each terminal of each transistor. It can be seen that

Ig=Ic+1p (6.58)

where I'g I and I'g are the emitter current, the collector current and the base
current, respectively. From this figure it can be seen that base current is usually
significantly smaller than either the emitter current or the collector current.
The base terminal is usually the input terminal for both devices while either
the collector or the emitter is the output terminal.

The Ebers-Moll model for the BJT

The Ebers-Moll model, shown in figure 6.23, describes the relationships be-
tween the various currents and voltages of the bipolar transistor. The model
consists of two diodes and of two current-controlled current sources. We dis-
cuss the application of this model to the NPN transistor. The PNP model is
similar. For the NPN transistor the diode currents I, and Ip,. are given by
the diode equation (see eqn 6.56);

Ip, = Is, (eVBE/VT -1) 6.59)
I, = Iso (€"/Vr - 1) (6.60)

where Is, and Ig, are the saturation currents of the two diodes. Since the
collector region is usually larger than the emitter region, Ig,, is usually larger
than Is, (by a factor up to 50).



6. Basic electronic amplifier building blocks 185

—7
i Cumemr |
o meter
- 2
i
\
|

N
PR
Vee ‘

Figure 6.24: Measurement
of the DC characteristic for
an NPN bipolar transistor.

Figure 6.23: Ebers-Moll model. a) NPN bipolar transistor. b) PNP bipolar
transistor.

The relationship between the terminal currents and the junction voltages
can be written, from figure 6.23 a), as follows:

IE = IDE —aRIDC (6.61)
Ic = —Ip.+arlip, (6.62)
Ig = (1_aF)IDE+(1_aR)IDc (6.63)

ar is the ‘forward gain’ of the transistor and is typically near unity (0.98 to
0.998). ag is the ‘reverse gain’ of the transistor and is typically near zero (0.02
to 0.1). The last equations can be written, using eqns 6.59 and 6.60, as follows

Ip = Is, (57" —1) —apls, (/" =1)  (6.64)

Diode effect Reverse transistor effect
Io = apls, ("5 = 1) ~Is, (/"7 —1)  (6:65)
Forward transistor effect Diod;:;ffect
Ip = Ig—1Io (6.66)

Figure 6.24 shows how we can obtain the variation of the collector current I~
with the collector-emitter voltage Vg for various values of Ig (Vgg). These
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curves are the -V curves for the transistor and an example is shown in figure
6.25. From this figure we identify three distinct regions of operation for the
transistor; the active region, the cut-off region and the saturation region.

Ic Saturation

(mA) region \ Active region
1
i
1

IB =90 MA (VBE“ 0.731 V)

]B=70 uA (VBE =0.725 V)

13—50 ;LA (VBE‘0716 V)

4 -
< Ig =30 pA (Vag = 0.703 V)
-5
/

Ig =10 yA (Vg = 0.676 V)

_________

cut-off region 75~ 0 (Ve < 0.65V)
[ [ I

I
2 4 6 8 VegV

Figure 6.25: DC characteristic for a small NPN bipolar transistor.

Active region

The active region is the relevant region of operation when the transistor is used
as an amplification device. In this region of operation the transistor can be
characterised by its Vg and by its V¢ as follows:

0.65 <Vgr < 0.75 volt (6.67)
Vee £0 (6.68)

Under the conditions expressed by eqns 6.67 and 6.68 we can write:

Is, (e¥o=/Vr -1)

~ I, eVPB/VT for Vg > 4Vr (6.69)
Ic ~ aplg,eV®s/Vr (6.70)
= ar g
Ig = Igp—-1I¢
I

= = 6.71
B (6.71)

Ig

1

with

ar

1>

Br

l—OéF
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Figure 6.27: a) Common-
emitter amplifier. b) Alter-
native representation.
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Figure 6.26: Variation of Ic with Vg when the transistor is in the linear
region. Example (I, = 1.8 x 10715 A),

where 3 is called the ‘forward current gain’. (p is often written as § and
simply called the ‘current gain’. For o r ranging from 0.98 to 0.998, 3 varies
from 49 to 499. From eqns 6.69 to 6.71 and from figure 6.25 a) we observe
that the behaviour of the transistor in the linear region is similar to a current-
controlled current source since the output current does not depend on Veg. It
should be noted that the variation of I or I with Vg is highly non-linear
as illustrated in figure 6.26 which presents the variation of I with Vgg. We
observe that for a Vg variation from 0.65 V to 0.75 V the collector current
varies (in an exponential manner) from about 0.5 mA to 20 mA. Fortunately,
for small Vg variations the collector current varies in an approximately linear
manner.

It is important to realise that although the Io—VpE relation is non-linear,
the relation between I and Ip is linear. This is a direct consequence of the
forward transistor effect described in eqn 6.65.

The bipolar transistor as an amplifier

Figure 6.27 a) shows a very simple transistor circuit which illustrates the role of
the BJT as an amplification device. An alternative representation for this circuit
is presented in 6.27 b) where the DC voltage source, Vg, is described by a
small horizontal trace with its value. This value is assumed to be referenced to
ground. The input signal source symbol is often omitted for simplicity.

From this figure we observe that the input voltage signal is between the
base and emitter while the output is between the collector and emitter. Since
the emitter is the common terminal, in terms of input and output ports, the
circuit configuration is known as the ‘common-emitter amplifier’. We assume
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the following characteristics for the BIT: ap = 0.99, agp = 0.02, Is, =
1.8x 10715 A, and I, = 18 x 10715 A,
We can write the following equations:

Vie = Vi (6.72)
Vee = Vo (6.73)
Vee = Vee+Rpl. (6.74)

From the above we can easily derive a linear relation describing the variation
of the collector current with the collector-emitter voltage for a given load R,
and supply voltage V. This is known as the load-line equation and, in this
case, is given by:

Vee  Vee
I = -0 e 6.7
R, R, (6.75)
= 2-02V.,. mA 6.76)

In figure 6.28 we present a graphical explanation of the amplification process
provided by the common-emitter circuit. Figure 6.28 a) illustrates the Ebers-
Moll equations, discussed above, which relate the collector current, I, to the
collector-emitter voltage V.. for various base-emitter voltages V;.. This figure
also shows the load-line given by eqn. 6.75. Figure 6.28 b) shows the input
voltage signal, V;, while figure 6.28 c) shows the output voltage signal, V. It
should be noted that the input voltage sits on top of a DC voltage; the base-
emitter bias voltage, Vgg,. This voltage intersects the load-line defining the
transistor operating point ¢ (Quiescent) which, in turn, defines the collector
bias current, I, and the corresponding collector-emitter bias voltage, Vog,, -
From figure 6.28 a) we observe that Ic, = 1 mA and that Vog, = 5 V. It
is important to note that the ideal value for Vi Bo 18 Voo /2 in order to have a
maximum and symmetrical output voltage swing without distortion. Note that
this distortion is non-linear and known as ‘clipping’.

The voltage gain, A, is defined as the ratio between the output voltage and
the input voltage:

4, = =

Vi

3V

T 15mV
= —200

Note that, in order to have distortionless amplification, the maximum input
voltage swing must not exceed 22.5 mV (see next example) otherwise the out-
put voltage waveform will suffer distortion, resulting from clipping as illus-
trated in figure 6.29.

Example 6.4.1 Show that if the input voltage v; exceeds about 22.5 mA dis-
tortion will occur in the output voltage.



6. Basic electronic amplifier building blocks 189

I 4 T%e (Vi)
!%WS& Vi = 0.695 V

NG

: - N Ve -
Ve, 1 Ve t
: a): Che : «e b)
9V 5V 8V

! ‘/a (‘/ce)

c)

Figure 6.28: The amplification process provided by the common-emitter.

Solution: According to figure 6.28 the maximum amplitude for the output sig-
nal voltage is about 5 volts. Taking 0.5 volt as a safety margin we establish
the maximum amplitude for the output signal voltage as £4.5 volts. Dividing
this value by the voltage gain, A, = 200, we obtain the maximum input volt-
age of 22.5 mV.

The analysis of the circuit presented in figure 6.27 considers the bias (DC)
and the (AC) signals simultaneously. However, it is possible, and often de-
sirable, to separate these two analyses. In fact from eqns 6.72 — 6.74 we can
separate the signal component from the DC components as follows:

Voe = ViEg + Vbe

= VBEQ + v 6.77)
Vee = VoEg + Ve

= VCEQ + v, (6.78)

Hence, eqn 6.74 can be written as follows:

Vee = Vegg +vee + RL (Icy, +ic)
= VCEQ + v, + Ry, (ICQ + ic) (6.79)

Equation 6.79 can be separated into two equations: one relates to the signal
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Figure 6.31: The hybrid-w
model for a BJT.
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Figure 6.29: Clipping in the amplification process.

component while the other equation relates to the DC bias component:
Vee =Veg, + Role, < DC

(6.80)
0=wv,+ Rp 1. < signal
Equation 6.80 reveals that, in terms of signal analysis the DC voltage source
is equivalent to a ground terminal. This is reasonable and expected since an
ideal voltage source has a zero output impedance which implies that (see also
figure 6.30):

AV
= = 9

AT (6.81)

The hybrid-7 linear model for the transistor

Figure 6.31 shows the hybrid-m model which is a small-signal linear model for
the transistor valid for the mid-frequency range. This model is partially derived
from the Ebers-Moll large-signal model and it considerably simplifies the AC
analysis of bipolar transistor amplifiers.

The hybrid-n model assumes a given operation point in the linear operation
region, defined by a collector current I, and by a Vgg,. As mentioned
above Vpg = VBE,, = 0.7 volt. For small V}, variations the corresponding
variations of I, are approximately linear. From Taylor’s series (see appendix
A) we can write the following expression for the collector current (DC plus
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signal):
dl
I, = Icgy + Ve —= (6.82)
d V;)e Ic=ICQ
The transconductance gain, g,,,, is defined as:
I
om & AL 6.83)
@Vee | jo=1c
From eqn 6.70 we can write
dl _ orlss veniv 6.84)
d‘/be IczlcQ VT ICZICQ
giving
I,
m —_— 6.85
g Vr (6.85)

The dynamic resistance between the base and the emitter terminals, 7, defines
the small-signal vy, variations with small-signal 7, variations according to the
following expression:

r A d Ve

a1, (6.86)

Iy=Ip,

where Ip = Ip, is the bias base current equal to I¢,, /3. Hence, from eqns
6.70 and 6.71 we can write:

(6.87)

Voo = Vrln (aFﬁIb)

Se

and r, can be determined as follows:

d Ve
dl

ap Bl
IB:IBQ ISE

Ib=IBQ

= —20 (6.88)
Therefore,

ry o= (6.89)

According to the Ebers-Moll model when the transistor is in the active
region the collector current does not vary with Vog. In practice this is not
true since there is a slight increase of the collector current as Vg increases.
This phenomena is the Early effect. In terms of an electrical model this effect
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Figure 6.33: Common-
emitter amplifier. a) AC
equivalent circuit. b) Small-
signal equivalent circuit
using the hybrid-m model.
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Figure 6.32: The Early effect.

is described by a dynamic resistance located between the collector and the
emitter, r,, and its value is given by

[Val

o = .90
r Io (6.90)

Q

V4 is a theoretical voltage known as the Early voltage and can be obtained from
the convergence point of the output characteristics as shown in figure 6.32. For
a BJT r, is of the order of hundreds of k2.

Example 6.4.2 Apply the hybrid-= model to the common-emitter amplifier
depicted in figure 6.27 and determine the small-signal voltage gain v, /v; for
the following values: Ic = 1 mA, 5 =100and V4 = 120 V.

Solution: Since for AC analysis V¢ is replaced by a ground terminal, the
equivalent AC circuit for the amplifier of figure 6.27 is as shown in figure
6.33 a). Substituting the transistor symbol by its hybrid-m equivalent model we
obtain the circuit shown in figure 6.33 b). From this circuit it is straightforward
to determine the small-signal voltage gain, A, = v,/v;:

A, = =
Vi
— —gm(RL”TO) (23 (691)

Urn

According to eqn 6.85 g,,, = 40 mA/V. From eqn 6.90 we have r, = 120 k2.
Since r, >> R,

A, ~ —gmRL (6.92)
—200

Note that this result is the same as that obtained using the large signal analysis.

6.4.3 The insulated gate field-effect transistor

Like the BJT the field-effect transistor (FET) is also a three terminal device.
Figure 6.34 shows the symbol and the physical structure of a popular mem-
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Figure 6.34: n-channel FET.
a) Symbol. b} Geometry.
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Figure 6.35: p-channel FET.
a) Symbol. b) Geometry.

ber of the FET family known as the enhancement n-channel FET2. Both the
drain and the source are heavily doped n regions. The gate is isolated from the
source, the drain and the substrate by a layer of silicon dioxide (SiO2). Hence,
this FET is often called Insulated Gate FET (IGFET) or Metal-Oxide Semicon-
ductor FET (MOSFET). Unlike the BJT transistor the FET is a symmetrical
device, that is, the source and the drain of the device can be interchanged.

Figure 6.35 shows the symbol and the physical structure of an enhancement
p-channel FET. Note that the p-channel FET can also be constructed in an n
substrate. However, with the integrated technology it is common to implement
an n well in the p substrate and this n well serves the purpose of a substrate for
the implementation of the p-channel transistor.

DC large signal model

A popular DC large signal model used to characterise n-channel FETs is de-
fined by the following set of equations:

kn % [(Vas — Vrn) Vos — 3 Vas] » Vbs < Vas — Vi
and VGS > Vrp
(Triode region)

Lk W [Vas — Vral® , Vps > Vas — Vi
and Vg > Vi,
(Saturation region)

Ips =

0 y Vas < Vra
(Cut-off region)

(6.93)
where Ipg is the current which flows from the drain to the source of the tran-
sistor. Vgg and Vpg are the gate-source and the drain-source voltages, respec-
tively, as indicated in figure 6.34. L is the channel length and W is the width
of the channel. Vi, is the threshold voltage which is often between 1 and 3
volts. k,, is defined as follows:

kn = pnCos A/NV? (6.94)

Here u, is the mobility of the electrons in the channel measured in m2/Vs.
C.. 1s the capacitance per unit of area of the capacitor produced by the insula-
tor (SiO2) which acts as a dielectric material between the two plates formed by
the gate and the channel. As mentioned above, silicon dioxide is an insulator
and, therefore, the gate current is extremely small. Figure 6.36 shows the DC
characteristic of an n-channel FET provided by the large signal model as de-
scribed by eqn 6.93. From this figure we observe the three regions of operation
predicted by the model of eqn 6.93; the triode region, the saturation region and
the cut-off region. It can be seen that in the triode region the FET behaves

2The channel is the charge layer under the gate of the device. n-channel indicates that the
charges are negative (electrons). Such charges can be attracted towards the top of the device when
a positive voltage is applied to the gate, thus creating the channel between the source and drain.
For detailed discussion of the physics of FET devices the reader is referred to [1, 2].
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{ng) Vos < Vgs — Vrp + Vps > Vigs — Vi
Triode region ,I Saturation region Ves=5V

Ves =4V

Ves=3V

Ves=2V
»—— Vgs < Vry, (Cut-off)
5 6 7 8  Vos (V)

Figure 6.36: DC curves of n-channel FET according to the large signal model
(eqn 6.93). Vi, = 1 Vand k, W/L = 0.2 mA/V>.

nearly as a linear resistance, controlled by Vizg. In the saturation region the
FET behaves as a current source controlled by Vizs. This is the region em-
ployed when the FET is used as an amplification device. Note that, according
to this model, Ipg does not vary with Vpg. Hence, we can represent the vari-
ations of Ipg with Vg5 as shown in figure 6.37. From this figure we observe
that for Vg5 above the threshold voltage the drain current varies in a quadratic
manner with Vo (see also eqn 6.93).

The DC large signal model for p channel FETs can be obtained from eqn
6.93 after changing the voltages Vizs and Vpg by Vgi and Vsp, respectively,
as indicated in figure 6.35.

Low frequency small-signal for the IGFET

Figure 6.38 shows the low frequency small-signal for the IGFET when the de-
vice is operating in the saturation region. Assuming an operating point defined
by Ves, and Ip,, (see also fig 6.37), the transconductance for the FET is de-
fined as follows:

., & dlos
dVGS Vas=Vesq
W
= kn [Vasg — V] (6.95)

Since we have Ips,, = 1/2k, ¥ [Vgs,, — Vs 2 we can write g, as follows:
@ L Q

2IDSQ

—_— 6.96
Vasg — Vrn ©96)

Im
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Figure 6.38: FET small-
signal equivalent circuit.

Figure 6.39: High-frequency
small signal models. a) BJT.
b) FET.

Ips
(mA)

0 1 2 3 4 5 6 7 B8 Ves(V)
Ves,

Figure 6.37: Ipg versus Vgg in the saturation region. Vrp = 1V and

kn W/L = 0.2 mA/V.

According to the DC large signal model described by eqn 6.93 the drain cur-
rent of the FET does not vary with Vpg when the device is operating in the
saturation region. However, in practice we observe a slight increase of this
current as Vpg increases, similar to the Early effect in BJTs. In FETs this phe-
nomenon is known as channel-length modulation and is described, in terms of
small signal model as a resistance r, which can be calculated as follows:

IDSQ

(6.97)

To

where V4 is defined by the convergence of the output characteristics in a similar
way to the Early voltage of the BJT. For many FETs V4 is normally between
40 to 100 volts.

High-frequency models for active devices

Bipolar transistors and field-effect transistors have potential barriers in the var-
ious p—n junctions which induce charge storage effects. Such effects can be
modelled as equivalent capacitances between the terminals of these devices.
Figure 6.39 a) shows the high-frequency hybrid-m model for the BJT includ-
ing the capacitive effects mentioned above. There is an equivalent capacitance
between the base and the emitter terminal; C, (1-15 pF), and a collector-base
capacitance C), (0.1-5 pF). The model also includes a resistance . account-
ing for a small voltage drop within the base region. Values for this resistance
vary typically between 2 and 10 §2. The effect of r, is usually negligible in
the mid-band frequency range since r, is much larger than r,. However, at
high frequencies its effect can be significant specially if the signal source is a
voltage source with an output impedance of the order of r,.
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Figure 6.39 b) shows the high-frequency small-signal model for the FET
which includes two capacitance: Cgys and Cgq. These two capacitors vary
typically between fractions of pico-farad to 10 pF and C,; is usually larger
than ng.

A very important figure of merit for both BJTs and FETs is the unity-gain
bandwidth, fr, which indicates the frequency at which the short-circuit current
gain drops to unity (0 dB). For BJTs this frequency can be calculated from the
circuit shown in figure 6.40. Since the collector is short-circuited to the emitter
vy is also applied to C),. Hence we can write:

iy, = v +iwr C)+v,,ij# (6.98)

(gm — jwCy) vx (6.99)

le
For the frequency range for which this model is valid, w C|, is much less than

gm and, therefore, we can calculate the short-circuit current gain as follows;

12 ~ ImTrn

<~ 6.100
’ib 1+JW(CM+CW)T7T ( )

The unity-gain bandwidth, fr, can be calculated from the last eqn (see problem
6.8) as follows:

B gm
fr = Tt (6.101)

Similarly, for FET devices it can be shown (see problem 6.9) that fr is given
by:

Im
S — 6.102
fr 27 (Cya + Cys) (6.102)

For either type of transistor fr can vary from hundreds of MHz to a few tens
of GHz depending on the technology and size of the devices.

The high-frequency models presented in figure 6.39 are valid for frequen-
cies up to about fr/3. For frequencies higher than fr/3 other parasitic ele-
ments, like the parasitic inductances and resistances associated with terminal
connectors, must be taken into account in order to obtain an accurate charac-
terisation of the devices.

6.4.4 The common-emitter amplifier

Figure 6.41 a) shows a common-emitter amplifier with an input bias circuit
consisting of resistors R; and R;. Cp and Cp are the DC blocking (or AC
coupling) capacitors while Cg is a bypass capacitor which, at mid-frequency
range, short-circuits K allowing for a greater voltage gain for this frequency
range. We take a BJT characterised by 8 = 200, Cr = 8 pF, C, = 3 pF. We
also assume r,, ~ 0 and that the Early effect can be neglected, that is, r, — oo.



6. Basic electronic amplifier building blocks 197

Vee (10 V)
§ (5 m) IC ~Ip=1mA
(9kQ)
Cr
1 Iij! , ® =5V
B s l,L / (14F) : '
R
(1009) (51F) \ (15k0) |
b e Sive e
s | ,
A e |
T RZ RE ; B
(1kQ) (30092) | (104F) | Ry Rp Ip=1mA
pp— _ i ‘
a) b)

Figure 6.41: a) Common-emitter amplifier. b) Equivalent circuit for the DC analysis.

DC analysis

Figure 6.41 b) shows the equivalent circuit used in the DC analysis. Recall that
at DC each capacitor is an open-circuit. We assume that the BJT is operating
within the linear range of operation and Vg ~ 0.7 volt.

Since the bias currents passing through R; and R, (Ig, and Ig,) are much
larger than Ip we can assume, for DC analysis, that Ig ~ 0. These two
approximations® (Ig ~ 0 and Vg ~ 0.7 V) simplify considerably this type
of analysis.

The current that flows through R; is nearly the same as the current that
flows through R, that is Ip, = Ip,. Since V¢ is applied across these two
resistors we can write:

Vee
I, =1 —_— 6.103
R = IR, R+ R ( )
= 1mA
The voltage at the base of the transistor is given by:
VB = Igr, Ry (6.104)

= 1V

31t should be clear that I5 in reality is not zero! However, the statements Ig << [ R, and
Ip << IR, are equivalent to saying that /g = O for the purpose of DC analysis.
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The voltage across Rg, can be calculated as follows:

Ve = Vp—-Vge (6.105)
= 03V

Hence the emitter current is given by:

Ve
Ip = EE (6.106)
= 1mA

Since I ~ Ig the voltage at the collector terminal is:

Vo = Vec—Rele (6.107)
5V

Notethat Iz = I/3 = 10 uA and, therefore Iz << Ig, as assumed initially.

Low-frequency analysis

Now that the DC analysis is complete we are able to calculate ¢,,, and r, as
follows:
Ic
m = 6.108
g Ve ( )
= 40 mA/V

e = A (6.109)
Im
= 5kQ

Figure 6.42 shows the equivalent low-frequency small-signal of the common-
emitter amplifier. We start by calculating the voltage gain, A, = v,/v, which

Cr

Figure 6.42: Equivalent small-signal (low-frequency) circuit of the common-
emitter amplifier.
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can be written as the product of three partial gains:

I .
A, =22 5 Yo Ui (6.110)

7
Vo Vin Vs

The partial gain v, /v), is given by the impedance voltage divider consisting of
the resistance Ry, and the impedance of the capacitor (j w Cr) !

L _JwCr Ry (6.111)
vl JjwCrL Ry +1
The small signal base current, i;, can be written as follows:
. Vin Urn
= = — 6.112
1p Z, - ( )
and the partial gain v/, /v;, can be written as:
W —gmvr (RollZ0)
Vin Zina :_:
— x (RBcl|lZ
Zina
where
1
Zr, = Rp+ - (6.114)
jwCp,

and Z,,, is the impedance seen looking into the base of the BJT. By applying
a test voltage, v to the base, as shown in figure 6.43, Z;,, can be simply found
as shown below.

vt

it

Ur + Zg (:—: + gm U?T)

Yr
T

= r,+(B+1)Zg (6.115)

Zina

with Zg given by

Zg

REgl|

jwCE
Rg

= 17 72Ca s (6.116)

The partial gain v;,, /v; is given by the impedance voltage divider consisting of

Rp in parallel with Z;,, and the impedance consisting of the series of R, with
the impedance of the capacitor (jw Cp)~':

Vin (RBl|Zin,)

v = (RollZm)+ Rot GuCp) (117
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Figure 6.43: Equivalent circuit for the calculation of Z;,, (see also fig 6.42).

The total gain is obtained by muitiplying the three partial gains derived above.
It is obvious that the expression for this gain is very lengthy. Therefore, it
is difficult to extract the relevant information directly, namely the 3 dB cut-
off frequency and the knowledge of which capacitor (or capacitors) mostly
influence this frequency. Nevertheless, it is possible to plot this gain and extract
quantitative information. Figure 6.44 shows |A,| versus the frequency. From
this figure it is possible to see that the mid-frequency gain tends to |4, | =
132.6 and that the low cut-off frequency is f1, = 680 Hz.

Short-circuit time constants method

The short-circuit time constants method (see [4] for a detailed study) is a very
straightforward means of determining an estimate for f;, without the need for
a graphical representation of the exact low-frequency transfer function of the
voltage gain. This method also provides useful insight into the contribution of
each DC-blocking and bypass capacitor to this cut-off frequency.

The short-circuit time constants method is applied according to the follow-
ing steps:

1. The estimate for fr is obtained by the following expression:

1 L1
~ — 6.118
fi %;Tk (6.118)

where [V is the number of time constants given by the number of DC
blocking capacitors plus the number of by-pass capacitors which are
present in the low-frequency equivalent circuit of the amplifier.

For the amplifier of figure 6.42 there are two DC blocking capacitors and
one by-pass capacitor. Hence, N = 3.
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Figure 6.44: Voltage gain for the low-frequency range.

2. Each time constant, Ty, is calculated as the product of each DC
blocking or bypass capacitor and the resistance, R.,, ‘seen’ by the
capacitor when all the remaining capacitors are substituted by short-
circuits and the input signal source is replaced by its output resist-
ance. Hence, an ideal voltage source is replaced by a short-circuit
and an ideal current source is replaced by an open-circuit.

The first time constant of the circuit of figure 6.42, 11, is that associated
with Cp. Figure 6.45 a) shows the equivalent circuit to determine R, .
It can be seen that all other capacitances and the voltage source v, are
replaced by short-circuits and a test voltage source, v, is located in the
place of Cp in order to determine the resistance seen by this capacitor
as follows:

Ut
REQx =

i

(6.119)

From this figure it can be seen that v, is applied to the series connection
of R with the parallel combination of Rg with .. Hence

B)«eq1 = Rs + (RBHTW)
RB Tr

= s+ —=—— 120
By + Rp+r, ® )

Therefore 7, is given by:

!

n Cp (Rs + M—) (6.121)

Rp+r,
4.3ms

I
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Figure 6.45: Application of the short-circuit time constants method. a) Calcu-
lation of the resistance seen by Cg. b) Calculation of the resistance seen by
CEg. ¢) Calculation of the resistance seen by C..

The time constant associated with Cg is 7. Figure 6.45 b) shows the
equivalent circuit to determine Re,,. It can be seen that a test voltage
source, vy, is located in the place of Cg in order to determine the resist-
ance seen by this capacitor as follows:

Reg, = — (6.122)

We can write the following equation:

1g = Te2 — lel (6.123)
with

. Ut

2 = — 6.124

Ze2 Rs ( )
and

fe1 = Gm U + :—" (6.125)

K
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Also we can write

U

V= U X (Rs||RB) (6.126)
or
Ut
Up = ——oo— (6.127)
1+ (RslleB)
Using eqns 6.123-6.127 we can write i, as follows:
. Ut Urn
= _— vﬂ' _—
23 Rp 9m 7’,,
_ % Gmratl
- RE Tr "
- Yt ,8 +1 Vi
= Re T 7 15 BlEm) (6.128)
Tr
From the last eqn we can write v; /i; = Req, as follows
+ (Rs[|[RB)
= 12
Rup, = R || |52 6.129
Therefore, 75 is given by:
T2 = CE Reg, (6.130)
= 0.2ms

T3 is the time constant associated with C;. Figure 6.45 c) shows the
equivalent circuit to determine Reqs. We see that v, = 0. Hence, the
output impedance of the voltage-controlled current source tends to infin-
ity and v, is effectively applied to the series of Ry, with R¢;

Ry, = Rr + Re (6.131)
and
73 = C(f Reg, (6.132)
= 20ms

This analysis clearly indicates that the time constant which dominates
and determines fr, is that associated with Cr. In many practical circuits,
the resistance seen by this capacitor tends to be relatively small when
compared to Ry, and R, and so this dominates fr .

The estimate for f;, given by this method is:
fL =726 Hz (6.133)

Comparing this value with that obtained from figure 6.44 we observe
that the error in the estimate of f; is only 7%.
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Vo

Ry
R¢

Figure 6.46: Common-emitter equivalent circuit for the mid-frequency range.

Mid-frequency range analysis

Figure 6.46 shows the equivalent small-signal circuit of the common-emitter
amplifier at medium frequencies. The gain, A, = v,/vs, can be written as
follows:

Avm = & X 2}_”1
Vin Vs
= —gm (Rc||Ry) x Zin (6.134)
= Im \ BC||£2L Zo + R, .
where Z,, is given by Rp in parallel with r:
Zi = RBHTW
= 763 Q
Hence, A,,, = —132.6. Note that this value agrees with that obtained earlier

from figure 6.44.

High-frequency analysis

Figure 6.47 shows the equivalent circuit at high frequencies. It can be shown

Vo

l B¢ e

Figure 6.47: Common-emitter equivalent circuit for the high-frequency range.

(see problem 6.6) that the voltage transfer function, v, /vs, for this circuit can
be written as follows:
Ys R} (jwCy — gm)
YI(14 jw R,C) + 5 w[Cn + Cu(l + gmRp) — o CuCr Ry
(6.135)

Ay
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with
1
Y, = i+i+— (6.136)
s RB Tr
vy, = - (6.137)
and
Ry = Ri||Rc (6.138)

Equation 6.135 is lengthy and it is not straightforward to extract the 3-dB
cut-off frequency, fy. Figure 6.48 plots the magnitude of the gain at high-
frequencies (eqn 6.135) from which fy can be determined as 4.6 MHz.

4 A
1404 4
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120 -
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40!
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|
|
|
|
|
|
!
|
|
L
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O T T TTTI T T TTTTI T T TTTTm T TITTm T T -

10* 10° 108 107 108 10°

Figure 6.48: Voltage gain for the high-frequency range.

The use of Miller’s theorem, discussed in the last chapter (section 5.2.5), pro-
vides insight into the high frequency response of the common-emitter ampli-
fier. In fact, by applying Miller’s theorem to the impedance associated with
Cu, Z, = (jwCy)™", in figure 6.47 we obtain the circuit of figure 6.49 a).
These two circuits are equivalent in terms of input impedance and voltage gain.
For this circuit we can write the following eqns:

Vo
Avpe = =
70— _Zn
YT T AL,
1
= = (6.139)
chﬂ (1 - AUBC)
Z2 = ————jﬂ A'Ufcl

vBC
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Cﬂ' + Cﬂ(l - AUBC) C, s

Figure 6.49: Application of Miller’s theorem to C,.

S S (6.140)

: A1
YB
jwCy —Q—_AUBC
Ay 1s the voltage gain between the base and the collector and can be calcu-
lated as follows:
gm —JjwCy
A = -0+t 6.141
vBC }%{L + j w C” ( )

with R} = R¢||Ry. At the 3 dB cut-off frequency, fxz we can write:

1 .
w=27fm and R—IL > l] w Cﬂlw

(4x1072>58x107°) and (2.7x107*>5.8x 107°)

9m > l]wcy.l =27 fy

Therefore, we can approximate A, as follows:

AvBc =~ _ng’L (6.142)
—-132.6

Equation 6.139 indicates that Z; is the impedance associated with an equiva-
lent capacitance with value C,, (1 — A, ). Since this capacitance is in parallel
with C; we can add them in order to obtain an input equivalent capacitance of
Cr + C,(1 — Ayp.), as illustrated in figure 6.49 b). Similarly, Z is the

. . . . ; Appo=1 4. o -
impedance associated with a capacitance with value C}, —2<— which is also
YBC

represented in figure 6.49 b). Note that, according to Miller’s theorem, the ca-
pacitance C,, is reflected to the input of the amplifier after being multiplied by
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a factor of 133.6! As is shown next, this has a dramatic impact on the amplifier
bandwidth.

Open-circuit time constants method

In a similar fashion to the low-frequency analysis, the open-circuit time con-
stants method (see [4] for a detailed study) is a straightforward means of ob-
taining an estimate for fx.

The open-circuit time constants method is applied according to the follow-
ing steps:

1. The estimate for fx is obtained by the following expression:

fu~ -t (6.143)

N
27 Z Tr
n=1

where NN is the number of time constants produced by the number
of the capacitors that are present in the high-frequency equivalent
circuit of the amplifier.

For the circuit of figure 6.49 b) we identify two (equivalent) capaci-
tances, hence, N = 2.

2. Each time constant, 7, is given by the product of each capacitor
by the resistance, R.,_, seen by that capacitor when all the remain-
ing capacitors are substituted by open-circuits and the input signal
source is replaced by its output resistance. Hence, an ideal voltage
source is replaced by a short-circuit and an ideal current source is
replaced by an open-circuit.

The first time constant of the circuit of figure 6.49, 71, is that associated
with Cr + C,, (1 + gm R7). It can be shown (see problem 6.7) that the
resistance K.,, seen by this capacitance is:

Re, = R||Ralrx (6.144)
= 880

Hence T, can be written as:

71 = [Cr+Cu(14 gmBL)] Reg, (6.145)
= 27.7Tns

The second time constant of the circuit of figure 6.49, 79, is that associ-
ated with C, (149 R}7)/(gm R} ) > C,,. It can be shown (see problem
6.7) that the resistance R.,, seen by this capacitance is:

R, = R (6.146)
= 3.75k0
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Hence 15 can be written as:

n = C,Rp (6.147)
= 7.5ns

fr can be estimated as follows:

1
fe = pr e (6.148)

4.5 MHz

It can be seen that the cut-off frequency provided by the exact analysis is
virtually the same as that provided by applying Miller’s theorem together
with the open-circuit time constants method. Also, from this discussion
itis clear that 7; > 75 and that 7; dominates the high frequency response,
that is:

1

In = G TC. 0+ gm B Ron,

(6.149)

This equation indicates one of the most important trends for this type
of amplifier: the larger the mid-frequency voltage gain, —g., R, the
smaller the bandwidth of the amplifier becomes; a direct result of the
Miller effect.

Example 6.4.3 The amplifier of figure 6.50 a) is known as the common-base
amplifier. Determine:

1. The voltage gain in the mid-frequency range;
2. The current gain in the mid-frequency range;
3. The input impedance in the mid-frequency range;
4. An estimate for fy.
Solution:

1. In order to determine the hybrid-= parameters, namely r, and g,,, we

need to determine the bias collector current of the BJT. Fortunately, the
equivalent circuit for the DC calculations is the same as that presented
in figure 6.41 b). Therefore g, = 40 mA/V and r, = 5 kf). Since
the DC blocking capacitors are short-circuits in the mid-frequency range
and since, for AC signal analysis purposes, V¢ is modelled by a short-
circuit to ground, the equivalent circuit for AC analysis is as shown in
figure 6.51 a). Replacing the transistor, in figure 6.51 a) by its hybrid-
7 equivalent circuit we obtain the small-signal equivalent circuit for the
common-base amplifier shown in figure 6.51 b).
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4T %
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Figure 6.51: Common-base
amplifier. a) Equivalent cir-
cuit for AC analysis.

b) Equivalent circuit for
small-signal AC analysis.

Figure 6.50: Common-base amplifier.

The voltage gain A, = v, /v, is given by

Av — EO_ X Eﬂ
Vin Vs
_ —0m Urx RIL ~ Zin
B —Un Zin + Rs
= R, x ——ZL— (6.150)
- Im L Zzn + Rs ’
where
R, = Ri||Rc 6.151)
3.75 k2

and where Z,,, is the input impedance of the amplifier.

From figure 6.51 b) it is clear that Z;,, results from the parallel connec-
tion of Rg with Z;,,,. Z;,, is the impedance looking into the emitter
of the BJT with the base connected to ground. Figure 6.52 shows the
equivalent circuit for the calculation of Z;,,_. From this circuit we can

write:
Ut
Zina = -
1t
-UT(

v
~ 2 — G T

T
1+ gmrz
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Figure 6.52: Equivalent cir-
cuit for the calculation of
Zin,-
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1
~ — since gy rr = 8 >> 1 (6.152)

Im

= 250

Now eqn 6.150 gives Ay = 28. Note that, this gain is significantly
smaller than that obtained for the common-emitter, a result of the low
input impedance of the amplifier in comparison with the source output

impedance.

2. Figure 6.53 shows the equivalent circuit for the calculation of the current

Im U

Zin

Figure 6.53: Equivalent circuit for the calculation of the current gain A,;.

gain A; = i,/is, where the voltage signal source has been replaced by

its equivalent Norton model. The gain can be calculated as follows:

Ai = Z—OX E—l—n-
Vin 1s
= 9mUr zS(Zifl”Rs)
—Ur 1s
= gm (Zin||Rs) (6.153)
= 0.75

For the common-base amplifier, the current gain is always less than
unity. In fact, if R; and Rg are much larger than Z;, , then we have
(Rs||Zin) ~ Zin, and, under this condition we can write the current

gain as:

Aimacc = Im Z'ina
ImTr
gmTr+1
g

- (6.154)

5+l

which can approach but never achieve a value of unity.
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3. The amplifier input impedance is Z;, = Z;,,||Rg = 23 2. Note that
this impedance is very low.

4. Figure 6.54 shows the equivalent circuit of the common-base amplifier

R, Gm Un

Rg

Vs

Figure 6.54: Equivalent circuit at high frequencies.

at high frequencies where we can identify two capacitors. We assume
r =~ 0. The first time constant is that associated with C .. The resistance
seen by this capacitor is:

Req, = Zin||R:=199

and 1y = (Z;n||Rs) Crr = 0.2 1s.
The second time constant is associated with C,. The resistance seen by
this capacitor is:
Reg, = R, =375kQ
and 72 = R} C, = 7.5 ns. The estimate for fy is given by:

1
fu = ST (6.155)

= 20.6 MHz

This is much greater than the 4.6 MHz value of the common-emitter amplifier.
This is because the Miller effect does not operate on C,.

Example 6.4.4 The amplifier of figure 6.55 a) is called a common-collector
(or emitter follower) amplifier. Determine;

1. The DC bias voltages and currents of the circuit;
2. The voltage gain in the mid-frequency range;
3. The input impedance in the mid-frequency range;

4. The output impedance in the mid-frequency range;
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Vee (10V)

R,

(20 k5)
Ry Cp
C
v (10pF)
R Ry

R E

(20 ké) (4.3kQ2) (15 kQ)

Figure 6.55: Common-collector amplifier.

5. The current gain in the mid-frequency range. For this calculation assume
that R, = 40 k€.

Solution:

1. Figure 6.56 shows the equivalent circuit used in the DC analysis. As-
suming that Vgg ~ 0.7 V and that I ~ 0, we can write:

Vee
L = —— 6.156
! R+ Ry (6.136)
= 0.25mA
The voltage at the base of the transistor is given by:
VB = LR (6.157)
= 5V
The voltage across Rg can be calculated as follows:
Ve = Vg—Vag (6.158)
4.3V
Hence the emitter current is given by:
Ve
I, = — 6.159
E Rs ( )

1mA
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Figure 6.57: Common-collector amplifier. Equivalent circuit for small-signal
AC analysis.

The collector current I is approximately the same as /g and is equal
to = 1 mA.

2. Figure 6.57 shows the small-signal equivalent circuit for the mid-frequency
range AC analysis. The voltage gain, 4,, = v,/V; can be calculated as

follows:
A, = Yo n
Vin Us
_ _Rpio_ Rp||Zi,
RlEio—i-’Uﬂ- R, + (ZinaHRB)
! Vg
_ Ry (3 + gmor) . Rs|Zin,
RIE (%{L + gmvﬂ) + Uy Rs + (Z“la HRB)
f 1 Zzn
it=yrl gmva Tr +RE(/8+ 1) Rs + (ZlnaHRB)
w == Rs = Ri|R (6.161)
T = 10k
Ry = Rg||Rr (6.162)
= 3.3kQ
REHRL
Zin, 1s the impedance looking into the base of the amplifier as indicated
= in figure 6.57. Figure 6.58 shows the circuit for the calculation of Z;,,_:
Figure 6.58: Equivalent cir- Zin = ﬂ
cuit for the calculation of : bt

.
Zin,- vz + R 10
’U_.,r
T
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Figure 6.59: Circuit for
the calculation of the output
impedance.
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vr + Ry (%f + gmv,,)
= o Tr
= r+RE(B+1) (6.163)

676 kQ

From eqn 6.160 the voltage gain A, is found to be 0.95. In the common-
collector amplifier the voltage gain can approach (but is always less than)
one.

3. The input impedance of the amplifier, Z;,, as indicated in figure 6.57 is:

Zin = RB||Zin,
~ Rgp (6.164)
10 kQ

. The circuit of figure 6.59 shows the equivalent circuit for the calculation

of the output impedance.

Lo = — (6.165)
1t
y Un
v = —vr-Rp" (6.166)
. Ut . "
it = —IE — le
- Rf’—f - ;1 . (6.167)
E £
Rz = RslR, (6.168)
= 9620

Solving eqns 6.166 and 6.167 in order to obtain Z,, as given by eqn 6.165
we obtain

rr + Ry

Z, = /EH<__5+1) (6.169)

= 251Q

. Figure 6.60 shows the equivalent circuit for the calculation of the current

gain, A;:

4 =

ZS

io Vin
Vin s

9m Un + 2=

= S Tx X (Rs||Zin)

Zinﬂ Y

Tr

= Dl (Ril|2Ze) (6.170)

ing

= 23
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Figure 6.60: Equivalent circuit for the calculation of the current gain.

The common-collector amplifier is characterised by a high input impedance,
a very low output impedance and a voltage gain close to unity. The current gain
is, however, larger than unity. In fact, from eqn 6.170 we can observe that if
Rs||Zin = Z;y, then the current gain can be as large as 8 + 1. This circuit is
often used as a buffer or as the final stage of a circuit composed of a cascade
or chain of amplifiers.

6.4.5 The differential pair amplifier

All the configurations discussed above can be implemented with IGFETS in-
stead of BJTs. The analysis of such configurations follows the same principles
discussed previously. However, the IGFET is used almost exclusively in in-
tegrated circuits where large DC blocking capacitors are difficult to fabricate
because of their large physical areas. A circuit which overcomes this problem
is the differential pair, a very important circuit in electronics which forms the
basis of the differential inputs of op-amps, for example. The circuit configura-
tion with IGFETS is illustrated in figure 6.61 a).

It can be seen that this configuration comprises two transistors with both
sources connected to a current source Ig. This current source biases these two
devices and it is usually connected to a negative voltage source, —Vgg. The
drain of each FET is connected to an identical resistor represented by Rp.

For this circuit we can observe that there are two input terminals, V;,,, and
Vin,» and two outputs represented by V,; and V2. Figure 6.61 b) illustrates
this circuit in common-mode operation. The term common-mode arises from
the fact that both inputs are driven by the same voltage, V... Let us assume first
that V, is zero. From symmetry it is reasonable to conclude that the current
Ig is equally divided between the two branches of the differential pair and
that the drain current of each transistor is equal to I/2. Assuming that both
transistors are operating in the saturation region this means that there is a bias



216 6. Basic electronic amplifier building blocks

Vo (10V)

; =
CD (fmA) Io

| (=5V)

_VSS _VSS
c) d)

Figure 6.61: Differential pair. a) Implementation with IGFETs. b) Common-mode operation. c)
Differential-mode operation. d) Equivalent differential-mode operation.
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voltage Vs, for each transistor which satisfies the following equation:

I 1, W

Q 2
IDSQ = 7 = 5 kn —i— (VGSQ - VTh) (6.171)

where Ips,, is the drain bias current of each transistor. Assuming Vrp, =1V
and k,, % = 0.2 mA/V?, we can calculate the bias voltage VGSQ as,

I
Vose = Vrnt | (6.172)
kn T
= 26V
For each transistor the drain voltage is:
I
Vo=V = Vpp—-FEp —;Z (6.173)

= 4V

If now we increase V; to 0.5 V, the symmetry of operation of the circuit is main-
tained. Hence, the current I is still equally divided between the two branches
of the circuit which means that the gate-source voltage of both transistors is
equal to Vgs, (as given by eqn 6.172) and the output voltages Vo3 and Vo
maintain their values (as given by eqn 6.173). This means that the output volt-
ages of the differential pair do not vary with common-mode voltages, that is,
the differential pair does not respond to common-mode input signals.

Let us consider now the situation described in figure 6.61 c¢) where an input
voltage signal is applied across the two input terminals. This situation is equiv-
alent, from an electrical point-of-view, to that shown in figure 6.61 d) where
the voltage signal v, is replaced by two signals sources with symmetrical volt-
age values: +v,/2. In this situation the differential pair is said to be operating
in the differential mode i.e:

Us

Vot = Vosg + 5 (6.174)
Vs

VgsZ - VGSQ - —é— (6175)

This alters the balance of currents in the two branches of the circuit. The drain
current of (); increases while the current of (J, decreases by the same amount.
The currents I 451 and I35 can be quantified as follows:

1, W Us 2

L kT (Vase + > - V) (6.176)
1. W Vg 2

Lyso 3 kn T (VGSQ -5~ VTh) (6.177)

Subtracting the square root of these two drain currents we get:

T w
VIt — VI = \/ 5 Fn 70 (6.178)
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but the sum of the two drain currents is equal to Ig:
Iys, +14s, = Ig (6.179)

Solving eqns 6.178 and 6.179 in order to obtain I3 and 1449 it can be shown
(see problem 6.12) that:

I W v, Yok, W
Iy = 7+\/IQ1€,LL > 1——10_ (6.180)
Ig [, W v %k, &
L = 2 \JIgk, — =2 41— "L 6.181
ds2 2 QT 79 Ig 6.181)

From eqn 6.171 we find that;

kn —?:/— = —i—i (6.182)
(Veso — Vrn)
Using this result in eqns 6.180 and 6.181, we obtain:
Ig Io Vs vs/2 2
R e A

I I, ) 2 2
Jgo = 2@ 7 \/1—(—L/—) (6.184)

2 Vase — Vrn 2 Vesqg — Vrn

Figure 6.62 shows the variation of the drain current of each transistor, nor-
malised to I, with the variation of v normalised to Vgs, — Vrp. From this
figure we observe that for v, = 0V, Ig is divided equally between I, and

0.2

Figure 6.62: Large signal operation of the differential pair for differential input
voltage vs.
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I4s2 as mentioned previously. Also, for [vs| ~ 1.4 (Vgs, — Vra) the current
Ig can be fully switched to either of the branches of the differential pair. For
this situation one of the transistors conducts I while the other is cut-off. From
this figure we also observe that for values of |vs| < 0.4 (Vgs, — Vrn) the op-
eration of the differential pair is approximately linear. This conclusion can also
be inferred from eqns 6.183 and 6.184 where, for |vs| << 2(Vgs, — V),
they can be approximated as follows:

Iy = —IQQ +V—IQ_—V—U2—S (6.185)
GSo — Vra
Bias AC signal

Iip = 2 -2 % (6.186)
GSq — Vrh
Bias AC signal

From the definition of the FET transconductance (see eqn 6.96) we can write
the last two equations as:

I
Ij = 7Q+idsl (6.187)
Io .
Iy = 7Q+zdsz (6.188)
with
. Vs
ids1 = +om (6.189)
. Vs
tds2 = _gm—2“ (6190)

The output voltages V,;; and V5 can be determined to be:

Voo = Vbp—Rplis

I v

Vbop — Rp 7Q—gm Rp (6.191)
Bias AC signal

Voo = Vpp — Rplas

I s
Voo — Rp 7‘9 +9m Rp % (6.192)
N—— —/

N——
Bias AC signal

The differential voltage gain can be defined as follows:

Avd Vol — Vo2
s
~gm BRp (6.193)
= -7.5
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Figure 6.63: Current mir-
rors.

Figure 6.64: Improved cur-
rent mirror.
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It should be noted that the analysis presented above does not take into account
the channel width modulation effect, that is we assume that r, is infinite. If
this effect is accounted for then the differential gain is given by:

Avd = —gm (RDHTO) (6194)

Finally, it is important to note that the input impedance of the differential
pair is very high and can be approximated to an open-circuit whilst the out-
put impedance at each of the output terminals is Rp{|r,.

The current mirror

In integrated circuits the current source which biases the differential pair is
usually implemented with a circuit called the ‘current mirror’. Figure 6.63 a)
shows a basic current mirror constructed using a reference current source I ppr
and two IGFETs, (); and ()2 which are assumed to be identical. The operation
of this circuit is quite straightforward; ¢J;, with its drain and gate connected
together, conducts the current I p g and a voltage Vpg, = Vigs, is established.
Note that ()1 is operating in the saturation region. Since Vg, is equal to Vs,
Q2 will conduct Iggr as long as it also operates in its saturation region.

Figure 6.63 b) shows a current mirror where the reference current is set
by the resistance, Rgppp, together with Q;. For both transistors we assume
Vrr, =1V and k, % = 2 mA/V2. For this circuit we can write:

Irgr Rrer +Vas, —Vsg = 0 (6.195)
1, W
5kn 7 (Ves, =Vrn)* = Irer (6.196)

Solving these two eqns we get the two following solutions for Irgr
1 Vss — Vg,

kn W R%pp RpEr

\/1 + (Vss — V) 2kn % Rrpr

W p2
kn L RREF

Irer

(6.197)

that is
IREF =1.6 mA or 1.0 mA

Only one of the above solutions is valid. Irpgr = 1.6 mA is not valid since,
from eqn 6.196, we obtain a corresponding Vg1 = 0.1 V which is below the
threshold voltage. On the other hand, for Ipgr = 1.0 mA eqn 6.196 gives us
a Vs equal to 1.74 volts, clearly greater than Vpp,.

Each of the current mirrors shown in figure 6.63 has an output resistance
equal to 7, of (2. This can be improved by using the three transistor current
mirror configuration shown in figure 6.64 where all transistors are identical. In
this circuit ()2 and (3 have the same drain current which is equal to I g since
the three transistors have equal gate-source voltages Vgs, = Vgs, = Vas,.
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6.5 Bibliography

6.6 Problems

In order to have ()3 operating in its saturation region, Vpg, must be greater
than Vs, — V. Note that Q1 and Q2 operate in the saturation region since
VDS1 =2 VG51 and VDS2 = VG’51~

It can be shown that the output resistance of this current source is approxi-
mately equal to g,,, 2 (see problem 6.14).
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6.1 Design a voltage amplifier using one op-amp and two resistors with a gain
of +20.

6.2 Consider the voltage amplifier of figure 6.13. Assume R; = 1 k{2 and
R = 5 k{). Determine the voltage gain and the input impedance.

6.3 Design a circuit such that its output voltage, v, is related to its input volt-
age, Vin, DY Vo = —Vin.

6.4 Design a circuit such that its output voltage is equal to the sum of its three
input voltages, that is v, = v;1 + vi2 + Vis.

6.5 Consider the instrumentation amplifier of figure 6.18 with Ry = Ry =
Rs = R4 = 1 k2. Determine v,, as a function of vy, and vgp.

6.6 Show that the voltage transfer function of the common-emitter amplifier
at high frequencies can be written as in eqn 6.135.

6.7 Show that the resistances Re,, and Ry, seen by the capacitances Cr +
C. (1 + gm R}) and C,, are as given by eqn 6.144 and by eqn 6.146, respec-
tively.

6.8 Show that the unity-gain bandwidth, fr, for a BJT can be expressed by
eqn 6.101.

6.9 Show that the unity-gain bandwidth, fr, for a FET can be expressed by
eqn 6.102.

6.10 Consider the amplifier of figure 6.65. Determine the voltage gain, v,/vs,
in the mid-frequency range. Also calculate the amplifier’s bandwidth. Assume
Vrr, =1V, k, W/L =4mA/V2, V4 =80V, Cyq =2 pFand C,s = 20 pF.
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Figure 6.65: Circuit of problem 6.10.

6.11 Consider the amplifier of figure 6.66. Determine the current gain, 7, /%,

in the mid-frequency range. Also calculate the amplifier’s bandwidth. Assume
B =200,V4 — 00,C, =3 pFand C, = 18 pF.

Vee (10V)

I
(20k0) % l
r,#p) K

—
kj\u 10uF)
(15 k)
ok @ kQ) (4.3k8)

R

Figure 6.66: Circuit of problem 6.11.

6.12 Show that the large-signal drain currents of the differential pair of figure
6.61 can be written as in eqns 6.180 and 6.181.

6.13 Consider the amplifier of figure 6.67. Determine its voltage gain, v, /v,
in the mid-frequency range. Assume that all transistors have the same electrical
characteristics; Vrp, = 1V, k, W/L = 2mA/V2,and V4 = 80 V.
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Vop (BVv)
o

(6 k) (6 k)
Rp Rp
‘ L,
: e
o 1 Q2 -
i st
:\ + 7?) ‘__T__ =
N (31Q)
- |
f
@ |—‘—i Ex
ey (BV)

Figure 6.67: Circuit of problem 6.13.

6.14 Consider the current mirror of figure 6.68. Derive an expression to de-
scribe its output impedance and show that it is approximately equal to g,, 72 if
R>>r,.

Sp—
N |
A
R | ‘
SR |
l Ny
| |
QI\J l\“_.‘_—d ”
e

Figure 6.68: Circuit of problem 6.14.
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7.2 Lumped
versus
distributed

7 RF circuit analysis techniques

In this chapter we discuss the main tools used in the analysis of Radio-Frequency
(RF), or microwave', signals and RF linear electronic circuits.

These tools are based on phasor analysis, presented in Chapter 3, but with
the addition of another dimension: the space or physical length. This is be-
cause, as will be discussed in sections 7.2 and 7.3, in the microwave frequency
range the corresponding wavelength (1 cm to 100 cm) is of the order of the
physical size of the vast majority of the electrical components and the physical
electrical connections between them. Thus, signal propagation issues must be
considered in this type of analysis.

Another significant difference between RF analysis tools and the analy-
sis methods presented previously, is that the electrical measurements and the
characterisation of electronic devices using open- and short-circuit methods is
difficult to achieve over the entire RF frequency range which is located between
300 MHz and 30 GHz. In fact, at these frequencies short- and open-circuits are
very difficult to implement due to the existence of parasitic inductances and
capacitances in a practical measurement set-up. Such a problem implies that it
is difficult to characterise RF circuits in terms of voltage or current gains and
input and output impedances. This problem is overcome using the Scattering
parameters. These parameters, which are presented in section 7.4, are defined
in terms of travelling waves and completely characterise the behaviour of RF
and microwave electronic circuits. In addition these parameters are closely
related with practical RF measurements.

Finally, in section 7.5 we present the Smith chart which is a powerful graph-
ical method to handle the analysis, modelling and design of RF circuits. We
also discuss, in detail, the problem of impedance matching using transmission
lines and the uses of L-section based circuits.

In essence, the analysis of electronic and electrical circuits presented in the
previous chapters uses the concept of the phasor, where the electrical entity
considered (voltage or current) depends only on the time dimension for a cer-
tain phasor angular frequency, w.

v(t) = VReal[e!*] (1.1)

ITraditionally, RF referred to signals with frequencies extending from 100 kHz to tens of MHz
and Microwaves covered a higher frequency range extending into the tens of GHz. Today, as
a result of the high frequencies used in wireless communication systems, it is common to use
the two terms "RF” and “microwave” interchangeably to refer to circuits operating at frequencies
beyond few hundreds of MHz.
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i(t) = IReal [e/1?] (7.2)

Such a definition assumes, in an implicit way, that the amplitude of the elec-
trical signal does not depend on the space dimension or, in other words, the
amplitude of the signal varies ‘simultaneously’ at any physical point of the cir-
cuit as if the propagation speed, v,, of the signal was infinite. What actually
is assumed is that the wavelength, A, of the electrical signal is so much greater
than the circuit physical dimensions that this signal occurs at the same phase
angle and amplitude, at any time, anywhere in the circuit. In other words the
circuit physical dimension is zero. This assumption allows us to consider any
circuit element, such as resistors, capacitors, and connecting cables or copper
lines in circuit boards, as lumped elements.

However, for any type of propagation medium, the propagation speed for
an electrical signal (voltage or current) is finite and is related to the signal
frequency, f, and wavelength, A, as follows:

v = Af (1.3)

Hence, assuming that v, is constant, the signal wavelength decreases as its fre-
quency increases. When the wavelength of a high frequency signal is approx-
imately equal or less than the circuit physical length, [, then the amplitude of
such a signal also varies significantly as it propagates along the circuit physical
length.

Figure 7.1 illustrates this. Figure 7.1 a) shows the amplitude of a 28 MHz
sine wave propagating along a lossless connecting cable of length 1 m. Ac-
cording to eqn 7.3 the wavelength is about 10 metres assuming v, = 2.8 x 103
m/s. This means that the wavelength is 10 times greater than the physical di-
mensions of the cable. From this figure it is clear that the signal amplitude
is almost independent of the physical dimensions of the circuit at any time.
This approximation is, in general, valid for frequency signals up to 100 MHz
for which the wavelength is greater or equal than 300 cm since the physical
dimensions of a typical circuit implementation rarely exceeds 20 to 30 cm in
total length.

On the other hand, figure 7.1 b) shows the amplitude of a 280 MHz sine
wave propagating along the same lossless connecting cable. The wavelength
is about 1 metre which is equal to the cable physical dimension. From this
figure it is clear that the signal amplitude depends not only on the instant of
time considered but also on where the amplitude measurement is taken. Mi-
crowave signals feature wavelengths which range from 1 cm to 100 cm. For
these signals the lumped concept for most circuit elements is no longer valid
and there is a need to adopt distributed models which take into account the
physical dimensions of the electrical elements.

An appropriate model for a signal phasor describing a voltage travelling
wave, such as that illustrated in Figure 7.1 b), is given by:

v(t,z) = Real [Ve?'7307] (7.4)
v(t, x) Real [e/“'V (z)] (7.5)

where

V(z) = Ve dP® (7.6)
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Figure 7.1: Propagating sine wave along a lossless connecting cable with |

1 m. a) 28 MHZ sine wave (A

10 x I). b) 280 MHz sine wave (A = ).
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7.3 Electrical
model for
ideal
transmission
lines

V4 is the amplitude, z is the physical distance and 3 is defined as the propaga-
tion constant. 3 is related to A according to the following eqn:

27
A= — (1.7)
g
and the propagation speed can be related to 8 and w as follows:
w
= —A 7.8
UP 2T ( )
w
= = (7.9)
B

It should be noted that V'(x) is a static phasor (see eqn 3.57) which represents
the phase dependence of the voltage signal on the physical length.

Example 7.2.1 Consider a signal with a bandwidth of 7 GHz which is pro-
cessed by a filter. Give an estimate for the maximum size for this filter which
allows the use of lumped models in the analysis of such a filter. The propaga-
tion speed of the signal is 2.4 x 108 m/s.

Solution: The wavelength corresponding to 7 GHz is:

2.4 x 108
A= ———— =34
7 x 109 o
Since the use of lumped models requires the signal wavelength to be about
10 times greater than the circuit size, then the maximum size must not exceed
about 3.4 mm. This can be achieved using integrated circuit technology.

In order to characterise an ideal (or lossless) transmission line in terms of an
electrical model we consider the circuit? of figure 7.2 where maximum power
transfer, from a source with an output impedance Z, to a load Z; = Z},
is intended. The transmission line electrical characteristics are such that the
impedance at its input terminals is equal to the load impedance, Z;. In this
situation the transmission line allows for maximum power transfer from Z, to
Zy, and the transfer function for the line in figure 7.2, H(f, z) must impose
only a time (phase) delay to the propagating voltage. This delay is a function
of its length. In fact, from eqn 7.6 we can conclude that:

H(fz) = V(L;%)”o‘)

= I8 (7.10)
Recall that if z(¢) and X (f) form a Fourier transform pair then we have that

§

z(t —7) X(f)e 97 (7.11)

2A single line connecting two elements represents an ideal conductor with zero physical di-
mension.
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"Transmission -
line (lossless)

Figure 7.2: Ideal transmis-
sion line allowing for max-
imum power transfer to the
load Z,.
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where x(¢ — 7) is a delayed replica of z(t) with 7 representing this time delay.

Figure 7.3 shows an ideal transmission line and its equivalent circuit model.
This transmission line can be sub-divided into N equal sections where each
one has a length A z = I/N. Each section has a capacity per unit of length of
C and an inductance per unit of length of L. From the above the impedance
which terminates the line, Zy,, is equal to the impedance seen at the input of
each section. Hence, we can write:

Zy 7y,
Zr, = Z1+5—= 7.12
L 7 (7.12)
with Z; = jwLAzx
1
d Zy = ————
an ? jwC Az

Solving eqn 7.12 in order to obtain Z;, we get
Z1+ 72} +4Z,2
7, = 1+ ; + 44341 (1.13)

The voltage transfer function between any two adjacent sections is equal and it
is given by the impedance voltage divider:

ZaZy
V(kAz) Za+ 7L
= 7.14
V([k - 1]Az) Z2 71, i (7.19
Zy+Z,
with k =1,2,..., N. From eqn 7.12 we write:
Za Z1,
—— =7 - Z 7.15
7o+ Z1 I 1 (7.15)

Using the result of eqn 7.15 in eqn 7.14, the voltage transfer function between
any two adjacent sections can be written as:

V(kAZ) | Zp—Z
Vk—1Az) 7 710

The voltage transfer function considered in a particular section of the line,
z = k Az, is given as:
V{z = kAxz) _ V{z = kAx) o Viz =k -1]Az) y
V(z =0) Vie=[k-1Az)  V(z=[k-2Az)
V{z = 2Ax) y V(z = Azx)
V{z = Az) V{z=0)

VikAz) "
= (V([k = 11Az>> 17

We can write eqn 7.16 as follows:

V(kAz) V& WP —jwigs

V([k - 1]A.’E) B /% — w2 L"’i&xz +]wL_2A_x
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N sections
46 [ i [
t t f
| I | 2,
I T i
O L | |
- | ' ' -
=0 I I ! I =1
| | a) |
LAz : LAz: : Z
A — - - - ST
p— — —1lz
C Az C Az F Zy
1 2 N
b) 2L

Figure 7.3: a) Representation of a transmission line. b) Equivalent model for
an ideal transmission line.

VIE - 2182) e (§ - S

wLAz\/L — «?L2Aa
© 4 (7.18)

If we increase the number of sections, N — o0, and decrease the length of each
section, Az — 0, in such a way that the product [ = Az N is kept constant,
then we have:

X exp |—jtan?

klim kAx = =z (7.19)

Axr—0

where z is now a continuous variable representing the physical length. Also,
we can expand the arc-tangent function in a series as follows:

1
tan_l(x) = z— 5.’53 — 2425 + ... (7.20)

Using the result of eqns 7.19 and 7.20 it can be shown (see problem 7.1) that
H(f,x) can be written as:

lim H(f,kAz) = 1xexp (—jw\/LC:c) (7.21)
Az—0

or

H(fz) = eiwVLCe (1.22)
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and

Zr = /= (7.23)

Comparing eqn 7.10 with eqn 7.22 we observe that the propagation con-
stant, 3, is equal to

8 = wvlC (7.24)

From eqn 7.22 we can relate the voltage at any point of the transmission
line, z, with the input voltage, V' (0), according to the expression below:

Vizg) = e7“VIC= y(q) (7.25)

Similarly, it can be shown (see problem 7.2) that we can relate the current at
any point of the transmission line, z, with the input voltage according to:

I(.’L‘) = e~Jvw VICz VZ(O) (1.26)
where
L
Zy = ol (1.27

Z, = y/L/C is termed the ‘characteristic impedance’ of the transmission line.
It should be noted that Z,, is real and relates only the amplitude of the voltage
propagating wave with the amplitude of the current propagating wave. There-
fore, Z, does not represent any dissipative effect along the transmission line!

The eqns derived above, for the voltage and current travelling waves, were
calculated under the assumption that the transmission line was terminated by a
load impedance Z, equal to the characteristic impedance, Z,. Under this con-
dition there is maximum power transfer from the transmission line to the load
and, therefore, the propagating signal (voltage and current) is totally absorbed
by this load. In this situation the transmission line is said to be matched to the
load.

Example 7.3.1 Figure 7.4 a) illustrates the transmission of a square voltage
pulse, shown in figure 7.4 b), through a 10 metre transmission line which is
lossless. The transmission line is matched (Z; = Z,) and is characterised
by an inductance per metre of 250 nH and a capacitance per metre of 100 pE
Determine:

1. An expression for the voltage, in the time domain, at any physical point,
z, of the transmission line;

2. The delay of the voltage across the load;

3. An expression for the current, in the time domain, at any physical point,
x, of the transmission line.
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Solution:

1. The voltage vs(t) has a Fourier transform, V,(f) given by (see appendix
A)

Vs(f) = Va Tsinc(fT) (7.28)

Since the transmission line is terminated by a load impedance equal to
its characteristic impedance, the voltage at the input of the transmission
line, V(f,z = 0), is given by:

VA “Transmission
°  line (lossless)

a) Zo

V(iz=0) = VaTsinc(fT)

(1) Zo+ Z,

J:_Vil_i - % Tsinc(f T) (7.29)

T where we drop the explicit dependency of V on f for simplicity. The
b) transmission line imposes only a time delay to the propagating voltage
V(z) and, from eqn 7.10, we can write:

Figure 7.4: a) Transmission ‘
of a square voltage pulse V(z) = V(@=0)e7"?

through an ideal transmis- _ Va.. —jBz
sion line. b) Square voltage T2 Tsine(fT)e (7.30)
pulse. From eqn 7.9 we can write [3:
2
g = 2t (7.31)
Up

where v, is the propagation speed (see also eqn 7.24):

1
Up = = (7.32)
? VIC
= 2x10® m/s
From eqns 7.31 and 7.32 we can write eqn 7.30 as follows:
v .
Viz) = 7A Tsinc(f T)e~727f VIC= (7.33)

and, using eqn 7.11 we can write the time domain voltage on the trans-

mission line as
V, t—vLC
vo(t,T) = 7“‘ rect (Tm) (7.34)

2. From eqn 7.34 we can write the voltage across the load as

vo(t, 1) = Erect(t——TLcl>

5 (7.35)

where the delay v LC'[ is equal to 50 ns.
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3. Using eqn 7.26 we can determine the current I(z) as follows:

1@ = YE=9 e
= 2‘/2 T'sinc(f T) e~ 27 VIC= (7.36)

Using eqn 7.11 to return to the time domain, we can write the current in
the transmission line as

i(t,z) =

57, rec T (1.37)

Va t(t—\/ww)

From this example it is clear that an ideal (lossless) transmission which is
matched does not introduce any distortion to the voltage and current propa-
gating signals.

When the load which terminates the transmission line is different from its
characteristic impedance (Z, # Z,) the condition of maximum power transfer
is not satisfied and parts of the voltage and current wave signals are reflected
back to the signal source. In fact, the general solution for the voltage and cur-
rent wave signals, at a given point of the transmission line, d, terminated with
a general load impedance Z, is given by the sum of two propagating waves;
an incident wave, travelling towards the load, and a reflected wave travelling
back towards the signal source. Such a situation can be expressed as follows:

V(d) = VaePt 4 Ve 9P (7.38)
N—— S——
incident wave reflected wave
Id) = I4ePT - g e P
Va . \% )
— rA eIBd _ YB e—ihd (7.39)
(o] (o]

It should be noted that there is a change in the distance reference: d = 0 is now
the load reference plane while d = [ is the distance to the signal source from
Z71, as shown in figure 7.5.

N

Source: Zy

incident wave

reflected wave <~

d=1

Figure 7.5: Transmission line with characteristic impedance Z, and un-
matched load 7y,
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The reflection coefficient, I'(d), is defined as the ratio between the voltage
of the reflected wave and the voltage of the incident wave at any location on
the transmission line, d:

Vs e% Vg _aip4

= - a0 — 04
T(d) Vi of Y, (7.40)
The voltage, V (d), and the current I(d) can be written as follows:
— Jpd E —2j8d
V(d) = Vae 1+ ¢
Va
= VaeP 1 +T(d)] (7.41)
whilst
Id) = S JM[1-T() (1.42)

o

and the impedance, Z;,(d), as a function of the distance d, is given by the
following expression:

V{d)
Zin = —=
1+ I(d)
= Z,——= 7.43
1-T(d) (7.43)
For d = 0 it is known that Z,,,(0) = Z, that is;
1+ T(0)
Z, = Zo———=
L 1-1(0)
Solving the last eqn in order to obtain I'(0), we get:
Zr -7
I, 2T(0) = 22 —2° 44
(©) 7.1 7, (7.44)

The reflection coefficient given by eqn 7.44 effectively ‘measures’ the differ-
ence between the load Z1, and the transmission line characteristic impedance
Z,. f 'y, = O then Zp = Z,. When I, # 0 these two impedances are differ-
ent. The greater the value for |I',| the greater the difference between Z, and
Z,. Setting d = 0 in eqn 7.40 and using eqn 7.44 we have

[(d) = T,e %8 (7.45)

At this point we introduce the transmission coefficient, 7'(d), which is de-
fined as the ratio between the voltage wave V (d) and the voltage of the incident
wave (see also eqn 7.40):

VaelPd 4 Vg e 784
V4 edBd
VB e 78d
V4 eiBd

T(d) =

1+ (7.46)
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that is
T{d)=1+T(d) (7.47)

The transmission coefficient is often presented, in dB, as the ‘insertion loss’,
IL(d):

IL(d) = 20 logy, |T(d)] (7.48)

Using eqns 7.43, 7.44 and 7.45, the input impedance Z,,,(d) can be written
(see problem 7.3) as a function of Zp,, Z, and 5 d:
Zr+ 32, tan(fd)

Zinld) = Zog g tan(Bd) (7.49)

0 d represents an angle which is commonly referred to as the ‘electrical length’,
where the angle 3 d = 27 corresponds to a single wavelength. Equation 7.49
shows that, at different locations on the transmission line, the input impedance
varies between being capacitive and inductive depending on the value of the
load Z;,.

Example 7.3.2 Consider a transmission line with Z, = 50 2. The load imped-
ance is Z7, = 10 Q). Determine the line input impedance for:

1. An electrical length of 45°;
2. An electrical length of 90°;
3. An electrical length of 135°.
Solution: Using eqn 7.49 for the required electrical lengths, 3 d;
l. Bd=7n/4, Z;r, = 19.2 + 746.2 QL
2. Bd=mn/2, Z;in = 250 Q.
3. Bd=3n/4,Z;, =19.2 — j46.2 Q.

7.3.1 Voltage Standing Wave Ratio - VSWR

When a transmission line is terminated by a load which is different from the
characteristic impedance there is a wave reflected from the load. With such a
reflection, we effectively have two waves travelling in opposite directions along
the transmission line; the incident wave and the reflected wave. The addition
of these two waves produces a standing wave pattern along the transmission
line which is characterised by the “Voltage Standing Wave Ratio’ (VSWR).
The VSWR is defined as the ratio between the absolute value of the maximum
voltage in the transmission line and the absolute value of the minimum voltage
in the transmission line:

|V (d)|maz

VIWR = V(@) min

(7.50)
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From eqn 7.41 we can write

|V(d)lmam = |VAI (1 + |Fo|)
V(Dlmin = [Va| 1—|To))
and the VSWR can be written as:
1+ 0|
VSWR = .
S 1= (7.51)

We now consider three very important cases:
e The matched transmission line;
e The open-circuit transmission line;

e The short-circuited transmission line.

The matched transmission line

The matched transmission line has been discussed above. For this situation
Zr = Zo, Ty = 0and Z;,(d) = Z,. It follows that the VSWR is constant
at its minimum value: 1. This is expected since there is no reflected wave.
Therefore, the wave pattern resulting from the incident wave is constant, as
shown in figure 7.6 a). For this situation the voltage signal can be written as

V(d) = Vyefd (7.52)
v(t,d) = Real [V4e/P?elvt]
= Vy4 cos(wt + 3d) (7.53)

The open-circuit transmission line

For this case we have

1— Ze
I, = lim oL =1
ZL-—)Ool—}—?;

VSWR — o

14 jZetan(@d)
Zin(d) = lim ZOZ—]_,_ZL_——
Zy~o0 Ze + jtan(8d)

Zo
= —— 7.54
 tan(3d) 759
From eqn 7.54 it can be seen that the transmission line has a capacitive
nature for 0 < d < /4. For this situation the voltage signal can be written as:

Vd) = Va (ejﬂd + e79Pd)
= 2V4 cos(8d) (7.55)
v(t,d) = Real [Vy4 (/7% + 7P%) €341
= 2V4 cos(8d) cos(wt) (7.56)

Figure 7.6 b) shows this waveform.
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Matched transmission line Z; Fl————F
d=10 d=1
 [V(d)| (Load) (source)
Vi ]
- (source) : -
d=10 d=

a)

Open-circuit transmission line

) [Vid)]

2V

- S I )
~ /_‘/-;'“/ (source)
e = - d
e BB T b)
(Load
ult, d) =N Short-circuited transmission line
_ ' 4 |V(d)]
ZVI QV:.;
0
—2V4
3 (source) d=10 d=1
g T
"R -\"‘\__3{" < ,»""d c)
NP0
(Load)

Figure 7.6: Voltage patterns on a transmission line showing standing waves versus time and distance (left)
and magnitude of the standing wave voltage (right). a) Matched transmission line (no standing wave). b)
Open-circuit transmission line. ¢} Short-circuited transmission line.
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The short-circuited transmission line

For a short-circuited transmission line we have:

Z, = 0
r, = -1
VSWR — o0
Zin(d) = jZ,tan(Bd) (.57

From eqn 7.57 it can be seen that the transmission line has an inductive nature
for 0 < d < A/4. For this situation the voltage signal can be written as:

Vd) = Va (ejﬂd _ e—jﬂd)

= 2V sin(8d) (7.58)
v(t,d) = Real[V4 (e]ﬂd - emd) 7t
= 2V, sin(3d) cos(wt + 7/2) (1.59)

Figure 7.6 c) shows this waveform.

Example 7.3.3 V; is a DC voltage source with a resistive output impedance,
Zs, applied to an open-circuit transmission line with characteristic impedance
Z,. Assuming that the source is switched-on at ¢ = 0, show that the voltage at
the output of the transmission line tends to V; as t — oc.

Solution: We refer to figure 7.7 where we illustrate the following ‘transient
analysis’; When the source is switched-on the voltage source V; only ‘sees’
the voltage divider formed by Z; and Z, since the voltage waveform has not
yet travelled along the transmission line. Hence, the voltage at the input of the
transmission line (z = 0) is given by

Zo
Zo+ Zs

1

Vs 1+7r

where r = Z;/Z,. The voltage described by eqn 7.60 propagates along the
transmission line. T'p is the propagation time which is the time taken by the
voltage to travel from z = O to x = [ (or from z = [ to z = 0). Since the
line is terminated by an open-circuit (I', = 1), this voltage is totally reflected
back towards the source as illustrated in figure 7.8. Now, at a time instant
immediately after Tp, i.e. t = T;ﬁ , the voltage at x = [ is

1
1+7r

When the voltage propagating back to the signal source reaches z = 0 it sees
a reflection coefficient I'g given by

Viz=0) = V,

(7.60)

V=1 = 2V, (7.61)

Zs_Zo
r =
° Zs+ Z,
r—1

= (7.62)
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Z, =0 =1
);
Ve Z,
1 o
V«m.—q ]

Figure 7.8: Voltage versus
the distance att = T}i' .
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D Va(r=1)?

(1+r)° Lo (r—1)?
(1+r)3

Figure 7.7: Open-circuit transmission line driven by a voltage source. Tran-
sient analysis. — Transmission; - - - Reflection.

Hence, a fraction of this voltage is reflected back towards the open-circuit with
a value given by
1 r—1 _ r—1
*l+rr+1  °(r+1)?

(7.63)

and so on, as shown in figure 7.60. The total voltage at x = [, as ¢ increases,
is given by the addition of the partial voltages, that is:

o 1 r—1  (r—1)2
Viz=1) 2V, <T+1+(r+1)2+(r+1)3+...)
2V, = [(r—1 k
- r+1k§<r+1) (769

The last eqn is the sum of an infinite geometric series (see appendix A) whose
value is given by:

2Vs r+1
V=1 = 12

= Vs
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Figure 7.9 shows the voltage at = = [ versus the time normalised to T'p for three
values of r; 4, 1 and 0.25. We observe that in all situations the voltage tends
to Vi as predicted by our discussion above. Note that for » = 1 (corresponding
to Zs = Z,) the voltage V(z = [) equals V; for ¢ > Tp. This is because the
reflected voltage wave is totally absorbed by Z, since the line is matched to the
signal source impedance.

Viz=1)
Vel oo
t/Tp
5 0 15
a)
Viz=1)
Vs
t/Tp
15
t/Tp
15

Figure 7.9: Load voltage at
x = [ versus the time nor-
malised to Tp. a)r = 4. b)
r=1c¢)r =025

Example 7.3.4 We want to determine the location of a failure in a coaxial
cable with a length of 430 metres. In order to identify this location we send a 5
s pulse through the cable and we monitor the reflection. Figure 7.10 a) shows
the waveform monitored at the input of the cable. Determine the location of
the fault knowing that the cable has an inductance per metre of 250 nH and a
capacitance per metre of 100 pF. ‘

Solution: The waveform of figure 7.10 a) can be seen as the sum of two pulses
as shown in figure 7.10 b) where we clearly identify the pulse which was sent
and the one reflected back. Since the reflected pulse has the opposite polarity
of that transmitted we conclude that the fault is a short-circuit (I';, = —1).

The propagation velocity is v, = (LC )_1/ 2 and therefore we calculate the
location of the fault at point = given by:

z = v71p
= 300 m

This technique of fault diagnosis is commonly used and is known as Time
Domain Reflectometry (TDR).

7.3.2 The A/4 transformer

Another very important transmission line case, widely used in practical appli-
cations, is the quarter-wavelength transmission line also known as the quarter-
wave transformer. This transmission line has an electrical length of 5d =

% Vv
Transmitted
5 t ) t(us)
T T T T T 7 | T T T
10 5 10
Reflected

2Tp

a) b)

Figure 7.10: Waveforms monitored at the input of a faulty cable.
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(2m/X) x (A/4) = m/2. The input impedance for this transmission line can be
calculated by rewriting eqn 7.49 as:

Z .
tan(8 d) + JZO

Zin(d) = 2,25 , (1.65)
tan(8 d) + ]ZL
and if we let 8d — /2 we get:
Z2
Zin(d=M4)= == (7.66)
ZL

Equation 7.66 reveals the importance of the quarter wave transformer which is
the ability of transforming a real impedance (Z ) into another real impedance
given by Z2/Z . This result is very important since it allows the matching of a
load (Z1) to a transmission line with a characteristic impedance Z, 4 different
from Zj,. The matching is achieved using a quarter-wave transformer with a
characteristic impedance Z, = v/Z,4 4, as shown in figure 7.11. In order to
understand how this matching process is achieved we refer now to figure 7.12
where we perform a ‘transient analysis’: Let us suppose a normalised travelling
voltage wave along the transmission line, with Z, = Z, 4, towards the load
Zr,. For the sake of simplicity we consider the phase of the voltage wave to
be zero at d = (. When this wave reaches the quarter-wave transformer with
Z, = Z,p for the first time it ‘sees’ only the impedance Z,p since it has not
travelled along the quarter-wave transformer and it has not reached the load
Zy. Hence, a partial reflection, I" 45, and a partial transmission, 745, take
place at the interface between these two transmission lines:

ZoB - ZoA

r = — 7.67
AB ZoB + ZoA ( )
2ZoB
Tap=14+T == 7.68
AB AB= (7.68)

This partial transmitted wave travels a distance d = A/4 to the load where a
fraction is reflected back towards the line Z, 4:
_ Zp —ZoB

ZL + ZoB
This last reflected wave arrives to the transmission line Z,4 with an ampli-

tude —T4p I'gr. It should be noted that the round trip along the quarter-
wave transformer corresponds to 180 degrees (or 7) phase shift. A fraction

I'sr (7.69)

- O
Zon Zy = (ZonZp)* z,
.
- A / 4 -
Zoa

Figure 7.11: Load matching using a quarter-wave transformer.
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d=0 d=3%
R
Zoa Zop ZL
— -

Time

 Taplpy exp(jfd ~ jm)
/\J ~TapTpTpa exp(—jfBd)

~TaglpL Tpa

 ~TapTpal%y exp(ifd — jm)

e

R

b .
TpaTasTaal%hy,

TapT%,T%, exp(—jBd)

TAB T5a Ty, exp(j8 — jnd)

e

~TpaTanThaT%s

Figure 7.12: The quarter-
wave  transformer load
matching: transient analy-
SIis.

—Tap I'pr, Ty, of this wave travels back to the signal source while a fraction
~Tag I'pr, I'pa is reflected back to the load. For this analysis the following

eqns apply;

I'pa=-Tas (7.70)
2ZoA
Topg = ——m—— 7.71
BA ZoB + ZoA ( )
ZL - ZoB
I'p = ——— 7.72
BL T 70+ Zon 772

The total reflected wave at the boundary between the transmission line Z,, 4
and the quarter wave transformer can be calculated by summing ail the partial
reflections (see also figure 7.12):

Tiot = Tap—TapTBaTlBL(1-TBrTa+T5,T54—..)

o<
= Tap—TapTBaAl'BL z(_FBL Tpa)k
k=0

(7.73)

Equation 7.73 represents the sum of an infinite geometric series (see appendix
A) whose value is

r g — I'erTaTBA
tot B 1+FBLFBA
T 1+Tg T —TI'grTapT
_ 4B(1+TBrl'sa) —T'erTanTpA (7.74)
1+T'g'BA

It can be shown (see problem 7.7) that the last eqn can be expressed as:

22, — 7,4 71
r = ZoB —oATh 7.75
tot ZgB + ZOA ZL ( )
which vanishes if
ZoB =V 2ZoaAZL (7.76)

In other words, if Z,p = v/Z,4 Z1, the reflections at the boundary between
the transmission line Z, 4 and the quarter wave transformer add to zero and the
transmission line with Z, = Z, 4 is matched.

Example 7.3.5 Consider the load matching problem shown in figure 7.12. De-
termine an expression for the incident wave and the resulting reflected wave
within the quarter-wave transformer for Z,g = \/Z,4 Z1..

Solution: The total incident voltage, Vi+ (d), in the load Z[, can be obtained by
summing the partial incident voltages:

Vi) =

3

e P4 Typ [1 =Tpalpr + TpalpL)? — .. ]

= e_jﬂd Tap Z(—FBAFBL)k ) 0< d< )\/4 (7'77)
k=0
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It is known that

o0 1

E:rk = — ,rl<1 (7.78)
1—-7r

k=0

Since | —I'gal'sr| < 1 we can write

. T
Vid) = e 4B g<d<A/4 7.79
where
TasB _ 2Z,8(Z1L + ZoB)
1+TIpal'sL (Zt+ ZoB)(Zoa+ ZoB) + (Z1 — ZoB)(Zoa — ZoB)
_ ZwB(ZL + Z,B)
o ZrZoa + ZOZB (7.80)
Since ZoB =1/ ZoA ZL,
TaB 1 Zy
—_— = =11 7.81
1+T'pal'sL 2 ( + ZOA> (781)

and the incident wave can be written as:

Zr
ZoA

a0 1
VHd) = e384 5 (1 + > ,0<d< ) /4 (1.82)

Similarly, the total voltage reflected from the load is obtained by summing all
the partial reflections:

V7 (d) = P49 TypTpr [1 —Tpalsr + (TalsL)? — .. ]
= 6Jﬂd_j7r TABFBL Z(_FBAFBL)k ) 0 < d < )‘/4 (783)
k=0
Using eqn 7.78 we obtain:
_ iga—jn  Lasl'BL
Vo (d) = ¢IPd-im _—AB- 58
i (@) ¢ 1+Tpal'BL
_ id—jn L1 = ZoB
2ZoB
oy 1
_ sl 2L L0<d<A4  (1.84)
2 ZoA

7.3.3 Lossy transmission lines

In practical transmission lines there is power dissipation when a wave signal
travels along a transmission line. These dissipative phenomena are usually
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N sections
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Figure 7.13:  Electrical

model for a lossy transmis-
sion line.

Figure 7.14: a) Attenuation
constant versus the angular
frequency. b) Propagation
constant versus the angular
Jfrequency.
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due to the finite conductivity of transmission lines and losses in the dielectric
around them. A more realistic model for a transmission line than that of figure
7.3 is given in figure 7.13 where the resistance per section RAz and the con-
ductance per section GAz account for the finite conductivity and the dielectric
losses, respectively. If we assume that the transmission line is matched, that is,
that all the power arriving to the load, Z, is absorbed, it is possible to show
that (see example 7.3.6 and exercise 7.8)

Viz) = e 7% V(0) (7.85)

v = a+j8=+V(R+jwL)(G + jwC) (7.86)

I(z) = e° @ (7.87)
_ R+ jwL

Z, = ,/—-—G il (7.88)

where - is called the complex propagation constant, « is the attenuation con-
stant (in nepers® per metre) and 3 is the propagation constant, as before. In
general, the characteristic impedance and the complex propagation constant
are frequency dependent. It can be shown (see problem 7.9) that at low fre-
quencies where R >> w L and G >> w C, we can write

arr =~ VRG (7.89)
1 R G
P = wg (C\/;+L\/E> (7.90)
/R
Zopp = G (7.91)
and at high frequencies where R << w L and G << w C we can write:
1 /C /L
agrp ~ 5 <R f + G 6) (7.92)
Bur = Lc (7.93)
L
ZOHF = 6 (794)

Figure 7.14 shows typical variations of the complex propagation constants {(«
and (3) with the angular frequency, w. Since the propagation velocity (w/3)
and the attenuation constant («;) are frequency dependent we can expect, in
addition to amplitude attenuation, linear signal distortion (see figure 7.15) in
a lossy transmission line. This is because the different frequency components
of a propagating signal will travel at different speeds and will experience dif-
ferent delays when arriving at the load. Also, further distortion can arise from
different frequency components experiencing different attenuation levels (see
also section 3.3.4).

3Neper is a unit expressing the ratio of two numbers as a natural logarithm where the attenuation
in nepers is 1/2 In(output/input). Attenuation of one neper approximately equals 13.5% ~ -8.7 dB.
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Fortunately, most practical transmission lines exhibit low loss. In fact, if
these losses were very high the transmission line would be of very limited use.
Hence, in practice the propagation constant and the characteristic impedance
can be characterised by their high frequency approximations expressed in eqns
7.92 to 7.94, for which the signal propagation is distortion free.

Example 7.3.6 Show that for a matched lossy transmission line we have

Viz) = e" V(0) (1.95)

Solution: Assuming that the transmission line is terminated by a load Zj, such
that the impedance looking into each section is also given by Z; we can write:

Z5Zy,
7y = Zi+ o2 7.96
L S = (7.96)
with
Zi = (R+jwL)Az
1
Zh =
2 (G+jwC) Az
Solving eqn 7.96 in order to obtain Zy, we get
7, = Zi+\ZE+ 47,7,
2
. R+jwlL
(R+jwl)Az \/(R+ij)2Ax2 +AgHeE
= > + 5 (7.97)

Under the assumptions mentioned above, the voltage transfer function between
any two adjacent sections is equal and given by the impedance voltage divider:

Z3 21,

V(kAzx) Zy+ 7y,
= 7.98
V1A T A7 7o

. Z+2zy,
with £k = 1,2,..., N. From eqn 7.96 it is known that:
Zé Zy 1 /
= -z 7.

i il (7.99)

Using the result of eqn 7.99 on eqn 7.98 the voltage transfer function between
any two adjacent sections can be written as:

VkAz)  Z.-7Z]
V(k—-1Az) Zr
JB+jwL)? Az? +4EH2L — (R+jwl)Ac

\/(R+ij)2Ax2+4§—ij%+(R+ij)Az
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The last eqn can be written as:

4
VkAz) (\/1+<R+J'M><G+J’”C)A“2 _1> (7.100)

V(k-1]A N
(l |az) (\/1 + e Do oEsE T 1)

We use now the variable W = (R + jw L)(G + jw () /4 to simplify the
analysis. Hence, we can write eqn 7.100 as follows:

VikAz) 1t waz 1
V([k — 1]Az) /14 1

= (VWAz2+1 - VIWAZ2)? (7.101)

The voltage transfer function considered in a particular section of the line, z =
k Az, is given as:

V=kAz) [ V(kAz) \F
Ve=0) (V([k - 1]Am)>
= (VWAZ?+1 - VWAz2)?* (7.102)

The last eqn can be expanded as a Maclaurin series as follows:

Viz=kAz) _ » (VWAZ)?
/ 3 / 4
+ (2k— 81&5% + (16k* — 16k)%
/ 5
+  (80K® — 32k* — 181&)(—“;—‘“)— +... (7.103)

If we increase the number of sections, that is, N — oo, and if we decrease the
length of each section, Az — 0, in such a way that the product [ = Ax N is
kept constant, then eqn 7.19 applies and the last eqn can be written as shown

below:
_ 2 3
zlir{% —V‘(f(;fﬁf ) 1-2vVWz +4 ——(\/Zx) + (—8)———(\/237)
4 5

+ (16)@,’3—) + (=s2)} v;‘”) +
_ i (=2VWax)"
N = n!
— 6_2 \/Wz
= ¢ (7.104)

with «y given by eqn 7.86. Hence we have
V(i) = e 7°V(0) (7.105)
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Example 7.3.7 Prove that for a lossy transmission line with RC = LG the
signal propagation is distortionless.

Solution: The complex propagation constant for a lossy transmission line can
be expressed as:

y = \/(ij)(ij) (1+ ﬂ%) (” aw%)

: (R G RG
= J‘”VLC\/l‘J(E+E)_m

Using the condition RC' = LG we get

R R2
= jwvILC (1 —]—RZ)
. . R
= jwvIC (1 — ]—————) (7.106)
wlL
that is
C
a = R\/; (7.107)
8 = wVLC (7.108)

and because « is constant and does not depend on the frequency and 3 varies
linearly with the frequency, all signal frequency components are equally attenu-
ated and they all travel at the same propagation velocity, (LC) —1/2  effectively
resulting in distortionless transmission.

When a lossy transmission line is terminated with a load impedance Zj,,
the solution for the voltage and current wave signals, at any position of the
transmission line, d, is given by:

Vd) = Vae?d 4+ Vge (7.109)
—— ———
incident wave reflected wave
Id = I, - Ige™™ (7.110)
_ Va4 VB —va
= Z e Zo e (7.111)

The reflection coefficient at any point d on the lossy transmission line follows
the definition presented in eqn 7.40, that is:

—vd
rd) = ——‘{j’;w = Loe™ 2 (7.112)
r, = ZL___Z_‘Z (7.113)

Zy+ Z,
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Dielectric ¥
substrate Strip
conductor

Figure 7.16: Geometry of
microstrip lines.

- and the input impedance is now given by (see problem 7.10):

Zy, + Z, tanh(y d)
' _ 7.114
Zzn(d) ZO Zo+ 21 tanh(’)' d) ( Y

7.3.4 Microstrip transmission lines

There is a large variety of transmission lines including coaxial cables, striplines,
and several types of waveguides. However, the microstrip line is one of the
most popular types because it is easily fabricated using printed-circuit tech-
niques and because it is easily integrated with other active and passive mi-
crowave devices such as integrated circuits operating at high frequency (RF),
microwave connectors, etc. Here we introduce the reader to the basic concepts
of microstrip transmission lines. Detailed studies of these lines and other trans-
mission line structures have been presented by Edwards and Steer [6] and also
by Fooks and Zakarvicius [7].

The geometry of microstrip transmission lines is illustrated in figure 7.16.
A strip conductor of width W and thickness ¢ is printed on a grounded dielec-
tric of thickness d and relative permittivity €,.. When the thickness of the strip
conductor is small (¢/d < 0.005) the characteristic impedance can be calcu-
lated, given the physical dimensions of the microstrip line, as follows:

6 d W o W

Ty =~ (7.115)
120/ \/Ee it W >
W/d+1.393+0.667 In(W/d+1.444) d

where ¢, is the effective dielectric permittivity expressed as:

er-+-1_+_e,.—1>< 1
2 2 V1+12d/W

The effective dielectric permittivity accounts for the fact that whilst part of the
wave propagation takes place within the dielectric substrate (e, €,) some occurs
through the air (¢,).

For a given value of d it is necessary to calculate W to achieve correct
electrical parameters. Hence, for a given characteristic impedance, Z,, and
dielectric constant €., the W/d ratio can be calculated as follows:

€ (7.116)

W 8ed W
% 2
Y~ ZIB-1-m@2B-1
= 2 n(2B ~ 1)
-1 61 ,
+ = (mB-1)+039 - 20 it ¥ > 207.118)
2¢, €r d

where

Zy [ 41 -1 0.11
A4 = 22,7 r 2 :
oV o +€T+1(0 3+ ET) (7.119)
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and
37
B T R—— 7.120
37, (7.120)
The propagation constant 3 can be calculated according to;
W
g = = Vee (7.121)

with ¢ representing the speed of light in vacuum.
The attenuation due to the dielectric loss can be determined as follows:

wer(e. — 1) tan(6)

2c/ec(er — 1)

with tan(J) representing the ‘loss tangent’ of the dielectric given by:

Qg nepers/m (7.122)

tan(d) = —2 (7.123)

WeEp €

where o4 is called the total effective conductivity of the dielectric.
The attenuation due to losses in the stripline conductor can be determined
as follows:

"-’NO/(2UC)
Zo W

(823

nepers/m (7.124)

where p, = 47 - 10~7 Henry/m is the permeability of free-space and o is the
conductivity of the stripline conductor.

Example 7.3.8 Determine W for a microstrip transmission line to give Z, =
50 2. The substrate thickness is 0.127 cm and the relative permittivity is 2.20.
For such a line determine also the effective dielectric permittivity.

Solution: Taking the initial guess that W/d > 2 we use eqns 7.118 and 7.120
to obtain;

B=799 , W/d=3.08 (7.125)

Note that the value obtained for W/d is greater than two. Otherwise, it would
be necessary to use eqn 7.117, valid for W/d < 2. W = 3.08d = 0.39 cm.
From eqn 7.116 we obtain €, = 1.87.

Scattering parameters (S-parameters) were developed in the early 1960s for the
purposes of high-frequency transistor assessment and measurements. These
parameters are defined according to the voltage and current wave signal defini-
tions presented previously in the context of lossless (ideal) transmission lines.
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Figure 7.17: Incident and
reflected waves in a trans-
mission line.
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Let us consider the voltage and current wave signals propagating in an ideal
transmission line as shown in figure 7.17, for which we shall use the following

notation:
V)=V, g0
V7 (x) = Vyetife
1% }
I(z) = Z—': e~7P"
I (z)= ‘;—': etibe

(7.126)
(7.127)

(7.128)

(7.129)

where VT (z) and V™~ (z) represent the incident and reflected voltage waves,
respectively. I7(z) and I~ (z) represent the incident and reflected current
waves, respectively. Z, is the characteristic impedance of the lossless trans-

mission line. It is now possible to write

Viz) = Vi@)+V (2)
+(z ~(z
I(z) = If(z)-I (2)= Vzi = Vzi :
_ V=) _ I"(x)
F(z> - V+(.’13) - I+($)
Using the following normalisations

ile) = VZ,I(z)
and defining a(x) and b{x) as indicated below:

V*ix)

o) = D VEIw)
bz) = Vgé_f)wz_of-(x)

v(z) = a(z)+b(x)

i{z) = alz)—blz)

b(z) = T(z)a(x
1 ) 1
a(z) = §[v($)+2(x)]=2\/Z—[V(I)+Zof(ir)]
and

(7.130)
(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)

(7.137)
(7.138)
(7.139)

(7.140)

(7.141)
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Figure 7.18: S-parameter definition for a two-port circuit.

For a two-port circuit (see figure 7.18) we have now a4 (l1) and by (I;) rep-
resenting the incident and reflected waves, respectively, at port one located
at z; = ly. Similarly, a2(ls) and b2(lz) represent the incident and reflected
waves, respectively, at port two located at z2 = l3. We can relate the incident
and the reflected waves in port one and port two by generalising eqn 7.139 for
the characterisation of a two-port circuit, like in figure 7.18, as follows:

bi(li) = Suar(l1) + Si2 ax(la) (7.142)
ba(ly) = Sa1 a1(lh) + S22 az(l) (7.143)

These last two eqns can be written in matrix form:

)=l sl ] o

where a1(ly), b1(l1), az2(l2), ba(l2) represent the normalised values for the
incident and reflected waves at 1 = l; and z2 = [ as illustrated in figure 7.18.
The S-parameters represent the reflection and transmission coefficients for the
two-port circuit. From eqns 7.142 and 7.143 we can define each parameter as
follows:

S = ] Input reflection coefficient (7.145)
al( 1) 02(l2)=0

Si2 = Reverse gain coefficient (7.146)
az(l2) a1 (l1)=0

So1 = ] Forward gain coefficient (7.147)
al( 1) ll2(l2)=0

Soy = 7 Output reflection coefficient (7.148)
a2(l2) 4, 1,)=0
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Figure 7.19 a) shows an experimental set-up for the measurement or calcula-
tion of S1; and S2;. From this figure it can be observed that to ensure that

St
Sa2
—
2-Port 2-Port | = Zyo
Z02
Circuit Circuit Vs
—
Ig = lg Iy = 0

Figure 7.19: Two-port circuit. a) Calculation of S11 and of S21. b) Calculation of S12 and of Sa..

az(l2) = 0 the output transmission line is terminated with a load equal to its
characteristic impedance, that is, S11 and S are determined with the output
transmission line matched to Z,2. S12 and Sao are determined with the input
transmission line matched to Z,; (see figure 7.19 b)).

Example 7.4.1 Determine the S-parameters of a series impedance, Z, ina Z,
system.

Solution: S11 is calculated as follows (see also figure 7.20):

ZiN — Z,
Sii=——— 7.149
" Zin+ 2, ( )
Since Z;n = Z + Z, we have
Z
S = m (7.150)
So1 is calculated as:
Figure 7.20: Set-up for the Sy = ba(l2)
calculation of S11 and of a1 (1) a1 (12)=0
S21 of a series impedance Z. Va(lp) — Z, Io(ly) 7150
Vi) + Z, () '
It is known that:
Vith) = ZinLi(h)
= (Z+2Z,)Li(h) (7.152)

Also, Va(l5) can be related to V1 (I1) by the voltage divider expression:

Zo

=777,

Vi(ly) (7.153)
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Zin?

Figure 7.21: a) RC low-pass filter. b) Set-up for the calculation of S11 and Sa,. c) Set-up for the calculation
of S12 and Sas.

az(l2) = 0 implying that V5(l3) = —Z, I2(l2) (see also eqn 7.140).
Hence we have

2Va(l2)

Zo
Vi(h) (1 + 7.+ Z)

27,
= —2 7.154
Z+27, ( )
From symmetry considerations it is straightforward to conclude that S2 = S1;
and that S75 = So1.

S?l =

Example 7.4.2 Determine the S-parameters of the low-pass filter shown in
figure 7.21 a) in a Z, system.

Solution: S1, and So; are calculated from the circuit of 7.21 b) where we
consider that the output transmission line is matched. From its definition S1;
can be calculated as

_Zin1— 2,

Sy =
W Zin+ 2,

(7.155)

with Zy 1 given by

1
Z Zol|l—
m R+( “JwC)
Zy

—_— 7.156
R+ 1+ jwCZ, ( )

Therefore we can write

R+ jwCZ,(R— Z,)
" R+2Z,+2jwCZ,(R+ Z,)

S1 (7.157)
So1 is given by

Sy =

(7.158)
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Since ag(ls) = 0 = Va(ly) = —Z, I1(l2) (see also eqn 7.140), the last eqn
can be written as
2Va(l2)

S = 7.159
2T U + 2,00 (7.159)

Va(l3) can be related to V1 (I;) using the impedance voltage divider formula:

Lo
Vala) = Vi(l) %
R + 1+juJGCZo
= Vi) Zo (1.160)
- Yz + R+ jwCZ,R '
Using the result of the last eqn and taking also that V;(I,) = Zyn1 [1(l) we
can calculate S, as follows:

27
Sa1 = > 7.161
2 270 + R+ jwCZo(R+ Z,) (7.161)
Soo and Sy2 are calculated considering the circuit of 7.21 ¢) where we have
the input transmission line terminated by a load equal to its characteristic

impedance. Zj o is given by

1
Zine = (R+2)||——
IN2 (R+ )||ch
R+ 2Z,
= 7.162
1 +]wC(Zo + R) ( )
Therefore we can write
R — jwCZ,Z,+ R)
Soo = 7.163
2" R+2Z, + jwCZ,(Z, + R) (7.163)
Si2 is given by
b1(1
Sz = (b
( ) a; ll) 0
Vith) = Zohh(l)
= 7.164
( 2) + Zola(l2) (7169
Since a1 (1) =0 = Vi(lh) = —Z, I1 (1) (see also eqn 7.140), the last eqn
can be written as
2Vl
Sy = (L) (7.165)

Va(l2) + ZoI5(12)
V1(l1) can be related to Va(l2) using the impedance voltage divider formula:
Zo
R+ 7,

Using the result of the last eqn and since Va(l2) = Z;n2 I2(l2), we can calcu-
late S14 as follows:

Vith) = Va(le)

27
Sy = 2 7.1
2 2Z, + R + jwCZo(R + Zo) (7:166)
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2-Port

Circuit

=0 =14 =1l =0

Figure 7.23: S-parameters
and travelling waves (volt-
age and current).
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Reference planes

The practical measurement of S-parameters requires the usage of connecting
cables, which are effectively transmission lines, between measurement instru-
ments and the circuit to be measured. Thus, these measurements probe the
S-parameters at the inputs of these connecting cables; sgj. Since the transmis-
sion lines impose a phase shift which depends on their physical lengths and
the measurement frequency, it is possible to relate the measured S-parameters

with the S-parameters of the circuit under test as follows:
Si11 St _ 51, '623'01 S, el (01‘+02)
S21 Soo S, eI (01+62) S, e2192

where 6; and 0, represent the electrical lengths of the transmission lines at the
circuit input and output, respectively (see figure 7.22).

(7.167)

o =814 b =Bl

1 I 9_

7 gxlf(xl) ,Q}(ll) 2-Port \%202) 7 2\n( z2)

. bi(z1) bi(ly) Circuit ba(l2) 52( 2)

Np N ~F

- | ' T

$ $ $ 4
CL‘1=O .T1=l1 $2=l2 CL‘2=0

Figure 7.22: Measurement of the S-parameters for a two-port circuit. 61 and
05 are the electrical lengths imposed by the input and output connecting cables,
respectively.

7.4.1 S-parameters and power waves

Using eqns 7.126 to 7.139 for the circuit shown in figure 7.23 we can write the
following general eqns:

ai(z;) = 2\/_[ (z) + Zoi Ii{x;)] (7.168)
bla) = ; \/_[ — Zoi Li(z)] (7.169)

with ¢ = 1 for port one and ¢ = 2 for port two. The average power in port one
atzy = 0, P;(0), is equal to;
1
Pi(0) = gReal[Vi(0)I;(0)] (1.170)
It can be shown (see example 7.4.3) that P, (0) can be expressed in terms of
a1(0) and by (0) as follows:
P(0) =

1 1 .
5101(0)* = 5la2(0)] (7.171)
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2-Port

Circuit

=0 =10 Ip=1l I2=0

Figure 7.24: Calculation of
S11 and of S»1. The travel-
ling wave concept.

255

where 1/2a1(0))? and 1/2]b;(0)|? are usually termed the incident power,
P (0), and the reflected power, P, (0), at the input port, respectively. P;t(0)
and P (0) can also be expressed as:

1
PH0) = 5Real [ViH(0)I7*(0)]
2
1|V (0)]
= i 7.172
5 7. ( )
- 1 - —
Pr(0) = 5 Real (Vi (0)I7*(0)]
2
1V ()]
= - 7.173
5 7. ( )
For the circuit in figure 7.24, and for £1 = 0 we can write:
Vi(0) = Vs—Z;1:(0)
= Vi, — Z,1 I;(0) (7.174)
1
0) = V1{0) + Zo1 11(0
a1(0) 2\/2—01[1()*' 111(0)]
1
= Vs 7.175
W ( )
that is,
1V,
2 Li¥s
mO)F = 7= (7.176)
and for this situation we have the incident power wave given as:
Pr(0) = LIVl (7.177)
1 = 7. .

This power is the maximum power that a source can deliver to a load. It is
known as the available power (Pay ). For a load impedance to absorb Py the
source impedance, Z, must be equal to Z,;.

For a lossless transmission line we have

al(ll) = al(O) e_j’Bl h
bi(l)) = b (0)e 7Pl

(7.178)
(7.179)

with (; representing the propagation constant of the input transmission line.
Therefore, we have that P;(I;) = P (0), P (1) = Py (0) and Py(l;) =
P;(0). Hence, we can write P;(I1) as

Pi(ly) P (ly) - P ()

= Pav - P (h)

1
= Puy — §;b1(11)|2 (7.180)
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and we can write

bi(11)]?
Sul? = |1(ll)|2
|a (12)] az(l2)=0
_ 3P
Har@P ., 0,
Pay
and eqn 7.180 can be expressed as
Pi(ly) = Pav(1—151f%) (7.182)

We conclude that | S11|? represents the ratio of the reflected power to the avail-
able power in port one.

Example 7.4.3 Show that P;(0) given by eqn 7.170, in figure 7.24, can be
expressed in terms of a4 (0) and b; (0) as follows:

1 1
P(0) = 5l - Flax(0) (7.183)

Solution: Using eqns 7.168 and 7.169 we can write eqn 7.183 as

PO) = g i)+ Zat O]V (0) + Zan T; 0)

1 . .
- 8701 [Vl(o) - Z01 11(0)] [Vl (0) - Zol Il (0)]
= 8—;};4 Real [Z,1 V1(0)17(0)]

= %Real [Vi(0)IF(0)] (7.184)

The average power in port one at xo = 0, that is the power delivered to the
load, P»(0), is equal to;

Py0) = %Real (=V2(0) 13 (0)] (7.185)

It can be shown (see example 7.4.4) that P,(0) can be expressed in terms of
a2(0) and b,(0) as follows:

1 1
Py(0) = 3lba(0) — 5laa(0)” (7.186)

For the circuit in figure 7.24 we can write:

2(0) = —ZoaL(0) (7.187)
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Zon 9 Port | lzn) T []Ze
Za w0l v

Circuit _

n=0 x=4 I,=1 =10

Figure 7.25: Calculation of
512 and OfSQQ.

so that

1
0) = Va(0) + Zo2 I2(0)] =0 7.188
a'Q() 2\/7;;[2() 22()] ( )
The result that a3(0) = 0 is expected since the output transmission line is
matched with Z;, = Z,». Using the result of the last eqn we can write b2(0) as

by(0) = 2—\/1Z—_;[V2(0)—Z0212(0H
V2(0)

ZOZ
= —/Z,15(0) (7.189)

From eqns 7.186 and 7.188 we observe that the power delivered to the load
ZL = ZOQ, PQ(O), is

1
P0) = 5lba(0)P
The transmission coefficient So; is given by:
l
o ba(la) (7.190)

a1 (ll) az(l2)=0

Since the transmission lines are lossless we have

al(ll) = al(O)e_jﬁlll
1 .
- 2\/7_Vse‘751l1 (7.191)
02
ba(ly) = by(0)e IPete (7.192)

where (31 and [, are the propagation constants of the input and output trans-
mission lines, respectively. |Sa1|? can be written as

|521|2 — 2

= (7.193)

and we conclude that |So; |2 represents the ratio of the power delivered to the
load Z;, = Z, to the available power, Pay. It follows that |S2;|? repre-
sents a power gain, G, named the ‘Transducer Power Gain’. Note that if the
source impedance and the load impedance are not equal to the characteristic
impedances Z,; and Z,;, respectively, the power gain is different from that
given by eqn 7.193.

Similar analysis of the circuit of figure 7.25 shows us that | S25|? represents
the ratio of the reflected power to the available power in port two while |Sy2[?
is the reverse transducer power gain. This analysis is similar to that used to
obtain |S11]% and |Sa1 |>. However, now we apply the source Vj to port two.
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Figure 7.26: Impedance
voltage divider.
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Example 7.4.4 Show that P,(0) given by eqn 7.185, in figure 7.24, can be
expressed in terms of as(0) and by (0) as follows:

P0) = glba(O)  3lam(0)P (7.194)

Solution: Using eqns 7.168 and 7.169 we can write eqn 7.194 as

PiO) = 5 200) — Zea BO) V5 (0) — Zea I50)
o TR0 + Ze O]V 0) + Zu T 0]
= -5 ;02 4Real [Z,3 V3(0)I3(0)]
= SReal [-V5(0)13(0) (7.195)

7.4.2 Power waves and generalised S-parameters

The representation of the voltage and current in terms of incident and reflected
waves i8 quite natural when we deal with transmission lines. The generalisation
of this concept to circuits described by lumped elements is attractive specially
when such circuits are considered together with distributed circuits. This is
made possible by generalising the concept of power waves.

Power waves

Let us consider the impedance voltage divider of figure 7.26. For this circuit
it is not possible to normalise the waveforms to the characteristic impedance
since this impedance is meaningless for this circuit. It is possible, however,
to consider new waveforms which can be normalised to the source impedance,
Z . Such waveforms are called ‘power waves’:

ap = 2\/_(V+ZI) (7.196)
b = 5 \/_(V Z*1) (7.197)
R, = Real|Z,] (7.198)

The average power delivered to the load can be expressed as:

P = dnevr = st r1 - it
2

! > Real [Z]]

217+ Z,
V|2

= g if Zyp=2% 7.199
SR, I L 5 ( )
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that is, if Z; = Z; the power absorbed by the load is maximum and equal to
the available power, Pay .

Example 7.4.5 Show that the available power can be expressed as:

1
Py = 5[ap|2 (7.200)
and that the power delivered to the load can be expressed as:
Lo 1. o
P = 5'%| - §|bpl (7.201)
Solution: From eqn 7.196 we can write:
Lo _ 1 2
§[ap| = 8RS|V+ZSI| (7.202)
and from figure 7.26 we can write V, = V + I Z,. Thus, eqn 7.202 can be
written as
L Vs |2
5|a,,|2 = 8—Rs1 = Py (7.203)
From eqns 7.196 and 7.197 we can write:
]. 2 1 * * *
§]ap| = 3R (V+Z,D)(V*+2Z;I) (7.204)
1 1
Zlb)? = V-Z:D(V*—Z,I* 7.205
and
11 |2 - 1|b 2 = ! (2Real [V I*Z?] + 2Real [VI* Z,])
g%l TPl = 3R, ’ y
1
= 4Real [V I*
8Rs( eal [V I*] Real [ Z,])
1
= EReal VI]=Fg (7.206)

It should be noted that 1/2|b,|? represents the reflected power. If Z;, = Z}
then b, = 0 as expected.

The reflection coefficient for power waves can be defined as:
b, V-—-Z;1 Zp-Z;

r, = -2— = 7.207
P ap V+ZJd Zp+Zs ( )
It is possible to write:
1 Jbp|?
P = ZlapP{1- 2
e = gl (1-25)
= Pay(1-10,%) (7.208)

This is consistent with our earlier discussion showing that maximum power is
delivered to the load when perfect matching is achieved (I', = 0).
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Figure 7.27: Calculation of
Sy of a two-port circuit.
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Generalised S Parameters

From eqns 7.196 and 7.197 we can write:

1 *

V = ﬁ [Zs ap + Zsbp] (7209)
1

I = \/——Rf[ap - bp] (7210)

Now it is possible to define incident and reflected voltage and current waves as
follows

V. o= V4V, (7.211)
I = If-1I; (7.212)
with
Z*a
vyt = Zs°P 7.213
P /Rs ( )
Z:b
V- o= =2 7.214
N 7219
o= % 7215
P T VR 721
b
I = 2 7.216
p /Rs ( )
so that
vt = Z:ot (7.217)
and
Vi o= Zd; (7.218)

The reflection coefficients for voltage and current waves are defined as follows

Voo oz,

Ty = V_Z:% p (7.219)
pr 8
Iy

r; = &=T, (1.220)
p

with I', given by eqn 7.207. When the impedance Z; is a positive real quantity,
the expressions for a, and b, are identical to those derived for a and b in the
context of transmission lines. For this situation we have, Z, = Z; = Z,.
Therefore:

_ ZL - Zo
Pz L+ Z,

With these definitions and the normalisations presented above, we are in a
position to determine the generalised S-parameters for a two-port circuit de-
noted below as Sy,;; (see figure 7.27).

Fo=Ty=I7y="T (7.221)

(7.222)
(7.223)

bpi = Spi1ap1 + Spi2 ap2

b2 = Spo1ap1 + Sp22 ap2
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Vi v

: o
40 +55 O \/

Figure 7.28: Calculation of
Sp11 and of Spe1 of a two-
port circuit.

with
1 .
api = Q—RI(VZ +Z; L), i=1,2 (7.224)
1 i )
with Z; representing the reference impedances shown in figure 7.27. R, =
Real [Z;].
Sp11 and Spo;1 are calculated after setting Vo = 0 in figure 7.27. From
eqn 7.207, Sp11 is calculated as follows:
Zin1 — 2}
S, = = 7.226
Pl ZiN1 T 21 ( )
where Z; n1 represents the circuit input impedance when port two is terminated
by Zz.
For the calculation of Sp21 we can determine the power delivered to the
load Py, which is given by;

1 1 .
P, = §1bp212=§|sp21]21a,,1]2, and if aye =0 (7.227)
Hence,
3 1bp2]?
S, 02 = 2072
|Spa1l %]a,ﬂlz
= 131%; (7.228)

|Sp21|? is also called a transducer power gain, Gr. Note the similarity of the
last eqn with eqn 7.193.

The calculations of Sp22 and of S5 are similar to the calculation of Spy;
and of Sp2;, respectively, but now setting V;; = 0. It should be noted that if
Zy = Zy = Z, (real), the results obtained for the S,-parameters are identical
to those obtained for the S-parameters.

Example 7.4.6 Consider the two-port network of figure 7.28 a)
1. Determine Sp11 and Spo; of the two-port circuit using figure 7.28 b).
2. Determine S,12 and Spo of the two-port circuit using figure 7.28 c).
Solution:
1. Applying Ohm’s law to the circuit of figure 7.28 b) we find that:

Vst
1+ Za+Z4
V,10.01e77998 A
I, = -1

nL o=
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Vi1 0.01e7 216 A
(ZA + Zz) I
V103067921 v
Zay Iy

Vi10.11 77098
(Za+ Z2)

26.93 ¢/ 119 Q

Using eqns 7.224 and 7.225 we obtain

G,pl

bpo

and we have

2. Applying Ohm’s law to the circuit of figure7.28 c) we find that:

I,

I

Va

W

Zin

V,10.08¢% = V,; 0.08
V1 0.04 77098

Zin — 23
Zin+ 23

= 09077097

bp2

apl ap2 =0

= (.44¢ 7098

Vo
Zy+Zy+Za
Vi 0.01e770%8 A
-1
Vi2 0.01e7216 A
(Za+ Z2) I,

Vi2 0.94¢7098 v
Z1 IQ

Vi 0.71e77009 v
(ZA + Zl)

85 ej 1.08 0

Using eqns 7.224 and 7.225 we obtain

Ap2

bp1

and we have

Sp22

V.20.1667% = V.5 0.16
V,20.07¢70.98

Zin — 73
Zin + Z3
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= 0902
Sy = b
pl2 —
ap2 ap1=0

0.44 77098

7.4.3 Conversions between different two-port parameters

S-parameters are normally obtained from RF measurements and are quoted by
manufacturers of high frequency devices and circuits. On the other hand, for
circuit analysis, design and optimisation it is, sometimes, more convenient to
use other two-port circuit parameters such as those studied in Chapter 5. It
is possible to convert between S-parameters and other circuit parameters using
elementary matrix algebra. For example, the conversion between Z-parameters
and S-parameters can be obtained using the following mathematical manipu-

lation:
[Vl = [2][1] (7.229)
where p P
_ 11 12
(Z] = [ Zay Zoy } (7.230)
|
V] = [ v ] (7.231)
_| 4
[I] = [ L ] (7.232)

Equation 7.229 can be generalised as follows
VH+[vT] = (2] (If]- 7)) (7.233)

to include incident and reflected quantities. Recall that

V+H] = [Z,] [I7] (7.234)
and that
V-] = [Z,] 1] (7.235)
with
(Zo] = Z, 1] (7.236)

where [1] represents the identity matrix, that is

10
1] = [ 0 1 ] (7.237)
Equation 7.233 becomes

(Zo]+[2) [I7] = (2] -2,)) [IT] (7.238)
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_ vt I
S v
= (2] +Z.))" (2] - [Zo) (7.239)
It should be noted that
% = [B]™! [A] (7.240)
and that
8] = { g; g;z J (7.241)

Similarly, conversions can be made between the other electrical parameters
such as impedance, chain (or ABCD), etc. In appendix C we present a table
with the conversions between the main electrical parameters including the S-
parameters.

Example 7.4.7 Derive the S-parameters from the admittance parameters.

Solution:
1] = [Y][v] (7.242)
where
[¥]= [ ,};; éz } (7.243)

Equation 7.242 can be expanded as:
[ -7 = YI(v*+[v7) (7.244)
Using eqns 7.234 and 7.235 we can write:
M+ ¥z I7] = (1 -1[¥][Z)]) L] (7.245)
Finally, the S-parameters are expressed as

18] = —5—_] (- YVIZ) T (U4 YIZ]) (7.246)

——

The analysis of impedance and transmission line matching problems using an-
alytical eqns can be cumbersome. The Smith chart is a powerful tool which
provides a graphical analysis of such problems.

7.5.1 The impedance and the reflection coefficient planes

In essence the Smith chart is a graphical representation of impedances in a
plane called ‘reflection coefficient plane’ — the I' plane. This representation is
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z-plane

TL|T2 T3 |Ta ([T5

a)

I-plane
Vv

71
T2(T3 |1y (75
\ )

b)

Figure 7.29: a) Constant
resistance impedances. b)
Constant resistance circles.

valid for all values of Z (usually for Real [Z] > 0). The normalised impedance
plane is defined according to:

I Z _R+jX

B ZO B ZO

where Z,, is a real (non-complex) number representing either the characteristic
impedance or a reference impedance as discussed previously for S- and gener-
alised S-parameters, respectively. The reflection coefficient plane can now be
defined as follows:

=r+jz (7.247)

N
|
N

N
+
N

N~
|
-y

e
- +
—

= =U4+4iV 7.248
z+1 + ( )

Using the same normalisation as used for impedance (eqn 7.247) we can write:
r—1+jz

that is
r? — 1+ z?
2z

The last two eqns allow for the transformation from the normalised impedance
z-plane to the reflection coefficient I'-plane and allows the variables r and x to
be mapped as circles in the I" plane as explained below.

Constant resistance circles

If we solve eqn 7.250 in order to obtain = we have

2 —1-U(r+1)2
-4 7.252
v \/ U—1 (7.252)
If we now substitute x in eqn 7.251, we can show that:
T 2 1
U- Vie —— 7.253
( - 1> V=T (7.253)

Note that in this procedure x is eliminated as a variable from the eqns (7.250
and 7.251) that define the transformation to the I'-plane. This effectively allows
us to obtain a representation of impedances with a constant real part (constant
resistance) in the I' plane. Such a representation, given by eqn 7.253, describes
a family of circles with centres on the U axis at the points (r/(r + 1),0) and
with radii of (1 +7)~1.

Figure 7.29 a) presents impedances of constant resistance in the z-plane
while figure 7.29 b) shows these constant resistance impedances mapped into
the I"-plane as given by eqn 7.253.
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z-plane

I

b)

Figure 7.30: a) Constant
reactance impedances. b)

Constant reactance circles.
z-plane

TLoTg Ty T4 Ty

I3

Figure 7.31: a) Constant
reactance and constant

resistance impedances.
b) The Smith chart.
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Constant reactance circles

If we eliminate r from eqns 7.250 and 7.251 we obtain a representation of
complex impedances with a constant reactance part in the I" plane defined by

the following eqn:
1\? 1
-1 2 — — = —
w-v?(v-1)

which also represents a family of circles. The centres of these circles are
now at the points (1, z7!) and they have radii of z~!. Figure 7.30 a) presents
examples of constant reactance impedances in the z plane and figure 7.30 b)
shows the same impedances mapped into the T" plane.

The combined representation of constant resistance and constant reactance
circles is called the Smith chart and is illustrated in figure 7.31 b). The upper
part of the chart represents positive reactive (inductive) impedances while the
lower part represents negative reactive (capacitive) impedances. The U axis
which separates these two regions represents pure resistances.

The Smith chart can also be used to represent admittances by considering
another plane, I'y, such that:

(7.254)

y—1

= 7.255
v | ( )

where y represents the admittances normalised to Y, = Z 1

Y
y = 70 =Y Z, (7.256)
It is left to the reader, as an exercise, to show that:

r, = -IT'=Té" (7.257)

that is, the admittance map is obtained by rotating the impedance map by 180
degrees.

7.5.2 Representation of impedances

The representation of impedances in the Smith chart is straightforward given
the graphical nature of the I' plane where the constant resistance and constant
reactance circles are clearly indicated. Figure 7.32 shows the representation of

the following impedances* normalised to 50 €2:
z1=14+73 20=04+705
23=3-j3 24 =02-7506

Z5 = 0 26 = 1

It is also possible to determine and to represent an impedance given the corre-

4Note that the Smith chart of figure 7.32 allows us to represent impedances with a real part
greater than or equal to zero.
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Figure 7.33: Transmission
line.

Figure 7.32: Impedance representation in the Smith chart.

sponding admittance y = 2~ 1. The procedure to determine such an impedance
is as follows: first represent the admittance in the impedance chart as if we
were representing an impedance. Then, rotate this representation by 180 de-
grees (around the centre of the chart, see also eqn 7.257) to find the correspond-
ing impedance representation®. Figure 7.32 also illustrates the application of
this procedure to find the impedances, normalised to 50 (2, corresponding to
the following normalised admittances:

y7 =04—3503 ys =2+3j
From figure 7.32 we can read
z7=16+j12 2z = 0.15—50.23

It is important to note that the normalisation of the admittance is obtained by di-
viding the admittance by Y, = Z ! while the normalisation of the impedances
is obtained by dividing the impedance by Z,,.

In addition to the direct representation of impedances, the Smith chart, by
its very nature, allows a straightforward representation of the reflection coeffi-
cient and, therefore, allows graphical solutions of the eqns discussed previously
in the context of transmission lines (see also figure 7.33). These are:

ZL_ZO

—_— 7.2
ZL + Zo ( 58)

I

5Recall that the numbers indicated in figure 7.32 indicate the value of constant resistance (con-
ductance) and constant reactance (susceptance) circles.
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Tin(d) = T[,e72P4 (7.259)

ePd 4 T,e=9Pd

Zi(d) = Zo—r (7.260)

Oe]ﬁd — I‘Oe_jﬂd

Using the normalisations z;, = Z1/Z, and z;n(d) = Z;n(d)/Z, these eqns

can be written as:

21 — 1
r, = —=—— 7.2
2L +1 (7.261)
Tin(d) = T,e9%64 (7.262)
1+ Fm(d)
n T -~ 2
2Zin(d) T To(d) (7.263)

Recall that the Smith chart is plotted in the I plane. It should be noted that trav-
elling on a complete circle around the Smith chart corresponds to an electrical
length of 23d = 2x (or 8d = 7, see eqn 7.259) which, in turn, corresponds to
a physical length of the transmission line equal to A/2. Recall that 8 = 27 /.
The direction of movement around the chart is important; ‘travelling’ towards
the signal source corresponds to a clockwise rotation while ‘travelling” towards
the load corresponds to a counter-clockwise rotation (see also eqn 7.262 and
figure 7.33). To illustrate these points consider figure 7.34. Here we show how
to determine the input impedance, Z;,(d = 1), and the reflection coefficient,
I',, for a transmission line with a length [ = A\ /8 (corresponding to an electrical
length 28] = 7/2) and terminated with a load impedance Z; = 50 + j50 Q.
First, we represent the normalised load impedance z; = 1 + j in the Smith

f.-t=--§!{('ﬂll‘l’n i
TR Tl
R
S
0‘.‘#.'.'
LT

o

SSs
CSSS T HHIEERGE
sl

o
D
(L7
A (11

01 02 03 04 05 06 07 08 09

IT) = 0.44

Figure 7.34: Calculation of transmission line input impedance and reflection

coefficient.
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chart, taken to be at distance d = 0. We find the normalised input impedance,
zin(d = 1) by ‘travelling’ 2 81 = /2, towards the signal source, on a constant
IT| circle. Constant |T'| circles (see figure 7.35) are centred at the centre of the
chart (I' = 0, corresponding to z = 1 + j 0). Each constant |I'| circle has a
radius equal to the magnitude of the reflection coefficient under consideration.
For our example the reflection coefficient is I',, as defined in eqn 7.261 and is
found to be 0.44 £63.4°. The angle of T, also represented in figure 7.34, is
measured from the U axis, of course. After the rotation described above we
obtain Z;,(A/8) = (2 — j) x 50 = 100 — 5 50 .

Example 7.5.1 Determine the length of a short-circuited transmission line, I,
and the length of an open-circuit transmission line, l,., such that the input
impedance for these transmission lines is Z;, = 7 100 €.

Solution:

1. Short-circuited line: First we represent the normalised impedance z;, =
7100/50 = 52 in the Smith chart as shown in Figure 7.36. Then, trav-
elling from z; = 0, towards the signal source, to z;, = j 2 in a con-
stant |I'| circle, we determine the angle 28], = 127°. Knowing that
8 =2n/)\ we getls. = 0.176.

2. Open-circuit line: The calculation of [, is similar to the calculation of
lsc. The main difference is that now z; = oo (see also Figure 7.36).
loc = 0.25X + I5c = 0.426 ).

Figure 7.36: Calculation of the electrical lengths of short-circuited and open-
circuit transmission lines. Example 7.5.1.
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The Smith chart is also very useful in representing the impedance or ad-
mittance versus frequency of various circuits. Figure 7.37 illustrates the rep-
resentation of the impedance versus frequency of a resistor-inductor (RL) and
resistor-capacitor (RC) series combinations. These representations are done
for a frequency range of f, to fp. It is clear that for each of the circuits the
impedance follows a constant resistance circle, as expected. Note that as the
frequency is increased (from f, to f;) the reactance of the RL circuit increases
while it decreases for the RC circuit.

Figure 7.37: Representation of the impedance versus frequency of a resistor-
inductor and resistor-capacitor series combinations. f, > f,.

It is also possible to represent the impedance of a parallel combination
of passive elements. However, such a representation is not so straightforward
as the series combinations. Figure 7.38 illustrates the procedure for the case
of a resistor in parallel with a capacitor. First we determine the equivalent
admittance values for the circuit. For this example, the value of the admittance
at frequency f, is y(f,) = 0.3 + 70.1 and the value of the admittance at
frequency f5 is y(f») = 0.3 + 7 0.6. All the admittance values are represented
in the Smith chart in a dashed line. Rotating these values by 180 degrees we
find the correspondent impedance representation from z(f,) to z(fs).

This procedure can be generalised for representing the impedance of any
parallel combination of passive elements.

Example 7.5.2 Determine the impedance of a capacitor in parallel with the
series connection of a resistor with an inductor. Consider the frequency range
200 MHz < f < 900 MHz. L = 2nH, C = 12 pF and R=21.5 Q.

Solution: we refer now to Fig. 7.39.



7. RF circuit analysis techniques 271

Figure 7.38: Representation of the impedance versus frequency of a resistor in
parallel with a capacitor. f, > f,.

Figure 7.39: Representation of the impedance versus frequency of a capacitor
in parallel with the series connection of a resistor and an inductor. f, > f,.
Example 7.5.2.

1. First we normalise the admittances and impedances to 50 €2. This gives

Yeap(f) = (27 fC)50
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Figure 7.40: L-section cir-
cuits for impedance match-
ing with the load Z7,.
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= j2mf6x10710

j2nfL
sndlf) = T
= jo2mf4x107H
7‘ — E
50
= 043

2. Then we represent the normalised impedance resulting from the series
combination of the resistor with the inductor for the frequency range
mentioned above

043 +j2n f4x 1071

This representation corresponds to curve 1) where f, = 200 MHz and
f» = 900 MHz.

3. Then we represent the frequency response of the normalised admittance
associated with the capacitor — curve 2)

jo2mf6x 10710

4. Then we determine the equivalent admittance response for the RL com-
bination. This is done by rotating the curve 1) by 180 degrees to obtain
curve 3).

5. Now we have the admittance representation of the two parallel branches
(RL and C). To obtain the overall admittance we simply add, point by
point, the admittances of curves 2) and 3). This gives the overall admit-
tance of curve 4).

6. Finally, by rotating curve 4) by 180 degrees we obtain curve 5) which is
the impedance of the overall network.

7.5.3 Introduction to impedance matching

Impedance matching is a very important issue in microwave engineering where,
in a wide variety of applications such as amplification, the main objective is to
achieve maximum power transfer to a load as described in section 7.4.1. The
impedance matching can be achieved using many different circuit topologies.
However, L-section circuits , illustrated in Fig. 7.40, result in very simple and
practical solutions for this problem. It should be noted that there are no dissi-
pative elements in any of the L-section circuits.

Let us consider the problem of matching a load Z, to a signal source with
an output impedance R, = 50 {2 using L-section circuits, as illustrated in
figure 7.41. The matching is to be effected at 500 MHz. The load Z;, is the
series combination of an inductor L; = 3.18 nH with a resistor Ry, = 10 2.
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L-Section Zy

Figure 7.41: Impedance
matching with L-section cir-
cuits.

Figure 7.42 shows two solutions for this matching problem. At 500 MHz
the load is Z;, = 10 + 510 . Normalising to Rs = 50 2 we get z;, =
0.2 + 7 0.2. It should be noted that, by using an L-section circuit, we aim to
obtain a normalised unit impedance (or admittance) which is represented in the
centre of the Smith chart.

Figure 7.42 shows a circle (dotted line) which represents all the admit-
tances (or impedances) corresponding to the constant unit conductance (resist-
ance) circle. This circle plays a major role in obtaining the solution for the
L-section as we will show. Let us consider the solution a). First we repre-
sent the normalised load impedance, z;, in the Smith chart. By inserting an
inductor, with a normalised impedance of j0.2, in series with 2z, the resulting
impedance increases along a constant resistance (r = 0.2) circle until it arrives
to point a) on the dotted circle. Hence, at point a), the normalised impedance
18 zq = 0.2+ 7 0.4. The corresponding normalised admittance can be obtained
by rotating point a) by 180 degrees resulting in point al) with a normalised
admittance y, = 1 — 7 2. Finally, in order to get a unit normalised admittance
(or impedance) we need to reduce the negative susceptance of y, to zero. This
is obtained by adding a positive susceptance of +3 2.0 which corresponds to
a move from point al) to the centre of the Smith chart along the unit conduc-
tance circle. The addition of a positive susceptance of +j 2.0 corresponds to
the addition of a capacitor, with normalised admittance of j 2, in parallel with
the series combination of the inserted inductor and the load. It is now possible
to determine the values of the inductor and capacitor as follows:

27500 x 106 L
je—_c - =

— 02
50 J

Solution a)

= = = Solution b)

N

A P
SO NN
AN

e

Solution b)

y=-32.0

3l

Figure 7.42: Impedance matching using L-section circuits.
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Figure 7.43: Impedance matching using an L-section circuit.

L = 3.18 nH
450 x 27500 x 10°C = 2.0
C = 127 pF

A different solution b) can also be reached, following a similar procedure. This
is represented by the dashed lines. Matching is achieved here firstly by adding
a negative reactance corresponding to inserting a capacitor in series with the
load. The value of this reactance is —;0.6. Hence, the impedance at point b)
is z, = 0.2 — 7 0.4. The corresponding admittance, represented in point b1),
is y» = 1 4 72.0. In order to obtain y = 1 the positive susceptance of y;
must be reduced to zero. This is obtained by adding a negative susceptance
—7 2.0 corresponding to the addition of an inductor in parallel with the series
combination of the capacitor and load.

Example 7.5.3 Find an appropriate L-section circuit which transforms a load
of 50 Q) into an admittance Y, = 10 — j 1.8 mS.

Solution: The normalised admittance y, = Y. x50 = 0.5— 7 0.9 is represented
in the Smith chart of figure 7.43.

By adding a normalised impedance of j 1 to the normalised unit impedance
we obtain an impedance z, = 1 + j. This is equivalent to adding an inductor
L1 in series with the load. z, = 1 4 7 corresponds to an admittance of y, =
0.5 — 7 0.5. To get the desired admittance we need to add now a susceptance of
—j 0.4 which corresponds to adding another inductor Ly, with y = —5 0.4, but
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Figure 7.45: Impedance
matching circuit.

this time in parallel with the impedance resulting from the series connection of
the inductor L and the load.

Impedance matching with transmission lines

It is possible to provide impedance matching using transmission lines instead
of using lumped elements. For this purpose, short-circuited and open-circuit

K SRy LT
020‘&0%:4 N\
OSH
i

—j1.345

Figure 7.44: Impedance matching with transmission lines using Smith chart
calculations.

transmission lines play a significant role. Recall that a short-circuited trans-
mission line presents an inductive input impedance (for lengths less than A/4)
while the open-circuit transmission line presents a capacitive input impedance
(for lengths less than A/4). The matching procedure using transmission lines
is very similar to the matching procedure using L-sections. The capacitors
are now replaced by open-circuited transmission lines and the inductors are
replaced by short-circuited transmission lines.

Figure 7.44 illustrates a transmission line calculation, using the Smith chart,
to transform an impedance Zy = 20 + 7 30 €2 into a 50 §2 impedance. First,
the load impedance is normalised to 50 €2, that is, 2y, = 0.4 + 5 0.6. By adding
a transmission line with a length [; = 0.325\ we obtain an impedance z,
such that the real part of its admittance, y,, is equal to one. Now it is neces-
sary to eliminate the susceptance of y, which is j 1.345. This is obtained by
adding (in parallel) a susceptance of —j 1.345 provided by a short-circuited
transmission line with a length [y = 0.1 A. Figure 7.45 shows the matching
circuit designed here. It is left to the reader to verify that matching can also be
achieved if the short-circuited line was replaced by an open-circuit line with
length lo = 0.1 A + A\/4.
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The method of matching described above is known as single stub-tuning
and is commonly used in RF and microwave circuits. More complex methods
of matching are also used and some of these are described in the references of
this chapter.
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7.1 Show that the transfer function V (z)/V (z = 0) of an ideal transmission

line, terminated by a load Z which allows for maximum power transfer, can
be expressed by eqn 7.22.

7.2 Show that the current /() in an ideal transmission line, terminated by a
load Z;, which allows for maximum power transfer, can be expressed by eqn

7.26.

7.3 Show that the input impedance of an ideal transmission line terminated by
aload Z1, can be expressed by eqn 7.49.

7.4 Consider a transmission line with an inductance per metre of 550 nH and

a capacitance per metre of 100 pF. This line has a length [ = 13 m and is
terminated by a load Zp = 25 Q. Determine the line input impedance for the
following frequencies:

1.

w = 27 3 x 102 rad/s;

2. w=2r5 x 108 rad/s.

7.5 Ploteqn 7.49 for 0 < 3d < 27 and the following situations:

L.

Z1)Z,=0.1

2. Zp)Z, =1

3. Z1/Zy =10
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7.6 A circuit with a 30 {2 output impedance is to be matched to a 50 2 load,
at 500 MHz, using a quarter-wave transformer. Determine the characteristic
impedance of the quarter-wave transformer.

7.7 Show that the eqn 7.74 can be expressed by eqn 7.75.

7.8 Show that if a lossy transmission line is matched then I(z) and Z, can be
expressed by eqns 7.87 and 7.88, respectively.

7.9 Consider a lossy transmission line.

1. Show that for low frequencies the attenuation, «, the propagation con-
stant, 3, and the characteristic impedance, Z,, can be approximated by
eqns 7.89, 7.90 and 7.91, respectively.

2. Show that for high frequencies the attenuation, o, the propagation con-
stant, 3, and the characteristic impedance, Z,, can be approximated by
eqns 7.92, 7.93 and 7.94, respectively.

7.10 Show that the input impedance of a lossy transmission line terminated
by aload Z1, can be expressed by eqn 7.114.

7.11 A microstrip material with ¢, = 8.1 and d = 1.3 mm is used to build a
transmission line. Determine the width of the microstrip for a 50  character-
istic impedance.

7.12 Determine the S-parameters of a CR circuit (high-pass filter).

7.13 Determine the S-parameters of the circuits of figure 7.46.

7.14 Determine the S-parameters of the high-frequency model for the field-
effect transistor.

7.15 For the previous problem assume k, W/L = 40 mA/V?, C,5 = 3 pF,
Cga = 15 pE V4 = 60 Vand Ip = 10 mA. Z, = 50 Q. Plot the S-
parameters for a frequency range 1 MHz~10 GHz.

7.16 Derive the chain parameters from the S-parameters.

7.17 Represent the following impedances on the Smith chart and determine
the corresponding admittances

1. 10— 30 ©
2. 75420 Q
3.60—740 Q
4.5-3570 Q
5550 Q
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Z, Zy
Z, Z
2 ) b)
. ]
NS

Figure 7.46: Circuits of problem 7.13.

6. —j 180 Q

7.18 Represent the following admittances on the Smith chart and determine
the corresponding impedances

1. j4%x 10738
2. 8x1072-356x10728
3.024+j4x1072%8

7.19 Convert a 50 €2 impedance into an impedance of 25 — j 15 Q by using
L-sections.

7.20 Sketch the S-parameters of the RC circuit considered in problem 7.12
on a Smith chart for 0.1/(RC) < w < 10/(RC). Use values of R = 60 (2,
C=1pFE

7.21 Find an L-section circuit which converts a 60 + j 20 2 impedance into
an impedance of 40 + 7 30 ). Hint: Normalise the impedances to 40 §Q.

7.22 Design a transmission line circuit to convert a complex impedance of
30 + j45 Q into areal 45 ) impedance.



8.1 Introduction

8.2 Random
variables

8 Noise in electronic circuits

Electronic noise is defined as a signal that either corrupts, masks or interferes
with the desired signal which is being processed by an electronic circuit. There
is a very broad range of notse sources that can be present in such circuits. Here
we divide these noise sources into two major classes. The first refers to noise
sources which are intrinsic to electronic devices and arise from fundamental
physical effects. Such noise sources, sometimes known as intrinsic, are thermal
(or Johnson) noise, electronic shot-noise, and 1/f noise. The second class
encompasses all coupled noise sources that arise from interactions between
the electronic circuit and the surrounding environment. Examples of extrinsic
noise sources are atmospheric-based noise, glitches induced by fast switching
digital circuits, coupling from nearby electrical circuits, etc. In this chapter we
shall address only the first class of noise sources.

We start by revising very important statistical and probability concepts
which are fundamental to modelling electronic noise. This is done in the next
section and in section 8.3, where the main mathematical properties of random
variables and of stochastic (or random) processes are discussed. In section
8.4 we present models for the various sources of intrinsic noise in active and
passive devices. Also, we present a method to address the performance of
electronic amplifiers in terms of equivalent input noise sources and the noise
figure. Finally, in section 8.5 we present a matrix-based method suitable for a
computer-aided analysis of noise performance of linear circuits.

In the previous chapters we have studied the current—voltage relationships of
electronic circuits and, for that purpose, we have treated current and voltage
as deterministic (non-random) quantities; that is, they were characterised by
precise values following deterministic models. These deterministic models, al-
though very useful for the analysis and design of a large variety of circuits,
do not account for the randomness associated with currents and voltages. For
example, when the measurement of a DC current through a resistor reads 3.4
amperes this value corresponds to the average value of this DC current as there
is always some randomness associated with the flow of electronic charges.

In order to understand some of the statistical properties of noise we con-
sider the following experiment where the current passing through /V identical
resistances is measured in a ‘very precise manner’. The resistances have no
voltage applied to their terminals. According to Ohm’s law we would expect
no current flow. In fact, although the average (net) current is zero there is a
random motion of free electronic charges in the resistors as illustrated in fig-
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R
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Figure 8.1: Current measured in N resistances.

ure 8.1. Such a random motion results in noise termed the ‘current noise’. If
we take an instant of time ¢ = ¢; and we record the /N measurements taken,
we can construct a histogram which tell us the likelihood or the probability of
the measured current being in a certain amplitude interval. The histogram is
constructed by dividing the amplitude of the measured current into intervals
and by plotting the number of measured amplitudes in each interval relative to
the total number of measurements, NV, as in figure 8.2 a). It should be noted
that the amplitude of the current taken at time ¢; is a random variable (r.v.).
In this chapter the random variables are represented by capital letters and the
possible outcomes of a random variable are represented by lower cases. The
random variable associated with the current at time ¢; is represented here by I3
and the outcomes of I; are represented by ¢;.

From this histogram it is already possible to extract the following informa-
tion; the average current amplitude is zero as expected. Also, it is more likely
to measure amplitudes near zero than further away from this average (or mean)
value.

If we increase the number of measurements and if we decrease the ampli-
tude intervals we get a more refined histogram, such as that depicted in figure
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8.2 b), which characterises more accurately the probability of the measured
current, in time ¢;, being in a certain amplitude interval.

In figure 8.2 c) we present the theoretical model for the Probability Density
Function (PDF) of the current measured at ¢;. This PDF would result from a
non-discrete continuous histogram where the number of measurements tends
towards infinity while the amplitude interval tends towards zero. This PDF is
called the ‘Gaussian’ PDF, or the ‘Gaussian distribution’, and can be described

mathematically as follows:
T <_ (2_1—_/&2)
V2o 202

where p is the mean, or the average value, of the distribution. o is the stan-
dard deviation and it accounts for the ‘amount of randomness’ of the random
variable. If we take the square value of the standard deviation (%) we obtain
what is defined as the variance. Basically, the greater the value of ¢ the more
likely it is to have occurrences of the random variable further away from the
mean value p. Figure 8.3 illustrates the Gaussian PDF with i = 0 and with
o = 0.5, 0 = 1 and 0 = 2. Clearly, as the the value of ¢ increases the PDF
gets broader. The area under py, (i) is unity:

/ p[l(il)dil =1

-0

pr, (i) @8.1)

(8.2)

In other words, when ¢ increases, resulting in a broader PDF, the maximum
amplitude of the PDF decreases in order to maintain the area constant and
equal to one. Conversely, when o decreases the PDF gets narrower and the
density around the mean value, 4 = 0, increases. When o tends to zero the
PDF tends to a Dirac delta function with unity area centred at the mean value:

o (B2 s

202

lim (8.3)

o—0

2ro

It follows that the PDF of a completely deterministic event is the Dirac delta
function located at the mean value with unity area. If the random fluctuations
(noise) associated with the current measured at ¢; were non-existent then its
PDF would be a Dirac delta function centred at zero.

Probability calculation

The calculation of the probability of I being in a given interval [i,, 73], with
1, < 1p, is defined as follows:

iy
Pli, < I < i) é/ pr, (i1) diy (8.4)

The interpretation of this eqn is illustrated in figure 8.4. It corresponds to deter-
mining the area under py, (¢1) between the values ¢, and 7;. The calculation of
probabilities when the distribution of the random variable is Gaussian cannot
be effected in a direct manner since the Gaussian PDF does not have an ana-
lytic primitive, that is, it cannot be integrated analytically. However, numerical
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methods have been devised to generate tables of the normalised integrals below
(see also appendix A) which are also known as error functions’:

/oo A2 g
[
L

(1>

Q(z)

>

)
EIMEIW]H

0 erf(z)

/ erfc(z) =

R
i

—_
|

] ) The calculation of the probability of the Gaussian r.v. X exceeding a spe-
Figure 8.4: The calculation  cific value a is expressed as P[X > a]. The calculation of P[X > a] when

of probabilities as the calcu- X has a mean value of y and a standard deviation of o, can be performed as
lation of an area. follows:

PIX > d] Pl 2P\ 8.5)

V2no

Considering a > 0 we use the following change of variable (see example 8.2.2

fora < 0)
o= ITH (8.6)
o
we can write
1
d\ = dz— 8.7
o
z=a ; A=2ZH (8.8)
o
T—00 ; A—00 8.9

and eqn 8.5 can be written as

oo

V2w -/(a /e

= (“ ) (8.10)

Example 8.2.1 Show that if I; is a Gaussian r.v. with mean value 4 and vari-
ance o then eqn 8.4 can be written as

P[ia<Il<z’b]=Q<i"_u>—Q(ib_“> 8.11)

PIX >a = e/ dx

g g

I'The function erfc(-) is also known as the complementary error function.
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Solution: Since I is a Gaussian r.v. then we have:

1 (i1 — p)?
T exp (— 552 ) (8.12)

and P[i, < I, < ip] can be calculated according to eqn 8.4, that is;

. \2
exp <—M> diy (8.13)

Pr (i) =

i
P[ia<I1 <ib]=/ 252

2no
The last eqn can be written as follows:

Plio<h<iy] = | —exp (—(’12—2“)> diy

(i1 — p)?
/b Sro exp( 252 >d1,1 (8.14)

Using the mathematical manipulation described in eqns 8.6-8.10 we can write
this eqn as

Plio <@ <] =

1 / e~ M/2
dXq
V2 (ia—p)/o
7

/ —-A3/2 d)s

(is— H)/U

Q(l" )—Q(——”’—“> (8.15)
g g

Example 8.2.2 Consider a Gaussian r.v. X with ;1 = 3 and ¢ = 2. Determine
P[X <-T7].

Solution:

-7 Y
PIX<-7 = /_ \/2170 exp (—%) dr  (8.16)

Using the change of variable

T = -y (8.17)

dr = —dy (8.18)
x=-7 ; y=7 8.19)
xT— —00 ; y— +o0 (8.20)

eqn 8.16 can now be written as follows:

+7 ey 2
Px<-n = [ ﬁexp (-%#) (—dy)

Y (y + p)?
= /7 = exp ( 952 dy (8.21)
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Example.
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Finally by using another change of variable

A = y—;’—“ (8.22)
= dy% (8.23)
y=7 ,\:71'” (8.24)
y—00 ; A—00 (8.25)

eqn 8.21 can be calculated as follows

PX<-7 = Q(7+”>

o
= 29x1077
As an exercise, repeat the above for P[.X > 13]. You will find that this will give

an identical answer due to the symmetry of the Gaussian distribution around
the mean (¢ = 3 in this case).

Other distributions

There is a large variety of PDFs which have been devised as appropriate mod-
els for a broad range of random phenomena. Among these distributions the
following are commonly found in electronic and communication systems:

o Uniform. This continuous distribution is characterised by a PDF which
can be expressed by the following equation:

px () = %rect <x;u) (8.26)

where rect(-) represents the rectangular function (see appendix A) and y
is the mean value. Figure 8.5 illustrates a zero mean uniform PDF with
range A. Note that, unlike the Gaussian distribution with infinite tails,
the uniform distribution has a finite range of possible occurrences for the
random variable. Note that the area of px (x) is one, as expected.

o Poisson. This distribution differs substantially from the two previous
distributions (Gaussian and uniform) since it is categorised as a (non-
continuous) random variable. It is used to model a very broad range of
random phenomena including shot noise in electronic devices, a subject
that will be discussed further in section 8.4.2. Discrete distributions are
often characterised by probability frequency functions. However, using
the Dirac delta function, it is possible to describe these discrete distri-
butions using probability density functions. For the Poisson distribution
we can write:

ok
px(@) = Y % 5(z — k) 8.27)
k=0

where 1 represents the mean of the distribution.
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8.2.1 Moments of a random variable

The moments of a random variable are, in essence, weighted averaging oper-
ations over the PDE These moments provide valuable information about this
r.v. Mathematically the n-th order moment of a random variable X is defined
as

E[X"] 2 / o px(a) da (8.28)

-00

where the operator E [-] is called the ‘expectation’ or ‘averaging’ operator.

The average value

Of particular interest are the first and the second moment. The first moment
represents the average value, or the mean, of the random variable:

,u:E[X}:/OO z px(z)dz (8.29)

Figure 8.7 illustrates the mathematical operation of eqn 8.29. In figure 8.7 a)
we illustrate the zero mean PDF, px(x), and the linear function f(z) = z.

Lpx\x rpxlT

Figure 8.7: Calculation of the mean of a PDF. a) Representation of a zero mean
px(z) and of f(z) = x. b) Representation of the area of the product of x with
the zero mean px (x). ¢) Representation of a non-zero mean (1) px (x) and of
f(z) = x. d) Representation of the area of the product of x with px (z).
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Figure 8.7 b) shows the product of z with px (). It can be seen that, for this
situation, the positive area, At is equal to the negative area, A~. Thus, the
overall area, that is the sum of AT + A~ is zero as expected. In Figure 8.7 ¢)
we see the PDF with a mean value g # 0 and the linear function f(z) = z.
Figure 8.7 d) represents the product of z with px (x). Now the positive area,
A is greater that the negative area, A~. In fact the sum of AT + A~ is equal
to u, the mean value of the PDE

The variance

The second moment is called the mean-square value of the random variable:

E[X? = / ~ z? px(x)dz (8.30)

-0

The mean-square value can be be expressed as E [z2] = u? + o2 where o2
is the variance of the random variable. ¢?2 is also called the centred second
moment and can be calculated as follows:

o =BIX — )= [ @ w) px(a)ds 831)

When the mean of the PDF is zero then E [z2] = o2. Figure 8.8 illustrates
the mathematical operation of eqn 8.31 for two zero mean distributions with
different variances.

Figure 8.8 a) represents the distribution px (z) and the parabolic function
f(z) = z%. The role of the function z? is as follows: after multiplying z?
with px (z), as shown in figure 8.8 b), the parabolic function attenuates the
importance of those values of px{x) near the mean value while it enhances
the values of px () further away from the mean value. Thus, the calculation
of the area resulting from this product provides a measure of how broad (or
scattered) a PDF is and the result is called the variance. In figure 8.8 c) we
show another distribution px (z) with a larger variance represented together
with the parabolic function f(x) = z2. It can be seen, in a qualitative manner,
that the area resulting from the product of px (z) with 2?2 for this situation is
larger than the situation presented in figure 8.8 a) a result that is also apparent
from figure 8.8 d).

The square root of the variance is the standard deviation, o, which has
already been discussed in the context of the Gaussian distribution. The inter-
pretation for o, although presented in the context of the Gaussian distribution,
is valid for any kind of distribution. In fact Chebyshev’s inequality states that,
regardless of the PDF px (z), we have

P(X —p| > a0) < (8.32)

1
a2
where y and o are the mean and the standard deviation of px (z). Equation
8.32 states that the probability of observing any outcome of a random variable
X outside +a times the standard deviation of its average value is never greater
than 1/a?, regardless of its distribution.
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-

Figure 8.8: Calculation of the variance of different zero mean PDFs. a) Rep-
resentation of px(x) and of f(z) = x2 b) The product of z* with px ().
¢) Representation of px (x), with larger variance, and of f(x) = z°. d) The

product of x? with px (x) with the larger variance.

Example 8.2.3 Determine the variance of a zero mean uniform distribution.

Solution: The variance of a zero mean uniform distribution coincides with the
second moment and can be calculated as follows:

o = /oo z? %rect (%) dx

- /A/2 $2ldm = m_B &
—A/2 A 3A —A/2
A2
= (8.33)

Multivariate expectations

The term multivariate expectations refers to the calculation of expectations of
more than one random variable and the calculation of functions of multiple ran-
dom variables. However, in this chapter we only consider simple but important
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multivariate expectations cases. The first situation refers to the product of N
random variables X, X, ..., X. If these random variables are statistically
independent, such as those arising from different noise sources in electronic
circuits, the expectation of this product is equal to the product of the individual
expectation values, that is, the mean value of the product is equal to the product
of each mean value;

E[X,X;...Xy] = E[Xi]E[X.]...E[XN] (8.34)

The last eqn can be generalised for higher order moments provided that the
random variables are independent:

E[XT X! ...X%y] = E[X]]E[X]]...E[X%] (8.35)

where r represents the moment order and is a positive integer.

The second case refers to the sum of N random variables X, Xo, ..., Xn.
The expectation of this sum is equal to the sum of all individual expectation
values, regardless of whether the random variables are independent or not in-
dependent:

E[Xl + Xo + XN] = E[Xl] +E[X2] +... +E[XN] (8.36)
As before, the last eqn can be generalised for higher order moments as

EXT+X5+...Xy] = E[X{]+E[X3]+...+E[X}] 837

8.2.2 The characteristic function

The characteristic function of a random variable X is defined by the following
eqn
Cx(N) 2 E [ X] = / px(z) e X dz (8.38)
— o0
with j = /-1 and A representing an independent variable. Equation 8.38 is
easily recognised as a Fourier integral. In fact, if we let A = 2w we can write:

CX (271’6!) = S [pX (.’L‘)] (839)

and consequently
px(z) =F [Cx(2ma)] :/ Cx(2ra) 9272 do (8.40)

The last two eqns reveal that the characteristic function and the PDF of a ran-
dom variable form a Fourier transform pair.
The moments of a random variable can be calculated from its characteristic
function according to:
1 d
E[X" = ——— —Cx{(27a)

e (8.41)

a=0
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Example 8.2.4 Calculate the second moment of a zero mean uniform distri-
bution using eqn 8.41 and show that it is equal to A?/12, where A represents
the range of the r.v.

Solution: The PDF of a zero mean uniform distribution can be written as:

x

po() = %rect (Z> (8.42)

and the characteristic function is its Fourier transform, that is, (see appendix
A):

Cx(a) = sinc{aA) (8.43)
From eqn 8.41 we have:
1 d
E[X?] = ——— ——sinc(aA)
(—727)% do? =0
L 1 sin{mrad) cos(rad) sin(rad)
= 2 e {‘”A o T ar TP rAw
- 1 2 A2, 2 22
= i) { ™A +37r A
A2
T 12

Note that above result is identical to that obtained in example 8.2.3.

The characteristic function is very useful when dealing with sums of inde-
pendent variables. Considering the sum of two independent random variables
Y = X; + X5, the characteristic function of Y is calculated as:

B [e“y] -E [ej /\(X1+X2)} —E [ej Axl} E [ej AXz] (8.44)
that is

Cy(2ra) = Cx, {27a)Cx,(27aq) (8.45)

and consequently, from the convolution theorem,

py(2) = px, (2) * px,(2) (8.46)

That is, the PDF resulting from the sum of two independent random variables
is given by the convolution of the PDFs of each random variable.
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Example 8.2.5 Show that the sum of two independent Gaussian random vari-
ables is also a Gaussian random variable.

Solution: Let us consider two Gaussian random variables X; and X each one
characterised by a PDF

1 T — pi)? .
Px,(2) = ——— exp (—(—20—5—)—> i=1,2 (8.47)
K] K

where p; and o2 are the mean value and the variance of X;, i = 1,2, respec-
tively. Taking the Fourier transform (see appendix A) of each PDF we get:

Cx, (2ma) = e~92mam=ot @man)® (8.48)
Cx,(2ma) = eI 2mapemal@n o) (8.49)
The characteristic function of Z = X; + X3 is given by
02(27[‘0) = e_j27"04/11—0‘2(2ﬂ'01)2 X e—j2ﬂ'ap,2—az(27rag)2

e—d2ma(prtpz)—a®(2m)® (o +03)

e—d2mau, —a?(2no;)? (8.50)

where 1, = p; + p2 and 02 = 0% + o2. Taking the inverse Fourier transform
we get;

1 —u,)?
pz(z) = oro exp (—%‘;—)> (8.51)

The last eqn represents a Gaussian PDF.

Equations 8.45 and 8.46 can be generalised for the sum of N independent
random variables. Hence if Y = X; + X5 + ... X then,

N
Cy(2ra) = [ Cx.(2ra) (8.52)
k=1
and,
py(2) =px,(2) * px,(2) * ... % pxy(2) (8.53)

8.2.3 The central limit theorem

The central limit theorem states that the sum of NV independent and general
(meaning regardless of their distribution) random variables, X, tends towards
a Gaussian distribution with a mean, y given by:

N
p= b (8:54)
=1



8. Noise in electronic circuits

291

and a variance given by
o2 = Z o2 (8.55)

where y; and o? represent the mean value and the variance, respectively, of
each random variable X;. This theorem is very important since it allows the
characterisation of the PDF of a r.v., which results from a large sum of r.v.s, as
a Gaussian distribution. It should be noted that there is no need to know the
PDF of any of these individual random variables. All that is required is that the
mean and the variance of each of these individual random variables be known.

To illustrate this important theorem we consider the sum of three identi-
cal and uniform distributions. Figure 8.9 a) shows a zero mean uniform dis-
tribution with range 24 and a zero mean Gaussian PDF with the same vari-
ance that is, 02 = (2 A)2/12. From this figure it can be observed that these
two distributions are quite different. If we sum two uniform random variables
Y = X;i + X, its PDF is triangular as shown in figure 8.9 b). It can be seen

Px1(z1)
Exact PDF A
- - - Gaussian PDF % ‘\ X1
2 ’
o= %L / 2 - Y

QV

p
s
z

—r
—34 c) 34

Figure 8.9: Comparison between the exact PDF of the sum of N uniform ran-
dom variables (X;, © = 1,2, 3), which are independent identically distributed,
with the Gaussian approximation given by the central limit theorem. a) N = 1.
b)N=2.¢)N =3

that the range of the PDF of Y is now 4A. Figure 8.9 b) also shows the Gaus-
sian approximation to the PDF of Y, as stated by the central limit theorem. It
can be observed that the difference between these two PDFs is not as large as
in the previous situation described by figure 8.9 a). In figure 8.9 ¢) we show
the PDF for the random variable Z resulting from the sum of three uniform
random variables. The range of this distribution is now 6A and we observe
that the piecewise parabolic shape of this distribution starts to resemble the
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Gaussian PDF. In fact, from figure 8.9 c) it can be seen that the difference be-
tween these two PDFs is small. Clearly, the PDF of the r.v. resulting from the
addition of more than one uniform random variable tends to a Gaussian distri-
bution as stated by the central limit theorem. However, we emphasise that the
distribution resulting from the sum of three uniform distributions has a finite
range while the Gaussian PDF exhibits infinite tails. Therefore, some caution
must be exercised using the Gaussian PDF to approximate the PDF of Z when
dealing with very small probabilities! The following example illustrates this
idea.

Example 8.2.6 Consider the random variable Z resulting from the sum of
three independent, identically distributed, uniform random variables X;, ¢ =
1,2,3:

1 x
DPXx; (ZC) = ﬂrect (ﬂ) (856)
with 24 = 1.

1. Determine the value z, such that the P(Z > 2,) = 0.3.

2. Consider the Gaussian approximation to the PDF of Z and determine an
estimate for the value z, such that the P(Z > z,) = 0.3. Compare the
value of z, with that obtained above.

3. Repeat the last two questions but now for 2, such that P(Z > z,) =
2.1 x 1075,

Solution:

1. The piecewise parabolic PDF is given by the convolution of the three
uniform PDFs and can be expressed by;

2
%‘ﬁ 3A<z< -4

2 3A2
_(Lézr) _A<z2<A
Pz(z) = (8.57)

2
L’%‘g@— A<2z<34A

0 elsewhere

The value 2, satisfies the following equation:

/ Pz(z)dz=10.3
that is

34 (L qA\2
/ (Zlﬁ—jf)dz = 03

a
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0.3
S 2z, = 0.2836

T
|
|
|

pl\l

_+_

&
|
|

&
I

2. For each uniform PDF the variance is 2 = 1/12. Hence the Gaussian
approximation for Z is

2

7507 (8.58)

(2) = —1
pz\* —\/57_7\/3795

P(Z > z,) = 0.3 can be written as

(G ) =08

From the tables of the Gaussian error function (see appendix A), z, is
estimated as 0.2620. The error for z, given by the true PDF and by the
Gaussian approximation is relatively small; about 7.6%.

3. The true value of z; satisfies the following equation:

/ Pz(2)dz=21x107°

Zp
that is

9 1 3 9 _
B—6z§+1z§—§zb = 21x1075

< oz = 1.4499

The Gaussian approximation for z; is such that:

Q(\/‘;b > = 21x107°
Oz

& oz = 205

It should be noted that, for this case, there is a significant etror in the
prediction of z, by the Gaussian approximation. Also, since the true
PDF of Z has a limited range [—1.5,1.5] the outcome z;, = 2.05 is
meaningless in the context of the random variable Z.

8.2.4 Bivariate Gaussian distributions

We consider now the joint PDF of two Gaussian random variables, X and Y,
which are statistically dependent. The interdependence of X and Y is quanti-
fied by the covariance of X and Y which is defined as follows:

Y

Pxy E[(X = pz) (Y = py)] (8.59)

Oy Oy
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where yi; and o2 are the mean and the variance of X, respectively. 11, and o2
are the mean and the variance of Y, respectively. If the two random variables
are statistically independent then pxy = 0. If the two random variables are
totally correlated then pxy = +1. Figure 8.10 illustrates the outcomes of a
random variable Y versus the outcomes of a random variable X for pxy = 0,
pxy = 0.7, pxy = —0.8, pxy = 1. When the two random variables are
uncorrelated, pxy = 0, it can be seen that the outcomes of Y do not relate

. e Y ) L
. e .t pxy =0 .
. . . . . o " opxy =07
. « * .. . .« * . . * P z
a) b)
. Yy Y
oo. pXY:_OS .°.
Tt copxy =1
* e, z '.°°. z
c) d)

Figure 8.10: Correlation between X and Y. a) pxy = 0. b) pxy = 0.7. ¢)
pxy =08 d)pxy =L

to the outcomes of X. However, as |pxy| increases it can be seen that the
outcomes of Y and of X become increasingly dependent on each other.

The bivariate Gaussian PDF can be written as follows:

1
z,y) =
pxy (@) 20,04/ 1 — piy
Xexp{_ (—m)® (=) p(z—ux)(y—uy)}
202(1 - pky)  202(1—pky)  0z0y(1—pky)

(8.60)

pxy(z,y) is also called the joint probability distribution (or joint PDF) of X

andY.
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8.3 Stochastic
processes
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Let us consider again the measurements of the noise current in each resistor
illustrated in figure 8.1. Each measured noise current waveform is also called a
sample function or a sample waveform. Previously we have considered a fixed
time instant ¢; for which we considered a random variable, I;. If we consider
any other instant of time, ¢ = ¢, for example, we have another random variable,
I5. Therefore, a random process can be viewed as a family of random variables
considered at different time instants.

8.3.1 Ensemble averages

If the PDF of the noise current, for any instant of time ¢, is represented by
pr(#(t)) then the mean value for i(t) can be written as:

BU®)2 [ i0pii) dift) 361)
—0o0

It should be noted that the time variable ¢ in eqn 8.61 is treated like a constant.

Hence, eqn 8.61 is often written without the explicit time dependency, that is:

o0
E[I(t)] = / 1pr(i) di (8.62)
-0

Equation 8.61 or 8.62 represents an ensemble average, that is, an average over
the ensemble of current waveforms (or sample functions) for any given instant
of time. Its meaning is similar to the first moment (or average value) discussed
in the context of a single random variable. The main difference is that for a
random process the value of E [I(¢)] might be time dependent.

Correlation functions

Another very important ensemble average is the autocorrelation function. This
function, like the covariance defined in eqn 8.59, is a measure of the related-
ness or dependence between random variables I; and I, considered at time
instants t; and ¢ respectively. As it will be shown latter on, the measure of
such a dependence can provide valuable information about the bandwidth and
about the power of the noise which is modelled as a random process. The
autocorrelation function is defined as follows:

Ri(t1,t2) = B[I1(t1) L2(t2)] =/ / i1 421, 1, (01, 92) diy dip (8.63)

where the dependency of I; and of I; on the time variable has been dropped
for reasons of simplicity. py, r,(%1,42) is the joint probability distribution of
the random variables I; and I5 at ¢ = ¢; and at t = o, respectively.

If I; is statistically independent of I then R;(t1,%2) = E[I{¢1)] E [I(t2)].
On the other hand, R;(t,t) = E[I(t)?], thatis R;(¢, t) is the mean square value
of I(t) as a function of time.

If I; and I, are both zero mean random variables then

Ri(t1,t2) = o1, on,pn1,

with py, 1, representing the covariance between I and I5.
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8.3.2 Stationary random processes

A stationary random process is one where all statistical characteristics (i.e sta-
tistical averages) are invariant with time. A specific type of stationary random
process is known as the ‘wide sense stationary process’ where the time invari-
ant characteristics are satisfied for the mean and the autocorrelation functions,
that is;

o The mean value is constant for all times:

B[I()] = u (8.64)

o The autocorrelation function depends only on the time difference t5 — 1,
that is

Ri(t1,t2) = Ri(ta—t1)
= Ri(r) (8.65)

with 7 = t5 — £1. The autocorrelation of a stationary random process is
often written as;

Ri(r) = E[I®I{t+71) (8.66)

Setting 7 = 0 in eqn 8.66 we have R;(0) = E[I(t)?], that is, the mean square
value and the variance of a stationary random process are constants.

8.3.3 Ergodic random processes

It is possible to take time averages of sample functions of a random process.
For example, the mean value obtained by averaging the k-th sample function
of a random process, i {t), over time is given by the following expression;

T/2
< ix(t) =2 Jim = / ix(t) dt (8.67)

where < - > is a time averaging operator.

Similarly, the autocorrelation function obtained by averaging the k-th sam-
ple function of a random process over time is given by the following expres-
sion;

T/2
=< ik(t) ik (t + 7') =2 lim — / ’ik(t) ik(t + 7’) dt (8.68)
T—oo T —T/2

When all time averages are equal to the corresponding ensemble averages
the random process is said to be ergodic. Hence, for an ergodic random
process we can write the following:

<ir(t) = = E[I({)] (8.69)
< i2(t) >~ E[I*(t)] (8.70)
<ig(t) ikt +7) > E[I(t) I{t+7)] (8.71)
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Ergodicity implies that a single sample function is representative of the entire
random process since all statistics associated with this random process can be
calculated from such a sample function.

In the context of ergodic random signals or noise we can state the following:

o The mean value of the process, 1;, represents the DC value of the process
< i(t) =

e The square of the mean value, u2, represents the power of the DC com-
ponent < i(t) =2;

e The variance, o2, represents the average power associated with the AC
components of the process, that is it represents the average power of the
time varying component of the process;

o The mean square, E [i(#)?], represents the total average power < i2(t) =;

e The standard deviation, o, represents the root-mean-square (RMS) value
of the time varying component of the process.

As mentioned previously, the autocorrelation function of a random process can
provide information about the bandwidth of this random process, at least in
qualitative terms. To understand how this information is retrieved we refer
now to figure 8.11 where we represent, in detail, the computation of R; () for
a slowly varying zero mean random signal and a rapidly varying zero mean ran-
dom signal®. Recall that slowly varying signals have an associated low band-
width while rapidly varying signals exhibit high bandwidths. Figures 8.11 a)
and 8.11 b) represent the sample waveforms of both random processes and also
their replica delayed by 7;. In figures 8.11 c) and 8.11 d) we represent the sig-
nals resulting from multiplying each sample waveform with its delayed replica.
From figure 8.11 c) we observe that the percentage of positive area is signifi-
cantly greater than the percentage of negative area of i(¢) i(t + 71). Therefore
the total area, that is R;(7y), is non-zero indicating a strong correlation be-
tween ¢(t) and (¢ + 71). On the other hand, from figure 8.11 d) we observe
that the percentages of positive and negative areas of ¢(t) i(¢ + 71 ) are approx-
imately equal. Hence the total area, that is R;(m;), tends to zero indicating
that (¢) is uncorrelated to #(¢ + 71). It is important to note that, in qualitative
terms, the existence or the non-existence of correlation for a given time differ-
ence, Ty, is a direct consequence of the random signal being slowly or rapidly
varying. Figures 8.11 ¢) and 8.11 f) show the autocorrelation functions for the
slowly varying and rapidly varying random signals as functions of time delay
T, respectively. From figure 8.11 e) we observe that the slowly varying, low
frequency random signal, exhibits strong autocorrelation for values of 7 well
above 71. However, from figure 8.11 f) it can be seen that the rapidly varying,
high bandwidth random signal only exhibits significant correlation for values
of 7 around zero.

2Signals are ‘rapid’ or ‘slow’ in relation to each other and to the observation period.
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Figure 8.11: a) Sample function of a slowly varying random process and its de-
layed replica. b} Sample function of a rapidly varying random process and its
delayed replica. c) Product of the sample function of a slowly varying random
process with its delayed replica. d) Product of the sample function of a rapidly
varying random process with its delayed replica. e) Autocorrelation function
of a slowly varying random process. f) Autocorrelation function of a rapidly
varying random process.

8.3.4 Power spectrum

We have just seen that the autocorrelation function can provide qualitative in-
formation about the bandwidth of a random process. In order to quantify this
information we need to calculate the Fourier transform of the autocorrelation
function. This is called the power spectral density (PSD)3

Sii<(f)

I

Sr [Rz(T)]
/ Ri(r)e 327 f7dr (8.72)

This eqn is the Wiener-Kinchine theorem and it applies to stationary random
signals.

3The use of ;;+ as an underscript will become clear with the discussion of eqn 8.80.
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For ergodic random processes the PSD can be calculated from the time
averaging-based autocorrelation function, < i(¢) ix(t + 7) >:

o0

Sii(f) = / <) ig(t+7) = e T2 T dr (8.73)

— 00

that is
Si(f) = / lim — / () in(t +7)dte 327 T dr (8.74)

Assuming that the random process sample function, i (¢) has a Fourier trans-
form ix(f) such that:

ix(f) = / ix(t)e 27t gy (8.75)
we can write eqn 8.74 as follows:
Si-(f) = lim & / W eI d () (876)
T—oo T T/2
where we used the following result
/ ik(t-l-T)e_j27TdeT = ik(f)e””ft 8.77)
Noting that
T/2 '
lim i) e tdgt = ik (f) (8.78)
T—o0 —T/2
we get Si;- (f) to be
) _ o k(PN
that is
; 2
Su«(f) = lim (A 2 (i) (8.80)

T— o0 T

The (-} represents a mathematical operator which can be used to determine the
power spectral density of an ergodic random process. We shall discuss some
elementary properties of this operator in the next section (see also example
8.3.2).

The result expressed by eqn 8.80 is extremely important since it is the basis
of the AC-based electronic noise analysis which is presented in section 8.4. In
fact, this eqn tells us that if a single sample function i (¢) of an ergodic random
process is observed for a long period of time, T, then the PSD of such a process
can be estimated by

Sw(p) = i1 = BOL (8.81)
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where i (f) is the Fourier transform of i (t).
It should be noted that the total power, P,,; associated with a random signal,
or noise modelled as a stationary random process, can be calculated as follows:

oo
Pu = [ Swid 882)
—00
This is equivalent to finding the autocorrelation function for 7 = 0, that is:

P = Ry(0) (8.83)

Example 8.3.1 1. Show that if a stationary random signal has a spectral
density given by S .- (f) = o2 /Bsinc?(f/B), where B is the band-
width, then the correlation time is 77 = 1/B.

2. For the random process mentioned above consider 7 = 1/B and 70 =
1/B’, B’ = 3B. Compare the PSD and the autocorrelation function for
each situation.

Solution:

1. The correlation time 77 is defined as the maximum delay between a
sample random waveform and its replica above which the autocorrelation
function is zero. Taking the inverse Fourier transform of S ( f) we obtain

Figure 8.12: a) Power spectral density. b) Autocorrelation function.

the autocorrelation function (see appendix A)
R.(r) = o? triang (T B) (8.84)

For |7| > 1/B the autocorrelation function is zero. Hence 7 = 1/B.
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2. Figure 8.12 illustrates the PSD and the autocorrelation function of the
random process z(t) when 70 = 1/B and when 7 = 1/B’, B’ = 3B.
As has been discussed previously (see also figure 8.11), as the band-
width associated with the random process (or random signal) increases
the correlation time decreases.

8.3.5 Cross-power spectrum

Quite often there is need to examine the joint statistics of two random pro-
cesses, u(t) and w(¢). This is especially relevant when a given random pro-
cess z(t) results from the sum of two random processes. The cross-correlation
function of u(t) and w(t) is used to measure the relatedness of these random
processes and it is defined as follows:

Ruw(t1,t2) £ Eu(t:) w(ts)] (8.85)
If the two processes are uncorrelated then
Ruw(tl,tg) =E [u(tl)]E [’w(tg)] (886)

Moreover, if any of them has a zero mean value for all ¢ then Ry, (¢1,%2) = 0.

If u(t) and w(t) are jointly ergodic processes such that R, (t;,t2) =
Ry(7), T = to — t; then the cross spectral density is defined as the Fourier
transform of R, (7):

>

Suw= () /°° Ry (1) e 27T dr

— o0

= /oo <ut)w(t+7) > e ¥ dr (8.87)

—0o0

Using the results of eqns 8.74-8.81 it is straightforward to show that

= iy MOW)
Suw+(f) = lim ——p =

T—o0

(u w*) (8.88)

where, as in eqn 8.80, () is an operator which is now used to determine the
cross-power spectral density of two or more jointly ergodic random processes.
The next example illustrates some important properties of this operator.

It should be noted that Sy« (f) = Sk« (f) thatis {u w*) = ((w u*))”.
If the two random processes are uncorrelated with zero mean then (u w*) = 0.

Example 8.3.2 Consider two jointly ergodic random processes z(t) and y(t).
Consider the random process z = x(t) + y(¢). Show that the PSD of z(¢),
(z z*), can be determined as follows:

(zz") = ((x+y) x+y)")
= XX+ xy)+yx)+H{yy") (8.89)
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Solution: According to eqn 8.73, the PSD of 2(¢) can be determined as follows:

o
(zz*) = / < z(t) 2zt +7) = e 72T 4y

-0

00 ' 1 T/2
[z [, 0w

0o T—00

[ex(t +7) +yp(t + 1) dte 72757 dr (8.90)

X

where zx(t), zx(t) and yx(t) represent sample functions of z(t), z(t) and y(t),
respectively. The last eqn can be written as:

o0 1 T/2 .
(zz*) = / lim —/ zp(t) zp(t+ 1) dt €927 T dr

+ / lim ?/ () yp(t +7)dt e 3277 dr
-T/2

ooT——’OO T/
+ / lim —/ ye(t) zp(t+ 1) dt e927 57 dr
0 T—o0 T -T/2

oo 1 T/2 .
+ / lim —/ ye(t) yr(t +7)dt e 7277 dr  (8.91)
o0 T=0 T J_1/s

Using eqns 8.74-8.81 and eqn 8.88 this eqn can be written as

(zz") = ExXN+EyH+yx)+yy) (8.92)

8.3.6 Gaussian random processes

A random process u(t) is called a Gaussian process if the PDF for any random
variable considered at any arbitrary instant of time ¢ is Gaussian. Also the joint
probability function of any two random variables considered at two arbitrary
instants of time ¢; and t5 is a bivariate Gaussian PDF and likewise for every
higher order joint PDF.

The following holds for a Gaussian process* u(t):

o The process is completely described by E [u(t)] and by R, (1, 2).

o If R, (t1,t2) = E [u(t1)]E [u(t2)] then u(t1) and u(t2) are uncorrelated
and statistically independent.

o If u(t) is wide-sense stationary then it is also ergodic.
e Any linear operation on u(t) produces a Gaussian random process.

Gaussian processes are very important in electronics since the Gaussian model
applies to the vast majority of random electrical phenomena, or noise, at least
as a first approximation. All the electronic noise sources that are discussed
later are considered as Gaussian and as ergodic random processes.

“4For detailed discussion of properties of random processes see [11.
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8.3.7 Filtered random signals

The output signal, v{t), resulting from applying a random signal, u(¢) to a
linear system is given by the convolution operation

u(t) = / h A(A) u(t — A) dA (8.93)

— o0

where h(t) is the linear system impulse response (see figure 8.13).
The main statistics of v(¢), namely the mean and the autocorrelation func-
tion, can be determined as follows:

[es]
=N
~—~~

o~
=

Il

/ T [u(t — \)] h(X) dA (8.94)
Ry(t,ts) = / / Ryt — Ay ta — A2) h(A) h(Ag) dA; d)s
(8.95)

If u(¢) is a stationary random process then v(t) is also a stationary random
process, and for this situation we have:

Efv(t)] = pa /_oo h(\) dX (8.96)
pu H(0) (8.97)
R,(1) = Ru(1)*h(-7)*h(1) (8.98)

with H(0) representing the transfer function of the linear system at zero fre-
quency (DC).

The power spectrum density of v(t) can be determined by the Fourier trans-
form of eqn 8.98, that is:

Sov- (£) = H(H)I? Suu- (f) (8.99)

This eqn indicates that the system transfer function shapes the power spectrum
density as illustrated by figure 8.14.
The power of v{t) can be determined as follows;

Bt = R(0) = | T H)P S () df (8.100)

—00

White noise and equivalent noise bandwidth

As will be discussed in section 8.4.1 thermal noise, and many other types of
noise sources which can be modelled as random processes, have a flat spectral
density over a very wide range of frequencies. This type of spectrum is called
white by analogy to the spectrum of white light which also has a constant (or
flat) spectrum.



304

b S (f)

[ME]

b)

Figure 8.15: White noise.
a) Power Spectral density.
b) Autocorrelation function.

Figure 8.16: The equivalent
noise bandwidth.
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The power spectral density of a white noise can be written as:

Sune () = 3 (8.101)
where the 1/2 factor is included to indicate that the PSD is considered to be
bilateral, that is, half of the noise power is associated with positive frequencies
and the other half is associated with the corresponding negative frequencies.

The autocorrelation function of the white noise is given by the inverse
Fourier transform of S+ (f):

Ra(7) = 25(t) (8.102)

Figure 8.15 shows the PSD and the autocorrelation function of white noise. It
should be noted that, according to eqn 8.82 (or eqn 8.83), white noise must
have infinite power. Since it is well known that there is no practical random
signal or random noise source with infinite power, we emphasise that, although
the theoretical concept of white noise is very useful to model flat and broad
bandwidth noise sources, we must bear in mind that white noise sources: are
always filtered by finite bandwidth systems. It is also important to note that the
spectral density of filtered white noise takes the shape of the system transfer
function according to:

3 [H()P (8.103)

The noise power associated with the filtered white noise is given by:

_ [Tn
Poo= [ JH(EY

o0

_ 7
- 3 mory (8.104)

Since the integral of eqn 8.104 depends only on the transfer function H(f)
we can define the equivalent noise bandwidth, By . This is the bandwidth of
an ideal low-pass filter that would pass as much noise as the filter with transfer
function H{f) (see also figure 8.16). This is normally done to simplify circuit

and system noise calculations by getting rid of the integral (see eqn 8.104) and
replacing it by a simple product as shown below:

P, = gA2BN (8.105)
with

s 1™
By = / |H(f)|? df (8.106)

—00

where A = |H(f)|maz is the maximum amplitude of |H(f)|. Usually, for a
low-pass filter | H (f)|maq. coincides with the DC gain.



8. Noise in electronic circuits

8.4 Noisein
electronic
circuits

R

—W\W—

Noisy resistor
a)

HH +._

Noiseless

Equivalent voltage
resistor
thermal noise source

Equwalent in
current

thermal

noise

source

Figure 8.17: a) Noisy resis-
tor. b) Thévenin equivalent.
¢) Norton equivalent.

N oxseless
resistor

305

Example 8.3.3 Determine the equivalent noise bandwidth of an RC low-pass
filter with a time constant 7.

Solution: The transfer function for the RC low-pass filter is given by:

1
1+j52nfr

/ T HP of
e 1

H(f) =
therefore A = |H(f)|maz = 1-

By =

B /_m1+<27rfr)2
1 o0
= ——tan ' (Q2nf7)
27 oo
1
27

We note that the equivalent noise bandwidth for a filter of order greater than or
equal to three is approximately equal to the 3 dB bandwidth.

Knowledge of noise statistics is necessary for estimating the noise behaviour
of electronic circuits. This, in turn, is crucial for the estimation of the circuits’
behaviour and their figures of merit. In this section the basic sources of noise
in electronic circuits are introduced and methods of analysis of such sources
and their interactions are presented.

8.4.1 Thermal noise

Thermal noise or Johnson noise consists of thermal induced random fluctua-
tions in the charge carriers of any material with a finite resistivity. Although the
average motion of the charge carriers is zero, the instantaneous random motion
of such free carriers generates instantaneous charge gradients which, in turn,
produce wide-band random voltage fluctuations. These fluctuations are char-
acterised by an ergodic Gaussian random process and they can be modelled
either by an equivalent voltage noise source, uy, in series with a noise-free
resistor or an equivalent current noise source in parallel with a noise-free re-
sistor as shown in figure 8.17. The power spectral density for thermal noise is
constant from DC to frequencies up to near infrared and can be considered as
white noise. The PSD associated with the Thévenin equivalent model for this
type of noise is given by (see also eqn 8.80):

Sunur(f) = (uau})=2RKT (V?/Hz) (8.107)
and the PSD associated with the Norton equivalent model is given by
2KT
Siis(f) = (inih)="%— (A%/Hz) (8.108)
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where K = 1.38 x 10723 joule/kelvin is the Boltzmann constant and 7 is
the temperature in kelvin. At room temperature 7 = 290 kelvin. R is the
resistance. We emphasise that eqns 8.107 and 8.108 are valid for frequencies
up to about 102 Hz. Also, these eqns represent bilateral PSDs, that is, they
account for positive and negative frequencies. It is worthwhile noting that these
eqns may appear contradictory when it comes to the level of noise associated
with the resistor. Does the noise increase (eqn 8.107) or decrease (eqn 8.108)
with the value of the resistance? The answer to this is simply dependent on
the location of the resistance in a circuit and whether it is best to deal with
the resistance as a voltage or as a current noise source. Essentially, the noise
source is a power source. From eqn 8.107 we can calculate the open circuit
RMS voltage, o, produced by the resistance R for a bandwidth B as follows:

B
T = / Sunus (f) df (8.109)
-B
= 4RKTB (V% (8.110)
0w, = VARKTB (volts RMS) (8.111)

8.4.2 Electronic shot-noise

Electronic shot-noise is associated with the passage of carriers across a poten-
tial barrier such as those encountered in p—n junctions of semiconductor diodes
and transistors. The statistics that describe charge motion determine the noise
characteristics. The number of carriers that cross the barrier is random and is
characterised by a Poisson distribution. However, when the number of events
that occur per unit observation time is large then the Poisson distribution can be
replaced by the distribution of a zero mean and ergodic Gaussian process with
a white power spectral density. In terms of an equivalent electronic model this
noise is modelled as a current noise source in parallel with the p—n junction.
Figure 8.18 shows the noise equivalent model for a diode.

The flat PSD of the electronic shot noise associated with a DC current,
Ipe, which crosses a potential barrier is given by

Sini;(f) = (iniy) =¢qlpc

where ¢ = 1.6 x 107! coulomb is the electronic charge.

(A?/Hz) (8.112)

8.4.3 1/f noise

1/ f noise is observed in some resistors and semiconductor devices. The origins
of this type of noise are usually associated with imperfections in the material
from which the devices are made.

1/f noise is considered as a zero mean ergodic Gaussian process. The
Norton equivalent model for this type of noise has a general spectral density
given by:

Sipis(f) = (in i:‘,>=% (A% /Hz) (8.113)
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where K¢ is a factor which depends on the current passing on the device and
« is a coefficient with a range of 0.8 to 1.4. For calculation purposes « is taken
as unity and the noise power varies as the inverse of the frequency. The total
noise power considered between f, and f5 is:

P, (8.114)

Il
T
=
ke
&

= th’lﬁ

a

(A%) (8.115)
Note that over any decade in frequency, that is, for any f, = 10 f,, the noise
power is the same and given by K ; In(10).

In terms of a noise model the 1/f noise component can be accounted for
by adding an additional noise source to the white noise source as illustrated in
figure 8.19.

Since the two noise sources are uncorrelated, the total noise power spectral
density is just the sum of each power spectral density:

(in it) = g (1 + f7> (A2/Hz)  (8.116)
where 77/2 is the PSD of the white noise source component and f, is the ‘corner
frequency’ of the 1/ f noise.

S (f) =

8.4.4 Noise models for passive devices

The ideal passive devices are the resistor, the capacitor and the inductor. Among
all these the only one which is noisy is the resistor since, as discussed above,
it produces thermal noise. Both the ideal inductor and the ideal capacitor are
energy storage elements, do not dissipate energy and do not induce thermal
noise. However, practical devices always have parasitic resistances and these
components will produce thermal noise and 1/ f noise.

Resistor

The practical resistor generates thermal noise and 1/ f noise. The noise model
for the resistor is presented in figure 8.20. For the series voltage sources model
the PSD is given by:

2KTR (8.117)

{Unt upe)

Je

(af wpg) = 2KTRZ (8.118)

where uyt accounts for the thermal noise contribution and u,¢ accounts for
the 1/f noise contribution. For the parallel current sources model the PSD is
given by:

2KT

(int ing) = 7 (8.119)
2KT fe (8.120)

<inf 1;f> = R f
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Capacitor

The real capacitor has two resistive components, as shown in figure 8.21. Ry
is associated with dielectric losses and R includes the lead resistances. While
Ry is greater than 10° Q, R, is, typically, less than 1 Q. There is thermal and
1/f noise associated with R, represented by une1 and by uyg, respectively.
R, generates only thermal noise represented by unt2. In practice their noise is
negligible compared to other circuit noise generators.

Inductor

The real inductor has a main resistive component R, as shown in figure 8.22,
from the wire resistance. R, generates both thermal and 1/ f noise represented
by u,¢ and by uy,¢, respectively. Like the capacitor the noise sources associated
with the practical inductor are usually neglected when compared with other
circuit noise generators like resistors.

8.4.5 Noise models for active devices
Noise model for field effect transistors

Figure 8.23 shows the high frequency small-signal model for the FET including
the main noise source contributions. i,4 is the thermal noise associated with
the Ohmic resistance of the channel, R, which is related to the transconduc-
tance as follows:

R = (gmKa)™! (8.121)

where K ; is a constant associated with the physical dimensions of the FET and
is normally taken as 2/3. The power spectral density of i,,4 is given by:

. 2
(ing i%g) = 2K T ~g—"‘ (8.122)
Since 7, is a dynamic resistance it does not dissipate power and, therefore,
there is no noise source associated with it.

The 1/ f noise power spectral density can be written as:

29m fe
35 f

where f. is the corner frequency. ing accounts for shot noise resulting from
the DC gate leakage current, /. The PSD for i, can be written as:

(inf i%) = 2K T (8.123)

(ing i;g> =qlg (8.124)
In some FETs there is correlation between the noise at the gate and the noise
at the drain especially at high frequencies. However, at mid-range frequency
this correlation is usually neglected.
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Figure 8.23: a) Noiseless small-signal model for the FET. b) Small-signal
model including noise sources.

Noise model for bipolar junction transistors

The noise model for the silicon bipolar junction transistor (BJT) is shown in fig-
ure 8.24. u,g accounts for the thermal noise associated with the base spread-
ing resistance .. It should be noted that this is the only dissipative resistance
in the hybrid-7 model. All the remaining resistances in the model are dynamic
resistances and are therefore noiseless. iy, and i are the shot noise current
sources associated with the base current and the collector current, respectively.
inf is the 1/f current noise source in the base current.

Each noise source is characterised by its power spectral density as follows:

(upp Uig) 2KTr, (8.125)
(inb iny) = ¢In (8.126)
(inc ipe) = qlc¢ (8.127)
(inf ing) qlp f7 (8.128)

where Ig and I are the base and the collector bias currents, respectively.

Unp
C Bt
To

Gm Un

Tz
| inp inf
N ==

—
E
b)

Figure 8.24: a) Noiseless hybrid-m model for the bipolar transistor. b) Hybrid-rm model including noise

SOUrces.

All the noise sources described above are assumed to be uncorrelated.
However, correlation between i, and i, occurs at high frequencies. For ex-
ample, in Hetero-junction Bipolar Transistors (HBTs)> the shot noise induced

SHBT: are bipolar transistors with f7- of the order of tens of GHz which are suitable for Radio-
Frequency/Microwave applications.
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by the base current and the shot noise induced by the collector current are char-
acterised by their self- and cross-spectral densities as follows:

(i i) = q(IB+|l—e_j“’Tb|2Ic> (8.129)
(inc ine) = alc (8.130)
(inb ife) = q(e™ 1) Ic (8.131)

where 73, represents the finite base transit time for the charge carriers. It should
be noted that at low-frequencies (inp, i7,;,). given by eqn 8.129, tends to ¢ I
as in eqn 8.126. Also, at low frequencies the cross-spectral density, given by
eqn 8.131, tends to zero.

It is interesting to note that the dominant noise process in FET devices is
thermal while bipolar devices have dominant shot-noise components. This is
understandable given the nature of FETs and BJTs. A FET can be viewed as
a variable semiconductor resistor generating the thermal noise components of
eqns 8.122 and 8.124. On the other hand a BJT is effectively three semiconduc-
tor regions forming two p—n junctions giving rise to the shot noise components
of eqns 8.126 and 8.127.

8.4.6 The equivalent input noise sources

Now that the noise models for the main circuit elements have been presented it
is clear that even simple circuits can have a significant number of noise sources
contributing to the overall noise of the circuit. Therefore, it is necessary to
assess the impact of each noise source on the circuit performance.

A noise assessment method used to quantify the noise performance of an
amplifier, or of any linear two-port circuit, is based on modelling the noisy
amplifier using equivalent input noise sources, as shown in figure 8.25. The
noisy amplifier is replaced by a noise-free amplifier, which accounts for the
electrical response, and by two equivalent noise generators which characterise
the noise of the amplifier. These two equivalent noise generators are a voltage
noise source, Uy, and a current noise source, i, which are located at the input.
In general, these two noise sources are correlated. This correlation is accounted
for by (i, u},) which is the cross-spectral density between i, and uj,. It should
be noted that there is a need for both a voltage noise source and a current noise
source to accurately characterise the noise behaviour of the amplifier. When
the input signal source is a voltage source its zero (or low) output impedance
absorbs the current noise iy,. If there was not a voltage noise source, the noisy
behaviour of the amplifier would not be taken into account. Similar reasoning
accounts for the need of a current noise source when the input is a current
source.

This noise representation technique is very useful since it allows amplifiers
to be compared in terms of noise performance, regardless of gain, impedance,
or transfer function of the amplifiers. In order to characterise an amplifier
according to the model shown in figure 8.25 b) it is necessary to relate all
the individual noise sources of the noisy amplifier with the equivalent noise
sources uy, and i,.
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We describe a circuit analysis method to calculate the equivalent input volt-
age and equivalent input current noise spectral densities for a general amplifier,
or any linear noisy circuit. As an example, we consider a common-emitter HBT
based amplifier shown in figure 8.26 a). The circuit does not include the input
bias circuit. The HBT is chosen for this example due to its correlated noise

VEC

Ry

by B

v; Uneq

% | Gm U
fp l
( %

e

C)

Figure 8.26: HBT common-emitter amplifier. a) Simplified schematic. b)
Small-signal equivalent circuit including intrinsic noise sources. c) Small-
signal equivalent circuit with equivalent noise sources referred to the input
of the amplifier.

sources discussed above, making the analysis most general. Figure 8.26 b)
shows the small-signal model of the amplifier including the intrinsic noise
sources of the HBT. i, and i, are characterised by their self- and cross-
spectral densities given eqns 8.129-8.131. Figure 8.26 b) also shows the noise
source of the load resistance 1, uni,, with power spectral density given by:

(upr, upp,) = 2KTRg (8.132)

For reasons of simplicity the model of the circuit described by figure 8.26 b)
does not include the effect of the base resistance r, and Cu- Also, it assumes
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that the Early effect can be neglected, that is, 7, is very large compared to Rp.
G, is the transistor transconductance given by:

G = gme 7T (8.133)
_ Icgq
Im = 7 (8.134)

where the term e 7“7 accounts for the delay, 7, associated with the transistor
transconductance. In the following analysis, we shall assume 7 ~ 0, that is,
Gm >~ gm.-

The analysis method

1. Each noise source is considered as an ergodic random process and,
therefore, can be characterised by a single sample function which is
considered in the frequency domain (see eqn 8.75).

2. The total open-circuit noise voltage at the output of the linear circuit
is calculated assuming an input voltage source. Applying the super-
position theorem, the contribution of each voltage noise source and
each current noise source is obtained by replacing all the other noise
sources and the input signal source by their corresponding output
impedances.

We calculate now the contributions of the various noise sources to the
output voltage.

e u,1: Figure 8.27 a) shows the equivalent circuit for the calcula-
tion of the contribution of this noise source to the output voltage.
It can be seen that v, = O since the zero impedance of the in-
put voltage signal source short-circuits the base-emitter terminal of
the transistor. Therefore, the voltage-controlled current source can
be replaced by an open-circuit. Since there is no current flowing
across Ry, the output voltage is

Vo = UnL (8.135)

e i, : Figure 8.27 b) shows the relevant equivalent circuit. Again
v, = 0 and the current flowing through R is just —i,.. Hence,
the output voltage is:

Vo = —inc RL (8.136)

e inp: See figure 8.27 ¢). Again, we have v, = 0. Hence, the voltage-
controlled current source does not produce any current and, there-
fore, the output voltage is zero.

o Total noise voltage: The sum of all noise contributions to the
noise voltage at the output of the amplifier is given by:

Vs = Ul — e RL (8.137)
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Figure 8.27: Equivalent circuit for the calculation of the various contributions
to the output noise voltage. a) Contribution from uy1. b) Contribution from
ine. ¢) Contribution from inp.

3. The total short-circuit noise current at the output is calculated by
assuming an input current signal source. The contribution of each
voltage and current noise source to the total output current is ob-
tained applying the superposition theorem. We calculate the individ-
ual contribution of each noise source to the output short-circuit cur-
rent replacing all the other noise sources by their output impedances
and by replacing the input signal source by an open-circuit.

We now calculate the contributions of the various noise sources to the
output short-circuit current.

e uy1: See figure 8.28 a). Since there is no signal applied to 7 and
Cr, v = 0. Therefore, the voltage controlled current source can
be replaced by an open circuit. From this figure we also observe
that the voltage across across Ry is u,r, and therefore the output
current is

iy = — 2L (8.138)
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Figure 8.28: Equivalent circuit for the calculation of the various contributions
to the output noise current. a) Contribution from uyy,. b) Contribution from
ine. ¢) Contribution from iyp.

e i, Infigure 8.28 b) we see that v, = 0 and the voltage controlled
current source can be replaced by an open circuit. Since Ry is
short-circuited, there is no current flowing through its terminals
and the output current is

io = ine (8.139)
o inp: Figure 8.28 ¢) shows the equivalent circuit for this calculation.

Now we have:

—i T'n
) j2r fCrra

lo = GmUr

Ur =

(8.140)

ImTrn

—ipgp —————— 8.141
lnbl—}-j27rfC’,,r,r ( )
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e Total noise current: The sum of all noise contributions to the
noise current at the output of the amplifier is given by:

i - UnL +1i _i Im Tx
e R, ™ ™ i1ij2nfCer,
4. The equivalent input voltage noise source is obtained by dividing the
total open-circuit noise voltage at the output by the circuit voltage

gain.

(8.142)

The circuit voltage gain, A,, is:

and, therefore, the equivalent input voltage noise source is given by (see
eqn 8.137):
UnL inc
- — 8.144
foea gmRL  gm ®149

5. The equivalent input current noise source is obtained by dividing the
total short-circuit noise current at the output by the circuit current
gain.

The circuit current gain, A;, is:

Im Tn
A = ———————— 8.145
1427 fCrrs ( )
and, therefore, the equivalent input current noise source is given by (see
eqn 8.142):
) 1420 fCrrn . 14520 fCrrn
lneq = —UnL + Inc — lnb

ImTr Ry ImTx

6. Finally, the self- and the cross-spectral densities of these two equiv-
alent noise sources can be calculated by simplifying <uneq u;‘leq>,
(ineq iheq) and (Uneq ifeq) as defined by eqn 8.80 and eqn 8.88.

e The power spectral density of upeq is calculated as follows:

* UnL inc UnL in(: *
Upeq U = - + 2 (- + =
< ned neq> < < Im RL 9m > < am RL gm ) >

. R |
= (UnL Upp) m + (inc ipe) 7
KT | qlc
g% Rp g3
3 2
_ kD (KT) (8.146)

¢ Ry I% qlc

where we have used the definition of transconductance for a BJT, given
by eqn 8.134. It should be noted that, since upy, and iy are uncorrelated
and zero mean random processes, we have:

(Unp, i) = (ine ulp) =0 (8.147)
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o The power spectral density of ineq is calculated as follows:

(ineq Treq)

1+527 fCrre
<<_unL___Jf—

Im Tr RL
. 1427 fChre )
Ine——————————— —lIpp
GmTrn
< 14527 fCrre
ImTr RL
1+ 927 fCrrr . ) >
Inc————————— — Inb
GmTn
1 1+@2rfCrry)?
. e i 1+72n fCrrx
(i i5) — 2Real [< i) SE LS Gt
Im Tx
(8.148)

This can be written as:

(ineq Theq)

+

<2ICT ) 1+ (27 fCrra)?
1 2

Ry (gmrﬂ')

q (IB +]1- e_j“’T"]2IC)

1+j27rfc,,r,,]

ImTx

2Real [q (e77¥m —1) I
(8.149)

o The cross-power spectral density of ineq and Uneq is calculated as

follows:

<ineq u:xeq> =

and (Uneqifieq) =

<< 14520 fCrrr ., 14520 fCrran
—UnL + Inc

ngﬂ'RL ImTr
. UnL inc *
i ——
"b>< 9m Rr gm> >
L1+ i2nfCrry
<unL unL> g12n o Rz
1+527fCrr . ey L
<nc nc>—7mr1r—ﬂ—<lnblnc> g_m
1 2 - 1 j 2 C
PSR ELI (AR R LS [
gm WRL ImTr
. 1,
g8 —1) < (8.150)
9m

(<inequ:1eq>)*'
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Figure 8.29: Equivalent input noise spectral densities for the common-emitter
amplifier. Note that both axes are logarithmic.

Figure 8.29 shows the RMS voltage spectral density, (<uneq u;eq>)1/ 2, and
the RMS current spectral density, ((ineqifeq )’/ Obtained from eqns 8.146

ne
and 8.149, respectively, for three collector b&s currents: I = 0.1 mA, I =
1.0 mA and I = 10 mA. We have also assumed that the HBT is characterised
by 5=200,7, =r,Cr=4psand 7, = 0.1 ps. Ry = 50 €.

From this figure it can be observed that while the spectral density associ-
ated with <uneq u;eq> decreases with increasing I, the PSD associated with
<ineq i;‘leq> increases. These opposite trends suggest that there is an optimum
bias collector current for which the overall noise PSD can be minimised. It is
also interesting to examine what are the most significant noise contributions for
(ineq Iheq) and (Uneq Ujeq)- Figure 8.30 shows the various contributions to
the equivalent input current noise spectral density as given by eqn 8.149, for
a bias collector current I = 0.1 mA. It can be seen that the dominant con-
tribution is the current shot noise induced by the HBT base current (see also
eqn 8.129). It is left as an exercise for the reader to determine which con-
tributions dominate the equivalent input voltage noise spectral density of the
common-emitter amplifier.

Equivalent current noise spectral density

Figure 8.31 shows a noisy amplifier connected to a current source with an out-
put impedance Z,(w). The resistive part of Z;{w), Rs = Real [Z;{w)], pro-
duces thermal noise ins. It is very useful to be able to represent such circuits as
having a single ‘equivalent’ noise source at the input. The spectral density of
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Figure 8.30: Contributions to the equivalent input current noise spectral den-
sities for the common-emitter amplifier (I = 0.1 mA).

such a source can be calculated by applying simple Thévenin or Norton equiv-
alent models. For this example the circuit can be represented by applying the
Norton equivalent model to the circuit in figure 8.31 a). This results in the sim-
plified representation of figure 8.31 b) where the equivalent current noise ip,,
describes the overall noise performance of the current source-amplifier combi-
nation. Using the noise analysis method explained previously it can be shown
(see problem 8.8) that the equivalent noise current source can be expressed by:

in = Un + ins + in
* Zs(w)

and the PSD of i, can be obtained by simplifying the following equation:

i) = (20 tria) (225 e via) )

that is
(i) = 1z
(un up)

= iz i)+

(8.151)

<un un>

+ (in i) + (ins i5s) + 2Real [@“(:3)]

2KT (uy i%)

R. + 2Real [M}
(8.152)

As an example we consider the common-emitter amplifier of figure 8.26
driven by a current source with an output impedance Z,{w) = R, = 50 Q.
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(up ul), (in i) and (u, i}) are given by eqns 8.146, 8.149 and 8.150, re-
spectively.

Figure 8.32 shows the variation of the current spectral density of i, , with
bias collector current I at 800 MHz. It can be seen that there is an optimum

1/2
bias value for I (about 8 mA) which minimises <<ineq i >> .

Neq

$ x1071

=
=
|

'cTn

Current spectral density (A/v/Hz)
"
|

Ic (mA)
>

1.3 ] S B B T T T TTTTT
10° 10! 102

Figure 8.32: Current spectral density of in,, versus collector bias current I
(f = 800 MHz).

Equivalent voltage noise spectral density

If the noisy amplifier of figure 8.31 a) is now driven by a voltage source with
output impedance Z,(w), as illustrated in figure 8.33 a), then the noise be-
haviour of the overall configuration (voltage source and amplifier) can be best
represented (see figure 8.33 b)) by an equivalent voltage noise source, uy,
with a PSD given by (see exercise 8.9):

<uneq uneq*> = (Uns Upg) + (un uy) + 2Real(uy i) Z5(w)]
+ (in ip) |Zs(w)/? (8.153)

8.4.7 The noise figure

The noise figure is widely used to quantify the noise performance of active
devices and amplifiers specially when both the signal source impedance and
the output load impedances are resistive.
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The noise factor, I, can be defined as:

SNR;,,
SNRout

(8.154)

where SNR; and SNR,, are the signal-to-noise ratios at the input and at the
output of the amplifier, respectively. The signal-to-noise ratio is defined as the
ratio of the power of the signal to the power of the noise. The noise figure,
NF, is the noise factor expressed in dB, that is:

(8.155)

For example, a noise figure of 0 dB would describe a noiseless amplifier and a
noise figure of 3 dB would indicate that the amplifier contributes as much noise
as the signal source.

The noise factor can be expressed as follows:

p
P, _ P P,
F = P = —; B (8.156)
P,
1 P,
= — Do 8.157
G, P ( )

where P; and P, are the input signal power and the output signal power, re-
spectively. P,, is the noise power at the input of the amplifier and P, is the
noise power at the output of the amplifier. G, is the power gain of the amplifier.
For the amplifier of figure 8.31 we can write:

Po, = Gy (ing ih,) (8.158)

Neq

P,, = (insipg) (8.159)

and the noise factor can be written as

(s 15,
(insips)
where
(insiys) = 2K T RealY;(w)] (8.161)
1
Yi(w) = AR (8.162)
Real[Y;(w)] = G, (8.163)

Using eqn 8.152, Fis given by:

(in i}) +2Real[(uy i) Ys(w)] + (un up) [V ()]

Fo=1+ 2K 7 ReallY, ()]

(8.164)
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From eqn 8.164 we can conclude that when Y (w) tends to zero the terms
(in i5) (2K 7T Real[Y;(w)]) ™! and the noise factor tend to infinity. Also, when
Y,(w) tends to infinity both the term (u,, u}) |Y;(w)|? and F tend to infinity.
Therefore, there must be an optimum value of the signal source output admit-
tance, Y, (w), which minimises the noise factor. In order to simplify this
calculation we consider a pure resistive output admittance Y, (w) = G, for
which we can write

(in i) + 2 G, Real[{uy i})] + (un uy) G?

Fo=1+ IKTG,

(8.165)

The optimum G5 can be obtained by differentiating eqn 8.165 and setting the
differential to zero, that is

dF
dG, 0
2KT [G’g (up ul) — (in 1;‘1)] 0
2KTG,)? =
and
2 = A 1) (8.166)
ot (un uy)

Hence the minimum noise factor, £,,,;,,, can be written as

2G;,,, Real[(un )] +2 (un uf)) GZ_
KT C (8.167)

Sopt
It should be noted that usually F,,,;, varies with the frequency.

The noise factor also provides insight about the relative importance of noise
sources along a chain of amplifiers. Figure 8.34 shows a chain of three ampli-
fiers each one with a noise factor Fj and a power gain Gy, . It can be shown
that the noise factor of the amplifier chain is given by:

-1 F3—-1

F = F+ + 8.168
' Gpl Gm sz ( )

From this we conclude that the noise performance of the amplifier is dominated
by the noise performance of the first amplifier stage as long as the gain of this
first stage, Gp, , is large.

Clearly, equation 8.168 can be generalised for a chain of N amplifiers each
one with noise factor £}, and a power gain G, :

N
Fp—1
F = Fi+) (8.169)
k=2 G
Pn

— |z

1

3
Il
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Example 8.4.1 An amplifier with a power gain of 24 dB is to be built using the
cascade of two power amplifiers. Amplifier A has a power gain of 15 dB and a
noise figure of 8§ dB. Amplifier B has a gain of 9 dB and a noise figure of 5 dB.
Determine which amplifier is best suited as the first stage of amplification in
order to have a final amplifier with the lowest possible noise figure.

Solution: The gain and the noise factor of each amplifier are given by:

Gpa = 316
Gpg = 179
Fy = 631
Fp = 3.16

Assuming that amplifier A is the first stage of amplification the noise factor of
the final amplifier is, according to eqn 8.169, equal to:

Fy = 638 (8.170)

If amplifier B is the first stage of amplification then the noise factor of the final
amplifier is

Fg = 383 (8.171)

From the above we conclude that amplifier B should be the first stage of ampli-
fication followed by amplifier A. For this situation the noise figure of the final
amplifier is 5.8 dB.

The equivalent amplifier noise resistance and conductance

The equivalent noise resistance, R,,, of an amplifier characterised by two equiv-
alent input noise sources u, and i, (see figure 8.25) is defined as the value of
a resistance having a thermal noise PSD equal to the PSD of u,, at a standard
temperature, usually 290 kelvin. Hence,

2KTR, = {(upuy) (8.172)
_ (un up)
R, = KT (8.173)

Similarly, the equivalent noise conductance of an amplifier, g,,, is defined as
the value of a conductance having a thermal noise PSD equal to the PSD of i,
at 290 kelvin

2KT g, = (ini%) (8.174)
_ (nif)
o= Sy (8.175)

It can be shown (see problem 8.11) that g,, and R,, can be related by the fol-
lowing equation:

g = R,V (8.176)

opt
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where Y,
figure.

, is the optimum source admittance which will minimise the noise

The equivalent amplifier noise temperature

The equivalent noise temperature, 7,,, of an amplifier characterised by two
equivalent input noise sources u, and i,, (see figure 8.25), and driven by a
signal source with an output resistance R, is defined as the temperature at
which the thermal noise contribution from R; is equal to the overall noise of
the amplifier. 7,, satisfies the following eqn:

2KT, R, = {(uyul)+ R? (iy iy) + 2 R, Real[(u, i%)] (8.177)
or
_ {ug u}) + R? (in i}) + 2 Ry Real[{uy i})]
T, = KR (8.178)

Note that 7T, is, in general, frequency dependent.

The combination of matrix algebra and circuit analysis can be used to simplify
the computation of noise parameters in complex circuits. This can be achieved
by following a method based on dividing a complex circuit into its elementary
constituents. This powerful method was originally proposed by Hillbrand and
Russer [7] and it has many similarities with the method described in Chap-
ter 5 for the computation of the electrical response of two-port circuits. In
fact, Hillbrand and Russer’s method is also based on the analysis of a two-
port circuit as an interconnection of basic two-port sub-circuits. These basic
two-port sub-circuits are elementary passive impedances, and elementary ac-
tive gain elements, such as transistors. These, in turn, can be modelled as the
interconnection of passive devices with voltage or current-controlled sources.
The noise behaviour of these elementary sub-circuits has been discussed previ-
ously. Starting from these basic two-port circuits, the analysis is performed by
interconnecting these basic circuits in order to obtain the noise performance of
the whole circuit. Figure 8.35 a) shows a common-emitter amplifier and figure
8.35 b) shows the AC equivalent circuit of the amplifier as an interconnection
of elementary two-port circuits. From figure 8.35 b) it can be seen that the
two-port network which represents the transistor is in series with the two-port
network which represents Eg. The resulting two-port circuit is in parallel with
the two-port network representing R p and, so on.

8.5.1 Noise representations

All noisy two-port circuits can be replaced by equivalent noiseless two-port
circuits which characterise the noise-free electrical response and by two noise
sources which account for the noisy behaviour. The natures of these noise
sources (current or voltage) and their position relative to the input or output
of the noiseless two-port network define what is called a noise representation.
Here, we consider the representations shown in figure 8.36, that is, the admit-
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Figure 8.36: Two-port noise representations: a) Admittance representation; b)
Impedance representation; c) Chain representation; d) Scattering representa-
tion.

tance representation, the impedance representation, the cascade/chain repre-
sentation and the scattering representation. The two-port electrical response
associated with each representation has been studied in detail in Chapter 5 (see
section 5.3).

The admittance representation

The admittance representation characterises the electrical circuit response us-
ing [Y] parameters. The noise of the circuit is modelled by two current noise
sources, one located at the input and the other at the output of the circuit. These
two noise sources are characterised by their self- and cross-power spectral den-
sities arranged in a matrix form defined as the admittance correlation matrix:

Oyl = | {1t 11> (i "~’> 8.179
o= G G E17
The admittance representation is a useful way to deal with two-port sub-circuits
which are in parallel.

The impedance representation

For the impedance representation the characterisation is effected by using the
[Z] parameters while the noise is characterised by two voltage noise sources lo-
cated at the input and output of the circuit. This representation is the electrical
dual of the admittance representation. The two noise sources are characterised
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by their self- and cross-power spectral densities arranged in a matrix form de-
fined as the impedance correlation matrix:

[Cz] = 23233 ézzzzi (8.180)

The impedance representation is useful in dealing with two-port sub-circuits
which are in series.

The chain representation

For this representation the characterisation is described by [A] parameters. The
noise is characterised by a voltage noise source and a current noise source, both
at the input of the circuit. The two noise sources are characterised by their self-
and cross-power spectral densities arranged in a matrix form defined as the
chain correlation matrix:

[Cal = [ <<1il1111*> (ut’) } (8.181)

The cascade (or chain) representation, which has been discussed in detail in
section 8.4.6 is also useful when analysing chains of two-port sub-circuits.

The scattering representation

The characterisation of the electrical circuit response is performed by using
the [S] parameters, studied in Chapter 7. There are two electromagnetic wave
noise sources, one located at the input and one at the output of the circuit.
These are characterised by their self- and cross-power spectral densities also
arranged in a matrix form defined as the scattering correlation matrix:

[Cs] = EE: Eg ggl Egi ] (8.182)

The scattering representation can be useful specially when data on high-frequency
(RF) circuits and devices are provided by the manufacturers as S-parameters.

8.5.2 Calculation of the correlation matrices

For passive networks, and neglecting the 1/f noise, the correlation matrices
can be obtained from [Z] and [Y'] as follows:

[Cz] = 2KTReal|Z] (8.183)
[Cy] = 2KTReal[Y] (8.184)

If the 1/ f noise cannot be neglected then the correlation matrices for passive
devices can be obtained after calculating [C o] as described in section 8.4.6.
For active devices [C 4 ] can also be derived using the noise analysis method
described in section 8.4.6. In situations where the correlation matrix cannot be
derived from theory, measurements of the noise performance can provide the
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required information. Such measurements are often performed by determining
the equivalent noise resistance, R, and the optimum source admittance, Y,p;,
for which the noise factor, is a minimum, F},;,. Knowing these quantities it is
possible to derive (see problem 8.12) the correlation matrix as follows:

R, Enw=l _ R Y
1
EMé.L_._l_ — R,Y, R,|Y, |2 (8.185)

opt

[Ca]=2KT

opt

Example 8.5.1 Determine the chain and the impedance representations for the
noisy shunt admittance, Y, represented in figure 8.37 a).

Solution: The admittance Y can be represented by its corresponding impedance
Z composed by a resistance R and a reactance j X:

Z=R+jX (8.186)

Therefore, neglecting the 1/f noise, the thermal noise associated with Z can
be modelled by its Thévenin model (see figure 8.37 b)). The PSD associated
with u is given by:

{uu*) = 2KTR (8.187)

In order to find the self- and cross-power spectral density of the two equivalent
voltage noise sources, corresponding to the chain representation, we perform
an analysis similar to that presented in section 8.4.6. Figure 8.37 c) shows the
circuit to determine u,,. We assume an input voltage source and we apply the
superposition theorem to determine the open-circuit output voltage caused by
u. Since the output is short-circuited we have:

Vo =10

and therefore {u, u}) = 0. The procedure to determine iy is illustrated in
figure 8.37 d). From this figure we observe that

i = UpY

Since the current gain for this simple two-port circuit is unity then i, = %,, that
is

i, = uY
(inip) = (uu’) |Y]?
= 2KTR|Y)? (8.188)
and (uy i) = (ip u},) = 0. Hence we can write:
00
[Cal = [ 0 2KTR|Y|? ] (8.189)
The impedance characterisation for Y is given by (see also appendix C)

z z ] (8.190)

2= 7
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and, from eqn 8.183, [Cz] can be written as:
(Czl = 2KT [ g g } (8.191)

8.5.3 Elementary two-port interconnections

As discussed in Chapter 5 there are three fundamental types of interconnections
for two-port networks: parallel, series and chain interconnections.

Parallel interconnection

If two elementary noisy two-port networks are in parallel, as illustrated in fig-
ure 8.38, it is desirable that both such networks are described according to ad-
mittance representations. This is because the equivalent noisy network can be
described as an admittance representation for which the equivalent admittance
correlation matrix is the sum of the individual admittance correlation matrices:

[CYtotaI] = [CYl] + [CY2] (8.192)

and the equivalent electrical response can be represented by (see also section
5.2.2):

[Ytotal] = [Yﬂ + [Yz} (8 193)
For the parallel connection of N elementary two-port circuits the noise charac-
terisation can be described by an equivalent admittance correlation matrix:

N

[C¥orm] = D_[Cy;] (8.194)

j=1

Series interconnection

If two elementary noisy networks are in series then both networks are best
described according to impedance representations. Now, the equivalent noisy
network can be described as an impedance representation for which the equiv-
alent impedance correlation matrix is the sum of the individual impedance cor-
relation matrices:

[Cztotal] = [CZ1] + [CZ2] (8.195)

and the equivalent electrical response can be represented by (see also section
52.1)

[Ztotal] = [Z1] + [Z2] (8.196)
For the series connection of N elementary two-port circuits the noise charac-
terisation can be described by an equivalent impedance correlation matrix:

N
[C2yoen] = D _[C2z,] (8.197)

=1
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[Ai] [Aq]
[Ca,l [Ca,)
9
T [Ad[A] N

[A1] [Ca,][A1]* +[Ca)]

-—

b)

Figure 8.40: a) Chain of
two-port circuits. b) Equiv-
alent two-port circuit.

8. Noise in electronic circuits

Chain/cascade interconnection

When two elementary noisy networks are in a cascaded connection both net-
works are best described according to chain representations. Now, the equiv-
alent noisy network can be described as a chain representation which is given
by the following expression:

[Cavorm] = [A1][Ca,] [A1]T +[Ca,] (8.198)

where [A;] represents the electrical chain matrix of the first network of the
cascade. [A1]7 is the Hermitian conjugate of [A4]:
Al A3
[A]T = (8.199)
Aly A3
The equivalent electrical response can be represented by (see also section
5.2.3):

[Atotal] = [A1] [A2] (8.200)

The noise characterisation of a chain (or cascade) of N two-port sub-circuits
can then be described by generalising eqn 8.198 as follows;

N-1
[Chroe) = 3 [A12i] [Ca,] [A1m]” (8.201)
=0
H[Ak} fori > 1
A2 i (8.202)

1] fori <1

where [1] represents the two-by-two identity matrix (see appendix B).

8.5.4 Transformation matrices

According to the type of interconnection (parallel, series or chain) it is often
desirable to transform between representations. These transformations are pro-
vided by the transfer function, in matrix form represented by [T], between the
two positions in the electrical network where the equivalent noise generators of
the new representation and the equivalent noise generators of the old represen-
tation are considered. The new correlation matrix can be calculated according
to the transformation formula:

[C]=[T] [C] [T]* (8.203)

where [C] and [C'] represent the correlation matrices of the original and the
new representation, respectively. [T]" is the Hermitian conjugate of [T).

Tables 8.1 and 8.2 show the transformation matrices between the represen-
tations considered here.
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Original representation
Admittance Impedance

8
g
ERED
_g 01 Yor Yoo
<

5l

5| 3 Zu Zi 1 0

3 & Zy Zy 01

(3 =

a (]

&

RN 0 A 1 —An

= £ 1 Ay 0 —Axn

3 @)

a 0
£ L5y, f/w_ 1?/S_n ___z—jl_

2vY, 2VY. 2VZo  2VZo

g 3/271 1+ S92 —521 1-S20
(gn‘? 2VY, 2VY, VZ, 2VZo

Table 8.1: Transformations between noise representations.

329

Resulting representation

Original representation

Chain Scattering
]
5 — - Yo+ Yip
k= —Yn 1 eV
g —Ys1 O 21 Yo+Yo
= L . VYo VYo
<
3]
8. 0 —Zy Zy  Zot?
.E L - VZ, VZ,
= [1 O:I \/Z_o —(A12+Z/:11Zo)‘|
o] —1 “(A +A Zo)
S 01 A,
o0

— —(1+8 "

g 12\/5%01 (1+ 211)\/Z_ 1 0
= =Sy —SaVZ, 01
é;’ 2V Z, 2

Table 8.2: Transformations between noise representations. (Cont.)
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Example 8.5.2 Determine the transformation matrix [T] to transform from the
scattering representation to the impedance representation.

Solution: The impedance representation (see also figure 8.36 b)) can be ex-
pressed as follows:

Vi = Znh+2Ziph+w (8.204)
Vo = Zonly+ Zoolz +us (8.205)

and the scattering representation (see section 7.4) can be expressed as:

by = Sitar+S1202+bn (8.206)
by = Ssra;+ Sepas + bps (8.207)
with
1
by = —WV.-2Z,L;), 1=1,2 8.208
s Vi Zol) (8208
1
i = —— (V;+Z, 1), i=1,2 8.209
o = gtz i 8.209)
Equations 8.206 and 8.207 can be written as follows:
Vil=511) = Zo(1+8S11) L1 +S12Z, s+ S12Va +2v/Z, b
(8.210)
Vo(l=S2) = Zo(1+8S90) o+ 8212011 4+ S21 Vi + 24/ Z, b2
(8.211)

Solving these last two eqns in order to obtain V; and V, we get;

(1 — S22)(1 + S11) + S12521
(1 — S11)(1 — S22) — S12521 !
2512
I
(1—511)(1 — S22) — S12521

2vZ, (1 — Saz)

w = Z,

+ by
(1= S11)(1 — S22) — S12521 !
2v/Z, S12
+ (1—511)(1 — S22) — S1251 Paz (8.212)
25
Vo = Z, I
2 (1 = S11)(1 — S22) — S125%1 !
(1+ S22)(1 — S11) + S12521
+ 2, I
(1 - 511)(1 — Sa3) — S12521 ?
2V 2, S0
+ by
(1 —511)(1 — S22) — S12501 !
+ 2vZ, (1 - 51) bn2 (8.213)

(1= S11)(1 — S22) — S12521
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These can be rewritten, using the relationship between S and Z parameters
(see appendix C), as follows:

2vZ,(1 -8 2072, S
i = Z11I1+Z12[2-{-_—(—.__2.2_2bn1+ 12 bys
A5 AS
(8.214)
2V Z, S, 2VZ,(1- 8
Vo = ZnLi+Zypl+ 25y WZ( -5y,
A5 AS
(8.215)

with As = {1 — S11){1 — Sa2) — S12521 (see appendix C). Comparing eqns
8.204 and 8.205 with eqns 8.214 and 8.215, respectively, we conclude that

2v/Z4(1—S22) 2V Z,812 b
u1 As As nl
= (8.216)
us 2y 7,52 2VZ,(1-S11) bn2
As Asg

This can also be written, using the relationship between S and Z parameters
(see appendix C), as follows:

W V7o VZe bns @217,

We now summarise a systematic approach suitable for the application of
the noise analysis method described above.

1. Decompose the circuit to be analysed into its elementary two-port
sub-circuits such as series impedances, shunt admittances, voltage-
and current-controlled sources, etc.

2. Identify the types of interconnections between the various elemen-
tary two-port networks mentioned above (parallel, series, chain).

3. Characterise the noisy behaviour and the electrical response for each
elementary two-port according to one of the two-port noise repre-
sentations illustrated in figure 8.36. Use a noise representation for
the elementary two-port network that takes into account the type of
interconnection with the other elementary noisy networks.

4, Reconstruct the overall two-port circuit. Whenever appropriate use
the transformation matrices shown in tables 8.1 and 8.2 to obtain the
appropriate noise representations.

The next example illustrates one application of these steps.
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Example 8.5.3 Consider the common-emitter amplifier of figure 8.35 a). De-
termine the chain representation for the amplifier. The noise model for the BJT
is described by eqns 8.125-8.128 (see also figure 8.24). For the BJT assume
that 3 = 200, Cr = 6 pF, C,, = 0.8 pF, r; ~ 0 and that r, can be neglected.
The corner frequency associated with (upg u}e) is fo = 200 Hz. I = 1 mA.

Solution: Figure 8.41 a) shows the small-signal equivalent circuit of the am-
plifier including all the noise sources. It is assumed that Ry, Rp and Rp
produce thermal noise only. Therefore, the spectral densities associated with
these resistances are given by

(Uor uy) = 2KTRp (8:218)
(upg wig) = 2KTRg (8:219)
(inB itg) = 2KTRZ (8.220)

15
S
o
P—@E
”
= AAL
W
E] ——
(i)
: 3
<
=
-

Figure 8.41: Small-signal equivalent circuit for the common-emitter amplifier. b) The common-emitter
amplifier as an interconnection of elementary two-port networks.

Figure 8.41 b) shows the common-emitter amplifier as an interconnection
of elementary two-port networks. inbe accounts for inp, and ins.

We start by characterising the transistor and the resistance Rp in terms
of an interconnection of elementary two-port circuits. g, = Ic¢/KT =
40 mA/NV, rr = B3/gm = 5 kL.

Figure 8.42 a) shows the small-signal equivalent circuit for just the BIT and
Rp including the noise sources. Figure 8.42 b) shows this equivalent circuit as
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an interconnection of elementary two-port circuits. From figure 8.42 b) we can
see that the two-port circuit which characterises the BJIT and Rp can be seen
as the parallel connection of the two-port circuit which describes the voltage
controlled current source, VCCS, with the two-port circuit which describes
the base-collector admittance, Y,. Y, in turn, is composed of the parallel
connection of C,, with Rp. Since VCCS is in parallel with Y, it is appropriate
to adopt admittance representations for these two networks. The admittance

InB

—

7

AAAA—
_VYEV

Figure 8.42: The BJT and Rg as an interconnection of elementary two-port
circuits.

representation for Y, is as follows (see also appendix C):

Y, -Y,
[Yv,] = 8.221)
-Y, Y,
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where Y, corresponds to the admittance of the parallel connection of C), with

RBI
1 .
Y, = —+jwC, (8.222)
Rp
e
[CYYJ —2KT (8.223)
—Rgl REI
The admittance representation for VCCS is given by:

Y, O
[Yvces] = (8.224)

gm O

where Y, corresponds to the parallel connection of r, with Cy:

1
Y, = —+jwC; (8.225)

™

According to eqns 8.126-8.128 we can write:

qlp(1+%) 0
[Cyveocs) = (8.226)
0 q IC

where w, = 27 f.and Ig = I /. The two-port circuit describing the parallel
connection of VCCS with Y, is represented here by BJT’ and can now be
characterised by an admittance representation given by (see also eqn 8.192):

[Yeir] = [Ye,]+[Yvcoes] (8.227)
[Cypsr] = [Cyy,]+[Cyvocs] (8.228)
that is
Yot+Y, -Y,
[Yir] = (8.229)
gm =Yy Yy
gl (1+%)+2KTR'  —2KTRg
[CYBJT’] = .
-2KT Rg' qlc +2KTRjp
(8.230)

The two-port sub-circuit which characterises BJT' is in series with the two-
port sub-circuit which characterises the resistance Rg, Rg. Hence, it is appro-
priate to use impedance representations for both two-port sub-circuits;

RE RE
[ZRrg] = (8.231)
Rp Re
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[Czn,] = 2KTReal (Zr,] (8.232)
and for BJT’ we can write (see appendix C)
1 1
Im+Yr gm+Yr
[ZgyT] = (8.233)
Yu_gm Y,u +Yr

Yu(gm+Y1r) Yu(gm—}—Y,‘.)

According to table 8.1 the transformation matrix from admittance to impedance
is given by;

1 1
gm+Yr gm+Yn
Ty _ 8.234
[Tiv—2)5,] Vo Vory. (8.234)
Yu(gm—}—Yﬂ) Yu(.‘]m""Y'Ir)

Now the impedance correlation matrix for BJT’ can be expressed, according
to eqn 8.203, as follows:

[CZBJT’] = [T(Y—>Z)BJT/] [CYBJT/] [T(Yﬁz)BJT]—'— (8.235)

The two-port circuit composed by the series of BJT' with R, represented by
BJT”, can be characterised by;

[Czpyrn] = [Czgym] + [CZRE] (8.236)
(Zgsr'] = [ZBiv]+ [ZRe] (8.237)
gmiYﬂ + Re gm—iﬁ + Rg
[ZByr] = (8.238)

Y.—g Y,.+Yr
e ph TR P 2 | S
Yu(gm-f-Y.,,) + RE Yu(9m+YW) + RE

From figure 8.43 a) we see that the two-port network representing the capac-
itor C; is in a chain with BJT” which, in turn, is in a chain with the two-port
sub-circuit representing R;. Therefore, these three sub-circuits must be rep-
resented in chain representations and the overall amplifier will be also charac-
terised by a chain representation. The chain representation for BJT” is given
by:

Y. [1+RE(gm+Yn)] 1+Re(gm+Yx)
Yu[1+RE(9m+YW)]_gm YM[I+RE(gm+Y7r)]—9m
[AByTr] = (8.239)
Yu(gm+Y7r) Y7r+yu[1+RE(gm+Y‘rr)]
Y.[1+RE(gm+Yr)]—9m  Yu[I+RE(gGm+Yr)]—gm
and
_ +
[Cag,er] = [T(z—A)g,] [Czpyr ] (T(zA)y,p )" (8240)
with (see table 8.1)
1 _ YH[1+RE(gm+Y7r)]
[ | Y.[1+REe(gm+Yr)]—gm
Tz-a),...] = (8.241)
( JBaT 0 Yo (gmt Ya)

- Y.[1+RE(gm+Yx)]—gm
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Noise-free
C-E

Amplifier U,

b)

Figure 8.43: a) The common-emitter amplifier as an interconnection of two-
port sub-circuits. b) The equivalent amplifier model.

The chain representation for C; is given by:

1 (ij,-)‘l
[Ac,] = (8.242)
0 1

We consider this capacitor as an ideal element. Hence [C Aci] = [0] where

[0] represents the null matrix.
The chain representation for Ry, is given by (see example 8.5.1 and ap-
pendix C):
1 0
[Ar, ] = (8.243)
R;' 1

0 0
[C ARJ =9KT (8.244)
0 R;'

Hence the entire amplifier is characterised by

[Ace] = [Ac] [ABiT/] [AR.] (8.245)
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[Cawl = [4Bor] [CARL] [ABJT//]++ [CABJT”]
[Ca.] = [Ac](Cau.l[Ac]’ (8.246)

It is now possible to obtain the voltage gain, A,, and the current gain, A, from
eqn 8.245 as follows:

Av = (Aceu)_l (8.247)
A = (Acey)”! (8.248)

and the spectral densities associated with ue and to i.. can be obtained from
eqn 8.246 as follows:

(Uee uze) = Ca,, (8.249)
(fce ize) = Cheas (8.250)
(Uce ige) = Caey (8.251)

Figure 8.44 shows the voltage gain, the current gain and the spectral densities
(uce ul) and (ice i%,). From figure 8.44 a) we observe that the voltage gain

4

. 200
) <
g 401 £
= =
éc ?:PIDO‘
= = 100
204 3
O -~
& g
F 104 g 907
= ]
S O
=

0 T T 0 : -
10° 104 108 f (Hz) 10° 10 108 f (Hz)

(v/vHz)
(A/VHz)

10711 4

. )1/2

({ice i)

10-12

N

* 1/2
(Uee uze)"

1w . - 19713
- : -
10° 10t 108 f (Hz) 10° 104 1% f (Hz)

Figure 8.44: a) Voltage gain. b) Current gain. c) Spectral density associated
with Uce. d) Spectral density associated with ice.

in the medium frequency range is about 39.5 and it has low and high frequency
cut-off frequencies of 13 Hz and 42 MHz, respectively. Figure 8.44 b) shows
the current gain. In the mid range the current gain is about 194. The high
cut-off frequency is 3.2 MHz while the low cut-off frequency is under 1 Hz.

Figures 8.44 ¢) and 8.44 d) show ((Uce Uce))"/? and ((ice ice))/?. It can be
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seen that over most of the useful frequency range of the amplifier the equivalent
RMS voltage noise is about 1 nV/+/Hz and the equivalent RMS current noise
is about 1 pA/v/Hz.

For a current amplifier, like that represented in figure 8.31, we can calculate
the noise factor according to eqn 8.164, that is:

(in i5) + 2Real[{uy i) Yi] + (u, ul) |Ys/|?
2K T Real[Y;]

F = 1+ (8.252)

where we have dropped the dependency of Y, on the angular frequency w for
simplicity. The last eqn can be written as:

[Yo][Cal[Ys]"

F o= 4 o P heal ] (8.253)
where

[Yo] = [¥o 1] (8.254)
and

[Ys]" = [ Yl ] (8.255)

[Ca] is the amplifier chain correlation matrix:

(upuy) (unip)
[Cal = (8.256)

(inug) (inip)

Figure 8.45 shows the noise figure of the common-emitter amplifier discussed
in the previous example considering four different values for the source admit-
tance Y,: 1072 S, 1072 S, 107* S and 10~° S. From this figure we observe
that the noise figure exhibits a strong dependence on the admittance Y. There
is an optimum source admittance, Y; = 10~3 S, which minimises the noise
figure at about 0.94 dB in the frequency range 1 kHz-100 MHz. Note that this
range includes most of the useful bandwidth of the amplifier.

A note on noise analysis

The plethora of different noise analysis and characterisation methods (equiv-
alent input noise spectral density, noise figure, equivalent noise temperature,
etc.) may look confusing in the sense of ‘how, what and when to apply?’. It is
important to stress that careful application of any of these methods must lead
to the same result. The choice of a specific noise characterisation technique
results from consideration of the circuit and its application. For example, in
microwave systems where a known impedance termination is used (50 Q) it is
convenient to use the noise figure technique or to describe the system in terms
of its noise temperature and/or resistance. However, for circuits where the in-
put can be expressed as a single voltage or current source, it is normally more
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Noise figure (dB)

0 — T | l
10° 102 104 106 108 f(He)

Figure 8.45: Noise figure of the common-emitter amplifier.

convenient to obtain an estimate of the input noise spectral density (either cur-
rent or voltage, as appropriate). This allows a simple calculation of the input
signal to noise ratio and consequently the error rate performance. Examples of
such cases include optical receivers.
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8.1 For a Gaussian random variable, X, with mean 4 = —0.7 and 0 = 2.2.
Determine the following probabilities

1. P[X > 3]

2. P[X > 3]

3. P[-2< X <3
4. PIX < -2]

8.2 For a uniformly distributed random variable, X, with range [—2, 3]. De-
termine

1. The mean value of the distribution
2. The variance of the distribution
3. The third moment of the distribution

8.3 Consider the Poisson distribution with 2 = 0.8. Determine the character-
istic function for this distribution. Using eqn 8.41 determine the mean of this
distribution.

8.4 Consider arandom variable Y resulting from the sum of three independent
and uniformly distributed random variables with range [—3, 3]. Determine the
following probabilities;

1. P[Y > 4]
2. P[Y >8]

Consider now the Gaussian approximation to Y given by the central limit the-
orem. Calculate the probabilities mentioned above using the Gaussian approx-
imation and compare the results with those obtained with the true distribution
forY.

8.5 A random variable X has a uniform distribution with range [—1, 2]. Con-
sider the random process a(t) = exp(—3 X t). Determine the expectation
E [a(¢)] and and the autocorrelation function R, (¢1, t2).

8.6 Consider a random process v(t) with the autocorrelation function R, (7) =
02(1 — |7|/A) rect(t/2A) where A > 0. Determine the power spectral density
of v(t).

8.7 Consider the following transfer functions:

w?

H = L
1) —w? +2jnwpw + w2

2jnwpw

HZ(LU) =

—w? 4+ 2jnwpw+ w2

Derive an expression for the equivalent noise bandwidth of H; (w), Ha(w) and
Hi(w) + Ha(w). Take p < 1.
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Figure 8.46: Voltage ampli-
fiers.

Vbp {15V)

Figure 8.47: Amplifier.
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8.8 Show that the equivalent current noise source for the amplifier of figure
8.31 b) can be expressed by eqn 8.151.

8.9 Show that the Power Spectral Density (PSD) of the equivalent voltage
noise source for the amplifier of figure 8.33 b) can be expressed by eqn 8.153.

8.10 Consider the two voltage amplifiers of figure 8.46. Determine the equiv-
alent input voltage noise source for each amplifier. The operational amplifiers
are characterised by a differential voltage gain of 5000, R;, = 10 MQ2 and
R, = 50 2. Assume that the noise of each op-amp is described by equivalent
input noise sources such that;

(up wS)? = 0.6 nV/Viz
lin )2 = 2 pA/VHz

(upip) =~ 0

8.11 Show that R,, and g,,, defined by eqns 8.173 and 8.175, respectively, can
be related by Y, _, as follows: g, = R, |V, |2

opt opt

8.12 Show that the chain correlation matrix of a two-port network for which

R,,Ys,,, and Fy,;, have been measured can be expressed as eqn 8.185.

8.13 Consider the amplifier of figure 8.47. Determine the PSD of the equiv-
alent input current and voltage noise sources. f. = 1 kHz, Iz = 10 pA,
Vrn =15V, k, W/L =0.25mA/V2, V4 =50V, Cyq = 4 pF and Cys = 16
pE. Determine the noise figure assuming a 2 k{2 source load.
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Function definition

Error function

1 o 2
(Gaussian probability) Q(z) = — e N /2 4\
Vo Ja

2 T
Error function (2) erf(x) = ﬁ / e d\
0
Error function (3) erfc(x) = —2— / ~ e d)
RV
i t
Sinc sinc(t) = sm7£7tr )
1, t>0
Sign sign(t) =
-1, t<0

Step u(t):{
0, t<0

t
Rectangle rect <— =
p

t s |t| <T
Triangle triang (;) = T
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Fourier transform

ISee also sections 4.3.1 and 4.3.2.

Theorems'
Operation Function Transform
Superposition alxl(t) -+ agl‘g(t) a1 Xy (f) + ang(f)
Delay z(t —a) X(f)eI2rte
. 1 f
Scale factor (time) z(at) —X | =
ol \e
Conjugate z*(t) X*(=1)
Duality X(t) z(—f)
Frequency translation  z(t) e/ 27/t X(f—fo)
Convolution z(t) * y(t) X(HY()
Multiplication z(t) y{t) X(f) = Y{f)
Multiplication by t* ™ z(¢) (—j2m)~" d (;,Ef)
= ; 1 & m
: > Tj2rnnAT il o
Poisson’s n;m e T =Z_0° ] (/\ T)
Integral / z(t) y*(t) dt / XYY (f) df
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Fourier transforms

Function z(t) X(f)
Constant 1 o(f)
Impulse 5(t —a) e d2ria
Ste (t) L + l5( I
P u Jonf T2
t .
Rectangle rect (—) 7 sine(f 7)
T
. . t . 9
Triangle triang - T sinc*(f 1)

Exponential (causal)

Symmetrical exponential

Phasor

Sine

Cosine

Sign

Sampling

e Al u(t)

=i (2nfet+9)

sin(2w f.t + ¢)

cos(2m fot + @)
sign(t)
$ seun

k=-—o00

1
B+jerf

__ 28
8%+ (2n f)?
ej¢ 6(f - fc)

1 or
2—j [e ¢6(f“' fc)

—e'j¢6(f + fc)]

S [%8( - 10
+e7I%5(f + )]

jnf

 [— n
nx (1)
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Laplace transforms

345

x(t) X(s)
u(t) ;
tu(t) siz
n!
" u(t) g
ut) i
Vit s
e®tu(t) . i ,
gt (4 n!
e* u(t) G
1 at __ 6bt u 1
e ) ult) G- b)(s —a)
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I(t) X(S)
at b
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Trigonometric identities

oE90

ej204 + 6.725

20 _ o328
cos(8)
sin(#)

cos?(6) — sin®(8)
cos?(6)
cos®(6)
sin?(6)
sin®(6)

sin(a + )
cos{a £ )

tan(a £ 3) =

sin{B) sin(c)
cos(3) cos(a)
cos(B) sin(w)

= cos(f) £ j sin(9)

Il

2 cos(a — ) e2e+A)
j2sin(a — ) (@A)
e +e70

2
I8 —_ o6

2j
cos(26)

=[1 + cos(29)]
~[3cos(8) + cos(36))

[1 — cos(286)]

I e Y Ve

1 [3sin(d) — sin(3 )]
sin{a) cos(B) % sin(B) cos(«)

= cos(a) cos(B) Fsin(F) sin{a)

tan{a) £ tan(3)
1 F tan(a) tan(B)

cos(a — ) — % cos(a + B3)

cos(a — B) + % cos(a + )

NN R R O R

sin{a — 3) + —;— sin{a + 03)

z sin(a) + y cos(a) = R sin(a+ B)
z cos(a) —y sin{(a) = R cos(a+ )
with
NI
= tan™? (%)
Series
Arithmetic

a+(a+r)+(a+2r)+...+[a+(n—1)r]=g[2a+(n—1)r]
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Geometric
1 7
1+r+r24+.. .+l = —T , r#1
1—7r
Infinite geometric
xX
Tdr+r?4 44 = Y ook
k=0
1
= 1— s |’l"| <1
Binomial
n_ n(n—1) , n! &
Taylor
’ ('T — a) 1"
flz) = fla)+(z~a)fa) + ~—7=f"(a)
P C _'a) F™(a) +
mn!
Maclaurin
! :L.2 1 'Tn
fl@) = fO) +2f O+ 5 f O +...+ —fD0) + ...
Maclaurin series expansions of some functions
o mZn
_ 1\
cos(z) = ;( 1) i
o0 2n+1
x
. _ g
sin(z) nz::o( ) Gnt 1)
o n
T
exp(z) = Y s
n=0
1 o0
1 = Zx", for —1l<z<1
-z n=0
oo ;p"
In (1 = )"t for —1<z<1
n(1+z) > (-1 ~ or z <
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Error functions

eff(z) = 1 —2Q<\/§x>
2Q (\/iz)

erfc (z)
For z less than zero we have:

Q(=lzl) = 1 - Q(jz))

For values of x > 3 it is possible to show that:

Qo) = o= e/

Ver
100 ; § 10—6
107! 3 =107
: -

1072 5 £1078
DN -~ S
. T B o

1073 5 =1079

107* 5 =107

1079 3 =101

106 i i i | i ; 10712

0 1 2 3 4 5 6 7



B Elementary matrix algebra

Definitions

A matrix is a rectangular array of elements and it is usually represented as
follows:

11 12 e T1im
T21 X222 ... T2m

Xl=1 . . . . (B.1)
Tn1 Tnp2 cee Tnm

Each element z; can represent a real or complex number or functions of time
or frequency. The matrix shown above has n rows and m columns and therefore
is said to be an n x m matrix. The subscript ;; identifies the position of each
element in the matrix. Hence, the element xy; is located at the intersection of
the kth row with the /th column. If n = m the matrix is called a square matrix.

A vector is a single column or single row matrix. A column vector is
defined as an n X 1 matrix;

vi=| . (B.2)

and a row vector is defined as a 1 x m matrix;
U]l=[uruz ... unm]

The transpose of a matrix [X ] is written as [X |7 and is obtained by inter-
changing the rows and columns of the matrix [X ]. For example, the transpose
of a column vector [V ] yields a row vector [V ]7.

The addition and subtraction of matrices applies only to matrices of the
same order. Hence, the sum or difference of two matrices [X | and [Y" ], both
of order n X m, produces a matrix [Z ] also of order n x m. Each element z;
of [Z]=[X]=x[Y ]isgiven by

Zxl = Th1 £ Ykt
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where xzx; and yy; are the elements of [ X | and [Y" |, respectively. These two
operations are commutative and associative, that is:

X]+Y] = [Y]+[X]
(XIz¥yD£W] = X]+(¥Y]£[W])

The Multiplication of a matrix [X |, of order n x m, by a scalar s pro-
duces a matrix [Z ] of order n x m. Each element zj; of [Z ] = s x [X ] is
given by

Zrkl = 8 X Tp

The Multiplication of two matrices [X | x [Y | can only be performed
if they conform. The matrices [ X ] of order n x m and [Y" ] of order p x ¢ are
said to conform if m = p, that is, the number of columns of [X ] must be equal
to the number of rows of [Y" ]. Under this condition [X ] X [Y ] produces a
matrix [Z ] of order n X g. Each element of [Z | is given by

m
gl = E Trs X Yl
i=1

Note that when [X ] is of order n x m and [Y" ] is of order m x n each of
the products [X | x [Y ]and [Y | x [X ] conform. However, in general, we
have that

(X x [Y]#[Y]x[X]

that is the product of [X ] and [Y ] is non-commutable.

A unity or identity matrix, denoted here by! [1], is a square matrix in
which the elements on the principal diagonal are unity and the rest are zeros.
An example of a unity matrix is given below:

100 0
010 0

=100 10 (B-3)
000 1

The multiplication of a square matrix [X ] by the unit matrix of identical order
does not change [ X ], that is

[(X]xA]=0]x[X]=[X]
The inverse of a square matrix [X ], represented by [X |1, is such that
(X x (X7 =X x [X]=01]
Here we define [Y }/[{X ] as follows:

1oy,

I'The unity matrix is usually denoted by [I ]. In this book, we do not use this symbol in order
to avoid confusion with the symbol which represents the electrical current.



C Two-port electrical parameters

Conversion between electrical parameters

Parameters Admittance Impedance
Z ~Z12
Yip Yio Vil 1Z]
Admittance
Yy, Y- —Zy  Zy
21 Yoo 7 iz
Yoo Yo
iVl Y| Zu 22
Impedance
Yo Y
v Zo1 L2
Yoo -1 z [Z]
Chai Y1 Yo —Z—;ll 21
ain
b A T 1 Zxz
Y2 Y1 21 Za1
(1= ) 1+ ) ¥, Si = (21— D)(zgp+1) ~ 2525
_ 1 22)TY12Y2
S11 = o As P 2
. - 12 = 32
Scattering | Sip = —2 A7
K So1 = 2%

7
Sy = 2

Sa2

Al 7 7 7 7
. O4y1 )0 —y2)4+y1095
Ay

A’2 7 ’ ’
S = (711 #+1) (25— 1) =21 529,

Ag

Ay = (5 + )(yaz + 1) — Y129

Ay = (21 + 1)(290 + 1) — 21929

Table C.1: Transformations between electrical parameters.

Yi; = YijZo 4,j=1,2

Z;
.

ij Z, Zv]:1’2
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arameters ain catterin
P t Ch Scatt
_ {14822)(1=S11)+S12521
Y= A7,
Az —lAl — —2852
. Az A Y12 AqZ,
Admittance
=1 Ay = =253
A2 A2 Ya1 = A4Z,
_ (1=S822)(14S11)+S12S521
Yoo = Az,
1-8. 14+S511)+5125;
Zyq = Zo( 22) (14 511) 12521
Ay 1Al = 7 2512
A1 Az Z12 = Zo As
Impedance
Az Ax Z21 Zo As
_ (1+Sz2)(1—511)+512321
Z22 - Zo As
_ {1=822)(14511)+8512521
All = 2551
A1l Are Ay =72 (1+822)(1+811)=S12821
. — “o 2521
Chain Aoy = {(1=S22)}{(1=511)=S12521
Az A2 4 22052
Ao (14+522)(1=83) 4512521
22 — 2501
’ ? ’ ’
_ ajtaj,—as;,—a
Syp = Gutan 321 22
3, — (el aby—alzah) S Si
S . 12 — A
cattering e 9 8
a- é?z' +al,—ab, +al Sa S22
_ 127431 7oy
Sop = 1ta - 21 2

Table C.2: Transformations between electrical parameters. (Cont.)

Az = aj; +ajy +ay +ap, ay; = A, ajp = A12/Z,,
|A] = A1 Ay — A1pAg ay = A2 Z,, ahy = Axn
Ay = (1+ S11)(1 + S22) = S12571 |Y]=Y1;Yss — Yio¥n

As = (1 = S11)(1 — Sa2) — S12591 |Z| = Z112Z29 — Z1929



C Two-port electrical parameters

Conversion between electrical parameters

Parameters Admittance Impedance
Zyp —Zi2
’ Yii Yo 1zl 1Z]
Admittance
Y- Y- =Zy  Zy
21 22 1Z| 1Z)
Yoo =Y
e Zu Z12
Impedance
—Yo, Y
Y] V] Z21 Z22
=Y, =1 Zy  1Z]
Chai Yo: Yo1 Zo1 Za1
ain
-l =y 1z
Yo Y1 21 21
’ _1 ’ +1 . ’ !
G, — (=i (+ysa)+yiovy S = )(an R
11 — ’
1 2z
. —2y S1g = 322
Scattering | Si2 = ~x12 25
SZ] = __Zy’u 821 - A/2 ’ 7o
(1%_1 ’ )(1_ ’ )+ 1o 522 — (211+1)(z22_1)_21222]
Sog = Y11 Ay22 Yi2¥21 Ay
1

Table C.1: Transformations between electrical parameters.

Ar = (yhy + )(yhe + 1) — yla¥n Yi; = Yi;Zo 4,5 =1,2
7

By = (217 +1)(230 + 1) ~ 2152 Z; = 7 t,j=1,2
o
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IMPEDANCE ADMITTANCE CASCADE
Series Impedance
ped v —y 1 z
—_}—
7 NON-EXISTENT
Y Y 0 1
Shunt Admittance
z z 1 0
Y NON-EXISTENT
A z Y 1
Y, (Yy4 Y —Y Yy |Zs+2Z) (Z1+22)Z3+212Zy
T Circuit v+ Zs Zs Vluﬁi%az Y1—+Y§12173 23 Z3
Z1 Zs
Z3 MYy vy | L Zy17;
Z3 22+ Z3 Y1+Y2+Y3 ﬁ;ﬁ Z3 Z3
P! Circuit Z1(Za+2Z Zy Z Ya+Yy L
— FEE nBle v+ on TR ¥s
I Y2 Z,Z. Z2(Z1+23 M+Y)¥a+v Yo
122 ( ) | — Y14Y5)Va+Y; Y,
Z1+22+2Z3 Z1+22+723 Ys Yo+ Ys Y3 + X%‘L

General Tx Line

- Zocoth(yl)  Z,csch(~yl) so_tg(v_l) ,C_chﬂz cosh(yl)  Z,sinh(~1)
o >

] —

4 -

Zo v Zoosch(vl)  Zocoth(vl) _ﬁgém ﬂ}mz i‘w cosh(~l)
Lossless Tx Line | ;7 cot(8l) —jZocsc(8l) _ﬂ’zt@ EE@ cos(B8l) 32, sin(Bl)
-

o I , sl

Zo, i B —§Zocsc(Bl) —jZocot{Bl) —Z&—’C“f” ——f—’mtz” %ﬂ ces(8D)

Voltage controlled
Voltage Source % 0

+ é A NON-EXISTENT NON-EXISTENT
v ‘v
- = 0 0
Voltage controlled
Current Source 0 0 0 — é
+
v G-v | NON-EXISTENT
— G 0 0 0

Current controlled
Current Source 0

0
il é Aq NON-EXISTENT NON-EXISTENT
1
0 —4
Current controlled
Voltage Source O 0 0 0

] NON-EXISTENT
] @i R 0 0

2l




Index

ABCD parameters, 157
acceptor, 183
active devices, 183
admittance, 59
admittance parameters, 153
alternating current (AC), 3, 32, 48
ampere, 2 N
amplifier
adder, 181
common-base, 208
common-collector, 211
common-emitter, 187
difference, 181
differential pair, 215
differentiator, 180
instrumentation, 182
integrator, 180
inverting, 179
noisy, 310
non-inverting, 178
angle, 39, 48
Argand diagram, 32, 57
asymptotes, 80, 81, 83
autocorrelation function, 295-298
average power, 4, 5, 7
random processes, 297
average value, 66
random variable, 281
random variables, 285

bandwidth
amplifier, 169, 171
circuit, 73, 76, 78, 82
noise, 298
random processes, 297, 298
signal, 73-75
system, 82
unity-gain, 196
Boltzmann’s constant, 183

capacitance, 8, 51, 55, 115, 129
capacitor, 8

AC-coupling, 170
DC-blocking, 170, 200
noise model, 308
causal exponential, 97
causal signal, 97, 109
central limit theorem, 290
chain parameters, 157
chain/cascade connection, 158
channel length, 193
channel width, 193
channel-length modulation, 195
characteristic function, 288, 289
characteristic impedance, 230
charge (electron), 2
Chebyshev’s inequality, 286
clipping, 188
common-base
DC-analysis, 208
high-frequency analysis, 211
mid-frequency analysis, 209
common-collector
DC analysis, 212
mid-frequency analysis, 213
common-emitter
DC analysis, 197
high-frequency, 204
low-frequency analysis, 198
mid-frequency analysis, 204
noise analysis, 323
voltage gain, 188, 198
complex exponentials, 54, 66, 73, 77
complex numbers, 32
addition, 34
angle, 39
argument, 39
Cartesian representation, 33
complex conjugate, 36
division, 37, 40
equality, 33
equations, 38
exponential form, 41
imaginary numbers, 33
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magnitude, 39
modulus, 39
multiplication, 35, 40
number j, 33
phasor representation, 42
polar coordinates, 39
polar representation, 39
powers, 43
rectangular representation, 33
roots, 43
subtraction, 34
complex plane, 32
computer-aided
electrical analysis, 163
noise analysis, 323
noise modelling, 323
conductance, 5, 6
controlled sources, 21
convolution operation, 100, 101, 110,
112, 289
correlation, 295
matrix, 328
admittance, 324
chain, 325
impedance, 325
scattering, 325
time, 300
transformation matrices, 328
coulomb, 2, 8
CR circuit, 83
transient response, 138
critically damped, 134, 140
cross-correlation function, 301
current, 1
amplifier, 176
current divider
resistive, 20
current gain, 98, 157
current mirror, 220
output resistance, 220
current source, 3, 220
current-controlled , 21
DC,3
output resistance, 4
voltage-controlled, 21
cut-off frequency, 76

damping factor, 124

De Moivre’s theorem, 43
decibel (dB), 80

delay time, 137
dependent sources, 21

357

differential pair
common-mode, 215, 216
differential mode, 216, 217
diode, 183
p—n junction, 183
effect, 185
geometry, 183
saturation current, 183
symbol, 183
Dirac delta function, 92, 98, 281
direct current (DC), 3
distortion
linear, 79, 171, 243
non-linear, 79
clipping, 188
donor, 183
duty-cycle, 73

Early effect, 192
Ebers-Moll model, 184
effective value
sinusoidal waveform, 50
triangular waveform, 50
effective values, 49
electrical length, 234
electrical parameters
ABCD, 157
admittance, 153
chain, 157
conversion between, 159, 352
impedance, 150
scattering, 248
electro-motive force (emf), 131
electron charge, 2
electronic amplifier, 169
energy stored
capacitor, 9
inductor, 9
enhancement, 193
ensemble average, 295
equivalent conductance, 12
equivalent resistance, 11, 13, 17
error function, 282, 349
Euler’s formula, 42, 54
expectation operator, 285
multivariate, 287

fall-time, 137

farad, 8

Faraday’s law, 9
feedback, 178
figures of merit, 169
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filter
band-pass, 86
high-pass, 84
low-pass, 76, 77
forced response, 109, 111
forcing signal, 111
Fourier integral, 91
Fourier series, 65
average value, 66
coefficients, 66, 87
harmonics, 66, 77, 87
time delay, 71
Fourier transform, 88
from Laplace transform, 126
convolution theorems, 106, 289
DC signal, 93
duality, 91
generalised transform, 94
periodic functions, 95
table, 344
time delay, 92
transient analysis, 113
differentiation theorem, 113
integration theorem, 114
frequency
angular, 48
linear, 48
frequency domain, 65
frequency response
high-frequency, 171
low-frequency, 170
mid-frequency, 171
frequency selectivity, 86
function
s-functions, 126
Gaussian probability, 342
parabolic, 286
rect, 73, 342
signum, 94, 95, 342
sinc, 90
table of, 342
triang, 105, 342
unit-step, 94, 118, 342

gain
amplifier, 169
Gaussian distribution, 281
bivariate, 293
geometric series, 348
ground terminal, 18

harmonic oscillator, 124

INDEX

henry, 9
histogram, 280
hybrid-7
BIT, 190
IGFET, 194
hydraulic analogue
capacitor, 8
inductor, 9
LC circuit, 133
oscillator, 133
resistance, 2
RLC circuit, 135

imaginary axis, 33
impedance
capacitive, 55
generalised, 56, 58
generalised (s-domain), 130
inductive, 56
parallel connection, 59
series connection, 59
impedance matching, 272, 275
impedance parameters, 150
impulse response, 98
RC circuit, 98
incident wave, 232
inductance, 9, 52, 56, 115, 129
inductor, 9
noise model, 308
initial conditions, 110
insertion loss, 234
instantaneous power, 4, 5, 7
integration (by parts), 113
International System of Units, 1

joule, 9

Kirchhoff’s laws, 10, 18, 52
current law, 10, 19
voltage law, 10

L-sections, 272

Laplace transform
s-domain differentiation, 121
convolution, 121
definition, 117
inverse transform, 119
linearity, 119
partial-fraction, 123
region of convergence, 118, 126
solving differential equations, 127
table, 345
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time delay, 119
time differentiation, 120
time integration, 120
time periodicity, 122
time scaling, 121
transient analysis, 127
LC circuit
natural response, 133
load matching, 272, 275
A/4 transformer, 240
load-line, 188
logarithmic scale, 80
LR circuit
transient response, 139

Maclaurin series, 348

magnetic flux, 9

matrix algebra, 350

mean
random process, 295, 296

time averaging, 296
random variable, 280, 281, 288,
291

random variables, 285

mean-square, 286

microstrip lines, 247
attenuation, 248
characteristic impedance, 247
dielectric permittivity, 247
electrical length, 254
geometry, 247
loss tangent, 248
propagation constant, 248

microwaves
frequency range, 224
wavelength, 224

Miller’s theorem, 161
common-emitter, 205, 206
forward voltage gain, 162
high-frequency response, 163
input impedance, 162

moments
random variables, 285, 288

natural frequency, 124
natural response, 109, 111
neper, 243
nodal analysis, 18, 56
node zero, 18
noise, 279, 295
1/f,306
admittance representation, 324

359

analysis, 299, 338

analysis method, 310, 331

bandwidth, 295, 298

bipolar transistor, 309

capacitor, 308

chain representation, 325

characterisation, 338

common-emitter, 318, 323, 332

computer-aided, 323

cross-power spectral density, 301

current spectral density (RMS), 317

equivalent bandwidth, 304

equivalent current spectral density,
317

equivalent input sources, 310

equivalent input spectral density,
338

equivalent resistance, 322

equivalent temperature, 323, 338

equivalent voltage spectral den-
sity, 319

factor, 320

minimum, 321
field-effect transistor, 308
figure, 319, 338
chain of amplifiers, 321

impedance representation, 324

inductor, 308

Johnson, 305

mean, 297

optimum output admittance, 321

power, 295, 297, 300, 320

power spectral density, 298, 299

power spectrum, 298

resistor, 307

RMS, 297

scattering representation, 325

shot, 306

sources, 279

thermal, 305

transformation matrices, 328

two-port, 323

voltage spectral density (RMS),
317

white, 303

Norton equivalent

1/ f noise, 306

AC circuit, 62

DC circuit, 24
noisy amplifier, 318
shot noise, 306
thermal noise, 305
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Norton’s theorem, 23, 24, 62 probability density function, 281
probability density functions
ohm, 2 joint, 293
Ohm’s law, 2, 17, 50, 58 propagation
op-amp constant, 227, 230
ideal, 177 speed, 225
open-circuit, 22 pulse
open-circuit time constants, 207 rectangular, 89, 92
open-loop, 177 square, 100
gain, 178 Pythagoras’s theorem, 39
operating point, 188
operational amplifiers, 177 Quality Factor, 86
oscillator, 124, 133 quiescent, 188
overdamped, 134, 140
overshoot, 140 radian, 48
radio-frequency, 224
parallel connection random processes, 295
capacitor, 14 autocorrelation, 296
inductor, 16 average, 295
resistor, 12 bandwidth, 297, 298
two-port circuits, 156 ensemble averages, 295
Parseval’s theorem, 71 ergodic, 296
peak overshoot, 140 autocorrelation, 296
periodic waveforms, 66 mean, 296
permeability, 248 filtered, 303
phase autocorrelation, 303
difference, 49, 52, 55, 56 mean, 303
instantaneous, 48 Gaussian, 302
phasor, 32, 55, 66, 72, 89, 224 mean, 295
density, 91 sample function, 295
rotating, 57, 72 stationary, 296
static, 58 random signals, 303
stationary, 58, 72 random variables, 279
travelling wave, 225 average, 280
phasor analysis, 54 average value, 285
Poisson distribution, 284 central limit theorem, 290
poles and zeros, 83 characteristic function, 288
power, 4, 297 continuous, 284
available, 255 covariance, 293
average, 4, 5,7, 62 discrete, 284
average (normalised), 70 expectation, 285
dissipation, 6, 7, 62, 70 Gaussian, 293
instantaneous, 4, 5, 7 Gaussian distribution, 281
instantaneous (normalised), 70 joint PDF, 293
maximum transfer, 64, 272 mean, 280, 285
noise, 300 mean-square, 286
normalised, 70 moments, 285, 288
Parseval’s theorem, 71 multiple, 287
transducer gain, 257 Poisson, 284
waves, 254 probability density function, 281
power spectrum, 298 standard deviation, 281

probability, 281 statistically dependent, 293
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sums of, 289, 290

uniform, 284

variance, 281, 286
Rayleigh’s energy theorem, 96
RC circuit, 73, 100

transient response, 136
reactance

capacitive, 51, 55

inductive, 52, 56
real axis, 33
rectangular waveform, 66, 67
reference node, 18
reflected wave, 232
reflection coefficient, 233
relative permittivity, 247

resistance, 2, 5, 50, 55, 115, 128

dynamic, 191
resistor, 5
noise model, 307
rise-time, 137
RL circuit, 53
natural response, 130
transient response, 138
RLC circuit, 85, 135
natural response, 133
critically damped, 134
overdamped, 134
underdamped, 134
transient analysis
critically damped, 140
overdamped, 140
underdamped, 140
transient response, 139
RMS, 50, 51
noise, 297
root-mean-square, 50, 297

sampling property, 93
scattering parameters, 248
generalised, 258

reference planes, 254
second-order, 124
series, 347

binomial, 348

Maclaurin, 348
series connection

capacitor, 13

inductor, 15

resistor, 11

two-port circuits, 153
settling time, 141
short-circuit, 18

361

virtual, 178, 179
short-circuit time constants, 200
siemen, 6
signal filtering, 85
signal shaping, 85
signal-to-noise ratio, 320
small-signal

amplifier, 175
Smith chart, 264

admittance representation, 267

impedance representation, 266
spectral density, 89
spectrum

continuous, 89

line, 72
speed of light, 248
standard deviation, 281
steady-state, 48, 51, 109, 111
stochastic processes, 295
stub-tuning, 276
superposition theorem, 25, 76, 86

Thévenin equivalent
AC circuit, 62
DC circuit, 24
noisy amplifier, 318
noisy shunt admittance, 326
thermal noise, 305
Thévenin’s theorem, 22, 24, 62
thermal voltage, 183
threshold voltage, 193
time constant, 75, 77
time domain reflectometry, 239
transconductance
BJT, 191
IGFET, 194
transconductance gain, 98, 154, 157
transducer power gain, 257
transfer function, 75, 80
admittance, 98, 154
amplifier, 170
angle, 82
CR circuit (high-pass), 83
current, 98
impedance, 98, 151
magnitude, 82, 84
phase, 82, 84
poles and zeros, 83
RC circuit(low-pass), 80
RLC circuit (band-pass), 85
voltage, 98
transient analysis
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transmission line, 237, 240
using Fourier transform, 113
using Laplace transforms, 127
transient response, 111
transimpedance gain, 98, 151, 157
transistor
bipolar (BJT), 183
hybrid-=, 190
noise model, 309
transconductance, 191
current gain, 187
effect, 185
field-effect, 192
n-channel, 193
p-channel, 193
large signal model, 193
noise model, 308
hetero-junction bipolar, 309
high-frequency models, 195
IGFET, 193
transconductance, 194
internal capacitances, 171, 195
mobility, 193
MOSFET, 193
NPN
geometry, 184
symbol, 184
PNP
geometry, 184
symbol, 184
transmission coefficient, 234
transmission line, 227
A/4 transformer, 239
impedance matching, 275
load matching
transient analysis, 240
lossless
characteristic impedance, 230
input impedance, 234
matched, 230, 235
model, 228
open-circuit, 235
propagation constant, 230
short-circuited, 237
lossy, 242
attenuation constant, 243
characteristic impedance, 243
input impedance, 247
microstrip, 247
reflection coefficient, 233
transient analysis, 237
triangular waveform, 66

INDEX

trigonometric identities, 347
two-port circuit, 150
S-parameters, 250
Y -parameters, 153
Z-parameters, 150
ABCD (chain)-parameters, 157
noise analysis, 323
phasor analysis, 150
table, 352
unilateral circuit, 161

underdamped, 134, 140
uniform distribution, 284
unilateral circuit, 161
unity-gain bandwidth, 196

variance, 281, 286, 291
volt, 2
voltage, 2
amplifier, 176
polarity, 52
propagating, 231
voltage divider
resistive, 20
with impedances, 64, 85, 174
voltage gain, 98, 157
voltage source, 2
AC,3
current-controlled, 21
DC, 3
output resistance, 3
voltage-controlled, 21
voltage standing wave ratio (VSWR),
234

watt, 4
waveform
rectangular, 66, 67
triangular, 66
wavelength, 225
white noise, 303
filtered, 304
white spectrum, 303
Wiener-Kinchine theorem, 298

zeros and poles, 83
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