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Fast analytical techniques for
electrical and electronic circuits

Today, the only method of circuit analysis known to most engineers and students is nodal or

loop analysis. Although this works well for obtaining numerical solutions, it is almost useless for

obtaining analytical solutions in all but the simplest cases.

In this unique book, Vorpérian describes remarkable alternative techniques to solve, almost

by inspection, complicated linear circuits in symbolic form and obtain meaningful analytical

answers for any transfer function or impedance.

Although not intended to replace traditional computer-based methods, these techniques

provide engineers with a powerful set of tools for tackling circuit design problems. They also

have great value in enhancing students’ understanding of circuit operation. The numerous

problems and worked examples in this book make it an ideal textbook for senior/graduate

courses or a reference book.

This book will show you how to:

• use less algebra and do most of it directly on the circuit diagram,

• obtain meaningful analytical solutions to complex circuits with reactive elements and depend-

ent sources by reducing them to a set of simple and purely resistive circuits which can be

analyzed by inspection,

• analyze feedback amplifiers easily using the simplest and most natural formulation,

• analyze PWM converters easily using the model of the PWM switch.

Originally developed and taught at institutions and companies around the world by Professor

David Middlebrook at Caltech, the extended and new techniques described in this book are an

indispensable set of tools for linear electronic circuit analysis and design.

Vatché Vorpérian received his PhD in Electrical Engineering in 1984 from the California Institute

of Technology and joined the faculty of Electrical Engineering at Virginia Tech in the same year.

In 1991 he joined the Jet Propulsion Laboratory where he is currently a senior member of the

technical staff. He has published over 35 conference and journal papers in the field of power

electronics and has taught many professional advancement courses to industry.
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Preface

The title of this book could easily have been called Variations on a Theme by
Middlebrook, or Applications of The Extra Element Theorem and its Extensions.
Neither title, however, would have captured the unique message of this book that
one can solve very complicated linear circuits in symbolic form almost by inspec-
tion and obtain more than one meaningful analytical answer for any transfer
function or impedance. The well-known and universally practiced method of
nodal or loop analysis not only becomes intractable when applied to a compli-
cated linear circuit in symbolic form, but also yields unintelligible answers consist-
ing of a massive collection of symbols. In a meaningful analytical answer, the
symbols must be grouped together in low-entropy form — a term coined by R. D.
Middlebrook — clearly indicating series and parallel combination of circuit ele-
ments, and sums and products of time constants. The illustrative examples in
Chapter 1 serve as a quick and informal introduction to the basic concepts behind
the radically different approach to network analysis presented in this book.

Today, the only method of circuit analysis known to most engineers, students
and professors is the method of nodal or loop analysis. Although this method is an
excellent general tool for obtaining numerical solutions, it is almost useless for
obtaining analytical solutions in all but the simplest cases. Anyone who has
attempted inverting a matrix with symbolic entries — sometimes as low as second-
order — knows how tedious the algebra can get and how ridiculous the resulting
high-entropy expressions can look. The purpose of this book is not to eliminate the
linear algebra approach to network analysis, but instead to provide additional
new and efficient tools for obtaining analytical solutions with great ease and
without letting the algebra run into a brick wall.

Among the most important techniques discussed in this book are the extra
element theorem (EET) and its extension the N-extra element theorem (NEET).
These two theorems are discussed in Chapters 3 and 4 after a brief and essential
review of transfer functions given in Chapter 2. The EET and its proof were given
by R. D. Middlebrook. The NEET was given without proof by Sarabjit Sabhar-
wal, an undergraduate at Caltech in 1979. In Chapter 4, a completely original
treatment of the NEET is given, where it is stated in its most general form using a
new compact notation and, for the first time, proven directly using matrix analysis.

The subject of electronic feedback is treated in Chapter 5 using the EET for

xi



dependent sources, and another theorem by R. D. Middlebrook called simply ‘‘the
feedback theorem’’. Both methods lead to a much more natural formulation of
electronic feedback than the well-known block diagram approach found in most
textbooks. Block diagrams are useful tools in linear system theory to help visualize
abstract concepts, but they tend to be very awkward tools in network analysis. For
instance, in an electronic feedback circuit neither the impedance loading nor the
bi-directional transmission of the feedback network are easily captured by the
single-loop feedback block diagram unless the feedback network and the amplifier
circuit are both manipulated and forced to fit the block diagram. The fact is block
diagrams bear little resemblance to circuits and their use in network analysis
mainly results in loss of time and insight.

The examples presented in Chapters 6 and 7 are a tour de force in analysis of
complicated circuits which demonstrate the efficacy of the fast analytical tech-
niques developed in the previous chapters. Among the examples discussed in these
chapters are higher-order passive filters and a MESFET amplifier. Some infinite
networks, including fractal networks, are discussed in Chapter 7 where an interest-
ing, and possibly new, result is presented. It is shown that a resistor, an inductor
and a capacitor are all special cases of a single, two-terminal, linear element whose
voltage and current are related by a fractional derivative or its inverse, the
Riemann—Liouville fractional integral.

Pulse-width-modulated (PWM) switching dc-to-dc power converters are intro-
duced in Chapter 8 to illustrate further the applications of the fast analytical
techniques presented in this book. The analysis of PWM converters has been one
of the hot topics of nearly every conference in power electronics since the early
1970s, and many specialized analytical techniques have been developed since. The
simplest and fastest of these techniques is based on the equivalent circuit model of
the PWM switch, which is introduced after a discussion of basic PWM converters.
The PWM switch is a three-terminal nonlinear device which is solely responsible
for the dc-to-dc conversion function inside a PWM converter. Hence, the PWM
switch and its equivalent circuit model are to a PWM converter what the transis-
tor and its equivalent circuit are to an amplifier. To analyze the dynamics of a
PWM converter, one simply replaces the PWM switch with its equivalent circuit
model and proceeds in exactly the same way as in an amplifier circuit analysis.

This book is based on my experience in electronic circuit analysis as a student,
design engineer, teacher and researcher. The limitations of the ‘‘standard’’ circuit
analysis I studied as an undergraduate soon became apparent on my first job as a
power supply design engineer at Digital Equipment Corporation, Maynard, MA. I
spent inordinate amounts of time deriving various small-signal transfer functions
of switching converters in order to understand and improve their stability and
dynamic behavior. Most of the senior engineers around me had acquired excellent
design skills mostly by experience and did not rely too much on analysis. When I
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returned to graduate school at Caltech, I took Middlebrook’s course which
engendered a complete turn around: I learned how to handle complicated linear
networks and obtain transfer functions, in low-entropy form, using very simple
and elegant techniques. I gradually adopted these techniques in my seven years of
teaching at Virginia Polytechnic Institute and State University confirming the
adage, ‘‘the best way to learn something is to teach it.’’

Logically, Middlebrook’s book, which is still in preparation, should have pre-
ceded mine. I began writing this book in the summer of 1996 with the intention of
completing it by the winter of 1997. Clearly, I did not realize that writing a book at
nights and on weekends would be considerably more difficult and time consuming
than I had ever imagined. Fortunately, I had the constant support and encourage-
ment of family, friends and colleagues. I would especially like to thank Gene
Wester and Dave Rogers, both at the Jet Propulsion Laboratory, for their careful
review and corrections of some of the chapters of this book. I would also like to
thank my former supervisor Robert Detwiler; my current supervisor Mark Under-
wood; my colleagues Chris Stell, Tony Tang, Roman Gutierrez, Avo Demirjian,
Dan Karmon, Mario Matal, Joseph Toczylowsky, Karl Yee, James Gittens, Mike
Newell, David Hykes, Chuck Derksen and Tien Nguyen for making JPL an
enjoyable place to work. Although this book is dedicated to my parents for their
countless sacrifices, I would not have been able to write it without the enduring
support, love and care of my favorite mezzo-soprano, best friend and wife Shoghig.

Vatché Vorpérian
June 2000

xiii Preface



MMMM



1 Introduction
The joys of network analysis

1.1 Fast analytical methods

The universally adopted method of teaching network theory is the formal and
systematic method of nodal or loop analysis. Although the matrix algebra of
formal network analysis is ideal for obtaining numerical answers by a computer, it
fails hopelessly for obtaining analytical answers which provide physical insight
into the operation of the circuit. It is not hard to see that, when numerical values of
circuit components are not given, inverting a 3 � 3, or higher-order, matrix with
symbolic entries can be very time consuming. This is only part of the problem of
matrix analysis because even if one were to survive the algebra of inverting a
matrix symbolically, the answer could be an unintelligible and lengthy symbolic
expression. It is important to realize that an analytical answer is not merely a
symbolic expression, but an expression in which various circuit elements are
grouped together in one or more of the following ways:

(a) series and parallel combinations of resistances

Example: R
�
�R

�
� (R

�
�R

�
)

(b) ratios of resistances, time constants and gains

Example: 1 �
R

R
�
�R

�

, 1 �
g
�
R

�
A

�

, A
��1 �

�
�

�
�
�

(c) polynomials in the frequency variable, s, with a unity leading term and coeffi-
cients in terms of sums and products of time constants

Example: 1 � s(�
�
� �

�
) � s��

�
�
�

Such analytical expressions have been called low-entropy expressions by R. D.
Middlebrook� because they reveal useful and recognizable information (low noise
or entropy) about the performance of the circuit. Another extremely important
advantage of low-entropy expressions is that they can be easily approximated into
simpler expressions which are useful for design purposes. For instance, a series-
parallel combination of resistances, as in (a), can be simplified by ignoring the
smaller of two resistances in a series combination and the larger of two resistances
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in a parallel combination. When ratios are used as in (b), they can be simplified
depending on their relative magnitude to unity. Depending on the relative magni-
tude of time constants, frequency response characteristics as in (c) can be simplified
and either factored into two real roots, with simple analytical expressions, or
remain as a complex quadratic factor.

In light of the above, the aim of fast analytical techniques can be stated as
follows: fast derivation of low-entropy analytical expressions for electrical circuits.
The following examples illustrate the power of this new approach to circuit
analysis.

1.2 Input impedance of a bridge circuit

We will determine the input resistance,R
��

, of the bridge circuit� in Fig.1.1 in a few
simple steps using the extra element theorem (EET). The EET� and its extension,
the N-extra element theorem� (NEET), are the main basic tools of fast network
analysis discussed in this book. Both of these theorems will be introduced, derived
and stated in their general form in later chapters, but since the EET for an
impedance function is so trivial, we will use it now to obtain an early glimpse of
what lies ahead.

Figure 1.1

We see in Fig. 1.1 that if any one of the resistors of the bridge is zero or infinite,
we can writeR

��
immediately by inspection. For instance, if we designateR

�
as the

extra element and let R
�
��, as shown in Fig. 1.2a, we can immediately write:

R
��

�
����

� (R
�
�R

�
) � (R

�
�R

�
) (1.1)

The EET now requires us to perform two additional calculations as shown in Figs.
1.2b and c. We denote the port across which the extra element is connected by (B).
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Figure 1.2

In Fig. 1.2b, we determine the resistance looking into the network from port (B)
with the input port short and obtain by inspection:

R��	�R
�
�R

�
�R

�
�R

�
(1.2)

Figure 1.2 (cont.)

In Fig. 1.2c, we determine the resistance looking into the network from port (B)
with the input port open and obtain by inspection:

R��	� (R
�
�R

�
) � (R

�
�R

�
) (1.3)

We now assemble these three separate and independent calculations to obtain the
input resistance R

��
in Fig. 1.1 using the following formula given by the EET:

R
��

�R
��

�
����

1 �
R��	

R
�

1 �
R��	

R
�

(1.4)
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Upon substituting Eqs. (1.1), (1.2) and (1.3) in (1.4):

R
��

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.5)

Equation (1.5) is a low-entropy result because in it R
��

is expressed in terms of
series and parallel combinations of resistances and ratios of such resistances added
to unity. Such an expression, for a given set of typical element values, can be easily
approximated using rules of series and parallel combinations wherever applicable.
In this expression, we can also see the contribution of the bridge resistance, R

�
, to

the input resistance, R
��

, directly.
We can also appreciate two important advantages of the method of EET used in

deriving R
��

above. First, since the method of EET requires far less algebra than
nodal analysis, it is considerably faster and simpler. Second, since the EET
requires three separate and independent calculations, any error in the analysis does
not spread and remains confined to a portion of the final answer. In a sense, this
kind of analysis yields modular answers — if there is anything wrong with a
particular module, it can be replaced without affecting the entire answer. This not
only makes the analysis faster, but also the debugging of the analysis faster as well.

1.3 Input impedance of a bridge circuit with a dependent source

In this section we consider the effect of a dependent current source,�
� g
�
v
�

, in Fig.
1.3, on the input resistance R

��
. This circuit is borrowed from a well-known

Figure 1.3

textbook by L. O. Chua and Pen-Min Lin� in which the authors determine the
contribution of the transconductance, g

�
, to the input resistance, R

��
, using the
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parameter-extraction method. Because of the considerable amount of matrix
algebra required by the parameter-extraction method, which would become pro-
hibitively complex if all elements were in symbolic form, Chua and Lin have
assigned numerical values (R

�
� 1 �, R

�
� 0.2 �, R

�
� 0.5 �, R

�
� 10 � and

R
�
� 0.1 �) to all the resistors and determined:

R
��

�
96.3 � 5.1g

�
137.7 � 10.5g

�

� (1.6)

We will now show how to determine R
��

in three simple steps by applying the
EET to the dependent current source g

�
v
�
. To demonstrate the superior power of

this method of analysis, we will keep all circuit elements in symbolic form.
In Fig. 1.3, we designate the dependent current source as the extra element and

set it to zero by letting g
�
� 0. This reduces the circuit to the bridge circuit in

Section 1.2, as shown in Fig. 1.4a. Hence, we have from Eq. (1.5):

R
��

�
	���

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.7)

Figure 1.4

The EET now requires us to perform two additional calculations as shown in
Figs. 1.4b and c in which the dependent current source is replaced with an
independent one, i

�
, pointing in the opposite direction. In Fig. 1.4b we determine

the transresistance, v
�

/i
�

, which is the inverse of the transconductance gain g
�

of
the dependent source, with the input port short. Inspecting Fig. 1.4b, we see that
R

�
�R

�
and R

�
�R

�
form a voltage divider connected across an equivalent

Thevinin voltage source, i
�
R

�
, in series with a Thevinin resistance, R

�
, so that we

have:
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v
�

i
�
R

�

�
R

�
�R

�
R

�
�R

�
�R

�
�R

�
�R

�

(1.8)

It follows that the inverse gain, with the input port short, is given by:

G
 ��	�
v
�
i
�
�
���	����
�

�
R

�
�R

�
R

�
�R

�
�R

�
�R

�
�R

�

R
�

(1.9)

Similarly, we can determine in Fig. 1.4c that the inverse gain, with the input port
open, is given by:

G
 ��	�
v
�
i
�
�
���	�����

�
R

�
� (R

�
�R

�
)

R
�
�R

�
�R

�
� (R

�
�R

�
)
R

�
(1.10)

Figure 1.4 (cont.)

We can now assemble the final answer using the three separate calculations in Eqs.
(1.7), (1.9) and (1.10) according to the following formula given by the EET:

R
��

�R
��

�
	���

1 � g
�
G
 ��	

1 � g
�
G
 ��	

(1.11)

Upon substituting, we get:

R
��

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.12)

�
1 �

g
�
R

�
1 � (R

�
�R

�
�R

�
)/R

�
�R

�

1 �
g
�
R

�
1 � (R

�
�R

�
)/R

�
� (R

�
�R

�
)

Hence, by doing far less algebra than that required by the parameter-extraction
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method, we have obtained a low-entropy symbolic expression which is far superior
to the one given in Eq. (1.6)

The EET, quite naturally, also allows for the value of a dependent source to
become infinite so that a particular transfer becomes simplified in the same
manner as that of an ideal operational amplifier circuit. In the case of R

��
in Fig.

1.3, the EET allows us to write:

R
��

�R
��

�
	���

1 �
1

g
�
G
 ��	

1 �
1

g
�
G
 ��	

(1.13)

in which G
 ��	 and G
 ��	 are the same as before and R
��

�
	���

is determined in Fig.
1.5. The gain from v

�
to g

�
v
�

reminds us of an opamp connected in some kind of

Figure 1.5

feedback fashion whose details we do not need to know at all. Now, if we let g
�

become infinite, then v
�
� 0 very much in the same manner as the differential input

voltage of an opamp tends to zero when the gain becomes infinite and the output
voltage stays finite. We can see in Fig. 1.5 that, with g

�
�� and v

�
� 0, the

current through R
�

becomes zero and i
�

flows entirely through R
�

creating a
voltage drop i

�
R

�
across it. At the same time, v

�
appears across R

�
causing a

current v
�

/R
�

to flow through it. We can also see that the voltage drop across R
�

,
when v

�
� 0, is equal to v

�

 i

�
R

�
so that the current through it is simply

(v
�

 i

�
R

�
)/R

�
. Summing the currents at the lower node of the bridge, we obtain:

i
�
�
v
�
R

�

�
v
�

 i

�
R

�
R

�

(1.14)

It follows from Eq. (1.14) that:
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v
�
i
�

�R
��

�
	���

�
R

�
�R

�

1 �
R

�
R

�

(1.15)

Substituting Eq. (1.15) in (1.13) we obtain another expression for R
��

given by:

R
��

�
R

�
�R

�

1 �
R

�
R

�

1 �
1 �R

�
�R

�
/R

�
g
�

(R
�
�R

�
�R

�
) �R

�
�R

�

1 �
1 �R

�
/R

�
g
�

(R
�
�R

�
) �R

�
� (R

�
�R

�
)

(1.16)

Although Eq. (1.16) looks simpler than Eq. (1.12), both are very useful analytical
expressions. For very small values of g

�
, Eq. (1.12) is a better expression because

the bilinear factor containing g
�

is close to unity and R
��

is mostly dictated by the
bridge circuit. If on the other hand g

�
is very large, Eq. (1.16) is a better expression

because R
��

is mostly given by Eq. (1.15), and the bilinear function of g
�

in Eq.
(1.16) is close to unity.

1.4 Input impedance of a reactive bridge circuit with a dependent source

Consider now the reactive bridge circuit in Fig. 1.6 for which the input impedance�
is to be determined. By designating the capacitor as the extra element, we will show
how easily Z

��
(s) can be determined by simply analyzing a few purely resistive

Figure 1.6

circuits. In other words, we will see how the EET allows one to determine a
reactive transfer function, such asZ

��
(s), without ever having to deal with a reactive

component such as 1/sC
�

. In fact, as we will see later, the most natural application
of the EET and NEET is in the reduction of a circuit withN reactive elements to a
set of purely resistive circuits.

If we designate Z
�
� 1/sC

�
as the extra element and let Z

�
��, we obtain the
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circuit in Fig. 1.7a, which is a special case of the circuit in Fig. 1.3 whose input
impedance is given by Eq. (1.12). The derivation of the input impedance of the
circuits in Figs. 1.3 and 1.7a are identical, with the exception that R

�
�� in Fig.

1.7a. Hence, by letting R
�
�� in Eq. (1.12) we obtain for Fig. 1.7a:

Z
��

(s) �
����

� (R
�
�R

�
) � (R

�
�R

�
)

1 � g
�
R

�
�R

�

1 �
g
�
R

�
1 � (R

�
�R

�
)/(R

�
�R

�
)

(1.17)

Figure 1.7

To obtain Z
��

(s), all we need to do is determine R��	 and R��	, shown in Figs. 1.7b
and c, respectively, and apply the EET:

Z
��

(s) �Z
��

(s) �
����

1 �
R��	

Z
�

1 �
R��	

Z
�

(1.18)

�R
�

1 � sC
�
R��	

1 � sC
�
R��	

in which R
�
�Z

��
(s) �

����
and is given by Eq. (1.17).

In Fig. 1.7b, the current i
�

is given by the sum of g
�
v
�

and the current through
the branch R

�
�R

�
�R

�
�R

�
, so that we have:

i
�
� g

�
v
�
�

v
�

R
�
�R

�
�R

�
�R

�

(1.19)

In Fig. 1.7b we can also see that:

v
�
� v

�

R
�
�R

�
R

�
�R

�
�R

�
�R

�

(1.20)

Substituting Eq. (1.20) in (1.19), we obtain:
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Figure 1.7 (cont.)

R��	�
v
�
i
�

�
R

�
�R

�
�R

�
�R

�
1 � g

�
R

�
�R

�

(1.21)

In Fig. 1.7c, the current i
�

consists of the sum of g
�
v
�

and the current through
the branches (R

�
�R

�
) and (R

�
�R

�
) so that we have:

i
�
� g

�
v
�
�

v
�

R
�
�R

�

�
v
�

R
�
�R

�

(1.22)

In Fig. 1.7c we can also see that:

v
�
� v

�

R
�

R
�
�R

�

(1.23)

Substituting Eq. (1.23) in (1.22) we obtain:

i
�
�
v
�

(g
�
R

�
� 1)

R
�
�R

�

�
v
�

R
�
�R

�

(1.24)

whence it follows that:

R��	�
v
�
i
�

�
R

�
�R

�
1 � g

�
R

�
� (R

�
�R

�
) (1.25)

WithR��	 andR��	 determined, we can writeZ
��

(s) in Eq. (1.18) in pole-zero form:

Z
��

(s) �R
�

1 � s/�
�

1 � s/�
�

(1.26)

in which:

�
�
�

1

C
�
R��	

�
1 � g

�
R

�
�R

�
C

�
(R

�
�R

�
�R

�
�R

�
)

(1.27)
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�
�
�

1

C
�
R��	

�
1

C
�

R
�
�R

�
1 � g

�
R

�
� (R

�
�R

�
)

(1.28)

And such are the joys of network analysis!

1.5 Review

Although the matrix algebra of nodal or loop analysis is useful in obtaining
numerical solutions of linear electrical circuits, it is not useful in obtaining mean-
ingful analytical results in symbolic form. An analytical answer is not a mere
collection of symbols but an answer in which the symbols are arranged in useful, or
low-entropy, forms such as series-parallel combinations and ratios of various
elements and time constants. This book presents efficient analytical tools for fast
derivation of low-entropy results for electrical circuits. One such analytical tool is
the extra element theorem (EET) which we have introduced in this chapter by way
of examples in which the input impedance of various bridge circuits is determined.

Problems

1.1 High entropy versus low entropy. In order to appreciate the difference between
high- and low-entropy expressions, consider the following for the input impedance
of the circuit in the black box:

R
��

�
R

�
R

�
R

�
�R

�
R

�
R

�
�R

�
R

�
R

�
R

�
R

�
�R

�
R

�
�R

�
R

�
�R

�
R

�
�R

�
R

�

(1.29)

Figure 1.8

Are you able to make anything out of this expression? How does this expression
simplify if R

�
�R

�
? Consider now:

R
��

�R
�
� (R

�
�R

�
�R

�
) (1.30)

Show that the two expressions above are equivalent. Which of the two is more
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meaningful? Using Eq. (1.30) show that when R
�
�R

�
, we have the following

simplification:

R
��

�R
�
� (R

�
�R

�
) (1.31)

1.2 Impedance using the EET. Following the example in Section 1.2, show in a few
steps that the input impedance of the circuit below is given by:

Z
��

�R
�

1 � s/�
�

1 � s/�
�

(1.32)

Figure 1.9

where:

R
�
�R

�
�R

�
� (R

�
�R

�
)

�
�
�

1

CR
�
� (R

�
�R

�
�R

�
)

(1.33a, b, c)

�
�
�

1

C[R
�
�R

�
� (R

�
�R

�
)]





Hint: Refer to Figs. 1.9b, c and d below and apply the EET in Eq. (1.4).

Figure 1.9 (cont.)
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1.3 Output resistance of a current source using the EET. Show that the output
resistance of the BJT current source in Fig. 1.10a, using the equivalent circuit
model in Fig. 1.10b, is given by:

R
���

�
r��R

�

1 �
R

�
R

�

1 �
1

g
�
r��1 �

r��R
�
� r�

R
�
� r

�
�

1 �
1

g
�
r
�
�1 �

r� � r
�

r� � (R
�
�R

�
)�

(1.34)

Figure 1.10

Hint: Refer to the example in Section 1.3 and to Figs. 1.10c—e below.

0

Figure 1.10 (cont.)
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2 Transfer functions
Getting physical

2.1 Definition of a transfer function

LetR(s) be the Laplace transformof the response of a linear time invariant (LTI) to
an independent excitation whose Laplace transform is E(s). The ratio of R(s) to
E(s), with all initial conditions set to zero, is defined as a transfer function of the
system:

H(s)�
Response(s)

Excitation(s)
�

R(s)

E(s)
(2.1)

Figure 2.1

This equation can be represented by the block diagram shown in Fig. 2.1. When
initial conditions are not zero, the Laplace transformation will properly transform
the initial conditions into excitation functions so that the overall response, R(s), is
given by the linear superposition of the response due to the initial conditionsX

�
(s)

and the excitation function E(s):

R(s)�H(s)E(s)�
�
�

���

X
�
(s)h

�
(s) (2.2)

This equation can be represented by the block diagram in Fig. 2.2. Since initial
conditions in the transform domain behave as any other excitation function, no
further special consideration will be given to them.

Example 2.1 A simple circuit and its transform are shown in Figs. 2.3a and b
respectively. The input voltage is applied at t� 0 and the inductor has an initial
current i

�
(0) through it which, by the Laplace transformation, transforms into a

voltage source i
�
(0)L as shown in Fig. 2.3b. The Laplace transform of the output is

given by:

15



Figure 2.2

v
�
(s)�H

�
(s)v

��
(s)� i

�
(0)LH

�
(s) (2.3)

where:

H
�
(s)�

1

1�
R

�
R

�
�R

�

1�
s

�
�

1�
s

�
� (2.4a, b)

H
�
(s)�

1

1�
R

�
R

�
�R

�

1

1�
s

�
�





in which:

�
�
�

R
�

L
(2.5a, b)

�
�
�

R
�
�R

�
�R

�
L





Figure 2.3

In Eq. (2.3),H
�
(s) is the transfer function from v

��
(s) to the output andH

�
(s) is the

transfer function from i
�
(0)L to the output. Hence, if i

�
(0)� 0 we simply have:
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v
�
(s)

v
��
(s)

�H(s) (2.6)

in whichH(s) is the transfer function relating v
��
(s) to v

�
(s). �

Block diagrams, such as those in Figs. 2.1 and 2.2, are useful visual representa-
tions of a general linear system governed by a set of linear differential equations
with no specific physical system in consideration. Network analysis deals with
electrical circuit diagrams which are approximate visual representations of physi-
cal circuits designed, built and tested in a laboratory. It is precisely in this respect
that network theory and linear system theory differ from each other. Hence,
analyzing an electrical circuit by transforming it into block diagrams or nodes and
branches on rootless trees is a waste of analytical effort and precious time (see
Problems 2.1 and 2.2).
Since an LTI system with no delays is governed by constant coefficient linear

differential equations,H(s) is given by the ratio of polynomials:

H(s)�
N(s)

D(s)
(2.7)

The roots of N(s) are called the zeros of H(s), while the roots of D(s) are called the
poles ofH(s).D(s) is also known as the characteristic equation of the system. In this
chapter we will give a physical interpretation of N(s) and D(s) and show how they
can be determined by manipulating the transform circuit rather than long alge-
braic equations.

2.2 The six types of transfer functions of an electrical circuit

Since in an electrical circuit a response or an excitation can be either a voltage or a
current, we have the following six types of transfer functions shown in Figs. 2.4a—f:

(a) Voltage gain: A
�
(s)� v

�
(s)/v

�
(s)

(b) Current gain: A
�
(s)� i

�
(s)/i

�
(s)

(c) Transadmittance: Y
�
(s)� i

�
(s)/v

�
(s)

(d) Transimpedance: Z
�
(s)� v

�
(s)/i

�
(s)

(e) Driving-point admittance: Y
�	
(s)� i

�
(s)/v

�
(s)

(f ) Driving-point impedance: Z
�	
(s)� v

�
(s)/i

�
(s)

We can easily visualize the first four of these to be transfer functions because
they relate two quantities at two different places in a circuit. We are less accus-
tomed, however, to think of the impedance or admittance looking into a port
(driving-point) of a network as a transfer function simply because v

�
(s) and i

�
(s)
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Figure 2.4

occur at the same place. There are other reasons as well. In simple cases, we can
determine a driving-point impedance without being concerned with either v

�
(s) or

with i
�
(s) altogether. In more complicated cases, we are free to connect either a test

voltage source or a current source at a port and determine the ratio v
�
(s)/i

�
(s)

without distinguishing between response and excitation as in Eq. (2.1). In what
follows, we emphasize the distinction between the response and excitation of
driving-point impedance and driving-point admittance functions, and explain the
importance of this distinction.
The driving-point impedance function shown in Fig. 2.4f is defined as:

Z
�	
(s)�

v
�
(s)

i
�
(s)

(2.8)

It follows from the definition of a transfer function in Eq. (2.1) that v
�
(s) is the

response to the excitation i
�
(s). This implies that the excitation function of a

driving-point impedance is a current source, as shown in Fig. 2.4f, and not a voltage
source. Similarly, for a driving-point admittance function we have:

Y
�	
(s)�

i
�
(s)

v
�
(s)

(2.9)

so that i
�
(s) is the response to the excitation v

�
(s) as required by Eq. (2.1), which
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implies that the excitation function of a driving-point admittance is a voltage source,
as shown in Fig. 2.4e, and not a current source. The reason why we tend to be
careless in distinguishing between the nature of the excitation and response of
these two functions is that they are reciprocals of each other and the determination
of one is tantamount to the determination of the other.
The discussion above can now be summarized: if v

�
(s)/i

�
(s) and i

�
(s)/v

�
(s) are to

be treated as ratios, the distinction between v
�
(s) and i

�
(s) as either a response or an

excitation is not important, but if these are to be treated as transfer functions, then
the distinction is important.
As we shall see next, the importance of putting the six different types of transfer

functions of an electrical circuit on the same footing as the general transfer
function in Eq. (2.1) lies in the determination of the poles and zeros of a transfer
function.

2.3 Determination of the poles of a network

The poles of H(s) in Eq. (2.1) are given by the roots of the characteristic equation
D(s), and the first thing we need to know about D(s) is that it is completely
determined by the physical structure and not by the excitation or the response. In
other words, regardless of how a system is excited or which one of its responses is
observed, D(s) can be determined by setting E(s)� 0 and studying just the struc-
ture of the systemby itself. The question is, how dowe study anNth-order network
just by itself without any independent voltage or current sources in it? The answer
is, there are two ways: we can either determine the coefficient matrix A of the state
vector and expand the determinant � sI�A ��D(s), or we can apply the N-extra
element theorem (NEET). Whereas the expansion of � sI�A � in symbolic form is
pure, time-consuming algebraic torture, the application of the NEET is expedi-
tious and quite rewarding. As we shall see later, NEET completely avoids the
algebra of expanding determinants, and instead provides simple rules of manipula-
ting the electrical network with all of its reactive elements removed! Since the
principle behind the determination of D(s) of an Nth-order network is exactly the
same as that of a first-order network, we will use first-order networks in this
section which do not require any knowledge of the NEET.
Before proceeding with these examples, we must thoroughly understand how an

excitation, E(s), is introduced to an electrical network or removed from it
(E(s)� 0). Consider the electrical system shown in Fig. 2.5 which is excited by a
current source, I



, and a voltage source,V



. Five different responses are monitored:

two branch currents and three port voltages. Since D(s) is a property of the
structure and has nothing to do with excitation or response, the following ten
transfer functions must have the same D(s):
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Figure 2.5

A
��
(s)�

V
�
(s)

V


(s) �

�
��

�
N


�
(s)

D(s)
; n� 1, 2, 3

G
��
(s)�

I
�
(s)

V


(s) �

�
��

�
N

��
(s)

D(s)
; n� 1, 2





(2.10a—d)

A
��
(s)�

I
�
(s)

I


(s) �

�
��

�
N

��
(s)

D(s)
; n� 1, 2

Z
��
(s)�

V
�
(s)

I


(s) �

�
��

�
N

��
(s)

D(s)
; n� 1, 2, 3

To remove all the excitations from this system in Fig. 2.5, we must set V


� 0

and I


� 0. To set an independent voltage source to zero, we replace it with a short

circuit; and to set an independent current source to zero, we replace it with an open
circuit. Following this procedure, we obtain the structure shown in Fig. 2.6, from
which the characteristic equationD(s) can be determined directly using the NEET.

Figure 2.6

We must be equally clear about introducing an excitation to a network. To
introduce an independent voltage excitation to a network without changing its
structure, we must introduce it inside a branch (series insertion) and not across a
branch. The reason of course is clear; if an independent voltage excitation is
connected across a branch, then upon setting it to zero that branch gets shorted
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out and the structure changes. If on the other hand an independent voltage source
is introduced inside a branch, then the networkwill revert to its original formwhen
the voltage source is shorted. The dual argument applies when an independent
current source is introduced: in order for the network, or the structure, to remain
unchanged, an independent current source must be introduced across, and not
inside, a branch.
For a first-order network the pole is given by the negative of the reciprocal of the

time constant formed by the reactive element and the resistance seen by it. Thus
the characteristic equation of a first-order network is given by:

D(s)� 1� s/�
�

(2.11)

in which �
�
is related to the time constant by:

��
1

�
�

(2.12)

The root ofD(s) in Eq. (2.11) is��
�
, which is a negative, or a left-half plane (LHP),

pole. When there is no reason for confusion, we shall refer to �
�
rather than ��

�
as the pole.

Example 2.2 Determine D(s) of the input impedance of the bridge circuit in Fig.
2.7a using the concept of a transfer function. To do so, we connect a test current
source I(s) to the input port and determine the response V(s) as shown in Fig. 2.7b:

Z
��
(s)�

V(s)

I(s)
(2.13)

The characteristic equation of this transfer function is determined from the struc-
ture obtained by setting the excitation to zero, i.e. I(s)� 0. This is shown in Fig.
2.7c in which the time constant is given by the product of C and the effective
resistance connected to it, which is seen to be:

��C[R
�
�R

�
� (R

	
�R

�
)] (2.14)

Figure 2.7
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It follows that the magnitude, or the frequency, of the pole is given by:

�
�
�

1

�
�

1

C[R
�
�R

�
� (R

	
�R

�
)]

(2.15)

Since this is the negative root of the characteristic equation we have:

D
�
(s)� s��

�
(2.16a)

Note that Eq. (2.16a) has the units of rad/s. As will be discussed later, it is
preferable to have the leading constant in a frequency polynomial set at unity so
that Eq. (2.16a) can be rewritten as:

D(s)� 1� s/�
�

(2.16b)

Observe that in Eq. (2.16b) we have effectively applied the EET as described in
Problem 1.2. �

The purpose of the next example is to clarify a subtle point of confusion that can
arise when the excitations of admittance and impedance functions are not carefully
distinguished.

Example 2.3 Consider now the same circuit of Example 2.2 for which the pole of
the input admittance, Y(s), is to be determined as indicated in Fig. 2.8a. We may
now argue, incorrectly, as follows: since both circuits are the same, Y(s) must have
the sameD(s) asZ(s) because all transfer functions defined in this circuit must have
the same D(s). Of course we know this is not true because Y(s)� 1/Z(s). Correct
application of the concept of a transfer function to Y(s) requires that we connect a
test voltage source V(s) to the input as shown in Fig. 2.8b and determine the
response I(s):

Y(s)�
I(s)

V(s)
(2.17)

Figure 2.8
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To set the excitation of this transfer function to zero, we short the input port and
obtain the circuit (the structure or the system without excitation) in Fig. 2.8c, from
which the characteristic equation is determined. Comparison of Figs. 2.8c and 2.7c
shows that the structures in which each of these transfer functions is defined is
different (although closely related).
The time constant of the circuit in Fig. 2.8c is given by the product of C and the

effective resistance connected to it which in this case is seen to be:

��CR
	
� (R

�
�R

�
�R

�
) (2.18)

It follows that the pole and the characteristic equation are given by:

�
�
�

1

�
�

1

CR
	
� (R

�
�R

�
�R

�
)

(2.19)

D(s)� 1� s/�
�

(2.20)

Once again, as in Example 2.1, observe that we have effectively applied the EET
as described in Problem 1.2. �

Example 2.4 Consider now the transimpedance function of the bridge circuit in
Fig. 2.9. According to Example 2.1, any transfer function in this circuit relating any
response to the excitation I

�
(s) has a pole given by �

�
in Eq. (2.15). Hence, the

transimpedance can be written as:

Z
�
(s)�

V
�
(s)

I
�
(s)

�
N(s)

1� s/�
�

(2.21)

Figure 2.9

At low frequencies and in the limit s� 0, we can easily verify, using current
division between the R

�
and the (R

�
�R

	
) branches, that:

Z
�
(0)�R

�
�

R
�

1� (R
�
�R

	
)/R

�

(2.22)
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According to Eqs. (2.21) and (2.22),Z
�
(0)�N(0)�R

�
. Since it is preferable to have

the leading constant term in the frequency polynomial equal to unity, we rewrite
Eq. (2.21) in the following form:

Z
�
(s)�R

�

N
�
(s)

1� s/�
�

(2.23)

in which N
�
(0)� 1. A method for the determination of N

�
(s) will be discussed in

Section 2.4 (see also Problem 2.3). �

Example 2.5 Consider now the bridge circuit in Fig. 2.10. According to Example
2.3, any transfer function relating V

�
(s) to any voltage or current in this circuit has

a pole �
�
given by Eq. (2.19). In particular, we can write the voltage gain:

A
�
(s)�

V
�
(s)

V
�
(s)

�A
��

N
�
(s)

1� s/�
�

(2.24)

Figure 2.10

in whichN
�
(0)� 1 and A

��
is the dc voltage gain given by:

A
��

�
1

1�R
�
/R

�

1

1� (R
	
�R

�
�R

�
)/R

�

(2.25)

Equation (2.25) can be easily verified by examining the circuit in Fig. 2.10 at dc. A
method for the determination of N

�
(s) will be discussed in Section 2.4 (see also

Problem 2.4). �

2.4 Determination of the zeros of a transfer function

Lemma: The zeros of a transfer function correspond to conditions in the trans-
form circuit which yield a null in the response of that transfer function.

The simple proposition stated above provides a very quick way of determining
zeros of a transfer function directly from the circuit diagram. Assume that the
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numerator of a transfer function has exact analytical factors n
�
(s), each of orderm

�
,

for arbitrary values of circuit elements:

H(s)�
R(s)

E(s)
�

N(s)

D(s)
�

�
�

n
�
(s)

D(s)
(2.26)

The zeros of H(s) in Eq. (2.26) are given by the roots of the factors n
�
(s):

n
�
(s

�
)� 0; k� 1, 2, . . .,m

�
(2.27)

In Eq. (2.27), neither the order of the polynomial factors n
�
(s) nor the nature of their

roots (real or complex) are relevant to the present discussion — all we care to
discover are the conditions of the transform network which yield the individual
factors n

�
(s). It is quite clear from Eq. (2.27) that for s� s

�
we have:

R(s
�
)

E(s
�
)
� 0 (2.28)

Since E(s
�
)� 0, it follows that:

R(s
�
)� 0 (2.29)

Equation (2.29) represents a null (or a zero) in the response in the transform domain
in the presence of the excitation evaluated at s� s

�
. The interesting thing is that a

null in the response can be most easily studied on the circuit diagram itself. As it
turns out, each factor n

�
(s) corresponds to a condition in the transform circuit

which prevents the excitation from reaching the response. Furthermore, for each
null condition, the network equations simplify immensely so that the zeros, or the
factors n

�
(s), can be fished out with a line or two of algebra in most cases.

If the preceding discussion sounds ‘‘Greek,’’ the following examples will show
the simplicity and clarity of it all.

Example 2.6 Suppose we are interested in determining the zeros, or the numer-
ator, of the transfer function of the circuit in Fig. 2.11a. We begin by assuming that
the transform response v

�
(s) is zero, or a null, for some s� s

�
, where s

�
is a zero of

Figure 2.11
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the numerator, as in Eqs. (2.27) and (2.29), i.e. v
�
(s

�
)� 0. This is shown in Fig. 2.11b,

in which we see that a null in the response across the resistor R
�
must be

accompanied by a null in the current through R
�
. However, the only way this can

happen is if all the transform current i
�
(s

�
) flows through the impedance branch

Z
	
(s

�
)�R

	
� 1/s

�
C

	
, which in turn can happen if Z

	
(s

�
) acts like a ‘‘short’’ in the

transform circuit, or a transform short, i.e. Z
	
(s

�
)� 0. It follows that the zeros of

Z
	
(s) are zeros of the desired function because they correspond to a condition of

the transform network, in this case a transform short across the response, which
prevents the excitation from reaching the response. We now have:

Z
	
(s)�R

	
�

1

sC
	

�
1� sC

	
R

	
sC

	

(2.30)

from which it immediately follows that:

Z
	
(s
�
)� 0� 1� s

�
C

	
R

	
� 0� s

�
��

1

R
	
C

	

(2.31)

Hence, the transfer function has an LHP zero at�1/R
	
C

	
and one of the factors of

the numerator is:

n
�
(s)� 1� sC

	
R

	
(2.32)

Figure 2.11 (cont.)

We continue to look for other conditions in the transform network which may
cause a null in the response. Turning our attention to i

�
(s), we wonder if there is a

conditionwhichmay result in i
�
(s

�
)� 0. According to Fig. 2.11c, this can happen if

i
�
(s

�
) flows entirely through Z

�
(s

�
), which in turn can happen if Z

�
(s

�
) acts like a

transform short, i.e. Z
�
(s

�
)� 0. We have for Z

�
(s):

Z
�
(s)�R

�
� sL

�
�

1

sC
�

(2.33)

�
1� sC

�
R

�
� s�L

�
C

�
sC

�
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Figure 2.11 (cont.)

Since the zeros of Z
�
(s

�
)� 0 correspond to another null condition in the response

of the transfer function, its numerator corresponds to the second factor in the
numerator of the transfer function (see Eq. (2.26)):

n
�
(s)� 1� sC

�
R

�
� s�L

�
C

�
(2.34)

Finally, we look for a condition which may cause a null in i
�
(s), which in turn

will cause a null in the output voltage. According to Fig. 2.11d, this can happen if
the impedance,Z

�
(s), encountered by i

�
(s) becomes infinite, or a transform open, for

some s� s
�
, i.e. Z

�
(s

�
)� �. We have for Z

�
(s):

Z
�
(s)�

R
�

1� sC
�
R

�

(2.35)

Figure 2.11 (cont.)

It is clear that when Z
�
(s) is evaluated at its poles or the roots of its denominator,

then it becomes infinite:

Z
�
(s

�
)� �� 1� sR

�
C

�
� 0 (2.36)

It follows that the third factor in the numerator of the transfer function is:

n
�
(s)� 1� sR

�
C

�
(2.37)
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Since there are no more conditions which can yield a null in the response, the
numerator of the transfer function consists of the product of the three factors
found above:

v
�
(s)

v
��
(s)

�A
�

n
�
(s)n

�
(s)n

�
(s)

D(s)
(2.38)

The results of this example can be easily generalized to an arbitrary passive ladder
network shown in Fig. 2.12. The zeros of the input—output transfer function
v
�
(s)/v

��
(s) of such a network are given by the zeros of all the shunt impedances,

(Z
�
(s); i� 1, 3, 5, . . .) and the poles of the series impedances, (Z

�
(s); i� 2, 4, 6, . . .). �

Figure 2.12

Example 2.7 For the simple equivalent circuit model of the common-emitter
amplifier circuit shown in Fig. 2.13a, we would like to determine the zeros of the
voltage gain transfer function. We can see from Fig. 2.13b that a null in the
transform output, i.e. v

�
(s)� 0, requires a null in the collector current, i

�
(s)� 0,

which in turn requires a null in the emitter current, i


(s)� 0, because the collector

and emitter currents are related by a constant �� �/(1� �), i.e. i
�
(s)� �i



(s). We

can see in Fig. 2.13b that the emitter current encounters the emitter impedance,

Figure 2.13
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Z
�
(s), which acts as a transform open at its poles. It follows that the poles of Z

�
(s)

correspond to a null condition of i


(s) and hence of v

�
(s). We have:

Z
�
(s)�

R
�

1� sR
�
C

�

(2.39)

Since Z
�
(s)� � as s� �1/R

�
C

�
, one of the factors of the numerator of the

voltage gain is 1� sR
�
C

�
. Further investigation of the circuit reveals no other

conditions that would result in a null in v
�
(s), so that the transfer function is given

by:

v
�
(s)

v
��
(s)

�A
�

1� sC
�
R

�
D(s)

(2.40)

in whichA
�
is the low-frequency gain and D(s) is the denominator. These are given

(see Problems 2.4 and 2.5):

A
�
��

R
�

R
�
/� � (r� �R

�
)/�

(2.41a, b)
D(s)� 1� sC

�
R

��
r��R

�
1� �





By comparing the low-entropy expressions of the zero and the pole in Eqs. 2.40
and 2.41b, we can see that the zero always comes before the pole. �

Example 2.8 What happens to the numerator, or the zero, in the previous
example if a feedback resistance is added as shown in Fig. 2.14a?We can see in Fig.
2.14b that a null in v

�
(s), and hence in i

�
(s), for certain s� s

�
, implies that �i

�
(s

�
)

flows entirely through R
�
. Also, we can see that the voltage drop across R

�
with

v
�
(s

�
)� 0 equals the voltage drop across r� and the emitter impedance Z

�
(s

�
), so

that we have:

�i
�
(s

�
)R

�
� i

�
(s

�
)r�� (1� �)i

�
(s

�
)

R
�

1� s
�
R

�
C

�

(2.42)

Eliminating i
�
(s

�
) from both sides in Eq. (2.42) and collecting terms we get:

�R
�
� r�

(1� �)R
�

�
1

1� s
�
R

�
C

�

(2.43)

This equation corresponds to a first-order polynomial in s which has a single root
(k� 1), which we can easily solve for:

s
�
��

1

C
�
�
1

R
�

�
1��

�R
�
� r�� (2.44)
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Figure 2.14

With �� �/(�� 1) and r


� r�/(1��) this zero can be written as:

s
�
��

1

C
�
�
1

R
�

�
1

�R
�
� r



�

(2.45a, b)

��
1

C
�
R

�
� (r



� �R

�
)





We can see from this expression that if we let R
�

� � we obtain the LHP zero of
Example 2.7. In the presence of R

�
, we can see from Eq. (2.45) that this zero begins

to move towards and into the right-half plane (RHP) with decreasing value of R
�
.

(For very small values of R
�
	 r



/� the zero moves back into the LHP, however

this case is of little practical value.) According to Eq. (2.45b), the numerator of the
transfer function is:

v
�
(s)

v
��
(s)

�A
�

1� sC
�
R

�
� (r



� �R

�
)

D(s)
(2.46)

The low-frequency gain is given by:

A
�
��

R
�

R
�
� r



�

�
R

�
�

1�
1

R
�

r


�R

�
�

1�
R

�
R

�

R
�
� [(R

�
� r



)(1��)]

R
�
�R

�
� (r



�R

�
)

(2.47)

The denominator (see Problem 2.6) is given by:

D(s)� 1� sC
�
R

� � �
r��R

�
1� �

1�
R

�
� (1� g

�
R

�
)R

�
� r�

R
�

1�
R

�
�R

�
R

�

� (2.48)
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The form of A
�
above is due to the EET, which will be discussed in Chapter 3. �

Example 2.9 To determine the numerator of the transfer function of the circuit in
Fig. 2.15a, we begin by assuming a null in the response, v

�
(s

�
)� 0, for certain s� s

�
,

and follow this null through the rest of the circuit as shown in Fig. 2.15b.

Figure 2.15

A step-by-step explanation of Fig. 2.15b is given:

1. Since v
�
(s

�
)� 0, the voltage drop across C

�
, given by i(1/s

�
C

�
), is equal and

opposite to the voltage drop across R
�
. Therefore the current through R

�
is

given by i(1/s
�
C

�
R

�
).

2. The sum of the currents at node A flows through C
�
and is given by i(1�

1/s
�
C

�
R

�
). Therefore, the voltage drop across C

�
is given by i(1� 1/s

�
C

�
R

�
)

(1/s
�
C

�
).

3. The voltage drop across R
�
is equal to the sum of the voltage drops across C

�
and R

�
and is given by i(1/s

�
C

�
)� i(1� 1/s

�
C

�
R

�
)(1/s

�
C

�
). Therefore, the cur-

rent in R
�
is given by:

[i(1/sC
�
)� i(1� 1/sC

�
R

�
)(1/sC

�
)]/R

�

4. The sumof the currents throughR
�
andC

�
flows throughC

�
so that the voltage

drop across C
�
is given by:

Figure 2.15 (cont.)
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i�1�
1

s
�
C

�
R

�

��
1

s
�
C

�

��1�
1

s
�
C

�
R

�
�

1

s
�
C

�
�

1

R
�
�

1

s
�
C

�

(2.49)

5. The sum of the voltage drops across C
�
, R

�
, C

�
and C

�
is zero so that we have:

iR
�
� i

1

s
�
C

�

� i�1�
1

s
�
C

�
R

�
�

1

s
�
C

�

� i�1�
1

s
�
C

�
R

�

��
1

s
�
C

�

��1�
1

s
�
C

�
R

�
�

1

s
�
C

�
�

1

R
�
�

1

s
�
C

�

� 0 (2.50)

In the above, after canceling the current i and multiplying each term by
s�
�
C

�
C

�
C

�
R

�
R

�
we obtain the following third-degree polynomial whose roots

(k� 1, 2, 3) correspond to the null condition in the response v
�
(s

�
)� 0:

N(s
�
)� 1� a

�
s
�
� a

�
s�
�
� a

�
s�
�
� 0 (2.51)

in which:

a
�
�C

�
R

�
�C

�
(R

�
�R

�
)�C

�
R

�

a
�
�R

�
R

�
(C

�
C

�
�C

�
C

�
�C

�
C

�
) (2.52a, b, c)

a
�
�C

�
C

�
C

�
R

�
R

�
R

�





This completes the determination of the numerator. The transfer function can
now be written as:

v
�
(s)

v
��
(s)

�
N(s)

D(s)
�

1� a
�
s� a

�
s�� a

�
s�

D(s)
(2.53)

The determination of D(s) will be discussed in Chapter 4 using the NEET. �

Example 2.10 It will be shown now that the circuit in Example 2.9 behaves as
a notch filter for a particular choice of circuit elements. In order to have a notch
response, the numerator in Eq. (2.53) must factor as follows:

N(s)� (1� s�/��
�
)(1� s/�

�
)

(2.54a, b)
� 1� s/�

�
� s�/��

�
� s�/�

�
��

�





Comparison of the first two terms in Eqs. (2.54b) and (2.53) yields:

�
�
�

1

a
�

�
1

C
�
R

�
�C

�
(R

�
�R

�
)�C

�
R

�
(2.55a, b)

��
�
�

1

a
�

�
1

R
�
R

�
(C

�
C

�
�C

�
C

�
�C

�
C

�
)




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Comparison of the last terms in Eqs. (2.54b) and (2.53) yields the following
condition for the numerator to factor:

a
�
� a

�
a
�

(2.56)

Substituting for the coefficients in Eq. (2.56) we get:

R
�
C

�
�C

�
�C

�
�R

�
(C

�
�C

�
)�R

�
(C

�
�C

�
) (2.57)

Hence, if the circuit elements are chosen in such a way as to satisfy the time
constant relation in Eq. (2.57), the numeratorN(s) will factor exactly as given in
Eq. (2.54a). It is very important to realize now that each factor of N(s) in Eq.
(2.54a) does not correspond to a different null condition, as stated at the
beginning of Section 2.4. The reason is thatN(s) in Eq. (2.54a) factors only for a
special choice of circuit elements and not for an arbitrary choice.
A good choice of circuit components for practical design is:

C
�
�C

�
�C

�
(2.58)

With this choice of capacitors, it follows from Eq. (2.57) that:

R
�
� 6(R

�
�R

�
) (2.59)

The notch frequency is now given by:

�
�
�

1

C�3R
�
R

�

(2.60)

Figure 2.16

The excellent feature of this circuit is that as long as R
�
� 6(R

�
�R

�
), the

notch frequency can be tuned by changing R
�
and R

�
using a potentiometer as

shown in Fig. 2.16 in which the sum of R
�
and R

�
remains constant. This filter

will be revisited later to determine D(s) and study its complete response. �

Although the method described above is very effective for the determination
of the zeros, or the numerator, of a transfer function, it is not systematic. In
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Chapters 3 and 4 we will show a systematic way of determining the numerator
(and the denominator) of a transfer function using the EET and its extension the
NEET. The concept of null response explained above will be essential to the
derivation of these theorems.

2.5 The complete response, stability and transfer functions

This section presents a very brief review of the basic concepts in time-domain
response, frequency-domain response and stability of a linear system. The con-
cepts are illustrated using the simplest possible circuits and no formal derivations
are given as these can be found in numerous textbooks.
The complete response of an LTI system, with zero initial conditions, to an

arbitrary excitation, e(t), applied at t� 0 is given by:

r(t)�L
�
R(s)� (2.61)

�L
�
H(s)E(s)�

�	
�

�

h(�)e(t� �)d�

where h(t) is the impulse response and is given by:

h(t)�L
�
H(s)� (2.62)

The complete response in Eq. (2.61) consists in general of the sum of the natural
response, r

�
(t), and the forced response, r

�
(t):

r(t)� r
�
(t)� r

�
(t) (2.63)

A system is said to be stable if the natural response decays to zero:

lim

���

r
�
(t)� 0�Stable (2.64)

If the natural response becomes unbounded then the system is unstable:

lim

���

r
�
(t)� ��Unstable (2.65)

A system is neither stable nor unstable if the natural response remains bounded for
all time and does not decay to zero:

K
�
� lim

���

r
�
(t)�K

�
(2.66)

It is important to realize that for an unstable system the forced solution, r
�
(t), in
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Eq. (2.63) may very well be bounded and that it is the natural component which
makes the complete response unbounded. As will be illustrated in Example 2.11,
the only time the forced response becomes unbounded is when the system is
excited at its natural frequencies.
In the preceding discussion, stability was characterized using time-domain

criteria. Stability can also be described in the frequency domain by use of the
characteristic equationD(s). A system is stable if the poles ofH(s) are in the left-half
plane. If s

�
are the roots of the characteristic equation, then we can write:


Re(s
�
)	 0; D(s

�
)� 0��Stable (2.67)

A system is unstable if:


Re(s
�
)� 0; D(s

�
)� 0��Unstable (2.68)

A system is neither stable nor unstable if:

Re(s
�
)� 0; D(s

�
)� 0 (2.69)

The above is nothing more than the introductory material on the solution of
constant coefficient differential equations stated in the jargon of system theory:
pole, zero, response, excitation, stable and unstable. The following examples
illustrate these concepts using the simplest circuits.

Example 2.11 In this example we will demonstrate the equivalence between
frequency-domain and time-domain characterization of a stable and an unstable
system. We will also comment on the nature of the forced response and its
relationship to the excitation function.
The transfer function of the circuit in Fig. 2.17a is an impedance function given

by:

v(s)

i(s)
�

R

1� s/�
�

; �
�
�

1

RC
(2.70)

The pole of this transfer function is in the left-half plane at ��
�
so that the system

is stable and the natural response is expected to decay with increasing time. If the
current source is a step function, i.e. i(t)� I

�
u(t) or i(s)� I

�
/s, then:

v(s)� I
�
R

1

s(1� s/�
�
)

(2.71)

The complete response in time domain is given by:

v(t)�L
�
v(s)�

� I
�
R(1� e
���)u(t) (2.72)

� I
�
Ru(t)� I

�
Re
���u(t)
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Figure 2.17

The natural solution in Eq. (2.72) is given by:

v
�
(t)��I

�
Re
���u(t) (2.73)

which can be seen to decay to zero with t � � as expected, because the pole of the
system is in the LHP. The forced response in Eq. (2.72) is:

v
�
(t)� I

�
Ru(t) (2.74)

which is a step function of height I
�
. For large times, a step function is analogous to

a dc signal, which can be thought of as a signal with a spectral line at zero
frequency. Now if we compare the forced response and the excitation, we see that
they are both dc or at the same frequency (zero).
If we let R � �R, then the complete solution in Eq. (2.62) becomes:

v(t)� I
�
Re���u(t)� I

�
Ru(t) (2.75)

The transfer function in Eq. (2.70) now has a RHP pole at �
�
:

v(s)

i(s)
�

�R

1� s/�
�

; �
�
�

1

RC
(2.76)

We can see from Eq. (2.75) that the natural solution, I
�
Re���u(t), becomes un-

bounded, which is consistent with the RHP pole. Therefore, the frequency-domain
and time-domain stability criteria of the system are equivalent. It is very important

Figure 2.18
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to see that, even though the system is unstable, the forced solution in Eq. (2.75),
�I

�
Ru(t), remains bounded and well-behaved as before. The forced, natural and

the complete solutions in this case are shown in Fig. 2.18. �

Example 2.12 If we let R� 0 in Example 2.11, we obtain the circuit in Fig. 2.19a.
This extremely simple circuit illustrates one which is neither stable nor unstable,
whose natural solution neither becomes unbounded nor decays as time increases,
and whose forced solution becomes unbounded as a linear function of time when
excited at the frequency of the pole.
The transfer function now is simply the impedance of the capacitor:

v(s)

i(s)
�

1

sC
(2.77)

The pole is seen to be at the origin and the complete response in time domain for
an arbitrary excitation is given by the well-known relation (assuming a zero initial
condition):

v(t)�
1

C	
�

�

i(t)dt (2.78)

Figure 2.19

Let us first excite this circuit with i(t)� I
�
u(t)sin�

�
t, so that the complete

response according to Eq. (2.78) is given by:

v(t)�
I

�
�

�
C
(1� cos�

�
t)u(t) (2.79)

�
I

�
�

�
C

u(t)�
I

�
�

�
C
sin���

t�


2� u(t)

The natural component in Eq. (2.79) is:
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v
�
(t)�

I
�

�
�

u(t) (2.80)

while the forced solution is given by:

v
�
(t)�

I
�

�
�
C
sin���

t�


2� u(t) (2.81)

The natural solution is seen to be a step functionwhich neither decays nor grows in
time as expected because of the pole at the origin. The forced solution is a
sinusoidal function of the same frequency as that of the excitation except for a
phase shift of 
/2. The various waveforms are shown in Fig. 2.19b.
Now let us excite the circuit with a step function current source which for large

times behaves essentially as a dc signal. This is shown in Fig. 2.20. Since the
frequency of the pole is also zero, or dc, we should expect the solution to become
unbounded in time because the system is being excited at its natural frequency.
Indeed with i(t)� I

�
u(t), we find v(t) from Eq. (2.78) to be:

v(t)� u(t)
I

�
C

t (2.82)

Figure 2.20

The complete response in Eq. (2.82) consists only of the forced response, which is
seen to become unbounded as a linear function of time and not follow the
excitation. (The natural response in Eq. (2.82) is zero because the forced solution
by itself satisfies the initial condition v(0)� 0.) If the capacitor had an initial
voltage across it, then the complete response would have been:

v(t)� u(t)�V
�
(0)� t

I
�
C�

in which u(t)V
�
(0) would have been the natural response. �

Example 2.13 The same concepts as in Example 2.12 are demonstrated here
using a system which has a pair of imaginary poles with zero real parts. For the
circuit in Fig. 2.21a we have:
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v
�
(s)

v
�
(s)

�
1

1� (s/�
�
)�
; �

�
�

1

�LC
(2.83)

The poles of this systemare on the imaginary axis at�j�
�
, at an angular frequency

of�
�
. Since the real part of the poles is zero, we expect the natural solutions neither

to decay nor become unbounded as a function of time.
Let the excitation be v

�
(t)� V

�
u(t) so that the complete response is given by:

Figure 2.21

v
�
(t)�L
��

V
�
s

1

1� (s/�
�
)�� (2.84)

��V
�
u(t)cos�

�
t� V

�
u(t)

This and other waveforms are shown in Fig. 2.21b. The natural solution in Eq.
(2.84) is given by:

v
�
(t)��V

�
u(t)cos�

�
t (2.85)

which is a bounded function as in Eq. (2.66):

�V
�
� v

�
(t)� V

�

This is a pure oscillation with fixed amplitude V
�
. Hence, the natural solution

neither decays nor becomes unbounded as a function of time, and the system is
neither stable nor unstable. The forced solution is given by:

v
�
(t)� V

�
u(t) (2.86)

which is a step function just like the excitation. Once again we see that the forced
response and the excitation are at the same frequency (zero or dc).
The frequency of the pole of this system is�

�
, so that if we excite this systemwith
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a sinusoidal signal of frequency �
�
, we should expect the solution to become

unbounded in time. Let the excitation now be v
�
(t)� V

�
u(t)sin�

�
t, as shown in Fig.

2.22, so that the complete response, v
�
(t) is now given by:

v
�
(t)�L
��

V
�

�
�

1

[1� (s/�
�
)�]��

(2.87a, b)

��
V

�
2 �u(t)sin�

�
t��

V
�
2 � u(t)��

t cos�
�
t





The natural response in Eq. (2.87b) is:

v
�
(t)� (V

�
/2)u(t)sin�

�
t (2.88)

which, just like before, is a bounded sinusoid as in Eq. (2.85). The forced response
in Eq. (2.87b) is:

v
�
(t)��(V

�
/2)u(t)�

�
t cos�

�
t (2.89)

Figure 2.22

which becomes unbounded as a linear function of t. The natural, forced and
complete responses are shown in Fig. 2.22b. Hence, the complete response in Eq.
(2.87) becomes unbounded too! The important point here is that one must distin-
guish between the unbounded response of an unstable system from that of an
undamped system (poles on the imaginary axis) excited at its resonance. In the
former it is the natural response which becomes unbounded exponentially with
time, whereas in the latter it is the forced response which becomes unbounded
linearly in time (in general, algebraically in time, i.e. t, t�, . . ., which can happen if
identical undamped resonant circuits are cascaded with buffers. The natural
response of such a cascaded system comprises the natural response of each stage.

40 Transfer functions



The natural response of the first circuit will be a bounded sinusoid which will serve
as an excitation to the second circuit. The second circuit will in turn respond by a
linearly growing sinusoid and the third circuit will respond with a quadratically
growing sinusoid (see Problem 2.8)). �

Thus far, we have shown how the complete response in time domain of an LTI
system to an arbitrary excitation can be determined from the transfer function
relating the response to the excitation. The stability of the system has been
discussed in terms of the natural component of the complete response in time
domain as well as the poles of the transfer function in frequency domain.

2.6 Magnitude and phase response

In the previous section we considered the complete response of an LTI system to
an arbitrary excitation. In this section we will give a brief and complete discussion
of the response of stable systems to sinusoidal excitations in steady state. As we
found out in Section 2.5, in a stable system transients decay to zero so that in
steady state the complete response is given by the forced response only.
Consider the stagle LTI system in Fig. 2.23a to which a sinusoidal excitation has

been applied for a long time:

e(t)�E
�
cos(�t��

�
) (2.90)

In Eq. (2.90), we have omitted the unit step function because we are only interested
in the steady-state response and not the initial response when the excitation is
applied. The steady-state response can be determined very easilywithout the use of
Laplace transformation simply by letting s� j� in H(s):

r(t)� [E
�
�H( j�) � ]cos[�t��

�
��H( j�)] (2.91)

in which:

�H( j�) � �Magnitude response
(2.92a, b)�H( j�)� (Relative) phase response





Figure 2.23
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Equation (2.91) tells us that the steady-state response to a sinusoidal excitation is a
sinusoid with the same frequency as the excitation and an amplitude and a phase
(relative to e(t)) given by E

�
�H( j�) � and �H( j�), respectively. The waveforms e(t)

and r(t) are shown in Fig. 2.23b. By letting s� j� in H(s), we simply obtain a
complex number H( j�) whose magnitude, �H( j�) � , and angle, �H( j�), are func-
tions of frequency so that we can write H( j�) as:

H( j�)� �H( j�) � e���
��� (2.93)

The response r(t) in Eq. (2.91) can now be written directly in terms of H( j�):

r(t)�Re
(E
�
e��o)H( j�)e����

(2.94a, b)
�Re
R( j�)e����





in which we have introduced the response phasor R( j�):

R( j�)� (E
�
e��o)H( j�) (2.95)

The excitation e(t) in Eq. (2.90) can also be written using phasor notation as:

e(t)�Re
E
�
e��oe����

(2.96)�Re
E( j�)e����

in which E( j�) is the excitation phasor given by:

E( j�)�E
�
e��o (2.97)

Note that, according to Eqs. (2.95) and (2.97), we have:

R( j�)�E( j�)H( j�) (2.98)

which is consistent with s� j� in H(s)�R(s)/E(s).
In summary, to determine the steady-state response of a stable system to a

sinusoidal excitation at a frequency �, we determine the magnitude and phase of
the transfer function by letting s� j� in H(s) and apply Eq. (2.91). In other words
there is no need to find the inverse Laplace transform.

Example 2.14 For the reactive bridge with a dependent source discussed in
Section 1.4, the input impedance was found to be:

Z
��
(s)�R

�

1� s/�
�

1� s/�
	

(2.99)

Let a sinusoidal current source be applied to the input port:

i(t)� I
�
sin(�

�
t) (2.100)

The input voltage will then be given by:
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v(t)� V
�
sin[�

�
t��(�

�
)] (2.101)

in which the amplitude of the voltage is given by:

V
�
� I

�
�Z( j�

�
) � (2.102)

� I
�
R

�

1� (�

�
/�

�
)�

1� (�
�
/�

	
)�

and the (relative) phase is given by:

�(�
�
)� tan
�

�
�

�
�

� tan
�
�

�
�

	

(2.103)

Althoughmagnitude and phase functions look rather complicated, they have fairly
simple plots, as will be discussed next. �

The magnitude response is often expressed in decibels:

�H( j�) � dB� 20 log( �H( j�) � ) (2.104)

Plots of the magnitude and phase response against the logarithmic frequency axis
are known as Bode plots. Basic first-order and second-order transfer functions and
their Bode plots will be given in Sections 2.7 and 2.8.

2.7 First-order transfer functions

In this section we review, briefly, first-order transfer functions and emphasize how
to write them in a form which best describes their graphs. Figure 2.24a shows a
magnitude response which decreases with frequency with a slope of �20 dBdec.
It is customary to write the transfer function of this graph as:

H(s)�
K

s
(2.105)

The main drawback of this form is that K, in general, may not correspond to an
important or interesting point on the graph. For example, in Eq. (2.105) the
numerical value of K corresponds to the frequency at which the magnitude of
H( j�) is unity, which may or not be of any relevance. Another drawback of the
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Figure 2.24

form in Eq. (2.105) is that the units of H are equal to the units of K multiplied by
radians/s. Hence, a better way of writing Eq. (2.105) is to separate the constant K
explicitly into a product of a frequency �

�
and another constantA

�
which has the

same units as H:

H(s)�A
��

�
�
s � (2.106)

In this equation, A
�
is chosen as a point of interest or relevance on the graph, as

shown in Fig. 2.24a. Onemust realize that if there is no such point of interest on the
graph, then there is notmuch point in writing an equation for it in the first place. (If
we remove the point (�

�
,A

�
) from the graph in Fig. 2.24a, then we are left with a

featureless graph with a slope of�20 dB/dec.) Similarly, for the graph in Fig. 2.24b
we have:

H(s)�A
��

s

�
�
� (2.107)

The phase response of these transfer functions is independent of frequency and is
�90° for Eq. (2.106) and 90° for Eq. (2.107).

Example 2.15 For the negative impedance converter in Fig. 2.25a, it can be
shown that the input impedance is given by:

Z
��
(s)��

R
�

sR
�
C

(2.108)

One way of writing this equation, using normalized frequency notation, is:

Z
��
(s)��R

�

�
�
s

(2.109)

in which �
�
� 1/R

�
C. In this equation, emphasis is placed on the point (R

�
,�

�
) as

shown in Fig. 2.25b.
An alternative way of writing Eq. (2.108) is by choosing another normalizing

frequency �
�
:
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Figure 2.25

Z
��
(s)�R

�

�
�
s

(2.110a)

in which:

R
�
��

1

�
�
(CR

�
/R

�
)

(2.110b)

In Eq. (2.110a), emphasis is placed on the magnitude of Z
��
at �

�
which is given by

R
�
. The effective transformation of C to �CR

�
/R

�
can be clearly seen in Eq.

(2.110b). The magnitude plot is shown in Fig. 2.25c. �

Example 2.16 For the integrator in Fig. 2.26a the transfer function is given by:

v
�
(s)

v
��
(s)

��
1

sRC
(2.111)

When designing an integrator, one is usually concerned with the gain at a certain
frequency �

�
so that the above can be normalized as:

v
�
(s)

v
��
(s)

��A
�

�
�
s

(2.112)

in which:

Figure 2.26
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A
�
�

1

�
�
RC

(2.113)

Hence, the time constant for a particular gain A
�
at a particular frequency �

�
is

given by RC� 1/�
�
A

�
. �

Consider next the first-order low-pass transfer function:

H(s)�
A

�
1� s/�

�

(2.114)

The asymptoticmagnitude and phase plots are shown in Fig. 2.27a and are seen to
belong to a group of four first-order transfer functions which possess mutual
symmetry with respect to the magnitude and logarithmic frequency axes. Another
form of writing the transfer function in Eq. (2.114) is:

H(s)�
K

s��
�

(2.115)

We shall avoid this form because in this expression the frequency variable, s, is not
normalized and the units of the constant K are given by the units of H/s. In
contrast, A

�
and H in Eq. (2.114) have the same units, while 1� s/�

�
is a unitless

factor which describes the variation of the magnitude and phase as a function of
frequency.
If we invert, or take the reciprocal of, the frequency factor in Eq. (2.114) we

obtain:

H(s)�A
�
(1� s/�

�
) (2.116)

The asymptotic magnitude and phase plots of Eq. (2.116) are shown in Fig.
2.27b. These are seen to be the inversions of the magnitude and phase plots of Eq.
(2.114) with respect to the magnitude and phase axes, respectively.

Figure 2.27
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The magnitude response shown in Fig. 2.27c is seen to be an inversion of the
magnitude plot in Fig. 2.27a with respect to the logarithmic frequency axis. The
transfer function which corresponds to this graph is obtained by inverting the
normalized frequency variable in the transfer function of the graph in Fig. 2.27a:

�
s

�
�
���

�
�
s � (2.117)

Applying this transformation to Eq. (2.114) we obtain the transfer function of the
graph in Fig. 2.27c:

H(s)�
A

�
1��

�
/s

(2.118)

Likewise, the magnitude response in Fig. 2.27d is seen to be an inversion of the
magnitude response in Fig. 2.27bwith respect to the logarithmic frequency axis, so
that its transfer function is obtained by inverting the normalized frequency vari-
able in Eq. (2.116):

H(s)�A
�
(1��

�
/s) (2.119) �

Example 2.17 For the circuit in Fig. 2.28a we have:

v
�
(s)

v
��
(s)

��
R

�
R

�
� 1/sC

(2.120)

Figure 2.28

At high frequencies, the gain approaches�R
�
/R

�
so that we can write the transfer

function in Eq. (2.120) as:

v
�
(s)

v
��
(s)

��
R

�
/R

�
1� 1/sCR

�

(2.121)

�
A

�
1��

�
/s
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in which:

A
�
��

R
�

R
�

(2.122a, b)

�
�
�

1

R
�
C

The asymptotic magnitude and phase plots are shown in Fig. 2.28b. �

Example 2.18 If the feedback and source branches in the previous example are
interchanged, we obtain the circuit in Fig. 2.29a. The transfer function of this
circuit is the reciprocal of the one in Eq. (2.120) and is given by:

Figure 2.29

v
�
(s)

v
��
(s)

��
R

�
� 1/sC

R
�

(2.123)

At frequencies above �
�
� 1/R

�
C, the transfer function approaches A

�
�

�R
�
/R

�
so that Eq. (2.123) is written as:

v
�
(s)

v
��
(s)

�A
�
(1��

�
/s) (2.124)

The asymptotic magnitude and phase plots are shown in Fig. 2.29b. �

2.8 Second-order transfer functions

We continue with a brief review of second-order transfer functions and emphasize
the form in which they are best written. Figure 2.30a shows a magnitude response
which decreaseswith frequencywith a slope of�40 dB/dec and passes through the
point (�

�
,A

�
). As in first-order transfer functions, we shall avoid the formK/s� and

normalize the frequency variable with respect to �
�
, so that A

�
and �

�
appear

explicitly in H(s) as follows:

H(s)�A
��

�
�
s �

�
(2.125)
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Similarly, the response in Fig. 2.30b is given by:

H(s)�A
��

s

�
�
�
�

(2.126)

Other second-order transfer functions with real roots can be formed by cascad-
ing any two of the first-order transfer functions considered in Section 2.7. For
example, a cascade of the transfer functions in Figs. 27a and c results in a

Figure 2.30

band-pass filter, whereas a cascade of the transfer functions in Figs. 2.27b and d
results in a band-reject response. For the band-pass response, the transfer function
is given by the product of Eqs. (2.114) and (2.118):

H(s)�
A

�
(1��

�
/s)(1� s/�

�
)

(2.127)

An asymptotic magnitude plot of this transfer function is shown in Fig. 2.31a. The
transfer function of the band-reject response is given by the product of Eqs. (2.116)
and (2.119):

H(s)�A
�
(1��

�
/s)(1� s/�

�
) (2.128)

An asymptotic magnitude plot of this transfer function is shown in Fig. 2.31b.
Note, once again, that these two transfer functions are reciprocals of each other
and their graphs are symmetrical with respect to the magnitude axis.

Figure 2.31

Next we consider second-order transfer functions with complex roots. These are
expressed in terms of a Q-factor and a frequency �

�
. The magnitude response of
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Figure 2.31 (cont.)

these transfer functions is characterized by a peaking at �
�
which is proportional

to Q, while their phase response is characterized by a 180° transition centered at
�

�
. The magnitude and phase response of the following transfer function is shown

in Fig. 2.32a:

H(s)�
A

�

1�
1

Q

s

�
�

��
s

�
�
�
�

(2.129)

When Q is greater than 2 or 3, the peak occurs approximately at �
�
and is

approximately given byA
�
Q. Since the magnitude scale is in decibels, the peak is at

a distance of QdB� 20 logQ above the low-frequency asymptote.
The four second-order transfer functions in Fig. 2.32, just like the first-order

transfer functions in Fig. 2.27, possess mutual symmetry with respect to the
magnitude and logarithmic frequency axes. Figure 2.32b is the inversion of Fig.
2.32a with respect to the magnitude axis, so that its response is given by:

H(s)�A
��1�

1

Q

s

�
�

��
s

�
�
�
�

� (2.130)

Figures 2.32c and d are the inversions of Figs. 32a and b, respectively, with
respect to the logarithmic frequency axis, so that they are obtained from Eqs.
(2.129) and (2.130) by the transformation (s/�

�
)� (�

�
/s), respectively. Hence, the

response in Fig. 2.32c is given by:

H(s)�
A

�

1�
1

Q

�
�
s

��
�

�
s �

�
(2.131)

The response in Fig. 2.32d is given by:

H(s)�A
��1�

1

Q

�
�
s

��
�

�
s �

�

� (2.132)
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Figure 2.32

Finally, we consider the resonant band-pass and band-reject responses shown in Figs.
2.33a and b, respectively. The transfer function in Fig. 2.33a is given by:

H(s)�
A

�

1��
�

�
s

�
s

�
�
�Q

(2.133)

The transfer function in Fig. 2.33b is given by:

H(s)�A
��1�Q�

�
�
s

�
s

�
�
�� (2.134)

Since both transfer functions in Eqs. (2.133) and (2.134) are seen to be symmetrical with
respect to the logarithmic frequency axis, they remain invariant under the transformation
(s/�

�
)� (�

�
/s).
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Figure 2.33

2.9 Review

A transfer function is the ratio of the Laplace transform of the response of a linear
system to the Laplace transform of an excitation applied to that system as defined
in Eq. (2.1). In this definition, it is assumed that all initial conditions are zero and
only a single excitation is applied. In an electrical network, the excitation can be
either a current source or a voltage source and the response can be either a current
in a branch or a voltage across a port. Hence, there are six types of transfer
functions in an electrical network: voltage gain, current gain, transimpedance,
transadmittance, driving-point, or input, impedance and admittance.
The significance of the denominator, D(s), of a transfer function is that it is
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entirely determined by the physical structure of the network in which no external
excitation is applied and thus can be determined directly from the network. For a
first-order network, all that one has to do is determine the time constant, �, of the
network with the excitation of the transfer function set to zero, i.e. if the excitation
is a current source, it must be opened; if it is a voltage source, it must be shorted.
The denominator is then given by D(s)� 1� s�. For higher-order networks, D(s)
is determined using the N-extra element theorem, as will be explained in Chapter
4.
The physical significance of the numerator, N(s), of a transfer function is that it

corresponds to conditions in the transform network which result in a null in the
response of the transfer function. Null conditions can be studied directly on the
transform circuit diagram to determine N(s) in analytically factored form. Each
analytical factor of N(s) corresponds to a particular null condition. An alternate
method of determiningN(s) using theN-extra element theoremwill be discussed in
Chapter 4.
In writing a transfer function, the leading term in N(s) and D(s) must always be

made to equal unity, so that the constant multiplying the transfer will have the
same units as the transfer itself and will correspond either to a flat gain or a gain at
a resonant peak. When a transfer function has neither a flat gain nor a resonant
peak, then the multiplying constant must be made to correspond to a value on one
of the asymptotes.

Problems

2.1 Circuit diagram versus block diagram. A common-emitter amplifier and its
equivalent circuit model are shown in Figs. 2.34a and b. For purposes of illustra-
ting the Miller effect, only the collector-to-base capacitance,C�, has been included
while the base-to-emitter diffusion capacitance, C�, has been ignored.

(a) Using the methods described in this chapter, determine the voltage gain:

v
�
(s)

v
��
(s)

��A
�

N(s)

D(s)
(2.135)

in which A
�
is the dc gain, and N(s) and D(s) are first-order polynomials given

by:

N(s)� 1� s/�
� (2.136a, b)

D(s) � 1� s/�
�





The parameters A
�
, �

�
and �

�
are given by:
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Figure 2.34

A
�
�

1

1�
R

�
R

�

g
�
R

�

1�
r
�
�R

�
�R

�
r�

�
�
�

g
�

C�

(2.137a—c)

�
�
�

1

C�R�
�C��r� � (r

�
�R

�
�R

�
)





in which C�� is the Miller capacitance and is given by:

C�� �C�(1� g
�
R

�
) (2.138)

The bandwidth of the amplifier is given by �
�
, in which C� appears effectively

multiplied by a factor (1� g
�
R

�
) which is proportional to the gain A

�
. Note

that g
�
R

�
is exactly the voltage gain of the stage across which C� is connected,

i.e. the gain v
�
/v���g

�
R

�
. Hence, increasing the gain is accompanied by a

proportional decrease in the bandwidth. The maximum possible bandwidth
for a given load R

�
is 1/C�R�

, and is obtained when the source impedance R
�

and base spread resistance r
�
are zero. This is why the base spread resistance

and source resistance are crucial parameters in the design of wide-band and
high-gain amplifiers.
Hints: (i) Since A

�
is the dc gain, it can be determined by removing C� from the equivalent

circuit model in Fig. 2.34b and taking the Thevenin equivalent of the source side, as shown

in Fig. 2.34c.

(ii) To determine the numeratorN(s), study the null response condition shown in Fig. 2.34d.

In this figure, a null in the output voltage implies that the voltage across C� is v� and the

current through it is g
�
v�.
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Figure 2.34 (cont.)

(iii) To determine D(s), set the excitation to zero and determine the time constant

R
��C� ��
�
�

in which R
�� is the driving-point resistance shown in Fig. 2.34e.

Figure 2.34 (cont.)

(b) Sketch a magnitude and phase plot of the voltage gain.

(c) Write the nodal equations at v
�
, v� and v

�
and show that they correspond to the

block diagram in Fig. 2.34f in which the various parameters are given in terms
of conductances:

g
�
�G

�
�G

�
� g

�

y
�
� g

�
� g� � sC�

y
�
�G

�
� sC�

Figure 2.34 (cont.)

(d) Determine the voltage gain using Fig. 2.34f. In comparison to the original
circuit diagram in Fig. 2.34b, does the block diagram provide more insight into
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the operation of the circuit? Is there any significance to the feedback block
g

�
/g

�
? Do you have any idea about the output or input impedance of the circuit

by looking at this block diagram? Compare what happens to the block
diagram and the circuit diagram in the limit r

�
� 0(g

�
� �)?

(e) Determine the output impedance in Fig. 2.34g and show that it is given by:

Z
�
(s)�R

�

1� s/�
�

1� s/�
�

in which �
�
is the same as above and �

�
is given by:

�
�
�

1

C�r� � (r
�
�R

�
�R

�
)

Figure 2.34 (cont.)

Hint: SinceR
�
is the low-frequency asymptote ofZ

�
(s), it can be determined by removingC�

from the circuit. Also, since the numerator of Z
�
(s) is the same as the denominator of the

output admittance Y
�
�Z
�

�
(s), �

�
can be determined by shorting the output.

The purpose of this problem was to show that it is easier to analyze a circuit
using the techniques explained in this chapter rather than solve simultaneous
equations and transform the circuit into a block diagram as is done in numerous
textbooks.

2.2 Block diagram versus circuit diagram. A power amplifier with a gain A
�

develops �% total harmonic distortion (THD) at its output stage at a certain
frequency f

�
. Determine the amount of loop gain T required to reduce the THD by

a factor k. Assume flat gain characteristics independent of frequency.

Hint: The distortion can be modeled as an injected signal s
�
at the output of the amplifier, as

shown in Fig. 2.35 above. Using this block diagram, determine the output due to s
�
in terms of

the loop gain �A
�
.

This problem illustrates the usefulness of a block diagram in visualizing a
problem in which no specific circuit is given. It would have been considerably
more time consuming if we had attempted to solve this problem using a specific
circuit.

2.3 Determination of zeros in a reactive bridge circuit. For the bridge circuit in
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Figure 2.35

Examples 2.4 and 2.5, show that the numerators of the transfer functions in Eqs.
(2.23) and (2.24) are the same and given by:

N
�
(s)�N

�
(s)� 1� s/�

�

in which:

�
�
�

1

R
�
C�

R
�

R
	
�

Hint: A null in the response v
�
(s) is accompanied by a null in the current in R

�
. It follows that (i)

the voltage across C
�
is equal to the voltage across R

�
and the voltage across R

�
is equal to the

voltage across R
	
and (ii) the current through C

�
is equal to the current through R

	
and the

current throughR
�
is equal to the current throughR

�
. The null conditions are illustrated in Fig.

2.36 and are seen to be independent of the nature of the excitation, i.e. current source or voltage

source.

Figure 2.36

2.4 Low-frequency gain of the CE amplifier. Verify Eq. (2.41a) in Example 2.7.

2.5 Pole due to the emitter bypass capacitor. Verify Eq. (2.41b) in Example 2.7.

Hint: Let v
��

� 0 and determine the effective resistance seen by C
�
, which is given by R

�
in

parallel with the resistance seen looking directly into the emitter, R

�, as shown in Fig. 2.37.

2.6 Effect of shunt–shunt feedback using the EET. The resistor R
�
in Example 2.8

feeds back a current proportional to the output voltage. This is known as shunt—
shunt feedback or voltage sampling and current mixing. The extent to which the
feedback current is subtracted from, or mixed with, the input current depends on
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Figure 2.37

the source resistance R
�
. If the source resistance R

�
is zero, then the entire current

through R
�
flows through the source and the current entering the base of the

transistor remains independent of R
�
. This means that with R

�
� 0, R

�
loads the

input and output of the amplifier without providing any output voltage feedback.
Verify Eq. (2.48) in Example 2.8 using the EET as described in Chapter 1 and

show that the pole with R
�
is at a lower frequency than without R

�
provided

��R
�
/R

�
. Note that if R

�
� 0, D(s) becomes independent of R

�
.

Hint: Following Section 1.2, the resistance looking into port (e) can be determined in three steps.

First, determine the resistance looking into port (e) with R
�

� � which, according to Problem

2.5, is given by (r��R
�
)/(1� �). Second, determine the resistanceR
�� looking into port ( f ) with

the emitter port short. Third, determine the resistanceR
�� looking into port ( f ) with the emitter

port open. These are shown in Figs. 2.38a and b.

Figure 2.38

The resistance looking into the emitter is then given by:

R

��
r��R

�
1��

1�R
��/R
�

1�R
��/R
�

(2.139)

2.7 Nonideal operational amplifier with pole-zero compensation. For an ideal
opamp, the voltage gain of the circuit in Fig. 2.39a is given by:

v
�
(s)

v
��
(s)

�A
��1�

�
�
s � (2.140)

in which
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A
�
��

R

R
�

(2.141a, b)
�

�
� 1/RC





( a) If the input impedance, output impedance and the gain of the operational
amplifier are finite, as indicated in Fig. 2.39b, show that the gain is given by:

v
�
(s)

v
��
(s)

�A
 

1� s/�
�

1� s/�
�

(2.142)

in which A
 
, �

�
and �

�
are determined independently and are given by:

Figure 2.39

A
�
��a

�

1

1�R
�
/r

��

1

1� r
�
/R

�

�
�
�

1

C(R� r
�
/a

�
)

(2.143a—c)

�
�
�

1

C�R� r
�
�R

�
�R

�
� r

���1�
a

�
1� r

�
/R

�
��





(b) Show that the gain can also be written as:

v
�
(s)

v
��
(s)

�A
!

1��
�
/s

1��
�
/s

(2.144)

in which:

A
!
�

�
�

�
�

A
 

(2.145)

In this expressionA
!
is the high-frequency asymptote. If you were to substitute

for �
�
, �

�
and A

 
in the expression above, you would get a rather long

expression forA
!
. You can determineA

!
directly from the circuit by examining
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it at high frequencies in which the capacitor is replaced by a short. Derive the
gain A

!
using any method you know and save your derivation. In the next

chapter we will show how to obtain the following expression for A
!
in a few

simple steps:

A
!
��

R

R
�

1�
1

a
�

r
�
R

1�
1

a
�
�1�

r
�

R
�
��1�

R� r
�
�R

�
R

�
� r

��
�

(2.146)

How does your expression compare with this one? Are you ready for Chapter
3?

(c) Sketch an asymptotic magnitude and phase plot of the ideal and nonideal
voltage gains.

2.8 Response of cascaded resonant circuits. Two identical and undamped resonant
circuits are cascaded as shown in Fig. 2.40.

(a) If v
�
(t) is a step function as in Fig. 2.21 in Example 2.13, determine the forced

and natural components of v
��
(t) and v

��
(t).

(b) Repeat part (a) if v
�
(t) is a sinusoid as in Fig. 2.22, Example 2.13.

The purpose of this problem is to show a natural response which grows linearly
with time and a forced solution which grows quadratically in time. Such solutions
occur in systems which have multiple pairs of identical imaginary poles (identical
eigenvalues) and require special consideration in linear system (or differential
equation) theory.

Figure 2.40

2.9 Bode plots. Sketch asymptotic magnitude and phase plots of the following
transfer functions:

(a) H(s)�A
�

�
�
s

1

1� s/�
�

; �
�
	�

�

(b) H(s)�A
�

�
s

(1� s/�
�
)�

(1� s/�
�
)�
; �

�
	�

�
	�

�
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3 The extra element theorem
A basic simplification tool

3.1 Introduction

The extra element theorem (EET) in its present and most useful form is due to
R. D. Middlebrook.� The structure of this theorem is a consequence of linear
networks and was given by Bode in his famous book, Network Analysis and
Feedback Amplifier Design.� Starting with the loop equations of a general linear
network and using determinant theory, Bode showed that any transfer function of
that network is a bilinear transformation of any one of its elements, z. Specifically,
Bode showed that when the loop equations are set up such that the impedance
element z occurs only in the jth loop and none other, then the current in loop 2 is
related to the excitation E

�
according to:

I
�

E
�

�
��
��

� z�
����

��� z�
��

(3.1)

This equation is written using Bode’s notation in which �� is the determinant of
the [Z] matrix in [I][Z]� [E] with z� 0, ��

��
is the same as �� with row 1 and

column 2 struck out, �
��
is the determinant of [Z] with the jth row and column

struck out (note that this determinant is independent of z because z occurs only in
the jth row and column of [Z]), and�

����
is the same as �

��
with row 1 and column

2 struck out. Clearly, the application of this theorem to the determination of
transfer functions is no picnic. Bode’s objective in deriving this equation, however,
was not to determine transfer functions but rather to study the sensitivity of a
transfer function with respect to an arbitrary element of a linear network. Useful
adaptations of the bilinear transformation to the determination of transfer func-
tions and sensitivities have been discussed in more recent literature�—� in which
simpler forms of the various determinants are given. In this chapter, we will give
the simplest possible interpretation and form of the bilinear transformation and
call it the extra element theorem. The EET and the notation developed in this
chapter extend most naturally to the more general case of the N-extra element
theorem�	
 discussed in Chapter 4.
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3.2 Null double injection

The key ingredient in the EET is the null response calculation using double
injection, or null double injection for short. Consider the linear time invariant
circuit shown in Fig. 3.1 in which u

��
is the first independent excitation, which can

be either a voltage source or a current source, and u
��
is the first arbitrary response,

which can be either a voltage or current. Let I be the second independent
excitation applied at port (1) and the voltage V across it be the second response to
be studied. Each response is given by linear superposition of the contribution of
each excitation to that response:

u
��

� a
��
u
��

� a
��
I

(3.2a, b)
V � a

��
u
��

� a
��
I





Each coefficient a
��
is a particular transfer function defined as:

a
��

�
u
��
u
��
�
���

a
��

�
u
��
I �

�����

(3.3a, b, c, d)

a
��

�
V
u
��
�
���

a
��

�
V
I �

�����





Figure 3.1

The transfer functions a
��

and a
��

have the following interpretations. Since setting
I� 0 is the same as opening port (1), a

��
can be written as:
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a
��

�
u
��
u
��
�
���� ��
	
��


(3.4)

This is shown in Fig. 3.2a. When u
��

� 0, the transfer function a
��

� V/I in Eq.
(2.2d) is nothing more than the driving-point impedance looking into port (1), as
shown in Fig. 3.2b:

Z��
� a
��

�
V
I �

�����

(3.5)

Figure 3.2

With the application of two excitations, or double injection, it is possible to null
any response of the LTI network. In particular, if we choose to null u

��
, as shown

in Fig. 3.2c, then we have from Eqs. (3.2a, b):

0� a
��
u
��

� a
��
I

(3.6a, b)
V � a

��
u
��

� a
��
I





Equation (3.6a) gives the relationship between the two excitations which brings
about the null in the response:

u
��
I �

�����

��
a
��

a
��

(3.7)

Substituting this result in Eq. (3.6b), we get:
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V �
�����

��a
��

a
��
a
��

I �
�����

� a
��
I �

�����
(3.8)

whence the definition of the null driving-point impedance looking into port (1),Z��
,
follows:

Z��
�
V
I �

����� (3.9a, b)

�
a
��
a
��

� a
��
a
��

a
��





The double injection, the null response andZ��
 are all shown in Fig. 3.2c.

Figure 3.2 (cont.)

We now have two types of impedances looking into port (1): an ordinary
driving-point impedance, Z��
, and a null driving-point impedance Z��
. Remem-
ber that in the ordinary driving-point impedance, Z��
, I is the only excitation in
the circuit, whereas in the null driving-point impedance, Z��
, both excitations, I
and u

��
, are applied simultaneously in such a way as to null the response u

��
, i.e.

u
��

� 0.
Figure 3.2c is very important to the concept of null impedance because it shows

an operational method for determiningZ��
 without having to compute it algebra-
ically using Eq. (3.9b). Without Fig. 3.2c, there can be no useful form of the EET.
The following examples illustrate the determination ofZ��
.

Example 3.1 Determine Z��
 and Z��
 for the bridge circuit in Fig. 3.3 in which
the response is taken across the resistance R

�
.

The ordinary driving-point impedance looking into port (1) with the excitation
v
��

� 0 is shown in Fig. 3.4a in which Z��
 is real and given by:

Z��
�R��
�R
�
�R

�
� (R

�
�R

�
�R

�
) (3.10)
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Figure 3.3

The null driving-point impedance is shown in Fig. 3.4b in which the voltage
across R

�
is nulled by the application of the two injections v

��
and v

�
. Since

Z��
�R
�
�Z���
, we shall work with the simpler circuit in Fig. 3.4c and deter-

mine Z���
. A null in the voltage across R
�
implies that the current through R

�
is

Figure 3.4

zero, which in turn implies that the entire current through R
�
flows through R

�
.

Also, a null in the voltage across R
�
implies that v�

�
appears directly across R

�
, so

that the current through R
�
is v�

�
/R

�
. It follows by Kirchhoff’s voltage law (KVL)

that the voltage across R
�
is R

�
(v�

�
/R

�
) and the voltage across R

�
is the sum of the

voltages across R
�
and R

�
, as shown in Fig. 3.4c. Application of Kirchhoff’s

current law (KCL) at node A yields for i�
�
:

Figure 3.4 (cont.)
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i�
�
�

v�
�

R
�

�
v�
�

R
�
�1�

R
�

R
�
� (3.11)

from which we have:

v�
�
i�
�

�Z���
�R
� ��

R
�

1�R
�
/R

�
� (3.12)

Hence, the null impedanceL��
 �R
�
�Z���
 is given by:

Z��
�R
�
�R

� �
R

�
1�R

�
/R

�

(3.13)

In the next example,Z��
 will be determined with a different response nulled. �

Example 3.2 For the same circuit in Example 3.1, determine Z��
 andZ��
 when
the response is taken across R

�
instead of R

�
as shown in Fig. 3.5.

Figure 3.5

The ordinary driving-point impedance looking into port (1), with the excitation,
v
��

� 0, remains the same as before and is given by:

Z��
�R��
�R
�
�R

�
� (R

�
�R

�
�R

�
) (3.14)

The null driving-point impedance, shown in Fig. 3.6a, is not the same as before
because a different response is being nulled. As in the previous example, since
Z��
�R

�
�Z���
, we shall work with the simpler circuit in Fig. 3.6b and deter-

mineZ���
. In this case, when the voltage acrossR
�
is nulled, the voltages acrossR

�
and R

�
become identical. Also, a null in the voltage across R

�
implies that the

current through it is nulled so that the entire current throughR
�
flows throughR

�
and is simply given by v�

�
/(R

�
�R

�
). All the remaining voltages and currents with

v
�
nulled are shown in Fig. 3.6b whence we have by KCL at node A:

i�
�
�

v�
�

R
�
�R

�

�
v�
�

R
�
�

R
�

R
�
�R

�
� (3.15)
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This yieldsZ���
 orR���
:

v�
�
i�
�

�R���
�R
�

1�
R

�
R

�

1�
R

�
R

�

(3.16)

Figure 3.6

HenceR��
 is given by:

R��
�R
�
�R

�

1�
R

�
R

�

1�
R

�
R

�

(3.17)

It is important to see that v
��
never enters or appears in the determination of a

null driving-point impedance. For instance, in this example with v
�
� 0, it would

have been very tempting to say that the voltage across R
�
is v

��
and proceeded to

write equations with v
��
. Although this would not have been wrong, it would have

been a waste of time because v
��
would have eventually canceled out. �

Example 3.3 Determine Z��
 and Z��
 for the bridge circuit in Fig. 3.7 in which
the output is taken across the bridge resistance R

�
.

Figure 3.7
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The determination of the driving-point impedance with the excitation set to
zero, i.e. v

��
� 0, is shown in Fig. 3.8a whence we have:

Z��
�R��
�R
�
� (R

�
�R

�
�R

�
) (3.18)

The determination ofZ��
 is shown in Fig. 3.8b in which we see that a null in v
�
is

accompanied with a null in the bridge current so that the test current i
�
flows

entirely through R
�
and the currents through R

�
and R

�
are the same. Also, since

v� 0, the voltage across R
�
is the same as the voltage across R

�
and the voltage

across R
�
is the same as the test voltage v

�
. The voltages and currents with v

�
nulled are shown in Fig. 3.8b whence, by the equality of the voltage across R

�
and

v
�
, we have:

v
�
��

i
�
R

�
R

�

R
�

(3.19)

Figure 3.8

Hence, the null impedance is negative, real and given by:

Z(1)�R��
��
R

�
R

�

R
�

(3.20)

The significance of a negative null impedance will be discussed in Section 3.3.
Once again, observe that v

��
never needs to enter in the determination of a null

impedance and that the expression of a null impedance never contains the element
across which the response is nulled. �

Example 3.4 Determine Z��
 and Z��
 for the ideal operational amplifier circuit
with T-feedback network shown in Fig. 3.9.
The driving-point impedance looking into port (1) with the excitation set to zero

is shown in Fig. 3.10a in which we see that v
�
must be zero because the voltage

drop across each of R
�
and R

�
is zero. It follows that:

Z��
� 0 (3.21)

The test current i
�
flows entirely through R

�
. The fact that this current and the

output voltage are undetermined is irrelevant to the determination of Z��
. Note
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Figure 3.9

that we could have equally well applied a test current source at port (1) and
obtained the same result.
The null impedance calculation looking into port (1) with the output nulled is

shown in Fig. 3.10b. Because of the virtual ground at the input, the test voltage v
�

appears directly across R
�
. Also, because of the null in the output voltage, i.e.

v
�
� 0, the test voltage appears across R

�
too. It follows that:

i
�
�

v
�

R
�

�
v
�

R
�

(3.22)

Figure 3.10
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Hence, the null impedance is real and given by:

Z��
�R��
�R
�
� �R

�
(3.23)

Although the relationship between the input voltage and the test voltage that
nulls the output is not important to the determination ofR��
, its determination is
left as an exercise (see Problem 3.1). �

Example 3.5 Determine Z��
 and Z��
 for the ideal operational amplifier circuit
shown in Fig. 3.11.

Figure 3.11

With the excitation set to zero as shown in Fig. 3.12a, the driving-point imped-
ance is seen to be real and given by:

Z��
�R��
�R
�

(3.24)

Figure 3.12

The null impedance calculation is shown in Fig. 3.12b. Since v� � 0, the test
voltage source appears across R

�
when v

�
is nulled. It follows that the current

through R
�
, and hence the current through R

�
, are both given by v

�
/R

�
. The

voltage across R
�
is now given by R

�
(v

�
/R

�
) and, since v� � 0, this voltage also

70 The extra element theorem



appears across R
�
. Hence, the current through R

�
is given by:

�i
�
�

R
�
(v

�
/R

�
)

R
�

(3.25)

Figure 3.12 (cont.)

Therefore, the null impedance is real and given by:

Z��
�R��
��
R

�
R

�
R

�

(3.26)

The significance of the negative value ofR��
 will be discussed in Example 3.10.�

When studying an impedance function looking into a port as shown in Fig. 3.13,
the response in question is the voltage which appears across the current source

Figure 3.13

(excitation) connected at that port. We will show that, in this case, nulling the
voltage across the current source is the same as shorting the current source as
shown in Figs. 3.14a and b. The equivalence between Figs. 3.14a and b is a direct
consequence of the substitution theorem whereby the short circuit (R� 0) in Fig.
3.14b carrying a current I is replaced with a current source carrying the same
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current I in Fig. 3.14a. A formal proof will be given now to illustrate and review a
familiar and special case of the parameters a

��
in Eqs. 3.2a and b. In Fig. 3.14a, the

two responses are V and v
�
and the two excitations are I and i

�
so that Eqs. 3.2a

and b are written as:

V � z
��
I� z

��
i
� (3.27a, b)

v
�
� z

��
I� z

��
i
�





Figure 3.14

These are the familiar z-parameter representations of a two-port linear network,
which when used in Figs. 3.14a and b results in the circuits shown in Figs. 3.15a
and b, respectively. When V is nulled in Fig. 3.15a, it can be shown that the null
impedance looking into port (1) is given by:

Z��
�
z
��
z
��

� z
��
z
��

z
��

(3.28)

Equation (3.28) is exactly analogous to Eq. (3.9). When a short is placed across the
current source I as shown in Fig. 3.15b, the impedance looking into port (1) is still
given by Eq. (3.28):

Z��

��	�����

�
z
��
z
��

� z
��
z
��

z
��

�Z��
 (3.29)

According to Eq. (3.29), the null impedance looking into port (1) of Fig. 3.14a, with
V across the input port nulled, is nothing more than the ordinary driving-point
impedance looking into port (1) with port (in) shorted.
Hence, only nulling a voltage across a current source is equivalent to placing a

short across that port. Remember that when a voltage across an impedance
element is nulled, the current through it vanishes so that placing a short across it
would be wrong because that short would carry the short circuit current at that
port. Similarly, nulling a current through a voltage source is equivalent to opening
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the port across which the voltage source is connected.

Figure 3.15

Example 3.6 In this example, we replace the voltage excitation in the circuit of
Example 3.1 with a current excitation i

��
and study the response v

��
, or the input

impedance function Z
��
, as shown in Fig. 3.16. Again, we determine Z��
 andZ��
.

Figure 3.16

With the excitation set to zero, i.e. i
��

� 0, we have the circuit in Fig. 3.17a from
which Z��
 or R��
 is given by:

Z��
�R��
�R
�
�R

�
� (R

�
�R

�
)�R

�
(3.30)

Figure 3.17

As explained earlier, nulling the response v
��
is the same thing as shorting the
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input port (in). This is shown in Fig. 3.17b, which is the same as Fig. 3.4a used in the
determination of Z��
 for that circuit! Hence we have:

Z��
�R��
�R
�
�R

�
� (R

�
�R

�
�R

�
) (3.31)

Note that if we replace the current excitation in the circuit of Example 3.6 back to a
voltage source and study the response i

��
, or the input conductance, then the

expression of Z��
 andZ��
 given in Eqs. (3.30) and (3.31) will be interchanged. �

3.3 The EET for impedance elements

Consider the LTI circuit in Fig. 3.18a in which the impedance element Z
�
is

designated as the extra element. Let the current throughZ
�
be I in the presence of

the excitation u
��
. In Fig. 3.18b,Z

�
is replacedwith a current source Iwhich, for the

same u
��
, has exactly the same value as I in Fig. 3.18a. According to the substitution

theorem, both circuits in Figs. 3.18a and b will have the same voltages and
currents. The same set of equations in Eqs. (3.2a, b) applies to the circuit in Fig.
3.18b, so that we can write as before:

u
��

� a
��
u
��

� a
��
I

(3.32a, b)
V � a

��
u
��

� a
��
I





Figure 3.18

The current source I used in these equations does not have an arbitrary value, but
is always equal to the current I in Fig. 3.18a whose value is given by:

I��
V
Z

�

(3.32c)

Equations (3.32a—c) can be solved simultaneously by eliminating V and I to yield
the transfer function:
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H�
u
��
u
��

� a
��

1�
a
��
a
��

� a
��
a
��

a
��

1

Z
�

1�
a
��
Z

�

(3.33)

The terms a
��
, a

��
and (a

��
a
��

� a
��
a
��
)/a

��
are immediately recognized to beH

�
,

Z��
 andZ��
, respectively, from Eqs. (3.4), (3.5) and (3.9b). Upon their substitution
in Eq. (3.33), we obtain the desired form of the EET:

H�H
�

1�
Z��


Z
�

1�
Z��


Z
�

(3.34)

where:

H
�
�

u
��
u
��
�
��
	����

�
u
��
u
��
�
��	�

(3.35)

This is the EET and it can be stated as follows:

Theorem (EET): A transfer function H of an LTI circuit can be determined in
three independent steps. First, an element Z

�
, connected across port (1), is

removed from the circuit (Z
�

	 �) and a much simpler transfer function,H
�
, is

determined. The choice of Z
�
is motivated by the greatest simplification which

results upon the removal of that element. Second, the ordinary (driving-point)
impedance, Z��
, looking into port (1) is determined. Third, the null impedance,
Z��
, looking into port (1) is determined. The transfer function H is given in
terms of H

�
, Z��
 and Z��
 according to Eq. (3.34) above. A complete pictorial

representation of this theorem is given in Fig. 3.19.

A comparison of Eqs. (3.34) and (3.1) clearly shows that the EET is by far easier
to interpret and implement than the bilinear theorem given by Bode in Eq. (3.1),
even though both have the same structure. Equation (3.1) suffers from a severe case
of maximum entropy because it contains absolutely no recognizable term nor
information which can be associated with the physical network save for the
element z! Equation (3.34) of the EET on the other hand contains three easily
interpretable terms which are directly associated with the physical network.
An alternate and useful form of the EET can be obtained from Eq. (3.34) by the

following manipulation:
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Figure 3.19

H�H�
�

1�
Z

�
Z��


1�
Z

�
Z��


(3.36)

whereH�
�
is given by:

H�
�
�

Z��


Z��

H

�
(3.37)

This form of the EET is shown in Fig. 3.20. It is evident from Eq. (3.36) that H�
�

coincides with the value ofH when Z
�
� 0, or when port (1) is shorted, so that we

have:

H�
�
�

u
��
u
��
�
��
	�����

(3.38)
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Figure 3.20

Equation (3.37) is actually a corollary of the EET which can be expressed as:

u
��
u
��
�
��
	�����

u
��
u
��
�
��
	����

�
Z��


Z��

(3.39)

It is also possible to derive Eq. (3.39) directly if the extra element Z
�
is replaced

with a voltage source V, instead of a current source I, in Fig. 3.18b (see Problem
3.2).
The two forms of the EET give us the flexibility of inserting an extra element

either in parallel (Eq. (3.34)) or in series (Eq. (3.36)). This means that we can simplify
a circuit either by shorting the port of the extra element and determining H�

�
or

opening it and determining H
�
. Both forms are illustrated in the following

examples.
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Example 3.7 Consider the circuit in Fig. 3.3 in which a capacitorC
�
is connected

across port (1) as shown here in Fig. 3.21. We wish to determine the transfer
function:

H(s)�
v
�
(s)

v
��
(s)

(3.40)

Figure 3.21

We will show now that the EET is the ideal simplification tool for the determi-
nation of this transfer function. If we designate the impedance elementZ

�
� 1/sC

�
as the extra element and remove it from the circuit, i.e. Z

�
	 �, we obtain the

circuit in Fig. 3.22, which is the same as Fig. 3.3, for which we can easily write the
transfer function:

H
�
�

1

1�
R

�
� (R

�
�R

�
)

R
�

(3.41)

Since we letZ
�
be infinite, we realize thatH

�
is the low-frequency asymptote of the

transfer function H(s). According to the first form of the EET given in Eq. (3.34)
and explained in Fig. 3.19,H(s) is given by:

H�H
�

1�
Z��


Z
�

1�
Z��


Z
�

(3.42)

�H
�

1� sC
�
Z��


1� sC
�
Z��


in which Z��
 andZ��
 have been determined in Figs. 3.4a and b and given by Eqs.
(3.10) and (3.12). Hence, H(s) can be written in pole-zero form:
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Figure 3.22

H�H
�

1�
s

�
��

1�
s

�
��

(3.43)

where:

�
��

�
1

C
�
R��


�
1

C
��R�

�
R

�
1�R

�
/R

�
�R��

(3.44a)

�
��

�
1

C
�
R��


�
1

C
�
[R

�
�R

�
� (R

�
�R

�
�R

�
)]

(3.44b)

An asymptotic magnitude plot of this transfer function is shown in Fig. 3.23 in
whichwe see that the pole is always at a lower frequency than the zero. The relative

Figure 3.23

position of the pole with respect to the zero can be ascertained by comparing the
low-entropy expressions of R��
 and R��
 and realizing that R��
�R��
 for any
choice of the values of the resistors in the circuit. �

Example 3.8 In this example the capacitor in Example 3.7 is replaced with an
inductor L

�
and the output is taken across R

�
as shown in Fig. 3.24. We wish to

determine the transfer function:
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Figure 3.24

H(s)�
v
�
(s)

v
��
(s)

(3.45)

The inductor represents an impedance element Z
�
� sL

�
and the best way to

simplify this circuit is to take this impedance out, i.e. Z
�

	 �. This results in the
circuit shown in Fig. 3.25 for which we can write:

H
�
�

1

1�
R

�
R

�
� (R

�
�R

�
)

(3.46)

Figure 3.25

The EET can now be applied to yield the complete transfer function:

H�H
�

1�
Z��


Z
�

1�
Z��


Z
�

(3.47)

�H
�

1�
Z��


sL
�

1�
Z��


sL
�
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in whichZ��
 andZ��
 are given by Eqs. (3.14) and (3.17). Now we can writeH(s) in
inverted pole-zero form:

H�H
�

1�
�

��
s

1�
�

��
s

(3.48)

in which:

�
��

�
R��


L
�

�

R
�
� [R

�
� (R

�
�R

�
)]�1�

R
�

R
�
�R

�
�

L
�

(3.49a)

�
��

�
R��


L
�

�
R

�
�R

�
� (R

�
�R

�
�R

�
)

L
�

(3.49b)

The asymptotic magnitude plot of this transfer function is shown in Fig. 3.26 in
whichH

�
is seen to be the high-frequency asymptote. Comparing the expression of

R��
 and R��
 and realizing that R��
�R��
 for any choice of the values of the
resistors in the circuit, we can ascertain that the zero always comes after the pole.

Figure 3.26

Note that in both of these examples we could have taken the extra impedance
element as a short rather than an open when determiningH

�
. The resultant circuit

would have been a bridge circuit for whichH
�
would have been more complicated

to determine. �

Example 3.9 In this example we will apply the results derived in Example 3.3
towards the determination of the transfer function of the bridge circuit in Fig. 3.27.
We have a choice of taking the capacitor out either as a short or an open. Both
choices will result in a simple resistive circuit for which H

�
can be derived by

inspection. In Fig. 3.28 we takeC
�
out as an open, form the Thevenin equivalent of

v
��
, R

�
and R

�
, and immediately write:

H
�
�

1

1�R
�
/R

�

1

1� (R
�
�R

�
�R

�
)/R

�

(3.50)

Application of the first form of the EET yields the complete transfer function:
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H�H
�

1�
Z��


Z
�

1�
Z��


Z
�

(3.51)

�H
�

1� sC
�
Z��


1� sC
�
Z��


Substituting for Z��
 andZ��
 as determined in Eqs. (3.18) and (3.20), respectively,
we obtain:

H�H
�

1�
s

�
��

1�
s

�
��

(3.52)

Figure 3.27

Figure 3.28

where:

�
��

��
1

C
�
R��


�
1

C
�
R

�

R
�

R
�

(3.53a)
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�
��

�
1

C
�
R��


�
1

C
�
R

�
� (R

�
�R

�
�R

�
)

(3.53b)

An asymptotic magnitude and phase plot of this transfer function is shown in
Fig. 3.29 in which it has been assumed that the zero occurs before the pole. For this
circuit, the pole may occur before or after the zero. In fact, for a given C

�
, it is

possible to choose the values of the resistors such that the pole and zero occur at
the same frequency resulting in a transfer function which has a magnitude

Figure 3.29

response independent of frequency and a phase response with �90°/dec centered
at the pole or zero. Such a network is called a phase shifter, but this bridge circuit is
not a good phase shifter because it requires simultaneous adjustments of more
than one resistor (see Problem 3.4) to achieve variable phase shift and its magni-
tude response depends on the values of resistors. A far better circuit will be given in
Example 3.10. �

The right-half plane (RHP) zero in the transfer function in Eq. (3.52) is due to the
negative null impedance looking into port (1). A physical interpretation of the
RHP zero is given by examining the circuit at very low and very high frequencies.
At very low frequencies, the capacitor port is essentially an open circuit and the
response is in phase with the excitation. At very high frequencies, the capacitor is
essentially a short circuit as shown in Fig. 3.30 and the response is 180° out of
phase with the excitation. Hence, we see that there are two frequency-dependent
paths from the excitation to the response: a noninverting path, which is dominant
at low frequencies as shown in Fig. 3.28, and an inverting path, which is dominant
at high frequencies as shown in Fig. 3.30. The gain of the high-frequency path can
be obtained from the transfer function in Eq. (3.52) by letting s	 �:

H�
�
� lim

�	�

H(s)��H
�

�
��

�
��

(3.54)

in which the negative sign of the RHP zero accounts for the fact that the low- and
high-frequency gains are of opposite polarity. Of course, H�

�
could also have been

determined from the circuit in Fig. 3.31, but the point here is to relate the negative
sign of the RHP zero with the inverting gain at high frequencies. Equation (3.54) is
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the same as the corollary in Eq. (3.37).

Figure 3.30

Example 3.10 In this example, we will use the results derived in Example 3.4 to
determine the transfer function of an ideal operational amplifier with T-feedback
as shown in Fig. 3.31. It is only natural to take C

�
out of the circuit as an open as

shown in Fig. 3.32 and determineH
�
:

H
�
��

R
�
�R

�
R

�

(3.55)

Figure 3.31

The other choice of taking C
�
as a short is ruled out because it yields an infinite

value of H
�
. Application of the first form of the EET yields the complete transfer

function:

H�H
�

1�
Z��


Z
�

1�
Z��


Z
�

(3.56)

�H
�

1� sC
�
Z��


1� sC
�
Z��


Substituting for Z��
 andZ��
 from Eqs. (3.21) and (3.23), we get:

H(s)�H
�
(1� s/�

�
) (3.57)

where:
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Figure 3.32

�
�
�

1

C
�
R

�
�R

�

(3.58)

As expected, the gain increases indefinitely as frequency increases. �

Example 3.11 In this example, we will use the results derived in Example 3.5 to
determine the transfer function of the circuit in Fig. 3.33. Note that there are two
paths from the input signal to the output: an inverting path beginning throughR

�
,

with a gain of �R
�
/R

�
, and a noninverting path through R

�
, with a gain of

1�R
�
/R

�
. At low frequencies, the noninverting path dominates the inverting

path so that the net gain is 1�R
�
/R

�
�R

�
/R

�
� 1. At high frequencies the gain of

the noninverting path diminishes to zero while the gain of the inverting path
remains at �R

�
/R

�
and dominates the noninverting path. This causes the net gain

at high frequencies to be �R
�
/R

�
. Hence, as explained earlier, we expect a

Figure 3.33

RHP zero in the transfer function. If we designate the capacitor as the extra
element, then we have a choice of applying the first or the second form of the EET.
Let us take the capacitor out of the circuit as a short, i.e.Z

�
� 1/sC

�
	 0, as shown

in Fig. 3.34 and determine:

H�
�
��

R
�

R
�

(3.59)

Application of the second form of the EET yields:
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H�H�
�

1�
Z

�
Z��


1�
Z

�
Z��


(3.60)

�H�
�

1� 1/sC
�
Z��


1� 1/sC
�
Z��


Substituting for Z��
 and Z��
 from Eqs. (3.24) and (3.26), we get the transfer
function in inverted pole and zero form:

H(s)�H�
�

1��
��
/s

1��
��
/s

(3.61)

where:

�
��

�
1

C
�
R

�

R
�

R
�

(3.62a)

�
��

�
1

C
�
R

�

(3.62b)

Figure 3.34

Equation (3.61) can also be written in normal pole-zero notation as:

H(s)�
1� s/�

��
1� s/�

��

(3.63)

This form of H(s) corresponds to the first form of the EET in which H
�
� 1. As

expected we have an RHP zero which accounts for the inversion in the sign of the
gain at very high frequencies.
This circuit can be made into a phase shifter by letting �

��
��

��
��

�
so that

we get:

H(s)�
1� s/�

�
1� s/�

�

(3.64)
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According to Eqs. (3.62a) and (3.62b) this requires thatR
�
�R

�
so that�

�
is given

by:

�
�
�

1

C
�
R

�

(3.65)

Hence, by adjusting only R
�
, we can shift the phase of the output signal anywhere

from 0 to �180° without affecting its amplitude. If the positions of R
�
and C

�
are

interchanged, a FET can be used as a voltage controlled resistor in place of R
�
. In

this case the phase can be adjusted from �180 to �360° (see Problem 3.5). �

Example 3.12 In this example, we will use the results derived in Example 3.6 to
determine the input impedance of the circuit in Fig. 3.35a. The best way to simplify
this circuit is to take out the impedance elementZ

�
� sL

�
as an open as shown in

Fig. 3.35b whence we have:

R
�
�R

�
� (R

�
�R

�
)�R

�
(3.66)

Application of the first form of the EET yields:

Z
��

�R
�

1�Z��
/Z
�

1�Z��
/Z
�

(3.67)

�R
�

1�Z��
/sL
�

1�Z��
/sL
�

Figure 3.35

Substituting for the Z��
 andZ��
 from Eqs. (3.30) and (3.31) yields:

Z
��
(s)�R

�

1�
�

��
s

1�
�

��
s

(3.68)

where:
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�
��

�
R

�
�R

�
� (R

�
�R

�
�R

�
)

L
�

(3.69a)

�
��

�
R

�
�R

�
� (R

�
�R

�
)�R

�
L
�

(3.69b)

The expression ofZ
��
(s) in Eq. (3.68) is in inverted pole-zero form which can also

be written in normal pole-zero form as:

Z
��
(s)�R�

�

1�
s

�
��

1�
s

�
��

(3.70)

In this expression, it can be seen thatR�
�
is the input resistance of a resistive bridge

circuit in which R
�
is taken as the extra element (see Problem 3.6). �

3.4 The EET for dependent sources

So far, the designated extra element in the EET has been an impedance element. In
this section, the EETwill be extended to dependent sources. This extension is quite
natural once an impedance element is recognized to be a special case of a depend-
ent source. This is shown in Fig. 3.36a in which Z is replaced by a dependent
current source whose value depends on the voltage across its terminals multiplied
by 1/Z. In Fig. 3.36b, the same impedance is replaced by a voltage source whose

+_

Figure 3.36

value depends on the current through it multiplied by Z. These two cases can be
easily extended to an arbitrary dependent source whose value depends on the
voltage or current elsewhere in the circuit rather across or through its own
terminals.With this in mind, consider the LTI circuit in Fig. 3.37 in which u

��
is the

only independent excitation and u
��

is a response. A dependent generator u
��
,

which can be either a voltage source or a current source, is connected across port
(1) and its value depends on some other response u

��
with a gain A, i.e. u

��
�Au

��
.

Our objective now is to express the transfer functionH� u
��
/u

��
as some bilinear

transformation ofA. This can be done quite easily by writing the system equations
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as before:

u
��

� a
��
u
��

� a
��
u
��

u
��

� a
��
u
��

� a
��
u
��

(3.71a, b, c)

u
��

�Au
��





The simultaneous solution of these equations yields:

u
��
u
��

� a
��

1���
a
��
a
��

� a
��
a
��

a
��

�A
1� (�a

��
)A

(3.72)

Figure 3.37

In this equation, a
��

is the transfer function with A� 0 and is determined by
opening the dependent current source as shown in Fig. 3.38a or shorting the
dependent voltage source as shown in Fig. 3.38b. Hence, a

��
can be written as:

a
��

�
u
��
u
��
�
���

�H
�

(3.73)

Figure 3.38 Determination of H
�
by letting A� 0

If we set the excitation u
��
to zero in Eq. (3.71b), we see that�a

��
is the inverse gain

which relates u
��
to an independent source�u

��
connected at port (1) with u

��
� 0:

�a
��

�
u
��

�u
��
�
�����

�A��
 (3.74)
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Figure 3.38 (cont.) Determination ofA��
 with u
��

� 0

This is shown in Fig. 3.38c when u
��
is an independent current source and Fig.

3.38dwhen u
��
is an independent voltage source. In these figures we see that A��
 is

nothing more than a transfer function which relates u
��

to an independent source
u
��
; which is of the same type as the dependent source (current or voltage), has a

polarity opposite to that of the dependent source, and is connected at the same
place as the dependent source. Note that in this figure the excitation u

��
is set to

zero.
If in Eqs. (3.71a, b) we let u

��
be an independent source in addition to u

��
, we can

then null the response u
��

and obtain:

�
a
��
a
��

� a
��
a
��

a
��

�
u
��

�u
��
�
�����

�A��
 (3.75)

This is shown in Fig. 3.38ewhen u
��
is a current source and in Fig. 3.38fwhen u

��
is

a voltage source. In this figure we see thatA��
 is very similar to A��
 except that it
is determined with the response null (u

��
� 0) rather than the excitation set to zero

(u
��

� 0).

Figure 3.38 (cont.) Determination ofA��
 with u
��

� 0

Substituting Eqs. (3.73), (3.74) and (3.75) in (3.72) we obtain the first form of the
EET for a dependent source:
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H�H
�

1�AA��


1�AA��

(3.76)

To summarize then, the three components in the EET for a dependent source
are the transfer functionH

�
with the dependent source set to zero, the inverse gain

A��
, and the null inverse gainA��
. Note that the units of the inverse gains are the
reciprocal of the units of A of the dependent source.

Example 3.13 Determine the output impedance, R
���
, of the amplifier circuit in

Fig. 3.39 using the nonideal model of the operational amplifier shown. The output
impedance R

���
is a transfer function which relates the response V to a current

source, I, connected at the output, i.e. R
���

� V/I.

Figure 3.39

According to the EET in Eq. (3.76), we let a
�
� 0 and obtain from Fig. 3.40a:

R
�
� r

�
� (R

�
�R

�
� r

��
) (3.77)

To determine the null inverse gain �� , we replace the dependent voltage generator
of the operational amplifier with an independent voltage generator, v

�
, pointing in

the opposite direction and determine the gain �� � v�/v�with the responseV nulled.
As explained earlier, nulling the response of an impedance function looking into a
port is the same as shorting that port. This is shown in Fig. 3.40b whence we have:

���
� 0 (3.78)

Figure 3.40

To determine the inverse gain with the excitation removed, we simply set I� 0,
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or open the output port, as shown in Fig. 3.40c whence we have:

a��
�
1

1�
r
�
�R

�
r
��

�R
�

(3.79)

Figure 3.40 (cont.)

Substitution of Eqs. (3.77), (3.78) and (3.79) in the EET given by Eq. (3.76) yields:

R
�
�R

�

1� ���
a
�

1� a��
a
�

(3.80)

�
r
�
� (R

�
�R

�
� r

��
)

1�
a
�

1� (r
�
�R

�
)/r

��
�R

�

This result is in low-entropy form and can be simplified readily to:

R
�
� r

�

1�R
�
/R

�
a
�

(3.81)

in which we have assumed r
�
� (R

�
,R

�
), a

�
� 1 and r

��
�R

�
. �

Example 3.14 Determine the input impedance of the noninverting amplifier in
Fig. 3.41 using the nonideal model of the operational amplifier shown.
The input impedance with a

�
� 0 is shown in Fig. 3.42a where we see:

R
�
� r

��
�R

�
� (R

�
� r

�
) (3.82)

The inverse gain with the excitation removed, or the input port open, is shown in
Fig. 3.42b where we see:

a��
� 0 (3.83)
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Figure 3.41

Figure 3.42

The null inverse gain with the response null, or the input port short, is shown in
Fig. 3.42c where we see:

���
�
1

1�
R

�
� r

�
r
��

�R
�

(3.84)

Figure 3.42 (cont.)
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Substituting these in the EET, we obtain:

R
��

�R
�

1� ���
a
�

1� a��
a
�

(3.85)

� [r
��

�R
�
� (R

�
� r

�
)]�1�

a
�

1� (R
�
� r

�
)/r

��
�R

�
�

This expression is in low-entropy form and can be approximated readily as:

R
��

� r
��

a
�

1�R
�
/R

�

(3.86)

in which we have assumed r
�
�R

�
and r

��
�R

�
,R

�
. �

In some cases, notably in feedback amplifiers in whichA is part of the open-loop
gain, it is more convenient to determine a transfer function under the assumption
that A	 �. In this case the EET in Eq. (3.76) can be written as:

H�H�
�

1� 1/AA��


1� 1/AA��

(3.87)

in which

H�
�
�

u
��
u
��
�
�	�

(3.88)

and is shown in Figs. 3.43a and b for a dependent voltage source and current
source, respectively. In a feedback system, if A is part of the open-loop gain or the
main plant, then H�

�
is the ideal closed-loop gain determined by the feedback

network alone. Note that in Figs. 3.43a and b, we have u
��

� 0 because any finite
value of the dependent source u

��
�Au

��
with an infinite gain Amust require that

u
��

be zero. This reminds us of ideal operational amplifier circuits in which the
differential voltage between the inverting and the noninverting terminals is taken
to be zero in the same way as u

��
� 0 in Fig. 3.43a and b. Also, in this figure, one is

not concerned with the infinite gain A of the dependent source u
��

�Au
��
, in the

same way one is never concerned with the infinite gain of the dependent voltage or
current source at the output of an ideal operational amplifier. In determining H�

�
for such circuits, one only utilizes the fact that u

��
� 0 and is never concerned with

the dependent source with infinite gain.
The form of the EET in Eq. (3.87) is ideal for studying transfer functions of

nonideal operational amplifier circuits with finite gain a
�
. In this form, one can

immediately see the dominant constituents of the transfer function in H�
�
and

minor deviations from it in a bilinear function of a
�
multiplying it. This form of the

EET can also be used to formulate the closed-loop response of a general feedback
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amplifier circuit as will be discussed in Chapter 5.

Figure 3.43

Example 3.15 Determine the transfer function of the inverting operational am-
plifier circuit shown in Fig. 3.44 taking into account the finite input and output
impedance and the finite gain of the amplifier.

Figure 3.44

Since the gain a
�
of the operational amplifier is typically a very large number, we

can assume that it is infinite and obtain the circuit in Fig. 3.45a in which v�� 0. In
this figure, v� corresponds to u��

of the general case shown in Fig. 3.43.With v� � 0,
the current through r

��
is zero so that the current throughR

�
, given by v

��
/R

�
, flows

entirely through the feedback resistor R
�
. The output voltage is now given by

v
�
��R

�
(v

��
/R

�
) and we have the well-known relation:

A
�
��

R
�

R
�

(3.89)

The inverse gain a��
 is determined from Fig. 3.45b in which the excitation v
��
is

set to zero and the dependent source a
�
v� is replaced with an independent voltage

source v
�
pointing in the opposite direction. Taking a Thevenin equivalent of v

�
, r

�
and R

�
, yields immediately:
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Figure 3.45

a��
 �
v�
V

�
�
�����

�
1

1�
r
�

R
�

1

1�
R

�
� r

�
�R

�
R

�
� r

��

(3.90)

Figure 3.45 (cont.)

The null inverse gain ���
 is determined from Fig. 3.45c in which the response has
been nulled, i.e. v

�
� 0. With v

�
� 0, the current through R

�
is zero, the current

through r
�
is v

�
/r

�
, and the voltage across R

�
is v�. It follows that:

���
 �
v�
v
�
�
��

��

��
R

�
r
�

(3.91)

The nonideal gain is now given by substituting the above in the EET:

A�A
�

1� 1/a
�
���


1� 1/a
�
a��


(3.92)
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��
R

�
R

�

1�
1

a
�

r
�

R
�

1�
1

a
�
�1�

r
�

R
�
��1�

R
�
� r

�
�R

�
R

�
� r

��
�

This is the expression of the gain given in Problem 2.7. �

Example 3.16 Determine the transfer function of the noninverting operational
amplifier circuit shown in Fig. 3.46 taking into account the finite input and output
impedance and the finite gain of the amplifier.
As in the previous example, if we let a

�
	 � we obtain the gain of the ideal

noninverting amplifier:

A
�
� 1�

R
�

R
�

(3.93)

Figure 3.46

The null inverse gain is determined in Fig. 3.47a in which the dependent voltage
generator is replaced with an independent one pointing in the opposite direction.
With v

�
� 0, the current through r

�
is v

�
/r

�
, the voltage across R

�
and R

�
is

(v
�
/r

�
)R

�
and, finally, the current throughR

�
is [(v

�
/r

�
)R

�
]/R

�
. Since the sum of the

currents in R
�
and R

�
flows through r

��
, the voltage across r

��
is:

v
�
� (1�R

�
/r

�
)(v

�
/r

�
)r

��
(3.94)

It follows that:

���
�
1�R

�
/R

�
r
�

r
��

(3.95)

The determination of the inverse gain with v
��

� 0 is shown in Fig. 3.47bwhich is

the same as Fig. 3.45b so that a��
 is still given by Eq. (3.90).
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Substituting Eqs. (3.93), (3.95) and (3.90) in the EET given by Eq. (3.87) we
obtain:

A�A
�

1� 1/a
�
���


1� 1/a
�
a��


(3.96)

��1�
R

�
R

�
�

1�
r
�
/r

��
a
�
(1�R

�
/R

�
)

1�
1

a
�
�1�

r
�

R
�
��1�

R
�
� r

�
�R

�
R

�
� r

��
�

Figure 3.47

From the expressions of the gain of the inverting and the noninverting nonideal
operational amplifiers obtained above in Eqs. (3.92) and (3.96), we can see why the
simple expressions of the ideal closed-loop gain, �R

�
/R

�
and 1�R

�
/R

�
, are

excellent approximations of the real closed-loop gain. �

3.5 Review

The extra element theorem (EET) is a tool which simplifies the determination of a
transfer function,H, of an electrical circuit by breaking up the analysis into three
separate, independent and simpler parts. In the first part, an impedance element or
a dependent source of the network, connected across a certain port, is designated
as an extra element and set to zero or infinity. The choice of the extra element is
mostly motivated by the greatest and most obvious simplification of the network
which yields a simpler transfer functionH

�
. In the second part, the excitation of the

transfer function applied to the network is set to zero and a second transfer
function is determined at the port of the extra element with the extra element
removed. If the extra element is an impedance, this transfer function is the
impedance looking into that port. If the extra element is a controlled source, this
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transfer function is the ratio of the response of the controlling variable to an
independent source connected at that port which is of the same type but opposite
polarity as the dependent source. Either transfer function is simpler than the
original one, H, because it is determined on a circuit which does not contain the
extra element. In the third part, the excitation of the transfer function is retained
and an additional excitation is applied at the port of the extra element with the
extra element removed.With two excitations, the response of the transfer function,
H, is nulled and a third ‘‘transfer function,’’ called null transfer function, is
determined as in the second part. The desired transfer function is then assembled
from these three separate transfer functions and the extra element using the
bilinear form. Thus, when the reactive element in a first-order circuit is designated
as the extra element, the EET reduces its analysis to the analysis of three resistive
circuits.

Problems

3.1 Nulling a response. Determine the relationship between v
�
and v

��
in Example

3.4 which nulls the output voltage. A knowledge of this relationship is not required
for the determination of a null driving-point impedance or a null inverse gain. Null
response calculations are always performed by assuming that the response has
been nulled and following that null on the circuit diagram all the way back to v

�
or

i
�
.

3.2 The EET. Derive the second form of the EET in Eq. (3.36) beginning with Fig.
3.18b in which Z is replaced with a voltage V carrying a current I.

3.3 Differential amplifier with adjustable gain. The differential amplifier in Fig.
3.48a is a subtractor with gain R

�
/R

�
. Its output is given by:

v
�
�

R
�

R
�

(v
�
� v

�
) (3.97)

This circuit is not suitable if variable gain is required because it requires
simultaneous adjustment of two resistors. An extra degree of freedom is added to
this circuit by splitting each R

�
intoR

��
andR

��
thus providing a new port across

which R
���

can be connected as shown in Fig. 3.48b. Show that the gain of this
circuit is given by:

v
�
�

R
��

�R
��

R
�

�1�
2R

��
�R

��
R

���
� (v�� v

�
) (3.98)
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Figure 3.48

If R
��

�R
��

�R
�
, then we have:

v
�
�

2R
�

R
�
�1�

R
�

R
���
� (v�� v

�
) (3.99)

Hints: (i) Since the circuit is symmetrical, you can consider the gain from either input to the

output as shown in Fig. 3.48c in whichR
���

is designated as the extra element and removed from

the circuit. The gain of this circuit is simply:

A
�
� �

R
��

�R
��

R
�

(3.100)

Figure 3.48 (cont.)

(ii) Determine the ordinary driving-point impedance,R��
, looking into port (1) as
shown in Fig. 3.48d.

(iii) Determine the null driving-point impedance, R��
, looking into port (1) as
shown in Fig. 3.48e. Apply the first form of the EET in Eq. (3.34).
Note that:

100 The extra element theorem



Figure 3.48 (cont.)

i
�
�

v
�

R
��

�R
��

�
v
�

R
��

(3.101a—c)
i
�
��

v
�

R
��

�R
��

�
v
�

R
��



v

�
� v

�
� v

�

Figure 3.48 (cont.)

3.4 Bridge phase shifter. For the bridge circuit in Example 3.9, determine the
relationship between the resistors so that the magnitudes of the pole and zero are
numerically equal. Determine the complete transfer function with this condition
satisfied. Note how the gain varies as the pole and zero move together to vary the
phase at a given frequency.

3.5 Adjustable phase shifter. The circuit in Example 3.11 can be easily converted
into an adjustable phase shifter by interchanging C

�
and R

�
and using a FET to

emulate R
�
as shown in Fig. 3.49. Verify that the results of Example 3.11 hold for

this circuit as well.
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Figure 3.49

3.6 Input resistance of a bridge circuit. Verify that the expression ofR�
�
in Eq. (3.70)

is the input impedance of the bridge circuit with R
�
taken as the extra element.

3.7 The effect of the feedback resistor on the gain of the common-emitter ampli-
fier. Verify Eq. (2.47) in which R

�
is treated as the extra element.

3.8 The effect of the collector-to-emitter resistance on the gain of the common-
emitter amplifier.

(a) Using the EET, determine the effect of the collector-to-emitter resistance, r
 �
,

on the voltage gain of the common-emitter in Figs. 3.50a and b and show that it
is given by:

A��
R

!
R

�

�

1�
(R

�
� r�)/R�
1�	

1�
R

�
r
 �
	

1�
R

!
r
 �

1�
R

�
(R

�
� r�) �R!

1�
R

�
(1� 	)

(R
�
� r�)

(3.102)

Hint: (i) Let r
 �
be the extra element and let r

 �
	 � as shown in Fig. 3.50c and determine

the voltage gain.

(ii) Determine next the null driving-point impedance looking into port (c) as shown in Fig.

3.50d.

(iii) Determine the ordinary driving-point impedance looking into port (c) as shown in Fig.

3.50e. To determine R� 
, you can apply the EET for impedance functions with R
�
as the

extra element as shown in Figs. 3.50f and g. This is an example of nested EET.

102 The extra element theorem



Figure 3.50

(b) Note that as 	 	 �, the gainA	 �R
!
/R

�
. The reason for this is that R

�
feeds

back a voltage v
�
proportional to the output voltage, which when 	 	 �,

becomes:

v
�
� i

�
R

�
� i

 
R

�
��

v
�

R
!

R
�

(3.103)

because i
"
	 0 and the collector and emitter currents become identical. Hence,

with 	 	 � the foreward gain becomes infinite and the closed-loop gain A is
determined entirely by the feedback network and is given by the reciprocal of
the feedback gain v

�
/v

�
. Determine another expression of the voltage gain

treating 	 as the extra element and show that it is given by:
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Figure 3.50 (cont.)

A��
R

!
R

�

1�
R

�
r
 �
	

1�
1

	�1�
R

!
r
 �
��1�

R
�
� r�

R
�
� (r

 �
�R

!
)�

(3.104)

Hints: (i) Let 	 be the extra element and let 	 	 � as shown in Fig. 3.50i and determine the

voltage gain.

Figure 3.50 (cont.)

(ii) Determine the inverse currentB# � 
 with the response nulled as shown in Fig. 3.50j.

Figure 3.50 (cont.)

(iii) Determine the inverse current gain B# � 
 with the excitation removed as shown in Fig.

3.50k and apply the EET for dependent sources.
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Figure 3.50 (cont.)

(c) Knowing that R
�
/	r

 �
� 1 always, show that if we assume R

!
� (R

�
� r�), the

expression of A given in part (a) can be approximated as:

A��
R

!
R

�

�

1�
(R

�
� r�)/R�
1� 	

1

1�
R

!
r
 �

1�
R

�
R

�
� r�

1�
R

�
(	� 1)

R
�
� r�

(3.105)

(d) We would like to know how large R
!
can get before the effect of r

 �
cannot be

ignored. This is particularly important if the load is a current source. Using
the expression above, show that a quantitative criterion for ignoring r

 �
, is

given by:

r
 �

�R
!

1�
R

�
R

�
� r�

1�
R

�
(	 � 1)

R
�
� r�

(3.106)

Show that if 	 is large enough so that the gain is given by A��R
 
/R

�
,

then the criterion of ignoring r
 �
becomes:

r
 �

�
R

!
	 �1�

R
�
� r�
R

�
� (3.107)

This shows that, in the presence of R
�
and with large 	, r

 �
can be

comparable to R
!
and still have no effect on the gain.

3.9 Inductive behavior of the output impedance of the emitter-follower. Show that
the output imedpance of the emitter-follower shown in Figs. 3.51a and b is given
by:

Z
�
�R

�

1� s/�
�

1� s/�
�

(3.108)

where:

R
�
�R

�
� r

 � �
R

�
� r�

1� g
$
r�

(3.109)
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�
�
�

1

C�r� �R
�

(3.110)

�
�
�

1

C�r��
R

�
�R

�
� r

 �
1� g

$
R

�
� r

 �

(3.111)

In this derivation, C� has been ignored because, as we shall see later, its
contribution with a small R

�
occurs at very high frequencies. Note that if we let

R
�

	 �, we obtain the impedance looking directly into the emitter. Determine
R

�
, �

�
and �

�
with R

�
	 � and show that if R

�
� 1/g

$
, then �

�
��

�
and the

output impedance increases at 20 dB/dec between �
�
and �

�
, like an inductive

impedance. Show that the effective inductance is L
�
�C�R�

/g
$
.

Figure 3.51

It is important to consider this inductive behavior when designing an emitter-
follower with a capacitative load in order to prevent the output voltage from
ringing or preventing the system from becoming unstable altogether.
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4 The N-extra element theorem
Divide and conquer

4.1 Introduction

The N-extra element theorem (NEET) is an extension of the EET to N elements
consisting of impedance elements and dependent sources connected across an
N-port network as shown in Fig. 4.1. In this figure, A

�
u
�
,A

�
u
�
, . . .,A

�
u
�
are arbit-

rary dependent voltage and current sources controlled by internal voltages or
currents, u

�
, u

�
, . . ., u

�
, with gains A

�
,A

�
, . . .,A

�
, respectively. The most useful appli-

cation of the NEET is when these elements are either inductors or capacitors
rather than arbitrary impedance branches because, upon their removal, one can
determine the complete Nth-order transfer function from the remaining purely
resistive network.

Figure 4.1

In general, to solve a complex circuit effectively, the NEET must be applied
piecemeal. For instance, in a circuit containing several reactive elements, resistors
and dependent sources, the reactive elements are removed first. If the remaining
circuit, which consists of resistors and dependent sources, is fairly complex, then
the NEET can be applied by designating certain resistors and dependent sources
as extra elements. The contribution of the reactive elements is then determined by
a separate application of the NEET to the reactive elements (see Problem 3.8 for
example).
Although the NEET is a relatively straight-forward and intuitive procedure, the

best way to develop it is to start with the 2-EET for impedance elements. The most

107



general form of the NEET and a proof will be given in Sections 4.4 and 4.5,
respectively.

4.2 The 2-EET for impedance elements

Consider the LTI network in Fig. 4.2 in which the impedance elements Z
�
and Z

�
are connected across ports (1) and (2), respectively. We would like to determine a
certain transfer function of this network:

H(s)�
u
�
(s)

u
��
(s)

(4.1)

Since each impedance element can be removed from the circuit either by
shorting it or opening it, there are four possible ways of removing both elements.
In Fig. 4.3, we show Z

�
and Z

�
removed as open circuits or, equivalently, port (1)

and port (2) opened.
Several important definitions are required for the development of NEET.

Figure 4.2

Figure 4.3

Reference network: The network in Fig. 4.3 is called the reference network which
is obtained from the original network in Fig. 4.2 by opening ports (1) and (2). There
are four reference networks which can be obtained from the original network in
Fig. 4.2. The remaining three reference networks are shown in Figs. 4.4a—c.
Reference state of a port: The open or short state of a port in the reference

network is called its reference state. In Fig. 4.3, the reference state of port (1) is open
and the reference state of port (2) is open. In Fig. 4.4a, the reference state of port (1)
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Figure 4.4

is open and the reference state of port (2) is short. In Fig. 4.4b, the reference state of
port (1) is short and the reference state of port (2) is open. In Fig. 4.4c, the reference
state of both ports is short.
Opposite state of a port: The opposite state of a port is defined as the opposite of

its reference state. Hence in Fig. 4.3, the opposite state of port (1) is a short, while in
Fig. 4.4c the opposite state of port (1) is an open.
Reference transfer function: The transfer function of the reference network in Fig.

4.3 is called the reference transfer function and is written as:

H
�
�
u
�
u
��
� ������	�
������	�

(4.2)

According to the 2-EET, the transfer function in Eq. (4.1) is given in terms ofH
�
,

Z
�
and Z

�
according to the following structure, which is a generalization of the

structure of the EET:

H(s)�H
�

1�
�
Z

�

�
�
Z

�

�
�
Z

�

�
Z

�

1�
�
Z

�

�
�
Z

�

�
�
Z

�

�
Z

�

(4.3)

The asterixes in Eq. (4.3) correspond to certain port impedances of the reference
network which are independent of the extra elements Z

�
andZ

�
and are discussed
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later. At the moment, we would like to discuss two important features of the
structure of Eq. (4.3), namely, the placement and the combination of the extra
elements Z

�
and Z

�
in the numerator and the denominator.

1. Placement of Z1 and Z2. In Eq. (4.3),Z
�
and Z

�
are placed in the denominator

of the small fractions which occur in the numerator and the denominator of the
transfer function so that when they both become infinite, H(s) reduces to the
reference transfer function, H

�
, i.e. Z

�
,Z

�
���H(s)�H

�
. We can also see

that when Z
�
becomes infinite, Eq. (4.3) reduces to the EET for Z

�
and,

similarly, when Z
�
becomes infinite, (4.3) reduces to the EET for Z

�
. It follows

that, for the reference network in Fig. 4.4c, Z
�
and Z

�
are placed in the

numerator of the small fractions in the 2-EET:

H(s)�H�
�

1�
Z

�
�

�
Z

�
�

�
Z

�
�
Z

�
�

1�
Z

�
�

�
Z

�
�

�
Z

�
�
Z

�
�

(4.4)

in which H�
�
is the reference transfer function of the network in Fig. 4.4c and

defined as:

H�
�
�
u
�
u
��
� ����
���

����
���


(4.5)

It is clear then, that in order to recover the transfer function, the placement of
Z

�
and Z

�
in the 2-EET for the reference network in Fig. 4.4a, is:

H(s)�H�
�

1�
�
Z

�

�
Z

�
�

�
�
Z

�

Z
�

�

1�
�
Z

�

�
Z

�
�

�
�
Z

�

Z
�

�

(4.6)

in which:

H�
�
�
u
�
u
��
� ������	�
����
���


(4.7)

For the reference circuit in Fig. 4.4b, Z
�
and Z

�
are interchanged in Eq. (4.6).

2. The combinations of Z1 and Z2. There are two combinations in which Z
�
and

Z
�
appear in the structure of the 2-EET in Eqs. (4.3), (4.4) or (4.6). In the first

combination, one impedance element is taken at a time to generate the second
and third terms in the numerator and the denominator. In the second combina-
tion, two impedance elements are taken at a time to generate the last term. The
number of terms each combination produces is given by:
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one at a time��
2

1�� 2 terms

(4.8)
two at a time��

2

2�� 1 term

which is the familiar combinatoric formula. Now we begin to see the trend for
more extra elements. For example, for three extra elements, there would be
three combinations (one at a time, two at a time and three at a time) with each
combination producing the following number of terms:

one at a time��
3

1�� 3 terms

two at a time ��
3

2�� 3 terms (4.9)

three at a time��
3

3�� 1 term





Hence, in the 3-EET there are seven terms added to unity in the numerator and
the denominator, respectively.
Next, we determine the port impedances of the reference network which

correspond to the asterixes in the structure of the 2-EET. As in the case of the
EET, we shall determine two types of port impedances: ordinary driving-point
impedances and null driving-point impedances. For the 2-EET, the four ordi-
nary driving-point impedances, Z���

���
are defined as:

Z����Ordinary driving-point impedance looking in port (1)
with port (2) in its reference state.

Z����Ordinary driving-point impedance looking in port (2)
with port (1) in its reference state.

Z���
���

�Ordinary driving-point impedance looking in port (1)
with port (2) in its opposite state.

Z���
���

�Ordinary driving-point impedance looking in port (2)
with port (1) in its opposite state.

Since these are ordinary driving point impedances, they are determined
with the excitation set to zero, i.e. u

��
� 0. Observe that, in the notation

above, a subscript is used only to designate a port which is in its opposite
state. Hence, if a port does not appear in the subscript, it is considered to be in
its reference state.
The null driving-point impedances are defined exactly in the same way as

the ordinary driving-point impedances and are determined under double
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injection with the response nulled, i.e. u
�
� 0. The following notation is used:

Z���
���

�Null driving-point impedance looking in port (i)
with port (j) in its opposite state.

Each of these port impedances is worked out in the following examples.

Example 4.1 Let the reference network in Fig. 4.3, repeated here in Fig. 4.5a, be
purely resistive. The ordinary driving-point resistances R���, R���, R���

���
and R���

���
are

shown in Figs. 4.5b—e, respectively.

Figure 4.5

Since these are ordinary driving-point resistances, the excitation of the transfer
function is set to zero, i.e. u

��
� 0. In Fig. 4.5b,R��� is determinedwith port (2) open,

which correspnds to its reference state in Fig. 4.5a. In Fig. 4.5c, R��� is determined
with port (1) open, which is its reference state in Fig. 4.5a. In Fig. 4.5d, R���

���
is

determined with port (2) short, which is the opposite of its reference state in Fig.
4.5a. In Fig. 4.5e, R���

���
is determined with port (1) short, which is the opposite of its

reference state in Fig. 4.5a. �

Example 4.2 Let the reference network in Fig. 4.4c, repeated here in Fig. 4.6a, be
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purely resistive. The ordinary driving-point resistances R���, R���, R���
���

and R���
���

for
this network are shown in Figs. 4.6b—e, respectively.We can see that the state of the
other port for each driving-point resistance of this reference network is exactly
opposite that of the corresponding driving-point resistance in Example 4.1. The
reason for this is that the reference state of both ports in Fig. 4.6a is opposite to
those in Fig. 4.5a.

Figure 4.6

Note that the reference state of port (1), whether short or open, has nothing to
do with R���, because R��� is determined looking into port (1) regardless of its
reference state. The same applies to R���. In other words, for the reference network
in Fig. 4.6a, R��� and R��� should not be confused with zero simply because their
reference state is a short. �

Figure 4.6 (cont.)

Example 4.3 For the reference network in Fig. 4.4a, repeated here in Fig. 4.7a, the
null driving-point resistances R���, R���, R���

���
and R���

���
are shown in Figs. 4.7b—e,

respectively.
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Figure 4.7

As explained in Chapter 3, these null driving-point resistances are determined
by nulling the response of the transfer function, u

�
, with the simultaneous applica-

tion of two excitations: the excitation of the transfer function, u
�
, and the test

source, v
�
(or i

�
), connected at the port of interest (null double injection.) �

All the asterixes in the four different forms of the 2-EET are now replaced with
the null and ordinary driving-point impedances. As in the case of the EET, the null
driving-point impedances go into the numerator of the transfer function while the
ordinary driving point impedances go into its denominator. For the first form of
the 2-EET in Eq. (4.3), whose reference circuit is shown in Fig. 4.3, these port
impedances are substituted as:

H(s)�H
�

1�
Z���

Z
�

�
Z���

Z
�

�
Z���

Z
�

Z���
���
Z

�

1�
Z���

Z
�

�
Z���

Z
�

�
Z���

Z
�

Z���
���
Z

�

(4.10)

Hence, in order to determineH(s), wemust perform seven separate and indepen-
dent calculations on the reference network. Although this may seem like a much
more difficult task to perform than determining H(s) directly, the following
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examples will prove to the contrary. Notice that only three of the four ordinary
and null driving-point impedances are used in Eq. (4.10). This means that we have
a choice in picking the order of Z

�
and Z

�
when forming the product in the last

term in the numerator and the denominator. Hence, since the order is immaterial,
the last term in the numerator can be written as:

Z���

Z
�

Z���
���
Z

�

(4.11)

and the last term in the denominator can be written as:

Z���

Z
�

Z���
���
Z

�

(4.12)

A comparison of these with their corresponding terms in the numerator and
denominator of Eq. (4.10) yields the following equalities:

Z���Z���
���

�Z���Z���
���

(4.13)

Z���Z���
���

�Z���Z���
���

(4.14)

Equation (4.14) can be rewritten as:

Z���

Z���
���

�
Z���

Z���
���

(4.15)

Equation (4.15) is a well-known theorem of two-port networks which states that
the ratio of the impedance looking into port (1) with port (2) open to the imped-
ance looking into port (1) with port (2) short is equal to the ratio of the impedance
looking into port (2) with port (1) open to the impedance looking into port (2) with
port (1) short (see Problems 4.1 and 4.2).
For the second form of the 2-EET in Eq. (4.4), whose reference circuit is shown in

Fig. 4.4c, these port impedances are substituted as:

H(s)�H�
�

1�
Z

�
Z���

�
Z

�
Z���

�
Z

�
Z���

Z
�

Z���
���

1�
Z

�
Z���

�
Z

�
Z���

�
Z

�
Z���

Z
�

Z���
���

(4.16)

For the remaining two forms of the 2-EET which correspond to the reference
networks in Figs. 4.4a and b we have, respectively:
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H(s)�H�
�

1�
Z���

Z
�

�
Z

�
Z���

�
Z���

Z
�

Z
�

Z���
���

1�
Z���

Z
�

�
Z

�
Z���

�
Z���

Z
�

Z
�

Z���
���

(4.17)

H(s)�H���
�

1�
Z

�
Z���

�
Z���

Z
�

�
Z

�
Z���

Z���
���
Z

�

1�
Z

�
Z���

�
Z���

Z
�

�
Z

�
Z���

Z���
���
Z

�

(4.18)

As mentioned earlier, one of the most useful applications of the NEET is in the
analysis of reactive circuits. In the following examples the 2-EET is applied to
solve second-order networks.

Example 4.4 Determine the transfer function of the passive second-order filter in
Fig. 4.8.

Figure 4.8

IfL andC are designated as the two extra elements, the reference network can be
formed by considering this circuit at zero frequency in which the capacitor is

Figure 4.9

replaced with an open and the inductor is replaced with a short as shown in Fig.
4.9. The transfer function of the reference circuit in Fig. 4.9 is given by:
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H
�
�
v
�
v
��

�
1

1�
R



� r

�
� (R

�
�R

�
)

R

(4.19)

According to the 2-EET, the transfer function of the circuit in Fig. 4.8 is given
(see Eq. (4.18)) by:

H(s)�H
�

1�
sL
R���

�
R���

1/sC
�

sL
R���

R���
���

1/sC

1�
sL
R���

�
R���

1/sC
�

sL
R���

R���
���

1/sC
(4.20a, b)

�H
�

1� s�
L

R���
�CR����� s�LC

R���
���

R���

1� s�
L
R���

�CR����� s�LC
R���

���
R���





The ordinary driving-point impedances are determined first. For these, the
excitation of the transfer function is set to zero by replacing v

��
with a short circuit

as shown in Figs. 4.10a, b and 11. For the circuit in Fig. 4.10a, R��� is readily given
by:

R���� r
�
� (R

�
�R

�
) � (R



�R) (4.21)

In Fig. 4.10b,R��� is equal to r
�
plus the impedance of a bridge circuit in which r

�
is the bridge element. The impedance of a bridge circuit was derived in Chapter 1
using the EET, with the bridge resistance as the designated extra element. Hence,
according to Eq. (1.5), R��� is given by:

R���� r
�
� (R

�
�R



) � (R

�
�R)

1�
R

�
�R



�R

�
�R

r
�

1�
(R

�
�R

�
) � (R



�R)

r
�

(4.22)

Figure 4.10

117 4.2 The 2-EET for impedance elements



In Fig. 4.11, port (1) is changed to its opposite state for the determination ofR���
���
,

which is readily given by:

R���
���

� r
�
� (R

�
�R



) � (R

�
�R) (4.23)

Figure 4.11

In Fig. 4.12, R��� is determined using null double injection. The null in the
output voltage is accompanied by a null in the output current so that the test
current, i

�
, flows entirely through R

�
and R

�
. It follows that:

R���� r
�
�R

�
�R

�
(4.24)

Figure 4.12

SinceR���� r
�
�R����, we determineR���� as shown in Fig. 4.13a, whence we see

that when the output voltage is nulled, the test voltage, v
�
, appears entirely across

R
�
. The current throughR

�
, which is now given by v

�
/R

�
, flows entirely through r

�
because of the null in the output current. It follows that the voltage across R

�
is

equal to v
�
� (v

�
/R

�
)r
�
and the test current is given by:

i
�
�
v
�
R

�

�
v
�
� (v

�
/R

�
)r
�

R
�

(4.25a, b)
� v

��
1

R
�

�
1� r

�
/R

�
R

�
�




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Recognizing the parallel combination in Eq. (4.25b), we can write R��� as:

R���� r
�
�R

��
R

�
1� r

�
/R

�

(4.26)

To obtainR���
���
, port (1) must be in its opposite state, or opened, as shown in Fig.

4.13b whenceR����
���

is seen to be zero. It is also very useful to see that opening port
(1) is the same as letting r

�
��, so that R���

���
can be obtained directly from the

expression ofR��� by letting r
�
��. Either way, we have:

R���
���

� r
�

(4.27)

Substituting the results for the ordinary and null driving-point impedances in
Eq. (4.20b), we obtain the complete transfer function:

H(s)�H
�

1� b
�
s� b

�
s�

1� a
�
s� a

�
s�

(4.28)

Figure 4.13

in which:

H
�
�

1

1� [R


� r

�
� (R

�
�R

�
)]/R

(4.29)

a
�
�

L
r
�
� (R

�
�R

�
) � (R



�R)

(4.30)

�C�r� � (R
�
�R



) � (R

�
�R)

1�
R

�
�R



�R

�
�R

r
�

1�
(R

�
�R

�
) � (R



�R)

r
�

�
a
�
� LC

r
�
� (R

�
�R



) � (R

�
�R)

r
�
� (R

�
�R

�
) � (R



�R)

(4.31)
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b
�
�

L
r
�
�R

�
�R

�

�C�r� �R
��

R
�

1� r
�
/R

�
� (4.32)

b
�
�CL

r
�

r
�
�R

�
�R

�

(4.33)

Although these are rather impressive, low-entropy equations, the quadratic
factors in the numerator and the denominator cannot be left as they are. If the
elements are chosen such that the resonance determined by L and C has a high Q,
then the quadratic must be written as 1� s(�

�
/Q)� (s/�

�
)�, otherwise it must be

written in factored form as (1� s/�
�
)(1� s/�

�
) in which ��

�
and ��

�
are the

real roots. Approximate factoring of quadratics and higher-order frequency poly-
nomials will be discussed in later chapters. In the next two examples, numerical
values will be used to illustrate both cases. �

Example 4.5 The transfer function for the component values shown in Fig. 4.14 is
given by:

H(s)� 1.00
1� 2.557� 10	
 s

1� 1.268� 10	� s� 4.999� 10	�� s�
(4.34)

A magnitude and phase plot of this transfer function is shown in solid lines in
Fig. 4.15. The disparate values of the components shown may look a little odd to
you. In fact, they look odd to the engineer who designed the circuit too! His
original intent was to design a simple low-pass filter stage with a dc gain of unity
and a high-frequency attenuation of 0.2 as shown by the dashed lines in Fig. 4.15.
When the circuit was laid out on a printed circuit boardwithout his supervision, or
without paying attention to his instructions, two parasitic elements, R

�
and C,

were picked up by leaving a very large trace area between R
�
and R. This trace,

together with the ground plane, formed a parasitic capacitance, modeled by
C� 100 pF, and a distributed resistance, approximately modeled by R

�
� 0.52�.

We now determine the transfer function in Eq. (4.34) analytically and obtain
expressions for the unintentional resonant frequency and its Q-factor.
The resonance at �

�
� (2�)2.25� 10
 rad/s is due to the complex poles in the

denominator, which is written as:

1�
1

Q�
s

�
�
���

s

�
�
�
�

(4.35)

A comparison of the coefficients of s� in Eqs. (4.28) and (4.35) yields the expression
of the resonant frequency:
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Figure 4.14

Figure 4.15

�
�
�

1

�a
�

�
1

�LC�
r
�
� (R

�
�R

�
) � (R



�R)

r
�
� (R

�
�R



) � (R

�
�R)

(4.36)

Comparison of the coefficients of s in Eqs. (4.28) and (4.35) yields:

1

Q
� a

�
�

�
(4.37)

Squaring both sides of Eq. (4.36), we obtain:

1

r
�
� (R

�
�R

�
) � (R



�R)

�
1

��
�
LC

1

r
�
� (R

�
�R



) � (R

�
�R)

(4.38)

Substituting Eq. (4.38) in the expression of a
�
in Eq. (4.30) and using the result in
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Eq. (4.37) we get:

1

Q
�

1

�
�
C

1

r
�
� (R

�
�R



) � (R

�
�R)

(4.39)
�

1

�
�
L�r��

r
�
�R

�
�R



�R

�
�R

1� r
�
/(R

�
�R



) � (R

�
�R)�

It is always convenient to expressQ in terms of parallel and series combinations
of other Q-factors which can be defined appropriately. In Eq. (4.39) the following
Q-factors can be defined:

Q
�
��

�
C[r

�
� (R

�
�R



) � (R

�
�R)]

(4.40a, b)
Q

�
��

�
L�r� �

r
�
�R

�
�R



�R

�
�R

1� r
�
/(R

�
�R



) � (R

�
�R)�

	�





It follows that:

1

Q
�

1

Q
�

�
1

Q
�

(4.41)

This can be recognized as a parallel combination:

Q�Q
�
�Q

�
(4.42)

As you may have noticed, it is possible to derive other expressions of Q by
performing different substitutions. For instance, if Eq. (4.38) is not substituted in
Eq. (4.30) before applying (4.37), the two Q-factors in the parallel combination in
Eq. (4.41) would have different expressions and the one associated with�

�
Cwould

have a longer expression. Hence, the reason for substituting Eq. (4.38) was solely
for simplification purposes.
If r

�
and r

�
are parasitic resistances which are much smaller than the other

resistances in the circuit, then �
�
, Q

�
and Q

�
can be approximated:

�
�
�

1

�LC�
(R

�
�R

�
) � (R



�R)

(R
�
�R



) � (R

�
�R)

Q
�
��

�
C[(R

�
�R



) � (R

�
�R)] (4.43a—c)

Q
�
�

�
�
L

R
�
�R



�R

�
�R





For the values in Fig. 4.14, these can be further approximated:
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�
�
�

1

�LC�
R

�
�R

R


�R

�
1

�LC

Q
�
��

�
C(R

�
�R) (4.43d—f )

Q
�
�

�
�
L

R


�R

�





These expressions yield �
�
� (2�)2.55� 10
 rad/s, Q

�
� 5.65 and Q

�
� 450. Since

Q�Q
�
�Q

�
, we have Q�Q

�
� 15 dB, which agree well with Fig. 4.15.

In the numerator we have a single zero which can be written as:

1�
s

�
�

(4.44)

in which:

�
�
�

1

b
�

�
1

L
R

�
�R

�

�CR
�
�R

� (4.45a, b)

�
R

�
L





The complete transfer function is now written as:

H(s)�

1�
s

�
�

1�
1

Q�
s

�
�
���

s

�
�
�
�

(4.46)

The numerical value of the zero is�
�
� (2�)63.5� 10
 rad/s, which is in agreement

with Fig. 4.15. �

Example 4.6 When the components of the circuit in the previous example are
chosen as shown in Fig. 4.16, it behaves as a low-pass filter with a real input
impedanceR

��
�R at all frequencies. Such a filter is known as an equalizer and is

used with a source which needs to be terminated with its internal impedance,R, at
all frequencies. Using the results of the previous two examples, the transfer
function v

�
/v

��
is given by:

v
�
v
��

�
1

2

1�
s

2�
L
R

�RC�
1� s�

L
R

�RC�� s�LC

(4.47)
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Figure 4.16

If we let:

L
R

�RC�R��
L
C

(4.48)

then Eq. (4.47) reduces to a low-pass transfer function:

v
�
v
��

�
1

2

1� sRC

1� s2RC� (sRC)�
(4.49)

�
1

2

1

1� sRC

This transfer function and the input resistance are shown in Fig. 4.17.

Figure 4.17

The input resistance is real at all frequencies and equal to R (see Problem 4.3). �

Example 4.7 Determine the voltage gain of the common-emitter amplifier in Fig.
4.18a using the high-frequency small-signal model of the transistor shown in Fig.
4.18b. The parasitic base resistance, r

���
, is absorbed in the source resistance R



.

Two good candidates for extra elements are r� and r� because they usually have
very high values and are often ignored when the load is a resistor element rather
than a current source.
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Figure 4.18

With these elements taken out as infinite, we obtain the reference circuit shown
in Fig. 4.19 whose gain is readily given by:

A�
�
��

�R
�

R


� r� � (1��)R

�

(4.50)

��
R

�
R

�
� r

	
�

�
R



�

in which � � g
�
r� and ���/(1��). For design purposes, when �� 1 Eq. (4.50)

can be approximated as A�
�
��R

�
/R

�
.

The gain A
�
, according to the 2-EET, is given by:

A
�
�A�

�

1�
R���

r�
�

R���

r
�

�
R���

r�

R���
���
r
�

1�
R���

r�
�
R���

r
�

�
R���

r�

R���
���
r
�

(4.51)

Each of the port impedances in Eq. (4.51) is determined next.

Figure 4.19

R���: This is shown in Fig. 4.20 in which we see that a null in the output voltage
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causes a null in the output current which in turn causes (i) the test current i
�
to be

equal to ��i
�
and (ii) the sum of the voltage drops across R

�
and r

�
to be equal to

v
�
. Hence we have:

v
�
� i

�
r� � (1� �)i

�
R

�
(4.52a, b)

i
�
���i

�





These two yield:

R����
r� � (1��)R

�
�

(4.53a, b)

��
r
	
�R

�
�





in which r
	
� r�/(1� �)� r�(�/�).

Figure 4.20

R���: This is shown in Fig. 4.21. As a result of the null in the output voltage, and
hence in the output current, the test current i

�
is equal to �i

�
and the voltage across

R
�
, which is now given by i

�
R

�
, is equal to the negative of the test voltage v

�
.

Hence:

i
�
� �i

�
(4.54a, b)

v
�
��i

�
R

�





These two yield:

R�����
R

�
�

(4.55)

R���
���
: This is shown in Fig. 4.22. With port (2) shorted and the output voltage

nulled, the voltage across R
�
and R

�
is zero and the test current flows entirely

through r� so that we have:
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Figure 4.21

R���
���

� r� (4.56)

Figure 4.22

R���: This is shown in Fig. 4.23. We shall now perform a few basic steps in our
heads. First reflect r� into the emitter circuit as r	 � r�/(1��) and let it combine
with the emitter-resistor R

�
. Next, designate R

�
� r

	
as the extra element and

apply the EET to the impedance function R��� to obtain:

R����R���
�

1�
R���

R
�
� r

	

1�
R���

R
�
� r

	
(4.57a, b)

� (R


�R

�
)

1�
R



�R

�
R

�
� r

	

1�
R



(1��)(R

�
� r

	
)





The components of Eq. (4.57b) are derived as follows. When R
�
� r

	
is taken as

an open at port (E), the emitter, the base and the collector currents simultaneously
become zero and the impedance seen by v

�
at port (1) simply becomes R



�R

�
.

The null impedance R��� looking back into the circuit from the emitter port is
obtained by shorting port (1) and is given byR



�R

�
. The ordinary impedanceR���
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looking back from the emitter port is obtained by opening port (1) and is equal to
the impedance in the base divided by 1��, i.e. R



/(1��).

By factoring out R


�R

�
and R



/(1� �) from the numerator and the denomina-

tor, respectively, we can write Eq. (4.57b) as:

R����R
�

R


� (1��)(R

�
� r

	
)

R


�R

�
� (R

�
� r

	
)

(4.57c)

Figure 4.23

R���: This is shown in Fig. 4.24. IfR
�
is designated as the extra element and taken

out as a short, then application of the EET to the impedance function R��� yields:

R����R
�

1�
R

�
R

�
� (R



� r�)

1�
R

�
(1��)
R



� r

� (4.58a, b)

�R
�

R
� �
R



� r�

1��
R

�
�R

�
� (R



� r�)





Figure 4.24

The derivation of the components in Eq. (4.58a) is very similar to the derivation
of the components of (4.57b).
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R���
���
: This is shown in Fig. 4.25 in which the parallel combination of r� and the

dependent current generator i
�
� acts as an effective resistance r

	
� r�/(1��)

Figure 4.25

(which can also be easily recognized as the dynamic resistance of the diode formed
by the base—emitter junction when the base and the collector are shorted.) It
follows that:

R���
���

� r
	
� (R

�
�R



�R

�
) (4.59)

Before substituting these results in Eq. (4.51), we simplify the product R���R���
���
:

R���R���
���

�R
�
R



� (1��)(R

�
� r

	
)
r
	
� (R

�
�R



�R

�
)

R


�R

�
� (R

�
� r

	
)

�R
�

R


(1��)(R

�
� r

	
)

R


� (1��)(R

�
� r

	
)

r
	
(R

�
�R



�R

�
)

(R


�R

�
)(R

�
� r

	
)

(4.60a—c)

�R
�
r�

1�
R

�
R



�R

�

1�
(1� �)(R

�
� r

	
)

R







The expression of A
�
in Eq. (4.51) is now given by:

A
�
��

R
�

R
�
� r

	
�

�
R



�

�
1�

1

�
r
	
�R

�
r�

�
1

�
R

�
r
�

�
1

�
R

�
r
�

r
	
r�

1�
R

�
r�

R


� [(R

�
� r

	
)(1��)]

R


�R

�
� (R

�
� r

	
)

�
R

�
r
�

R
� �
R



� r�

1��
R

�
�R

�
� (R



� r�)

�
R

�
r�

r�
r
�

1�
R

�
R



�R

�

1�
(1��)(R

�
� r

	
)

R



(4.61)
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Since R�, r� �R
�
, r

	
the numerator always simplifies to unity. The denominator

simplifies in one of two different ways depending upon the value of R
�
. If the

amplifier is current loaded so that R
�
�R



, R

�
and � � 1, then A

�
simplifies as:

A
�
��

R
�

R
�
� r

	

�
1

1�
R

�
r�

1�
R



R

�
� r

	

1�
R



(R

�
� r

	
)�

�
R

�
r
�

1�
R

�
R



� r�

1�
�R

�
R



� r�

�
R

�
r�

r�
r
�

1�
R

�
R




1�
�(R

�
� r

	
)

R



(4.62)

If R
�
is a resistor, then in almost all cases R

�
� r

�
, r� so that the second

denominator in Eq. (4.62) can be approximated as unity. �

4.3 The 2-EET for dependent sources

Sometimes, it is desirable to determine the dependence of a transfer function on
two dependent generators explicitly in the form of the 2-EET, as may be the case in
a two-stage amplifier with feedback. In this section we shall discuss the form of the
2-EET for the arbitrary linear network shown in Fig. 4.26 in which two dependent
sources, having gainsA

�
andA

�
, are applied at ports (1) and (2), respectively. These

sources can be voltage or current sources controlled by internal currents or
voltages, u

�
and u

�
. As usual, a dependent generator can either be set to zero or to

infinity, the latter being suited for feedback amplifiers.
If we letA

�
�A

�
� 0, then we obtain the reference circuit in Fig. 4.27, which has

Figure 4.26
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Figure 4.27

a gain H
�
. According to the 2-EET, the complete transfer function can be ex-

pressed in terms of A
�
and A

�
:

H�H
�

1�A
�
A� ����A

�
A� ����A

�
A

�
A� ���A� ���

���
1�A

�
A� ����A

�
A� ����A

�
A

�
A� ���A� ���

���

(4.63)

in which the gains with bars over them are defined as:

A� ���
���

�The negative inverse gain, with respect to A
�
, from port (k) to the control-

ling voltage or current, u
�
, with the gain A

�
in its opposite state and the

response null. This is given by:

A� ���
���

��
u
�
u
�
� ����
������� 

�
	

(4.64)

in which u
�
is an independent test source of the same type as the

dependent source (current or voltage) connected at port (k). The four
possible cases ofA� ���

���
for two extra elements are shown in Fig. 4.28.

Figure 4.28
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A� ���
���

�The negative inverse gain, with respect toA
�
, fromport (k) to the controlling

voltage or current, u
�
, with the gain A

�
in its opposite state and the

excitation set to zero. This is given by:

A� ���
���

��
u
�
u
�
� �����
������� 

�
	

(4.65)

in which u
�
is an independent test source of the same type as the

dependent source connected at port (k). The four possible cases ofA� ���
���
are

shown in Fig. 4.29.

Figure 4.29

If we let both gains be infinite, then the 2-EET takes the following form:

H�H�
�

1�
1

A
�
A� ���

�
1

A
�
A� ���

�
1

A
�
A

�
A� ���A� ���

���

1�
1

A
�
A� ���

�
1

A
�
A� ���

�
1

A
�
A

�
A� ���A� ���

���

(4.66)

in whichH�
�
is shown in Fig. 4.30 and is given by:

H�
�
�
u
�
u
��
� ����
����

(4.67)

The other two forms of the 2-EET are left as an exercise.
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Figure 4.30

Example 4.8 Determine the voltage of the current feedback pair in Fig. 4.31 by
applying the 2-EET to �

�
and �

�
.

Figure 4.31

According to the 2-EET, the gain is given by:

A�A
�

1�
1

�
�
B� ���

�
1

�
�
B� ���

�
1

�
�
�
�
B� ���B� ���

���

1�
1

�
�
B� ���

�
1

�
�
B� ���

�
1

�
�
�
�
B� ���B� ���

���

(4.68)

Each component in Eq. (4.68) is determined next.

A
�
: If we let �

�
, �

�
�� then i

��
� i

��
� 0 as shown in Fig. 4.32. Since i

��
� 0, the

voltage drop across r� is zero and the base ofQ�
is at virtual ground. It follows that

the current through R
�
is the same as the current through R



, which is given by

v
��
/R



. Because of the virtual ground at the base of Q

�
, the voltage drop across R

�
,

which is given by (v
��
/R



)R

�
, is equal to the voltage R

�
so that the current through

R
�
is given by (v

��
/R



)R

�
/R

�
. Since i

��
� 0, the collector current ofQ

�
, or the output

current, is equal to its emitter current which is given by the sum of the currents in
R

�
and R

�
:

i
�
�
v
��
R




�
v
��
R




R
�

R
�

(4.69)
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It follows that:

A
�
�
R

�
R



�1�

R
�

R
�
� (4.70)

B� ���: This is the null inverse gain with respect to �
�
with �

�
�� and the

response nulled, i.e. v
�
� 0. It is determined by replacing �

�
with an independent

test current source, i
�
, pointing in the opposite direction and solving for the

Figure 4.32

current i
��
as shown in Fig. 4.33. Since the response is nulled, the output current

and hence the collector, emitter and base currents of Q
�
are all zero. It follows that

the voltage across R
�
, which is given by i

�
R

�
, is the same as the voltage across R

�
.

The voltage at the base ofQ
�
is given by the sumof the voltage drops acrossR

�
and

R
�
so that i

��
is given by:

i
��

�
1

r���i�R�
�
i
�
R

�
R

�

R
�� (4.71)

It follows that:

B� ����
i
��
i
�

�
R

�
r�� �1�

R
�

R
�
� (4.72)

B� ���: This is the null inverse gain with respect to �
�
with �

�
�� and the

response nulled, i.e. v
�
� 0. It is determined by replacing �

�
with an independent

test current source, i
�
, pointing in the opposite direction and solving for the

current i
��
as shown in Fig. 4.34. Since the output voltage is nulled, the output

current and i
�
� 0. Since i

��
remains finite because of v

��
, it follows that:
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Figure 4.33

B� ����
i
��
i
�

�� (4.73)

B� ���
���
: This is very similar toB� ��� except that in this case �

�
� 0. It can be seen in

Fig. 4.34, however, that whether �
�
is zero or infinite, i

�
� 0 and i

��
is finite so that:

B� ���
���

�
i
��
i
�

�� (4.74)

Figure 4.34

B� ���: This is the inverse gain with respect to �
�
with �

�
�� and with the

excitation set to zero, i.e. v
��

� 0. This is shown in Fig. 4.35. Since �
�
��, the base

current of Q
�
and hence v�� are both zero. It follows that the voltage drop across

R
�
, which is given by i

�
R

�
, is equal to the voltage across R

�
. The current i

��
due to

i
�
R

�
is obtained after a current division between R



and r�� of the current in R�

:

i
��

�
i
�
R

�
R

�
�R



� r��

R



R


� r��

(4.75)

Figure 4.35
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It follows that:

B� ����
R

�
r��

1

1�R
�
/R



� r��

(4.76)

B� ���: This is inverse gain with respect to �
�
with �

�
�� and v

��
� 0 as shown in

Fig. 4.36. Since i
��

� 0, the voltage at the base of Q
�
is zero so that there is no

current flow through r�� and R

, nor hence through R

�
. It follows that the voltage

across R
�
and hence the emitter current of Q

�
are both zero, and that i

�
� i

��
so

that:

B� ���� 1 (4.77)

Figure 4.36

B� ���
���
: SinceB� ��� turned out so simple, it is preferable to determineB� ���

���
rather than

B� ���
���

for the product term of the 2-EET. This is the inverse gain with respect to �
�

with �
�
� 0 and V

��
� 0 as shown in Fig. 4.37. After two successive current

divisions between R
�
and r�� �R

�
� (R

�
�R



� r��) and R


and r�� we obtain:

B� ���
���

�
1

1�
r�� �R

�
� (R

�
�R



� r��)

R
�

1

1�
r��
R




(4.78)

Figure 4.37

Substituting these results in Eq. (4.68) we obtain the gain A:
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A
�
�
R

�
R




1�
R

�
R

�

�
r��

�
�
R

�

1

�
�

�
r��

�
�
R

�
�1�

R
�

R


� r����

1�
r��
R



�
�
�
�
�1�

r���R
�
� (R

�
�R



� r��)

R
�

�
(4.79)

in which we have made use of 1/�
�
� 1� 1/�

�
. �

4.4 The NEET

The NEET��� just for impedance elements has 2� forms. If in addition to imped-
ance elements, we include the four types of dependent sources, then the number of
forms the NEET takes becomes unmanageable. In order to write a single expres-
sion for the NEET for all possible cases, we need to generalize the concept of a
linear element.
The general linear element � is defined as an element that relates any voltage and

any current of a linear network through a simple dependency relation � given by:

��
u
�
u
�

(4.80)

in which:

u
�
�A voltage or a current in a linear network.

u
�
�A dependent voltage or a current source with gain � and controlled by u

�
.

It is easily seen that � can be any of four types of dependent sources, as shown in
Fig. 4.38a—d. In Fig. 4.38e we show how an ordinary resistive element R (or in
general an impedance element Z) can be modeled by a current-controlled voltage
source (CCVS) which depends on the current passing through it. Hence, for a
resistor, u

�
� v

�
and u

�
� i

�
in Eq. (4.80) so that we have:

��R�
v
�
i
�

(4.81)

In Fig. 4.38f, we show the same resistor modeled as a conductive element (or in
general an admittance element) using a voltage-controlled current source (VCCS)
which depends on the voltage across it. In this case u

�
� i

�
and u

�
� v

�
in Eq. (4.80)

so that we have:

��G�
i
�
v
�

(4.82)
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Next we define the reference element function as:

e(�)� 



�; if �� 0 in the reference circuit.

1/�; if ��� in the reference circuit.
(4.83)

Hence, the value of the reference element function is always zero in the reference
circuit. For convenience, the argument, �, will be dropped from e(�). We define
next the reference null inverse gain function:

E���
����� � � ����

� 



A� ���
����� � � ����

; if �
�
� 0 in the reference circuit

1/A� ���
����� � ����

; if �
�
�� in the reference circuit

(4.84)

in which:

A� ���
���� � � ����

� null inverse gain with respect to �
�
while

�
�
, �

�
, . . ., �

�
are in their opposite state (4.85)

Similarly, we define the reference inverse gain function:

E���
����� � � ����

� 



A� ���
����� � � ����

; if �
�
� 0 in the reference circuit

1/A� ���
���� � � ����

; if �
�
�� in the reference circuit

(4.86)

in which:

A� ���
���� � � ����

� inverse gain with respect to �
�
while

�
�
, �

�
, . . ., �

�
are in their opposite state (4.87)

Finally, we define the following index permutation symbol:

	
��� � � � ��

� 



1, if i
 j
 k
 · · ·
m

0, otherwise
(4.88)

Note that 	
�
� 1 for i� 1, 2, . . .,N. The NEET can now be written as:

H�H
�

1� e
�
	
�
E���� e

�
e
�
	
��
E���E���

���
� e

�
e
�
e
�
	
���
E���E���

���
E���
�����

· · ·� e
�
e
�
· · · e

�
E���E���

���
· · ·E���

����� �� ���	��
1� e

�
	
�
E���� e

�
e
�
	
��
E���E���

���
� e

�
e
�
e
�
	
���
E���E���

���
E���
�����

· · ·� e
�
e
�
· · · e

�
E���E���

���
· · ·E���

����� �� ���	��

(4.89)

in which summation over repeated indices of e
�
e
�
· · · e

�
	
�� � � ��

is assumed. According
to Eq. (4.88) and the summation rule, there are (�

�
) terms in the summation e

�
	
�
, (�

�
)

terms in the summation e
�
e
�
	
��
, etc. Since the order in which the elements, or the

ports, are taken is not important, we have the following k! redundancy relations
for the null inverse gains (and the inverse gains with E�E) determined at k
arbitrary ports, n

�
, n

�
, . . ., n

�
:
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Figure 4.38

E����E����
����

· · ·E����
������� � � ����	��

�E����E����
����

· · ·E����
������� � � ����	��

(4.90)

�E����E����
����

· · ·E����
������� � � ����	��

�E����E����
����

· · ·

�E����E���	��
����

· · ·E����
���	����	�� � � �����

These redundancy relations are generalizations of the open-short theorem in Eqs.
(4.13) and (4.14) discussed earlier. Quite often an indeterminacy of the type
infinity-times-zero can occur when determining the product of these gains for a
given order. Such an indeterminacy often can be removed simply by changing the
order in which the ports or the elements are taken in the product (see Problem 4.5).
Equation (4.89) is the most general and compact form of the NEET and, as such,

it is of limited analytical use simply because it is very general. To this end, all we
need to know and appreciate is the intuitive procedure of the NEET and the
structure of its components.

Example 4.9 Determine the denominator of the transfer function of the notch
filter discussed in Examples 2.9 and 2.10 and shown here in Fig. 4.39. To obtain a
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notch response, the capacitors must all be equal and R
�
� 6(R

�
�R

�
).

The transfer function is of the form:

A(s)�A
�

N(s)

D(s)
(4.91)

Figure 4.39

in which A
�
is the low-frequency gain. The numeratorN(s) was determined using

the method discussed in Example 2.9 and will be redetermined here in the next
example using the 3-EET.
We designate the capacitors as the three extra elements and remove them to

obtain the reference circuit in Fig. 4.40a whence we have:

A
�
�

1

1�R
�
/R

�

(4.92)

The denominator is determined by setting the excitation of the transfer function
to zero, i.e. v

��
� 0, as shown in Fig. 4.40b. Note in Fig. 4.40a that once v

��
is

shorted,R
�
always appears in parallel withR

�
as shown in Fig. 4.40b. According to

the 3-EET the denominator is given by:

D(s)� 1� s[C
�
R����C

�
R����C

�
R���] (4.93)

� s�[C
�
C

�
R���R���

���
�C

�
C

�
R���R���

���
�C

�
C

�
R���R���

���
]

� s�C
�
C

�
C

�
R���R���

���
R���

�����

In what follows, we shall see how the entire denominator in Eq. (4.93) is
determined simply by inspecting the circuit in Fig. 4.40b.
The impedance looking into any one port while the other two are in their

reference states (open) is easily determined from Fig. 4.40b as follows:

R����R
�

(4.94)
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R����R
�
�R

�
�R

�
(4.95)

R����R
�
�R

�
(4.96)

Figure 4.40

In the coefficient of s�, we need to determine three additional port impedances.
The impedanceR���

���
is determined looking into port (2) with port (1) shorted, or in

its opposite state. In Fig. 4.40b this is seen to be the same as R��� so that we have:

R���
���

�R����R
�
�R

�
�R

�
(4.97)

The impedance R���
���

is determined by looking into port (3) with port (1) shorted
and is given by:

R���
���

�R
�

(4.98)

The impedance R���
���

is determined by looking into port (3) with port (2) shorted
and is given by:

R���
���

�R
�
�R

�
�R

�
�R

�
(4.99)

Finally, in the coefficient of s� we need to determine R���
�����

which is the imped-
ance looking into port (3) with ports (1) and (2) shorted. This is given by:

R���
�����

�R
�
�R

�
�R

�
(4.100)

Substituting Eqs. (4.94)—(4.100) in (4.93) we obtain:

D(s)� 1� a
�
s� a

�
s�� a

�
s� (4.101)

in which:

a
�
�R

�
(C

�
�C

�
)�R

�
(C

�
�C

�
)�R

�
�R

�
C

�

a
�
�R

�
R

�
(C

�
C

�
�C

�
C

�
�C

�
C

�
)

�C
�
R

�
�R

�
(C

�
R

�
�C

�
R

�
�C

�
R

�
)

(4.102a—c)

a
�
�C

�
C

�
C

�
R

�
R

�
(R

�
�R

�
)





With C
�
�C

�
�C

�
�C, Eqs. (4.102a, b) become:
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a
�
� [2(R

�
�R

�
)�R

�
�R

�
]C

a
�
� [3R

�
R

�
�R

�
�R

�
(2R

�
�R

�
)]C� (4.103a—c)

a
�
�R

�
R

�
(R

�
�R

�
)C�





Now that we have determined D(s) in low-entropy form, we must ascertain
whether its roots correspond to three real poles or a pole and a quadratic. Since the
roots of D(s) correspond to the eigenvalues of the structure obtained by reducing
the excitation to zero, we conclude that D(s) must have three real roots because
shorting v

��
in this circuit yields a passive, third-orderRC network. If the roots are

all negative and well separated, say by a factor of three or more, then D(s) can be
factored analytically to an excellent approximation:

D(s)� (1� a
�
s)�1�

a
�
a
�

s��1�
a
�
a
�

s� (4.104)

This approximation can be justified simply by expanding Eq. (4.104):

D(s)� 1� s�a� �
a
�
a
�

�
a
�
a
�
� (4.105)

� s�a
��
a
�
a
�
�a��

a
�
a
�
�� 1�� s�a

�

If the roots, as given by Eq. (4.104), are well separated, then we have:

a
�
�
a
�
a
�

�
a
�
a
�

(4.106)

According to these inequalities, the coefficient of s in Eq. (4.105) is dominated by a
�

and the coefficient of s� is dominated by a
�
so that D(s) in Eq. (4.104) or (4.105) is

approximately the same as D(s) in Eq. (4.101). The factored form of D(s) in Eq.
(4.104) is expressed in terms of poles:

D(s)��1�
s

�
�
��1�

s

�
�
��1�

s

�
�
� (4.107)

in which:

�
�
�

1

a
�

�
1

C(�
�
R

�
�R

�
�R

�
)

(4.108)

�
�
�
a
�
a
�

�
1

CR
�

�
�
R

�
�R

�
�R

�

3R
�
�R

�
�R

��1�
2R

�
R

�
�

(4.109)
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�
�
�
a
�
a
�

�
1

CR
�
�R

�
� (�

�
R

�
) �R

�

(4.110)

When R
�
and R

�
are set up as a potentiometer, so that the circuit becomes a

tunable notch filter, as shown in Fig. 2.16, we have:

R
�
� kR

�
/6

(4.111a, b)
R

�
� (1� k)R

�
/6





in which recall that R
�
�R

�
�R

�
/6. Substituting Eqs. (4.111) in (4.109) and

(4.110) we obtain:

�
�
�

4

R
�
C

1

1� k

1� 3
R

�
�R

�
R

�

k� 2
1� k

1� k

R
�
�R

�
R

�

(4.112)

�
�
�

1

R
�
C�1�

6

k
�

12

1� k
�
R

�
R

�
� (4.113)

The transfer function in factored pole-zero form is now given by:

v
�
(s)

v
��
(s)

�A
�

�1�
s�

��
�
��1�

s

�
�
�

�1�
s

�
�
��1�

s

�
�
��1�

s

�
�
�

(4.114)

in which�
�
and�

�
are given by Eqs. (2.55a) and (2.60) in Chapter 2 and are written

here in terms of k:

�
�
�

1

CR
�
�3k(1� k)

(4.115)

�
�
�

3

R
�
C

(4.116)

Using the following numerical values, we shall compare the exact and the
approximately factored transfer functions. For a 1.84-kHz notch filter feeding a
load of 30 k� we have:

R
�
�R

�
� 5 k�

R
�
� 60 k�

R
�
� 30 k�

C� 0.01�F
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The numerical values of A
�
, �

�
and �

�
are given by:

A
�
�

1

3
, �

�
� (2�)796 rad/s, �

�
� (2�)1.838 rad/s

The numerical values of the coefficients a
�
in the denominator in Eq. (4.101) are

given by:

a
�
� 4� 10	�, a

�
� 3.75� 10	�, a

�
� 5� 10	��

Note that these values satisfy the inequality in Eq. (4.106). The numerical values of
the approximate poles in Eqs. (4.108)—(4.110) are given by:

�
�
� (2�)389 rad/s, �

�
� (2�)1698 rad/s, �

�
� (2�)11.94� 10� rad/s

The approximate and exact transfer functions are plotted in Fig. 4.41 and are
seen to be in close agreement.

Figure 4.41

It is important to realize that the value of obtaining the analytical factors is not
in trying to obtain a highly precise numerical result but rather in providing a good
insight into the denominator. �

Example 4.10 In this example we shall determine the numerator of the transfer in
Section 4.3 using the 3-EET. As we shall find out, sometimes it is easier to
determine the numerator using the technique described in Chapter 2 and it is a
good idea to know both techniques equally well. The null driving-point impedan-
ces are determined next.

R���: R��� is shown in Fig. 4.42a whence we see that a null in the output voltage
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causes a null in the output current and hence a null in i
�
so that the total voltage

drop across R
�
and R

�
is zero and the test voltage source appears across R

�
. It

follows that:

R����R
�

(4.117)

R���: This is shown in Fig. 4.42b whence we see that a null in the output voltage
causes the test voltage source to appear directly across R

�
. It follows that:

R����R
�

(4.118)

R���: This is shown in Fig. 4.42c whence we see that a null in the output voltage
does not affect this calculation and that:

R����R
�
�R

�
(4.119)

It is interesting to observe that the only way to null the response in this case is by
adjusting the excitation to zero. This circuit and the one in Fig. 4.42a represent a
special case in which the test source has no influence on the response and the only
way to null the response is by adjusting the excitation to zero.

Figure 4.42

R���
���
: This is shown in Fig. 4.43a whence we see that a null in the output voltage

causes the test voltage source to appear directly across R
�
. It follows that:

R���
���

�R
�

(4.120)
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R���
���
: This is shown in Fig. 4.43b in which we see that a null in the output voltage

implies a zero voltage drop across R
�
, which in turn implies that the voltage drop

acrossR
�
is zero. Observe that this is in contrast withR��� above in which a null in

the output did not result in a null across R
�
. The path of the test current, i

�
, is

shown in Fig. 4.43b whence we have:

R���
���

�R
�

(4.121)

R���
���
: This is shown in Fig. 4.43c in which we see that the null in the output

voltage is copied on R
�
because of the short across port (2). The path of the test

current, i
�
, is shown in Fig. 4.43c whence we have:

R���
���

�R
�

(4.122)

Figure 4.43

R���
�����

: This is shown in Fig. 4.44 in which by carefully tracing the path of the test
current, i

�
, we obtain:

R���
�����

�R
�

(4.123)

Observe that one can easily get confused by v
�
appearing across R

�
and conclude

that R
�
should be in parallel with R

�
in Eq. (4.123). What is actually happening

here is that the output is nulled by setting v
�
� v

��
so that the current throughR

�
is

due to v
��
and the current through R

�
is due to v

�
. Both of these currents share a

common path provided by the short across port (1).
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Figure 4.44

Substituting the above in the expression of the numerator given by the 3-EET,
we get:

N(s)� 1� s2(R
�
�R

�
)C� s�3R

�
R

�
C� � s�R

�
R

�
R

�
C� (4.124)

If R
�
is chosen equal to 6(R

�
�R

�
), then the numerator factors exactly as dis-

cussed in Example 4.2. �

4.5 A proof of the NEET

In this section we shall give a direct proof of the most general form of the NEET in
Eq. (4.89) rather than an indirect proof using induction.� For the arbitrary linear
time invariant (LTI) network in Fig. 4.45, we can express the output signal, u

�
, as a

linear combination of the primary excitation, or input signal, u
��
, and N other

excitations, u
��
, applied to the system:

u
�
� a

�
u
��

� c�uy (4.125)

in which uT
y � [u

��
, u

��
, . . ., u

��
]. The internal signals, u

��
, can also be expressed as a

linear combination of u
��
and u

��
:

ux � bu
��

� Auy (4.126)

Figure 4.45

N arbitrary linear elements can be formed, if each excitation in the vector uy is
made to depend linearly on a corresponding internal signal in the vector ux:
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uy � �ux (4.127)

in which � is a diagonal matrix whose elements, �
�
, are the designated extra N

generalized linear elements whose reference values are zero.
Substituting Eq. (4.127) in (4.125) and (4.126) we get:

u
�
a	�
�

�a	�
�

cT�ux � u
�� (4.128a, b)

[I � �A]ux � bu
��





Equations (4.128a) and (4.128b) can be written in partitioned matrix form:

�
a	�
�

�a	�
�

c��

0 I � �A � �
u
�

ux
���

1

b� u�� (4.129)

According to Cramer’s rule, the input—output transfer functionH is given by:

H�
u
�
u
��

�
�
1 �a	�

�
c��

b I � �A �
�
a	�
�

�a	�
�

c��

0 I � �A �
(4.130)

The determinant in the denominator can be easily expanded:

�
a	�
�

�a	�
�

c��

0 I � �A �� a	�
�

� I � �A � (4.131)

In the determinant of the numerator we left-multiply the first row by b and
subtract it from the second row to obtain:

�
1 �a	�

�
c��

b I � �A �� �
1 �a	�

�
c��

0 I � �A � a	�
�

bc�� �� � I � �(A � a	�
�

bc�) � (4.132)

(In factoring � as shown in the last step, we have used the fact that � is a diagonal
matrix and hence it commutes with the matrix bc�.) Substituting (4.131) and
(4.132) in Eq. (4.130) we obtain the NEET in determinant form:

H� a
�

� I� �(A � a	�
�

bc�) �
� I � �A �

(4.133)

We can see from this equation that if we set �� 0, the transfer function reduces to
a
�
which is the gain of the reference network in Fig. 4.46, i.e. H

�
� a

�
. Equation

(4.133) can now be written as:

H�H
�

� I � �A �
� I � �A �

(4.134)

in which:

A� A � a	�
�

bc� (4.135)
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Figure 4.46

If the determinants in the numerator and the denominator of Eq. (4.134) are
carried out and the results interpreted in terms of the null and ordinary inverse
gains with respect to �, the expression of NEET is obtained. This is shown next.
The matrix [I � �A] is given by:

[I � �A]� (�1)�
�
�
a
��

� 1 �
�
a
��

. . . �
�
a
��

�
�
a
��

�
�
a
��

� 1 . . . �
�
a
��

. . .

�
�
a
��

�
�
a
��

. . . �
�
a
��

	�� (4.136)

Using the summation rule over repeated indices and the index permutation
symbol 	

��� � � ��
, � I � �A � can be expressed as:

� I � �A � � 1� �
�
	
��

(i, j)� �

�
�
�
�
�
	
���


(i, j, k)� · · ·

(4.137)��
�
�
�
· · · �

�

(1, 2, . . .,N)

in which


(i, j, . . .,m)�Determinant of matrix obtained from matrix A by deleting all rows
and columns different from i, j, . . .,m. For example, the first three such determi-
nants are:


(i)� a
��


(i, j)� �
a
��

a
��

a
��

a
��
�

(4.138a—c)


(i, j, k)� �
a
��

a
��

a
��

a
��

a
��

a
��

a
��

a
��

a
��
�





These determinants will now be interpreted in terms of the ordinary inverse
gains with respect to � with u

��
� 0. According to Eq. (4.126), if we set u

��
� 0, we

obtain:
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u
��

� a
��
u
��

� a
��
u
��
· · ·� a

��
u
��
· · ·� a

��
u
��

(4.139)

Let u
��
in this equation be the only independent excitation while all the other u

��
are

allowed to depend on u
��
through �

�
as given by Eq. (4.127), i.e. u

��
� �

�
u
��
. Now, if

we let all �
�
� 0, then all the dependent u

��
will vanish and according to Eq. (4.139)

we get:

u
��

� a
��
u
��

(4.140)

This can be written as:

�a
��
�

u
��

�u
��
�
�����

(4.141)

The right-hand side of Eq. (4.141) is immediately recognized to be the negative
inverse gain with respect to �

�
from port (i) to the controlling internal signal, u

��
,

with u
��

� 0 and all other elements, �
�
, in their reference state. In fact, the right-

hand side of Eq. (4.141) is an operational way of determining�a
��
which, using the

notation developed in the previous section, can be written as:

A� �����a
��

(4.142)

The operation corresponding to A� ��� is shown in Fig. 4.47.

Figure 4.47

In Fig. 4.48, let u
��
be an independent excitation applied at port (j) and let all

other �
�
be in their reference states, i.e. �

�
� 0, except for �

�
which will be in its

opposite state, i.e. �
�
��. Now, except for u

��
(which is the independent excita-

tion) and u
��
, all other u

��
� 0. Also note that u

��
� 0 because u

��
� u

��
/�

�
and

�
�
�� (this reminds us of infinite-gain opamp circuits in which the differential

input voltage of the opamp is zero). According to Eq. (4.126), we have:

u
��

� a
��
u
��

� a
��
u
��

� 0

u
��

� a
��
u
��

� a
��
u
��





(4.143a, b)
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Simultaneous solution of these two yields:

u
��

�u
��
� ����

�
a
��
a
��
� a

��
a
��

a
��

(4.144)

The left-hand side of Eq. (4.144) is seen to be the negative inverse gain from port (j)
to the controlling internal signal u

��
with u

��
� 0 and the extra element �

�
in its

opposite state which, in terms of the notation adopted in Section 4.3, is simplyA� ���
���
.

Equation (4.144) can be written as:

(�a
��
)
u
��

�u
��
� ����
�����

��(a
��
a
��
� a

��
a
��
) (4.145)

Figure 4.48

which can be expressed in terms of A� ��� and A� ���
���
as:

A� ���A� ���
���

��
(i, j) (4.146)

Following the same procedure, we can show in general that:

A� ���A� ���
���
A� ���

�����
· · ·A� ���

������� � � ���	��
��
(i, j, k, . . .,m) (4.147)

The determinant in Eq. (4.137) can now be written as:

� I � �A � � 1� �
�
	
�
A� ���� �

�
�
�
	
��
A� ���A� ���

���
� �

�
�
�
�
�
	
���
A� ���A� ���

���
A� ���

��� ��
� · · ·

(4.148)��
�
�
�
· · · �

�
A� ���A� ���

���
· · ·A� ���

����� � � ���	��

This proves the denominator of the NEET in Eq. (4.89) when the reference values
of all the extra elements are zero, i.e. e

�
��

�
and E���

��� ���� � � ��
�A� ���

��� ���� � � ��
. When the

reference value of some of the extra elements is taken as infinite, it can be shown
that these elements and their corresponding inverse gains will appear as recipro-
cals in Eq. (4.148). For these elements, the reference element function and the
reference inverse gain function in Eq. (4.89) are e

�
� 1/�

�
and E���

��� ���� � � ��
� 1/A� ���

������� � � ��
.
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The determinant in the numerator of Eq. (4.134) has the same expansion in Eq.
(4.137) in which A is replaced with A, which is given by:

A��
a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�

. . . a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�

. . . a
��

� a	�
�
b
�
c
�

. . . . . . . . . . . .

a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�
� (4.149)

Applying the expansion in Eq. (4.137) to � I � �A � , we obtain:

� I � �A �� 1� �
�
	
�

�(i)� �

�
�
�
	
��

�(i, j)� �

�
�
�
�
�
	
���


�(i, j, k)� · · ·

(4.150)��
�
�
�
· · · �

�

�(1, 2, . . .,N)

in which


�(i, j, . . .,m)�Determinant of the matrix obtained from matrixA by deleting all
rows and columns different from i, j, . . .,m. For example, the first three such
determinants are:


�(i)� a
��
� a	�

�
b
�
c
�


�(i, j)� �
a
��
� a	�

�
b
�
c
�
a
��
� a	�

�
b
�
c
�

a
��
� a	�

�
b
�
c
�
a
��

� a	�
�
b
�
c
�
�

(4.151a—c)


�(i, j, k)� �
a
��
� a	�

�
b
�
c
�

a
��
� a	�

�
b
�
c
�

a
��

� a	�
�
b
�
c
�

a
��
� a	�

�
b
�
c
�
a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�

a
��

� a	�
�
b
�
c
�
a
��

� a	�
�
b
�
c
�
a
��

� a	�
�
b
�
c
�
�





These determinants will now be expressed in terms of null inverse gains. To do so,
let u

��
be an independent external excitation applied at port (i) in addition to the

input excitation u
��
as shown in Fig. 4.49. Let all other u

��
be dependent on u

��
through �

�
and set all these to their reference value, i.e. u

��
� �

�
u
��

� 0. Now, with
the simultaneous application of u

��
and u

��
, we can null the response, u

�
, and write:

u
�
� a

�
u
��

� c
�
u
��

� 0
(4.152a, b)

u
��

� b
�
u
��

� a
��
u
��





From these, the negative of the null inverse gain from port (i) to the internal
controlling signal u

��
follows immediately:

A� ����
u
��

�u
��
�
����

��(a
��
� a	�

�
c
�
b
�
)��
�(i) (4.153)
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Figure 4.49

Proceeding in the same manner, we can show that:

A� ���A� ���
���

��
�(i, j) (4.154)

In general, it can be shown that:

A� ���A� ���
���
A� ���

��� ��
· · ·A� ���

��� ���� � � ���	��
��
�(i, j, k, . . .,m) (4.155)

Substituting (4.154) and (4.155) in Eq. (4.150) we obtain the numerator of the
NEET in (4.89) for the case when all the reference values of all the extra elements
are zero.When the reference value of some of the extra elements is taken as infinite,
these elements and their null inverse gain will appear as reciprocals in Eq. (4.148).
Using the reference element function and the reference null inverse gain function
we obtain the numerator in Eq. (4.89) for the general case.

4.6 Review

TheNEET is a generalization of the EET in whichN elements of an LTI circuit are
removed by setting their values either to zero or to infinity for the purpose of
determining a certain transfer function H in that circuit. The structure and the
implementation of the NEET is very intuitive and simple. Once the designatedN
elements are removed, we obtain the reference circuit in which we determine the
reference transfer function H

�
corresponding to H. The values of the N elements

are reinstated by performing two sets of calculations on the reference circuit. The
first set of calculations is performed with the response of the transfer function
nulled using null double injection and the second set of calculations is performed
with the excitation of the transfer function set to zero. Each calculation corre-
sponds to the inverse of the relation defining an extra element. For example, the
inverse relation for a resistor connected across a port is the conductance looking
into that port and the inverse relation for a transconductance connected at a port
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is the corresponding transresistance looking into that port. The transfer function
H can be expressed in terms ofH

�
and the two sets of calculations as given by the

NEET in Eq. (4.89). A very useful application of the NEET is in the determination
of the frequency response of reactive networks in which all the reactive elements
are removed and only the remaining purely resistive circuit is analyzed.

Problems

4.1 Open-short theorem for an ordinary impedance function. Using any of the
two-port parameter representations of a linear network prove the result in Eq.
(4.15). In Fig. 4.50, the z-parameter representation is shown.

Figure 4.50

Note: Proof of the 2-EET, or the NEET, already constitutes a proof of this theorem (and the one

in Problem 4.2) simply because the order in which the ports are taken in that proof is

unimportant. This exercise is another proof.

4.2 Open-short theorem for a null impedance function. Repeat Problem 4.1 for a
null impedance function for the network in Fig. 4.51.

Figure 4.51

Hint: Recognize that a null double injection is equivalent to connecting an infinite gain amplifier

with input u
�
and output u

��
.

4.3 Input impedance of an equalizer. Show that the input impedance of the
equalizer filter in Fig. 4.16 is real and equal to R.

4.4 The contribution of an ideal 1: n transformer to a transfer function of an LTI
circuit
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(a) Consider the LTI circuit in Fig. 4.52a into which an ideal 1: n transformer is
inserted (shunt—series) as shown Fig. 4.52b. Show that any transfer functionA

�
of the circuit in Fig. 4.52a is modified to A in Fig. 4.52b by a biquadratic factor
in n:

A�A
�

1� a
�
n� a

�
n�

1� b
�
n� b

�
n�

(4.156)

where:

a
�
�N

�
�N

�

a
�
�N

�
N

�������

�N
�
N

������� (4.157a—d)

b
�
�N

�
�N

�

b
�
�N

�
N

�������

�N
�
N

�������





Figure 4.52

In these equationsN andN are the inverse and null inverse gains with respect
to the dependent voltage and current sources in the equivalent circuit model of
an ideal transformer shown in Fig. 4.52c. For example, N

�
is the inverse gain

with respect to the dependent current source n
�
i


with n

�
� 0 and N

�������
is

the null inverse gain with respect to the dependent voltage source n
�
v
�
with

n
�
��. These are shown in Figs. 4.52d and e. Note that n

�
and n

�
are both

equal to n but they are represented by different symbols in order to distinguish
between the two sources.

Hint: Use the 2-EET for dependent sources.

Figure 4.52 (cont.)
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Figure 4.52 (cont.)

(b) Show that if the same transformer above is inserted shunt—shunt in an LTI
with a transfer function A

�
as shown in Figs. 4.52f and g, then the transfer

function is modified to:

A�A
�

R�
�

R�
�

1� a
�
n� a

�
n�

1� b
�
n� b

�
n�

(4.158)

provided that A	 0 for n� 0 which is the same thing as sayingR�
�	 0.

Figure 4.52 (cont.)

(c) Show that if the same transformer above is inserted series—series in an LTIwith
a transfer functionA

�
as shown in Figs. 4.52h and i, then the transfer function is

modified to:

A�A
�

R���

R���

1� a
�
n� a

�
n�

1� b
�
n� b

�
n�

(4.159)

provided that A	 0 for n� 0 which is the same thing as sayingR���	 0.

Figure 4.52 (cont.)

156 The N-extra element theorem



(d) If in a circuit, containing an ideal 1: n transformer, setting n� 0 or n��
reduces the desired transfer function to zero, you have the option of setting n

�
or n

�
to zero or infinity independently of each other in order to obtain a finite

transfer function A
�
and then apply the 2-EET. In this case show that the

transfer function can be written as:

A�A
�

n

b
�
� b

�
n� b

�
n�

(4.160)

4.5 Indeterminacy! Determine the voltage gain of the two-stageCE amplifier with
emitter-follower feedback in Fig. 4.53a in terms of �

�
, �

�
and �

�
using the 3-EET

for dependent sources and show that it is given by:
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� (4.161)

Figure 4.53

The equivalent circuit model is shown in Fig. 4.53b. In this problem you will
encounter several indeterminacies. The first two indeterminacies are of the infin-
ity-times-zero type and occur in the productsB� ���B� ���

���
and B� ���B� ���

���
. These indeter-

minacies can be removed by a simple change of order, i.e. by determining the
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products B� ���B� ���
���

and B� ���B� ���
���
. The third indeterminacy is an infinity times zero

which is irremovable by a change of order and concerns the product B� ���B� ���
���

or
B� ���B� ���

���
. Such an indeterminacy can be removed by introducing a resistor appro-

priately in the circuit so that B� ��� andB� ���
���
become finite. Later, the added resistor is

allowed to vanish in the product B� ���B� ���
���
.

Hint: When determiningB� ��� and B� ���
���
, add r

��
in parallel with the dependent generator �

�
i
��
and

show that these are given by:

B� ����
r
��
r��

(4.162)

Figure 4.53 (cont.)
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(4.163)

By letting r
��

�� in the product B� ���B� ���
���

show that:
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(4.164)

Verify the following null inverse gains:

B� ���,B� ���,B� ���
���

��

B� ���
�����

,B� ���
���

� 1

B� ���
���

� 0

(4.165a—e)
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Also, verify the following inverse gains:

B� ���,B� �����

B� ���� 1

B���
���
,B� ���
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(4.166a—e)
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4.6 3-EET versus 1-EET. The gain of the amplifier in Problem 4.5 can be deter-
minedmore easily if we do not care to express it explicitly in terms of �

�
, �

�
and �

�
.

For example, if we designate R
�
as the extra element and set it to zero, show that

we can write the gain by inspection:

A
�
�

�
�
r��

R
�
�
�

R
�
� r��

R
�
� (R

�
�R

�
� r��) (4.167)

Invoking the EET for R
�
the gain of the amplifier can be written as:

A�A
�

1�
R

�
R���

1�
R

�
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(4.168)

Show that:
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) (4.169)
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(4.170)

in which r
	���

� r����/(1��
���
).

4.7 An RC network with an ideal transformer

(a) Using the results derived in Problem 4.4, show that for the circuit in Fig. 4.54a:

v
�
(s)

v
��
(s)

�A
�

1� s/�
�

1� a
�
s� a

�
s�

(4.171)
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in which:
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Figure 4.54

Hint: Use the 2-EET twice. First, designate C
�
and C

�
as the two extra impedance elements

and take them out of the circuit as shown in Fig. 4.54b so that the transfer function,

according to the 2-EET for impedance elements, can be written as:

A(s)�A
�

1� s[C
�
R����C

�
R���]� s�C

�
C

�
R���R���

���
1� s[C

�
R����C

�
R���]� s�C

�
C

�
R���R���

���

(4.173)

Next, apply the 2-EET for dependent sources to determineA
�
and all the null and ordinary

driving-point impedances in Eq. (4.173). Some of these calculations can be grouped together

because they have many steps in common.

A
�
,R���,R���: Each of these is a transfer function defined on the same circuit

in Fig. 4.54b and, according to the 2-EET for dependent sources, can be
expressed in terms of the turns-ratio of the transformer as:

160 The N-extra element theorem



Figure 4.54 (cont.)
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In Eq. (4.174c), e
�
is an indeterminate of the form 0��which can be resolved

only by connecting a resistanceR


in parallel with port (2) and letting it vanish

in the product e
�
� lim

�
��

N
�
N

�������
. This is shown in Fig. 4.54c.

R���,R���,R���
���
: These are determined with v

�
� 0 and are so simple that the

2-EET for dependent sources need not be used.

(b) Show that the maximum dc gain attainable is:

A
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�
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�
1�R

�
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(4.176a, b)
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(c) Note that for n� 1, the transfer function changes from low-pass to band-pass.
For the following element values, the magnitude of the transfer function is
plotted in Fig. 4.54d for n� 0, 1, n

���
:

R
�
�R

�
� 1 k�
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R
�
� 10 k�

C
�
�C

�
� 0.1 �F

dB

Figure 4.54 (cont.)
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5 Electronic negative feedback
Low-entropy reformulation of US Patent 2,102,671

5.1 Introduction

Perhaps the best introductory remarks on electronic negative feedback are given
by Harold S. Black� in his patent application on the Wave Translation System,
assigned to Bell Telephone Laboratories on December 21, 1937. In this patent
application not only do we learn how the inventor set out to solve all the major
problems that plagued open-loop amplifiers at one fell swoop, but we also learn
that negative and positive feedback were in fact employed prior to his invention to
(a) build oscillators and regenerative feedback amplifiers and (b) prevent open-
loop amplifiers, with parasitic positive feedback, from oscillating. Designers at the
time knew quite well how to build an oscillator starting with an amplifier with a
large gainA and feeding back a portion of the output in phase with the input, with
a magnitude larger than the input. They also realized they could obtain very large
gains from a single-stage amplifier by feeding back its output in phase with the
input but with a magnitude less than the input signal — a technique known as
regenerative feedback. As far as negative feedback was concerned, it was applied
only in small amounts to prevent an amplifier from ‘‘singing’’, or oscillating, by
countering the amount of positive feedback due to parasitic coupling between its
input and output.
What Black discovered was that if negative feedback was applied in larger

amounts than previously attempted, the closed-loop gain became independent of
the gain A of the open-loop amplifier and depended only on the reciprocal of the
gain of the feedback network, 1/�, as long as the product of both gains was
considerably larger than unity, i.e. A�� 1. This made the closed-loop gain inde-
pendent of the distortion and variability of the gain of the open-loop amplifier. The
importance of this discovery was that the feedback network was a simple passive
network, often hardly more complicated than a passive voltage divider, which had
none of the variability and nonlinearity of the vacuum tube amplifier. This huge
discovery soon found applications in every system in which the response had to
follow a control signal closely, and the field of automatic feedback control was
born.
It can be speculated that the reason that the negative feedback amplifier was not

discovered by anyone before Black was a psychological one. After all, vacuum
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tubes were the high-tech. devices of the time, which were supposed to do the
amplification and not take second place to a low-tech. passive network. What led
Black to his discovery were the requirements of the project he was assigned to,
which was to design an amplifying system for the transcontinental telephone line.
Such a system required hundreds of amplifiers in cascade so that it was clear to him
from the outset that relying on vacuum tubes for gain was a lost cause — he literally
had to find a way around the vacuum tube!

5.2 The EET for dependent sources and formulation of electronic
feedback

In the introduction of his patent application Black� wrote ‘‘. . . the elements of a
system with feedback are: an amplifying element having an input and an output;
and a coupling or path for returning some of the output wave to the input of the
amplifying element.’’ In what follows, we will formulate this concept directly by
applying the EET for dependent sources.

5.2.1 Gain analysis

Let A be the amplifying element in an electronic system with some kind of
feedback path from output to input as shown in Fig. 5.1. The amplifying element
can be any one of four dependent sources, while the input and output can be either
a voltage or a current. As far as the feedback path is concerned we are not
interested in its exact details: all we need to know is that there is another path from
input to output other than the amplifying element A. What distinguishes this
system from an arbitrary network is that the signal gain from input to output
through the amplifying path A is by far greater than the signal gain through the
feedback path. If this were not the case, then we would not have a systemworthy of
being called a feedback system and it would not deserve any special analytical
treatment. Since Amust be large, we consider it to be infinite and find out what is

Figure 5.1

the best that feedback has to offer to the relationship between the input and output
signals. Applying the EET for dependent sources, we obtain for the closed-loop
transfer gain:
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(5.1)

The closed-loop gain with A�� can be thought of as the ideal closed-loop gain
because it satisfies the primary objective of negative feedback, which is to make the
closed-loop gain entirely independent of A and its variations. We shall define this
as:

G
�

�
u
�
u
��
�
���

(5.2)

G
�
, A� andA� are shown in Fig. 5.2a—c. Substituting Eq. (5.2) in (5.1) we obtain:

G�G
�

1�
1

AA�

1�
1

AA�

(5.3)

Equation (5.3) yields the lowest entropy result for the flat gain of a feedback
amplifier in which all the reactive elements have been removed. Hence, G in (5.3)
may correspond to a low- or high-frequency asymptote, or a midband gain. To

Figure 5.2

obtain the complete frequency response, we need to apply the NEET to determine
the contribution of the reactive elements as explained in Chapter 4. Hence, the
complete frequency response is given by:
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G(s)�G
�

N(s)

D(s)
(5.4)

in which G
�
is determined according to Eq. (5.3). There is no useful general

formulation of the effect of feedback on the frequency dependence of G(s) for an
arbitrary system. It is also possible to apply Eq. (5.3) to the complete response:

G(s)�G
�
(s)

1�
1

AA� (s)

1�
1

AA� (s)

(5.5)

Analytically, Eq. (5.5) will result in a far more complicated expression forG(s) than
(5.4) unless A is assumed to be infinite (as in the analysis of ideal operational
amplifier circuits (see Problem 5.1)) so that G(s)�G

�
(s).

In the following example we shall demonstrate the application of Eqs. (5.3) and
(5.4) to a single-stage FET feedback amplifier.

Example 5.1 We shall determine the gain of the FET feedback amplifier shown in
Fig. 5.3a using the equivalent circuit model in Fig. 5.3b. First, we consider the
circuit at low frequencies and determine the low-frequency asymptoteA

�
using Eq.

(5.3). With the capacitor taken as an open circuit, we obtain the circuit in Fig. 5.3c

Figure 5.3

in whichR
�
is the feedback element. Hence, if we let g

	
��, as shown in Fig. 5.3d,

v
�
� 0 and v

��
appears directly across R



so that the source current is given by

v
��
/R



. Since the source and drain currents are equal, we have:

A
��

��
R

�
R




(5.6)

Next we determine the ordinary and null inverse gains with respect to g
	
. In Fig.

5.3e, the null inverse gain is determined by nulling the output voltage. We can see,
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Figure 5.3 (cont.)

however, that the output voltage in this case cannot be nulled unless i
�
� 0 so that

the null inverse gain is infinite:

G�
	
�
v
�
i
�
�

���

�� (5.7)

In Fig. 5.3f the ordinary inverse gain is determined by setting v
��

� 0 and replacing
g
	
with an independent current source pointing in the opposite direction. The

voltage v
�
now appears across R



so that the ordinary inverse gain is given by:
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(5.8)

Figure 5.3 (cont.)

Hence, according to (5.3) we have:
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The complete response is determined by reinstating C
�
using the EET:

A(s)�A
�

1� sC
�
R��	

1� sC
�
R��	

(5.10)

The null resistance looking into port (c) with v
�
nulled is given by:

R��	�R
�
�R���	 (5.11)

The null resistanceR���	 is shown in Fig. 5.4a where we see:
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Simultaneous solution of Eqs. (5.12a) and (5.12b) yields:
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It follows that:
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The ordinary resistance looking into port (c) is given by:

R��	�R
�
�R���	 (5.15)

in whichR���	 is shown in Fig. 5.4b. We can determineR���	 by nested application of
the EET. Hence, if we let g

	
�� as shown in Fig. 5.5a, the voltage across R

�
,

which is given by i
�
R

�
, appears acrossR



and causes a current i

�
� i

�
R

�
/R



to flow

through it. The voltage across R
�
is now given by (i

�
� i

�
)R

�
so that we can write:
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It follows that:
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According to the EET, we have:
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(5.18)

168 Electronic negative feedback



Figure 5.4

Figure 5.5

The null inverse gain G� �
	
is shown in Fig. 5.5b whence we have:

G� �
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) (5.19)

The ordinary inverse gain G� �
	
is shown in Fig. 5.5c whence we have:
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(5.20)

Figure 5.5 (cont.)

Substituting Eqs. (5.17), (5.19) and (5.20) in (5.18) and (5.15), we obtain:
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(5.21)

The complete frequency response in (5.10) is now written in pole-zero form:

A(s)�A
�

1�
s

�
�

1�
s

�
�

(5.22)

The low-frequency asymptote,A
�
, is given by Eq. (5.9) and�

�
and �

�
are given by:

�
�
�

1

R��	C
�

(5.23a, b)
�

�
�

1

R��	C
�

whereR��	 and R��	 are given by Eqs. (5.14) and (5.21). By comparing the analytical
expressions of R��	 and R��	, we see that the pole occurs before the zero. Also note
that R��	 could have been determined more easily by letting g

	
� 0 in the EET (see

Example 5.2). �

5.2.2 Driving-point analysis

In addition to analyzing the transfer gain of an amplifier, one is usually interested
in determining the effect of feedback on the input and output impedance, or
admittance, of an amplifier.Whereas the primary effect of feedback is to render the
transfer gain of an amplifier insensitive to variations in A, its effect on the input
and output impedance is exactly the opposite. We will show that upon application
of feedback, the input and output impedances of an amplifier become dependent
on A so that Eq. (5.3) is not suitable because G

�
can be either zero or infinite.

Hence, as a general rule, we shall use the following form of the EET for dependent
sources to obtain the lowest entropy expression when performing driving-point
analysis of a feedback amplifier:

G�G
�

1�AA� �
1�AA� �

(5.24)

In Fig. 5.6 we showG
�
,A� � andA� � whenG is a driving-point impedance.WhenG is

a driving-point admittance, thenA� � andA� � in Figs. 5.6a and b are interchanged. In
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Figure 5.6

Eq. (5.24) we have used A� � and A� � in order to distinguish these from their
counterparts in the expression of the transfer gain in (5.3). The complete frequency
response is determined by augmenting the result in (5.24) using theNEET as in Eq.
(5.4).

Example 5.2 We shall determine the output impedance of the FET amplifier in
Example 5.1 to illustrate the application of Eq. (5.24). This is shown in Figs. 5.7a

Figure 5.7
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and b. First, we remove the capacitor as shown in Fig. 5.8a and determine the
low-frequency asymptote of Z

�
by the application of Eq. (5.24). Hence, we let

g
	
� 0 as shown in Fig. 5.8b and determine:

R
�
� r

�
�R



(5.25)

Figure 5.8

According to Eq. (5.24), we have:

R
�
�R

�

1� g
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1� g
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(5.26)

in which G�
	
and G�

	
are shown in Figs. 5.9a and b. In Fig. 5.9a, we can easily see

that the null inverse gain is given by:
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� r
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�R



(5.27)

In Fig. 5.9b we can see that the ordinary inverse gain is zero:

G�
	
�
v
�
i
�

� 0 (5.28)

Figure 5.9

Substituting Eqs. (5.25), (5.27) and (5.28) in (5.26), we obtain:

172 Electronic negative feedback



R
�
� (r

�
�R



)(1� g

	
r
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) (5.29)

In this equation, we can see how the output resistance becomes dependent on the
gain of the amplifying element g

	
as a result of the feedback action caused by the

resistance R


.

Finally, we determine the frequency response of the output impedance by
determining the null and ordinary resistances looking into the capacitive port as
shown in Figs. 5.10a and b. According to the EET we have:

Z
�
�R

�

1� sCR��	

1� sCR��	
(5.30)

The null resistanceR��	 is shown in Fig. 5.10a and is given by:

R��	�R
�
�R

�
(5.31)

The ordinary resistance R��	 is shown in Fig. 5.10b and can be deduced from the
result obtained for Fig. 5.4b by letting R

�
�� in Eq. (5.21). We shall, however,

derive R��	 directly by applying the EET for g
	
:
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(5.32)

If we let g
	
� 0, we obtain from Fig. 5.10b:
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(5.33)

Figure 5.10

The null inverse gain G�
	
in Eq. (5.32) is shown in Fig. 5.11a whence we have:
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�

(5.34)

The ordinary inverse gain G�
	
in (5.32) is shown in Fig. 5.11b whence we see that:
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G�
	
� 0 (5.35)

Substituting (5.33), (5.34) and (5.35) in Eq. (5.32), we obtain:

R��	�R
�
� r

�
�R



�R

�
� g

	
r
�
(R

�
�R



) (5.36)

Hence, the output impedance in Eq. (5.30) is given by:

Z
�
�R

�

1�
s

�
�

1�
s

�
�

(5.37)

in which:

R
�
� (r

�
�R



)(1� g

	
r
�
�R



)

�
�
�

1

R��	C
�

1

(R
�
�R

�
)C (5.38a—c)
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�
�

1

R��	C
�

1

[R
�
� r

�
�R



�R

�
� g

	
r
�
(R

�
�R



)]C





Figure 5.11

At high frequencies, when the capacitor acts as a short, both feedback paths
become active. The output resistance in this case is obtained from Eq. (5.37) by
letting s��:

R
��

�R
�

�
�

�
�

�
(r
�
�R



)(1� g

	
r
�
�R



)(R

�
�R

�
)

R
�
� r

�
�R



�R

�
� g

	
r
�
(R

�
�R



)

(5.39)
� (r

�
�R



) � (R

�
�R

�
)

1� g
	
r
�
�R




1� g
	
r
�

R
�
�R



R

�
� r

�
�R



�R

�

If we let R


� 0 in this expression, we see that the effect of R

�
(along with R

�
) is to

174 Electronic negative feedback



reduce the output resistance. Hence the two feedback paths have opposite effects
on the output resistance. A similar analysis applies to the input impedance (see
Problem 5.2). �

5.2.3 Loop gain

The product AA� is defined as the loop gain:

T �AA� (5.40)

In Figs. 5.12a and b we recognize this product to be the gain that the signal u
�

experiences as it goes around the entire system with the input set to zero:

T ��
u
�
u
�
�
�����

(5.41)

Although there is no analytical difference between Figs. 5.12a and b, there is a
practical difference. Breaking the loop and applying a signal u

�
as shown in Fig.

5.12b is not physically practicable because the dc operating point of the circuit can
drastically change. For example, in a transistor amplifier circuit, we simply cannot
break the connection to the collector since that would disable the amplifier
altogether. Injecting a signal u

�
on the other hand, as shown in Fig. 5.12a, can be

easily implemented in several practical ways (see Problem 5.3).

Figure 5.12

The concept of loop gain is central to any feedback system because the closed-
loop transfer gain, driving-point impedance, or admittance, and stability can all be
formulated in terms of the loop gain. To show this for the closed-loop transfer
gain, we continue to expand Eq. (5.3) and obtain:

G�G
�

AA�

1�AA�
�G

�

A�

A�

1

1�AA�
(5.42)

In the second term of Eq. (5.42), we immediately recognize that:
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G
�

A�

A�
�G

�
�
u
�
u
��
�
���

(5.43)

If G is a transfer gain, then G
�
is the amount of coupling between the input and

output due to the forward gain through the feedback connection when the gain of
the amplifying element is set to zero. This is shown in Fig. 5.13. If, however, G is a
driving-point impedance (or admittance), then G

�
is known as the driving-point

impedance (or admittance) of the open-loop amplifier modified by the loading of
the feedback network but without the action of feedback. This will be explained in
greater detail in Section 5.5. Substituting for T and G

�
in Eq. (5.42) we obtain:

G�G
�

T
1� T

�G
�

1

1� T
(5.44)

This formula is due to R. D. Middlebrook
 and it is all that one needs to know to
understand the properties of feedback amplifiers regarding transfer gain and

Figure 5.13

driving-point characteristics. Equation (5.44) does not yield a lower entropy
expression than Eqs. (5.3) and (5.24) for the closed-loop gain and driving-point
impedance, respectively, of a feedback amplifier. Its significance is that it shows
how the actual closed-loop response, G, deviates from the ideal closed-loop
response, G

�
, as a function of T and G

�
.

Example 5.3 We shall determine the loop gain of the FET amplifier in the
previous two examples using injection. Since the amplifying element is a depend-
ent current source, we will inject an independent current source i

�
in parallel with

g
	
v
�
, as shown in Fig. 5.14 (see Problem 5.3), and determine the loop gain using:

T ��
i
�
i
�

(5.45)

Note that in this expression of the loop gain, i
�
is the excitation of T even though i

�
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Figure 5.14

is the primary excitation.We shall designate the capacitor as the extra element and
apply the EET to T in which i

�
is the response and i

�
is the excitation. In Fig. 5.15,

we remove the capacitor and determine the low-frequency asymptote of T. In this
figure, v

�
appears across R



and is given by:

v
�
� i

�
r
�

R



r
�
�R

�
�R




(5.46)

The return current, or the response i
�
, is given by:

i
�
��g

	
v
�

(5.47)

It follows that T
�
is given by:

T
�
��

i
�
i
�

�
g
	
r
�

1�
r
�
�R

�
R




(5.48)

According to the EET, the frequency response of T is given by:

T (s)� T
�

1� sR��	C

1� sR��	C
(5.49)

Figure 5.15
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When determining R��	 in Eq. (5.49), we null i
�
as shown in Fig. 5.16a. Since

i
�
� g

	
v
�
, a null in i

�
implies a null in v

�
so that, according to Fig. 5.16a, we have:

v
�
� i

��1�
R

�
R



�R�

� i
�
(R

�
�R

�
) (5.50)

It follows that:

R��	�
v
�
i
�

�R
�
�R

�
��1�

R
�

R


�R�

(5.51)

When determining R��	 in Eq. (5.49), we set the excitation to zero, as shown in
Fig. 5.16b, and obtain:

R��	�R
�
�R

�
�R

�
� (r

�
�R



) (5.52)

Figure 5.16

Substituting (5.52) and (5.51) in (5.49), we obtain:

T (s)� T
�

1�
s

�
�

1�
s

�
�

(5.53)
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where:

�
�
�

1

R��	C
�

1

�R�
�R

�
��1�

R
�

R


�R��C

�
�
�

1

R��	C
�

1

[R
�
�R

�
�R

�
� (r

�
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)]C

(5.54a—c)
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


We can see from the expressions of the pole and zero that the zero always occurs
before the pole. �

5.3 Does this circuit have feedback or not? That is not the question

The main purpose of negative feedback, as mentioned earlier, is to desensitize a
particular transfer gain, and not a ‘‘circuit’’, to variations in the gain of any
amplifying element in that circuit. The question therefore is whether a certain
response is being fed back properly or not. According to Eq. (5.44), when feedback
is applied properly, the transfer gain of a certain response,G, should reduce toG

�
:

G�G
��

1

1� T��
�
G

�
G

�

1

1� T�
�G

��1�
G

�
G

�

1

T�
(5.55a—c)

�G
�





This is the desired outcome of negative feedback because it renders the closed-loop
transfer gain independent of the gain of the amplifying element A. The first
approximation in Eq. (5.55b) requires that the loop gain bemuch larger than unity:

T � 1 (5.56a)

The second approximation in (5.55c) follows automatically because the forward
gain through the feedback network, G

�
, must be small compared with the desired

closed-loop gain G
�
, i.e:

G
�

G
�

� 1 (5.56b)
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Whereas the above argument holds for the transfer gain of a properly designed
feedback amplifier, it does not hold for its input and output impedance. We know
that the input or the output impedance of a strictly open-loop amplifier is entirely
independent of the gain of the amplifying elementA. Hence, feedback is not used to
desensitize the input or output impedance of an amplifier to variations in A. In
fact, application of feedback to an open-loop amplifier renders its input and
output impedance dependent on the gain of the amplifying elementA. This can be
expressed analytically by showingG

�
� 0 for the inside (looking into the amplifier

past the source or load impedance) input and output driving-point characteristics
of a feedback amplifier so that, according to Eq. (5.44), these are given by:

G�
G

�
1� T �

(5.57)

In Eq. (5.57) we have used T � to distinguish it from T used in the determination of
the transfer gain. In all cases we will see that T � is derived from T simply by letting
the source or the load impedance approach zero or infinity.
From a feedback point of view, Eq. (5.57) is a most undesirable outcome because

it shows a closed-loop response whose variation is proportional to variations in A
through the loop gain T �. This can be shown by taking partial derivatives in Eq.
(5.57) and obtaining:

�G
G

��
�A
A

(5.58)

in which we have made use of the fact that T � �A and T � � 1. We recognize,
however, that �A/A is the sensitivity of the open-loop gain with respect to A.
Hence we can say that application of feedback to an open-loop amplifier transfers
the sensitivity of its open-loop gain with respect to A to its closed-loop input and
output impedance. Even though this does not appear to be advantageous from a
feedback control point of view, it is very useful for obtaining a very low-input
impedance or conductance whose exact value may not matter once it is decreased
beyond a certain point.

5.4 Gain analysis of feedback amplifiers

In this section, the four types of feedback amplifiers will be introduced and
analyzed for gain using Eq. (5.3). A driving-point analysis of the same amplifiers
will be given in Section 5.5. It should be made clear that the purpose of this and the
following sections is not to derive any new formulas but simply to understand and
demonstrate the various ways feedback can be applied to an open-loop amplifier.

180 Electronic negative feedback



Example 5.4 The feedback arrangement in the two-stage CE—CE amplifier
shown in Fig. 5.17 is called current-sampling—current-mixingor simply series—shunt
feedback. Before giving a detailed analysis, the basic operation of this feedback
scheme is explained. TypicallyR

�
is mademuch smaller thanR

�
so that the emitter

current of Q


mostly flows through R

�
. If we make the usual assumption that C




and all the other capacitors are shorts in the midband frequency range, then we see
that the signal voltage across R

�
is approximately i

�

R

�
. Since the output current

throughR
�
is very nearly equal to i

�

, the voltage acrossR

�
is a copy of the output

current. Hence, this type of feedback arrangement is called current sampling
because it produces a signal, v

�
, proportional to the output current. Next, we

examine the input side at the base of Q
�
which is connected to the input through

R
�
and to the output through R

�
. Hence, ignoring the bias resistors R

�
and R



,

the current entering the base ofQ
�
is the difference between the source current and

the current through the feedback path which is why this type of feedback is called
current mixing. As discussed earlier, we now make the important observation that

Figure 5.17

if the gain of the amplifying element in the forward path, �
�
, is made very large, the

current entering the base of Q
�
, which is the error or difference signal, becomes

nearly zero which in turn causes the signal voltage at the base of Q
�
to be nearly at

ground potential. We can now quickly estimate the transfer gain of this amplifier
by further observing that the current through R

�
is approximately v

�
/R

�
and the

current through R
�
is v

��
/R

�
because of the virtual ground at the base of Q

�
. Also,

since the base current is nearly zero, the input and feedback currents are nearly
identical so that we have:

v
�
R

�

��i
��

�
i
�
R

�
R

�

��i
��

�A
�
�
i
�
i
��

��
R

�
R

�

(5.59)
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This is approximately the current gain, which is determined entirely by the
feedback network. The approximate voltage gain follows from the fact that
i
��

� v
��
/R

�
and i

�
� v

�
/R

�
:

A


�
v
�
v
��

��
R

�
R

�

R
�
R

�

(5.60)

An exact analysis will now follow using Eq. (5.3), which will yield a correction
factor to the result in Eq. (5.60). The equivalent circuit diagram at midband
frequencies is shown in Fig. 5.18 in which C


�
, C




and C

�
are effectively short

circuits. According to Eq. (5.3) the voltage gain is given by:

A


�
v
�
v
��

�A

�

1�
1

AA�

1�
1

AA�

(5.61)

Figure 5.18

In order to determine A

�
, we let the amplifying element in the forward path

become infinite. Although �
�
and �



are two such elements in the forward path,

only �
�
qualifies because letting �



�� will not make the gain of the open-loop

amplifier (the amplifier without R
�
) become infinite because of the emitter feed-

back resistor, R
�
, in the second stage. It is very important to realize that Eq. (5.61)

will always yield a correct answer whether we choose �
�
or �



. The disadvantage of

choosing �


is that it will yield an answer which provides no useful analytical

insight into the effect of feedback due to R
�
.

In Fig. 5.19, we let �
�
��, which causes i

��
, v and hence i to be zero. It follows

that the input current, given by v
��
/R

�
, flows entirely through the feedback path

and impresses a voltage�(v
��
/R

�
)R

�
acrossR

�
. The emitter current i

�

is then given

by:

�i
�


�
R

�
R

�

v
��
R

�

�
v
��
R

�

(5.62)
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Since the output voltage is given by ��


i
�

R

�
,A


�
is given by:

A

�

�
�


R

�
R

�
�1�

R
�
R

�
� (5.63)

In Fig. 5.20, we replace �
�
with an independent source pointing in the opposite

direction and determine the null inverse gainB� :

B� �
i
��
i
�

�
R

�
r���1�

R
�
R

�
� (5.64)

in which we havemade use of the fact that the voltage across r�� is equal to the sum
of the voltages across R

�
and R

�
.

Figure 5.19

Figure 5.20

In Fig. 5.21a, we determine the inverse gain with v
��

� 0. The path of the current
i
�
around the loop consists of several current divisions which can be determined

most efficiently by taking the Norton equivalent looking back from the base of Q
�

as shown in Fig. 5.21b. It can easily be verified by inspection that the equivalent
Norton source and resistance are given by:
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� (5.65a, b)
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Figure 5.21

It follows that i
��

and, hence, B� are given by:

i
��

� i
�

1

1�
r��
R

�

(5.66)

B� �
i
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i
�

�
1��




1�
r�
 � (1��
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(5.67)
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�

With A� �
�
, A� �B� andA� �B� , the voltage gain according to Eq. (5.61) is given

by:

A


�

�


R

�
R

�
�1�

R
�
R

�
�
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(5.68)

This is the exact expression of the voltage gain which for �
�
, �



,R

�
/R

�
� 1 reduces

to the approximate expression derived in Eq. (5.60). Using numerical values, we
can obtain useful approximations of the expressions derived above (see Problem
5.4). �

Example 5.5 The amplifier in Fig. 5.22 consists of a differential input stage,
formed by Q

�
and Q

�
, followed by a CE stage formed byQ



. The output voltage is

fed back through a voltage divider, R
��

and R
��

into the base of Q
�
. It can be seen

that the voltage at the emitter ofQ
�
orQ

�
is essentially a copy of the output voltage

scaled by the voltage divider. This voltage is subtracted from the input voltage
such that the difference between the two, less the voltage across R

�
, appears across

r�� ofQ�
which is the non-inverting input to the differential amplifier stage. Hence,

this type of feedback arrangement is called voltage-sampling—voltage-mixing or
shunt—series feedback. Now observe that if we let �



become infinite, the signal

current entering the base of Q


will become zero, which implies that the signal

current of the collector of Q
�
becomes zero. This in turn implies that all the signal

currents of Q
�
and Q

�
vanish simultaneously so that the signal voltages across R

�
and the base-to-emitter junctions of Q

�
and Q

�
vanish too. We can now estimate

Figure 5.22

the voltage gain by recognizing that v
��
appears directly across R

��
and causes a

current v
��
/R

��
to flow through it. Since the current into the base of Q

�
is zero, the

current through R
��

flows through R
��

so that the output voltage is given by
v
�
� v

��
� (v

��
/R

��
)R

��
. Hence the voltage gain for large �



is approximately given

by:
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A


� 1�

R
��

R
��

(5.69)

Note that we did not choose �
�
to become infinite because the resistance looking

into the emitter of Q
�
prevents the voltage gain of Q

�
from becoming infinite.

The exact voltage gain is determined using the equivalent circuit model shown
in Fig. 5.23. According to Eq. (5.3) the voltage gain is given by:

A


�A


�

1�
1

�


B�

1�
1

�


B�

(5.70)

in which �


is chosen as the amplifying element of the open-loop amplifier. To

determine A

�
, we let �



��, as shown in Fig. 5.24, in which we can see that:

v
��

R
��

�
v
�

R
��

�R
��

�A

�

� 1�
R

��
R

��

(5.71)

Figure 5.23

Next, B� is determined as shown in Fig. 5.25. The current i
�


can be determined
by a succession of current divisions. The resistance looking into the base of Q

�
is

r��� (1��
�
)(r���R

�
)/(1� �

�
) so that i

��
is given by inspection:

i
��

� i
�

R
�

R
�
�R

��
�R

��
��r��� (1��

�
)
r���R

�
1� �

�
�

(5.72)
�

R
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R
�
� r��� (1� �

�
)
r���R

�
1��

�

The current i
�


is given by:
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Figure 5.24

i
�


���
�
i
�

R
�

R
�
� r�


(5.73a, b)

� �
�
i
��
(1� �

�
)

R
�

R
�
� r�






Figure 5.25

It follows that B� is given by:

B� �
i
�

i
�

�
�
�
(1��

�
)

1�

R
��

�R
��

��r��� (1��
�
)
r���R

�
1��

�
�

R
�

(5.74)
�
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1�

r�� � (1��
�
)
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�
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1�
r�
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If we assume that �
�
, �



and �

�
are large and nearly equal, then Eq. (5.74) can be

approximated as:

B� �
�
�

1�
R

��
�R

��
� (r��� r�� �R

�
)

R
�

1

1�
r��� r���R

�
R

��

1

1�
r�

R

�

(5.75)

Next,B� is determined in Fig. 5.26 in which it can be seen that a null in the output
voltage causes i

�
to flow entirely through R

��
and the voltage drop across R

��
to

appear directly across R
��
. It follows that i

��
is given by:

Figure 5.26

i
��

� i
��1�

R
��

R
��
� (5.76)

The relationship of i
�


to i
��

is still given by Eq. (5.73) so that substituting (5.76) in
(5.73), we obtain:

B� �
i
�

i
�

� �
�
(1��

�
)

1�
R

��
R

��

1�
r�

R

�

(5.77)

The closed-loop gain is given by Eq. (5.70) in which A

�

, B� and B� are given by
(5.71), (5.74) and (5.77), respectively. Using numerical values, we can obtain useful
approximations for A



(see Problem 5.5). �

Example 5.6 The load current of a two-stage CE amplifier is sensed using a 1: n
transformer and a resistor R

��
as shown in Fig. 5.27 in which bias details are

omitted. Since the voltage across R
��

is derived from the output current and is
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Figure 5.27

subtracted from the input voltage, this type of feedback is called current-sampling—
voltage-mixingor simply series—series feedback. The small-signal equivalent circuit
model is shown in Fig. 5.28 in which we have assumed an ideal 1: n transformer. In
Fig. 5.29 we see that if we let �



��, the gain of the forward amplifier becomes

infinite which in turn causes i
��

and i
�


to vanish causing the input voltage to
appear directly across R

��
so that we have:

i
�
n

�
v
��

R
��

(5.78)

Figure 5.28

Hence, the output load current follows the input signal as determined by the
feedback circuit (n and R

�
) regardless of the load R

�
and other variations in the

amplifier. The ideal voltage gain follows from Eq. (5.78) and is given by:

A

�

�
n

R
��

R
�
�G

��
R

�
(5.79)

189 5.4 Gain analysis of feedback amplifiers



Figure 5.29

in which G
��

is the ideal transconductance, i
�
/v

��
. Next, we determine the exact

transconductance by applying the feedback formula:

G
�
�G

��

1�
1

�


B�

1�
1

�


B�

(5.80)

The determination of B� is shown in Fig. 5.30 in which i
�
goes through a succession

of current divisions which can be determined by inspection:

B� �
R
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R
�


�R
�
�

1

n
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�
r���R

�
1� �

�

1

n

�
�

1�
R

�
� r��

R
��
(1��

�
)

1

1�
r�

R

��

(5.81)

Figure 5.30

The determination of B� is shown in Fig. 5.31 in which we see that a null in the
output current causes i

�
to flow entirely throughR

�

resulting in a voltage drop of

i
�
R

�

across R

�

which is equal to v

��
/n. Hence:

v
��
n

� i
�
R

�

� v

��
� ni

�
R

�

(5.82)
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The collector current of Q
�
is given by:

i
��

� �
�

v
��
R

��

� i
�

n�
�
R

�

R

��

(5.83)

It follows that the null inverse gain is given by:

B� �
i
�

i
�

���
�
n
R

�

R

��

1

1�
r�

R

��

(5.84)

Substituting (5.81) and (5.84) in Eq. (5.80), we obtain:

G
�
�

n

R
��

1�
1

�


n�

�

R
��

R
�

�1�

r�

R

��
�

1�
n

�
�
�


�1�

R
�

R
�

��1�

R
�
� r��

R
��
(1� �

�
)��1�

r�

R

��
�

(5.85)

Figure 5.31

Typically R
��
/R

�

� 1 and �� 1 so that Eq. (5.85) can be approximated as:

G
�
�

n

R
��

1

1�
n

�


�1�

R
�

R
�

��1�

R
�
� r��
R

��
�
�
��1�

r�

R

��
�

(5.86)

Other approximations are possible depending on the particular set of component
values (see Problem 5.6). �

Example 5.7 The amplifier shown in Fig. 5.32 is a current-loaded cascode
amplifier with a feedback connection from the output voltage to the input current
at the base ofQ

�
. The details of the bias circuit are omitted. Since the signal voltage

at the base of Q
�
is small in comparison with the output voltage, the fedback

current is proportional to the output voltage. We can also see that the current
entering the base of Q

�
which drives the amplifier stage is equal to the difference
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between the input source current and the fedback current. Hence this type of
feedback arrangement is called voltage-sensing—current-mixing or simply shunt—
shunt feedback.We can easily estimate the voltage gain by realizing that the signal
voltage at the base ofQ

�
is essentially at ground potential in comparisonwith v

��
or

v
�
so that the input current is approximately i

��
� v

��
/R

�
while the fedback current

is approximately i
�
� v

�
/R

�
. Assuming the amplifier stage has a large open-loop

gain, the current entering the base of Q
�
can be ignored so that i

�
��i

��
which

leads to:

v
�
v
��

��
R

�
R

�

(5.87)

Figure 5.32

This, of course, is A

�
, which is derived formally in Fig. 5.33 by letting �

�
��

(since letting �


�� does not make the gain of the open-loop amplifier become

infinite) which causes i
��
, v

���
� 0. It follows that:

v
��
R

�

��
v
�
R

�

�A

�

��
R

�
R

�

(5.88)

The closed-loop voltage gain is given by:
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Figure 5.33

A


�A


�

1�
1

�
�
B�

1�
1

�
�
B�

(5.89)

in whichB� and B� are determined in Figs. 5.34 and 5.35, respectively. In Fig. 5.34,
�
�
i
��

is replaced with an independent current source pointing in the opposite
direction and the output voltage is nulled. A null in the output voltage causes the
voltage across r�
 to appear directly across r

�

so that the current i

�
can be

expressed in terms of i
�

:

i
�
���i�
� �



i
�


�
i
�

r�

r
�

�� i

�

��

i
�

1� �


�
r�

r
�


(5.90)

A null in the output voltage also causes the output current to be zero so that the
fedback current is given by:

i
�
� i

�
� i

�

(5.91)

which when substituted in (5.90) yields:

i
�
� i

�

�


�
r�

r
�


1��


�
r�

r
�


(5.92)

Because of the null in the output voltage, the voltage across R
�
is equal and

193 5.4 Gain analysis of feedback amplifiers



opposite to v
���

so that we have:

i
��
r�� ��i

�
R

�
(5.93)

Figure 5.34

Hence, the null inverse gain is given by:

B� �
i
��
i
�

��
R

�
r��

�


�
r�

r
�


1��


�
r�

r
�


(5.94)

The inverse gain with v
��

� 0 is shown in Fig. 5.35 in which i
�
goes through a

succession of current divisions which can be determined relatively easily by
applying the EET to �



:

B� �
i
��
i
�

�B� � ����

1�
1

�


B�




1�
1

�


B�



(5.95)

which (see Problem 5.7) yields:

B� �
1

1�
R

�
�R

�
� r��

r
��

1

1�
r��
R

�

1�
r�


�


r
�


1�
1

�


�1�

r�
� r
��

� (R
�
�R

�
� r�
)

r
�


�
(5.96)

Since r�� r
�
, Eqs. (5.94) and (5.96) can be approximated:
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Figure 5.35

B� �
1

1�
R

�
r
��

1

1�
r��
R

�

(5.97)

B� ��
R

�
r��

�



(5.98)

so that the closed-loop voltage gain is given by:

A


��

R
�
R

�

1�
1

�


�
�

r��
R

�

1�
1

�
�
�1�

r��
R

�
��1�

R
�

r
��
�

(5.99)

Other approximations may apply depending on the particular values of the
components used (see Problem 5.7). �

5.5 Driving-point analysis of feedback amplifiers

The inside input and output impedances of the four types of feedback amplifiers
will be discussed in this section. Particular emphasis will be placed on the loop
gain,T, because, unlike the closed-loop gain, the input and output impedances of a
feedback amplifier are sensitive to the open-loop gain, A, and hence to the loop
gain T. Note that we study either an impedance or an admittance function
depending upon the type of mixing and sampling.

195 5.5 Driving-point analysis of feedback amplifiers



5.5.1 Input impedance for current mixing

Consider an open-loop amplifier with input impedance Z
�
in which a current

signal, i
�
, proportional to the output, u

�
, is fed back to the input side as shown in

Fig. 5.36a. The closed-loop response, which can be either a voltage gain or a
transconductance, can be expressed in terms of the loop gain:

Figure 5.36

G�
u
�
v
��

�G
�

T
1� T

�G
�

1

1� T
(5.100)

In this equation the loop gain, T, is determined by setting v
��

� 0 as shown in Fig.
5.36b. The impedance seen by the source v

��
can be written as the sum of the source

impedance, Z
�
, and the inside input impedance Z

��
, as shown in Fig. 5.36a. Our

objective is to studyZ
��
as a function of the loop gain sinceZ

�
is fixed. To do so, we

connect a test current source i
�
to the input of the amplifier as shown in Fig. 5.37a

and study the response v
�
by applying the feedback formula in Eq. (5.44) to obtain:

Z
��

�Z
���

T �
1� T �

�Z
���

1

1� T �
(5.101)

in which the loop gain T � is obtained by setting i
�
� 0 as shown in Fig. 5.37b. A

comparison of Figs. 5.36b and 5.37b shows that the two loop gains T and T � are
related by:

T �� T �
����

(5.102)

It is also clear from Figs. 5.36b and 5.37b that T is smaller than T � simply because
the fedback signal in Fig. 5.36b splits between Z

�
and the input of the amplifier,

whereas in Fig. 5.37b it goes entirely into the amplifier. Hence:

T �	 T (5.103)

The impedanceZ
���

is shown in Fig. 5.38b and is determined by letting A�� so
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Figure 5.37

that the input to the amplifying element, u
�
, and hence the input to the amplifier,

v
�
� v

�
, both become zero. It follows that:

Z
���

�
v
�
i
�
�
���

� 0 (5.104)

The impedance Z
���

is shown in Fig. 5.38b and is determined by letting A� 0:

Z
���

�
v
�
i
�
�
���

(5.105)

In Fig. 5.38b we see that Z
���

is the impedance looking into the amplifier in the
presence of the loading of the feedback network but without the action of feedback
simply becauseA and, hence, T are both zero. Since the feedback network appears
in shunt with Z

�
, we can see from Fig. 5.38b that:

Z
���

�Z
�
� 
loading of feedback network��Z

�
(5.106)

When Eq. (5.104) is substituted in Eq. (5.101), the inside input impedance
reduces to:

Z
��

�
Z

���
1� T �

(5.107)

Figure 5.38
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Making use of the inequalities in Eqs. (5.103) and (5.106), we deduce:

Z
��

�
Z

���
1� T �

�
Z

�
1� T �

�
Z

�
1� T

(5.108)

What this result says is that if you add current feedback to an open-loop amplifier
with source impedance Z

�
and input impedance Z

�
, then the inside input imped-

ance of the resulting feedback amplifier is smaller than Z
�
at least by a factor of

1� T where T is the loop gain associated with the transfer gain.

Example 5.8 The input impedance of the two-stage, series—shunt feedback
amplifier, discussed in Example 5.4 and shown in Fig. 5.17, can be written as:

R
��

�R
�
�R

��
(5.109)

Since R
�
is fixed, we studyR

��
by connecting a test current source as shown in Fig.

5.39 and applying the feedback formula:

R
��

�R
���

T �
1� T �

�R
���

1

1� T �
(5.110)

in which T � can be determined either as shown in Fig. 5.40 or by simply letting
R

�
�� in the expression of the loop gain derived in Example 5.4:

T �� T �
��

��

� �
�
B� �

��
��

�
�
�
(1� �



)

1�
r�
� (1� �



)(R

�
�R

�
)

R
�

1

1�
R

�
R

�

(5.111)

�
1

1�
r��

R
�
��R�

�R
� �
r�
�R

�
1��



�

in which B� was determined in Eq. (5.67).
To determine R

���
, we let �

�
�� in Fig. 5.39 and observe that this causes

i
��

� 0 so that v
�
� i

��
r��� 0. Hence we have:

R
���

� 0 (5.112)

Equation (5.110) now reduces to:

R
��

�
R

���
1� T �

(5.113)
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Figure 5.39

Next we determine R
���
, which is the input resistance with the loading of the

feedback but without the action of feedback. To do so, we set �
�
� 0 as shown in

Fig. 5.41 whence we have by inspection:

R
���

�R
�
� r�� ��R�

�R
� �
r�
�R

�
1� �



� (5.114)

We can see in this expression thatR
�
� r�� is indeed the input impedance,R

�
, of the

amplifier without feedback and that R
�
�R

�
� [(r�
�R

�
)/(1� �



)] is the contri-

bution of the loading of the feedback connection.

Figure 5.40

Figure 5.41
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Substituting Eqs. (5.111) and (5.114) in (5.113) we obtain the complete expres-
sion for the input resistance. Using numerical values, these expressions can be
further simplified. Also note that the input impedance can be determined directly
by applying the EET to �

�
and using Eq. (5.24) without referring to the loop gain

(see Problem 5.8). �

5.5.2 Output impedance for voltage sensing

In this section we shall determine the effect of feedback on the output impedance of
feedback amplifiers whose output voltage is sampled as shown Figure 5.42a. The
open-loop amplifier, prior to the application of feedback, is assumed to have an
output impedance of Z

�
. The transfer function, which can be either a voltage gain

or a transresistance, can be expressed according to the feedback formula:

G�
v
�
u
��

�G
�

T
1� T

�G
�

1

1� T
(5.115)

in which the loop gain, T, is obtained by setting u
��

� 0 as shown in Fig. 5.42b.
The inside output impedance is determined by setting the input to zero and

connecting a test current source at the output as shown in Fig. 5.43a. Applying the
feedback formula in Eq. (5.44) to the output impedance function we obtain:

Z
��

�Z
���

T �
1� T �

�Z
���

1

1� T �
(5.116)

Figure 5.42

in which T � is the loop gain obtained by setting i
�
� 0 as shown in Fig. 5.43b.

According to Figs. 5.42b and 5.43b the two loop gains, T and T �, are related by:

T �� T �
��

��
(5.117)

We can also see by comparing Figs. 5.42b and 5.43b that:

T �	 T (5.118)
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because in Fig. 5.43b the signal enters the feedback path without the shunting
effect of the load impedance in Fig. 5.42b.

Figure 5.43

The impedance Z
���

is shown in Fig. 5.44a whence we see that as A�� the
output voltage, or v

�
, approaches zero so that we have:

Z
���

�
v
�
i
�
�
���

� 0 (5.119)

In order to see how v
�
vanishes as A��, notice that the input u

�
to the amplifying

element A is a linear combination of the input signal, u
��

, and the feedback signal,
u
�
, so that:

u
�
� au

��
� bu

�
(5.120)

Since u
�

is proportional to the output voltage, i.e. u
�
� cv

�
, Eq. (5.120) becomes:

u
�
� au

��
� bcv

�
(5.121)

Since u
��

� 0 and u
�
� 0 as A��, we have according to Eq. (5.121) v

�
� v
�
� 0.

Figure 5.44

Hence it follows that Z
���

� 0 and the closed-loop output impedance in Eq.
(5.116) reduces to:

201 5.5 Driving-point analysis of feedback amplifiers



Z
��

�
Z
���

1 � T �
(5.122)

The impedance Z
���

is determined by setting A� 0 as shown in Fig. 5.44b. We
can see that Z

���
is the output impedance in the presence of the loading of the

feedback network but without the action of feedback since A, T � 0. In fact, Z
���

is
given by the parallel combination of Z

�
and the impedance loading of the feedback

network so that we have:

Z
���

�Z
�
� �Impedance loading of feedback network��Z

�
(5.123)

Making use of the inequalities in Eqs. (5.118) and (5.123), we deduce:

Z
��

�
Z
���

1 � T �
�

Z
���

1 � T
�

Z
�

1 � T
(5.124)

What this result says is that the inside output impedance of a voltage-sampled
feedback amplifier, with loop gain T and feeding a load Z

�
, is less than the inside

output impedance of the open-loop amplifier at least by a factor of 1 � T. This
result is expected because sampling the output voltage causes it to follow the input
signal according to v

�
� u
��
G

�
making the output appear as a voltage source. In

other words, this feedback scheme automatically compensates for any voltage
drop in the output impedance of the amplifier, Z

�
, as the load current changes.

Example 5.9 The inside output impedance of the amplifier discussed in Example
5.5 is determined by connecting a test current source at its output and setting
v
��

� 0 as shown in Fig. 5.45. According to the feedback formula:

R
��

�R
���

T �
1 � T �

�R
���

1

1 � T �
(5.125)

In this equation, we shall show that R
���

� 0 by observing in Fig. 5.45 that letting
�
�
�� causes i

	�
� 0 which in turn causes the following sequence of events:

i
	�
� 0 � i

	�
� 0 � v

	�
�� 0 � v


�
�� 0 � v

�
� 0 (5.126)

It follows that R
���

� v
�

/i
�
� 0 so that we have:

R
��

�
R
���

1 � T �
(5.127)

The loop gain T � is shown in Fig. 5.46 and can be deduced from the loop gain T
determined earlier for the voltage gain in Example 5.5 simply by letting R

�
��:

T �� T �
����

��
�
B
 �
����

(5.128)

Substituting for B
 given in Eq. (5.74) and letting R
�
��, we obtain for T �:
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Figure 5.45

T ��
�
�
�
�

(1 � �
�

)

1 �

r���
1 ��

�
1 ��

�

(r���R
�
)

R
	�

1

1 �
r��
R
�

(5.129)

Next we determine R
���

, which is the inside output impedance with the loading
of the feedback network but without the action of feedback. To do so, we set
�
�
� 0 as shown in Fig. 5.47 and obtain by inspection:

R
���

�R

�

�R
	� ��r��� (1 ��

�
)
r���R

�
1 ��

�
� (5.130)

Figure 5.46

Note the inside output impedance, R
�
, of the open-loop amplifier is infinite

because it is the impedance looking into the collector of Q
�

. Hence R
���

is entirely
due to the loading of the feedback network. Substituting Eqs. (5.129) and (5.130) in
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Figure 5.47

(5.127) we obtain the complete expression for the inside output resistance. Using
numerical values, useful approximations for the expressions derived above can be
obtained. Also note that the output impedance can be determined directly by
applying the EET to �

�
and using Eq. (5.24) without referring to the loop gain (see

Problem 5.9). �

5.5.3 Input admittance for voltage mixing

A general diagram of voltage mixing is shown in Fig. 5.48a in which a voltage
signal, v

�
, proportional to the output of an amplifier, is fed back to the input side

and combined with the input voltage in a loop. The transfer gain of the amplifier in
Fig. 5.48a can be either a voltage gain or a transconductance which according to
the feedback formula can be expressed in terms of the loop gain:

G�
u
�

v
��

�G
�

T
1 � T

�G
�

1

1 � T
(5.131)

The loop gain T is determined by setting v
��

� 0 as shown in Fig. 5.48b.
The impedance seen by the source in Fig. 5.48a can be written as the sum of the

source impedance and the inside input impedance:

Z
��

�Z
�
�Z
��

(5.132)

Since Z
�

is fixed, we shall study Z
��

. As we shall see, it is more appropriate in this
case to work with admittance functions rather than impedance functions. Hence,
to determine Y

��
, we connect a voltage source, v

�
, as shown in Fig. 5.49a and apply

the feedback formula in Eq. (5.44) to the input admittance function:

Y
��

� Y
���

T �
1 � T �

� Y
���

1

1 � T �
(5.133)
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Figure 5.48

in which T � is determined as shown in Fig. 5.49b and is related to the loop gain, T,
of the transfer gain shown in Fig. 5.48b by:

T �� T �
����

(5.134)

In Fig. 5.48b, v
�

goes through a voltage division between Z
�

and Z
�

before it enters
the amplifier, whereas in Fig. 5.49b v

�
goes straight into the amplifier. If follows

that the loop gain in Fig. 5.49b must be larger than the one in Fig. 5.48b:

T �	 T (5.135)

Figure 5.49

The admittance Y
���

is determined by letting A�� as shown in Fig. 5.50a
in which the input voltage to the amplifier, v

�
, approaches zero because u

�
approaches zero. It follows that the current entering the amplifier, i

�
� Y
�
v
�

approaches zero so that:

Y
���

�
i
�
v
�
�
���

� 0 (5.136)

Hence, Eq. (5.133) reduces to:

Y
��

�
Y
���

1 � T �
(5.137)
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Now we see that had we considered Z
��

instead of Y
��

, we would have obtained
Z
���
�� and T �� 0 (because we would have had to open the input side in Fig.

5.49b rather than short it) which would have caused the first term in the feedback
formula to be indeterminate.

The admittance Y
���

is determined by letting A� 0 as shown in Fig. 5.50b
whence we see that:

Y
���

� Y
�
� �admittance loading of feedback network� (5.138)

It follows that:

Y
���

� Y
�
�Z
���

	Z
�

(5.139)

Figure 5.50

The impedanceZ
���

is the input impedance with the loading of the feedback network
but without the action of feedback since A and, hence, T are both zero.

Now we can compare the inside input admittance of the feedback amplifier with
the inside input admittance of the amplifier before connecting the feedback net-
work by making use of Eqs. (5.135), (5.137) and (5.138):

Y
��

�
Y
���

1 � T �
�

Y
���

1 � T
�

Y
�

1 � T
(5.140)

The last inequality can be written in its more popular form:

Z
��

	Z
�
(1 � T) (5.141)

which states that the inside input impedance of an amplifier with voltage mixing is
at least 1 � T times larger than the inside input impedance of the open-loop
amplifier where T is the loop gain associated with the transfer gain. This increase
in the input impedance is expected because negative feedback reduces the input
voltage, v

�
, to the amplifier stage by v

�
so that the amplifier draws less current from

the source. In the limit, as A��, v
�
� 0 and the current drawn by the amplifier

from the source vanishes and the input impedance becomes infinite.

Example 5.10 To determine the inside input conductance of the amplifier in
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Example 5.5, we connect a test voltage source at the input terminals as shown in
Fig. 5.51. According to the feedback formula we have:

G
��

�G
���

T �
1 � T �

�G
���

1

1 � T �
(5.142)

in which T � is determined as shown in Fig. 5.52. As in the previous examples, we
can deduce T � from the loop gain for the voltage transfer function, T ��

�
B
 :

T �� T �
����

��
�
B
 �
����

(5.143)

Figure 5.51

in which B
 is given by Eq. (5.74) in Example 5.5. Hence we have:

T ��
�
�

(1 ��
�
)�

�

1 �

R

�

�R
	�

��r�� �
1 � �

�
1 � �

�

r���
R
�

(5.144)
�

1

1 �

r���
1 � �

�
1 � �

�

r��
R
	�

1

1 �
r��
R
�

In Fig. 5.51, if we let �
�
�� we can see that G

���
� 0 because of the following

sequence of events:

�
�
��� i

	�
� 0 � i

�
� 0 � �

�
i
	�

� 0 � i
	�

� i
�
� 0 (5.145)

Equation (5.142) now reduces to:

G
��

�G
���

1

1 � T �
(5.146)
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Figure 5.52

It should be clear that had we chosen to study Z
��

in Eq. (5.142) instead of G
��

, then
Z
���
�� and T �� 0 (because in this case T � would have been derived from T by

letting R
�
��) and the first term in Eq. (5.141) would have been indeterminate.

Equation (5.145) is written in its more popular form:

R
��

�R
���

(1 � T �) (5.147)

In Fig. 5.53 we let �
�
� 0 so that R

���
can be determined by inspection:

R
���

� r�� �
r���R

�	
� (R
�


�R
�

)

1 � �
�

(1 � �
�

) (5.148)

Figure 5.53

Substituting Eqs. (5.144) and (5.148) in (5.147), we obtain the complete expression
of R
��

which is seen to increase proportional to the open-loop gain. There is a
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rather simple interpretation for the increase in the input impedance: by increasing
the loop gain the voltage at the base of Q

�
becomes more and more identical to the

voltage at the base of Q
�

so that the differential voltage across r�� and r��
approaches zero and the input current reduces to zero.

If we assume that all �s are large, then R
���

and T � can be simplified:

T ��
�
�
�
�
�
�

1 �
R

�

�R
	�

� (r��� r��)

R
�

1

1 �
r��� r��

R
	�

1

1 �
r��
R
�

(5.149)

R
���

� r�� � r���R
�	

� (R
�


�R
�

) (5.150)

Note that the input resistance, R
��

, seen by the source can be determined directly
by applying the EET to �

�
(see Problem 5.10). �

5.5.4 Output admittance for current sensing

Figure 5.54a shows a general diagram for an amplifier in which a signal u
�

proportional to the output current is fed back to the input side. Since the output
current is the response, a transfer function of this amplifier can be either a current
gain or a transconductance which according to the feedback formula in Eq. (5.44)
is given by:

G�
i
�
u
��

�G
�

T
1 � T

�G
�

1

1 � T
(5.151)

The loop gain, T, in Eq. (5.151) is determined by setting the input to zero and
injecting a signal u

�
as shown in Fig. 5.54b. Before studying the output admittance,

Figure 5.54

we establish the fact that u
�
, which is the input signal to the amplifying element A,

is a linear combination of the output current and the input voltage:

u
�
� au

��
� bu

�
(5.152)
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Since u
�

is proportional to the output current, u
�
� ci
�
, Eq. (5.152) becomes:

u
�
� au

��
� bci

�
(5.153)

The inside output admittance is determined by setting the input to zero, u
��

� 0,
and connecting a test voltage source at the output as shown in Fig. 5.55a. Applying
the feedback formula in Eq. (5.44) to the output admittance function, we obtain:

Y
��

� Y
���

T �
1 � T �

� Y
��

1

1 � T �
(5.154)

in which T � is the loop gain obtained by setting v
�
� 0 as shown in Fig. 5.55b

because v
�
is the excitation of Y

��
. Immediately we can see that T � is related to T in

Fig. 5.54b by:

T �� T �
����

� T (5.155)

Figure 5.55

The reason why T �	 T is simply because the output of the amplifying element A
in Fig. 5.55b encounters a smaller impedance than in Fig. 5.54b and hence can push
more current into the feedback path than in Fig. 5.54b. It follows that the signal
gain around the loop is larger in Fig. 5.55b than in Fig. 5.54b. Another way to see
this is to apply the EET to T, in which u

�
is the excitation, u

�
is the response and Z

�
is the extra element (see Problem 5.11). Note that when the amplifying element A is
a dependent current generator directly feeding the load Z

�
, then T �� T.

In Fig. 5.56a, Y
���

is determined by letting A��, which causes u
�
� 0. Since

u
��

� 0, we have according to Eq. (5.153):

i
�
� 0 (5.156)

It follows that:

Y
���

�
i
�
v
�
�
���

� 0 (5.157)
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Figure 5.56

Hence the feedback formula once again reduces to:

Y
��

�
Y
���

1 � T �
(5.158)

The output admittance Y
���

is determined by letting A� 0 as shown in Fig.
5.56b in which we see that Y

���
is the output admittance in the presence of the

loading of the feedback network but without the action of feedback. In fact we have:

Y
���

� Y
�
� �admittance loading of feedback network� (5.159)

so that we have:

Y
���

� Y
�

(5.160)

Applying the results in Eqs. (5.155) and (5.160) to Eq. (5.158), we conclude that:

Y
��

�
Y
���

1 � T �
�

Y
���

1 � T
�

Y
�

1 � T
(5.161)

It is not surprising that sampling the output current should lower the output
admittance because this causes the output current to follow the input signal
through i

�
� u
��
G

�
which in turn makes the output appear as a current source. In

this case, feedback compensates for any current shunted by open-loop output
admittance, Y

�
.

Example 5.11 To determine the inside output conductance seen by the load R
�

of
the amplifier in Example 5.6, we connect a test voltage source at the output as
shown in Fig. 5.57 and apply the feedback formula to obtain:

G
��

�
i
�
v
�

�G
���

T �
1 � T �

�G
���

1

1 � T �
(5.162)

The loop gain T � can either be determined as shown in Fig. 5.58 or deduced from
the results derived for T in Example 5.6:

T �� T �
����

��
�
B
 �
����

(5.163)

Substituting for B
 , given by Eq. (5.81), in Eq. (5.163) and taking the limit we obtain:
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T ��
R
��

R
��

�
1

n�
R
�� �

r���R
�

1 ��
�

1

n

�
�
�
�

1 �
R
�
� r��

R
��

(1 ��
�

)

1

1 �
r��
R
��

(5.164)

Figure 5.57

Figure 5.58

To determine G
���

, we let �
�
��, which causes the following sequence of

events as shown in Fig. 5.59:

i
	�

� 0 � i
�
� 0 ��

�
i
	�

� 0 � i
	�

� 0 � v
�
� 0 �

i
�
n

� 0 (5.165)

It follows that G
���

� 0 and the inside output conductance reduces to:

G
��

1

1 � T �
(5.166)

This is written in its more popular form:

R
��

�R
���

(1 � T �) (5.167)

To determine G
���

, we let �
�
� 0 as shown in Fig. 5.60 whence we see that the

output impedance is given by the series combination of R
��

and the impedance
seen looking into the emitter of Q

�
reflected through the transformer:
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Figure 5.59

Figure 5.60

R
���

�R
��

�
1

n��R���
r���R

�
1 � �

�
� (5.168)

Substituting Eqs. (5.164) and (5.168) in Eq. (5.167), we obtain the complete expres-
sion of the output impedance. Before the application of feedback, the impedance
seen by the load is R

��
, which is nearly identical to R

���
. The output impedance,

after feedback, is seen to be increased by a factor of 1 � T � as given by Eq. (5.167).
The output impedance discussed in this example can also be derived without any
reference to loop gain simply by applying the EET to �

�
(see Problem 5.12). �

5.6 Loop gain: a more detailed look

The definition of the loop gain T �AA
 given earlier corresponds to injecting a
signal, u

���
, immediately after the amplifying element A and determining the ratio

T ��u
�
/y
�

as shown earlier in Fig. 5.4a. For example, when the amplifying
element is a dependent voltage source Au�, a voltage source is inserted in series
with Au� as shown in Fig. 5.61a and the loop gain is given by the ratio of the return
voltage to the forward voltage:
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T ��
v
�
v
�
�
���	�

�AA
 (5.169a)

When the amplifying element is a dependent current source, Au�, a current source
is injected in parallel with Au� as shown in Fig. 5.61b and the loop gain is given by
the ratio of return current to the forward current:

T ��
i
�
i
�
�
���	�

�AA
 (5.169b)

The determination of the loop gain by the ratio of the return signal to the
forward signal can be generalized to injecting a signal at any point in the circuit
and not necessarily immediately after the amplifying element. For an arbitrary
point of injection the expression of the loop gain obtained is no longer equal to AA

and is different for different points of injection. Hence, if the feedback formula is to
yield the same closed-loop gain, G, for different loop gains, then G

�
and G

�
must

be different at different points of injection. The proof of the feedback formula for
an arbitrary point of injection is left as an exercise (see Problem 5.13). When the
signal is injected immediately after the amplifying element as shown in Figs. 5.61a

Figure 5.61

Figure 5.62
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and b, the corresponding G
�

and G
�

are determined by letting A�� and A� 0,
respectively, as explained earlier. For an arbitrary point of injection, G

�
and G

�
are determined using null double injection as shown in Figs. 5.63a and b (voltage
injection) and Figs. 5.64a and b (current injection). In Fig. 5.63a, v

���
and u

��
are

used to null v
�

so that G
�

is determined according to:

G
�

�
u
���
u
��
�
��	�

(5.170)

In Fig. 5.63b v
���

and u
��

are used to null v
�

so that G
�

is determined according to:

G
�
�

u
���
u
��
�
��	�

(5.171)

The same is repeated in Figs. 5.64a and b for current injection.

Figure 5.63

Figure 5.64

The generalization of the loop gain as described above does not necessarily lead
to better analytical answers: it simply generalizes the feedback formula in Eq.
(5.44). The following simple example compares the expressions of the gain ob-
tained by the use of the EET and the feedback formula using two different points of
injection.
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Example 5.12 The voltage gain of the single-stage common-emitter amplifier
with output voltage feedback shown in Fig. 5.65 is obtained by using the EET for
dependent sources:

A
�
�A
��

1 �
1

�B


1 �
1

�B

(5.172a, b)

��
R
�

R
�

1 �
1

�
r�
R
�

1 �
1

��1 �
r�
R
�
��1 �

R
�
�R
�
� r�

R
�

�





Figure 5.65

Next, we use the feedback formula and inject a current signal directly in parallel
with the � generator as shown in Fig. 5.66. In Fig. 5.66a the loop gain obtained is
the same as �B
 in Eq. (5.172b):

T �
�

�1 �
r�
R
�
��1 �

R
�
�R
�
� r�

R
�

�
(5.173)

In Fig. 5.66b A
��

is obtained by nulling i
�
:

A
��

��
R
�

R
�

(5.174)

which is the same expression as the one in Eq. (5.172b). In Fig. 5.66c A
��

is obtained
by nulling i

�
:

A
��

�
1

1 �
R
�

r� � (R
�
�R
�
)

1

1 �
R
�

R
�

(5.175)

Substituting the above in the feedback formula:
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Figure 5.66

A
�
�A
��

1

1 � T
�
�A
��

1

1 � T
(5.176)

we obtain another expression for the voltage gain which is equivalent to the
expression in Eq. (5.172) but somewhat more complicated.

Finally, we inject a signal at the base of the transistor as shown in Fig. 5.67a and
obtain for the loop gain:

T ���
i
�
i
�

�
r�
R
�

�
r� � �R

�
R
�
�R
�

(5.177)

For A�
��

we obtain from Fig. 5.67b:

A�
��

��
R
�

R
�

1 �
r�

�R
�

1 �
r�

�R
�
�1 �

R
�
�R
�

R
�
�

(5.178)

For A�
��

we obtain from Fig. 5.67c:

A�
��

� 0 (5.179)

Substituting Eqs. (5.177), (5.178) and (5.179) in the feedback formula we obtain a
third equivalent expression for the closed-loop voltage gain. The only problem
with this last expression is that A�

��
does not represent an ideal closed-loop gain as

does A
��

and cannot be as easily interpreted. �

It is clear that at an arbitrary point of injection, either a current signal or a

217 5.6 Loop gain



Figure 5.67

voltage signal can be used and two different loop gains can be obtained: a current
loop gain, T

�
, and a voltage loop gain, T

�
. In general there is no useful relationship

between T
�

and T
�
, but in an important special case a useful relationship between

the two can be obtained (see Problem 5.14).

5.7 Stability

A system is unstable when any of its poles, simple or complex, is located in the
right-half plane (RHP). For a complex pole-pair in the RHP, the time-domain
response is oscillatory whose amplitude is limited by the nonlinearity of the circuit.
For a simple pole in the RHP, the time-domain response is a growing exponential
whose growth is also bounded by the nonlinearity of the circuit. In this section, a
brief theory of the stability of linear circuits and the role of the loop gain in
assessing stability will be discussed.

The stability of a system can be determined from the number of net encircle-
ments of the polar plot of the loop gain T ( j
), also known as the Nyquist plot, of
the (�1, j0) point. If the net number of encirclements less the number of
RHP poles of the open-loop plant is zero, then the system is stable, otherwise it is
unstable. A Bode plot of the magnitude and phase of the loop gain is also used to
study the stability of linear systems whose open-loop zeros and poles are in the
left-half plane (LHP). Such systems, also known as minimum phase systems, be-
come unstable when the phase of the loop gain exceeds �180° at the frequency at
which the magnitude of the loop gain equals unity. Except in decoupled circuits,
any loop gain will yield exactly the same condition of instability or the same
condition and frequency of oscillation.
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Example 5.13 This is an example of two decoupled circuits in which the loop gain
yields no information about the stability of the output voltage response. Recall
that feedback is applied to a particular response and not to every possible response
in the entire circuit. The loop gain of the circuit in Fig. 5.68 is given by:

T (s) ��B
 �
T
�

1 � s/

�

(5.180)

where:

T
�
�

�

1 �
R
�
� r�
R
� (5.181a, b)



�
�

1

R
�
� (r��R

�
)C
�





Figure 5.68

A Nyquist plot of the loop gain is shown in Fig. 5.69, which shows no possible sign
of instability no matter how large or small � or T

�
may be even if R

�
in the output

circuit may be infinite or negative which would cause the output voltage to become
unstable. There is actually nothing wrong with this loop gain because it is the
emitter current and not the output voltage which is being fed back. In other words,
the output voltage is outside the feedback loop in which the amplifying element �i

	
is acting. Hence, the emitter current can exhibit a very stable response, as predicted
by the loop gain, while the output voltage may be oscillatory. A block diagram
representation of decoupled systems in general is shown in Fig. 5.70 in which the
loop gain T

�
determines the behaviour of the feedback system G

�
and H

�
and not

G
�

. Hence, even if u
�

exhibits a perfectly stable response, u
�

may exhibit a
marginally stable or unstable response depending on the poles of G

�
. �

219 5.7 Stability



Figure 5.69

Figure 5.70

Example 5.14 The circuit in the previous example can be modified in such a way
as to feed back the output voltage positively in order to make an oscillator. This is
shown in Fig. 5.71a and the circuit is known as the Colpitts oscillator. Using the
equivalent circuit model shown in Fig. 5.71b, we can determine the loop gain (see
Problem 5.15) to be:

T (s) � g
�
G
 � T

�

1 �
s



�

1 � a
�
s� a

�
s�� a

�
s�

(5.182)

where:

T
�
� g
�
R
�
� r�



�

�
R
�

L

a
�
�R
�
� r�(C

�
�C
�

) (5.183a—e)

a
�
� LC

�

R
�
� r�

R
�
�R
�
� r�

� LC
�

R
�
� r�

R
�



a

�
� LC

�
C
�
R
�
� r�

220 Electronic negative feedback



If we set T ( j
) ��1, we can find the condition and frequency at which this circuit
will oscillate. Before doing so however, we shall give a simple physical argument
for the operation of the circuit. If at the desired frequency of oscillation, the
reactance of C

�
is much smaller than R

�
and the resistance looking into the

emitter, then the voltage at the emitter junction is essentially given by the capaci-
tive voltage divider:

Figure 5.71

v
�
� v
�

C
�

C
�
�C
�

� �v
�

(5.184)

Now, the collector current is given by:

i
�
��g

�
v����g

�
v
�

(5.185)

If this current replenishes the losses in the resonant tank mainly due to R
�

then the
circuit can sustain oscillation. Hence, equating i

�
to v
�
/R
�

should yield the condi-
tion for the amount of gain needed to sustain oscillation:

�g
�
v
�
� v
�
/R
�
� g
�
�

1

�R
�

(5.186)

For typical loads and current bias levels, � turns out to be much less than unity so
that for a typical design of this circuit we have:

�� 1 �C
�
�C
�

(5.187)

It follows that the series combination of C
�

and C
�

is essentially given by C
�

so that
the frequency of oscillation of the resonant tank is given by:



�
�

1

�LC
�

(5.188)
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Now, using the concept of loop gain, we derive the same result by requiring that
T ( j


�
) ��1 in Eq. (5.182):

T
�

1 �
j

�



�

1 � a
�

�
�
� j(a

�


�
� a

�

�
�

)
��1 (5.189)

Multiplying out the terms in Eq. (5.189) we obtain:

1 � T
�
� a

�

�
�
� j


��
T
�



�

� a
�
� a

�

�
��� 0 (5.190)

First, we set the imaginary part in Eq. (5.190) to zero and obtain the frequency of
oscillation:



�
��

1

LC
�
�C
�

�
g
�

C
�
C
�
R
�

(5.191)

Using the fact that the Q of the tank circuit is fairly respectable, Eq. (5.191) can be
approximated (see Problem 5.16) as:



�
��

1

LC
�
�C
�

(5.192)

Second, we set the real part in Eq. (5.190) to zero and obtain:

1 � T
�
� a

�

�
�

(5.193)

Substituting for T
�
, a

�
and 


�
(see Problem 5.16), we obtain the minimum required

value for g
�

to sustain oscillation:

G
�
�

1

R
� ��

R
�

���
1

��1 �
�
��

(5.194)

in which ���/(1 ��). Since �� 1 and �� 1, the condition on g
�

to sustain
oscillation in Eq. (5.194) simplifies to the condition obtained earlier in Eq.
(5.186). �

The stability of an electronic circuit can also be determined using impedance
functions. Hence, the condition and frequency of oscillation can be obtained by
requiring that the real and imaginary parts of the impedance looking into any port
across a capacitor or an inductor to be infinite. Alternatively, the same conditions
can be obtained by requiring the impedance looking into a loop containing an
inductor or a capacitor to be zero. These two conditions are shown in Figs. 5.72a
and b.
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Figure 5.72

Example 5.15 The same condition and the frequency of oscillation in the previ-
ous example can also be deduced if we examine the impedance looking into any
capacitive or inductive port of the circuit and requiring its real and imaginary
parts be infinite. Since the inductor is connected across the output port, we
determine the output impedance:

Z
�
(s) �R

�
� sL �Z�

�
(s) (5.195)

Instead of determining Z
�
(s), we can determine Z�

�
(s) and require that its real and

imaginary parts be equal and opposite to those of R
�
� j
L. Using the 2-EET, we

can show (see Problem 5.17) that Z�
�
(s) is given by:

Z�
�
(s) �R

�
� r�

1 �
C
�

C
�

�
1

sC
�
r� �R

�
� g
�
�

1 � sC
�
R
�
� r�

(5.196)

Making use of � in Eq. (5.184) and g
�
r� ��� �/(1 � �), we can rewrite Z�

�
(s) as:
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Z�
�
(s) �R

�
� r�

1

�
�

1

sC
�
R
�
� (�g
�
�

)

1 � sC
�
R
�
� r�

(5.197a, b)

�
1

�
R
�
� r�

1 � sC
�
R
�
� r�

�

R
�
� r�

sC
�
R
�
� (�g
�
�

)

1 � sC
�
R
�
� r�





The real and imaginary parts of Z�
�
(s) in the vicinity of the resonant frequency are

determined as follows. The first term in the expression of Z�
�
(s) is rationalized to

yield:

1

� �
R
�
� r�

1 � (
C
�
R
�
� r�)�

�
j
C
�

(R
�
� r�)�

1 � (
C
�
R
�
� r�)�� (5.198a)

In the vicinity of the resonant frequency 
C
�
R
�
� r�� 1 so that Eq. (5.198a) can be

approximated:

1

�
�C�
�
R
�
� r�

�
1

j
�C
�

(5.198b)

The second term in the expression of Z�
�
(s) can be approximated:

R
�
� r�

j
C
�
R
�
� (�g
�
�

)

1 � j
C
�
R
�
� r�

��
1


�C
�
C
�
R
�
� (�g
�
�

)
(5.198c)

Combining Eqs. (5.198b) and (5.198c) we obtain for the real and imaginary parts of
Z�
�
(s):

1

(
�C
�

)��
�

R
�
� r�

�
��C
�

C
�
R
�
� (�g
�
�

)��
1

j
�C
�

(5.199)

The effective capacitance in Eq. (5.199) is seen to be �C
�
�C
�
�C
�
. The real and

imaginary parts of R � j
L in the vicinity of resonance can be approximated using
a high-Q assumption:

R � j
L �
j
L

1 � j

L
R

�

j
L�1 � j

L
R �

1 ��

L
R �

�
� j
L �

(
L)�

R
(5.200)

Requiring that the imaginary parts in Eqs. (5.199) and (5.200) be equal and
opposite we obtain the frequency of oscillation:
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�j
L �
1

j
�C
�

�

�
�

1

�LC
�
�C
�

(5.201)

Requiring that the real parts in Eqs. (5.199) and (5.200) be equal and opposite we
obtain the condition for oscillation:

1

(
�C
�

)��
�

R
�
� r�

�
��C
�

C
�
R
�
� (�g
�
�

)���
(
L)�

R
�

(5.202)
��

1

R
�

(
�C
�

)�

whence we can solve the condition on g
�

for oscillation:

g
�
�

1

R
� ��

R
�

���
1

��1 �
�
��

(5.203)

The high-Q approximations discussed above for tapped resonant circuits are so
routine in tuned amplifier and oscillator circuit analysis that approximate equival-
ent circuits are derived to render the analysis straightforward and avoid repeti-
tious approximations. These circuits and techniques will be discussed in Chapter
7. �

Example 5.16 As an illustration of the Nyquist encirclement condition for stabil-
ity, consider an open-loop plant, which has a RHP pole, with negative feedback
applied to it as shown in Fig. 5.73. Although the open-loop plant is unstable, it can
be easily shown that the closed-loop system is stable if �A

�
	 1. The closed-loop

response in Fig. 5.73 is given by:

u
�

u
��

�
A

1 �A�

(5.204a, b)
�

A
�

A
�
� � 1

1

1 �
s



�

(A
�
�� 1)





Figure 5.73
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Hence, this feedback system is stable if the closed-loop pole in Eq. (5.205b) is in the
LHP or simply if �A

�
	 1. The same conclusion can be reached from the Nyquist

plot of the loop gain which is shown in Fig. 5.74 and is given by:

T ( j
) �A���
A
�
�

1 �
s



�

(5.205)

Figure 5.74

We can see in Fig. 5.74 that if �A
�
	 1, then the number of net encirclements of the

(�1, j0) point is one. Hence, the system is stable because the number of encircle-
ments less the number of RHP poles of the open-loop system is zero.

An excellent example of a circuit with open-loop RHP poles operating in a
stable closed-loop configuration is two regulating dc-to-dc converters connected
in cascade (see Chapter 8). �

5.8 Phase and gain margins

Phase and gain margins are rather simple and intuitive marginal stability criteria
for simple minimum-phase systems. Figure 5.75 shows two different loop gains
which have the same magnitude when the phase of each reaches �180° at a
particular frequency. The factor by which either gain has to be increased to
encircle the (�1, j0) point and make the system unstable is called gain margin.
Hence, the gain margin for both loop gains in Fig. 5.75 is given by:

G
�

� 20 log�
1

� T
�

(j
��
) ��� 20 log�

1

� T
�
(j
��

) �� (5.206)

We can see, however, that the system with loop gain T
�

is more susceptible to an
instability simply because it comes closer to the critical point. Hence, we define
another marginal stability figure, called the phase margin, which is the amount of
extra phase required to encircle the critical point at the frequency at which the loop
gain becomes unity. Hence, the phase margins for T

�
and T

�
in Fig. 5.75 are given

by:
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P
��

� 180 ��T
�

(j

��

)
(5.207a, b)

P
��

� 180 ��T
�

(j

��

)





Figure 5.75

If the magnitude of the loop gain crosses the unity gain point and has a shape
such as the one shown in Fig. 5.76a, then the relevant stability margin is the gain
margin and not the phase margin (see Problem 5.16). In conditionally stable
systems, such as the one shown in Fig. 5.76b, phase margin has no meaning.
Although somewhat cumbersome, two gain margins may be defined for such loop
gains if necessary.

Figure 5.76

If a response is fed back with a loop gain which has a small stability margin, then
that response tends to have an underdamped oscillatory transient. Hence, we can
think of stability margin as an effective damping constant of the dominant re-
sponse. In fact, for a second-order system with no zeroes, there is an exact
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relationship between the damping factor and the phase margin (which can be
found in most introductory control theory books).

Example 5.17 In micro-electromechanical sensors, signals are commonly devel-
oped across micro-capacitive transducers in the form of equivalent current gener-
ators whose strength is proportional to the velocity of the movable plate, or plates,
and the applied bias voltage. The most suitable way of biasing a capacitive
micro-sensor and amplifying the current signal is to use a transimpedance ampli-
fier, shown in Fig. 5.77a. The small-signal equivalent circuit is shown in Fig. 5.77b
in which the input capacitance of the operational amplifier is included in C

�
. Since

the current signal is of the order of femto or pico amperes, the feedback resistor is
typically of the order of 100 M�. Such an amplifier can easily oscillate, or have a
sharp resonant peak in its transimpedance function, because the combined phase
shift from the open-loop gain of the amplifier and the input circuit, r

��
C
�
, can reach

�180° as the loop gain approaches unity.

Figure 5.77

The loop gain is determined using the equivalent circuit model shown in Fig.
5.77b whence we have:

T (s) �
T
�

�1 �
s



�
��1 �

s



�
�

(5.208)

where

T
�
�

a
�

1 �
R
�

r
��

(5.209a, b)



�
�

1

C
�
r
��

�R
�





For a typical application using an electrometer-grade amplifier, such as the

228 Electronic negative feedback



AD549, we have the following numerical values:

a
�

� 10�



�
� 1 Hz

r
��

� 10��� (5.210a—e)

R
�
� 10��

C
�
� 5 pF





Using these numerical values, we determine:

T
�
� a
�
� 10�

(5.211a, b)



�
�

1

C
�
R
�

� 2
(318) rad/s





An asymptotic magnitude and phase plot of the loop gain is shown in Fig. 5.78.
The phase margin is given by:

�
�

� 180° � tan
�
f
�
f
�

� tan
�
f
�
f
�

� 180° � 90° � 88.98° � 1.02°

Such a small phase margin at the crossover frequency simply means that the
response, v

�
, has a very sharp resonant peak at the crossover frequency 


�
. The

crossover frequency can be easily solved to an excellent approximation:

� T ( j
) ��
T
�


�


�


�
�

� 1 �

�
��a

�


�


�
� 2
(17 832) rad/s (5.212)

Figure 5.78
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To show the correspondence between the phase margin and the peaking in the
closed-loop response, we apply the feedback formula:

v
�
i
��

�G
�

1

1 � T
�
�G

�

1

1 � T
(5.213)

in which we can easily see that:

G
�

��R
� (5.214a, b)

G
�

� 0





Performing the necessary substitutions, we obtain:

v
�
i
��

�
R
�

1 � T
�
�

1

1 �
s

1 � T
�



�
�

�



�


�

�
s�

(1 � T
�
)

�


�

(5.215)

Equation (5.215) can be written as:

v
�
i
��

�
R
��

1 �
s



�
Q

�
s�


�
�

(5.216)

in which:

R
��

�
R
�

1 � T
�
�



�
��(1 � T

�
)

�


�

(5.217a—c)

Q�


�



�
�

�





Since T
�
� 1 we have:



�
�

�

(5.218a, b)R
��

�R
�





Substituting the values for 

�

and 

�

above, we find:

Q�


�



�

� 56 (5.219)

Hence we see that a small phase margin at the crossover frequency simply means
that there is an undamped resonant peak at the crossover frequency in the
closed-loop response. Since the operational amplifier has another pole at a higher
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frequency, the phase margin can easily become negative causing the amplifier to
oscillate at the crossover frequency. �

Example 5.18 A simple remedy for the problem encountered in the previous
example is shown in Fig. 5.79 in which a small capacitance is added in parallel with
R
�

to provide some phase lead in the feedback path. The loop gain in this case is
given by:

T (s) � T
�

�1 �
s



�
�

�1 �
s



�
��1 �

s


�
�
�

(5.220)

in which:



�
�

1

R
�
C
� (5.221a, b)


�
�
�

1

R
�
� r
��

(C
�
�C
�
)
�

1

R
�
(C
�
�C
�
)





Figure 5.79

If we wish to design for a 45° phase margin, then we place 

�

at the crossover
frequency (which is the same as 


�
) and obtain for C

�
:



�
�

�
� 2
(17 832) �C

�
� 0.089 pF (5.222)

Since C
�
�C
�
, the pole at 
�

�
remains essentially at the same place as 


�
and the

loop gain, given by Eq. (5.220), looks as shown in Fig. 5.80. It should be noted that,
although microwave chip capacitors at 0.1 pF are readily available, the value of C

�
determined above is an extremely small value and can be easily masked by the
amount of stray capacitance on the circuit board. Hence great care and awareness
of stray capacitances must be exercised when laying out and building such circuits.
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Figure 5.80

The closed-loop response is now given by:

v
�
i
��

�G
�

(s)
1

1 � T
�(s)
(5.223)

in which:

G
�

(s) ��
R
�

1 � sC
�
R
�

��
R
�

1 �
s



�

(5.224)

Substituting Eq. (5.220) in (5.223), we obtain, similar to Eq. (5.216):

v
�
i
��

��
R
�

1 � T
�
�

1

1 � s�
1



�

�
1



�
Q��

s�


�
�

(5.225)

in which Q and 

�

are as defined as in Example 5.17. Hence, since 

�
�

�

and T
�

and Q are both much larger than unity, Eq. (5.225) reduces to:

v
�
i
��

��
R
�

1 �
s



�

�
s�


�
�

(5.226)

Hence, in comparison to Eq. (5.216) the Q has been reduced from 56 to unity
simply by adding C

�
to increase the phase margin to 45°. This choice of C

�
results

in the maximum possible bandwidth without peaking in the frequency response
(ideally Q should be 0.707). �
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5.9 Review

The primary objective of designing a feedback amplifier is to achieve a transfer
gain which is insensitive to the inherent variabilities found in all amplifying devices
such as transistors and vacuum tubes. This is accomplished by designing an
amplifier stage with a large gain, A (often consisting of several transistor stages),
whose output is the desired response and whose input is the difference between the
applied excitation and a fraction, �, of the response obtained by a feedback
network which has very little variability. If the amplifier stage is designed with a
very large gain, then, despite its variability, the input difference signal to the
amplifier nearly vanishes and, hence, the response follows the excitation magnified
by a factor of 1/�. Ideally, if A�� the transfer gain reduces to 1/� and becomes
entirely independent of A. It is natural then to formulate electronic feedback using
the EET for dependent sources in which A is taken as the dependent source. This
formulation is given in Eq. (5.3) in which G

�
is the ideal closed-loop transfer gain

obtained by letting A��. The actual closed-loop transfer gain in Eq. (5.3) differs
from G

�
by the bilinear factor in A.

The formulation of electronic feedback using the EET for dependent sources can
be manipulated further to yield another formulation in which the closed-loop
transfer gain is expressed as a linear combination of the ideal closed-loop gain, G

�
,

and a nonideal gain, G
�
, which represents the amount of coupling between the

excitation and the response through the feedback network when the gain of the
amplifier stage is set to zero. This formulation is given in Eq. (5.44) in which we can
see the explicit dependence of the closed-loop gain on the loop gain T through the
coefficients of G

�
and G

�
.

The concept of loop gain is central to the study of stability of any feedback
system. A polar plot of the loop gain, known as a Nyquist plot, reveals the stability
of a system by virtue of its encirclement of the (�1, j0) point. A Nyquist plot also
gives an indication of relative stability by virtue of the closeness of the polar plot to
the (�1, j0) point.

Both feedback formulations can be applied to study the input and output
driving-point characteristics of feedback amplifiers. It is shown that whereas
feedback renders the transfer gain insensitive to variations in the gain of the
amplifier stage, A, it renders the input and output impedance functions directly
sensitive to variations in A.

233 5.9 Review



Problems

5.1 Ideal closed-loop gain. If the gain of the operational amplifier in Fig. 5.81a is
infinite, the voltage-gain transfer function is given by the ideal closed-loop gain
G

�
(s):

v
�
(s)

v
��

(s)
��

Z
�

(s)

Z
�

(s)
�G

�
(s) (5.227)

Figure 5.81

(a) If the operational amplifier has a finite gain a
�
, an input resistance r

��
and an

output resistance r
�
, as shown in Fig. 5.81b, then show that application of the

EET to the gain a
�

directly yields the following high-entropy result (as de-
scribed in Eq. (5.5)):

v
�
(s)

v
��

(s)
��

Z
�

(s)

Z
�

(s)

1 �
r
�

a
�
Z

�
(s)

1 �
1

a
�
�1 �

r
�
�Z

�
(s)

Z
�

(s) � r
��
�

(5.228)

(b) As a specific example, determine the transfer function of the circuit in Fig. 5.81c
using the procedure in Eq. (5.4). First, remove the capacitor and apply the EET
to a
�

and determine the low-frequency gain of the response. Second, reinstate
the capacitor using the EET for the capacitor. Following this procedure, show
that:

v
�
(s)

v
��

(s)
�G

�

1 �
1

a
�
��

1 �
1

a
�
a�

1 � sCR
 
��

1 � sCR
 
��
(5.229)

in which:
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��
R

�
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�� ��
R

�
r
�





a� �
R

�
� r
��

r
�
�R

�
�R � r

��

(5.230a—e)
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� �
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�

a
�

R
 
�� �R
�
� [r
�
� (1 � a

�
)R

�
� r
��

]

Figure 5.81 (cont.)

(c) Show that, in a general feedback configuration, all it takes for a nonideal
operational amplifier to behave as an ideal one is a

�
�� without further

requiring that r
��
�� and r

�
� 0. To do so, show that the transfer function of

an arbitrary feedback circuit shown in Fig. 5.81d is independent of r
��

and r
�
.

(d)

Figure 5.81 (cont.)

Hint: (a) Show that i
��

� 0. (b) Show that i
�

is independent of r
�
. To do so, apply the EET to

r
�
:

235 Problems



i
�
u
��

�
i
�
u
��
�
��	�

1 �
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R
��

1 �
r
�

R
��

(5.231)

Show that R
��,R
����. To determine R
��, apply the EET for a
�
.

5.2 Input impedance of FET amplifier with shunt–shunt feedback. Show that the
input impedance of the FET amplifier in Example 5.3 is given by:

Z
��

(s) �R
� �1 �



�
s � (5.232)

where:

R
�
�R
�
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�
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(5.233)
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(5.234)

5.3 Loop gainmeasurement by current injection. A signal generator in series with a
resistance and a blocking capacitor is used to inject a current signal into the drain
of the FET amplifier discussed in Example 5.3 as shown in Fig. 5.82a. The response
obtained using OrCAD/Pspice simulation is shown in Fig. 5.82b. Using the circuit
values shown and the small-signal data of the FET, verify Eqs. (5.53) and (5.54)
derived for the loop gain.
Dc operating point and small-signal parameters of J1:

NAME J—J1
MODEL J2N4867
ID 7.26E�04
VGS �7.26E�02
VDS 5.41E�00
GM 1.35E�03
GDS 4.90E�06
CGS 1.17E�11
CGD 4.08E�12

5.4 Two-stage CE–CE amplifier with current sampling and current mixing. A
simulation of the amplifier in Example 5.4 using OrCAD/Pspice is shown in Fig.
5.83a. The small-signal parameters of each transistor evaluated at its dc operating
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point are given in the table below and the frequency response of the voltage gain

0

0

VDDVDD

0

Rinj

10k

Cf

0.1uF

Rd
20k

Re
100

Rf

1k

Rs

100k

Cb

10uF

V1
20V

Vinj
1V

J2
J2N4867

i_y

i_x

i_z

Figure 5.82

transfer function is shown in Fig. 5.83b. Using the given numerical values, verify
that the flat gain is A

�
�39.7dB and obtain various approximations to A

�
in Eq.

(5.68).
Dc operating point and small-signal parameters of Q

�
and Q

�
:
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0
0

0

VCCVCC

0

0

Rs
10k

R2
18Meg

R1
18Meg

RE1
10k

Rc
160k

Q2
Q2N2222

Q1
Q2N2222

RL
10k

Re
100

RE2
2.9K

Cs
10uF

CE1
50u

CE2
100uF

V_bus
20V

Rf
10k

Cf
5uf

Vin

Figure 5.83

NAME Q—Q2 Q—Q1
MODEL Q2N2222 Q2N2222
IB 3.48E�06 9.26E�07
IC 5.55E�04 1.07E�04
VBE 6.27E�01 5.88E�01
VBC �1.21E�01 �6.35E�01
VCE 1.28�01 1.22E�00
BETADC 1.60E�02 1.16E�02
GM 2.14E�02 4.14E�03
RPI 8.34E�03 3.21E�04
RX 1.00E�01 1.00E�01
RO 1.55E�05 6.97E�05
CBE 4.46E�11 3.64E�11
CBC 2.77E�12 5.92E�12
CJS 0.00E�00 0.00E�00
BETAAC 1.79E�02 1.33E�02
CBX/CBX2 0.00E�00 0.00E�00
FT/FT2 7.20E�07 1.56E�07
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Figure 5.83 (cont.)

5.5 Differential input amplifier with voltage sampling and voltage mixing. A simu-
lation of the amplifier in Example 5.5 using OrCAD/Pspice is shown in Fig. 5.84a.
The small-signal parameters of each transistor evaluated at its dc operating point
are given in the table below and the frequency response of the voltage gain transfer
function are shown in Fig. 5.84b. Using the numerical values given below, verify
that the flat gain is A

�
� 33.5 dB and obtain various approximations to A

�
in Eq.

(5.70).

VCCVCC

0

0 0

0

0

Q2
Q2N2907

Re
4.3k

RL
10k

Rbf
100k

Raf
5Meg

Rs
100k

Rc
100k

Q3
Q2N2222

Q1
Q2N2222

V_bus

15V

IEE
100uA

Ce
10uF

V2

0V

Figure 5.84
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Dc operating point and small-signal parameters of Q
�

, Q
�

and Q
�

:

NAME Q—Q2 Q—Q3 Q—Q1
MODEL Q2N2907 Q2N2222 Q2N2222
IB �1.49E�06 5.91E�07 2.17E�07
IC �3.39E�04 7.61E�05 2.31E�05
VBE �6.96E�01 5.74E�01 5.44E�01
VBC 9.45E�00 �1.50E�01 �1.29�01
VCE �1.01E�01 1.56E�01 1.34E�01
BETADC 2.28E�02 1.29E�02 1.06E�02
GM 1.31E�02 2.94E�03 8.93E�04
RPI 1.81E�04 5.07E�04 1.40E�05
RX 1.00E�01 1.00E�01 1.00E�01
RO 3.69E�05 1.17E�06 3.76E�06
CBE 4.01E�11 3.55E�11 3.38E�11
CBC 3.62E�12 2.58E�12 2.71E�12
CJS 0.00E�00 0.00E�00 0.00E�00
BETAAC 2.38E�02 1.49E�02 1.25E�02
CBX/CBX2 0.00E�00 0.00E�00 0.00E�00
FT/FT2 4.77E�07 1.23E�07 3.78E�06

Figure 5.84 (cont.)

5.6 Current-sense feedback amplifier. A simulation of the amplifier in Example 5.6
using OrCAD/Pspice is shown in Fig. 5.85a. The small-signal parameters of each
transistor evaluated at its dc operating point are given in the table below and the
frequency response of the transconductance are shown in Fig. 5.85b.

(a) Using the given numerical values, determine the value of the midband gain G
�

shown in Fig. 5.85b and given by Eq. (5.85).
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Figure 5.85

Dc operating point and small-signal parameters of Q
�

and Q
�

:

NAME Q—Q1 Q—Q2
MODEL Q2N2222 Q2N2222
IB 9.15E�07 6.16E�06
IC 1.10E�04 9.58E�04
VBE 5.87E�01 6.43E�01
VBC �3.54E�00 �4.63E�00
VCE 4.13E�00 5.28E�00
BETADC 1.20E�02 1.55E�02
GM 4.24E�03 3.69E�02
RPI 3.25E�04 4.67E�03
RX 1.00E�01 1.00E�01
RO 7.07E�05 8.21E�04
CBE 3.64E�11 5.15E�11
CBC 4.03E�12 3.73E�12
CJS 0.00E�00 0.00E�00
BETAAC 1.38E�02 1.72E�02
CBX/CBX2 0.00E�00 0.00E�00
FT/FT2 1.67E�07 1.06E�08

(b) Apply the NEET up to second-order terms to determine and evaluate the
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Figure 5.85 (cont.)

low-frequency roll-off in Fig. 5.85b. Use inverted notation for the complex
frequency s:

G
�
(s) 

1

1 �
a
�
s

�
a
�
s�

(5.235)

5.7 Cascode amplifier. A simulation of the amplifier in Example 5.7 using Or-
CAD/Pspice is shown in Fig. 5.86a. The quiescent operating point of each transis-
tor and its small-signal parameters are given in the table below and the frequency
response of the voltage gain transfer function is shown in Fig. 5.86b.

VCC

VCC

0

0

0

0

Q2
Q2N2222

Rb2
20Meg

Rs
10k

Vin

IB3
0.45uA

Q3
Q2N2907

V1
20V

Cs
50u

Rf
5Meg

Q1
Q2N2222 Cf

1uf

Rb1
25Meg

Cb
1uf

(a)

Figure 5.86
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Dc operating point and small-signal parameters of Q
�

and Q
�

:

NAME Q—Q1 Q—Q2 Q—Q3
MODEL Q2N2222 Q2N2222 Q2N2907
IB 7.77E�07 7.23E�07 �4.50E�07
IC 9.19E�05 9.12E�05 �9.12E�05
VBE 5.83E�01 5.80E�01 �6.63E�01
VBC �4.39E�00 �1.05E�01 3.26E�00
VCE 4.97E�00 1.11E�01 �3.92E�00
BETADC 1.18E�02 1.26E�02 2.03E�02
GM 3.55E�03 3.52E�03 3.53E�02
RPI 3.84E�04 4.13E�04 6.16E�04
RX 1.00E�01 1.00E�01 1.00E�01
RO 8.53E�05 9.27E�05 1.30E�06
CBE 3.60E�11 3.59E�11 3.36E�11
CBC 3.79E�12 2.89E�12 5.99E�12
BETAAC 1.36E�02 1.46E�02 2.17E�02
FT/FT2 1.42E�07 1.44E�07 1.42E�07

(a) Using the given numerical values determine the value of the flat gain A
�

shown
in Fig. 5.86b and given by Eq. (5.89).

Figure 5.86 (cont.)

(b) Apply the NEET and the numerical values of the capacitances of Q1 and Q2 in
the table above to obtain an expression of the dominant pole in Fig. 5.86b.
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5.8 Input impedance of CE–CE amplifier with current mixing. The frequency
response of the inside input impedanceZ

��
of the amplifier in Example 5.8 is shown

in Fig. 5.87.

(a) Using the numerical values in Problem 5.4 and the results derived in Example
5.8, verify the midband value of R

��
shown in Fig. 5.87.

Figure 5.87

(b) Determine the outside input resistance seen by the source by applying the EET
to �

�
and show that it is given by:

R
��

�R
�

1 �
1 �R

�
/R
�

�
�
(1 ��

�
) �1 �

r��� (1 � �
�

)R
�
�R
�

R
�

��1 �
r��

R
!
�R
�
��R��R

� �
r���R

�
1 ��

�
��

1 �
1 �R

�
/R
�

�
�

(1 ��
�

)�1 �
r��� (1 ��

�
)R
�
�R
�

R
�

��1 �
r��

R
!
��R��R

� �
r���R

�
1 � �

�
��

(5.236)

5.9 Output impedance for voltage sensing. The frequency response of the inside
output impedance Z

��
of the amplifier in Example 5.9 is shown in Fig. 5.88.

(a) Using the numerical values in Problem 5.5 and the results derived in Example
5.9 verify the midband value of R

��
shown in Fig. 5.88.

(b) Determine the outside output resistance R
�

looking into the load R
�

directly
by applying the EET to �

�
as explained in Eq. (5.24).

5.10 Input admittance with voltage mixing. The frequency response of the inside
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Figure 5.88

input admittance Y
��

of the amplifier in Example 5.10 is shown in Fig. 5.89.

(a) Using the numerical values in Problem 5.5 and the results derived in Example
5.10, verify the midband value of Y

��
in Fig. 5.89.

Figure 5.89

(b) Determine the outside input resistance, R
��

, seen by the source by applying the
EET directly to �

�
as explained in Eq. (5.24).

5.11 T and T' as functions of ZL. The two loop gains, T and T �, in Figs. 5.54b and
5.55b are related by:
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T � T �
1 �

Z
�

Z
��

1 �
Z
�

Z
��

(5.237)

in which (L) is the port across which the load impedance Z
�

is connected. Using
this fact, show that T �	 T.

5.12 Output conductance of current-sense feedback amplifier. The frequency re-
sponse of the output conductance Z

��
of the amplifier in Example 5.11 is shown in

Fig. 5.90.

(a) Using the numerical values in Problem 5.6 and the results derived in Example
5.11 verify the midband value of G

��
��81.7 dB (�
�) shown in Fig. 5.90.

Figure 5.90

(b) Determine R
��

directly by applying the EET to �
�

as explained in Eq. (5.24).

5.13 Proof of feedback formula for an arbitrary point of injection. Consider an
arbitrary LTI system in which a signal u

�
is injected at an arbitrary point as shown

in Fig. 5.91. Prove the feedback formula in Eq. (5.44) using superposition to obtain:

u
�
� au

��
� bu

�

u
�
� cu

��
� du

�
(5.238a—c)

u
�
� eu

��
� fu
�





We also have the constraint:

u
�
� u
�
� u
�

(5.239)
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Figure 5.91

Hint: Express each of the following in terms of the coefficients in Eq. (5.238):

T �
�u
�

u
�
�
���	�

G�
u
�

u
��
�
��	�

(5.240)
G

�
�

u
�

u
��
�
��	�

G
�
�

u
�

u
��
�
��	�





Also, recognize that when u
�
� 0, u

�
� u
�
.

5.14 Relationship between T, Ti and Tv in loop gain measurement of feedback
systems. To measure the loop gain in an experimental circuit,� one cannot inject a
signal immediately after a dependent source (ideal point) because of the inevitable
internal impedance associated with all physical generators. Hence, either a voltage
or a current source is injected immediately after the output impedance of the gain
element (nonideal point) and a voltage or a current loop gain is determined as
shown in Fig. 5.92. The impedance looking immediately to the right of z

�
is

represented by Z and the loop gain is given by:

T � a
�
a
�
��a

�
�

Z

Z� z
�

(5.241)

(a) Show that the measurements T
�

and T
�

are related to T by:

T
�
� T�1 �

z
�
Z��

z
�
Z

(5.242a, b)

T
�
� T�1 �

Z

z
�
��

Z

z
�





It follows that:
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T
�
�

1 � T
�

1 �
z
�
Z

(5.243)

Note that, in order for T
�

to approximate T closely, we require that z
�
/Z� 1

and z
�
/Z� T in the measured frequency range. Similarly, if T

�
is to approxi-

mate T closely, we require that Z/z
�
� 1 and Z/z

�
� T in the measured

frequency range.

Figure 5.92

(b) Show that the desired loop gain T can be obtained from the two measure-
ments T

�
and T

�
according to:�

T �
T
�
T
�
� 1

2 � T
�
� T
�

(5.244)

5.15 Loop gain of the Colpitts oscillator. To determine the loop gain, replace the
dependent current source with an independent current generator pointing in the
opposite direction and apply the 3-EET to the reference circuit shown in Fig. 5.93.

Figure 5.93

5.16 Approximate frequency of the Colpitts oscillator.

(a) Factor Eq. (5.191):
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�
��

1

LC
�
�C
�
�1 �

Lg
�

(C
�
�C
�

)R
�
� (5.245)

Use Eq. (5.186) to show that:

1 �
Lg
�

(C
�
�C
�

)R
�

� 1 �
1

Q�
� 1 (5.246)

(b) A Colpitts oscillator is simulated using OrCAD/Pspice as shown in Fig. 5.94a.
The output voltage is shown in Fig. 5.94b. Verify the condition and the
frequency of oscillation. The amplitude of oscillation is limited by the non-
linearity of the transconductance of the transistor.�

VCC

VEE

VCC

0VEE

0

Q1
Q2N2222

V2
10V

V1
10V

L1
10uH

Cc
1nF

CE
76nF

RL
10k

RE
20k

Figure 5.94
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(c) Wouldn’t it be nice if you could measure the loop gain of the Colpitts oscillator
and observe the fact that its gain margin is less than zero? But how can you do
this if the circuit is oscillating? Well, the technique� discussed in Problem 5.14
can be applied in a way that the internal resistance of the injecting signal
stabilizes the circuit while the loop gain is measured outside the internal
resistance as shown in Fig. 5.94c.

Determine the loop gain using the simplest model of the transistor and
compare it against the measurement shown in Fig. 5.94d. Also, make a Nyquist
plot and observe the encirclement of the (�1, j0) point.

VCC

VEE

VCC

0VEE

0 V2
10V

Q1
Q2N2222

V1
10V

L1
10uH

Cc
1nF

CE
76nF

RL
10k

RE
20k Vinj

Rinj
1k

Cinj
100uF

i_y

i_x

Figure 5.94 (cont.)
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5.17 The 2-EET for the determination of Z'o(s). Using the reference circuit shown
in Fig. 5.95 derive Eq. (5.196).

Figure 5.95
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6 High-frequency and microwave circuits
Doing it all in your head

6.1 Introduction

In this chapter, we shall apply the NEET to determine the frequency response of
high-order networks using minimum algebra which in most cases can be worked
out by inspection. Three representative examples of high-frequency circuits are
worked out in detail. As is typical of the method of NEET, all the algebra is done
on a set of very simple circuits derived from the original circuit using the rules of
the NEET.

6.2 Cascode MOS amplifier

The current-loaded cascode MOS amplifier shown in Fig. 6.1 is a basic building
block in many operational amplifier designs. We shall determine its high-
frequency response using the small-signal model of the MOS transistor shown in
Fig. 6.2. The equivalent circuit model of the amplifier is shown in Fig. 6.3 in which
the small-signal elements ofM

�
andM

�
are combined:

Figure 6.1
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C
�
�C

���
�C

���

C
�
�C

���
�C

���
�C

���

C
�
�C

���
(6.1a—f )

C
�
�C�C

���
�C

���

g
��

� g
��

� g
���

g
��

� g
��





Figure 6.2

Figure 6.3

The voltage gain transfer function of the circuit in Fig. 6.3 is given by:

v
�
(s)

v
��
(s)

�A
�

N(s)

D(s)
(6.2)

in which A
�
,N(s) and D(s) will be determined separately.

The low-frequency asymptote Ao

To determine A
�
, we open all the capacitors in Fig. 6.3 so that v

�
� v

��
and g

��
v
��

feeds the rest of the circuit. Nowwe see that if g
��
were infinite, then v

�
	 0 (virtual

ground) and all the current of g
��
v
��
would flow into the output resistor R and we

would have:

v
�
��g

��
v
��
R�A

�
�
���	�

��g
��
R (6.3)
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Hence, the gain A
�
according to the EET is given by:

A�A
�
�
���	�

1�
1

g
��
G


1�
1

g
��
G


(6.4)

in which G
 is the inverse gain with respect to g
��
determined with the output

voltage (the response) nulled and G
 is the inverse gain with respect to g
��
with v

��
(the excitation) set to zero.
To determine G
 , we set v

��
� 0, replace g

��
v
�
with an independent current

source i
�
pointing in the opposite direction, take the Thevenin equivalent of i

�
and

r
��
, and finally determine v

�
by simple voltage division:

v
�
� i

�
r
��

r
��

r
��

� r
��

�R
(6.5)

It follows that:

G
 �
v
�
i
�
�

��	


� r
��

r
��

r
��

� r
��

�R
(6.6)

To determine G
 , we replace g
��
v
�
with an independent current source i

�
pointing in the opposite direction and null the output voltage, which causes the
current throughR to be nulled and i

�
to flow entirely through r

��
. Now the voltage

across r
��
is i

�
r
��
and it appears directly across r

��
because v

�
has been nulled.

Since the voltage across r
��
is equal to v

�
, it follows that:

G
 �
v
�
i
�
�

�	


� r
��

(6.7)

Substituting these results in the expression of A in Eq. (6.4), we obtain:

A
�
��g

��
R

1�
1

g
��
r
��

1�
1

g
��
r
��
�1�

R� r
��

r
��

�
(6.8)

The numerator N(s)
The numerator is determined by examining the transform circuit for a null in the
response, i.e. v

�
(s)� 0. This is shown in Fig. 6.4 in which we can easily see that:

g
��
v
�
(s)r

��
��v

�
(s)� v

�
(s)� 0 (6.9)

Hence a null in v
�
(s) requires a null in v

�
(s) which in turn requires a null in i

�
(s)
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because i
�
(s)� v

�
(s)/[r

��
� (1/sC

�
)]. It follows that the current through C

�
must be

equal to g
��
v
�
(s) and the voltage across C

�
must be equal to v

�
(s). Hence we have:

v
�
(s)sC

�
� g

��
v
�
(s)� 1�

sC
�

g
��

� 0�N(s)� 1�
sC

�
g
��

(6.10)

This is the usual RHP zero associated with the parasitic feedback capacitor in a
common-source or common-emitter amplifier stage.

Figure 6.4

The denominator D(s)
The denominator is determined by setting the excitation to zero and applying the
4-EET to the reference circuit shown in Fig. 6.5 in which all the capacitors are
taken as open circuits. Since there are only three linearly independent capacitors,
we have a third-order system and D(s) is given by:

D(s)� 1� a
�
s� a

�
s�� a

�
s� (6.11)

The coefficients a
�
are determined next.†

Figure 6.5

The coefficient a
�
: This is given by:

a
�
�R���C

�
�R���C

�
�R���C

�
�R���C

�
(6.12)

R(1):The driving-point port resistanceR��� can be seen by inspection to be given by:

†Note: Since we are going to refer to Fig. 6.5 in all the following calculations, it would be convenient to make
a copy of it for handy reference.
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R����R
�

(6.13)

R(2):When looking into port (2) with ports (3) and (1) open, the dependent current
source g

��
v
�
is inactive so that the driving-point resistance R��� consists of the

parallel combination of r
��
with the resistance to the right of port (2). The latter can

be determined using the EET for g
��
as follows. If we let g

��
	 0, then looking to

the right of port (2) we have r
��

�R. According to the EET, we replace g
��
v
�
with

an independent current source pointing in the opposite direction and determine v
�

once with port (2) open and once with port (2) short. When port (2) is short, v
�
� 0

and the inverse gain is zero. When port (2) is open, v
�
� i

�
r
��
and the inverse gain

is v
�
/i
�
� r

��
. Hence, the resistance looking to the right of port (2) is:

(r
��

�R)
1� g

��
.0

1� g
��
r
��

(6.14)

It follows that R��� is given by:

R���� r
�� �

r
��

�R

1� g
��
r
��

(6.15)

R(3):When determining R���, we can first set R
�
to zero so that v

�
and g

��
v
�
both

vanish to yield:

R��� �
��	


�R���� r
�� �

r
��

�R

1� g
��
r
��

(6.16)

Now, according to the EET, R
�
is reinstated in R���:

R����R��� �
Rs�0

1�R
�
/R���

1�R
�
/R���

(6.17)

in whichR��� andR��� are the resistances looking in from the port across whichR
�
is

connected with port (3) once open and once short, respectively. When port (3) is
opened,R���	� and the denominator in Eq. (6.17) becomes unity. When port (3)
is short, v

�
appears directly across the dependent source g

��
v
�
so that g

��
v
�
acts

like a conductance g
��
in parallel with the rest of the circuit to its right which has

an input resistance R���. Hence,R��� is given by:

R����
1

g
��
�R����

1

R���
� g

��
�

1

R���
(6.18)

Substituting these results in R���, we obtain:

R����R����1�R
��g��

�
1

R�����
(6.19a, b)�R

�
� (1� g

��
R

�
)R���
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Substituting for R���:

R����R
�
� (1� g

��
R

�
)�r�� �

r
��

�R

1� g
��
r
��
� (6.20)

R(4): Looking into port (4), we see R in parallel with the resistance looking in from
the right of port (4) which, when g

��
� 0, is equal to r

��
� r

��
. To reinstate g

��
, we

replace g
��
v
�
with an independent current source i

�
pointing in the opposite

direction and determine v
�
once with port (4) open and once with port (4) short.

(Remember that R is open because it has already been accounted for.) Now, when
port (4) is open, v

�
� 0; and when port (4) is short, v

�
� i

�
r
��

� r
��
. Hence, G
 � 0

and G
 � r
��

� r
��
and according to the EET we have:

R����R ��(r�� � r
��
)
1� g

��
G


1� g
��
G
 �

(6.21a, b)�R � [(r
��

� r
��
)(1� g

��
r
��

� r
��
)]





It is worthwhile to perform the following simplification:

(r
��

� r
��
)(1� g

��
r
��

� r
��
)� r

��
� r

��
� g

��
r
��
r
��

(6.22)� r
��

� r
��
(1� g

��
r
��
)

We rewrite R��� as:

R����R � [r
��

� r
��
(1� g

��
r
��
)] (6.23)

The coefficient a
�
is obtained by substituting for R��� in Eq. (6.12):

a
�
�C

�
R

�
�C

�
r
�� �

r
��

�R

1� g
��
r
��

�C
��R�

� (1� g
��
R

�
)�r�� �

r
��

�R

1� g
��
r
��
�� (6.24)

�C
�
R � [r

��
� r

��
(1� g

��
r
��
)]

The coefficient a
�
: This is given by:

a
�
�C

�
R���C

�
R���

���
�C

�
R���C

�
R���

���
�C

�
R���C

�
R���

���

(6.25)�C
�
R���C

�
R���

���
�C

�
R���C

�
R���

���
�C

�
R���C

�
R���

���

R(2)
(1): This is the same as R��� since the condition of port (1) does not affect the
resistance looking into port (2). In both cases v

�
� 0 and the dependent source

g
��
v
�
is inactive. Hence:

R���
���

�R��� (6.26)

R(3)
(1):Upon shorting port (1), we see that ports (3) and (2) become coincident so that:

257 6.2 Cascode MOS amplifier



R���
���

�R��� (6.27)

R(4)
(1): This is the same as R��� because the condition of port (1) in this case does not
affect the resistance looking into port (4). Hence:

R���
���

�R��� (6.28)

R(3)
(2): When port (2) is shorted, pretty much everything to the right of port (3) is
wiped out and all we see looking into port (3) is R

�
:

R���
���

�R
�

(6.29)

R(4)
(2):When port (2) is shorted, v�

� 0 and g
��
v
�
vanishes. Hence, looking into port

(4) we see:

R���
���

� r
��

�R (6.30)

R(4)
(3):When port (3) is shorted, v�

is impressed across g
��
v
�
which in turn acts as a

conductance g
��
in parallel with r

��
and R

�
. Hence, looking into port (4) in this

case, we see the same arrangement as in R��� except for the fact that r
��
is replaced

with r
��

�R
�
� g
�

��
. Hence we have:

R���
���

�R��� �
���	��������
���

�R � [r
��

� (r
��

�R
�
� g
�

��
)(1� g

��
r
��
)] (6.31)

Substituting for R���
���
in the expression for a

�
, we obtain:

a
�
�C

�
R

��(C�
�C

�
)r
���

r
��

�R

1� g
��
r
��

�C
�
R � [r

��
� r

��
(1� g

��
r
��
)]�

�C
�
r
�� �

r
��

�R

1� g
��
r
��

(C
�
R

�
�C

�
r
��

�R) (6.32)

�C
�
C

�
R � [r

��
� (r

��
�R

�
� g
�

��
)(1� g

��
r
��
)]

��R�
� (1� g

��
R

�
)�r�� �

r
��

�R

1� g
��
r
��
��

The coefficient a
�
: This is given by:

a
�
�C

�
R���C

�
R���

���
C

�
R���

�����
� C

�
R���C

�
R���

���
C

�
R���

�����

(6.33)�C
�
R���C

�
R���

���
C

�
R���

�����
�C

�
R���C

�
R���

���
C

�
R���

�����

R(3)
(1,2): Clearly, this is zero:

R���
�����

� 0 (6.34)
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R(4)
(1,2), R(4)

(1,3), R(4)
(2,3): All of these are easily seen to be equal to r��

:

R���
�����

�R���
�����

�R���
�����

� r
��

(6.35)

Substituting these results in the expression of a
�
, we obtain:

a
�
� [C

�
(C

�
�C

�
)�C

�
C

�
]C

�
r
��
R

��r���
r
��

�R

1� g
��
r
��
� (6.36)

This completes the determination of the transfer function. In the following
example, numerical values are used to obtain some useful analytical approxi-
mations.

Example 6.1 For a certain NMOS biased at I
�
� 100�A, V

��
� 5V and

V
��

� 2V the following element values are determined along with R
�
, R and C:

C
��

� 0.08 pF g
�
� 98��
� R

�
� 100�

C
��

� 0.05 pF g
��

� 15��
� R� 25M�
C

��
� 0.01 pF r

�
� 500 k� C� 0.05 pF

C
��

� 0.05 pF
C

��
� 0.03 pF

The values in the equivalent circuit model of the amplifier in Fig. 6.5 as given in
Eqs. (6.1a—f ) are computed to be:

C
�
� 0.13 pF g

��
� 98��
�

C
�
� 0.16 pF g

��
� 113.2��
�

C
�
� 0.01 pF

C
�
� 0.09 pF

The transfer function is given by:

A(s)�A
�

1� s/�
�

1� a
�
s� a

�
s�� a

�
s�

(6.37)

in which

A
�
� 1.299� 10� (62.275dB)

�
�
� 2�(1.56� 10�) rad/s

a
�
� 1.254� 10
� s (6.38a—e)

a
�
� 1.779� 10
�� s�

a
�
� 3.074� 10
�� s�





A Bode plot of the magnitude response �A( j�) � is shown in Fig. 6.6 in which the
bandwidth is seen to be 126 kHz, which is almost entirely dictated by the dominant
pole.
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Figure 6.6

Since the roots of the denominator are very well separated, they can be factored
to an excellent approximation (see Problem 6.1):

A(s)�A
�

1�
s

�
�

(1� a
�
s)�1�

a
�

a
�

s��1�
a
�
a
�

s�
(6.39)

A magnitude plot of �A( j�) � in Eq. (6.39) essentially lies on top of the exact plot in
Fig. 6.6 so that the dominant pole to an excellent approximation is given by:

f
��

�
1

2�
1

a
�

� 126.9 kHz (6.40)

which is seen to be in excellent agreement with Fig. 6.6. If desired, the expression of
a
�
can be approximated further using the numerical values given by:

a
�
�C

�
r
�� �

r
��

�R

1� g
��
r
��

�C
�
R � [r

��
� r

��
(1� g

��
r
��
)] (6.41)

Hence a simple expression for the bandwidth (BW), or the dominant pole, is given
by:

BW� f
��

�
1

2�
1

C
�
r
�� �

r
��

�R

1� g
��
r
��

�C
�
R � [r

��
� r

��
(1� g

��
r
��
)]

(6.42)
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The value of f
��
obtained from the approximate expression in Eq. (6.42) is

127.2 kHz, which is less than 0.1% from the exact value of 127.1 kHz. The follow-
ing approximate analytical expression for the second pole can also be obtained:

f
��

�
a
�
a
�

(6.43)
�

1

1�
C

�
C

�

r
�� �

r
��

1� g
��
r
��

R � r
��

1

(C
�
�C

�
)R

�
� (C

�
�C

�
)r
�� �

r
��

1� g
��
r
��

The value of f
��
obtained from this approximation is 710.7MHz, which is less than

1% away from the exact value of 704.9MHz. It is possible to obtain an analytical
expression for f

��
but since it falls outside the range of validity of the model

(92GHz), the expression will not be of much value. �

6.3 Fifth-order Chebyshev low-pass filter

Lumped-parameter circuit models are often used to model and synthesize, quite
satisfactorily, distributed microwave structures that act as various types of filters.
An example of such a circuit is the low-pass ladder network shown in Fig. 6.7. The
elements of this circuit can be chosen in such a way to yield a Chebyshev response
with a specified pass-band ripple. Since neither the pass elements of this ladder
network have any poles nor its shunt elements have any zeros, the transfer
function has no zeros and is given by:

A(s)�
v
�
(s)

v
��
(s)

�
1

1�R
�
/R

�

1

1�
�
�
�	�

a
�
s�

(6.44)

The coefficient a
�
: This is given by:

a
�
�C

�
R����C

�
R����C

�
R����

L
�

R���
�

L
�

R���
(6.45)

Figure 6.7
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in which R��� are determined using the reference circuit in Fig. 6.8.

R(1), R(3), R(5): It is clear from Fig. 6.8 that all of these are equal and are given by:

R����R����R����R
�
�R

�
(6.46)

R(2), R(4):We can see from Fig. 6.8 that these two are equal and are given by:

R����R����R
�
�R

�
(6.47)

Substituting, we obtain:

a
�
� (C

�
�C

�
�C

�
)R

�
�R

�
�

L
�
� L

�
R

�
�R

�

(6.48)

Figure 6.8

The coefficient a
�
: This is given by:

a
�
�C

�
R���

L
�

R���
���

�C
�
R���C

�
R���

���
�C

�
R���

L
�

R���
���

�C
�
R���C

�
R���

���
�

L
�

R���
C

�
R���

���
�

L
�

R���

L
�

R���
���

(6.49)
�

L
�

R���
C

�
R���

���
�C

�
R���

L
�

R���
���

�C
�
R���C

�
R���

���

�
L
�

R���
C

�
R���

���

R(4)
(2): This is seen to be infinite.

R(3)
(1), R(5)

(1), R(5)
(3): These are all easily seen to be zero.

R(2)
(1), R(4)

(1), R(3)
(2), R(5)

(2), R(4)
(3), R(5)

(4): These are all equal to R�
.

Substituting these results in Eq. (6.49), we obtain:

a
�
� [C

�
(L

�
� L

�
)�C

�
L
�
]

1

1�
R

�
R

�

(6.50)
� [L

�
(C

�
�C

�
)� L

�
C

�
]

1

1�
R

�
R

�
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The coefficient a
�
: This is given by the sum of the product of three time constants

formed by taking three ports at a time which can be written in the following
compact way:

a
�
� (1, 2) .C

�
R���

�����
� (1, 2) .

L
�

R���
�����

� (1, 2) .C
�
R���

�����

� (1, 3) .
L
�

R���
�����

� (1, 3) .C
�
R���

�����
� (1, 4) .C

�
R���

�����

(6.51)
� (2, 3) .

L
�

R���
�����

� (2, 3) .C
�
R���

�����
� (2, 4) .C

�
R���

�����

� (3, 4) .C
�
R���

�����

Here, we have used the notation (i, j) to denote ��������
���
in which � represents the

proper time constant formed at each port. Note that we have retained (1, 3) and
(2, 4) in the expression of a

�
even though these were determined to be zero in our

previous calculation of a
�
because we would like to make sure that we do not miss

any indeterminacy. For example if R���
�����

� 0, then we will have an indeterminacy
of the type 0/0 in the coefficient of (1,3) in Eqn. (6.51). We shall find out in this
example that there are no indeterminate terms.
The following are verified easily from Fig. 6.8:

R���
�����

�R���
�����

�R���
�����

�R���
�����

�R���
�����

�R���
�����

�R���
�����

�R
�

(6.52)

R���
�����

	� (6.53)

R���
�����

�R���
�����

� 0 (6.54)

Substituting these results in Eq. (6.51), we obtain:

a
�
� [C

�
L
�
(C

�
�C

�
)�C

�
L
�
(C

�
�C

�
)]R

�
�R

�
�

L
�
L
�
C

�
R

�
�R

�

(6.55)

The coefficient a
�
: This is given by:

a
�
� (1, 2, 3) .

L
�

R���
�������

� (1, 2, 3) .C
�
R���

�������

� (1, 2, 4) .C
�
R���

�������
� (1, 3, 4) .C

�
R���

�������
(6.56)

� (2, 3, 4) .C
�
R���

�������

The following are verified easily from Fig. 6.8:
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R���
�������

�R���
�������

�R���
�������

�R���
�������

�R
�

(6.57)

R���
�������

� 0 (6.58)

We also have from previous calculations for a
�
and a

�
that (1, 2, 4) and (1, 3, 4) are

both zero so that a
�
in Eq. (6.56) reduces to:

a
�
�C

�
L
�
L
��

C
�

1�R
�
/R

�

�
C

�
1�R

�
/R

�
� (6.59)

The coefficient a
�
: Finally we have for a

�
:

a
�
� (1, 2, 3, 4) .C

�
R���

���������
(6.60)

Since R���
���������

�R
�
we have:

a
�
�C

�
C

�
C

�
L
�
L
�
R

�
�R

�
(6.61)

This completes the determination of the voltage gain transfer function or
equivalently the S

��
parameter of the filter. In the following example, numerical

values are given to demonstrate a Chebyshev response.

Example 6.2 For the element values� shown in Fig. 6.7, the following numerical
values for the coefficients a

�
are obtained:

a
�
� 0.598� 10
� s a

�
� 3.307� 10
�� s� a

�
� 3.537� 10
�� s�

a
�
� 1.639� 10
�� s� a

�
� 3.321� 10
�� s�

Figure 6.9

Amagnitude plot is shown in Fig. 6.9. An expanded view of the 0.2-dB variation in
the passband is shown in Fig. 6.10. �

264 High-frequency and microwave circuits



Figure 6.10

6.4 MESFET amplifier

The equivalent circuit model of a single-stageMESFET amplifier� is shown in Fig.
6.11. We shall determine the voltage gain or equivalently the S

��
parameter of the

MESFET. Although there are seven reactive elements, the circuit is only fifth-
order because only two of the three capacitors (C

�
, C

�
, C

�
) in a loop are linearly

independent and only two of the three inductors (L
�
, L

�
, L

�
) connected to the

ground node are linearly independent. There are numerous calculations all of
which will be performed by visual inspection of the circuit.

Figure 6.11
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The transfer function is given by:

v
�
(s)

v
��
(s)

�A
�

N(s)

D(s)
(6.62)

The low-frequency asymptote Ao

This is determined by replacing all the capacitors with open circuits and the
inductors with short circuits as shown in Fig. 6.12. Now, if we let g

�
	�, then

v
��

	 0 and v
��
appears across r

�
and causes a current v

��
/r

�
to flow through it. Since

r
�
carries the output load current, the output voltage is given by:

Figure 6.12

v
�
��R

�
(v

��
/r

�
) (6.63a)

It follows that:

A
�
�
��	�

��
R

�
r
�

(6.63b)

To reinstate g
�
, g

�
v
��
is replaced with an independent current source i

�
pointing in

the opposite direction. The gain from i
�
to v

��
with v

��
� 0 is the same as the gain to

the voltage across r
�
which can be seen (after taking a Thevenin equivalent of i

�
and r

�
) to be:

G
 �
v
��
i
�

� r
�

r
�

r
�
� r

�
� r

�
�R

�

(6.64)

The same gain with v
�
nulled is infinite because the only way v

�
can be nulled in this

case is by letting i
�
� 0. Hence, G
 	� and we have:

A
�
�A

�
�
��	�

1� 1/(g
�
G
 )

1� 1/(g
�
G
 )

(6.65)
��

R
�
r
�

1

1�
1

g
�
r
�
�1�

r
�
� r

�
�R

�
r
�

�
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The denominator D(s)
Since we have a fifth-order system, the denominator is given by:

D(s)� 1�
�
�
�	�

a
�
s� (6.66)

In determining the coefficients of the denominator, we refer to the reference
circuit in Fig. 6.13† in which:

R
�
�R

�
� r

� (6.67)
R�R

�
� r

�





The EET for the dependent current source g
�
will be used extensively when

determining a driving-point impedance looking into a port:

R���
���

�R���
��� �

��	


1� g
�
G


1� g
�
G


(6.68)

In this equation G
 is the inverse gain with port (j) short and G
 is the inverse gain
with port (j) open. These are explicitly defined as:

G
 �
v
��
i
�
�
���	�����

(6.69a, b)
G
 �

v
��
i
�
�
���	����





in which:

i
�
� independent current source replacing g

�
v
��

and pointing in the opposite direction.
(6.70)

The coefficient a
�
: This is given by:

a
�
�	���� (6.71)

in which the summation is taken over the seven ports for which we determine the
following resistances by inspecting Fig. 6.13.

R(1): This is clearly seen to be infinite so that:

�����
L
�

R���
� 0 (6.72)

R(2): This is determined by application of the EET for g
�
so that we have:

†Note: Since we are going to refer to this circuit throughout the remainder of this section, it would be
convenient to make a copy of it for handy reference.
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R����R��� �
��	


1� g
�
G


1� g
�
G


(6.73)

Figure 6.13

With g
�
� 0, R��� is seen to be given by:

R��� �
��	


�R
�
� r

��
� r

�
� (r

�
�R) (6.74)

The inverse gain with respect to g
�
v
��
with port (2) short is clearly zero so that

G
 � 0 while the inverse gain with port (2) open is the same as in Eq. (6.64),
discussed earlier in the determination of A

�
. Hence, we have:

R����
R

�
� r

��
� r

�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.75)

R(3): Following the same argument in R���, we have for R���:

R����R��� �
��	


1� g
�
G


1� g
�
G


(6.76)

With g
�
� 0, R��� is given by:

R��� �
��	


�R
�
�R � (r

�
� r

�
) (6.77)

The inverse gain G
 is still the same as the one given in Eq. (6.64) but G
 is different.
In this case, when port (3) is shorted, R

�
becomes parallel with R and v

��
appears

across r
�
. It follows that:

G
 � r
�
� (r

�
�R �R

�
) (6.78)
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Substituting these results in Eq. (6.76), we obtain:

R���� [R
�
�R � (r

�
� r

�
)]
1� g

�
r
�
� (r

�
�R �R

�
)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.79)

R(4): This is given by:

R����R��� �
��	


1� g
�
G


1� g
�
G


(6.80)

in which we can see that:

R��� �
��	


� r
��

� r
�
� (r

�
�R) (6.81)

The inverse gain G
 is still the same as before, but G
 is different and somewhat
tricky! Observe carefully that when port (4) is shorted, v

��
appears acrossRwith its

positive polarity on the ground terminal. Therefore, the inverse gain with port (4)
shorted is seen (after taking the Thevenin equivalent of i

�
and r

�
� r

��
) to be given

by:

G
 ��r
�
� r

��

R

R� r
�
� r

�
� r

��

(6.82)

Substituting these results in Eq. (6.80), we obtain:

R���� [r
��

� r
�
� (r

�
�R)]

1� g
�

r
�
� r

��
R

R� r
�
� r

�
� r

��

1�
g
�
r
�

1�
r
�
�R

r
�

(6.83)

R(5): This is given by:

R����R��� �
��	


1� g
�
G


1� g
�
G


(6.84)

in which we can easily verify that:

R��� �
��	


� r
�
� r

�
�R (6.85)

The inverse gainG
 in Eq. (6.84) is determinedwith port (5) short, which is the same
as G
 determined in Eq. (6.64), so that we have:

G
 �
r
�
r
�

r
�
�R

�
�R

(6.86)
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The inverse gain G
 in Eq. (6.84) is determined with port (5) open so that it can be
obtained from G
 in Eq. (6.86) simply by letting r

�
	�. Hence we have:

G
 �
r
�
r
�

r
�
� r

�
�R �

��	�

� r
�

(6.87)

Substituting these results in Eq. (6.84), we obtain:

R���� (r
�
� r

�
�R)

1� g
�

r
�
r
�

r
�
� r

�
�R

1� g
�
r
�

(6.88)
� r

�
�

r
�
�R

1� g
�
r
�

R(6): This is given by:

R����R��� �
��	


1� g
�
G


1� g
�
G


(6.89)

in which:

R��� �
��	


�R� r
�
� r

�

As in R���, the inverse gain G
 is given by Eq. (6.86). The inverse gain G
 is zero
because when port (6) is opened there is no contribution from i

�
(defined in Eq.

(6.70)) to v
��
. This is so because there is no current flow in r

�
and both sides of v

��
are

at ground potential. Hence, v
��

� 0, G
 � 0 and R��� is given by:

R���� (R� r
�
� r

�
)�1� g

�

r
�
r
�

r
�
� r

�
�R�

(6.90)� r
�
�R� r

�
(1� g

�
r
�
)

R(7): This is given by r
�
in parallel with whatever comes after r

�
, which we callR����,

and write it as:

R�����R���� �
��	


1� g
�
G


1� g
�
G


(6.91)

Clearly,G
 � 0 because when port (7) is shorted, the independent current source i
�

will be shorted and cannot contribute anything to v
��
. The inverse gain with port

(7) open is simply r
�
because i

�
passes through r

�
which causes v

��
to appear directly

across r
�
. We can also see that with g

�
� 0, R���� is simply equal to R� r

�
. Hence

we have:

R�����
R� r

�
1� g

�
r
�

(6.92)
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It follows that:

R���� r
� �

R� r
�

1� g
�
r
�

(6.93a, b)
�

r
�
� (R� r

�
)

1�
g
�
r
�

1�
r
�
�R

r
�





The time constants which enter into the expression of a
�
in Eq. (6.71) are now

summarized:

����� 0

�����R���C
�
�C

�

R
�
� r

��
� r

�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

�����R���C
�
�C

�
[R

�
�R � (r

�
� r

�
)]
1� g

�
r
�
� (r

�
�R �R

�
)

1�
g
�
r
�

1�
r
�
�R

r
�

�����R���C
�
�C

�
[r

��
� r

�
� (r

�
�R)]

1�
g
�
R

1�
R� r

�
r
�
� r

��

1�
g
�
r
�

1�
R� r

�
r
�

(6.94a—g)

�����
L
�

R���
�

L
�

r
�
�

r
�
�R

1� g
�
r
�

�����
L
�

R���
�

L
�

r
�
�R� r

�
(1� g

�
r
�
)

�����R���C
�
�C

�
r
� �

R� r
�

1� g
�
r
�





The coefficient a
�
can now be written explicitly as:
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a
�
�

L
�
� L

�
(1� g

�
r
�
)

r
�
�R� r

�
(1� g

�
r
�
)

�
1

1�
g
�
r
�

1�
r
�
�R

r
�

�C�
[R

�
� r

��
� r

�
� (r

�
�R)]

(6.95)�C
�
[R

�
�R � (r

�
� r

�
)][1� g

�
r
�
� (r

�
�R �R

�
)]

�C
�
[r

��
� r

�
� (r

�
�R)]�1�

g
�
R

1�
r
�
�R

r
�
� r

��
��C

�
r
�
� (r

�
�R)�

If we assume that the numerical values in Fig. 6.11 are typical, we can approxi-
mate a

�
(see Problem 6.2):

a
�
�C

�
(R

�
� r

��
)�C

�
(R

�
�R � r

�
)(1� g

�
r
�
�R �R

�
)

�C
�
(r
��

� r
�
�R)(1� g

�
R � r

��
)�C

�
r
�
�R (6.96)

�
L
�
� L

�
(1� g

�
r
�
)

r
�
�R

The coefficient a
�
: This is given by:

a
�
�		��������

���
(6.97)

There are (�
�
)� 21 terms in a

�
of which, as we shall see, five are zero. We shall use

the compact notation (i, j) to denote the pair ��������
���
and proceed starting with (1, 2),

(1, 3), etc. If an indeterminacy arises, we will reverse the order or add a dummy
resistance and let it vanish later in the product.

(1, 2): This is given by ����C
�
R���

���
, but since ����� 0 and R���

���
	� we have an

indeterminacy. Hence, we reverse the order and consider (2, 1) which is given by
����L

�
/R���

���
. Now, when we determine R���

���
, we short port (2) and obtain immedi-

ately R���
���

�R
�
� r

��
� r

�
� (r

�
�R) so that we have:

(2, 1)� ����
L
�

R���
���

(6.98)
�

L
�
C

�

1�
g
�
r
�

1�
r
�
�R

r
�
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(1, 3): This is also indeterminate so that we must reverse the order and consider
����L

�
/R���

���
instead. Now, when we short port (3), v

��
appears directly across g

�
v
��

which in turn acts like a simple conductance g
�
in parallel with r

�
. Hence, we see

that R���
���

�R
�
�R � (r

�
� r

�
� g
�

�
) so that we have:

(3, 1)� ����
L
�

R���
���

(6.99)

� L
�
C

�

1�
R � (r

�
� r

�
)

R
�

1�
R � (r

�
� r

�
� g
�

�
)

R
�

1� g
�
r
�
� (r

�
�R �R

�
)

1�
g
�
r
�

1�
r
�
�R

r
�

Although this is a good expression, it looks like it can use some simplification.
This can be performed either manually or by removing the indeterminacy in (1, 3)
using a different technique. The simplest way to remove an indeterminacy is to add
a dummy resistor which prevents a resistance from becoming zero or infinite.
Later, when the final expression is obtained, this dummy resistance is allowed to
vanish. In our circuit, we add a resistor r

���
across port (2) and determine R���:

R���� [R
�
� r

���
� r

��
� r

�
� (r

�
�R)]

1� g
�
G


1� g
�
G


(6.100)

in whichG
 � 0 because when port (1) is open there can be no current flow through
r
���
and v

��
� 0. We do not have to determineG
 at this point because we are going

to deal with it when the product term (1, 3) is formed. Next, we determine R���
���
:

R���
���

� [r
���

� r
��

� (r
�
�R) � r

�
]
1� g

�
G
 


1� g
�
G
 


(6.101)

in which G
 
 � 0 because when ports (3) and (1) are open, there is no current flow
through r

���
and v

��
� 0. Substituting these in (1, 3) we obtain:

L
�
C

�

R���
���

R���
�

r
���

� r
��

� (r
�
�R) � r

�
R

�
� r

���
� r

��
� r

�
� (r

�
�R)

1� g
�
G
 


1� g
�
G


(6.102)

Taking the limit r
���

	� in this expression we obtain:

G
 
 �
����	�

� r
�
� (r

�
�R)

G
 �
����	�

�
r
�
r
�

r
�
� r

�
�R (6.103a—c)

r
���

� r
��

� (r
�
�R) � r

�
R

�
� r

���
� r

��
� r

�
� (r

�
�R) �

����	�

� 1




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It follows that:

(1, 3)� L
�
C

�

1� g
�
r
�
� (r

�
�R)

1� g
�

r
�
r
�

r
�
� r

�
�R

(6.104)

(1, 4): This is given by ����C
�
R���

���
. Since R���

���
is seen to be finite (we do not need to

calculate it) and ����� 0, we have:

(1, 4)� 0 (6.105)

(1, 5), (1, 6), (1, 7): These are all zero because ���� � 0 and there is no indetermin-
acy:

(1, 5)� (1, 6)� (1, 7)� 0 (6.106)

(2, 3): This is given by ����C
�
R���

���
. When port (2) is shorted, g

�
v
��
vanishes so that

looking into port (3) we see a resistive bridge circuit in which r
�
is the bridge

element. We can solve for the bridge resistance quite easily as we did in Chapter 1
by applying the EET to r

�
. Since the expression of the bridge resistance is some-

what long, combining it with the expression of ���� may result in an even longer
expression for (2, 3). Hence, we investigate reversing the order of the ports to (3, 2)
to see if we can obtain a simpler answer using ����C

�
R���

���
. To determineR���

���
, first we

look into port (2) with port (3) short and g
�
� 0 and find:

R���
���

�
��	


� r
��

� r
�
� (r

�
�R �R

�
) (6.107)

The inverse gain with respect to g
�
v
��
with port (2) short is zero, i.e. G
 � 0. With

port (2) open (and port (3) short) v
��
is simply the voltage across the independent

current source i
�
so that G
 � r

�
� (r

�
�R �R

�
). Hence we have:

R���
���

�R���
���

�
��	


1� g
�
G


1� g
�
G


(6.108)
�

r
��

� r
�
� (r

�
�R �R

�
)

1� g
�
r
�
� (r

�
�R �R

�
)

Combining this with the expression of ���� in Eq. (6.94b), we obtain:

(3,2)�
C

�
C

�

1�
g
�
r
�

1�
r
�
�R

r
�

[R
�
�R � (r

�
� r

�
)][r

��
� r

�
� (r

�
�R �R

�
)] (6.109)

(2, 4): This is given by ����C
�
R���

���
. It can be seen that R���

���
is the same as R���

���
. Hence,

(2, 4) can be deduced from (2, 3) or (3, 2) simply by changingC
�
toC

�
in Eq. (6.109):
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(2,4)�
C

�
C

�

1�
g
�
r
�

1�
r
�
�R

r
�

[R
�
�R � (r

�
� r

�
)][r

��
� r

�
� (r

�
�R �R

�
)] (6.110)

(2, 5): This is given by ����L
�
/R���

���
. In this case we see that ���� has a simpler

expression than ���� so that we reverse the order to (5, 2) with the hope of obtaining
a simpler expression using ����C

�
R���

���
. Already we see that we have a free bonus

because we can deduce R���
���
from R��� by letting r

�
	� since opening port (5) and

letting r
�
	� are the same things. Hence we have:

R���
���

�R��� �
��	�

(6.111)
�

R
�
� r

��
� r

�
�R

1� g
�
r
�

Combining this with the expression of ���� in Eq. (6.94e), we obtain:

(5, 2)� L
�
C

�

R
�
� r

��
� r

�
�R

r
�
�R� (1� g

�
r
�
)r
�

(6.112)

(2, 6): This is given by ����L
�
/R���

���
. If we reverse the order, as we did in (2, 5), we can

once again write down the answer immediately:

(6, 2)� ��������
���

� ����(���� �
�	�

) (6.113)

�
L
�

r
�
�R� r

�
(1� g

�
r
�
)
C

�
(r
�
� r

��
�R

�
)

In the derivation of ����
���
, we have made use of the fact that opening port (6) is the

same thing as letting R	�.

(2, 7): This is given by ����C
�
R���

���
. As in the previous two cases, we reverse the order

for the same reason and determine:

(7, 2)� ��������
���

� �������� �
��	


(6.114)

�C
�
r
� �

R� r
�

1� g
�
r
�

C
�
(R

�
� r

��
� r

�
�R)

In the derivation of ����
���
, we have made use of the fact that shorting port (7) is the

same thing as letting r
�
	 0.

(3, 4): This is given by ����C
�
R���

���
. Applying the EET to R���

���
, we can write:
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R���
���

�R���
���

�
��	


1� g
�
G


1� g
�
G


(6.115)

In Fig. 6.13 we can see that:

R���
���

�
��	


� r
��

� r
�
� (r

�
�R �R

�
) (6.116)

We can also see that G
 � 0 because shorting port (4) with port (3) short causes
v
��

� 0. With port (3) and port (4) open, v
��
appears directly across r

�
so that

G
 � r
�
� (r

�
�R

�
�R). Substituting these results in Eq. (6.115) we obtain:

R���
���

�
r
��

� r
�
� (r

�
�R �R

�
)

1� g
�
r
�
� (r

�
�R

�
�R)

(6.117)

Combining this with ���� in Eq. (6.94c), we obtain:

(3, 4)�C
�
C

�
[R

�
�R � (r

�
� r

�
)]
r
��

� r
�
� (r

�
�R �R

�
)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.118)

(3, 5): This is given by ����L
�
/R���

���
. We realize, however, that R���

���
, which is simply

R
�
�R, is much simpler than R���

���
. Hence, we reverse the order and write:

(5, 3)� ����C
�
R���

���

(6.119)
� L

�
C

�

R
�
�R

r
�
�

r
�
�R

1� g
�
r
�

(3, 6): This is given by ��������
���
but since ���� is simpler than ����, we reverse the order

and, instead, determine ����
���
which we can obtain from ���� by letting R	�:

����
���

� ���� �
�	�

�C
�
(R

�
� r

�
� r

�
)(1� g

�
r
�
� (r

�
�R

�
)) (6.120a—c)

�C
�
[r

�
� (1� g

�
r
�
)(r

�
�R

�
)]





Combining this with ���� in Eq. (6.94f ), we obtain:

(6, 3)� L
�
C

�

r
�
� (1� g

�
r
�
)(r

�
�R

�
)

r
�
�R� r

�
(1� g

�
r
�
)

(6.121)

(3, 7): For the same reason as in (3, 6), we reverse the order and determine easily
R���

���
�R

�
� r

�
�R. Hence, using ���� in Eq. (6.94g) we obtain:
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(7, 3)� ��������
���

(6.122)
�C

�
C

�
(R

�
� r

�
�R)r

� �
R� r

�
1� g

�
r
�

(4, 5): It is simpler to determine (5, 4), which is given by ����C
�
R���

���
, becauseR���

���
can

be derived from R��� in Eq. (6.83) by letting r
�
	�:

R���
���

�R��� �
��	�

� (r
��

� r
�
)
1� g

�
. 0

1� g
�
r
�

(6.123)

Hence, using ���� in Eq. (6.94e), we obtain:

(5, 4)� ����C
�
R���

���

� L
�
C

�

r
��

� r
�

1� g
�
r
�

1

r
�
�

r
�
�R

1� g
�
r
�

(6.124)

� L
�
C

�

r
�
� r

��
r
�
�R� (1� g

�
r
�
)r
�

(6, 4): This is given by ����C
�
R���

���
in which R���

���
can be obtained from R��� in Eq.

(6.83) by letting R	�:

R���
���

�R��� �
�	�

� (r
�
� r

��
)
1� g

�
r
�
� r

��
1� g

�
. 0

(6.125)

Hence, using ���� in Eq. (6.94f ), we obtain:

(6, 4)� ����C
�
R���

���

�
L
�
C

�
(r
�
� r

��
)(1� g

�
r
�
� r

��
)

r
�
�R� r

�
(1� g

�
r
�
)

(6.126)

� L
�
C

�

r
�
� r

��
(1� g

�
r
�
)

r
�
�R� r

�
(1� g

�
r
�
)

(7, 4): This is given by ����C
�
R���

���
in which R���

���
is immediately verified to be r

��
.

Using ���� in Eq. (6.94g), we have:

(7, 4)�C
�
C

�
r
� �

R� r
�

1� g
�
r
�

r
��

(6.127)

(5, 6): This is given by ����L
�
/R���

���
in which we see that R���

���
	� so that:

(5, 6)� 0 (6.128)
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(7, 5): This is given by ����L
�
/R���

���
in which R���

���
is immedately verified to be r

�
�R

so that we have:

(7, 5)�C
�
L
�

r
� �

R� r
�

1� g
�
r
�

r
�
�R





(6.129a, b)

�
C

�
L
�
r
�

r
�
�R� (1� g

�
r
�
)r
�

(7, 6): This is given by ����L
�
/R���

���
in which R���

���
is immediately verified to be r

�
�R

so that we have:

(7, 6)�C
�
L
�

r
� �

R� r
�

1� g
�
r
�

r
�
�R

(6.130a, b)

�
C

�
L
�
r
�

r
�
�R� (1� g

�
r
�
)r
�





One possible way of collecting all the terms above to obtain the coefficient a
�
is:

a
�
�

L
�

1�
g
�
r
�

1�
r
�
�R

r
�

[C
�
�C

�
(1� g

�
r
�
� r

�
�R)]

�
L
�

R� r
�
� r

�
(1� g

�
r
�
)
[C

�
(R�R

�
� r

�
� r

��
)

�C
�
(1� g

�
r
�
)(R�R

�
)�C

�
(r
�
� r

��
)�C

�
r
�
]

�
L
�

R� r
�
� r

�
(1� g

�
r
�
)
�C

�
(r
�
� r

��
�R

�
) (6.131)

�C
�
[r

�
� (1� g

�
r
�
)(r

�
�R)]�C

�
[r

�
� r

��
(1� g

�
r
�
)]�C

�
r
�
�

�
C

�
C

�
C

�
C

�
�C

�
�C

�

[R
�
�R � (r

�
� r

�
)]
r
��

� r
�
� (r

�
�R �R

�
)

1�
g
�
r
�

1�
r
�
�R

r
�

�C
�
r
� �

r
�
�R

1� g
�
r
�

[C
�
(r
��

�R
�
� r

�
�R)�C

�
(R

�
� r

�
�R)�C

�
r
��
]

The coefficient a
�
: This is given by:
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a
�
�			��������

���
����
�����

(6.132)

There are (�
�
)� 35 terms in a

�
of which, as we shall see, nine are zero. As before, we

shall use the compact notation (i, j, k) to denote the triplet ��������
���

����
�����
and proceed

beginning with (1, 2, 3), (1, 2, 4), etc. In each triplet there is only one new calculation
to be made, which is the port resistanceR���

�����
. In all casesR���

�����
is determined either

by a simple inspection of the reference circuit in Fig. 6.13 or deduced from a
previous calculation.

(1, 2, 3): This is given by (1, 2)C
�
R���

�����
in which:

R���
�����

� r
��

� r
�
� (r

�
�R) (6.133)

Combining this with (1, 2) in Eq. (6.98), we obtain:

(1, 2, 3)� L
�
C

�
C

�

r
��

� r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.134)

(1, 2, 4): This is given by (1, 2)C
�
R���

�����
in which:

R���
�����

� r
��

� r
�
� (r

�
�R) (6.135)

Combining this with (1, 2) in Eq. (6.98), we obtain:

(1, 2, 4)� L
�
C

�
C

�

r
��

� r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.136)

(1, 2, 5): This is given by (1, 2)L
�
/R���

�����
in which:

R���
�����

� r
�
� r

�
�R (6.137)

Combining this with (1, 2) in Eq. (6.98), we obtain:

(1, 2, 5)�
L
�
C

�
L
�

�1� g
�

r
�
r
�

r
�
� r

�
�R� (r� � r

�
�R)

(6.138a, b)

�
L
�
C

�
L
�

r
�
�R� (1� g

�
r
�
)r
�





(1, 2, 6): This is given by (1, 2)L
�
/R���

�����
in which:

R���
�����

� r
�
� r

�
�R (6.138)

Combining this with (1, 2) in Eq. (6.98), we obtain:
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(1, 2, 6)�
L
�
C

�
L
�

r
�
�R� (1� g

�
r
�
)r
�

(6.139)

(1, 2, 7): This is given by (1, 2)C
�
R���

�����
in which:

R���
�����

� r
�
� (r

�
�R) (6.140)

Combining this with (1, 2) in Eq. (6.98), we obtain:

(1, 2, 7)� L
�
C

�
C

�

r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.141)

(1, 3, 4): This is given by (1, 3)C
�
R���

�����
in which R���

�����
can be deduced from R���

���
in

Eq. (6.117):

R���
�����

�R���
���

�
��	�

(6.142)

�
r
��

� r
�
� (r

�
�R)

1� g
�
r
�
� (r

�
�R)

This is combined with the result obtained for (1, 3) in Eq. (6.99) to yield:

(1, 3, 4)� L
�
C

�
C

�

r
��

� r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.143)

(1, 3, 5): This is given by (1, 3)L
�
/R���

�����
in which:

R���
�����

� r
�
� r

�
� g
�

�
�R (6.144)

This is combined with (1, 3) in Eq. (6.99) to yield:

(1, 3, 5)�
L
�
C

�
C

�

1�
g
�
r
�

1�
r
�
�R

r
�

1� g
�
r
�
� (r

�
�R)

r
�
� r

�
� g
�

�
�R

(6.145)

It is apparent that the second ratio in this equation can be simplified further. As
usual, whenever we suspect it is possible to obtain a simpler result, we change the
order of the ports. In this case, if we take a quick look at (3, 5, 1) we see that (3, 5),
given in Eq. (6.119), is slightly simpler than (1, 3) while R���

�����
�R�R

�
. Now we

have:
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(5, 3, 1)� (5, 3)
L
�

R���
�����

(6.146)
�

L
�
L
�
C

�

r
�
�

r
�
�R

1� g
�
r
�

Wewould have obtained the same result had we simplified the result in Eq. (6.145).

(1, 3, 6): This is given by (1, 3)L
�
/R���

�����
. We can see that R���

�����
is the same as R���

�����
so that we should be able to deduce (1, 3, 6) from (1, 3, 5) simply by replacing L

�
with L

�
in Eq. (6.146):

(6, 3, 1)�
L
�
L
�
C

�

r
�
�

r
�
�R

1� g
�
r
�

(6.147)

(1, 3, 7): This is given by (1, 3)C
�
R���

�����
. As in (1, 3, 5), we change the order to (3, 7, 1)

in which:

R���
�����

�R
�
� r

�
�R (6.148)

Combining this with (3, 7) or (7, 3) in Eq. (6.122), we obtain:

(7, 3, 1)� L
�
C

�
C

�
r
� �

R� r
�

1� g
�
r
�

(6.149)

(1, 4, 5), (1, 4, 6), (1, 4, 7): Since (1, 4)� 0 and R���
�����

, R���
�����

and R���
�����

are all finite,
we have:

(1, 4, 5)� 0

(1, 4, 6)� 0 (6.150a—c)

(1, 4, 7)� 0





(1, 5, 6), (1, 5, 7): Since (1, 5)� 0 and R���
�����

and R���
�����

are both finite, we have:

(1, 5, 6)� 0

(6.151a, b)(1, 5, 7)� 0





(1, 6, 7): Since (1, 6)� 0 and R���
�����

� 0 we have:

(1, 6, 7)� 0 (6.152)

(2, 3, 4): Since R���
�����

� 0 we have:

(2, 3, 4)� 0 (6.153)
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(2, 3, 5): This is given by (2, 3)L
�
/R���

�����
. Changing the order to (5, 3, 2) we have:

R���
�����

�R���
���

�
��	�

�
r
��

� r
�

1� g
�
r
�

(6.154)

Combining this with (5, 3) given in Eq. (6.119), we obtain:

(5, 3, 2)� L
�
C

�
C

�

R
�
�R

r
�
�

r
�
�R

1� g
�
r
�

r
��

� r
�

1� g
�
r
�

(6.155a, b)

� L
�
C

�
C

�

R
�
�R

1� g
�
r
�
�

R� r
�

r
�

r
��

r
�
� r

��





(2, 3, 6):This is given by (2, 3)L
�
/R���

�����
. We can change the order either to (2, 6, 3) or

(3, 6, 2). The former looks a little simpler because if we look into port (3) and short
port (2), we get rid of g

�
v
��
and obtain:

R���
�����

� r
�
� r

��
� (r

�
�R

�
) (6.156)

Combining this with (6, 2) given in Eq. (6.113), we obtain:

(6, 2, 3)� L
�
C

�
C

�

(r
�
� r

��
�R

�
)[r

�
� r

��
� (r

�
�R

�
)]

r
�
�R� r

�
(1� g

�
r
�
)

(6.157)

This expression can be simplified tomake it look like some of the other expressions
we had obtained earlier. Hence, r

�
and r

��
� (r

�
�R

�
) are factored out in the

numerator:

(6, 2, 3)� L
�
C

�
C

�

(r
�
� r

��
�R

�
)r
�
r
��

� (r
�
�R

�
)�
1

r
�

�
1

r
��

�
1

r
�
�R

�
�

r
�
�R� r

�
(1� g

�
r
�
)

� L
�
C

�
C

�

r
��
(r
�
�R

�
)�
1

r
�

�
1

r
��

�
1

r
�
�R

�
�

1� g
�
r
�
�

R� r
�

r
�

(6.158)

� L
�
C

�
C

�
r
��

1�
r
�
�R

�
r
�
� r

��

1� g
�
r
�
�

R� r
�

r
�

(2, 3, 7):This is given by (2, 3)C
�
R���

�����
. We can change the order either to (2, 7, 3,) or
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to (3, 7, 2). The former requires the determination of R���
�����

which is given by
r
��

� (R
�
� r

�
�R), while the latter requires the determination of R���

�����
which is

given by r
��
. Hence, using the latter, in which (3, 7) is given by Eq. (6.122), we

obtain:

(7, 3, 2)�C
�
C

�
C

�
r
��
(R

�
� r

�
�R)r

� �
R� r

�
1� g

�
r
�

(6.159)

(2, 4, 5): This is given by (2, 4)L
�
/R���

�����
. We change the order to (2, 5, 4) and

determine:

R���
�����

� (R
�
�R) � (r

��
� r

�
) (6.160)

Combining this result with (5, 2) given in Eq. (6.112), we obtain:

(5, 2, 4)� L
�
C

�
C

�

(R
�
� r

��
� r

�
�R)(R

�
�R) � (r

��
� r

�
)

r
�
�R� (1� g

�
r
�
)r
�

� L
�
C

�
C

�

(R
�
�R)(r

��
� r

�
)

r
�
�R� (1� g

�
r
�
)r
�

(6.161)

� L
�
C

�
C

�

R
�
�R

1� g
�
r
�
�

R� r
�

r
�

r
��

r
��

� r
�

(2, 4, 6): This is given by (2, 4)L
�
/R���

�����
. We change the order to (2, 6, 4) and realize

that R���
�����

�R���
�����

. It follows that (2, 6, 4) can be deduced from (2, 3, 6) simply by
replacing C

�
with C

�
in Eq. (6.158):

(6, 2, 4)� L
�
C

�
C

�
r
��

1�
r
�
�R

�
r
�
� r

��

1� g
�
r
�
�

R� r
�

r
�

(6.162)

(2, 4, 7): This is given by (2, 4)C
�
R���

�����
. We change the order to (4, 7, 2) and deter-

mine:

R���
�����

�R
�
� r

�
�R (6.163)

Combining this with (7, 4) in Eq. (6.127), we obtain:

(7, 4, 2)�C
�
C

�
C

�
r
��
(R

�
� r

�
�R)r

� �
r
�
�R

1� g
�
r
�

(6.164)

(2, 5, 6): This is given by (2, 5)L
�
/R���

�����
in which:

R���
�����

�R� r
�
� r

��
�R

�
(6.165)
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Combining this with (5, 2) in Eq. (6.112), we obtain:

(5, 2, 6)�
L
�
L
�
C

�
r
�
�R� (1� g

�
r
�
)r
�

(6.166)

(2, 5, 7): This is given by (2, 5)C
�
R���

�����
in which:

R���
�����

� r
�
� (R� r

��
�R

�
) (6.167)

Combining this with (5, 2) in Eq. (6.112), we obtain:

(5, 2, 7)� L
�
C

�
C

�

R�R
�
� r

��

1� g
�
r
�
�

R� r
�

r
�

(6.168)

(2, 6, 7): This is given by (2, 6)C
�
R���

�����
in which:

R���
�����

� r
�

(6.169)

Combining this with (6, 2) in Eq. (6.113), we obtain:

(6, 2, 7)� L
�
C

�
C

�

r
�
� r

��
�R

�

1� g
�
r
�
�

R� r
�

r
�

(6.170)

(3, 4, 5): This is given by (3, 4)L
�
/R���

�����
. We change the order to (4, 5, 3) and

determine:

R���
�����

�R
�
�R (6.171)

Combining this with (5, 4) in Eq. (6.124), we obtain:

(5, 4, 3)� L
�
C

�
C

�
(R

�
�R)

r
�
� r

��
r
�
�R� r

�
(1� g

�
r
�
)

(6.172a, b)

� L
�
C

�
C

�

R
�
�R

1� g
�
r
�
�

R� r
�

r
�

r
��

r
��

� r
�





(3, 4, 6): This is given by (3, 4)L
�
/R���

�����
. We change the order to (3, 6, 4) and deduce

R���
�����

from R���
���
in Eq. (6.117):

R���
�����

�R���
���

�
�	�

�
r
��

� r
�
� (r

�
�R

�
)

1� g
�
r
�
� (r

�
�R

�
)

(6.173)

Combining this with (6, 3) in Eq. (6.121), we obtain:

(6, 3, 4)�
C

�
L
�
C

�
(R

�
� r

�
� r

�
)[r

��
� r

�
� (r

�
�R

�
)]

r
�
�R� r

�
(1� g

�
r
�
)

(6.174)
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which after some simplification, reduces to:

(6, 3, 4)�C
�
L
�
C

�
r
��

1�
r
�
�R

�
r
�
� r

��

1� g
�
r
�
�

R� r
�

r
�

(6.175)

(3, 4, 7): This is given by (3, 4)C
�
R���

�����
. We change the order to (3, 7, 4) and deter-

mine:

R���
�����

� r
��

(6.176)

Combining this with (7, 3) in Eq. (6.122), we obtain:

(7, 3, 4)�C
�
C

�
C

�
r
��
(R

�
� r

�
�R)r

� �
R� r

�
1� g

�
r
�

(6.177)

This can also be written after some manipulation as:

(7, 3, 4)�C
�
C

�
C

�

r
��
(R�R

�
)

1� g
�
r
�
�

r
�
�R

r
�

(r
�
�R

�
�R) (6.178)

(3, 5, 6): This is given by (3, 5)L
�
/R���

�����
in which:

R���
�����

�R�R
�

(6.179)

Combining this with (5, 3), in Eq. (6.119) we obtain:

(5, 3, 6)�
L
�
L
�
C

�

r
�
�

r
�
�R

1� g
�
r
�

(6.180)

(3, 5, 7): This is given by (3, 5)C
�
R���

�����
in which:

R���
�����

� r
�
� g
�

�
(6.181)

Combining this with (5, 3), in Eq. (6.119) we obtain:

(5, 3, 7)� L
�
C

�
C

�

R
�
�R

r
�
�

r
�
�R

1� g
�
r
�

r
�
� g
�

�

(6.182a, b)

� L
�
C

�
C

�

R
�
�R

1� g
�
r
�
�

r
�
�R

r
�





(3, 6, 7): This is given by (3, 6)C
�
R���

�����
. We change the order to (6, 7, 3) and deter-
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mine readily:

R���
�����

�R
�
� r

�
(6.183)

Combining this with (7, 6), in Eq. (6.130b) we obtain:

(7, 6, 3)� L
�
C

�
C

�

r
�
�R

�

1� g
�
r
�
�

r
�
�R

r
�

(6.184)

(4, 5, 6): Since R���
�����

	� and (4, 5) is finite, we have:

(4, 5, 6)� 0 (6.185)

(4, 5, 7): This is given by (4, 5)C
�
R���

�����
in which:

R���
�����

� r
�
� r

��
(6.186)

Combining this with (5, 4), in Eq. (6.124) we obtain:

(4, 5, 7)� L
�
C

�
C

�

1�
r
��
r
�

1�
R� r

�
(1� g

�
r
�
)

r
�

r
�
� r

��

(6.187a, b)

� L
�
C

�
C

�

r
��

1� g
�
r
�
�

R� r
�

r
�





(4, 6, 7): This is given by (4, 6)C
�
R���

�����
. We change the order to (6, 7, 4) and deter-

mine:

R���
�����

� r
��

(6.188)

Combining this with (6, 7) in Eq. (6.130b), we obtain:

(4, 6, 7)� L
�
C

�
C

�

r
��

1� g
�
r
�
�

R� r
�

r
�

(6.189)

(5, 6, 7): Since (5, 6)� 0 as determined earlier in Eq. (6.128) and R���
�����

is finite, we
have:

(5, 6, 7)� 0 (6.190)

One possible way of collecting all the terms above to obtain the coefficient a
�
is:
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a
�
�

L
�
C

�

1�
g
�
r
�

1�
r
�
�R

r
�

�(C�
�C

�
)[r

��
� r

�
� (r

�
�R)]�C

�
r
�
� (r

�
�R)

�
L
�
� L

�
r
�
� r

�
�R�� L

�
C

��C�
r
� �

R� r
�

1� g
�
r
�

�
L
�
� L

�

r
�
�

r
�
�R

1� g
�
r
�

�C
�

r
��

� r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

�
�

1

1� g
�
r
�
�

r
�
�R

r
�

�
C

�
C

�
C

�
C

�
�C

�
�C

�

r
��
(R�R

�
)�C�

(r
�
�R

�
�R) (6.191)

�
L
�

r
�
� r

��

�
L
�

R�R
�
�1�

r
�
�R

�
r
�
� r

��
���C

�
L
��

L
�
r
�

�C
�
(r
��

�R
�
�R)�

�C
�
L
�
[C

�
(r
�
� r

��
�R

�
)�C

�
(r
�
�R

�
)�C

�
r
��
]

�C
�
L
��

L
�
(1� g

�
r
�
)

r
�

�C
�
(R

�
�R)��C

�
L
�
C

�
r
���

The coefficient a
�
: This is given by:

a
�
�				��������

���
����
�����

����
�������

(6.192)

There are (�
�
)� 35 terms to determine of which ten are zero.

(1, 2, 3, 4): R���
�������

� 0 so that:

(1, 2, 3, 4)� 0 (6.193)

(1, 2, 3, 5): This is given by (1, 2, 3)L
�
/R���

�������
. Before going ahead with the determi-

nation ofR���
�������

, it is always a good idea to check if we can get a simpler answer by
changing the order of the ports. Hence, taking a quick glance at (1, 2, 3, 5) versus
(1, 2, 5, 3), we see that (1, 2, 5) is simpler than (1, 2, 3) and thatR���

�������
, which is equal

to r
��

� r
�
, is simpler thanR���

�������
, which is equal to r

�
� r

��
� r

�
�R. Therefore, we

change the order to (1, 2, 5, 3) and obtain:

(1, 2, 5, 3)� (1, 2, 5)C
�
R���

�������
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(6.194)� (1, 2, 5)C
�
(r
��

� r
�
)

Combining this result with (1, 2, 5) given in Eq. (6.138), we obtain:

(1, 2, 5, 3)� L
�
L
�
C

�
C

�

r
��

� r
�

r
�
�R� (1� g

�
r
�
)r
�

(6.195)
�

L
�
L
�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

r
�
� r

��

(1, 2, 3, 6): For the same reason as in (1, 2, 3, 5), we change the order to (1, 2, 6, 3)
and determine:

R���
�������

� r
��

� r
�

(6.196)

which is the same as R���
�������

above. Combining this with (1, 2, 6) given in Eq.
(6.139), we obtain:

(1, 2, 6, 3)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

r
�
� r

��

(6.197)

(1, 2, 3, 7): Changing the order to (1, 2, 7, 3) we determine:

(1, 2, 7, 3)� (1, 2, 7)C
�
R���

�������
(6.198a)

in which:

R���
�������

� r
��

(6.198b)

Combining these with (1, 2, 7) given in Eq. (6.141), we obtain:

(1, 2, 7, 3)� L
�
C

�
C

�
C

�
r
��

r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.199)

(1, 2, 4, 5):We change the order to (1, 2, 5, 4) and determine:

(1, 2, 5, 4)� (1, 2, 5)C
�
R���

�������
(6.200a)

in which:

R���
�������

� r
��

� r
�

(6.200b)

Combining this result with (1, 2, 5) given in Eq. (6.138), we obtain:
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(1, 2, 5, 4)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

r
�
� r

��

(6.201)

(1, 2, 4, 6):We change the order to (1, 2, 6, 4) and determine:

(1, 2, 6, 4)� (1, 2, 6)C
�
R���

�������
(6.202a)

in which:

R���
�������

� r
��

� r
�

(6.202b)

Combining these with (1, 2, 6) given in Eq. (6.139), we obtain:

(1, 2, 6, 4)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

R
�
� r

��

(6.203)

(1, 2, 4, 7):We change the order to (1, 2, 7, 4) and determine:

(1, 2, 7, 4)� (1, 2, 7)C
�
R���

�������
(6.204a)

in which:

R���
�������

� r
��

(6.204b)

Combining these with (1, 2, 7) given in Eq. (6.141), we obtain:

(1, 2, 7, 4)� L
�
C

�
C

�
C

�

r
��
r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

(6.205)
� L

�
C

�
C

�
C

�

r
��
(r
�
�R)

1� g
�
r
�
�

R� r
�

r
�

(1, 2, 5, 6): Since R���
�������

	� and (1, 2, 5) is finite, we have:

(1, 2, 5, 6)� (1, 2, 5)
L
�

R���
�������

� 0 (6.206)

(1, 2, 5, 7): This is given by:

(1, 2, 5, 7)� (1, 2, 5)C
�
R���

�������
(6.207)

in which:

R���
�������

� r
�

(6.208)
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Combining these with (1, 2, 5) given in Eq. (6.138), we obtain:

(1, 2, 5, 7)�
L
�
C

�
L
�
C

�

1� g
�
r
�
�

R� r
�

r
�

(6.209)

(1, 2, 6, 7): This is given by:

(1, 2, 6, 7)� (1, 2, 6)C
�
R���

�������
(6.210a)

in which:

R���
�������

� r
�

(6.210b)

Combining these with (1, 2, 6) given in Eq. (6.139), we obtain:

(1, 2, 6, 7)�
L
�
C

�
L
�
C

�

1� g
�
r
�
�

R� r
�

r
�

(6.211)

(1, 3, 4, 5):We change the order to (3, 4, 5, 1) and determine:

(3, 4, 5, 1)� (3, 4, 5)
L
�

R���
�������

(6.212a)

in which:

R���
�������

�R�R
�

(6.212b)

Combining these with (3, 4, 5) given in Eq. (6.172b), we obtain:

(1, 3, 4, 5)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

R� r
�

r
�

r
��

r
�
� r

��

(6.213)

(1, 3, 4, 6):We can see that R���
�������

and R���
�������

are equal. We also have:

(1, 3, 4, 6)� (1, 3, 4)L
�
/R���

������� (6.214a, b)
(1, 3, 4, 5)� (1, 3, 4)L

�
/R���

�������





Hence, (1, 3, 4, 6) can be easily deduced from (1, 3, 4, 5) simply by replacing L
�
with

L
�
in Eq. (6.213). Hence we have:

(1, 3, 4, 6)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

R� r
�

r
�

r
��

r
�
� r

��

(6.215)

(1, 3, 4, 7): This is given by:
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(1, 3, 4, 7)� (1, 3, 4)C
�
R���

�������
(6.216a)

in which:

R���
�������

� r
��

� r
�
� (r

�
�R) (6.216b)

Combining these with (1, 3, 4) given in Eq. (6.143), we obtain:

(1, 3, 4, 7)� L
�
C

�
C

�
C

�

r
��

� r
�
� (r

�
�R)

1�
g
�
r
�

1�
r
�
�R

r
�

r
��

� r


� (r

�
�R)

� L
�
C

�
C

�
C

�

r
��
r
�
� (r

�
�R)

1�
g
�
r
�
r
�

r
�
� r

�
�R

(6.217)

� L
�
C

�
C

�
C

�

r
��
(r
�
�R)

1� g
�
r
�
�

R� r
�

r
�

(1, 3, 5, 6):We can see that R���
�������

	� while (1, 3, 5) is finite. Hence we have:

(1, 3, 5, 6)� (1, 3, 5)
L
�

R���
�������

� 0 (6.218)

(1, 3, 5, 7):We change the order to (1, 3, 7, 5) and determine:

(1, 3, 7, 5)� (1, 3, 7)
L
�

R���
�������

(6.219a)

in which we determine:

R���
�������

� r
�
�R (6.219b)

Combining these with (1, 3, 7) given Eq. (6.149), we obtain:

(1, 3, 7, 5)�
L
�
L
�
C

�
C

�
r
�
�R

r
� �

R� r
�

1� g
�
r
�

(6.220a, b)

�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

R� r
�

r
�





(1, 3, 6, 7): Change the order to (1, 3, 7, 6) and determine:

(1, 3, 7, 6)� (1, 3, 7)
L
�

R���
�������

(6.221)
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Here, we see that R���
�������

is the same as R���
�������

so that (1, 3, 7, 6) can be deduced
from (1, 3, 7, 5) in Eq. (6.220b) simply by replacing L

�
with L

�
:

(1, 3, 7, 6)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

R� r
�

r
�

(6.222)

(1, 4, 5, 6):We can see that R���
�������

	� while (1, 4, 5)� 0, as determined earlier in
Eq. (6.150a), so that we have:

(1, 4, 5, 6)� (1, 4, 5)
L
�

R���
�������

� 0 (6.223)

(1, 4, 5, 7): Since (1, 4, 5)� 0 and R���
�������

is finite, we have:

(1, 4, 5, 7)� 0 (6.224)

(1, 4, 6, 7): Since (1, 4, 6)� 0 and R���
�������

is finite, we have:

(1, 4, 6, 7)� 0 (6.225)

(1, 5, 6, 7): Since (1, 5, 6)� 0 and R���
�������

is finite, we have:

(1, 5, 6, 7)� 0 (6.226)

(2, 3, 4, 5), (2, 3, 4, 6), (2, 3, 4, 7): Since (2, 3, 4)� 0 and R���
�������

, R���
�������

and R���
�������

are finite, we have:

(2, 3, 4, 5)� 0

(2, 3, 4, 6)� 0 (6.227a—c)

(2, 3, 4, 7)� 0





(2, 3, 5, 6): This is given by:

(2, 3, 5, 6)� (2, 3, 5)
L
�

R���
�������

(6.228)

in which we determine:

R���
�������

�R�R
�

(6.229)

Combining these with (2, 3, 5) given in Eq. (6.155b), we obtain:

(2, 3, 5, 6)�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

r
�
� r

��

(6.230)

(2, 3, 5, 7): This is given by:
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(2, 3, 5, 7)� (2, 3, 5)C
�
R���

�������
(6.231)

in which:

R���
�������

� r
�
� r

��
(6.232a)

Combining these with (2, 3, 5) in Eq. (6.155b), we obtain:

(2, 3, 5, 7)�C
�
C

�
C

�
L
�

r
��
(R�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(6.232b)

(2, 3, 6, 7):We change the order and determine:

(3, 6, 7, 2)� (3, 6, 7)C
�
R���

�������
(6.233a)

in which we see that:

R���
�������

� r
��

(6.233b)

Combining these with (3, 6, 7) given in Eq. (6.184), we obtain:

(2, 3, 6, 7)� L
�
C

�
C

�
C

�

r
��
(r
�
�R

�
)

1� g
�
r
�
�

r
�
�R

r
�

(6.234)

(2, 4, 5, 6): This is given by:

(2, 4, 5, 6)� (2, 4, 5)
L
�

R���
�������

(6.235a)

in which we determine:

R���
�������

�R
�
�R (6.235b)

Combining these with (2, 4, 5) given in Eq. (6.161), we obtain:

(2, 4, 5, 6)�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

r
�
� r

��

(6.236)

(2, 4, 5, 7): This is given by:

(2, 4, 5, 7)� (2, 4, 5)C
�
R���

�������
(6.237a)

in which we determine:

R���
�������

� r
�
� r

��
(6.237b)

Combining these with (2, 4, 5) given in Eq. (6.161), we obtain:
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(2, 4, 5, 7)�C
�
C

�
C

�
L
�

r
��
(R�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(6.238)

(2, 4, 6, 7): This is given by:

(2, 4, 6, 7)� (2, 4, 6)C
�
R���

�������
(6.239a)

in which we determine:

R���
�������

� r
�
� r

��
� (r

�
�R

�
) (6.239b)

Combining these with (2, 4, 6) given in Eq. (6.162), we obtain:

(2, 4, 6, 7)� L
�
C

�
C

�
C

�
r
��

�1�
r
�
�R

�
r
�
� r

��
� r� � r

��
� (r

�
�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(6.240)
� L

�
C

�
C

�
C

�

r
��
(r
�
�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(2, 5, 6, 7): This is given by:

(2, 5, 6, 7)� (2, 5, 6)C
�
R���

�������
(6.241a)

in which we determine:

R���
�������

� r
�

(6.241b)

Combining these with (2, 5, 6) given in Eq. (6.166), we obtain:

(2, 5, 6, 7)�
L
�
L
�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

(6.242)

(3, 4, 5, 6): This is given by:

(3, 4, 5, 6)� (3, 4, 5)
L
�

R���
�������

(6.243a)

in which we determine:

R���
�������

�R
�
�R (6.243b)

Combining these with (3, 4, 5) given in Eq. (6.172b), we obtain:
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(3, 4, 5, 6)�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

r
��

� r
�

(6.244)

(3, 4, 5, 7): This is given by:

(3, 4, 5, 7)� (3, 4, 5)C
�
R���

�������
(6.245a)

in which we determine:

R���
�������

� r
��

� r
�

(6.245b)

Combining these with (3, 4, 5) given in Eq. (6.172b), we obtain:

(3, 4, 5, 7)�C
�
C

�
C

�
L
�

r
��
(R�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(6.246)

(3, 4, 6, 7): This is given by:

(3, 4, 6, 7)� (3, 4, 6)C
�
R���

�������
(6.247a)

in which we determine:

R���
�������

� r
��

� r
�
� (r

�
�R

�
) (6.247b)

Combining these with (3, 4, 6) given in Eq. (6.175), we obtain in the samemanner as
in Eq. (6.240):

(3, 4, 6, 7)�C
�
C

�
C

�
L
�

r
��
(r
�
�R

�
)

1� g
�
r
�
�

R� r
�

r
�

(6.248)

(3, 5, 6, 7): This is given by:

(3, 5, 6, 7)� (3, 5, 6)C
�
R���

�������
(6.249a)

in which we determine:

R���
�������

� r
�
� g
�

�
(6.249b)

Combining these with (3, 5, 6) given in Eq. (6.180), we obtain:

(3, 5, 6, 7)� L
�
L
�
C

�
C

�

r
�
� g
�

�

r
�
�

r
�
�R

1� g
�
r
�

(6.250)
�

L
�
L
�
C

�
C

�

1� g
�
r
�
�

R� r
�

r
�
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The coefficient a
�
is given by:

a
�
�

C
�
C

�
�C

�
C

�
�C

�
C

�

1� g
�
r
�
�

R� r
�

r
�

C
�
r
��
[(L

�
� L

�
)(r

�
�R)

� L
�
(R�R

�
)]�

L
�
L
�
� L

�
L
�
� L

�
L
�

1� g
�
r
�
�

R� r
�

r
�

�C�
(C

�
�C

�
) (6.251)

�
r
��

r
��

� r
�

(C
�
C

�
�C

�
C

�
�C

�
C

�
)�

Some of the terms in Eq. (6.251) can be collected to yield a more compact
expression for a

�
:

a
�
�

1

1� g
�
r
�
�

R� r
�

r
�

�
L
�
L
�
L
�

L
�
� L

�
� L

�
�C�

(C
�
�C

�
)�

r
��

r
��

� r
�

C
�
C

�
C

�
C

�
�C

�
�C

�
�

(6.252)
�

C
�
C

�
C

�
r
��
(r
�
�R

�
)

C
�
�C

�
�C

�

C
��L

�
� L

�
� L

�

R
�
�R

r
�
�R ��

The coefficient a
�
: This is given by:

a
�
�					��������

���
����
�����

����
�������

����
���������

(6.253)

There are (�
�
)� 21 terms to determine, of which twelve are zero. In the surviving

nine terms, all the new port resistances R���
���������

are equal to r
��

� r
�
.

(1, 2, 3, 4,n): Since (1, 2, 3, 4)� 0 as determined earlier in Eq. (6.193),
(1, 2, 3, 4, n)� 0 for n� 5, 6, 7 (no indeterminate terms). Hence, we have:

(1, 2, 3, 4, 5)� 0

(1, 2, 3, 4, 6)� 0 (6.254a—c)

(1, 2, 3, 4, 7)� 0





(1, 2, 3, 5, 6): Since R���
���������

	� and (1, 2, 3, 5) is finite, we have:

(1, 2, 3, 5, 6)� (1, 2, 3, 5)
L
�

R���
���������

� 0 (6.255)

(1, 2, 3, 5, 7): This is given by:

(1, 2, 3, 5, 7)� (1, 2, 3, 5)C
�
R���

���������
(6.256a)
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in which:

R���
���������

� r
�
� r

��
(6.256b)

Combining these with (1, 2, 3, 5) in Eq. (6.195), we obtain:

(1, 2, 3, 5, 7)�
L
�
L
�
C

�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.257)

(1, 2, 3, 6, 7): This is given by:

(1, 2, 3, 6, 7)� (1, 2, 3, 6)C
�
R���

���������
(6.258a)

in which:

R���
���������

� r
�
� r

��
(6.258b)

Combining these with (1, 2, 3, 6) in Eq. (6.197), we obtain:

(1, 2, 3, 6, 7)�
L
�
L
�
C

�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.259)

(1, 2, 4, 5, 6): R���
���������

	� and (1, 2, 4, 5) is finite so that:

(1, 2, 4, 5, 6)� (1, 2, 4, 5)
L
�

R���
���������

� 0 (6.260)

(1, 2, 4, 5, 7): This is given by:

(1, 2, 4, 5, 7)� (1, 2, 4, 5)C
�
R���

���������
(6.261a)

in which:

R���
���������

� r
�
� r

��
(6.261b)

Combining these with (1, 2, 4, 5) in Eq. (6.201), we obtain:

(1, 2, 4, 5, 7)�
L
�
C

�
C

�
L
�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.262)

(1, 2, 4, 6, 7): This is given by:

(1, 2, 4, 6, 7)� (1, 2, 4, 6)C
�
R���

���������
(6.263a)

in which:

R���
���������

� r
�
� r

��
(6.263b)
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Combining these with (1, 2, 4, 6) in Eq. (6.203), we obtain:

(1, 2,4, 6, 7)�
L
�
C

�
C

�
L
�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.264)

(1, 2, 5, 6, 7): Since (1, 2, 5, 6)� 0 as determined in Eq. (6.206) andR���
���������

� r
�
, we

have:

(1, 2, 5, 6, 7)� 0 (6.265)

(1, 3, 4, 5, 6): R���
���������

	� and (1, 3, 4, 5) is finite so that:

(1, 3, 4, 5, 6)� (1, 3, 4, 5)
L
�

R���
���������

� 0 (6.266)

(1, 3, 4, 5, 7): This is given by:

(1, 3, 4, 5, 7)� (1, 3, 4, 5)C
�
R���

���������
(6.267a)

in which we determine:

R���
���������

� r
��

� r
�

(6.267b)

Combining these with (1, 3, 4, 5) given in Eq. (6.213), we obtain:

(1, 3, 4, 5, 7)�
L
�
L
�
C

�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.268)

(1, 3, 4, 6, 7): This is given by:

(1, 3, 4, 6, 7)� (1, 3, 4, 6)C
�
R���

���������
(6.269a)

in which we determine:

R���
���������

� r
��

� r
�

(6.269b)

Combining these with (1, 3, 4, 6) given in Eq. (6.215), we obtain

(1, 3, 4, 6, 7)�
L
�
L
�
C

�
C

�
C

�

1� g
�
r
�
�

r
�
�R

r
�

r
��

(6.270)

(1, 3, 5, 6, 7): Since (1, 3, 5, 6)� 0 as determined in Eq. (6.218) andR���
���������

is finite,
we have:

(1, 3, 5, 6, 7)� 0 (6.271)

(1, 4, 5, 6, 7): Since (1, 4, 5, 6)� 0 as determined in Eq. (6.223) andR���
���������

is finite,
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we have:

(1, 4, 5, 6, 7)� 0 (6.272)

(2, 3, 4, 5, 6), (2, 3, 4, 5, 7), (2, 3, 4, 6, 7): Since (2, 3, 4, 5)� 0 and (2, 3, 4, 6)� 0 as
determined in Eqs. (6.227a, b) and no indeterminacy occurs when ports (6) and (7)
are considered, we have:

(2, 3, 4, 5, 6)� 0

(2, 3, 4, 5, 7)� 0 (6.273a—c)

(2, 3, 4, 6, 7)� 0





(2, 3, 5, 6, 7): This is given by:

(2, 3, 5, 6, 7)� (2, 3, 5, 6)R���
���������

(6.274a)

in which we determine:

R���
���������

� r
�
� r

��
(6.274b)

Combining these with (2, 3, 5, 6) given in Eq. (6.230), we obtain:

(2, 3, 5, 6, 7)�
C

�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

(6.275)

(2, 4, 5, 6, 7): This is given by:

(2, 4, 5, 6, 7)� (2, 4, 5, 6)C
�
R���

���������
(6.276a)

in which we determine:

R���
���������

� r
�
� r

��
(6.276b)

Combining these with (2, 4, 5, 6) given in Eq. (6.236), we determine:

(2, 4, 5, 6, 7)�
C

�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

(6.277)

(3, 4, 5, 6, 7): This is given by:

(3, 4, 5, 6, 7)� (3, 4, 5, 6)C
�
R���

���������
(6.278a)

in which we determine:

R���
���������

� r
�
� r

��
(6.278b)

Combining these with (3, 4, 5, 6) given in Eq. (6.244), we determine:
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(3, 4, 5, 6, 7)�
C

�
C

�
C

�
L
�
L
�

1� g
�
r
�
�

R� r
�

r
�

r
��

(6.279)

The coefficient a
�
is given by:

a
�
�

L
�
L
�
L
�
C

�
C

�
C

�
L
�
� L

�
� L

�
C

�
�C

�
�C

�

C
�
r
��

1� g
�
r
�
�

R� r
�

r
�

(6.280)

The numerator N(s)
The numerator is given by:

N(s)� 1�
�
�
�	�

b
�
s� (6.281)

in which the coefficients b
�
are determined using null double injection.

The coefficient b
�
: This is given by:

b
�
�

�
�
�	�

t����	C
�
R����	

L
�

R���
(6.282)

in which t��� is the time constant formed at port (i) by the reactive element at that
port and the null resistanceR��� looking into that port using null double injection.
These are determined as follows.

R(1): This is infinite since ports (2) and (3) are open. Hence, we have:

R���	�

(6.283a, b)
t����

L
�

R���
� 0





R(2):We see in Fig. 6.14 that when the output voltage and hence the output current
are both nulled, the voltage drop across r

�
, given by I

�
r
�
, is equal and opposite to

the voltage drop across r
�
which is given by g

�
r
�
V

�
. Hence, we have:

g
�
V

�
r
�
��I

�
r
�

(6.284)

It follows that:

R����
V

�
I
�

��
r
�

g
�
r
�

(6.285a, b)

t����C
�
R�����

C
�

g
�

r
�
r
�




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Figure 6.14

R(3):We see in Fig. 6.15 that with the output nulled, v
��
is given by:

v
��

��(V
�
� I

�
r
�
) (6.286)

We can also see that the voltage drop across r
�
, given by I

�
r
�
, is equal to the voltage

drop across r
�
which is given by g

�
v
��
r
�
. Hence, we have:

I
�
r
�
� g

�
v
��
r
�

(6.287)��g
�
r
�
(V

�
� I

�
r
�
)

It follows that:

R�����r
��1�

1

g
�
r
�
� r

�
�

(6.288a, b)

t�����C
�
r
��1�

1

g
�
r
�
� r

�
�





Figure 6.15
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R(4):We see from Fig. 6.16 that when the output is nulled, the current through r
�

and the voltage across it are both zero so that the voltage across r
��
is V

�
. Hence,

we have:

R���� r
�� (6.289a, b)

t����C
�
r
��





R(5): The test current looking into port (5) is the same as the output current which
when nulled causes the test current to be zero and R��� to be infinite. Hence, we
have:

R���	�

(6.290a, b)
t����

L
�

R���
� 0





Figure 6.16

R(6): The test current looking into port (6) with the output nulled is clearly zero so
that we have:

R���	�

(6.291a, b)
t����

L
�

R���
� 0





R(7):We see in Fig. 6.17 that when the output is nulled, the voltage across r
�
is zero.

It follows that the voltage across port (7) is zero. Hence, a test current source
connected at port (7) under this null condition, will develop zero volts across it so
that the null resistance looking into port (7) is zero:
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Figure 6.17

R���� 0
(6.292a, b)

t����C
�
R���� 0





The coefficient b
�
is given by:

b
�
��

C
�

g
�

r
�
r
�

�C
�
r
��1�

1

g
�
r
�
� r

�
��C

�
r
��

(6.293)

The coefficient b
�
: This is given by:

b
�
�		t���t���

���
(6.294)

As in the analysis of the denominator, we shall use (i, j) to denote the pair t���t���
���

and determine these as follows.

(1,n): Since t��� � 0 and there are no indeterminate forms in t���
���
, we have:

(1, n)� 0 n� 1, 2, . . ., 7 (6.295)

(2, 3):We can verify in Fig. 6.18 that:

V
�
� I

�
r
�
� r

���I��
I
�
r
�

r
�
� (6.296)

It follows that:

R���
���

�
r
�
r
��

r
�
� r

��
� r

�
(6.297a, b)

(2, 3)��C
�
C

�

r
�
r
��

g
�
r
�
� r

��
� r

�




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Figure 6.18

(2, 4): This is identical to (2, 3) so that we have:

(2, 4)��C
�
C

�

r
�
r
��

g
�
r
�
� r

��
� r

�

(6.298)

(2, 5):When port (2) is shorted, g
�
v
��

� 0 and the current through r
�
becomes the

same as the output current. It follows that when the output voltage and, hence, the
output current are both nulled, the voltage drops across r

�
and R are both zero.

Hence, the upper side of r
�
is at virtual ground and the null resistance looking into

port (5) is simply r
�
. Hence, we have:

R���
���

� r
�

(6.299a, b)
(2, 5)��

C
�
L
�

g
�
r
�





(2, 6): SinceR���
���

	� and t��� is finite, we have:

(2, 6)� t���
L
�

R���
���

� 0 (6.300)

(2, 7):When port (2) is shorted, g
�
v
��
vanishes. Hence, looking into port (7) with the

output current nulled we see r
�
:

R���
���

� r
�

(6.301)

It follows that:

(2, 7)��C
�
C

�

r
�

g
�

(6.302)
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(3, 4): Since t��� is simpler than t���, we change the order to (4, 3) and determineR���
���

as shown in Fig. 6.19. Since the output voltage and current are nulled, the voltage
across r

�
is I

�
r
�
and it appears across r

��
. It follows that:

I
�
��

I
�
r
�

r
�
� r

��

� g
�

V
�

(6.303)

Hence, we have:

R���
���

��
1

g
�

r
�

r
�
� r

�
� r

��
(6.304a, b)

(4, 3)��C
�
C

�

r
�
r
��

g
�
r
�
� r

��
� r

�





Figure 6.19

(3, 5): When port (3) is shorted, the dependent source g
�
v
��
acts like a simple

conductance g
�
in parallel with r

�
. When the output voltage is nulled, the upper

side of r
�
� g
�

�
is at virtual ground so that the null resistance looking into port (5)

is:

R���
���

� r
�
� r

�
� g
�

�
(6.305)

It follows that:

(3, 5)��C
�
L
�

r
��1�

1

g
�
r
�
� r

�
�

r
�
� r

�
� g
�

�
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(6.306)
��C

�
L
��1�

1

g
�
r
�
�

(3, 7): Looking into port (7) with port (3) short and the output voltage nulled, we
have according to Fig. 6.20:

I
�
�

V
�
r
�

�
V

�
r
�

� g
�

V
�

(6.307)

It follows that:

R���
���

� r
�
� r

�
� g
�

�
(6.308a, b)

(3, 7)��C
�
C

�

r
�

g
�





The reader can easily verify that all the remaining pairs are zero so that b
�
is

given by:

b
�
��

C
�
C

�
C

�
C

�
�C

�
�C

�

r
�
r
��

r
�
� r

�
� r

��

�C
�
(C

�
�C

�
)
r
�

g
�

(6.309)
� L

��C��1�
1

g
�
r
�
��

C
�

g
�
r
�
�

Figure 6.20

The coefficient a
�
: This is given by:

a
�
�			t���t���

���
t���
�����

(6.310)

In what follows, only the nonzero triplets will be given. The reader can verify
that all other triplets are zero.
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(2, 3, 5): When ports (2) and (3) are shorted, the dependent source g
�
v
��
vanishes

and r
��
and r

�
appear in parallel. Now, when the output voltage is nulled, the upper

node of r
��

� r
�
is at virtual ground so that the null resistance looking into port (5) is

given by:

R���
�����

� r
�
� r

��
� r

�
(6.311)

It follows that:

(2, 3, 5)��C
�
C

�
L
�

r
��

g
�
r
��

� r
�

(6.312)

(2, 3, 7): The determination of R���
�����

is very similar to R���
���
shown in Fig. 6.20. In

this case, when port (2) is shorted, r
��
appears in parallel with r

�
and g

�
v
��
vanishes

so that we have:

I
�
�

V
�
r
�

�
V

�
r
�
� r

��

(6.313)

It follows that:

R���
�����

� r
�
� r

�
� r

�� (6.314a, b)

(2, 3, 7)��C
�
C

�
C

�

r
�
r
��

g
�





(2, 4, 5): This is similar to (2, 3, 5) in which C
�
is replaced with C

�
. Hence, we have:

(2, 4, 5)��C
�
C

�
L
�

r
��

g
�
r
��

� r
�

(6.315)

(2, 4, 7): This is similar to (2, 3, 7) in which C
�
is replaced with C

�
. Hence, we have:

(2, 4, 7)��C
�
C

�
C

�

r
�
r
��

g
�

(6.316)

(2, 5, 7): The determination ofR���
�����

is similar to that of R���
���
in Eq. (6.301) so that

we have:

R���
�����

� r
�

(6.317)

It follows that:

(2, 5, 7)��
L
�
C

�
C

�
g
�

(6.318)

(3, 4, 5): The null resistance R���
�����

is the same as R���
�����

in Eq. (6.311) so that we
have:
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(3, 4, 5)��
L
�
C

�
C

�
g
�

r
��

r
��

� r
�

(6.319)

(3, 4, 7): The null resistance R���
�����

is the same as R���
�����

in Eq. (6.314) so that we
have:

(3, 4, 7)��C
�
C

�
C

�

r
��
r
�

g
�

(6.320)

(3, 5, 7): The resistance looking into port (7) with port (3) short and port (5) open,
regardless of whether the output is nulled or not, is given by:

R���
�����

� r
�
� g
�

�
(6.321)

It follows that:

(3, 5, 7)��
L
�
C

�
C

�
g
�

(6.322)

Grouping these results, we obtain for b
�
:

b
�
���

L
�

r
��

� r
�

�C
�
r
��

C
�
C

�
C

�
C

�
�C

�
�C

�

r
��
g
�

� (C
�
�C

�
)
L
�
C

�
g
�

(6.323)

The coefficient b
�
: This is given by:

b
�
�				t���t���

���
t���
�����

t���
�������

(6.324)

in which the nonzero terms are determined as follows.

(2, 3, 5, 7): The resistance looking into port (7) with ports (2) and (3) short and port
(5) open, regardless of whether the output is nulled or not, is simply given by:

R���
�������

� r
�
� r

��
(6.325)

It follows that:

(2, 3, 5, 7)��L
�
C

�
C

�
C

�

r
��
g
�

(6.326)

(2, 4, 5, 7), (3, 4, 5, 7): As in Eq. (6.325), we have by inspection:

R���
�������

�R���
�������

� r
�
� r

��
(6.327)

It follows that:

(2, 4, 5, 7)��L
�
C

�
C

�
C

�

r
��
g
�

(6.328a, b)

(3, 4, 5, 7)��L
�
C

�
C

�
C

�

r
��
g
�




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Grouping the results above, we obtain:

b
�
��L

�
C

�

C
�
C

�
C

�
C

�
�C

�
�C

�

r
��
g
�

(6.329)

Example 6.3 Using the element values in Fig. 6.11 we obtain the following values
for the voltage gain transfer function:

A
�
� 2.256 (7.0673 dB)

b
�

� 6.017752� 10
�� s

b
�

� 1.922437� 10
�� s�

b
�

� 3.432182� 10
�� s�

b
�

� 9.042019� 10
�� s�

(6.330a—j)a
�

� 5.284670� 10
�� s

a
�

� 6.288061� 10
�� s�

a
�

� 3.877904� 10
�� s�

a
�

� 9.129621� 10
�� s�

a
�

� 2.177460� 10
�� s�





Upon determining the roots of the numerator and the denominator, the transfer
function can be written in the following factored form:

A(s)�A
�

�1�
s

�
��
Q

��

�
s�

��
��
��1�

s

�
��
��1�

s

�
��
�

�1�
s

�
��
��1�

s

�
�
Q

�

�
s�

��
�
��1�

s

�
��
��1�

s

�
��
�

(6.331)

in which:

�
��

� (2�) 4.41� 10� rad/s

�
�

� (2�) 22.11� 10� rad/s

Q
�

� 0.766

�
��

� (2�) 39.7� 10� rad/s

�
��

� (2�) 594.6� 10� rad/s (6.332a—i)

�
��

� (2�) 21.47� 10� rad/s

Q
��

� 1.274

�
��

� (2�) 25.86� 10� rad/s

�
��

� (2�) 595.1� 10� rad/s




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The magnitude and phase of the voltage gain are shown in Fig. 6.21. The
bandwidth is seen to be 4.14GHz and is dictated by the dominant pole, f

��
, as

given above in Eq. (6.332a). If the dominant pole is approximated by the first term
a
�
, then we obtain for the bandwidth:

f
��

�
1

2�a
�

� 3.01GHz (6.333)

Phase

Mag.

Figure 6.21

This is not a very good approximation because the roots of the denominator are
not well separated. A more accurate approximation is given by:

f
��

�
1

2��a��
a
�

a
�
�

� 3.89GHz (6.334)

If a reasonable analytical expression of the dominant pole is desired, we must
use the first approximation in which the approximate expression of a

�
given by Eq.

(6.96) can be used. �

6.5 Review

The task of analyzing the frequency response of a complicated circuit can be
greatly simplified by removing all the reactive elements and analyzing a set of
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purely resistive circuits which are generated by opening and shorting the reactive
ports according to a straightforward permutation scheme required by the NEET.
If need be, the resistive circuits can be simplified by further application of the
NEET. If an indeterminacy arises whenever the product of two port resistances is
taken, either the order of the ports can be reversed or a dummy resistor can be
introduced and allowed to vanish later after the product is formed. When the
product of several port resistances is taken, one can assess rather quickly the order
of the ports which results in the simplest expression. Remarkably, we can see that
the algebra never gets out of hand since each component of the final answer is
determined either by inspection or by a line or two of algebra.

Problems

6.1 Approximate factors of a polynomial with well-separated roots. (a) Show that
when the roots of a third-order polynomial are well separated and have the same
sign, they can be factored as shown in the denominator of Eq. (6.39). (b) Generalize
the result in part (a) to an nth-order polynomial. (c) Verify the analytical expression
of the dominant and second pole in Eqs. (6.42) and (6.43). (d) As an exercise,
compare the numerical values of the approximate and exact values of the third
pole.

6.2 Approximate expression of the dominant pole of a MESFET amplifier. Using
the numerical values of theMESFET amplifier in Fig. 6.11, determine the value of
A

�
in Eq. (6.65) and verify the approximation for a

�
, and hence of the dominant

pole, or bandwidth, in Eq. (6.96).

6.3 Frequency response of a video amplifier. A two-stage video amplifier� with a
midband gain of 5 and a bandwidth of about 70MHz is shown in Fig. 6.22a. The
amplifier is capable of driving a load of 75� with 1V peak-to-peak as shown in
Fig. 6.22b and has an input impedance of about 75�. All the simulation results
shown are obtained by Or CAD/Pspice.

The complete frequency response is shown in Fig. 6.22c and is given by:

v
�
(s)

v
��
(s)

�A
�

N(s)

D
�
(s)D

�
(s)

(6.335)

in which A
�
is the midband gain, D

�
(s) is the low-frequency behavior and D

�
(s) is

the high-frequency behavior. The small-signal parameters of the transistors corre-
sponding to the model in Fig. 6.22d are evaluated at the dc operating point and
given in the table.

311 Problems



Figure 6.22

Table

Q—Q1 Q—Q2

MODEL Q2N5179 Q2N5179

IB 4.21E�05 1.33E�04

IC 3.07E�03 9.00E�03

VBE 8.16E�01 8.50E�01

VBC �1.52E�00 �1.73E�00

VCE 2.34E�00 2.58E�00

BETADC 7.28E�01 6.76E�01
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Table (cont.)

Q—Q1 Q—Q2

GM 1.06E�01 2.70E�01

RPI 6.87E�02 2.16E�02

RX 1.00E�01 1.00E�01

RO 3.31E�04 1.13E�04

CBE 1.68E�11 4.67E�11

CBC 6.40E�13 6.25E�13

BETAAC 7.27E�01 5.84E�01

FT/FT2 9.65E�08 9.10E�08

Figure 6.22 (cont.)

(a) Determine the midband gain using the equivalent circuit model of the ampli-
fier in Fig. 6.22e and show that it is given by:
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A
�
�

R
��

R
�

1

1�
R

��
� r

��
� r��

(1�

�
)R

�
� r

��
�R

�� (6.336)

�
1�

r��� r
��



�
r
��

1�
r��� r

��



�
[R

��
�R

�
� (r��� r

��
)]�1�

R
��

�R
���

�R
��

�R
�
� (r

��
� r��)

r
��

�
in which:

R
���

� r
��

� r��� (1�

�
)(R

��
�R

�
� r

��
) (6.337)

Using numerical values, obtain a few different approximations for A
�
with

different degrees of accuracies.

Figure 6.22 (cont.)

(b) Determine the coefficients a
�
in the high-frequency response D

�
(s) using the

4-EET and the reference circuit in Fig. 6.22e with v
��

� 0:

D
�
(s)� 1�

�
�
�	�

a
�
s� (6.338)

Hint: (i) The coefficient a
�
is given by:

a
�
�

�
�

�	�

C
�
R��� (6.339)
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in which R��� are given by:

R���� r�� � r
��

1�
R

��
�R

�
r
��

� (r
��

�R
��

�R
���
)

1�
R

��
�R

�
r
��

� r��

1� 

�
�

r
��

� r���R
��

�R
���

r
��

1�
R

��
�R

���
r
��

(6.340)

R����R
��

�R
��� �1�

r
��

R
��

�R
���

�R
��

�R
�
�

(6.341)

�

1�
1

g
��

1

r
��

� r�� � (r
��

�R
��

�R
���

�R
��

�R
�
)

1�
1



�

r��� r
��

r
��

� [R
��

�R
���

�R
��

�R
�
� (r�� � r

��
)]

R���� r�� � (r
��

�R
��
)

1�
R

�
�R

��
� r

��
r
��

�R
��

1�
R

�
�R

��
� r

��
r
��

�R
��

� r��
(1�


�
)

(6.342)

R���� (r
��

�R
��
) � r��

1�
(1�


�
)(R

�
�R

��
� r

��
)

r��

1�
(1�


�
)(R

�
�R

��
� r

��
)

r��� r
��

�R
��

(6.343)

in which:

R
��

�R
��� �1�



�

1�
r
��

� r��
r
��

�R
�
�R

��
� [r��� (r

��
� r��) �R��

�R
�
] (6.344)

(ii) When determining product terms in the higher coefficients, try to recognize short cuts

like:

R���
�����

�R��� � ���	

���	


(6.345)

(c) Show thatN(s) in Eq. (6.335) is given by:

N(s)��1�
s

�
��
Q

��

�
s�

��
��
��1� s

C
���

g
��
� (6.346)

in which:
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��

�
1

	C
���

C
���

r
��
r�� �

r
��

1� g
��
r
�� (6.347)

�
1

	C
���

C
���

r
��

g
��

Q
��

�
	C

���
C

���

r
��

r�� �
r
��

1� g
��
r
��

C
���

�C
����1�

r
��
r��
(1�


�
)�

(6.348)

�
	C

���
C

���

g
��
r
��

C
���

�C
���

g
��
r
��

(d) Using the numerical values in Fig. 6.22a and in the table, evaluate your
analytical results and obtain a good approximation of the dominant pole or
the bandwidth using:

f
��

�
1

2�a
�

(6.349)
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7 Passive filters
Where inductors and transformers still get respect

7.1 Introduction

Before the advent and wide-spread use of operational amplifiers, much of network
theory was concerned with the analysis and synthesis of passive filters. Since
vacuum tube amplifiers were bulky, required power supplies and consumed
power, feedback techniques were not investigated to synthesize filters. Their
potential to do so, however, was well known. Since there is a very great number of
books on network synthesis, we shall limit our discussion here only to the analysis
of a few interesting passive filters mainly to demonstrate the unique techniques of
this book. Today, passive filters are mostly used in analog communication circuits
and switching power converter circuits. Switching power converter circuits will be
discussed in Chapter 8. Chapter 7, however, concludes with a section on special
infinite networks in which some thoughts are presented on unifying all three linear
elements, R, L and C, into a single element using fractional calculus.

7.2 RC filters with gain

The possibility of obtaining any voltage or current gain� from a purely RC
network may seem counterintuitive at first, simply because such a network can
neither have a flat gain larger than unity nor exhibit any resonance. After a little
thought, we consider if it is at all possible, starting from a flat gain, A

�
, to have a

zero, �
�
, before a pole, �

�
, so that A

�
(�

�
/�

�
)� 1. For a ladder network it can be

shown that this is not possible (see Problem 7.1) but for other types of networks,
such as the one illustrated in Fig. 7.1a, it is indeed possible to obtain a gain larger
than unity. We shall analyze this circuit using the 2-EET, whereby the two
capacitors are designated as extra elements and removed as shown in Fig. 7.1b, in
which we see that the low-frequency gain is unity, i.e. A

�
� 1.

With the input voltage source shorted we can verify the following driving-point
impedances by inspection of Fig. 7.1b:
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Figure 7.1

R����R
�

R����R
�
�R

�
(7.1a—c)

R���
���

�R
�





The denominator is thus given by:

D(s)� 1� s(C
�
R����C

�
R���)� s�C

�
C

�
R���R���

���

(7.2)� 1� s[C
�
R

�
�C

�
(R

�
�R

�
)]� s�C

�
C

�
R

�
R

�

The null driving-point impedances are shown in Fig. 7.2b, whencewe can verify the
following by inspection:

Figure 7.2
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R����R
�

R����R
�
�R

�
(7.3a—c)

R���
���

� 0





Substituting these in the numerator:

N(s)� 1� s(C
�
R����C

�
R���)� s�C

�
C

�
R���R���

���

(7.4)� 1� s[C
�
R

�
�C

�
(R

�
�R

�
)]

The transfer function is now given by:

v
�
(s)

v
��
(s)

�A
�

1� a
�
s

1� a
�
s� a

�
s�

(7.5)

in which:

A
�
� 1

a
�

�C
�
R

�
�C

�
(R

�
�R

�
) (7.6a—c)

a
�

�C
�
C

�
R

�
R

�





If the poles in Eq. (7.5) are well separated, then they can be factored approximately
as (1� a

�
s)(1� sa

�
/a

�
). This will cause the zero to cancel with the first pole

preventing the magnitude of the transfer function from exceeding unity. If on the
other hand the poles coalesce, then the denominator factors as a perfect square and
the transfer function can be written as:

A(s)�
1� a

�
s

�1�
sa

�
2 �

�

(7.7a, b)

�

1�
s

�
�

�1�
s

2�
�
�
�





It can be seen in Eq. (7.7b) that the zero occurs before the double pole so that the
magnitude will exceed unity and peak in the neighborhood of the pole. The peak
can be estimated by the magnitude of the transfer function at 2�

�
:

A
���

�
�1� 2�

1� 1
� 1.12 (7.8)

A comparison of the denominators in Eqs. (7.5) and (7.7a) yields:
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a
�
� 2�a

�
(7.9)

This is the relationship which the circuit elements must satisfy in order for the
denominator to factor as in Eq. (7.7a). Substituting Eqs. (7.6b, c) in (7.9) we obtain:

R
�
C

�
�R

�
C

�
�R

�
C

�
� 2�R

�
C

�
R

�
C

�
(7.10)

which can be written as:

��R�
C

�
��R

�
C

����R
�
C

�
� 0 (7.11)

which clearly cannot be satisfied exactly for any choice of elements with positive
values. To see how this equation can be satisfied approximately, we factor out

�R
�
C

�
and divide it out to obtain:

�1��
R

�
C

�
R

�
C

�
�
�
�
C

�
C

�

� 0 (7.12)

which can be satisfied approximately if the elements are chosen as follows:

R
�
C

�
�R

�
C

�
(7.13a, b)

C
�
C

�

�
R

�
R

�

� 1





With this choice of elements, the transfer function can be written as:

A(s)�
1� s/�

�
(1� s/�

�
)�

(7.14)

in which:

�
�
� 2�

�
�

1

R
�
C

�

(7.15)

For the numerical valuesR
�
� 1K,R

�
� 100K,C

�
� l nF andC

�
� 10 pF, the

magnitude response is shown in Fig. 7.3. The maximum value of the transfer
function is A

���
� 1.153 and occurs at f

���
� 113 kHz.

Using higher-order versions of the circuit in Fig. 7.1 it is possible to obtain
higher gains (see Problem 7.2).
The third-order, twin-T, band-pass filter shown in Fig. 7.4a is another RC

circuit which can produce a gain larger than unity. The three capacitors are
designated as the extra elements and the reference circuit is shown in Fig. 7.4b in
which the reference gain is seen to be unity, i.e. A

�
� 1.
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Figure 7.3

With the input voltage source shorted, we can determine the following driving-
point impedances by a simple inspection of Fig. 7.4b:

R��� �R
�

R��� �R���
���

�R
�

R��� �R
�
�R

�
(7.16a—f )

R���
���

�R
�
�R

�
�R

�

R���
���

�R
�

R���
��	��

�R
�
�R

�





The denominator according to the 3-EET is given by:

Figure 7.4
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D(s)� 1�
1

sC
�
R

�

� sC
�
R

�
� sC

�
(R

�
�R

�
)

�
1

sC
�
R

�

sC
�
R

�
�

1

sC
�
R

�

sC
�
(R

�
�R

�
�R

�
) (7.17)

� sC
�
R

�
C

�
R

�
�

1

sC
�
R

�

sC
�
R

�
sC

�
(R

�
�R

�
)

The numerator is given by:

N(s)� 1�
1

sC
�
R���

� sC
�
R���� sC

�
R���

�
1

sC
�
R���

sC
�
R���

���
�

1

sC
�
R���

sC
�
R���

���
�

1

sC
�
R���

sC
�
R���

���
(7.18)

�
1

sC
�
R���

sC
�
R���

���
sC

�
R���

��	��

The null driving-point impedances are determined next. In Fig. 7.5a,R��� is seen
to be infinite because when the output voltage is nulled, i.e. v

�
� 0, the current

through R
�
and, hence, the voltage drop across R

�
are both zero so that the total

current through R
�
and R

�
, which is equal to i

	
, is also zero. Hence, we have:

R���
� (7.19)

In Fig. 7.5b, a null in the output voltage corresponds to a zero voltage at the
input so that the test voltage source appears across R

�
and we have:

R����R
�

(7.20)

In Fig. 7.5c, since the sum of the voltage drops across R
�
and R

�
is equal to v

	
while the current through each of them is i

	
, we have:

R����R
�
�R

�
(7.21)

Figure 7.5

322 Passive filters



In Fig. 7.5d, R���
���
may seem confusing because of the presence of v

��
, but if we

connect a resistance across port (1), which eventually can be made infinite, then we
can see that a null in the output is caused by v

��
� 0, just as in Fig. 7.5b, so that

R���
���

�R���. Hence, we have:

R���
���

�R
�

(7.22)

Figure 7.5 (cont.)

In Fig. 7.5e, a null in the output voltage causes the voltage acrossR
�
�R

�
to be

zero so that the current i
	
is zero too. It follows that R���

���

� and the product

(1/sC
�
R���)sC

�
R���

���
in Eq. (7.18) is indeterminate. To remove this indeterminacy,

we interchange the order of the ports and consider the product sCR���(1/sC
�
R���

���
)

in whichR���
���
is shown in Fig. 7.5f. In this figure we have:

v
	
� i

�
(R

�
�R

�
)

i
	
� i

�
� i

�
(7.23a—c)

i
�
R

�
� i

�
R

�





Figure 7.5 (cont.)

in which the last equation follows from the null in the output voltage. Simulta-
neous solution of these equations yields:
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R���
���

�
R

�
�R

�
1�R

�
/R

�

(7.24)

In Fig. 7.5g, we can see that:

R���
���

� 0 (7.25a)

In the last term of the numerator, we shall change the order of the ports to 1—3—2
in order to avoid an indeterminacy (R���

��	��
is infinite) and determine in Fig. 7.5h:

R���
��	��

� 0 (7.25b)

The numerator is now given by:

N(s)� 1� s[C
�
R

�
�C

�
(R

�
�R

�
)]�

C
�
C

�
�1�

R
�
R

�
� (7.26)

The numerator can also be determined using the method discussed in Section 2.4
(see Problem 7.3). The transfer function is now given by:

A(s)�
N(s)

D(s)

(7.27)
�A

�

(s/�
�
)(1� s/��

�
)

1� a
�
(s/�

�
)� a

�
(s/�

�
)� � (s/�

�
)�

in which:

��
�
�
1� (1�R

�
/R

�
)C

�
/C

�
C

�
R

�
�C

�
(R

�
�R

�
)

�
�
�

1

��R
�
C

�
R

�
C

�
R

�
C

� (7.28a—e)
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)C

�
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a
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��
�
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�
�R

�
C

�
� (R

�
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�
�R

�
)C

�
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a
�

���
�
[R

�
C

�
R

�
C

�
�R

�
C

�
(R

�
�R

�
)C

�
�R

�
C

�
(R

�
�R

�
)C

�
]





In order to have band-pass characteristics, A(s) must be symmetrical with
respect to �

�
on the log-frequency axis, which in turn requires that:

A(s/�
�
)�A(�

�
/s) (7.29)

Letting s/�
�

�

�
/s in Eq. (7.27) we get:
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Figure 7.5 (cont.)

A(�
�
/s)�A

�

(�
�
/s)(1���

�
/s��

�
)

1� a
�
(�

�
/s)� a

�
(�

�
/s)�� (�

�
/s)�

(7.30a, b)
�A

�

(s/�
�
)(s/�

�
��

�
/��

�
)

(s/�
�
)�� a

�
(s/�

�
)�� a

�
(s/�

�
)� 1





Equating Eqs. (7.30b) and (7.27) yields:

��
�
��

�
(7.31a, b)

a
�

� a
�
� a





When Eqs. (7.31a, b) are substituted in (7.27), then s���
�
will be a root of the

denominator which will cancel with the zero to yield:

A(s)�A
�

s/�
�

1� (a� 1)(s/�
�
)� (s/�

�
)�

(7.32)
�

A
�

a� 1

1

1�
1

a� 1�
s

�
�

�
�

�
s �

At s� j�
�
, the magnitude peaks at A

�
/(a� 1) and the phase passes through zero.

Inwhat follows, wewould like to see how the circuit values are to be chosen so that
Eqs. (7.31a, b) are satisfied and A

�
/(a� 1)� 1. In Eqs. (7.28a, b) ��

�
and �

�
can be

rewritten as:

��
�
�

1

R
�
C

�

1�
C

�
C

�

�
R

�
R

�

1�
R

�
R

�

�
C

�
C

�
(7.33a, b)

�
�
�

1

(R
�
C

�
)
�
�(R

�
C

�
R

�
C

�
)
�
�





So that if �
�
� ��

�
for all R

�
and C

�
, we must have:
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R
�
C

�
�R

�
C

�
�R

�
C

�
�
1

�
�

(7.34)

When Eq. (7.34) is substituted in the expression for a we obtain for the peak value
in Eq. (7.32):

A
�

a� 1
�

1�
C

�
C

�

�
C

�
C

�
C

�
C

�

�
C

�
C

�

�
C

�
C

�

�
C

�
C

�

(7.35)

in which we have two independent ratios:

��
C

�
C

�

�
R

�
R

�
(7.36a, b)

��
C

�
C

�

�
R

�
R

�





Substituting these in Eq. (7.35) we get:

A
�

a� 1
�

�(1� ���)
�(�� �)� 1� �

(7.37)

The peak is plotted in Fig. 7.6 for positive values of � and �, where it can be seen
that themaximumvalue of the peak occurs for �� 0. Thismaximum is larger than
unity and can be determined by setting the derivative of Eq. (7.37) with respect to �
to zero while �
 0. For practical design, � can bemade small and does not have to
be zero. This yields:

�
A

�
a� 1�

���

�
4� 3�2

4��2
� 1.2

(7.38a, b)
�
���

� 1��2




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Figure 7.6
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7.3 Lattice filters

Lattice filters� are bridge circuits with identical opposite branches as shown in Fig.
7.7a. A schematic abbreviation is shown in Fig. 7.7b in which only a pair of
opposite branches is shown. These filters are generally difficult to build and tune
because they require components with tight tolerances. There are two other
disadvantages to a symmetrical bridge circuit. First, the output is not referenced to
the same point as the input voltage. Second, the number of reactive elements
required is twice the order of the transfer function because the bridge is ideally
balanced. These disadvantages can be eliminated by using any of the three circuits
in Figs. 7.8b—d, which are entirely equivalent to the symmetrical lattice in Fig. 7.8a.
One way to show the equivalence between these networks is to prove that they
have the same two-port parameters (see Problem 7.4).

Figure 7.7

Example 7.1 For a particular choice of element values, the circuit in Fig. 7.9 acts
as a second-order delay equalizer. We shall first determine its frequency response
and then its time-domain response to a pulse waveform. Note that the 1: 1 ideal
inverting transformer and the inductor, L

�
, are formed by winding a primary and

secondary on a single magnetic core. To achieve tight coupling (k� 0.999), the
primary and secondary wires are first twisted together and then wound around the
magnetic core.
It is quite easy to see how this circuit can be designed to operate as a delay

equalizer with unity gain. At very low frequencies, L
�
shorts out the inverting

transformer while C
�
acts as an open circuit. Hence the voltage gain at low

frequencies is simply given by the voltage divider R


and R

�
. If the series and

parallel resonant branches are designed to have the same resonant frequency, then
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Figure 7.8

Figure 7.9

at resonance the parallel branch acts as an open circuit while the series branch acts
as a short circuit. Therefore, at resonance themagnitude of the output voltage does
not change but appears inverted, or shifted 180° in phase, because it coincides with
the secondary voltage of the inverting transformer. As the frequency is increased
beyond resonance,C

�
shorts out the inverting transformerwhileL

�
acts as an open

circuit and once again the output becomes in phase with the input. Hence, over the
entire frequency range themagnitude of the output voltage remains constant while
its phase is shifted by 360°.
Since the circuit is relatively simple, each resonant branch can be treated as a

single impedance element and the 2-EET can be used to analyze the circuit. The
reference circuit is shown in Fig. 7.10, whence we see that the low-frequency gain is
given by:

A
�
�

R
�

R
�
�R




(7.39)

The transfer function is of the form:
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Figure 7.10

A(s)�A
�

N(s)

D(s)
(7.40)

in which N(0)�D(0)� 1. The numerator can be determined by inspecting the
transform network for null conditions in the response as discussed in Chapter 2.
According to Fig. 7.11, a null in v

�
(s) is accompanied by a null in i

�
(s) so that

i
�
(s)� i

�
(s)� i(s) and:

�i(s)Z
�
(s)� i(s)Z

�
(s)� 0 (7.41)

It follows that the zeros of Z
�
(s)�Z

�
(s) are the same as the zeros of N(s). This

yields:

Z
�
(s)�Z

�
(s)� sL

�
�

1

sC
�

�
L
�
/C

�
sL

�
� 1/sC

�

� 0 (7.42)

Multiplying out in Eq. (7.42) and normalizing the leading constant to unity yields:

N(s)� 1� s�(L
�
C

�
� L

�
C

�
�C

�
L
�
)� s
L

�
C

�
L
�
C

�
(7.43)

Figure 7.11

As explained earlier, in order for this circuit to behave as a delay equalizer, both
branches must have the same resonant frequency so that we have:

L
�
C

�
� L

�
C

�
�

1

��
�

(7.44)

With the intention of substituting Eq. (7.44) in (7.43), let us manipulate C
�
L
�
in

(7.43):
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L
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L
�
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�
C

�
L
�

L
�
/L

�

�
1

(Q�
�
)�

(7.45)

in which Q is defined as:

Q��
L
�

L
�

��
C

�
C

�

(7.46)

Substituting Eqs. (7.44) and (7.45) in (7.43) we obtain:

N(s)� 1��
s

�
�
�
�

�2�
1

Q����
s

�
�
�



� 1� 2�
s

�
�
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�
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�
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(7.47)
��1��
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��1��
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�
1

Q
��

s

�
�
�
�

�
The reason for factoring the numerator as shown will become clear as soon as the
denominator is determined.
The denominator is determined by applying the 2-EET to the circuit in Fig. 7.12

in which v
��

� 0. According to the 2-EET we have:

�(s)� 1�
R���

Z
�
(s)

�
Z

�
(s)

R���
�
Z

�
(s)

R���

R���
���

Z
�
(s)

(7.48)

The denominator,D(s), in Eq. (7.40) is given by the numerator of �(s) above simply
because the denominator of �(s) contributes to N(s), which has already been
determined and therefore we need not worry about it.

Figure 7.12

The determination of R���, R��� and R���
���
is shown in Figs. 7.13a—c. In Fig. 7.13a,

the voltage which appears across R


�R

�
is 2v

	
because of the inverting trans-

former, so that the current i is given by:
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i�
2v

	
R



�R

�

(7.49)

It follows that:

R����
v
	
2i

�
R



�R

�
4

(7.50)

In Fig. 7.13c, it can be seen that:

R����R


�R

�
(7.51)

In Fig. 7.13c, the voltages across the primary and secondary of the inverting
transformer are related by:

�(iR


� v

	
)� iR

�
� v

	
(7.52)

It follows that:

R���
���

�
v
	
2i

�
R



�R

�
4

(7.53)

Figure 7.13

Substituting these results in Eq. (7.48) and making use of the definitions of �
�

and Q given in Eqs. (7.44), (7.45) and (7.46) we obtain from the numerator of �(s)
the following expression for D(s):

D(s)��1��
s

�
�
�
�

�
�
��

s

Q�
�
�
�

(7.54)
��1��

s

�
�
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�
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�
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�C
�
R



�R

�� s
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Upon comparing this expression of D(s) to N(s) in Eq. (7.47), we see that if the
circuit is designed such that the elements in the last term in Eq. (7.54) are chosen
such that:

4L
�

R


�R

�

�C
�
R



�R

�
�

2

�
�
Q

(7.55)

then D(s) factors as a perfect square:

D(s)��1�
s

Q�
�

��
s

�
�
�
�

�
�

(7.56)

and the transfer function reduces to the desired form of a second-order delay:

A(s)�A
�

1�
s

Q�
�

��
s

�
�
�
�

1�
s

Q�
�

��
s

�
�
�
�

(7.57)

The transfer function in Eq. (7.57) has a constantmagnitude ofA
�
and a total phase

shift of �360° with a center frequency of �
�
. A numerical example of A(s) will be

given shortly.
We continue to study the condition in Eq. (7.55) that the circuit elements must

satisfy in order to obtain the second-order delay given by Eq. (7.57). Substituting
Eq. (7.45) in (7.55) and dividing out by C

�
we obtain:

4

R


�R

�

L
�
C

�

�R


�R

�
� 2�

L
�
C

�

(7.58)

Now if we let x��L
�
/C

�
in this equation we obtain the following peculiar result:

(x�R


)(x�R

�
)

R


�R

�

� 0 (7.59)

which states that either R


must satisfy the following condition:

R


� 2�

L
�
C

�

�
2

Q�
L
�
C

�

(7.60)

and R
�
can be any value, or R

�
must satisfy the same condition:

R
�
� 2�

L
�
C

�

�
2

Q�
L
�
C

�

(7.61)

andR


can be any value. Now we turn to Eq. (7.57) to show how Q and �

�
must be

chosen for a desired delay, �
�
. If the bandwidth of the signal is bounded from above
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by �
�
, then �

�
must be chosen larger than �

�
:

�
�
��

�
(7.62)

Since the phase response of an ideal delay circuit is a linear function of fre-
quency,���

�
, the optimum choice of Q in Eq. (7.57) is 0.707. This yields a phase

response which is nearly a linear function of frequency for frequencies below �
�
:

�(�)����
	
�

�
�; ���

�
(7.63)

so that the delay is given by:

�
�
�

	
�

�

�
1

2f
�

(7.64)

The maximum possible delay is therefore given by:

�
����

�
1

2f
� (7.65)

To obtain the design equations of the circuit elements for a desired delay and a
given source resistance, R



, we substitute Eq. (7.64) in (7.60) and get:

C
�
�

�
�
R




2

Q	
(7.66a, b)

L
�
� �

�
R




Q

2	





The values of L
�
and C

�
follow from Eq. (7.47):

L
�
�

L
�
Q�

(7.67a, b)

C
�
�Q�C

�





The same design equations apply, with R


replaced by R

�
, when designing for a

given load R
�
.

For the following numerical values, the magnitude and phase response are
shown in Fig. 7.14:

L
�
� 0.177�H C

�
� 56.6 nF R



� 5


L
�
� 0.354�H C

�
� 28.3 nF R

�
� 8


The following values are computed:
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f
�

�
1

2	�L
�
C

�

�
1

2	�L
�
C

�

� 1.59MHz

Q ��
L
�

L
�

��
C

�
C

�

� 0.707

A
�
�

R
�

R
�
�R




�
8

15

�
�
�

1

2f
�

� 300 ns

Figure 7.14

The phase response is plotted on a linear frequency axis in Fig. 7.15 to show that
it is nearly a linear function of the frequency in the range f� f

�
with a slope equal

to the delay of the network.
The time-domain response to a 1-volt pulse with 5-�s rise-and-fall times is

shown in Fig. 7.16a. A significant portion of the frequency content of this pulse is
well within 1.6MHz. In this figure the applied pulse is shown scaled with the dc
gain of network A

�
in order to see the delay clearly. A magnified version of this

figure during the initial rise time is shown in Fig. 7.16b.
Delay networks have a wide variety of applications in pulse and microwave

networks. �
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Figure 7.15

Figure 7.16

7.4 Resonant filters

Resonant filters are mainly used as narrowband tuning circuits in radio communi-
cation. They are also used as narrowband impedance transformation circuits with
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properties similar to those of a transformer. In high-frequency switching power
converters, resonant circuits can be used to reduce voltage or current stresses on
the switching devices by providing zero voltage or zero current transition at the
switching instants.

7.4.1 Parallel resonant filters

We shall begin by analyzing the parallel resonant circuit with triple damping
shown in Fig. 7.17a and derive approximate results for high-Q or narrowband
operation.

Figure 7.17

Upon inspection of the circuit in Fig. 7.17a we obtain:

Z
�
(s)�R

�
� r

�

(1� sL/r
�
)(1� sr

�
C)

1� a
�
s� a

�
s�

(7.68)

in which the denominator is determined by applying the 2-EET to the reference
circuit in Fig. 7.17b whence we have by inspection:

R���� r
�
�R

�

R���� r
�
� r

�
�R

�
(7.69a—c)
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�R

�
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


The coefficients a
�
and a

�
in the denominator are now given by:

a
�
�

L
R���

�CR����
L

r
�
�R

�

�C(r
�
� r

�
�R

�
)

(7.70a, b)

a
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�

L
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CR���
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r
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�R

�
r
�
�R

�





The denominator in Eq. (7.68) is obtained by substituting for a
�
and a

�
:

Z
�
(s)�R

�
� r

�

(1� s/�
�
)(1� s/�

�
)

1� s/Q�
�
� (s/�

�
)�

(7.71)

in which:
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(7.72)

�
�
�
r
�

L

(7.73a, b)
�

�
�

1

r
�
C





1

�
�
Q

�
L

r
�
�R

�

�C(r
�
� r

�
�R

�
) (7.74)

Since we are interested in narrowband operation, we must determine the
conditions that the damping elements should satisfy to obtain high-Q. According
to Eq. (7.74) the condition for high-Q is given by:

Q�
1

�
�
L

r
�
�R

�

��
�
C(r

�
� r

�
�R

�
)

� 1 (7.75)

Since both factors in the denominator are positive, each factor must be much
smaller than unity:

�
�
L

r
�
�R

�

� 1

(7.76a, b)
�

�
C(r

�
� r

�
�R

�
)� 1





Taking the product of these factors and making use of the expression of the
resonant frequency in Eq. (7.72) we obtain:

r
�
� r

�
�R

�
r
�
�R

�

� 1 (7.77)

It can be seen that the condition in Eq. (7.77) can be satisfied if r
�
, r

�
andR

�
satisfy:

r
�
, r

�
�R

�
(7.78)

in light of which the condition in Eq. (7.76a) becomes:

q
�
�
R

�
�

�
L

� 1 (7.79)

Hence, the damping elements must satisfy the conditions in Eqs. (7.78) and (7.79)
for high-Q operation. Next we define the following q-factors for the inductor and
the capacitor both of which, according to Eqs. (7.78) and (7.79), can be seen to be
much larger than unity:
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(7.80a, b)
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in which Z
�
is the characteristic impedance given by:

Z
�
��

�
L �

1

�
�
C

��
L
C

(7.81)

Next, it will be shown that a high-Q, triple-damped parallel resonant circuit
behaves as a simple parallel LCR circuit over a relatively wide range of frequen-
cies. According to Eqs. (7.73a, b) and (7.80):

�
�

�
�

�
r
�

�
�
L

�
1

q
�

� 1

(7.82a, b)
�

�
�

�

�
1

�
�
r
�
C

� q
�
� 1





It follows that the zeros of the impedance function in Eq. (7.71) are far away from
the resonant frequency, as shown in Fig. 7.18, so that it can now be approximated
in the frequency range �

�
����

�
as:

Z
�
(s)� r

�

s/�
�

1� s/Q�
�
� (s/�

�
)�

(7.83)
�

sL
1� s/Q�

�
� (s/�

�
)�

in which:

Figure 7.18
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�
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1

�LC
(7.84)

Equation (7.83) is recognized to be the impedance of a simple parallel LCR circuit
inwhichR is an effective parallel resistance, which is determined by approximating
Q in Eq. (7.74) using the conditions in Eqs. (7.78) and (7.79):

1

Q
��

�
L�

1

R
�

�
1

Z�
�

(r
�
� r

�
)��

�
�
L
R

�

(7.85)

in which R
�
is the effective parallel resistance given by:

R
�
�R

� �
Z�

�
r
�
�
Z�

�
r
�

(7.86)

The equivalent simple parallel resonant circuit and its impedance are shown in
Figs. 7.19a and b. The Q in Eq. (7.85) can be expressed in terms of the individual
q-factors defined in Eqs. (7.79) and (7.80):

Q� q
�
� q

�
� q

�
(7.87)

Figure 7.19

7.4.2 Tapped parallel resonant filter

The circuit to be considered next is the capacitively tapped parallel resonant
circuit,� shown in Fig. 7.20. First, we shall derive an exact expression of the
impedance, Z

�
(s), and then obtain an approximation for it for high-Q.

The low-frequency asymptote of Z
�
(s) is given by r

�
, while its zeros are given by

Figure 7.20
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the zeros of the impedances of the two parallel branches. The zero of the imped-
ance of the first branch, r

�
� sL, is the same zero as before and is given by�

�
in Eq.

(7.73a). The zero of the impedance of the second branch is obtained by applying
the 2-EET to the reference circuit in Fig. 7.21 in which the input port is shorted.
We have by inspection of Fig. 7.21:

R���� r
��

�R
�

R���� r
��

�R
�

(7.88a—c)

R���
���

� r
��

� r
��

�R
�





The second factor in the numerator of Z
�
(s) is now given by:

1� s(C
�
R����C

�
R���)� s�C

�
C

�
R���R���

���
(7.89)

Substituting Eqs. (7.88) in (7.89) yields:

1� s[C
�
(r
��

�R
�
)�C

�
(r
��

�R
�
)]�

(7.90)s�C
�
C

�
(r
��

�R
�
)(r

��
� r

��
�R

�
)

Figure 7.21

Since, for high-Q we should have r
��
, r

��
�R

�
, Eq. (7.90) simplifies to:

1� s(C
�
�C

�
)R

�
� s�C

�
C

�
R

�
(r
��

� r
��
) (7.91)

This is a quadratic of the form 1� a
�
s� a

�
s� in which clearly a

�
� a

�
/a

�
so that it

factors to an excellent approximation as:

(1� s/�
�
)(1� s/�

�
) (7.92)

where:
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The results in Eq. (7.93) are not surprising. In fact they can be arrived at by a simple
inspection of the impedance of the second branch, whose zeros are nothing more
than the poles of its admittance, which are given by the network obtained upon
shorting its terminals. With the terminals shorted, we can easily see that at low
frequencies the capacitive reactances are high so that r

��
and r

��
can be neglected

and C
�
and C

�
appear in parallel together with R

�
. It follows that �

�
is given by

Eq. (7.93a). At very high frequencies, as the reactances become very small and
comparable to r

��
and r

��
, R

�
drops out of the picture and C

�
, C

�
, r

��
and r

��
appear in series and yield the high-frequency corner at �

�
in Eq. (7.93b).

The impedance Z
�
(s) can now be written as:

Z
�
(s)� r

�

(1� s/�
�
)(1� s/�

�
)(1� s/�

�
)

1� a
�
s� a

�
s�� a

�
s�

(7.94)

in which the coefficients a
�
are determined by applying the 3-EET to the reference

circuit in Fig. 7.22 according to which we have by inspection:
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(7.95a—g)
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Figure 7.22
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The coefficients a
�
are given by:

a
�
�C

�
R����C

�
R����

L
R���

� (C
�
�C

�
)R

�

a
�
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���
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�
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L
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���
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L
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���

� LC
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(7.96a—c)
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�



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Since this is a resonant circuit, the denominator must factor into a real pole and a
quadratic with a high-Q. In order to determine whether the real pole occurs below
or above the resonant frequency, we examine the circuit in Fig. 7.20 with the
reactive elements in their places. At very low frequencies we see that the inductor
drops out of the picture whileC

�
andC

�
appear in parallel withR

�
giving rise to a

dominant pole at:

�
�
�

1

(C
�
�C

�
)R

�

(7.97)

which is consistent with the dominant behavior of the denominator given by
1� a

�
s. As the frequency is increased, the inductive reactance increases and

eventually resonates with the series combination of C
�
and C

�
at:

�
�
�

1

�LC
�
�C

�

(7.98)

giving rise to the high-frequency quadratic whose Q-factor is all we need to
determine. This can be done analytically as follows. The denominator in factored
form can be written as:

(1� s/�
�
)[1� s/�

�
Q� (s/�

�
)�] (7.99)

which upon expansion yields:

1� s�
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�
1

�
�
Q�� s��

1
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�

�
1

Q�
�
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�
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s�
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�
�

�

(7.100)

A comparison of the coefficients of s in Eq. (7.100) with the coefficients a
�
yields:
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Substituting for a
�
and a

�
from Eqs. (7.96a, c) in Eqs. (7.101a, c) we obtain the

dominant pole �
�
and the resonant frequency �

�
given in Eqs. (7.97) and (7.98),

respectively. When a
�
in Eq. (7.96b) is substituted in Eq. (7.101b) along with the

expressions for �
�
and �

�
, we get:
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in which:
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One way of rewriting Eq. (7.102) is:

1

Q
��

�
L�

1

Z�
�
/r

��

�
1

Z�
�
/r

��

�
1

Z�
�
/r

�

�
1

n�R
�
��

�
�
L
R

�

(7.104)

which suggests that the resonance is damped by an equivalent resistance R
�
given

by:

R
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� (n�R
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�
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(7.105)

Another way of rewriting Eq. (7.102) is by making use of parallel notation for
q-factors:
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(7.106)

When the factored denominator is substituted in Eq. (7.94), the dominant pole
will cancel with the zero at �

�
to yield:

Z
�
(s)� r

�

(1� s/�
�
)(1� s/�

�
)

1� s/�
�
Q� (s/�

�
)�

(7.107)

Since�
�
��

�
��

�
, the impedance around resonance can be approximated as the

impedance of a simple parallel resonant circuit damped by R
�
:
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Q� (s/�

�
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(7.108)

The significant result obtained here is that the capacitively tapped parallel
resonant circuit in Fig. 7.20 acts exactly like an ideal transformer in the resonant
region whose effective turns ratio is given by n in Eq. (7.103). This is shown in Fig.
7.23.

Figure 7.23

In the preceding analysis, we saw that, except for Q, we were able to determine
the denominator completely by inspecting the circuit at low and high frequencies
and determining the dominant pole and the resonant frequency in Eqs. (7.97) and
(7.98), respectively. A simple way to determine Q is to recognize that it is given by
the ratio of the energy stored in the resonant circuit to the energy dissipated per
cycle at resonance multiplied by 2	. For simplicity, if the parasitic elements are
ignored, the definition of Q yields:

Q�
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�
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�
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(7.109)
�
n�R

�
�

�
L

which agrees with the result derived earlier.

7.4.3 The three-winding transformer

Finally, we consider the three-winding parallel resonant transformer�—� shown in
Fig. 7.24, which is the basic building block in the antenna, oscillator and IF
amplifier stage of a superheterodyne receiver.

Figure 7.24
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When the three-winding transformer is replaced with its equivalent circuit
model (see Problem 7.6), we obtain the circuit in Fig. 7.25a in which r

��
are the

winding resistances;L�� are the leakage inductances; and n� and n� are the effective
turns ratio between each secondary and the primary. The leakage inductances are
given by:

L��� L
��1�

k
��
k
��

k
��
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L��� L
��1�

k
��
k
��

k
��
� (7.110a—c)
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

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in which L
�
is the self-inductance of each winding and k

��
is the coupling coefficient

between the ith and jth winding. The coupling coefficients and the mutual induc-
tances,M

��
, are related by:

k
��
�

M
��

�L
�
L
�

(7.111)

The effective turns ratio between each secondary and the primary is given by:

n
�
�
k
��
k
��
�

L
�

L
� (7.112a, b)
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Finally, the magnetizing inductance referred to the primary side is given by:

M
�
� L

�

k
��
k
��

k
��

(7.113)

The two transfer functions that we shall determine are:

Z
��
(s)�

V
��
(s)

I
�
(s)

(7.114a, b)

Z
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V
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I
�
(s)



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We can work with a simpler circuit if we reflect L���R
�
into the primary side as

shown in Fig. 7.25b. We shall use the knowledge and analytical experience that we
have gained from the past two examples to determine these two transfer functions
by inspection.
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Figure 7.25

Since r
��

� L�� is in series with the current source, it does not contribute to
either transfer function of interest. Also, the three remaining inductors M

�
, L��

and L��/n�� are not linearly independent so that the denominator is of third-order
rather than fourth. Inspection of Fig. 7.25b reveals that Z

��
(s) has three zeros and

is given by:

Z
��
(s)�K

s[1� sL��/(r�� �R
�
)](1� sr

�
C)

D(s)
(7.115)

in which the zero at the origin will later be combined with the high-Q quadratic
factor in the denominator, which is determined by examining the resonance of the
circuit in Fig. 7.25b with the current source open. Here, we see that C resonates
with an effective inductance M

�
n�
�
� L��� L

�
, which is nothing more than the

self-inductance of the secondary winding, n
�
. Hence the resonant frequency is

given by:

�
�
�

1

�L
�
C

(7.116)

This resonance is damped by the four resistances in the circuit. The overall
Q-factor is given by the parallel combination of the individual q-factors defined for
the resistors:
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The overall Q-factor is now given by:

Q� q
�
� q

�
� q

�
� q

��
(7.118)

To determine whether the real pole of D(s) occurs before or after resonance we
examine the circuit below and above resonance. Below resonance the dominating
elements areM

�
and R

�
, as is expected of the parallel resonance and given by the

low-frequency behavior of the quadratic. At frequencies well above resonance, the
dominating elements are L��/n�� and L��, which appear effectively in series with
each other, along with damping resistances, through the 1: n

�
transformer. When

these elements are reflected to the n
�
-side of the transformer, the reciprocal of the

time constant of the resulting circuit, shown in Fig. 7.26, yields the high-frequency
pole:
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(7.119)

The denominator in Eq. (7.115) can now be factored:

D(s)��1�
s

�
�
Q

�
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��1�

s

�
�
� (7.120)

The zero at the origin in Eq. (7.115) is now combined with the quadratic factor so
that the transimpedance function can be written as:

Z
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�1�Q�
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(7.121)

in which, �
�
and �

�
are given by:
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Figure 7.26

In the same equation,R
��
is the transresistance at resonance, which is simply given

by:

R
��

�
R

�
n
�

(7.123a)

where R
�
is the effective parallel resistance given by:
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(7.123b)

The numerator of the second transimpedance function, Z
��
(s), is given by the

zeros of the impedance of the branch connected across the secondary of the
transformer in Fig. 7.25b. Hence we have:
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Multiplying out by 1� sC(r
�
�R

�
) and collecting terms, we obtain the numerator

of Z
��
:
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Since the parasitic elements are very small,N(s) in Eq. (7.125) is a sharp resonance
which contributes a notch to Z

��
(s). Hence, we define the frequency of the notch

and its Q-factor:

348 Passive filters



�
��

�
1

�CL��
�
r
��

�R
�

r
�
�R

�

�
1

�CL�� (7.126a, b)

Q
��

�
r
��

�R
�

�
��

L�� �
1

�
��
(r
�
� r

��
�R

�
)C

�
R

�
�

��
L��





Using these definitions:
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(7.127)

in which R
��
is simply given by:

R
��

�R
��

n
�
n
�

(7.128)

The approximate transimpedances derived above compare very well with simu-
lation results (see Problem 7.7).

7.5 Infinite scaling networks

Infinite networks are theoretical entities which are primarily useful in obtaining
approximate solutions to certain types of large networks. They are also useful in
generating theoretical discussion, which can easily degenerate into meaningless
discourse, or for serving as a halfway house for, what some would consider,
otherwise wayward mathematics. It should be made clear that infinite networks,
just like finite networks, are point-like entities and do not have any spatial extent
so that one is neither concerned with the time it takes for a signal to traverse the
entire network nor with any kind of potential field over it.

7.5.1 Infinite grid

As an example of a useful application of infinite networks, consider determining
the resistance between pointsA and B of the large square grid of identical resistors
shown in Fig. 7.27. If we assume the network is infinite, then we can make use of its
symmetry and propose to solve for the resistance by arguing that a test current
source injected between points A and B will split equally among the four resistors
at each node so that the voltage drop across the current source is 2(i

	
/4)R� v

	
and:
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(7.129)

Figure 7.27

This answer is correct, as one can verify by simulating a large grid. In fact it can be
shown that, as long as the network is infinite, the resistance between any two
points inside a finite neighborhood is R/2 (see Problem 7.8).
As an example of a meaningless theoretical argument, consider the infinite

network in Fig. 7.28 in which it can be argued that the current i
	
can be any value

without seemingly violating either Ohm’s law or Kirchhoff’s voltage and current
laws. In this figure, according to KVL and Ohm’s law, the current in the first
parallel branch is given by:

i
�
�
v
	
� i

	
2R

R
�
v
	
R

� 2i
	

(7.130)

Figure 7.28

According to KVL, i
�
is given by:
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(7.131)

Applying KVL and Ohm’s law to the second loop, the current i
�
in the second

parallel branch is given by:

i
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�
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(7.132)

According to KCL, i


is given by:

i


� i

�
� i

�
� 11i

	
�
4v

	
R

(7.133)

We can continue and write a general equation for the current in the nth branch in
terms of i

	
and v

	
and conclude that for a given v

	
, we can assign the value of i

	
arbitrarily and determine the current and voltage in any branch without violating
any circuit law. The reason we are able to get away with this nonsense is that we
are postponing the error indefinitely to infinity by showing that, in any finite
neighborhood, the voltage and current of any branch are consistent with the
voltage and current of any other branch. The easiest way to show that this method
is wrong is to show that the power dissipated in the network tends to infinity while
the power supplied by the source is finite. Another way of showing that the method
is incorrect is to show that it simply does not work whenever the infinite network is
truncated. The correct solution to i

	
can be obtained in a straight-forwardmanner

by determining the input resistance seen by v
	
(see Problem 7.9).

7.5.2 Infinite scaling networks

Certain types of infinite networks with reactive elements exhibit very interesting
frequency response characteristics which can model certain physical phenomena.
For example, it has been observed that the phase of the impedance of a metal—
electrolyte interface tends to a constant value of�90° at low frequencies instead of
90° as should be expected of a capacitor. This behavior, known as constant phase
angle behavior, is attributed to the roughness of the metal surface which can be
modeled
 by an infinite branching RC network in which the resistors and capaci-
tors in successive branches are related by a scaling factor (see Problem 7.10).
Infinite networks of this kind are called scaling networks or fractal networks
because their frequency response, under certain assumptions, obeys a scaling law.
Anomalous eddy current losses in ferromagnetic materials is another physical

process whose cumulative effect on the terminal characteristics of an inductor can
be easily modeled by a fractal network.� These losses are due to fairly complicated
processes within the ferromagnetic material whose dependence on the excitation
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frequency and peak flux density is given by a power law:

P
�
�P

���
B
�
B
�
�
��

�
f

f
�
�
��

(7.134)

in whichD
�
,D

�
� 2. A classical analysis yields a power law in whichD

�
�D

�
� 2,

which is almost never observed experimentally except at frequencies well above
the normal rating of the material. The case in which D

�
�D

�
� 2 can be modeled

by a parallelLR circuit as shown in Fig. 7.29 in which the resistor accounts for the
so-called classical eddy current losses. To show that these losses are proportional
to the square of the applied B field and frequency of excitation, we express the
applied sinusoidal voltage in terms of B and f using Faraday’s law:

v(t)�
d�
dt

�NA
�

dB

dt
� (NA

�
�B

�
)sin(�t)� V

�
sin(2	ft) (7.135)

in which:

��flux linkage

N�number of turns

A
�
� area of cross-section

(7.136a—e)

B� flux density

V
�
�NA

�
2	fB

�





Figure 7.29

According to Eq. (7.136e) the rms value of the applied voltage, V � V
�
/�2, is

proportional to the product of the peak flux density, B
�
, and the excitation

frequency, f, so that the losses in the resistor are proportional to the square of the
frequency and the peak flux density:

V�/R�B�
�
f � (7.137)

Since the model in Fig. 7.29 is not an adequate representation of the observed
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losses, we investigate extending the simple parallel LR network into an infinite
branching network as shown in Fig. 7.30. Our main objective is to show that the
real part of the input admittance of this network has a noninteger power depend-
ence on the frequency of excitation from which the power loss formula in Eq.
(7.134) can be deduced. The input admittance in Fig. 7.30 can be expressed as a
continued fraction:

Y(s)�G�
1

sL �
1

G
a

k
�

1

sL �
1

G�
a

k�
�
�

1

sk�L � . . .

(7.138)

in which G� 1/R. This equation can be written as:

Y(s)�G�
1

sL �
k

a

1

G�
1

asL �
k

a

1

G�
1

sa�L � . . .

(7.139)

which can be seen to satisfy the following functional equation:

Y(s)�G�
1

sL �
k

a

1

Y(as)
(7.140a, b)

�G�
Y(as)

sLY(as)�
k

a





This equation can be solved in the limit of low frequencies whereY(s) becomes very
large so thatG can be ignored and the following assumption, which we shall justify
later, is satisfied:

lim



�

sY(s)
 0 (7.141)

Hence at low frequencies, Eq. (7.140b) reduces to:

Y(s)�
a

k
Y(as) (7.142)

353 7.5 Infinite scaling networks



This is a scaling equation which is common to all simple geometric fractals (Koch
curve, Sierpinski’s triangle, Fournier universe) modeled after the Cantor set in
which a� k� 1. The solution of Eq. (7.142) is given by:

Y(s)�G�
�

�
s �

��
(7.143)

in which�
�
is a normalizing frequency and 


�
is the celebrated fractal dimension of

the Cantor set and is given by:



�
�
ln(a/k)

ln a
� 1 (7.144)

Figure 7.30

Since 

�
� 1, the solution in Eq. (7.143) satisfies the assumption in Eq. (7.141). We

shall refer to 

�
as the frequency dimension, rather than a fractal dimension, in

order to distinguish it from the magnetic dimension, 

�
, to be introduced later.

The magnitude and phase of Y(s) are obtained by letting s� j� in Eq. (7.143):

Y( j�)�G�
�

�
��

��
e�j

	
2



�

(7.145)

The magnitude in decibels is given by:

� Y( j�) � ��20

�
log�

�
�

�
� (7.146)

which is a line with a slope of�20

�
dB/dec. The phase is a constant angle greater

than�90° given by:

�Y( j�)��
	
2



�

(7.147)
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Both, the magnitude and phase plots are shown in Fig. 7.31.
Whenever a power law, or a scaling law, like the one in Eq. (7.143) is used to

describe a physical process, or quantity, the independent variable must always be
normalized in order to avoid meaningless units. For example, in Eq. (7.143), �

�
is

the normalizing variable without which it takes the following form:

Y(s)�Ks��� (7.148)

Figure 7.31

In this equation K has the ‘‘units’’ of 
�� s��, which has no physical significance
because seconds raised to a fractional power cannot be related to a physical
measure or scale. This is in contrast to units of seconds raised to an integer power
such as ‘‘s’’ or ‘‘s�’’ because these can be easily related to physical quantities such as
velocity or acceleration, respectively. Therefore, even though Eq. (7.148) is perfect-
ly acceptable mathematically, it must be normalized properly as in Eq. (7.143) in
order to avoid constants with awkward physical units. The physical significance of
the normalizing frequency �

�
in Eq. (7.143) is that it is the frequency at which

� Y( j�) � equals G and beyond which Eq. (7.143) is no longer valid. We can see this
from the circuit in Fig. 7.30 in which, as the frequency of the source is increased,
Y( j�)
G. Since the inductor in the first branch, L, is the smallest of all the
inductors (the others being k�L with k� 1), �

�
is the frequency beyond which the

reactance of L is much larger than R. It follows that �
�
is the corner frequency at

which �
�
L and R are equal so that:

�
�
�
R

L
(7.149)

We can now write the complete solution of the infinite network in Fig. 7.30 by
combining the solutions for ���

�
and ���

�
simply by adding the two to-

gether:

Y(s)�G�1��
�

�
s �

��
� (7.150)

This is an approximate solution to the scaling equation in Eq. (7.140). An asymp-
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totic plot of the magnitude in Eq. (7.150) is shown in Fig. 7.32.

Figure 7.32

Next we determine the power loss in this infinite network according to:

P
�
�

V�
�
2

Re[Y( j�)] (7.151)

Substituting Eqs. (7.136e) and (7.145) in Eq. (7.150) we obtain:

P
�
�B�

�
f ��

f

f
�
�
���

(7.152)

Because of nonlinear effects, the inductance and hence f
�
depend on the applied

field. This dependence is assumed also to obey a power law:

f
�
� f

��
B
�
B
�
�
��

(7.153)

in which B
�
is a normalizing constant. Substitution of Eq. (7.153) in (7.152) yields

the observed power losses in ferromagnetic materials:

P
�
��

B
�
B
�
�
������

�
f

f
�
�
����

(7.154)

7.5.3 A generalized linear element and a unified R, L and C model

Finally, it is interesting to note that the expression of the admittance derived in Eq.
(7.143) generalizes the relationship between the voltage and current of a two-
terminal linear element of which a resistor, inductor and a capacitor are special
cases.� This is shown in Fig. 7.33 in which:

Y(s)�
i(s)

v(s)
� Y

��
�

�
s �

���
(7.155)

where:

Y
�
� � Y( j�

�
) � (7.156)
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If 

�
� 0, then Eq. (7.155) reduces to the conductance of a resistor:

Y(s)� Y
�
�
1

R
(7.157)

Figure 7.33

If 

�
� 1, then Eq. (7.155) reduces to the admittance of an inductor:

Y(s)� Y
�

�
�
s

�
1

sL
(7.158)

inwhichL � 1/Y
�
�

�
. Finally, if 


�
��1, we get fromEq. (7.155) the admittance of

a capacitor:

Y(s)� Y
�

s

�
�

� sC (7.159)

in which C� Y
�
/�

�
. Note that, in each case, 1/Y

�
is simply a resistance or the

magnitude of the inductive or capacitive reactance at �
�
.

The spectral domain operation in Eq. (7.155) corresponds to a time-domain
operation which is given by the convolution of v(t) with the inverse Laplace
transform of s���:

i(t)�G���
�
L���s�����v(t)

(7.160)
�G���

� �
�

�

(t� �)����

�(

�
)
v(�)d�

in which �(

�
) is the gamma function. The integral in Eq. (7.160) is known as the

Riemann—Liouville fractional integral, which reduces to the familiar time-domain
relationship between the voltage and current of a resistor, inductor and a capaci-
tor. Using fractional derivatives, we can invert Eq. (7.160) and express v(�) in terms
of i(�):

v(�)�
1

G���
�

d��
dt��
i(t) (7.161)
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7.6 Review

A few interesting and representative passive networks are discussed in this chapter.
SeveralRC filters with voltage gain larger than unity are discussed. Although their
maximum theoretical gain is not known, a practical design of an RC filter with a
gain of about 1.5 is given. Lattice filters are symmetrical bridge circuits which are
mostly used to synthesize complex zeros. To reduce the number of reactive
elements, lattice filters can be reduced to half lattices using an ideal inverting
transformer. A practical example of a delay equalizer using a half-lattice filter is
presented. Parallel resonant circuits are used in tuning circuits for oscillators and
IF amplifier stages. Two important variations of the parallel resonant circuit are
the tapped parallel resonant circuit and the three-winding transformer resonant
circuit. Among the infinite networks discussed are the infinite grid, infinite ladder
and fractal networks. One of the interesting features of fractal networks is that
their phase response above or below a certain frequency can asymptote to a
fraction of 90° while their magnitude response asymptotes to a slope which is a
fraction of 20 dB/dec. Another interesting result that can be derived from the
calculus of fractal networks is that the voltage and current relationships of an
inductor, resistor and a capacitor can be combined into a single equation.

Problems

7.1 RC and RL ladder networks. Consider the ladder network shown in Fig. 7.34
in which all the impedance elements, Z

�
, are either composed of capacitors and

resistors or inductors and resistors. The transfer function of such a ladder network
cannot have a magnitude larger than unity. To show this, recall that the phase
angle of a passive RC impedance branch, no matter how complex, is always in the
range (0,�90°) so that:

Z( j�)�X
�
(�)� jX

�
(�);X

�
(�)� 0 andX

�
(�)� 0 (7.162)

(For a passive RL circuit, the range of the phase angle is (0, 90°) so that X
�
(�)� 0

andX
�
(�)� 0). In Fig. 7.34, the voltage at node 1 is related to the input by voltage

division:

v
�
� v

��

1

1�
Z

�
Z

��

(7.163)

in which Z
��
is the impedance connected from node 1 to return. Use the result in

358 Passive filters



Eq. (7.162) to show that the magnitude of v
�
is always less than the magnitude of

v
��
. Proceeding in the same manner all the way to the output node, we prove the

desired result.

Figure 7.34

7.2 Fourth-order passive RC filter with gain. The circuit in Fig. 7.35 produces
more gain than the second-order circuit in Fig. 7.1a. Show that the transfer
function of this circuit is given by:

A(s)�
v
�
(s)

v
��
(s)

�
1� a

�
s� a

�
s�� a

�
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1� a
�
s� a

�
s�� a

�
s�� a



s


(7.164)

in which:
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Figure 7.35
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Let the circuit elements satisfy the following conditions:

R
�
C

�
�R

�
C

�
�R

�
C

�
�R



C



(7.166a, b)
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�R

�
�R

�
�R

�



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With these conditions satisfied, show that the transfer function reduces to:

A(s)�
1� 4s�� 6s���� 4s���

(1� s�)

(7.167)

The magnitude response of this transfer function is shown in Fig. 7.35b for n� 4
and �� 1�s. for which the maximum gain is seen to be A

���
� 1.38 at

f
���

� 244 kHz. Also, shown in Fig. 7.35b is the response for a sixth-order version
of the network for which the maximum gain is seen to be A

���
� 1.51 at

f
���

� 363 kHz.

(b)

Figure 7.35 (cont.)

It can be shown that for low values of n, say 2� n� 8, the maximum and the
frequency at which it occurs are approximately given by:

A
���

�
(n� 1)

���
�

n
�
���

(7.168a, b)

f
���

�
1

2	�
�n� 1





To show these results, recognize that the nth-order transfer function is given by:

A(s)�

1� ns���
n

2� s���� · · ·� ns�������

(1� s�)�
(7.169)

For small values of n, the transfer function can be approximated at frequencies in
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the vicinity of the maximum and beyond by:

A(s)�
ns�������

(1� s�)�
(7.170)

Note that it is impractical to build very high-order filters because of the wide
spread of the resistance and capacitance values as required by Eq. (7.166).

7.3 Null response analysis. Another way of determining the numerator in Eqs.
(7.26) and (7.27) is to look for conditions in the transform networkwhich result in a
null in the response as explained in Chapter 2. This is shown in Fig. 7.36 whence
you can determine:

i(s)N(s)� 0 (7.171)

whereN(s) is given by Eq. (7.26). Recognize that Eq. (7.171) is satisfied either when
i(s)� 0 or N(s)� 0. Hence, we examine Fig. 7.36 to see if there is yet another
condition which makes i(s)� 0. In fact we can easily see that for s� 0, C

�
acts as

an open circuit and prevents the flow of i(s). Hence, the zeros at the origin and at��
�

in Eq. (7.28a) can be determined using this alternative technique.

Figure 7.36

7.4 Lattice-equivalent filters. Use any two-port parameter representation to show
that the circuits in Figs. 7.8a and b are equivalent.

7.5 Identical time constants. Show that the impedance of n parallel RC branches,
shown in Fig. 7.37, with identical time constants, �, is the same as that of a single
RC branch in which:

R
�
�R

�
�R

�
� · · · �R

�
(7.172a, b)

C
�
�

�
R

�





Hint: Show that the above is true for two branches and deduce the result for n branches by

successive paralleling one at a time.
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Figure 7.37

7.6 Equivalent circuit model of a three-winding transformer. To show the equival-
ence between the two models of the three-winding transformer shown in Figs. 7.24
and 7.25a, write the equations of the terminal voltages and currents for each
model. For the model in Fig. 7.24, we have:

v
�
� L

�

di
�
dt

�M
��

di
�
dt

�M
��

di
�
dt

v
�
�M

��

di
�
dt

� L
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�
dt

�M
��

di
�
dt

(7.173a—c)
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�
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�
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



in whichM
��
�M

��
. Next, show that the equations above are consistent with the

equations of the terminal voltages and currents of the model in Fig. 7.25a.

7.7 Comparison of exact and approximate transfer functions. The equivalent cir-
cuit model of the three-winding transformer is simulated using OrCAD as shown
in Fig. 7.38a in which TX2 is an ideal transformer whose primary inductance and
turns ratio are equal to M

�
and n

�
, respectively. The element values used in

reference to the model, given in Fig. 7.24, are:

L
�
� 2�H, L

�
� 100�H, L

�
� 0.01�H

k
��

� 0.75, k
��

� 0.65, k
��

� 0.5

R
�
� 400 k
, R

�
� 10


The frequency response of the transimpedance functions Z
��
and Z

��
discussed

in the text are shown in Fig. 7.38b.
Using the results derived in the text, verify the frequency response for Z

��
and

Z
��
shown in Fig. 7.38b.

7.8 Resistance inside infinite grid. Show that the resistance between any two nodes
within a finite neighborhood inside the infinite grid in Fig. 7.27 is R/2.
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Figure 7.38

Hint: Follow the same argument for the resistance between two adjacent nodes.

7.9 Resistance of infinite ladder. Since the network is infinite, the input resistance
seen by the source is the same as the impedance looking into the network
immediately past the first stage. Hence, show that:

R
��

�R(1��3) (7.174)

7.10 Capacitive fractal network. The fractal model
 in Fig. 7.39a, in which a� 2,
is proposed to model the constant phase angle behavior observed in the reactance
of a roughmetal—electrolyte interface at very low frequencies. Show that themodel
in Fig. 7.39a can be reduced to the one in Fig. 7.39b and that the impedance at low
frequencies is given by:
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Figure 7.39

Z
��
( j�)�R�

�
�
j��

��
(7.175)

in which:



�
� 1�

ln2

lna
(7.176)

Note that the phase angle of Z
��
( j�) is�90


�
.
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8 PWM switching dc-to-dc converters
Introducing the PWM switch

8.1 Introduction

An electronic circuit which transforms the dc level of a voltage or current source in
a controllable manner without dissipating power is called an ideal dc-to-dc
converter or simply a converter. This is shown in Fig. 8.1 in which � is a control
parameter on which the output voltage or current depends. When feedback is used
as shown in Fig. 8.2, either the output voltage or output current can be regulated
against variations in the input voltage or load current. A vast majority of applica-
tions, such as logic and sensitive instrumentation circuits, require a converter
whose output voltage, rather than the output current, is tightly regulated. A
converter may also have more than one control parameter so that � can be taken
as a control vector.

Figure 8.1

Figure 8.2

In the following sections we shall determine the basic characteristics of dc-to-dc
converters, determine their equivalent circuits using a model of the PWM switch,
and analyze their dynamics using the techniques developed in this book.365



8.2 Basic characteristics of dc-to-dc converters

The voltage conversion ratio of a converter is defined as the ratio of the dc output
voltage to the dc input voltage:

M
�
�

V
�

V
��

(8.1)

In a similar manner, the current conversion ratio is defined as the ratio of the dc
output current to the dc input current:

M
�
�

I
�

I
��

(8.2)

Since in an ideal converter there can be no power dissipation, the input and output
powers must be equal:

P
��

�P
���

� V
��
I
��

� V
�
I
�
�M

�
M

�
� 1 (8.3)

No practical converter can satisfy the condition in Eq. (8.3) because of losses
associated with nonideal components. In designing a converter, every effort is
made to keep these losses to a minimum in order to maximize the efficiency, which
is defined as the ratio of the output power to the input power:

��
P
�

P
��

�M
�
M

�
(8.4)

One may wonder what kind of ideal components go into an ideal converter.
Resistors, which may be arranged as a voltage divider to achieve down conversion,
are precluded because they dissipate power and lack controllability. A bipolar
transistor connected between a voltage source and a load can achieve controllabil-
ity by adjusting V

�	
, but such a circuit, known as a series regulator (see Problem

8.1), dissipates power by an amount given by:

P


� V

�	
I
�
� (V

��
� V

�
)I

�
(8.5)

Hence, the series regulator and its dual, the shunt regulator (see Problem 8.2), are
not classified as converters. In fact, these circuits are nothing more than linear dc
amplifiers.

The two mechanisms required for nondissipative power conversion are switch-
ing and filtering. Switching is achieved by a minimum of two switches while filtering
is achieved by inductors and capacitors arranged in an effective low-pass filter
configuration. The purpose of the filters is to attenuate the pulsating currents,
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generated by the switches, down to a specified level at the input and output ports
of the converter. Since ideal switches, inductors and capacitors do not dissipate
any power, the ideal conversion efficiency is 100%. In reality, all practical induc-
tors and capacitors dissipate a very small percentage of the peak energy stored in
them owing to dielectric, conductive and magnetic losses. Also, all practical
semiconductor switches have finite conductive and switching losses. The switching
frequency is one of the most critical parameters in the design of a switching
converter. Increasing the switching frequency results in smaller inductors and
capacitors but higher switching losses and lower efficiency. The tradeoff between
size, cost, weight and efficiency has never been an exact science and is usually
driven by market requirements. For example, a commercially available 48 V to
5 V, 100-W converter may have an efficiency of 80% at full load with linear
dimensions 3.0 � 1.5 � 0.38�, whereas a similar custom-designed converter may
in comparison have an efficiency of 93% and twice the linear dimensions.

We consider now the input and output port characteristics of an ideal converter
with and without feedback. In what follows we shall assume that a converter is
made of linear inductors and capacitors. For a converter without feedback, the
output voltage is linearly related to the input voltage by the conversion ratio M

�
:

No feedback � V
�
�M

�
V

��
; M

�
�M

�
(V

��
) (8.6)

The reason for this is that the switching action in any dc-to-dc converter, as we
shall see, produces a periodic sequence of linear networks. The conversion ratio is
obtained by piecing together the solutions of the individual switched linear net-
works which are linear functions of the input voltage. Hence, the piecewise
composite solution is also a linear function of the input voltage. Following the
same argument we conclude that M

�
is also independent of the input voltage.

Hence, the ideal voltage converter in Fig. 8.1a can be modeled by an ideal
transformer with turns ratioM

�
as shown in Fig. 8.3. In generalM

�
is a function of

the control parameter, �, the output voltage, V
�
, and the output current, I

�
:

M
�
�M

�
(�, V

�
, I

�
) (8.7)

Also, a converter can in general have several modes of operation so that a unique
M

�
may not be sufficient for modeling purposes. In the very important class of

converters discussed in this chapter, M
�

is only a function of �.

Figure 8.3
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The input and output characteristics of an ideal converter can now be ascer-
tained using the equivalent circuit in Fig. 8.3. For an unregulated converter feeding
a resistive load R

�
, the incremental input resistance seen by the source according

to Fig. 8.3 is:

R
��

�
R

�
M�

�

(8.8)

For an ideal converter in which the output voltage is regulated by the feedback
arrangement shown in Fig. 8.4, the output voltage is equal to the reference voltage:

V
�
� V

�
(8.9)

Hence, when the load is fixed, the input power of a regulated converter is fixed and
independent of the source voltage. It follows that any increase in the source voltage
is accompanied by a decrease in the source current, which implies that the
incremental input resistance of a regulated converter is negative. Proceeding as
follows, we obtain:

�P
��

�V
��

� 0 � V
��

�I
��

�V
��

� I
��

� 0 �
�I

��
�V

��

��
I
��

V
��

(8.10)

Substituting Eqs. (8.1), (8.2) and (8.3) in Eq. (8.10) we obtain several useful expres-
sions for the incremental input resistance:

R
��

��
V�

��
P
��

��
(V

�
/I

�
)

M�
�

(8.11a—c)

��
R

�
M�

�





In Eq. (8.11c) we have made use of the fact that R
�
� V

�
/I

�
whenever the load

actually consists of a resistor as shown in Fig. 8.4.

Figure 8.4
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The incremental output resistance of regulated and unregulated ideal converters
can be determined in a similar manner (see Problem 8.3).

Example 8.1 An ideal battery charging circuit is shown in Fig. 8.5. This circuit is
somewhat tricky because it has two voltage sources connected in parallel with zero
resistance between them. If it were not for the control circuit, it would not have
been clear which of the two voltage sources was charging or being charged and the
charging current would have been undetermined. In this ideal case, the feedback
circuit adjusts the control parameter �, and hence the conversion ratio M

�
, by

monitoring the charging current I
�

to ensure I
�
� I


�
. The value of � determined by

the control circuit is given by:

��M��
� �

V
�

V
��
� (8.12)

If � were to deviate by the slightest amount from the value in Eq. (8.12), the
charging current would become infinite, causing an infinite error signal, which
would be instantaneously corrected by the negative feedback circuit. The current
drawn from the source, when � is set exactly to the value in Eq. (8.12), is determined
from the current conversion ratio:

I
��

�
I
�

M
�

� I

�
M

�
� I


�

V
�

V
��

(8.13)

where we have made use of the fact that M
�
M

�
� 1 for an ideal converter.

The incremental input impedance is determined next following the procedure in
Eq. (8.10):

�I
��

�V
��

��
I
��

V
��

��
I

�

V
�

V�
��

(8.14)

Figure 8.5

It follows that:

R
��

��
V�

��
I

�

V
�

(8.15)
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The same result could have been obtained directly from Eq. (8.11a). �

8.3 The buck converter

Consider the task of converting an unregulated dc voltage source, V
�
, to a

regulated dc voltage source V
�
� V

�
which supplies power to a load R

�
. One

simple and efficient way of doing this is to chop the source and generate a unipolar
voltage pulse train with an amplitude V

�
, a fixed period T

�
, and a variable width, or

on-time T
��

, as shown in Fig. 8.6. Such a waveform is known as a pulse-width-
modulated (PWM) waveform. It is relatively easy to see that the dc component of
the PWM waveform in Fig. 8.6 can be controlled by varying the pulse width, T

��
.

To make use of this dc component, the high-frequency components must be
filtered out by a nondissipative low-pass filter. A simple converter which can chop
and filter as described above is the buck converter shown in Fig. 8.7.

Figure 8.6

Figure 8.7

The chopper section of the buck converter consists of two switches S
�

and S
�

which are driven by the complementary switching functions D�
�
(t) and D� �

�
(t) �

1 �D�
�
(t), respectively. The switching function is a unit pulse train defined:

D�
�
(t) � 




1 nT
�
� t� nT

�
� T

��
0 nT

�
� T

��
� t� (n� 1)T

�

(8.16)
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Looking back into the chopper circuit from the terminals of S
�

, we see an effective
voltage source V�

�
(t) given by:

V�
�

(t) � V
�
D�

�
(t) (8.17)

The dc component of V�
�

(t) is given by:

1

T
�
�

��

�

V�
�

(t)dt�
1

T
�
�

��

�

V
�
D�

�
(t)dt�DV

�
(8.18)

in which D is defined as the duty-ratio function, or duty cycle, and is given by:

D�
1

T
�
�

��

�

D�
�
(t)dt�

T
��

T
�

(8.19)

The LC filter following the chopper is the simplest, lossless, low-pass filter that can
extract the dc component of V�

�
(t) and generate a dc output voltage V

�
given by:

V
�
�DV

�
(8.20)

It is clear from Eq. (8.20) that the dc output voltage can be regulated by varying the
duty cycle, D, so that the duty cycle serves as the control parameter, i.e. ��D. It
follows from Eq. (8.20) that the voltage conversion ratio, M

�
, of the buck converter

is given by:

M
�
�

V
�

V
�

�D (8.21)

In order to determine the steady-state voltages and currents of the buck conver-
ter, we need to study the response of the low-pass LC filter to V�

�
(t). The following

transfer function can be easily verified (see Problem 8.4):

H(s) �
v
�
(s)

v
�

(s)
�

1

1 �
s

�
�
Q

�
s�

��
�

(8.22)

in which:

�
�
�

1

�LC
(8.23a, b)

Q�
R

�L/C





The magnitude and phase response of H(s) is shown in Fig. 8.8. In order to study
the interaction of V�

�
(t) with H(s), we write V�

�
(t) as:

V�
�

(t) �DV
�
� V� �(t) (8.24)
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in which V� �(t) is a periodic waveform which contains only the fundamental and
harmonics of V�

�
(t). From the magnitude response of H(s), it can be seen that the dc

component, DV
�
, of V�

�
(t) will pass through and become the dc component of the

output voltage. It can also be seen from the same figure that if the corner frequency
of the filter, f

�
, is chosen well below the switching frequency of the converter,

F
�
� 1/T

�
, then all the harmonics of V�

�
(t) at nF

�
will fall on the �40 dB/dec

asymptote so that the ac components of V�
�

(t) will be attenuated and integrated
twice. Therefore, the actual output voltage consists of the dc component V

�
�DV

�
and a small periodic waveform, V�

�
(t), known as the output ripple voltage:

V�
�
(t) � V

�
� V�

�
(t); � V�

�
(t) �� V

�
(8.25)

Figure 8.8

Since the output ripple voltage is given by the high-frequency response of H(s) to
V�(t), we can approximate H(s) as:

H(s) �
��

�
s�

(8.26)

Equation (8.26) corresponds to a double integration so that we have:

V�
�
(t) ���

� ��V� �(t)dt (8.27)

in which V� �(t), according to Eqs. (8.16), (8.17) and (8.24), is given by:

V� �(t) � 



V
�
� V

�
nT

�
� t� nT

�
� T

��
�V

�
nT

�
� T

��
� t� (n� 1)T

�

(8.28)

Since V� �(t) is a constant in each subinterval, the double integration in Eq. (8.27)
yields a parabolic segment in each subinterval as shown in Fig. 8.9. Note that the
ripple voltage, V�

�
(t), and V� �(t) are inverted with respect to each other because all the
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frequency components of V� �(t) are phase shifted by 180° owing to the phase
response of H(s) at high frequencies. Each parabolic segment of the voltage ripple
is given by:

V�
��

(t) ��V
��

���
�

(V
�
� V

�
)
t�

2
(8.29a, b)

V�
��

(t) � V
��

���
�
V

�

t�

2





in which the time origin of each segment is taken at its peak. The peak-to-peak
output voltage ripple follows from Eqs. (8.29a, b) which, when normalized with
respect to the output voltage (see Problem 8.5), is given by:

	V
�
�

V
����

V
�

�

�

2
(1 �D)�

f
�
F
�
�
�

(8.30a)

For a regulating converter, the worse case normalized ripple, 	
��

, occurs at D
���

or
M

���
so that we have:

	
��

�

�

2
(1 �M

���
)�

f
�
F
�
�
�

(8.30b)

Hence, the LC filter is designed with a resonant frequency f
�

given by:

f
�
�

F
�


 �
2	

��
1 �M

���

(8.31)

Note that f
�

is expressed in terms of the design specifications (	
��

,M
���

) and a design
parameter F

�
which the designer chooses.

Figure 8.9

Example 8.2 A 100-kHz buck converter is to be used in the design of a regulated
converter which operates from an unregulated bus voltage of 28 � 4 V and
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delivers an output of 12 V at 2.3 A. The maximum output ripple voltage is specified
to be 150 mV. Determine the range of the duty ratio and f

�
of the output filter.

According to the given variation in the bus voltage the specified range of the
duty cycle and the conversion is:

M
���

�D
���

�
V

�
V

��
��V

��

�
12

28 � 4
� 0.375

(8.32a, b)

M
���

�D
���

�
V

�
V

��
��V

��

�
12

28 � 4
� 0.5





According to Eq. (8.31), the worse case, or the lowest corner frequency, require-
ment is dictated by M

���
so that we have:

f
�
F
�

�
1


�
2	

��
1 �M

���

�
1


�
2(0.15/12)

1 � 0.375
� 0.064 (8.33)

Hence, the corner frequency of the filter must be selected less than or equal to
6.4 kHz to have an output ripple voltage of 150 mV or less. �

Determination of the corner frequency of the filter in the example above does
not uniquely determine the inductor and the capacitor. We shall now determine
the current in the inductor and show that its ripple component provides another
design equation for the selection of L and C. The current in the inductor consists of
a dc and a ripple component. The dc component of the inductor current is the
same as the dc component of the output current because the capacitor does not
carry any dc current. Hence, the inductor current can be written as:

I�
�

(t) � I
�
� I�

�
(t) (8.34)

in which I
�
� V

�
/R.

The ripple current in the inductor is determined by integrating the voltage
across it, which is given by:

V�
�

(t) � V�
�
(t) � V�

�
(t)

� V
�
� V� �(t) � V

�
� V�

�
(t) (8.35)

� V� �(t)

In the last step we have ignored the output ripple voltage because it is much
smaller in comparison with V� �(t). Since V� �(t) has a constant value in each subinter-
val, the ripple current consists of two linear segments as shown in Fig. 8.10. The
first segment of the inductor current is given by:

I�
��

(t) �
1

L�
�

�

(V
�
� V

�
)dt� I

��
�

V
�
� V

�
L

t (8.36)
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in which the time origin has been taken at I
��

. For the second segment we have:

I�
��

(t) �
1

L�
�

�

(�V
�
)dt� I

��
�

V
�

L
t (8.37)

in which the time origin has been taken at I
��

. Since the ripple current is linear, the
average value of the inductor current is midway between I

��
and I

��
and the

peak-to-peak ripple current can be determined from either segment. Hence, letting
t�D�T

�
in Eq. (8.37), we obtain:

I
��

� I
��

�
V

�
D�T

�
L

(8.38)

It follows that the peak-to-peak ripple current is given by:

I
����

� I
��

� I
��

�
V

�
D�T

�
L

(8.39)

Figure 8.10

It can be seen from Eq. (8.39) that for a buck converter with a regulated output
voltage, the maximum ripple current occurs when D� is a maximum, which occurs
when the input voltage is a maximum. When the ripple current is normalized with
respect to the average inductor current, I

�
� I

�
, we obtain:

	I
�
�

I
����

I
�

�
V

�
D�T

�
I
�
L

�
RD�T

�
L

(8.40)

The amount of ripple current determines the peak current in the inductor and
the switches S

�
and S

�
. This peak is given by:

I
�
� I

�
�

I
�
	I

�
2

(8.41)

The maximum value of the peak current in Eq. (8.41) occurs at the specified
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maximum load current so that we have:

I
����

� I
����

(1 � 	
��

) (8.42)

in which 	
��

is the worst case value of 	I
�
/2 and is given by:

	
��
�

V
�
(1 �M

���
)T

�
2LI

����

(8.43)

It follows that, for a design choice of 	
��

, L is determined uniquely according to:

L �
1

F
�
	
��

V
�
(1 �M

���
)

2I
����

(8.44a)

The value of C follows from the resonant frequency given in Eq. (8.31):

C�
	
��
F
�

I
����

4V
�
	
��

(8.44b)

Note that Eqs. (8.44a, b), just like Eq. (8.31), express L and C in terms of the design
specifications (V

�
, M

���
, I

����
, 	

��
) and the design parameters (F

�
, 	

��
).

The maximum peak current is an important design consideration and is ex-
pressed in terms of 	

��
. For example, it can be seen that designing with a larger

value of 	
��

results in a smaller inductor, a larger capacitor and a larger peak
current. There are many design tradeoff considerations which we will not discuss
here and which result in practical values of 	

��
in the range 0.1—1.0.

Although not necessary, the design equations of the filter elements can be
expressed in terms of the resonant frequency f

�
given by Eq. (8.31) and the Q-factor,

which we shall determine next. Hence, after performing the necessary substitu-
tions, we can rewrite Eq. (8.43) as:

	
��
�
(1 �M

���
)Q

�

f
�
F
�

(8.45)

in which Q
�

is given by:

Q
�
�

(V
�
/I

����
)

�
�
L

(8.46a, b)

��
�
C(V

�
/I

����
)





If the load is a simple resistor R, then V
�
/I

�
�R and Q

�
is the same as the Q-factor

of the LC filter. If the load, on the other hand, is a current source, another
regulated converter, or a battery as in Example 8.1, thenQ

�
and the actualQ-factor

are different. Performing the necessary substitutions for Q
�
, we obtain an alternate

set of design equations for the LC filter:
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f
�
�

F
�


 �
2	

��
1 �M

��� (8.47a, b)

Q
�
�

	
��

�2	
��

(1 �M
���

)





Example 8.3 If the maximum peak current in the buck converter of Example 8.2
is to be 3 A, determine the values of L and C.

The value of 	
��

, given by Eq. (8.42), is computed first:

	
��
�

I
����

I
����

� 1 �
3

2.3
� 1 � 0.3 (8.48)

Next we compute Q
�

given by Eq. (8.47):

Q
�
�

0.3

�2(1 � 0.375)(0.15/12)
� 2.4 (8.49)

The values of L and C are obtained from Eqs. (8.46a, b):

L �
(12/2.3)

(2
6400)2.4
� 54 �H

(8.50a, b)

C�
2.4

(2
6400)(12/2.3)
� 11.14 �F





These are exact values, which may or may not be available. Typically, the toleran-
ces on power inductors and large capacitors can be of the order 5—10%. Hence,
when the actual components are chosen, the nearest available values are selected
such that their worst case values are greater or equal to those determined
above. �

The currents and voltages of the switches S
�

and S
�

are examined next. These
are shown in Fig. 8.11 and can be verified easily. Switch S

�
is called the active

switch and it carries the inductor current duringDT
�
. Switch S

�
is called the passive

switch and it carries the inductive current during D�T
�
. Two practical realizations

of the switches are shown in Figs. 8.12a and b. The difference between these two
realizations is in their modes of operation at low-output currents as shown in Fig.
8.13. When a MOSFET is turned on, it can conduct in both directions whereas a
diode can conduct only in one direction. Hence, in Fig. 8.12a, when Q

�
is turned

off, the current in the inductor turns on the diode to initiate the D�T
�

subinterval.
The diode will conduct as long as the inductor current is positive, which is
expressed quantitatively:

I
����

2
� I

�
(8.51)
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Figure 8.11

If this condition is not satisfied, then the diode will stop conducting before the end
of D�T

�
and a third interval of operation will occur during which both switches will

be in the off state and the output capacitor will discharge into the load. This is
called the discontinuous conduction mode (DCM), which we shall not discuss
here. In DCM, the conversion ratio is no longer the same as in the continuous
conduction mode (CCM) and depends on the output current and the switching
frequency in addition to the duty-cycle D. The current waveforms in DCM are
shown in Fig. 8.13a.

When a MOSFET is used instead of a diode, as shown in Fig. 8.12b, the
converter is capable of operating in CCM down to zero load current, because
when a MOSFET is turned on it can conduct in both directions allowing the
current in the inductor to reverse direction. The currents in both MOSFETs at
low-output currents, when the condition in Eq. (8.51) is not satisfied, are shown in
Fig. 8.13b.

Figure 8.12

For the buck converter discussed above, the input current is pulsating and is the
same as the current in S

�
. The input current of an ideal converter, however, must

be smooth and only follow the variations in the output current as required by the
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equivalent circuit model of an ideal converter shown in Fig. 8.3. Hence, another
filter must be added on the input side to reduce the input ripple current down to an
acceptable level. It is interesting to point out that the end-user of a converter
usually does not care how much ripple current the converter generates on the
input power bus. But, high frequency ripple currents on power lines, called
conduction emissions, create serious interference problems for other users. Hence,
for commercial applications, conducted emissions are specified and enforced by
regulatory agencies such as the FCC in the USA, the CSA in Canada and the VDE
in Germany. (For military and aerospace applications, conducted emissions must

Figure 8.13

comply with US Military Standards 461.) The simplest type of input filter, with
series or shunt damping, is shown in Figs. 8.14a and b in which R

�

L
�


and R
�

C

�

are the series and shunt damping networks, respectively. The purpose of the
damping networks is to prevent oscillations or ringing, and these will be discussed
shortly.

The input ripple current is calculated by determining the transfer function H
�
(s)

shown in Fig. 8.15, in which the current source I
�
(s) is the pulsating current drawn

by the converter. In this figure, we have assumed that the ripple voltage acrossC
�
is

small in comparison with the dc voltage across it so that the shape of I�
�
(t) is

essentially the same with or without the input filter. In determining this transfer
function, the effect of the damping network can be ignored so that we have from
Fig. 8.15:

I
��

(s)

I
�
(s)

�
1

1 � s�/��
��

(8.52)

in which:

�
��

�
1

�L
�
C

�

(8.53)
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Figure 8.14

According to Eq. (8.52), the dc component of I�
�
(t) will pass through the input

circuit, while its ac component, I� �
�
(t), will be attenuated, if its frequency spectrum

falls above �
��

. Hence, as in the design of the output filter, we choose the corner
frequency of the input filter to be much lower than the switching frequency so that
I� �
�
(t) will be attenuated and integrated twice. Hence, the input ripple current is

given by:

I
���

(s)

I�
�
(s)

�
��

��
s�

� I�
���

(t) ���
���� I� ��(t)dt (8.54)

The exact calculation of the peak-to-peak ripple from the double integral in Eq.
(8.54) is somewhat tedious because of the cubic term that arises from the current

Figure 8.15

slope during DT
�
. This calculation can be simplified if the trapezoidal pulse is

replaced with a rectangular pulse of the same area and duration. The height of this
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equivalent rectangular pulse, of course, is equal to the output current. This
simplification is justified because the maximum input ripple current occurs at
maximum load current; which, in most designs, corresponds to an I�

�
(t) that is close

to rectangular. The resulting expression of the peak-to-peak input ripple current is
given (see Problem 8.6) by:

I
�����

� I
�


�DD�
2 �

f
��
F
�
�
�

(8.55)

It is clear from Eq. (8.55) that the worst case value of the input ripple current occurs
at maximum load. The maximum value of the term DD�, however, depends on the
specified range of D

���
�D�D

���
. Hence, we have from Eq. (8.55):

I
�����

� I
����


�(max[DD�])

2 �
f
��
F
�
�
�

(8.56)

in which

max[DD�]� 

D

���
(1 �D

���
); D

���
� 1/2

1/4; D
���

� 1/2D
���

� 1/2

D
���

(1 �D
���

); D
���

� 1/2

(8.57)

With these design equations we can only determine the resonant frequency of the
input filter but not C

�
and L

�
individually. We could derive another design

equation in terms of the voltage ripple on the input capacitor, C
�
, so that C

�
and L

�
could be determined uniquely, but the input voltage ripple is hardly a design
consideration. Hence, typically, once f

��
is determined, L

�
and C

�
are usually

determined such that their combined volume is as small as possible.

Example 8.4 Determine the resonant frequency of the input filter for the buck
converter in Example 8.3 so that I

�����
� 10 mA. Since D

���
� 0.5, we have from

Eqs. (8.56) and (8.57);

0.01 � 2.3

�

2

1

4�
f
��
F
�
�
�
�

f
��
F
�

� 0.059 (8.58)

Hence, the input filter is designated with f
��

� 5.9 kHz. �

Since the input impedance of a regulating converter is negative, the addition of
an LC input filter can easily result in an instability because of the negative
damping effect. Hence, it is always a good idea to damp the input filter of a
regulating converter by adding either a series or shunt damping branch as shown
in Figs. 8.14a and b. The design of the damping network can be optimized if the
frequency response of the input impedance of the converter is known. We shall be
brief and present a much simpler technique that assumes that the input impedance
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is real and negative. In Fig. 8.14a, if C
�


is chosen to be much larger than C
�
, then at

resonance the capacitive reactance of C
�


will be much higher than that of C
�

so
that the damping resistor, R

�

, will appear effectively in parallel with the negative

resistance of the input converter resulting in a Q given by:

Q
��

�
R

�

�R

��
�L

�
/C

�

(8.59)

in which:

R
��

��
V

�
I
�

1

M�
(8.60)

Typically, R
�


is chosen such that Q
��

� 1. Note that Q
��

cannot be chosen to be
very small simply because as R

�

gets smaller, then C

�

begins to appear effectively

in parallel with C
�
, which in turn gives rise to a new, lower, undamped resonance

formed by C
�
�C

�

and L

�
(see Problem 8.7).

Example 8.5 For the buck converter discussed in the previous examples, we
select the input filter inductor to be 86 �H. With the resonant frequency deter-
mined to be f

��
� 5.9 kHz, the value of the input filter capacitor is given by:

C
�
�

1

(2
5900)�86 � 10�	
� 8.46 �F (8.61)

The smallest value of the negative input resistance of the converter occurs at M
���

,
so that we have:

R
��

��
12 V

2.3 A

1

(0.5)�
��20.9 
 (8.62)

The value of the damping resistor for the shunt branch is determined from Eq.
(8.59) in which we select Q

��
� 1. This yields:

1 �
R

�

� (�20.9)

�86/8.46
�R

�

� 2.8 
 (8.63)

The value of C
�


is chosen to be about ten times that of C
�
:

C
�


� 10C
�
� 84 �F (8.64)

An OrCAD/Pspice simulation of the actual filter and its frequency response is
shown in Figs. 8.16a and b. The response is seen to be properly damped so that any
transient disturbance in the input voltage will not generate any ringing in the input
filter.

A simulation of the actual input ripple current is shown in Figs 8.17a and b in
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Rin
-20.9

0

Vin

Cid
84.6uF

Li
86uH

Ci
8.46uF

Rid
2.8

Figure 8.16

Figure 8.17

which we see that the peak-to-peak ripple current is 10.11 mA, which is very close
to the specified design value of 10 mA.

In this example we have shown that the approximate design equations for the
damping network and for the determination of the input ripple current yield very
accurate results when compared with actual simulations. �

For the series damping branch in Fig. 8.14b, if L
�


is chosen much larger than L
�
,
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Figure 8.17 (cont.)

then, at resonance, R
�


will effectively appear in series with L
�

and will counteract
the negative input resistance of the converter. In this case (see Problem 8.8) the
overall Q is given by:

Q
��

�
�L

�
/C

�
R

�

�

R
��

�L
�
/C

�

(8.65)

As in the case of the shunt damping, R
�


is chosen such that Q
��

� 1. Observe that
in this case too it is not possible to design with a much lower Q

��
by making R

�

very large because that would effectively create a new, lower, undamped resonance
formed by L

�

and C

�
.

Example 8.6 In this example we shall design a series damping branch for the
input filter of the buck converter in Example 8.5. In this case, we chose L

�

about

ten times larger than L
�

so that we have:

L
�


� 10L
�
� 860 �H (8.66)

The value of the damping resistor is determined from Eq. (8.65):

1 �
�86/8.46

R
�


�
�20.9

�86/8.46
�R

�

� 3.67 
 (8.67)

An OrCAD/Pspice simulation of this circuit and its frequency response are
shown in Figs. 8.18a and b. In comparison to the response of the shunt damping
network, the peaking seems to be a little higher because this transfer function has a
zero at about 617 Hz and a pole at about 824 Hz, whereas the shunt network has
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Figure 8.18

essentially a pole-zero cancellation at about 676 Hz (see Problems 8.7 and 8.8).
A simulation run of the input ripple current yields a peak-to-peak ripple current

of 11.14 mA, which is about 10% higher than the parallel-damped filter in the
previous example. The reason for this slight increase is that, at the switching
frequency, the pulsating current is divided between C

�
and L

�

� L

�
instead of C

�
and

L
�
. (Here we have ignored the resistance of R

�

with respect to the reactance of L

�
at

the switching frequency.) Since L
�


� 10L
�
, the reactance of their parallel combina-

tion is about 10% smaller than the reactance of L
�
, which is what accounts for the

10% reduction in the ripple attenuation. Since L
�


carries the dc input current, it
may not be as economical as the shunt damping element for high input currents.
The size and cost of an inductor increases with its inductance and its current
handling capacity. �
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8.4 The boost converter

By rearranging the filter elements around the switches in the buck converter we
obtain different converters with different conversion ratio characteristics. All of
these converters operate on the same basic principle of commutating the inductor
current between the input and output circuits. When the elements of the buck
converter are rearranged as shown in Fig. 8.19, we obtain the boost converter. The
voltage and current waveforms of this converter are shown in Fig. 8.20. In this

Figure 8.19

circuit when S
�

is turned on during T
��

, while S
�

is turned off, the inductor charges
linearly from I

��
to I

��
and the output filter capacitor discharges into the load with

a time constant much longer than T
��

. When S
�

is turned off and S
�

is turned on
during T

���
, the current in the inductor discharges linearly from I

��
to I

��
into R

�
andC. Since the capacitive reactance of C at the switching frequency is much lower
than the load resistance, the ac component of the pulsating current in S

�
is almost

entirely absorbed by C while the dc component is absorbed by the load R
�

. From
the current waveforms in Fig. 8.20 we obtain the current conversion ratio:

I
�
�D�I

��
�M

�
�

I
�

I
��

�D� (8.68)

The voltage conversion ratio for the ideal boost converter follows immediately and
is given by:

M
�
�

1

D�
� 1 (8.69)

Hence, in contrast to the buck converter, the output voltage of the boost converter
is always larger than its input voltage.

During the on-time, the inductor current charges up linearly with a slope V
��

/L
so that the peak-to-peak ripple current shown in Fig. 8.21 is given by:
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Figure 8.20

I
����

�
V

��
L

DT
�
� V

�

DD�
F
�
L

(8.70)

When I
����

is normalized with respect to the average inductor current, I
�
� I

��
, we

obtain:

	I
�
�

I
����

I
�

�
V

�
I
��

DD�
F
�
L

�
V

�
I
�

DD��
F
�
L

(8.71)

The peak value of the inductor current is given by:

I
�
� I

��
�

I
����

2
(8.72)

Substituting Eqs. (8.68) and (8.70) in Eq. (8.72) we obtain:

I
�
�

V
�

2LF
�

DD� �
I
�

D�
(8.73)

Hence, for a regulating converter in which V
�

is a constant, I
�

depends on I
�

and D.
In order to design the inductor, we need to know the operating conditions for
which I

�
is a maximum. Clearly, one of the operating conditions, according to Eq.

Figure 8.21
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(8.73), is that the load current be at its maximum value. To determine the value of
D which causes I

�
to be a maximum, we set its derivative with respect to D to zero

and obtain:

�I
�

�D
� 0 � (1 � 2D) �

2LF
�

V
�

I
����

D��
� 0 (8.74)

For typical designs, the average inductor current at maximum load is always larger
than half the ripple current through it, so that according to Eqs. (8.72) and (8.73)
we have:

I
����

D�
�

V
�

2LF
�

DD��
I
����

D��
2LF

�
V

�

�D (8.75)

It follows that, for typical designs, there is no value of D which satisfies Eq. (8.74),
and the maximum value of I

�
occurs at D

���
. Hence, the worst case value of the

design parameter for the inductor, according to Eq. (8.71), is given by:

	
��
��

	I
�

2 �
�




�
V

�
2LF

�
I
����

D
���

(1 �D
���

)� (8.76)

Practical values of 	
��

range from 0.1 to 1.0. Expressing the duty cycle in terms of
the conversion ratio in Eq. (8.76), we obtain the design equation for the inductor:

L �
V

�
2I

����

M
���

�1

M�
���

1

	
��
F
�

(8.77)

The output voltage ripple can be easily determined from the on-time when the
capacitor is discharging into the load as shown in Fig. 8.22. Since the output time
constant is much shorter than the on-time, we can assume the capacitor discharges
linearly and write:

C
�v
�t

�C
V

����

DT
�

� I
�

(8.78)

The normalized output voltage ripple follows:

V
����

V
�

�
I
�

V
�

DT
�

C
(8.79)

Clearly, the capacitor now must be chosen in such a way as to meet the specified
output ripple voltage under worst case conditions which correspond to maximum
load current and maximum duty cycle. Hence we have:

	
��

��
V

����

V
�
�
�




�
I
����

V
�

D
���

F
�
C

(8.80)
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Figure 8.22

Hence the design equation for the capacitor is given by:

C�
I
����

V
�

M
���

� 1

M
���

1

	
��
F
�

(8.81)

Equation (8.79) is not very accurate at very light load currents as the current in the
switches (assuming MOSFETs are used for both S

�
and S

�
) begins to reverse. At

zero load current Eq. (8.79) suggests that the output ripple voltage is zero, which
certainly is not accurate (see Problem 8.9).

Example 8.7 An OrCAD/Pspice simulation of a practical boost converter is
shown in Fig. 8.23. The converter operates at 100 kHz and has a duty cycle of
D� 7/12. The inductor current and the output ripple voltage are shown in Fig.
8.24 at I

�
� 0 A, 1 A. The ideal output voltage is given by:

V
�
�

5

1 � 7/12
� 12 V (8.82)

Since the MOSFETs have a finite resistance when turned on, the output voltage is
slightly less than 12 V at I

�
� 1 A.

According to Eq. (8.79), the output ripple voltage at full load is given by:

V
����

� 1
(7/12)(10 � 10�	)

50 � 10�	
� 117 mV (8.83)

which is in exact agreement with the ripple in Fig. 8.24a. At zero load current, we
need to use the result derived in Problem 8.9:

V
����

� V
�

D��DT�
�

8LC

� 12
(1 � 7/12)�(7/12)(10 � 10�	)�

8(10 � 10�	)(50 � 10�	)
(8.84)

� 30 mV
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Figure 8.23

Figure 8.24
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which is in exact agreement with the ripple in Fig. 8.24a. �

Example 8.8 If a feedback loop is added to the boost converter in the previous
example to maintain the output voltage at 12 V as the input voltage varies from
5 V to 10 V, then the maximum value of the peak current would occur at D

���
and

I
����

� 1 A (assuming the specified maximum load current is 1 A). The maximum
and minimum values of D are given by:

D
���

� 1 �
V

����

V
�

� 1 �
5

12
� 0.5833

(8.85a, b)
D

���
� 1 �

V
����

V
�

� 1 �
10

12
� 0.1666





According to Eq. (8.73), the maximum peak current is given by:

I
����

�
V

�
2LF

�

D
���

(1 �D
���

) �
I
����

1 �D
���

(8.86)
�

12(7/12)(1 � 7/12)

2(10 � 10�	)(100 � 10�)
�

1

1 � 7/12

This is in agreement with the waveforms shown in Fig. 8.25 in which the
inductor current is shown at D

���
and D

���
.

Figure 8.25

If this were an unconventional design, then the maximum specified load current
would have been fairly low, say 60 mA. Also, if the converter had to operate from
an input voltage range 3.5 V � V

��
� 10 V, then the range of D would have been
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given by:

0.1666 �D� 0.708 (8.87)

In this case, Eq. (8.74) would yield the value of D at which the maximum value of I
�

would occur:

(1 � 2D) �
2LF

�
V

�

I
����

(1 �D)�
� 0 (8.88)

A numerical solution of Eq. (8.88) yields D� 0.483. The peak inductor current at
D� 0.483 is equal to 1.614 A, whereas at D

���
� 0.708 it is equal to 1.445 A, as can

be seen in Fig. 8.26 in which the inductor currents at D
���

, D
���

and D� 0.483 are
shown.

Figure 8.26

The purpose of this exercise was to demonstrate the use of Eq. (8.74) even
though the difference in the peak currents between the two operating points is not
significant. �

8.5 The buck-boost converter

The converter shown in Fig. 8.27 is called the buck-boost because it is capable of
either stepping up or down the input voltage. When S

�
is closed and S

�
is opened

during the on-time, the inductor charges up linearly from I
��

to I
��

with a slope
V

��
/L, while the output capacitor discharges into the load with a slope I

�
/C. When

S
�

is opened and S
�

is closed during T
���

, the inductor discharges into the output
circuit with a slope V

�
/L.
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Figure 8.27

The voltages and currents of the switches are shown in Fig. 8.28 whence we can
immediately determine:

I
�
�D�I

�
(8.89a, b)I

��
�DI

�





Figure 8.28

Hence the current conversion ratio is given by:

M
�
�

I
�

I
��

�
D�
D

(8.90)

The ideal voltage conversion ratio follows immediately:

M
�
�

1

M
�

�
D

D�
(8.91)

The output ripple voltage is determined in the same manner as the output ripple
voltage of the boost converter and is given by Eq. (8.79). Substituting Eq. (8.91) in
(8.79), we obtain:
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V
����

V
�

�
I
�

V
�

1

F
�
C

M
�

1 �M
�

(8.92)

As in the case of the boost converter, this expression is not accurate at very light
load currents (see Problem 8.10).

The output filter capacitor must be chosen to meet the output ripple voltage
specification, 	

��
, under worst case conditions which, for a converter with a

regulated output voltage, occurs when the load current and the conversion ratio
are at a maximum. Hence, we have from Eq. (8.92):

	
��

��
V

����

V
�
�
�




�
I
����

V
�

1

F
�
C

M
����

1 �M
����

(8.93)

The peak-to-peak ripple current in the inductor is determined from the on-time
and is given by:

I
����

� V
��

DT
�

L
(8.94a, b)

�
V

�
F
�
L

1

M
�
� 1





The average inductor current can be seen to be given by the sum of the average
input and output currents so that when Eq. (8.94) is normalized with respect to the
average inductor current, we obtain:

	I
�
�

I
����

I
�

�
V

�
I
�

1

F
�
L

1

(M
�
� 1)�

(8.95)

The peak value of the inductor current is given by:

I
�
� I

�
�

I
����

2
(8.96a, b)

� I
�
(1 �M

�
) �

V
�

2F
�
L

1

M
�
� 1





Clearly, one of the operating conditions which maximizes the peak current is the
maximum load current. The other condition is the duty cycle, which can be
determined by setting the derivative of I

�
with respect to D to zero. This yields:

�I
�

�D
� 0 � 1 �D��

2F
�
L

V
�
/I

����

(8.97)

For most typical designs, no value of D satisfies this condition so that the
maximum value of the peak occurs at M

����
. Hence we have:
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I
����

� I
����

(1 �M
����

) �
V

�
2F

�
L

1

M
����

� 1
(8.98)

It follows that the worst case design parameter for the inductor is given by:

	
��
��

	I
�

2 �
�




�
V

�
I
����

1

2F
�
L

1

(M
����

� 1)�
(8.99)

Typical values of 	
��

range from 0.1 to 1.0. Hence, the design equations for the
values of L and C of the buck-boost converter are given by:

L �
V

�
I
����

1

2F
�
	
��

1

(M
����

� 1)�
(8.100a, b)

C�
I
����

V
�

1

F
�
	
��

M
����

1 �M
����





The input current of the buck-boost converter in Fig. 8.27 is pulsating and must
be filtered as shown in Fig. 8.29. The design procedure of the input filter and its
damping elements is the same as that of the buck converter.

Figure 8.29

Example 8.9 The buck-boost converter in Fig. 8.30 generates a �12-V output
from a �5-V source. The load current varies from 0 to 1 A. The output ripple
voltage and the inductor current at three different load currents are shown in Figs.
8.31a and b below.

The peak-to-peak ripple voltage according to Eq. (8.92) is given by:

V
����

� I
�

1

F
�
C

M
�

1 �M
�

� I
�

1

(100 10�)(50 10�	)

12/5

1 � 12/5
(8.101)

� 0.141I
�

At I
�
� 1 A, the peak-to-peak ripple voltage is computed to be 141 mV, which is

very close to the observed value of 143 mV in Fig. 8.31a. At I
�
� 0.5 A, we compute
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Figure 8.30

Figure 8.31

V
����

� 70 mV, while the observed value is 76 mV. At no load current, we can no
longer use Eq. (8.92) and we must use Eq. (8.278b), see Problem 8.10, instead. This
yields:

V
����

�
V

�
8LC�

T
�

1 �M
�
�
�



�
12

8(10 10�	)(50 10�	)�
10 10�	

1 � 12/5�
�

(8.102)

� 26 mV

which is in close agreement with the 25 mV seen in Fig. 8.31a.
Note that the output voltage in Fig. 8.31a changes slightly as a function of the

load current because the converter is not regulated and the MOSFETs have a
resistance of 15 m
 when turned on with an 8-V gate-drive signal. �

8.6 The Cuk converter

This converter, named after its inventor Slobodan Cuk�—� (pronounced chook), is
shown in Fig. 8.32. The input loop, consisting of V

��
, L

�
and S

�
, looks like a boost

converter while its output loop, consisting of S
�

, L
�

and V
�
, looks like a buck

converter. The switching voltage and current waveforms are shown in Fig. 8.33.
Since the dc current in the capacitor C



must be zero, we have:

I
��
D�� I

�
D (8.103)

It follows that the current conversion ratio is given by:

M
�
�

D�
D

(8.104)

The ideal voltage conversion ratio follows:

M
�
�

D

D�
(8.105)

The output voltage, as in the case of the buck-boost converter, is inverted with
respect to the input. An isolated output can be easily obtained by introducing a
transformer between S

�
and S

�
(see Problem 8.11).

Figure 8.32
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Since the dc voltage across each of L
�

and L
�

is zero, as we go around the outer
loop containing V

��
, V

�
, L

�
, L

�
and C



, we find that the dc voltage across C



is equal

to V
��

� V
�
. It follows that the voltage waveforms across L

�
and L

�
, excluding the

ripple component of the voltages across C and C


, are essentially identical, as

shown in Fig. 8.33. The peak-to-peak ripple current in L
�

and L
�

can be deter-
mined from the on-time, DT

�
:

I
�����

� V
��

DT
�

L
�

; i� 1, 2

(8.106a, b)

�
V

�
F
�
L
�

1

M
�
� 1





An important feature of this converter is that L
�

and L
�

can be coupled� as shown
in Fig. 8.34 and the ripple current in either inductor can essentially be reduced to
zero by adjusting the coupling coefficient. This can be shown by writing the
equations for v

�
(t) and v

�
(t) in Fig. 8.34:

Figure 8.33
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v
�

(t) � L
�

di
�

dt
�M

di
�

dt
(8.107a, b)

v
�

(t) � L
�

di
�

dt
�M

di
�

dt





in which M is the mutual inductance between the windings. In the Cuk converter,
if we ignore the ripple voltages on C



and C, then v

�
and v

�
are identical so that we

have from Eq. (8.107):

(L
�
�M)

di
�

dt
� (L

�
�M)

di
�

dt
� 0 (8.108)

We can deduce from this equation that:

L
�
�M� 0 �

di
�

dt
� 0

(8.109a, b)

L
�
�M� 0 �

di
�

dt
� 0





Figure 8.34

The disappearance of the derivative of the current implies that the current ripple is
reduced to zero. Hence, if the mutual inductance is set according to Eq. (8.109a),
then the ripple current in L

�
is reduced to zero. This can be expressed in terms of

the coupling coefficient:

L
�
�M� 0 � L

�
� k�L

�
L
�
� 0 � k��

L
�

L
�

� 1 (8.110)

This result states that if we want to null the ripple current in L
�
, we must make L

�
smaller than L

�
so that we can adjust k to be equal to �L

�
/L

�
. The coupling

coefficient can be set by adjusting the air gap between the two cores. Similarly, we
see from Eq. (8.109) that the ripple current in L

�
can be reduced to zero if we set
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k��L
�
/L

�
, in which case L

�
has to be made smaller than L

�
.

In an isolated Cuk converter,� it is possible to reduce the ripple currents in both
inductors to zero by coupling them to the isolation transformer. In reality, the
ripple current is not exactly reduced to zero but is highly reduced. The reason for
this is that the voltage across the inductors are not exactly identical because of the
ripple voltage across the capacitors.

8.7 The PWM switch and its invariant terminal characteristics

The active and passive switches in the four converters discussed earlier can be
lumped together in a single-pole—double-throw switch called the PWM switch,� as
shown in Fig. 8.35. The terminals designations a, p and c refer to active, passive and
common, respectively. The common terminal is designated as such simply because
it is common to both switches. All of the four converters discussed earlier are
redrawn in Fig. 8.36 with the PWM switch identified as a three-terminal switching
device. The important thing to see in this figure is that all the elements outside the
PWM switch are linear passive elements which provide filtering, whereas the
PWM switch is the only nonlinear element which performs the dc-to-dc conver-
sion process. We shall capitalize on this point and show that the conversion
process in the PWM switch is independent of the particular converter in which it
occurs and can be described by a set of invariant equations. This invariance will
lead to a very simple model of the PWM switch which can be used towards the
determination of the dynamics of any (two switched-state) PWM converter.

Figure 8.35

We begin with a qualitative study of the invariance of the terminal voltages and
currents of the PWM switch. The active terminal current is the current in the
active switch S

�
which has the invariant shape shown in Fig. 8.37a. By invariance

we simply mean that one cannot tell which converter the active switch is in by
looking at its current waveform. The common terminal current is the same as the
total switched inductive current in the converter and has the invariant shape shown
in Fig. 8.37b. For example in the Cuk converter, the current in the common
terminal is the sum of the currents in the two switched inductors L

�
and L

�
. The

inductor in the input filter of a buck converter is an example of an inductor which is
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Figure 8.36

not switched. Hence, in the buck converter with an input filter, the common
terminal current is the same as the current in the output filter inductor only and
not the sum of the currents in the input and output filter inductors. Next we
examine the port voltages of the PWM switch. Ignoring ripple voltages, the
voltage across port ap in all the converters is a dc voltage while the voltage across
port cp is a pulsating voltage, as shown in Figs. 8.37c and d. We can now write the
following set of invariant equations for the terminal currents and port voltages of
the PWM switch:

i�
�
(t) � d�

�
(t)i�



(t)

(8.111a, b)
v�

�

(t) � d�
�
(t)v�

��
(t)





Figure 8.37

in which d�
�
(t) is the switching function defined in Eq. (8.16). These equations

describe the entire switching action responsible for the dc-to-dc conversion pro-
cess in a converter. By taking the time average of Eqs. (8.111a,b) we obtain the
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following invariant average equations for the PWM switch:

i
�
� di



(8.112a, b)

v

�

� dv
��





These are the invariant equations that describe the dc-to-dc conversion function of
any two switched-state PWM converter in continuous conduction mode.

If we allow for small-signal variations in the duty-ratio function and other
voltages and currents in the converter about a steady-state operating point, then
the propagation of these variations through the PWM switch can be determined
by taking the differentials in Eqs. (8.112a, b):

î
�
�Dî



� I



d%

(8.113a, b)
v̂

�

�Dv̂
��

� V
��
d%





in which D, I



and V
��

are the steady-state dc operating points of the PWM switch
which satisfy Eqs. (8.112a, b), i.e. I

�
�DI



and V


�
�DV

��
.

8.8 Average large-signal and small-signal equivalent circuit models of
the PWM switch

An equivalent circuit model� for Eqs. (8.112a, b) can most easily be constructed
using dependent sources, as shown in Fig. 8.38. This is a nonlinear average model
because it involves products of the time functions d(t)i



(t) and d(t)v

��
(t). This is also

a large-signal model because it places no restriction on the magnitude of variations
in the time functions. For small-signal variations, we can use the linearized
small-signal equations in (8.113a, b) to construct the equivalent circuit model in
Fig. 8.39a or b. In Fig. 8.39b the dependent sourcesDî



and Dv̂


�
have been replaced

with a 1:D transformer and the control source d% V
��

has been moved from the
common terminal side to the active terminal side. Note that the small-signal
sources are evaluated at the dc operating point. Under steady-state conditions, the
large- and small-signal models reduce to the same transformer model shown in
Fig. 8.40.

The model of the PWM switch is used very much in the same way as the

Figure 8.38

402 PWM switching dc-to-dc converters



Figure 8.39

Figure 8.40

equivalent circuit model of a transistor or a vacuum tube. First, the device is
replaced point-by-point with its equivalent circuit model and a dc analysis is
carried out to determine the operating point (D, I



, V

��
). As usual, in a dc analysis

all reactive elements and small-signal sources vanish. Second, the small-signal
analysis is carried out using the small-signal model of the PWM switch evaluated
at the dc operating point. As usual, in an ac analysis, all dc sources vanish. In a
small-signal analysis, one of the most commonly determined transfer functions is
the control-to-output transfer function:

H


(s) �

v̂
�
(s)

d% (s)
(8.114)

This transfer function is necessary for the design of a stable feedback loop for a
converter whose output voltage is regulated. Other transfer functions of interest
are the line-to-output transfer function and the input and output impedances. The
line-to-output transfer function relates variations in the output voltage to vari-
ations in the input voltage:

H
�
(s) �

v̂
�
(s)

v̂
��

(s)
(8.115)
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Ideally, for a regulating converter H
�
(s) must be zero because the input voltage is

simply a disturbance in the closed-loop system which the feedback circuit must
attenuate and prevent from reaching the output.

Example 8.10 For the buck-boost converter in Fig. 8.41, determine:

(i) The voltage conversion ratio.
(ii) The control-to-output transfer function.

(iii) The line-to-output transfer function.
(iv) The input admittance.
(v) The output impedance.

Figure 8.41

The complete dc and small-signal equivalent circuit model of the buck-boost
converter is obtained by replacing the PWM switch with its equivalent circuit
model as shown in Fig. 8.42. To determine the conversion ratio, we perform a dc
analysis by setting all the small-signal sources to zero, shorting the inductors and
opening all the capacitors, as shown in Fig. 8.43.

In Fig. 8.43, we can see that the voltage across port ap is simply V
�
/D so that

writing KVL around the outer loop we obtain:

V
��

�
V

�
D

� V
�
� V

�

1 �D

D
� V

�

D�
D

(8.116)

The voltage conversion ratio follows immediately:

M
�
�

V
�

V
��

�
D

D�
(8.117)

Hence, we see how the invariant conversion function 1:D of the PWM switch can
produce the conversion ratio D/D� of the buck-boost converter by a simple
rotation of the PWM switch. Before going to the small-signal analysis, we should
determine the dc operating point of the PWM switch. The quiescent common-
terminal current is given by:

I


� I

��
� I

�
� I

��1 �
1

M
�
�� I

��1 �
D

D���
I
�

D�
(8.118)
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Figure 8.42

Figure 8.43

This establishes I



in terms of the output current of the converter, which can be
expressed in several different convenient forms using the results of the dc analysis:

I


�

I
�

D�
�

V
�
/R

D�
�

V
��
R

D

D��
(8.119)

The quiescent port voltage V
��

is readily seen to be V
�
/D, which can be expressed in

terms of the input voltage:

V
��

�
V

�
D

�
V

��
D�

(8.120)

All of the small-signal transfer functions have the same denominator which can
be determined by setting all the independent excitations in Fig. 8.42 to zero as
shown in Fig. 8.44a. The 2-EET can now be applied by taking out the inductor and
the capacitor as shown in the reference circuit in Fig. 8.44b. The following port
resistances required for the 2-EET are determined in reference to Fig. 8.45:

R
���D��R

R
��� 0 (8.121a—c)

R
��

��

�R




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Hence, the denominator is given by:

D(s) � 1 �
sL
R
��

� sCR
���
sL
R
��

sCR
��

��

(8.122)
� 1 � s

L
D��R

� s�
LC
D��

Figure 8.44

Figure 8.45
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The line-to-output transfer function and the input admittance are determined
by retaining only the small-signal source v̂

��
in the complete equivalent circuit

model in Fig. 8.42 and examining the transform circuit for nulls in the response of
the particular transfer function. For the line-to-output transfer function we see in
Fig. 8.46 that there are no conditions in the transform circuit which result in a null
in the response v̂

�
(s) so that the line-to-output transfer function is given by:

H
�
(s) �

v̂
�
(s)

v̂
��

(s)
�M

�

1

D(s)
�

D

D�
1

1 � s
L

D��R
� s�

LC
D��

(8.123)

in which M
�

is clearly the low-frequency asymptote of H
�
(s).

The input admittance function is given by:

G
��

(s) �
î
��

(s)

v̂
��

(s)
�G

���

N
��

(s)

D(s)
(8.124)

in which G
���

is the low-frequency asymptote of the input conductance discussed
earlier and shown in Fig. 8.3. Hence we have:

G
���

�
M�

�
R

��
D

D��
� 1

R
(8.125)

The numerator N
��

(s) corresponds to conditions of the transform circuit that
results in a null in the response î

��
(s). Referring to Fig. 8.46, we see that a null in

either î


(s) or î

�
(s) would result in a null in î

��
(s) simply because when one of the

terminal currents of the 1:D transformer vanishes, the other two vanish as well.
The impedance encountered by î

�
(s) is:

R

1 � sCR
(8.126)

Figure 8.46
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The pole at s
�
��1/RC corresponds to an ‘‘open-circuit’’ in the transform do-

main, which results in a null in î
�
(s) and, hence, in î

��
(s). It follows that s

�
��1/RC

is a zero of G
��

(s) and that N
��

(s) � 1 � sCR. Hence, the input admittance is given
by:

G
��

(s) ��
D

D��
� 1

R

1 � sCR

1 � s
L

D��R
� s�

LC
D��

(8.127)

The impedance encountered by î


(s) is sL, which has no poles and hence does not

contribute a zero to î
��

(s).
The output impedance is determined from the equivalent circuit shown in Fig.

8.47, whence we see that a zero of the impedance in the common terminal branch
would cause the terminals a and c to be at the same potential, which in turn would
require that the voltages on both sides of the 1:D transformer be the same, which
could only happen if v̂

�
(s) � 0. The impedance connected to terminal c is sL, which

has a zero at the origin, so that the output impedance must have a zero at the
origin too. Hence we have:

Z
�
(s) �

v̂
�
(s)

î
�

(s)
�

sLk
D(s)

(8.128)

in which k is a constant, which can be determined by examining the circuit. It can
be seen from Fig. 8.47 that at high frequencies we have:

lim

���

Z
�
(s) �

1

sC
(8.129)

Substituting this result in Eq. (8.128), we obtain k� 1/D��, and the output imped-
ance can be written as:

Z
�
(s) �

sL/D��

1 � s
L

D��R
� S�

LC
D��

(8.130)

Figure 8.47
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Finally, we determine the control-to-control transfer function by retaining the
control sources as shown in Fig. 8.48. This transfer function can be written as:

H


(s) �

v̂
�
(s)

d% (s)
�H


�

N


(s)

D(s)
(8.131)

The low-frequency asymptote, H

�

, is simply the derivative of the output voltage
with respect to the duty ratio and is given by:

H

�

�
dV

�
dD

� V
�

D�� (�D)

D��
�

V
�

D��
(8.132)

The numerator, N


(s), is determined by examining the transform circuit for a null

in the output voltage. This is shown in Fig. 8.49 in which we see that the only way
to have a null in v̂

�
(s) is to have a null in î

�
(s). With v̂

�
(s) � î

�
(s) � 0, from Fig. 8.49

we have:

î
�
(s) � î



(s)

(8.133a, b)
v̂
��

(s) � 0





Figure 8.48

Figure 8.49
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Hence:

Dî


� I



d% � î




(8.134a, b)î


(s)sL
D

�
V

��
D

d%





Solving these we obtain:

1 � s
L
D�

I



V
��

� 0 �N


(s) � 1 � s

L
D�

I



V
��

(8.135)

Substituting for I



and V
��

from the operating point determined earlier in Eqs.
(8.119) and (8.120), we obtain:

N


(s) � 1 � s

L
D�

I
�

D�
D

V
�

(8.136a, b)
� 1 � s

L
R

D

D��

Hence, the control-to-output transfer function has a RHP zero and is given by:

H


(s) �

V
�

D��

1 � s
L
R

D

D��

1 � s
L

D��R
� s�

LC
D��

(8.137)

The presence of the RHP zero in H


(s) above implies that the output voltage

momentarily dips before rising when the duty cycle is increased abruptly (step
function). The physical explanation for this is that an abrupt increase in the duty
cycle d causes an abrupt decrease in d�, which in turn causes an initial decrease in
the average terminal current i

�
(t) because the average inductor current cannot

reach its higher steady-state value instantaneously. It is this momentary decrease
in i

�
(t) that causes the initial dip in the output voltage. In fact, we can use this

physical explanation to determine the RHP zero as follows. Let us assume that the
RHP zero in Eq. (8.137) is �

�
so that its high-frequency response is given by:

H


(s) �

V
�

D��
�s/�

�

s�
LC
D��

��
V

�
s�

�
LC

(8.138)

The initial response to a step increase, �


, in the duty cycle is then given by:

v̂
�
(s) ��d% (s)

V
�

s�
�
LC

��
�


s

V
�

s�
�
LC

(8.139)
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Taking the inverse Laplace transform, we have:

v̂
�
(t) ��

�


V

�
�

�
LC

t (8.140)

Next, we look at the circuit to determine the initial response to a sudden increase
in the duty cycle by an amount �



. We can see from Fig. 8.50 that the passive

terminal current i�
�
(t) for the first few cycles experiences a step reduction in its

average value by an amount:

	i
�
���




I
�

D�
(8.141)

Figure 8.50

This sudden reduction in the average current is absorbed by the output capacitor
so that the change in the output voltage is given by:

C
dv

�
dt

���



I
�

D�
� v̂

�
(t) ��

�



C

I
�

D�
t (8.142)

Comparing Eqs. (8.140) and (8.142), we determine the RHP zero:

�
�
�

D�V
�

I
�
L

�
D��V

�
DI

�
L

�
D��R
DL

(8.143)

which is the same as the RHP in Eq. (8.137). �

8.9 The PWM switch in other converter topologies

The three different types of conversion ratios we have seen so far, D, 1/D� and D/D�,
were generated by the three possible orientations of the PWM switch. It is possible
to generate other types of conversion ratios by arranging the switches differently,
using tapped inductors or inverting transformers, and using more switches. In all
such converters, the PWM switch can be identified after a few simple circuit
manipulations. In this section, we shall consider four such converters which cover
most known types of basic topological variations.
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Any of the basic converters discussed earlier can be modified by tapping the
inductor and connecting one of the two switches to the tap point. The two
variations of the tapped buck converter are shown in Figs. 8.51a, b.

Figure 8.51

The PWM switch cannot be identified directly in these converters because the
common terminal, through which the inductive current flows, is lost. Since S

�
and

V
�

are in series, one may interchange their positions and establish a common point
between S

�
and S

�
and incorrectly identify the PWM switch. The mistake here is

that the current through this common point is i�
�
(t), which is not a purely inductive

current and has the shape shown in Figs. 8.51a,b. Immediately we recognize that
the tapped inductor in these converters is actually acting as an auto-transformer so
that the current i

�
is actually a winding current rather than a magnetizing or

inductive current. In order to recover the inductive current, we replace the tapped
inductor with an untapped inductor L and an ideal transformer with the same
turn-ratio as the tapped inductor as shown in Fig. 8.52a. The energy stored in L is
the inductive energy of the converter and the current in L is the inductive current
in the converter. The PWM switch can now be identified by moving S

�
to the

opposite side of the ideal transformer as shown in Fig. 8.52b. Now, the common
terminal between S

�
and S�

�
clearly carries a purely inductive current. The dc and

small-signal characteristics can be determined by replacing the PWM switch with
its equivalent circuit model as explained in the following example.

Example 8.11 The voltage conversion ratio of the tapped buck converter is
determined by replacing the PWM switch with its dc model as shown in Fig. 8.53.
By applying KVL around the loop shown, we obtain:
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Figure 8.52

V
��

�
V

�
nD

�
V

�
n

� V
�

(8.144)

from which the voltage conversion ratio is obtained:

M
�
�

1

1 �
D�
nD

(8.145)

The operating point of the PWM switch is given by:

V
��

�
V

�
nD

�
V

��
nD�D�

(8.146a, b)

I


�

I
��
D

�
M

�
I
�

D





The advantage of tapping the inductor can be immediately seen from Eq. (8.145)
in which we see that by letting n� 1 we can obtain large step-down conversion

Figure 8.53
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ratios without making the duty cycle too small. For example, we can convert 120
to 5 V by making D� 0.25 and n� 3/23.

The control-to-output transfer is obtained by replacing the PWM switch with
its small-signal equivalent circuit model as shown in Fig. 8.54, in which the input
dc voltage is set to signal ground. This transfer function is given (see Problem 8.12)
by:

H


(s) �H


�

1 �
s

�
 

1 �
s

�
�
Q

�
s�

��
�

(8.147)

in which:

H

�

�
V

�
(nD�D�)�

�
 
�

DR

M�
�

L
1

n� 1

(8.148)
�

�
�

D

M
�

1

�LC

Q�
R

�
�
L�

D

M
�
�
�





Figure 8.54

Note that for n� 1, the zero is in the LHP, while for n� 1, zero is the RHP. The
reason for this is the same as that for the buck-boost converter given earlier (see
Problem 8.12). �

Another topological variation is shown in Fig. 8.55, in which an inverting
transformer is used. This converter, sometimes referred to as the Watkins—
Johnson� converter, is analyzed in the same way as the tapped buck converter.
This is shown in Fig. 8.56, in which the inverting transformer is replaced with its
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equivalent circuit model and S
�

is moved to theN
�

-side of the transformer in order
to identify the PWM switch.

The complete equivalent circuit is the same as that of the tapped buck converter
except for the 1: n transformer, which in this case is inverting. It follows that the
voltage conversion ratio is the same as that of the tapped buck converter given in
Eq. (8.145) with n replaced by �n:

M
�
�

1

1 �
D�
nD

(8.149)

Figure 8.55

Figure 8.56

A plot of M
�

for n� 1 is shown in Fig. 8.57, in which we notice that not only the
conversion ratio becomes singular at D� 0.5 but also the polarity of the output
voltage changes. It is relatively easy to show that M

�
becomes zero, and not

infinite, at D� 0.5, if the slightest parasitic resistance is included in the circuit (see
Problem 8.13). By interchanging the source and load, another variation of this
converter can be obtained, as shown in Fig. 8.58, whose conversion ratio mono-
tonically increases from negative to positive values passing through zero at
D� 0.5 (see Problem 8.14).

By rearranging the switches in a fourth-order converter, such as the Cuk
converter, one can obtain new converters such as the one shown in Fig. 8.59a. In
such a converter, the PWM switch cannot be identified immediately, but a simple
circuit transformation can do the trick. The idea, of course, is to move one of the
switches without altering the operation of the circuit. This is shown in Fig. 8.59b in
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Figure 8.57

Figure 8.58

Figure 8.59
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which S
�

is lifted from the input side and brought to its new position while
maintaining the same potential difference across it with the help of the dependent
source V

��
. To preserve the input current, the dependent current source I

�
is

introduced. The PWM switch is identified in Fig. 8.59c simply by interchanging
the positions of S

�
and v

��
. The voltage conversion ratio is determined by replacing

the PWM switch with its dc model as shown in Fig. 8.60 in which, going around
the outer loop, we have:

V
��

�
V

�
� V

��
D

� V
��

� V
�

(8.150)

It follows that the conversion ratio is given by:

M
�
�

1 � 2D

D�
(8.151)

A plot of M
�

is shown in Fig. 8.61, which shows that the polarity of the output
voltage changes as the duty cycle is increased beyond 0.5.

Figure 8.59 (cont.)

Figure 8.60

It is possible to cascade any two basic converters to obtain an ideal conversion
ratio which has a quadratic dependence on the duty cycle. Furthermore, it is
possible to rearrange the switches in a cascaded converter in such a way to drive
only a single active switch instead of two. The formal synthesis procedure of such
converters has been reported by Maksimovich and Cuk	 and one such converter is
shown in Fig. 8.62. In this converter, D

�
turns on in synchronism with the main

active switch S
�

during T
��

, while D
�

and D
�

are turned off. During Toff , D�
turns
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Figure 8.61

off in synchronism with S
�

, while D
�

and D
�

are turned on together. For purposes
of analysis in continuous conduction mode, the nature of these switches is imma-
terial. Our aim is to analyze this converter using the model of the PWM switch,
which clearly cannot be identified directly. Since the PWM switch is applicable to
all converters that are switched between two states, all we need to know are the
two states of the converter during T

��
and Toff . These are shown in Fig. 8.63a. In

Figure 8.62

Fig. 8.63b, the on-state is redrawn by separating the L
�

and L
�

loops using the
dependent sources V

��
and I

��
. The purpose of I

��
in shunt with V

��
is to preserve

the input current I
��

. The off-state is redrawn simply by interchanging the positions
of L

�
and C

�
. We can now see that the on- and off-states in Fig. 8.63b correspond

to the operation of two buck converters connected in cascode as shown in Fig.
8.63c. The PWM switch in each converter is clearly identified and the complete dc
and small-signal equivalent circuit model is shown in Fig. 8.64.

Example 8.12 To determine the voltage conversion ratio of the converter in Fig.
8.62 we set all the small-signal sources to zero, short the inductors, and open the
capacitors in the equivalent circuit in Fig. 8.64. This yields the circuit in Fig. 8.65,
whence we have for the first PWM switch:
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Figure 8.63

Figure 8.64
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V

��

��DV
��

(8.152)

For the second PWM switch we have:

V
���

� V
��

� V
��

� V
��

� (�DV
��

) � V
��

(1 �D) (8.153)

The output voltage is given by:

V
�
� V


��
� V


��
�DV

���
� V


��
(8.154)

Substituting Eqs. (8.152) and (8.153) in (8.154), we obtain:

V
�
�DV

��
(1 �D) �DV

��
�D�V

��
(8.155)

Hence, the voltage conversion ratio is given by:

M
�
�D� (8.156)

Figure 8.65

The dc operating point of each PWM switch is determined before performing
the small-signal analysis. For the first and second PWM switches we have:

V
���

� V
��

I

�

� I

�

�DI

�

�D�I

�

(8.157a—d)V
���

� V
��

(1 �D)

I

�

�
V

�
R

�
D�V

��
R





The control-to-output transfer function has the following form:

H


(s) �

v̂
�
(s)

d% (s)
�H


�

N


(s)

D(s)
(8.158)

in which H

�

is the low-frequency asymptote and is given by:
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H

�

�
dV

�
dD

� 2DV
��

(8.159)

The denominator is obtained by the application of the 4-EET to the reference
circuit in Fig. 8.66, whence we have by inspection:

R
���R
��� 0
(8.160a, b)

R
���R





Figure 8.66

From Fig. 8.67 we have:

R
���
R

D��
(8.160c)

Since L
�

is connected across port (4) and L
�

is connected across port (3), we shall
renumber them after their port numbers to make the writing of the terms in the
4-EET easier. Hence, we shall temporarily reassign L

�
and L

�
:

L
�
� L

�
; L

�
� L

�

The fourth-order denominator is given by:

D(s) � 1 � a
�
s� a

�
s�� a

�
s�� a

�
s� (8.161)

Figure 8.67
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Substituting for R
�� in the coefficient a
�

, we obtain:

a
�
�R
��C

�
�R
��C

�
�

L
�

R
��
�

L
�

R
��

(8.162)
�

L
�
�D��L

�
R

Since the reference circuit is almost purely reactive, we should expect indetermi-
nate forms in the higher-order coefficients. We shall remove these indeterminate
forms by changing the order of the ports. The coefficient a

�
is given by:

a
�
�R
��C

�
R
��


��
C

�
�R
��C

�

L
�

R
��

��

�R
��C
�

L
�

R
��

��

(8.163)
�R
��C

�

L
�

R
��

��

�R
��C
�

L
�

R
��

��

�
L
�

R
��

L
�

R
��

��

By inspection of Fig. 8.66, we have:

R
��

��

�R
��

��

�R
��

��

�R
��

��

� 0

R
��

��

�� (8.164a—c)

R
��

��

�R





It follows that the first two terms and the last term in the expression of a
�

are all
zero and the remaining terms in the middle have an indeterminacy of the form 0/0,
which can easily be removed by changing the order in which the ports are taken:

a
�
�

L
�

R
��
R
��


��
C

�
�

L
�

R
��
R
��


��
C

�
�

L
�

R
��
R
��


��
C

�
(8.165)

Once again by inspecting Fig. 8.66, we have:

R
��

��

�R
��

R
��

��

�R (8.166a—c)

R
��

��

�R





Substituting these in Eq. (8.165), we obtain:

a
�
� L

�
C

�
� (L

�
�D��L

�
)C

�
(8.167)

The coefficient a
�

is given by:

a
�
�R
��C

�
R
��


��
C

�

L
�

R
��

����

�R
��C
�
R
��


��
C

�

L
�

R
��

����

422 PWM switching dc-to-dc converters



(8.168)
�R
��C

�

L
�

R
��

��

L
�

R
��

����

�R
��C
�

L
�

R
��

��

L
�

R
��

����

in which we can determine the following by inspection:

R
��

����

�R
��

����

�R
��

����

� 0

(8.169)R
��

����

��

The indeterminacy in the first term of a
�

is removed by changing the order of the
ports from 1, 2, 3 to 1, 3, 2. Using the fact that R
��


����
� 0, we obtain:

R
��C
�
R
��


��
C

�

L
�

R
��

����

�R
��C
�

L
�

R
��

��

R
��

����

C
�
� 0 (8.170)

The indeterminacy in the second term of a
�

is removed by changing the order of
the ports from 1, 2, 4 to 4, 1, 2. Using the fact that R
��


����
� 0:

R
��C
�
R
��


��
C

�

L
�

R
��

����

�
L
�

R
��
R
��


��
C

�
R
��


����
C

�
� 0 (8.171)

In the third term of a
�

, the indeterminacy is removed by changing the order from 1,
3, 4 to 4, 1, 3. Using the fact that R
��


����
�R, we obtain:

R
��C
�

L
�

R
��

��

L
�

R
��

����

�
L
�

R
��
R
��


��
C

�

L
�

R
��

����

� L
�
C

�

L
�
R

(8.172)

In the last term of a
�

, the indeterminacy is removed by changing the order from 2,
3, 4 to 3, 2, 4. Using the fact that R
��


����
��:

R
��C
�

L
�

R
��

��

L
�

R
��

����

�
L
�

R
��
R
��


��
C

�

L
�

R
��

����

� 0 (8.173)

Hence, a
�

is given by:

a
�
� L

�
C

�

L
�
R

(8.174)

Finally, we obtain a
�

by continuing the order in a
�

:

a
�
�

L
�

R
��
R
��


��
C

�

L
�

R
��

����

R
��

������

C
�
� L

�
C

�

L
�
R

RC
�

(8.175)

Substituting for a
�

in Eq. (8.161) and reverting the notation to L
�

and L
�

from L
�

and L
�

, we obtain the denominator:

D(s) � 1 � s
L
�
�D��L

�
R

� s�[L
�
C

�
� (C

�
�D��C

�
)L

�
]
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(8.176)
� s�L

�
C

�

L
�
R

� s�L
�
L
�
C

�
C

�

This denominator can be factored into the product of two quadratics:

D(s) ��1 �
s

�
��
Q

��

�
s�

��
��
��1 �

s

�
��
Q

��

�
s�

��
��
� (8.177)

whose frequencies and damping factors are approximately given by:

�
��

�
1

�L
�
C

�
� (C

�
�D��C

�
)L

�

Q
��

�
R

�
��

(L
�
�D��L

�
)

(8.178)
�

��
��

1

L
�
C

�

�
1

L
��C� �

C
�

D���
Q

��
�

RC
�

�
��
C

�
L
�
�
��

��
��

��

� 1�
The approximations for �

��
and �

��
are fairly good when they are separated by a

factor of 2.5 or better. The second Q-factor, Q
��

, generally is very high and the
accuracy of its approximation above is only moderate. In a real converter, Q

��
is a

strong function of parasitic resistances, so that the accuracy of Eq. (8.178d) is not
very relevant.

The numerator is determined by studying the nulls of v̂
�
(s) as shown in Fig. 8.68

in which we see that a null in v̂
�
(s) requires a null in î

��
(s) which in turn requires

î
��

(s) � I

�
d% (s). It follows that the transform voltage across C

�
is given by:

v̂
��

(s) � V
���

d%
1/sC

�
sL

�
� 1/sC

�

� I

�
d% [sL

�
� (1/sC

�
)]

(8.179)
� d% �V

���

1

1 � s�L
�
C

�

� I

�

sL
�

1 � s�L
�
C

�
�

This transform voltage must be the same as the transform voltage across the
D-side of the second PWM switch so that we have:

v̂
��

(s) ���
V

���
D

d% � v̂
��

(s)�D (8.180)

Equations (8.179) and (8.180) yield:
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D�V
���

1

1 � s�L
�
C

�

�D�I

�

sL
�

1 � s�L
�
C

�

� V
���

� 0 (8.181)

Multiplying out and substituting for V
���

, V
���

and I

�

in Eq. (8.157), we obtain the
numerator:

N


(s) � 1 � sL

�

DD�
2R

� s�L
�
C

�

1 �D

2D
(8.182)

Figure 8.68

We can rewrite this in standard quadratic form:

N


(s) � 1 �

s

�
� 
Q

� 

�
s�

��
� 

(8.183)

in which:

�
� 

�
1

�L
�
C

�
�

2

1 � 1/D

(8.184a, b)

Q
� 

�
R

�L
�

/C
�

1

DD��
1 �D

2D





To summarize, the control-to-output transfer function is given by:

H


(s) �H


�

1 �
s

�
� 
Q

� 

�
s�

��
� 

�1 �
s

�
��
Q

��

�
s�

��
��
��1 �

s

�
��
Q

��

�
s�

��
��
�

(8.185)
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A plot of H


(s) using numerical values is discussed in Problem 8.15. �

8.10 The effect of parasitic elements on the model of the PWM switch

The four important parasitic elements in a converter that affect the average model
of the PWM switch are:

(a) the high-frequency resistance across port a—p
(b) the on-resistance of the switches
(c) the storage-time modulation in bipolar transistors
(d) the general saturation characteristics of the switches.

These parasitic elements affect only the relationship between the average port
voltages of the PWM switch but not its average terminal currents. In this section,
we shall formulate their effect in an invariant way and model them by a resistor in
series with the common terminal of the PWM switch. The first of these parasitic
elements is the most subtle because it concerns the general problem of modeling
the nonlinear part of a system (in our case the PWM switch) by separating it from
its linear part. Naturally, the accuracy of such a modeling technique depends on
how carefully the quantitative interaction between the linear and nonlinear parts
is accounted for when separating both parts. In the absence of parasitic elements
and in continuous conduction mode there is no quantitative interaction between
the linear elements of the filter and the average voltages and currents of the PWM
switch, so that the switch can easily be separated from the rest of the circuit and
modeled accurately. In the presence of certain parasitic elements, a small amount
of interaction between these elements and the average voltages and currents of the
PWM switch exists which warrants a refinement of the ideal models in Figs. 8.38
and 8.39.

(a) The high-frequency resistance across port a–p The pulsating active terminal
current, i�

�
(t), in a converter is absorbed entirely by those elements which lie

between terminals a and p of the PWM switch. All other elements lying between
terminals c and p absorb the continuous inductive current in the common ter-
minal. Hence, if i�

�
(t) encounters a resistance r

!
it will give rise to a pulsating voltage

ripple, r
!
i�
�
(t), which will be superimposed on top of the smooth voltage across port

a—p. To determine r
!
, one simply shorts the capacitive and input voltage ports,

opens the inductive ports and determines the resistance between terminals a and p.
This is best illustrated by examples. For the buck converter with an input filter
shown in Fig. 8.69a, r

!
is equal to the parasitic equivalent series resistance (ESR) of

the input filter capacitor, i.e. r
!
� r

��
. For the buck-boost converter with an input

filter shown in Fig. 8.69b, r
!
� r

��
�R � r



. For the converter in Fig. 8.59 and for
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the Cuk converter in Fig. 8.32, r
!
� r

�

. For other converters, r

!
is determined in a

similar manner (see Problem 8.16).
In all cases, we see that the high-frequency parasitic resistance across port a—p is

due to the ESR of the filter capacitors connected effectively across that port. Since
the pulsating current is absorbed by the filter capacitors, the ripple voltage it
generates is balanced about the average value of the port voltage V

��
as shown in

Fig. 8.70. There is of course another ripple component in the port voltage v�
��

(t)
(not shown in Fig. 8.70) which is essentially a triangular one and due to the
capacitance, as explained earlier and shown in Fig. 8.22. The main difference
between these two ripple components is that the average value of the capacitive
ripple component in Fig. 8.22 is zero in each subinterval, T

��
and T

���
, whereas the

average value of the ripple due to the ESR in Fig. 8.70 is zero only over the entire
switching interval, T

�
, and not over each subinterval. Hence, the average value of

v�
��

(t) during T
��

is not equal to the average value of v�
��

(t) over T
�
, which is simply

the average value v�
��

(t). According to Fig. 8.70, the average value of v�
��

(t) during
T
��

is given by:

Figure 8.69
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�v�
��

(t)�
���

� v
��

� d�i


r
!

(8.186)

All we have to do now is fix the relationship between the average values of the
voltages across ports a—p and c—p:

v

�

� d�v�
��

(t)�
���

(8.187)� dv
��

� dd�i


r
!

The relationship between the average terminal currents i
�

and i



remains unaffec-
ted and is still given by i

�
� di



. The interaction term, dd�i



r
!
, can now be easily

modeled by a parasitic resistance dd�r
!

in series with the common terminal in the
large-signal average model of the PWM switch, as shown in Fig. 8.71. The
small-signal model is obtained by perturbing Eq. (8.187):

v̂

�

�Dv̂
��

� V
"
d% � î



r
!
DD� (8.188)

in which:

V
"
� V

��
� I



r
!
(D�D�) � V

��
(8.189)

The relationship between î
�

and î



remains unaffected and is still given by Eq.
(8.116a). The dc and small-signal model corresponding to Eqs. (8.188) and (8.116)
now follows and is shown in Fig. 8.72.

(c)

(b)

(a)

Figure 8.70
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Figure 8.71

Figure 8.72

(b) The on-resistance of the switches When MOSFETS are used to realize the
active and passive switches, the effect of their finite on-resistance can easily be
incorporated in the model of the PWM switch. Let r

�
and r



be the resistances of

the active and passive switches of the PWM switch, respectively, as shown in Fig.
8.73. Intuitively, one can see that since the common terminal spends D% of its time
in series with r

�
and D�% of its time in series with r



, the effective resistance

appearing in series with the common terminal must be Dr
�
�D�r



. We can verify

this by re-examining the relationship between v

�

and v
��

. We can see from Fig.
8.73 that during T

��
the voltage across port c—p is less than v

��
by a factor of i



r
�
,

while during T
���

it is less than zero by a factor of i


r


. It follows that the

relationship between v

�

and v
��

is:

v

�

� d(v
��

� i


r
!
d�� i



r
�
) � d�i



r



(8.190a, b)
� dv

��
� i



(r
!
dd�� dr

�
� d�r



)





This result is consistent with our expectation, so that the effect of r
�

and r



can be
modeled by adding another parasitic resistor, dr

�
� d�r



, in series with dd�r

!
in the

Figure 8.73
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average large-signal model of the PWM switch in Fig. 8.71. The small-signal
model is determined by perturbing Eq. (8.190) and obtaining:

v̂

�

�Dv̂
��

� V
"
d% � i%



r



(8.191)

in which:

V
"
� V

��
� I



[r

!
(D�D�) � r



� r

�
]

(8.192)
r


�DD�r

!
�Dr

�
�D�r








Since the relationship between î
�

and î



is still given by Eq. (8.116), the small-signal
model corresponding to Eqs. (8.191) and (8.116a) looks the same as in Fig. 8.72 in
which V

"
is given by Eq. (8.191b) and Dr

�
�D�r



is added to DD�r

!
.

(c) The storage-time modulation of BJTs When a bipolar junction transistor is
used to realize the active switch, the modulation in the duty ratio at the collector
generally differs from the modulation in the duty ratio applied to the base of the
BJT. It has been shown that:�

d% � d%
�
�

î



I
�!

(8.193)

in which:

d% � modulation in the duty ratio at the collector of the BJT

d%
�
� modulation in the duty ratio applied to the base of the BJT (8.194a—c)

I
�!

� modulation parameter





The modulation parameter has a negative value for constant base drive and a
positive value for proportional base drive. More sophisticated types of base drive
can render the value of I

�!
infinite so that d% � d%

�
. Since storage-time modulation

modifies the duty-ratio, the relationships between the port voltages and the
terminal currents are both affected. The effect of storage-time modulation on the
port voltages is determined by substituting Eq. (8.193) in (8.191):

v̂

�

�Dv̂
��

� V
"
d%
�
� î



(r
�!

� r


) (8.195)

in which:

r
�!

�
V

"
I
�!

� Storage-time modulation resistance (8.196)

The effect of storage-time modulation on the average terminal currents is deter-
mined by substituting Eq. (8.193) in (8.113a):

î
�
��D�

I



I
�!
� î
 � d%

�
I



(8.197)
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Typically D� I


/I

�!
, so that Eq. (8.197) reduces back to its original form:

î
�
�Dî



� d%

�
I



(8.198)

Equations (8.197) and (8.198) correspond to the small-signal model shown in Fig.
8.74 in which r

�!
is an ac resistance which, unlike r



, vanishes under dc conditions.

Figure 8.74

Storage-time modulation can have a pronounced effect on the high-frequency
response of certain converters (see Problem 8.17).

(d) Simple and general saturation models for the switches When a BJT and a
diode are used for the active and passive switches, respectively, their simple
saturation models can be easily included in the model of the PWM switch. If we
assume that a transistor or a diode in its on-state sustains a fixed voltage across its
terminals, then we can write the relationship between v


�
and v

��
:

v

�

� d(v
��

� V
�	���

) � d�V
#$

(8.199)

in which V
�	���

is the saturation voltage of the transistor and V
#$

is the diode
voltage. The relationship between the average terminal currents remains unaffec-
ted and is still given by i

�
� di



. Equation (8.199) can be rewritten as:

v

�

� dv
��

� (dV
�	���

� d�V
#$

) (8.200)

which, along with i
�
� di



, can be incorporated in the large-signal average model of

the PWM switch, as shown in Fig. 8.75a. It can easily be shown that the small-
signal model is still given by Fig. 8.72, in which V

"
is given by:

V
"
� V

��
� V

�	���
� V

#$
� V

��
(8.201)

Figure 8.75
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Instead of assuming a fixed on-voltage or an on-resistance when a switch is
closed, we can assume a general relationship V

%
(i


, . . .) so that:

v

�

� d[v
��

� i


r
!
� V

%�
(i
�
, . . .)] � d�V

%�
(i


, . . .)

i
�
� di



(8.202a—c)

d� d(v

���

, i


, . . .)





In these equations, V
%�

(i


, . . .) and V

%�
(i


, . . .) are the on-voltages of the active and

passive switches, respectively, which depend on the current i



and possibly upon
other parameters which depend on drive mechanisms. The duty ratio is shown to
be a function of the control voltage, v


���
, and possibly the current i



and other

parameters which also depend on drive mechanisms. An equivalent circuit model
corresponding to Eqs. (8.202a—c) is shown in Fig. 8.75b.

Figure 8.75 (cont.)

8.11 Feedback control of dc-to-dc converters

The output voltage or current of a dc-to-dc converter can be regulated using one of
the feedback schemes shown earlier in Fig. 8.2. With output voltage feedback, an
optional current feedback loop can also be added to form a two-loop, or two-state,
feedback system. There are several ways of implementing the current feedback
loop, all of which require special modeling techniques. We shall discuss only one
popular method of current feedback, known as peak current-mode control, and
show two different ways of modeling it. We shall use a buck converter to illustrate
the use of single-loop and two-loop feedback control circuits.

Regardless of the type of feedback used, the most common way of converting the
control signal to a PWM waveform is to compare it to a sawtooth waveform. This
is shown in Fig. 8.76, in which a pulse with a fixed repetition rate, T

�
, is initiated at

the beginning of the ramp and is terminated when the ramp voltage exceeds the
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control signal. In this figure we have ignored the small ripple component in control
voltage. By similar triangles we have, from Fig. 8.76:

v


� V

�
V

&

�
t
��

T
�

� d (8.203)

It follows that:

d% �
v̂



V
&

�K
'
v̂



(8.204)

in which:

K
'

�
1

V
&

� modulator gain (8.205)

Typical values of V
&

range from 1 to 2 V.

Figure 8.76

8.11.1 Single-loop voltage feedback control

The buck converter in Fig. 8.77 operates from a fixed bus voltage of 5 V and
delivers 0—10 A at 2.5 V. The converter is designed to operate at 100 kHz and uses
power MOSFET switches. The feedback compensation is designed to yield a
stable loop which has a very large gain ((10	) at dc and a crossover frequency of
17 kHz. The large loop gain at dc ensures excellent regulation against quasi-static
load and line variations (even though the line in this application is fixed at 5 V).
The crossover frequency at 17 kHz ensures the smallest deviation in the output
voltage when the load current changes abruptly from 0 to 10 A, or vice versa. An
approximate expression of the overshoot (or undershoot) in the output voltage is
given by:

�V
�
�

�I
�

2
f


C

; r
�
�

1

2
f


C

(8.206)
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in which f



is the crossover frequency, �I
�

is the step load current and C is the
output capacitor. This expression is valid when the change in the load current
takes place over one or more switching cycles. For faster changes in the load
current, other factors need to be considered which will not be discussed here.
Another restriction on the validity of Eq. (8.206) is that the value of the ESR has to
be less than the reactance of the output filter capacitor at the crossover frequency.

Figure 8.77

The purpose of the relatively large value of the output capacitor is to ensure that
the output voltage ripple stays within 0.3% of the output voltage (7.5 mV) under
worst case conditions. Such a large capacitance is typically obtained by paralleling
several capacitors made of solid tantalum which have significant equivalent series
resistance (ESR). The capacitor in this converter has an ESR of 2 m
 and is
obtained by paralleling twenty 250-�F solid tantalum capacitors each with an
ESR of 40 m
. When the capacitive reactance at the switching frequency is much
smaller than the ESR, the output ripple voltage, instead of being piecewise
parabolic as discussed earlier, is triangular and is given by the product of the ripple
current in the inductor and the value of the ESR. In this converter, the reactance of
C at 100 kHz is 3.2 � 10�� 
, which is much less than 2 � 10��
.

The control-to-output transfer function is determined from the equivalent
circuit diagram shown in Fig. 8.78, where:

r


�Dr

�
�D�r



� r

"%��
(8.207a, b)

V
��

� V
�





In Eq. (8.207b), r
"%��

is the on-resistance of the MOSFETs and has a typical value
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of 28 m
 at a gate-drive voltage of 10 V. The transfer function relating the output
voltage to the control voltage is given by:

G


(s) �

v̂
�
(s)

v̂


(s)

�
d%

v̂



v̂
�
d%

�K
'
G



(s) (8.208)

in which G


(s) is given by:

G


(s) � V

�

1 � s/�
 �

1 � s/(�
�
Q) � (s/�

�
)�

(8.209)

Figure 8.78

Using the numerical values shown, we compute the following values for the
zero, the resonant frequency and the characteristic impedance:

�
 �

�
1

r
�
C

� (2
)15.9 � 10� rad/s

�
�
�

1

�LC
� (2
)1.24 � 10� rad/s (8.210a—c)

Z
�
��

L
C

� 25.7 m



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The Q-factor is computed for the cases of resistive and current loading:

Q�
1

Z
�

r


� r

�
�R

�
r
�
� (r



� r

�
) �R

Z
�

� 

0.83; R��

0.85; R� 250 m

(8.211)

The compensation network has a transfer function H(s) of the form:

H(s) �K
�

 
s

(1 � s/�
 
)�

[1 � s/(�
�
/2)]�

(8.212)

An asymptotic construction of H(s) is shown in Fig. 8.79. The pole at the origin
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provides infinite gain at dc for excellent dc regulation. The double zero at �
 

is
placed on top of �

�
of the power stage in Eqs. (8.209) and (8.210) to compensate for

the 180° phase shift due to �
�
. The double pole at �

�
/2 provides �20 dB/dec

attenuation for the switching ripple. In terms of the circuit elements in Fig. 8.77,
H(s) is given by:

H(s) �
1

sR
�

(C
�


�C
�


)

(1 � sC
�

R
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)[1 � sC
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(1 � sC
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�
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�

)(1 � sC

�
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(8.213)

Since �
 
��

�
/2, we can deduce from the expressions of �

 
and �

�
/2 that C

�

�C

�

and R

�

�R

�
, so that Eq. (8.213) can be simplified to:
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sR
�
C
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(1 � sC
�

R

�

)(1 � sC
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�

R

�

)(1 � sC

�

R

�
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(8.214)

Figure 8.79

The loop gain is given by:

T (s) ��G


(s)H(s) (8.8.215)

An asymptotic construction of the magnitude of the loop gain, with �
 

placed
on top of �

�
, is shown in Fig. 8.80. The closed-loop model can be simulated using

Figure 8.80
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OrCAD/Pspice in which the large-signal average model of the PWM switch in
continuous conduction mode is available as a subcircuit called VMLSCCM
(voltage-mode large-signal continuous conduction mode). The simulation circuit
is shown in Fig. 8.81a, and a magnitude and phase plot of T ( j�) is shown in Fig.
8.81b. The phase margin and the crossover frequency are seen to be 96° and
17.6 kHz, respectively. Note that the simulation program uses the large-signal
average model of the PWM switch to determine the dc operating point automati-
cally. Subsequently, the simulation program expands the large-signal model nu-
merically at the dc operating point to determine the small-signal response.

0

C3c
1.24nF
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1 m V
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5000uF

R2c
1.23k

0
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R3c
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5Vdc

-
+ +

-
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Figure 8.81

To complete the design, a properly damped input filter is added to reduce the
input ripple current to about 170 mA, as shown in Fig. 8.82. The effect of the input
filter on loop gain is shown in Fig. 8.83, in which the crossover frequency is seen to
remain the same as before.

The time-domain response of the converter in Fig. 8.82, to a 0—10-A step change
in the load current, is shown in Fig. 8.84. In this figure, the predicted response of
the output voltage obtained by the large-signal average model of the PWM switch
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Figure 8.81 (cont.)

Figure 8.82

and the actual response obtained by cycle-by-cycle simulation of the actual circuit
are compared. The agreement between the average and the actual response is quite
satisfactory considering the fact that the simulation run time of the average model
is much shorter than that of the cycle-by-cycle simulation. If we substitute the
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Figure 8.83

value of the crossover frequency from Fig. 8.83 in Eq. (8.206), we obtain the
estimated undershoot in the output voltage:

�V
�
�

�I
�

2
f


C

�
10A

2
(16.6 � 10�)(5000 � 10�	)
� 19 mV (8.216)

which is about 4 mV away from the average value of 23 mV observed in Fig. 8.84.
The reason for this discrepancy is that Eq. (8.206) is at the limit of its validity
because the reactance of the output capacitor at the crossover frequency is
1.92 m
, which is larger than the value of its ESR.

Figure 8.84
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8.11.2 Current feedback control

A very popular type of current feedback control, known as peak current-mode
control,� is shown in Fig. 8.85. In this type of control, the positive ramp of the
active switch current during the on-time serves as the sawtooth waveform in the
pulse-width-modulating circuit. When the peak current reaches a specified thresh-
old, V



, the comparator resets a flip—flop terminating the on-time. A clock with a

fixed period, T
�
, always sets the flip—flop to initiate the on-time. It is not hard to see

that it is the common terminal current that is effectively being fedback, since the
active and common terminal currents of the PWM switch are coincident during
the on-time. Therefore, it should be possible to derive an invariant model for peak
current mode control similar to that of the PWM switch. This is shown in Fig. 8.86
in which the PWM switch and the current feedback loop are combined in a new
invariant structure called the current-controlled PWM switch� (CC-PWM
switch). The sawtooth waveform which is added to the current waveform is called
the external ramp and its purpose is to provide stability, as we shall see presently.

The steady-state current waveform for D� 0.5 is shown in Fig. 8.87a. It is fairly
easy to see by a simple geometric construction that a steady-state duty cycle
greater than 0.5 cannot be sustained as shown in Fig. 8.87b. Here we see that peak

Figure 8.85

current control becomes unstable for D� 0.5 where it breaks into subharmonic
instability, i.e. the duty cycle increases with a subharmonic periodicity resulting in
a periodic waveform at half the switching frequency. In Fig. 8.87a we see how an
initial disturbance in the current waveform settles down for D� 0.5. The addition
of an external sawtooth waveform, or ramp, as shown in Fig. 8.88 extends the
stable operation of peak current control to D� 0.5. It can be seen from these
figures that the dynamics of peak current mode control is independent of any
particular converter so that it should be possible to derive an invariant model of
the CC-PWM switch. Such a model should contribute to the characteristic equa-
tion of a converter, a quadratic factor whose frequency is at half the switching
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Figure 8.86

frequency and whose damping becomes negative for D� 0.5 in the absence of an
external ramp.

In order to describe the action of peak current control in invariant terms, all we
need to do is describe the slopes of the common terminal current in terms of the
terminal quantities of the PWM switch. It is not hard to verify that the slopes of
the current signal during the on-time and off-time for any converter are given by:

Figure 8.87
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Figure 8.88
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(8.217a, b)
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in which R
�

is a scaling constant which transforms the current signal into a voltage
signal and L is the effective inductance which dictates the slope of the current. In a
single inductor converter, L is the same as the switched inductor in that converter.
For example, in the buck converter with an input filter, shown earlier in Fig. 8.69a,
L � L; whereas in the Cuk converter, L � L

�
� L

�
. According to Fig. 8.88, the

following dc equation holds at the switching instants:
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�
�

S
�
D�T

�
2

�S
!
DT

�
� V



(8.218)

When time variations in the duty cycle are considered, all quantities in Eq. (8.218)
must be replaced with their instantaneous values resulting in a sampled-data
equation. If, for the moment, we ignore the effects of sampling, then we can replace
all the quantities in Eq. (8.218) with their average values to determine the effect of
the control law on these quantities. Hence, Eq. (8.218) together with the invariant
equation of the PWM switch yield:
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v
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�
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dT
�

R
�

�
s
�
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(8.219a—c)
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If we substitute d� v

�

/v
��

and s
�
� v


�
R

�
/L in Eqs. (8.219a, b), we obtain:
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(8.220a, b)
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These two equations correspond to the large-signal average model of the CC-
PWM switch shown in Fig. 8.89. The capacitance C

�
in this figure does not follow

from Eqs. (8.220a, b) and has been added to predict the subharmonic instability of
the current loop, as will be discussed shortly. Equations (8.220a, b) were written
assuming positive i



flowing out of the common terminal. If positive i



flows into

the common terminal, then the direction of the control and external ramp sources
should be reversed. Although we can always identify the PWM switch with
positive i



flowing out of the common terminal, we can allow, in general, for i



to

flow in either direction and automatically reverse the control and ramp control
sources by multiplying these sources by i



/ � i



� (with positive i



defined flowing out

of the common terminal). This is particularly useful in creating a user-defined
subcircuit for simulation purposes. The dc model of the CC-PWM switch is
essentially the same as the large-signal average model without C

�
. Generally, it is

not possible to solve for the dc operating point in terms of V



in closed form
because the solution is generally given by the roots of a cubic equation, as we shall
see in Example 8.13.

Figure 8.89

The equivalent small-signal circuit model of the CC-PWM switch is obtained by
perturbing the large-signal average equations in Eqs. (8.220):
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� v̂



k
�
� v̂

��
g
�
� g

�
v̂

�

(8.221a, b)
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in which the reader can verify:
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These equations correspond to the circuit model shown in Fig. 8.90. Clearly, there
are many different ways of expressing the small-signal parameters in Eqs. (8.222).
For example, we have expressed g

�
explicitly in terms of S

!
/S

�
because it is typical

to specify the amount of the external ramp by its ratio to the natural current ramp
during the on-time.

The capacitance C
�

in the model of the CC-PWM switch is determined quite
easily by examining the dynamics of peak current control in the vicinity of half the
switching frequency, as shown in fig. 8.87b. As mentioned earlier, the dynamics

Figure 8.90

shown in Fig. 8.87b is independent of the type of converter and is characteristic of
peak current control only. This observation is verified by examining the equivalent
circuit of any converter with peak current control using the model of CC-PWM
switch in Fig. 8.90. Hence, with the control voltage and input held constant and the
output voltage essentially at signal ground in the vicinity of half the switching
frequency, the equivalent circuit model of any converter in peak current control
reduces to the parallel resonant circuit shown in Fig. 8.91b. To see this, we use the
buck-boost converter in Fig. 8.91a as an example and write:

V


� constant � v̂



� 0

(8.223)V
�
, V

�
� constant � V

��
� constant � v̂

��
� 0

We could have started with any other converter and arrived at the same circuit in
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Fig. 8.91b using the conditions in Eq. (8.223). This is the circuit which contributes
to the characteristic equation a quadratic factor at half the switching frequency
which becomes unstable for D� 0.5 when S

!
� 0. In fact, the characteristic

equation for this parallel resonant circuit is:

�(s) � 1 � sLg
�
�

s�

LC
�

(8.224)

If this circuit were to resonate at half the switching frequency, the value of C
�

would have to be such that:

�
�
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�
�

4

L��
�

(8.225)

According to Eq. (8.222b), the value of g
�

in the absence of an external ramp is
given by:

g
�
�
%!��

�
T
�

L �
1

2
�D� (8.226)

which for D� 0.5 becomes negative and the parallel resonant circuit oscillates at
half the switching frequency. The addition of an external ramp allows g

�
to remain

Figure 8.91

positive for D� 0.5, as can be seen from Eq. (8.222), thereby stabilizing the current
loop. Hence, the predictions of the model of the CC-PWM switch in Fig. 8.90 and
the behavior of peak current control are consistent. In the following example we
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shall determine the dynamics of a boost converter with peak current control.
The quadratic factor in Eq. (8.224) is common to the denominator of the

small-signal dynamics of PWM converters operating in CCM with peak current
control. Performing the necessary substitutions, Eq. (8.224) can be written as:

�(s) � 1 �
s

�
�
Q

�

�
s�

��
�

(8.227)

in which
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(8.228a, b)
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Example 8.13 A boost converter with peak current control is shown in Figs.
8.92a and b. In Fig. 8.92a the CC-PWM switch is identified with positive i



flowing

into the common terminal and in Fig. 8.92b it is identified with positive i



flowing
out of the common terminal. Using the circuit in Fig. 9.92a, we replace the
CC-PWM switch with its dc model as shown in Fig. 8.93, in which the arrows of
the ramp and control source have been reversed. According to Fig. 8.93, we have:

Figure 8.92
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Solving these simultaneously, we obtain the following cubic equation in V
�
:
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Clearly it is not possible to obtain an analytical answer for V
�

for a given control
voltage V



. Unfortunately, this is the case with peak current control regardless of

the type of converter. The best that we can do is get an approximate idea by letting
L be very large and ignore S

!
. This yields:
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(8.231)

The control-to-output transfer function is determined by replacing the CC-
PWM switch with its small-signal model as shown in Fig. 8.94 and has the form:

v̂
�
v̂



�A



N


(s)

D(s)
(8.232)

Figure 8.93
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Figure 8.94

At dc, the circuit in Fig. 8.94 reduces to the one in Fig. 8.95, whence the low-
frequency asymptote can be obtained:
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(8.233a, b)
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in which G� 1/R. The same result can be obtained by an implicit differentiation of
Eq. (8.230) with respect to V



.

Figure 8.95

The demoninator is obtained by setting the control source v̂



in Fig. 8.94 to zero.
We already know that at high frequencies this circuit reduces to the parallel
resonant circuit in Fig. 8.91b, which contributes the quadratic term at half the
switching frequency in Eq. (8.224) as discussed earlier. Hence we have:

D(s) � (1 � s/�
�
)[1 � s/(�

�
Q

�
) � s�/��

�
] (8.234)
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in which:
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The dominant pole �
�

is determined by examining the circuit in Fig. 8.94 at low
frequencies in which the output filter capacitor is seen to dominate the dynamics.
The conductance looking into the capacitive port is determined from Fig. 8.95,
which the reader can verify to be:
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Hence, the dominant pole in Eq. (8.234) is given by:
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The numerator, N


(s), in Eq. (8.232) is determined by examining the null re-

sponse of the circuit as shown in Fig. 8.96. A null in the output voltage implies
v̂
��

� 0, which in turn implies that:

v̂

�

� î
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(8.238a, b)
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The simultaneous solution of these equations yields:

�D�� g
�
sL � 0 (8.239)

Substituting g
�
� 1/D�R we obtain the numerator:

N


(s) � 1 � s

L
RD��

(8.240)
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Figure 8.96

This is the same RHP zero in the duty-ratio-to-output transfer function in con-
tinuous conduction mode as explained earlier in Fig. 8.50 and in Eqs. (8.141—
8.143). This is expected since a step change in the control voltage v



in peak current

control results in a simultaneous step change in the duty cycle. �

Another model for peak current control, which actually preceded the model of
the CC-PWM switch, was developed by R. Ridley�� and is shown in Fig. 8.97. In
this figure, the power stage is modeled using the PWM switch with duty ratio
control, while the current loop is modeled using the blocks k

�
, k

�
, F

�
and H

!
(s). The

blocks k
�

and k
�

model the effect of the input and output voltages and their
expressions for certain converters are:
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The modulator gain is modeled by F
�

, while the effect of sampling is modeled by
H

!
(s). These are given by:
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The approximation of H
!
(s) by a quadratic is valid up to the neighborhood of half

the switching frequency.
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Figure 8.97

Both modeling techniques yield the same results for the control-to-output
transfer functions, as shown in the next example.

Example 8.14 The complete small-signal equivalent circuit of the boost conver-
ter in peak current control using the model in Fig. 8.97 is shown in Fig. 8.98. The
denominator D(s) in Eq. (8.232) is determined by setting all the excitations to zero
in Fig. 8.98 and examining the resulting circuit at low and high frequencies shown
in Figs. 8.99a, b, respectively. The dominant pole is obtained from Fig. 8.99a and
can be shown to be given by Eq. (8.237). The roots of the high-frequency factor are
obtained from Fig. 8.99b:
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(8.244)

Figure 8.98
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The quadratic factor follows by canceling î
�

in the last two equalities:

H
!
(s) �

sL
F
�
R

�
V

��

� 0 (8.245)

Substituting S
�

from Eq. (8.217a) in the expression for F
�

, we obtain:
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Substituting Eqs. (8.245) and (8.243) in (8.246), we obtain the same quadratic factor
as in Eq. (8.234).

The numerator of the control-to-output transfer function is determined by
examining the null response of the circuit as shown in Fig. 8.101, whence we have:

Figure 8.99
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Figure 8.100
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�





The simultaneous solution of these equations yields:

1 � sL
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V
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� 0 (8.248)

When the dc operating point, I


��I

�
/D� andV

��
��V

�
, is substituted in the

above, the same RHP zero as in Eq. (8.240) is obtained. �

8.11.3 Voltage feedback control with peak current control

In this section we shall demonstrate one of the advantages of adding a peak
current feedback loop to a voltage feedback loop. In Eq. (8.215), we saw that the
loop gain of the regulated buck converter was directly proportional to the input
voltage because of the dc gain G

�
of G



(s) given by Eq. (8.209). Hence, if the input

voltage was to vary significantly, the crossover frequency would vary propor-
tionally, which in certain applications could be undesirable. To show how peak-
current control renders the crossover frequency of the loop gain insensitive to the
input voltage, consider the small-signal equivalent circuit of a simple buck conver-
ter without an input filter in peak-current mode control, as shown in Fig. 8.101.
The control-to-output transfer function is obtained after setting v̂

�
� 0 and is given

by:

v̂
�
v̂



�G
�

1 � s/�
 �

1 � s/�
��

1

1 � s/(�
�
Q

�
) � (s/�

�
)�

(8.249)
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in which the quadratic factor is the same as the one discussed earlier in Eqs. (8.234)
and (8.235a, b). The zero at �

 �
is the usual zero due to r

��
of the output filter

capacitor and is given by:

�
 �

�
1

r
��
C

�

(8.250)

If we let s� 0, then the circuit in Fig. 8.101 reduces to the current source k
�
v̂



feeding the parallel combination of the load resistance and g
�
. It follows that G

�
in

Eq. (8.249) is given by:

G
�
�

k
�

g
�
�G

�

(8.251)

Figure 8.101

in which g
�

and k
�

are given by Eqs. (8.222a, b).
The low-frequency pole at �

��
is obtained by examining the circuit in Fig. 8.101

at low frequencies with v̂


� v̂

�
� 0. At low frequencies, L

�
is ineffective and the

dominant time constant is formed by C
�
�C

�
parallel with g

�
and the load

resistance. Hence, the dominant pole is given by:

�
��

�
g
�
�G

�
C

�
�C

�

�
g
�
�G

�
C

�

(8.252)

The crossover frequency is normally well above �
�

and well below �
�
��

�
/2.

Hence, in the vicinity of the crossover, G
�

and �
��

combine together in the
approximate behavior of the control-to-output transfer function:

G


(s) �G

�

1 � s/�
 �

s/�
��

�
k
�

sC
�

(1 � s/�
 �

) (8.253)

in which we have made use of Eqs. (8.251) and (8.252). Since k
�

is independent of
the input voltage, it follows that the control-to-output transfer function and,
hence, the loop gain are both independent of the input voltage near the crossover
frequency. It follows that the crossover frequency itself is practically independent
of the input voltage. An asymptotic sketch of G(s) is shown in Fig. 8.102.
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Figure 8.102

The voltage feedback compensation of a dc-to-dc converter with peak-current
control is somewhat simpler than that of a converter without peak-current con-
trol. The reason of course is that the power stage in current mode has a dominant
single pole whereas a power stage without peak-current control and operating in
CCM has a dominant complex pole-pair. A typical compensation scheme for
converters in peak-current control is shown in Fig. 8.103. The transfer function
relating the control voltage to the converter output voltage of the amplifier in Fig.
8.103 is given by:

H(s) �
v̂


(s)

v̂
�
(s)

�H
�

1 �
�

 

s

1 �
s

�
��

(8.254)

in which:

H
�
��

R
�


R
�


�
 


�
1

R
�

C

�


(8.255a—c)

�
��

�
1

R
�

C

�

�C

�


�
1

R
�

C

�






The pole at �
��

is optional and is placed at or above half the switching frequency
mainly to attenuate high-frequency switching noise. The zero at �

 

is placed

between the dominant pole of the power stage and the desired crossover frequency.
It should be placed low enough to provide adequate phase margin but not so low
as to cause a sluggish response. A numerical illustration of a practical voltage
feedback loop around a power stage with peak-current control is given in the
following example.
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Figure 8.103

Example 8.15 An OrCAD/Pspice simulation of the equivalent circuit of a buck
converter with peak-current control and output voltage feedback control is shown
in Fig. 8.104. The subcircuit CMLSCCM (current-mode large-signal continuous
conduction mode) is a large-signal model of the current-controlled PWM switch in
continuous conduction mode. The converter operates at 100 kHz from an input
voltage range of 13 to 26 V and has an output voltage of 5 V at 0—10 A. The load is
assumed to behave as a current source so that its incremental resistance is infinite,
i.e. G

�
� 0.

The reader can verify that the output ripple voltage is dictated by r
��

of the
output filter capacitor C

�
instead of C

�
and that it has a maximum value of 25 mV,

which occurs when the input voltage is 26 V.
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Figure 8.104
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The two parameters of peak-current control that must be determined are the
amount of the external stabilizing ramp, S

!
, and the current-to-voltage conversion

resistanceR
�
, both of which are shown in the model of the CC-PWM switch in Fig.

8.86. The value of R
�
is dictated by the maximum value of the current-sense voltage

signal which, for most commercially available PWM control chips, is in the range
of a few volts. In this design, we shall assume the maximum value of the current-
sense signal to be 2.5 V and that the maximum current to be sensed is about 12 A.
Hence:

R
�
�

2.5 V

12 A
� 0.2 
 (8.256)

Also, in this design, the amount of external ramp is chosen to yield Q
�
� 0.5 in the

subharmonic quadratic factor in Eq. (8.228). Hence, according to Eq. (8.228):

Q
�
�

1


�D����
S
!

S
�

� 1��
1

2�
� 0.5 (8.257)

The minimum duty cycle, assuming an efficiency of �� 85%, is computed to be:

D
���

�
V

�
�V

�����

�
5 V

(0.85)26 V
� 0.225 (8.258)

The slope of the inductor current during the off-time can now be computed:

S
�
�

V
�
R

�
L

�
5 V(0.2 
)

16 �H
� 6.25 V/�s (8.259)

Substituting Eqs. (8.258) and (8.259) in Eq. (8.257) yields the amount of external
ramp:

S
!
� 10 V/�s (8.260)

The values of R
�
, S

!
, L and the switching frequency are the arguments which are

supplied to the subcircuit CMLSCCM, which in turn computes the value of C
�

according to Eq. (8.225).
The loop gain is given by the product of H(s) and G



(s):

T (s) � T
�

1 �
s

�
 �

1 �
s

�
��

1 �
�

 

s

1 �
s

�
��

1

1 �
s

�
�
Q

�

�
s�

��
�

(8.261)

in which T
�

is given by:

T
�
��

k
�
g
�

R
�


R
�


(8.262)
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The numerical values of k
�

and g
�

are given by:

k
�
�

1

R
�

� 5 
�� (8.263)

g
�
�

T
�

L
�
�D�

S
!

S
�

�
1

2
�D�� 




0.416 
��; V
�
� 13 V

0.364 
��; V
�
� 26 V

(8.264)

The following values are computed for the numerical determination of the loop
gain:

T
�
��

k
�

g
�

R
�


R
�


� 

192; V

�
� 13 V

219; V
�
� 26 V

�
 �

�
1

r
��
C

�

�
1

(10 m
)(1000 �F)
� (2
)15.9 krad/s

�
 


�
1

R
�

C

�


�
1

(160 k
)(500 pF)
� (2
)1989 rad/s

�
��

�
1

R
�

C

�


�
1

(160 k
)(20 pF)
� (2
)50 krad/s (8.265a—g)

�
�
�

�
�

2
� (2
)50 krad/s

Q
�
�

1


�D�
S
!

S
�

� 1��
1

2�
� 


 0.5; V

�
� 26 V

0.4; V
�
� 13 V

�
��

�
g
�

C
�

� 



(2
)66 rad/s; V
�
� 13 V

(2
)58 rad/s; V
�
� 26 V





Note that the shape of the loop gain past the dominant pole, �
��

, is practically
independent of the input voltage for the same reason given earlier in Eq. (8.253).

In Fig. 8.105, a magnitude and phase plot of the loop gain is obtained using an
injection signal, as shown in the simulation program in Fig. 8.104. As expected the
shape of the loop gain and the crossover frequency are independent of the input
voltage.

458 PWM switching dc-to-dc converters



459 8.11 Feedback control of dc-to-dc converters

Figure 8.105

Figure 8.106

The dynamic response of the output voltage to a 0—10 A step change in the
output load current is shown in Fig. 8.106. The continuous trace shows the
response obtained using the large-signal average model of the CC-PWM switch
(CMLSCCM) in Fig. 8.105. Also shown in Fig. 8.106 is the actual response of the
converter obtained by cycle-by-cycle simulation. The agreement between the
predictions of the cycle-by-cycle simulation and the large-signal average model
simulation is generally good. �



8.12 Review

An ideal dc-to-dc converter transforms the dc level of a voltage or a current source
in a controllable and nondissipative manner using switches, inductors and capaci-
tors. The inductors and capacitors form effective low-pass filters which extract the
dc component of the switching waveforms and provide smooth dc voltages and
currents at the input and output ports of the converter. A practical converter
dissipates a relatively small amount of power in comparison with its output power
because of nonideal components. The ratio of the output voltage to the input
voltage is defined as the conversion ratio and is controlled by the duty cycle of the
switches. Although, in principle, a myriad number of switches, driven in myriad
ways, can be used to generate nonisolated converters ad nauseam, a pair of
switches, driven in a complementary fashion, is sufficient to generate basic conver-
ters which accomplish all the necessary functions of dc-to-dc power conversion.
The buck, the boost, the buck-boost, the Cuk, the Watkins—Johnson and its
bilateral inverse are among the basic converters discussed in this chapter. The
buck converter steps down the input voltage and the boost converter steps up the
input voltage. The sign of the output voltage in both of these converters follows the
sign of the input voltage. The Cuk and the buck-boost converters can either step
up or step down the input voltage and the sign of their output voltage is always
opposite that of the input voltage. The Watkins—Johnson and its bilateral inverse
can either step up or step down the input voltage while the sign of their output
voltage can either be the same or opposite that of the input voltage. Other
converters, some of which use four switches, are also discussed.

Like amplifiers, dc-to-dc converters are nonlinear circuits whose exact solutions
can only be determined numerically using circuit simulation programs. Neverthe-
less, the vast amount of design-oriented analytical techniques available for ampli-
fier circuits are also desirable for dc-to-dc converter circuits. In an amplifier circuit,
these techniques are applied once an equivalent circuit model of the amplifier is
obtained by replacing the transistor, or the vacuum tube, with its equivalent circuit
model. In order to apply these techniques to a PWM converter circuit, we have
introduced the concept of the PWM switch and derived an equivalent circuit
model for it. The PWM switch, just like the transistor, is a three-terminal non-
linear device which can be replaced with its equivalent circuit model to yield an
equivalent circuit model of a PWM converter circuit. The model of the PWM
switch does not depend on any particular converter topology, just like the model
of a transistor does not depend on any particular amplifier topology. Hence, the
analyses of the dynamics of amplifiers and PWM converters are identical. For
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example, to determine the small-signal characteristics of a PWM converter, first a
dc analysis is performed and the dc operating point of the PWM switch is
determined. Second, the small-signal parameters in the model of the PWM switch
are evaluated at the dc operating point and a small-signal equivalent circuit of the
converter is obtained from which the input and output impedance, the line-to-
output and the control-to-output transfer functions are determined.

Various feedback control techniques can be used to regulate the output voltage
of a converter against variations in the input voltage and the load current. In a
single-loop feedback system, only the output voltage is fed back into the PWM
control circuit where it is compared with a reference voltage. In a two-loop
feedback system, in addition to the output voltage, the current in the active switch
is fed back to improve the loop-gain characteristics of the voltage feedback loop.
The nature of the sampled data of the active-switch current feedback loop must be
correctly accounted for whenever a continuous-time model of the converter is
sought. This can be done either by deriving a model for the current feedback loop
alone or by deriving a model for the PWM switch and the current feedback loop
combined together. The combination of the PWM switch and the current feed-
back loop is called the current-controlled PWM switch.

Problems

8.1 Linear series voltage regulator. A simplified diagram of a series regulator
using a bipolar transistor is shown in Fig. 8.107a. An equivalent circuit diagram is
shown in Fig. 8.107b.

(a) Show that the line-to-output transfer function and the output impedance are
given by:

v
�
(s)

v
�
(s)

�
1

a
�
�

r
�

R
�
�

1

1 � sC
�
R

� �
r
�

�a
�

(8.266a, b)

Z
�
(s) �

R
� �

r
�

�a
�

1 � sC
�
R

� �
r
�

�a
�





(b) If a
�

is an operational amplifier, then its gain can be approximated by
a(s) ��

�
/s. Show that the regulator in this case becomes unstable as R

�
��.

One way to prevent this oscillation is to connect a large capacitance from the
emitter to ground in order to shunt r

�
. Determine the transfer functions in part
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(a) with C connected from emitter to ground and discuss how the circuit
becomes stable. (When a linear regulator is placed far from the source, r

�
accounts for the resistance of the connecting wires. This is why manufacturers
of linear regulator ICs recommend that a large capacitance (100 �F, solid
tantalum) be connected immediately to the input terminals of the linear
regulator whenever it is placed far from V

�
.)

Figure 8.107

8.2 Linear shunt regulator. Show that for the shunt regulator in Fig. 8.108a we
have:

v
�
(s)

i
�
(s)

�Z
�
(s) �Z

��
(s) �

R
�
� r

� �
r
!

1 � a
�

1 � sC
�
R

�
� r

� �
r
!

1 � a
�

(8.267)

8.3 Incremental output resistance.

(a) Show that the incremental output resistance of an ideal unregulated converter
is given by:
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Figure 8.108
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�
�M

�
/�V

�

(8.268)

Hint: Recall that M
�

, in general, can be a function of �, V
�

and I
�
. Also we have:

r
�
�

dV
�

dI
�

�
d(M

�
V

�
)

dI
�

� V
�

dM
�

dI
�

(8.269)

(b) Deduce that when M
�

is only a function of control parameter, then r
�
� 0.

(c) Certain converters have certain modes of operation in which they act as
gyrators, i.e. they transform the input voltage source to a current source which
is linearly proportional to the input voltage:

I
�
� g

�
(�)V

�
(8.270)

in which g
�

is some transconductance that depends on the control parameter �.
(An example of such a converter is the series resonant converter operating in an
even-type discontinuous conduction mode.��) It is clear then that the output
impedance for such a converter is infinite. Show that r

�
indeed is infinite in Eq.

(8.268) for such converters.

Hint: Show that M
�

can be written as:
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(8.271)

8.4 Transfer function of the LC low-pass filter. Use the 2-EET to determine the
transfer function of the LC low-pass filter shown in Fig. 8.109.

Figure 8.109

8.5 Output ripple voltage in the buck converter.

(a) Derive the expression of the output ripple voltage in the buck converter
starting with the expressions of the individual components of the ripple voltage
in Eqs. (8.29a, b).

(b) Derive the same expression by recognizing that the peak-to-peak ripple volt-
age on the capacitor is equal to the amount of charge delivered to the capacitor
in the time interval T

��
/2 � t� (T

��
� T

�
)/2 divided by the capacitance. This is

shown in Fig. 8.110 in which I�
�
(t) is the ripple component of the inductor

current.

Figure 8.110

8.6 Input ripple current of a buck converter with an input filter. Using simple
geometry, derive the expression of the peak-to-peak ripple current of the input
filter of the buck converter in Eq. (8.55).

Hint: Recognize that the double integral in Eq. (8.54) is nothing more than the area under the

triangle shown in Fig. 8.111, whose height is half the area of the rectangular voltage pulse during

T
��

.
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Figure 8.111

8.7 Parallel damping of the input filter.�� An LC filter with parallel damping is
shown in Fig. 8.112a. Use the 3-EET to show that the characteristic equation is
given by:

D(s) � 1 � s�C

R



�

L
R�� s��LC� LC




R



R �R


�

(8.272)� s�LCC


R




In order to ensure that R


C



damps the LC resonance (and does not create a new

lower resonance), it should be chosen such that:

1

R


C




��
�
�

1

�LC
(8.273)

Figure 8.112

If R� 0, as in the case of loading by a regulating switching converter, we should
further require that:

R


��R � (8.274)

so that:

R �R


� 0 (8.275)

Hence, provided �R � is not too small, practical values of R



can be realized. Show
that under these considerations D(s) can be factored:
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D(s) � (1 � sC


R



)�� s

L
R



�R

� s�LC� (8.276)

in which we see that the Q-factor of the quadratic term is given by Q
��

in Eq. (8.59).

Hint: Use the reference circuit in Fig. 8.112b to derive D(s) in Eq. (8.272).

8.8 Series damping of the input filter.�� Following the same procedure as in
Problem 8.7, derive similar results for the series-damped input filter shown in Fig.
8.113.

Figure 8.113

8.9 Output ripple voltage of the boost converter under conditions of no load. Show
that under conditions of no load (R

�
��) the current through S

�
(assuming S

�
is

a bi-directional switch) in the boost converter in Fig. 8.19 has the shape shown in
Fig. 8.114. Determine the ripple voltage across the capacitor and show that its
peak-to-peak value is given by:

V
����

V
�

�
D��DT�

�
8LC

(8.277a,b)
�

T�
�

8LC
M

�
� 1

M�
�





Figure 8.114

8.10 Output ripple voltage of the buck-boost converter under conditions of no
load. Show that the peak-to-peak ripple voltage in the buck-boost converter
under no-load conditions (assuming bi-directional switches) is given by:
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8.11 Isolated Cuk converter. The isolated Cuk converter is shown in Fig. 8.115.
Show that the conversion ratio is given by:

M
�
� n

D

D�
(8.279)

Figure 8.115

The magnetizing inductance of the transformer can have a significant effect on
the control-to-output transfer function because it can resonate with C


�
and C


�
,

both of which must be properly damped.��

8.12 The control-to-output transfer function of the tapped buck converter.

(a) Determine the transfer function in Eq. (8.147).

(b) Examine the current waveform i�
�

(t) in Figs. 8.51a, b, and explain why the zero
in the control-to-output transfer function is in the right-half plane for n� 1
and in the left-half plane for n� 1.

(c) Derive the analytical expression of this zero using a similar argument given for
the boost converter in Eqs. (8.138—8.143).

8.13 Effect of parasitic elements on the voltage conversion ratio of the Watkins–
Johnson converter.

(a) Substitute the dc model of the PWM switch in the converter shown in Fig. 8.56
and include a parasitic resistance, r

!
, in series with the active terminal (or at any

other place that you like). Determine the new conversion ratio using the EET
with r

!
as the designated extra element.

(b) Show that the conversion in the presence of r
!

is zero for D� 0.5.

(c) Sketch the conversion ratio in part (b) and determine its maximum value.
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8.14 Inverse of the Watkins–Johnson converter. Identify the PWM switch in the
converter shown in Fig. 8.58 and determine its voltage conversion ratio.

8.15 Frequency response of a quadratic converter. An OrCAD/Pspice simulation
of the quadratic converter in Fig. 8.64 is shown below in which the control-to-
output transfer function is determined by expanding the large-signal model of the
PWM switch (VMLSCCM) at a duty cycle of D� 0.35. This is accomplished by
setting the control voltage at a dc value of 1.35 V with a small-signal ac voltage
superimposed on it.

Using the numerical values of the components in Fig. 8.116a, verify the control-
to-output transfer function derived in Eq. (8.185) against Fig. 8.116b.
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Figure 8.116

Notes: (a) Pspice simply ignores the actual magnitude of the ac voltage, shown here as 10 mV,

and numerically expands the model of the PWM switch at the dc operating point and deter-

mines the numerical transfer function of the linearized circuit. (b) In the specification of the

parameters of VMLSCCM, the height of the ramp is set to 1 V and the valley voltage at 1 V.

Hence, a dc value of 1.35 V in the control voltage results in a duty cycle of 0.35.

8.16 The high-frequency resistance re in the model of the PWM switch. (a) Show
that r

!
� r

�

for the converter in Fig. 8.59. (b) Show that r

!
� (r

�
�R)(1 � n)�/n for

the Watkins—Johnson converter in Fig. 8.56. (c) Determine r
!

for the converter in
Fig. 8.58.

8.17 Storage-time modulation in the Cuk converter.��� The effect of storage-time
modulation on the line-to-output transfer function of the Cuk converter can be
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Figure 8.116 (cont.)

easily studied by using the model of the PWM switch in Fig. 8.74 as shown in Fig.
8.117. In particular, we are interested in determining the numerator of the line-to-
output transfer function. Using the technique explained in (Section 2.4), show that:

v
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v
��
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�1 �
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 �
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(8.280)

where:
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(8.281a, b)
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in which the modulation resistance is given by:

r
�!

�
V

"
I
�!

�
V

�
DI

�!

(8.282)

It can be seen that �
 �

can be either in the left-half plane or the right-half plane
depending on the relative magnitudes of the parasitic resistances and the modula-
tion resistance which can have either a positive or a negative value depending
upon the type of base drive used.
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Figure 8.117

REFERENCES

1. S. Cuk and R. D. Middlebrook, ‘‘A New Optimum Topology Switching dc-to-dc
Converter’’, Proceedings of the 1977 IEEE Power Electronics Specialist Conference, PESC
77 Record,
pp. 160—179.

2. S. Cuk, ‘‘Switching dc-to-dc Converter with Zero Input or Output Current’’, Proceedings of
the 1978 IEEE Industry and Applications Society Annual Meeting, October 1—5, Record, pp.
1131—1146.

3. S. Cuk, ‘‘A New Zero-Ripple dc-to-dc Converter and Integrated Magnetics’’, Proceedings of
the 1980 IEEE Power Electronics specialist Conference, PESC 80 Record, pp. 12—32.
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