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The University of the West Indies 
Mona Campus 
Department of Physics 

 

COURSE TITLE: Electric Circuits 
 

COURSE CODE:  ECNG 1000 
 

LECTURES:   Three (3) per week 
 

Lecturer:   Dr. Leary Myers 
 

 

EVALUATION: 
 

 

Course Test:  One sixty-minute paper  

(Weight - 10% of final grade). 
 

Final Exam:  One three-hour paper at the end of the semester  

(Weight - 90% of final grade). 
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Syllabus for Circuit Theory  -  ECNG1000 
 
 

1. Introduction to Circuit Theory 
 

2. Techniques of Circuit Analysis 
 

(i) Nodal Analysis 
(ii) Mesh Analysis 
(iii) Linearity and Superposition 
(iv) Source Transformations 
(v) Thevenin’s and Norton’s Theorems 
(vi) Maximum Power Transfer Theorem 

 
3. Natural response and complete response to source-free and dc excited RL and RC 

circuits. Source-free RLC circuits.  Forced Response of RLC Circuits. 
 

(i) The simple RL circuit 
(ii) Properties of the exponential response 
(iii) The simple RC circuit 
(iv) The unit-step forcing function 
(v) The natural and forced responses of RL and RC circuits 
(vi) The source-free parallel circuit 
(vii) The overdamped parallel RLC circuit 
(viii) Critical Damping 
(ix) The underdamped parallel RLC circuit 
(x) The natural and forced responses of RLC circuits 

 
4. AC Steady-State Analysis 

i. Sinusoidal and Complex Forcing Functions 
ii. Phasors 

iii. Impedance 
 

5. The Laplace Transform 
 

6. Steady-State Power Analysis 
i. Instantaneous and Average power in ac circuits 

ii. Effective or rms values 
iii. Real Power, Reactive Power, Complex Power 
iv. Power Factor correction in ac circuits 
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The University of the West Indies 
Mona Campus 
Department of Physics 

 

COURSE TITLE: Electric Circuits 
 

COURSE CODE:  ELET2470 
 

LECTURES:   TWO (2) per week 
 

Lab.:    Mondays and Wednesdays 1 – 5 pm 
 

Lecturer:   Dr. Leary Myers 
 

 

EVALUATION: 

Laboratory exercises (practical work): Weight - 20% of the final grade. 
 

Course Test:  One sixty-minute paper.  

(Weight - 20% of final grade). 
 

Final Exam:  One two-hour paper at the end of the semester  

(Weight - 60% of final grade). 
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Syllabus for Circuit Theory  -  (P 24G) - ELET2470 
 
 

1. Introduction to Circuit Theory 
 

2. Techniques of Circuit Analysis 
 

(i) Nodal Analysis 
(ii) Mesh Analysis 
(iii) Linearity and Superposition 
(iv) Source Transformations 
(v) Thevenin’s and Norton’s Theorems 
(vi) Maximum Power Transfer Theorem 

 
3. Natural response and complete response to source-free and dc excited RL and RC 

circuits. Source-free RLC circuits.  Forced Response of RLC Circuits. 
 

(i) The simple RL circuit 
(ii) Properties of the exponential response 
(iii) The simple RC circuit 
(iv) The unit-step forcing function 
(v) The natural and forced responses of RL and RC circuits 
(vi) The source-free parallel circuit 
(vii) The overdamped parallel RLC circuit 
(viii) Critical Damping 
(ix) The underdamped parallel RLC circuit 
(x) The natural and forced responses of RLC circuits 
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ELECTRIC CIRCUIT ANALYSIS 
 
 

 Electric circuit analysis is the portal through which students of electric phenomena 
begin their journey. 

 It is the first course taken in their majors by most electrical engineering and electrical 
technology students. 

 It is the primary exposure to electrical engineering, sometimes the only exposure, for 
students in many related disciplines, such as computer, mechanical, and biomedical 
engineering. 

 Virtually all electrical engineering specialty areas, including electronics, power 
systems, communications, and digital design, rely heavily on circuit analysis. 

 The only study within the electrical disciplines that is arguably more fundamental 
than circuits is electromagnetic field (EM) field theory, which forms the scientific 
foundation upon which circuit analysis stands. 

 
Definition: An electric circuit, or electric network, is a collection of electrical elements 
interconnected in some way. 
 
PASSIVE AND ACTIVE ELEMENTS 
Circuit elements may be classified into two broad categories, passive elements and 
active elements by considering the energy delivered to or by them. 
A circuit element is said to be passive if it cannot deliver more energy than has 
previously been supplied to it by the rest of the circuit. 
 
An active element is any element that is not passive. Examples are generators, batteries, 
and electronic devices that require power supplies. 
 
An ideal voltage source is an electric device that generates a prescribed voltage at its 
terminals irrespective of the current flowing through it.  The amount of current supplied 
by the source is determined by the circuit connected to it. 
 

+

vs(t)

-

Vs(t)
+

-
Circuit

 
 

General symbol for an ideal voltage source. vs(t) may be a constant (DC source) 
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+

vs(t)

-

Vs(t)

+

-

Circuit

 
 
  A special case: DC voltage source (ideal battery) 
 

 
 

+

vs(t)

-

Vs(t)
Circuit

 
  A special case: sinusoidal voltage source, vs(t) = V cos t 

 
 
An ideal current source provides a prescribed current to any circuit connected to it.  The 
voltage generated by the source is determined by the circuit connected to it. 
 

Circuitis, Is

is, Is

 
  Symbol for an ideal current source 

 
 

Summary 

An ideal/independent voltage source is a two-terminal element, such as a battery or a 
generator that maintains a specified voltage between its terminals regardless of the rest 
of the circuit it is inserted into. 
An ideal/independent current source is a two terminal element through which a 
specified current flows. 
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There exists another category of sources, however, whose output (current or voltage) is 
a function of some other voltage or current in a circuit.  These are called dependent (or 
controlled) sources. 
     

+

-
vs is

  
Source Type Relationship 

Voltage controlled voltage source (VCVS) vs = vs 

Current controlled voltage source (CCVS) vs = ris 

Voltage controlled current source (VCCS) is = gvs 

Current controlled current source (CCCS) is =  ix 

 
 

Summary 

 
A dependent or controlled voltage source is a voltage source whose terminal voltage 
depends on, or is controlled by, a voltage or a current defined at some other location in the 
circuit. Controlled voltage sources are categorized by the type of controlling variable. 
A voltage-controlled voltage source is controlled by a voltage and current-controlled 
voltage source by a current. 
A dependent or controlled current source is a current source whose current depends on, or 
is controlled by, a voltage or a current defined at some other location in the circuit. 
 
An electrical network is a collection of elements through which current flows. 
 
The following definitions introduce some important elements of a network. 

 

Branch 

A branch is any portion of a circuit with two terminals connected to it.  A branch may consist 
of one or more circuit elements. 

Node 

A point of connection of two or more circuit elements, together with all the connecting 
wires in unbroken contact with this point is called a node. Simply a node is the junction of 
two or more branches. (The junction of only two branches is usually referred to as a trivial 
node.)  
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It is sometimes convenient to use the concept of a supernode.  A supernode is obtained by 
defining a region that encloses more than one node.  Supernodes can be treated in exactly 
the same way as nodes. 

Loop 

A loop is any closed connection of branches. 

Mesh 

A mesh is a loop that does not contain other loops. 

 

CIRCUIT THEORY 

 There are two branches of circuit theory, and they are closely linked to the fundamental 
concepts of input, circuit, and output.  
Circuit Analysis – is the process of determining the output from a circuit for a given input. 
Circuit Design (circuit synthesis) is the process of discovering a circuit that gives rise to that 
output when the input is applied to it.  This is really a creative human activity. 

 
Kirchhoff’s Voltage Law (KVL) 
The algebraic sum of voltage drops around any closed path is zero. 
 

 

 
Kirchhoff’s Current Law (KCL) 
The sum of the currents entering any node equals the sum of the currents leaving the node. 

 

 

 
Passive Sign Convention 
 

  

+

V(t)

-

i(t)
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Voltage – Current Relationships for Energy Absorbed 
 
Example: 
 

  

-  +

+
-

+  12V  -Ix = 4A

1

2 3

1 I
x

+
28 V

-

+
24 V

-

36 V

2 A 2 A

 
 

Compute the power that is absorbed or supplied by the elements in the network. 
 
Solution: 
 
If the positive current enters the positive terminal, the element is absorbing energy. 
 
P36V = (36)*(-4) = -144 W 
P1 = (12)*(4) = 48 W 
P2 = (24)*(2) = 48W 
PDS = (1*Ix)*(-2) = 1*4*(-2) = -8 W 
P3 = (28*(2) = 56 W 
 
Voltage Division 
 

  

+
-

V(t)

R1

R2

+
VR1

-

+
VR1

-

i(t)

 
 

By KVL;  -v(t) + vR1 + vR2 = 0 
 
But vR1 = R1 i(t);  vR2 = R2 i(t),  therefore v(t)= R1 i(t) + R2 i(t)  or 
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So 

 

     

 

 
 
Current Division 
 

  

I(t)
R1 R2IR2(t)IR1(t)

V

 
 

By KCL,     I(t) = IR1(t) + IR2(t) =  =  

 
Or  

 

 
Loop Analysis 
 

  

vs1

R1

R2

+
-

+  -

vs2+ V1 -

+
V3

-

+
V4

-

- V2 + - V5 +

R5

R3 R4

 
 

Loop 1: V1 + V3 + V2 – Vs1 = 0 
 
Loop 2: Vs2 + V4 + V5 – V3 = 0 
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Mesh Analysis 
 
A mesh is a special kind of loop that does not contain any loops within it. 
 
 
 
Example Problem:  Find the mesh currents in the circuit below given V1 = 10 V; V2 = 9 V;  
V3 = 1 V; R1 = 5 Ω; R2 = 10 Ω; R3 = 5 Ω; R4 = 5 Ω. 
 

  

v1

R1

R2

+
-

V3

R3

R4

+
-

+
-

V2

i1
i2

 
 

By KVL; 
Mesh 1: -V1 + R1i1 + V2 + R2(i1 – i2) = 0 
Mesh 2: -V2 + R3i2 + V3 + R4i2 + R2(i2 – i1) = 0 
 
Rearranging the linear system of equations, we obtain 
 15i1 – 10i2 = 1 
 -10i1 + 20i2 = 8 
 
Giving i1 = 0.5 A     and     i2 = 0.65 A 
 
 Example Problem:  The circuit below is a simplified DC circuit model of a three-wire 
electrical distribution service to residential and commercial buildings.  The two ideal sources 
and the resistances R4 and R5 represent the equivalent circuit of the distribution system;  R1 

and R2 represent  110-V lighting and utility loads of 800 W and 300 W respectively.  
Resistance R3 represents a 220-V heating load of about 3 KW.  Determine the voltages 
across the three loads. 
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R1

R2

R3

R4

+
-

i1
i3

+
-

i2

R5

+
Vs1

-

+
Vs2

-

 
Given that Vs1 = Vs2 = 110 V; R4 = R5 = 1.3 Ω; R1 = 15 Ω; R2 = 40 Ω; R3 = 16 Ω. 
 
Mesh 1: - Vs1 +  R4i1 + R1(i1 – i3) = 0     
 
Mesh 2: - Vs2 + R2(i2 – i3) + R5i2 = 0          
 
Mesh 3: R3i3 + R2(i3 – i2) + R1(i3 – i1) = 0     
 
Rearranging, we obtain; 
 
 -(R1 + R4)i1 + R1i3 = -Vs1 
 
 -(R2 + R5)i2 + R2i3 = -Vs2         
 
 R1i1 + R2i2 – (R1 + R2 + R3)I3 = 0           
 

In matrix form      =                 

 
Which can be expressed as [R][I] = [V]     
 
With a solution [I] = [R]-1[V] 
 
We find :   i1 = 17.11 A i2 = 13.57 A i3 = 11.26 A 
 
Giving  VR1 = R1(i1 – i3) = 87.75 V 
  VR2 = R2(i2 – i3) = 92.4 V 
  VR3 = R3i3 = 180.16 V 
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Mesh Analysis with Current Sources 
 

  

R1

R2

R3

R4

+
-

i2
i1

i3

I

V

 
 

Find the mesh currents in the circuit above given I = 0.5 A; V = 6 V; R1 = 3 Ω; R2 = 8 Ω;  
R3 = 6 Ω; R4 = 4 Ω. 
 
 
 Mesh 1:  The current source forces the mesh current to be equal to i1. 
  i1 = I 
 
Mesh 2: -V + R2(i2 – i1) + R3(i2 – i3) = 0 
 
Mesh 3: R4i3 + R3(i3 – i2) + R1(i3 – i1) = 0 
 
Rearranging the equations and substituting the known value of i1, we obtain: 
 
14i2 – 6i3 = 10 
 
-6i2 + 13i3 = 1.5 
 
Hence i2 = 0.95 A   and   i3 = 0.55 A 
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Example: Find V1 and Vo. 
 
 

  

-  +

2 mA

4 k

2 k 6 k

2 V

V1

+

Vo

-

i1
i2

 
 
Mesh 1: i1 = 2 X 10-3 A 
 
Mesh 2: 2k(i2 – i1) – 2 + 6ki2 = 0 
 
From above,   i2 = 0.75 mA   and   Vo = 6ki2 = 4.5 V 
 
Now by Ohms law,   V1 = 4ki1 + 2k(i1 – i2) = 10.5 V 
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Example: Find Vo. 

  

4 k

4 k

+
-

i2

i1

2 mA

  3 V

6 k
2 k

i3

4 mA

 
Mesh 1:  i1 = 4 mA              
 
Mesh 2: i2 = -2 mA 
 
Mesh 3: 4k(i3 – i2) + 2k(i3 – i1) + 6ki3 – 3 = 0         
 
Hence i3 = 0.25 mA  and  -Vo + 6ki3 – 3 = 0    
 
Vo = 6ki3 – 3 = -1.5V       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 | P a g e  

LM 

Example: Find i0      

  

1 k

2 k
i2i1

2 mA

  6 V 1 k

2 k

i3
4 mA

-  +

io

               
Mesh 1: i1 = 2 mA                 
 
Mesh 2: (Supernode approach) – Remove current source 

 
-6 + 1ki3 + 2ki2 + 2k(i2 – i1) +1k(i3 – i1) = 0 
 

1 k

2 k
i2i1

2 mA

  6 V 1 k

2 k

i3

-  +

io

       
 Subject to i2 – i3 = 4mA       
 

From above we get  mA and  mA.  Therefore io = i1 – i2 =-   
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Circuits Containing Dependent Sources 
 
Example: Find vo. 
 
 

  

+
-

2 k

2Vx

Vx

6 k
4 k

-  +

  3 V

+

vo

-

i1
i2

 
 
Mesh 1: -2Vx + 2ki1 + 4k(i1 – i2) = 0 or  6ki1 – 4ki2 = 2Vx 
 
Mesh 2: -3 + 6ki2 + 4k(i2 – i1) = 0 or -4ki1 +10k i2 = 3 
 
 But  Vx = 4k(i1 – i2) 
 
Therefore i1 = 2i2  ;   

 

     Vo = 9 V 
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Example: Find Vo. 

  

4 k

2 k

i2

i1

2 mA
  3 V

6 k

+
-

- Vx +

Vx

2000

+

Vo

-

i3

 

Mesh 1:  

 
Mesh 2: i2 = 2 mA 
 
Mesh 3: -3 + 2k(i3 – i1) + 6ki3 = 0 
 

And  Vx = 4k(i1 – i2) 
 

Solving, we get  and  

 
 
Nodal Analysis 
 
Node voltage analysis is the most general method for the analysis of electric circuits.  The 
node voltage method is based on defining the voltage at each node as an independent 
variable.  One of the nodes is selected as a reference node (usually – but not necessarily – 
ground) and each of the other node voltages is referenced to this node. 
 
Once node voltages are defined, Ohm’s law may be applied between any two adjacent 
nodes to determine the current flowing in each branch. 
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Va Vb

Vc

Vd
Va Vb

R + R1 -

i1

+ R3 -

i3i2
+
R2

-

i

 
 
 
 

 

     By KCL;  i1 – i2 – i3 = 0 
 
        

 

 
In a circuit containing n nodes, we can write, at most, n – 1 independent equations. 
 
 
 
Circuits containing only independent current sources 
 

  

R1iA R3

i3i2

R2

iB

1 2

3

i1

V1 V2

 
 

Let  
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At node 1 by KCL;  iA + i1 + i2 = 0 

 

   -iA + G1(V1 - 0) + G2(V1 – V2) = 0 

 

At node 2 by KCL; -i2 + iB + i3 = 0 

 

-G2(V1 – V2)  + iB + G3(V2 – 0) = 0 

 

So, 

  =  

 

Summary 
 
Step 1:  Select a reference node (usually ground).  This node usually has most elements 

tied to it.  All other nodes will be referenced to this node. 
 
Step 2. Define the remaining n-1 node voltages as the independent or dependent 

variables. 
 
Step 3.  Apply KCL at each node labelled as an independent variable, expressing each 

current in terms of the adjacent node voltages. 
 
 
Node Analysis with Voltage Sources 
 

  

R1 R3

isR2

Va Vb

+
-

Vc

R4Vs

 
 
 
 
 
Apply KCL at the two nodes associated with the independent variables Vb and Vc. 
 
At node b:  

 

 Note Vs = Va 
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At node c:  

 

 
which can be rewritten as:  
   
   

 

 
   

 

and solved. 
 
Example: Find V2. 

  

6 k

12 k

9 k

6 V

V2

+
-

+
-

V1
V3

12 k

12 V

 
 
 
At node 1:  V1 = 12 V 
 
At node 3: V3 = - 6 V 
 
At node 2:  

 

 
Solving,  

 

 
Independent Voltage Source connected between two non-reference nodes. 
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Example: Determine the values of V1 and V2. 
 

  

V1 V2

6 k 12 k
6 mA 4 mA

i1 i2

+  -

  6 V

 
 

 

  

V1

6 k 12 k
6 mA 4 mA

i1 i2

  6 V

+  -

V2

 
 

At node 1:  

 

 
Subject to: V1 – V2 = 6 V 
 
Solution is V1  = 10 V and V2 = 4 V 
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Example: Find Io. 
 

  

2 k

1 k

6 V

V2

+
-

+
-

V1

V3
1 k

12 V

+
-

io

2 k2 k 12 V

V4

 
 

   

  

2 k

1 k

6 V

V2

+
-

+
-

1 k

12 V

io

2 k2 k 12 V

V4

+
-

V1

V3

Supernode

 
 

 

 

At the supernode:  

 

 
Subject to:  V1 – V3 = 12 V 
 
We observe that V2 = - 6 V and V4 = 12 V 
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Solving for V3, gives 

 

 and 

 

 
Circuits containing Dependent Sources 
 
Example: Determine the value of io. 
 

  

2 k 2Ix

V1

6 k

3 k

  3 V
+
-

Ix

V2

io

 
Solution: We observe V1 = 3 V and 

 

 
At node 2:  

 

 
Solving, we get: V2 = 6 V;  
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Example: Find unknown node voltage V, given the following I = 0.5 A;   R1 = 5 ;   

R2 = 2 ;   R3 = 4   and  
 

  

+
-

R1 R2

R3I
+
v3

-
Vx

Vx

V

            
 
At node with voltage V:  

 

        
 
 At node with voltage v3:      

 

        
Substituting the dependent source relationship into the first equation, we obtain: 
 
   
          
 
   Yielding V = 5V and V3 = 3.33 V      
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Example: Find io.          

  

6 k

12 k

  6 V6 k

+   -

+
-

 +

Vx

-

2Vx

12 k io

V1
V3

V2

 

  

6 k

12 k

  6 V6 k

+   -

+
-

 +

Vx

-

2Vx

12 k io

V1
V3

V2

Supernode

 
At the supernode:     

 

         
 
Subject to:  V1 – V2 = 2Vx          
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So,   

 

  
 
Linearity 
 
A resistor is a linear element because its current voltage relationship has a linear 

characteristic. i.e.  v(t) = Ri(t) 

 

Linearity requires both additivity and homogeneity (scaling). In the case of a resistive 

element, if i1(t) is applied to a resistor, then the voltage across the resistor is v1(t) = Ri1(t ). 

Similarly if i2(t) is applied, the voltage across the resistor is v2(t) = Ri2(t). 

 

However if i1(t) + i2(t) is applied, the voltage across the resistor is: 

 v(t) = Ri1(t ) + Ri2(t) = v1(t) + v2(t) 

This demonstrates the additive property. 

If the current is scaled by a constant K, the voltage is also scaled by the constant K since    

R Ki(t) = K Ri(t) = K v(t).  This demonstrates homogeneity. 

 

A linear circuit is one only independent sources, linear dependent sources and linear 

elements.  Capacitors and inductors are circuit elements that have a linear input-output 

relationship provided that their initial storage energy is zero. 
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Example to demonstrate Linearity 

  

Io
+

Vout

-

3 k

Vo V1

+
-

V2
4 k

12 V

2 k

2 k

I2I1

 

 

Assume Vout = 1 V =  V2,  then 

 

V1 = 4kI2 + V2 = 3 V  and   

 

By KCL Io = I1 + I2 = 1.5 mA  and  Vo = 2kIo + V1 = 6 V 

The assumption that Vout  = 1 V produced a source voltage Vo of 6 V.   

BUT we know by observation Vo = 12 V, therefore the actual output voltage,  

 

Superposition Principle 

In any linear circuit containing multiple independent sources, the current or voltage at any 

point in the network may be calculated as the algebraic sum of the individual contributions 

of each source acting alone. 

N.B.  When determining the contribution due to any independent source, all remaining 

voltage sources are made zero by replacing them with a short circuit and any remaining 

current sources are made zero by replacing them with an open circuit. 
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Use the circuit to examine the concept of superposition. 

  

3 k
+
-

6 k3 k

+
-

V2(t)V1(t) I1(t) I2(t)

 

Mesh 1: -V1 + 3kI1 + 3k(I1 – I2) = 0  or V1 = 6kI1 – 3kI2 

Mesh 2: 6k I2 + V2 + 3k (I2 – I1) = 0  or V2 = 3k I1 – 9k I2 

Solving for I1(t) yields:   

 

which implies that I1(t) has a component due to V1(t) and a component due to V2(t). 

Each source acting alone would produce the following: 

Set V2(t) = 0  

  

3 k
+
-

6 k3 k

V1(t) I1
'(t)

 

  

 

  

3 k

6 k3 k

+
-

V2(t)

I1
''(t)

I2
'’(t)
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By current division: 

 

 

Now 

 

Example: Determine the current i2 in the circuit below using the principle of 

superposition. 

  

5 

2 mA  10 V
+
-

2 

4 
i1 i2

 

 

Step 1: Zero the current source by replacement by an open circuit. 

  

5 

  10 V
+
-

2 

4 
i2

'

 

 

Then  
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Step 2: Zero the voltage source by replacing it by a short circuit. 

  

5 2 

4 2 mA i2
'’

 

 

Therefore  

 

Example: Use superposition to find Vo. 

 

1 k

2 k

6 k
2 mA

  3 V

 +

Vo

-

-  +
V1

 

Step 1: Remove (short circuit) the 3 V source 

 

1 k

2 k

6 k
2 mA

 +

Vo
 ‘

-

Io
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 and   

Step 2: remove (open circuit) the 2 mA current source 

  

1 k

2 k

6 k

 +

Vo
’ ‘

-

  3 V

-  +

 

 

Hence  

As  a check:  using KCL and recognizing the supernode, we have: 

 

But Vo – V1 = 3 V which implies that Vo = 6 V 

 

Example: Find Vo using the Superposition Principle. 

  

2 mA

  6 V
+
-

2 k
6 k

4 k

 +

Vo

-

2 k
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Step 1: Remove (open-circuit) the current source. 

  

  6 V
+
-

2 k
6 k

4 k

 +

Vo
’

-

2 k

 

Or 

  

  6 V
+
-

2 k

6 k

4 k

 +

Vo
’

-

2 k

 +

V1

-

 

 

 

and   
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Step 2: Remove (short-circuit) voltage source. 

  

2 k
6 k

4 k
 +

Vo
’’

-
2 k2 mA

 

Or 

  

6 k

8/6 k
 +

Vo
’’

-
2 k

2 mA

Io

 

 

 and   
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Source Transformation 

Real sources differ from ideal models.  In general a practical voltage source does not 

produce a constant voltage regardless of the load resistance or the current it delivers, nor 

does a practical current source deliver a constant current regardless of the load resistance 

or the voltage across its terminals.  Practical sources contain internal resistance. 

 

 

+
-

 +

VL

-

IL

Rv

V
RL

ILRiI RL

(a) (b)
 

 

 

If then  

  which is the power delivered by an ideal source. 

Similarly, 

 

If   then which is the power delivered by an ideal current source. 

Equivalent Sources 
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+
-

 +

VL

-

IL

Rv

V
RL

ILRiI RL

(a) (b)

 +

VL

-

 

For circuit (a):  

For circuit (b):  

For the networks in (a) and (b) to be equivalent, their terminal characteristics must be 

identical, i.e.  . 

Example: Determine Vo using the Source Transformation technique. 

  

2 mA

2 k

6 k

3 V

-  +

1 k

 +

Vo

-

 

 

 

  

3 k

6 k

3 V

-  +

 +

Vo

-

  6 V
+
-

I

 

Mesh 1: - 6 + 3kI – 3 + 6kI = 0 which yields I = 1 mA and Vo = 6kI =6 V 
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Example: Use Source transformation to find Vo. 

 

3 k

6 k

 +

Vo

-

  12 V
+
-

2 mA

2 k 4 k

8 k

3 k 6 k

 +

Vo

-

2 mA

2 k 4 k

8 k

2 k

 +

Vo

-

2 mA

2 k 4 k

8 k

2 k

 +

Vo

-

  8 V
+
-

2 mA

2 k 4 k

8 k

4 mA

4 mA
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4 k

 +

Vo

-

2 mA

4 k

8 k2 mA

4 k

4 k

 +

Vo

-

8 k4 mA Io

 

 

 

and     

Thévenin’ and Norton’s Theorems 

In this section we will discuss one of the most important topics in the analysis of electric 

circuits; the concept of an equivalent circuit.  Very complicated circuits can be viewed in 

terms of much simpler equivalent source and load circuits. 

 

Suppose we are given a circuit and we wish to determine the current, voltage or power that 

is delivered to some resistor of that network.  Thevenin’s theorem tells us that we can 

replace the entire network, excluding the load, by an equivalent circuit, that contains only 

an independent voltage source in series with a resistor in such a way that the I – V 

relationship at the load is unchanged. 
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The Thévenin Theorem 

 When viewed from the load, any network composed of ideal voltage and current sources, 

and of linear resistors, may be represented by an equivalent circuit consisting of an ideal 

voltage source VTH in series with an equivalent resistance RTH.   

 

The Norton Theorem 

When viewed from the load, any network composed of ideal voltage and current sources, 

and of linear resistors, may be represented by an equivalent circuit consisting of an ideal 

current source IN in series with an equivalent resistance RN. 

 

+
-

 +
V
-

i
i

 +
V
-

Source Load
Load

VTH

RTH

 +
V
-

i
i

 +
V
-

Source Load
LoadIN

RN

(a)

(b)

Illustration of Thevenin’s
Theorem

Illustration of Norton’s
Theorem

 
Determination of Norton or Thévenin Equivalent Resistance 
 
Method 

Find the equivalent resistance presented by the circuit at its terminals by setting all sources 

 in the circuit equal to zero and computing the effective resistance between the terminals.  

Voltage sources are replaced by short-circuits and current sources are replaced by open-

circuits. 



40 | P a g e  

LM 

Example: 
   

  

+
-

VS R2

R3

RL

R1

(b)

(a)

R2

R3R1

(b)

(a)

R2

R3

R1

(b)

(a)

R3

(b)

(a)

R1//R2

RTH

 
 

RTH = R3 + R1//R2 
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Example:  Find the Thévenin Equivalent Resistance seen by the load RL in the circuit 

below given that: R1 = 20 ; R2 = 20 ; I = 5 A; R3 = 10 ; R4 = 20 ; R5 = 10
 

  

R2

R3

RLR1

(b)

(a)

R5

R4
I

RTH

R2

R3

R1

(b)

(a)

R5

R4

 
 

RTH = [((R1//R2) + R3)//R4] +R5 = 20 . 
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Example:   Find the Thévenin Equivalent Resistance of the circuit below as seen by the 
load resistance RL. 

  

RL

(b)

(a)

+
-

1 2 

  5 V 2 2 1 A

RTH

(b)

(a)

1 

2 2 2 

  

RTH = ((2//2) + 1)//2 = 1  

 
Note: The Thévenin and the Norton equivalent resistances are one and the same quantity. 

 

Computing the Thévenin Voltage. 

 

The equivalent (Thévenin) source voltage is equal to the open-circuit voltage present at the 

load terminals. 

 

Step 1:  Remove the load, leaving the load terminals open-circuited. 

Step 2:  Define the open-circuit voltage Voc across the open load terminals. 

Step 3: Apply any preferred method (e.g. node analysis, mesh analysis) to solve for 

Voc. 

Step 4: The Thévenin voltage is VTH = Voc. 
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Example:  Computing the Thévenin voltage. 

  

+
-

VS R2

R3

RL

R1

R2

R3R1

R2

R3R1

RTH

+
-

+

Voc

-

+
-

VS

VS

i

+

Voc

-

+

Voc

-

RL
+
-

VTH

 
 

Using voltage division; 
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Example:  Determine the Thévenin equivalent circuit for the network shown below. 
 

 

+

V’oc

-

+

V’’oc

-

+
-12 V

RL
2 mA

6 k

3 k 2 k 4 k

= 8 k

6 k

3 k 2 k 4 k

RTH

+
-12 V 6 k

3 k 2 k 4 k

2 mA
6 k

3 k 2 k 4 k

 

Step 1: Remove load and independent sources to find RTH. 

 RTH = (3//6) + 2 + 4 = 8 k  
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Step 2: Use the superposition technique to find Voc. 
  

 

 

 

+

V’’oc

-

2 mA
2 k

2 k 4 k

 
 

 8 V 
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Example:  Fnd the Thévenin and Norton equivalent circuits for the network shown 
below. 

1 k

2 k

 RL = 6 k
2 mA

  3 V

-  +

1 k

2 k

RTH

1 k

2 k

2 mA

1 k

2 k   3 V

-  +

+

V’oc

-

+

V’’oc

-

  VTH = 9 V +
-

RL = 6 k

RTH = 3 k

RN = 3 k RL = 6 kIN = 3 mA

 
RTH = 3 kΩ;  ;By KVL  or  
Hence  
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Example: Use Thévenin’s theorem to determine Vo. 
 
 

RTH

4 k

 6 k

2 mA

  6 V
2 k

+
-

2 k

+

Vo

-

4 k

2 k

2 k

4 k
  6 V

2 k

+
-

2 k

+

V’oc

-

4 k

2 mA

2 k

2 k

+

V’’oc

-

  VTH = 32/3 V +
-

RL = 6 k

RTH = 10/3 k

RN = 10/3 k RL = 6 kIN = 3.2 mA
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Circuits containing only Dependent Sources 

If dependent sources are present, the Thévenin equivalent circuit will be determined by 

calculating Voc and ISC. i.e. RTH = Voc/ ISC 

 

If there are no independent sources then both Voc and ISC will be necessarily zero and RTH 

therefore cannot be determined by Voc/ ISC. 

 

If Voc = 0 then the equivalent circuit is merely the unknown resistance RTH. 

 

If we apply an external source to the network (a test source) VT and determine the current I 

which flows into the network from VT, then RTH = VT/IT 

 

VT can be set to 1-V so that RTH = 1/IT. 
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Example:  Determine the Thévenin equivalent circuit as seen from a-b for the network 

below. 

 

2 k

2 k

1 k

1 V

V1
1 k

+
-+

-
2 Vx

- Vx +

1 k

IoI2

I1

I3

a

b
 

Solution: Apply a test source of 1-V at terminals a-b.  Compute current Io and RTH = 1/Io. 
 
Applying KVL around the outer loop:  from which we obtain Vx = - V1 
 
 
At node 1 using KCL:  

 

 
Therefore    

 

 and   

 

 

 

 

 

 
Since , then 
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Example:  Determine the Thévenin equivalent circuit as seen from a-b for the network  
below. 

 
 

2 k

2 k

1 k 1 mA

V1
3 k

Ix

a

b

+
-

2000 Ix

V2

 
We observe 

 

 
At node 1:  

 

 
 
 
At node 2:  

 

 

 

 

Maximum Power Transfer Theorem 

 

The reduction of any linear resistive network to its Thévenin or Norton equivalent circuits is 

a very convenient conceptualization, as far as this allows relatively easy computation of load 

related quantities.  The power absorbed by a load is one such computation.   

 

The Thévenin or Norton model implies that some of the generated power is absorbed by the 

internal circuits and resistance within the source.  Since this power loss is unavoidable the 

question to be answered is how power can be transferred to the load from the source under 
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the most ideal circumstances?  We wish to know the value of load resistance that will 

absorb maximum power from the source. 

 

  

  VS
+
-

RL

RS

+

VL

-

IT

 

 

Consider the network above. 

 

The power absorbed by the load is:  

 

and the load current is given by: 

 

Therefore 

 

To find the value of RL that maximizes the expression for PL (assuming VT and RT are 

constant), we differentiate with respect to RL and set equal to zero. 

 

 

 

Which leads to:  and  
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The Maximum Power Transfer Theorem 
 
An independent voltage source in series with a resistance RS, or an independent current 

source in parallel with a resistance RS, delivers maximum power to the load resistance RL for 

the condition RL = RS. 

 

To transfer maximum power to a load, the equivalent source and load resistances must be 

matched i.e. equal to each other. 

 

 

First-Order Transient Circuits 

Introducing the study of circuits characterized by a single storage element.  Although the 

circuits have an elementary appearance, they have significant practical applications.  They 

find use as coupling networks in electronic amplifiers; as compensating networks in 

automatic control systems; as equalizing networks in communication channels. 

The study of these circuits will enable us to predict the accuracy with which the output of an 

amplifier can follow an input which is changing rapidly with time or to predict how quickly 

the speed of a motor will change in response to a change in its field current.  The knowledge 

of the performance of the simple RL and RC circuits will enable us to suggest modifications 

to the amplifier or motor in order to obtain a more desirable response. 

 

The analysis of such circuits is dependent upon the formulation and solution of integro-

differential equations which characterize the circuits.  The special type of equation we 

obtain is a homogeneous linear differential equation which is simply a differential equation 

in which every term is of the first degree in the dependent variable or one of its derivatives. 

 

A solution is obtained when an expression is found for the dependent variable as a function 

of time, which satisfies the differential equation and also satisfies the prescribed energy 

distribution in the inductor or capacitor ata prescribed instant of time, usually t = 0. 

 

The solution of the differential equation represents a response of the circuit and it is known 

by many names.  Since this response depends upon the general “ nature” of the circuit (the 
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types of elements, their sizes, the interconnection of the elements), it is often called the 

natural response.  It is also obvious that any real circuit cannot store energy forever as the 

resistances necessarily associated with the inductors and capacitors will all convert all 

stored energy to heat.  The response must eventually die out and is therefore referred to as 

the transient response. (Mathematicians call the solution of a homogeneous linear 

differential equation, a complementary function.  When we consider independent sources 

acting on a circuit, part of the response will partake of the nature of the particular source 

used. 

In summary, The analysis of First-Order circuits involves an examination and description of 

the behaviour of a circuit as a function of time after a sudden change in the network occurs 

due to switches opening or closing.  When only a single storage element is present in the 

network, the network can be described by a first-order differential equation. 

Because a storage element is present, the circuit response to a sudden change will go 

through a transition period prior to settling down to a steady-state value. 

 

General Form of the Response Equations 

In the study of first-order transient circuits it will be shown that the solution of these circuits 

(i.e. finding a voltage or current) requires the solution of a firs-order differential equation of 

the form:  

 

A fundamental theorem of differential equations states that if   is any solution 

to the differential equation and  is any solution to the homogeneous equation, 

 

then  is a solution of the original differential equation.  The term  

is called the particular integral solution or forced response and  is called the 

complementary or natural response. 

 

The general solution of the differential equation then consists of two parts that are obtained 

by solving the two equations: 

i.   
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where f(t) = A (a constant) 

ii.  

 

Since the right-hand side of equation (i) is constant, it is reasonable to assume that the 

solution  must also be a constant.  If we assume  and substitute in equation 

(i), we obtain 

 

Rewriting equation (ii), 

 

 

And 

 

 

The complete solution is;   

Generally 

 

 

Where K1  steady state solution which is the value of  

And time constant of the circuit. 

 

The Differential Equation Approach 

State-Variable approach – write the equation for the voltage across the capacitor and/or the 

equation for the current through the inductor.  These quantities (voltage across the 

capacitor; current through the inductor) do no change instantaneously. 
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The Simple RL Circuit 

  

  VS
+
-

Rt = 0

Li(t)

 

 

Using KVL:  

 

The solution to the above differential equation is of the form:    

If we substitute in the differential equation, we get:  

 

Equating the constant and exponential terms, we get: 

 

And  

 

Therefore 

 

If I(0) = 0 then 

 

Hence 
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The Simple RC Circuit 

  

  VS
+
-

Rt = 0

C

v(t)

 

Using KCL:  

 

which can be rewritten as:  

 

We know the solution is of the form:   

If we substitute in the differential equation, we get:  

 

Equating like terms, we get: 

 

 

Hence 

 

If the capacitor is initially uncharged then v(0) = 0, 

Therefore  
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Example:  The switch has been in position (1) for a long time. At t = 0 the switch is 

moved to position (2).  Calculate i(t) for t > 0 given that R1 = 6 k ; R2 = 3 k ; 

C = 100 F. 

 

 

12 V +
-

R
1

C

v(t)

R
2

(1)

(2)

12 V +
-

R
1

+

v(0-)

-

R
2

(1)

12 V +
-

R
1

C

v(t)

R
2

(1)

(2)

For t = 0-

For t = 0+

 

 

For t = 0-,  

The capacitor is fully charged - v(t) is not changing – and conducts no current. 

So by voltage division 

 

For t = 0+ 

At node with v(t) by KCL, 
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Substituting we get , 

  

 

whose solution is of the form  

Substituting in the differential equation, we get: 

 

Therefore 

 

 

 but v(0-) = v(0+) = 4 = K2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 | P a g e  

LM 

Example: Find i(t) for t > 0 

 

 

36 V +
-

C = 100 F
+
-t = 0

12 V

R1 = 2 k R2 = 6 k 4 k

i(t)

36 V +
-

+
-

12 V

2 k 6 k 4 k

i(0-)

Step 1
t = 0-

36 V +
-

C = 100 F
+
-

12 V

4 k

i(t)

36 V +
-

C = 100 F

2 k

6 k

i(t)

Step 2
t = 0+

+

vc(0-)

-

+

vc(t)

-

R1 = 2 k R2 = 6 k

 

vc(t) is of the form vc(t) = K1 + K2e-t/  
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Step 1: Find vc(0-) 

By KVL; -36 + (2 + 4 + 6)ki(0-) +12 = 0 which gives i(0-) = 2 mA 

vc(0-) – 36 = i(0-) x 2 mA = 32 V 

 Step 2:  Write differential equation with vc(t) 

 

 which can be rewritten as:  

 

or  

 

 

Substituting vc(t) = K1 + K2e-t/ in the above differential equation we get; 

 

 

Therefore 

 

 

Since vc(0-) = 32 V, we have 

 

Or 

 

 

And 
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Example: Find v(t). 

 

Step 1
t = 0-

Step 2
t = 0+

1 

4 H

12 

24 V +
- t = 0

4 

+ v(t) -

6 2 

24 V +
- t = 0

4 

+ v(t) -

6 2 

4 H

12 

1 

24 V 12 
4 H

I

iL(0-)

+
-

4 

+ v(t) -

6 iL(t)

+
-

R1 = 4 

+ v(t) -

iL(t) 4 HR2 = 4 Vs= 24 V

vL(t)

i(t)
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v(t) is of the form; i(t)= K1 + K2e-t/

Step RTotal  4 + (3//6) = 6  

  

 

 

Step 2: t > 0 

  Vs – vL(t) = R1i(t)   and 

 

 

Now 

 

 or 

 

Substituting for vL(t), R1, R2 and L and rearranging, we get: 

 

Substituting for i(t), 

 

 

Equating like terms, we get: 

 K1 = 6 and  2 which gives  

 
Recall 

 

Therefore 

 

or 
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Hence 

 

 

Second-Order Circuits 

Second order systems occur very frequently in nature.  They are characterized by the ability 

of a system to store energy in one of two forms – potential or kinetic – and to dissipate this 

energy.  Second-order systems always contain two energy storage elements. 

Second-order circuits are characterized linear second-order differential equations. 

 

Consider the RLC circuits shown below.  Assume that energy may have been initially stored 

in both the inductor and capacitor. 

vS(t)
+
-

C
C

R

+ vC(t0) -

iS(t)
L

v(t)

iL(t0) L

R

i(t)

 

For the parallel RLC circuit, we have by KCL: 

 

For the series RLC circuit, we have by KVL: 

 

If the two equations are differentiated with respect to time, we obtain: 

 

And 

 

 

We know that if  is a solution to the second-order differential equation 
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And if is a solution to the homogeneous equation 

 

Then 

 

is a solution to the original equation. 

If f(t) is a constant, i.e. a constant forcing function f(t) = A, then 

 

For the homogeneous equation:  

 

where a1 and a2 are constants, we can rewrite the equation in the form: 

 

The solution of the above differential equation is of the form: 

 

Substituting this expression into the differential equation, we get: 

 

Dividing by  yields: 

 

The above equation is called the characteristic equation;  is called the exponential damping 

ratio, and  is referred to as the undamped natural frequency. 

Now 

 

 

 giving two values of s as: 
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In general the complementary solution is of the form: 

 

where K1 and K2 are constants that can be evaluated via the initial conditions 

 

The form of the solution of the homogeneous equation is dependent on the value of .  

If  > 1, the roots of the characteristic equation, s1 and s2, also called the natural frequencies 

because they determine the natural (unforced) response of the network, are real and 

unequal;  if  < 1, the roots are complex numbers; if  = 1, the roots are real and equal. 

 

Case 1,  > 1 

The circuit is overdamped.  The natural frequencies s1 and s2, are real and unequal and 

 

where K1 and K2 are found from the initial conditions.  The natural response is the sum of 

two decaying exponentials. 

Case 2,  < 1 

This is the underdamped case.  The roots of the characteristic equation can be written as: 

 

 

where 

 

 

where  

Case 3,  = 1 

This is the critically damped case where  

For a characteristic equation with repeated roots, the general solution is of the form: 

 where 
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Example:  Consider the parallel circuit shown below where R = 2 ;  C = 1/5 F; L = 5 H: 

  

CR L

v(t)

iL(0)

+

vC(0)

-

 

The second-order differential equation that describes the voltage v(t)is: 

 

or  

 

Assume that the initial conditions on the storage elements are iL(0)= - 1 A and 

vC(0) = 4 V, find the node voltage v(t) and the inductor current. 

The damping term is: 

 

And the undamped natural frequency is: 

 

The characteristic equation for the network is: 

 

and the roots are s1 = - 2 and s2 = -0.5. 

Since the roots are real and unequal, the circuit is overdamped and  

 

 

Also 

 

By KCL, we can write; 

 

or 
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At  t = 0   

 

 

Since  

 

then 

 

Solving for K1 and K2 yields K1 = 2 and K2 = 2, and therefore 

 

The inductor current is related to  

 

 

 

 

 

Example:  The series RLC circuit shown has the following parameters: C = 0.04 F;  

L = 1 H; R = 6 ; iL(0) = 4 A and vC(0) = - 4 V.  Find expressions for the 

current and capacitor voltage. 

  

C
R

L

iL(0)

+

vC(0)

-

i(t)

 

The equation for the current in the circuit is given by: 
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The damping term is: 

 

 

 

and the undamped natural frequency is: 

 

 

Substituting the values of the circuit elements, we get; 

 

The characteristic equation is: 

 

and it has roots 

 

 

 

Since the roots are complex, the circuit is underdamped, and the expression for i(t) is: 

 

Using the initial condition 

 

and 

 

 

 

We can find  using KVL. 

 

or  
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hence 

 

giving  

 

Therefore  

 

and from above 

 

 

 

 

Example:  Consider the circuit shown below, determine i(t) and v(t) given that  

R1 = 10 ; R2 = 8 ; C = 1/8 F;  L = 2 H;  iL(0) = ½ A 

C
R2

LiL(0)

+

vC(0)

-

i(t)

R1

+

v(t)

-

 

The two equations that describe the network are: 

 

and  

 

Substituting the second equation into the first yields; 
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Substituting the values of the elements we get; 

 

The characteristic equation is: 

  

 

And the roots are:  s1 = - 3 

   s2 = - 3 

Since the roots are real and repeated, the circuit is critically damped. 

 

Since  

 then  

Also, 

 

Recall from above: 

 

Equating the two expressions and evaluating at t = 0, we get: 

 

 

or 

 

 

 

Giving  

Hence  

 

 

 



71 | P a g e  

LM 

By KCL: 

 

Substituting for  we get: 

 

or 

 

 

 

Example of a series RLC circuit with a step function 

Consider the circuit shown – similar to one previously analyzed – except with a constant 

forcing function present.  The following are the circuit parameters: 

C = 0.04 F; L = 1 H; R = 6 ; iL(0) = 4 A and vC(0) = - 4 V.  Find vC(t) for t > 0. 

  

C

R

L

iL(0)

+

vC(0)

-

i(t)

12u(t) V +
-

 

 

We will recall that general solution will consist of a particular solution plus a complementary 

solution. 

We have already determined that the complementary solution is of the form: 

 

The particular solution is a constant since the input is a constant.  The general solution is: 

 

When the circuit has reached the steady-state condition, the inductor is a short-circuit, the 

capacitor is an open-circuit and hence the final value of vC(t) will be 12 V . 

 

Substituting in the equation above, we get:  
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Therefore  

 

Using the initial conditions, we can calculate  and  . 

 

Since  or 

 

Therefore 

 

and  

 

hence .  The general solution for  is: 

 

 

Example of a series RLC circuit with a step function 

Consider the circuit shown below. Given the following: 

R1 = 10 ; R2 = 2 ; C = 1/4 F;  L = 2 H;  iL(0) = ½ A 

 

Determine the output voltage v(t). 

C R2

L

iL(0)

+

vC(0)

-

i(t)R1

+

v(t)

-

24 V
+
-

12 V
+
-

t = 0

 

We assume the switch has been connected to the 12 V supply for a long time so that the 

circuit is in steady state at t = 0- 
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For t > 0, the equations that describe the circuit are: 

 

 

 

and  

 

Combining these equations, we get: 

 

 

Substituting the values of the circuit elements, we get: 

  

 

The characteristic equation is: 

 

And the roots are:  s1 = - 3 

   s2 = - 4 

The circuit is overdamped and therefore the general solution is: 

 

  

2 

10 
 

iL(0)

i(t)

24 V +
-

t = 
+

v(    )

-

 

Now  

 

Hence 
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2 

10 
 

i(0-)

iL(0-)

12 V +
-

t = 0-
+

v(0-)

-

+

vC(0-)

-

 

Now 

 

and   

hence   

 

or 

 

Now  

 

 

2 

10 
 

iL(0+)

12 V +
-

t = 0+
+

v(0+)

-

+

vC(0+)

-

iC(0+)

 

 

 

 

 

Solving for  and  we get  and . 

The general solution for the voltage response is: 
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Sinusoidal forcing Functions 

Consider the sinusoidal wave  where Xm is the amplitude of the sine 

wave, ω is the radian or angular frequency and ωt is the argument of 

the sine function. 

The function repeats itself every 2π radians which is described mathematically as: 

 

Or  

 

Consider the general expression for a sinusoidal function:  

 

and 

 

If  the functions are said to be out of phase. 

   

A Simple RL Circuit with a sinusoidal forcing function 

  

 v(t)= Vmcos t +
-

Rt = 0

Li(t)

 

By KVL:  

 

Since the forcing function is , we assume that the forced response component of 

the current i(t) is of the form     which can be rewritten as: 

 

 

Substituting in the differential equation, we get: 

 

 

Equating coefficients of sine and cosine, we get: 
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Solving for  and  gives: 

 

 

Hence 

 

Now 

 

where 

 

 

 

Since 

 

 

And 

 

Therefore 

 

If L = 0, then  

If R = 0, then  

If L and R are both present, the current lags the voltage by some angle between . 
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It should become clear that solving a simple one-loop circuit containing one resistor and one 

inductor is complicated when compared to a single-loop circuit containing only two 

resistors. 

Recall Euler’s equation:  

Hence 

 

and 

 

Suppose a forcing function is: , we can rewrite 

 

The complex forcing function can be viewed as two forcing functions, a real one and an 

imaginary one.  Because of linearity, the superposition principle can be applied and hence 

the current response can be written as: 

 

where 

 

And 

 

The expression for the current containing both a real and an imaginary term can be written 

by Euler’s equation as: 

 

We can apply  and calculate the response . 

 

Redo example with simple RL circuit. 

The forcing function is now: 

 

The forced response will be of the form: 

 

Substituting in the differential equation:  
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We get: 

 

Or 

 

Dividing by  we get: 

 

Rewrite as: 

 

In polar form: 

 

Hence 

 

And  

 

Since the actual forcing function was  rather than , our actual response is 

the real part of the complex response . 

 

 

PHASORS 

Assume that the forcing function for a linear network is of the form: 

 

Then all steady-state voltages or currents in the network will have the same form and same 

frequency.  As we note the frequency, , the  can be suppressed as it is common to 

every term in the equations that describe the network.  All voltages and currents can be 

fully described by a magnitude and phase. That is a voltage  can be 

written in exponential form as:  or as a complex 

number: .  As we are only interested in the real part as this is the 
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actual forcing function and we can suppress  , we can work with the complex number 

. This complex representation is referred as a phasor.  So, 

 

And  in phasor notation. 

Redo RL example: 

The differential equation that describes the RL series circuit is: 

 

The forcing function can be replaced by a complex forcing function written as   with 

phasor .  Similarly the forced response component of the current can be written 

as  with phasor .  We will recall that the solution of the differential equation 

is the real part of this current. 

The differential equation becomes:   

 

 

Dividing by , we get:  or 

 

And  

 

Summary 

v(t) represents a voltage in the time domain, the phasor  represents the voltage in the 

frequency domain. 

 

Example: Convert the following voltages to phasors. 

(i)  

(ii)  

 

Solution (i) 

Recall  

So   hence in phasor notation  
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Solution (ii) 

Recall 

 

Therefore  

So   hence in phasor notation  

 

Example: Convert the following phasors to the time domain given the frequency is 400 Hz. 

(i)  

(ii)  

 

Solution (i) Recall  so that   

Since , we have  

So 

 

Similarly in (ii)  

 

 

Deriving the current-voltage relationship for a resistor using phasors. 

For a resistor . 

Applying the complex voltage   results in a complex current . 

 

which can be rewritten as:  

 

In phasor form   where  and  

We observe  which means the current and voltage are in phase. 
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For an inductor where  if we substitute the complex voltage and current we 

get: 

 

which can be reduced to: 

 

In phasor notation; 

 

Now 

 

The current lags the voltage by  

 

Example:  The voltage   is applied to a 20-mH inductor. 

Find the resulting current. 

The phasor current is:  

 

 

 

Therefore 

 

 

For a capacitor where  if we substitute the complex voltage and current  we 

get: 

 

Which reduces to: 

 

In phasor notation 

 

The current leads the voltage by  
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Impedance  

Impedance Z is defined as the ratio of the phasor voltage  to the phasor current . 

 

In rectangular form 

 

where  is the real or resistive component and  is the imaginary or reactive 

component. 

Z is a complex number but NOT a phasor since phasors denote sinusoidal functions. 

 

Therefore    and   

 

 

 

The Laplace Transform 

The Laplace transform of a function f(t) is defined by the equation: 

 

Where s is the complex frequency 

 

We assume f(t) = 0 for t < 0.  For f(t) to have a Laplace transform, it must satisfy the 

condition: 

 

for some real value of . 

The inverse Laplace transform is defined by: 

 

where  is real. 

The Laplace transform has a uniqueness property i.e. for a given f(t) there is a unique F(s) 
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Singularity Functions 

The unit step function u(t) and the unit impulse or delta function (t).  They are called 

singularity functions because they are either not finite or they do not possess finite 

derivatives everywhere. 

 

The Unit Step Function 

 

 

u(t)

t

1

t

u(t - a)

a00

-u(t - T)

t

t

u(t)

u(t) - u(t - T)

0

0

1

1

1

T
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The Laplace Transform of the Unit Step function 

 

 

Therefore 

 

For the time-shifted unit step function u(t – a), 

 

We note that 

 

Hence 

 

And for the pulse  the Laplace transform is: 
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The Unit Impulse Function 

f(t)

t t

f(t )

00 t0-a/2 t0+a/2t0

1
/a

t0

(t - t0)

 

The unit impulse function can be represented in the limit by the rectangular pulse shown as 

 

The function is defined as: 

 

 

The unit impulse is zero except at t  =  t0, where it is undefined. It has unit area. 

An important property of the unit impulse function is its ability to sample or its sampling 

property. 

 

The above is valid for a finite  and any . 

The unit impulse function samples the value of  

 

The Laplace transform of an impulse function 

 

Using the sampling property of the delta function, we get: 

 

In the limit as  

 

and therefore 
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Example: Find the Laplace transform of f(t) = t. 

 

Integrating by parts, setting 

 u = t  and  dv = e-st dt 

du = dt  and   

Therefore  

 

 

Example: Find the Laplace transform of f(t) = cos t. 

 

 

 

 

 

 

 

If f(t) = sin ( t) then  
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Some Laplace Transform Pairs 

f(t) F(s) 

δ(t) 1 

u(t) 
 

 
 

t 
 

 
 

 
 

  

 
 

 
 

 

Some Useful Properties of the Laplace Transform 

Property f(t) F(s) 

1. Magnitude scaling Af(t) AF(s) 

2. Addition /subtraction   

3. Time scaling f(at) 
 

4. Time shifting  

 

 

 

5. Frequency shifting  F(s+a) 

6. Differentiation 
 

 

 

7. Multiplication by t  

 

 

 

 

8. Integration 
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Properties of the Laplace Transform 

 

Time-shifting theorem 

 

Frequency-shifting or modulation theorem 

 

Example: Find the Laplace transform of  

Since  , then 

 

 

Inverse Laplace Transform 

The algebraic solution of the circuit equations in the complex frequency domain results in a 

rational function of s of the form: 

 

The roots of the polynomial  (i.e., ) are called the zeros of the function 

 because at these values of s, . 

Similarly the roots of the polynomial  (i.e., ) are called poles of , 

since at these values  becomes infinite. 

1. If the roots are simple, then  can be expressed in partial fraction form 

 

2. If  has simple complex roots, they will appear in complex-conjugate pairs, and 

the partial fraction expansion of  for each pair of complex-conjugate 

roots will be of the form: 

 

 

Where  is the complex conjugate 

of . 



89 | P a g e  

LM 

3. If has a root of multiplicity r, the partial fraction expansion for each such root 

will be of the form 

 

 

Example: Given 

 

Find  

Let us express in a partial fraction expansion. 

 

To determine  multiply both sides of the equation by s and evaluate at s = 0. 

 

At s= 0 we have  

 

 

 

Similarly multiplying both sides of the equation by (s + 2) and evaluating at s = -2 

 

Gives  

Similarly  

 

Gives 
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Hence 

 

And 

 

 

Complex-Conjugate Poles 

Consider the case where  has one pair of complex-conjugate poles.  

 

Then  

 

 is generally a complex number that can be expressed as  and  

Hence 

 

The corresponding time function is then 

 

 

 

 

 

Example:  Determine the time function y(t) for the function 

 

Expressing in partial fraction, we obtain 
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Hence  

 

 

Multiple Poles 

Consider the case where has a pole of multiplicity r. 

 

 

 

 

 

Hence 

 

 

Example:  Given that 

 

Find f(t). 

 

Then 
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Then 

 

Since 

 

Then 

 

 

Laplace Transform in Circuit Analysis 

Consider the RL series circuit shown. 

  

 vS(t)= 1 u(t) +
-

t = 0

L = 100 mHi(t)

R = 100 

 

 

The complementary differential equation is 

 

which has a solution of the form 

 

After substitution we get 

 

Or 

 

The particular solution is of the same form as the forcing function 
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After substitution we get 

 

Or 

 

The complete solution is then 

 

Since 

 

 

 

 

 

Solution with the Laplace Transform 

 

Taking the Laplace of the above equation we get 

 

Since 

 

 

 

But 

 

Hence 

 

To find the i(t), we use the inverse Laplace Transform 
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Hence 

 

 

Notice that the complete solution is derived in one step as opposed to the solution in 

the time domain. 

 

For a resistor of value R, the current-voltage relationship in the time domain is  

 

The relationship in the frequency domain, s, is 

 

For a capacitor of value C, the current-voltage relationship in the time domain is  

 

 

The relationship in the frequency domain, s, is 

 

 

 

For a inductor of value L, the current-voltage relationship in the time domain is 

 

 

The relationship in the frequency domain, s, is 
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Example:  For the network shown below, the switch opens at t = 0. Use Laplace 

transforms to find i(t), for t > 0. 

  

+
-

3 H

3 6 12 V i(t)

t = 0

+
-

3 6 12 V i(0-)t < 0

3 H

3 6 
i(t)

t > 0
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For t < 0, we have; 

 

For t > 0, we have; 

 

Taking the Laplace transform of the differential equation, we get: 
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Example: The switch in the circuit below opens at t = 0. Find i(t) for t > 0 using Laplace 

transforms. 

 

 

 

+
-

2 H

2 

3 

12 V i(t)

t = 0

iL(0-)

t < 0

t > 0

2 4 

+
-

2 H

2 

3 

12 V i(t)

2 4 

2 H

2 

3 

i(t)

4 

i
L
(t)
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For t < 0 

The equivalent resistance Req is: ((4+2)//3)+2 = 4

The total current in the circuit is ITot = 12/4 = 3 A 

 

 

For t > 0 
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Example: In the network shown, the switch opens at  t = 0.  Use Laplace transforms to 

find v0(t) for t > 0. 

 

 

+
-

2 k12 V

t = 0

3 k 4 k

+

vC(t)

-

100 F

+

vo(t)

-

+
-

2 k12 V

t < 0

3 k 4 k

+

vC(0-)

-

100 F

+

vo(t)

-

2 k
i(t)

t > 0

4 k

+

vC(t)

-

100 F

+

vo(t)

-
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For t < 0 

 

 

For t > 0: 

By KVL we have: 

 

 

Hence 

 

 

 

Taking the Laplace transform of the above equation 

 

 

 

 

therefore 

 

And 
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Example:  In the network shown, the switch opens at  t = 0.  Use Laplace transforms to 

find iL(t) for t > 0. 

 

3 

t < 0

t > 0

t = 0

1 H1 A 0.5 FiL(t)

3 

1 A iL(0
-)

3 

1 H1 A 0.5 FiL(t)

+

vc(0
-)

-

i2(t)i1(t)

 



102 | P a g e  

LM 

For t < 0 

 

For t > 0 

 

 

 

By KVL: 

 

 

 

Taking the Laplace transform of the above equation; 

 

 

 

 

 

 

 

Hence 

 

 

 

Let s = -1 
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Let s = -2 
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Example: In the circuit shown below, the switch has been closed for a long time and is 

opened at t = 0. Find i(t) for t > 0, using Laplace transforms. 

 

t < 0

t > 0

t = 0

0.5 H

12 V 2 F

i(t)

1 

+
-

5 

3 0.5 H

12 V

1 

i(0-)

+
-

5 

3 0.5 H

12 V 2 F

i(t)

1 

+

vc(0
-)

-

+
-
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For t < 0; 

 

 

For t > 0: 

By KVL: 

 

Taking the Laplace transform, we get 

 

 

 

 

 

 

 

 

 

Let s = -1 

 

 

Let s = 0 
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AC Power 

Instantaneous Power 

When a linear electric circuit is excited by a sinusoidal source, all voltages and currents in 

the circuit are also sinusoids of the same frequency as that of the excitation sources. 

The instantaneous power supplied or absorbed by any device is the product of the 

instantaneous voltage and current. 

Consider the ac network shown 

 

v(t) +
-

i(t)

Z

 

Let  

And  

The instantaneous power is then  

Using 

 

We can write 

 

The instantaneous power consists of two terms, the first being a constant, the second is a 

cosine wave of twice the excitation frequency. 

 

Average Power 

The average power is computed by integrating the instantaneous power over a complete 

period and dividing this result by the period.  

 

Where t0 is arbitrary,   is the period of the voltage or current and P has unit of 

watts. 
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The first term of the integrand is a constant (independent of t).  Integrating the constant 

over a period and dividing by the period results in the original constant. 

The second term is a cosine wave which when integrated over one complete period is zero. 

Hence 

 

For a purely resistive circuit where   

 

For a purely reactive circuit where   

 

Purely reactive impedances absorb no average power.  They are referred to as lossless 

elements.  A purely reactive network stores energy over one part of the period and releases 

it over another. 

 

Example: Determine the average power absorbed by the impedance in the circuit 

below. 

 

10 60o +
-

I

j2 

2 

 

 

hence 
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We will recall that the inductor absorbs no power.  We can then calculate the power 

absorbed by the resistor. 

The voltage across the resistor is 

 

Power absorbed by the resistor is: 

 

 

Example:  Determine the total average power absorbed and the total power delivered 

in the circuit shown below. 

 

12 o +
-

I

-j1 

4 

2 

I2

I1

 

 

 

 

 

The average power absorbed in the 4  resistor is: 

 

The average power absorbed in the 2  resistor is: 

 

The total power absorbed is: 
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The total average power supplied by the source is: 

 

 

 
Maximum Average Power Transfer 
 
Consider the circuit shown. 

  

Voc

+
-

IL

ZTH

ZL

+

VL

-

 
 
Average power at the load is: 

 

Phasor current and voltage at the load is: 

 

where 

 
and 

 
Now 
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By examination the following is observed:  

Voc is a constant.  

The quantity  absorbs no power.  Any non-zero value of this quantity will reduce 

PL . To minimize this quantity . 

We are left with: 

 

 
Earlier analysis of a similar expression showed that the quantity is maximised when: 
 
  

Therefore for maximum average power transfer to the load, 

 
 
If the load impedance is purely resistive, that is XL  = 0, then maximum average power 

transfer occurs when  . 

The value of RL that maximises PL when XL = 0 is 

 

 

Effective or rms values 

The average power absorbed by a resistive load is a function of the type of source that is 

delivering power to the load.  If the source is dc the average power absorbed is . If the 

source is sinusoidal, the average power absorbed is .  These are by no means the only 

waveforms available.   

The effectiveness of a source, of whatever periodic waveform, in delivering power to a 

resistive load is what we seek to establish.  The concept of the effective value of a periodic 

waveform is defined as that constant (dc) value of the periodic waveform that would deliver 

the same average power. 

If that constant current is , then the average power delivered to a resistor is: 
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The average power delivered to a resistor by a periodic current  is: 

 

Equating both expressions, we obtain: 

 

This is called the root mean square value,  . 

Compute the rms value of  with a period of . 

 

 

Using   

 

The average or mean value of a cosine wave is zero, therefore 

 

 

 

 

A sinusoidal current with a maximum value   delivers the same average power to a 

resistor R as a dc current with a value of   . 

Recall average power 

 

Or 

 

Power absorbed by a resistor R is 
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Power Factor 

The phase angle of the load impedance plays a very important role in the absorption of 

power by a load impedance. 

In steady-state average power delivered to a load is  

 

The average power is dependent on the cosine term. 

The product  is referred to as the apparent power with units volt-amperes (VA). 

The power factor (pf) is defined as: 

 

For a purely resistive load where , the pf = 1. 

For a purely reactive load where , the pf = 0 

If the current leads the voltage as it does in an RC circuit load, the pf  is said to be leading. 

If the current lags the voltage as it does in an RL circuit load, the pf  is said to be lagging. 

 

Example: 

For ,  ,  the  

which is a leading pf. 

For ,  ,  the  

which is a lagging pf. 

 

Example: An industrial load consumes 88 kW at a pf of 0.707 lagging from a 480-V rms 

line.  The transmission line resistance from the power company’s transformer to the plant is 

0.08 . Determine the power that must be supplied by the power company 

a) Under present conditions, and 

b) If the pf is changed to 0.90 lagging 
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Solution 

a) Consider the circuit shown 

 

VS

+
-

Irms

PL = 88 kW
pf = 0.707

lagging

+

480 V rms

-

0.08 

 

 

 

 

The power company must supply 

 

 

 

b) For a pf = 0.90 lagging, 

 

The power company must now supply 

 

 

Note the difference in power that must be supplied 

For a pf = 0.707, line loss is 5.38 kW 

For a pf = 0.90, line loss is 3.32 kW 

 

 

 

 



114 | P a g e  

LM 

Complex Power 

Complex power, S, is defined as:

  

 

 

The real part of the complex power is the real or average power. 

The imaginary part of the complex power is called the reactive or quadrature power. 

 

Where  

And   

The magnitude of S is called the apparent power. 

Complex power is measured in volt-amperes. 

For a resistor ,   The resistor absorbs real 

power but does not absorb any reactive power. 

 

For an inductor,  , 

 

 

An inductor absorbs reactive power but does not absorb real power. 

 

For a capacitor, , 

 

 

A capacitor does not absorb any real power, but absorbs (negative) reactive power.  Simply 

means the capacitor is supplying reactive power.  Capacitors for this reason are used in pf 

correction. 

Recall 

 

Now 

 

Hence 
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Since  

 

Then 

 

 

Example: A load operates at 20 kW, 0,8 pf lagging.  The load voltage is 

  the impedance of the line is 0.09 + j0.3 .  Determine the voltage 

and power factor at the input to the line. 

 

VS

+
-

IL

PL = 20 kW
pf = 0.8
lagging

+

220
 V rms

-

0.09 

 

We know 

 

 

 

At the load 

 

Therefore 

 

And 

 

The complex losses in the line are: 

 

 

The total power absorbed must be equal to the power supplied. 

Hence 
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The generator voltage will then be 

 

The generator pf is: 

 

Another way to solve by KVL 

Having calculated   

 

The voltage drop on the transmission line is  

 

 

The generator voltage is then 

 

Now  

 

Hence 

 

 

Power Factor Correction 

The need to have a high pf is now known. Less losses, smaller conductors etc.  the nature of 

most loads is pf lagging. 

We need to find a way to increase the pf of a load economically.  How to decrease the pf 

angle is our objective (increase the pf).  
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+

V
L

-

I
L

Electrical Source Industrial

Load with

lagging pf

 

S
L
 = S

old

Q
L
 = Q

old

P
L
 = P

old

vL
 - 

iL
 = 

old

 

Since   

 

To decrease  P could be increased.  This is not practical or economically feasible as power 
consumption would increase and the cost of electricity would increase. 
 
Another option is to decrease Q by connecting a capacitor across the load  
 
 
 
 
 
 
 

+

V
L

-

I
L

Electrical Source Industrial

Load with

lagging pfC

I
T
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S
new

Q
new

P
L
 = P

old

new

S
L
 = S

old

Q
L
 = Q

old

P
L
 = P

old

vL
 - 

iL
 = 

old

Q
cap

 

 

And 

 

 

 

Example: 

Calculate the complex power for the circuit shown and correct the pf to unity by connecting 

a parallel reactance given the following:   

 (all rms values) 

 

+
-

+

V
L

-

R
L

jX
L

I
S

V
S

 

 

We know  for the complex load 
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Hence 

 

S = 137 V
A

Q = 119 Var

P = 68.4 W

Im

Re

 

To eliminate the reactive power due to the inductance, add an equal and opposite reactive 

component – QL. 

Therefore choose C that QC  = -118.5 Vars. 

+
-

+

V
L

-

R
L

jX
L

I
S

V
S

C

 

The reactance 

 

Since 

 


