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CIRCUIT ANALYSIS I 
(DC Circuits) 

 
 

Electrical and electronic devices are a feature of almost every 

aspect of our daily lives.  Indeed most people carry around 

electronic circuits of one form or another – maybe in a watch, 

calculator, mobile phone, laptop etc. – all day long.  It seems 

reasonable, therefore, since we are all so dependent on circuits 

that we spend a little time learning how they work and how to 

design them to do even more useful things.   

 

At its simplest, an electrical circuit is merely a collection of 

components connected together in a particular way to produce a 

desired effect.  Since this is the first course on electrical circuits we 

will concentrate on developing methods of circuit analysis that will 

enable us to calculate the voltages and currents in given circuits.  

This approach will provide us with a firm understanding of how the 

various circuit elements – resistors, capacitors and inductors – 

behave under a variety of conditions.  Once we have developed 

confidence in analysing given circuits and understanding how they 

work we can proceed to the fun stage – designing our own circuits. 

Whether you are one of those people who already enjoys that kind 

of thing or whether you are one of those who cannot tell one end of 
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a soldering iron from the other, you will all design and build a 

working transistor radio by the end of your first year. 

 

Although the intention is that these notes should be reasonably 

self contained it would still be sensible to consult some of the vast 

number of books on this subject.  A few possible titles might 

include: 

 

Hughes E. Electrical and Electronic Technology, Pearson 
 A comprehensive text that covers practically the whole of the P2 course. 
 

Smith R.J. & Dorf R.C. Circuits, Devices and Systems, Wiley 
 An alternative text that covers practically the whole of the P2 course. 
 

Floyd T.L. & Buchla D. Electronics Fundamentals: Circuits, 

Devices and Applications , Pearson 
 Lots of illustrations, worked examples and practice questions. 
 

Nahvi M. & Edminster J. Electric Circuits, McGraw-Hill  
 Simple overview with lots of practice questions. 
 

Howatson A.M. Electric Circuits and Systems, OUP 
 Written by a previous member of the Department and in a similar style to 

the way we still teach the subject, now out of print but available in most 

college libraries. 
 

Bobrow L.S. Elementary Linear Circuit Analysis, OUP 
 A standard text, out of print but available in most college libraries. 

 

 

... and last but not least:  
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HLT for data and also to see what information will be available to 

you in the examination! 

 

This list is far from exhaustive and it may be that none of the 

above texts suit you – if so, please read around the subject and 

find the explanation/description that is the best for you.  Go to the 

Library! 

 

 

Syllabus 
Charge conservation. Kirchhoff’s laws, and mesh/nodal analysis. 

Concepts of ideal voltage and current sources, and impedances. 

Thévenin and Norton theorems with emphasis on concepts of input 

and output impedances.  

 

 

Learning Outcomes 
At the end of this course students should: 

1. Appreciate the origins of current and conductivity 

2. Be familiar with Ohm’s law and its wider significance 

3. Become familiar with linear components and power 

dissipation 

4. Develop basic skills in circuit analysis and its relationship 

with Ohm’s law 

5. Appreciate the significance and utility of Kirchhoff’s laws 

6. Become confident in applying them to simple circuit analysis 

7. Acquire higher-level skills in circuit analysis 

8. Appreciate the importance of input and output impedance 

  



 4 

DC Circuits 
 

1. Basic ideas 
 

Circuit analysis is all about analysing the currents and the 

voltages in an electrical circuit. In this Circuit Analysis I course we 

will limit ourselves to DC Circuits. DC short for “Direct Current” but 

this is jargon for saying that all the currents and voltages are 

constant. For the purposes of this course (and indeed Circuit 

Analysis II), an electric circuit consists of components connected 

by wires. We will look in particular at three components, resistors, 

voltage sources and current sources. Each component can be 

characterised in terms of the relationship between the current 
through it and the voltage across it. We will assume the wires 

pass current but do not drop any voltage. 

 

 
2. Conductors and Insulators 
 
Let’s start at the beginning. This is NOT a course about Physics or 

Chemistry and we will not dwell on them, but a little knowledge 

about such things can sometimes make sense of the things we 

see. The matter around us consists of atoms and the simplest 

model of atoms is to suppose that they each have a nucleus of 

protons and neutrons surrounded by a swirling cloud of electrons. 

Our model is further refined by supposing that the protons are 

positively charged and the electrons are negatively charged and 

that the there is a force of attraction between the two types of 

charge, which keeps the atom together. The light electrons whizz 
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around the heavy protons like satellites around the earth under the 

effect of gravity. That would be fine, but physicists have also 

dreamt up an idea call quantum theory to explain that electrons 

can only whizz around the nucleus in particular orbits. The further 

the orbit from the nucleus, the higher is the kinetic energy of the 

electron. The behaviour of the atom is largely dictated by the 

electrons occupying the outermost orbits – those in the valence 
band are responsible for binding the atoms together and those in 

the conduction band are relatively free to hop from one atom to 

another. Electrical engineers divide the world into three types of 

material according to the three situations that can arise.  

 

 
The Fermi level is the top energy level that would be occupied at absolute zero. 

At higher temperatures, the electrons are excited to higher energy levels. 

 

In a conductor, the two bands merge into each other and at room 

temperature lots of electrons move up into the conduction band. 

That means that electrons can move around the material rather 

easily, we can for example use them to make the wires that we 

need to connect our circuits together. 
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In an insulator, there is a large energy gap between the valence 

band and the conduction band so that at normal temperatures, the 

valence band is full and the conduction band is empty. That means 

there is no possibility to move electrons around the material. That 

makes them rather useful for insulating our wires to stop them from 

connecting inadvertently. They can also have interesting dielectric 

properties that modify the forces acting when charges on either 

side. 

In a semiconductor there is a small gap between the two bands 

and at room temperature only a modest number of electrons are 

excited into the conduction band. The spaces created in the 

conduction band mean that these electrons are also freed up and 

some really interesting behaviours arise which you will learn about 

later in the year.  

 

 
3. Charge and Current 
 

In circuit analysis we are very interested in the charge of the 

electrons and protons, particularly when the charge moves. As 

the protons are inextricably bound to the atoms, we usually only 

need consider the movement of electrons. This movement of 

charge as called the electric current.  The current in a circuit is a 

measure of the rate at which charge, 𝑞, passes through the circuit.  

The instantaneous value of current, 𝑖, is given by 

 

𝑖 =
d𝑞
d𝑡
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For the special case when the current is constant, 𝑖 = 𝑞/𝑡. We call 

this a “direct current” or DC.  
 

We use the unit of charge called the coulomb with the symbol C. 

A current of one coulomb per second is called an amp with the 

symbol A. 

 

It also follows that 

𝑞 = 𝑖 . d𝑡 

 

 

Current is most commonly caused by the flow of negative 

electrons in a conductor, although other examples exist, e.g. 

positive ions in an electrolyte, or negative ions in a plasma. 

However, by an unfortunate accident of history, the convention of 

the direction of current is in the opposite sense to the flow of 

electrons.  

 

 

 

Here is the depiction of a wire carrying a current I from left to right 

(By implication, the electrons will be flowing from right to left, but 

for the rest of this course we will not need to know this.) 

 

We also note the convention that lower case letters, e.g. 𝑖, are 

used to denote an instantaneous value that varies with time. 

Sometimes we make this explicit by writing 𝑖(𝑡). In contrast, capital 

I 
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letters, e.g. 𝐼!, are used for steady state (time independent) 

quantities. The other convention you should note is that variables 

are written in italics. That said, I am sure you will be able to catch 

me out sometimes in these notes! 

 

 
4. Voltage 
 
We have to put some energy into the system in order to make a 

current flow and this leads to the concept of electrical potential 

energy. When a current flows, it will generally flow from the higher 

electrical potential to the lower electrical potential. It’s just like 

water in a pipe flowing from the higher gravitational potential to the 

lower. I say “generally” because of course we can supply energy to 

pump the water up again and in a battery we use chemical energy 

to take the current back up to the higher potential again. 

 

The potential difference (“pd”) between two points is measured 

in volts (V) and is usually called the voltage. The voltage 'across' 

or 'between' a pair of terminals is a measure of the work required 

to move a charge of one coulomb from one terminal to the other 

 
volts = joules per coulomb 

 

 

Again instantaneous values are denoted as 𝑣 whereas a capital V 

represents a steady state value. 
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Since voltage represents the potential needed to move charge 

between terminals it is clear that a voltage can exist between two 

points even if no current flows. 

 

The energy converted per unit charge in an electrical source is 

also sometimes called the electromotive force (e.m.f.) of the 

source.   

 

Voltage may be represented on a circuit diagram by a '+' and '-' 

pair of symbols or by an arrow. 

 

 

In both cases 

 

VABBA 8==− VVV  

 

i.e. terminal A is 8 V positive with respect to terminal B.  Note that 

we have also introduced the notation, BAAB VVV −= . [This is the 

same notation that we use for “vectors” in our mathematics as you 

will find if (when) you have studied them.] 

 

Power is the rate of transfer of energy, measured in Watts, it is 

given by 

P = V.I 
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In general current flows out of the positive terminal of a source into 

the positive terminal of the load. 

 

 

 

Here a power 5 A x 10 V = 50 W is transferred from the source to 

the load. 

 

 
5. Earth (zero voltage reference) 
 
Most real circuits also have a connection to “earth” (or, 

equivalently “ground”), which we may denote by the symbol below. 

By earthing our circuit to the earth pin of our mains plug (and 

thence to a metal stake in the ground somewhere nearby) we can 

reduce the risk of developing a dangerously high potential 

difference between the circuit and ourselves!  

 
In this course we will only be analysing the potentials around the 

circuit and we will not be concerned about this connection to the 

outside world. Nevertheless, putting an earth symbol on our 

diagrams is equivalent to defining a “zero” reference voltage for 

our calculations, which may be quite sensible. 



Circuit Analysis I: WRM MT11 
 

 11 

6. Linear passive circuit elements and Ohm’s Law 
 

The major part of many electrical circuits consists of passive 

elements, which can either dissipate energy (resistors) or store 

energy (capacitors and inductors).  A linear element is one in 

which the voltage across the element varies linearly with the 

current flowing through.  We will deal solely with such elements in 

these lectures, although it is worth remembering that practical 
circuit elements will exhibit some (small) degree of non-linearity. 

 

It is well known that as electrons move through a material they 

collide with the atoms and lose some of their energy.  There is 

some 'resistance' to current flow and the loss of energy is usually 

converted to heat.  Georg Simon Ohm studied the effect and found 

that the voltage drop across a piece of conductor was directly 

proportional to the current flowing through it.  This is known, of 

course, as Ohm's Law and the constant of proportionality, R, is 

called the resistance.  Thus 

 

V = I.R 

 

If V is measured in volts and I in amps, the unit of R is the Ohm 

(Ω).  The value of the resistance depends, of course, on the 

material used via its resistivity, 𝜌, its length, 𝑙, and cross-sectional 

area, 𝐴,  

R = 𝜌𝑙/𝐴. 
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HLT, for example, lists the resistivities of a number of materials.  It 

is, of course, perfectly possible to write the proportionality between 

current and voltage in a form analogous to that above, i.e. 

 

𝑖 = G𝑣 

 

The constant of proportionality evidently has units of amps/volts or  

1/ohms which are given the symbol S (Siemen) and G = 1/R is 

called the conductance of the element. 

 

Since Ohm's law is crucial in circuit analysis it is very important to 

take care to apply it correctly.  Suppose a current I flows through a 

resistor of value R. 

 

 
 

Ohm's law tells us that 

 

RIVVV ==− 21 . 

 

The direction of the voltage arrow tells us we are measuring the 

potential on the left relative to the potential on the right and the 

current arrow tells us we are measuring the current flowing from 

left to right. If the potential on the left is actually higher than the 

potential on the right, V and I will both be positive. (Current going 

from a higher potential to a lower potential means we are 
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dissipating energy in the resistor.) Of course if the left side is at a 

lower potential, both V and I  will be negative and their product (the 

power dissipated in the resistor) will still be positive.  

 

If we happen to measure the right side relative to the left, we would 

draw the voltage arrow the other way around.  

 

 

 
 

Naturally power is still dissipated in the resistor so either V or I will 

have to be negative and we must write: 

 

 RIV −=  

 

Thus, although Ohm's law is very simple we do need to be careful 

and "keep an eye on the signs". 

 

Finally note that, since power dissipation is given by P = IV, we 

may write, for a resistor, 

 

P= IV = I 2 R=V 2 R Watts  

 

or, alternatively, 

P= IV = I 2 G=V 2 G Watts  
 



 14 

7. Practical Values 
 

In engineering we have to deal with a wide range of variables and 

we make good use of “engineering notation” where values are 

given in the form  n.nn × 103n , e.g. 1.23 × 106 and we have names 

for the powers: 

 

tera T  one trillion   1012   

giga G  one billion   109   

mega M  one million   106  

kilo k  one thousand   103   

milli m  one-thousandth   10-3  

micro µ  one-millionth   10-6   

nano n  one-billionth   10-9   

pico p  one-trillionth   10-12  

.... and more! 

 

Thus 1.23 × 106 Ω ≡ 1.23 MΩ ≡ 1.23 mega-ohm. On a circuit 

diagram you may also see it written as 1M23. 

 

In this example, we have used “three significant digits” – 3 s.d. (or 

“three significant figures” – 3 s.f.). In engineering it is important to 

use an appropriate precision in our measurements and 

calculations. With a pocket calculator it is easy to write down a lot 

more digits than is sensible and you will probably be reprimanded 

by your tutor for doing so.  

 

Let’s look at rounding to 3 s.d. and suppose (say) you finish up 

writing down things between 1.00 and 9.99. To do that, you may 
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be introduced a rounding error up to half the smallest digit, i.e. 

0.005. The biggest percentage error you can introduce is for the 

number 1.00 when the error could be up to ±0.005/1.00. i.e. 

±0.5%. On the other hand, for the number 9.99, your rounding 

error can’t be any more than ±0.05%. Therefore 3 s.d. is 

appropriate when you are expecting your measurements or your 

answers to be accurate to about 1%. We usually want to avoid 

calculation errors, so we often use more significant digits in our 

intermediate calculations but just pause and think when you write 

down your final answer. 

  

You will meet some real resistors when you get into the lab, but 

note that they come in quite a variety of shapes and sizes. They 

are commonly available in values from ohms (Ω) to mega-ohms 

(MΩ) and in standard ranges and tolerances. For example, the E24 

range (see HLT) has 24 equal ratios from 1 Ω to 10 Ω (and indeed 

in every other decade too) and provides the nominal values of 1.0, 

1.1, 1.2, 1.3, 1.5, ....... 8.2, 9.1, 10. This range is typically used for 

resistors with a tolerance of ±5% - that’s handy because it means 

that any resistor manufactured can be labelled with one of the 

nominal values. Resistors also come in different power ratings 

from fractions of a watt upwards reflecting their differing abilities to 

dissipate the heat. 
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8. Resistors in Series and Parallel 
 

We complete this 'basics' section by noting that elements that are 

connected together 'one after the other' such that the same 
current flows through each element are said to be connected in 

series. 
 

 

 
 

 

where  321 RRRq ++=eR  

 

which is, of course, easily generalised to any number of elements, 

N, each  of value Rn 

∑
=

=
N

i
neq RR

1
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Elements that are connected together such that the same voltage 

appears across each are said to be connected in parallel. 
 

 
 

where  
4321

11111
RRRRReq

+++=  

 

Since the inverse of resistances is involved in this case it is 

sometimes more convenient to work in terms of conductances, 

( )RG 1= .  In this case if there are N such elements of conductance 

Gn 

Geq =
i=1

N

∑ Gn  

 

We note that for the case of two resistors 
 

21

111
RRReq

+=  

or 

sum""
product""

=
+

=
21

21

RR
RRReq  

We will have occasion to make much use of this relationship in the 

future. 
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9. Independent and dependent sources 
 

A source is an active element in the sense that it can deliver 

energy to an external device.  Examples of source include 

batteries, alternators, oscillators etc. 

 

There are two fundamental types of source.  The first, with which 

we are all familiar is the voltage source.  An example here is a 

battery.  However, although perhaps less familiar at the moment, 

one can equally well conceive of a current source. 

 

 

 
 

 

These sources are said to be independent since their value is 

fixed independently of anything else in the circuit.  
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A dependent source on the other hand is one whose value 

depends on the current, or voltage, at some other point in the 

circuit to which it is connected. Such sources are drawn as 

 
where V1, I1, V2 & I2, are voltages and currents somewhere else in 

the circuit.  Although the dependent source concept may seem a 

little farfetched at the moment, we will have cause to return to it in 

connection with transformers and transistors. 
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10. Kirchhoff's laws 
 

I suggested at the outset that we would look at circuits consisting 

of components and wires. Further to that we will also now 

assume that the wires are good conductors with negligible 

resistance such that they pass currents with negligible voltage 

drop. (This means that someone has chosen the wires to be thick 

enough that their resistance is very much less than that of the 

surrounding components.)  Wires therefore have the same voltage 

at all points. 

 

We will now state the two laws which we will permit us to analyse 

all electrical circuits.  The first is Kirchhoff's current law (KCL) 
which tells us that the rate of flow of charge (current) into any 

point, or node, in a circuit is equal to the rate of flow of charge 

(current) out of it. In effect this says that charge cannot accumulate 

at any point in a circuit. Mathematically if currents flow into a node 

as shown 
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then the KCL tells us  

 

04321 =−+− IIII  

 

if there are N wires meeting at a point, each carrying a current In, 

then 

∑
=

=
N

n
nI

1
0  

 

where due attention is paid to the signs so as to differentiate 

between current flowing into and away from the node. 

 

Alternatively, if you prefer, you can sum the currents going into the 

node and equate them with the sum of currents leaving the node. 

 

It is worth emphasising that, because we are assuming the wires 

have no resistance, all the wiring up until the next component (e.g. 

all that section of wiring shown in the diagram above) is at the 

same voltage. In principle this whole section of the wiring is one 

“node”. However, for convenience, we often put a blob at one 

particular point and refer to that as the node.  

 

We also use blobs to clarify whether wires are joined together or 

not. The two drawings on the left show all the wires connected 

together, the two drawings on the right shows two separate wires 

crossing each other: 
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Kirchhoff further observed that, if we follow a path around a circuit 

and return to the starting point we’ll get back to the same potential 

that we started at.  This is the basis of the second law, 

Kirchhoff’s voltage law (KVL) which tells us that the sum of the 

voltages around a closed path, taking due account of sign, must be 

zero.  Thus if there are N elements with a voltage drop, Vn, across 

each individual one, then 

∑
=

=
N

i
nV

1
0 

 

Consider the circuit 
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KVL tells us that 
 

0=++ ABCABC VVV  

 

Now 

VBC=VB−VC=V2
VCA=VC−VA=V3
VAB=VA−VB=−V1

 

 

Thus 0132 =−+ VVV  

 

 

 

Let’s look at another case where a loop is part of a larger circuit. 

 

 
 

Again 

0=++++ EADECDBCAB VVVVV  
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and hence 

023322111 =++−+ VRIRIVRI  

 

An alternative formulation of KVL is to say that the sum of the emfs 

applied must equal the sum of the pd's across the elements and 

we can see this by rearranging the equation as 

 

33112221 RIRIRIVV −−=+  

 

It is a matter of choice which approach one takes. 
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Example 
 

Find the unknown currents, voltages and resistor values in the 

following circuit: 

 
 

 

At node (1), KCL gives 

A4
0812

=

=−−

A

A

I
I

 

 

Ohm's law applied to the 10Ω resistor with IA=4A flowing through it, 

gives, taking account of the arrow on VA 

 

V40−=AV  
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At node (2) KCL gives 

 

A.
.
54

050
=

=−+

B

BA

I
II

 

 

Similarly at node (3) KCL gives 

 

A.57
012

=

=−+

C

BC

I
II

 

 

If we now apply the Kirchhoff voltage law (KVL) around the left 

hand bottom loop we have, say, 

 

V195
010120

0320320

=

=−+

=++

B

BC

V
VI

VVV

 

 

This also permits us to calculate Ω=== 3343
54

195
1 .

.B

B

I
VR  

 

Similarly applying KVL around the right hand loop gives, say 

 

Ω=
+

=

=+−

=++

20
8
12040

01208
0

2

2

210210

R

VR
VVV

A  
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11. Loop analysis 
 
Having introduced Kirchhoff’s two laws we now proceed to 

describe two important tools, loop analysis and nodal analysis, 

which will provide systematic methods for us us to calculate 

analysing circuits.  The two methods are complementary and the 

choice as to which method to use in practice is often determined 

by the specific problem or by personal preference. Let’s start with: 

 

Loop (or mesh) analysis 
 

Consider the following circuit in which it is required to find the 

currents flowing through each of the resistors. 

 

 
 

 

Our initial reaction might be to introduce the unknown currents, I1, 

I2 and I3 and solve the problem by writing Kirchhoff’s voltage law 

for the left hand loop as 
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31 301020 II +=  

 

and for the right hand loop 

 

32 302010 II +−=  

 

Finally Kirchhoff’s current law for the point (node) A gives 

 

321 III +=  

 

We now have three equations and three unknowns which we can 

solve, eventually, to give: 

 

AIAIAI 454018206360 321 ..,. === and . 

 

Although there is nothing wrong with this approach it's quite 

tedious to solve the three simultaneous equations and so we might 

wonder if there is an easier way to obtain the same result.  The 

answer, as you will have guessed, is “yes” and this is the method 

of loop (or mesh) analysis.  In this approach we assign currents to 

a specific loop rather than a specific piece of wire.  In the previous 

example we would merely assign two loop currents I1 and I2 as 

follows 
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We use this notation to indicate that a current I1 flows through the 

10Ω resistor and a current I2 through the 20Ω resistor.  The current 

through the 30Ω resistor, on the other hand, is given by I1-I2 

"downwards" or I2-I1 "upwards". 

 

If we now write the Kirchhoff voltage law for the left hand loop we 

have 

 

( )211 301020 III −+=  

 

and, for the right hand loop, 

 

( )122 302010 III −−−=  

 

It is now straightforward to solve these two simultaneous equations 

 

A.
A.

1820112
6360117

531
342

2

1

21

21

==

==
⇒
⎭
⎬
⎫

−=

−=

I
I

II
II
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Again the current in the 30Ω resistor is given as A.454021 =− II as 

before. 

 

We note that the beauty of the approach is that we have reduced 

the number of equations to solve from three to. 

 

We'll now do a few more examples to illustrate the method 

 
 

 

 

We draw the three loops as indicated but we pay no particular 

attention to the directions of the currents 321, III and .  The 
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mathematics will tell us the correct sign at the end of the 

calculation.  It need not concern us when setting up the solution. 

 

For the left hand loop we have 

 

( ) ( )31211 56210 IIIII −+−+=  

 

whereas the top right hand loop gives 

 

( ) ( )32122 7638 IIIII −−−−−=  

 

and finally for the bottom left hand loop we have  

 

( ) ( )23133 7540 IIIII −+−+=  

 

From which – please check my arithmetic - - 

 

AIAIAI 195011907890 321 ..,. =−== and . 

 

Note that this calculation for the three loop currents permits us to 

calculate the currents through each of the six resistors.  The more 

traditional approach would have required us to solve six 

simultaneous equations!! 

 

 

At the beginning I called this loop (or mesh) analysis. Mesh 
analysis means that we treat the circuit like a wire mesh fence 

and associate a loop current for each and every “hole” in the 
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mesh. Most times this gives us just the right number of equations 

but sometimes it doesn’t work out, as in the above example and 

e.g. if we have a circuit diagram with wires crossing each other. In 

loop analysis we are free to choose any loop which takes a 

closed path around the circuit, but a bit more thought is then 

needed to make sure that we have enough loops and that they are 

independent of each other, i.e. that our resulting simultaneous 

equations are sufficient and independent. (If they aren’t, we can’t 

solve them!) 
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12. Nodal Analysis 
 

In our previous analysis we have regarded the mesh currents as 

the unknowns from which voltages at various points around the 

circuit could be calculated.  It is equally appropriate to regard the 

voltages at particular nodes (relative, of course, to some 

reference) as the unknowns.  This is the basis of nodal analysis 

where we use Kirchhoff’s current law at each node, other than the 

reference, to give a set of simultaneous equations which permits 

the 'node voltages' and hence, if required, branch currents to be 

found.  Again we illustrate the method by way of an example.  

However, before doing so, it is sensible to remind ourselves of 

Ohm's law – re-stated here as 

 

 
 

 

R
VVI 21−=  

 

Consider the following circuit and suppose we eventually want to 

know the voltage drop across the 3Ω resistor 
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We begin by introducing node voltage V1 and V2 with respect to 

the reference node 0.  In general if a circuit has n principal nodes 

we need (n-1) simultaneous equations to solve the circuit. 

 

Referring to node 1 we may write the Kirchhoff current condition at 

this node by summing the currents flowing into the node to zero as 

 

( ) ( )
0

32
0

2 121 =
−

+
−

+
VVV

 

 

and for node 2 if we sum the current flowing out of the node to be 

zero we obtain 

 

( ) ( )
0

35
0

3 122 =
−

+
−

+
VVV
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These equations may be solved to give VVVV 5.92.6 21 == and .  

Hence the current flowing from node 2 towards node 1 is given by 

( ) A1.132.65.9 =− . 

 

We now consider a circuit containing only voltage sources where 

we are required to find the node voltages V1 and V2 with respect to 

the reference 0, 

 

 
 

 

If we decide to sum all the currents flowing into the nodes we may 

write for node 1 

 

0
3

0
102

10 1121 =
−

+
−

+
− VVVV

 

 

and for node 2 

 

0
4

0
1010

5 2212 =
−

+
−

+
− VVVV
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From which V1 and V2 may be found. 

 

We could, of course, have decided to sum all the currents flowing 

out of the nodes to be zero.  This would have given 

 

0
4
0

1010
5

0
3
0

102
10 21221211 =

−
+

−
+

−
=

−
+

−
+

− VVVVandVVVV
 

 

and, naturally would have made no difference to the final result.  

Indeed in solving problems like this I strongly suggest that you 

don't think too hard about what you are doing!  I mean by this 

somewhat dramatic statement that you are merely consistent in 

the way that you write the equations.  Thus for a particular node 

whose voltage is V0, say, where n arms meet, each connected by 

a resistor, Rn with an "outer" potential Vn 

 

 
 

 

Then either write 
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( )
00

1
=

−
∑
= n

n
N

n R
VV

 

 

or 

 

( )
00

1
=

−
∑
= n

n
N

n R
VV

 

 

The expressions are clearly equivalent.  A good check that you 

haven't made a mistake is to check, in each term making up the 

current summation equation, that the sign of the node voltage, V0, 

is the same. 

 

This is probably the only thing you have to think about in the vast 

majority of cases when using Node voltage analysis. 

 

Let’s look at a final example in which we are required to find the 

current flowing through each resistor. 
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(i) Brute force – not recommended! 

 

Noting that the elements in parallel must have the same voltage 

across them gives us 

 

321 1050015051 III =−=− ....  

 

Also 

321 III =+  

 

We now have three equations to solve for the three unknowns.  

We obtain .4154118;4123 321 AIAIAI =−== and  

 

(ii) Use loop currents 
 

Assume clockwise current loops I4 and I5 in the left and right hand 

loops respectively.  The loop equations (KVL) give 
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( ) 001505051 544 =−−−− .... III  

and 

( ) 0105001 545 =−−− III..  

 

This gives two equations to solve rather than three. 

 

(iii) Use node voltages 
 

Let the unknown node voltage at the "top" of the resistors be  V.  

Then 

 

0
10
0

5.0
0.1

5.0
5.1

=
−

+
−

+
− VVV  

 

In this case we have only one equation to solve for V.  Once we 

know V it is trivial to find the currents flowing through each resistor. 

 

We emphasise that we have just used three methods to solve the 

same problem.  They all, as they must, give the same answers.  

Some are easier to use than others.  Practice will help you pick the 

easiest method.  Indeed you might like to use node voltage 

analysis to check that we got the correct answers for the currents 

I1, I2 and I3 in the circuit on the first page of the loop analysis 

section. 
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You may have noticed that Loop analysis seems more natural if 

you have voltage sources whereas Nodal analysis fits better with 

current sources. Later in these notes you will learn how a current 

sources can be translated into an equivalent voltage source, and 

vice versa, which is often a useful thing to do.  
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13. Matrix Notation 
(This section is here for interest only and is NOT on the 
syllabus. If (when) you have studied matrices you may come 
to realise the power of matrix methods along with standard 
computer algorithms to solve very complicated circuit 
analysis problems way beyond anything you would want to 
solve “by hand”.)  
 

Since both loop/mesh analysis and nodal analysis result in a 

number of simultaneous equations there is, in a formal sense, 

advantage in writing the equations in matrix form.  It means that 

we can describe large circuits in a succinct manner and that we 

can use standard computer algorithms to solve them. Let's 

illustrate this by following problem: 
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The three loop equations are given by 

 

( ) ( )
( ) ( )
( ) ( ) 53423313

432221122

33112121

0 RIRIIRII
RIIRIRIIV

RIIRIIVV

+−+−=

−++−=−

−+−=+

 
 

or, in matrix notation 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++−−

−++−

−−+

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

+

3

2

1

54343

44211

3131

2

21

0 I
I
I

RRRRR
RRRRR
RRRR

V
VV

 

 

which we can write as     v = R.i 
 
We note that the resistance matrix is square symmetric and in 

general it will take the form 
         

   R11 R12 … R1n   

R =  R21 R22 … R2n   

   : : : :   

   Rn1 Rn2 … Rnn   

         

 

We observe that the diagonal elements, Rii, represent the sum of 

the resistances in the mesh around which the current Ii flows.  In 

our example, therefore, R22 is given by the sum of the resistors in 

the loop around which I2 flows, 421 RRR ++ , and so on. 
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The off diagonal elements have the property that jiij RR =  and are 

given, if we are consistent with the directions of the currents, by 

the negative of the common or mutual resistance shared by the ith 

and jth loops.  Thus 43223 RRR −==  since the resistor R4 is 

"common" to both the I2 and I3 loops. 

 

It is, of course, possible to make similar general remarks in the 

case of node-voltage analysis.  In order to illustrate this let's 

consider the circuit below 

 

 
 

 

where we have introduced node voltages, 321 , VVV and .  The 

node-voltage equations may be written as 

 



 44 

0

0

2
4

12

2

32

1
1

31

4

21

=−
−

+
−

=−
−

+
−

I
R
VV

R
VV

I
R
VV

R
VV

 

and 

0
0

2

23

3

3

1

13 =
−

+
−

+
−

R
VV

R
V

R
VV  

 

which we can write neatly in matrix form in terms of conductance 

as 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++−−

−+−

−−+

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

32121

2424

1441

2

1

0 V
V
V

GGGGG
GGGG
GGGG

I
I

 

 

or     i = G.v 
 
We notice the conductance matrix is square symmetric and again 

general remarks can be made about its form. 

 
   G11 G12 … G1n   

G =  G21 G22 … G2n   

   : : : :   

   Gn1 Gn2 … Gnn   

 

Warning! 
You might be tempted to solve circuit problems by writing these 

matrices directly from an examination of the circuit.  However, this 

is a very risky strategy in which it is easy to make mistakes. 
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Nevertheless, when you write down the simultaneous equations of 

your mesh or nodal analysis, do look out for these symmetries as a 

check on your working. Although very useful commercially, matrix 

methods are unlikely to be the best way to solve the simple 

problems we will encounter on this course. 
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14. The principle of superposition 
 

This is a very general principle which is useful in many branches of 

science where linear systems are involved.  In our terms it tells us 

that if we have a circuit containing any number of independent 

sources that the currents and voltages in that circuit are given by 

the algebraic sum of the currents and voltages due to each of the 

sources acting independently with the others removed (set to 

zero).  

 

Linearity implies that any particular voltage (or current), say Vx, is a 

linear function of all the sources, say Ey and Iz, as in  

 Vx = k1 . Ey + k2 . Iz.  

 

Linearity further implies that when Iz is zero, Vx = k1.Ey (= Vx’, say)  
and when Ey is zero, Vx = k2.Iz (= Vx’’, say) and superposition tells 

us that in general, Vx is the linear sum of the these components, 

i.e. Vx = Vx’ + Vx’’. 

 

We'll illustrate the idea with the following example where we are 

asked to find the current, I, flowing through the 10Ω resistor: 

 



Circuit Analysis I: WRM MT11 
 

 47 

 
 

We could of course solve the problem directly by introducing a 

(clockwise) loop current I1 into the left hand loop.  The loop 

equation ( )510510 11 −+= II  yields Amp151 −=−= II .  We now 

confirm this result using the principle of superposition. 

 

(i) We solve the problem when the 10V voltage source is 

removed – i.e. set to zero.  We note that when a voltage source is 

zero there is no voltage drop across it and so, in circuit terms it is 

replaced by a short circuit.  The circuit now becomes 
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The 5A current is now split between 5Ω and 10Ω resistors in 

parallel.  The same voltage is developed across both resistors thus 

 

( ) A
3
51055 222 −=⇒−=+ III  

 

(ii) When the 5A current source is set to zero no current flows 

through the 20Ω resistor and so the circuit reduces to 

 

 
 

in which  AA 32
105

10
3 =

+
=I . 

 

The total current, I, which flows when both sources are present is 

merely the sum of these two currents.  Thus 
 

A     1
3
2

3
5

32 −=+−=+= III  

 

which, of course, agrees with the value obtained by direct 

calculation. 
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Although the illustrative example here was easy to solve directly 

we note that this is a powerful principle which is often very helpful 

when dealing with more complicated situations. 

 

Caution! 
Earlier, we introduced the idea of a dependent source. In this 

case we cannot arbitrarily set it to zero because its value depends 

on something else in the circuit. Best to avoid superposition in this 

case. 
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15. Practical (non-ideal) sources 
 

As we have seen, an ideal voltage source can, in principle, supply 

any current to any load as evidenced by the 'flat' V-I  characteristic 

of a few pages ago.  In practice the voltage supplied falls as the 

current increases.  We model this behaviour by placing a resistor 

in series with our ideal voltage source. 

 

In this case the actual voltage supplied is given by 
 

Vs RIEV −=  
 

which is, of course, only equal to Es when I = 0.  It is usually a 

design objective to keep RV as small as possible so as to be able 

to provide a constant voltage over a range of current.  We note 

that the resistor RV  is variously, and equivalently, called the 

output resistance of the circuit, the internal resistance of the 

source or just the source resistance. 

 

The importance of what we have just done is that we have created 

a very simple circuit – a voltage source in series with a resistor – 

whose behaviour is equivalent, as far as the outside world is 

concerned, to that of the, perhaps complicated, device that is the 

actual source.  This is an example of an “equivalent circuit”. It is 
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a concept we will use many times in the future since it permits us 

to analyse the effects of a device without getting bogged down in 

the minutiae of its internal details. This particular instance is so 

common that we give it a name, the Thévenin equivalent circuit. 
 

Since an ideal voltage course cannot maintain a constant voltage 

for all currents it will come as no surprise that a practical current 

source cannot provide a constant current for all voltages.  An 

appropriate equivalent circuit in this case would be 

 

Since the current through the resistor Rc, is I0 − I  ‘downwards’, the 

terminal voltage is given, by Ohm's law, as V = I0 − I( )Rc .  

Therefore we may write 
 

I = I0 −V Rc  

 

In this case it is usually desirable that Rc be large such that I ≈ I0 

over as large a range of V as possible. 

 

This particular circuit is called the Norton equivalent circuit. 
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16. Thévenin and Norton Equivalent Circuits 
 

 
 

Consider an arbitrarily complicated linear circuit in which we only 

have access to two nodes, a and b. We can measure the voltage 

Vab and extract a current Ia = -Ib. If the circuit is linear, there must 

be a linear relation between this voltage and current and a graph 

of voltage vs. current will be a straight line:  

 
The intercept with the voltage axis occurs when I is zero and can 

be measured as the open-circuit voltage, Vo/c. The intercept with 

the current axis occurs when V is zero and can be measured as 

the short-circuit current, Is/c.  We can therefore represent it by 

the equation: 

 V = Vo/c – I . Req,      

  where Req =  Vo/c / Is/c, the negative slope of the line.   

I 

V 

Vo/c%

Is/c%
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However complicated the actual circuit is, we can completely 

describe its behaviour by this simple graph. In electronics we also 

like to represent things by circuits - if the line is relatively flat, we 

may choose to represent it by a Thévenin equivalent circuit.  
 

 
 

Here Vab = Eeq – Req.I,  

 where Eeq = Vo/c and Req =  Vo/c / Is/c. 

 

If the line is relatively steep, we may instead choose to represent it 

by a Norton equivalent circuit.  
 

 
 

Here Ia = Ieq – Req. Vab,  

 where Ieq = Is/c and Req =  Vo/c / Is/c. 
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[Our ability to represent the external behaviour of any linear circuit 

by either of these two equivalent circuits is sometimes stated as 

Thévenin’s Theorem and Norton’s Theorem.] 
  

Our straight line is of course defined by any two points. The open-
circuit voltage and the short-circuit current are often convenient 

to analyse and/or to measure in the practice but any other two 

points will do (e.g. in the lab where we don’t want to short out our 

circuit!).  

 

Alternatively the line can be defined by one point and the slope. 

The slope is ΔV/ΔI = – Req, and is the resistance of the circuit 
when all sources are set to zero (as with superposition, voltage 

sources set to zero = short circuit; current sources set to zero = 

open circuit; and we cannot arbitrarily set dependant sources to 

zero). For some circuits this is an easy thing to work out. 

 

Therefore to determine the Thévenin or the Norton equivalent 

circuit we usually work calculate two out of the three parameters: 

(i) Open-circuit voltage 

(ii) Short-circuit current 

(iii) Passive resistance. 
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Example 
 

 Find the Thévenin equivalent of the following circuit 

 

 
 

 

We first calculate the open circuit voltage, Voc.   Since no current 

flows through the resistor R3, Voc will appear across R2. 

 
 

 

Since current flows only in the left hand loop [ ]( )211 RRE +=  it is 

simple to write 
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1
21

2 E
RR

RVE oceq +
==  

 

We must now find the short circuit current which flows when the 

terminals a and b are connected together 

 
 

 

The two KVL loop equations may be written as 

 

( )
( ) 213

11211

0 RIIRI
RIRIIE

scsc

sc

−+=

+−=
 

 

which gives ( )( ) ][ 2
2322121 RRRRRREIsc −++=  from which we may 

calculate Req, after a little algebra, as 

 

21

21
3 RR

RRR
I
VR
sc

oc
eq +

+==  
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Thus as far as the outside world is concerned this circuit behaves 

as if it were 

 

 
 

At this point another possibility may occur to you. Suppose we set 

the sources to zero in our arbitrary circuit (as we did with 

superposition earlier). In this case it is a simple matter of setting E1 

to zero. The circuit is now entirely resistive and the resistance 

between the terminals is just R3 in series with a parallel 

combination of R1 and R2 giving us the above Thévenin resistance 

more directly.  
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Now try another example: 

 

Find the Thévenin equivalent of the following circuit which contains 

a dependent current source whose value is given by 9I where I is 

the current flowing through the 20Ω resistor 

 

 
 

 

We begin by calculating the open circuit voltage and note that, 

since a current of 9I + I = 10I flows through both the 2Ω and 12Ω 

resistor under these conditions that IIVoc 1201012 =⋅= .  We may 

find I by writing a KVL equation around the outer perimeter as 

 

III 10121022020 ++=  

 

hence  V/. 156020120120 === IVoc . 

 

We now need to find the short circuit current.  When a short is 

connected between a and b all the current flows through this and 

not the 12Ω resistor.  Thus the circuit to analyse becomes 

 



Circuit Analysis I: WRM MT11 
 

 59 

 
 

 

where we have re-labelled the current I as I1, to emphasise that it 

is now a different value since we are considering a different circuit. 

 

Again a current 10I1 flows through the 2Ω resistor and the short 

circuit.  Therefore 110IIsc = .  We find I1 by again writing a KVL 

equation around the outer loop as 

 

11 1022020 II +=  

 

Whence AI 5.01 =  and so AIsc 5= ;  Ω=== 3515scoceq IVR .  Thus 

the Thévenin equivalent is 
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17. Transformation between Thévenin and Norton 
Since we can use either a Thévenin circuit or a Norton circuit, we 

can replace one by the other whenever we feel like it: 

 

 

 
 
 
Sometimes this is rather helpful. We already noted that this may 

be useful in connection with Loop and Nodal analysis, and it is a 

useful trick in lots of situations. 

 

Let’s look at the recent example again: 
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E1 in series with R1 comprise a Thévenin circuit and can be 

replaced by the Norton circuit of IN = E1/R1 in parallel with R1.  

 

This Norton R1 is now in parallel to R2 and can be combined 

become Rx = R1R2/(R1+R2).  

 

Now the new Norton circuit of IN in parallel with Rx can be 

transformed to a Thévenin circuit ET = IN/Rx in series with Rx.  

 

Finally we combine the series resistors Rx and R3 and obtain the 

same answer as before. 

 

 

Draw the circuits corresponding to this development and 
verify for yourself that the answer is the same as before. 
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18. Maximum power transfer 
 

Suppose we have an arbitrary circuit containing many sources and 

resistors connected together in as complicated a fashion as we like 

or, perhaps, dislike.  Suppose further that we connect this circuit to 

a resistor, RL, (the load resistor) and we want to know, e.g., what 

value of RL to choose so that the resistor will absorb the maximum 

amount of power. 

 

 
 

If we represent the circuit by its Thévenin equivalent the problem 

becomes trivial. 

 

 
 
 

The current flowing in the circuit ( )Leqoc RRVI +=  and the power 

dissipated in the load, P, is given by 
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( )2
22

Leq

L
ocL RR

RVRIP
+

==  

 

In order to maximise this power as a function of RL we need to 

solve 
 

0=
LdR

dP  

 

The differentiation1 is routine and yields 

 

eqL RR =  

 

which you can check gives the maximum value.  Thus the 

maximum power is delivered when the load resistance is equal to 

the Thévenin (or Norton) resistance. 

 
 

  

                                                
1 I hope that you will find this differentiation easy, but in case your maths is rusty 
from the summer break, you may find it slightly easier to minimize 1/P. 
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19. Input and Output Impedance & Voltage Divider 
 

This brings us to the realization that connecting one circuit to 

another places demands on the output of the driving circuit (the 

one that’s providing the voltage and current) and the load circuit 

(the one that’s receiving the voltage and current). In general the 

term we use to describe the ability of a circuit to deliver a given 

current at a given voltage is the output impedance (“impedance” 

is a generalisation of the concept of resistance to include also 

capacitors and inductors – see Circuit Analysis II). Similarly, for a 

receiving circuit, the sinking of a certain current at a given input 

voltage is termed the input impedance. 
 

 

The Input Impedance is merely the input voltage divided by the 

input current. So we can write (using the symbol Z for generalized 

impedance, for DC conditions it is obviously R): 
 

in

in
in I

VZ =  

 
The Output Impedance is simply the resistance of the equivalent 

source: 

eq

eq

eq

eq

sc

oc
out R

R
E
E

I
VZ ===

 
 

Therefore a re-statement of the power transfer theorem is that 

output impedance of the source must equal input impedance of the 
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load for maximum power transfer. This principal is extremely 

important in a wide range of applications.  

 

On the other hand, in many designs, we would like the output 

voltage of a circuit to be specified irrespective of what load we may 

apply to it. In this case, we arrange that 𝑍!"# ≪ 𝑍!" in which case 

𝑉!"# ≈ 𝐸!". 

 
A common example of this is the voltage divider (or “potential 
divider”), which will see very frequently in the future. 

 
 

The current flowing through the two resistors is ( )21 RRVs +  and 

hence the voltage appearing across the resistor R2 is given by 
 

sVRR
RV

21

2
0 +
=

 

Of course, this is only true if I ≈ 0, or, equivalently if R1, R2 << any 

load resistance that is added.  
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20. Redrawing your circuit 
 
Sometimes circuits are drawn in a haphazard way that makes 

them very difficult to understand.  It is often a good idea to re-draw 

the circuit in a way that makes it clear to you what is going on. 

 

By convention, we tend to draw circuit diagrams with sources on 

the left supplying loads to the right, and we tend to draw our zero 

reference (or ground) as the bottom line in our circuit. 

 

Sometimes we do a bit of simplification when we are redrawing the 

circuit. For example, suppose we are required to find the voltage 

V0 across the 10Ω resistor. 

 

 

 

We first note that the 2Ω and 3Ω resistors are connected in series 

and so may be replaced by a single 5Ω resistor.  Thus the circuit 

can be redrawn as on the left below: 
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However the 10Ω and 5Ω resistors are now seen to be connected 

in parallel with the desired voltage V0 appearing across both of 

them.  This combination may be replaced by a single resistor of 

value Ω=
+

310
510
510 .  as shown in the right hand diagram.  This 

may, if necessary, be further re-drawn in the standard voltage 

divider configuration as 

 

from which VV 0410
3105

310
0 .=⋅

+
=  
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21. Summary 
 

By now you should have an understanding of the basic concepts of 

electrical circuits and have developed skills in simple circuit 

analysis. These tools and concepts will be developed and applied 

to more complicated circuits and devices in the sequel “Circuit 

Analysis II”. Before we can do that, you need to learn the 

mathematics of complex numbers, differential equations and 

frequency analysis! 

 


