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Preface

The eighth edition of Efectric Circuits is a carefully planned revision to the
most widely used introductory citcuits text of the past 25 years. As this
book has evolved over the years to meet the changing learning styles of
stondents, importantly, the underlying teaching approaches and philoso-
phies remain unchanged. The goals are:

+ To build an understanding of concepts and ideas explicitly in terms of
previous learning.

« To emphasize the telationship between conceptual understanding
and problem-solving approaches.

+ To provide students with a strong foundation of engineeﬁng practices.

WHY THIS EDITION?

When planning for the eighth edition revision of Electric Circuits, careful
thought was given to how we should best update this classic text to improve
upon the success of preceding editions and make the eighth edition as com-
pelling as the first. Through a thorough review process that included both
instructors and students who currently use Electric Circuits and those who
use other texts, our revision plan was formed. What emerged from this
exercise was a clear picture of what matters most to instructors and stu-
dents. With this feedback in mind, we made the following changes:

+ Problem solving is fundamental to the study of circuit analysis. The
authors put their primary effort into updating and adding new end-
of-chapter problems. The result is a fresh text with approximately
80% new or revised problems compared to the previous edition.
Having a wealth of new problems to assign and work is a key to suc-
cess in any circuits course.

» The ecighth edition represents a major redesign to the text. Careful
atiention was paid toward how to present the material—text, figures,
and artwork—in a clean, clear manner that would facilitate learning
and encourage reading. The seventh edition was the first introduc-
tory circuits text to recognize the changing needs of today’s students
with a modern, four-color design. The eighth edition refines this color
treatment with a more pedagogically coherent presentation.

+ Navigation was improved by the addition of page numbers to the
chapter objectives, less reliance on icons where names were more
effective, and the updated organization of end-of-chapter problems
by section levels. Additionally, the layout was enhanced to limit the
instances where Examples spill over onto multiple pages.

+ All artwork, photos, and images have been modernized and enhanced
to present a crisper illustration of the key elements and application of
circuit analysis.
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+ Recognizing that more class preparation and studying is happening
online with the use of additional resources, the development of
online resources for the eighth edition represents a significant
improvement from the seventh edition. From online, automatically
graded homework, to study aids and an e-book, all of this and more is
now available on an easy-to-navigate website for students and
instructors.

Collcge textbooks excel at presenting complicatcd material in a clear,
straightforward manner. Authors and publishers spend countless hours
developing the best possible fearning aid for students and teaching aid for
instructors. Prentice Hall is committed to working with authors to create
textbooks and supporting resources that enable better teaching and better
student learning. The eighth edition of Electric Circuifs is one such exam-
ple. It set the standard for circuits education 25 years ago and it continues
that trend today.

HALLMARK FEATURES

Chapter Problems

Users of Electric Circuits have comnsistently rated the Chapter Problems as
one of the book’s most attractive features. In the eighth edition, there are
over 1000 problems with approximately 80% that are new or revised from
the previous edition. Problems are organized at the end of each chapter by
section.

Practical Perspectives

The eighth edition continues the use of Practical Perspective introduced
with the chapter openers. They offer examples of real-world circuits, taken
from real-world devices. Most chapters begin with a brief description of a
practical application of the material that follows. Once the chapter mate-
rial is presented, the chapter concludes with a quantitative analysis of the
application along with a Practical Perspective problem. This enables you
to understand how to apply the chapter contents to the solution of a real-
world problem.

Assessment Problems

Each chapter begins with a set of chapter objectives. At key points in the
chapter, you are asked to stop and assess your mastery of a particular
objective by solving one or more assessment problems. If you are able to
solve the assessment problems for a given objective, you have mastered
that objective.

Examples

Every chapter includes many examples that illustrate the concepts pre-
sented in the text in the form of a numeric example. There are over
130 examples in this text. The examples are intended to illustrate the
application of a particular concept, and also to encourage good problem-
solving skills.
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Fundamental Equations and Concepts

Throughout the text, you will see fundamental equations and concepts set
apart from the main text. This is done to help you focus on some of the key
principles in electric circuits and to help you navigate through the impor-
tant topics.

Integration of Computer Tools

Computer tools can assist students in the learning process by providing a
visual representation of a circuit’s behavior, validating a calculated solu-
tion, reducing the computational burden of more complex circuits, and
iterating toward a desired solution using parameter variation. This compu-
tationat support is often invaluable in the design process. The eighth edi-
tion includes the support of PSpice, a popular computer tool. Chapter
problems suited for exploration with PSpice are so marked.

Design Emphasis

The eighth edition continues to support the emphasis on the design of cir-
cuits in many ways. First, several of the Practicaj Perspective discussions
focus ou the design aspects of the circuits. The accompanying Chapter
Problems continue the discussion of the design issues in these practical
examples, Second, design-oriented Chapter Problems have been labeled
explicitly, enabling students and instructors to identify those problems
with a design focus. Third, the identification of problems suited to explo-
ration with PSpice suggests design opportunities using this software.

Accuracy

All text and problems in the eighth edition have undergone our strict hall-
mark triple accuracy checking process, to ensure the most error-free book
possible.

RESOURCES FOR STUDENTS AND INSTRUCTORS

www.prenhall.com/nilsson

The eighth edition of Electric Circuits comes with Prentice Hall’s powerful
new suite of student and instructor online resources.

For Students:

.+ Online homework and practice with immediate feedback and inte-
grated e-book using PH Grade Assist
« Online Study Guide that highlights the key concepts of electric circuits
« Additional book and course specific resources

."‘/
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For Instructors:
+ Assignable, automatically graded online homework with PH
Grade Assist
-« Digital version of all figures from the book
+ Interactive Learning classroom PowerPoint slides
+ Sample Chapter Tests
» Additional book and course spceific resources

ADDITIONAL OFFLINE RESOURCES
For Students:

» Student Study Pack—This new resource teaches students techniques
for solving problems presented in the text. Organized by concepts,
this is a valuable problem-solving resource for all levels of students.

s Introduction to PSpice Manual—Updated for the eighth edition, the
manual comes with the latest available release of the software on CD.

For Instructors:

+ Instructor Solutions Manual—Fully worked-out solutions to end-of-
chapter problems.

s Instructor Problem Bank—A tremendous new resource with many
additional problems and corresponding solutions to problems not
found in the text. This is a great tool for creating homework and exams.

Ordering Options:

Electric Circuits with PH Grade Assist Online Homework Access:
ISBN 0-13-514291-1

Electric Circuits with Student Study Pack: 1ISBN 0-13-514290-3
Electric Circuits with Introduction to PSpice Manual: ISBN ()-13-514292-X

PREREQUISITES

In writing the first 12 chapters of the text, we have assumed that the
reader has taken a course in elementary differential and integral calculus,
We have also assumed that the reader has had an introductory physics
course, at cither the high school or university level, that introduces the
concepts of energy, power, electric charge, electric current, electric poten-
tial, and electromagnetic fields. In writing the final six chapters, we have
assumed the student has had, or is enrolled in, an introductory course in
differential equations.

COURSE OPTIONS

The text has becn designed for use in a one-semester, lwo-semester, or a
three-quarter sequence.

« Single-semester course: After covering Chapters 1-4 and Chapters 6-10
(omitting Sections 7.7 and 8.5) the instructor can choose from Chapter 5
(operational amplifiers), Chapter 11 (three-phase circuits), Chapters 13



and 14 (Laplace methods), and Chapter 18 (Two-Port Circuits) to
develop the desired emphasis.

« Two-semester sequence: Assuming three lectures per week, the first
nine chapters can be covered during the first semester, leaving
Chapters 10-18 for the second semester.

» Academic quarter schedule: The book can be subdivided into three
parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.

The introduction to operational amplifier circuits can be omitted without
interference by the reader going to the subsequent chapters. For example, if
Chapter 5 is omitted, the instructor can simply skip Section 7.7, Section 8.5,
Chapter 15, and those problems and assessing objective problems in the
chapters following Chapter 5 that pertain to operational amplifiers.

There are several appendixes at the end of the book to help readers
make effective use of their mathematical background. Appendix A reviews.
Cramer’s method of solving simultaneous linear equations and simple
matrix algebra; complex numbers are reviewed in Appendix B; Appendix C
contains additional material on magnetically coupled coils and ideal trans-
formers; Appendix D contains a bfief discussion of the decibel; AppendixE
is dedicated to Bode diagrams; ‘Appendix F is devoted to an abbreviated
table of trigonometrnc identities that are useful in circuit analysis; and an
abbreviated table of useful integrals is given in Appendix G. Appendix H
provides answers to selected suggested problems.
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Circuit Variables

Electrical engineering is an exciting and challenging profession
for anyone who has a genuine interest in, and aptitude for,
applied science and mathematics. Over the past century and a
half, electrical engineers have played a dominant role in the
development of systems that have changed the way people live
and work. Satellite communication links, telephones, digital com-
puters, televisions, diagnostic and surgical medical equipment,
assembly-line robots, and electrical power tools are representa-
tive components of systems that define a modern technological
society. As an electrical engineer, you can participate in this ongo-
ing technological revolution by improving and refining these
existing systems and by discovering and developing new systems
to meet the needs of our ever-changing society.

As you embark on the study of circuit analysis, you need to
gain a feel for where this study fits into the hierarchy of topics
that comprise an introduction to electrical engineering. Hence we
begin by presenting an overview of electrical engineering, some
ideas about an engineering point of view as it relates to circuit
analysis, and a review of the international system of units.

We then describe generally what circuit analysis entails. Next,
we introduce the concepts of voltage and current. We follow these
concepts with discussion of an ideal basic element and the need
for a polarity reference system. We conclude the chapter by
describing how current and voltage relate to power and energy.



1.1 Electrical Engineering: An Overview

Electrical engineering is the profession concerned with systems that
produce, transmit, and measure electric signals. Electrical engineering
combines the physicist’s models of natural phenomena with the mathe-
matician’s tools for manipulating those models to produce systems that
meet practical needs. Electrical systems pervade our lives; they are found
in homes, schools, workplaces, and transportation vchicles everywhere.
We begin by presenting a few examples from each of the five major clas-
sifications of electrical systems:

« communication systems

« computer systems

+ conlrol systems

« power systems

« signal-processing systems

Then we describe how electrical engineers analyze and design such systems.

Communication systems are electrical systems that generate, trans-
mit, and distribute information. Well-known examples include television
equipment, such as cameras, transmisters, receivers, and VCRs; radio tele-
scopes, used to explore the universe; satellite systems, which return images
of other planets and our own; radar systems, used to coordinate plane
flights; and telephone systems.

Figure 1.1 depicts the major comnponents of a modern telephone sys-
tem. Starting at the left of the figure, inside a telephone, a microphone
turns sound waves into electric signals. These signals are carried to a
switching center where they are combined with the signals from tens, hun-
dreds, or thousands of othet telephones. The combined signals leave the
switching center; their form depends on the distance they must travel. In
our example, they are sent through wires in underground coaxial cables to
a microwave transmission station. Here, the signals are transformed into
microwave frequencies and broadcast from a transmission antenna through
air and space, via a communications satellite, to a receiving antenna. The
microwave receiving station translates the microwave signals into a form
suitable for further transmission, perhaps as pulses of light to be sent
through fiber-optic cable. On arrival at the second switching center, the
combined signals are separated, and each is routed to the appropriate
telephone, where an earphone acts as a speaker to convert the received
electric signals back into sound waves. At each stage of the process, elec-
tric circuits operate on the signals. Imagine the challenge involved in
designing, building, and operating each circuit in a way that guarantees
that all of the hundreds of thousands of simultaneous calls have high-quality
connections.

Computer systems use electric signals to process information rang-
ing from word processing to mathematical computations. Systems range
in size and power from pocket calculators to personal computers to
supcrcomputets that perform such complex fasks as processing weather
data and modeling chemical interactions of complex organic molecules.
These systems include networks of microcircuits, or integrated circuits—
postage-stampsized assemblies of hundreds, thousands, or millions of
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Figure 1.2 4 A (T scan of an adult head.

Figure 1.3 & An airplane.

clectrical components that often operate at speeds and power levels close
to fundamental physical limits, including the speed of light and the thermo-
dynamic laws,

Control systems usc electric signals to regulate processes. Examples
include the control of temperatures, pressures, and flow rates in an oil
refinery; the fuel-air mixture in a fuel-injected automobile engine; mecha-
nisms such as the motors, doors, and lights in elevators; and the locks in the
Panama Canal. The autopilot and autolanding systems that help to fly and
land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power,
which is the foundation of our technology-based society, usually is gener-
ated in large quantities by nuclear, hydroelectric, and thermal (coal-, oil-,
or gas-fired) generators. Power is distributed by a grid of conductors that
crisscross the country. A major challenge in designing and operating such
a system is to provide sufficient redundancy and control so that failure of
any piece of equipment does not leave a city, state, or region completely
without power.

Signal-processing systems act on electric signals that represent infor-
mation. They transform the signals and the information contained in them
into a more suitable form. There are many different ways to process the
signals and their information. For example, image-processing systems
gather massive quantities of data from orbiting weather satellites, reduce
the amount of data to a manageable level, and transform the remaining
data into a video image for the evening news broadcast. A computerized
tomography (CT) scan is another example of an image-processing system.
It takes signals generated by a special X-ray machine and transforms them
into an image such as the one in Fig. 1.2. Although the original X-ray sig-
nals are of little use to a physician, once they are processed into a recog-
nizable image the information they contain can be used in the diagnosis of
disease and injury.

Considerable interaction takes place among the engineering disci-
plines involved in designing and operating these five classes of systems.
Thus communications engineers use digital computers to control the flow
of information. Computers contain control systems, and control systems
contain computers. Power systems require extensive communications sys-
tems to coordinate safely and reliably the operation of components, which
may be spread across a continent. A signal-processing system may involve
a communications link, a computer, and a control system.

A good example of the interaction among systems is a commercial
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor the
plane’s location, permitting the air traffic controller to design a safe flight
path for all of the nearby aircraft and enabling the pilot to keep the plane
on its designated path. On the newest commercial airplanes, an onboard
computer system is used for managing engine functions, implementing the
navigation and flight control systems, and generating video information
screens in the cockpit. A complex control system uses cockpit commands
to adjust the position and speed of the airplane, producing the appropriate
signals to the engines and the control surfaces (such as the wing flaps,
ailerons, and rudder) to ensure the plane remains safely airborne and on
the desired flight path. The plane must have its own power sysiem to stay
aloft and to provide and distribute the electric power needed to keep the



cabin lights on, make the coffee, and show the movie. Signal-processing
systems reduce the noise in air traffic communications and transform
information about the plane’s location into the more meaningful form of a
video display in the cockpit. Engineering challenges abound in the design
of each of these systems and their integration into a coherent whole. For
example, these systems must operate in widely varying and unpredictable
environmental conditions. Perhaps the most important engineering chal-
lenge is to guarantee that sufficient redundancy is incorporated in the
designs to ensure that passengers arrive safely and on time at their desired
destinations.

Although electrical engineers may be interested primarily in one
area, they must also be knowledgeable in other areas that interact with
this area of interest. This interaction is part of what makes electrical engi-
neering a challenging and exciting profession. The emphasjs in engineer-
ing is on making things work, so an engineer is free to acquire and use any
technique, from any field, that helps to get the job done.

Circuit Theory

In a field as diverse as electrical engineering, you might well ask whether
all of its branches have anything in common. The answer is yes—electric
circuits. An electric circuit js a mathematical modeJ that approximates
the behavior of an actual electrical system. As such, it provides an impor-
tant foundation for learning—in your Jater courses and as a practicing
engineer—the details of how to design and operate systems such as those
just described. The models, the mathematical techniques, and the language
of circuit theory will form the intellectual framework for your future ecngi-
neering endeavors.

Note that the term electric circuit is commonly used to refer to an
actual electrical system as well as to the model that represents it. In this
text, when we talk about an electric circuit, we always mean a model,
unless otherwise stated. It is the modeling aspect of circuit theory that has
broad applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the study
of static and moving electric charges. Although generalized field theory
might seem to be an appropriate starting point for investigating electric sig-
nals, its application is not only cumbersome but also requires thc nse of
advanced mathematics. Consequently, a course in electromagnetic field
theory is not a prerequisite to understapding the material in this book. We
do, however, assume that you have had an introductory physics course in
which electrical and magnctic phenomena were discussed.

Three basic assumptions permit us Lo use circuit theory, rather than
electromagnetic field theory, to study a physical system represented by an
electric circuit. These assumptions arc as follows:

1. Electrical effects happen instantaneously throughout a system. We
can make this assumption because we know that electric signals
travel at or near the speed of light. Thus, if the system is physically
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously. A sys-
tem that is small enough so that we can make this assumption is
called a lomped-parameter system.

1.1
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2. The net charge on every component in the system is always zero.
Thus no component can collect a net excess of charge, although
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system.
As we demonstrate later, magnetic coupling can oceur within a
component.

That’s it; there are no other assumptions. Using circuit thcory provides
simple solutions (of sufficient accuracy) to problems that would become
hopelessly complicated if we were to use electromagnetic field theory.
Thesc benefits are so great that engineers sometimes specifically design
electrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the
basic circuit elements and the rules for analyzing interconnected elements.

However, we need to take a closer look at assumption 1. The question
1s, “How small does a physical system have to be to qualify as a lumped-
parameter system?” We can get a quantitative handlc on the question by
noting that electric signals propagate by wave phenomena. If the wave-
length of the signal is large compared to the physical dimensions of the sys-
tem, we have a lumped-parameter system. The wavelength A is the velocity
divided by the repetition rate, or frequency, of the signal; that is, A = ¢/f.
The frequency fis measured in hertz (Hz). For example, power systems
in the United States operate at 60 Hz. If we use the speed of light
(c=3X 10% m/ §) as the velocity of propagation, the wavelength is
5 x 10° m. If the power system of interest is physically smaller than this
wavelength, we can represent it as a lumped-parameter system and use
circuit theory to analyze its behavior. How do we define smaller? A good
rule is the rule of 1/10th: if the dimension of the system is 1/10th (or
smaller) of the dimension of the wavelength, you have a lumped-parameter
system. Thus, as long as the physical dimension of the power system is less
than 5 X 10° m, we can treat it as a lumpcd-parameter system.

On the other hand, the propagation frequency of radio signals is on the
order of 10° Hz. Thus the wavelength is 0.3 m. Using the rule of 1/10th, the
relevant dimensions of a communication system that sends or receives radio
signals must be less than 3 cm to qualify as a lJumped-parameter system.
Whenever any of the pertinent physical dimensions of a system under study
approaches the wavelength of its signals, we must use electromagnetic field
theory to analyze that system. Throughout this book we study circuits
derived from lumped-parameter systems.

Problem Solving

As a practicing ¢ngineer, you will not be asked to solve problems that
have already been solved. Whether you are trying to improve the per-
formarce of an existing system or creating a new system, you will be work-
ing on unsolved problems. As a student, however, you will devote much of
your attention to the discussion of problems alrcady solved. By reading
about and discussing how these problems were solved in the past, and by
solving related homework and exam problems on your own, you will
begin to devclop the skills to successfully attack the unsolved problems
you’ll face as a practicing engineer.
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Some general problem-solving procedures are presented here. Many
of them pertain to thinking about and organizing your solution strategy
before proceeding with calculations.

1. Identify what's given and what’s 1o be found. In probjem solving, you
need to know your destination before you can select a route for get-
ting there. What is the problem asking you to solve or find?
Sometimes the goat of the problem is obvious; other times you may
need to paraphrase or make lists or tables of known and unknown
information to see your objective.

The problem statement may contain extraneous information
that you need to weed out before proceeding. On the other hand, it
may offer incomplete information or more complexities than can be
handled given the solution methods at your disposal. In that case,
you’ll need to make assumptions to fill in the missing information or
simplify the problem context. Be prepared to circle back and recon-
sider supposedly extraneous information and/or your assumptions if
your calculations get bogged down or produce an answer that doesn’t
seem to make sense.

2. Skerch a circuit diagram or other visual model. Translating a verbal
problem description into a visual model is often a useful step in the
solution process. If a circuit diagram is already provided, you may
need to add information to it, such as labels, values, or reference
directions. You may also want to redraw the circuit in a simpler, but
equivalent, form. Later in this text you will learn the methods for
developing such simplified equivalent circuits.

3. Think of several solution methods and decide on a way of choosing
among them. This course will help you build a collection of analyti-
cal tools, several of which may work on a given problem. But one
method may produce fewer equations to be solved than another, or
it may require only algebra instead of calculus to reach a solution.
Such efficiencies, if you can anticipate them, can streamline your cal-
culations considerably. Having an alternative method in mind also
gives you a path to pursue if your first solution attempt bogs down.

4. Calculate a solution. Your planning up to this point should have
helped you identify a good analytical method and the correct equa-
tions for the problem. Now comes the solution of those equations.
Paper-and-pencit, calculator, and computer methods are all avail-
able for performing the actual calculations of circuit analysis.
Efficiency and your instructor’s preferences will dictate which tools
you should use.

5. Use your creativity. If you suspect that your answer is off base or if the
calculations seem to go on and on without moving you toward a solu-
tion, you should pause and consider alternatives. You may need to
revisit your assumptions or select a different solution method. Or, you
may need to take a lcss-conventional problem-solving approach, such
as working backward from a solution. This text provides answers to all
of the Assessment Problems and many of the Chapter Problems so
that you may work backward when you get stuck. In the real world,
you won’t be given answers in advance, but you may have a desired
problem outcome in mind from which you can work backward. Other
creative approaches include allowing yourself to see parallels with
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other types of problems you’ve successfully solved, following your
intuition or hunches about how to proceed, and simply setting the
problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve
obtained makes sense. Does the magnitude of the answer seem rea-
sonable? Is the solution physically realizable? You may want to go
further and rework the problem via an alternative method. Doing
so will not only test the validity of your original answer, but will also
help you develop your intuition about the most efficient solution
methods for various kinds of problems. In the real world, safety-
critical designs are always checked by several independent means.
Getting into the habit of checking your answers will benefit you as
a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of,
or elaborate on certain steps to solve a particular problem. Use these steps
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units

Engineers compare theoretical results to experimental results and com-
pare competing engineering designs using quantitative measures. Modern
engineering is a multidisciplinary profession in which teams of engineers
work together on projects, and they can communicate their results in a
meaningful way only if they all use the same units of measure. The
International System of Units (abbreviated SI) is used by all the major
engineering societies and most engineers throughout the world; hence we
use it in this book.
The ST units are based on seven defined quantities:

+ length

» mass

> time

« electric current

+ thermodynamic temperature
« amount of substance

+ luminous intensity

TABLE 1.1 The Intérnational System'of Units (SI) __
Quantity Basic Unit Symboi

Length meler m
Mass kilogram kg
Time second 8
Electric current ampcre A
Thermodynamic temperature degree kelvin K
Amount of substance mole mol

Luminous intensit candela cd
y




These quantities, along with the basic unit and symbol for each, are
listed in Table 1.1. Although not strictly SI units, the familiar time units of
minute (60 s), hour (3600 s), and so on are often used in engineering cal-
culations. In addition, defined quantities are combined to form derived
units. Some, such as force, energy, power, and electric charge, you already
know through previous physics courses. Table 1.2 lists the derived units
used in this book.

In many cases, the SI unit is either too small or too large to use conve-
niently. Standard prefixes corresponding to powers of 10, as listed in
Table 1.3, are then applied to the basic unit. All of these prefixes are cor-
rect, but engineers often use only the ones for powers divisible by 3; thus
centi, deci, deka, and hecto are used rarely. Also, engineers often select the
prefix that places the base number in the range between 1 and 1000.
Suppose that a time calculation yields a result of 107 s, that is, 0.00001 s.
Most engineers would describe this quantity as 10 us, that is,
107 = 10 X 107s, rather than as 0.01 ms or 10,000,000 ps.

Objective-l—U,nderstand and be able to use SI units and the standard prefixes for powers of 10

1.1  How many dollars per millisecond would the 1.2
federal government have to collect to retire a
deficit of $100 billion in one year?

Answer: $3.17/ms. '

1.2 The International System of Units

If a signal can travel in a cable at 80% of the
speed of light, what length of cable, in inches,
represents 1 ns?

Answer: 945",
NOTE: Also try Chapter Problems 1.1,1.3 and 1.6.
TABLE 1.3 Standardized Prefixes to Signify
Powers of 10
Prefix Symbol Power
- atto a 10718
TABLE 1.2 Derived Units in SI ol ¢ 10-15
SO . UnitName (Symbol) Eovmn s pico p 107"
Frequency hertz (Hz) s7! nano n 1077
Force newton (IN) kg - m/s? micro u 107¢
Energy or work joule (J) N-m milli m 1073
Power watt (W) I/s centi c 1072
Electric charge coulomb (C) A-s deci d 107!
Electric potential volt (V) I/C deka da 10
Electric resistance ohm () V/A hecto h 107
Electric conductance siemens (S) AV kilo k 10°
Electric capacitance tarad (F) Cc/vV mega M 108
Magnetic flux weber (Wb) Vs giga G 10°
Inductance henry (H) Wb/A tera T 10"

9
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Figure 1.4 4 A conceptual model for electrical engi-
neering design.

1.3 Circuit Analysis: An Overview

Before becoming involved in the details of circuit analysis, we need to
take a broad look at engineering design, specifically the design of electric
circuits. The purpose of this overview is to provide you with a perspective
on where circuit analysis fits within the whole of circuit design. Even
though this book focuses on circuit analysis, we try to provide opportuni-
ties for circuit design where appropriate.

All engineering designs begin with a need, as shown in Fig. 1.4. This
need may come from the desire to improve on an existing design, or it may
be something brand-new. A careful assessment of the need results in
design specifications, which are measurable characteristics of a proposed
design, Once a design is proposed, the design specifications allow us to
assess whether or not the design actually meets the need.

A concept for the design comes next. The concept derives from a com-
plete understanding of the design specifications coupled with an insight into
the need, which comes from education and experience. The concept may be
realized as a sketch, as a written description, or in some other form. Often
the next step is to translate the concept into a mathematical model. A com-
monly used mathematical model for electrical systems is a circuit model.

The elements that comprise the circuit model are called ideal circnit
components. An ideal circuit component is a mathematical model of an
actual electrical component, like a battery or a light bulb. It is important
for the ideal circuit component used in a circuit model to represent the
behavior of the actual electrical component to an acceptable degree of
accuracy. The tools of circuit analysis, the focus of this book, are then
applied to the circuit. Circuit analysis is based on mathematical techniques
and is used to predict the behavior of the circuit model and its ideal circuit
components. A comparison between the desired behavior, from the design
specifications, and the predicted behavior, from circuit analysis, may lead
to refinements in the circuit model and its ideal circuit elements. Once the
desired and predicted behavior are in agreement, a physical prototype can
be constructed.

The physical prototype is an actual electrical system, constructed from
actual electrical components. Measurement techniques are used to deter-
mine the actual, quantitative behavior of the physical system. This actual
behavior is compared with the desired behavior from the design specifica-
tions and the predicted behavior from circuit analysis. The comparisons
may result in refinements to the physical prototype, the circuit model, or
both. Eventually, this iterative process, in which models, components, and
systems are continually refined, may produce a design that accurately
matches the design specifications and thus meets the need.

From this description, it is clear that circuit analysis plays a very
important role in the design process. Because circuit analysis is applied to
circuit modcls, practicing engineers {ry to use maturc circuit models so
that the resulting designs will meet the design specifications in the first
iteration. In this book, we use models that have been tested for between
20 and 100 years; you can assume that they are mature. The ability to
model actual electrical sysiems with ideal circuit elements makes circuit
theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be used
to quantitatively predict the behavior of a system implies that we can



describe the interconnection with mathematical equations. For the mathe-
matical equations to be useful, we must write them in terms of measurable
quantities. In the case of circuits, these quantities are voltage and current,
which we discuss in Section 1.4. The study of circuit analysis involves
understanding the behavior of each ideal circnit element in terms of its
vollage and current and understanding the constraints imposed on the
voltage and current as a result of interconnecting the ideal elements.

1.4 Voltage and Current

The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

» The charge is bipolar, meaning that electrical effects are described in
terms of positive and negative charges.

» The electric charge exists in discrete quantities, which are integral
multiples of the electronic charge, 1.6022 X 107 C.

+ Electrical effects are attributed to both the separation of charge and
charges in motion.

In circuit theory, the separation of charge creates an electric force (volt-
age), and the motion of charge creates an electric fluid (current).

The concepts of voltage and current are useful from an engineering
point of view because they can be expressed quantitatively. Whenever
positive and negative charges are separated, energy is expended. Voltage
15 the energy per unit charge created by the separation. We express this
ratio in differential form as

dw
v = g’ (1.1)
where
v = the voltage in volts,
w = the energy in joules,
g = the charge in coulombs.

The electrical effects caused by charges in motion depend on the rate
of charge flow. The rate of charge flow is known as the electric current,
which is expressed as

= _'d_q
1= e (1.2)

where
i = the current in amperes,

g = the charge in coulombs,
t = the time in seconds.
Equations 1.1 and 1.2 are definitions for the magnitude of voltage and

current, respectively. The bipolar nature of electric charge requircs that we
assign polarity references to these variables. We will do so in Section 1.5.

1.4 Voltage and Current

< Definition of voltage

< Definition of current

11
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Figure 1,5 4 An ideal basic circuit element.

Althougb current is made up of discrete, moving electrons, we do not
need to consider them individually because of the enormous number of
them. Rather, we can think of electrons and their corresponding charge as
one smoothly flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a compo-
nent strictly in terms of the voltage and current at its terminals, Thus two
physically different components could have the same relationship
between the terminal voltage and terminal current. If they do, for pur-
poses of circuit analysis, they are identical. Once we know how a compo-
nent behaves at its terminals, we can analyze its bebavior in a circuit.
However, when developing circuit models, we are interested in a compo-
nent’s internal behavior. We might want to know, for example, whether
charge conduction is taking place because of free electrons moving
through the crystal lattice structure of a metal or whether it is because of
clectrons moving within the covalent bonds of a semiconductor material.
However, these concerns are beyond the realm of circuit theory. In this
book we use circuit models that have already been developed; we do not
discuss how component models are developed.

1.5 The Ideal Basic Circuit Element

An ideal basic circuit element has three attributes: (1) it has only two ter-
minals, which are points of connection to other circuit components; (2) it is
described mathematically in terms of current and/or voltage; and (3) it
cannot be subdivided into other elements. We use the word ideal to imply
that a basic circuit element docs not exist as a realizable physical compo:
nent. However, as we discussed in Section 1.3, ideal elements can be con-
nected in order to model actual devices and systems. We use the word
basic to imply that the circuit element cannot be further reduced or sub-
divided into other elements, Thus the basic circuit elements form the build-
ing blocks for constructing circuit models, but they themselves cannot be
modeled with any other type of element.

Figure 1.5 is a representation of an ideal basic circuit element. The box
is blank because we are making no commitment at this time as to the typc of
circuit element it is. In Fig. 1.5, the voltage across the terminals of thc box is
denotcd by v, and the current in the circuit element is denoted by i. The
polarity reference for the voltage is indicated by the plus and minus signs,
and the reference direction for the current is shown by the arrow placed
alongside the current. The interpretation of these references given positive
or negative numerical values of v and i is summarized in Table 1.4. Note that

TABLE 1.4 _lntgrprpt_éitipn'df'Re'féljeqéé. Directions in Fig. 1.5

Positive Value

v voltage drop from terminal 1 to terminal 2

or

voltage rise from terminal 2 to terminal |

Negative Value

yoltage rise from terminal 1 to terminal 2
or

voltage drop from terminal 2 to terminal 1

i positive charge flowing from terminal 1 to terminal 2 positive charge tlowing from terminal 2 to terminal |

or

or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2
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algebraically the notion of positive charge flowing in one direction is equiv-
alent to the notion of negative charge flowing in the opposite direction.

The assignments of the reference polarity for voltage and the refer-
ence direction for current are entirely arbitrary. However, once you have
assipned the references, you must write all subsequent equations to
agree with the chosen references. The most widely used sign convention
applied to these references is called the passive sign convention, which
we use throughout this book. The passive sign convention can be stated
as follows:

Whenever the reference direction for the current in an element is in
the direction of the reference voltage drop across the element (as in
Fig.1.5), use a positive sign in any expression that relates the voltage
to the current. Otherwise, use a negative sign.

< Passive sign convention

We apply this sign convention in all the analyses that follow. Our pur-
pose for introducing it even before we have introduced the different
types of basic circuit elements is to impress on you the fact that the selec-
tion of polarity references along with the adoption of the passive sign
convention is not a function of the basic elements nor the type of inter-
connections made with the basic elements. We present the application
and interpretation of the passive sign convention in power calculations in
Section 1.6.

Objective 2—Know and be able to use the definitions of voltage and current

1.3 The current at the terminals of the clement in 1.4  The expression for the charge entering the
Fig.1.5is _ upper terminal of Fig. 1.5 is
i= 0 £< 0
1 t 1
pod ot D
=205 A 4=, & \a «
Calculate the total charge (in microcoulombs) Find the maximum value of the current enter-
entering the element at its upper terminal. ing the terminal if @ = 0.03679 s
Answer: 4000 uC. Answer: 10 A.

NOTE: Also try Chapter Problem 1.9.
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Definition of power &

Power equation

1.6 Power and Energy

Power and energy calculations also are important in circuit analysis. One
teason is that although voltage and current are useful variables in the
analysis and design of electrically based systems, the useful output of the
system often is nonelectrical, and this output is conveniently expressed in
terms of power or energy. Another reason is that all practical devices have
limitations on the amount of power that they can handle. In the design
process, therefore, voltage and current calculations by themselves are not
sufficient.

We now relate power and energy to voltage and current and at the
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or
absorbing energy. (A water pump rated 75 kW can deliver more liters per
second than one rated 7.5 kW.) Mathematically, energy per unit time is
expressed in the form of a derivative, or

_dw

p= 1.3
vy ., (1.3)

where

p = the power in watts,

g
I

the energy in joules,

the time in seconds.

~.

Thus 1 W is equivalent to 1 J/s.
The power associated with the flow of charge follows directly from
the definition of voltage and current in Eqs. 1.1 and 1.2, or

_dw _ (d_w\(d_‘J)
P=a dg )\dt )’

S0

Vi (1.4)

R~
Il

where

p = the power in watts,
v = the voltage in volts,

i = the current in amperes,



Equation 1.4 shows that the power associated with a basic circuit element
is simply the product of the current in the element and the voltage across
the element. Therefore, power is a quantity associated with a pair of ter-
minals, and we have to be able to tell from our calculation whether power
is being delivered to the pair of terminals or extracted from it. This infor-
mation comes from the correct application and interpretation of the pas-
sive sign convention.

If we use the passive sign convention, Eq. 1.4 is correct if the reference
direction for the current is in the direction of the reference voliage drop
across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign.
In other words, if the current reference is in the direction of a reference
voltage rise across the terminals, the expression for the power is

p = —vi (1.5)

The algebraic sign of power is based on charge movement through
voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through arise in voltage, they gain
energy. Figure 1.6 summarizes the relationship between the polarity refer-
ences for voltage and current and the expression for power.

We can now state the rnle for interpreting the algebraic sign of power:

If the power is positive (that is, if p > 0), power is being delivered to
the circuit inside the box. If the power is negative (that is, if p < 0),
power is being extracted from the circuit inside the box.

For example, suppose that we have selected the polarity references
shown in Fig. 1.6(b). Assume further that our calculations for the current
and voltage yield the following numerical results:

i=4A and »v=-10V.
Then the power associated with the terminal pair 1,2 is
p=—(—10)(4) = 40 W.
Thus the circuit inside the box is absorbing 40 W.
To take this analysis one step further, assume that a colleague is solv-

ing the same problem but has chosen the reference polarities shown in
Fig. 1.6{c). The resulting numerical values are

i=—4 A, v=10 V, and p=40W.

Note that interpreting these results in terms of this reference systcm gives
the same conclusions that we previously obtaincd—namely, that the cir-
cuit inside the box is absorbing 40 W. In fact, any of the reference systems
in Fig. 1.6 yields this same result.

1.6

©)p=—vi

Power and Energy 15

(dp=w

Figure 1.6 A Polarity references and the expression
for power.

4 Interpreting algebraic sign of power



16

(ircuit Yariables

Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign
convention

1.5  Assume that a 20 V voltage drop occurs across
an element from terminal 2 to terminal 1 and
that a current of 4 A enters terminal 2.
a) Specify the values of v and i for the polarity
references shown in Fig. 1.6(a)—(d).
b) State whether the circuit inside the box is
absorbing or delivering power.

¢) How much power is the circuit absorbing?

Answer: (a) Circuit 1.6(a):v = 20V, i = —4 A;
circuit 1.6(b): v = —20V,i = 4 A;
circuit 1,6(c):v = 20 V,i = —4 A;
circuit 1.6(d): v = 20 V,i = 4 A;

(b) absorbing;

(c) 80 W. :

1.6  Assume that the voltage at the terminals of the

element in Fig. 1.5 corresponding to the current
in Assessment Problem 1.3 13

2 =0,

P (et ey

1< 0;

t = 0.

NOTE: Also try C‘haprer Problems 112, 1.17, 1.24, and 1.26.

Summary

The International System of Units (SI) enables engineers
fo commuunicate in a meaningful way about quantitative
results. Table 1.1 summarizes the base SI units; Table 1.2
presents some useful derived ST units. (See pages 8 and 9.)

Circuit analysis is based on the variables of voltage and
current. (See page 11.)

Voltage is the energy per unit charge created by charge
separation and has the SI unit of volt (v = dw/dg).
(See page 11.)

Current is the rate of charge flow and has the SI unit of
ampere (I = dg/dt). (See page 11.)

The ideal basic circnit element is a two-terminal compo-
nent that cannot be subdivided; it can be described
mathematically in terms of its terminal voltage and cur-
rent. (See page 12.)

Answer:

Calculate the total energy (in joules) delivered
to the circuit element.

Answer: 201

1.7 A high-voltage direct-current (dc) transmission

line between Celilo, Oregon and Sylmar,
California is operating at 800 kV and carrying
1800 A, as shown. Calculate the power (in
megawatts) at the Oregon end of the line and
state the direction of power flow.

Celilo,
Oregon

Sylmar,
California

SO0 kV

1440 MW, Celilo to Sylmar.

The passive sign convention uses a positive sign in the
expression that relates the voltage and current at the
terminals of an element when the reference direction
for the current through the element 1s in the direction of
the reference voltage drop across the clement. (See
page 13.)

Power is energy per unit of time and is equal to the

product of the terminal voltage and current; it has the SI

unit of watt (p = dw/dt = vi). (See page 14.)

The algebraic sign of power is interpreted as follows:

« If p > 0, power is being delivered to the circuit or
circuit component.

= If p < 0, power is being extracted from the circuit or
circuit component. (See page 15.)
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Problems 17

Section 1.2

11

1.2

13

1.5

1.6

There are approximately 250 million passenger
vehicles registered in the United States. Assume
that the battery in the average vehicle stores
440 watt-hours (Wh) of energy. Estimate (in
gigawatt-hours) the total energy stored in U.S. pas-
senger vehicles.

The line described in Assessment Problem 1.7 js
845 mi in length. The line contains four conductors,
each weighing 2526 1b per 1000 ft. How many kilo-
grams of conductor are in the line?

The 4 giga-byte (GB = 10° bytes) flash memory chip
for an MP3 player is 32 mm by 24 mm by 2.1 mm. This
memory chip holds 1000 three-minute songs.

a) How many seconds of music fit into a cube
whose sides are 1 mm?

b) How many bytes of memory are stored in a cube
whose sides are 100 pwm?

A hand-held video player displays 320 x 240 picture
elements (pixels) in each framc of the video. Each
pixel requires 2 bytes of memory. Videos are dis-
played at a rate of 30 frames per second. How many
minutes of video will fit in a 30 gigabyte memory?

Some species of bamboo can grow 250 mm/day.
Assume individual cells in the plant are 10 um long.

a) How long, on average, does it take a bamboo
stalk to grow 1 cell length?

b) How many cells are added in one week, on
average?

One liter (L) of paint covers approximately 10 m”
of wall. How thick is the laver before it dries? (Hinr:
1L =1 X 10° mm?)

Section 1.4

1.7

18

A current of 1200 A exists in a copper wire, with a
circular cross-section (radius = 1.5 mm). The cur-
rent is due to free electrons moving through the
wire at an average velocity of v meters/second. If
the concentration of free electrons is 10% electrons
per cubic meter and if they are uniformly dispersed
throughout the wire, then what is the average veloc-
ity of an electron?

In clectronic circuits it is not unusual to encounter
currents in the microampere range. Assume a

19

110

35 pA current, due to the flow of electrons. What is
the average number of electrons per second that
flow past a fixed reference cross section that is per-
pendicular to the direction of flow?

The current entering the upper terminal of Fig. 1.5 is

i = 24 cos 4000z A.

Assume the charge at the upper terminal is zero at
the instant the current is passing through its maxi-
mum value. Find the expression for g(t).

IHow much energy is extracted from an electron as
it flows through a 6 V battery from the positive to
the negative terminal? Express your answer in
attojoules.

Sections 1.5-1.6

111

112

113

One 9 V battery supplies 100 mA to a camping
flashlight. How much energy does the battery sup-
plyin 5 h?

Two electric circuits, represented by boxes A and
B, are connected as shown in Fig. P1.12, The refer-
ence direction for the current i in the interconnec-
tion and the reference polarity for the voltage v
across the inter connection are as shown in the fig-
ure. For each of the following sets of numerical val-
ues, calculate the power in the interconnection and
state whether the power is flowing from A to B or
vice versa.

a) i =5A, =120V
b) i=—-8A, » =250V
c) i=16 A, »=-150V
d) i=—-10A, »=-—-480V
Figure P1.12

t

J.r..

The references for the voltage and current at the
terminal of a circuit element are as shown in
Fig. 1.6(d). The numerical values for v and i arc 40 V
and —10 A

a) Calculate the power at the terminals and state
whether the power is being absorbed or deliv-
ered by the element in the box.
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b) Given that the current is due Lo electron flow,
state whether the electrons are entering or leav-
ing terminal 2.

c) Do the electrons gain or lose energy as they pass
through the element in the box?

Repeat Problem 1.13 with a voltage of —60 V.

When a car has a dead battery, it can often be started
by connecting the battery from another car across its
terminals. The positive terminals are connected
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.15. Assume the current
in Fig. P1.15 is measured and found to be 30 A.

a) Which car has the dead battery?

b) If this connection is maintained for 1 min, how
much energy is transferred to the dead battery?

Figure P1.15

The manufacturer of 2 9V dry-cell flashlight battery
says that the battery will deliver 20 mA for 80 con-
tinuous hours. During that time the voltage will
drop from 9V to 6 V. Assume the drop in voltage is
Jinear with time. How much energy does the battery
deliver in this 80 h interval?

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zexo for¢ < 0. Fort = 0
they are

p = @S0 LS00y

30 — 40675 + 1075 mA.

i
a) Find the power at/ = 1 ms.

b) How much energy is delivered to the circuit ele-
ment between 0 and 1 ms?

¢) Find the total energy delivered to the element.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero fort < 0. Fort = 0
they are

= 400¢7°" sin 200t V,

= 5¢7100 gin 2001 A.

1.19

a) Find the power absorbed by the element at
t =10 ms.

b) Find the tolal energy absorbed by the element.

The voltage and current at the terminals of the cir-
cuit element in Fig, 1.5 are shown in Fig, P1.19.

a) Sketch the power versus ¢ plotfor0 < r = 50s.

b) Calculate the energy delivered to the circuit ele-
mentatt =4, 12, 36,and 50 s.

Figure P1.19

(V)
10

i(wA)

1.0

-0.6
-10
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PSPICE
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(b)

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for/ < 0. Fort = 0
they are

v =75 — 7571V,

i =50 mA,

a) Find the maximum value of the power delivered
to the circuit.

b) Find the total energy delivered to the element.
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1.22

PSPICE

The voltage and current at the terminals of the ele-
ment in Fig. 1.5 are

v = 36 sin 2007t V, i = 25 cos 2007t A.

a) Find the maximum value of the power being
delivered to the element.

b) Find the maximum value of thc power being
extracted from the element.

¢) Find the average value of p in the interval
0=r=<35 ms

d) Find the average value of p in the interval
0 <t=625 ms.

The voltage and current at the terminals of an auto-
robile battery during a charge cycle are shown in
Fig. P1.22.

a) Calculate the total charge transferred to the
battery.

b) Calculate the tota] energy transferred to the
battery.

Figure P1.22
v(V)

12
10

[ - )
T

0 4 8 12 16 20 t(ks)
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J |
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Problems 19

The voltage and current at the terminals of the cir-

psrice  cuit element in Fig. 1.5 are zero for ¢ < 0. Fort = 0

1.24

PSPICE

1.25

PSPICE

they are

v = (16,000r + 20)e”%% v,
i= (128t + 0.16)e™80 A,

a) At what instant of time is maximum power
delivered to the element?

b) Find the maximum power in waltts.

c) Find the total energy delivered to the element in
millijoules.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t < Qand ¢ > 3s.
In the interval between 0 and 3 s the expressions are

v=t3—-HV, 0<r1<3s

~

6 —4rmA, 0<t <3s.

a) Atwhat instant of time is the power being deliv-
ered to the circuit element maximum?

b) What is the power at the time found in part (a)?

c) At whal instant of time is the power being
extracted from the circuit element maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit
at0,1,2and 3s.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 arc zero for t < 0. Fort = 0
they are

v = (10,000 + 5)e™ % Vv,

i = (40t + 0.05)e™% A,

a) Find the time (in milliseconds) when the power
delivered to the circuit element is maximum.

b) Find thec maximum value of p in milliwatts.

c) Find the total energy delivered to the circuit ¢le-
ment in millijoules.
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1.26

Circuit Variables

The numerical values for the currents and voltages
in the circuit in Fig. P1.26 are given in Table P1.26.
Find the total power developed in the circuit.

Current (mA)

Element Voltage (kV)

a 5.0 -150
b 2.0 250
c 3.0 200
d -5.0 400
e 1.0 —50
f 4.0 350
B -2.0 400
h -6.0 —350

Figure P1.26
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Element

Voltage (mV)

Current (A)

a 150 0.6
b 150 -14
¢ 100 -0.8
d 250 -0.8
e 300 -2.0
f =300 12

127 Assume you are an engineer in charge of a project
and one of your subordinate engineers reports that
the interconnection in Fig. P1.27 does not pass the
power check. The data for the interconnection are
given in Table P1.27.

a) Is the subordinate correct? Explain your answer.
b) If the subordinate is correct, can you find the
error in the data?

Figure P1.27

1.28 The numerical values of the voltages and currents
in the interconnection seen in Fig. P1.28 are given in
Table P1.28. Does the interconnection satisfy the
power check?

Figure P1.28
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a 36 250
b 44 -250
c 28 —250
d —108 100
e —-32 150
f 60 —-3350
g —48 —200
h 80 —150
i 80 =300




129 One method of checking calculations involving

interconnected circuit elements is to see that the
total power delivered equals the total power
absorbed (conservation-of-energy principle). With
this thought in mind, check the interconnection in
Fig. P1.29 and state whether it satisfies this power
check. The current and voltage valunes for each ele-
ment are given in Table P1.29.

Figure P1.29
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mEIEEDY e
Element Voltage (V) Current (mA)
a 1.6 80

b 2.6 60

c —4.2 -50

d 1.2 20

(3 1.8 30

f —-1.8 —40

g -3.6 -30

h 3.2 -20

i -24 30

Problems 21

1.30 a) In the circuit shown in Fig. P1.30, identify

which elements are absorbing power and which
are delivering power, using the passive sign
convention.

b) The numerical values of the currents and volt-
ages for each element are given in Table P1.30.
How much total power is absorbed and how
much is delivered in this circuit?

Figure P1.30
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Element Voltage (mV) Current (pA)
a 300 25
b -100 10
c —200 15
d —200 -35
(3 350 =25
f 200 10
g —250 35
h 50 -10




2.1 Voltage and Current Sources p. 24
2.2 Electrical Resistance (Ohm's Law) p. 28
2.3 Construction of a Circuit Model p. 32

2.4 Kirchhoff's Laws p. 36

2.5 Analysis of a Circuit Containing Dependent
Sources p. 42

1 Understand the symbols for and the behavior of

the following ideal basic circuit elements:
independent voltage and current sources,
dependent voltage and current sources, and
resistors. :

2 Be able to state Ohm's law, Kirchhoff's current
law, and Kirchhoff's voltage law, and be able to
use these laws to analyze simple circuits.

3 Know how to calculate the power for each
element in a simple circuit.and be able to
determine whether or not the power balances
for the whole circuit.
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Circuit Elements

There are five ideal basic circuit elements: voltage sources,
current sources, resistors, inductors, and capacitors. In this chap-
ter we discuss the characteristics of voltage sources, current
sources, and resistors. Although this may seem like a small num-
ber of elements with which to begin analyzing circuits, many prac-
tical systems can be modeled with just sources and resistors. They
are also a useful starting pomt because of their relative simplicity;
the mathematical relationships between voltage and current in
sources and resistors are algebraic. Thus you will be able to begin
learning the basic techniques of circuit analysis with only alge-
braic manipulations.

We will postpone introducing inductors and capacitors until
Chapter 6, because their use requires that you solve integral and
differential equations. However, the basic analytical techniques
for solving circuits with inductors and capacitors are the same as
those introduced in this chapter. So, by the time you need to
begin manipulating more difficult equations, you should be very
familiar with the methods of writing them.



Practical Perspective

Electrical Safety

“Danger—High Voltage.” This commonly seen warning is mis-
leading. All forms of energy, including electrical energy, can
be hazardous. But it's not only the voltage that harms. The
static electricity shock you receive when you walk across a
carpet and touch a doorknob is annoying but does not injure.
Yet that spark is caused by a voltage hundreds or thousands
of times larger than the voltages that can cause harm.

The electrical energy that can actually cause injury is due
to electrical current and how it flows through the body. Why,
then, does the sign warn of high voltage? Because of the way
electrical power is produced and distributed, it is easier to
determine voltages than currents. Also, most electrical
sources produce constant, specified voltages. So the signs
warn about what is easy to measure. Determining whether
and under what conditions a source can supply potentially
dangerous currents is more-difficult, asthis requires an under-
standing of electrical engineering.

Before we can examine this aspect of electrical safety, we
have to learn how voltages and currents are produced and the
relationship between them. The electrical behavior of objects,

such as the human body, is quite complex and often beyond
complete comprehension. To allow us to predict and control
electrical phenomena, we use simplifying models in which sim-
ple mathematical relationships between voltage and current
approximate the actual relationships in real ohjects. Such mod-
els and analytical methods form the core of the electrical engi-
neering techniques that will allow us to understand all elactrical
phenomena, including those relating to electrical safety.

At the end of this chapter, we will use a simple electric
circuit model to describe how and why people are injured by
electric currents. Even though we may never develop a com-
plete and accurate explanation of the electrical behavior of
the human body, we can obtain a close approximation using
simple circuit models to assess and improve the safety of
electrical systems and devices. Developing models that pro-
vide an understanding that is imperfect but adequate for soly-
ing practical problems lies at the heart of engineering. Much
of the art of electrical engineering, which you will learn with
experience, is in knowing when and how to solve difficult
problems by using simplifying models.

23



24 Circuit Elements

(a) (b)

Figure 2.1 & The circuit symbols for (a) an ideal inde-
pendent voltage source and (b) an ideal independent
current source.

2.1 Voltage and Current Sources

Before discussing ideal voitage and current sources, we need to consider
the general nature of electrical sources. An electrical source is a device
that is capable of converting norelectric energy to electric energy and vice
versa. A discharging battery converts chemical energy to electric encrgy,
whereas a baitery being charged converts electric energy to chemical
cnergy. A dynamo is a machine that converts mechanical energy to electric
energy and vice versa. If operating i the mechanical-to-electric mode, it is
called a generator. If transforming from electric to mechanical energy, it is
referred to as a motor. The important thing to remember about these
sources is that they can either deliver or absorb electric power, generally
maintalning either voltage or current. This behavior is of particular
interest for circuit analysis and led to the creation of the idca) voltage
source and the ideal current source as basic circuit elements. The chal-
lengce is to model practical sourccs in terms of the ideal basic circuit
elements.

An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing in
those terminals. Similarly, an ideal corrent source is a circuit element that
maintains a prescribed current through its terminals regardless of the volt-
age across those terminals. These circuit elements do not exist as practical
devices—they are idealized models of actual voltage and current sources.

Using an ideal model for current and voltage sources places an impor-
tant restriction on how we may describe them mathematically. Because an
ideal voltage source provides a steady voltage, even if the current in the
element changes, it is impossible to specify the current in an ideal voltage
source as a function of its voltage. Likewise, if the only information you
have about an ideal current source is the value of current supplied, it is
impossible to determine thc voltage across that current source. We have
sacrificed our ability to relatc voltage and current in a practical source for
the simplicity of using ideal sources in circuit analysis.

Ideal voltage and current sources can be further described as either
independent sources or dependent sources. An independent source estab-
lishes a voltage or current in a circuit without relying on voltages or cur-
rents elsewhere in the circuit. The value of the voltage or current supplied
is specified by the value of the independent source alone. In contrast, a
dependent source establishes a voltage or current whose value depends on
the value of a voltage or current elsewhere in the circuit. You cannot spec-
ify the value of a dependent source unless you know the value of the volt-
age or current on which it depends.

The circuit symbols for the ideal independent sources are shown in
Fig. 2.1. Note that a circle is used to represent an independent source. To
completely specify an ideat independent voltage source in a circuit, you
must include the value of the supplied voltage and the reference polarity,
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal independ-
ent current source, you must include the value of the supplied current and
its reference direction, as shown in Fig. 2.1(b).



The circuit symbols for the ideal dependent sources arc shown in
Fig. 2.2. A diamond is uscd to represent a dependent source. Both the
dependent current source and the dependent voltage source may be con-
trolled by either a voltage or a current elsewhere in the circuit, so there
are a total of four variations, as indicated by the symbols in Fig. 2.2.
Dependent sources arc sometimes called controlled sources,

To completely specify an ideal dependent voltage-controlled voltage
source, you must jdentify the controlling voltage, the equation that per-
mits you to compute the supplied voltage from the controlling voltage,
and the reference polarity for the supplied voltage. In Fig. 2.2(a), the con-
trolling voltage is named v,, the equation that determines the supplied
vollage v, is

vS = 11’1).1‘1

and the reference polarity for v; is as indicated. Note that u is a multiply-
ing constant that is dimensionless.

Similar requirements exist for completely specifying the other ideal
dependent sources. In Fig. 2.2(b), the controlling current is i, the equation
for the supplied voltage v, is

Vs = Dlys

the reference polarity is as shown, and the multiplying constant p has the
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is v,
the equation for the supplied current i; is

Iy = oy,

the reference direction is as shown, and the multiplying constant « has the
dimension amperes per volt. In Fig. 2.2(d), the controlling current is i, the
equation (or the supplied current i, is

i.! = ﬁixu

the relerence direction is as shown, and the multiplying constant 8 is
dimensionless.

Finally, in our discussion of ideal sources, we note that they are
examples of active circuit elements. An active element is one that models
a device capable of generating electric energy. Passive elements model
physical devices that cannot generate electric energy. Resistors, induc-
tors, and capacitors are examples of passive circuit elements. Examples 2.1
and 2.2 illustrate how the characteristics of ideal independent and
dependent sources limit the types of permissible interconnections of the
sources.

2.1  Voltage and Current Sources 25

Ve = By J_r i = aw, (}
(a) ©

v = piy iy = i, (A
(b) (d)

Figure 2.2 & The circuit symbols for (a) an ideal
dependent voltage-controlled voltage source, (b) an
ideal dependent current-controlled voltage source, (c) an
ideal dependent voltage-controlled current source, and
(d) an ideal dependent current-controlled current source.



26 Circuit Elements

m Testing Interconnections of Ideal Sources

Using the definitions of the ideal independent volt-
age and current sources, state which interconnec-
tions in Fig. 2.3 are permissible and which violate
the constraints imposed by the ideal sources.

b

SA
a a
10v 10v 5A
Solution
b

Connection (a) is valid. Each source supplies volt- (a) (b)
age across the same pair of terminals, marked a,b.
This requires that each source supply the same volt-
age with the same polarity, which they do.
Connection (b) is valid. Each source supplies
current through the same pair of terminals, marked b

2A
a a
a,b. This requires that each source supply the same
current in the same direction, which they do.
Connection (c) is not permissible. Each source 6 10V SV SA
supplies voltage across the same pair of terminals,
b

marked a,b. This requires that each source supply
the same voltage with the same polarity, which they
do not.

Connection {d) is not permissible. Each source
supplies current through the same pair of terminals,
marked a,b. This requires that each source supply
the same current in the same direction, which they SA

o

© (d)

do not. 3 e
Connection (e) is valid. The voltage source sup-

plies voltage across the pair of terminals marked o 0V

a,b. The current source supplies current through the

same pair of terminals. Because an ideal voltage

source supplies the same voltage regardless of the b

current, and an ideal current source supplies the ()

same current regardless of the voltage, this is a per-

missible connection. Figure 2.3 4 The circuits for Example 2.1.




2.1 Voltage and Current Sources

m Testing Interconnections of Ideal Independent and Dependent Sources

Using the definitions of the ideal independent and
dependent sources, state which interconnections in
Fig. 2.4 are valid and which violate the constraints
imposed by the ideal sources.

Solution

Connection (a) is invalid. Both the independent
source and the dependent source supply voltage
across the same pair of terminals, labeled a,b. This
requires that each source supply the same voltage
with the same polarity. The independent source sup-
plies 5 V, but the dependent source supplies 15 V.

Connection (b) is valid. The independent volt-
age source supplies voltage across the pair of termi-
nals marked a,b. The dependent current source
supplies current through the same pair of terminals.
Because an ideal voltage source supplies the same
voltage regardless of current, and an ideal current
source supplies the same current regardless of volt-
age, this is an allowable connection.

Connection (¢) is valid. The independent cur-
rent source supplies current through the pair of ter-
minals marked a,b. The dependent voltage source
supplies voltage across the same pair of terminals.
Because an ideal current source supplies the same
current regardless of voltage, and an ideal voltage
source supplies the same voltage regardless of cur-
rent, this is an allowable connection.

Connection {d) is invalid. Both the independ-
ent source and the dependent source supply current
through the same pair of terminals, labeled a,b. This
requires that each source supply the same current
in the same reference direction. The independent
source supplies 2 A, but the dependent source sup-
plies 6 A in the opposite direction.

Figure 2.4 & The circuits for Example 2.2.
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Objective 1—Understand ideal basic circuit elements

2.1  For the circnit shown,

2.2 For the circuit shown,

a) What value of v, is required in order for the a) What value of a is required in order for the

interconnection to be valid?

interconnection to be valid?

b) For this value of v,, find the power associ- b) For the value of « calculated in part (a), find

ated with the 8 A source,

Answer: (a) -2 Vi
(b) —16 W (16 W delivered).

in.

B

the power associated with the 25 V source.

Answer:  (a) 0.6 A/V;
(b) 375 W (375 W absorbed).

NOTE: Also try Chapter Problems 2.2 and 2.3.

R
(o

Figure 2.5 4 The circuit symbol for a resistor having a
resistance R.

2.2 Electrical Resistance (Ohm's Law)

Resistance is the capacity of materials to impede the flow of current or,
more specifically, the flow of electric charge. The circuit element used to
model this behavior is the resistor. Figure 2.5 shows the circuit symbol for
the resistor, with R denoting the resistance value of the resistor.

Conceptually, we can understand resistance if we think about the
moving electrons that make up electric current interacting with and being
resisted by the atomic structure of the material through which they are
moving. In the course of these interactions, some amount of electric
energy is converted to thermal energy and dissipated in the form of heat.
This effect may be undesirable. However, many useful electrical devices
take advantage of resistance heating, including stoves, toasters, irons, and
space heaters.

Most materials exhibit measurable resistance to current. The amount
of resistance depends on the material. Metals such as copper and alu-
minum have small values of resistance, making them good choices for
wiring used to conduct electric current. In fact, when represented in a cir-
cuit diagram, copper or aluminum wiring isn’t usually modeled as a resis-
tor; the resistance of the wire is so small compared to the resistance of
other elements in the circuit that we can neglect the wiring resistance to
simplify the diagram.

For purposes of circuit analysis, we must reference the current in
the resistor to the terminal voltage. We can do so in two ways: either in



the direction of the voltage drop across the resistor or in the direction
of the voltage rise across the resistor, as shown in Fig. 2.6. If we choose
the former, the relationship between the voltage and current is

(2.1)

where

v = the voltage in volts,
i = the current in amperes,

R = the resistance in ochms,
If we choose the second method, we must write
v = —IR, (2.2)

where v, i, and R are, as before, measured in volts, amperes, and ohms,
respectively. The algebraic signs used in Eqs. 2.1 and 2.2 are a direct conse-
quence of the passive sign convention, which we introduced in Chapter 1.

Equations 2.1 and 2.2 are known as Ohm’s law after Georg Simon
Ohm, a German physicist who established its validity early in the nine-
teenth century. Ohm’s law is the algebraic relationship between voltage
and current for a resistor. In SI units, resistance is measured in ohms. The
Greek letter omega () is the standard symbol for an ohm. The circuit
diagram symbol for an 8 () resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. However,
expressing the current as a function of the voltage also is convenient. Thus,
from Eq. 2.1,

i=2 (2.3)
R’ )
or, from Eq. 2.2,
) Y 2.4
i=—. .
2 (24

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus

1
G-— z S. (2.5)

An 8 () resistor has a conductance value of 0.125 S. In much of the profes-
sional literature, the unit used for conductance is the mho (ohm spelled back-
ward), which is symbolized by an inverted omega (U). Therefore we may
also describe an 8 () resistor as having a conductance of 0.125 mho, (U).

2.2 Electrical Resistance (Ohm's Law)

< Ohm'’s law

Figure 2.6 & Two possible reference choices for the
cerrent and voltage at the terminals of a resistor, and
the resulting equations.

80
— VW —0

Figure 2.7 & The circuit symbol for an 8 £ resistor.
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Circuit Elements

Power in a resistor in terms of current &

Power in a resistor in terms of voltage &

We use ideal resistors in circuit analysis to model the behavior of
physical devices. Using the qualifier ideal reminds us that the resistor
model makes several simplifying assumptions about the behavior of
actual resistive devices. The most important of these simplifying assump-
tions is that the resistance of the ideal resistor is constant and its value
does not vary over time. Most actual resistive devices do not have constant
resistance, and their resistance does vary over time. The ideal resistor
model can be used to represent a physical device whose resistance doesn't
vary much from some constant value over the time period of interest in
the circuit analysis. In this book we assume that the simplifying assump-
tions about resistance devices are valid, and we thus nse ideal resistors in
circuit analysis.

We may calculate the power at the terminals of a resistor in several
ways. The first approach is to use the defining equation and simply calcn-
late the product of the terminal voltage and current. For the reference sys-
tems shown in Fig. 2.6, we write

p=u (2.6)
when v = { R and

p=-u (2.7)

whenv = —i R,

A second method of expressing the power at the terminals of a resis-
tor expresses power in terms of the current and the resistance.
Substituting Eq. 2.1 into Eq. 2.6, we obtain

p=vi=(R)

SO
p=i’R. (2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have
p=—vi=—(-iR)i=i’R. (2.9)

Equations 2.8 and 2.9 are identical and demounstrate clearly that, regard-
less of voltage polarity and current direction, the power at the terminals of
a resistor is positive. Therefore, a resistor absorbs power from the circuit.

A third method of expressing the power at the terminals of a resistor
is in terms of the voltage and resistance. The expression is independent of
the polarity references, so

[

i (2.10)
‘D"—R. -
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Sometimes a resistor’s value will be expressed as a conductance rather
than as a resistance. Using the relationship between resistance and con-
ductance given in Eq. 2.5, we may also write Eqgs. 2.9 and 2.10 in terms of
the conductance, ot

i2
p= E, (2.11)
p = vG. (2.12)

Equations 2.6-2.12 provide a variety of methods for calculating the power
absorbed by a resistor. Each yields the same answer. In analyzing a circuit,
look at the information provided and choose the power equation that uses
that information directly.

Example 2.3 illustrates the application of Ohm’s law in conjunction
with an ideal source and a resistor. Power calculations at the terminals of a
resistor also are illustrated.

FEIHRE Calculating Voltage, Current, and Power for a Simple Resistive Circuit

In each circuit in Fig. 2.8, either the value of » or i is The current i, in the resistor with a conductance
not known. of 0.2 S in Fig. 2.8(b) is in the direction of the
voltage drop across the resistor. Thus

ip)
% iy = (50)(0.2) = 10 A.
1Av, 8Q 50V 028 : 7 1) ;
The voltage v, in Fig. 2.8(c) is a rise in the direc-

tion of the current in the resistor. Hence
( (®) v = —(1)(20) = —20 V.
(

a)

R The current i4 in the 25 () resistor in Fig. 2.8(d)
1A % 2003 0V 250

c)

is in the direction of the voltage rise across the
resistor. Therefore

YWy

id

—50
= — = — A
@ ig = 55 = 2

Fighrer2:8 R The.citeyits for Brampge 21, b) The power dissipated in each of the four resistors is

a) Calculate the values of v and i.

2
b) Determine the power dissipated in each resistor. Peq = ®)° = ()%8) = 8W
8 >

Pozs = (50)*(0.2) = 500 W,

(—20)° )
= = (1)*(20) = 20 W,
a) The voltage v, in Fig. 2.8(a) is a drop in the direc- L TR ORCY)
tion of the current in the resistor. Therefore, 50)?

v, = (1)(8) = 8 V. Pasn = 2

Solution

= (—2)%25) = 100 W.
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Having introduced the general characteristics of ideal sources and resis-
tors, we next show how to use these elements to build the circuit model of
a practical system.

Objective 2—Ba able to state and use Ohm’s Law . . .

2.3 For the circuit shown, _ . el : 2.4 For the cxrcmt shown

a) If v, = 1kV and lg = 5 mA, find the value ; i) Ifzg'— 05Aand G = 50 mS, find v, and
of R and the power absorbed by the resistor. the power dehvered by the current source.

b) If i, = 75 mA and lh_e_ power deliveredby b) Iy, =15V and the power delivered to the
the voltage source is 3 W, find v,, R,and the i conductor is 9 W, find the conductance G
power absorbed by the resistor. . and the source current i,

c) IfR = 300 Q and the power absorbed by R ¢) It G = 200 uS and the powe‘r_d'é_livercd' to
is 480 mW, find i, and v,. the conductance is 8 W, find i, and v,.

L

ngj ._: G §R .. | ZHQD '. L §G

Answer: (a) 200kQ,5 W; i s o Answer: (a) 10'-\./,5'W;

(b) 40V, 53333 0,3 W _ : (b) 40mS, 0.6 A;
(c) 40mA,12V. - () 40 mA, 200 V.

NOTE: Also try Chapter Problems 2.6 and 2.8

2.3 Construction of a Circuit Model

We have already stated that onec reason for an interest in the basic circuit
elements is that they can be used to construct circuit models of practical
systems. The skill required to develop a circuit model of a device or system
is as complex as the skill required to solve the derived circuit. Although
this text emphasizes the skills required to solve circuits, you also will need
other skills in the practice of electrical engineering, and one of the most
important is modeling. '

We develop circuit models in the next two examples. In Example 2.4
we construct a circuit model based on a knowledge of the behavior of the
system’s components and how the components are interconnected. In
Example 2.5 we create a circuit model by measuring the terminal behavior
of a device.



FENI PR Constructing a Circuit Model of a Flashlight

Construct a circuit model of a flashlight.

Solution

We chose the flashlight to illustrate a practical system
because its components are so familiar. Figure 2.9
shows a photograph of a widely available flashlight.

When a flashlight is regarded as an electrical
system, the components of primary interest are the
batteries, the lamp, the connector, the case, and the
switch. We now consider the circuit model for each
component.

A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is not
excessive. Thus if the dry-cell battery is operating
within its intended limits, we can model it with an
ideal voltage source. The prescribed voltage then is
constant and equal to the sum of two dry-cell values.

The ultimate output of the lamp is light energy,
which is achieved by heating the filament in the
lamp to a temperature high enough to cause radia-
tion in the visible range. We can model the lamp
with an ideal resistor. Note in this case that although
the resistor accounts for the amount of electric
energy converted to thermal energy, it does not pre-
dict how much of the thermal energy is converted to
light energy. The resistor used to represent the lamp
does predict the steady current drain on the batter-
ies, a characteristic of the system that also is of inter-
est. In this model, R, symbolizes the lamp resistance.

The comnector used in the flashlight serves a
dual role. First, it provides an electrical conductive
path between the dry cells and the case. Second, it is
formed into a springy coil so that it also can apply
mechanijcal pressure to the contact between the
batteries and the lamp. The purpose of this mechan-
ical pressure is to maintain contact between the two
dry cells and between the dry cells and the lamp.
Hence, in choosing the wire for the connector, we
may find that its mechanical properties are more
important than its electrical properties for the
flashlight design. Electrically, we can model the
connector with an ideal resistor, labeled R;.

The case also serves both a mechanical and an
electrical purpose. Mechanically, it contains all the
other components and provides a grip for the person
using it. Electrically, it provides a connection between

2.3 Construction of a Circuit Model

Figure 2.9 A A flashlight can be viewed as an electrical system.

other elements in the flashlight. If the case is metal, it
conducts curtent between the batteries and the lamp.
If it is plastic, a metal strip inside the case connects
the coiled connector to the switch. Either way, an
ideal resistor, which we denote R, models the electri-
cal connection provided by the case.

The final component is the switch. Electrically,
the switch is a two-state device. It is either ON or
OFF. An ideal switch offers no resistance to the cur-
rent when it is in the ON state, but it offers infinite
resistance to current when it is in the OFF state.
These two states represent the limiting values of a
resistor; that is, the ON state corresponds to a resis-
tor with a numerical value of zero, and the OFF state
corresponds to a resistor with a numerical value of
infinity. The two extreme values have the descrip-
tive names short circuit (R = 0) and open circuit
(R = o0).Figure 2.10(a) and (b) show the graphical
representation of a short circuit and an open circuit,
respectively. The symbol shown in Fig. 2.10(¢c) rep-
resents the fact that a switch can be either a short
circuit or an open circuit, depending on the position
of its contacts.
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(a)

(b)
OFF

gl

ON
©

Figure 2.10 4 (ircuit symbols. (3} Short circuit. (b) Open circuit.

(c) Switch.

We now construct the circuit model of the
flashlight. Starting with the dry-cell batteries, the
positive terminal of the first cell is connected to
the negative terminal of the second cell, as shown in
Fig. 2.11. The positive terminal of the second cell is
connected to one terminal of the lamp. The other

Filament
terminal

Sliding switch

terminal of the lamp makes contact with P side of Figure 2.11 4 The anangement of flashlight components.
the switch, and the other side of the switch is con-
nected to the metal case. The metal case is then con-

nected to the negative terminal of the first dry cell
by means of the metal spring. Note that the ele-
ments form a closed path or circuit. You can see the
closed path formed by the connected elements in
Fig. 2.11. Figure 2.12 shows a circuit model for the

flashlight.

Figure 2,12 & A circuit model for a flashlight.

We can make some general observations about modeling from our
flashlight example: First, in developing a circuit model, the electrical behav-
ior of each physical component is of primary interest. In the flashlight
model, three very different physical components—a Jamp, a coiled wire,
and a metal case—are all represented by the same circuit element (a resis-
tor), because the electrical phenomenon taking place in each is the same.
Each is presenting resistance to the current flowing through the circuit.

Second, circuit models may need to account for undesired as well as
desired electrical effects. For example, the heat resulting from the resist-
ance in the lamp produces the light, a desired effect. However, the heat
resulting from the resistance in the case and coil represents an unwanted
or parasijtic effect. It drains the dry cells and produces no useful output.
Such parasitic effects must be considered or the resulting model may not
adequately represent the system.

And finally, modeling requires approximation. Even for the basic sys-
tem represented by the flashlight, we made simplifying assumptions in
developing the circuit model. For example, we assumed an ideal switch,



but in practical switches, contact resistance may be high enough to inter-
fere with proper operation of the system. Our model does not predict this
behavior. We also assumed that the coiled connector exerts enough pres-
sure to eliminate any contact resistance between the dry cells. Our model
does not predict the effect of inadequate pressure. Our use of an ideal
voltage source ignores any internal dissipation of energy in the dry cells,
which might be due to the parasitic heating just mentioned. We could
account for this by adding an ideal resistor between the source and the
lamp resistor. Our model assumes the internal loss to be negligible.

In modeling the flashlight as a circuit, we had a basic understanding of
and access 1o the internal components of the system. However, sometimes
we know only the terminal behavior of a device and must use this infor-
mation in comnstructing the model. Example 2.5 explores such a modeling
problem.

2.3

m Constructing a Circuit Model Based on Terminal Measurements

Construction of a Circuit Model

The voltage and current are measured at the termi-
nals of the device illustrated in Fig. 2.13(a), and the
values of v, and i, are tabulated in Fig. 2.13(b).
Construct a circuit model of the device inside the box.

i\ v, (V) | i (A)
= —40 | -10
v l -20 -5
(2 Device 0
q 20
i 40 10
(2) )]

Figure 2.13 4 The (a) device and (b) data for Example 2.5,

Solution

Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.14(a). The equation
of the line in this figure illustrates that the terminal
voltage is directly proportional to the terminal cur-
tent, ¥, = 4i,. In terms of Ohm’s law, the device
inside the box behaves like a 4 ) resistor. Therefore,
the circuit mode] for the device inside the box is a
4 ) resistor, as seen in Fig. 2.14(b).

We come back to this technique of using termi-
nal characteristics to construct a circuit mode] after
introducing Kirchhoff’s laws and circuit analysis.

(b)

Figure 2.14 & (3) The values of v, versus i, for the device in Fig. 2.13. (b} The circuit model

for the device in Fig. 2.13.

NOTE: Assess your understanding of this example by trying Chapter Problems 2.10 and 2.11.
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d
|
b L‘;?R,
&
e =
+ 2,
<> AN *—¢
b R c

Figure 2.15 4 Circuit model of the flashlight with
assigned voltage and current vaniables.

Kirchhoff's current law (KCL)

2.4 Kirchhoff's Laws

A circuit is said to be solved when the voltage across and the current in
every element have been determined. Ohm’s law is an important equation
for deriving such solutions. However, Ohm’s law may not be enough to
provide a complete solution. As we shall see in trying to solve the flash-
light circuit from Example 2.4, we need to use two more important alge-
braic relationships, known as Kirchhoff’s laws, to solve most circuits.

We begin by redrawing the circuit as shown in Fig. 2.15, with the
switch in the ON state. Note that we have also labeled the current and volt-
age variables associated with each resistor and the current associated with
the voltage source. Labeling includes reference polarities, as always. For
convenience, we attach the same subscript to the voltage and current
labels as we do to the resistor labels. In Fig. 2.15, we also removed some of
the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots are
the start and end points of an individual circuit element. A node is a point
where two or more circuit elements meet. It is necessary to identify nodes
in order to use Kirchhoff’s current law, as we will sce in a moment. In
Fig. 2.15, the nodes are labeled a, b, ¢, and d. Node d connects the battery
and the lamp and in essence stretches all the way across the top of the dia-
gram, though we label a single point for convenience. The dots on either
side of the switch indicate its terminals, but only one is needed to repre-
sent a node, so only one is labeled node c.

For the circuit shown in Fig. 2.15, we can identify seven unknowns:
iy, 11, Ies By, V1, ., 2and ). Recall that v, is a known voltage, as it represents
the sum of the terminal voltages of the two dry cells, a constant voltage
of 3 V. The problem is to find the seven unknown variables. From alge-
bra, you know that to find » nnknown quantities you must solve » simul-
taneous independent equations. From cur discussion of Ohm’s law in
Section 2.2, you know that three of the necessary equations are

v = LRy, (2.13)
v, = iR, (2.14)
v = ilRl' (2.15)

What about the other four equations?

The interconnection of circuit elements imposcs constraints on the
relationship bctween the terminal voltages and currents. These constraints
are referred to as Kirchhoff’s laws, after Gustav Kirchhoff, after Gustav
Kirchhoff, who first stated them in a paper published in 1848. The two laws
that state the constraints in mathematical form are knowun as Kirchhoff’s
current law and Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law:

The algebraic sum of all the currents at any node in a circuit
equals zero.



To use Kirchhoff’s current law, an algebraic sign corresponding to a
reference direction must be assigned to every current at the node.
Assigning a positive sign to a current leaving a node requires assigning a
negative sign to a current entering a node. Conversely, giving a negative
sign to a current leaving a node requires giving a positive sign to a current
entering a node.

Applying Kirchhoff’'s current law to the four nodes in the circuit
shown in Fig. 2.15, using the convention that currents leaving a node are
considered positive, yields four equations:

node a i.—i =0, (2.186)
node b ih+i. =0, (2.17)
node ¢ ~i, ~ i; =0, (2.18)
node d iy — i, = 0. (2.19)

Note that Eqs. 2.16-2.19 are not an independent set, because any one
of the four can be derived from the other three. In any circuit with n nodes,
n — 1 independent current equations can be derived from Kirchhoff’s
current law.! Let’s disregard Eq. 2.19 so that we have six independent
cquations, namely, Egs. 2.13-2.18. We need one more, which we can derive
from Kirchhoff’s voltage law.

Before we can state Kirchhoff’s voltage law, we must define a closed
path or loop. Starting at an arbitrarily selected node, we trace a closed
path in a circuit through selected basic circuit elements and return to the
original node without passing through any intermediate node more than
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For
example, choosing node a as the starting point and tracing the circuit
clockwise, we form the closed path by moving through nodes d, c, b, and
back to node a. We can now state KirchhofP’s voltage law:

The algebraic sum of all the voltages around any closed path in a circuit
equals zero.

To use Kirchhoff’s voltage law, we must assign an algebraic sign (refer-
ence direction) to each voltage in the loop. As we trace a closed path, a volt-
age will appear either as a rise or a drop in the tracing direction. Assigning a
positive sign to a voltage rise requires assigning a negative sign to a voltage
drop. Conversely, giving a negative sigu to a voltage risc requires giving a
positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 2.15.
We elect to trace the closed path clockwise, assigning a positive algebraic
sign to voltage drops. Starting at node d leads to the expression

v~ v + vy — v, =0, (2.20)

' We say more about this observation in Chapter 4.

2.4 Kirchhoff's Laws

4 Kirchhoff's voltage law (KVL)
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which represents the seventh independent equation needed to find the
seven unknown circuit variables mentioned earlier.

The thought of having to solve seven simultaneous equations to find
the current delivered by a pair of dry cells to a flashlight lamp is not very
appealing. Thus in the coming chapters we introduce you to analytical
techniques that will enable you to solve a simple one-loop circuit by writ-
ing a single equation. However, before moving on to a discussion of these
circuit techniques, we need to make several observations about the
detailed analysis of the flashlight circuit. In general, these observations are
true and therefore are important to the discussions in subsequent chap-
ters. They also support the contention that the flashlight circuit can be
solved by defining a single unknown.

First, note that if you know the current in a resistor, you also know the
voltage across the resistor, because current and voltage are directly
related through Ohm’s Jaw. Thus you can associate one unknown variable
with each resistor, either the current or the voltage. Choose, say, the cur-
rent as the unknown variable. Then, once you solve for the unknown cur-
rent in the resistor, you can find the voltage across the resistor. In general,
if you know the current in a passive element, you can find the voltage
across it, greatly reducing the number of simultaneous equations to be
solved. For example, in the flashlight circuit, we eliminate the voltages v,
vy, and 2; as unknowns. Thus at the outset we reduce the analytical task to
solving four simultaneous equations rather than seven.

The second general observation relates to the consequences of con-
necting only two elements to form a node. According to Kirchhoff’s cur-
rent law, when only two elements connect to a node, if you know the
current in one of the elements, you also know it in the second element.
In other words, you need define only one unknown current for the two
elements, When just two elements connect at a single node, the elements
are said to be in series. The importance of this second observation is
obvious when you note that each node in the circuit shown in Fig. 2.15
involves only two elements. Thus you need to define only one unknown
current. The reason is that Eqs. 2.16-2.18 lead directly to

is === _ic =y, (2.21)

which states that if you know any one of the element currents, you
know them ail. For example, choosing to use i as the unknown elimi-
nates iy, i, and #;. The problem is reduced to determining one unknown,
namely, i,.

Examples 2.6 and 2.7 illustrate how to write circuit equations based
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws
and Ohm’s law to find an unknown current. Example 2.9 expands on the
technique presented in Example 2.5 for constructing a circuit model for a
device whose terminal characteristics are known.



SEDICRER  Using Kirchhoff’s Current Law

Sum the currents at each node in the circuit shown
in Fig. 2.16. Note that there is no connection dot (s)
in the center of the diagram, where the 4 () branch
crosses the branch containing the ideal current
source i,.

Solution

In writing the equations, we use a positive sign for a
current leaving a node. The four equations are

node a htiy— i —is=0,
node b i2+i3_i1_ib—ia=0,
node ¢ Iy — i3 — iy — i. =0,

node d is+ i, +i, =0

2.4 Kirchhoff's Laws

Figure 2,16 & The circuit for Example 2.6.

39

REIERAWE  Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in
the circuit shown in Fig. 2.17.

Solution

In writing the equations, we usc a positive sign for a
voltage drop. The four equations are

path a 0t Uyt v v, — 3 =0,
path b —v, + ¥3 + v5 =0,
path ¢ Vp — Vg — V. — Vg — s =0,

pathd —v,—v+v—v.+v,—1y=0

— W
—O——+
d 780

Figure 2.17 A The circuit for Example 2.7.
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SETIERRE Applying Ohm’s Law and Kirchhoff’s Laws to

a) Use Kirchhoff’s laws and Ohm’s law to find i, in
the circuit shown in Fig. 2.18.

100

500 6A

Figure 2.18 A The circuit for Example 2.8.

b) Test the solution for i, by verifying that the total
power generated equals the total power dissipated.

Solution

a) We begin by redrawing the circuit and assigning
an unknown current to the 50 { resistor and
unknown voltages across the 10} and 30 (}
resistors. Figure 2.19 shows the circuit. The nodes
are labeled a, b, and ¢ fo aid the discussion.

a 100 ‘o
a b D
-, +
120V £ ¥ 500 6A
Cc

Figure 2.19 4 The circuit shown in fig. 2.18, with the
unknowns 7y, v,, and v; defined.

Because i, also is the current in the 120 V
source, we have two unknown currents and
therefore must derive two simultaneous ecqua-
tions involving i, and i,. We obtain one of the
equations by applying Kirchhoff’s current law to
either node b or ¢. Summing the currents at node
b and assigning a positive sign to the cuirents
leaving the node gives

i — i, — 6= 0.

Find an Unknown Current

We obtain the second equation from Kirchhoff’s
voltage law in combination with Ohm's law.
Noting from Ohm’s law that v, is 10i, and v is
50i,, we sum the voltages around the closed path
cabc to obtain

—120 + 10i, + 50, = O.

In writing this equation, we assigned a positive
sign to voltage drops in the clockwise direc-
tion. Solving these two equations for i, and
i; yields

i,=-3A and i =3 A

b) The power dissipated in the 50 () resistor is
pson = (3Y(50) = 450 W.
The power dissipated in the 10 {) resistor is
Pron = (=3)°(00) = 90 W.
The power delivered to the 120 V source is
Diov = —120i, = —120(-3) = 360 W.
The power delivered to the 6 A source is
Psa = —v1(6), but v, = 50iy = 150 V.
Therefore
Pea = —150(6) = —900 W.

The 6 A source is delivering 900 W, and the
120 V source is absorbing 360 W. The total
power absorbed is 360 + 450 + 90 = 900 W.
Therefore, the solution verifies that the power
delivered equals the power absorbed.




2.4 Kirchhoff’s Laws

SEIEREE  Constructing a Circuit Model Based on Terminal Measurements

The terminal voltage and terminal current were
measured on the device shown in Fig. 2.20(a), and
the values of v, and i, are tabulated in Fig. 2.20(b).

fy
—

l + v, (V) | i (A)
; 30 0
Device 2R
. 15 3
= 0 6
(a) (b)

Figure 2.20 & (a) Device and (b) data for Example 2.9.

a) Construct a circuit model of the device inside
the box.

b) Using this circuit model, predict the power this
device will deliver to a 10 Q resistor.

Solution

a) Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

’U, = 30 = Si’.

Now we need to identify the components of a cir-
cuit model that will produce the same relation-
ship between voltage and current. Kirchhoff’s
voltage law tells us that the voltage drops across
two components in series add. From the equa-
tion, one of those components produces a 30 V
drop regardless of the current. This component
can be modeled as an ideal independent voltage
source. The other component produces a positive
voltage drop in the direction of the current ;..
Because the voltage drop is proportional to the
current, Ohm’s law tells us that this component
can be modeled as an ideal resistor with a value
of 5 (). The resulting circuit model is depicted in
the dashed box in Fig. 2.21(b).

v (V)
30
15—
|
|
:;, 6 4 (A)
(a)

100

|
|
|
| 30V
I
|
|

Figure 2,21 & (a) The graph of v, versus i, for the device in
Fig. 2,20(a). (b) The resulting circuit model for the device in
Fig. 2.20(a), connected to a 10 €} resistor.

b) Now we attach a 10 Q) resistor to the device in
Fig. 2.21(b) to complete the circujt. Kirchhoff’s
current law tells us that the current in the 10 ()
resistor is the same as the current in the 5 () resis-
tor. Using Kirchhoff’s voltage law and Ohm’s law,
we can write the equation for the voltage drops
around the circuit, starting at the voltage source
and proceeding clockwise:

=30 + 5i + 10i = 0.
Solving for i, we get
i=2A.
Because this is the value of current flowing in
the 10 () resistor, we can use the power equation
p = i*R to compute the power delivered to this

resistor:

Poa = (2)%(10) = 40 W.

41
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2.5 For the circuit shown, calculate (a) is; (b) v; 2.7  a) The terminal voltage and terminal current
(¢) v5; (d) vs; and (e) the power delivered by were measured on the device shown. The
the 24 V source. values of v, and I, are provided in the table.

' Using these values, create the straight line

Answer: (a) 2 A; plot of v, versus i,. Compute the equation of

(b)—4V; : the line and use the equation to construct a
: circuit model for the device using an ideal
(Lo, voltage source and a resistor
d) 14 V; i ) o
( : b) Use the model constructed in (a) to predict
(e) 48 W. the power that the device will deliver to a
25 () resistor.
34 Answer: (a) A 25V source in series with a 100 O
i o i resistor;
24V - is, 15370 (b) LW,
T ey = fl.
A b
20 —— [Ol®
¢ ; o
" Device {5 15 01
i 5 02

2.6  Use Ohm’s law and Kirchhoff’s laws to find the L 0 025

value of R in the circuit shown. e
(a) (b)

Answer: R =40, ; :
2.8 Repeat Assessmment Problem 2.7 but use the

equation of the graphed line to consiruct a cir-
R cuit model containing an ideal current source

Meaaaa) and a resistor.
+ j :
200 V 120V S 240 § o) Answer: (a) A 0.25 A current source connected
2 . e between the terminals of a 100 () resistor;
¢ (b) 1 W.

NOTE: Also try Chapter Problems 2.14,2.17,2.18, and 2,19,

2.5 Analysis of a Circuit Containing
Dependent Sources

2 : We conclude this introduction to elementary circuit analysis with a discus-
+ |yh sion of a circuit that contains a dependent source, as depicted in Fig. 2.22.
1,2200 Sia We want to use Kirchhoff’s laws and Ohm’s law to find v,, in this cir-
= cuit. Before writing equations, it is good practice to examine the eireuit
: diagram closely. This will help us identify the information that is known

and the information we must calculate. It may also help us devise a strat-
Figure 2.22 & A circuit with a dependent source. egy for solving the circuit using only a few calculations.



2.5

A look at the circuit in Fig. 2.22 reveals that

+ Once we know i, we can calculate v, nsing Ohm’s law.

+ Once we know i, we also know the current supplied by the dependent
source Sij.

« The current in the 500 V source is i4.

There are thus two unknown currents, i, and i,. We need to construct and
solve two independent equations involving these two currents to produce
a value for v,.

From the circuit, notice the closed path containing the voltage source,
the 5 Q resistor, and the 20 ) resistor. We can apply Kirchhoff’s voltage
law around this closed path. The resuiting equation contains the two
unknown currents:

500 = 5ig + 20i,. (2.22)

Now we need to generate a second equation containing these two cur-
rents. Consider the closed path formed by the 20 ) resistor and the
dependent current source. If we attempt to apply Kirchhoff’s voltage law
to this loop, we fail to develop a useful equation, because we don’t know
the value of the voltage across the dependent current source. In fact, the
voltage across the dependent source is v,, which is the voltage we are try-
ing to compute. Writing an equation for this loop does not advance us
toward a solution. For this same reason, we do not use the closed path con-
taining the voltage source, the 5 () resistor, and the dependent source.

There are three nodes in the circuit, so we turn to Kirchhoff’s current
law to generate the second equation. Node a connects the voltage source
and the 5  resistor; as we have already observed, the current in these two
elements is the same. Either node b or node ¢ can be used to construct the
second equation from Kirchhoff’s current Jaw. We select node b and pro-
duce the following equation:

i, =iy + Sip = 6ij. (2.23)
Solving Eqs. 2.22 and 2.23 for the currents, we get
ir =4 A,
i, =24 A. (2.24)

Using Eq. 2.24 and Ohm’s law for the 20 ) resistor, we can solve for the
voltage v,

v, = 20i, = 480 V.

Think about a ¢jrecuit analysis strategy before beginning to write equa-
tions. As we have demonstrated, not every closed path provides an oppor-
tunity to write a useful equation based on Kirchhoff’s voltage law. Not
every node provides for a useful application of Kirchhoff’s currcnt law.
Some preliminary thinking about the problem can help in selecting the
most fruitful approach and the most useful analysis tools for a particular

Analysis of a Circuit Containing Dependent Sources
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problem. Choosing a good approach and the appropriate tools will usually
reduce the number and complexity of equations to be solved. Example 2.10
illustrates another application of Ohm’s law and Kirchhoff’s laws to a cir-
cuit with a dependent source. Example 2.11 involves a much more compli-
cated circuit, but with a careful choice of analysis tools, the analysis is
relatively uncomplicated.

el Applying Ohm’s Law and Kirchhoff’s Laws to Find an Unknown Voltage

a) Use Kirchhoff’s laws and Ohm’s law to find the
voltage v, as shown in Fig. 2.23.

b) Show that your solution is consistent with the
constraint that the total power developed in the
circuit equals the total power dissipated.

20

Figure 2.23 4 The circuit for Example 2.10.

Solution

a) A close look at the circuit in Fig. 2.23 reveals that:

» There are two closed paths, the one on the
left with the current i, and the one on the
right with the current i,

« Once i, is known, we can compite v,.

We need two equations for the two currents.

Because there are two closed paths and both have

voltage sources, we can apply Kirchhoff’s voltage

law to each to give the following equatious:

10 = 6i,,
3i, =21, ¥ 3i,.
Solving for the currents yields

is = 167 A,
R

Applying Ohm’s law to the 3 Q) resistor gives
the desired voltage:

v, = 3i, = 3V.

b) To compute the power delivered to the voltage
sources, we use the power equation in the form
p = vi. The power delivered to the independent
voltage source is

p = (10)(~1.67) = —16.7W.

The power delivered to the dependent voltage
source is

p = Bi)(=i,) = 5)(=1) = —5W.

Both sources are developing power, and the
total developed power is 21.7 W.

To compute the power delivered to the resis-
tors, we use the power equation in the form
p = i2R.The power delivered to the 6 () resistor is

p = (L67)%(6) = 167 W.
. The power delivered to the 2 () resistor is
p=17%Q2) =2W.
The power delivered to the 3 Q) resistor is
= (1PGy=3W.
The resistors all dissipate power, and the total

power dissipated is 21.7 W, equal to the total
power developed in the sources.




2.5  Analysis of a Gircuit Containing Dependent Sources

m Applying Ohm’s Law and Kirchhoff's Law in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common config-
uration encountered in the analysis and design of
transistor amplifiers. Assume that the values of all
the circuit elements—R,, Ry, R¢, Rg, Ve, and Vy—
are known.

a) Develop the equations needed to determine the
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting iz in terms of the circuit element values.

Figure 2.24 4 The circuit for Example 2.11.

Solution

A careful examination of the circuit reveals a total
of six unknown currents, designated i, £, ig, ic, if,
and i¢c¢. In defining these six unknown currents, we
used the observation that the resistor R is in seties
with the dependent current source Big. We now
must derive six independent equations involving
these six unknowns.

a) We can derive three equations by applying
Kirchhoff’s current law to any three of the nodes
a,b,c,and d. Let’s use nodes a, b, and ¢ and label
the currents away from the nodes as positive:

(1) i +ic—igc=0,

(2) ig+ i —i =0,

(3) iE_iB_[C:O'

A fourth eguation results from imposing the
constraint presented by the series connection of
Rc and the dependent source:

(4) ic = Big.

We turn to Kirchhoff’s voltage law in deriv-
ing the rcmaining two equations. We need to
select two closed paths in order to use Kirchhoff’s
voltage law. Note that the voltage across the
dependent current source is unknown, and that it
cannot be determined from the source current
Bip. Therefore, we must select two closed paths
that do not contain this dependent current source.

We choose the paths bedb and badb and
specify voltage drops as positive to yield

(5) W tigRg — iRy =0,

(6) - i1R1 + VCC - isz =0.

b) To get a single equation for ig in terms of the
known circuit variables, you can follow these steps:

+ Solve Eq. (6) for i, and substitute this solu-
tion for i, into Eq. (2).

+ Solve the transformed Eq. (2) for i,, and sub-
stitute this solution for i, into Eq. (5).

+ Solve the transformed Eq. (5) for ig, and sub-
stitute this solution for iy into Eq. (3). Use
Eq. (4) to eliminate i in Eq. (3).

« Solve the transformed Eq. (3) for i, and
rearrange the terms to yield

. (VecR)/(Ry + Ry) — W
BT (RR)/(Ry + Ry) + (1 + B)Rs’

(2.25)

Problem 2.27 asks you to verify these steps. Note
that once we know ip, we can easily obtain the
remaining currents.
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Objective 3—Know how to calculate power for each element in a simple circuit

2.9  For the circuit shown find () the current i; in ¢) the power delivered by the independent cur-
microamperes, (b) the voltage v in volts, (c) the rent source,
total power generated, and (d) the total power : d) the power delivered by the controlled cur-
absorbed. . - rent source,

Answer: . (a) 25 pA: ¢) the total power dissipated in the two resistors.

(b) -2V,
(c) 6150 uW; : Answer: (a) 70 V;
(d) 6150 L W. i (b) 210 W;
() 300 W:
(d) 40 W;
(¢) 130 W.
e
P
10 Q

2.10 The current iy in the circuit shown is 2 A.

:aliilate : | SA Q) l _§30 Q Ct) Vy

b) the power absorbed by the independent
voltage source, .

NOTE: Also try Chapter Problenis 2.24 and 2.28.

Practical Perspective

Electrical Safety
At the beginning of this chapter, we said that current through the body can
cause injury. Let’s examine this aspect of electrical safety.

You might think that electrical injury is due to burns. However, that is
not the case. The most common electrical injury is to the nervous system.
Nerves use electrochemical signals, and electric currents can disrupt those
signals. When the current path includes only skeletal muscles, the effects
can include temporary paralysis (cessation of nervous signals) or involun-
tary muscle contractions, which are generally not life threatening. However,
when the current path includes nerves and muscles that control the supply
of oxygen to the brain, the problem is much more serious. Temporary paral-
ysis of these muscles can stop a person from breathing, and a sudden mus-
cle contraction can disrupt the signals that requlate heartbeat. The result is
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a halt in the flow of oxygenated blood to the brain, causing death in a few
minutes unless emergency aid is given immediately. Table 2.1 shows a range
of physiological reactions to various current levels. The numbers in this
table are approximate; they are obtained from an analysis of accidents
because, obviously, it is not ethical to perform electrical experiments on
people. Good electrical design will limit current to a few milliamperes or less
under all possible conditions.

TABLE 2.1 Physialogical Reactions to Gurrent Lavels in Humans

Physiological Reaction Current
Barely perceptible 3-5mA
Extreme pain 35-50 mA
Muscle paralysis 50-70 mA
Heart stoppage 500 mA

Note: Data taken from W, E. Cooper, Electrical Safety Engineering, 2d ed. (London: Butterworth,
1986); and C. D. Winbum, Practical Electrical Safety (Monticello, N.Y.: Marcel Dekker, 1988).

Now we develop a simplified electrical model of the human body. The
body acts as a conductor of current, so a reasonable starting point is to
model the body using resistors. Figure 2.25 shows a potentially dangerous
situation. A voltage difference exists between one arm and one leg of a
human being. Figure 2.25(b) shows an electrical model of the human body in
Fig. 2.25(a). The arms, legs, neck, and trunk (chest and abdomen) each have
a characteristic resistance. Note that the path of the current is through the
trunk, which contains the heart, a potentially deadly arrangement. Figure 2.25 4 (a) A human body with a voltage

difference between one arm and one leg. (b) A sim-
NOTE: Assess your understanding of the Practicat Perspective by solving Chapter  plified model of the human body with a voltage dif-

Problems 2.34-2.38. ference between one arm and one leg.
Summary
« The circuit elements introduced in this chapter are volt- + A resistor constrains its voltage and current to be
age sources, current sources, and resistors: proportional to each other. The value of the propor-
+ An ideal voltage source maintains a prescribed volt- tional constant relating voltage and current in a resis-
age regardless of the current in the device. An ideal tor is called its resistance and is measured in ohms,
current source maintains a prescribed current regard- (See page 28.)

less of the voltage across the device. Voltage and cur- _ .

rent sources are cither independent, that is, not * Ohm’s law establishes the proportionality of voltage
influenced by any other current or voltage in the cir- and current in a resistor. Specifically,

cuit; or dependent, that is, determined by some other

current or voltage in the circuit. (See pages 24 and 25.) v = IR (2.26)
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if the current flow in the resistor is in the direction of
the voltage drop across it, or

v = —iR (2.27)

if the current flow in the resistor is in the direction of
the voltage rise across it. (See page 29.)

By combining the equation for power, p = »i, with
Ohm’s law, we can determine the power absorbed by a
resistor:

p = i*R = v*/R. (2.28)
(See page 30.)
Circuits are described by nodes and closed paths. A
node is a point where two or more circuit elements join.

When just two elements connect to form a node, they
are said to be in series. A closed path is a loop traced

through connecting clements, starting and ending at the
same node and encountering intermediate nodes only
once each. (See pages 36-38.)

« The voltages and currents of interconnected circuit ele-

ments obey Kirchhoff’s laws:

+ Kirchhoff’s current law states that the algebraic sum
of all the currents at any node in a circuit equals zero.
(See page 36.)

+ Kirchhoff’s voltage law states that the algebraic sum
of all the voltages around any closed path in a circuit
equals zero. (See page 37.)

A circuit is solved when the voltage across and the cur-
rent in every element have been determined. By com-
bining an understanding of independent and dependent
sources, Ohm’s law, and Kirchhoff’s laws, we can solve
many simple circuits.

Problems
Section 2.1 Figure P2.2
2.1 a) Is the interconnection of ideal sources in the cir- %
cuit in Fig. P2.1 valid? Explain. * U
b) Identify which sources are developing power
10 A 100V 5A

and which sources are absorbing power.

c) Verify that the total power developed in the cir-
cuit equals the total power absorbed.

d) Repeat (a)-(c), reversing the polarity of the

10V source.
Figure P2.1
v
G
X
0V 8V

2.2 If the interconnection in Fig. P2.2 is valid, find the
power developed by the current sourccs. I the
interconnection is not valid, explain why.

2.3 If the intercomnection in Fig. P2.3 is valid, find the
total power developed by the voltage sources. If the
interconnection is not valid, explain why.

Figure P2.3

O

10V 20 A 100 V

0



2.4 If the interconnection in Fig. P2.4 is valid, find the

2.5

2.6

total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.4
10V
)
N
50V 40V
SA
-
/

The interconnection of ideal sources can lead to an
indeterminate solution. With this thought in mind,
explain why the solutions for v, and »; in the circuit
in Fig. P2.5 are not unique.

Figure P2.5

—

00
Y\

10 A ) 20 A

<

S0V

/

10 A

If the interconnection in Fig. P2.6 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.6

Problems 49

2.7 a) Is the interconnection in Fig. P2.7 valid? Explain.

2.8

29

b) Can you find the total energy developed in the
circuit? Explain.

Figure P2.7
iy
20V 20 A 0
1 3y
SA 100V 0

If the interconnection in Fig. P2.8 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.8

+
sov s 25 A
= ' :
Eh C)zsov
¥ —
6 iy é 80V

Find the total power developed in the circuit in
Fig. P2.9if v, = 100 Vand i, = 12 A.

Figure P2.9
iy 80V Tfs #
¥y 1 21y
60V 4A =
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Sections 2.2-2.3

2.10

211

2,12

The terminal voltage and terminal current were
measured on the device shown in Fig. P2.10(a). The
values of v and i are given in the table of
Fig. P2.10(b). Use the values in the table to con-
struct a circuit model for the device consisting of a
single resistor.

Figure P2.10

; i(mA)| »(V)
M = =20 | —160
® -10 —80
Device ] 10 80
d ~ 20 | 160
P 30 240

(a) (b)

A variety of voltage source values were applied to
the device shown in Fig. P2.11(a). The power
absorbed by the device for each value of voltage is
recorded in the table given in Fig. P2.11(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor.

Figure P2.11

v (V) |p (mW)

i -10 | 25.0

-5 6.25

‘\ 5 | 625

Device ()

- 10 | 250

15 | 5625

20 100

(2) (b)

A variety of current source values were applied to
the device shown in Fig. P2.12(a). The power
absorbed by the device for each value of current is
recorded in the table given in Fig. P2.12(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor.

Figure P2.12

i) [pW

2 100

4 400

‘_ 6 900

Device ] i

® 8 1600

10 2500

12 3600

(a) (b)

213 A pair of automotive headlamps is connected to a

12 V battery via the arrangements shown in
Fig. P2.13. [n the figure, the triangular symbol V¥ is
used to indicate that the terminal is connected
directly to the metal frame of the car.

a) Construct a circuit model using resistors and an
independent voltage source.

b) Identify the correspondence between the ideal
circuit element and the symbol component that
it represents.

Figure P2.13

12V battery



2.14

2.15

2.16

The voltage and current were measured at the ter-

minals of the device shown in Fig. P2.14(a). The

results are tabulated in Fig. P2.14(b).

a) Construct a circuit model for this device using
an ideal current source and a resistor.

b) Use the model to predict the amount of power
the device will deliver to a 5 ) resistor.

Figure P2.14

U 5, (V) [ 4,(A)
. & 100 0
. 180 4
DCViCC y 260 3
p

340 | 12

e
420 | 16

(a) (b)

The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.15(a). The
results are tabulated in Fig. P2.15(b).

a) Construct a circuit model for this device using
an ideal voltage source and a resistor.

b) Use the model to predict the value of i, when v,
is zero.

Figure P2.15

‘ o (V) [ i (A)

-t 50 0

e 58 2

. 66 4

Device 't‘ 74 6
®

: 8 8

’ 9% | 10

(a) (b)

The table in Fig. P2.16(a) gives the relationship
between the terminal current and voltage of the prac-
tical constant current source shown in Fig. P2.16(b).

a) Plot i, versus v,.

b) Construct a circuit model of this current source
that is valid for 0 < v, < 30V, based on the
equation of the line plotted in (a).

¢) Use your circuit model to predict the current
delivered Lo a 3 k() resistor.

217
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d) Use your circuit model to predict the open-circuit
voltage of the current source.

¢) What is the actual open-circuit voltage?
f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.16

is (mA)Y| v (V)
40 0 P
35 10 o A
30 | 20 " %
25 30 CCS v
18 40 9
50 —
55
(a) (b)

The table in Fig. P2.17(a) gives the relationship
between the terminal voltage and current of the prac-
tical constant voltage source shown in Fig. P2.17(b).

a) Plot v, versus i,

b) Construct a circuit model of the practical source
that is valid for 0 =< i; = 225 mA, based on the
equation of the linc plotted in (a). (Usc an ideal
voltage source in series with an ideal resistor.)

¢) Use your circuit model to predict the current
delivered to a 400 () resistor connected to the
terminals of the practical source.

d) Use your circuit mode) to predict the current
delivered to a short circuit connecied to the ter-
minals of the practical source.

e) What is the actual short-circuit current?
f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.17

2, (V) [i; (mA)
75 0
60 75
45 | 150
30 | 225
20 | 300
10 | 400

o | 500

(a) (b)
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Section 2.4
2.18 Given the circuit shown in Fig. P2.18, find

P a) the value of i,,
b) the value of iy,
c¢) the value of v,,
d) the power dissipated in each resistor,

e) the power delivered by the 50 V sourcc.

Figure P2,18

40 L4
VWA >

50V i, 3200 2, $80 0

2.19 a) Find the currents i; and i; in the circuit in
PSPICE Flg. P2.19.

b) Find the voltage »,.

c¢) Verify that the total power developed equals the
total power dissipated.

Figure P2,19

- —

4A v, i.2800 90 0

2.20 The current i, in the circuit shown in Fig. P2.20 is
pseice 2 mA. Find (a) 1,; (b) i,;; and (c) the power delivered
by the independent current source.

Figure P2.20
1kQ
» AM
A
Iy toy 2k0O 4kQ
3k
AWV

2.21 The current i, in the circuit in Fig. P2.21is 4 A.
P ) Find I.
b) Find the power dissipated in each resistor.

c) Verify that the total power dissipated in the cir-
cuit equals the power developed by the 180 V
source.

Figure P2.21

250 o
B AAG
50 100
*—— WA~ b
+ ;
180V ( © 1,700 ésn

2.22 For the circuit shown in Fig. P2.22, find (a) R and
rseice (b) the power supplied by the 125 V source.

Figure P2.22

90
- WA—
=3A

5Q
asv (D)

300 100
60
* —NWA—

2.23 The variable resistor R in the circuit in Fig. P2.23 is
pseice  adjusted until v, equals 60 V. Find the value of R.

Figure P2.23
450
AN

2.24 The voltage across the 15 k() resistor in the circuit
pseice in Fig. P2.24 is 500V, positive at the upper terminal.

a) Find the power dissipated in each resistor.

b) Find the power supplied by the 100 mA ideal
current source.

c) Verify that the power supplied equals the total
power dissipated.

Figure P2.24

5k0 ‘i 10kQO
100 mA
7.5k @I 15kQ
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2.25 The currents i, and iy in the circuit in Fig. P2.25 are 2.28 a) Find the voltage v, in the circuit in Fig. P2.28.

it 4 A and 2 A, respectively. P b) Show that the total power generated in the cir-
a) Find i, cuit equals the total power absorbed.
b) Find the power dissipated in each resistor.
¢) Find v,.

d) Show that the power delivered by the current  Figyre p2.28
source is equal to the power absorbed by all the
other elements.

Figure P2.25

a2
A
8§Q 40
40 24 Q)
6 AM
+
80V v, i, 60
120 _ 100
Wy— Wy 2.29 Find (a) i,, (b) i;,and (c) i, in the circuit in Fig. P2.29.
[Ia PSPICE
2.26 The currents i; and ¢, in the circuit in Fig. P2.26 are Figure P2,29
10 A and 25 A, respectively. 1 k0
a) Find the power supplied by each voltage source. i\ lis
b) Show that the total power supplied equals the L !
total power dissipated in the resistors. 60 V S5k 2vs 2k 2500 Q1
-3
Figure P2.26 _ |80

§1oon

100 230 Find v( and v, in the circuit shown in Fig. P2.30

it when vy equals 250 mV. (Hint: Start at the right end
of the circuit and work back toward v,.)

Section 2.5

2.27 Derive Eq. 2.25. Hint: Use Egs. (3) and (4) from Figure P2.30
Example 2.11 to express ig as a function of ig. Solve
Eq. (2) for i; and substitute the result into both
Eqgs. (5) and (6). Solve the “new” Eq. (6) for i; and
substitute this result into the “new” Eq. (5). Replace
ir in the “new” Eq. (5) and solve for ip. Note that
because i appears only in Eq. (1), the solution for
ip involves the manipulation of only five equations.
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231

PSPICE

Circuit Elements

For the circuit shown i Fig. P2.31, calculate (a) i, and
v, and (b) show that the power developed equals the
power absorbed.

Figure P2.31

20i, Si, 8i

232

PSPICE

For the circuit shown in Fig. 2.24, Ry = 20k},
R, =80kQ, R =500, R =100Q, V=15V,
% = 200 mV, and ﬁ = 39. Calculate iB! ic, iE’ V34,
Vpas £2, 11, Vabs ico, and vy3. (Note: In the double sub-
script notation on voltage variables, the first sub-
script is positive with respect to the second
subscript. See Fig. P2.32.)

Figure P2,32
3

Sections 2.1-2.5

2.33

DESIGN
PROBLEM

It is often desirable in designing an ¢lectric wiring
system (o be able to control a single appliance from
two or more locations, for example, to control a
lighting fixture from botb the top and bottom of a
stairwell. In home wiring systems, this type of con-
trol is implemented with three-way and four-way
switches. A three-way switch is a three-terminal,
two-position switch, and a four-way switch is a four-
terminal, two-position switch. The switches are shown
schematically in Fig. P2.33(a), which illustrates a
three-way switch, and P2.33(b), which illustrates
a four-way switch.

a) Show how two three-way switches can be con-
nected between a and b in the circuit in
Fig. P2.33(c) so that the lamp / can be turned oN
or OFF from two locations.

b) If the lamp (appliance) is to be controlled from
more than two locations, four-way switches are
used in conjunction with two threc-way switches.
One four-way switch is required for each location

in excess of two. Show how one four-way switch
plus two three-way switches can be connected
between a and b in Kg. P2.33(c) to control the
lamp from three Jocations. (Hint: The four-way
switch is placed between the three-way switches.)

Figure P2.33

1 1
° ®

2 3 2 3

Pasition 1 Position 2
(a)

1 T 1 2

3 4 3 4
Position 1 Position 2

(b)
l a

O A

(©)

2.34 Suppose the power company installs some equip-

ment that could provide a 250 V shock to a human
being. Is the current that results dangerous enough
to warrant posting a warning sign and taking other
precautions to prevent such a shock? Assume that
if the source is 250 'V, the resistance of the arm is
400 (), the cesistance of the trunk is 50 €, and the
resistance of the leg is 200 0. Use the mode] given
in Fig. 2.25(b).

2.35 Based on the model and circuit shown in Fig. 2.25,

draw a circuit model of the path of current through
the human body for a person touching a voltage
source with both hands who has both feet at the
same potential as the negative terminal of the volt-
age source.



2.36 a) Using the values of resistance for arm, leg, and
EAL  trupk provided in Problem 2.34, calculate the
power dissipated in the arm, leg, and trunk.

b) The specific heat of water is 4.18 X 10, J/kg°C,
so a mass of water M (in kilograms) heated by a
power P (in watts) undergoes a rise in tempera-
ture at a rate given by

dl 239 x 10P_

o M C/s.
Assuming that the mass of an arm is 4 kg, the
mass of a leg is 10 kg, and the mass of a trunk is
25 kg, and that the human body is mostly water,
how many seconds does it take the arm, leg, and
trunk to rise the 5°C that endangers living tissue?

c) How do the values you computed in (b) com-
pare with the few minutes it takes for oxygen
starvation to injure the brain?

237 A person accidently grabs conductors connected to

PRACTICAL 1
orRacical. each end of a dc voltage source, one in each hand.

a) Using the resistance values for the human body
provided in Problem 2.34, what is the minimum

Problems 55

source voltage that can produce electrical shock
sufficient to cause paralysis, preventing the per-
son from letting go of the conductors?

b) Is there a significant risk of this type of accident
occurring while servicing a personal computer,
which typically has 5V and 12 V sources?

2.38 To understand why the voltage level is not the sole

Jracncal determinant of potential injury due to electrical

shock, consider the case of a static electricity shock

mentioned in the Practical Perspective at the start

of this chapter. When you shuffle your feet across a

carpet, your body becomes charged. The effect of

this charge is that your entire body represents a

voltage potential. When you touch a metal door-

knob, a voltage difference is created between you

and the doorknob, and current flows—but the con-
duction material is air, not your body!

Suppose the model of the space between your
hand and the doorknob is a 1 M) resistance. What
voltage potential exists between your hand and
the doorknob if the current causing the mild shock
is3mA?




3.1 Resistors in Series p. 58

3.2 Resistors in Parallel p. 59

3.3 The Voltage-Divider and Current-Divider
Circuits p. 62

3.4 Voltage Division and Current Division p. 65
3.5 Measuring Voltage and Current p. 68

3.6 Measuring Resistance—The Wheatstone
Bridge p. 71

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits p. 73

1 Be able to recognize resistors connected in
series and in parallel and'use the rules for
combining series-connected resistors and
parallel-connected resistors to yield equivalent
resistance. : o

2 Know how to design simple voltage-divider and
current-divider circuits.

3 Be able to use voltage division z'ind_-current. _
division appropriately to solve simple circitits.

4 Be able to determine the reading of an ammeter

when added to a circuit to measure current; be
able to determine the reading of a voltmeter
when added to a circuit to measure voltage.

5 Understand how a Wheatstone bridge is used to
measure resistance, ' _

6 Know when and how to use delta-to-wye
equivalent circuits to solve simple circuits.
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Simple Resistive Circuits

Our analytical toolbox now contains Ohm’s law and Kirchhoff’s
laws. In Chapter 2 we used these tools in solving simple circuits.
In this chapter we continue applying these tools, but on more-
complex circuits. The greater complexity lies in a greater number
of elements with more complicated interconnections. This chap-
ter focuses on reducing such circuits into simpler, equivalent cir-
cuits. We continue to focus on relatively simple circuits for two
reasons: (1) It gives us a chance to acquaint ourselves thoroughly
with the laws underlying more sophisticated methods, and (2) it
allows us to be introduced to some circuits that have important
engineering applications.

The sources in the circuits discussed in this chapter are lim-
ited to voltage and current sources that generate either constant
voltages or currents; that is, voltages and currents that are invari-
ant with time. Constant sources are often called dc¢ sources. The
dc stands for direct current, a description that has a historical basis
but can seem misleading now. Historically, a direct current was
defined as a current produced by a constant voltage. Therefore, a
constant voltage became known as a direct current, or dc, voltage.
The use of dc for constant stuck, and the terms dc current and dc
voltage are now universally accepted in science and engineering
to mean constant current and constant voltage.



Practical Perspective

A Rear Window Defroster

The rear window defroster grid on an automobile is an exam-
ple of a resistive circuit that performs a useful function. One
such grid structure is shown on the left of the figure here. The
grid conductors can be modeled with resistors, as shown on
the right of the figure. The number of horizontal conductors
varies with the make and model of the car but typically ranges
from 9 to 16,

How does this grid work to defrost the rear window? How
are the properties of the grid determined? We will answer
these gquestions in the Practical Perspective at the end of this
chapter. The circuit analysis required to answer these ques-
tions arises from the goal of having uniform defrosting in
both the horizontal and vertical directions.

R R
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iz

b is

Figure 3.1 4 Resistors connected in series.

f e

oQ

Figure 3.2 4 Series resistors with a single unknown

current .

Figure 3.3 A A simplified version of the circuit shown

in Fig. 3.2,

Combining resistors in series b

3.1 Resistors in Series

In Chapter 2, we said that when just two elements connect at a single
node, they are said to be in series. Series-connected circuit elements carry
the same current. The resistors in the circuit shown in Fig. 3.1 are con-
nected in series. We can show that these resistors carry the same current
by applying Kirchhoff’s current law to each node in the circuit. The series
interconnection in Fig. 3.1 requires that

is = [1 = "'iz =] i3 = iA = ‘l.s = _i6 = i7, (3.1)

which states that if we know any one of the seven currents, we know them
all. Thus we can redraw Fig, 3.1 as shown in Fig, 3.2, retaining the identity
of the single current i,.

To find i, we apply Kirchhoff’s voltage law around the single closed
loop. Defining the voltage across each resistor as a drop in the direction of
i, gives

—Us + i_(-Rl + !IA.RZ + l-sR3 + l.SR4 + i:RS + IIS.R.S i l'sR7 = 0, (3.2)
or
vy = i.s-(Rl + RZ 2 R3 + R4 -+ RS + Ré + R7) (3.3)

The significance of Eq. 3.3 for calculating i, is that the seven resistors can
be replaced by a single resistor whose numerical value is the sum of the
individual resistors, that is,

Req=R1+R2+R3+R4+R5+R6+R7 (3.4)
and
Y =l o (3.5)

Thus we can redraw Fig. 3.2 as shown in Fig. 3.3.
In general, if k resistors are connected in series, the equivalent single
resistor has a resistance equal to the sum of the & resistances, or

By JERERES IR (3.6)

Note that the resistance of the equivalent resistor is always larger than
that of the largest resistor in the series connection.



Another way to think about this concept of an equivalent resistance is
fo visualize the string of resistors as being inside a black box. (An clectri-
cal engineer uses the term black box to imply an opaque container; that is,
the contents are hidden from view. The engineer is then challenged to
mode) the contents of the box by studying the relationship between the
voltage and current at its terminals.) Determining whether the box con-
tains & resistors or a single equivalent resistor is impossible. Figure 3.4
illustrates this method of studying the circuit shown in Fig. 3.2.

3.2 Resistors in Parallel

When two elements connect at a single node pair, they are said to be in
parallel. Parallel-counected circnit elements have the same voltage across
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected
in parallel. Don’t make the mistake of assuming that two elements are
paraliel connected merely because they are lined up in parallel in a circuit
diagram, The defining characteristic of parallel-connected clements is that
they have the same voltage across their terminals. In Fig. 3.6, you can see
that R, and Rj are not parallel connected because, between their respec-
tive terminals, another resistor dissipates some of the voltage.

Resistors in parallel can be reduced to a single equivalent resistor
using Kirchhoff’s current law and Ohm’s law, as we now demonstrate. In
the circuit shown in Fig. 3.5, we let the currents iy, i, i3, and i, be the cur-
rents in the resistors Ry through Ry, respectively. We also let the positive
reference direction for each resistor current be down through the resistor,
that is, from node a to node b. From Kirchhoff’s current law,

l.: = il + 1.2 + [.3 + i4. (3.7)

The parallel connection of the resistors means that the voltage across each
resistor must be the same. Hence, from Ohm'’s law,

LRy = Ry = 3Ry = 4Ry = v.. (3.8)
Therefore,
. US
L= E;
- v.f
n= ?2,
v
I = '-R_‘;, and
Ve -
== (3.9)

3.2 Resistors in Parallel
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—ela Ry Ry Rj : —wla

h R; Ry Rs ; ‘h

Figure 3.4 A The black box equivalent of the circuit
shown in Fig. 3.2.

Figure 3.5 4 Resistors in parallel.

R,

R, R,

Figure 3.6 & Nonparallel resistors.
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g : '. éReq

Figure 3.7 & Replacing the four parallel resistors shawn
in Fig. 3.5 with a single equivalent resistor.

Combining resistors in parallel &

[ XY

R, §R2

Figure 3.8 & Two resistors connected in parallel.

Substituting Eq. 3.9 into Eq. 3.7 yields

(3.10)

from which

(3.11)

Equation 3.11 is what we set out to show: that the four resistors in the cir-
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con-
nected in parallel, Eq. 3.11 becomes

(3.12)

Note that the resistance of the equivalent resistor is always smaller than the
resistance of the smallest resistor in the parallel connection. Sometimes,
using conductance when dealing with resistors connected in parallel is more
convenient. In that case, Eq. 3.12 becomes

k
Geq=20,—=G1+G2+“'+Gk- (3.13)

Many times only two resistors are connected in parallel. Figure 3.8
ilustrates this special case. We calculate the equivalent resistance from
Eq.3.12:

1 1 1 R, + Ry
= SR (3.14)
ch Rl RZ R1R2
or
RiR,
Ry = R, + Ry (3.15)

Thus for just two resistors in parallel the equivalent resistance equals
the product of the resistances divided by the sum of the resistances.
Remember that you can only use this result in the special case of just two
resistors in parallel. Example 3.1 illustrates the usefulness of these results,
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RacinhICRIE Applying Series-Parallel Simplification

Find i,, iy, and i, in the circuit shown in Fig. 3.9.

Solution

We begin by noting that the 3 () resistor js in series
with the 6 () resistor. We therefore replace this series
combination with a 9 () resistor, reducing the circnit
to the one shown in Fig, 3.10(a). We now can replace
the parallel combination of the 9 () and 18 () resis-
tors with a single resistance of (18 X 9)/(18 + 9), or
6 Q). Figure 3.10(b) shows this further reduction of
the circuit. The nodes x and y marked on all diagrams
facilitate tracing through the reduction of the circuit.

From Fig. 3.10(b) you can verify that i; equals
120/10, or 12 A. Figure 3.11 shows the result at this
point in the analysis. We added the voltage v, to
help clarify the subsequent discussion. Using Ohm’s
law we compute the value of v;:

v, = (12)(6) = 72 V. (3.16)

But v, is the voltage drop from node x to node y, so
we can return to the circuit shown in Fig. 3.10(a)
and again use Ohm’s law to calculate i; and ;. Thus,

Figure 3.10 A A simplification of the circuit shown in Fg. 3.9.

v 72
=—=—=4A, 3.17 40
"T18 18 (3.17) Av—s
: 2A
v 2 1
= = =2 =8A. (3.18) 120V v 60
9 9 -
We have found the three specified currents by using y
series-parallel reductions in combination with Figure 3.11 & The circuit of Fig. 3.10(b) showing the numerical

Ohm’s law. value of i,.
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Before leaving Example 3.1, we suggest thal you take the time to
show that the solution satisfies Kirchhoff’s corrent law at cvery node and
Kirchhoff’s voltage law around every closed path. (Note that there are
three closed paths that can be tested.) Showing that the power delivered
by the voltage source equals the total power dissipated in the resistors also
is informative. {See Problems 3.3 and 3.4.)
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Objéc-tive 1—Be -éﬁle to recognize resistors connected in series and in parallel

3.1 For the circuit shown find (a) the vollage v, | : : 720 | G0 |

(b) the power delivered to the circuit by the
_current source, and (c) the power dissipated in

: the 10 O resmtor
Answer: (a) 60V;
(b) 300'W;
(c) 57. 6 W.

——— W

5A v $300 2640 2100

NOTE: Alsotry Chczpter Problems 3. ] 3. 2 3.5, and 3.6.

(b)

Figure 3.12 . (a) A voltage-divider circuit and (b) the
voltage-divider circuit with current { indicated.

3.3 The Voltage-Divider
and Current-Divider Circuits

At times—especially in electronic circuits—developing more than one
voltage level from a single voltage supply is necessary. One way of doing
this is by using a voltage-divider circuit, such as the one in Fig. 3.12.

We analyze this circuit by directly applying Ohm’s law and
Kirchhoff’s laws. To aid the analysis, we introduce the current i as shown in
Fig. 3.12(b). From Kirchhoff’s current law, R, and R, carry the same cur-
rent. Applying Kirchhoff’s voltage law around the closed loop yields

v, = iR, + iR, (3.19)
or
¥ Vg (3 20)
== “

Now we can use Ohm’s law to calculate vy and v;,:

Ry

= I = e 3.21
Yy lRl ’UJRI % ( )
=R, = 7. = 3.22
Vy LIk, Vg ] 2. ( 4 )

Equations 3.21 and 3.22 show that »; and v, are fractions of v,. Each
fraction is the ratio of the resistance across which the divided voltage is
defined to the sum of the two resistances. Because this ratio is always less
than 1.0, the divided voltages v; and v, are always less than the source
voltage v,.

If you desire a particular value of v,, and w»; is specified, an infinite
number of combinations of R; and R, yield the proper ratio. For example,
suppose that v, equals 15 V and v, is to be 5 V. Then v,/v, = 3 L and, from
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Eq.3.22, we find that this ratio is satisfied whenever R, = %Rl. Other fac-
tors that may enter into the selection of R;, and hence R,, include the
power losses that accur in dividing the source voltage and the effects of
connecting the voltage-divider circuit to other circuit components.

Consider connecting a resistor R; in parallel with R,, as shown in
Fig. 3.13. The resistor Ry acts as a load on the voltage-divider circuit. A
load on any circuit consists of one or more circuit elements that draw
power from the circuit. With the load R, connected, the expression for the
output voltage becomes

Req
v, = mvm (3.23)
where
_ RyR;
Req = Rt R, (3.24)
Substituting Eq. 3.24 into Eq. 3.23 yields
R
v, = 2 (3.25)

TR+ (RJR) F R

Note that Eq. 3.25 reduces to Eq. 3.22 as R;—> o0, as it should.
Equation 3.25 shows that, as long as R; >> R,, the voltage ratio v, /7, is
essentially undisturbed by the addition of the load on the divider.

Another characteristic of the voltage-divider circuit of interest is the
sensitivity of the divider to the tolerances of the resistors. By rolerance we
mean a range of possible values. The resistances of cormmercially available
resistors always vary within some percentage of their stated value.
Example 3.2 illustrates the effect of resistor tolerances in a voltage-divider
circuit.

Sl Analyzing the Voltage-Divider Circuit

shown in Fig. 3.14 have a tolerance of +10%. Find
the maximum and minimum value of v,.

100V

The resistors used in the voltage-divider circuit Solution

The Voltage-Divider and Current-Divider Circuits 63

'v+> .
: .
- -

R, U § Ry

Figure 3.13 A A voltage divider connected to a load R, .

From Eq.3.22, the maximum value of v, occurs when
R, is 10% high and R/ is 10% low, and the minimum
value of », occurs when R, is 10% low and R; is
10% high. Therefore

(100)(110)
vo(max) = m = 83.02 V,
~(100)(90)
V,(min) = 0+ 275 76.60 V.

Thus, in making the decision to use 10% resistors in
this voltage divider, we recognize that the no-load
Figure 3.14 4. The circuit for Example 3.2. output voltage will lie between 76.60 and 83.02 V.
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The Current-Divider Circuit

o P The current-divider circuit shown in Fig. 3.15 consists of two resistors con-
. nected in parallel across a current source. The current divider is designed
i R, ?il # Rzg‘-rig to divide the current i, between R; and R;. We find the relationship
between the current i, and the current in each resistor (that is, i; and i;) by
N directly applying Ohm’s law and Kirchhoff's current law. The voltage
across the parallel resistors is

Figure 3.15 & The current-divider circuit.

RiR,
= 1Ry = ih Ry = ———I.. 3.26
V= LRy = hRy R, + Rgl’ (3.26)
From Eq. 3.26,
N 15
L= Rl 4 Rzlss ( . )
. By (3.28)
fyp = —————i . .
TR TR

Equations 3.27 and 3.28 show that the current divides between two resis-
tors in parallel such that the current in one resistor equals the current
entering the parallel pair multiplied by the other resistance and divided by
the sum of the resistors. Example 3.3 illustrates the use of the current-
divider equation.

Sl Analyzing a Current-Divider Circuit

Find the power dissipated in the 6 £} resistor shown and the power dissipated in the 6  resistor is
in Fig. 3.16. p = (3.2)%(6) = 61.44 W.
Solution 16 Q)

First, we must find the current in the resistor by sim-
plifying the circuit with series-parallel reductions.
Thus, the circuit shown in Fig. 3.16 reduces to the
one shown in Fig. 3.17. We find thc current i, by
using the formula for current division:

10A 16 0 40 6 O

Figure 3.16 & The circuit for Example 3.3,

16
, = 10) = 8 A.
T 16 + 4( 0) =8
Nole that i, is the current in the 1.6 {) resistor in
Fig. 3.16. We now can further divide i, belween the 10A 16 O 4 Q§ li”
6 () and 4 () resistors. The current in the 6 {} resistor is
4 .

Ig = (8) =32A, : . - -
6+4 Figure 3.17 4 A simplification of the circuit shown in Fig. 3.16.
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Objective 2—Know how to design simple valtage-divider and current-divider circuits

3.2 a) Find the no-load Value-éf.-v inthe b 3.3 d) Find the value of R that will cause 4 A of
circuit shown: current to flow through the 80 Q) resistor in
b) Find v, when Ry is 150 kQ. ] the circuit shown.
¢) How much power is dissipated in the 25 ) b) How much power will the resistor R from
resistor if the load terminals are acadenta]ly part (a) need to dissipate?
. short- cnfcmted” . c) H_o.w_muc_h power will th_e_ current source
d) What is the maximum power disﬂlpated in : - generate for the value of R from part (@)?

the 75 kQ reststoﬂ

o 600
25 k()
L \ 400
2 V<—> _ i 20 A R
ISEO D ' SR, 8003
Answer: (a) 150V; ; ; o
' G133y ;  Answer: (a) 309Q;
(¢) L6 W, ' i : (b) 7680 W;
(MOaWe e ' (c) 33,600 W.
NOTE: Also try Chapter Pro‘b[emL§< 3. ] 3,3.15,and 3.21. .
3.4 Voltage Division
and Current Division
We can now generalize the results from analyzing the voltage divider cir- R, R,
cuit in Fig. 3.12 and the current-divider circuit in Fig, 3.15. The generaliza- T 0 g S

tions will yield two additional and very useful circuit analysis techniques
known as voltage division and current division. Consider the eircuit shown
in Fig. 3.18.

The box on the left can contain a single voltage source or any other
combination of basic circuit elements that results in the voltage v shown in
the figure. To the right of the box are » resistors connected in series. We
are interested in finding the voltage drop v; across an arbitrary resistor R;
in terms of the voltage ». We start by using Ohm’s law to calculate i, the
current through all of the resistors in series, in terms of the current v and
the n resistors:

i= = = (3.29)

A

Circuit

AWM ——— WA

Rn Ru—l

Figure 3.18 & Circuit used to illustrate voltage division.
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Voltage-division equation ¥

Current-division equation

The equivalent resistance, R.q, is the sum of the » resistor values because
the resistors are in series, as shown in Eq. 3.6. We apply Ohm’s law a sec-
ond time to calculate the voltage drop v; across the resistor R;, using the
current i calculated in Eq. 3.29:

v = iR, = —v. (3.30)

Note that we used Eq. 3.29 to obtain the right-hand side of Eq. 3.30.
Equation 3.30 is the voltage division equation. It says that the voltage
drop v; across a single resistor R; [rom a collection of series-connected
resistors is proportional to the total voltage drop » across the set of series-
connected resistors. The constant of proportionality is the ratio of the sin-
gle resistance to the equivalent resistance of the series connected set of
resistors, or R;/Re,.

Now consider the circuit shown in Fig. 3.19. The box on the left can
contain a single current source or any other combination of basic circuit
elements that results in the current ; shown in the figure. To the right of
the box are n resistors connected in parallel. We are interested in finding
the current i; through an arbitrary resistor R; in terms of the current i. We
start by using Ohm’s law to calculate v, the voltage drop across each of the
resistors in parallel, in terms of the current { and the n resistors:

0 = iRYIRy] ... [R) = iReq (331
The equivalent resistance of n resistors in parallel, R.q, can be calculated

using Eq. 3.12. We apply Ohm’s law a second tiroe to calculate the current
i through the resistor R;, using the voltage v calculated in Eq. 3.31:

e (3.32)
BB '

Note that we used Eq. 3.31 to obtain the right-hand side of Eq. 3.32.
Equation 3.32 is the current division equation. It says that the current i
through a single resistor R; from a collection of parallel-connected resis-
tors is proportional to the total current i supplied to the set of parallel-
connected resistors. The constant of proportionality is the ratio of the

®

Circuit Ry R, R i R, R,,g'v

®
[
[
[
4

Figure 3.19 & Circuit used to illustrate current division.
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equivalent resistance of the parallel-connected set of resistors to the single
resistance, or R, /R;. Note that the constant of proportionality in the cur-
rent division equation is the inverse of the constant of proportionality in
the voltage division equation!

Example 3.4 uses voltage division and current division to solve for
voltages and currents in a circuit.

SENHICRERAN  Using Voltage Division and Current Division to Solve a Circuit

Use current division to find the current i, and use

voltage division to find the voltage v, for the circuit 160 400 v

in Fig, 3.20. i +
SAC‘D 100 100 24()§ v

Solution 440 30020,

We can use Eq. 3.32 if we can find the equivalent - . =

resistance of the four parallel branches containing
resistors. Symbolically,

Ry = (36 + 44)[10](40 + 10 + 30)|24

Figure 3.20 & The circuit for Example 3.4,

= 80[10||80[]24 = — L = 6. This is also the voltage drop across the branch con-
AL el s, el taining the 40 €, the 10 Q, and the 30 € resistors in
80 10 80 24 series. We can then use voltage division to determine

the voltage drop v, across the 30 () resistor given
that we know the voltage drop across the series-
y ) i(g A)=2A connected resistors, using Eq. 3.30. To do this, we

' recognize that the equivalent resistance of the
series-connected resistors is 40 + 10 + 30 = 80 :

Applying Eq. 3.32,

We can nse Ohm’s law to find the voltage drop
across the 24 () resistor:

30
= —(48V) = 18 V.
v = (24)(2) = 48 V. =

Objective 3—Be able to use voltage and current division to solve simple circuits

3.4 a) Use voltage division to determine the ' 40 & = 00
 voltage v, across the 40 o) res1st01 in the : TR Y
circuit shown. :
. e e 6_0V<+> 200 -1_00#
b) Use v, from part (a) to determine the cur- . - : ;
rent through the 40 () resistor, and use this. 70 Q

current and current division to calculate the o s g 5.

current in thc 30 0 resxstor : o
: Answer: (a) 20V;

¢) How much power is absorbed by the 50 o) : : ;(b_)"1'66~67' 'mA_Q
Tesistor? o i (o) 347.22mW.

NOTE: Also zry Chapter Problemv 3. 92 and 5 23 P
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Vs RZ

Figure 3.21 4 An ammeter connected to measure the
current in R, and a voltmeter connected to measure the
voltage across R,.

,ﬁ)\, t/ :\ -
VA7 3
- ‘\\
B R f\/</'x
?

Figure 3.22 4 A short-circuit model for the ideal amme-
ter, and an open-circuit model for the ideal voltmeter.

Scale
v

Moveable
ooil

Permanent

_/magnet

Restoring spring

Magnetic steel core

Figure 3.23 & A schematic diagram of a d’Arsonval
meter movement.

Ammeter

R d'Arsonval
. A
terminals

movement

a
L4

Figure 3.24 4 A dc ammeter circuit.

R,
Voltmeter
terminals

d'Arsonval
moverment

Figure 3.25 & A dc voltmeter circuit.

3.5 Measuring Voltage and Current

When working with actual circuits, you will often need to measure volt-
ages and currents. We will spend some time discussing several measuring
devices here and in the next section, because they are relatively simple to
analyze and offer practical examples of the current- and voltage-divider
configurations we have just studied.

An ammeter is an instrument designed to measure current;it is placed
in series with the circuit element whose current js being measured. A
voltmeter is an instrument designed to measure voltage; it is placed in par-
alle] with the element whose voltage is being measured. An ideal ammeter
or voltmeter has no effect on the circuit variable it is designed to measure,
That is, an ideal ammeter has an equivalent resistance of 0 {} and func-
tions as a short circuit in series with the element whose current is being
measured. An ideal voltmeter has an infinite equivalent resistance and
thus functions as an open circuit in parallel with the element whose volt-
age is being measured. The configurations for an ammeter used to meas-
ure the current in Ry and for a voltmeter used to measure the voltage in R,
are depicted in Fig. 3.21. The ideal models for these meters in the same cir-
cuit are shown in Fig. 3.22.

There are two broad categories of meters used to measure continuous
voltages and currents: digital meters and analog meters. Digital meters
measure the continuous voltage or current signal at discrete points in
time, called the sampling times. The signal is thus converted from an ana-
log signal, which is continuous in time, to a digital signal, which exists only
at discrete instants in time. A more detailed explanation of the workings
of digital meters is beyond the scope of this text and course. However, you
are likely to see and use digital meters in lab settings because they offer
several advantages over analog meters. They introduce less resistance into
the circuit to which they are connected, they are easier to connect, and the
precision of the measurement is greater due to the nature of the readout
mechanism.

Analog meters are based on the d’Arsonval meter movement which
implements the readout mechanism. A d’Arsonval meter movement con-
sists of a movable coil placed in the field of a permanent magnet, When cur-
rent flows in the coil, it creates a torque on the coil, causing it to rotate and
move a pointer across a calibrated scale. By design, the deflection of the
pointer is directly proportional to the current in the movable coil. The coil is
characterized by both a voltage rating and a current rating. For example,
one commercially available meter movement is rated at S0 mV and 1 mA.
This means that when the coil is carrying 1 mA, the voltage drop across the
coil is 50 mV and the pointer is deflected to its full-scale position. A
schematic illustration of a d’ Arsonval meter mnovement is shown in Fig. 3.23.

An analog ammeter consists of a d’Arsonval movement in parallel
with a resistor, as shown in Fig. 3.24. The purpose of the parallel resistor is
to limit the amount of current in the movement’s coil by shunting some of
it through R 4. An analog voltmeter consists of a d’Arsonval movement in
series with a resistor, as shown in Fig. 3.25. Here, the resistor is used to
limit the voltage drop across the meter’s coil. In both meters, the added
resistor determines the full-scale reading of the meter movement.

From these descriptions we see that an actual meter is nonideal; both
the added resistor and the meter movement introduce resistance in the
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circuit to which the meter is attached. In fact, any instrument used to make
physical measurements extracts energy from the system while making
measurements. The more energy extracted by the instruments, the more
severely the measurement is disturbed. A real ammeter has an equivalent
resistance that is not zero, and it thus effectively adds resistance to the cir-
cuit in series with the element whose current the ammeter is reading. A
real voltmeter bas an equivalent resistance that is not infinite, so it effec-
tively adds resistance to the circuit in parallel with the ¢lement whose
voltage is being read.

How much these meters disturb the circuit being measured depends
on the effective resistance of the meters compared with the resistance in
the circuit. For example, using the rule of 1/10th, the effective resistance of
an ammeter should be no more than 1/10th of the value of the smallest
resistance in the circuit to be sure that the current being measured is
nearly the same with or without the ammeter. But in an analog meter, the
value of resistance is determined by the desired full-scale reading we wish
to make, and it cannot be arbitrarily selected. ‘The following examples
illustrate the calculations involved in determining the resistance needed in
an analog ammeter or voltmeter. The examples also consider the resulting
effective resistance of the meter when it is inserted in a circuit.

SENERRM Using 2 d’Arsonval Ammeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in an ammeter with a full-scale reading of
10 mA. Determine R 4.

b) Repeat (a) for a full-scale reading of 1 A,

¢) How much resistance is added to the circuit
when the 10 mA ammeter is inserted to measure
current?

d) Repeat (c) for the 1 A ammeter.

Solution

a) From the statement of the problem, we know
that when the current at the terminals of the
ammeter is 10 mA, 1 mA is flowing through the
meter coil, which means that 9 mA must be
diverted through R,. We also know that when
the movement carries 1 mA, the drop across its
terminals is 50 mV. Ohm’s law requires that

9 X 10°R, = 50 X 1073,
or

R, = 50/9 = 5.555 Q.

b) When the full-scale deflection of the ammeter is
1 A, R4 must carry 999 mA when the movement
carries 1 mA. In this case, then,

999 X 1073R,4 = 50 X 1075,
or

R4 = 50/999 = 50.05 m{}.
¢) Let R, represent the equivalent resistance of the
ammeter. For the 10 mA ammeter,

_ S50 mV -
7 10 mA 4

or, alternatively,
B (50)(50/9) B

m 50 + (50/9) LU

d) For the 1 A ammeter

_ 50mV

B 1A

= 0.050 O,

or, alternatively,
(50)(50/999)

=T~ 0050 0.
" 50 + (50/999) 05
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Fefnh MG  Using a d’Arsonval Voltmeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in a voltmeter in which the full-scale read-
ing is 150 V. Determine R,

b) Repeat (a) for a full-scale reading of 5'V.

¢) How much resistance does the 150 V meter
insert into the circuit?

d) Repeat (c) for the S V meter.

Solution

a) Full-scale deflection requires 50 mV across the
meter movement, and the movement has a resist-
ance of 50 (). Therefore we apply Eq. 3.22 with
R, = R, R, = 50,v, = 150,and v, = 50 mV:

50
X 1073 = ————
50% 107 = 2= 5(150).

Solving for R, gives

R, = 149,950 ().

b) For a full-scale reading of SV,

50
50 X 107 = 5
R, + 500
or
R, = 4950 Q.

¢) If we let R, represent the equivalent resistance
of the meter,

iy 150V
U107 A

or, alternatively,
R,, = 149,950 + 50 = 150,000 Q.

= 150,000 €,

d) Then,

5V
102 A

R, = = 5000 O,

or, alternatively,

R,, = 4950 + 50 = 5000 ().

Obj_ectivé 4—Be able 'to determine :the;'reading of ammeters and voltmeters

3.5 a) Find the current in the c1rcu1t showu

b) If the ammeter in Example 3, S(a) is used to
measure the current what will it read?

Answer: (a) 10 nﬂA;
(b)9.524mA.

NOTE: Also try Chapter Problems 3.30 and 3.33.

3.6 a) Find the voltage 2 ACTOSS the 15 kQ resistor

in the circuit shown.

b) If the 150 V voltmeter of Example 3 6(a) is
used to measure the voltage what will be
- the read1ng7

Answer: '(a)'SOIIV:;'- .

(b) 46.15V.
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3.6 Measuring Resistance—
The Wheatstone Bridge

Many different circuit configurations are used to measure resistance. Here
we will focus on just one, the Wheatstone bridge. The Wheatstone bridge
circuit is used to precisely measure resistances of medium values, that is, in
the range of 1() to 1 M(}. In commercial models of the Wheatstone +
bridge, accuracies on the order of £0.1% are possible. The bridge circuit ¢
consists of four resistors, a dc voltage source, and a detector. The resistance  —
of one of the four resistors can be varied, which is indicated in Fig. 3.26 by
the arrow through Rs. The dc voltage source is usually a battery, which is
indicated by the battery symbol for the voltage source v in Fig. 3.26. The
detector is generally a d’Arsonval movement in the microamp range and is
called a galvanometer. Figure 3.26 shows the circuit arrangement of the
resistances, battery, and detector where Ry, R,, and R3 are known resistors
and R, is the unknown resistor.

To find the value of R,, we adjust the variable resistor R; until there is
no current in the galvanometer. We then calculate the unknown resistor
from. the simple expression

Figure 3.26 4 The Wheatstone bridge circuit.

R, = =R, (3.33)

The derivation of Eq. 3.33 follows directly from the application of
Kirchhoff’s laws to the bridge circuit. We redraw the bridge circuit as
Fig. 3.27 to show the currents appropriate to the derivation of Eq. 3.33.
When i, is zero, that is, when the bridge is balanced, Kirchhoff’s current
law requires that

it (3.34)

Iy = I (3.35) L

Now, because i, is zero, there is no voltage drop across the detector, and
therefore points a and b are at the same potential. Thus when the bridge is  Figure 3.27 4 A halanced Wheatstone bridge (i, = 0).
balanced, Kirchhoff’s voltage law requires that

e +

iRy = i, R,, (3.36)

1Ry = ihR,. (3.37)
Combining Eqs. 3.34 and 3.35 with Eq. 3.36 gives

1Ry = [hR,. (3.38)

We obtain Eq. 3.33 by first dividing Eq. 3.38 by Eq. 3.37 and then so]ving
the resulting expression for R,:

Ry R,
—= == 33
R, R, (3-39)
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from which
R, = —R;. (3.40)

Now that we have verified the validity of Eq. 3.33, several comments
about the result are in order. First, note that if the ratio R,/R; is unity, the
unknown resistor R, equals Ry. In this case, the bridge resistor R; must
vary over a range that includes the value R,. For example, if the unknown
resistance were 1000 2 and R, could be varied from 0 to 100 €}, the bridge
could never be balanced. Thus to cover a wide range of unknown resistors,
we must be able to vary the ratio R;/R;. In a commercial Wheatstone
bridge, Ry and R, consist of decimal values of resistances that can be
switched into the bridge circuit. Normally, the decimal values are
1, 10, 100, and 1000  so that the ratio R,/R; can be varied from 0.001 to
1000 in decimal steps. The variable resistor R is usually adjustable in inte-
gral values of resistance from 1 to 11,000 §2.

Although Eq. 3.33 implies that R, can vary from zero to infinity, the
practical range of R, is approximately 1 { to 1 MQ). Lower resistances are
difficult to measure on a standard Wheatstone bridge because of thermo-
electric voltages generated at the junctions of dissimilar metals and
because of thermal heating effects—that is, iR effects. Higher resistances
are difficult to measure accurately because of leakage currents. In other
words, if R, is large, the current leakage in the electrical insulation may be
comparable to the current in the branches of the bridge circuit.

* Objective 5—Understand how a Wheatstone bridge is used to measure resistance

3.7  The bridge circuit shown is balanced when
Ry = 100 Q, R, = 1000 ), and Ry = 150 Q.
The bridge is energized from a SV dc source.

a) What is the value of R, ? il b —

b) Suppose each bridge resistor is capable of
dissipating 250 mW. Can the bridge be left
in the balanced state without exceeding the o
power-dissipating capacity of the resistors, Answer: (a) 1500 Q;
thereby damaging the bridge? (b) yes.

NOTE: Also try 'C’_hap_ter Problem 3.48.



3.7 Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits

The bridge configuration in Fig. 3.26 introduces an interconnection of
resistances that warrants further discussion. If we replace the galvano-
meter with its equivalent rcsistance R,,, we can draw the circuit shown in
Fig. 3.28. We cannot reduce the interconnected resistors of this circuit to a
single equivalent resistance across the terminals of the battery if restricted
Lo the simple series or parallel equivalent circuits introduced earlier in this
chapter. The interconnected tesistors can be reduced to a single equiva-
lent resistor by means of a delta-to-wye (A-to-Y) or pi-to-tee {(w-to-T)
equivalent circuit.?

The resistors Ry, R,, and R, (or Ry, R,, and R,) in the circuit shown
in Fig. 3.28 are referred to as a delta (A) interconnection because the
interconnection looks like the Greek letter A. It also is referred to as a
pi interconnection because the A can be shaped into a 7 without dis-
turbing the electrical equivalence of the two configurations. The electri-
cal equivalence between the A and 7 interconnections is apparent in
Fig.3.29,

The resistors Ry, R,,, and Rz (or R,, R,, and R,) in the circuit shown in
Fig. 3.28 are referred to as a wye (Y) interconnection because the inter-
connection can be shaped to look like the letter Y. It is easier to see the Y
shape when the interconnection is drawn as in Fig. 3.30. The Y configuration
also is referred to as a tee (T) interconnection because the Y structure can
be shaped into a T structure without disturbing the electrical equivalence of
the two structures. The electrical equivalence of the Y and the T configura-
tions is apparent from Fig. 3.30.

Figure 3.31 illustrates the A-to-Y (or # -to-T) equivalent circuit (rans-
formation. Note that we cannot transform the A interconnection into the
Y interconnection simply by changing the shape of the interconnections.
Saying the A-conmected circuijt is equivalent to the Y-connected circuit
means that the A configuration can be replaced with a Y configuration to
make the terminal behavior of the two configurations identical. Thus if
each circuit i1s placed in a black box, we can’t tell by external measure-
ments whether the box contains a set of A-connected resistors or a set of
Y-connected resistors. This condition is true only if the resistance between
corresponding terminal pairs is the same for each box. For example, the
resistance between terminals a and b must be the same whether we use
the A-connecled set or the Y-connected set. For each pair of terminals in

1 A and Y structures are present in a variety of useful circuits, not just resistive networks.
Hence the A-to-Y transformalion is'a helpful tool in circuit analysis,

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 73

Figure 3.28 & A resistive network generated by a
Wheatstone bridge circuit,

a b a b
RC
R, R, Ry R,
C c

Figure 3.29 & A A configuration viewed as a
configuration.

Figure 3.30 & AY structure viewed as a T structure.

R,
a b a b
R <~ R R,
b R, Ry
¢ c

Figure 3.31 & The A-to-Y transformation,
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the A-connected circuit, the equivalent resistance can be computed using
series and parallel simplifications to yield

Rc(Ra + Rb)
- = + A
Rab Ra T Rb - Rc Rl R2, (3.41)
RARy + R)
= —_— = + .
Ry R, + R, + R, Ry + Ry, (3.42)
R, =B *R) _p o o 3.43
ca_Ra+Rb+Rc_ 1 3t ()

Straightforward algebraic manipulation of Egs. 3.41-3.43 gives values
for the Y-conpected resistors in terms of the A-comnected resistors
required for the A-to-Y equivalent circuit:

R, = —RbRC 3.44
1" R, + R, + R, (3.44)
s R.R, 3.45
2" R, +R,+ R’ (3.49)
R, R,
Ry=mi——ab 3.46
ST R, + R, + R, (3.46)

Reversing the A-to-Y transformation also is possible. That is, we can start
with the Y structure and replace it with an equivalent A structure. The
expressions for the thrce A-connected resistors as functions of the three
Y connected resistors are

RiR, + RyR; + RaR,

R, = ; 3.47
a R, (3.47)
RiRy, + RyRy + RiR
-Rb= 1402 2513 3 1‘ (3.48)
Ry
RiRy + RyR; + R3R
R =122 1 (3.49)

Rs

Example 3.7 illustrates the use of a A-to-Y transformation to simplify
the analysis of a circuit.
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SR Applying a Delta-to-Wye Transform

Find the current and power supplied by the 40 V resistance across the terminals of the 40 V source by
source in the circuit shown in Fig. 3.32. series-parallel simplifications:
(50)(50)
= + —= .
“3 . Req =55 100 800
100 O 1250

The final step is to note that the circuit reduces to
+ | 250 an 80 () resistor across a 40 V source, as shown in

40V _— — VY Fig. 3.35, from which it is apparent that the 40 V
— source delivers 0.5 A and 20 W to the circuit.

40 Q 37.50

Figure 3.32 A The circuit for Example 3.7.
100 & 125 Q)

L2\

250
Solution

. R Figure 3.33 4 The equivalent Y resistors.
We are interested only in the current and power

drain on the 40 V source, so the problem has been
solved once we obtain the equivalent resistance
across the terminals of the source. We can find this 50

equivalent resistance easily after replacing either W ?

the upper A (100, 125, 25 Q) or the lower A (40, 500
25, 37.5 () with its equivalent Y. We choose to
replace the upper A. We then compute the three Y el I 100 1250
resistances, defined in Fig. 3.33, from Eqgs. 3.44 to 0V _—
3.46. Thus, -

40 Q 3750

100 X 125
R =———= =500,
! 250

Figure 3.34 £ A transformed version of the circuit shown in
Fig. 3.32.

125 X 25
R,=—="2"_1250
2 250 1 ’

X
R, =WX25 _ 440, +

250 wv =1 30

Substituting the Y-resistors into the circuit

5}}0“’!1 in Fig. 3-_32 produces the C_iIC‘-‘it shown in Figure 3.35 & The final step in the simplification of the circuit
Fig. 3.34. From Fig. 3.34, we can easily calculate the shown in Fig. 3.32.
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Objective 6.——Kn6W='WIieh -and;hon't'o-ii_se--del'ta'lto;wye'equ_iyaleﬁt'-gircuits_ e

3.8 UseaY-to-A T_ransformauon to fmd the Voltage
v in the circuit shown Gt : :

: A'néwer" 35 X

NOTE Also iry Chapter Problems 3 52 3 53 arzd ? 54.

Practical Perspective

A Rear Window Defroster

e e A model of a defroster grid is shown in Fig. 3.36, where x and y denote the
Ry horizontal and vertical spacing of the grid elements. Given the dimensions
_N:’_\’;-l i of the grid, we need to find expressions for each resistor in the grid such
Ry R ; R, that the power dissipated per unit length is the same in each conductor.
AM - This will ensure uniform heating of the rear windew in both the x and y
R,% iy e %Rb directions. Thus we need to find values for the grid resistors that satisfy the
5& following relationships:
; — iy
R%' i R, %RC
M R R R R R
o 7 b S FESE Y o) ORI RS B DNl M () (o) -
R% Re %R" l’< x ) lz( x ) zz( x ) "'( x ) ls( x ) (e
L " !
SR
J R R
Vae i%(;”—) = i%(;i), (3.:51)
G
N . 4
Figure 3.36 & Model of a defroster grid. i%(—”) = iﬁ(—b> = ;E(gﬁ) = z%(ﬁ), (3.52)
y Yy y y

i%(%) = i%(%). (3.53)

We begin the analysis of the grid by taking advantage of its structure.
Note that if we disconnect the lower portion of the circuit (i.e., the resistors
R, Ry, Ry, and Rs), the currents 73, ¥,, is, and iy are unaffected. Thus, instead.
of analyzing the circuit in Fig. 3.36, we can analyze the simpler circuit in



Fig. 3.37. Note further that after finding Ry, Ry, Rs, R,, and Ry, in the circuit
in Fig. 3.37, we have also found the values for the remaining resistors, since

Ry = Ry,
Rs = Ry,
e (3.54)
R(: — Rb'
-Rd = Ra.

Begin analysis of the simplified grid circuit in Fig. 3.37 by writing
expressions for the currents iy, i», i3, and i, To find iy, describe the equiva-
lent resistance in parallel with Rj:

Ry(R; + 2R))
Ry + R, + 2R,
(R +2R)(Ry + 2Ry) + 2RyR,

-RB :2Rb+

3.55
(Ri + Ry + 2R),) (3-59)
For convenience, define the numerator of Eq. 3.55 as
D = (Rl + 2Ra)(R2 + 2Rb) + 2R2Rb, (355)
and therefore
D
B =, :
“ (Ry+ R, +2R) (3:57)
It follows directly that
T
VaelRy + Ry + 2R,
DV B R ). (3.58)

D

Expressions for i; and i, can be found directly from i; using current
division. Hence

T isz 'y Vch2-
o S S e (8:58)
and
(R + 2R ViR, + 2R,
L ip{ Ry W VR ) (3.60)
(Ry + Ry +2R) D
The expression for Iy is simply
Vie
= (3.61)

Practical Perspective

A
1 -
$P 12
o
:'J\‘J

__,.;‘5

Vdc

e

Figure 3.37 & A simplified model of the
defroster grid.

77
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Now we use the constraints in Eqs. 3.50-3.52 to derive expressions for
R, Ry, R,, and Rj as functions of R;. From Eq. 3.51,

Ry Ry

y X

or

Y
i == Rl
R, le gixy
whiere

o= y/x. (3.62)

i \2
R2 T Rl' (363)
L

The ratio (i;/i,) is obtained directly from Egs. 3.59 and 3.60;

Then from Eq. 3.50 we have

I R, Ry
Lo = : (3.64)
SRR R 25R

When Eq. 3.64 is substituted into Eq. 3.63, we obtain, after some algebraic
manipulation (see Problem 3.69),

R, = (1 + 20)’R;. (3.65)

The expression for Ry, as a function of R; is derived from the constraint
imposed by Eq. 3.52, namely that

i \?
Rb: o Ra~ (3.66)
Lp

The ratio (i;/i3) is derived from Eqgs. 3.58 and 3.59. Thus,

i R
iy, (R + R,+2R)’

(3.67)

When Eq. 3.67 is substituted into Eg. 3.66, we obtain, after some algebraic
manipulation (see Problem 3.69),

Ry = == Y (3.68)

Finally, the expression for R; can be obtained from the constraint given

in Eq. 3.50, or
: \2
I
Ry = (—) Ry, (3.69)
I3
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s R Eqaons for e Defrstar G4
i3 D’ Resistance Expression
Once again, after some algebraic manipulation (see Problem 3.70), the  Ra oR,
expression for Ry can be reduced to ( + 20)20R,
Rb —'_“‘—2
(1 + 20_)4 4(]_ B 0')
y = ———=R;. (3.70) '
(1+0) R, (1 + 20)*R,
The results of our analysis are summarized in Table 3.1. B (1 + 20)
% g 3 (1 iy 0_)2 1
NOTE: Assess your understanding of the Practical Perspective by trying Chapter i
Problems 3.71-3.73. where o = y/x I

Summary

+ Series resistors can be combined to obtain a single + When current is divided between parallel resistors, as

equivalent resistance according to the equation
k
Ry= DR =R +Ry+ -+ + Ry
i=1

(See page 58.)
Paralle) resistors can be combined to obtain a single
equivalent resistance according to the equation

RIS TR S

Req i=1 Ri Rl R2 Rk.
When just two resistors are in parallel, the equation for
equivalent resistance can be simplified to give

RiR,

Ry = ;
“4 R+ R

(See pages 59-60.)

When voltage is divided between series resistors, as
shown in the figure, the voltage across each resistor can
be found according to the equations

__ R
U
R; -
T = o U
2 Rl e R2 5
(See page 62.)

shown in the figure, the current through each resistor
can be found according to the equations

. R ?
"SRR

(D e e
.
TRt R
(See page 64.)

Voltage division is a circuit analysis tool that is used to
find the voltage drop across a single resistance from a
collection of series-connected resistances when the volt-
age drop across the collection is known:

where v; is the voltage drop across the resistance R;
and v is the voltage drop across the series-connected
resistances whose equivalent resistance is Ry (See
page 66.)
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+ Cwurrent division is a circuit analysis tool that is used to
find the current through a single resistance from a col-
lection of parallel-connected resistances when the cur-
rent into the collection is known:

where i; is the current through the resistance R; and i is
the current into the parallel-connected resistances
whose equivalent resistance is R.q. (See page 66.)

A voltmeter measures voltage and must be placed in par-
alle] with the voltage being measured. An ideal volimeter
has infinite internal resistance and thus does not alter the
voltage being measured. (See page 68.)

An ammeter measures current and must be placed in
series with the current being measured. An ideal amme-
ter has zero internal resistance and thus does not alter
the current being measured. (See page 68.)

Problems

Digital meters and analog meters have internal resist-
ance, which influences the value of the circuit variable
being measured: Meters based on the d’Arsonval meter
movement deliberately include internal resistance as a
way to limit the current in the movement’s coil. (See
page 68.)

The Wheatstone bridge circuit is used to make precise
measurements of a resistor’s value using four resistors, a dc
voltage source, and a galvanometer. A Wheatstone bridge
is balanced when the resistors obey Eq. 3.33, resulting in
a galvanometer reading of 0 A. (See page 71.)

A circuit with three resistors connected in a A configu-
ration (or a 7 configuration) can be transformed into an
equivalent circuit in which the three resistors are Y con-
nected (or T connected). The A-to-Y transformation is
given by Egs. 3.44-3.46; the Y-to-A transformation is
given by Eqs. 3.47-3.49. (See page 74.)

Sections 3.1-3.2

3.1 For each of the circuits shown,
a) identify the resistors connected in series,

b) simplify the circuit by replacing the series-
connected resistors with equivalent resistors,

Figure P3.1
2400
3K0 8kO Sk
4
1800 3000
2ma( f)10k0 602 7xk0g 10v{ 14003
200 02
* W
(a) (b)

g

A ’
40 ) 450
500 50V 300
600
ANA——— |
()



3.2 For each of the circuits shown in Fig. P3.2,
a) identify the resistors connected in parallel,
b) simplify the circuit by replacing the parallel-
connected resistors with equivalent resistors.

3.3 a) Find the power dissipated in each resistor in the
pstice circuit shown in Fig. 3.9.
b) Find the power delivered by the 120 V source.

¢) Show that the power delivered equais the power
dissipated.

3.4 a) Show that the solution of the circuit in Fig. 3.9
PSPICE (see Example 3.1) satisfies Kirchhoff’s current
law at junctions x and y.

Figure P3.2

3.5

3.6

3.7

PSPICE

3.8

PSPICE

Problems 81

b) Show that the solution of the circuit in Fig. 3.9
satisfies Kirchhoff’s voltage law around every
closed loop.

Find the equivalent resistance seen by the source in
each of the circuits of Problem 3.1.

Find the equivalent resistance seen by the source in
each of the circuits of Problem 3.2.

Find the equivalent resistance R,, for each of the
circuits in Fig. P3.7.

Find the equivalent resistance Ry, for each of the
circuits in Fig. P3.8.

280
210
200 mA 120 200 180
(a)
100 kO
300kQ
»M &
+
05v( 75 k() 50k03 150kN
25k
WA - ®
(e)
Figure P3.7
20 1080 70
a a 4 *
120 140 15kQ 330kQ 324k 330k 320k
6
b be & o & X
(a) (b)
Figure P3.8 40 00
120 1 * W
30
150 %1\2
a —" WA~ a
509.§ 200 . 270 §24Q
1200 600 éZOQ 400 20
250 70 300 120
b A b 3
(a) (b) (©)
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3.9 a) In the circuits in Fig. P3.9(a)—(c), find the equiv- ¢) Using the results of (b), design a resistive net-
PSPICE alent resistance R,p. work with an equivalent resistance of using

b) For each circuit find the power delivered by the 1 k@ resistors. _
source. d) Using the results of (b), design a resistive net-

work with an equivalent resistance of 5.5k()
using 2 k) resistors.

Sections 3.3-3.4
313 a) Calculate the no-load voltage v, for the voltage-
3,10 Find the power dissipated in the 30 {} resistor in the Ja divider circuit shown in Fig. P3.13.
pspice  circuit in Fig. P3.10. e D) Calculate the power dissipated in R; and R,.
Figure P3,10 c) Assume that only 0.5 W resistors are available.

. - The no-load voltage is to be the same as in (a).
Specify the smallest ohmic values of R, and R,.

30A 60 300 §20 0 Figure P3.13

PSPICE

3.11 For the circuit in Fig. P3.11 calculate o3
. 160 V C
a) v,and i,.
b) the power dissipated in the 12 Q) resistor.
¢) the power developed by the current source.
Figure P3.11 .
100 120 3.14 In the voltage-divider circuit shown in Fig. P3.14,
pseice  the no-load value of v, is 4 V. When the load resist-

ance R; is attached across the terminals a and b, v,
drops to 3 V.Find R;.

Figure P3.14

@ |

40 Q) a

312 a) Find an expression for the equivalent resistance
of two resistors of value R in parallel. 20V R,
b) Find an expression for the equivalent resistance
of n resistors of value R in parallel.

Figure P3.9
a 40 140 120
—VA—¢ AW * » AA—
44V 160 S0 100 31501109 180
a 180
* * W\ —# ' > .
b 120
b
20V 150 8 3100 ®)
a 14 Q 250 40
1o G A & AW —\N—
b 60
a
(a) 5A 60 0 150,85 $1440 3250
*—& AN\ & A —\AN—&
b 100 560 120

©




3.15 The no-load voltage in the voltage-divider circuit
Jeten - shown in Fig, P3.15 is 20 V. The smallest load resistor
wsrice  that s ever connected to the divider is 48 k). When

the divider is loaded, v, is not to drop below 16 V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical value
of Ry and R,.

b) Assumc the power ratings of commercially
available resistors are 1/16,1/8,1/4,1,and 2 W.
What power rating would you specity?

Figure P3.15

Ry
W—3

100V R, ¥ ERy

3.16 Assume the voltage divider in Fig. P3.15 has been
constructed from 0.15 W resistors. How small can
R, be before one of the resistors in the divider is
operating at its dissipation limit?

3.17 a) The voltage divider in Fig. P3.17(a) is loaded
PaPICE with the voltage divider shown in Fig. P3.17(b);
that is, a is connected to a’, and b is connected to
b’. Find v,,.
b) Now assume the voltage divider in Fig. P3.17(b)
is connected to the voltage divider in
Fig. P3.17(a) by means of a current-controlled
voltage source as shown in Fig. P3.17(c). Find v,,.

c) What effect does adding the dependent-voltage
source have on the opcration of the voltage
divider that is connected to the 480 V source?

Figure P3.17

20 kQ 60 k)

b a

i
480V 80kQ
e eb
(a) (b)
20 k) 60 k)

J_ -

480 V 80 k() 80,000/ 180k Uy

Problems 83

3.18 Therc is often a need to produce more than one

Dt voltage using a voltage divider. For example, the
memory components of many personal computers
require voltages of —12 V, 5V, and +12 V, all with
respect to a common reference terminal. Select the
values of Ry, Ry, and Rjin the circuit in Fig. P3.18 to
meet the following design requirements:

a) The total power supplicd to the divider circuit
by the 24 V source is 80 W when the divider is
unloaded.

b) The three voltages, all measured with respect to

the common reference terminal, are vy = 12V,
v, =5V,andv; = —12 V.

Figure P3.18
. ° ),
Ry
V2
24V CD R;
Common
Ry
' S ® vy

3.19 A voltage divider like that in Fig. 3.13 is to be

Jesieh - designed so that v, = kv, atnoload (R; = o) and
v, = av; at full load (R;, = R,). Note that by defi-
nition a < k < 1.

a)} Show that

k—a
= R
Rl ak 0
and
k— o
RR=——R,.
? a(l—k)R"

b) Specify the numerical values of Ry and R; if
k = 0.85,« = 0.80,and R, = 34 k().

c) If », = 60V, specify the maximum power that
will be dissipated in R; and R,.

d) Assume the load resistor is accidentally short
circuited. How much power is dissipated in R,
and R,?
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3.20

PSPICE

321

DESIGN
PROBLEM

3.22

3.23
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a) Show that the current in the kth branch of the

circuit in Fig. P3.20(a) is equal to the source current

i, times the conductance of the kth branch divided

by the sum of the conductances, that is,

. 1sGy

T G 4G+ Gt + Gt t Gy

b) Use the result derived in (a) to calculate the cur-
rent in the 6.25 Q) resistor in the circuit in
Fig. P3.20(b).

Figure P3.20

IIB,@ R1 R2 .R3 z‘..k‘ Rk RN

(a)

il
Y
C&mzm 02503250 $10'3625031003200

(b)

4
9

Specify the resistors in the circuit in Fig, P3.21 to
meet the following design criteria:

ig = SmA;'ug =1V = 4iy
i» = 8iy,and iy = Si4.
Figure P3,21

- 0 Py

-+

ig T}E‘. .Ell Rl £Zl R2 h* R3 54‘_§R4

Look at the circuit in Fig. P3.1(a).
a) Use current division to find the current flowing
from top to bottom in the 10 k() resistor.

b) Using your result from (a), find thc voltage drop
across the 10 k() resistor, positive at the top.

¢) Using your result from (b), use voltage division
to find the voltage drop across the 6 k{) resistor,
positive at the top.

d) Using your result from (c), use voltage division
to find the voltage drop across the 5 k() resistor,
positive at the left.

Look at the circuit in Fig. P3.1(b).

a) Use voltage division to find the voltage drop
across the 240 Q) resistor, positive at the Jeft.

324

PSPICE

3.25

PSPICE

3.26

PSPICE

b) Using your result from (a), find the current flow-
ing in the 240 O resistor from left to right.

¢) Using your result form (b), use current division
to find the current in the 140 ( resistor.

a) Find the voltage v, in the circuit in Fig. P3.24.

b) Replace the 30 V source with a general voltage
source equal to V.. Assume V; is positive at the
upper terminal. Find v, as a function of V.

Figure P3.24

—e

5k

+
30V C_) — U, -+

1k

60 k€

15k

Find v, and v, in the circuit in Fig. P3.25.
Figure P3.25
120 500

AN 2 AM—
- 300
25A v * 3250
_ 300 v, 600

Find v, in the circuit in Fig. P3.26.

Figure P3.26
3kO
+ ¥, — 4kQ
12kQ)

10 k&)
2k

san(D

15 k)

3.27 Find i, and i, in the circuit in Fig. P3.27.

PSPICE

Figure P3.27

100

15Q

350




3.28 For the circuit in Fig. P3.28, calculate (a) i, and
esice (b)) the power dissipated in the 15 () resistor.

Figure P3.28

120V

3.29 The current in the 12 Q resistor in the circuit in
e Fig. P3.29 s 1 A, as shown.

a) Find v,
b) Find the power dissipated in the 20 Q resistor.
Figure P3.29

200
AW
120 50 20
AM- A "
‘|"1A
¥, 108
N 240 0 120
p A & A
30 6Q

Section 3.5

3.30 a) Show for the ammeter circuit in Fig. P3.30 that
the current in the @’Arsonval movement is
always 1/25th of the current being measured.

b) What would the fraction be if the 100 mV,2 mA
movement were used in a 5 A ammeter?

¢) Would you expect a uniform scale on a dc
d’ Arsonval ammeter?
Figure P3.30
100 mV, 2 mA

L . AN~
(25/12) O

3.31 The ammeter in the circuit in Fig. P3.31 has a resist-
ance of 0.5 (1. What is the percentage of error in the
reading of this ammeter if

measured value

—1) X 1007
true value

% error = (

Problems 85

Figure P3.31

60 O
AMA
100
. Ammeter
180V 318‘/{} //-(\

3.32 The ammeter described in Problem 3.31 is used to

333

3.34

335

measure the current i, in the circuit in Fig. P3.32. What
is the percentage of error in the measured value?

Figure P3.32

20mA 40 2550

A d’Arsonval voltmeter is shown in Fig. P3.33. Find
the value of R, for each of the following full-scale
readings: (a) 100 V, (b) 5 V, and (c) 100 mV.

Figure P3.33

R,
.—
50 mV
1 mA
.—
Volitmeter

Suppose the d’Arsonval voltmeter described in
Problem 3.33 is used to measure the voltage across
the 24 ( resistor in Fig. P3.32.

a) What will the voltmeter read?

b) Using the definition of the percentage of error in
a meter reading found in Problem 3.31, what is
the percentage of error in the voltmeter reading?

A shunt resistor and a 50 mV, 1 mA d’Arsonval
movement are used to build a 10 A ammeter. A
resistance of 0.015 (1 is placed across the terminals
of the ammeter. What is the new full-scale range of
the ammeter?
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3.37

DESIGN
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3.38
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A d’Arsonval movement is rated at 1 mA and
50 mV. Assume 0.5 W precision resistors are avail-
able to use as shunts. What is the largest full-scale-
reading ammeter that can be designed? Explain.

A d’Arsonval ammeter is shown in Fig. P3.37.
Design a set of d’ Arsonval ammeters to read the fol-
lowing full-scale current readings: (a) 5 A, (b) 2 A,
(¢) 1 A, and (d) SO mA. Specify the shunt resistor
R 4 for each ammeter.

Figure P3.37

o—
100 mV
RaZ o mA 0

Ammeter

The elements in the circuit in Fig. 2.24 have the follow-
ing values: R; = 20k, R, = 80k}, Rc = 0.82 k{2,
Re=02kQ, Ve =75V, 15=0.6 V,and 8 = 39.
a) Calculate the value of ip in microamperes.

b) Assume that a digital multimeter, when used as a
dc ammeter, bas a resistance of 1k{. If the
meter is inserted between terminals b and 2 to
measure the current g, what will the meter read?

£) Using the calculated value of ip in (2) as the cor-
rect value, what is the percentage of error in the
measurement?

The voltage-divider circuit shown in Fig. P3.39 is
designed so that the no-load output voltage is
7/9ths of the input voltage. A d’Arsonval voltmeter
having a sensitivity of 100 Q/V and a full-scale rat-
ing of 200 V is used to check the operation of the
circuit.

a) What will the voltmeter read if it is placed across
the 180V source?

b) What will the voltmeter read if it is placed across
the 70 kQ resistor?

3.40

3.41

¢} What wil] the voltmeter read if it is placed across
the 20 kQ resistor?

d) Will the voltmeter readings obtained in parts (b)
and (c) add to the reading recorded in part (a)?
Explain why or why not.

Figure P3.39

320kQ
+ ——
180V _— —
270kQ v,

You have been told that the dc voltage of a power
supply is about 500 V. When you go to the instrument
room to get a dc voltmeter to measure the power
supply voltage, you find that there are only two dc
voltmeters available. The voltmeters are rated 400 V
full scale and have a sensitivity of 1000 O/ V.

a) How can you usc the two voltmeters to check
the power supply voltage?

b) What is the maximum voltage that can be
measured?

c) If the power supply voltage is 504 V, what will
each voltmeter read?

Assume that in addition to the two voltmeters
described in Problem 3.40, a 50 k) precision resis-
tor is also available. The 50 k) resistor is connected
in serjes with the series-connected voltmeters, This
circuit is then connected across the terminals of the
power supply. The reading on the voltmeters is
328 V. What is the voltage of the power supply?

3.42 The voltmeter shown in Fig. P3.42(a) has a full-

scale reading of 800 V. The meter movement is
rated 100 mV and 1 mA. What is the percentage of
error in the meter reading if it is used to measure
the voltage » in the circuit of Fig. P3.42(b)?



Figure P3.42
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3.43 A 600 k&) resistor 1s connected from the 200 V ter-

minal to the common terminal of a dual-scale voli-
meter, as shown in Fig. P3.43(a). This modified
voltmeter is then used to measure the voltage across
the 360 k) resistor in the circuit in Fig. P3.43(b).

a) What is the reading on the 500 V scale of
the meter?

b) What is the percentage of error in the measured
voltage?

Figure P3.43
|r _______ | 500V
|
|
| 300 kO |
: | 200V
—e
[
| 2199950 |
|
| 0
: 50mV | § o0k
| 1mA |
1 |Common
e _ i
(a)
r————-= |
1' © 500 VI
!
I
!
20%0% | |
|
I Modified |
| 360 k0§ : voltmeter |
600 V <_> ' :
| |
:Conlmon :
—

3.44

DESIGN
PROBLEM

3.45

DESIGN
FROBLEM
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Assume in designing the multirange voltmeter
shown in Fig. P3.44 that you ignore the resistance of
thc meter movement.

a) Specify the values of Ry, R;, and R;.

b) For each of the three ranges, calculate the percent-
age of error that this design strategy produces.

Figure P3.44

R
S0 Ve———Wh———

Ry
20 Vo———WA——

Ry

Common

Design a d’Arsonval voltmeter that will have the
thrce voltage ranges shown in Fig. P3.45.

a) Specify the valucs of Ry, R,, and R;.

b) Assume that a 500k} resistor is connected
between the 100 V terminal and the common
terminal. The voltmeter is then connected to an
unknown voltage using the common terminal
and the 200 V terminal. The voltmeter reads
188 V. What is the unknown voltage?

¢) What is the maximum voltage the voltmeter in (b)
can measure?

Figure P3.45

200V
R
100V
R,
50V
R
10 mV
2mA
Common
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The circuit model of a dc voltage source is shown in
Fig. P3.46. The following voltage measurements are
made at the terminals of the source: (1) With the
terminals of the source open, the voltage is meas-
ured at 80 mV, and (2) with a 10 M resistor con-
nected to the terminals, the voltage is measured at
72 mV. All measurements are made with a digital
voltmeter that has a meter resistance of 10 M{).

a) What is the internal voltage of the source (v,) in
millivolts?

b) What is the internal resistance of the source (R,)
in kilo-ohms?

Figure P3.46

R; |

|
| Terminals of

| the source

Sections 3.6-3.7
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Assume the ideal voltage source in Fig. 3.26 is
replaced by an ideal current source. Show that
Eq. 3.33 is still valid.

The bridge circuit shown in Fig. 3.26 is energized
from a 21 V dc source. The bridge is balanced when
Ry, = 800 O, R, = 1200 },and Ry = 600 (1.

a) What is the value of R,?

b) How much current (in milliamperes) does the dc
source supply?

¢) Which resistor in the circunit absorbs the most
power? How much power does it absorb?

d) Which resistor absorbs the least power? How
much power does it absorb?

Find the detector current iy in the unbalanced
bridge in Fig. P3.49 if the voltage drop across the
detector is negligible.

Figure P3.49

15 kO 3kQ

Sk} 45k
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Find the power dissipated in the 18 Q rcsistor in the
circuit in Fig. P3.50.

Figure P3.50

£5

100 300

()

60 180

In the Wheatstone bridge circuit shown in Fig. 3.26,
the ratio R,/R; can be set to the following values:
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor Ry
can be varied from 1t0 11,110 , in increments of
1 . An unknown resistor is known to lie between
4 and 5 (). What should be the setting of the R,/R;
ratio so that the unknown resistor can be measured
to [our significant figures?

Use a A-to-Y transformation to find the voltages v,
and v, in the circuit in Fig. P3.52.

Figure P3.52

a) Find the equivalent resistance R, in the circuit
in Fig. P3.53 by using a A-to-Y transformation
involving the resistors Ry, Ry, and Ry.

b) Repeat (a) using a Y-to-A transformation
involving resistors R,, Ry, and Rs.

¢) Give two additional A-to-Y or Y-to-A transfor-
mations that could be used to find Ry,

Figure P3.53
2080
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Find the equivalent resistance R, in the circuit in
Fig. P3.54.

Figure P3.54

150 10Q
a0———WA * VWA »
150
250 170
300
140

b

In the circuit in Fig. P3.55(a) the device labeled D
represents a component that has the equivalent cir-
cuit shown in Fig. P3.55(b). The labels on the termi-
nals of D show how the device is connected to the
circuit. Find v, and the power absorbed by the device.

Figure P3.55

b
250 ¢,
6250
QDM
+
nge0a  9e

o
v
=]

150

=

(a) ()

Find i, and the power dissipated in the 140  resis-
tor in the circuit in Fig. P3.56.

Figure P3.56

20

Find R, in the circuit in Fig. P3.57.
Figure P3.57

18 kO % 1.8 k0
1.8kQ ﬁ@ 1.8k0

1.8 k) 1.8k
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3.58 a) Find the resistance seen by the ideal voltage

PSPICE

source in the circuit in Fig. P3.58.

b) If v,, equals 600 V, how much power is dissi-
pated in the 15 () resistor?

Figure P3.58
a 20 60 Q)
*-— W\ ¢ WA
800 140 O
1200
Vap Ct) 380 150
60 0) 850
650
& ANy

e

3.59 Use a Y-to-A transformation to find (a) i ; (b) i;;

PSPICE

(c) i»; and (d) the power delivered by the ideal cur-
rent source in the circuit in Fig. P3.59.

Figure P3.59

1A

3.60

PSPICE

361

3200
e

For the circuit shown in Fig. P3.60, find (a) iy, (b) v,
(c) i, and (d) the power supplied by the voltage
source.

Figure P3.60

30 Q) 1820
A > AA-
ks
300 |
, 22600 [
iz
500 V A WA 270
10 0 440

Derive Eqgs. 3.44-3.49 from Eqs. 3.41-3.43. The fol-
lowing two hints should help you get siarted in the
right direction:

a) To find R, as a function of R,, R,, and R, first
subtract Eq. 3.42 from Eq. 3.43 and then add this
result to Eq. 3.39. Use similar manipulations to
find R, and R, as functions of R,, R,, and R,.
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b) To find R, as a function of R, R, and Rj, take
advantage of the derivations obtained by hint
(1), namely, Eqgs. 3.44-3.46. Note that these equa-
tions can be divided to obtain

RZ c R R2R

—==— or = —R,,

R3 Rb> c R3 b
and

R, R, Ry

-V =-— O Ra = —R

R, R R

Now use these ratios in Eq. 3.43 to eliminate R,
and R,. Use similar manipulations to find R, and
R, as functions of Ry, R,, and R;.

3.62 Show that the expressions for A conductances as
functions of the three Y conductances are

G = G,G3
G+ Gy + Gy
GG
Gb:#y
G+ Gy, + Gy
GG,

G ==,
¢ G+ Gyt Gy

where

Sections 3.1-3.7

3.63 Resistor networks are sometimes used as volume-

Jesten control circuits. In this application, they are
referred to as resistance aftenuators or pads. A typi-
cal fixed-attennator pad is shown in Fig. P3.63. In
designing an attenuation pad, the circnit designer
will select the values of R} and R, so that the ratio
of v, /v; and the resistance seen by the input voltage
source R, both have a specified value.

a) Show thatif R,, = R,,then

R2 = 4R1(.R1 + RZ):

=

Yo _ Ry
V; 2R1 + R2 + RL‘

b) Select the values of R; and R, so
Ry = R = 600 Q and v, /v; = 0.6.

that

3,64

DESIGN
PROBLEM

3.65

DESIGN
PROBLEM

Figure P3.63

Artenuaror

a) The fixed-attenuator pad shown in Fig. P3.64 is
called a bridged tee. Use a Y-l0-A transforma-
tion to show that R, = R if R = R;.

b) Show that when R = Rj, the voltage ratio »,/v,
equals 0.50.

Figure P3.64

i B -
R I
| —AM |
! |
! |
| | €
| 1' -
Uy : R : U, TR
= | | -
a ] P
o— & —e
b | ) d

Fixed-attenuator pad

The design equations for the bridged-tee attenuator
circnit in Fig. P3.65 are

2RRE
Rz'_': 5 5 «
3R> — R}

v, 3R-R_
» 3R+ R

when R, has the value just given.
a) Design a fixed attenuator so that v; = 3v, when
RL = 600 Q.

b) Assume the voltage applicd to the input of the
pad designed in (a) is 180 V. Which resistor in
the pad dissipates the most power?

¢) How much power is dissipated in the resistor in
part (b)?

d) Which rcsistor in the pad dissipatcs the least
power?

e) ITow much power is dissipated in the resistor in
part (d)?
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Figure P3.65
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a) For the circuit shown in Fig. P3.66 the bridge is
balanced when AR = 0. Show thatif AR << R,
the bridge output voltage is approximately

*ARRL‘
BV, N
(Rt Ry
b) Given R, = 1k, Ry, = 500 ), Ry = 5k}, and

v, = 6 V, what is the approximate bridge out-
put voltage if AR is 3% of R,?

c) Fiud the actual value of », in part (b).

Figure P3.66

a) If percent error is defined as

a imat lue
% error = [ BPEO¥TIRS & va —1j| X 100

true value

Problems 91

show that the percent error in the approxima-
tion of v, in Problem 3.66 is

(AR)Rs

——— X 100.
(Ry + Ry)Ry

% error =

b) Calculate the percent error in %, using the values
in Problem 3.66(b).

3.68 Assume the error in v, in the bridge circuit in
Desiett  Fig. P3.66 is not to exceed 0.5%. What is the largest
percent change in R, that can be tolerated?

3.69 a) Derive Eg. 3.65.
stz b) Derive Eq. 3.68.

3.70 Derive Eq. 3.70.

PRACTICAL
PERSPECTIVE
3.71 Supposc the grid structure in Fig. 3.36 is 1 m wide
and the vertical displacement of the five horizontal
grid lines is 0.025 m. Specify the numerical values of
R; — Rs and R, — R; to achieve a uniform power
dissipation of 120 W/m, using a 12 V power supply.
(Hint: Calculate o first, then Rs, Ry, R,, Ry, and R,
in that order.)

3.72 Check the solution to Problem 3.71 by showing that
Jrcnca the total power dissipaled equals the power devel-

" oped by the 12 V source.

373 a) Design a defroster grid in Fig. 3.36 having five
Seacical - horizontal conductors to meet the following
“msion specifications: The grid is to be 1.25 m wide, the

PROBLEM . . .
e vertical separation between conductors is to be

0.05 m, and the power dissipation is to be
150 W/m when the supply voltage is 12 V.

b) Check your solution and make sure it meets the
design specifications.
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1 Understand and be able to use the node-voltage i
method to solve a circuit. i

2 Understand and be able to use the mesh-current

method to solve a circuit.

3 Be able to decide whether the node-voltage
method or the mesh-current method is the

preferred approach to solving a particular circuit.

4 Understand source transformation and be able
to use it to solve a circuit.

‘5 Understand the concept of the Thévenin and
Norton equivalent circuits and be able to
construct a Thévenin or Norton equivalent for a
circuit. -

6 Know the condition for maximum power transfer

to a resistive load and be able to calculate the
value of the load resistor that satisfies this
condition.
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Techniques of
Circuit Analysis

So far, we have analyzed relatively simple resistive circuits
by applying Kirchhoff’s laws in combination with Ohm’s law. We
can use this approach for all circuits, but as they become struc-
turally more complicated and involve more and more elements,
this direct method soon becomes cumbersome. In this chapter we
introduce two powerful techniques of circuit analysis that aid in
the analysis of complex circuit structures: the node-voltage
method and the mesh-current method. These techniques give us
two systematic methods of describing circuits with the minimum
number of simultaneous equations.

In addition to these two general analytical methods, in this
chapter we also discuss other techniques for simplifying circuits.
We have already demonstrated how to use series-parallel reduc-
tions and A-to-Y transformations to simplify a circuit’s structure.
We now add source transformations and Thévenin and Norton
equivalent circuits to those techniques.

We also consider two other topics that play a role in circuit
analysis. One, maximum power transfer, considers the conditions
necessary to ensure that the power delivered to a resistive load by
a source is maximized. Thévenin equivalent circuits are used in
establishing the maximum power transfer conditions. The final
topic 1n this chapter, superposition, looks at the analysis of cir-
cuits with more than one independent source.



Practical Perspective

Circuits with Realistic Resistors

In the last chapter we began to explore the effect of imprecise
resistor values on the performance of a circuit; specifically, on
the performance of a voltage divider. Resistors are manufac-
tured for only a small number of discrete values, and any given
resistor from a batch of resistors will vary from its stated value
within some tolerance. Resistors with tighter tolerance, say
1%, are more expensive than resistors with greater tolerance,
say 10%. Therefore, in a circuit that uses many resistors, it
would be important to understand which resistor’s value has
the greatest impact on the expected performance of the circuit.

Multiplier

Second digit Tolerance
First digit \\

In other words, we would like to predict the effect of varying
each resistor’s value on the output of the circuit. If we know
that a particular resistor must be very close to its stated value
for the circuit to function correctly, we can then decide to
spend the extra money necessary to achieve a tighter tolerance
on that resistor’s value.

Exploring the effect of a circuit component's value on the
circuit’s output is known as sensitivity analysis. Once we have
presented additional circuit analysis techniques, the topic of
sensitivity analysis will be examined.

93
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R, Ry
vy
R;3
Vs R6 R8 R3
R; R,
AW i ANV e
(b)

Figure 4.1 4 (a) A planar circuit. (b) The same circuit
redrawn to verify that it is planar.

Figure 4.2 4 A nonplanar circuit.

TABLE 4.1 Terms for Describing Circuits

4.1 Terminology

To discuss the more-involved methaods of circuit analysis, we must define
a few basic terms. So far, all the circuits presented have been planar
circnits—that is, those circuits that can be drawn on a plane with no
crossing branches. A circuit that is drawn with crossing branches still is
considered planar if it can be redrawn with no crossover branches. For
example, the circuit shown in Fig. 4.1(a) can be redrawn as Fig. 4.1(b);
the circuits are equivalent because all the node connections have been
maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be
redrawn in such a way that all the node connections are maintained and
no branches overlap. The node-voltage method is applicable to both pla-
nar and nonplanar circuits, whereas the mesh-current method is limited
to planar circuits.

Describing a Circuit—The Vocabulary

In Section 1.5 we defined an ideal basic circuit element. When basic cir-
cuit elements are interconnected to form a circuit, the resulting inter-
connection is described in terms of nodes, paths, branches, loops, and
meshes. We defined both a node and a closed path, or loop, in
Section 2.4. Here we restate those definitions and then define the terms
path, branch, and mesh. For your convenience, all of these definitions are
presented in Table 4.1. Table 4.1 also includes examples of each defini-
tion taken from the circuit in Fig. 4.3 (see page 95.), which are developed
in Example 4.1.

Example From Fig. 4.3

Name Definition
node A point where two or more circuit elements join a
essential node A node where three or more circuit elements join b
path A trace of adjoining basic elements with no
elements included more than once 1 — R — Rs — Ry
branch A path that connects two nodes Ry

essential branch

loop
mesh

planar circuit
crossing branches

A path whose last node is the same as the starting node
A loop that does not enclose any other loops

A circuit that can be drawn on a plane with no

A path which connects two essential nodes without
passing through an essential node

v — Ry

v -R —Rs—Rg— Ry— vy
U -Ri-Rs~R— Ry

Fig. 4.3 is a planar circuit

Fig. 4.2 is a nonplanar circuit




FENDICRSE Identifying Node, Branch, Mesh and Loop in a Circuit

For the circuit in Fig, 4.3, identify

4.1 Terminology 95

a) all nodes.

b) all essential nodes.

c) all branches.

d) all essential branches.
e) all meshes.

f) two paths that are not loops or essential branches.

g) two loops that are not meshes.

Solution

a) The nodes are a, b,c,d, e, f,and g.
b) The essential nodes are b, ¢, e, and g.

NOTE: Assess your understanding of this material by trying Chapter Problems 4.2 and 4.3

Figure 4.3 & A circuit illustrating nodes, branches, meshes,
paths, and loops.

f) Ry — Rs — Rg is a path, but it is not a loop
(because it does not have the same starting and

¢) The branches are vy, v3, Ry, Ry, Ry, Ry, Rs, R, ending nodes), nor is it an essential branch
Ry, and 1. (because it does not connect two essential nodes).

d) The essential branches are v, — R|, R; — R, v, — R, is also a path but is neither a loop nor an
v — R4, Rs, R, Ry, and L. essential branch, for the same reasons.

e) The meshes are v — R — Ry — Ry — Ry, g)v; — Ry — Rs — Ry — Ry — vy is a loop but is
v, — R, — Ry — Rg— Ry, Rs— Ry — Rg, and not a mesh, because there are two loops within it.
R, — I. 1 — Rs — Rgis also a loop but not a mesh.

Simultaneous Equations—How Many?

The pumber of unknown currents in a circuit equals the number of
branches, b, where the current is not known. For example, the circuit
shown in Fig. 4.3 has nine branches in which the current is unknown.
Recall that we must have b independent equations to solve a circuit with
b unknown currents. If we let n represent the number of nodes in the circuit,
we can derive n — 1 independent equations by applying Kirchhoff’s cur-
rent law to any set of n — 1 nodes. (Application of the current law to the
nth node does not generate an independent equation, because this equa-
tion can be derived from the previous n — 1 equations. See Problem 4.5.)
Because we need b equations to describe a given circuit and because we
can obtain n — 1 of these equations from Kirchhoff’s current law, we must
apply Kirchhoff’s voltage law to loops or meshes to obtain the remaining
b — (n — 1) equations.

Thus by counting nodes, meshes, and branches where the current
is unknown, we have established a systematic method for writing the
necessary number of equations to solve a circuit. Specifically, we apply
Kirchhoff’s current law to » — 1 nodes and Kirchhoff’s voltage law to
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Figure 4.4 & The circuit shown in Fig. 4.3 with six
unknown branch currents defined.

b — (n — 1) loops (or meshes). These observations also are valid in terms
of essential nodes and esscntial branches. Thus if we let n, represent the
number of essential nodes and b, the number of essential branches where
the current is unknown, we can apply Kirchhoff's current law at n, — 1
nodes and Kirchhoff’s voltage law around b, — (1, — 1) loops or meshes.
In circuits, the number of essential nodes is less than or equal {o the num-
ber of nodes, and the number of essential branches is less than or equal to
the number of branches. Thus it is ofien convenient to use essential nodes
and essential branches when analyzing a circuit, because they produce
fewer independent equations to solve.

A circuit may consist of disconnected parts. An example of such a cir-
cuit is examined in Problem 4.3. The statements pertaining 10 the number
of equations that can be derived from Kirchhoff’s current law, n — 1, and
voltage law, b — (n — 1), apply to connected circuits. If a circuit has
n nodes and b branches and is made up of s parts, the current law can be
applied n — s times, and the voltage law b — n + s times. Any two sepa-
rate parts can be connected by a single conductor. This connection always
causes two nodes to form one node, Moreover, no current exists in the sin-
gle conductor, so any circuit made up of s disconnected parts can always
be reduced to a connected circuit.

The Systematic Approach—An Illustration

We now illustrate this systematic approach by using the circuit shown in
Fig. 44. We write the equations op the basis of essential nodes and
branches. The circuit has four essential nodes and six essential branches,
denoted i, — is, for which the current is unknown.

We derive three of the six simultaneous equations needed by applying
Kirchhoff’s current law to any three of the four essential nodes. We use the
nodes b, c,and ¢ 1o get

il - [3 - i5 - 0,
i3 + i4 - iz = (. (41)
We derive the remaining three equations by applying Kirchhoff’s voltage
law around three meshes. Because the circuit has four meshes, we need to
dismiss one mesh. We choose R; — I, because we don’t know the voltage
across 1.}
Using the other three meshes gives
Rlil + R5i2 + [3(R2 ) R3) - U = O,
_i3(R2 + R3) + i4R6 + [5R4 -V = 0,

_£2R5 + i6R7 = i4R6 = 0. (42)

| We say morc nbout this decision in Section 4.7.



Rearranging Eqs. 4.1 and 4.2 to facilitate their solution yields the set
_i] +i2+0i3+01‘4+0i5+l‘6=1,

l]+012_t‘;+014_15+016:0,

Oil_i2+i3+i4+0i5+0i6=0,
R1i1 + Rsiz + (Rz + R3)i3 + 014 + 015 + 016 =,
Olll + 0l2 - (Rz + R3)i3 + R6i4 + R4l.5 + 016 = Uy,

Oil - R5i2 + 013 - R6i4 + 015 + R7l'6 = 0. (4.3)

Note that summing the current at the nth node (g in this example) gives

Is— iy — g+ 1 =0 (4.4)
Equation 4.4 is not independent, because we can derive it by summing
Egs. 4.1 and then multiplying the sum by —1. Thus Eq. 4.4 is a linear com-
bination of Eqgs. 4.1 and therefore is not indeperdent of them. We now
carry the procedure one step further. By introducing new variables, we can
describe a circuit with just n — 1 equations or just b — (n — 1) equations.
Therefore these new variables allow us to obtain a solution by manipulat-
ing fewer equations, a desirable goal even if a computer is to be used to
obtain a numerical solution.

The new variables are known as node voltages and mesh currents. The
node-voltage method enables us to describe a circuit in terms of n, — 1
equations; the mesh-current method enables us to describe a circuit in
terms of b, — (n, — 1) equations. We begin in Section 4.2 with the node-
voltage method.

NOTE: Assess your understanding of this material by trying Chapter
Problems 4.1 and 4.4

4.2 Introduction to the
Node-Voltage Method

We introduce the node-voltage method by using the essential nodes of the
circuit. The first step is to make a neat layout of the circuit so that no
branches cross over and to mark clearly the essential nodes on the circuit
diagram, as in Fig. 4.5. This circuit has threc csscntial nodes (n, = 3);
therefore, we need two (n, — 1) node-voltage equations to describe the
circuit. The next step is to select one of the three essential nodes as a ref-
erence node. Although theoretically the choice is arbitrary, practically the
choice for the reference node often is obvious. For example, the node with
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10 20

10V 50 10Q 2A

@ L

Figure 4.5 & A circuit used to illustrate the node-voltage
method of circuit analysis.



98 Techniques of Circuit Analysis

10 1 20 2
& _I_ )M +-
v SQzu %10 Q 2A

Figure 4.6 & The circuit shown in Fig. 4.5 with a
reference node and the node voltages.

Figure 4.7 2 Computation of the branch current i.

the most branches is usually a good choice. The optimum choice of the ref-
erence node (if one exists) will become apparent after you have gained
some experience using this method. In the circuit shown in Fig. 4.5, the
lower node connects the most branches, so we use it as the reference node.
We flag the chosen reference node with the symbol ¥, as in Fig. 4.6.

After selecting the reference node, we define the node voltages on the
circuit diagram. A node voltage is defined as the voltage rise from the ref-
erence node to a nonreference node. For this circuit, we must define two
node voltages, which are denoted v, and v, in Fig. 4.6.

We are now ready to generate the node-voltage equations. We do so by
first writing the current leaving each branch connected to a nooreference
node as a function of the node voltages and ther summing these currents to
zero in accordance with Kirchhoff’s current law. For the circuit in Fig. 4.6,
the current away from node 1 through the 1 ) resistor is the voltage drop
across the resistor divided by the resistance (Ohm’s law). The voltage drop
across the resistor, in the direction of the current away from the node, is
vy — 10. Therefore the current in the 1 {) resistor is (»; — 10)/1. Figure 4.7
depicts these observations. It shows the 10 V-1 () branch, with the appro-
priate voltages and current.

This same reasoning yields the current in every branch where the cur-
rent is unknown. Thus the current away from node 1 through the 5 Q)
resistor is v;/5, and the current away from node 1 through the 2 (} resistor
is (v; — ,)/2. The sum of the three currents leaving node 1 must equal
zero; therefore the node-voltage equation derived at node 1 is

?)1_10 ) Vv

+ =+ 0. .
1 s T2 L
The node-voltage equation derived at node 2 is
v — D v
2 1.2 5=y (4.6)

2 10

Note that the first term in Eq. 4.6 is the current away from node 2 through
the 2 €} resistor, the second term is the current away from node 2 through
the 10 £ resistor, and the third term is the current away from nodc 2
through the corrent source.

Equations 4.5 and 4.6 are the two simultaneous equations that
describe the circuit shown in Fig. 4.6 in terms of the node voltages v, and
v,. Solving for vy and v, yields

100
=—=909V
LT
120
=— = 10. .
(% 11 91V

Once the node voltages are known, all the branch currents can be cal-
culated. Once these are known, the branch voltages and powers can be
calculated. Example 4.2 illustrates the use of the node-voltage method.



‘Example 4.2

Using the Node-Voltage Method

a) Use the node-voltage method of circuit analysis
to find the branch currents i, iy, and i, in the cir-
cuit shown in Fig. 4.8.

b) Find the power associated with each source, and
state whether the source is delivering or absorb-
ing power.

Solution

a) We begin by noting that the circuit has two essen-
tial nodes; thus we need to write a single node-
voltage expression. We select the lower node as
the reference node and define the unknown node
voltage as v;. Figure 4.9 illustrates these deci-
sions. Summing the currents away from node 1
generates the node-voltage equation

v — 50 (4

G e
Solving for v, gives
v = 40 V.
Hence
50 — 40
A
a 5 2A,
40
Ih 5 10 =4 A,
40
—=1A
* = 40

4.2 Introduction to the Node-Voltage Method

50V 100 f"v 40 Q

Figure 4.8 s The circuit for Example 4.2,

50V 115100

| +
«— —VA—e

Figure 4.9 /4 The circuit shown in fig. 4.8 with a reference
node and the unknown node voltage v;.

b) The power associated with the 50 V source is
Psov = —50i, = ~100 W (delivering).
The power associated with the 3 A source is
P3a = —3v; = —3(40) = —120 W (delivering).

We check these calculations by noting that the
total delivered power is 220 W. The total power
absorbed by the three resistors is 4(5) + 16(10)
+ 1(40), or 220 W, as we calculated and as it
must be.

99

Objective 1—Understand and be able to use the node-voltage method

4.1  a) For the circuit shown use the node- voltage

method to find vy, vy, and §.

b) How much power is delivered to the circuit

by the 15 A source?
c) Repeat (b) for the 5 A source.
Answer: (a) 60V, 10V, 10 A; :
(b) 900 W
(c) —50W.
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4.2 Use the n_ode—volt_age method to find » in the - : 1 60
circuit shown. L Lt

Answer: 15V,

NOTE: Also try Chapter Problems 4.6, 4.9, and 4.10.

4.3 The Node-Voltage Method
and Dependent Sources

If the circuit contains dependent sources, the node-voltage equations must
be supplemented with the constraint equations imposed by the presence
of the dependent sources. Example 4.3 illustrates the application of the
node-voltage method to a circuit containing a dependent source.

_Example 4.3

Use the node-voltage method to find the power dis-
sipated in the 5 () resistor in the circuit shown in
Fig. 4.10.

20 580 20

Figure 4.10 & The circuit for Example 4.3.

Solution

We begin by noting that the circuit has three essen-
tial nodes. Hence we need two node-voltage equa-
tions to describe the circuit. Four branches terminate
on the lower node, so we select it as the reference
node. The two unknown node voltages are defined
on the circuit shown in Fig, 4.11. Summing the cur-
rents away from node 1 generates the equation

01—20+ﬂ Yy — Uy
2 20 5

Using the Node-Voltage Method with Dependent Sources

Summing the currents away from node 2 yields

Vg — P ) 'Uz—gii
_24._2_;_—“:0

5 10 2

As written, these two node-voltage equations con-
tain three unknowns, namely, vy, v,, and i4. To elim-
inate iy we must express this controlling current in
terms of the node voltages, or

U T

iy =

5

Substituting this relationship into the node 2 equa-
tion simplifies the two node-voltage equations to

0.75v; — 0.22, = 10,
—; + 1.6v, = 0.
Solving for »; and v, gives
v =16V
and

v, = 10V.
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Then,

16 — 10
T A O

(1.44)(5) = 72 W.

A good exercise to build your problem-solving
intuition is to reconsider this example, using node 2
as the reference node. Does it make the analysis
easier or harder?

Dso

Figure 4.11 & The circuit shown in Fg. 4.10, with a reference
node and the node voltages.
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Objective 1—Understand and be able to use the node-voltage method

4.3  a) Use the node-voltage method to find the 3
power associated with each source in the i
circuit shown. ;

b) State whether the source is delivering power
to the circuit or extracting power from the.

circuit.
Answer: () psoy = —150 W, py; = —144 W, : N
Psa = —80 W; : o : P .
(b) all sources are delivering power to the '
circuit. L

NOTE: Also try Chapter Problems 4.19 and 4.20.

4.4 The Node-Voltage Method:
Some Special Cases

When a voltage source is the only element between two essential nodes,
the node-voltage method is simplified. As an example, look at the circuit
in Fig. 4.12. There are three essential nodes in this circuit, which means
that two simultaneous equations are needed. From these three essential
nodes, a reference node has been chosen and two other nodes have been
labeled. But the 100 V source constrains the voltage between node 1 and
the reference node to 100 V. This means that there is only one unknown
node voltage (,). Solution of this circuit thus involves only a single node-  Figure 4.12 & A circuit with a known node voltage.
voltage equation at node 2:

Vy — V) (%)
= o Sl :
0 50 5=40 (4.7)
But »; = 100 V, so Eq. 4.7 can be solved for v,:
Vy = 125 V. (4.8)

Knowing v,, we can calculate the current in every branch. You should ver-
ify that the current into node 1 in the branch containing the independent
voltage source is 1.5 A.
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Figure 4,13 & A circuit with a dependent voltage
source connected between nodes.

Figure 4.14 A The circuit shown in Fig. 4.13. with the
selected node voltages defined.

et el

00 3, 31000 4A

Figure 4.15 & Considering nodes 2 and 3 to be a
supernode.

In general, when you use the node-voltage method to solve circuits
that have voltage sources connected directly between essential nodes, the
number of unknown node voltages is reduced. The reason is that, when-
ever a voltage source connects two essential nodes, it constrains the differ-
ence between the node voltages at these nodes to equal the voltage of the
source. Taking the time to see if you can reduce the number of unknowns
in this way will simplify circuit analysis.

Suppose that the circuit shown in Fig. 4.13 is to be analyzed using the
node-voltage method. The circuit contains four essential nodes, so we
anticipate writing three node-voltage equations. However, two essential
nodes are connected by an independent voltage source, and two other
essential nodes are connected by a current-controlled dependent voltage
source. Hence, there actually is only one unknown node voltage.

Choosing which node to use as the reference node involves several
possibilities. Either node on each side of the dependent voltage source
looks attractive because, if chosen, one of the node voltages would be
known to be either +10i, (left node is the reference) or —10iy (right node
is the reference). The lower node looks even better because one node volt-
age is immediately known (50 V) and five branches terminate there. We
therefore opt for the lower node as the reference.

Figure 4.14 shows the redrawn circuit, with the reference node flagged
and the node voltages defined. Also, we introduce the current / because we
cannot express the current in the dependent voltage source branch as a
function of the node voltages v, and v5. Thus, at node 2

B Yo (4.9)
5 50 ’ '
and at node 3
B i4=0 (4.10
100 I . .10)
We eliminate / simply by adding Eqs. 4.9 and 4.10 to get
vy — ¥ v
e SR L S Y (4.11)

5 50 100

The Concept of a Supernode

Equation 4.11 may be written directly, without resorting to the intermedi-
ate step represented by Egs. 4.9 and 4.10.To do so, we consider nodes 2 and
3 to be a single node and simply sum the currents away from the node in
terms of the node voltages v, and v;. Figure 4.15 illustrates this approach.

When a voltage source is between two essential nodes, we can combine
those nodes to form a supernode. Obviously, Kirchhoff’s current law must
hold for the supernode. In Fig. 4,15, starting with the 5 Q branch and mov-
ing counterclockwise around the supernode, we generate the equation

Vy — VY (%] U3
2Ty 23y 412
5 50 100 ’ (4.12)
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which is identical to Eq. 4.11. Creating a supermodc at nodes 2 and 3 has
made the task of analyzing this circuit easier. [t is thercfore always worth tak-
ing the time to look for this type of shortcut before writing any equations.

After Eqg. 4.12 has been derived, the next step is to reduce the expres-
sion to a single unknown node voltage. First we eliminate v, from the
equation because we know that »; = 50 V. Next we express v; as a func-
tion of v,:

V3 = Uy + 101¢ (4.13)

We now express the current controlling the dependent voltage source as a
function of the node voltages:

ig=——. (4.14)

Using Eqs.4.13 and 4.14 and »; = 50 V reduces Eq. 4.12 to

1 1 1 10
— -t —+—— | =10+4+1
”2(50 5 " 100 500) 0+4+1,

1,(0.25) = 15,
Y 1= 60 V.
From Eqs. 4.13 and 4.14;
. 60 — 50
p=—"%5 = 2 A,

vy = 60 + 20 = 80V,

Node-Voltage Analysis of the Amplifier Circuit

Let’s use the node-voltage method to analyze the circuit first introduced
in Section 2.5 and shown again in Fig. 4.16.

When we used the branch-current method of analysis in Section 2.5,
we faced the task of writing and solving six simultaneous equations, Here
we will show how nodal analysis can simplify our task.

The circuit has four essential nodes: Nodes a and d are connected by
an independent voltage source as are nodes b and c. Therefore the prob-
lem reduces to finding a single unknown node voltage, because
(n, — 1) — 2 = 1. Using d as the reference node, combine nodes b and ¢
into a supernode, label the voltage drop across R, as vy, and label the volt-
age drop across Ry as v,, as shown in Fig. 4.17. Then,

v W — Voo, v A
-+ = = = 0. 4.15
R, R, Ry Pig =0 (415)

The Node-Voltage Method: Some Special Cases 103

Vee

Figure 4.16 & The transistor amplifier circuit shown in
Fig. 2.24.

Figure 4.17 & The circuit shown in Fig. 4.16, with
voltages and the supernode identified.
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We now eliminate both v, and ip from Eq. 4.15 by noting that

(ip + Bip)RE,
Ve =0 — W

Ve

Substituting Eqs. 4.16 and 4.17 into Eq. 4.15 yields

1 1 1 Vee Vo
— =t ———| = +
”"[Rl R, (1+ B)RJ

Solving Eq. 4.18 for vy, yields

Al VeeRy(1 + B)Rg + ViRIR,
*" RyR, + (1 + B)Rp(Ry + Ry)

R (1+B)Rg’

(4.16)
(4.17)

(4.18)

(4.19)

Using the node-voltage method to analyze this circuit reduces the prob-
lem from manipulating six simultaneous equations (see Problem 2.27) to
manipulating three simultaneous equations. You should verify that, when
Eq.4.19 is combined with Eqs. 4.16 and 4.17, the solution for i is identical
to Eq. 2.25. (See Problem 4.30.)




4.5 Introduction to the
Mesh-Current Method

As stated in Section 4.1, the mesh-current method of circuit analysis
enables us to describe a circuit in terms of b, — (n, — 1) equations. Recall
that a mesh is a loop with no other loops inside it. The circuit in Fig. 4.1(b)
is shown again in Fig. 4.18, with current arrows inside cach loop to distin-
guish it. Recall also that the mesh-current method is applicable only to
planar circuits. The circuit in Fig. 4.18 contains seven essential branches
where the current is unknown and four essential nodes. Therefore, to solve
it via the mesh-current method, we must write four {7 — (4 — 1)] mesh-
current equations.

A mesh current is the current that exists only in the perimeter of a
mesh. On a circuit diagram it appears as either a closed solid line or an
almost-closed solid line that follows the perimeter of the appropriate
mesh. An arrowhead on the solid line indicates the reference direction for
the mesh current. Figure 4.18 shows the four mesh currents that describe
the circuit in Fig. 4.1(b). Note that by definition, mesh currents automati-
cally satisfy Kirchhoff’s current law. That is, at any node in the circuit, a
given mesh current both enters and leaves the node.

Figure 4.18 also shows that identifying a mesh current in terms of a
branch current s not always possible. For example, the mesh current i, is
not equal to any branch current, whereas mesh currents iy, i3, and i, can be
identified with branch currents. Thus measuring a mesh current is not
always possible; note that there is no place where an ammeter can be
inserted to measure the mesh current f,. The fact that a mesh current can
be 2 fictitions quantity doesn’t mean that it is a useless concept. On the
contrary, the mesh-current method of circuit analysis evolves quite natu-
rally from the branch-current equations.

We can use the circuit in Fig. 4.19 to show the evolution of the mesh-
current technique. We begin by using the branch currents (iy, i, and i3) to
formulate the set of independent equations. For this circuit, b, = 3 and
n, = 2. We can write only one independent current equation, so we need
two independent voltage equations. Applying Kirchhoff’s current law to
the upper node and Kirchhoff’s voltage law around the two meshes gener-
ates the following set of equations:

i]_ = i2 + [3, (420)
h = [1R1 o i3R3, (421)
Uy = i2R2 - [3R3. (4.22)

We reduce this set of three equations to a set of two equations by solving
Eq.4.20 for iy and then substituting this expression into Egs. 4.21 and 4.22:

]

(2 il(Rl + R3) - l.zR_‘;, (4.23)

Uy = _i1R3 + iz(Rz + R3) (4.24)
We can solve Eqs. 4.23 and 4.24 for i, and i, to replace the solution of

three simultaneous equations with the solution of two simultaneous equa-
tions. We derived Eqs. 4.23 and 4.24 by substituting the n, — 1 current

4.5 Introduction to the Mesh-Current Method 105

Figure 4.18 & The circuit shown in Fig. 4.1(b}, with the
mesh currents defined.

Figure 4.19 2 A circuit used to illustrate development
of the mesh-current method of circuit analysis.
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equations into the b, — (n, — 1) voltage equations. The value of the mesh-
current method is that, by defining mesh currents, we automatically elimi-
nate the n, — 1 current equations. Thus the mesh-curtent method is
equivalent to a systematic substitution of the n, — 1 current equations into
the b, — (n, — 1) voltage equations. The mesh currents in Fig. 4.19 that are
equivalent to eliminating the branch current i; from Eqgs. 4.21 and 4.22 are

R, R, shown in Fig. 4.20, We now apply Kirchhotf’s voltage law around the two
Wt gl meshes, expressing all voltages across resistors in terms of the mesh cur-
o, Id ) R, -"/:f\': 02 rents, to get the equations
< # v = iaRl * (ia - ib)RC&a (4‘25)
N -V = (lb - ia)R3 + isz. (426)

Figure 4.20 4 Mesh currents i, and i,.
Collecting the coefficients of i, and i, in Eqs. 4.25 and 4.26 gives
V= ia(Rl + .R-;) - ibR35 (427)
=ty = _ZIAR:.; + ib(RZ + R3) (428)
Note that Eqs. 4.27 and 4.28 and Egs. 4.23 and 4.24 are identical in form,
with the mesh currents i, and i, replacing the branch currents i; and .

Note also that the branch currents shown in Fig. 4.19 can be expressed in
terms of the mesh currents shown in Fig. 4.20, or

il = l.a, (4.29)
i2 = ibr (430)
l.3 — ia - ib' (431)

The ability to write Eqs. 4.294.31 by inspection is crucial to the mesh-
current method of circuit analysis. Once you know the mesh currents, you
also know the branch currents. And once you know the branch currents,
you can compute any voltages or powers of interest.

Example 4.4 illustrates how the mesh-current method is used to find
source powers and a branch voltage.

FEDCHR®  Using the Mesh-Current Method

a) Use the mesh-current method to determine the
power associated with each voltage source in the
circuit shown in Fig. 4.21.

b) Calculate the voltage v, across the 8 () resistor.

. . & . . n

Solution Figure 4.21 & The circuit for Example 4.4

a) To calculate the power associated with each the current is unknown and five nodes. Therefore
source, we need to know the current in each we need three (b—(n—1)=7— (5 -1)]
source. The circuit indicates that these source mesh-current equations to describe the circuit.
currents will be identical to mesh currents. Also, Figure 4.22 shows the three mesh currents used

note that the circuit has seven branches where to describe the circuit in Fig. 4.21. If we assume



that the voltage drops are positive, the three mesh
equations are

8(i, — i) + 6iy, + 6(iy, — i) = 0,
6(ic — iy) + 4i. + 20 = 0.  (4.32)

Your calculator can probably solve these equa-
tions, or you can use a computer tool. Cramer’s
method is a useful tool when solving three or
more simultaneous equations by hand. You can
review this important tool in Appendix A.
Reorganizing Eqgs. 4.32 in anticipation of using
your calculator, a computer program, or Cramer’s
method gives

10i, - 8iy + 0i, = 40;
—8i, + 20i, — 6i, = 0;

I

0i, — 6i, + 10i, = —20. (4.33)

The three mesh currents are

i,=56A,
iy =2.0A,
i. = —080 A.
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Figure 4.22 4 The three mesh currents used to analyze the
circuit shown in Fig. 4.21.

The mesh current i, is identical with the branch
current in the 40 V source, so the power associ-
ated with this source is

Paov = —40i, = =224 W.

The minus sign means that this source is deliver-
ing power to the network. The current in the
20 V source is identical to the mesh current i
therefore

Doy = 20i, = —16 W.
The 20 V source also is delivering power to the
network.

b) The branch current in the 8 () resistor in the
direction of the voltage drop v, is i, — i.
Therefore

v, = 8(iy — iy) = 8(3.6) = 288 V.

'Objective 2—Understand and be able to use the mes_h;—current._met’hod

4.7  Use the mesh-current method to find () the
power delivered by the 80 V source to the cir-

cuit shown and (b) the power dissipated in the

8 () resistor.

Answer: (a) 400 W;
(b) 50 W.

NOTE: Also try Chapter Problems 4.31 and 4.32.

4.6 The Mesh-Current Method
and Dependent Sources

300
900
! 2 AAA-
26 Q) 280

If the circuit contains dependent sources, the mesh-current equations nust
be supplemented by the appropriate constraint equations. Example 4.5
illustrates the application of the mesh-current method when the circuit

includes a dependent source.
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m Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method of circuit analysis to
determine the power dissipated in the 4 ) resistor
in the circuit shown in Fig. 4.23.

Solution

This circuit has six branches where the current is
unknown and four nodes. Therefore we need three
mesh currents to describe the circuit. They are
defined on the circuit shown in Fig. 4.24. The three
mesh-current equations are

50 = S(il - lz) + 20(i1 - i3),
0= 5(12 - ll) + 112 + 4([2 - [3),

We now express the branch current controlling the
dependent voltage source in terms of the mesh
currents as

Ig =i — I3, (4.35)

which is the supplemental equation imposed by the
presence of the dependent source. Substituting
Eqg. 4.35 into Egs. 4.34 and collecting the coeffi-
cients of iy, i, and i3 in each equation generates

50 = 25i1 - 512 . 20[3,
0= _511 I 1012 = 4i3,

O = _5l1 - 4[2 + 9!3

10
AM
50 40
WA~ L4 A\
an .
sov( " iy 3200 N isi,

Figure 4.23 A The circuit for Example 4.5.

Figure 4.24 4 The circuit shown in Fig. 4.23 with the three
mesh currents.

Because we are calcnlating the power dissipated in
the 4 O resistor, we compute the mesh currents i,
and i3

iz =26 A,
iy = 28 A.

The current in the 4 () resistor oriented from left
to right is i3 — i; , or 2 A. Therefore the power
dissipated is

paa = (i3 — ip)’(4) = (2)’(4) = 16 W.

What if you had not been told to use the mesh-
current method? Would you have chosen the node-
voltage method? It reduces the problem to finding
one unknown node voltage because of the presence
of two voltage sources between essential nodes. We
present more about making such choices later.
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Objective 2—Understand and be able to use the mash-current method

4.8 a) Determine the number of mesh-current  Answer: (a) 3:
equations needed to solve the circuit shown. (b) —36 W.
b) Use the mesh-current method to find how Gl : :
much power is being delivered to the 4,9  Use the mesh-current method to find », in the
dependent voltage source. . ~ circuit shown.
. . : 0

:¢* 140

Answer: 16V,

NOTE: Also try Chapter Problems 4.37 and'4.3’8.'.

4.7 The Mesh-Current Method:
Some Special Cases

When a branch includes a current source, the mesh-current method requires
some additional manipulations. The circuit shown in Fig. 425 depicts the
nature of the problem,
We have defined the mesh currents i,, iy, and i, as well as the voltage
across the 5 A current source, to aid the discussion. Note that the circuit
contains five essential branches where the current is unknown and four 100V
essential nodes. Hence we need to write two [5 — (4 — 1)] mesh-current
equations to solve the circuit. The presence of the current source reduces
the three unknown mesh currents to two such currents, because it con-
strains the difference between i, and i, to equal 5 A. Hence, if we know i,, Figure 4.25 & A circuit illustrating mesh analysis when
we know i, and vice versa. a branch contains an independent current source.
However, when we attempt to sum the voltages around either mesh a
or mesh ¢, we must introduce into the equations the unknown voltage
across the 5 A current source. Thus, for mesh a;

40
AMA——8——AM

100 = 3(i, — iy) + v + 6i,, (4.36)
and for mesh c:

—50 = 4iy — v + 2(i, — ip). (4.37)
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A - ¢ ~ Supermesh

60 40

Figure 4.26 4 The circuit shown in Fig. 4.25, illustrat-
ing the concept of a supermesh.

Figure 4.27 4 The circuit shown in Fig. 2.24 with the
mesh currents i, iy, and ..

We now add Eqgs. 4.36 and 4.37 1o climinate v and obtain
50 = 9i, — Siy + 6i.. (4.38)
Summing voltages around mesh b gives
0 = 3@y — iy + 104 + 20, — io). (4.39)

We reduce Eqs. 4.38 and 4.39 to two equations and two unknowns by using
the constraint that

i, — iy = 5. (4-40)

We leave to you the verification that, when Eq. 4.40 is combined with
Eqgs. 4.38 and 4.39, the solutions for the three mesh currents are

i, =175A, iy,=125A, and i =675A.

The Concept of a Supermesh

We can derive Eq. 4.38 without introducing the unknown voltage v by
using the concept of a supermesh. To create a supermesh, we mentally
remove the current source from the circuit by simply avoiding this branch
when writing the mesh-current equations. We express the voltages around
the supermesh in terms of the original mesb currents. Figure 4.26 illus-
trates the supermesh concept. When we sum the voltages around the
supermesh (denoted by the dashed line), we obtain the equation

=100 + 3(i, — ip) + 2(G, — &) + 50 + 4i. + 6i, = 0, (4.41)
which reduces to
50 = 9i, — 5i, + 6i. (4.42)

Note that Egs. 4.42 and 4.38 arc identical. Thus the supermesh has elimi-
nated the need for introducing the unknown voltage across the current
source. Once again, taking time to look carefully at a circuit to identify a
shorteut such as this provides a big payoff in simplifying the analysis.

Mesh-Current Analysis of the Amplifier Circuit

We can use the circuit first introduced in Section 2.5 (Fig. 2.24) to illustrate
how the mesh-current method works when a branch contains a dependent
current source. Figure 4.27 shows that circuit, with the three mesh currents
denoted iy, i, and i.. This circuit has four essential nodes and five essential
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branches where the current is unknown. Therefore we know that the cir-
cuit can be analyzed in terms of two [5 — (4 — 1)] mesh-current equa-
tions. Although we defined three mesh currents in Fig. 4.27, the dependent
current source forces a constraint between mesh currents i, and i, so we
have only two unknown mesh currents. Using the concept of the super-
mesh, we redraw the circuit as shown in Fig. 4.28.

‘We now sum the voltages around the supermesh in terms of the mesh
currents iy, iy, and i, to obtain

Rii, + vee + Re(ic — iy) — Vo = 0. (4.43)
The mesh b equation is
Ryiy + Vo + Re(ly — i) == 0. (4.44)
The constraint imposed by the dependent current source is
Big =1, — .. (4.45)

The branch current controlling the dependent current source, expressed
as a function of the mesh currents, is

ip = iy = Ia. (4.46)
From Eqs. 4.45 and 4.46,
i.= Q1+ B, — Biy. (4.47)
We now use Eq. 4.47 to eliminate i, from Eqs. 4.43 and 4.44:
[Ry + (1 + BYRg)is — (1 + B)Rgly = Vo — Ve, (4.48)
—(L + B)Rgly + [Ry + (1 + B)RgJi, = — W (4.49)
You should verify that the solution of Eqs. 4.48 and 4.49 for i, and i, gives

. VoRy = VeeRy = Vee(l + B)Rg (4.50)
: RiR, + (1 + B)Re(R; + Ry) ’ .

o —VoR; — (1 + B)RgVec
> 7 R{Ry+ (1 + B)Rp(Ry + Ry)

(4.51)

We also leave you to verify that, when Egs. 4.50 and 4.51 are used to find
i, the result is the same as that given by Bq. 2.25.

The Mesh-Current Method: Some Special Cases 111

Figure 4.28 4 The circuit shown in Fig. 4.27, depicting
the supermesh created by the presence of the dependent
current source.
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Objective 2—Understand and be able to use the mesh current method

4.10 Use the mesh-current method to ﬁnd the power
dissipated in the 2 () resistor in the circuit shown.

AhsWer: 72 W.

4.11 Use the mesh- current method to find the rnesh
' current Iin the. circuit shown

Answer: 15A.

4.12 Use the mesh-current method to find the :
power dissipated in the 1 reblstor in the cir-
cuit shown.

Answer: 36 W.

NOTE A[so try Chapterl’roblems 441, 4. 42,4, 47 and 4. 50

4.8 The Node-Voltage Method Versus
the Mesh-Current Method

The greatest advantage of both the node-voltage and mesh-current meth-
ods is that they reduce the number of simultaneous equations that must be
manipulated. They also require the analyst to be quite systematic in terms
of organizing and writing these equations. It is natural to ask, then, “When
is the node-voltage method preferred to the mesh-current method and
vice versa?” As you might suspect, there is no clear-cut answer. Asking a
number of questions, however, may help you identify the more efficient
method before plunging into the solution process:

+ Does one of the methods result in fewer simultaneous equations
to solve?

* Does the circuit contain supernodes? If so, using the node-voltage
method will permit you to reduce the number of equations to
be solved.
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+ Does the circuit contain supermeshes? If so, using the mesh-current
method will permit you to reduce the number of equations to
be solved.

+ Will solving some portion of the circuit give the requested solution?
If so, which method is most efficient for solving just the pertinent
portion of the circuit?

Perhaps the most important observation is that, for any situation, some
time spent thinking about the problem in relation to the various analytical
approaches available is time well spent. Examples 4.6 and 4.7 illustrate the
process of deciding between the node-voltage and mesh-current methods.

eyl GG Understanding the Node-Voltage Method Versus Mesh-Current Method

Find the power dissipated in the 300 () resistor in dependent voltage source between two essential
the circuit shown in Fig. 4.29. nodes, we have to sum the currents at only two
nodes. Hence the problem is reduced to writing two
node-voltage equations and a constraint equatiou.
Because the node-voltage method requires only
2000 _f_a._ thrce simultaneous equations, it is the more attrac-
M tive approach.

Ouce the decision to use the node-voltage
1500 100 §2 2500 500 0 method has been made, the next step is to select a
reference node. Two essential nodes in the circuit in
50 iy Fig. 429 merit consideration. The first is the refer-
256V 22000 400 0 § 128V ence node in Fig. 4.31. I this node is selected, one of
the unknown node voltages is the voltage across the
¢ ¢ 300 O resistor, namely, , in Fig. 4.31. Once we
know this voltage, we calculate the power in the

300 ) resistor by using the expression

Figure 4.29 & The circuit for Example 4.6.

P3oon = 1’22/ 300.
Solution

To find the power dissipated in the 300 ) resistor,
we need to find either the current in the resistor or
the voltage across it. The mesh-current method
yields the current in the resistor; this approach 3000 <A
requires solving five simultaneous mesh equations, AW
as depicted in Fig. 4.30. In writing the five equa-
tions, we must include the constraint iy = —ip.
Before going further, let’s also look at the cir-
cuit in terms of the node-voltage method. Note that,
once we know the node voltages, we can calculate
either the current in the 300 ) resistor or the volt-
age across it. The circuit has four cssential nodes,
and therefore only three node-voltage equations Figure 4.30 & The circuit shown in Fig. 4.28, with the five
are required to describe the circuit. Because of the mesh currents.

fj)
1000 " 2500
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3000 <2
AN

1500 | 1000,902500Q |2:500 0

400 f 128V
'|.-_ =

Figure 4.31 & The circuit shown in Fig. 4.29, with a
reference node.

256 V Tzoo Q lf

Note that, in addition to selecting the reference
node, we defined the three node voltages »;, v,, and
v, and indicated that nodes 1 and 3 form a super-
node, because they are connected by a dependent
voltage source. It is nnderstood that a node voltage is
arise from the reference node; therefore, in Fig. 4.31,
we have not placed the node voltage polarity refer-
ences on the circuit diagram.

The second node that merits consideration as
the reference node is the lower node in the circuit,
as shown in Fig. 4.32. It is attractive because it has
the most branches connected to it, and the node-
voltage equations are thus easier to write. However,
to find either the current in the 300 {) resistor or
the voltage across it requires an additional calcula-
tion once we know the node voltages v, and v.. For
example, the current in the 300} resistor is
(v. — v,)/300, whereas the voltage across the resis-
tor is ¥, — v,.

15000, 1000 " 2500 [0,5000
a b c
256\/%2009 503y ?OOQ 128V

Figure 4.32 4 The circuit shown in Fig. 4,29 with an
alternative reference node.

We compare these two possible reference nodes
by means of the following scts of equations.’lhe first
set pertains to the circuit shown in Fig. 431, and the
second set is based on the circuit shown in Fig. 4.32.

« Set1 (Fig 4.31)
At the supernode,

.

100 250 200 400 500

I i £+v3—vz+v3—(v2+128)
vy + 256
150
Al'?)z,

V9 Vp— v vy -y vt 128 — v,
— + + + =0
300 250 400 500

From the supernode, the constraint equation is

; Y2
?)3201_501A:’l)1 _z‘.

« Set 2 (Fig 4.32)

At v,
V, v, — 256 v, —vy, vV, — ¥
+ + + = 0.
200 150 100 300
At v,
Ve vc+128+vc—-vb+vc—va:0.

400 500 250 300
From the supermode, the constraint equation is

v 50i SU(UC - T}a) Ve — Vg
= . l p—y =
° L 300 6

You should verify that the solution of either set
leads to a power calculation of 16.57 W dissipated
in the 300 ) resistor.
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SEDCEAE Comparing the Node-Voltage and Mesh-Current Methods

Find the voltage v, in the circuit shown in Fig. 4.33.

Solution

At first glance, the node-voltage method looks
appealing, because we may define the unknown
voltage as a node voltage by choosing the lower ter-
minal of the dependent current source as the refer-
ence node. The circuit has four essential nodes and
two voltage-controlled dependent sources, so the
node-voltage method requires manipulation of
three node-voltage equations and two constraint
equations.

Let’s now turn to the mesh-current method for
finding w,. The circuit contains three meshes, and
we can use the leftmost one to calculate »,. If we
let i, denote the leftmost mesh current, then
v, = 193 — 10i,. The presence of the two current
sources reduces the problem to manipulating a sin-
gle supermesh equation and two constraint equa-
tions. Hence the mesh-current method is the more
attractive technique here.

60 750 g

Figure 4.34 & The circuit shown in Fig. 4.33 with the three mesh currents.

Figure 4.35 & The circuit shown in Fig. 4.33 with node voltages.

To help you compare the two approaches, we
summarize both methods. The mesh-current equa-
tions are based on the circuit shown in Fig. 4.34, and
the node-voltage equations are based on the circuit
shown in Fig. 4.35. The supermesh equation is

193 = 10i, + 10i, + 107, + 0.8v,,

and the constraint equations are

iy — i, = 0.4v, = 0.8
Vy = _7'5ib; and
i — iy = 0.5.

We use the constraint equations to write the super-
mesh equation in terms of i,

160 = 80i,, or i, =2A,
v, =193 — 20 = 173 V.

The node-voltage equations are

v, — 193 Yy — ¥
" 04y, + =2 2 =
10 Odvoy + =5 =0,
v, — Y, 2, — (v, + 0.8v)
_— 05+t = .
25 0.9 10 0
Vy vy T 0.8’03 — VY,
L rps+2—F 2o
7.5 05 + 10

The constraint equations are

Va — (Ub + 0.81)9)

10 2.

Vg = —Vh Yy =

We use the constraint equations to reduce the node-
voltage equations to three simultaneous equations
involving v,, v,, and vy, You should verify that the
node-voltage approach also gives v, = 173 V.,




116  Techniques of Circuit Analysis

Objective 3—Deciding between the node-voltage and mesh-current methods

4.13 Find the power de]jv_cred by the 2 A current 4.14 Find the power delivered by the 4 A current

source in the circuit shown. ] : source in the circuit shown.
4 A
150
¥ .".
20V i
128 V|
Answer: 70 W, i . Answer: 40W.

NOTE: Also try Chapter Prbf)lems_ 4.'.'54_ and 4.56.

4.9 Source Transformations

R Even though the node-voltage and mesh-current methods are powerful
techniques for solving circuits, we are still interested in methods that can be
used to simplify circuits. Series-parallel reductions and A-to-Y transforma-
tions are already on our list of simplifying techniques. We begin expanding
this list with source transformations. A source transformation, shown in
Fig. 4.36, allows a voltage source in series with a resistor to be replaced by a
(a) current source in parallel with the same resistor or vice versa. The double-
headed arrow emphasizes that a source transformation is bilateral; that is,

0 we can start with either configuration and derive the other.
We need to find the relationship between v, and i, that guarantees the
% R two configurations in Fig. 4.36 are equivalent with respect to nodes a,b.

Vs

Equivalence is achieved if any resistor R, experiences the same current
R flow, and thus the same voltage drop, whether connected between nodes
a,b in Fig. 4.36(a) or Fig. 4.36(b).
*b Suppose R; is connected between nodes a,b in Fig. 4.36(a). Using
(b) Ohm’s law, the current in Ry is

Figure 4.36 4 Source transformations. . v,

e 4.52
LS ooy Grey

Now suppose the same resistor R; is connected between nodes a,b in
Fig. 4.36(b). Using current division, the current in R; is

el
LTR+R S

If the two circuits in Fig. 4.36 are equivalent, these resistor currents must be
the same. Equating the right-hand sides of Eqs. 4.52 and 4.53 and simplifying,

(4.53)

;= —. (4.54)
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4.8  Source Transformations
When Eq. 4.54 is satisfied for the circuits in Fig. 4.36, the current in R; is
the same for both circuits in the figure for all values of R;. If the current
through R; is the same in both circuits, then the voltage drop across R; is
the same in both circuits, and the circuits are equivalent at nodes a,b.
If the polarity of v, is reversed, the orientation of i; must be reversed
to maintain equivalence.
Example 4.8 illustrates the usefulness of making source transforma-
tions to simplify a circuit-analysis problem.
ety R Using Source Transformations to Solve a Circuit
a) For the circuit shown in Fig. 4.37, find the power 40 6 () 50
associated with the 6 V source.
b) State whether the 6 V source is absorbing or 6V 300 200 40V
delivering the power calculated in (a). 100

Solution

a) If we study the circuit shown in Fig. 4.37, knowing
that the power associated with the 6 V source is
of interest, several approaches come to mind. The
circuit has four essential nodes and six essential
branches where the current is unknown. Thus we
can find the current in the branch containing the
6 V source by solving either three [6 — (4 — 1)]
mesh-current equations or three [4 — 1] node-
voltage equations. Choosing the mesh-current
approach involves solving for the mesh current
that corresponds to the branch current in the 6 V
source. Choosing the node-voltage approach
involves solving for the voltage across the 30

40

6V

(a) First step

40

6V 300

(¢) Third step

Figure 4.38 4 Step-by-step simplification of the circuit shown in Fig. 4.37.

Figure 4.37 4 The circuit for Example 4.8.

resistor, from which the branch current in the 6 V
source can be calculated. But by focusing on just
one branch current, we can first simplify the cir-
cuit by using source transformations.

We must reduce the circuit in 2 way that
preserves the identity of the branch containing
the 6 V source. We have no reason to preserve
the identity of the branch containing the 40 V
source. Beginning with this branch, we can trans-
form the 40 V source in series with the 5 Q resis-
tor into an 8 A current source in parallcl with a
S Q resistor, as shown in Fig. 4.38(a).

(b) Second step

(d} Fourth step
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Next, we can replace the parallel combination of
the 20 Q and S ) resistors with a 4 Q) resistor.
This 4 () tesistor is in parallel with the 8 A source
and therefore can be replaced with a 32 V source
in series with a 4 resistor, as shown in
Fig. 4.38(b). The 32 V source is in series with 20 {}
of resistance and, hence, can be replaced by a cur-
rent source of 1.6 A in parallel with 20 (), as shown
in Fig. 4.38(c). The 20 ) and 30 () parallel resis-

and the 12 Q resistor transforms into a voltage
source of 19.2V in series with 12 Q). Figure 4.38(d)
shows the result of this last transformation. The
current in the direction of the voltage drop across
the 6 V source is (19.2 — 6)/16, or 0.825 A.
Therefore the power associated with the 6 V
source is

pev = (0.825)(6) = 4.95 W.

tors can be reduced to a single 12 () resistor. The

parallel combination of the 1.6 A current source b) The voltage source is absorbing power.

R A question that arises from use of the source transformation depicted
in Fig. 4.38 is, “What happens if there is a resistance R, in parallel with the
voltage source or a resistance R, in series with the current source?” In
both cases, the resistance has no effect on the equivalent circuit that pre-
dicts behavior with respect to terminals a,b. Figure 4.39 summarizes this
b observation.
'The two circuits depicted in Fig. 4.39(a) are equivalent with respect to
terminals a,b because they produce the same voltage and current in any
resistor R; inserted between nodes a,b. The same can be said for the cir-

a a  cuits in Fig. 4.39(b). Example 4.9 illustrates an application of the equiva-
lent circuits depicted in Fig. 4.39.
= (1) 3x
b
(b)

Figure 4.39 4 Equivalent circuits containing a
resistance in parallel with a voltage source or in series
with a current source.

FEIICRAE  Using Special Source Transformation Techniques

a) Use source transformations to find the voltage 250 50
v, in the circuit shown in Fig. 4.40.

b) Find the power developed by the 250 V voltage
source.

250V 150

¢) Find the power developed by the 8 A current

source. Figure 4.40 A The circuit for Example 4.9.
Solution
250
a) We begin by removing the 125 Q and 10 ) resis- * R
tors, because the 125 ()} resistor is connected
across the 250 V voltage source and the 10 Q 250V 8A 1,31000 2200
resistor is connected in series with the 8 A cur- =

rent source. We also combine the series-con-
nected resistors into a single resistance of 20 (. Figure 4.41 4 A simplified version of the circuit shown in
Figure 4.41 shows the simplified circuit. Fig. 4.40.
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We now use a source transformation to source, positive at the upper terminal of the
replace the 250 V source and 25 () resistor with a source, we obtain
10 A source in parallel with the 25 () resistor, as = = _
shown in Fig. 4.42. We can now simplify the cir- v; + 8(10) = v, = 20, or v, = ~60V,

cuit shown in Fig. 4.42 by using Kirchhoff’s cur- and the power developed by the 8 A source is
rent law to combine the parallel current sources 480 W. Note that the 125 ) and 10 ()} resistors
into a single source. The parallel resistors com- do not affect the value of v, but do affect the
bine into a single resistor. Figure 4.43 shows the power calculations.
result. Hence v, = 20 V.
b) The current supplied by the 250 V source equals i
_the current in t_he 125 Q resistor plus the current 10A 3250 8A1,31000 3200
in the 25 Q) resistor. Thus
, 250 250 - 20 " N N
T 13 + 55 112 A. Figure 4.42 4 The circuit shown in Fig. 4.41 after a source
transformation.

Therefore the power developed by the voltage
source is

Dpasov(developed) = (250)(11.2) = 2800 W.

¢) To find the power developed by the 8 A current
source, we first find the voltage across the source. Figure 4.43 & The circuit shown in Fig. 4.42 after combining
If we let v, represent the voltage across the sources and resistors,

\Qb]ectwe 4—U nderstand source transforma’a on

. 4‘15_ a) USC 4 series of source transformatlons to:
fmd the voltage v n the c1rcu1t shown '

B) How much power does the 120 V Source
deliver to. the c1rcu1t‘> . S

. _.Answer' (a) 48V,
 ()3744W.

. 'NOTE Also try Chapter Problems 4 59 and 4, 62

4.10 Theévenin and Norton Equivalents

At times in circuit analysis, we want to concentrate on what happens at a
specific pair of terminals. For example, when we plug a toaster into an out-
let, we are interested primarily in the voltage and current at the terminals
of the toaster. We have little or no interest in the effect that connecting the
toaster has on voltages or currents elsewhere in the circuit supplying the
outlet. We can expand this interest in terminal behavior to a setl of appli-
ances, each requiring a different amount of powcr, We then are interested
in bow the voltage and current delivered at the outlet change as we
change appliances. In other words, we want to focus on the behavior of the
circuit supplying the outlet, but only at the outlet terminals.
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® 3
Aresistive
network containing
independent and
dependent sources
; i

(a) B

Figure 4.44 A (a) A general circuit. (b) The Thévenin
equivalent circuit,

Figure 4.45 & A circuit used to illustrate a Thévenin
equivalent.

50 40 a
o &

ssv(=) a3 3A( ) i
4 & b

Figure 4.46 4 The circuit shown in Fig. 4.45 with
terminals a and b short-circuited.

80

2v

b

Figure 4.47 4. The Thévenin equivalent of the circuit
shown in Fig. 4.45.

Thévenin and Norton equivalents are circuit simplification techniques
that focus on terminal behavior and thus are extremely valuable aids in
analysis. Although here we discuss them as they pertain. to resistive cir-
cuits, Thévenin and Norton equivalent circuits may be used to represent
any circuit made up of linear elements.

We can best describe a Thévenin equivalent circuit by reference to
Fig. 4.44, which represents any circuit made up of sources (both independ-
ent and dependent) and resistors. The letters a-and b denote the pair of ter-
minals of interest. Figure 4.44(b) shows the Thévenin equivalent. Thus, a
Thévenin equivalent circuit is an independent voltage source Vpy, in series
with a resistor Ry, which replaces an interconnection of sources and resis-
tors. This series combination of V4, and Ry, is equivalent to the original cir-
cuit in the sense that, if we connect the same load across the terminals a,b
of each circuit, we get the same voltage and current at the terminals of the
load. This equivalence holds for all possible values of load resistance.

To represent the original circuit by its Thévenin equivalent, we must
be able to determine the Thévenin voltage Vi, and the Thévenin resist-
ance Ry, First, we note that if the load resistance is infinitely large, we
have an open-circuit condition. The open-circuit voltage at the terminals
a,b in the circuit shown in Fig. 4.44(b) is V4,. By hypothesis, this must be
the same as the open-circuit voltage at the terminals a,b in the original cir-
cuit. Therefore, to calculate the Thévenin voltage Vi, we simply calculate
the open-circuit voltage in the original circuit.

Reducing the load resistance to zero gives us a short-circuit condition.
If we place a short circuit across the terminals a,b of the Thévenin equiva-
lent circuit, the short-circuit current directed from a to b is

VTh
fe = — 4,55
© = Rew (4.55)
By hypothesis, this short-circuit current must be identical to the short-circuit
current that exists in a short circuit placed across the terminals a,b of the
original network. From Eq. 4.55,

V’T’h
Ripe= o
Ise

(4.56)

Thus the Thévenin resistance is the ratio of the open-circuit voltage to the
short-circuit current.

Finding a Thévenin Equivalent

To find the Thévenin equivalent of the circuit shown in Fig. 4.45, we first
calculate the open-circuit voltage of v,,. Note that when the terminals a,b
are open, there is no current in the 4 () resistor. Therefore the open-circuit
voltage vy, is identical to the voltage across the 3 A current source, labeled
We find the voltage by solving a single node-voltage equation. Choosing
the lower node as the reference node, we get

n=-2

o -3=0. 4,57
5 20 )

Solving for 2, yields

v =32 V. (4.58)



Hence the Thévenin voltage for the circuit is 32 V.

The next step is to place a short circuit across the terminals and calcu-
Jate the resulting short-circuit current. Figure 4.46 shows the circuil with
the short in place. Note that the short-circuit current is in the direction of
the open-circuit voltage drop across the terminals a,b. If the short-circuit
current is in the direction of the open-circuit voltage rise across the termi-
nals, a minus sign must be inserted in Eq. 4.56.

The short-circuit current (ig,) is found easily once v, is known.
Therefore the problem reduces to finding v, with the short in place. Again,
if we use the lower node as the refercnce node, the equation for v, becomes

1)2—25 Vs Yy
2oy 23y 2oy, .
5 20 4 0 (4.39)

Solving Eq. 4.59 for v, gives
v, =16 V. (4.60)

Hence, the short-circuil current is

16
e = —— =4 Al 4.61
e = 7 (4.61)
We now find the Thévenin resistance by substituting the numerical results
from Egs. 4.58 and 4.61 into Eq. 4.56:

RTh = _‘ﬁ = 2 =8 0. (4.62)
Isc 4

Figure 4.47 shows the Thévenin equivalent for the circuit shown in Fig. 4.45.
You should verify that, if a 24 () resistor is connected across the ter-
minals a,b in Fig. 4.45, the voltage across the resistor will be 24 V and the
current in the resistor will be 1 A, as would be the case with the Thévenin
circuit in Fig. 4.47. This same equivalence between the circuit in Figs. 4.45

and 4.47 holds for any resistor value connected between nodes a,b.

The Norton Equivalent

A Norton equivalent circuit consists of an independent current source in
parallel with the Norton equivalent resistance. We can derive it from a
Thévenin equivalent circuit simply by making a source transformation.
Thus the Norton current equals the short-circuit current at the terminals of
interest, and the Norton resistance is identical to the Thévenin resistance.

Using Source Transformations

Sometimes we can make effective use of source transformations to derive
a Thévenin or Norton equivalent circuit. For example, we can derive the
Thévenin and Norton equivalents of the circuit shown in Fig. 4.45 by mak-
ing the series of source transformations shown in Fig, 4.48. This technique
is most useful when the network contains only independent sources, The
presence of dependent sources requires retaining the identity of the con-
trolling voltages and/or currents, and this constraint usually prohibits
continued reduction of the circuit by source transformations. We discuss
the problem of finding the Thévenin equivalent when a circuit contains
dependent sources in Example 4.10.
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Step 1:

200 3 A

* —e b

Step 2:
Parallel sources and |
parallel resistors combined ¥

Step 3:
Source transformation; series \
resistors combined, producing
the Thévenin equivalent circuit

Step 4:
Source transformation, producing
the Norton equivalent circuit ¥

Figure 4.48 4 Step-by-step derivation of the Thévenin
and Norton equivalents of the circuit shown in Fig. 4.45.
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Find the Thévenin equivalent for the circuit con-
taining dependent sources shown in Fig. 4.49.

250

Yan

eb

Figure 4.49 2 A circuit used to illustrate a Thévenin equivalent
when the circuit contains dependent sources.

Solution

The first step in analyzing the circuit in Fig. 4.49 is
to recognize that the current labeled i, must be
zero. (Note the absence of a return path for i, to
enter the left-hand portion of the circuit.) The
open-circuit, or Thévenin, voltage will be the volt-
age across the 25 Q) resistor. With i, = 0,

Vin = v, = (—200)(25) = —500i.
The current i is

__5—31)_5—31/:”1
T 000 T 2000

In writing the equation for 7, we recognize that the
Thévenin voltage is identical to the control voltage.
When we combine these two equations, we obtain

VTh =-5YV.

To calculate the short-circuit current, we place
a short circuit across a,b. When the terminals a,b are
shorted together, the control voltage v is reduced 1o
zero. Therefore, with the short in place, the circuit
shown in Fig. 449 becomes the one shown in
Fig. 4.50. With the short circuit shunting the 25 O
resistor, all the current from the dependent current
source appears in the short, so

i. = —20i.

SEDERSIE Finding the Thévenin Equivalent of a Circuit with a Dependent Source

200 $250 i,

sl

Figure 4.50 & The circuit shown in Fig. 4.49 with terminals a
and b short-circuited.

L ]

As the voltage controlling the dependent volt-
age source has been reduced to zero, the current
controlling the dependent current source is

Combining these two equations yields a short-circuit
current of

i, = —20(2.5) = —50 mA.

From i and V3, we get

Vin =5
g = —— = — x 1 = .
Ry =50 ¥ =1000

Figure 4.51 illustrates the Thévenin equivalent
for the circuit shown in Fig. 4.49. Note that the ref-
erence polarity marks on the Thévenin voltage
source in Fig. 4.51 agree with the preceding equa-
tion for V.

Figure 4.51 4 The Thévenin equivalent for the circuit shown in
Fig. 4.49.
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Objective 5—Understand Thévenin and Norton equivalents

4.16 Find the Thévenin equivalent circuit with respect
to the terminals a,b for the circuit shown.

Answer: Vi = Vi, = 64.8V, Ry, = 6 Q.

4.17 Find the Norton equivalent circuit with respect
to the terminals a,b for the circuit shown,

Answer: [y = 6 A (directed toward a), Ry = 7.5 Q.

4,18 A voltmeter with an internal resistance of

120
A~
5Q g8Q .
200
e b

100 kQ is used to measure the voltage vap in the
circuit shown. What is the voltmeter reading?
36V

Answer: 120V.

NOTE: Also try Chapter Problems 4.63, 4.66, and 4.67.

4.11

The technique for determining Rqy, that we discussed and illustrated in
Section 4.10 is not always the easiest method available. Two other meth-
ods generally are simpler to use. The first is useful if the network contains
only independent sources. To calculate Ry, for such a network, we first
deactivate all independent sources and then calculate the resistance seen
looking into the network at the designated terminal pair. A voltage source
is deactivated by replacing it with a short circuit. A current source is deac-
tivated by replacing it with an open circuit. For example, consider the cir-
cuit shown in Fig. 4.52. Deactivating the independent sources simplifies
the circuit to the one shown in Fig. 4.53. The resistance seen looking into
the terminals a,b is denoted Ry, which consists of the 4 €) resistor in series
with the parallel combinations of the 5 and 20 () resistors. Thus,

5%20
25

Note that the derivation of Ry, with Eq. 4.63 is much simpler than the
same derivation with Eqgs. 4.574.62.

8 Q.

Rz\b = RTh = 4 + (4.63)

Figure 4.52 4 A circuit used to illustrate a Thévenin
equivalent.

59 40
a
20 O ‘_Rnb
2 o b

Figure 4.53 4 The circuit shown in Fig. 4.52 after deac-
tivation of the independent sources.
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If the circuit or network contains depcndent sources, an alternative
procedure for finding the Thévenin resistance Ry, is as follows. We first
deactivate all independent sources, and we then apply either a test voltage
source or a test current source to the Thévenin terminals a,b. The Thévenin
resistance equals the ratio of the voltage across the test source to the cur-
rent delivered by the test source. Example 4.11 {Jlustrates this alternative
procedure for finding Ry, using the same circuit as Example 4.10.

FEDICHAER Finding the Thévenin Equivalent Using a Test Source

Find the Thévenin resistance Rpy for the circuit in The externally applied test voltage source is

Fig. 4.49, using the alternative method described. denoted vy. and the current that it delivers to the
circuit 1s labeled ir. To find the Thévenin resistance,
we simply solve the circuit shown in Fig. 4.54 for the
ratio of the voltage to the current at the test source;

So’.ution that is, RTh = vT/[T- From Flg 454,

We first deactivate the independent voltage source oy

from the circuit and then excite the circuit from the ir = — + 20i, (4.64)

. Ly, 25

terminals a,b with either a test voltage source or a

test current source. If we apply a test voltage source, 3

we will know the voltage of the dependent voltage i=—2 mA. (4.65)

source and hence the controlling current i. Therefore 2

we opt for the test voltage source. Figure 4.54 shows

the circuit for computing the Thévenin resistance. We then S“bStitUtC_EQ- 4.65 into Eq. 4.64 and solve
the resulting equation for the ratio vy/iz:

vr 60/1)]‘
P e & 4.66
, | _ 755 7 2000 (4.66)
KO il
b _ vp 25 200 5000 100 ’
3v; Wi 3250  vr
v . From Egs. 4.66 and 4.67,

Figure 4.54 2 An alternative method for computing the Row = ¥r _ 100 O (4.68)

Thévenin resistance. ™y ' '

In general, these computations are easier than those involved in com-
puting the short-circuit current. Moreover, in a network containing only
resistors and dependent sources, you must use the alternative method,
because thc ratio of the Thévenin voltage to the short-circuit current is
indeterminate. That is, it is the ratio 0/0.
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Objective 5—Understand Thévenin and Norton'equivé_lenfs

4.19 Find the Thévenin equivalent circuit with respect 4.20 Find the Thévenin equivalent circuit with
to the terminals a,b for the circuit shown. respect to the terminals a,b for the circuit
' shown. (Hint: Define the voltage at the left-
~ most node as v, and write two nodal equations
Answer: Vi = v, = 8V, Ry, = 1 Q. with Vi, as the right node voltage.)

Answer: Vi = v, = 30V, R, = 10 Q.

160 iy

200

S ‘A'b

NOTE: Also try Chapter Problems 4.71 and 4.77.

Using the Thévenin Equivalent in the Amplifier Circuit

At times we can use a Thévenin equivalent to reduce one portion of a cir-
cuit to greatly simplify analysis of the larger network. Let’s return to the
circuit first introduced in Section 2.5 and subsequently analyzed in
Sections 4.4 and 4.7. To aid our discussion, we redrew the circuit and iden-
tified the branch currents of interest, as shown in Fig. 4.55.

As our previous analysis has shown, ig is the key to finding the other
branch currents. We redraw the circuit as shown in Fig. 4.56 to prepare to
replace the subcircuit to the left of V5 with its Thévenin equivalent. You
should be able to determine that this modification has no effect on the
branch currents iy, iy, ig, and ig.

Now we replace the circuit made up of Vgr, R(, and R, with a
Thévenin equivalent, with respect to the terminals b,d. The Thévenin volt-
age and resistance are

+
O

7 e VecRs 69 Figure 4.55 4 The application of a Thévenin equivalent
LA Ry + Ry’ (end) in circuit analysis.
RiR
R'l'h = —L (4.70)

R+ R,
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Figure 4.56 4 A modified version of the circuit shown
in Fig. 4.55.

Figure 4,57 4 The circuit shown in Fig. 4.56 modified

by a Thévenin equivalent.

a0
Resistive network
~containing R
independent and § e

dependent sources
be———

Figure 4.58 2. A circuit describing masximum power
transfer.

With the Thévenin equivalent, the circuit in Fig. 4.56 becomes the one
shown in Fig. 4.57.

We now derive an equation for iy simply by summing the voltages
around the left mesh. In writing this mesh equation, we recognize that
ir = (1 + B)ip. Thus,

VT'h = RTth + % + RE(]_ == ,B)ib:, (4‘71)
from which

i = Vim — V%
5 Ry + (1+B)R:

(4.72)

When we substitute Eqs. 4.69 and 4.70 into Eq. 4.72, we get the same
expression obtained in Eq. 2.25. Note that when we have incorporated the
Thévenin equivalent into the original circuit, we can obtain the solution
for ig by writing a single equation.

4.12 Maximum Power Transfer

Circuit analysis plays an important role in the analysis of systems designed
to transfer power from a source to a load. We discuss power transfer in
terms of two basic types of systems. The first emphasizes the efficiency of
the power transfer. Power utility systems are a good example of this type
because they are concerned with the generation, transmission, and distri-
bution of large quantities of electric power. If a power utility system is
inefficient, a large percentage of the power generated is lost in the trans-
mission and distribution processes, and thus wasted.

The second basic type of system emphasizes the amount of power
transferred. Communication and instrurnentation systems are good exam-
ples because in the transmission of information, or data, via electric sig-
nals, the power available at the transmitter or detector is limited. Thus,
transmitting as much of this power as possible to the receiver, or load, is
desirable. In such applications the amount of power being transferred is
small, so the efficiency of transfer is not a primary concern. We now con-
sider maxjmum power transfer in systems that can be modeled by a purely
Tesistive circuit.

Maximum power transfer can best be described with the aid of the cir-
cuit shown in Fig. 4.58. We assume a resistive network containing inde-
pendent and dependent sources and a designated pair of terminals, a,b, to
which a load, R;, is to be connected. The problem is to determine the value
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of R; that permits maximum power delivery to R;. The first step in this
process is to recognize that a resistive network can always be replaced by
its Thévenin equivalent. Therefore, we redraw the circuit shown in Fig. 4.58
as the one shown in Fig. 4.59. Replacing the original network by its
Thévenin equivalent greatly simplifies the task of finding R; . Derivation of
R}, requires expressing the power dissipated in R; as a function of the 5
three circuit parameters Vi, R, and Ry, Thus : i

=
=
)

il Ry

Figure 4,59 4. A circuit used to determine the value of
)2 R, for maximum power transfer.

Ry. (4.73)

Next, we recognize that for a given circuit, Vp, and Ry, will be fixed.
Therefore the power dissipated is a function of the single variable R;. To
find the value of R; that maximizes the power, we use elementary calculus.
We begin by writing an equation for the derivative of p with respect to R; :

4p _ V2 \:(RTh + R;)’ = Rp*2(Rry + RL):I_ (6.74)
dR; (Rt + Rp)*
The derivative is zero and p is maximized when
(Ry + R)? = 2R (Rm + Ryp). (4.75)
Solving Eq. 4.75 yields
R, = RTh. (4.76) < Condition for maximum power transfer

Thus maximum power transfer occurs when the load resistance R; equals
the Thévenin resistance Ryy,. To find the maximum power delivered to Ry,
we simply substitute Eq. 4.76 into Eq. 4.73:

_ ViR _ Vi

Pmax = (ZRL)Z 4R, (4.77)

The analysis of a circuit when the load resistor is adjusted for maximum
power transfer is illustrated in Example 4.12.
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SElD SR8 Calculating the Condition for Maximum Power Transfer

a) For the circuit shown in Fig. 4.60, find the value
of R; that results in maximum power being
transferred to Ry,

300 a

360 V 150 Q) R,

Figure 4.60 & The circuit for Example 4.12.

b) Calculate the maximum power that can be deliv-
ered Lo R;.

¢) When R, is adjusted for maximum power trans-
fer, what percentage of the power delivered by
the 360V source reaches R;?

Solution

a) The Thévenin voltage for the circuit to the left of
the terminals a,b is

150
V = — = .
™ = 130 (360) = 300 V

The Thévenin resistance is

_(150)(30)
Ry = 80 25 Q.

Replacing the circuit to the left of the terminals
a,b with its Thévenin equivalent gives us the cir-
cuit shown in Fig. 4.61, which indicates that R
must equal 25 () for maximum power transfer.

250

300 V : IR,

b

Figure 4.61 & Reduction of the circuit shown in Fig. 4.60 by
means of a Thévenin equivalent.

b) The maximum power that caun be delivered to
‘RL is

2
Pooax = (%) (25) = 900 W.

c) When R, equals 25 (), the voltage v, is

300
Vap = (5>(25) =150 V.

From Fig. 4.60, when v,;, equals 150 V, the cur-
rent in the voltage source in the direction of the
voltage rise across the source is

360 —150 210
b=—%5 T3 &

Therefore, the source is delivering 2520 W to the
circuit, or

P, = —i(360) = —2520 W.

The perceatage of the source power delivered to
the load is

900
— X = 35.71%.
2520 100 = 35.71%
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Objective 6—Know the condition for and calculate maximum power transfer to resistive load

4.21 a) Find the value of R that enables the circuit 4.22 Assume that the circuit in Assessment
shown to deliver maximum power (o the Problem 4.21 is delivering maximum power to
terminals a.b. the load resistor R.
b) Find the maximum power delivered to R. a) How much power is the 100 V source deliv-

ering to the network?

b) Repeat (a) for the dependent voltage
source.

¢) What percentage of the total power gener-
ated by these two sources is delivered to the

{ B

\ load resistor R?
100 V IR
b Answer: (a) 3000W:
Answer: (a) 3 Q; (b) 800 W:
(b) 1.2 kW. (c) 31.58%.

NOTE: Also try Chapter Problems 4.79 and 4.80.

4.13 Superposition

] B

e

A linear system obeys the principle of superposition, which states that
whenever a linear system is excited, or driven, by more than one inde-
pendent source of energy, the total response is the sum of the individual
responses. An individual response is the result of an independent source
acting alone. Because we are dealing with circuits made up of inter-
connected linear-circuit elements, we can apply the principle of superposi-
tion directly to the analysis of such circuits when they are driven by more
than one independent energy source, At present, we restrict the discussion
to simple resistive networks; however, the principle is applicable to any
linear system.

Superposition is applied in both the analysis and the design of circuits.
In analyzing a complex circuit with multiple independent voltage and cur-
rent sources, there are often fewer, simpler equations to solve when the
elfects of the independent sources are considered one at a time. Applying
superposition can thus simplify circuit analysis. Be aware, though, that
sometimes applying superposition actually complicates the analysis, produc-
Ing more equations to solve than with an alternative method. Superposition
is required only if the independent sources in a circuit are fundamentally
different. In these early chapters, all independent sources are de sources, so
superposition is not required. We introduce superposition here in anticipa-
tion of later chapters in which circuits will require it.
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120V 12 A

g
725

120V 1330 r'ul 40

Figure 4.63 A The circuit shown in Fig. 4.62 with the
current source deactivated.

12 A

Figure 4.64 4 The circuit shown in Fig. 4.62 with the
voltage source deactivated.

12A

Figure 4,65 £ The circuit shown in Fig. 4.64 showing
the node voltages vy and v,.

Superposition is applied in design to synthesize a desired circuit
response that could not be achieved in a circuit with a single source. I[ the
desired circuit response can be written as a sum of two or more terms, the
response can be tealized by including one independent source for each
term of the response. This approach to the design of circuits with complex
responses allows a designer to consider several simple designs instead of
one complex design.

We demonstrate the superposition principle by using it to find the
branch currents in the circuit shown in Fig. 4.62. We begin by finding the
branch currents resulting from the 120 V voltage source. We denote those
currents with a prime. Replacing the ideal current source with an open cir-
cuit deactivates it; Fig. 4.63 shows this. The branch currents in this circuit
are the result of only the voltage source.

We can easily find the branch currents in the circuit in Fig. 4.63 once
we know the node voltage across the 3 () resistor. Denoting this voltage
V), We write

v — 120 M Uy
—_ + J—— + _ = R
6 3t5+4°0 (4.78)

from which
v =30 V. (4.79)

Now we can write the expressions for the branch currents i} — i% directly:

120 — 30
= = 15 A, (4.80)
30
ih= ? =10 A, (4.81)
0
== % =5A. (4.82)

To find the component of the branch currents resulting from the current
source, we deactivate the ideal voltage source and solve the circuit shown in
Fig. 4.64. The double-prime notation for the currents indicates they are the
components of the Lotal current resulting from the ideal current source.

We determine the branch currents in the circuit shown in Fig. 4.64 by
first solving for the node voltages across the 3 and 4 Q) resistors, respec-
tively. Figurc 4.65 shows the two node voltages. The two node-voltage
equations that describe the circuit are

V3 V3 V3 — V4
2+32+32 =9 :
3 6 2 ’ (4-83)
Vy V3 V4
+ —+12 =0. 4.84
2 r (i.84)



Solving Eqs. 4.83 and 4.84 for v; and v,, we get

Vy = -12 V, (4.85)

vy = —24 V. {4.86)

Now we can write the branch cusrents i{ through i7 directly in terms of the
node voltages vs and vg:

- -3 12
1 =T=“6—=2A, (4.87)
i V3 -12
I, = ? = T = —4 A, {4.88)

6 A, (4.89)

= —6 A. (4.90)

To find the branch currents in the original circuit, that is, the currents
Iy, Iy, &, and iy in Fig. 4.62, we simply add the currents given by
Eqs. 4.87-4.90 to the currents given by Eqs. 4.80—4.82:

=0+ =15+2=17A, (4.91)
h=i+i=10-4=6 A, (4.92)
=4+ =5+6=11A, (4.93)
=+ il=5-6=—-1A. (4.94)

You should verify that the currents given by Eqgs. 4.91-4.94 are the correct
values for the branch currents in the circuit shown in Fig. 4.62.

When applying superposition to linear circuits containing both inde-
pendent and dependent sources, you must recognize that the dependent
sources are never deactivated. Example 4.13 illustrates the application of
superposition when a circuit contains both dependent and independent
sources.

4.13

Superposition

131
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FEN GRS EN  Using Superposition to Solve a Circuit

Use the principle of superposition to find v, in the
circuit shown in Fig. 4.66.

04 Va
50 R
e = \74-
fa
10V v,2200 ©v,3100 SA
2 ip
D D S
N

Figure 4.66 4 The circuit for Example 4.13.

Solution

We begin by finding the component of v, resulting
from the 10 V source. Figure 4.67 shows the circuit.
With the 5 A source deactivated, vj must equal
(—0.4v3)(10). Hence, v, must be zero, the branch
containing the two dependent sources is open, and

s 22000
v, = 5:(10) =8 V.

0oV

Figure 4.67 £ The circuit shown in Fig. 4.66 with the 5 A
source deactivated.

When the 10 V source is deactivated, the circuit
reduces to the one shown in Fig. 4.68. We have
added a reference node and the node designations
a, b, and ¢ to aid the discussion. Summing the cur-
rents away from node a yields

U:j’ vg " " v
et 04 =0, or 5 — 8% =0

Summing the currents away from node b gives

Vy — 2!Z
10
4 + v, — 2i% = 50

0.4v% +

We now use
vy, = 213 + i
to find the value for »3. Thus,
5vy =50, or vi=10V.
From the node a equation,

16 V.

Svp = 80, or wup

The value of v, is the sum of v}, and v}, or 24 V.

5Q 0.4 v," b
a -
Wt <> =
iy
0, 2208 0" 2100 SA
2 iA”
_ <S4
I ~ ¢

Figure 4.68 & The circuit shown in Fig. 4.66 with the 10 V
source deactivated.

NOTE: Assess your understanding of this material by trying Chapter Problems 4.91 and 4.92.
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Circuits with Realistic Resistors
It is not possible to fabricate identical electrical components. For example,
resistors produced from the same manufacturing process can vary in value
by as much as 20%. Therefore, in creating an electrical system the designer
must consider the impact that component variation will have on the per-
formance of the system. One way to evaluate this impact is by performing
sensitivity analysis. Sensitivity analysis permits the designer to calculate
the impact of variations in the component values on the output of the sys-
tem. We will see how this information enables a designer to specify an
acceptable component value tolerance for each of the system’s components.
Consider the circtit shown in Fig. 4.69. To illustrate sensitivity analysis,
we will investigate the.sensitivity of the node voltages »; and v, to changes
in the resistor R;. Using nodal analysis we can derive the expressions for vy
and v, as functions of the circuit:resistors and source currents. The results
are given in Egs. 4.95 and 4.96:

_ R{RsRdp = [Ry(R3 + Ry) + RyRy]1,i}
A 5 (Ry + Ry)(Rs + Ry) + R3R, ,

(4.95)

- R3R,[(Ry + Rl — Ryl gy
(R + R)(Rs + Ry) + RsRy’

v, (4.96)

The sensitivity of vy with respect to R, is found by differentiating Eq. 4.95
with respect to R;, and similarly the sensitivity of v, with respect to Ry is
found by differentiating Eq. 4.96 with respect to R;. We get

dv, [R3R4 + Ry(R3 + Ry)H{RaRul o — [R3Ry + Ry(Rs + Ry)|I 1}

aR, [(Ry + R)(R; + R + RR.J '
(4.97)
dv, RaR{RsRilgp — [Ro(Ry + Ry) + RsRy)l i} (4.98)
aR, (R + R)(Rs + R) + REE '
R,
& AN\ & \ 4
+ +

Figure 4.69 4 Circuit used to introduce sensitivity analysis.

Practical Perspective
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We now consider an example with actual component values to illustrate
the use of Egs. 4.97 and 4.98.

EXAMPLE

Assume the nominal values of the components in the cireuit in Fig. 4.69 are:
Ry=25Q; R, =5Q; R;=50Q; Ry =75Q; I, ,=12A and
I, = 16 A. Use sensitivity analysis to predict the values of »; and v, if
the value-of Ry is different by 10% from its nominal value.

Solution
From Egs. 4.95 and 4.96 we find the nominal values of v; and v,. Thus

_ 25{2750(16) — [5(125) + 3750]12)
<l 30(125) + 3750

=25V (4.99)

and

_ 3750(30(16) — 25(12))]
P27 T30(125) + 3750

=90V (4.100)

Now from Egs. 4.97 and 4.98 we can find the sensitivity of v, and v, to
changes in R;. Hence

dvy _ [3750 + 5(125)] — {3750(16) — [3750 + 5(125)]12}

dR, [(30)(125) + 37507

7
~ v/Q, (4.101)

and
dv, _ 3750{3750(16) — [5(125) + 3750]12}]
dR, (7500)?

=0.5V/Q. (4.102)
How do we use the results given by Eqgs. 4.101 and 4.102? Assume that

Ry is 10% less than its nominal value, that is, R; = 22.5 Q). Then
ARy = —2.5 Q) and Eq. 4.101 predicts A»; will be

g
Av, = <T5>(_2'5) — —1.4583 V.

Therefore, if R; is 10% less than its nominal value, our analysis predicts
that v; will be

v, = 25 — 1.4583 = 23.5417 V. (4.103)



Similarly for Eq. 4.102 we have

Ay, = 0.5(=2.5) = -1.25V,
v, = 90 — 1.25 = 8R.75 V. (4.104)

We attempt to confirm the results in Eqs. 4.103 and 4.104 by substituting
the value Ry = 22.5 O into Eqs. 4.95 and 4.96. When we do, the results are

v = 234780V, (4.105)
v, = 88.6960 V. (4.106)

Why is there a difference between the values predicted from the sensitivity
analysis and the exact values computed by substituting for R, in the equa-
tions for vy and v,? We can see from Eqs. 4.97 and 4.98 that the sensitivity
of »; and v, with respect to R; is a function of R,, because R; appears in
the denominator of both Egs. 4.97 and 4.98. This means that as R,
changes, the sensitivities change and hence we cannot expect Eqs. 4.97 and
4,98 to give exact results for large changes in R;. Note that for a 10%
change in R, the percent error between the predicted and exact values of
v, and v, is small. Specifically, the percent error in v, = 0.2713% and the
percent error in vy = 0.0676%.

From this example, we can see that a tremendous amount of work is
involved if we are to determine the sensitivity of v; and », to changes in the
remaining component values, namely Ry, Rs, Ry, I, and I,. Fortunately,
PSpice has a sensitivity function that will perform sensitivity analysis for us.
The sensitivity function in PSpice calculates two types of sensitivity. The first
is known as the one-unit sensitivity, and the second is known as the 1%
sensitivity. In the example circuit, a one-unit change in a resistor would
change its value by 1 Q) and a one-unit change in a current source would
change its value by 1 A. In contrast, 1% sensitivity analysis determines the
effect of changing resistors or sources by 1% of their nominal values.

The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 ‘is
shown in Table 4.2. Because we are analyzing a linear circuit, we can use
superposition to predict values of »; and v, if more than one component’s
value changes. For example, let us assume R; decreases to 24 Q and R,
decreases to 4 {). From Table 4.2 we can combine the unit sensitivity of »,
to changes in R, and R, to get

Av | AV _ 5833 — 5417 = —4.8337 v/Q
AR ARy 3 et ‘
Similarly,
A?)z A’Ug
— + —==05+65=17. .
iR T AR =05 +65=70V/0

Thus if both R, and R, decreased by 1 {} we would predict

v = 25 + 48227 = 29.8337 V,
v, =90 -7 =83V.

Practical Perspective
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TABLE4.2 . PSpice Sensitivity Analysis Resuits

Element Element Element Sensitivity Normalized Sensitivity

Name Value (Volts/Unit) ~_ (Volts/Percent)
(a) DC Sensitivities of Node Voltage V1

R1 25 0.5833 0.1458

R2 5 -5.417 -0.2708

R3 50 0.45 0.225

R4 75 0.2 0.15

161 12 —~14.58 -1.75

162 16 12.5 2

(b) Sensitivities of Output V2

R1 25 0.5 0.125
R2 5 6.5 0.325
R3 50 0.54 0.27
R4 75 0.24 0.18
1G1 12 -12.5 -1.5
1G2 16 15 2.4

If we substitute R; = 24 Q) and R, = 4 ) into Eqs. 4.95 and 4.96 we get
v =29.793V,
v, = 82759 V.

In both cases our predictions are within a fraction of a volt of the actual node
voltage values.

Circuit designers use the results of sensitivity analysis to determine
which component value variation has the greatest impact on the output of
the circuit. As we can see from the PSpice sensitivity analysis in Table 4.2,
the node voltages »; and v, are much more sensitive to changes in R, than
to changes in R;. Specifically, v; is (5.417/0.5833) or approximately
9 times more sensitive to changes in R, than to changes in R; and v, is
(6.5/0.5) or-13 times more sensitive to changes in R, than to changes in
R;. Hence in the example circuit, the tolerance on R, must be more strin-
gent than the tolerance on R, if it is important to keep »; and v, close to
their nominal values,

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 4.105-4.107.



Summary

Summary

» For the topics in this chapter, mastery of some basic terms,

and the concepts they represent, is necessary. Those terms
are node, essential node, path, branch, essential branch,
mesh, and planar circuit. Table 4.1 provides definitions
and examples of these terms. (See page 94.)

Two new circuit analysis techniques were introduced in
this chapter:

+ The node-voltage method works with both planar
and nonplanar circuits. A reference node is chosen
from among the essential nodes. Voltage variables
are assigned at the remaining essential nodes, and
Kirchhoif’s current law is used to write one equation
per voltage variable. The number of equations is
n, — 1, where n, is the number of essential nodes.
(See page 97.)

» The mesh-current method works only with planar
circuits. Mesh currents are assigned to each mesh,
and Kirchhoff’s voltage law is used to write one
equation per mesh. The number of equations is
b — (n — 1), where b is the number of branches in
which the current is unknown, and # is the number of
nodes. The mesh currents are used to find the branch
currents. (See page 105.)

+ Several new circuit simplification techniques were

introduced in this chapter:

» Source transformations allow us to exchange a volt-
age source (v,) and a series resistor (R) for a current
source (i) and a parallel resistor (R) and vice versa.
The combinations must be equivalent in terms of
their terminal voltage and current. Terminal equiva-
lence holds provided that

(See page 116.)

« Thévenin equivalents and Norton equivalents allow
us to simplify a circuit comprised of sources and resis-
tors into an equivalent circuit consisting of a voltage
source and a series resistor (Thévenin) or a current
source and a parallel resistor (Norton). The simplified
circuit and the original circuit must be equivalent in
terms of their terminal voltage and current. Thus
keep in mind that (1) the Thévenin voltage (Viy) is
the open-circuit voltage across the terminals of the
original circuit, (2) the Thévenin resistance (Rpy,) is
the ratio of the Thévenin voltage to the short-circuit
current across the terminals of the original circuit;
and (3) the Norton equivalent is obtained by per-
forming a source transformation on a Thévenin
equivalent. (Sce page 119.)

+ Maximum power transfer is a technique for calculating

the maximum value of p that can be delivered to a load,
R;. Maximum power transfer occurs when R; = Ry,
the Thévenin resistance as seen from the resistor R;.
The equation for the maximum power transferred is

_Vh

P—E-

(See page 126.)

In a circuit with multiple independent sources,
superposition allows us to activate one source at a time
and sum the resulting voltages and currents to deter-
mine the voltages and currents that exist when all inde-
pendent sources are active. Dependent sources are
never deactivated when applying superposition. (See
page 129.)
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Problems
Section 4.1 ¢) How many branches are there?
41 Assume the current i, in the circuit in Fig. P4.1 is d) Assume that the lower node in each part of the

4.2

known. The resistors R; — Rs are also known.
a) How many unknown currents are there?

b) How many independent equations can be writ-
ten using Kirchhoff’s current law (KCL)?

¢) Write an independent set of KCL equations.

d) How many independent equations can be
derived from Kirchhoff’s voltage law (KVL)?

e) Write a set of independent KVL equations.

Figure P4.1

For the circuit shown in Fig, P4.2, state the numerical
value of the number of (a) branches, (b) branches
where the current is unknown, (¢) essential branches,
(d) essential branches where the current is unknown,
(e) nodes, (f) essential nodes, and (g) meshes.

Figure P4.2
A
In RT
o <
R2 20 A
——— W\ M——e AW
Ry Ry Rs
+ 25i
18V C_) Uy R6 4 R';

43

a) How many separate parts does the circuit in
Fig. P4.3 have?

b) How many nodes?

4.4

4.5

o

circuit is joined by a single conductor. Repeat
the calculations in (a)—(c).

Figure P4.3
’y
MA——e
v, Ry iy 3R
Bip Ry R;s

a) If only the essential nodes and branches are
identified in the circuit in Fig. P4.2, how many
simultaneous equations are needed to describe
the circuit?

b) How many of these equations can be derived
using Kirchhoff’s current law?

¢) How many must be derived using Kirchhoff’s
voltage law?

d) What two meshes should be avoided in applying
the voltage law?

A current leaving a node is defined as positive.

a) Sum the currents at each node in the circuit
shown in Fig. P4.5.

b) Show that any one of the equations in (a) can be
derived from the remaining two equations.

2
AN 4
R,

R, fg‘lr Rs  i,l3R,

Fiqure P4.5

2

o
.
————
W &——AN— B —



Section 4.2

4.6 Use the node-voltage method to find v, in the cir-
rseice cuit in Fig. P4.6.

Figure P4.6
20
-t
80
1,250 CD3 A
60V

4.7 a) Find the power developed by the 3A current
price gource in the circuit in Fig. P4.6.

b) Find the power developed by the 60 V voltage
source in the circuit in Fig. P4.6.

c¢) Verify that the total power developed equals the
total power dissipated.

48 A 10 Q resistor is connected in series with the 3A
psice current source in the circuit in Fig. P4.6.

a) Find »,.
b) Find the power developed by the 3A current
source.

¢) Find the power developed by the 60 V voltage
source.

d) Verify that the total power developed equals the
total power dissipated.

e) What effect will any finite resistance connected
in series with the 3A current source have on the
value of »,?

4.9 Use the node-voltage method to find v, and ¢, in
pspice the circuit shown in Fig. P4.9,

Figure P4,9
250
- ,M Py &
+ +
24A 121250 250 (2 1, 33750 32A

410 a) Use the node-voltage method to find the branch
PSPICE currents iy — i, in the circuit shown in Fig. P4.10.

b) Find the total power developed in the circuit.

4.11

PSPICE

4.12

PSPICE

4.13

PSPICE

Problems 139

figure P4.10

The circuit shown in Fig. P4.11 is a dc model of a
residential power distribution circuit.

a) Use the node-voltage method to find the branch
currents iy — Ig.

b) Test your solution for the branch currents by
showing that the total power dissipated equals
the total power developed.

figure P4.11

Use the node-voltage method to find »; and »; In
the circuit in Fig. P4.12.

Figure P4.12
46 800

144V

Use the node-voltage method to find how much
power the 2 A source extracts from the circuit in
Fig. P4.13.

Figure P4,13
20
2a(}) s (Dssv
30
& ANN—
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4,14 a) Use the node-voltage method to find vy, v, and
PSPICE 93 in the circuit in Fig. P4.14.

b) How much power does the 640 V voltage source
deliver to the circuit?

Figure P4.14

30 250
20

250

4.15 Use the node-voltage method to find the total power
pseice - dissipated in the circuit in Fig. P4.15,

Figure P4.15

SN
>

®

&
=)

150

8
g

50 O
- AM-

30V ?1‘250 Tson 1A

4.16 a) Use the node-voltage method to show that the
pSPICE output voltage v, in the cireuit in Fig. P4.16 is
equal to the average value of the source voltages.
b) Find v, if » =150V, v, =200V, and

vy = =50V.

Figure P4.16

R R

‘U) (%)

Section 4.3
4.17 a) Use the node-voltage method to find v, in the
PSPICE circuit in Fig. P4.17.
b) Find the power absorbed by the dependent source.

¢) Find the total power developed by the independ-
ent sources.

Figure P4.17

200
- o AAA

o

Ea
100

Si,

418 a) Find the node voltages vy, v3, and v; in the cir-
PSPICE cuit in Fig. P4.18.

b) Find the total power dissipated in the circuit.

Figure P4.18

419 Use the node-voltage method to calculate the
rseice power delivered by the dependent voltage source in
the circuit in Fig. P4.19.

Figure P4.19
50 100
A W
80V i l 50 0 751,
150
e —A\W\-

420 a) Use the node-voltage method to find the total
FReICE power developed in the circuit in Fig. P4.20.

b) Check your answer by finding the total power
absorbed in the circuit.

Figure P4.20

300

;

100 Sip




Section 4.4

4.21

PSPICE

4.22

PSPICE

423

4.24

PSPICE

Use the node-voltage method to find the value of v,
in the circuit in Fig. P4.21.

Figure P4.21

80 O 40 O

q
+
i 500 q)HOmA %2000

Use the node-voltage method to find i, in the cir-

cuit in Fig. P4.22.
50 ﬁ 50

700

50V

Figure P4.22

e

120

a) Use the node-voltage method to find the power
dissipated in the 5 Q resistor in the circuit in
Fig. P4.23.

b) Find the power supplied by the 500 V source.

Figure P4.23

R 50
40 60

20
SOOVCD 30 40
60 30

10

—

a) Use the node-voltage method to find the branch
currents Jy, I, and Z5 in the circuit in Fig. P4.24,

b) Check your solution for iy, i, and i3 by showing
that the power dissipated in the circuit equals
the power developed.

4.25

PSPICE

4,26

PSPICE

427

PSPICE

141

Problems

Figure P4.24

20V

Use the node-voltage method to find the value of v,
in the circuit in Fig. P4.25.

Figure P4.25

40
3 L
[ — L —VWA
O , 20
10A i

Use the node-voltage method to find v, and the
power delivered by the 40 V voltage source in the
circuit in Fig. P4.26.

Figure P4.26

40V

50 mA

Use the node-voltage method to find v, in the cir-
cuit in Fig. P4.27.

Figure P4.27
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428 Assume you are a project engineer and one of your

esice staff is assigned to analyze the circuit shown in
Fig. P4.28. The reference node and node numbers
given on the figure were assigned by the analyst.
Her solution gives the values of v; and v, as 235V
and 222 V, respectively.

Test these values by checking the total power
developed in the circuit against the total power dis-
sipated. Do you agree with the solution submitted
by the analyst?

Figure P4.28

(30) i,

4.29 Use the node-voltage method to find the power devel-
rsice  oped by the 20 V source in the circuit in Fig. P4.29,

Figure P4.29
351,

4.30 Show that when Eqgs. 4.16,4.17, and 4.19 are solved
for ip, the result is identical to Eq. 2.25.

Section 4.5
4.31 a) Use the mesh-current method to find the branch
PSPICE currents I,, i, and i, in the circuit in Fig. P4.31.

b) Repeat (a) if the polarity of the 64 V source is
reversed.

Figure P4.31
30 40
—AAA 5 M
i i
0V i;,l 450) 64V
20 150
vy : v

4.32 a) Use the mesh-current method to find the total
PSPICE power developed in the circuit in Fig. P4.32.

b) Check your answer by showing that the total
power developed equals the total power
dissipated.

Figure P4.32

+
_) 70V

40 20

4.33 Solve Problem 4.10 using the mesh-current method.
4.34 Solve Problem 4.11 using the mesh-current method.
4.35 Solve Problem 4.22 using the mesh-current method.

436 Solve Problem 4.23 using the mesh-current mnethod.

Section 4.6

4.37 Use the mesh-current method to find the power dis-
psrice gjpated in the 8 €} resistor in the circuit in Fig. P4.37.

Figure P4,37

70 — "Icr
AN~
160 40
q p
4 .
sov( " 70 a4,
80 200




438 Use the mesh-current method to find the power
psice - delivered by the dependent voltage source in the
circuit seen in Fig. P4.38.

Figure P4.38

4.39 Use the mesh-current method to find the power
e developed in the dependent voltage source in the
circuit in Fig. P4.39.

Figure P4.39

2.65 v,
P
X
150 254}
M- ® AN ——o»D
4_
- 5 2
125V + 4 21008 + 125V
350 850
ANA- - AN

440 a) Use the mesh-current method to find v, in the
PSRICE circuit in Fig. P4.40.

b) Find the power delivered by the dependent source.

Figure P4.40
20 120 50

4V fﬁ‘l 30

Section 4.7

4.41 a) Use the mesh-current method to find how much
PRARCE power the 12 A current source delivers to the
circuit in Fig. P4.41.

b) Find the total power delivered to the circuit.

¢) Check your calculations by showing that the
total power developed in the circuit equals the
total power dissipated.

Problems 143

Figure P4.41

4.42 a) Use the mesh-current method to solve for i, in
PSPICE the circuit in Fig. P4.42.

b) Find the power delivered by the independent
current source.

c) Find the power delivered by the dependent volt-

age source.
Figure P4,42
980 O 1.8kD
A AN
8mA "aT 33%Q 200 iy

4.7 kO
WA

4.43 Use the mesh-current method to find the total power
reice developed in the circuit in Fig. P4.43.

Figure P4.43
78
A
20 10
0——MA,| Y VWA
; g =
30
+
90 VC § 0.5,
165V

4.44 Use the mesh-current method to find the total power
esice - developed in the circuit in Fig. P4.44.

Figure P4.44
50 i
AMA- —
250 200
WA ¢ A
4 A ? 100 O
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4.45 a) Use the mesh-current method to find the power
PSPICE delivered to the 2 ) resistor in the circuit in
Fig. P4.45.

b) What percentage of the total power developed
in the circuit is delivered to the 2 () resistor?

Figure P4.45

Dmv

446 a) Use the mesh-current method to determine
PSPICE which sources in the circuit in Fig. P4.46 are gen-
erating power.

b) Find the total power dissipated in the circuit.

Figure P4.46

20 580
NV “AVN——@
g g == b
i
40

200 (})17v

9iy

4.47 Use the mesh-current method to find the total
rsice power dissipated in the circuit in Fig. P4.47.

Figure P4.47

30 90

4.48 Assume the 18 V source in the circuit in Fig. P4.47 is
psfice jncreased to 100 V. Find the total power dissipated
in the circuit.

4.49 a) Assume the 18 V source in the circuit in Fig. P4.47
is changed to —10 V. Find the total power dissi-
pated in the circuit.

b) Repeat (a) if the 3 A current source is replaced
by a short circuit.

c) Explain why the answers to (a) and (b) are
the same.

4.50 a) Use the mesh-current method to find the branch
PSPICE currents in i, — i, in the circuit in Fig. P4.50.

b) Check your solution by showing that the total
power developed in the circuit equals the total
power dissipated.

Figure P4.50

4.51 a) Find the branch currents i, — i, for the circuit
PSPICE shown in Fig. P4.51.

b) Check your answers by showing that the total
power generated equals the total power
dissipated.

Figure P4.51

15 id ol Ix
A
100 350)
—AM 2 ANN———9
-‘;'_b — -‘fc ’
30 A 40 af 7 36, (7 )150v

Section 4.8

4.52 The circuit in Fig. P4.52 is a direct-current version
wice of a typical three-wire distribution system. The
resistors R,, Ry, and R, represent the resistances of
the three conductors that connect the three loads
Ry, Ry, and Ry to the 110/220 V voltage supply. The
resistors R; and R, represent loads connected to



the 110 V circuits, and R, tepresents a load con-
nected to the 220 V circuit.

a) What circuit analysis method will you use
and why?

b} Calculate vy, vy, and vs.
¢) Calculate the power delivered Lo R, R;, and Rj.

d) What percentage of the total power developed
by the sources is delivered to the loads?

e) The Ry, branch represents the neutral conductor
in the distribution circuit. What adverse effect
occurs if the neutral conductor is opened? (Hini:
Calculate v, and v, and note that appliances or
loads designed for use in this circuit would have
a nominal voltage rating of 110 V.)

Figure P4,52

110V

4.53

4.54

PSPICE

R =180
+

v

éRj = 54.625 (1

R,=11050

Show that whenever R} = R, in the circuit in
Fig. P4.52, the current in the neutral conductor is
zero. (Hint: Solve for the neutral conductor current
as a function of R, and R;).

Assume you have been asked to find the power dissi-
pated in the 1 kQ resistor in the circuit in Fig. P4.54.

a) Which method of circuil analysis would you rec-
ommend? Explain why.

b) Use your recommended method of analysis to
find the power dissipated in the 1 k{) resistor.

c) Would you change your recommendation if the
problem had been to find the power developed
by the 10 mA current source? Explain.

d) Find the power delivered by the 10 mA cur-
rent source.

4.55

PSPICE

4.56

PSPICE

4.57

PSPICE

Problems 145
Figure P4.54
25k0 2kD
10mA (D
5kQ 1kO

A 4k Q) resistor is placed in parallel with the 10 mA

current source in the circuit in Fig. P4.54. Assume

you have been asked to calculate the power devel-

oped by the current source.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Find the power developed by the current source.

a) Would you use the node-voltage or mesh-current
mcthod to find the power absorbed by the
10 V source in the circuit in Fig. P4.56? Explain
your choice.

b) Use the method you selected in (a) to find
the power.

Figure P4.56

The variable dc current source in the circuit in
Fig. P4.57 is adjusted so that thc power developed
by the 15 A current source is 3750W, Find the value
of ch.

Figure P4.57
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4.58 The variable dc vollage source in the circuit in
psrice Fig, P4.58 is adjusted so that i, is zero.

a) Find the value of V..

b) Check your solution by showing the power
developed equals the power dissipated.

Figure P4.58

200

Section 4.9
4.59 a) Use a series of source transformations to find
PSPICE the current f, in the circuit in Fig. P4.59.

b) Verify your solution by using the node-voltage
method to find i,

Figure P4.59
2.7kQ
— AN
&
6 mA 23kQ 1kQ 4.2 mA

4.60 a) Find the current in the 10 k() resistor in the cir-
PSPICE cuit in Fig. P4.60 by making a succession of
appropriate source transformations.

b) Using the result obtained in (a), work back
through the circuit to find the power developed
by the 100 V source.

Figure P4.60
20 kQ

3k

4.61 a) Use source transformations to find v, in the cir-
PSPICE cuit in Fig. P4.61.

b) Find the power developed by the 340 V source.

c) Find the power developed by the 5 A current
source.

d) Verify that the total power developed equals the
total power dissipated.

Figure P4.61

4.62 a) Use a series of source transformations to find i,
PSPICE in the circuit in Fig. P4.62.

b) Verify your solution by using the mesh-current
method to find i,

Figure P4.62

Section 4.10

4.63 Find the Thévenin equivalent with respect to the
psrice  terminals a,b for the circuit in Fig. P4.63.

Figure P4.63
100 §0

60V 400




4.64 Find the Thévenin equivalent with respect to the
psice  terminals a,b for the circuit in Fig. P4.64.

Figure P4.64

8A
-
\_/
120 20
q b———@ 2
v(” 60

o b

4.65 Find the Thévenin equivalent with respect to the
price  terminals a,b for the circuit in Fig. P4.65.

Figure P4.65

400 10 Q)
q ———® 4

300V© 80N
& b

4.66 Find the Norton equivalent with respect to the ter-
reice minals a,b in the circuit in Fig. P4.66.

Figure P4.66
15kQ

N " a
8mA 320k ¢3OV l i ;IOmA %301(0
® @ & s—eb

4.67 A voltmeter with a resistance of 100 k{2 is used to
PPcE measure the voltage vy, in the circuit in Fig. P4.67.

a) What is the voltmeter reading?

b) What is the percentage of error in the voltmeter
reading if the percentage of error is defined as
[(measured — actual)/actual] X 100?

Problems 147

Figure P4.67
4k0 3k

10kQ

$40kOQ 8mA £10k0

30V

® ob

4.68 a) Find the Thévenin equivalent with respect to the

PSPICE terminals a,b for the circuit in Fig. P4.68 by find-
ing the open-circuit voltage and the short-circuit
current.

b) Solve for the Thévenin resistance by removing
the independent sources. Compare your result
to the Thévenin resistance found in (2).

Figure P4.68

200
VWA~
1.8 A
50 :j
AW L g — p———o 1
9V t 250 60 (1
100
& b

4.69 An automobile battery, when connected to a car
radio, provides 12.5 V to the radio. When connected
to a set of headlights, it provides 11.7 V to the head-
lights. Assume the radio can be modeled as a 6.25
resistor and the headlights can be modeled as a
0.65 £ resistor. What are the Thévenin and Norton
equivalents for the battery?

4.70 Determine i, and v, in the circnit shown in Fig. P4.70
et when R, 18 0,2, 4, 10, 15, 20, 30, 50, 60, and 70 Q.

Figure P4.70

? 409 3A 2, % R,
300 V
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471 Determine the Thévenin equivalent with respect to Figure P4.74
rseice  the terminals a,b for the circuit shown in Fig. P4.71. 104,
Figure P4.71
16 0 96 O

4.72 Find the Thévenin equivalent with respect to the 475 A Thévenin equivalent can also be determined

smte  terminals 2,b for the circuit seen in Fig. P4.72. from measurements made at the pair of terminals

of interest. Assume the following measurements

Figure P4.72 were made at the terminals a,b in the circuit in
3014, Fig. P4.75.

When a 15 k() resistor is connected to the ter-
minals a.b, the voltage v,, is measured and found
tobe 45V.

When a 5 k{ resistor is connected to the ter-
minals a,b, the voltage is measured and found to
be 25V.

Find the Thévenin equivalent of the network
with respect Lo the terminals a,b.

4.73 When a voltmeter is used to measure the voltage v,
pseice  in Fig. P4.73,it reads 7.5 V. Figure P4.75
a) What is the resistance of the voltmeter?

b) What is the percentage of error in the voltage
measurement?

Figure P4.73

4k 100 O

476 The Wheatstone bridge in the circuit shown in
eseice Fig. P4.76 is balanced when R; equals 1200 0. If the
d . galvanometer has a resistance of 30 1 how much
current will the galvanometer detect when the
bridge is unbalanced by setting R; to 1204 0?
(Hint: Find the Thévenin equivalent with respect to
the galvanometer terminals when R, = 1204 Q.
i Note that once we have found thjs Thévenin equiv-
a) What is the resistance of the ammeter? alent, it is easy to find the amount of unbalanced
b) What is the percentage of error in the current current in the galvanometer branch for different
measurement? galvanometer movements.)

4.74 When an ammeter is used to measure the current Iy
Fseice  in the circuit shown in Fig. P4.74, it reads 10 A.




Figure P4,76

e

R 1200 Q

900 0 Galvanometer Ry

R,

Section 4.11

4,77 Find the Thévenin equivalent with respect to the
rsPICE  terminals a,b in the circuit in Fig, P4.77.

Figure P4.77

10 O 120

10 iy

4.78 Find the Thévenin equivalent with respect to the
eseice  terminals a,b for the circuit seen in Fig. P4.78.

Figure P4.78

100 120
+—W—=8 MWA—8 3
50
500§ l 250
650, |
&
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Section 4.12

4.79 The variable resistor (R,) in the circuit in Fig. P4.79

psfice js adjusted until the power dissipated in the resistor
is 1.5W. Find the values of R, that satisfy this condi-
tion.

Problems 149

Figure P4.79
508 60 0

100 V CD
- 601,

4.80 The variable resistor (Ry) in the circuit in Fig, P4.80
esrice s adjusted for maximum power transfer to Ry,

L

a) Find the numerical value of Ry.
b) Find the maximum power transferred to R .

Figure P4.80

40
AW\
80
. —
400 R )20
20
& *— W\

4.81 The variable resistor in the circuit in Fig. P4.81 is
rseice  adjusted for maximum power transfer to R,,.

a) Find the value of R,

b) Find the maximum power that can be delivered
to R,.

Figure P4.81
4kQ 1.25 kQ)

4.82 What percentage of the total power developed in
rsrice the circuit in Fig. P4.81 is delivered to R, when R, is
set for maximum power transfer?

4.83 A variable resistor R, is connected across the ter-

it minals a,b in the circuit in Fig. P4.72. The variable
resistor is adjusted until maximum power is trans-
ferred to R,,.

a) Find the value of R,
b) Find the maximum power delivered to R,,.

¢) Find the percentage of the total power devel-
oped in the circuit that is delivered to R,,.




150

4.84

4.85

PSPICE

4.86

PSPICE

4.87

PSPICE

4.88

PSPICE

Techniques of Circuit Analysis

a) Calculate the power delivered for each value of
R, used in Problem 4.70.

b) Plot the power delivered to R, versus the resist-
ance R,

¢) At what value of R, is the power delivered to R,
a maximum?

The variable resistor (R,) in the circuit in Fig. P4.85
is adjusted for maximum power transfer to R,.
What percentage of the total power deveioped in
the circuit is delivered to R,?

Figure P4.85

2.5 Vi

The variable resistor (R,) in the circuit in Fig. P4.86
is adjusted for maximum power transfer to R,,.

a) Find the value of R,

b) Find the maximum power that can be delivered
to R,.

Figure P4.86

144,
A
10 20
——WN\—+¢ +—WN\—»
200v( f*l 200 R, C_)loov
40 10
A\ . L A% %

What percentage of the total power developed in
the circuit in Fig. P4.86 is delivered to R,?

The variable resistor (R,) in the circuit in Fig. P4.88
is adjusted until it absorbs maximum power from
the circuit.

a) Findthe value of R,,.

4.89

PSPICE

b) Find the maximum power.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to R,,.

Figure P4.88

The variable resistor in the circuit in Fig. P4.89 is
adjusted for maximum power transfer to R,.

a) Find the numerical value of R,.
b) Find the maximum power delivered to R,

¢) How much power does the 280 V source deliver
to the circuit when R, is adjusted to the value
found in (a)?

Figure P4.89

1)05125 v,

4.90

PSPICE

a) Find the value of the variable resistor R, in the
circuit in Fig. P4.90 that will result in maximum
power dissipation in the 6 resistor. (Hint:
Hasty conclusions could be hazardous to your
career.)

b) What is the maximum power that can be deliv-
cred to the 6 ) resistor?

Figure P4.90

I

30V 60




Section 4.13

491 a) Use the principle of superposition to find the
voltage v in the circuit of Fig. P4.91.

b) Find the power dissipated in the 20 () resistor.

Figure P4.91
6 A

()
_/

4.92 Use the principle of superposition to find the volt-
age v in the circuit of Fig. P4.92.

Figure P4.92

o) if]
VA

N

0
WA~

4.93 Use the principle of superposition to find the cur-
PSPICE rent i, in the circuit in Fig. P4.93.

Figure P4.93

50 100
YWV \ 4 M
fri
asv( )4, 400 Niov
150 300
WA ® WA
8 A
(<)
/

4.94 Use the principle of superposition to find v, in the
psrice  circuit in Fig. P4.94.
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Figure P4.94

54
SN
\/
5kQ
W\ o
L T B
a5V T mA 20k v,

@ |

4.95 Use superposition to solve for i, and v, in the cir-
eseice cuit in Fig. P4.95.

Figure P4.95

4.96 Use the principle of superposition to find the cur-
eseice rent 7, in the circuit shown in Fig. P4.96.

Figure P4.96
180
— Ao .
100
45A3120 2OA$14Q %150
lj" S50V

4.97 a) In the circuit in Fig. P4.97, before the 10 mA cur-

PSPICE rent source is attached to the terminals ab, the
current i, is calculated and found to be 1.5 mA.
Use superposition to find the value of i, after
the current source is attached.

b) Verify your solution by finding i, when all three
sonrces are acting simultaneously.

Figure P4.97
10 mA

a 2k b

4

20V 10 k€ sl 18 k) SmA
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Technigues of Circuit Analysis

Sections 4.1-4.13

4.98

4.99

Laboratory measurements on a dc voltage source
yield a terminal voltage of 75 V with no load con-
nected to the source and 60 V when loaded with a
20 (} resistor.

a) What is the Thévenin equivalent with respect to
the terminals of the dc voltage source?

b) Show that the Thévenin resistance of the source
is given by the expression

where

the Thévenin voltage,

e
Il

v, = the terminal voltage corresponding

to the load resistance Rj.

Two ideal dc voltage sources are connected by elec-
trical conductors that have a resistance of ¥ (0/m, as
shown in Fig. P4.99. A load having a resistance of
R () moves between the two voltage sources. Let x
equal the distance between the load and the source
¥y, and let L equal the distance between the sources.

a) Show that
_ ’UlRL + R(’Uz - ’Ul)x
RL + 2rLx — 2rx*’

b) Show that the voltage » will be minimum when

L R
X = Hl:”_q)l + \/;1?)2 - ﬂ('l)l = 1)2)2].

¢) Find x when L = 16km, »; = 1000V, v, =
1200V,R=39 Q,andr =5 X 10 Q/m.

d) What is the minimum value of » for the circuit
of part (¢)?

Figure P4.99
fe— X —
rQd/m- rQ/m
2 P
.. 2 R (movable
Y1 b% load) b2
-,
r (O /m = r Q/m _D
-— L i

4.100 Assume your supervisor has asked you to determine

the power developed by the 16 V source in the circuit
in Fig. P4.100. Before calculating the power developed
by the 16 V source, the supervisor asks you to submit a
proposal describing how you plan to attack the prob-
lem. Furthermore, he asks you to explain why you
have chosen your proposed method of solution.

a) Describe your plan of attack, cxplaining your
reasoning.

b) Use the method you have outlined in (a) to find
the power developed by the 16 V source.

Figure P4.100

4.101

PSPICE

16V

20

Find the power absorbed by the 2 A current source
in the circnit in Fig, P4.101.

Figure P4.101

W

0 8Q
AV

6

30

4.102 Find v,, 5, and v, in the circuit in Fig. P4.102.

PSPICE

Figure P4.102
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4103 Find { in the circuit in Fig. P4.103. 4.105 Assume the nominal values for the components in
PSPICE gracnen the circunit in Fig. 4.69 are: Ry =25Q; R, = 5 Q;
Figure P4.103 Thce Ry = S0 Q5 R, =75 01, = 12 Ajand I, = 16 A.

10 Predict the values of vy and v, if I, decreases to

11 A and all other components stay at their nominal
; 50

values. Check your predictions using a tool like
PSpice or MATLAB.

4.106 Repeat Probiem 4.105 if I, increases to 17 A, and

10 §2 QO é'&?fzrﬂ#g all other components stay at their nominal values.

“meice . Check your predictions using a tool like PSpice or

amov( Tt .——,i«%——.. MATLAB.
_ fif
0% £20 4307 Repeat Problem 4105 if /,, decreases to 11 A and
) 1O X paacicht, 1 g Increases to 17 A. Check your predictions using
“wsece a tool like PSpice or MATLAB.

mf

50
j 4.108 Use the results given in Table 4.2 to predict the val-

o % JRACHGAL. ues of v; and v, if R; and R; increase to 10% above

their nominal values and R, and R, decrease to

4,104 For the circuit in Fig. 4.69 derive the expressions for 10% below their nominal values. /4 and 7, Temain
Jesien  the sensitivity of vy and v, to changes in the source at their nominal values. Compare your predicted

currents /) and /. values of v; and v, with their actual values.
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1 Be able to name the five op amp terminals and
describe and use the voltage and current
constraints and the resulting simplifications
they lead to in an ideal op amp.

2 Be able to analyze simple circuits containing
ideal op amps, and recognize the following op
amp circuits: inverting amplifier, summing

amplifier, noninverting amplifier, and difference

amplifier.

3 ‘Understand the more realistic model for an op
amp and be able to use this model to analyze
simple circuits containing op amps.
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The Operational Amplifier

The electronic circuit known as an operational amplifier has
become increasingly important. However, a detailed analysis of
this circuit requires an understanding of electronic devices such
as diodes and transistors. You may wonder, then, why we are
introducing the circuit before discussing the circuit’s electronic
components. There are several reasons. First, you can develop an
appreciation for how the operational amplifier can be used as a
circuit building block by focusing on its terminal behavior. At an
introductory level, you need not fully understand the operation
of the electronic components that govern terminal behavior.
Second, the circuit model of the operational amplifier requires
the use of a dependent source. Thus you have a chance to use this
type of source in a practical circuit rather than as an abstract cir-
cuit component. Third, you can combine the operational ampli-
fier with resistors to perform some very useful functions, such as
scaling, summing, sign changing, and subtracting. Finally, after
introducing inductors and capacitors in Chapter 6, we can show
you how to use the operational amplifier {o design integrating
and differentiating circuits.

Our focus on the terminal behavior of the operational ampli-
fier implies taking a black box approach to its operation; that is,
we are not interested in the internal structure of the amplifier nor
in the currents and voltages that exist in this structure. The impor-
tant thing to remember is that the internal behavior of the ampli-
fier accounts for the voltage and current constraints imposed at
the terminals. (For now, we ask that you accept these constraints
on faith.)



Practical Perspective

Strain Gages

How could you measure the amount of bending in a metal bar
such as the one shown in the figure without physically con-
tacting the bar? One method would be to use a strain gage. A
strain gage is a type of transducer. A transducer is a device
that measures a quantity by converting it into a more con-
venient form. The quantity we wish to measure in the metal
bar is the bending angle, but measuring the angle directly is
quite difficult and could even be dangerous. Instead, we
attach a strain gage (shown in the line drawing here) to the
metal bar. A strain gage is a grid of thin wires whose resist-
ance changes when the wires are lengthened or shortened:

AL
AR = 2R~
L

where R is the resistance of the gage at rest, AL/L is the
fractional lengthening of the gage (which is the definition of
“strain”), the constant 2 is typical of the manufacturer’s gage
factor, and AR is the change in resistance due to the bending
of the bar. Typically, pairs of strain gages are attached to
opposite sides of a bar. When the bar is bent, the wires in one
pair of gages get longer and thinner, increasing the resist-
ance, while the wires in the other pair of gages get shorter
and thicker, decreasing the resistance.

But how can the change in resistance be measured? One
way would be to use an chmmeter. However, the change in
resistance experienced by the strain gage is typically much
smaller than could be accurately measured by an ohmmeter.
Usually the pairs of strain gages are connected to form a
Wheatstone bridge, and the voltage difference between two
legs of the bridge is measured. In order to make an accurate

measurement of the voltage difference, we use an operational
amplifier circuit to amplify, or increase, the voltage differ-
ence. After we introduce the operational amplifier and some
of the important circuits that employ these devices, we will
present the circuit used together with the strain gages for
measuring the amount of bending in a metal bar.

The operational amplifier circuit first came into existence
as a basic building block in analog computers. It was referred
to as operational because it was used to implement the math-
ematical operations of integration, differentiation, addition,
sign changing, and scaling. In recent years, the range of
application has broadened beyond implementing mathemati-
cal operations; however, the original name for the circuit per-
sists. Engineers and technicians have a penchant for creating
technical jargon; hence the operational amplifier is widely
known as the op amp.
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Figure 5.1 4 The eight-lead DIP package (top view).

Nominverting Positive power supply
input —le+
. Output
Inverting — o
input

Negative power supply

Figure 5.2 & The circuit symbol for an operational
amplifier (op amp).

2 VCC .

L
T

Common node

Figure 5.4 A Terminal voltage variables.

5.1 Operational Amplifier Terminals

Because we are stressing the terminal behavior of the operational ampli-
fier (op amp), we begin by discussing the terminals on a commercially
available device. In 1968, Fairchild Semiconductor introduced an op amp
that has found widespread acceptance: the uA741. (The pA prefix is used
by Fairchild to indicate a microcircuit fabrication of the amplifier.) This
amplifier is available in several different packages. For our discussion, we
assume an eight-lead DIP.! Figure 5.1 shows a top view of thc package,
with the terminal designations given alongside the terminals. The termi-
nals of primary interest are

- inverting input

» noninverting input

« output

+ positive power supply (V™)
+ megative power supply (V)

The remaining three terminals are of little or no concern. The offset null ter-
minals may be used in an auxiliary circuit to compensate for a degradation
ia performance because of aging and imperfections. However, the degrada-
tion in most cases is negligible, so the offset terminals often are unused and
play a secondary role in circuit analysis. Terminal 8 is of no interest simply
because it is an unused terminal, NC stands for no connection, which mcans
that the terminal is not connected to the amplifier circuit.

Figure 5.2 shows a widely used circuit symbol for an op amp that con-
tains the five terminals of primary interest. Using word labels for the ter-
minals is inconvenient in circuit diagrams, so we simplify the terminal
designations in the following way. The noninverting input terminal is
labeled plus (+), and the inverting input terminal is labeled minus (-).
The power supply terminals, which are always drawn outside the friangle,
are marked V" and V™. The terminal at the apex of the triangular box is
always understood to be the output terminal. Figure 5.3 summarizes these
simplified designations.

5.2 Terminal Voltages and Currents

We are now ready to introduce the terminal voltages and currents used to
describe the behavior of the op amp. The voltage variables are measured
from a common reference node.? Figure 5.4 shows the voltage variables
with their reference polarities.

1 DTP is an abbreviation for dual in-line package. This means that the terminals on each side of
the package are in line, and that the terminals on opposite sides of the package also line up.

2 The common node is external to the op amp. [t is the reference terminal of the circuit in which
the op amp is embedded.



All voltages are considered as voltage rises from the common node.
This convention is the same as that used in the node-voltage method of
analysis. A positive supply voltage (Vq¢) is connected between V* and
the common node. A negative supply voltage (—Vcc) is connected
between V™ and the common node. The voltage between the inverting
input terminal and the common node is denoted #,,. The voltage between
the noninverting input terminal and the common node is designated as
v,. The voltage between the output terminal and the common nodec is
denoted v,.

Figure 5.5 shows the current variables with their reference directions.
Note that all the current reference directions are into the terminals of the
operational amplifier: i, is the current into the inverting input terminal; i,
is the current into the noninverting input terminal; ¢, is the current into
the output terminal; i+ is the current into the positive power supply termi-
nal; and ;.- is the current into the negative power supply terminal.

The terminal behavior of the op amp as a linear circuit element is
characterized by constraints on the input voltages and the input currents,
The voltage constraint is derived from the voltage transfer characteristic
of the op amp integrated circuit and is pictured in Fig. 5.6.

The voltage transfer characteristic describes how the output voltage
varies as 4 function of the input voltages; that is, how voltage is transferred
from the input to the output. Note that for the op amp, the output voltage
is a function of the difference between the input voltages, v, — v,. The
equation for the voltage transfer characteristic is

- VCC A('vp - 1),,) < _VCCa
Vo = A(vp — vn) —Vee = A(vp - 'U,,) = +Vce, (5.1)
+ Vee A, — V) > Ve,

We see from Fig. 5.6 and Eg. 5.1 that the op amp has three distinct
regions of operation. When the magnitude of the input voltage difference
(lv, — vy,|) is small, the op amp behaves as a linear device, as the output
voltage is a linear function of the input voltages. Outside this linear region,
the output of the op amp saturates, and the op amp behaves as a nonlinear
device, because the output voltage is no longer a linear function of the
input voltages. When it is operating linearly, the op amp’s output voltage is
equal to the difference in its input voltages times the multiplying constant,
or gain, A.

When we confine the op amp to its linear operating region, a con-
straint is imposed on the input voltages, v, and v,,. The constraint is based
on typical numerical values for V- and A in Eq. 5.1. For mosl op amps, the
recommended dc power supply voltages seldom exceed 20V, and the gain,
A, is rarely less than 10,000, or 10 We see from both Fig.5.6 and Eq. 5.1
that in the Jinear region, the magnitude of the input voltage difference
(lv, — v,/) must be less than 20/10°, or 2 mV.
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i
Vee ™= ic

+

Figure 5.5 & Terminal current variables.

vO
v Positive saturation
cer
Linear region
| |
(“VCC /A) (VCC /A) (vp - 'l),,)
Vee

Negative saturation

Figure 5.6 & The voltage transfer characteristic of an

op amp.
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Input voltage constraint for ideal op amp &

Typically, node voltages in the circuits we study are much larger than
2 mV, so a voltage difference of less than 2 mV means the two voltages are
essentially equal. Thus, when an op amp is constrained to its linear operat-
ing region and the node voltages are much larger than 2 mV, the constraint
on the input voltages of the op amp is

Vp = Uy (5.2)

Note that Eq. 5.2 characterizes the relationship between the input voltages
for an ideal op amp; that is, an op amp whose value of A is infinite.

The input voltage constraint in Eq. 5.2 is called the virtual short
condition at the input of the op amp. It is natural to ask how the virtual
short is maintained at the input of the op amp when the op amp is
embedded in a circuit, thus ensuring linear operation. The answer is that
a signal is fed back from the output terminal to the inverting input ter-
minal. This configuration is known as negative feedback because the
signal fed back from the output subtracts from the input signal. The
negative feedback causes the input voltage difference to decrease.
Because the output voltage is proportional to the input voltage differ-
ence, the output voltage is also decreased, and the op amp operates in
its linear region.

If a circuit containing an op amp does not provide a negative feedback
path from the op amp output to the inverting input, then the op amp will
normally saturate. The difference in the input signals must be extremely
small to prevent saturation with no negative feedback. But even if the cir-
cuit provides a negative feedback path for the op amp, linear operation is
not ensured. So how do we know whether the op amp is operating in its
linear region?

The answer is, we don’t! We deal with this dilemma by assuming lin-
ear operation, performing the circuit analysis, and then checking our
results for contradictions. For example, suppose we assume that an op
amp in a circuit is operating in its lincar region, and we compute the
output voltage of the op amp fo be 10 V. On examining the circuitf, we
discover that V¢ is 6 V, resulting in a contradiction, because the op
amp’s output voltage can be no larger than V.. Thus our assumption
of linear operation was invalid, and the op amp output must be satu-
rated at 6 V.

We have identified a constraint on the input voltages that is based
on the voltage transfer characteristic of the op amp integrated circuit,
the assumption that the op amp is restricted to its linear operating
region and fo typical values for V¢ and A. Equation 5.2 represents the
voltage constraint for an ideal op amp, that is, with a value of A that is
infinite.

We now turm our attention to the constraint on the input currents.
Analysis of the op amp integrated cirenit reveals that the equivalent resist-
ance seen by the input terminals of the op amp is very large, typically 1 MQ



or more. Ideally, the equivalent input resistance is infinite, resulting in the
current constraint

P L {(5.3)

Note that the current constraint is not based on assuming the op amp is
confined to its linear operating region as was the voltage coustraint.
Together, Egs. 5.2 and 5.3 form the constraints on terminal behavior that
define our ideal op amp model.

From Kirchhoff's current law we know that the sum of the currents
entering the operational amplifier is zero, or

By + iy + iy i+ i = 0. L (5.4)

Substituting the constraint given by Eq. 5.3 into Eq. 5.4 gives

io = _(ic+ + ic_)' (5'5)

The significance of Eq. 5.5 is that, even though the current at the input ter-
minals is pegligible, there may still be appreciable current at the output
terminal.

Before we start analyzing circuits containing op amps, let’s further sim-
Pplify the circuit symbol. When we know that the amplifier is operating within
its linear region, the dc voltages £V, do not enter into the circuit equations.
In this case, we can remove the power supply terminals from the symbol
and the dc power supplies from the circuit, as shown in Fig 5.7. A word of
caution: Because the power supply terminals have been omitted, there is a
danger of inferring from the symbol that i, + i, + i, = 0. We have already
noted that such is not the case; that is, i, + i, + i, + i + i~ = 0. In other
words, the ideal op amp model constraint that i, = i, = 0 does not imply
that i, = 0.

Note that the positive and negative power supply voltages do not
have to be equal in magnitude. In the linear operating region, v, must lie
between the two supply voltages. For example, if V© =15V and
V™ =-10V,then —10V = y, = 15 V. Be aware also that the value of A
is not constant under all operating conditions. For now, however, we
assume that it is. A discussion of how and why the value of A can change
must be delayed until after you have studied the electronic devices and
components used to fabricate an amplifier.

Example 5.1 illustrates the judicious application of Lgs. 5.2 and 5.3.
When we use these equations to predict the behavior of a circuit contain-
ing an op amp, in effect we are using an ideal mode/ of the device.
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< Input current constraint for ideal op amp

Figure 5.7 & The op amp symbol with the power supply
terminals removed.
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The Operational Amplifier

Analyzing an Op Amp Circuit

The op amp in the circuit shown in Fig. 5.8 is ideal.
a) Calculate v,ifv, = 1 Vand v, = 0 V.

b) Repeat (a) forv, = 1V andv, =2 V.

¢) If v, = 1.5V, specify the range of v, that avoids

amplifier saturation.

-

fun 100 kQ

A
25k} 10V
phiis L
s +
-10V
Dy " 7,

Figure 5.8 & The circuit for Example 5.1.

Solution

a) Because a negative feedback path exists from the

op amp’s output to its inverting input through the
100 k() resistor, let’s assume the op amp is con-
fined to its linear operating region. We can write
a node-voltage equation at the inverting input
terminal. The voltage at the inverting input termi-
nal is 0,as v, = v, = 0 from the connected volt-
age source, and v, = v, from the voltage
constraint Eq. 5.2. The node-voltage equation at
v, is thus

s = Lo = in-

From Ohm’s law,

e -1
s = (vz\ ’U,,)/25 - 25 I‘ﬂ_A,

ilOO = (7)0 - ?),,)/100 = Q)U/].OO mA.

The current constraint requires i, = 0.
Substituting the values for the three currents
into the node-voltage equation, we obtain

Hence, v, is —4 V. Notec that because v, lies
between & 10V, the op amp is in its linear
region of operation.

b) Using the same process as in (a), we get

Vp =W =0, =2V,

. _Dﬂ_v,,_1—2_ ]_
5= T os T 5 T s ™A

; =vo—v"=vo—2mA
w 100 100 ’

Irs = —j00-

Therefore, v, = 6 V. Again, v, lies within £10 V.

¢) Asbefore, v, = v, = vy, andiys = —ijg. Because
v, =15V,
1.5 - Vb VU, — Vp
25 100

Solving for vy, as a function of v, gives

oy = %(6 + w,).

Now, if the amplifier is to be within the linear
region of operation, —10V =<4y, <10V.
Substituting these limits on v, into the expres-
sion for vy, we see that v, is limited to

—08V =v, <32V,
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Objective 1—Use voltage and current constraints in an ideal op amp

5.1  Assume that the op amp in -the:circuit shown 80 kO
is ideal. ; it

a) Calculate v, for the following values of vg: 16 kQ
0.4,2.0,3.5, —0.6, —1.6, and —2.4 V. |

b) Specify the range of v, required to avoid :

amplifier saturation. s

Answer: (a) ~2, —10,~15,3,8,and 10V; |

b) 2V=v=3 V. v

§

- NOTE: Also try Chapter Problems 5.1-5.3.

5.3 The Inverting-Amplifier Circuit

We are now ready to discuss the operation of some important op amp cir-
cuits, using Eqs. 5.2 and 5.3 to model the behavior of the device itself.
Figure 5.9 shows an inverting-amplifier circuit. We assume that the op amp
is operating in its linear region. Note that, in addition to the op amp, the
circuit consists of two resistors (R, and Ry), a voltage signal source (v;),
and a short citcuit connected between the noninverting input terminal and
the common node.

We now analyze this circuit, assuming an ideal op amp. The goal is to
obtain an expression for the output voltage, »,, as a function of the source
voltage, »,. We employ a single node-voltage equation at the inverting ter-

minal of the op amp, given as Figure 5.9 & An inverting-amplifier circuit.

i+ i =i, (5.6)

The voltage constraint of Eq. 5.2 sets the voltage at v,, = 0, because the
voltage at v, = 0. Therefore,

h Vs

i, = E, (5.7)

5 Uo

= RTf (5.8)
Now we invoke the constraint stated in Eq. 5.3, namely,

i, = 0. (5.9)
Substituting Egs. 5.7-5.9 into Eq. 5.6 yields the sought-after result:
—Ry ! A ;
V= Uy (5.10) < Inverting-amplifier equation
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Note that the output voltage is an inverted, scaled replica of the input. The
sign reversal from input to output is, of course, the reason for referring to the
circuit as an inverring amplifier. The scaling factor, or gain, is the ratio Ry /R;.
The result given by Eq. 5.10 is valid only if the op amp shown in the
circuit in Fig. 5.9 is ideal; that is, if A is infinite and the input resistance is
infinite. For a practical op amp, Eq. 5.10 is an approximation, usually a
good one. (We say more about this later.) Equation 5.10 is important
because it tells us that if the op amp gain A is large, we can specify the gain
of the inverting amplifier with the external resistors R, and R;. The upper
limit on the gain, R, /R,, is determined by the power
supply voltages and the value of the signal voltage v,. If we assume equal

power supply voltages, that is, V" = =V~ = V¢, we get
f f Vee
V| =< Vee —v| < Ve - =< |— 5.11
[, cc R cc R, v, (5.13)

For example, if Vo¢ = 15 V and v, = 10 mV, the ratio R; /R, must be less
than 1500.

In the inverting amplifier circuit shown in Fig. 5.9, the resistor Ry pro-
vides the negative feedback connection. That is, it connects the output ter-
minal to the inverting input terminat. If R, is removed, the feedback path
is opened and the amplifier is said to be operating open loop. Tigure 5.10
shows the open-loop operation.

Opening the feedback path drastically changes the behavior of the
circuit. First, the output voltage is now

Figure 5.10 .& An inverting amplifier operating v, = —Ap
o Hn>

= (5.12)
open {oop.

assuming as before that VY = =V~ = V¢; then |v,| < V¢ /A for linear
operation. Because the inverting input currcut is almost zero, the voltage
drop across R, is almost zero, and the inverting input voltage nearly equals
the signal voltage, v,; that is, »,, = v,. Hence, the op amp can operate open
loop in the linear mode only if vy < Vpe/A. If [vg] > Ve /A, the op amp
simply saturates. In particular, if v; < —V-/A, the op amp saturates at
+Vee, and if v > Vo /A, the op amp saturates at —Vyc. Because the
relationship shown in Eq. 5.12 occurs when there is no feedback path, the
value of A is often called the open-loop gain of the op amp.

Objective -?.'—B'e'-ab\le'ito.-an'éilyze-sji'mplé- ci'rcuils'-cbntai_ning_ itieal qp,;a‘mps;_ i

5.2  The source voltage v, in the arcmt m B G mverrmg amphfler to operate in its lmear
' Assessment Problem 5. 115 ~640mV.The . . reglon‘7 L : -
- 8OkQ feedback resistor isreplaced byavari- S
able resistor R, What range ofR aIlows the_- s _'AnSWer:' 0= 1'Rx =250kQ.

NOTE Also try Chapter Problems 5 8 and5 9.



5.4 The Summing-Amplifier Circuit

The output voltage of a summing amplifier is an inverted, scaled sum of
the voltages applied to the input of the amplifier. Figure 5.11 shows a sum-
ming amplifier with three input voltages.

We obtain the relationship between the output voltage v, and the
three input voltages, v,, vy, and v,, by summing the currents away from the
inverting input terminal:

Uy — Va Uy — Wy Vy — Ve Yy — Y :
+ + 3 + +1i,=0. 5.13
R, Ry R, R; s (5-13)

Assuming an ideal op amp, we can use the voltage and current constraints
together with the ground imposed at v, by the circuit to see that
v, = v, = 0and i, = 0. This reduces Eq. 5.13 to

R R R
CE e e (5.14)

Equation 5.14 states that the output voltage is an inverted, scaled sum of
the three input voltages.
If R, = Ry, = R. = R;, then Eq.5.14 reduces to

s

= (02 T 0 T V). (5.15)

Vo =

Finally, if we make Ry = R;, the output voltage is just the inverted sum of
the input voltages. That is,

v, = —(v, + v + V). (5.16)

Although wec illustrated the summing amplifier with just three input
signals, the number of input voltages can be increased as needed. For exam-
ple, you might wish to sum 16 individually recorded audio signals to form a
single audio signal. The summing amplifier configuration in Fig. 5.11 could
include 16 different input resistor values so that cach of the input andio
tracks appears in the output signal with a different amplification factor.
The summing amplifier thus plays the role of an audio mixer. As with
inverting-amplifier circuits, the scaling factors in summing-amplifier cir-
cuits are determined by the external resistors Ry, R,, Ry, R, .- ., R,,.

5.4  The Summing-Amplifier Circuit 163

v vy v v

Figure 5.11 & A summing amplifier.

4 Inverting-summing amplifier equation
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.3 a) Find v, in the circuit shown if v, = 0.1 V (¢) 0.5V;
and v, = 0.25 V. (d) —2.5,0.25,and 2 V.
b) If », = 0.25 V. how large can v, be before _
the op amp saturates? 5 k0 250 kQ
c) If v, = 0.10 V, how large can »;, be before WA
the op amp saturates? s
d) Repeat (a), (b), and (c) with the polarity of ) ) 25 kO
Py reversed.
Dy i
Answer: (a) —7.5V;
(b) 0.15 Vs v v

NOTE: Alsowry Chapter Problems 5.12, 5.13, and 5.15.

5.5 The Noninverting-Amplifier Circuit

Figure 5.12 depicts a noninverting-amplifier circuit. The signal source is
represented by v, in series with the resistor R, . In deriving the expression
for the output voltage as a function of the source voltage, we assume an
ideal op amp operating within its linear region. Thus, as before, we use
Egs. 5.2 and 5.3 as the basis for the derivation. Because the op amp input
current is zero, we can write v, = v, and, from Eq. 5.2, v, = v, as well.
Now, because the input current is zero (i, = i, = 0), the resistors R; and
R; form an unloaded voltage divider across v,. Therefore,

y e o Vs
Figure 5.12 4. A noninverting amplifier, I s Uk 517
Solving Eq. 5.17 for v, gives us the sought-after expression:
S o . Ry ¥ Ry
Noninverting-amplifier equation & DN Tug. (5.18)
8

Operation in the linear region requires that

R, + R,
Ry

Vee
Ve

Note again that, because of the ideal op amp assumption, we can
express the output voltage as a function of the input voltage and the exter-
nal resistors—in this case, R, and Ry.
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.4  Assume that the op amp in the circuit shown 63 kO
is ideal.

a) Find the output voltage when the variable
resistor is set to 60 k€.

b) How large can R, be before the amplifier
saturates?
Answer: (a) 48 V:
(b) 75 kQ.

NOTE: Also try Chapter Problems 5,17 and 5.18.

5.6 The Difference-Amplifier Circuit

The output voltage of a difference amplifier is proportional to the differ-
ence between the two input voltages. To demonstrate, we analyze the dif-
ference-amplifier circuit shown in Fig. 5.13, assuming an ideal op amp
operating in its linear region. We derive the relationship between v, and
the two input voltages v, and vy, by summing the currents away from the
inverting input node:

Uy — Uy + Vy = Yy
Ra Rb

+i, =0, (5.19)

Because the op amp is ideal, we use the voltage and current constraints to  Figure 5.13 2. A difference amplifier.
see that

I —"1 =) (5.20)
. & = —}zd_ 521
v,,—vp—Rc+Rdvb. (5.21)
Combining Egs. 5.19,5.20, and 5.21 gives the desired relationship:
Ry(Ry + R R
_ RReiteRe) R (5.22)

Vo = % Vye
: Ra(Rc+Rd) 1 R, i

Equation 5.22 shows that the output voltage is proportional to the dif-
ference between a scaled replica of v, and a scaled replica of v,. In general
the scaling factor applied to vy is not the same as that applied to v,
However, the scaling factor applied to each input voltage can be made
equal by setting

=== (5.23)
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When Eq. 5.23 is satisfied, the expression for the output voltage reduces to

R
Simplified difference-amplifier equation b V= Fb(-'ub. — 0, (5.24)
a 5

Equation 5.24 indicates that the output voltage can be made a scaled
replica of the difference between the input voltages v, and v,. As in the
previous ideal amplifier circuits, the scaling is controlled by the external
resistors. Furthermore, the relationship between the output voltage and
the input voltages is not affected by connecting a nonzero load resistance
across the output of the amplifier.

Ob]ectwe 2-—-Be able to analyze sumple clrcmts contammg ideal op amps

5.5 a) In the dlfference amphf;er shown
v, = 4.0 V. What range of values for 'va w111
o Iesult n lmear operauon‘?

' b) Repeat (a) with the 20 k() remstor _' e
decreased to 8 kQ. o

Answer: (a) 2 V'<' "v = 6V '

-NOTE Also try Chapter Problems 5 24—5 26

The Difference Amplifier—Another Perspective

We can examine the behavior of a difference amplifier more closely if we
redefine its inputs in terms of two other voltages. The first is the
differential mode input, which is the difference between the two input
voltages in Fig. 5.13:

Vam = Vp — Va (5.25)

Thé second is the common mode input, which is the average of the two
input voltages in Fig. 5.13:

Vem = (0, + Dp)/2. (5.26)



Using Eqs. 5.25 and 5.26, we can now represent the original input voltages,
v, and vy, in terms of the differential mode and common mode voltages,
Dam aNA V'

1
Yy = Vo — Evdm, {5.27)
Vp = Vem T ’2"de. (5.28)

Substituting Eqs. 5.27 and 5.28 into Eq. 5.22 gives the output of the dif-
ference amplifier in terms of the differential mode and common mode
voltages:

R,Rs — RoR.
YVo=| %571 1 5 |Ym
Ra(Rc + Rd)

. [Rd(Ra + Ry) + Ry(Re + Rd)]vdm, (5.29)

ZRB(RC + Rd)

= AmVem + AdmVam> (5-30)

where Aq, is the common mode gain and A,y is the differential mode
gain. Now, substitute R, = R, and R4 = R, which are possiblc values for
R, and R, that satisfy Eq. 5.23, into Eq. 5.29:

v, = (0)vem + (%:)vdm- (5.31)

Thus, an ideal difference amplifier has A, = 0, amplifies only the differ-
ential mode portion of the input voltage, and eliminates the common mode
portion of the input voltage. Figure 5.14 shows a difference-amplifier
circuit with differential mode and common mode input voltages in place of
v, and vy,

Equation 5.30 provides an important perspective on the function of
the difference amplifier, since in many applications it is the differential
mode signal that contains the information of interest, whereas the com-
mon mode signal is the noise found in all electric signals. For example, an
electrocardiograph electrode measures the voltages produced by your
body to regulate your heartbeat. These voltages have very small magni-
tudes compared with the electrical noise that the electrode picks up from
sources such as lights and electrical equipment. The noise appears as the
common mode portion of thc measured voltage, whereas the heart rate
voltages comprise the differential mode portion. Thus an ideal difference
amplifier would amplify only the voltage of interest and would suppress
the noise.

5.6  The Difference-Amplifier Circuit

Figure 5.14 4 A difference amplifier with common
mode and differential mode input voltages.

167
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Measuring Difference-Amplifier Performance—
The Common Mode Rejection Ratio
An ideal difference amplifier has zero common mode gain and nonzero
(and usually large) differential mode gain. Two factors have an influence
on the ideal common mode gain—resistance mismatches (that is, BEq. [5.23]
is not satisfied) or a nonideal op amp (that is, Eq. [5.20] is not satisfied). We
focus here on the effect of resistance mismatches on the performance of a
diffecrence amplifier.

Suppose that resistor values are chosen that do not precisely satisfy
Eq.5.23. Instead, the relationship among the resistors R,, Ry, R, and Ry is

2--o9g
SO
R, = (1 - €)R, and Ry = Ry, (5.32)
or

Ry= (1 — €)Ry, and R, = R, (5.33)

where € is a very small number. We can see the effect of this resistance
mismatch on the common mode gain of the difference amplifier by substi-
tuting Eq. 5.33 into Eq. 5.29 and simplifying the expression for A :

_ Rl = &)Ry — RaRy

Aem = RR, + (1 - O] (39
—€eR
R, + (1 — ©)Ry
—FRb
R TR (5.36)

We can make the approximation to give Eq. 5.36 because ¢ is very small,
and therefore (1 — €) is approximately 1 in the denominator of Eq. 5.35.
Note that, when the resistors in the difference amplifier satisfy Eq. 5.23,
e = 0 and Eq.5.36 gives A, = 0.

Now calculate the effect of the resistance mismatch on the differential
mode gain by substituting Eq. 5.33 into Eq. 5.29 and simplifying the
expression for Agg:

_ (1= e)Ry(R, + Ry) + Ry[R, + (1 — €)Ry]

Adm 2R,[R, + (1 — €)Ry) (33
Ry . (R,
- Ra[l R, + (1 — €)R, (5.38)
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We use the same rationale for the approximation in Eq. 5.39 as in the com-
putation of A.,- When the resistors in the difference amplifier satisfy
Eq.5.23,¢ = 0and Eq. 5.39 gives Aqn = Ryp/R,.

The common mode rejection ratio (CMRR) can be used to measure
how nearly ideal a difference amplifier is. It is defined as the ratio of the
differential modc gain to the common mode gain:

dm

CMRR = Al

(5.40)

The higher the CMRR, the more nearly ideal the difference amplifier. We
can see the effect of resistance mismatch on the CMRR by substituting
Eqgs. 5.36 and 5.39 into Eq. 5.40:

%‘;u — (Re/D/(R, + Ry)]

CMRR = 5.41)
ZeRy/(R, + Ry) (

R.(1 —€/2) + R
~ a( 5/) b (5'42)
—€R,
1+ R,/R
~ —_—:/——a (5.43)

From Eq. 5.43, if the resistors in the difference amplifier are matched,
e = 0 and CMRR = oo. Even if the resistors are mismatched, we can
minimize the impact of the mismatch by making the differential mode
gain (Ry/R,) very large, thereby making the CMRR large.

We said at the outset that another reason for nonzero common mode
gain is a nonideal op amp. Note that the op amp is itself a difference
amplifier, because in the linear operating region, its output is proportional
to the difference of its inputs; that is, », = A(v, — v,). The output of a
nonideal op amp is not strictly proportional to the difference between the
inputs (the differential mode input) but also is comprised of a common
mode signal. Internal mismatches in the components of the integrated cir-
cuit make the behavior of the op amp nonideal, in the same way that the
resistor mismatches in the difference-amplifier circuit make its behavior
nonideal. Even though a discussion of nonideal op amps is beyond the
scope of this text, you may note that the CMRR is often used in assessing
how nearly ideal an op amp’s behavior is. [n fact, it is one of the main ways
of rating op amps in practice.

NOTE: Assess your understanding of this material by trying Chapter
Problems 5.32 and 5.33.

5.6

The Difference-Amplifier Circuit
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B

—

!

Figure 5.15 4 An equivalent circuit for an operational
amplifier.

Figure 5.16 & An inverting-amplifier circuit.

5.7 A More Realistic Model for the
Operational Amplifier

We now consider a more realistic model that predicts the performance of
an op amp in its linear region of operation. Such a model includes threc
modifications to the ideal op amp: (1) a finite input resistance, R;; (2) a
finite open-loop gain, 4; and (3) a nonzero output resistance, R,. The cir-
cuit shown in Fig. 5.15 illustrates the more realistic model.

Whenever we use the equivalent circuit shown in Fig. 5.15, we disre-
gard the assumptions that v, = v, (Eq. 5.2) and i, = i, = 0 (Eq. 5.3).
Furthermore, Eq. 5.1 is no longer valid because of the presence of the
nonzero output resistance, R,. Another way to understand the circuit
shown in Fig. 5.15 is to reverse our thonght process. That is, we can see that
the circuit reduces to the ideal model when R;— co, A — 00, and R, — 0.
For the wA741 op amp, the typical values of R;, 4, and R, are 2 M{}, 10°,
and 75 Q, respectively.

Although the presence of R; and R, makes the analysis of circuits con-
taining op amps more cumbersome, such analysis remains straightforward.
To illustrate, we analyze both an inverting and a noninverting amplifier,
using the equivalent circuit shown in Fig. 5.15. We begin with the inverting
amplifier.

Analysis of an Inverting-Amplifier Circuit Using
the More Realistic Op Amp Model

If we use the op amp circuit shown in Fig, 5.15, the circuit for the inverting
amplifier is the one depicted in Fig. 5.16. As before, our goal is to express
the output voltage, v,, as a function of the source voltage, v,. We obtain
the desired expression by writing the two node-voltage equations that
describe the circuit and then solving the resulting set of equations for v,
In Fig. 5.16, the two nodes are labeled a and b. Also note that v, = 0 by
virtue of the external short-circuit connection at the noninverting input
terminal. The two node-voltage equations are as follows:

Uy — Vs Uy, Uy — YV

R R Ry

node a: =0, (5.44)

Vo — Uy + Vo — A(_an) _

node b: R, R,

0. (5.45)

We rearrange Eqgs. 5.44 and 5.45 so that the solution for v, by Cramer’s
method becomes apparent:

1 1 1 1 1
o o (T Sl ) Pl /PN (5.46)

AL i el - (5.47)
R, R )" TA\R, TR, '
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Solving for v, yields

—A + (Ro/Ry)
R, R, R; R,
1+ A+=2]+[2+1]+22
Rf(l 4 Ri) (Rr‘ : R

Note that Eq. 5.48 reduces to Eq.5.10 as R, — 0, R;— ©0, and A — o©.

If the inverting amplifier shown in Fig. 5.16 were loaded at its output
terminals with a load resistance of R; ohms, the relationship between v,
and v, would become

v, = Vs (5.48)

—A + (R,/Ry)

v, =
R, R, R, R, R, R,
1+ A+2+ 2+ 1+ 221+ )+ 22
Rf<1 R RL) ( RL)( Rf) Ry

Analysis of a Noninverting-Amplifier Circuit Using
the More Realistic Op Amp Model

When we use the equivalent circuit shown in Fig. 5.15 to analyze a nonin-
verting amplifier, we obtain the circuit depicted in Fig. 5.17. Here, the volt-
age source v, in series with the resistance R,, represents the signal
source. The resistor R, denotes the load on the amplifier, Our analysis
consists of deriving an expression for v, as a function of v,. We do so by
writing the node-voltage equations at nodes a and b. At node a,

v, YnT UV w,—1,

=t =& =0, 5.50
Ry R, + R Ry (5-50)
and at node b,
Vp — Yy Vo Vo — A(Up - vn)
T = 0. (5.51)
Ry R; R,

Because the current in R, is the same as in R;, we have

v, = v,

R, R +R,

(5.52)
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Ry
AN
Ry |,
e '!,‘” _‘_ p—
‘ R
ng + 0 b
A (v, — v i
R, 4 =
4 LSt
vy U

Figure 5,17 .2 A noninverting-amplifier circuit.
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We use Eq. 5.52 to eliminate », from Eq. 5.51, giving a pair of equations
involving the unknown voltages v, and v,. This algebraic manipulation
leads to

v L+#+‘l‘ - i =0 1 {5.53)
”R: Rg+Ri Rf oRf gRg+Ri’ l

‘L_L + i+i+i
| RR; +R) R;| "\R R, R

- i AR, (5.54)
~ Y| RAR + Ry) | ‘
Solving for v, yields
[(Ry + R,) + (R:R,/AR;)v,
v, = (5.55)

R¢R, + (R + R)(R; + R)’
AR,

R
R, +="(1+K,)+
i )

where

R.+ R R+ R R/;R.+ Rs;R, + R_R
K, = $ K+ f -‘+ f s f g gt
R; Ry RiR;

Note that Eq. 5.55 reduces to Eq. 5.18 when R,—0, A— o0, and
R;— 0. For the unloaded (R; = o0) noninverting amplifier, Eq. 5.55
simplifies to

[(Rf + Rs) + RsRo/ARi]vg

R, R, + R, L s )
R +—2|1+ R + ARiLRfR‘ + (R + R)(R; + Ry)]

(5.56)

Note that, in the derivation of Eg. 5.56 from Eq. 5.55, K, reduces to
(R; + R,)/R;.
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Objective 3—Understand the more realistic model for an op amp

5.6  The inverting amplifier in the circuit shown has Answer: (a) —19.9985;
an inpuf resistance of 500 k(}, an output resist- (b) 69.995 L V;
ance of 5 kQ, and an open-loop gain of 300,000. (c) 5000 35' Q-
Assume that the amplifier is operating in its 7 :
linear region. (d) 20,0 4V, 5 kQ.

100 k£l
AN

a) Calculate the voltage gain (v, /v,) of the

amplifier. SKO

b) Calculate the value of v, in microvolts when
=iy, _

¢) Calculate the resistance seen by the signal
source (V). - ' L

d) Repeat (a)—(c) using the ideal model for the
Op amp. ' : v v

NOTE: Also iry Chapter Problems 5.42 and 5.43.

Practical Perspective

Strain Gages

Changes 1n the shape of elastic solids are of great importance to engineers
who design structures that twist, stretch, or bend when subjected to exter-
nal forces. An aircraft frame is a prime example of a structure in which engi-
neers must take into consideration elastic strain. The intelligent application
of strain gages requires information about the physical structure of the
gage, methods of bonding the gage to the surface of the structure, and the
orientation of the gage relative to the forces exerted on the structure. Our
purpose here is to point out that strain gage measurements are important in
engineering applications, and a knowledge of electric circuits is germane to
their proper use. :

The circuit shown in Fig. 5.18 provides one way to measure the change
in resistance experienced by strain gages in applications like the one

Vref

Figure 5.18 4 An op amp circuit used for measuring the change in strain gage
resistance.
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described in the beginning of this chapter. As we will see, this circiiit is the
familiar difference amplifier, with the strain gage bridge providing the two
voltages. whose difference is amplified. The pair of strain gages that are
lengthened once the bar is bent have the values R + AR in: the bridge
feeding the difference amplifier, where as the pair of strain gages that .are
shortened have the values R — AR. We will analyze this circuit to discover
the relationship between the output voltage, v, and the change in resist-
ance, AR experienced by the strain gages. '

To begin, assume that the op amp is ideal. Writing the KCL equations at
the inverting and noninverting input terminals of the op amp we see

Vet = Un Un Uni 70
= + , 5,57
R+AR R-AR R, e
Vyet — ¥ » v
Sl S R (5.58)

R—AR R+ AR Ry

Now rearrange Eg. 5.58 to get an expression for the voltage at the nownin-
verting terminal of the op amp:

Vref

_ 1 1 1
o AR)(R ¥YAR R-AR Rf>

v, = (5.59)

As usual, we will assume that the op aimp is opérating in its linear region, so

= v, and the expression for v, in Eq. 5.59 must also be the expression
for v,,. We can thus substitute the right-hand side of Eq. 5.59 in place of v,
in Eq. 5.57 and solve for v,. After some algebraic manipulation,

Ry(2AR)
YV, = RZ_—(AR)z’Urcf. (5.60)

Because the change in resistance experienced by strain gages is very small,
(AR)? << R? s0 R?> — (AR)* ~ R? and Eq. 5.60 becomes

R

Vgies —l'{—zavref» (5.61)

where 6 = AR/R.

NOTE: Assess your understanding of this Practical Perspective by
trying Chapter Problem 5.48.



Summary

Summary 175

The equation that defines the voltage transfer charac-
teristic of an ideal op amp is

'—VC(.‘. A(vp = vn) = e
Vo = A(vp > ?),,), _VCC = A(vp ik Dn) = + vCC)
s VCC, A(DP == /l)n) = ot VCC’

where A is a proportionality constant known as the
open-loop gain, and V¢ represents the power supply
voltages. (See page 157.)

A feedback path between an op amp’s output and
its inverting input can constrain the op amp to its
linear operating region where v, = A(v, — v,). (See
page 157.)

A voltage constraint exists when the op amp is confined
to its linear operating region due to typical values of
Vee and A. TIf the ideal modeling assumptions are
made-—meaning A is assumed to be infinite—the ideal
op amp model is characterized by the voltage constraint

Yy =Yy

(See page 158.)

A current constraint further characterizes the ideal op
amp model, because the ideal input resistance of the op
amp integrated circuit is infinite. This current constraint
is given by

(See page 159.)

We considered both a simple, ideal op amp model and a
more realistic model in this chapter. The differences
between the two models are as follows:

Simplified Model More Realistic Model

Infinite input resistance Finite input resistance

Infinite open-loop gain Finite open-loop gain

Zero output resistance Nonzero output resistance

(See page 170.)

An inverting amplifier is an op amp circuit producing
an output voltage that is an inverted, scaled replica of
the input. (See page 161.)

A summing amplifier is an op amp circuit producing an
output voltage that is a scaled sum of the input voltages,
(See page 163.)

A noninverting amplifier is an op amp circuit producing
an output voltage that is a scaled replica of the input
voltage. (See page 164.)

A difference amplifier is an op amp circuit producing an
output voltage that is a scaled replica of the input volt-
age difference. (See page 165.)

The two voltage inputs to a difference amplifier can be
used to calculate the common mode and difference
mode voltage inputs, v, and 24,. The output from the
difference amplifier can be written in the form

Yy = AV T Admvdm_,

where A, is the common mode gain, and A, is the
differential mode gain. (See page 167.)

In an ideal difference amplifier, A., = 0. To measure
how nearly ideal a difference amplifier is, we use the
common mode rejection ratio:

Adny

CMRR = :
Acm

An ideal difference amplifier has an infinite CMRR.
(See page 169.)
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Problems

Sections 5.1-5.2

5.1 The op amp in the circuit in Fig. PS.1 is ideal.

PSPICE

52

PSPICE

a) Labei the five op amp terminals with their names.

b) What ideal op amp constraint determines the
value of i,,? What is this value?

¢) What ideal op amp constraint determines the
value of (v, — v,,)? What is this value?

d) Calculate v,

Figure P5.1

1v 4k0

The op amp in the circuit in Fig. PS.2 is ideal.
a) Caleulate v,ifv, = 1.5Vand v, = 0V.
b) Calculate v, ifv, = 3Vand o, = 0V.

¢) Calculate v,ifv, = 1 Vand v, = 2 V.

d) Calculate v,ifv, = 4Vand v, =2 V.

e) Caleulate v, if v, = 6 Vand v, = 8 V.

fy If v, = 4.5V, specify the range of v, such that
the amplifier does not saturate.

Figure P5.2
160 k)

20 k)

5k

53

PSPICE

54

PSPICE

5.5

PSPICE

Find i, in the circuit in Fig. P5.3 if the op amp is ideal.
Figure P5.3
1mA 15k $6kQ

v

A voltmeter with a full-scale reading of 10V is used
to measure the output voltage in the circuit in
Fig. P5.4. What is the reading of the voltmeter?
Assume the op amp is ideal.

Figure P5.4

2.5 pA

v

The op amp in the circuit in Fig. P5.5 is ideal.
Calculate the following:

a) v,

b) v,

c) iy

d) i,

Figure P5.5

6 kQ)

120 mV ¥
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5.6 Find i, (in microamperes) in the circuit in Fig. P5.6. 5.9 a) Design an inverting amplifier using an ideal op
PSPICE Jesten  amp that has 2 gain of 4. Use only 10 k{} resistors.
Figure P5.6 b) If you wish to amplify a 2.5 V input signal using

5kO the circuit you designed in part (a), what are the
smallest power supply signals you can use?

10k 5V

o kQ
3 o 5.10 a) The op amp in the circuit shown in Fig. P5.10 is
S¥ SV PSPICE ideal. The adjustable resistor R4 has a maximum
3V 3%0 i34k value of 120 k0, and « is restricted to the range
of 0.25 = a = 0.8. Calculate the range of v, if
vy = 40 mV.

b) If o is not restricted, at what value of a will the
op amp saturate?

5.7 A circuit designer claims the circuit in Fig. P5.7 will

PRACTIC i
PEFris?_'gérg\‘hproduce an output voltage that will vary between

“wseice - £9 as v, varies between 0 and 6 V. Assume the op

amp is ideal. Figure P5.10
a) Draw a graph of the output voltage v, as a func- 20k
tion of the input voltage v, for0 < v, = 6V.
. . . R
b) Do you agree with the designer’s claim? aR A{ A
Figure P5.7 4k iWAY
15k}
-
SKkQ =12V
A % v, $10%0
v h
Ki Y Vo
v 511 The op amp in the circuit in Fig. P5.11 is ideal.
M% a) Find the range of values for ¢ in which the op
amp does not saturate.
Section 5.3

b) Find i, (in microamperes) when o = 0.12.
5.8 The op amp in the circuit of Fig. P5.8 is ideal.

PSPICE Figure P5.11

a) What op amp circuit configuration is this?

b) Calculate 2, 30 kQ2
o 170kQ
Figure P5.8 A3t
100 kO 170 kQ
AM—
20k 5V 3.2k
@+ i
-5V §
. 05V 4.8k
750 mV Yo 180 k(2
v v v
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Section 5.4
5.12 The op amp in Fig. P5.12 is ideal.

" 2) Whalt cireuit configuration is shown in this figure?

b) Find », if v, = 03V, », = 15V, and
v.=—-25V.

¢) The voltages v, and v, remain at 0.5V and 1.5V,
respectively. What are the limits on 2, if the op
amp operates within its linear region?

Figure P5.12

20 kf}
+ 30k0

33k0

513 a) The op amp in Fig. P5.13 is ideal. Find v, if
PSPICE v, =16V, 4,=12V, v, =—6V,and v3 =10 V.

b) Assume v, v, and vy retain their values as given
in (a). Specify the range of v, such that the op
amp operates within its linear region.

Figure P5.13

55k
i 66 k()
—— W\
¥ 220 k)
*—WA—

e 550kQ 3 kO

Ll
<
4

5.14 The 330kQ feedback resistor in the cjrcuit in
eseice Fig, P5.13 is replaced by a variable resistor Ry . The
voltages v,— vq have the same values as given in
Problem 5.13(a).
a) What valuc of Ry will cause the op amp to satu-
rate? Note that 0 < Ry =< oo,

b) When Ry has the value found in (a), what is the
current (in microamperes) into the output ter-
minal of the op amp?

5.15 Design an inverting summing amplifier so that

DESIGH
PROBLEN v, = —(B3v, + Sv, + 4v, + 20y).
PSPICE
If the feedback resistor (R;) is chosen to be 60 k),
draw a circuit diagram of the amplifier and specify
the values of R,, Ry, R, and Ry.
5.16 Refer to the circuit in Fig. 5.11, where the op amp
rice js assumed to be ideal. Given that R, = 4 kQ,
R, = 5k, R. = 20kQ, v, = 200mV,
Py = 150 mV, v, = 400 mV, and V- = £6 V, spec-
ify the range of Ry for which the op amp operates
within its linear region.
Section 5.5

5.17 The op amp in the circuit of Fig. P5.17 is ideal.
a) What op amp circuit configuration is this?
b) Find v, in terms of v,.

¢) Find the range of values for v, such that v, does
not saturate and the op amp remains in its linear
region of operation.

Figure P5.17
32 kO
—AM
8 k(1 15v
AN *—
p
1 o 1
25kQ -9V
Vs e 75kQ 7kQ g Y,
T =

5.18 The op amp in the circuit shown in Fig, P5.18 is ideal.

P a) Caleulate v, when v, equals 3V.

b) Specify the range of values of v, so that thc op
amp operates in a linear mode.

¢) Assume that v, equals 5V and that the 48 k(}
resistor js replaced with a variable resistor. What
value of the variable resistor will cause the op
amp Lo saturate?

Figure P5.18

15k0
l W
30 k)
”, 45%0 30kQ
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PSPICE

The op amp in the circuit of Fig. PS.19 is ideal.
a) What op amp circuit configuration is this?
b) Find »,in terms of v;.

c) Find the range of values for v, such that v, does
not saturate and the op amp remains in its linear
region of operation.

Figure P5.19

Yy

5.20

PSPICE

40 kO
A
10k 10V
. i
12 k() -0V

O 43k
4v

The op amp in the circuit shown in Fig. P5.20 is
ideal. The signal voltages v, and vy, are 500 mV and
1200 mV, respectively.

a) What circuit configuration is shown in the figure?

b) Calculate v, in volts.

¢) Find i, and §, in microamperes.

d) What are the weighting factors associated with
v, and w,?

Figure P5.20

18k

5.21 The op amp in the nouninverting summing amplifier

PSPICE

of Fig. P5.21 is ideal.
a) Specify the values of Ry, Ry, and R, so that
v, = 6v, + 3v, + 4v,.
b) Using the values found in part (a) for Ry, R;, and

R,, find (in microamperes) i, &, i, iy, and i
when v, = 05V, », =25V,andy. = L V.

5.22

DESIGN
PROBLEM

PSPICE

Problems 179

Figure P5.21

i
l R, =15kQ I
R,= 1k
*——\VWA——¢
- i 2,333k0
d Rb
*——"\WA——9
o ~
b R
, _
5 :*/\/\Xr—!b v
b = i

<4
R |
<4

The circuit in Fig, P5.22 is a noninverting summing
amplifier. Assume the op amp is ideal. Design the
circuit so that

v, = 4v, + v, + 20,.

a) Specify the numerical valucs of Ry, R., and R;.

b) Using the values found in part (a) for Ry, Ry, and
R, calculate (in microamperes) I,, i,, and i
whenv, = 075V, 9, = 10 V,and v, = 15 V.

Figure P5.22

R;
—AM——
20kQ) AV
-9V
R,=1kQ
‘_—wr—_:"
H= "fu
Ry,
W=
o= fb
v, R.
Uh I.——’\N\r—il
v v v

Section 5.6

523 a) Usc the principle of superposition to derive

Eq.5.22.
b) Derive Egs. 5.23 and 5.24.
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524 The op amp in the circuit of Fig. P5.24 is ideal. What
value of R, will give the equation

v, = 15 — 2v,,
for this circuit.

Figure P5.24

(O

5.25 The op amp in the adder-subtracter circuit shown in
rseice Fipg P5.25 is ideal.

a) Find v, when v, =04V, 2, =08V,v, =02V,
andzyg =06V.

b) If v,, v., and v, are held constant, what values of
vy Will not saturate the op amp?

Figure P5.25

10 kQ) 375k}
[ —yY

15kQ
U

20k
Ve ]

30 k{)
Y @——AM————— 9

féo kQ

5.26 The resistors in the difference amplifier shown in
sseice Fig 5,13 are R, = 20k, R, = 80k, R, = 47 k()
and Ry = 33 k(). The signal voltages v, and vy, are
0.45 and 0.9 V, respectively,and Ve = 19V,
a) Find v,.
b) What is the resistance seen by the signal
source v,?

¢) What is the resistance seen by the signal
source v?

5.27 Design the difference-amplifier circuit in Fig. P5.27
Jesian 50 that v, = 7.5(1..71_., — %,), and the voltage source v
srice sees an input resistance of 170 k{}. Specify the val-

ues of R, ,Ry,, and R;. Use the ideal model for the

op amp.

Figure P5.27

4kQ

15k0

5.28 Select the values of Ry, and R; in the circuit in
Jesien  Fig. P5.28 so that
PSPICE

v, = 4000(dy — iy,).
The op amp is ideal.

Figure P5.28

iy,

529 Design a difference amplifier (Fig. 5.13) to meet the
Qe following criteria: v, = 29, — 5v,. The resistance
wece seen by the signal source v, is 600 kQ, and the
resistance seen by the signal source v, i1s 18 k()
when the output voltage v, is zero. Specify the val-

ues of R, , Ry,, R, and Ry.

5.30 The op amp in the circuit of Fig. P5.30 is ideal.

a) Plot v, versus o« when R; = 4Ry and v, = 2'V.
Use increments of 0.1 and note by hypothesis
that0 = a = 1.0.
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b) Write an equation for the straight line you plot- 5.33 In the difference amplifier shown in Fig. P5.33, what
ted in (a). How are the slope and intercept of the range of values of R, yietds a CMRR = 7507
linc related to v, and the ratio R;/R;?

¢) Using the results from (b), choose values for v, )
and the ratio R¢/R; such that v, = —6a + 4. Figure P5.33

47 kQ
Figure P5.30
R, R 33k
AM
?)g Va Rx
Dy 47kQ o

531 The resistor Ry in the circuit in Fig. P5.31 is adjusted Sections 5.1-5.6
rseice until the ideal op amp saturates. Specify R¢ in kilohms, ections 5,25

5.34 a) Show that when the ideal op amp in Fig, P5.34 is

Figure P5.31 operating in its linear region,
Ry 4
2kQ w ]
b a R
80 k€ _
b) Show that the ideal op amp will saturate when
4V

6.8k R(£Vee — 2v,)

a

3v,
5.32 In the difference amplifier shown in Fig. P5.32, Figure P5.34
compute (a) the differential mode gain, (b) the R
common mode gain, and {c) the CMRR. AM—
Figure P5.32 Vee
100kQ P
— e
-V,
5 k() 10V R cc
: 3 . SR
—8
0+ +
Y, 5k -0V
) L‘U .
Ub 95 kﬂ ea‘. Ra
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5.35 The circuit inside the shaded area in Fig. P5.35is a
reice constant current source for a limited range of val-
ues of R;.

a) Find the value of i; for Ry = 2.5k.

b) Find the maximum value for R; for which i; will
have the value in (a).

¢) Assume that R; = 6.5 k(). Explain the operation
of the circuit. You can assume that i, = i, =~ 0
under all operating conditions.

d) Sketch i, versus R, for0 = R; = 6.5k{).

Figure P5.35

47 kO

5.36 The op amps in the circuit in Fig, P5.36 are ideal.
PP a) Find i,

b) Find the value of the right source voltage for
which 7, = 0.

Figure P5.36

90 k() 120 kO
VWA~ AM-
15kQ 5V i 5V 30kQ)
=il ]
—AAA —u
1kQ
-5V -5V

500 mV

5.37 Assume that the ideal op amp in the circuit in
rseice - Fig, PS.37 is operating in its linear region.

a) Calculate the power delivered to the 16 k)
resistor.

b) Repeat (a) with the op amp removed from the
circuit, that is, with the 16 kQ resistor connected
in the series with the voltage source and the
48 k() resistor.

¢) Find the ratio of the power found in (a) to that
found in (b).

d) Does the insertion of the op amp between the
source and the load serve a useful purpose?
Explain.

Figure P5.37

5.38 Assume that the ideal op amp in the circuit seen in
Fig. P5.38 is operating in its linear region.
a) Show that v, = [(Ry + Ry)/Ry]v.
b) What happens if R — 00 and R, — 0?

¢) Explain why this circuit is referred to as a volt-
age follower when R; = o0 and R, = 0.

400 mV



Figure P5.38

Vs

5.39 The two op amps in the circuit in Fig, P5.39 are
esrice {deal. Caleulate v,; and v,,.

Figure P5.39

14.7 V &———

10 Ve——

2kQ

5.40 The signal voltage v, in the circuit shown in Fig. P5.40
rsice is described by the following equations:

t =0,
vy = 4sin(S7/3)t V,

0=<¢ <00,

Sketch v, versus ¢, assuming the op amp is ideal.
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Figure P5.40
2k 18 kQ
A
2.4 k0O
+
v, 56Kk0 ,23.9k0

5.41 The voltage v, shown in Fig. P5.41(a) is applied to
seice the inverting amplifier shown in Fig. P5.41(b).
Sketch v, versus ¢, assuming the op amp is ideal.

Figure P5.41
Vg
2V
/\ %
| | | | /
05 18 15 Z0 25 38 35 A0 t(s)
-2V
(a)
750
AMA
15 kO
AM-
+
O v, 282Kk0
‘

(b)
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Section 5.7 Figure P5.44

5.42 Repeat Assessment Problem 5.6, given that the
psrice  inverting amplifier is loaded with a 500 () resistor.

5.43 'The op amp in the noninverting amplifier circuit of

rseice - Fig. P5.43 has an input resistance of 440 k{}, an out-
put resistance of 5 k(}, and an open-loop gain of
100,000. Assume that the op amp is operating in its v Ib
linear region.

Vs

a) Calculate the voltage gain (v, /v,)-

b) Find the inverting and noninverting input volt-
ages v, and v, (in millivolts) if v, = 1 V. .
5.45 Repeat Problem 5.44 assuming an ideal op amp.

c) Calculate the difference (v, — v,) in microvolts neerce

whenvg =1V,

d) Find the current drain in picoamperes on the

signal source v, when v, = 1V. . . .
g g 8 5.46 Assume the input resistance of the op amp in

¢) Repeat (2)-(d) assuming an ideal op amp. pseice - Fig, P5.46 is infinite and its output resistance is zero.
a) Find v, as a function of v, and the open-loop
figure P5.43 gain A.
240 k0 b) What is the value of v, if v, =05V and
A =150?
8 k() G ¢) What is the valne of v, if v, =05V and
A= o0?
l o+ r is 98% of
160 X —35V d) How large does A have to be so that v, is 98 % of
s 2,330k0 its value in (c)?
Pigure P5.46
150 kO
5.44 2) Find the Thévenin equivalent circuit with respect e
PSPICE to the output terminals a,b for the inverting 25kQ0 10V
amplifier of Fig. P5.44. The dc signal source has a W wa . ‘
value of 150 mV. The op amp has an input resist- o+ +
ance of 500 kQ}, an output resistance of 750 Q Vg =10 ¥ ¥,
and an open-loop gain of 50,000.
b) What is the output resistance of the inverting v

amplifier?
¢) What is the resistance (in ohms) seen by the sig-
nal source v, when the load at the terminals a,b
is 150 (2?2 5.47 Derive Eq.5.60.
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548 Suppose the strain gages in the bridge in Fig. 5.18
frcncal have the value 120 0 £ 1%. The power supplies to
the op amp are £ 15V, and the reference voltage,

Vrer, 1S taken from the positive power supply.

a) Calculate the value of Ry so that when the strain
gage that is lengthening reaches its maximum
length, the output voltage is 5 V.

b) Suppose that we can accurately measure S0 mV
changes in the output voltage. What change
in strain gage resistance can be detected in
milliohms?

549 a) For the circuit shown in Fig. PS.49, show that if
Jrachl AR << R, the output voltage of the op amp is
' approximately

PSPICE
Ri (R+ Ry
Vo R R (R + 2Ryl AR
b) Find v,if Ry =470k}, R=10kO, AR=95Q,
and v, = 15V,

¢) Find the actual value of v, in (b).

Figure P5.49

!

(2

3
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5.50 a) If percent error is defined as
PRACTICAL
PEESTECTIVE

PSPICE S
approximate value

= 1} X 100,
true value

% error = |:

show that the percent error in the approxima-
tion of v, in Problem 5.49 is

AR (R + Ry

=2 X 100.
R (R + 2Ry 0

% error =

b) Calculate the percent error in v, for Problem 5.49.

5.51 Assume the percent error in the approximation of
prACTiCAL 9, in the circuit in Fig. P5.49 is not to exceed 1%.
“rsmce - What is the largest percent change in R that can be

tolerated?

5.52 Assume the resistor in the variable branch of the
?;ggsé_g;\;gbridge circuit in Fig. P5.49is R — AR.
FPICE ) What is the expression for v, if AR << R?
b) What is the expression for the percent error in

v, as a function of R, Ry, and AR?

¢) Assume the resistance in the variable arm of
the bridge circuit in Fig. P5.49 is 9810 ) and the
values of R, R;, and v, are the same as in
Problem 5.49(b). What is the approximate value
of v,?

d) What is the percent error in the approximation
of v, when the variable arm resistance is
9810 (1?
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6.3 Series-Parallel Combinations of Inductance
and Capacitance p 200

6.4 Mutual Inductance p 203
6.5 A Closer Look at Mutual Inductance p 207

1 Know and be able to use the equations for
voltage, current, power, and energy in an
inductor; understand how an inductor hehaves
in the presence of constant current, and the
requirement that the current be continuous in
an inductor.

2 Know and be able to use the equations for
voltage, current, power, and energy in a
capacitor; understand how a capacitor behaves
in the presence of constant voltage, and the

requirement that the voltage be continuous in a

capacitor.

3 Be dble to combine inductors with initial
conditions in series and in parallel to form a
single equivalent inductor with an initial
condition; be able to combine capacitors with
initial conditions in series and in parallel to
form a sinale equivalent capacitor with an
initial condition.

4 Understand the basic concept of mutual
inductance and be able to write mesh-current
equations for a circuit containing magnetically.
coupled coils using the dot convention
correctly.
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Inductance, Capacitance,
and Mutual Inductance

We begin this chapter by introducing the last two ideal circuit
elements mentioned in Chapter 2, namely, inductors and capaci-
tors. Be assured that the circuit analysis techniques introduced in
Chapters 3 and 4 apply to circuits containing inductors and capac-
itors. Therefore, once you understand the terminal behavior of
these elements in terms of current and voltage, you can use
Kirchhoff’s laws to describe any interconnections with the other
basic elements. Like other components, inductors and capacitors
are easier to describe in terms of circuit variables rather than
electromagnetic field variables. However, before we focus on the
circuit descriptions, a brief review of the field concepts under-
lying these basic elements is in order.

An inductor i1s an electrical component that opposes any
change in electrical current. It is composed of a coil of wire
wound around a supporting core whose material may be mag-
netic or nonmagnetic. The behavior of inductors is based on phe-
nomena associated with magnetic fields. The source of the
magnetic field is charge in motion, or current. If the current is
varying with time, the magnetic field is varying with time. A time-
varying magnetic field induces a voltage in any conductor linked
by the field. The circuit parameter of inductance relates the
induced voltage to the current. We discuss this quantitative rela-
tionship in Section 6.1.

A capacitor is an electrical component that consists of two
conductors separated by an insulator or dielectric material. The
capacitor is the only device other than a battery that can store
electrical charge. The behavior of capacitors is based on phenom-
ena associated with electric fields. The source of the electric field
1s separation of charge, or voltage. If the voltage is varying with
time, the electric field is varying with time. A time-varying electric
field produces a displacement current in the space occupied by
the field. The circuit parameter of capacitance relates the dis-
placement current to the voltage, where the displacement current
is equal to the conduction current at the terminals of the capaci-
tor. We discuss this quantitative relationship in Section 6.2.



_ Practical Perspective

Proximity Switches
The electrical devices we use in our daily lives contain many
switches. Most switches are mechanical, such as the one used
in the flashlight introduced in Chapter 2. Mechanical switches
use an actuator that is pushed, pulled, slid, or rotated, caus-
ing two pieces of conducting metal to touch and create a
short circuit. Sometimes designers prefer to use switches
without moving parts, to increase the safety, reliability, con-
venience, or novelty of their products. Such switches are
called proximity switches. Proximity switches can employ a
variety of sensor technologies. For example, some elevator
doors stay open whenever a light beam is obstructed.
Another sensor technology used in proximity switches
detects people by responding to the disruption they cause in
electric fields. This type of proximity switch is used in some
desk lamps that turn on and off when touched and in elevator
buttons with no moving parts (as shown in the figure). The
switch is based on a capacitor. As you are about to discover in
this chapter, a capacitor is a circuit element whose terminal
characteristics are determined by electric fields. When you
touch a capacitive proximity switch, you produce a change in

the value of a capacitor, causing a voltage change, which acti-
vates the switch. The design of a capacitive touch-sensitive
switch is the topic of the Practical Perspective example at the
end of this chapter.

187
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The inductor » — i equation ¥

(b)

Figure 6.1 4 (a) The graphic symbol for an inductor
with an inductance of L henrys. (b) Assigning reference
voltage and current to the inductor, following the pas-
sive sign convention.

Section 6.3 describes techniques used to simplify circuits with series or
parallel combinations of capacitors or inductors.

Energy can be stored in both magnetic and electric ficlds. Hence you
should not be too surprised to learn that inductors and capacitors are
capable of storing energy. For example, energy can be stored in an induc-
tor and then released to fire a spark plug. Energy can be stored in a capac-
itor and then released to fire a flashbulb. In ideal inductors and capacitors,
only as much energy can be extracted as has been stored. Because induc-
tors and capacitors cannot generate energy, they are classified as passive
elements.

In Sections 6.4 and 6.5 we consider the situation in which two circuits
are linked by a magnetic field and thus are said to be magnetically cou-
pled. In this case, the voltage induced in the second circuit can be related
fo the time-varying current in the first circuit by a parameter known as
mutual inductance. The practical significance of magnetic coupling
unfolds as we study the relationships between current, voltage, power, and
several new parameters specific to mutual inductance. We introduce these
relationships here and then describe their utility in a device called a trans-
former in Chapters 9 and 10.

6.1 The Inductor

Inductance is the circuit parameter used to describe an inductor. Inductance
is symbolized by the letter L, is measured in henrys (H}), and is represented
graphically as a coiled wire—a reminder that inductance is a consequence
of a conductor linking a magnetic field. Figure 6.1(a) shows an inductor.
Assigning the reference direction of the current in the direction of the volt-
age drop across the terminals of the inductor, as shown in Fig. 6.1(b), yields

Uit (6.1)

where v is measured in volts, L in henrys, i In amperes, and ¢ in seconds.
Equation 6.1 reflects the passive sign convention shown in Fig. 6.1(b); that
is, the current reference is in the direction of the voltage drop across the
inductor. If the current reference is in the direction of the voltage rise,
Eq. 6.1 is written with a minus sign.

Note from Eq. 6.1 that the voltage across the terminals of an inductor
is proportional to the time rate of change of the current in the inductor.
We can make two important observations here. First, if the current is con-
stant, the voltage across the ideal inductor is zero. Thus the inductor
behaves as a short circuit in the presence of a constant, or dc, current.
Second, current cannot-change instantaneously in an inductor; that is, the
current cannot change by a finite amount in zero time. Equation 6.1 tells
us that this change would require an infinite voltage, and infinite voltages
are not possible. For example, when someone opens the switch on an
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inductive circuit in an actual system, the current initially continues to flow
in the air across the switch, a phenomenon called arcing. The arc across
the switch prevents the current from dropping to zero instantaneously.
Switching inductive circnits is an important engineering problem, because
arcing and voltage surges must be controlled to prevent equipment dam-
age. The first step to understanding the nature of this problem is to master
the introductory material presented in this and the following two chapters.
Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit.

I3E DRSS Determining the Voltage, Given the Current, at the Terminals of an Inductor

The independent current source in the circuit ¢) v = Ldi/dt = (0_1)106—51(1 -5) = e—Sl(]_
shown in Fig. 6.2 generates zero current for £ < 0 =5t V,t > 0,0 =0t <0.

=5
and a pulse 10fe™ A, for £ > 0. d) Figure 6.4 shows the voltage waveform.

¢) No; the voltage is proportional to di/dt, not i.

. f) At 0.2 s, which corresponds to the moment when

=0, t<0 . . . . .
di/dr is passing through zero and changing sign.

g) Yes, at ¢ = 0. Note that the voltage can change
instantancously across the terminals of an
inductor.

i=10e¥A, >0

Figure 6.2 £ The circuit for Example 6.1.

a) Sketch the current waveform.
b) At what instant of time is the current maximum?

c) Express the voltage across the terminals of the
100 mH inductor as a function of time.

d) Sketch the voltage waveform.

£(s)

¢) Are the voltage and the current at a maximum at
the same time?

f) At what instant of time does the voltage change
polarity?

Figure 6.3 & The current waveform for Example 6.1.

g) Is there ever an instantaneous change in voltage
across the inductor? If so, at what time?

v (V)
1.0

Solution

a) Figure 6.3 shows the current waveform. : | {
3 ol -5t =5 _ =5t¢- 0 02— 0.6 ©)
b) dijdr = 10(=5te™" + ™) = 10e77(1
— 5f) A/s; di/dt = O whent = is. (See Fig. 6.3.) Figure 6.4 4 The voltage waveform for Example 6.1.
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Current in an Inductor in Terms of the Voltage
Across the Inductor

Equation 6.1 expresses the voltage across the terminals of an inductor as a
function of the current in the inductor. Also desirable is the ability to
express the current as a function of the voltage. To find i as a function of »,
we start by multiplying both sides of Eq. 6.1 by a differential time dt:

di
vdt =L (E) dt. {6.2)

Multiplying the rate at which i varies with ¢ by a differential change in time
generates a differential change in i, so we write Eq. 6.2 as

vdt = Ldi. (6.3)

We next integrate both sides of Eqg. 6.3. For convenience, we interchange
the two sides of the equation and write

i(r) !
L/ dx = /vdT. (6.4)
i(fo) fo

Note that we use x and 7 as the variables of integration, whereas i and ¢
become limits on the integrals. Then, from Eq. 6.4,

ity = %[vd»r + i(tg), (6.5)

where i(t) is the current corresponding to ¢, and i(ty) is the value of the
inductor current when we initiate the intcgration, namely, ¢,. In many
practical applications, ¢ is zero and Eq. 6.5 becomes

]
i(t) = % K vdr + i(0). (6.5)

Equations 6.1 and 6.5 both give the relationship between the voltage
and current at the terminals of an inductor. Equation 6.1 cxpresses the
voltage as a function of current, whereas Eq. 6.5 expresses the current as a
function of voltage. In both equations the reference direction for the cur-
rent is in the direction of the voltage drop across the terminals. Note that
i(tp) carries its own algebraic sign. If the initial current is in the same direc-
tion as the reference direction for i it is a positive quantity. If the initial
current is in the opposite direction, it is a negative quantity. Fxample 6.2
illustrates the application of Eq. 6.5.
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SElERRE Determining the Current, Given the Voltage, at the Terminals of an Inductor

The voltage pulse applied to the 100 mH inductor
shown in Fig. 6.5 is 0 for r < 0 and is given by the
expression

v(f) = 20te%V
fort > 0. Also assume i = 0 for¢ = 0.

a) Sketch the voltage as a function of time.
b) Find the inductor current as a function of time.
¢) Sketch the current as a function of time.

Solution

a) The voltage as a function of time is shown in
Fig. 6.6.

b) The current in the inductoris 0 att = 0.Therefore,
the current forr > 0is

== tzo Wrdr + 0
1 01/, TE T

¢

5

0

_glor N
= 200|: 100 (107 + 1)J

=2(1 - 10 - A, >0

¢} Figure 6.7 shows the current as a function of time.

v =0, <0

0] o il 100 mH

=20V, >0

Figure 6.5 & The circuit for Example 6.2.

1(s)
Figure 6.6 & The voltage waveform for Example 6.2.
i(A)
2
1 /
0 o1 o2 03 r6)

Figure 6.7 4 The current waveform for Example 6.2.
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Note in Example 6.2 that i approaches a constant value of 2 A as ¢
increases. We say more about this result after discussing the encrgy stored

in an inductor.

Power and Energy in the Inductor

The power and energy relationships for an inductor can be derived
directly from the current and voltage relationships. If the current refer-
ence is in the direction of the voltage drop across the terminals of the

inductor, the power is

(6.7)
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Power in an inductor B

Energy in an inductor &

Remember that power is in watts, voltage is in volts, and current is in
amperes. If we express the inductor voltage as a function of the inductor
current, Eq. 6.7 becomes

p=Liz. (6.8)

We can also express the curtent in terms of the voltage:

{
p=v [—i— /0 vdr + i(:o)]. (6.9)

Equation 6.8 is useful in expressing the energy stored in the inductor.
Power is the time rate of expending energy, so

—d—w—L'ﬂ 6.10
P =0 Yar (6.10)

Multiplying both sides of Eq. 6.10 by a differential time gives the differen-
tial relationship

dw = Li di. (6.11)

Both sides of Eqg. 6.11 are integrated with the understanding that the ref-
erence for zero energy corresponds to zero current in the inductor. Thus

w i
/dx=L/ydy,
Jo 0

(6.12)

As before, we use different symbols of integration to avoid confusion
with the limits placed on the integrals. In Eq. 6.12, the energy is in joules,
inductance is in henrys, and current is in amperes. To illustrate the appli-
cation of Egs. 6.7 and 6.12, we return to Examples 6.1 and 6.2 by means of
Example 6.3.



6.1 The Inductor
ZETIEN Determining the Current, Voltage, Power, and Energy for an Inductor

a) For Example 6.1, plot i, v, p, and w versus time. e) From Example 6.1,
Line up the plots vertically to allow easy assess- . _5; _ Steq
ment of each variable’s behavior. i=10 A and wv=e7(1-5)V.

b) In what time interval is energy being stored in Therefore,
the inductor? p=vi= 1006”1 — 5072710 W

c) In what time interval is energy being extracted
from the inductor?

d) What is the maximum energy stored in the
inductor?

e) Evaluate the integrals

02 )
/ pdt and / p dt,
Jo 02

and comment on their significance.
f) Repeat (a)—(c) for Example 6.2. 1.0

2) In Example 6.2, why is there a sustained current
in the inductor as the voltage approaches zero? 0.5

L(s)

| | | |
I3
ol o>—es—o5 08 10 '

Solution

a) The plots of i, v, p, and w follow directly from the 200
expressions for i and v obtained in Example 6.1
and are shown in Fig. 6.8. In particular, p = vi, 100
and w = (3)Li%

b) An increasing energy curve indicates that energy ' ' ' L—1(s)
is being stored. Thus energy is being stored in the 0 0. 0.4 : 08 1.0
time interval 0 to 0.2 s. Note that this corre-
sponds to the interval when p > 0.

c) A decreasing energy curve indicates that energy
is being extracted. Thus energy is being extracted
in the time interval (.2 s to 0. Note that this cor-
responds to the interval when p < 0.

L (s)
0 02 04 06 08 10

d) From Eq. 6.12 we see that energy is at a maximum
when current is at a maximum; glancing at the
graphs confirms this. From Example 6.1, maximum Figure 6.8 4 The variables i, v, p, and w versus ¢ for
current = 0.736 A. Therefore, wy,,, = 27.07 mJ. Example 6.1.

193
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Thus

0.2 8—101 02
dt =10 —10r ~ 1
K p 1 100( ) ,

tze—IOI 2 6—101 0.2
—_ + —_— — —
50{ 10 10[ 10010 =D

= 0.2¢7% = 27.07 mJ,

o l:e—wl Joo
dt = 10| —(—10¢ — 1
Az P T00¢ ) s

t2e—101 2 e—lDI ¢l
~ 50 + = -1 - 1
> { —10 10\: 100( 1 ) 0.2

= —~02¢?% = —2707 wJ.

Based on the definition of p, the area under the
plot of p versus r represents the emergy
expended over the interval of integration.
Hence the integration of the power between
0 and 0.2 s represents the energy stored in the
inductor during this time interval. The integral
of p over the interval 0.2 s — o0 is the energy
extracted. Note that in this time interval, all the
energy originally stored is removed; that is, after
the current peak has passed, no energy is stored
in the inductor.

1) The plots of 2, §, p, and w follow directly from the
expressions for ¥ and / given in Example 6.2 and
are shown in Fig. 6.9. Note that in this case the
power is always positive, and hence energy is
always being stored during the voltage pulse.

g) The application of the voltage pulse stores
energy in the inductor. Because the inductor is
ideal, this energy cannot dissipate after the volt-
age subsides to zero. Therefore, a sustained cur-
rent circulates in the circuit. A lossless inductor
obviously is an ideal circuit element. Practical
inductors require a resistor in the circuit model.
(More about this later.)

2(V)
1.0

0.5

£(s)
0 01 02 03 04 05 06

E(A)
2.0 -

o.ls £

p (mW)
600

300

1 (s)
0 01 02 03 04 05 06

w {mJ)
200 ~

100

| | | |
0 0t 02 03 04 O0S

0!6 Hs)

Figure 6.9 4 The variables v, i, p, and w versus ¢ for
Example 6.2.
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6.1

The current source in the circuit shown gener-
ates the current pulse -

'Objective'i'—Knowand be able to use the equations for voltage, current, power, and energy in an inductor

() =0, £< 0
) o N ) =
| i Answer: (a) 288 V;
Find (a) v(0); (b) the instant of time, greater SR

than zero, when the voltage v passes through

zero; (c) the expression for the power delivered

(C) —76.8¢750% 1 38471500
—307.2¢7 % W, = 0;

to the inductor; (d) the instant when the power (d) 411.05 s,
delivered to the inductor is maximum; (e) the :

: (€) 272 W:
maximum power; (f) the instant of time when - o
the stored enérgy is maximum; and (g) the max- (f) 1.54 ms; :
imum energy stored in the inductor. (g) 28.57 ml.

NOTE: Also try Chapter Problems 6.1 and 6.3.

6.2 The Capacitor

The circuit parameter of capacitance is represented by the letter C, is
measured in farads (F), and is symbolized graphically by two short paral-
lel conductive plates, as shown in Fig. 6.10(a). Because the farad is an
extremely large quantity of capacitance, practical capacitor values usually
lie in the picofarad (pF) to microfarad (uF) range.

The graphic symbol for a capacitor is a reminder that capacitance
occurs whenever electrical conductors are separated by a dielectric, or
msulating, material. This condition implies that electric charge is not
transported through the capacitor. Although applying a voltage to the
terminals of the capacitor cannot move a charge through the dielectric, it
can displace a charge within the dielectric. As the voltage varies with
time, the displacement of charge also varies with time, causing what is
known as the displacement current.

At the terminals, the displacement current is indistinguishable from a
conduction current. The current is proportional to the rate at which the
voltage across the capacitor varies with time, or, mathematically,

d
L“‘C—v

. (6.13)

where i is measured in amperes, C in farads, © in volts, and 7 in seconds.

C

s

(a)

G
" | : -
(b)

Figure 6.10 4 (a) The circuit symbol for a capacitor.
(b) Assigning reference voltage and current to the
capacitor, following the passive sign convention.

< Capacitor i — v equation
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Capacitor v — i equation B

Capacitor power equation &

Equation 6.13 reflects the passive sign convention shown in Fig. 6.10(b);
that is, the current reference is in the direction of the voltage drop across the
capacitor. If the current reference is in the direction of the voltage rise,
Eq. 6.13 is written with a minus sign.

Two important observations follow from Eq. 6.13. First, voltage cannot
change instantaneously across the terminals of a capacitor. Equation 6.13
indicates that such a change would produce infinite current, a physical
impossibility. Second, if the voltage across the terminals is constant, the
capacitor current is zero. The reason is that a conduction current cannot be
established in the dielectric material of the capacitor. Only a time-varying
voltage can produce a displacement current. Thus a capacitor behaves as an
open circuit in the presence of a constant voltage.

Equation 6.13 gives the capacitor current as a function of the capaci-
tor voltage. Expressing the voltage as a function of the current is also use-
ful. To do so, we multiply both sides of Eqg. 6.13 by a differential time dt
and then integrate the resulting differentials:

w(r) 1 !

idt = Cdv or / dx = — | idr.
o{to) c

Jly

Carrying out the integration of the left-hand side of the second equa-
tion gives

s

o(t) =.C

 dr + olly). (6.14)

Ty

In many practical applications of Eq. 6.14, the initial time is zero; that is,
ty = 0. Thus Eq. 6.14 becomes

v(t) = %Aidfr + 2(0). {6.15)

We can easily derive the power and energy relationships for the capacitor.
From the definition of power,

p=vi= Cvd—f,.. (6.16)

or

1 1
p= i[zfoidr + v(to):l. (6.17)

Combining the definition of energy with Eq. 6.16 yields

dw = Cvdv,
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from which

/dx=C/ydy,
0 0

or

Jes
w = ~2—‘C_v2. (6.18) <& Capacitor energy equation
In the derivation of Eq. 6.18, the reference for zero energy corresponds to
zero voltage.

Examples 6.4 and 6.5 illustrate the application of the current, voltage,
power, and energy relationships for a capacitor.

FelyINNA Determining Current, Voltage, Power, and Energy for a Capacitor

The voltage pulse described by the following equa- Solution
tions is impressed across the terminals of a 0.5 puF
capacitor: a) From Eq. 6.13,
0, t=0s; (0.5 x 1076)(0) = 0,
o) = ¢ 4V, Os =1 <ls; i =14 (0.5 % 107 (4) = 2 uA,
47V, r=1s (0.5 X 1076)(—de (D) = —2¢707D A,

a) Derive the expressions for the capacitor current,
power, and energy. Eq.6.16:

b) Sketch the voltage, current, power, and energy as
functions of time. Line up the plots vertically.

delivered by the capacitor.
e) Evaluate the integrals

Eq.6.18:

1 oc
dt d dt
/0 P an .[ P 0 t =0s;

w = < 3(0.5)16:% = 48247, 0s <t
1 Y Y
and comment on their significance. 3(05)16e7207) = 4070y, 1= 1,

t < Os;
O0s<t<ls;
t>1s.

The expression for the power is derived from

¢) Specify the interval of time when energy is being 0, r=0s;
stored in the capacitor. p =4 (45)(2) = 8t uW, Os=r<ls
d) Specify the interval of time when energy is being (At (27D = BV W, 1> 1.

The energy expression follows directly from
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b) Figure 6.11 shows the voltage, current, power,
and energy as functions of time.

¢) Energy is being stored in the capacitor whenever
the power is positive. Hence energy is being
stored in the interval 0—1 s.

d) Energy is being delivered by the capacitor when-
ever the power is negative. Thus energy is being
delivered for all r greater than 1 s.

e) The integral of p dt is the energy associated with
the time interval corresponding to the limits on
the integral. Thus the first integral represents the
energy stored in the capacitor between 0 and 1 s,
whereas the second iniegral represents the
energy returned, or delivered, by the capacitor in
the interval 1 s to oo:

1
/Btdt = 47
0

/ (—8e2")dt = (—8)‘3
1

1
= 4 pul,
0

S~

o
[
-
[

-2(t-1)
-2

oo

':\\8
~
B-
Il

The voltage applied to the capacitor returns to
zero as time increases without limit, so the energy
returned by this ideal capacitor must equal the
energy stored.

= —4 ul.
1

t(s)

|
0 | | | | ) |
~1F }/V’rzt %
_2_

“

|

] | | ! | |
0 .' 1(s)
4 {/ 34 6
_8_

L L l |
0 1 2 3 4 5

; 1(s)

Figure 6.11 2 The variables v, i, p, and w versus ¢ for
Example 6.4.

FEBIEERE Finding v, p and w Induced by a Triangular Current Pulse for a Capacitor

An uncharged 0.2 uF capacitor is driven by a trian-
gular current pulse. The current pulse is described by

0, t =<0

i) = 5000t A, 0 <t =20us;
0.2 — 5000t A, 20 =<1t =< 40 us;
0, t = 40 us.

a) Derive the expressions for the capacitor voltage

Xp p ge,

power, and energy for each of the four time inter-
vals needed to describe the current.

b) Ploti, v, p, and w versus t. Align the plots as spec-
ifjed in the previous examples.

¢) Why docs a voltage remain on the capacitor after
the current returns to zero?

Solution

a) Fort = 0,v, p,and w all are zero.
For0 = r = 20 us,

I
v =5 x 10° / (50007)dr + 0 = 12.5 x 10°2V,
0 .
p = vi=0625 %X 1034 W,

v = 15625 X 10 J.

e
1
NAH

For 20 us = ¢ = 40 us,
14

»=35x10% [ (0.2 — 50007)dr + 5.
20ps
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(Note that 5 V is the voltage on the capacitor at i (mA)
the end of the preceding interval.) Then, 100
v = (10% — 12.5 X 10°2 — 10) V, Sl
p = vi, | | | I | e
| 0" 10 20 30 40 50 0
= (62.5 x 10" — 7.5 x 10%2 + 2.5 X 10t — 2) W, » (V)
1
w = =Cv?
ooy
= (15.625 x 10'%* — 2.5 x 10%> + 0.125 x 10%?
)
—2r + 107 1.
p (mW)
For f = 40us, 500
=10V, 400 —
; 300 =
p=vi=0, 200
1 ?)2 L | | | | |
w = —Cv* = 10 gl. t
2 wl 0 10 20 30 40 50 60
b) The excitation current and the resulting voltage, w (ul)
power, and energy are plotted in Fig. 6.12. »
c) Note that the power is always positive for the g L
duration of the current pulse, which means that e
energy is continuously being stored in the capac- 4
itor. When the current returns to zero, the stored 2
energy is trapped because the ideal capacitor | | | ' L—¢ (us)
offers no means for dissipating energy. Thus a 0 1020 30 40 50 o0
voltage remains on the capacitor after i returns Figure 6.12 A The variables /, v, p, and w versus ¢ for
Lo zero. Example 6.5.

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor

6.2  The voltage at the terminals of the 0.6 uF
~ capacitor shown in the figure is 0 for ¢ < 0 and
40e” 5" sin 30,000¢ V for ¢ = 0. Find (a) i(0);
(b) the power delivered to the capacitor at
¢ = 77/80 ms; and (c) the energy stored in the 6.3
capacitor at ¢ = /80 ms.

Answer: (a) 0.72 A;

(b) —649.2 mW;

(c) 126.13 pl.

The current in the capacitor of Assessment
Problem 6.2 15 0 for ¢ < 0 and 3 cos 50,0007 A
for £ = 0. Find (a) v(z); (b) the maximum power
delivered to the capacitor at any oné¢ instant of
time; and (c) the maximum energy stored in the
capacitor at any one instant of time.

(a) 100sin 50,000t V., t = 0;

(b) 150 W; (c) 3 mJ.

0.6 uF

i 0 =

: Answer:
NOTE: Also try Chapter Problems 6.14 and 6.15.
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L L, Ly
+ B — = B — EHy -
._/YYY\_.__NYY\_.__NYY\_.

Figure 6.13 & Inductors in series.

L I 1
Ve AV
¥ @ =
i(tp)

{
Leq:L1+L2+L3
YY" —9o

4 v —

—

i(to)

Figure 6.14 4 An equivalent circyit for inductors in
series carrying an initial current i(,).

Combining inductors in series b

+e

i iy i3
L1l lil(fo) Ly 3] i(to) Ls,

i i3(tp)

3]
T4V

Figure 6.15 & Three inductors in parallel.

6.3 Series-Parallel Combinations
of Inductance and Capacitance

Just as series-parallel combinations of resistors can be reduced to a single
equivalent resistor, series-parallel combinations of inductors or capacitors
can be reduced to a single inductor or capacitor. Figure 6,13 shows induc-
tors in series. Here, the inductors are forced to carry the same current; thus
we define only one current for the series combination. The voltage drops
across the individual inductors are

di di
Vy = Lz—l and V3= le—;

di
= L b b
(41 1 dr

dt

The voltage across the serics connection is

di
v=v1+/v2+?)3=(L-|+L..2+L3)d_;,

from which it should be apparent that the equivalent inductance of series-
connected jnductors is the sum of the individual inductances. For » induc-
tors in serics,

Lg=LitIotLs+ o + L, (6.19)

If the original inductors carry an inijtial current of i(ty), the equivalent
inductor carries the same initial current. Figure 6.14 shows the equivalent
circuit for series inductors carrying an initial current.

Inductors in parallel have the same terminal voltage. In the equivalent
circuit, the current in each inductor is a function of the terminal voltage
and the initial current in the inductor. For the three inductors in parallel
shown in Fig. 6.15, the currents for the individual inductors are

f

1
iy = — [ vdr + ii{(tp),
1= . 1lfo

1 /’ )
ih=—1{ vdr + l2(£0 N
P, )

1 !
l.'; - _/’U dr + i3(t0). (6.?0)
’ L’{ to
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The current at the terminals of the three parallel inductors is the sum of
the inductor currents:

i = il. + i2 + i3. (6.21)

Substituting Eq. 6.20 into Eq. 6.21 yields

i = (“— + =+ —)/ vdr + iy(t) T+ i(ty) + ix(tg).  (6.22)

Now we can interpret Eq. 6.22 in terms of a single inductor; that is,

1 t
i= /vdr + i(tp). (6.23)
Leq fo

Comparing Eq. 6.23 with (6.22) yields
— ==t (6.24)

i(ty) = i(to) + (o) + is(to)- (6.25)

Figure 6.16 shows the equivalent circuit for the three parallel inductors in
Fig. 6.15.

The results expressed in Eqs. 6.24 and 6.25 can be extended to
n inductors in parallel:

- -
Leq Ll LZ Ln )
ilte) = o)+ i) + -+ + E(to). (6.27)

Capacitors connected in series can be reduced to a single equivalent
capacitor. The reciprocal of the equivalent capacitance is equal to the sum
of the reciprocals of the individual capacitances. If each capacitor carries
its own initial voltage, the initial voltage on the equivalent capacitor is the.

1 1 1 1
ch L‘J L2 LS

itg) = iy(t0) + ip(to) + i3(t0)

Figure 6.16 &. An equivalent ¢ircuit for three inductors
in parallel.

<4 Combining inductors in parallel

< Equivalent inductance initial current
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Combining capacitors in series &

Equivalent capacitance initial voltage &

Combining capacitors in parallel &

= +
G a: v (t)
+
v C, A= (1)
J_ £
C,,_ ]\ Vp (10)
(a)

algebraic snm of the initial voltages on the individual capacitors. Figure 6.17
and the following equations summarize thes¢ observations:

(o) = vilte) + Valte) + - + V8o, (6.29)

We leave the derivation of the equivalent circuit for series-connected
capacitors as an exercise. (See Problem 6.30.)

The equivalent capacitance of capacitors connected in parallel is sim-
ply the sum of the capacitances of the individual capacitors, as Fig. 6.18
and the following equation show:

Cri=0i Cz __+ e G (6.30)

Capacitors connected in parallel must carry the same voltage. Therefore, if
there is an initial voltage across the original parallel capacitors, this same
initial voltage appears across the equivalent capacitance C.q. The deriva-
tion of the equivalent circuit for parallel capacitors is lefl as an exercisc.
(See Problem 6.31.)

We say more about series-paralle]l equivalent circuits of inductors and
capacitors in Chapter 7, where we interpret results based on their use.

V(o) = vilto) + valty) + -+ + V,{ko)

(b)

Figure 6.17 & An equivalent circuit for capacitors connected in
senes. (a) The series capacitors. (b) The equivalent circuit.

i
——

i ]

v c.—T— CZJ— “c,,;:
T

()
o

ih—
+ 1
v
:__j\cef Ci+ G+ +C,

(b)

Figure 6.18 & An equivalent circuit for capacitors connected in
parallel. (a) Capacitors in parallel. (b) The equivalent circuit.
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Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equivalent inductor

6.4  The initial values of i; and i, in the circuit Answer: (a) 48 mH;
shown are + 3 A and —5 A, respectively. The (b) 2 A, up;
voltage at the terminals of the parallel induc- (c) 0.125¢% — 2125 A1 = 0;

tors for 1 = 0'is —30e™> mV. S
; ] (@ i) =01e™> +29A, 1 =0,
a) If the parallel inductors are replaced by a ir(t) = 0.025¢7% — 5.025 A, 1 = 0.
single inductor, what is its inductance? i

b) What is the initial current and its reference 6.5  The current at the terminals of the two capaci-
direction in the equivalent inductor? tors shown is 240e %, A for 1 = 0. The initial
¢) Use the equivalent inductor to find i(r). values of v; and »; are =10 V.and =5V,

respectively. Calculate the total energy trapped
in the capacitors as £ — 0o, (_Hinf: Don’t com-
bine the capacitors in series—find the energy
trapped in each, and then add.)

d) Find ii(r) and i,(¢). Verify that the solutions
for i1(2), (), and i(r) satisfy Kirchhoffs
current law.

B

R

i . i

o ° 2 uk 2t
i 8 WE 7= by
v (), 360mH (1), 3240 mH

. . - : Answer: 20 uJ.

NOTE: Also try Chapter Problems 6.21, 6.22, 6.26, and 6.27.

6.4 Mutual Inductance

The magnetic ficld we considered in our study of inductors in Section 6.1
was restricted to a single circuit. We said that inductance is the parameter
that relates a voltage Lo a lime-varying current in the same circuit; thus,
inductance is more precisely referred to as self-inductance.
We now consider the situation in which two circuits are linked by a Ry
magnetic field. In this case, the voltage induced in the second circuit can Mo
be related to the time-varying current in the first circuit by a parameter
known as mutual inductance. The circuit shown in Fig. 6.19 represents two g O L Ry
magnetically coupled coils. The self-inductances of the two coils are
labeled L; and L,, and the mutual inductance is labeled M. The double-
headed arrow adjacent to M indicates the pair of coils with this value of Figure 6.19 & Two magnetically coupled coils.
mutual inductance. This notation is needed particularly in circuits contain-
ing more than one pair of magnetically coupled coils. R
The easiest way to analyze circuits containing mutual inductance is to
use mesh currents. The problem is to write the circuit equations that describe
the circuit in terms of the c¢oil currents. First, choose the reference direction Ve o
for each coil current. Figure 6.20 shows arbitrarily selected reference cur-
rents. After choosing the reference directions for iy and i,, sum the voltages
around each closed path. Because of the mutual inductance M, there will be  Figure 6.20 & Coil currents iy and 7, used to describe
two voltages across each coil, namely, a self-induced voltage and a mutually  the circuit shown in Fig. 6.19.
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Figure 6.21 A The circuit of Fig. 6.20 with dots added
to the coils indicating the polarity of the mutually
induced voltages.

Dot convention for mutually coupled coils &

Dot convention for mutually coupled coils
(alternate) ¥

induced voltage. The self-induced voltage is the product of the self-
inductance of the coil and the first derivative of the current in that coil. The
mutually induced voltage is the product of the mutual inductance of the coils
and the first derivative of the current in the other coil. Consider the coil on
the left in Fig. 6.20 whose self-inductance has the value L,. The self-induced
voltage across this coil is L;(di;/dt) and the mutually induced voltage across
this coil is M (di,/dt). But what about the polarities of these two voltages?

Using the passive sign convention, the self-induced voltage is a voltage
drop in the direction of the current producing the voltage. But the polarity
of the mutnally induced voltage depends on the way the coils are wound in
relation to the reference direction of coil currents. In general, showing the
details of mutually coupled windings is very cumbersome. Instead, we keep
track of the polarities by a method known as the dot convention, in which a
dot is placed on one terminal of each winding, as shown in Fig. 6.21. These
dots carry the sign information and allow us to draw the cojls schematically
rather than showing how they wrap around a core structurc.

The rule for using the dot convention to determine the polarity of
mutually induced voltage can be surnmarized as follows:

When the reference direction for a current enters the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is positive at its dotted terminal.

Or, stated alternatively,

When the reference direction for a current leaves the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is negative at its dotted terminal.

For the most part, dot markings will be provided for you in the circuit
diagrams in this text. The important skill is to be able to write the appro-
priate circuit equations given your understanding of mutual inductance
and the dot convention. Figuring out where 1o place the polarity dots if
they are not given may be possible by examining the physical configura-
tion of an actual circuit or by testing it in the laboratory. We will discuss
these procedures after we discuss the use of dot markings.

In Fig. 6.21, the dot convention rule indicates that the reference polar-
ity for the voltage induced in coil 1 by the current i, is negative at the dot-
ted terminal of coil 1. This voltage (Mdi,/dt) is a voltage rise with respect
to 1. The voltage induced in coil 2 by the current i, is Mdi,/dt, and its ref-
erence polarity is positive at thc dotted terminal of coil 2. This voltage is a
voltage rise in the direction of i,. Figure 6.22 shows the self- and mutually
induced voltages across coils 1 and 2 along with their polarity marks.

R _h_ .
W
— 4+ ® | a + -
diy {1‘.’.’1 Ll dl/z (.fl-]
v M—L — R e R
£ a L, La e di :
= . - %

Figure 6.22 4 The self- and mutually induced voltages appearing
across the coils shown in Fig, 6.21.



Now let’s look at the sum of the voltages around each closed loop. In
Lgs. 6.31 and 6.32, voltage rises in the reference direction of a current are
negative:

) diy diy
_vg + llR] + LIE - MZ = 0, (5.31)
dis diy

Ry + L=t = M—L =0, (6.32)

The Procedure for Determining Dot Markings

We shift now to two methods of determining dot markings. The first
assumes that we know the physical arrangement of the two coils and the
mode of each winding in a magnetically coupled circuit. The following six
steps, applied here to Fig. 6.23, determine a set of dot markings:

a) Arbitrarily select one terminal—say, the D terminal—of one coil and
mark it with a dot.

b) Assign a current into the dotted terminal and label it iyy.

c¢) Use the right-hand rule! to determine the direction of the magnetic
field established by ip inside the coupled coils and label this field ¢p.

d) Arbitrarily pick one terminal of the second coil—say, terminal A—and
assign a current into this terminal, showing the current as 4.

¢) Use the right-hand rule to determine the direction of the flux estab-
lished by i, inside the coupled coils and label this flux ¢ 4.

f) Compare the directions of the two fluxes ¢p, and ¢,. If the fluxes have
the same reference direction, place a dot on the terminal of the second
coil where the test current (i,) enters. (In Fig. 6.23, the fluxes ¢p and
¢4 have the same reference direction, and therefore a dot goes on ter-
minal A.) If the fuxes have different reference directions, place a dot
on the terminal of the second coil where the test current leaves,

The relative polarities of magnetically coupled coils can also be deter-
mined experimentally. This capability is important because in some situa-
tions, determining how the coils are wound on the core is impossible. One
experimental method is to connect a dc voltage source, a resistor, a switch,
and a dc voltmeter to the pair of coils, as shown in Fig. 6.24. The shaded
box covering the coils implies that physical inspection of the coils is not
possible. The resistor R limits the magnitude of the current supplied by the
dc voltage source.

The coil terminal connected to the positive terminal of the dc source
via the switch and limiting resistor receives a polarity mark, as shown in
Fig. 6.24. When the switch is closed, the voltmeter deflection is observed. If
the momentary deflection is upscale, the coil terminal connected to the
positive terminal of the voltmeter receives the polarity mark. If the defiec-
tion is downscale, the coil terminal connecled to the negative terminal of
the voltmeter receives the polarity mark.

Example 6.6 shows how to use the dot markings to formulate a set of
circuil equations in a circuit containing magnetically coupled coils.

1 See discussion of Faraday's law on page 207.
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) (sier?

Arbitrarily
dotted

D terminal
(Step 1)

Figure 6.23 4. A set of coils showing a method for
determining a set of dot markings.

oltmeter

Figure 6.24 A An experimental setup for determining
polarity marks.
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a) Write a set of mesh-current equations that
describe the circuit in Fig. 6.25 in terms of the
currents i; and i,.

b) Verify that if there is no energy stored in the cir-
cuit at 7 = 0 and if i, = 16 — 16¢™™ A, the solu-
tions for /| and i; are

4 + 647> — 687 A

Iy

i, =1—152¢ + S51e™™ A,

™ 4H
Y'Y\
L
\ =)
50 8)H 200
WA © AW
o [/
i T {/fg "', 16 H ::1/1'2\"} 60 Qj

Figure 6.25 4 The circuit for Example 6.6.

Solution
a) Summing the voltages around the i; mesh yields

dil d o . i { j [
4= T 87 — 1) + 2000 — i) + 5(iy — ig) = 0.

The i, mesh equation is
are 5 d. - di
20(i, — iy) + 60i, + 165(12 — o) = SI = 0.

Note that the voltage across the 4 H coil due to
the current (i; — iy), that is, 84(i, — i,)/dz, is a
voltage drop in the direction of /. The voltage
induced in the 16 H coil by the current i, that is,
8di,/dt, is a voltage rise in the direction of i;.

SRR Finding Mesh-Current Equations for a Circuit with Magentically Coupled Coils

b) To check the validity of i; and i;, we begin by
testing the initial and final values of i; and i,. We
know by hypothesis that i;(0) = i,(0) = 0. From
the given solutions we have

i{0) = 4 + 64 — 68 = 0,

iH(0) =1—52+51=0.

Now we observe that as f approaches infinity the
source current (i) approaches a constant value
of 16 A, and therefore thc magnetically coupled
coils behave as short circuits. Hence at t =
the circuit reduces to that shown in Fig. 6.26.
From Fig. 6.26 we see that at ¢t = 00 the three
resistors are in parallel across the 16 A source.
The equivalent resistance 1s 3.75 Q and thus the
voltage across the 16 A current source is 60 V. It
follows that

: 60 = 60

M) =26 60 A
. 60

ir(o0) = a =1A.

These values agree with the final values predicted
by the solutions for Z; and i;.

Finally we check the solutions by seeing if
they satisfy the diffcrential equations derived in
(a). We will leave this final check to the reader
via Problem 6.37.

-

50 200
WA VWA~

@16A b 3600

Figure 6.26 4 The circuit of Example 6.6 when t = oo.
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Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils

6.6 a) Write a set of mesh-current equations for Answer:  (a) 4(di;/dt) + 25i; + S(Hiz/dt) — 2015
‘the circuit in Example 6.6 if the dot on the = sy — 8(di,/dt)
4 H inductor is at the right-hand terminal, ]
Gl T and
the reference direction of I ¢ 1S reversed, and
the 60 ) resistor is increased to 780 (). 8(diy/dty — 20i; + 16(dir/dt) + 800i,
'b) Verify that if there is no energy stored in the = —16(0‘.23,/ ar);

circuitat! = 0,andifi, = 1.96 — 1.96¢°% A,
the solutions to the differential equations
derived in (a) of this Assessment Problem are
= =04 — 11.6e¥ + 1267 A,

iy = —0.01 — 0.99¢ * + ¢ A.

(b) verification.

NOTE: Also try Chapter Problem 6.34.

6.5 A Closer Look at Mutual Inductance

In order to fully explain the circuit parameter mutual inductance, and to
examine the limitations and assumptions made in the qualitative discussion
presented in Section 6.4, we begin with a more quantitative description of
self-inductance than was previously provided.

A Review of Self-Inductance

The concept of inductance can be traced to Michael Faraday, who did pio-
neering work in this area in the early 1800s. Faraday postulated that a
magnetic field consists of lines of force surrounding the current-carrying
conductor. Visualize these lines of force as energy-storing elastic bands
that close on themselves. As the current increases and decreases, the ¢las-
tic bands (that is, the lines of force) spread and collapse about the conduc-
tor. The voltage induced in the conductor is proportional to the number of
lines that collapse into, or cut, the conductor. This image of induced volt-
age is expressed by what is called Faraday’s law; that is,

_d
dt’

[¢h
A

|
. : : > N turns
where A is referred to as the flux linkage and is measured in weber-turns. !

How do we get from Faraday’s law to the definition of inductance pre- L
sented in Section 6.1? We can begin to draw this connection using Fig. 6.27  Figure 6.27 A Representation of a magnetic field link-
as a reference. ing an N-turn coil.

v (6.33)
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The lines threading the N turns and labeled ¢ represent the magnetic
lincs of force thal make up the magnetic field. The strength of the mag-
netic field depends on the strength of the current, and the spatial oricnta-
tion of the field depends on the direction of the current. The right-hand
rule relates the orientation of the field to the direction of the current:
When the fingers of the right hand are wrapped around the coil so that the
fingers point in the direction of the current, the thumb points in the direc-
tion of that portion of the magnetic field inside the coil. The fux linkage is
the product of the magnetic ficld (¢), mcasured in webers (Wb), and the
number of turns linked by the field (V):

A= Ng. (6.34)

The magnitude of the flux, ¢, is related to the magnitude of the coil
current by the relationship

¢ = PN, (6.35)

where N is the number of turns on the coil, and & is the permeance of the
space occupied by the flux. Permeance is a quantity that describes the
magnetic properties of this space, and as such, a detailed discussion of per-
meance is outside the scope of this text. Here, we need only observe that,
when the space containing the flux is made up of magnetic materials (such
as iron, nickel, and cobalt), the permeance varies with the flux, giving a
nonlinear relationship between ¢ and i. But when the space containing the
flux is comprised of nonmagnetic materials, the permeance is constant,
giving a linear relationship between ¢ and i. Note from Eq. 6.35 that the
flux is also proportional to the number of turns on the coil.

Here, we assume that the core material—the space containing the flux—
is nonmagnetic, Then, substituting Eqs. 6.34 and 6.35 into Eq. 6.33 yields

dx _ d(N9)
dt dt

_ N _ vl o
= N—- = N_(?Ni)

di di
= N*p— = [— 6.36
dt ar’ (6.36)

which shows that self-inductance is proportional to the square of the num-
ber of turns on the coil. We make use of this observation later.

The polarity of the induced voltage in the circuit in Fig. 6.27 reflects the
reaction of the field to the current crealing the field. For example, when i is
increasing, di/dt is positive and v is positive. Thus energy is required to
establish the magnetic field. The product vi gives the rate at which cnergy is
stored in the field. When the field collapses, di/di is negative, and again the
polarity of the induced voltage is in opposition to the change. As the ficld
collapses about the coil, energy is returned to the circuit.

Keeping in mind this further insight into the concept of self-inductance,
we now turn back to mutual inductance.
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The Concept of Mutual Inductance

Figure 6.28 shows two magnetically coupled coils. You should verify that i — — —y- —
the dot markings on the two coils agree with the direction of the coil wind-
ings and currents shown. The number of turns on each coil are Nj and N,, 14
respectively. Coil 1 is energized by a time-varying current source that s ?
establishes the current i} in the N, turns. Coil 2 is not energized and is = TP IV
open. The coils are wound on a nonmagnetic core. The flux produced by
the current i; can be divided into two components, labeled ¢,; and ¢y.
The flux component ¢,; is the flux produced by /; that links only the N, Figure 6.28 4 Two magnetically coupled coils.
turns. The component ¢, is the flux produced by /; that links the N, turns

and the N, turns. The first digit in the subscript to the flux gives the coil

number, and the second digit refers to the coil current. Thus ¢; is a flux

linking coil 1 and produced by a current in coil 1, whereas ¢y is a flux link-

ing coil 2 and produced by a current in coil 1.

The total flux linking coil 1 is ¢y, the sum of ¢;; and ¢,q:

Vy

-

¢1 = b + dn- (6.37)

The flux ¢, and its components ¢; and ¢, are related to the coil current
I; as follows:

¢y = PNy, (6.38)
du = PulN, (6.39)
Po1 = Py Nyiy, (6.40)

where P, is the permeance of the space occupied by the flux ¢,, Py, is the
permeance of the space occupied by the flux ¢, and %, is the permeance
of the space occupied by the flux ¢,,. Substituting Egs, 6.38, 6.39, and 6.40
into Eq. 6.37 yields the relationship between the permeance of the space
occupied by the total flux ¢, and the permeances of the spaces occupied
by its components ¢; and ¢:

Pr=Ppy + Py (6.41)
We use Faraday’s law to derive expressions for », and vy:

dar _ d(N.éy)

v =

da
= NlE(Qf)n + ¢21)

di dt
di diy diy
= N%(@n + @21)d_t1 = N%QHE = L-,E, {6.42)
and
dry _ d(Nydn) d .
2= T _d2!_21 = NZE(@ZLNih)

di
= N2N I@Z'I—dTL . (6.43)
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Yy

— ==

Figure 6.29 £ The magnetically coupled cails of
Fig. 6.28, with coil 2 excited and coil 1 open.

The coefficient of di;/dt in Eq. 6.42 is the self-inductance of coil 1. The
coefficient of di;/dt in Eq. 6.43 is the mutual inductance between coils 1
and 2. Thus

My = NN, Py (6.44)

The subscript on M specifies an inductance that relates the voltage induced
in coil 2 to the current in coif 1.
The cocfficient of mutual inductance gives

di
vy = M”d_tl' (6.45)

Note that the dot convention is used to assign the polarity reference to v,
in Fig. 6.28,

For the coupled coils in Fig. 6.28, exciting coil 2 from a time-varying
current source (i) and leaving coil 1 open produces the circuit arrange-
ment shown in Fig. 6.29. Again, the polarity reference assigned to v, is
based on the dot convention.

The total flux linking coil 2 is

by = dn + b1a (6.46)

The flux ¢, and its components ¢,; and ¢4, are related to the coil current
i» as follows:

Py = PNy, (6.47)
b2 = PnNoiy, (6.48)
b1z = PN (6.49)
The voltages v, and v, are
dx diy di
=—==NP—=L,—= .
B= =N 27y 25 (6.50)
dy  d di,
v == Z;(Nﬂi’]z) = N1N2@125- (6.51)

The coefficient of mutual inductance that relates the voltage induced
in coil 1 to the time-varying current in coil 2 is the coefficient of di,/d!«
in Eq. 6.51:

M12 = N]_Nz@]_z. (6.52)

For nonmagnetic materials, the permeances %, and %, are equal, and
therefore

MI.Z = M21 =M. (5.53)

Hence for linear circuits with just two magnetically coupled coils, attach-
ing subscripts to the coefficient of mutual inductance is not necessary.



Mutual Inductance in Terms of Self-Inductance

The value of mutual inductance is a function of the self-inductances. We
derive this reJationship as follows. From Eqs. 6.42 and 6.50,

L, = Ni#,, (6.54)
L, = N5&,, (6.55)
respectively. From Egs. 6.54 and 6.55,
L,L, = NINZ®®,. (6.56)
We now use Eq. 6.41 and the corresponding expression for &, to write
LiLy = NiNj(@yy + $3)(Pn + P1a)- (6.57)

But for a linear system, Py = P,, s0 Eq. 6.57 becormes

P o
LiL, = (N1N29’12)2<1 + E\P—l}-)(l + —22>

12 @12

) »
=M1+ i) (1 + i) 5.58
( Py P (6:58)

Replacing the two terms involving permeances by a single constant
expresses Eq. 6.58 in a more meaningful form:

1 Pu Py
— =114+ —— 1+ =1 §.59
K2 ( 97’12) < P2 (6.59)

Substituting Eq. 6.59 into Eq. 6.58 yields

M2 = kleLz
or
M = kViIiL;, (6.60)

where the constant k is called the coefficient of coupling. According to
Eq.6.59,1/k* must be greater than 1, which means that £ must be less than 1.
In fact, the coefficient of coupling must lie between 0 and 1, or

0=k=1 (6.61)

The coefficient of coupling is 0 when the two coils have no common
flux; that is, when ¢, = ¢,y = 0. This condition implies that %y, = 0, and
Eq. 6.59 indicates that 1/k* = o0, or k = 0. If there is no flux linkage
between the coils, obviously M is 0.

6.5 A Closer Look at Mutual Inductance

< Relating self-inductances and mutual
inductance using coupling coefficient
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Figure 6.30 & The circuit used to derive the basic
energy relationships.

The coefficient of coupling is equal to 1 when ¢;; and ¢,, are 0. This
condition implies that all the flux that links coil 1 also links coil 2. In terms
of Eq. 6.59, P;; = Py, = 0, which obviously represents an ideal state; in
reality, winding two coils so that they share precisely the samc flux is phys-
ically impossible. Magnetic materials (such as alloys of iron, cobalt, and
nickel) create a space with high permeance and are uscd to establish coef-
ficients of coupling that approach unity. (We say more about this impor-
tant quality of magnetic materials in Chapter 9.)

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.42 and 6.43.

Energy Calculations

We conclude our first look at mutual inductance with a discussion of the
fotal cnergy stored in magnetically coupled coils. In doing so, we will
confirm two obscrvations made earlier: For linear magnetic coupling,
(YMyp =My =M,and Q) M = kVLiL,, where 0 = k = 1.

We use the circuit shown in Fig. 6.30 to derive the expression for the
total energy stored in the magnetic fields associated with a pair of linearly
coupled coils. We begin by assuming that the currents i; and i, are zero
and that this zero-current state corresponds to zero energy stored in the
coils. Then we let i; increase from zero to some arbitrary value /; and com-
pute the energy stored when i; = I,. Because i, = 0, the total power
input into the pair of coils is v, and the energy stored is

/4 I
/ dw = Ll/ ildil,
JO 0

1
w, = ELJ%. (6.62)

Now we hold ¢, constant at /; and increase i, from zero to some arbitrary
value 7,. During this time interval, the voltage induced in coil 2 by / is

7ero because I, is constant. The voltage induced in coil 1 by i, is M,disy/dt.
Therefore, the power input to the pair of coils is

di, i
p= 11M12I + Ly,

The total energy stored in the pair of coils when i, = I, is

w 15 I
/ dw = / 11M12di2 + / in'zdiz,
V4 0 1]

or

W= Wi+ LMy + 3103,

1 1
= ELlI% + ELQ.[% + ]1]2M12. (663)



If we reverse the procedure—that is, if we first increase i, from zero to /,
and then increase {; from zero to [;—the total energy storcd is

1
w = ELII,Z + %qug + 1, 1;M,,, (6.64)

Equations 6.63 and 6.64 express the total energy stored in a pair of Jin-
early coupled coils as a function of the coil currents, the self-inductances,
and the mutual inductance. Note that the only difference between these
equations is the coefficient of the current product I,/,. We use Eq. 6.63 if
1| is established first and Eq. 6.64 if i, is established first.

When the coupling medium is linear, the total energy stored is the
same regardless of the order used to establish 7, and 7,. The reason is that
in a linear coupling, the resultant magnetic flux depends only on the final
values of i; and i,, not on how the currents reached their final values. If the
resultant flux is the same, the stored energy is the same. Therefore, for lin-
ear coupling, M;, = M,;. Also, because /| and I, are arbitrary values of i;
and i,, respectively, we represent the coil currents by their instantaneous
values i; and i,. Thus, at any instant of time, the total energy stored in the
coupled coils is

1 1
w(t) = Ele% + Eing + Miqy. (6.65)

We derived Eq. 6.65 by assuming that both coil currents entered
polarity-marked terminals. We leave it to you to verify that, if one current
enters a polarity-marked terminal while the other leaves such a terminal,
the algebraic sign of the term Mi;i, reverses.’T'hus, in general,

1 1
w(t) = 5L1i% + zlat/% 4 Mi,. (6.66)

We use Eq. 6.66 to show that M cannot cxceed V.L;L,. The magneti-
cally coupled coils are passive elements, so the total energy stored can
never be negative. If w(f) can ncver be negative, Eq. 6.66 indicates that the
quantity

1 1

=Lyi} + ZLyi5 — Miji

SEalt T 5 hal 1f2

must be greater than or cqual to zero when i, and i, are either both posi-

tive or both negative. The limiting value of M corresponds 1o setting the

quantity equal to zero:
1

1
ELll% + ELZZ% - Mi]iz =90 (667)

To find the limiting value of M we add and subtract the tcrm
i1l V'L, L, to the left-hand side of Eq. 6.67. Doing so generates a term that
is a perfect square:

6.5

A Closer Look at Mutual Inductance
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The squared term in Eq. 6.68 can never be negative, but it can be zero.
Therefore w(t) = 0 only if

VILiL, = M, (6-69)
which is another way of saying that
M= kVvLL, O=k=1).

We derived Eq. 6.69 by assuming that i; and i, are either both positive or
both negative. However, we get the same result if 7; and i, are of opposite
sign, because in this case we obtain the limiting value of M by selecting the
plus sign in Eq. 6.66.

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.47 and 6.48.

Practical Perspective

Proximity Switches

At the beginning of this chapter we introduced the capacitive proximity
switch. There are two forms of this switch. The one used in table lamps
is based on a single-electrode switch. It is left to your investigation in
Problem 6.50. In the example here, we consider the two-electrode switch
used in elevator call buttons.

EXAMPLE

The elevator call button is a small cup into which the finger is inserted, as
shown in Fig. 6.31. The cup is made of a metal ring electrode and a circular
plate electrode that are insulated from each other. Sometimes two concentric
rings embedded in insulating plastic are used instead. The electrodes are
covered with an insulating layer to prevent direct contact with the metal.
The resulting device can be modeled as a capacitor, as shown in Fig. 6.32,

G
|

Figure 6.32 2 A capacitor model of the two-electrode
Figure 6.31 4. An elevator call button. (a) Front view. (b) Side view. proximity switch used in elevator call buttons.




Unlike most capacitors, the capacitive proximity switch permits you to -

insert an object, such as a finger, between the electrodes. Because your fin-
ger is much more conductive than the insulating covering surrounding the
electrodes, the circuit responds as though another electrode, connected to
ground, has been added. The result is a three-terminal circuit containing
three capacitors, as shown in Fig. 6.33.

The actual values of the capacitors in Figs. 6.32 and 6.33 are in the

range of 10 to 50 pF, depending on the exact geometry of the switch, how
the finger is inserted, whether the person is wearing gloves, and so forth.
For the following problems, assume that all capacitors have the same value
of 25 pF. Also assume the elevator call button is placed in the capacitive
equivalent of a voltage-divider circuit, as shown in Fig. 6.34.

a) Calculate the output voltage with no finger present.
b) Calculate the output voltage when a finger touches the button.

Solution

a) Begin by redrawing the circuit in Fig. 6.34 with the call button replaced
by its capacitive model from Fig. 6.32. The resulting: circuit is shown in
Fig. 6.35. Write the current equation at the single node:

dle) Czl—i2 =0. (6.70)

C —
4 di dt

Rearrange this equation to produce a differential equation for the output
voltage »(r): i

e U 6.71)
di Cy+C, dt’ (®.
Finally, integrate Eq. 6.71 to find the output voltage:
ot (1) + v(0 6.72
o) = G5 %0 + 20) (6.72)

The result in Eq. 6.72 shows that the series capacitor circuit in Fig. 6.35
forms a voltage divider just as the series resistor circuit did in Chapter 3.
In both voltage-divider circuits, the output voltage does not depend on
the component values but only on their ratio. Here, C; = C, = 25 pF,
so the capacitor ratio is Cy/C, = 1. Thus the output voltage is

v(t) = 0.5v,(r) + »(0). (6.73)

The constant term in Eq. 6.73 is due to the initial charge on the capacitor.
We can assume that (0) = 0V, because the circuit that senses the out-
put voltage eliminates the effect of the initial capacitor charge. Therefore,
the sensed output voltage is

(1) = 0.50,(¢). (6.74)

Practical Perspective

G
G G
Figure 6.33 .& A circuit model of a capacitive
proximity switch activated by finger touch.

_}.
25 pF #(1)

(1)

Fixed
capacitor

Figure 6.34 4. An elevator call button circuit.

Button —~ C;

v,(D)
{ Fixed

capacitor

Figure 6.35 4. A model of the elevator call button
¢ircuit with no finger present.
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b) Now we replace the call button of Fig. 6.34 with the model of the acti-
vated switch-in Fig. 6.33. The result is shown in Fig. 6.36. Again, we cal-
culate the currents leaving. the output node:

dv

d(w — dy -
do=a), czjti_ + Gy = 0. (6.75)

C
IR

Rearranging to write a differential equation for (¢) results-in

dv C4 dv,
e e e (6.76)
dt - Ci+Cy+ Cy dt
Finally, solving the differential equation'in Eq. 6.76, we see
t) = ————w(t) + v(0). 6.77
IfCl = C2 = C3 = 25pF,
o(t) = 0.333v,2) + v(0). (6.78)

As before, the sensing circuit eliminates »(0), so the sensed output
voltage is

v(t) = 0.3330,(1). (6.79)

Comparing Egs. 6.74 and 6.79, we see that when the button is pushed,
the output is one third of the input voltage. When the button is not
pushed, the output voltage is one half of the input voltage. Any drop in
output voltage is detected by the elevator's control computer and ulti-
mately results in the elevator arriving at the appropriate floor.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 6.49 and 6.51.

00

Fixed
capacitor

Figure 6.36 £ A model of the elevator call button circuit when
activated by finger touch.
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+ Inductance is a linear circuit parameter that relates the
voltage induced by a time-varying magnetic field to the
current producing the field. (See page 188.)

+ Capacitance is a linear circuit parameter that relates the
current induced by a time-varying electric field to the
voltage producing the field. (See page 195.)

» Inductors and capacitors are passive elements; they can
store and release energy, but they cannot generate or
dissipate energy. (See page 188.)

+ The instantaneous power at the terminals of an inductor
or capacitor can be positive or negative, depending on
whether energy is being delivered to or extracted from
the element.

« An inductor:

» does not permit an instantaneous change in its termi-
nal current

+ does permit an instantaneous change in its teminal
voltage

» behaves as a short circuit in the presence of a constant
terminal current (See pages 188-189.)

* A capacitor:
+ does not permit an instantaneous change in its termi-
nal voltage

» does permit an instantaneous change in its terminal
current

» behaves as an open circuit in the presence of a con-
stant terminal voltage (See page 196.)

« Equations for voltage, current, power, and energy in
ideal inductors and capacitors are given in Table 6.1.

+ Inductors in series or in parallel can be replaced by an
equivalent inductor. Capacitors in series or in parallel
can be replaced by an equivalent capacitor. The equa-
tions are summarized in Table 6.2. See Section 6.3 for a
discussion on how to handle the initial conditions for
series and parallel equivalent: circuits involving induc-
tors and capacitors.

.'and Capamtofs :

Inductors

v=Ly V)

i=1 / vdr + i(ty) (A)

DAl

p=wi=Li% (W)

w = ;L )

Capacitors _
nt

v=%/id.—+v(r0) (V)
o

i=cg (A)

p = vi=Co¥ (W)

w = JC? 0)

-TABLE 6 2 Equatlons for Senes- and’ Parallel-Connected
lnductors and Capamtors e

Senes-Connected

eqzl—]+L2+ +Ln

b g 'ty i S WORLT Dt 8
_01+C2+ + =

Parallel-Connected

L/ W e L 1
l«q_Ll+’-zT +-Ln

Ceq:C-1+C2+ +Cn

+ Mutual inductance, M, is the circuit parameter relating

the voltage induced in one circuit to a time-varying cur-
rent in another circuit. Specifically;

diy diy
Ry
(111 d12

= My—+ + L,—*
A e
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where v; and i; are the voltage and current in circuit 1,  + The relationship between the self-inductance of each

and 2, and i, are the voltage and current in circuit 2. For winding and the mutual inductance between windings is
coils wound on nonmagnetic cores, M, = My = M
(See page 210.) N eI

» The dot convention establishes the polarity of mutually

IRAPePHNOIRED: The coefficient of coupling, k, is a measure of the degree

of magnetic coupling. By definition, 0 < k < 1. (See

When the reference direction for a current enters
page 211.)

the dotted terminal of a coil, the reference polar-
ity of the voltage that it induces in the other coil
is positive at its dotted terminal.

» The energy stored in magnetically coupled coils in a lin-
ear medium is related to the coil currents and induc-
tances by the relationship

Or, alternatively,

‘When the reference direction for a current leaves
the dotted terminal of a coil, the reference polar-

@ty of th.e voltfage that it indgces mn the other coil T lL] it + 1 1,02 + Miji,.
is negative at its dotted terminal. 2
(See page 204.) (See page 213.)
Problems
Section 6.1 Figure P6.2
6.1 The triangular current pulse shown in Fig, P6.1 is i 2 (mV)
rseice applied to a 375 mH inductor. 5

fourintervalsr < 0,0 s r = 25ms,25ms <t <
50 ms,and r > 50 ms.

b) Derive the expressions for the inductor volt- (a)

a) Write the expressions that describe i(¢) in the
vs 300 uH

|
|
|
0 1 2 t(ms)

b

age, power, and energy. Use the passive sign &

convention.
Fiaure P6.1 6.3 The current in the 4 mH inductor in Fig. P6.3 is
}g ) rsrice known to be 2.5 A for t < 0. The inductor voltage
i(mA) forr = 01s given by the expression

400

v (t) = 30e¥mV, 0" =t < o0
Sketch v, (¢) and i, (¢) for 0 < ¢ < 00,
I
0 25 50 ¢ (ms) Figure P6.3

6.2 The voltage at the terminals of the 300 wH inductor ”‘([2
rseice in Fig. P6.2(a) is shown in Fig. P6.2(b). The inductor

current { is known to be zero forr = 0. o o
vy, !

. . 4 mH
a) Derive the expressions for i fort = 0. "

b) Sketch i versus ¢ for0 <t = oco.




6.4

PSPICE

6.5

PSPICE

The current in a 100 xH inductor is known to be
ip = 201e™'A for 1 = 0.

a) Find the voltage across the inductor for ¢t > Q.
(Assume the passive sign convention.)

b) Find the power (in microwatts) at the terminals
of the inductor when ¢ = 100 ms.

¢} Is the inductor absorbing or delivering power at
100 ms?

d) Find the energy (in microjoules) stored in the
inductor at 100 ms.

e) Find the maximum energy (in microjoules)
stored in the inductor and the time (in micro-
seconds) when it occurs.

The current in and the voltage across a 2.5 H induc-
tor are known to be zero for r = 0. The voltage
across the inductor is given by the graph in Fig. P6.5
fort = 0.

a) Derive the expression for the current as a
function of time in the intervals 0 = ¢ < 25,
2s =t <65, 6s=1<10s, 10s =t =125,
and 12s = < 00,

b) For ¢t > 0, what is the current in the inductor
when the voltage is zero?

¢) Sketch iversustfor(Q = ¢ < co.

Figure P6.5
v (V)
50 —
| | | | £(s)
2 4 6 & 10
6.6 The current in a 20 mH inductor is known to be

FSPICE

7 + (15 sin 140t — 35 cos 140r)e 2 mA for ¢ = 0.
Assume the passive sign convention.

a) At what instant of time is the voltage across the
inductor maximumn?

b) What is the maximum voltage?

6.7

PSPICE

6.8

6.9

6.10

Probltems 219

a) Find the inductor current in the circuit in
Fig. P6.7 if v = 250sin 1000V, L = 50 mH, and
i(0) = =5 A

b) Sketch v, i, p, and w versus t. In making these
sketches, use the format used in Fig. 6.8, Plot over
one complete cycle of the voltage waveform.

¢) Describe the subintervals in the time interval
between 0 and 27 ms when power is being
absorbed by the inductor. Repeat for the sub-
intervals when power is being delivered by the
inductor.

Figure P6.7

The current in a 15 mH inductor is known to be

I =

1A, =0

i

I= A 200 4 A B0 =0,
The voltage across the inductor (passive sign con-
vention) is 60 Vats = 0.

a) Find the expression for the voltage across the
inductor for ¢ > 0.

b) Find the time, greater than zero, when the power
at the terminals of the inductor is zero.

Assume in Problem 6.8 that the value of the voltage
across the inductor att = 0is —300 V instead of 60 V.

a) Find the numerical expressions for i and v for
t = 0.

b) Specify the time intervals when the inductor is
storing energy and the time intervals when the
inductor is delivering energy.

c) Show that the total energy extractcd from the
inductor is equal to the total energy stored.

The current in a 2 H inductor is
i=25A, =0

i = (Bjcos 5t + Bysin St)e? A, t=0.

The voltage across the inductor (passive sigh con-
vention) is 100 V at 1 = 0. Calculate the power at the
terminals of the inductor at r = 0.5 s. State whether
the inductor is absorbing or delivering power.
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6.11

6.12

6.13

Inductance, Capacitance, and Mutual Inductance

Initially there was no energy stored in the 20 H
inductor in the circuit in Fig. P6.11 when it was
placed across the terminals of the voltmeter. At
¢t = 0 the inductor was switched instantaneously to
position b where it remained for 1.2 s before return-
ing instantaneously to position a. The d'Arsonval
voltmeter has a full-scale reading of 25 V and a sen-
sitivity of 1000 3/V. What will the reading of the
voltmeter be at the instant the switch returns to
position a if the inertia of the d’Arsonval move-
ment is negligible?

Figure P6.11

14 mV Voltmeter

20H

Evaluate the integral

/ pdt
0

for Example 6.2. Comment on the significance of
the result.

The expressions for voltage, power, and energy
derived in Example 6.5 involved both integration
and manjpulation of algebraic expressions. As an
engineer, you cannot accept such results on faith
alone. That is, you should develop the habit of ask-
ing yourself, “Do these results make sense in terms
of the known behavior of the circuit they purport to
describe?” With these thoughts in mind, test the
expressions of Example 6.5 by performing the fol-
lowing checks:

a) Check the expressions to sec whether the volt-
age is continuous in passing from onec time inter-
val to the next.

b) Check the power expression in each interval by
selecting a time within the interval and seeing
whether it gives the same result as the corre-
sponding product of v and i. [or example, test at
10 and 30 us.

¢) Check the energy cxpression within each interval
by selecting a time within the interval and seeing
whether the energy equation gives the same
result as $Cv% Use 10 and 30 ps as test points.

Section 6.2

6.14 A 0.5 uF capacitor is subjecled to a voltage pulse
having a duration of 2 s. The pulse is described by
the following equations:

408V, 0=sr=<ls;
V() =< 402 — 6)*V, ls=1=<25;
0 elsewhere.

Sketch the current pulse that exists in the capacitor
during the 2 s interval.

6.15

PSPICE

The rectangular-shaped current pulse shown in

Fig. P6.15 is applied to a 0.2 uF capacitor. The ini-

tia} voltage on the capacitor is 4 40 V drop in the

rcfercnce direction of the current. Derive the

expression for the capacitor voltage for the time

intervals in (a)-(c).

a) 0 <t = 100 us;

b) 100 us < ¢t < 300 us;

¢) 300 us = 1 < o0

d) Sketch #{(¢) over the interval —100 us < ¢ <
500 pws.

Figure P6.15
i (mA)
80—

40+

1 | I
200 300 400 500

s
0 100 s)

—40

6.16 The voltage at the terminals of the capacitor in
rseice Fig 6.10 is known to be

p = =30V, t <0
10 — 1071%%(4 cos3000¢ + sin 3000t) V. ¢ = 0.
Assume C = 0.5 uF.

a) Find the current in the capacitor for 1 < 0.
b) Find the current in the capacitor for ¢t > 0.



¢) Is there an instantaneous change in the voltage
across the capacitor at «+ = (?

d) Is there an instantaneous change in Lhe current
in the capacitor at f = 0?

e) How much energy (in microjoules) is stored in
the capacitor at t = 00?

6.17 The current shown in Fig. P6.17 is applied to a
rseice (.25 pF capacitor. The initial voltage on the capaci-
tor is zero.

a) Find the charge on the capacitor at = 30 us.
b) Find the voltage on the capacitor at 1 = 50 us.

¢} How much energy is stored in the capacitor by
this current?

Figure P6,17
i (mA)

50

[ | b=}
0] 10 20 30 48, S0 60 70

=50

6.18 The initial voltage on the 0.2 F capacitor shown in
psrice Fig. P6.18(a) is —60.6 V. The capacitor current has
the waveform shown in Fig. P6.18(b).

Problems 221

6.19 The voltage across the terminals of a 0.4 uF
PSFICE  capacitor 18

_J2sv,
v= Agpe 1500 4 4 15000y

The initial current in the capacitor is 90 mA. Assume
the passive sign convention.

t =0
t = 0.

a) Whatis the initial energy stored in the capacitor?
b) Evaluate the coefficients A; and A,.
c) What is the expression for the capacitor current?

Section 6.3

6.20 Assume that the initial encrgy stored in the induc-
tors of Fig, P6.20 is zero. Find the equivalent induc-
tance with respect to the terminals a,b.

Figure P6.20
21H

44H S H

b
6.21 Assume that the initial energy stored in the induc-

tors of Fig. P6.21 is zero. Find the equivalent induc-
tance with respect to the terminals a,b.

Figure P6.21
12H SH

a) How much energy, in microjoules, is stored in 14H
the capacitor at t = 250 us?
b} Repeat (a) fort = co. b 24H 15.8H
Figure P6.18
i (mA)
100 10061 % mA, ¢ =0
02 uF
o 501
-60.6V
IiE | | | |
1 — f S
& . o] 200 400 60 800 1000 A
t L
(2) (b)
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6.22

6.23

Inductance, Capacitance, and Mutual Inductance

The two parallel inductors in Fig. P6.22 are con-

nected across the terminals of a black box atr = 0.

The resulting voltage v for ¢ > 0 is known to be

— 1800¢™ " V. It is also known that i;(0) = 4 A and

i,(0) = —16 A.

a) Replace the original inductors with an equiva-
lent inductor and find i(¢) for t = 0.

b) Find i,(¢) for ¢ = 0.

¢) Find iy(¢) for t = 0.

d) How much energy is delivered to the black box
in the time interval 0 < ¢ < 00?

e) How much energy was initially stored in the par-
allcl inductors?

f) How much encrgy is trapped in the ideal
inductors?

¢) Show that your solutions for {; and i, agree with
the answer obtained in (f).

Figure P6.22

W' t10H ;‘z(c)T 30H

The three inductors in the circuit in Fig. P6.23 are
connected across the terminals of a black box at
¢t = 0. The resulting voltage for ¢ > 0 is known to be

v, = 125067V,
[fi;(0) = 10 A and i,(0) = ~5 A, find
a) i,(0);
b) i,(¢),t = 0;
c) i(t),t = 0;
d) L(1),1 = 0;
e) the initial encrgy stored in Lthe three inductors;
f) the total energy delivered to the black box; and
g) the energy trapped in the ideal inductors.

6.24

6.25

6.26

6.27

Figure P6.23

B Q
t=10
; Black
IT 8H IZT 32H U box
i() -—
e 4 .
36H

For the circuit shown in Fig. P6.23, how many milli-
seconds after the switch is opened is the energy
delivered to the black box 80% of the total energy
delivered?

Find the equivalent capacitance with respect to the
terminals a,b for the circuit shown in Fig. P6.25.

Figure P6.25

12 uF
|/
I
8V

20 uF 10V N

1\
14 uF 21 uF

-+

2V

Find the equivalent capacitance with respect to the
terminals a,b for the circuit shown in Fig. P6.26.

Figure P6.26
8 nF 18 nF
( . Vi o
ae—( 1<
— 30V + — 15V +
5.6 nF +
12.8 nF 8nF =< 30V
40 nF 32 nF "\ B
[ £
be—¢ ’ 1<
+ 5V — — 10V +

The two series-comnected capacitors in Fig. P6.27
are connected to the terminals of a black box at
t = 0. The resulting current i(+) for r > 0 is known
to be 900~ % LA,

a) Replace the original capacitors with an equiva-
lent capacitor and find »,(¢) for t = 0.

b) Find v,(t) forf = 0.



6.28

6.29

¢) Find v,(¢) for¢ = 0,

d) How much energy is delivered to the black box
in the time interval 0 < 1 < ©0?

¢) How much energy was initially stored in the
series capacitors?

f) How much energy is trapped in the ideal
capacitors?

g) Show that the solutions for »; and v, agrce with
the answer obtained in (f).

Figure P6.27

i)

: v
+ J_ . =0
45V 20nF v

- +
15v

30nF ¥z
+ ,\\ ~

The four capacitors in the circuit in Fig. P6.28 are con-
nected across the terminals of a black box at 1 = 0.
The resulting current #;, for ¢ > 0 is known to be

i, = 50729 A,
If v,(0) = 15V, v,(0) = —45V, and v,4(0) = 40V,
find the following for ¢ = 0: (a) v4(t), (b) v,(t),
(©) 2(2), (d) va(t), (€) i5(1), and (£) ix(1).

Figure P6.28

Black

1nF;':Tr'] Uy hTJ’I;l’SDP L

®

For the circuit in Fig. P6.28, calculate

a) the initial energy stored in the capacitors;
b} the final energy stored in the capacitors;

¢) the total energy delivered to the black box;

Problems 223

d) the percentage of the initial energy stored that is
delivered to the black box; and

e) the time, in milliseconds, it takes to deliver 5 pJ
to the black box.

6.30 Derive the equivalent circuit for a series connection
of ideal capacitors. Assume that each capacitor has
its own initial voltage. Denote these initial voltages
as v1(tp), va{ty), and so on. (Hint: Sum the voltages
across the string of capacitors, recognizing that the
series connection forces the current in each capaci-
tor to be the same.)

6.31 Derive the equivalent circuit for a parallel connec-
tion of ideal capacitors. Assume that the initial volt-
age across the paralleled capacitors is v(ig). (Hinz:
Sum the currents into the string of capacitors, rec-
ognizing that the parallel connection forces the
voltage across each capacitor to be the same.)

Sections 6,.1-6.3
6.32 The current in the circuit in Fig. P6.32 is known to be
i, = 50¢7 8% (cos 6000t + 2 sin 60007) mA
for £ = 0", Find v,(0%) and v,(0%).

Figure P6.32

Uy 0.5 uF (2] % 20 mH
{ ‘)

(3]

633 At¢ = 0, a series-connected capacitor and inductor
are placed across the terminals of a black box, as
shown in Fig. P6.33, For ¢ > 0, it is known that

i, = —e 8Usin 60t A.

If v.(0) = —300 V find v, for £ = 0.

Figure P6.33

r=10 Black

e /‘\ 20 }I_F vy box
_',. —
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Section 6.4

6.34 There is no energy stored in the circuit in Fig. P6.34
at the time the switch is opened.

a) Derive the differential equation that governs
the behavior of i, ift Ly =10H, L, = 40 H,
M =5H,and R, = 90 Q.

b) Show that when i, = 10¢™ — 10 A, 1 = 0, the
differential equation derived in (a) is satisfied
wheni, = ¢ — 5S¢ 22 A 1t = 0.

c) Find the expression for the voltage v, across the
current source.

d) What is the initial value of ©,? Does this make
sense 1n terms of known circuit behavior?

Figure P6.34

6.35 Let v, represent the voltage across the 16 H induc-
tor in the circuit in Fig. 6.25. Assume v, is positive at
the dot. As in Example 6.6,i, = 16 — 16¢> A.

a) Can you find », without having to differentiate
the expressions for the currents? Explain.

b) Derive the expression for v,.

¢) Check your answer in (b) using the appropriate
current derivatives and inductances.

6.36 Let v, represent the voltage across the current source
in the circuit in Fig. 6.25. The reference for v, is posi-
tive at the upper terminal of the current source.

a) Find v, as a function of time when i, =16 —
165 A.

b) What is the initial value of v,?

¢) Find the expression for the power developed by
the current source.

d) How much power is the current source develop-
ing when ¢ is infinite?

e) Calculate the power dissipated in each resistor
when ¢ is infinite.

6.37 a) Show that the differential equations derived in
(a) of Example 6.6 can be rearranged as follows:

PLAIMPYTIY.. BRSSP §
dt g di O dr’
dil di2 dig
—8Z _ 20i; + 16922 4 80i, = 16—,
8dt by 1o N dt

b) Show that the solutions for i, and i, given in (b)
of Exaraple 6.6 satisfy the differential cquations
given in part {a) of this problem.

6.38 The physical construction of four pairs of magneti-
cally coupled coils is shown in Fig. P6.38. (See
page 225.) Assume that the magnetic flux is con-
fined to the core material in each structure. Show
two possible locations for the dot markings on each
patr of coils.

6.39 The polarity markings on two coils are to be deter-
mined experimnentally. The experimental setup is
shown in Fig. P6.39. Assume that the terminal con
nected to the negative terminal of the battery has
been given a polarity mark as shown. When the
switch is closed, the dc voltmeter kicks upscale.
Where should the polarity mark be placed on the
coil connected to the voltmeter?

Figure P6.39

de
voltmeter

+

6.40 a) Show that the two coupled coils in Fig. P6.40 can
be replaced by a single coil having an inductance
of Ly, = Ly + Ly + 2M. (Hint: Express v,;, as a
function of i,,.)

b) Show that if the connections to the terminals
of the «coil labeled L, are reversed,
Ly =1L;+ L, —2M.

Figure P6.40

M

XX i
*— YV YV Y
a.L] s I,



Figure P6.38

1&{:; ..‘-;-:.

A

6.41 a) Show that the two magnetically coupled coils in
Fig. P6.41 can be replaced by a single coil having
an inductance of

L__gg—w
O+ L, = 2M

(Hint: Let i, and i, be clockwise mesh currents in

the left and right “windows” of Fig. P6.41, respec-

tively. Sum the voltages around the two nieshes.

In mesh 1 let v, be the unspecified applied voit-

age. Solve for di;/d¢ as a function of v,,.)

Problems 225

b) Show that if the magnetic polarity of coil 2 is
reversed, then

L, — M?
oy, e
L1+ L, +2M
Figure P6.41
ae »
L ] L)

LI A———M‘—-\b- L2
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Section 6.5

6.42

6.43

6.44

6.45

6.46

Two magnetically coupled coils are wound on a
nonmagnetic core. The self-inductance of coil 1 is
250 mH, the mutual inductance is 100 mH, the coef-
ficient of coupling is 0.5, and the physical structure
of the coils is such that Py, = Py,.

a) Find I, and the turns ratio N/ N,.
b) If Ny, = 1000, what is the value of %, and P,?

The self-inductances of two magnetically coupled
coils are L, = 400 uH and L, = 900 wH. The cou-
pling medium is nonmagnetic. If coil 1 has 250 turns
and coil 2 has 500 turns, find @, and P, (in
nanowebers per ampere) when the coefficient of
coupling is .75.

Two magnetically coupled coils have self-inductances
of 52 mH and 13 mH, respectively. The mutual induc-
tance between the coils is 19.5 mH.

a) What is the coefficient of coupling?

b) For these two coils, what is the largest value that
M can have?

¢) Assume that the physical structure of these cou-
pled coils is such that ; = P,. What is the turns

ratio N1/N, if Ny is the number of turns on the
52 mH coil?

The self-inductances of two magnetically coupled

coils are 288 mH and 162 mH, respectively. The

288 mH coil has 1000 turns, and the coefficient of

coupling between the coils is 4 The coupling

medium is nonmagnetic. When colil 1 is excited with

coil 2 open, the flux linking only coil 1 is 0.5 as large

as the flux linking coil 2.

a) How many turns does coil 2 have?

b) What is the value of %, in nanowebers per
ampere?

¢} What is the value of %¢; in nanowebers per
ampere?

d) What is the ratio (¢dy/d2)?

a) Starting with Eq. 6.59, show that the coefficient
of coupling can also be expressed as

k= \/ P\ b
b1 J\ &2
b) On the basis of the fractions ¢y /¢, and ¢,/ s,
explain why k is less than 1.0.

6.47

6.48

The self-inductances of the coils in Fig. 6.30 are
L, = 25mH and L, = 100 mH. If the coefficient of
coupling is 0.8, calculate the cnergy stored in the
system in millijoules when (a) i; = 10 A, i; = 15 A;
(b) i1 =-10A, iLb=-15A;, (c) i1 =—10A,
ip =15 A;and (d) i, = 10 A i, = =15 A.

The coefficient of coupling in Problem 647 is
increased to 1.0.

a) If i, equals 10 A, what value of i; results in zero
stored energy?

b) Is there any physically realizable value of i, that
can make the stored energy negative?

Sections 6.1-6.5

6.49

PRACTICAL
PERSPECTIVE

6.50

Rework the Practical Perspective example, except
that this time, put the button on the bottom of the
divider circuit, as shown in Fig. P6.49. Calculate the
output voltage »(r) when a finger is present.

Figure P6.49

—
Fixed - 25 oF
capacitor

+

20 (7)

+
Button u(t)
v -

Some lamps are made to turn on or off when the

rracical base is touched. These usc a one-terminal variation

PERSPECTIVE

of the capacitive switch circuit discussed in the
Practical Perspective. Figure P6.50 shows a circuit
model of such a lamp. Calculate the change in the
voltage »(r) when a person touches the lamp.
Assume all capacitors are initially discharged.

Figure P6.50

10 pF Lamp Person 10 pF
o« b
10 pF v(t) 100 pF 4~

'U.s(l) o
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6.51 In the Practical Perspective example, we caleu- Figure P6.51

suacneat lated the output voltage when the elevator button

is the upper capacitor in a voltage divider. In
Problem 6.49, we calculated the voltage when the
button is the bottom capacitor in the divider, and
we got the same result! You may wonder if this
will be true for all such voltage dividers. Calculate
the voltage difference (finger versus no finger) for
the circuits in Figs. P6.51(a) and (b), which use
two 1dentical voltage sources.

__\25 pF Fixed
us() O capacitor
s <k

Y No fi
vA.(t) Button/!\ e{r) St

JES pF Fixed

ui(t) O 25pF 25 pF capacitor
25pE -
Bu

v(f) Finger

(2)

tton




7.1 The Natural Response of an RL Circuit p. 230

7.2 The Natural Response of an RC Circuit p. 236

7.3 The Step Response of RL and
RC Circuits p. 240

7.4 A General Solution for Step and Natural
Responses p. 248

7.5 Sequential Switching p. 254
7.6 Unbounded Response p. 258
7.7 The Integrating Amplifier p. 260

1 Be able to determine the natural response of
both RL and RC circuits.

2 Be able to determine the step response of both
RL and RC circuits. 1

3 Know how to analyze circuits with sequential
switching.

4 Be able to analyze op amp circuits contammg
resistors and a single capacitor.

228

Response of First-Order
RL and RC Circuits

In Chapter 6, we noted that an important attribute of inductors
and capacitors is their ability to store energy. We are now in a
position to determine the currents and voltages that arise when
energy is either released or acquired by an inductor or capacitor
in response to an abrupt change in a dc voltage or current source.
In this chapter, we will focus on circuits that consist only of
sources, resistors, and either (but not both) inductors or capaci-
tors. For brevity, such configurations are called RL (resistor-
inductor) and RC (resistor-capacitor) circuits.

Our analysis of RL and RC circuits will be divided into three
phases. In the first phase, we consider the currents and voltages
that arise when stored energy in an inductor or capacitor is sud-
denly released to a resistive network. This happens when the
inductor or capacitor is abruptly disconnected from its dc source.
Thus we can reduce the circuit to one of the two equivalent forms
shown in Fig. 7.1 on page 230. The currents and voltages that arise
in this configuration are referred to as the natural response of the
circuit, to emphasize that the nature of the circuit itself, not exter-
nal sources of excitation, determines its behavior.

In the second phase of our analysis, we consider the currents
and voltages that arise when energy is being acquired by an induc-
tor or capacitor due to the sudden application of a dc voltage or
current source. This response is referred to as the step response.
The process for finding both the natural and step responses is the
same; thus, in the third phase of our analysis, we develop a general
method that can be used to find the response of RL and RC cir-
cuits to any abrupt change in a dc voltage or current source.

Figure 7.2 on page 230 shows the four possibilities for the gen-
eral configuration of RL and RC circuits. Note that when there
are no independent sources in the circuit, the Thévenin voltage or
Norton current is zero, and the circuit reduces to one of those
shown in Fig. 7.1; that is, we have a natural-response problem.

RL and RC circuits are also known as first-order circuits,
because their voltages and currents are described by first-order
differential equations. No matter how complex a circuit may



Practical Perspective

A Flashing Light Circuit
You can probably think of many different applications that
require a flashing light. A'still camera used to take pictures in
low light conditions employs a bright flash of light to illumi-
nate the scene for just long enough to record the image on
film. Generally, the camera cannot take another picture until
the circuit that creates the flash of light has “re-charged.”
Other applications use flashing lights as warning for haz-
ards, such as tall antenna towers, construction sites, and
secure areas. In designing circuits to produce a flash of light
the engineer must know the reguirements of the application.
For example, the design engineer has to know whether the
flash is controlled manually by operating a switch (as in the
case of a camera) or if the flash is to repeat itself automati-
cally at a predetermined rate. The engineer also has to know if
the flashing light is a permanent fixture (as on an antenna) or

a temporary installation (as at a construction site). Another
guestion that has to be answered is whether a power source is
readily available.

Many of the circuits that are used today to control flashing
lights are based on electronic circuits that are beyond the
scope of this text. Nevertheless we can get a feel for the
thought process involved in designing a flashing light circuit
by analyzing a circuit consisting of a dc voltage source, a resis-
tor, a capacitor, and a lamp that is designed to discharge a
flash of light at a critical voltage. Such a circuit is shown in the
figure. We shall discuss this circuit at the end of the chapter.
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Figure 7.1 4 The two forms of the circuits for natural
response. (a) RL circuit. (b) RC circuit.

R
Oy 1
(a)
Vo
R
Vmy
Ry

Figure 7.2 4 Four possible first-order circuits.

{a) An inductor connected to a Thévenin equivalent.
(b) An inductor connected to a Nortan equivalent.
(c) A capacitor connected to a Thévenin equivalent.
(d) A capacitor connected to a Norton equivalent.

Figure 7.3 4 An RL circuit.,

appear, if it can be reduced to a Thévenin or Norton equivalent connected
to the terminals of an equivalent inductor or capacitor, it is a first-order
circuit. {Note that if multiple inductors or capacitors exist in the original
circuit, they must be interconnected so that they can be replaced by a sin-
gle equivalent element.)

After introducing the techniques for analyzing the natural and stcp
responses of first-order circuits, we discuss some special cases of interest.
The first is that of sequential switching, involving circnits in which switching
can take place at two or more instants in time. Next is the unbounded
response. Finally, we analyze a useful circuit called the integrating amplifier.

7.1 The Natural Response
of an RL Circuit

The natural response of an RL circuit can best be described in terms of the
circuit shown in Fig. 7.3. We assume that the independent current source
generates a constant current of 7; A, and that the switch has been in a
closed position for a long time. We define the phrase a long time more
accurately later in this section. For now it means that all currents and volt-
ages have reached a constant value. Thus only constant, or dc, currents can
exist in the circuit just prior to the switch’s being opened, and therefore
the inductor appears as a short circuit {Ldi/dt = 0) prior to the release of
the stored energy.

Because the inductor appears as a short circuit, the voltage across the
inductive branch is zero, and there can be no current in either R, or R.
Therefore, all the source current I, appears in the inductive branch.
Finding the natural response requires finding the voltage and curreat at
the terminals of the resistor after the switch has been opened, that is, after
the source has been disconnected and the inductor begins releasing
energy. If we let t+ = 0 denote the instant when the switch is opcned, the
problem becomes one of finding »(¢) and i(¢) for ¢t = 0. For¢ = 0, the cir-
cuit shown in Fig. 7.3 reduces to the one shown in Fig. 7.4 on the next page.

Deriving the Expression for the Current

To find i(1), we use Kirchhoff’s voltage law to obtain an expression involv-
ing i, R, and L. Summing the voltages around the closed loop gives

.~ +Ri= :
Id[ Ri =0, (7.1)

where we use the passive sign convention. Equation 7.1 is known as a first-
order ordinary differential equation, because it contains terms involving
the ordinary derivative of the unknown, that is, di/dr. The highest order
derivative appearing in the equation is 1; hence the tcrm first-order.

We can go one step further in describing this equation. The coeffi-
cients in the equation, R and L, are constants; that is, they are not func-
tions of either the dependent varjablc i or the independent variable 7. Thus
the equation can also be described as an ordinary differential equation
with constant coefficients.



To solve Eq. 7.1, we divide by L, transpose the term involving / to the
right-hand side, and then multiply both sides by a differential time dr. The
result is

di R
—di = ——idt. .
dtd det (7.2)

Next, we recognize the left-hand side of Eq.7.2 as a differential change in
the current i, that is, 4i. We now divide through by i, getting

di R
— = ——di. 7.

i L (73)
We obtain an explicit expression for i as a function of r by integrating both
sides of Eq. 7.3. Using x and y as variables of integration yields

0 dx R [
= —= d , 7.4)
~[(’u) x L fy Y (

in which (¢,) is the current corresponding to time #y, and i(¢) is the current
corresponding (o time . Here, 15 = 0. 'Therefore, carrying out the indi-
cated integration gives

i _ R
0 =T (7.5)

Based on the definition of the natural logarithm,
i(t) = i(0)e R/bx, (7.6)

Recall from Chapter 6 that an instantaneous change of current cannot
occur in an inductor. Therefore, in the first instant after the switch has
been opened, the current in the inductor rematins unchanged. If we use 0”
to denote the time just prior to switching, and 0" for the time immediately
following switching, then

(07) = i0Y) = I,
where, as in Fig. 7.1, I, denotes the initial current in the inductor. The initial

curcent in the inductor is oriented in the same direction as the reference
direction of i. Hence Eq. 7.6 becomes

i) = Joe RBY, £ >0, (7.7)
which shows that the current starts from an initial value 7, and decreases
exponentially toward zero as t increases. Figure 7.5 shows this response.

We derive the voltage across the resistor in Fig. 7.4 from a direct appli-

cation of Ohm’s law:

¥ = iR = I,Re"®/L ¢ = p* (7.8)

7.1 The Natural Response of an R (ircuit 231

Figure 7.4 A The circuit shown in Fig. 7.3, forf = 0.

i)

0

Figure 7.5 & The current response for the circuit shown
in Fig. 7.4.

-4 Initial inductor current

<4 Natural response of an RL circuit
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Time constant for RL circuit &

Note that in contrast to the expression for the current shown in Eq. 7.7,
the voltage is defined only for ¢ > 0, not att = 0. The reason is that a step
change occurs in the voltage at zero. Note that for ¢ < 0, the derivative of
the current is zero, so the voltage is also zero. (This result follows from
v = Ldi/dt = 0.) Thus

»(07) =0, (7.9)

»(0%) = iR, (7.10)
where v(07) is obtained from Eq. 7.8 with t = 0.1 With this step change at
an instant in time, the value of the voltage at ¢ = 0 is unknown. Thus we
use ¢ = 0" in defining the region of validity for these solutions,

We derive the power dissipated in the resistor from any of the follow-
ing expressions:

2
. v
p=wvi, p=iIR or p= R {(7.11)

Whichever form is used, the resulting expression can be reduced to
p = I3Re7HRD ¢ = gt (7.12)

The energy delivered to the resistor during any interval of time after the
switch has been opened is

t !
/pdx = /I%RE_Z(R/L)xdx
0 0
1

_ _ 2(R/Ly
2(R/L)m(l e

g
il

1
= ELlﬁ(l ~ 2ROy >, (7.13)

Note from Eq. 7.13 that as ¢ becomes infinite, the energy dissipated in the
resistor approaches the initial energy stored in the inductor.

The Significance of the Time Constant

The expressions for i(f) (Eq. 7.7) and »(¢) (Eq. 7.8) include a term of the
form ¢ (®/LX The coefficient of t—namely, R/L—determines the rate at
which the current or voltage approaches zero. The reciprocal of this ratio
is the time constant of the circuit, denoted

7 = time constant = ® (7.14)
! We can define the expressions 0~ avd 0" more formally. The expression x(07) refers to the

limit of the variable x as 1 — 0 from the left, or from negalive (ime. The expression x(0*)
refers to the limit of the variable x as 1 — 0 from the right. or from positive time.



Using the time-constant concept, we write the expressions for current,
voltage, power, and energy as

i) = Ine™™, 1 =0, (7.15)
v(t) = LyRe™", 1= 07, (7.16)
p=IRe™" =0 (1.17)

1
w= ELI%(I — e Hny, =0 (7.18)

The time constant is an important parameter for first-order circuits, so
mentioning several of its characteristics is worthwhile. Firs, it is conven-
ient to think of the time elapsed after switching in terms of integral multi-
ples of 7. Thus one time constant after the inductor has begun to release
its stored energy to the resistor, the current has been reduced to e, or
approximately 0.37 of its initial value.

Table 7.1 gives the value of ¢/ for integral multiples of r from 1 to
10. Note that when the elapsed time exceeds five time constants, the cur-
rent is less than 1% of its initial value. Thus we sometimes say that five
time constants after switching has occurred, the currents and voltages
have, for most practical purposes, reached their final values. For single
time-constant circuits (first-order circuits) with 1% accuracy, the phrase a
long time implies that five or more time constants have elapsed. Thus the
existence of current in the RL circuit shown in Fig. 7.1(a) is a momentary
event and is referred to as the tramsient respomse of the circuit. The
response that exists a long time after the switching has taken place is
called the steady-state response. The phrase a long time then also means
the time it takes the circuit to reach its steady-state value.

Any first-order circuit is characterized, in part, by the value of its time
constant. If we have no method for calculating the time constant of such a
circuit (perhaps because we don’t know the values of its components), we
can determine its value from a plot of the circuit’s natural response. That’s
because another important characteristic of the time constant is that it
gives the time required for the current to reach its final value if the current
continues to change at its initial rate. To illustrate, we evaluate di/dt at 0"
and assume that the current continues to change at this rate:

di R I
@) = =Tl = -= (7.19)

T

Now, if i starts as /5 and decreases at a constant rate of Io/T amperes per
second, the expression for i becomes

i=1Ip— 1 (7.20)

Equation 7.20 indicates that i would reach its final value of zero in
7 seconds. Figure 7.6 shows how this graphic interpretation is useful in esti-
mating the time constant of a circuit from a plot of its natural response.
Such a plot could be generated on an oscilloscope measuring output cur-
rent. Drawing the tangent to the natural response plot at ¢ = 0 and reading
the value at which the tangent intersects the time axis gives the value of .

7.1
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TABLE 7.1 Value of o7 For r Equal to

lntegral Mult1ples of 1l

t e t e"/"

T 36788 X 101 6r 24788 X 107
2r 13534 x 107* 7r  9.1188 x 107*
3r 49787 X 102 &  3.3546 x 107
4r  1.8316 % 1072 9r 1.2341 x 107
5t 67379 x 1072 107 4.5400 X 107
i

K i= i’ue )
i=I—(Iy)t

0

T

Figure 7.6 A A graphic interpretation of the time con-
stant of the RL circuit shown in Fig. 7.4.
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Calculating the natural response of an RL circuit can be summarized

as follows:
Calculating the natural response of 1. Find the initial current, I, through the inductor.
RL circuit & 2. Find the time constant of the circuit,7 = L/R.

3. Use Eq.7.15, I,¢/", to generate i(t) from I, and 7.

All other calculations of interest follow from knowing i(f).
Examples 7.1 and 7.2 illustrate the numerical calculations associated with
the natural response of an RL circuit.

The switch in the circuit shown in Fig. 7.7 has

been closed for a long time before it is opened at

t = (0. Find

a)i(t) fort = 0,

b) i (¢) for ¢ = 0%,

¢) (1) for t = 0OF,

d) the percentage of the total energy stored in the
2 Hinductor that is dissipated in the 10 () resistor.

Figure 7.7 4 The circuit for Example 7.1,

Solution

a) The switch has been closed for a Jong time prior
to t =0, so we know the voltage across the
inductor must be zero at ¢t = 0”. Therefore the
initial current in the inductor is 20 A at ¢t = (.
Hence, i;(0) also is 20 A, because an instanta-
neous change in the current cannot occur in an
inductor. We replace the resistive circuit con-
nected to the terminals of the inductor with a
single resistor of 10 :

Req =2 + (40]10) = 100,

The time constant of the circuitis L/ R.q, or 0.2 s,
giving the expression for the inductor current as

() =20e>A, t=0.

m Determining the Natural Response of an RL Circuit

b) We find the current in the 40 ) resistor most
easily by using current division; that is,

Fop e gl A
o = THA0 + 40

Note that this expression is valid for ¢ = 0"
because i, = 0att = 0. The inductor behaves as
a short circuit prior to the switch being opened,
producing an instantancous change in the current
i,. Then,

i(f) = —4e'A, r=0"

¢) We find the voltage v, by direct application of
Ohm’s law:

v,(¢) = 40i, = —160e>V, = 0"

d) The power dissipated in the 10 ) resistor is

v
Pia(t) = ’1—6 = 25607 W, = 0

The total energy dissipated in the 10 € resistor is
Wiop(t) = £m25603_‘°‘ dit = 256 ).
The initial energy stored in the 2 H inductor is
w(0) = %Liz(O) = %(2)(400) = 400 J.

Therefore the percentage of energy dissipated in
the 10 Q resistor is

256
LA = %.
200 (100) = 64%
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ST CRAPAE Determining the Natural Response of an RL Circuit with Parallel Inductors

In the circuit shown in Fig. 7.8, the initial currents in
inductors L, and L, have been established by
sources not shown. The switch is opened at ¢ = 0.

a) Find iy, iy, and i; for 1 = 0.

b) Calculate the initial energy stored in the parallel
inductors.

¢) Determine how much energy is stored in the
inductors as ¢ — 0.

d) Show that the total energy delivered to the resis-
tive network equals the difference between the
results obtained in (b) and (¢).

Solution

a) The key to finding currents iy, iy, and i; lies in
knowing the voltage 2(z). We can easily find »(z)
if we reduce the circuit shown in Fig. 7.8 to the
equivalent form shown in Fig. 7.9. The parallel
inductors simplify to an equivalent inductance of
4 H, carrying an initial current of 12 A. The resis-
tive network reduces to a single resistance of
8 ). Hence the initial value of i(¢) is 12 A and
the time constant is 4/8, or 0.5 s. Therefore

i() =12e*A, 1=0.

Now v(2) is simply the product 8i, so

() = 96e 2V, = 0"

The circuit shows that v(f) = 0 atr = 07, so the
expression for »(¢) is valid for ¢ = 0%. After
obtaining »(¢), we can calculate iy, i, and iy

1 4
i = gl 9%e *dx — 8

=16 —-96e %A, (=0,

{

o 2/, 96¢ 2 dx — 4
40
; . WY .
i lff? F=0 iy |
Y ¥
A 4 A v 400 15Q
T L (5H) T L, o)X 0

Figure 7.8 4 The circuit for Example 7.2.

=-16-24¢2A, t=0,
L _ 1S Ly .
=0 25—5.766 A, (=0

Note that the expressions for the inductor currents
i) and J, are valid for ¢ = 0, whereas the expres-
sion for the resistor current i, is valid for ¢ = 0".

+ i

nafdaE W) 80

Figure 7.9 & A simplification of the circuit shown in Fig. 7.8.
b) The initial energy stored in the inductors is
1
w = ~(5)(64) + %(20)(16) = 3201

c) As ij—>16A and i, — —16A.
Therefore, a long time after the switch has been
opened, the energy stored in the two inductors is

t — OO,

w= %(5)(1,6)2 + %(20)(—1.6)2 =327

d) We obtain the total energy delivered to the resis-
tive network by integrating the expression for
the instantaneous power from zero (0 infinity:

w = / pdt = / 1152 ¥dy
0 0

—4r

e
= 1152—
—4

o0

=288 ].
0

This result is the difference between the initially
stored energy (320 J) and the energy trapped in
the parallel inductors (32 J). The equivalent
inductor for the parallel inductors (which pre-
dicts the terminal behavior of the parallel com-
bination) has an initial cnergy of 288 J; that is,
the energy stored in the equivalent inductor rep-
resents the amount of energy that will be deliv-
ered to the resistive network at the terminals of
the original inductors.

100
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Objective 1—Be able to determine the natural response of both RL and RC circuits

7.1  The switch in the circuit shown has been closed

for a long time and is opened at r = 0.

a) Calculate the initial value of .

b) Calculate the initial energy stored in the
inductor.

¢) What is the time constant of the circuit for
r>0? :

d) What is the numerical éxpression for z(t) for

=07

¢) What percentage of the initial energy stored
has been dissipated in the 2 £} resistor 5 ms
affer the switch has been opened?

Answer: (a) —12.5 A;
(b) 625 mJ;
(c) 4 ms;
(d) —12.5¢ %At = 0;
(e) 91.8%.

7.2 Att = 0, the switch in the circuit shown moves
instantaneously from position a to position b.

‘a) Calculate v, forr = 07.

b) What percentage of the initial energy stored
in the inductor is eventually dissipated in
the 4 () resistor?

120V

Answer: (a) 8¢ V.1 = 0;
(b) 80%.

q

NOTE: Also try Chapter Problems 7.1-7.3.

Figure 7.10 A& An RC circuit.

+

CII Vew iy SR

Figure 7.11 A The circuit shown in Fig. 7.10, after
switching.

7.2 The Natural Response
of an RC Circuit

As mentioned in Section 7.1, the natural response of an RC circuit is anal-
ogous to that of an RL circuit. Consequently, we don’t treat the RC circuit
in the same detail as we did the RL circuit.

The natural response of an RC circuit is developed from the circuit
shown in Fig. 7.10. We begin by assuming that the switch has been in posi-
tion a for a long time, allowing the loop made up of the dc voltage source
V. the resistor Ry, and the capacitor C to reach a steady-state condition.
Recall from Chapter 6 that a capacitor behaves as an open circuit in the
presence of a constant voltage. Thus the voltage source cannot sustain a
current, and so the source voltage appears across the capacitor terminals.
In Section 7.3, we will discuss how the capacitor voltage actually builds to
the steady-state value of the dc voltage source, but for now the important
point is that when the switch is moved from position a to position b (at
t = 0), the voltage on the capacitor is V. Because there can be no instan-
taneous change in the voltage at the terminals of a capacitor, the problem
reduces to solving the circuit shown in Fig. 7.11.



Deriving the Expression for the Voltage

We can easily find the voltage »(z) by thinking in terms of node voltages.
Using the lower junction between R and C as the reference node and sum-
ming the currents away from the upper junction between R and C gives

dv v
— 4+ — = 0. .
Cdt 2 0 (7.21)

Comparing Eq. 7.21 with Eq. 7.1 shows that the same mathematical tech-
niques can be used to obtain the solution for ¥(r). We leave it to you to
show that

o(t) = v(0)e ™R, 1 = 0. (7.22)

As we have already noted, the initial voltage on the capacitor equals the
voltage source voltage V, or

0(0) = 9(0) = 000 (7.23)

where V; denotes the initial voltage on the capacitor. The time constant for
the RC citcuit equals the product of the resistance and capacitance,
namely,

(1.24)

Substituting Eqs. 7.23 and 7.24 into Eq. 7.22 yields

0 &
which indicates that the natural response of an RC circuit is an exponen-
tial decay of the initial voltage. The time constant RC governs the rate of
decay. Figure 7.12 shows the plot of Eq. 7.25 and the graphic interpreta-
tion of the time constant.

After determining 2(1), we can easily derive the expressions for i, p,
and w:

i(r) = = —e7 =0, (7.26)

p=vi=—e?" =0 (7.27)

1
= ECV%(l - ¥, t=0. (7.28)
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< Initial capacitor voltage

<4 Time constant for RC circuit

< Natural response of an RC circuit

0 T

Figure 7.12 4 The natural vesponse of an RC civcuit.
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Calculating the natural response of an RC circuit can be summarized

as follows:
Calculating the natural rasponse of an 1. Find the initial voltage, V;, across the capacitor.
RC circuit B 2. Find the time constant of the circuit,7 = RC.

3. Use Eq.7.25,v(t) = Voe /", to generate v(¢) from V; and 7.

All other calculations of interest follow from knowing v(t).
Examples 7.3 and 7.4 illustrate the numerical calculations associated with
the natural response of an RC circuit.

el EE RS Determining the Natural Response of an RC Circuit

The switch in the circuit shown in Fig. 7.13 has been
in position x for a long time. At ¢+ = 0, the switch
moves instantaneously to position y. Find

a) ve(t) forr = 0,

b) v,(2) for t = 0%,

¢) i,(t) fort = 0%, and

d) the total energy dissipated in the 60 k{) resistor.

10kQ x

Figure 7.13 & The circuit for Example 7.3.

Solution

a) Because the switch has been in position x for a
long time, the 0.5 uF capacitor will charge to
100 V and be positive at the upper terminal. We
can replace the resistive network connected to
the capacitor at ¢ = 0" with an equivalent resist-
ance of 80 k{}. Hence the lime constant of the
circuit is (0.5 X 1075)(80 X 10%) or 40 ms. Then,

ve(t) = 100V, ¢ =0.

b) The easiest way to find v,(2) is to note that the
resistive circuit forms a voltage divider across
the terminals of the capacitor. Thus

8
v, (1) = g—ovc(t) =60V, =0

This expression for v,(¢) is valid for £ = 0"
because v,(07) is zero. Thus we have an instanta-
neous change in the voltage across the 240 k()
resistor.

¢) We find the current i, (¢) from Ohm’s law:

t
v"—o = 6_25(mA, t = 0t

W) = 5% 10~

d) The power dissipated in the 60 k{} resistor is
Peoxall) = 2()(60 X 10°) = 60 mW, 1= 0.

The total energy dissipated is

Weokn = / 2(e)(60 X 10%)dr = 1.2 mJ.
o
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ST Determining the Natural Response of an RC Circuit with Series Capacitors

The initial voltages on capacitors Cy and C; in the
circuit shown in Fig. 7.14 have been established by
sources not shown. The switch is closed at ¢ = 0.

a) Find »,(z), vy(r), and v(¢) for t = 0 and i(¢) for
t = 0%

b) Calculate the initial energy stored in the capaci-
tors C, and C,.

c) Determine how much energy is stored in the
capacitors as t — 00,

d) Show that the total energy delivered to the
250 kQ} resistor is the difference between the
results obtained in (b) and (c).

Solution

a) Once we know »(t), we can obtain the current i(z)
from Ohm’s law. After determining i(t), we can
calculate v,(¢) and v,(¢) because the voltage across
a capacitor is a function of the capacitor current.
To find w(t), we replace the serics-connected
capacitors with an equivalent capacitor. It has a
capacitance of 4 4 F and is charged to a voltage of
20 V. Therefore, the circuit shown in Fig. 7.14
reduces to the one shown in Fig. 7.15, which
reveals that the initial value of (¢) is 20V, and that
the time constant of the circuit is (4)(250) X 1073,
or 1 s.Thus the expression for v(f) is

v(f) =207V, (=0
The current i(z) is

in = 71)0)

— — 0—)‘ > +.
250000 Joe kA, =0

Knowing i(¢), we calculate the expressions for
v1(t) and vy(?):

108 [
w(t) = —— [ 80 X 107%*dx — 4
0
= (16e™ = 20)V, =0,
108 [
vo(t) = 0 80 X 107% *dx + 24

0

Il

(det +20)V, t=0.

j\ ‘
- + L0
4V =2 C (S uF) »,(2)
+

<250 kO
p v

24 V=< G, (20 uF) 05(1)

Figure 7.14 & The circuit for Example 7.4,

Figure 7.15 & A simplification of the circuit shown in Fig. 7.14.

b) The initial energy stored in C; is

w; = %(5 X 1078)(16) = 40 wJ.

The initial energy stored in C; is
1 -6 -
wy = 5(20 X 107°)(576) = 5760 uJ.
The total energy stored in the two capacitors is
w, = 40 + 5760 = 5800 pJ.
c) Ast—> 00,

v,— 20V and w,—> +20V.

Therefore the energy stored in the two capaci-
tors is

Woo = %(5 + 20) X 1075(400) = S000 pJ.
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d) The total energy delivered to the 250 k{} resistor is

i * 400¢7% \
w /) pd A 2500004 = 800

Comparing the results obtained in (b) and (c)
shows that

800 pJ = (5800 — 5000) pJ.

The energy stored in the equivalent capacitor in
Fig. 7.15 is 3(4 X 107°)(400), or 800 uJ. Because
this capacitor predicts the terminal behavior of
the original series-connected capacitors, the
energy stored in the equivalent capacitor is the
energy delivered to the 250 k{) resistor.

Objective 1—Be able to determine the natural response of both RL and RC circuits

7.3  The switch in the circuit shown has been closed
for a long time and is opened at £ = 0. Find
a) the initial value of v(¢),
b) the time constant fort > 0,

¢) the numerical expression for u(r) after the
switch has been opened,

d) the initial energy stored in the capacitor, and
¢) the length of time required to dissipate 75%
of the initially stored energy.

0k ST =0 _
1 / —‘L F
T »{t) gsom

75mA $80kO  04uF

Answer: (a) 200 V;
(b) 20 ms;
(c) 200e vV, 1 = 0;
(d) 8 mJ;
(e) 13.86 ms.

NOTE: Also try Chapter Problems 7.21 _aﬁd 7.24.

7.4  The switch in the circuit shown has been closed
for a long time before being opened at 1 = 0.
a) Find v,(¢t) fort = 0.

b) What percentage of the initial energy stored
in the circuit has been dissipated after the
switch has been open for 60 ms?

Answer: (a)8e ™ + 4V, =
(b) 81.05%.

7.3 The Step Response of RL
and RC Circuits

We are now ready to discuss the problem of finding the currents and volt-
ages generated in first-order RL or RC circuits when either dc voltage or
current sources are suddenly applied. The response of a circuit to the sud-
den application of a constant voltage or current source is referred to as the



step response of the circuit. In presenting the step response, we show how
the circuit responds when energy is being stored in the inductor or capac-
itor. We begin with the step response of an RL circuit.

The Step Response of an RL Circuit

To begin, we modify the first-order circuit shown in Fig. 7.2(a) by adding a
switch, We use the resulting circuit, shown in Fig. 7.16, in developing the
step response of an RL circuit. Energy stored in the inductor at the time
the switch is closed is given in terms of a nonzero initial current i(0). The
task is to find the expressions for the current in the circuit and for the volt-
age across the inductor after the switch has been closed. The procedure is
the same as that used in Section 7.1; we use circuit analysis to derive the
differential equation that describes the circuit in terms of the variablc of
interest, and then we use¢ clecmentary calculus to solve the equation.

After the switch in Fig. 7.16 has been closed, Kirchhoff’s voltage law
requires that

di
Vi=Ri+ L—, 7.29
, = Ri+ L (7.29)

which can be solved for the current by separating the variables i and ¢ and
then integrating. The first step in this approach is to solve Eq. 7.29 for the
derivative di/dt:

o L L\' R/

di _—Ri+V, -R{. V5) (7.30)

Next, we multiply both sides of Eq. 7.30 by a differential time 4t. This step
reduces the left-hand side of the equation to a differential change in the

current. Thus
di t—_—R(’—E>d1 7.31
2% L\! R/ (7:31)

or

, _—R{ Y
di = L(l R)dt.

We now separate the variables in Eq. 7.31 to get

i—=(V/R) L '

7.3 The Step Response of RL and RC Circuits

Figure 7.16 4. A circuit used to illustrate the step
response of a first-order RL circuit,
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Step response of RL circuit ¥

and then integrate both sides of Eq.7.32. Using x and y as variables for the
integration, we obtain

/“’)L _-R /‘d 7.33)
Iy x = (Vi/R) L Jo ¥ .

where I is the current at ¢ = O and i(¢) is the current at any ¢ > 0.
Performing the integration called for in Fq. 7.33 generates the expression

i) - (V/R) _ -R
L-wm Lt "

from which
i(t) - (Vs/R) — e_(R/L),,
Iy - (Vi/R)
or
Vo Vs) i
: Y= T B ek E .35

When the initial energy in the inductor is zero, I is zero. Thus Eq. 7.35
reduces to

v, V,
i(r) = E‘ - E’e‘<R/L)‘. (7.36)

Equation 7.36 indicates that after the switch has been closed, the cur-
rent increases exponentially from zero to a final value of V,/R. The time
constant of the circuit, L/R, determines the rate of increase. One time
constant after the switch has been closed, the current will have reached
approximately 63% of its final value, or

: L V.
= o B ~ 0. == 7.37
i() R Re 06321R (7.37)

If the current were to continue to increase at its initial rate, it would reach
its final value at ¢ = 7; that is, because

di N —‘{r<i>e—1/7 = %e—f/f’ (7.38)

d R\ 7



the initial rate at which i(¢) increases is

di 1%
E(O) =T (7.39)

If the current were to continue to increase at this rate, the expression for i
would be

'_vst 7.40
I_IJ, ( )
from which,att = 7,
=L _% 741
l_LR_R' (7.41)

Equations 7.36 and 7.40 are plotted in Fig. 7.17. The values given by
Eqgs. 7.37 and 7.41 are also shown in this figure.
The voltage across an inductor is Ldi/d!, so from Eq. 7.35, for ¢t = 07,

—R v,

- () (0 - ey - - e e

The voltage across the inductor is zero before the switch is closed.
Equation 7.42 indicates that the inductor voltage jumps to V; — IR at the
instant the switch is closed and then decays exponentially to zero.

Does the value of » at 1 = 0" make sense? Because the initial current
is Iy and the inductor prevents an instantaneous change in current, the
current is Iy in the instant after the switch has been closed. The voltage
drop across the resistor is IR, and the voltage impressed across the induc-
tor is the source voltage minus the voltage drop, that is, V, — IyR.

When the initial inductor current is zero, Eq. 7.42 simplifies to

v =V, e R, (7.43)

I€ the initial culrent is zero, the voltage across the inductor jumps to V.. We
also expect the inductor voltage to approach zero as ¢ increases, because the
current in the circuit is approaching the constant value of V,/R. Figure 7.18
shows the plot of Eq. 7.43 and the relationship between the time constant
and the initial rate at which the inductor voltage is decreasing.

If there is an initial current in the inductor, Eq. 7.35 gives the solution
for it. The algebraic sign of I is positive if the initial current is in the samc
direction as I; otherwise, I carries a negative sign, Example 7.5 illustrates
the application of Eq. 7.35 to a specific circuit.

7.3 The Step Response of R and RC Circoits 243

i(t)
i) = Z‘r
S, G
& |
| . Vﬁ V\' Tk
) =5 — e
0.632 % T tl T
I
|
|
| | ! | iy
0 T 2t 3 47 5t

Figure 7.17 A The step response of the RL circuit
shown in Fig. 7.16 when 7, = 0.

p = Ve RILY

0 T 2t 3t 47 5t

Figure 7.18 4 Inductor voltage versus time.
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The switch in the circuit shown in Fig. 7.19 has been
in position a for a long time. At ¢ = @, the switch
moves from position a to position b. The switch is a
make-before-break type; that is, the connection at
position b is established before the connection at
position a is broken, so there is no interruption of
current through the inductor.

a) Find the expression for i(f) for ¢ = 0.

b) What is the initial voltage across the inductor just
after the switch has been moved to position b?

¢) How many milliseconds after the switch has been
moved does the inductor voltage equal 24 V?

d) Does this initial voltage make seuse in terms of
circuit behavior?

e) Plot both () and v({¢) versus t.

Figure 7.19 4 The circuit for Example 7.5.

Solution

a) The switch has been in position a for a long time,
so the 200 mH inductor is a short circuit across
the 8 A currcat source. Therefore, the inductor
carries an initial current of 8 A. This curreat is
oriented opposite Lo the reference direction for i
thus Iy is —8 A. When the switch is in position b,
the final value of i will be 24/2, or 12 A.The time
constant of the circuit is 200/2, or 100 ms.
Substituting these values into Eq.7.35 gives

=12+ (-8 — 12)e /!

12 - 20e YA, =0

m Determining the Step Response of an RL Circuit

b) The voltage across the inductor is
di

v:Ld_t

= 0.2(200¢71%)
= 4071V, = 0",
The initial inductor voltage is

2(0%) = 40V.

¢) Yes; iv the instant after the switch has been
moved to position b, the inductor sustains a cur-
rent of 8 A countcrclockwise around the newly
formed closed path, This currcnt causes a 16 V
drop across the 2 Q resistor. This voltage drop
adds to the drop across the source, producing a
40V drop across the inductor.

d) We find the time at which the inductor voltage
equals 24 V by solving the expression

24 = 40
for t:

Il

51.08 X 1072
= 51.08 ms.

¢) Figure 7.20 shows the graphs of i{s) and »(¢) ver-
sus ¢. Note that the instant of time when the cur-
rent equals zero corresponds to the instant of
time when the inductor voltage equals the source
voltage of 24V, as predicted by Kirchhoff’s valt-
age law.

v(V)i(A)
40
32
24 12
16 8
8 4

- 1 (ms)
7/ 100 200 300 400 SO0

Figure 7.20 & The current and voltage waveforms for
Example 7.5.
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Objective 2—Be able to determine the step response of both RL and RC circuits

7.5  Assume that the switch in the circuit shown in Answer: (a) 12 A;
Fig. 7.19 has been in position b for a long time, (b) —200 V;
and at 7 = 0 it moves to position a. Find (c) 20ms;
(a) i(0); (b) 0(0); (¢) 7 £ > 05 (d) i(1), £ = 0 (d) —8 + 20 A, = 0;
and (e) 2(t),t = 0. (e) —200e™" V, ¢t = 0.

NOTE: Also try Chapter Problems.7.3’3—-7;35.

We can also describe the voltage v(t) across the inductor in Fig. 7.16
directly, not just in terms of the circuit current. We begin by noting that the
voltage across the resistor is the difference between the source voltage
and the inductor voltage. We write

i(t) = % - % (7.44)

where V, is a constant. Differentiating both sides with respect to time yields

L 7.45)
dt R dr %
Then, if we multiply each side of Eq. 7.45 by the inductance L, we get an
expression for the voltage across the inductor on the left-hand side, or

= ——— (7.46)

Putting Eq. 7.46 into standard form yields

o 7.47
dp T (7-47)

You should verify (in Problem 7.40) that the solution to Eq. 7.47 is identi-
cal to that given in Eq. 7.42.

At this point, a general observation about the step response of an
RL circuit is pertinent. (This observation will prove helpful later.) When
we derived the differential equation for the inductor current, we obtained
Eq.7.29. We now rewrite Eq. 7.29 as

5[1.4-5‘—& 7.48)
dt Ll L i

Observe that Egs. 7.47 and 7.48 have the same form. Specifically, each
equates the sum of the first derivative of the variable and a constant times
the variable to a constant value. In Eq. 7.47, the constant on the right-hand
side happens to be zero; hence this equation takes on the same form as the
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C~te
{- /l\ B
£,

Figure 7.21 4. A circuit used to illustrate the step
response of a first-order RC circuit,

Step response of an RC circuit b

natural response equations in Section 7.1. In both Eq. 7.47 and Fq. 7.48,
the constant multiplying the dependent variable is the reciprocal of the
time constant, that is, R/L = 1/r. We encounter a similar situation in the
derivations for the step response of an RC circuit. In Section 7.4, we will
use these observations to develop a general approach to finding the natu-
1al and step responses of RL and RC circuits.

The Step Response of an RC Circuit

We can find the step response of a first-order RC circuit by analyzing the
circuit shown in Fig. 7.21. For mathematical convenience, we choose the
Norton equivalent of the network connected to the equivalent capacitor.
Summing the currents away from the top node in Fig. 7.21 generates the
differential equation

d
C—;TC + E’RQ =1, (7.49)

Division of Eq. 7.49 by C gives

dve  ve I

o7 + RC ok (7.50)
Comparing Eq. 7.50 with Eq. 7.48 reveals that the form of the solution for
vc 1 the same as that for the current in the inductive circuit, namely,
Eq. 7.35. Therefore, by simply substituting the appropriate varjables and
coefficients, we can write the solution for vc directly. The translation
requires that I, replace V,, C replace L, 1/R replace R, and V; replace I,
We get

ve = LR+ (Vs — ILR)eRC, 1 =0. (7.51)

A similar derivation for the current in the capacitor yields the differential
equation

Zh—i=0 (7.52)

Equation 7.52 has the same form as I3q. 7.47, hcnee the solution for | is
obtained by using the same translations used for the solution of
Eq.7.50. Thus

1%
i= (IA. - Eo)e“/ﬂc, t =0, (7.53)

where V; is the initial value of v, the voltage across the capacitor.

We obtained Eqgs. 7.51 and 7.53 by using a mathematical analogy to
the solution for the step response of the inductive circuit. Let’s sec
whether these solutions for the RC circuit make sense in terms of known
circuit behavior. From Eq. 7.51, note that the initial voltage across the
capacitor is V;, the final voltage across the capacitor is 7 R, and the time
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constant of the circuit is RC. Also note that the solution for v is valid for
t = 0. These observations are consistent with the behavior of a capacitor

in parallel with a resistor when driven by a constant current source.

Equation 7.53 predicts that the current in the capacitor at 1 = 0" is
I, — Vi/R. This prediction makes sense because the capacitor voltage can-
not change instantaneously, and therefore the initial current in the resistor
is Vo/R. The capacitor branch current changes instantaneously from zero
attr = 0" to I, — Vp/R at t = 0*. The capacitor current is zero at t = 0.

Also note that the final value of v = I R.

Example 7.6 illustrates how to use Eqs. 7.51 and 7.53 to find the step

response of a first-order RC circuit.

FEIDIERE Determining the Step Response of an RC Circuit

The switch in the circuit shown in Fig. 7.22 has been
in position 1 for a long time. At ¢ = 0, the switch
moves to position 2. Find

a) v,(¢) for ¢ = 0 and
b) i (f) fort = 0.

2 8k 40 kO

BV

Figure 7.22 A The circuit for Example 7.6.

Solution

a) The switch has been in position ! for a long time,
so the initial value of v, is 40(60/80), or 30 V. To
take advantage of Eqgs. 7.51 and 7.53, we find the
Norton equivalent with respect to the terminals
of the capacitor for ¢t = 0. To do this, we begin by
computing the open-circuit voltage, which is
given by the —75V source divided across the
40 k) and 160 k{ resistors:

_ 160 X 10°
% (40 + 160) X 10

= (=75) = =60 V.

Next, we calculate the Thévenin resistance, as
seen to the right of the capacitor, by shorting the
~75V source and making series and parallel
combinations of the resistors:

Ry, = 8000 + 40,000 || 160,000 = 40 k()

The value of the Norton current source is the
ratjo of the open-circuit voltage to the Thévenin
resistance, or —60/(40 X 10%) = —1.5 mA. The
resulting Norton equivalent circuit is shown in
Fig. 7.23. From Fig. 7.23, I(R = =60V and
RC = 10ms. We have already noted that
,(0) = 30V, so the solution for v, is

v, = —60 + [30 — (—60)]e 10

—60 + 90700y ;= Q.

b) We write the solution for i, directly from

Eq. 753 by noting that I, = -1.5mA and
V,/R = (30/40) X 1073 or 0.75 mA:

i, = —225¢1%mA =0

We check the consistency of the solutions for v,
and i, by noting that

dv, _

i":Cdt

(0.25 X 1078)(—9000e7"%")
= —225¢7% mA.

Because dv,(07)/dt = 0, the expression for i,
clearly s valid only for r = 0%

30 VA<0.25 uF 40k 1.5 mA

Figure 7.23 & The equivalent circuit for 7 > 0 for the circuit
shown in Fig. 7.22.
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O'bjectiVe 2—Be able to determine the step response of both RL and RC circuits

7.6  a) Find the expression for the voltage across ~ b) Specify the interval of time for which the
the 160 k) resistor in the circuit shownin . expression obtained in (a) is valid.
Fig.7.22. Let this voltage be denoted v 4, and Wi . ' :
assume that the reference polarity for the i e e _
voltage is positive at the upper Lermmal of Answer: (a) —60 + 72¢ " V;
the 160 k() resistor. : ()t = 0"

- NOTE: Also try Chapier Problems 7.50 and 7.51.

7.4 A General Solution for Step
and Natural Responses

The general approach to finding either the natural response or the step

Rra response of the first-order RL and RC circuits shown in Fig. 7.24 is based

on their differential equations having the same form (compare Eq. 7.48

and Eq. 7.50). To generalize the solution of these four possible circuits, we

o Y let x(¢) represent the unknown quantity, giving x(z) four possible values. It

can represent the current or voltage at the terminals of an inductor or the

current or voltage at the terminals of a capacitor. From Eqs. 7.47, 7.48,

(a) 7.50, and 7.52, we know that the differential equation describing any one
of the four circuits in Fig. 7.24 takes the form

dx x
—+==K :

where the value of the constant X can be zero. Because the sources in the
circuit are constant voltages and/or currents, the final value of x will be
constant; that is, the final value must satisty Eq. 7.54, and, when x reaches
its final value, the derivative dx/dt must be zero. Hence

xp = Kr, (7.55)

where x; represents the final value of the variable.
We solve Eq.7.54 by separating the variables, beginning by solving for
the first derivative:

d = -(x — K =06 = 75)
ahE S e SR 4, (7.56)
dt T z 0

(d)

In writing Eq. 7.56, we used Eq. 7.55 to substitute x; for K. We now mul-

Figure 7.24 4 Four possible first-order circuits. tiply both sides of Eq. 7.56 by dr and divide by x — x; to obtain
(2) An inductor connected to a Thévenin equivalent.

(b) An inductor connected to a Norton equivalent.
(c) A capacitor connected to a Thévenin equivalent. dx __11”
(d) A capacitor connected to a Norton equivalent. X = Xy Tt

(7.57)
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Next, we integrate Eq. 7.57.To oblain as general a solution as possible, we
use time ¢, as the lower limit and ¢ as the upper limit. Time ¢, corresponds
to the time of the switching or other change. Previously we assumed that
1ty = 0, but this change allows the switching to take place at any time.
Using u and v as symbols of integration, we get

S 1/
= =/ dv (7.58)
gy ¥~ Xy TJ

Carrying oul the integration called for in Eq. 7.58 gives

x() = xp + [x(tg) = xple 7O (7.59)
The importance of Eq. 7.59 becomes apparent if we write it out in words:

the unknown the final
variable as a = value of the

function of time variable
the initial the final ome of switchi
I(‘ ime SW1 C\mg
+| value of the — value of the | X ¢  {limeconstanD (7.60)
variable variable

In many cases, the time of switching—that is, {,—is zero.
When computing the step and natural responses of circuits, it may
help to follow these steps:

1. Identify the variable of interest for the circuit. For RC circuits, it is
most convenient to choose the capacitive voltage; for RL circuits,
it is best to choose the inductive current.

2. Determine the initial value of the variable, which is its value at ;.
Note that if you choose capacitive voltage or inductive current as
your variable of interest, it is not necessary to distinguish between
t =ty and t = (3.2 This is because they both are continuous vari-
ables. If you choose another variable, you need to remember that
its initial value is defined at ¢ = 1§.

3. Calculate the final value of the variable, which is its value as t — oo.

4. Calculate the time constant for the circuit.

With these quantities, you can use Eq. 7.60 to produce an equation
describing the variable of interest as a function of time. You can then find
equations for other circuit variables using the circuit analysis techniques
introduced in Chapters 3 and 4 or by repeating the preceding steps for the
other variables.

Examples 7.7-7.9 illostrate how to use Eq. 7.60 to find the step
response of an RC or RL circuit.

2 The expressions {; and f§ are analogous to 0~ and 0", Thus x(¢5) is the limit of x(1) as ( —> 1,
from the lefr, and x(¢3) is the limit of x(s) as ¢ — ¢, from the right.

A General Solution for Step and Natural Responses 249

< General solution for natural and step
responses of RL and RC circuits

«¢ Calculating the natural or step rasponse
of RL or RC circuits
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SECHAE Using the General Solution Method to Find an RC Circuit’s Step Response

The switch in the circuit shown in Fig. 7.25 has been
in position a for a long time. At f = 0 the switch is
moved to position b.

a) What is the initial value of vy?
b) What is the final value of v?

c) What is the time constant of the circuit when the
switch is in posijtion b?

d) What is the expression for vo(r) when ¢ = 0?
e) What is the expression for i(r) when ¢t = 0*?

f) How long after the switch is in position b does
the capacitor voltage equal zero?

g) Plot v¢(¢) and i(z) versus ¢.

Solution

a) The switch has been in position a for a long time,
so the capacitor looks like an open circuit.
Therefore the voltage across the capacitor is the
voltage across the 60 {} resistor. From the voltage-
divider rule, the voltage across the 60 {) resistor
is 40 X [60/(60 + 20)], or 30 V. As the refer-
ence for vc is positive at the upper terminal of
the capacitor, we have v¢(0) = —30 V.

b) After the switch has been in position b for a long
time, the capacitor will look Jike an open circuit
in terms of the 90 V source. Thus the final value
of the capacitor voltage is + 90 V.

¢) The time constant is
T = RC
= (400 X 10*)(0.5 x 1079
= 0.2s.

d) Substituting the appropriate values for v, v(0),
and rinto Eq. 7.60 yields

ve(t) = 90 + (=30 — 90)e™
=00 — 120>V, (= 0.

e) Here the value for 7 doesn’t change. Thus we
need to find only the initial and final values for
the current in the capacitor. When obtaining the
initial value, we must get the value of i(0"),
because the current in the capacitor can change
instantaneously. This currcnt is equal (o the cur-
rent in the resistor, which from Ohm’s law is
[90 — (—30))/(400 X 10°) = 300 uA. Note that
when applying Ohm’s law we recognized that the

400k0 200
N\
+
P =
= 90V ' WOV —

i ¥e . B
T - :

Figure 7.25 4 The circuit for Example 7.7.

capacitor voltage cannot change instantaneously.
The final value of i(¢) = 0, so

i(1)y =0 + (300 — 0)e™
=300e3 uA, =0

We could have obtained this solution by dif-
fercntiating the solution in (d) and multiplying by
the capacitance. You may want to do so for your-
self Note that this alternative approach to finding
i(¢) also predicts the discontinuity at¢ = 0.

f) To find how long the switch must be in position b
before the capacitor voltage becomes zero, we
solve the equation derived in (d) for the time
when ve(f) = O:

120
120 =90 or &' =——

90"’
1 (4
=—In|-
=5m(3)

= 57.54 ms.

Note that when v =0, i = 225 uA and the
voltage drop across the 400 k() resistor is 90 V.

g) Figure 7.26 shows the graphs of vc(r) and i(/)
VETSUS /.

SO

i (nA) ve (V)

300 120
250 100
200 80
150 60
100 40
50 200

¢ (ms)
-20

OV[ 200 400 600 800
~30

Figure 7.26 4 The current and voltage waveforms for
Example 7.7.
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FlDICERE Using the General Solution Method with Zero Initial Conditions

The switch in the circuit shown in Fig. 7.27 has been
open for a long time. The initial charge on the
capacitor is zero. At r = 0, the switch is closed. Find
the expression for

a) i(f) fort = 0" and

b) v(f) when ¢ = 07,

F

L xe=0f
™ v

if ¢
7.5mA 0(1)320 kQ 1)

0.1
|
|

230k

Figure 7.27 & The circuit for Example 7.8.

Solution

a) Because the initial voltage on the capacitor is
zero, at the instant when the switch is closed the
current in the 30 kQ) branch will be

(7.5)(20)

i(0") = 50

= 3 mA.

The final value of the capacitor current will be
zero because the capacitor eventually will
appear as an open circuit in terms of dc current.
Thus iy = 0. The time constant of the circuit will
equal the product of the Thévenin resistance (as
seen from the capacitor) and the capacitance.
Therefore 7 = (20 + 30)10°(0.1) X 107¢ = 5 ms.

Substituting these values into Eq. 7.60 generates
the expression

i(6) =0 + (3 — 0)e™/3x107

=32 mA, 1= 0"

b) To find »(¢), we note from the circuit that it
equals the sum of the voltage across the capaci-
tor and the voltage across the 30 k() resistor. To
find the capacitor voltage (which is a drop in
the direction of the current), we note that its
initial value is zero and its final value is
(7.5)(20), or 150 V. The time constant is the same
as before, or 5 ms. Therefore we nse Eq. 7.60
to write

ve(t) = 150 + (0 — 150)e 2%

(150 — 1502y v, ¢ = 0.

Hence the expression for the voltage v(¢) is

o(f) = 150 — 15072 + (30)(3)e 2™

= (150 — 60 2%y v, (= 0%

As onc check on this expression, note that it
predicts the initial value of the voltage across
the 20 O resistor as 150 — 60, or 90 V. The
instant the switch is closed, the current in the
20 kO resistor is (7.5)(30/50), or 4.5 mA. This
current produces a4 90 V drop across the 20 k(}
resistor, confirming the value predicted by the
solutiomn.
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13E1DICAE  Using the General Solution Method to Find an RL Circuit’s Step Response

The switch in the circuit shown in Fig. 7.28 has been constant is 80/1, or 80 ms. We use Eg. 7.60 to
open for a long time. At ¢ = 0 the switch is closed. write the expression for v(¢):
Find the expression for

u(t) = 0 + (15 — 0)e™/80X10”
a) v(t) when £ = 0" and

=152V, t=0".
b) i(t) whent = 0.

b) We have already noted that the initial value of
the inductor current is 5 A. After the switch has
been closed for a long time, the inductor current

=0 reaches 20/1, or 20 A. The circuit time constant is
80 ms, so the expression for i(r) is

gy i(£) =20 + (5§ — 20)e” 12

= (20 — 1573 A, 1 = 0.
Figure 7.28 & The circuit for Example 7.9.

We determine that the solutions for ¢(¢) and ()
agree by noting that

Solution
| | o) = L2
a) The switch lias been open for a long time, so the dt
initial current in the inductor is 5 A, oriented
from top to bottom. Immediately after the switch
closes, the current still is 5 A, and therefore the = 80 X 1073[15(12.5)e™ %)
initial voltage across the inductor becomes
20 — 5(1), or 15V. The final value of the inductor
voltage is 0 V. With the switch closed, the time =153¢712v, 1 = 0N

NOTE: Assess your understanding of the general solution method by trying Chapter Problems 7.53 and 7.54.

Example 7.10 shows that Eq. 7.60 can even be used to find the step
response of some circuits containing magnetically coupled coils.



There is no energy stored in the circuit in Fig, 7.29
at the time the switch is closed.
a) Find the solutions for i,, v,, i;, and i,.

b) Show that the solutions obtained in (a) make
sense in terms of known circnit behavior.

Solution

a) For the circuit in Fig. 7.29, the magnetically cou-
pled coils can be replaced by a single inductor
having an inductance of

L LiL,~M  45-36
“ L+ L,-2M 18- 12

=15H.

(See Problem 6.41.) It follows that the circuit in
Fig. 7.29 can be simaplified as shown in Fig. 7.30.

By hypothesis the initial value of i, is zero.
From Fig. 7.30 we see that the final value of i,
will be 120/7.5 or 16 A.The time constant of the
circuit is 1.5/7.5 or 0.2 s. It follows directly from
Eq.7.60 that

i, =16 — 16e>'A, (=0,

The voltage v, follows from Kirchhoff’s
voltage law. Thus,

v, = 120 — 7.5,
=120V, = 0"

To find i; and i, we first note from
Fig. 7.29 that

3—+6—=6—+ 15—+
dt . dr dt dt
or
diy __di
d T dt’
It also follows from Fig. 7.29 that because
io = il + i2,
di, diy di
—2 =4 ==
o dt dt
Therefore
80e ™ P
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SelICWASGR Determining Step Response of a Circuit with Magnetically Coupled Coils

A e
W - 0\ + o _-6H~\®

- |
120V “3H ;" 1SH5 ¥

1 5]

Figure 7.29 A The circuit for Example 7.10.

75 0 >( - ﬁr’
V=0 -
120V vy s1.5H

Figure 7.30 4 The circuit in Fig. 7.29 with the magnetically
coupled coils replaced by an equivalent coil.

Because i5(0) is zero we have

T
/ —40e 3 dx
0

= -8+ 8 A, =0

I

Using Kirchhoff's current law we get
=24 —UeA, 120

b) First we observe that i,(0), i1(0), and #;(0) are all
zero, which is consistent with the statement that
no energy is stored in the circuit at the instant
the switch is closed.

Next we observe v,(0") = 120V, which is
consistent with the fact that i,{0) = 0.
Now we observe the solutions for i; and
I, arc consistent with the solution for v, by
observing
diy di;
=3— 4+ 66—
B =t O
= 360 ~ 240e™
=120V, =0
or
diy di,
=6— + 15—
vo dt dt
= 720¢™> — 600e™"

=120V, (=0"
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The final values of i; and i3 can be checked
using flux linkages. The flux linking the 3 H coil
(A;) must be equal to the flux linking the 15 H
coil (A,), because

_dn
Yo = Ty
_an
Codr
Now
A; = 3i + 6i, Wb-turns
and

Ay = 6i + 15i, Wb-turns,

Regardless of which expression we use, we
obtain

Xy = Ay = 24 — 24¢™> Wh-turns.

Note the solution for A, or A; is consistent with
the solution for »,,.
The final value of the flux linking either

coil 1 or coil 2 is 24 Wh-turns, that is,

M(00) = Ay(00) = 24 Wh-turns.

The final value of i is
i(c0) =24 A
and the final value of i, is
(o) = —8 A.
The consistency between these final values

for iy and i, and the final valne of the flux link-
age can be seen from the expressions:

A(00) = 3is(00) + 6iy(®0)
= 3(24) + 6(—8) = 24 Whb-turns,
Ax(00) = 6is(00) + 1515(0)
= 6(24) + 15(—8) = 24 Wb-turns.
It is worth noting that the final values of i;
and i, can only be checked via flux linkage
because at { = oo the two coils are ideal short

circujts. The division of current between ideal
short circuits cannot be found from Ohm’s law.

NOTE: Assess your understanding of this material by using the general solution method to solve Chapter
Problems 7.65 and 7.67.

7.5 Sequential Switching

Whenever switching occurs more than once in a circuit, we have sequential
switching. For example, a single, two-position switch may be switched back
and forth, or multiple switches may be opened or closed in sequence. The
time reference for all switchings cannot be ¢ = 0. We determine the volt-
ages and currents generated by a switching sequence by using the tech-
niques described previously in this chapter. We derive the expressions for
v(¢) and i(t) for a given position of the switch or switches and then usc
these solutions to determine the initial conditions for the next position of
the switch or switches.

With sequential switching problems, a premium is placed on obtaining
the initial value x(fp). Recall that anything but inductive currents and
capacitive voltages can change instantaneously at the time of switching.
Thus solving first for inductive currents and capacitive voltages is even
more pertinent in sequential switching problems. Drawing the circnit that
pertains to each time interval in such a problem is often heipful in the
solution process.

Examples 7.11 and 7.12 illustrate the analysis techniques for circuits
with sequential switching. The first is a natural response problem with two

switching times, and the second is a step response problem.
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m Analyzing an RL Circuit that has Sequential Switching

The two switches in the circuit shown in Fig. 7.31
have been closed for a long time. At ¢ = 0, switch 1
is opened. Then, 35 ms later, switch 2 is opened.

a) Find i; (r) for 0 = { < 35 ms.

b) Find iy for ¢ = 35 ms.

¢) What percentage of the initial energy stored in

the 150 mH inductor is dissipated in the 18 {}
resistor?

d) Repeat (c) for the 3 Q resistor.
e) Repeat (c) for the 6 Q resistor.

Figure 7.31 & The circuit for Example 7.11.

Solution

a) For r < 0 both switches are closed, causing the
150 mH inductor to short-circuit the 18 (} resis-
tor. The equivalent circuit is shown in Fig. 7.32. We
determine the initial current in the inductor by
solving for iy (07) in the circuit shown in Fig. 7.32.
After making several source transformations, wc
find i, (07) tobe 6 A.For 0 < ¢ =< 35 ms, switch 1
is open {switch 2 is closed), which disconnects the
60 V voltage source and the 4 £} and 12 () resis-
tors from the cjrcuit. The inductor is no longer
behaving as a short circuit (because the dc source
is no longer in the circuit), so the 18 () resistor is
no longer short-circuited. The equivalent circuit is
shown in Fig. 7.33. Note that the equivalent resist-
ance across the terminals of the inductor is the
parallel combination of 9 {) and 18 £}, or 6 Q.
The time constant of the circuit is (150/6) X 107,
or 25 ms. Therefore the expression for iy is

i =6 A 0=<t=35ms.

40 30

60V 120 60 lff_(o')

Figure 7.32 4 The circuit shown in Fig. 7.31, for7 < 0,

30
—1— Myt e
ir
¥
60 23150 mH §180
,i1(07) = 6A

Figure 7.33 4 The circuit shown in Fig. 7.31, for 0 < ¢ <35 ms.

b) When ¢ = 35ms, the value of the inductor
current is

i =6 =148 A.

Thus, when switch 2 is opened, the circuit
reduces to the one shown in Fig. 7.34, and the
time constant changes to (150/9) x 1073 or
16.67 ms. The expression for i; becomes

ip = 14870000035 A 4 = 35 m;s,

Note that the exponential function is shifted in
time by 35 ms.

i
14150 mH
(1(0.035) = 1.43A

Figure 7.34 4 The circuit shown in Fig. 7.31, forr = 35 ms.

¢) The 18 Q resistor is in the circuit only during the
first 35 ms of the switching sequence, During this
interval, the voltage across the resistor is

d
v, =015 E(seﬂ“l‘)

—36e7'V, 0 < (< 35ms.
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The power dissipated in the 18 () resistor is

2
p= 11)—§—=72e—80'w, 0 <1< 35ms.

Hence the energy dissipated is

0.035
w = / 72¢ 780 oy
4]

= 72 —80r 0.0%
—80° |,
=0.9(1 — e *%

= 84527 ml.

The initial energy stored in the 150 mH inductor is
1
w; = 5(0.15)(36) =277 = 2700 mJ.

Therefore (845.27/2700) X 100, or 31.31% of
the initial energy stored in the 150 mH inductor
is dissipated in the 18 ) resistor.

d) For 0 < t < 35 ms, the voltage across the 3 ()

Tesistor is
(43
D3n = (?)(3)

1
_gvl’

= 12V,

Therefore the energy dissipated in the 3 () resis-
tor in the first 35 ms is

0.035 14 46_80'
Wi = 3 dt
0

= 0.6(1 — 72%)
= 563.51 ml.

Fort > 35 ms, the current in the 3 () resistor is

S i 5 (66—1.4)6—60(1—0.035) A

Hence the energy dissipated in the 3 ) resistor for
!> 35msis

)
Wy = / [%Q X 3dt
0.035

/ 3 (3 6) 6—2,86—1 20(:—0.035) dt
0.035

Il

—120(r—0.035) | o0

e
= 1088 X ——————
=120 |o03s
108
= me—” = 54.73 ml.

The total energy dissipated in the 3 () resistor is
wsg(total) = 563.51 + 54.73
= 618.24 mJ.
The percentage of the initial energy storcd is

618.24
2700

X 100 = 22.90%.

e) Because the 6 Q resistor is in series with the 3 O

resistor, the energy dissipated and the percent-
age of the initial energy stored will be twice that
of the 3 Q) resistor:

weq(total) = 1236.48 m/J,
and the percentage of the initial energy stored is
45.80%. We check these calculations by observ-
ing that
1236.48 + 618.24 + 84527 = 2699.99 m]
and

31.31 + 22.90 + 45.80 = 100.01%.

The small discrepancies in the summations are
the result of roundoff errors.
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REINNEWREE Analyzing an RC Circuit that has Sequential Switching

The uncharged capacitor in the circuit shown in
Fig. 7.35 is initially switched to terminal a of the
three-position switch. At r = 0, the switch is moved
to position b, where it remains for 15 ms. After the
15 ms delay, the switch is moved to position c, where
it remains indefinitely.

a) Derive the numerical expression for the voltage
across the capacitor.

b) Plot the capacitor voltage versus time.

¢) When will the voltage on the capacitor equal
200V?

Solution

a) At the instant the switch is moved to position b,
the initial voltage on the capacilor is zero. If the
switch were to remain in position b, the capacitor
would eventually charge to 400 V. The time con-
stant of the circuit when the switch is in position b
is 10 ms. Therefore we can use Eq. 7.59 with
to = 0 to write the expression for the capacitor
voltage:

v = 400 + (0 — 400)e '
= (400 — 400e71)V, 0 =<7 =15Sms.

Note that, because the switch remains in posi-
tion b for only 15 ms, this expression is valid only
for the time interval from 0 to 15 ms. After the
switch has been in this position for 15 ms, the
voltage on the capacitor will be

v(15 ms) = 400 — 400e™"5 = 310.75 V.

Therefore, when the switch is moved to position ¢,
the initial voltage on the capacitor is 310.75 V.
With the switch in position ¢, the final value of
the capacitor voltage is zero, and the time con-
stant is 5 ms. Again, we use Eq. 7.59 to write the
expression for the capacitor voltage:

v =0+ (310.75 — 0)e 20000013

= 310.75¢720X-0019) y 15 mg < ¢.

a

100kQ b\
. +
400V v(t) o~ 0.1uF
50 kﬂ% M0l

Figure 7.35 & The cGreuit for Example 7.12.

In writing the expression for ¥, we recognized
that 1o = 15 ms and that this expression is valid
only for t = 15 ms.

b) Figure 7.36 shows the plot of » versus r.

c) The plot in Fig. 7.36 reveals that the capacitor
voltage will equal 200 V at two different times:
once in the interval between 0 and 15 ms and
once after 15 ms. We find the first time by solving
the expression

200 = 400 — 4001001

which yields ¢; = 6.93 ms. We find the second
time by solving the expression

200 = 310.75¢72000:70015),

In this case, 1, = 17.20 ms.

2 =310 758—,2110(.’ — N3

( | 1

1 |
0 5 10 15 20 25
Figure 7.36 4 The capacitor voltage for Example 7.12.

¢ (ms)
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Objective 3—Know how to analyze circuits with sequential switching

7

In the circuit shown, switch 1 has been closed 7.8  Switch a in the circuit shown has been open for
and switch 2 has been open for a long time. At a long tinie, and switch b has been closed for a
t = 0, switch 1 is opened. Then 10 ms later, long time. Switch a is closed at ¢ = 0 and, after

switch 2 is closed. Find

a) v(t) for 0 =1 = 0.01s,
b) v (t) fort = 0.01 s,

c) the total energy dissipated in the 25 kO

resistor, and

d) the total energy dissipated in the 100 k()
resistor.

(=10} 60 KO t=10ms

remaining closed for 1 s,is opened again.
Switch b is opened simultaneously, and both
switches remain open indefinitely. Determine
the expression for the inductor current i that is
valid when (a) 0 = ¢ = Isand (b) 1 = 1s.

Answer: (a) 80¢ U V;

(b) 53,0340 V.
(c) 291 mJ;
(d) 0.29 mJ.

Answer: (a) 3 — 3¢ ™A 0=1=1ls;
(b) (—4.8 + 598 PO A 4 = 15,

NOTE: Also try Chapter Problems 7.72 and 7.76.

7.6 Unbounded Response

A circuit response may grow, rather than decay, exponentially with time.
This type of response, called an unbounded response, is possible if the cir-
cuit contains dependent sources. In that case, the Thévenin equivalent
resistance with respect to the terminals of either an inductor or a capacitor
may be negative. This negative resistance generates a negative time con-
stant, and the resulting currents and voltages increase without limit. In an
actual circuit, the response eventually reaches a limiting valuec when a
component breaks down or goes into a saturation state, prohibiting fur-
ther increases in voltage or current.

When we consider unbounded responses, the concept of a final value
is confusing. Hence, rather than using the step response solution given in
Eq. 7.59, we derive the differential equation that describes the circuit con-
taining the nepative resistance and then solve it using the separation of
variables technique. Example 7.13 presents an exponentially growing
respounse in terms of the voltage across a capacitor.
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FE M ER Finding the Unbounded Response in an RC Circuit

a) When the switch is closed in the circuit shown in
Fig. 7.37, the voltage on the capacitor is 10 V.
Find the expression for v, for ¢t = 0.

b) Assume that the capacitor short-circuits when
its terminal voltage reaches 150 V. How many
milliseconds elapse before the capacitor short-

cjreuits?
+ * f\= 0
mst,LF u, 10k0 ¥ 7is (Y is| 320k

Figure 7.37 & The circuit for Example 7.13.

Solution

a) To find the Thévenin equivalent resistance with
respect to the capacitor terminals, we use the test-
source method described in Chapter 4. Figure 7.38
shows the resulting circuit, where vy is the test
voltage and iy is the test current. For v expressed
in volts, we obtain

. Ur Yr Vr

= — — /(=) + —mA.
=176 F ™
Solving for the ratio vr/ir yields the Thévenin
resistance:

v
Ry = —= = -5kQ.
Ir
With this Thévenin resistance, we can simplify

the circuit shown in Fig. 7.37 to the one shown in
Fig. 7.39.

oy 10k03 7 is 320 kQ

&
@ L4 —0

Figure 7.38 & The test-source method used to find Ry,.

v
+ * (=0
10V<SuF v, -5k

Figure 7.39 & A simplification of the circuit shown in
Fig. 7.37.

For ¢ = 0, the differential equation describing
the circuit shown in Fig. 7.39 is

dv )
X 107H—2 - 2 x 1073 = 0.
(5% 107—¢ = 2 x 107 =0

Dividing by the coefficient of the first derivative
yields

i 400, = 0

We now use the separation of variables technique
to find v,(¢):

V(1) = 106V, ¢ =0.

b) v, = 150 V when ¢** = 15. Therefore, 40t = In 15,
and t = 67.70 ms,

NOTE: Assess yourunderstanding of this material by trying Chapter Problems 7.86 and 7.87.

The fact that interconnected circuit elements may lead to cver-
increasing currents and voltages is important to engineers. If such inter-
connections are unintended, the resulting circuit may experience

unexpected, and potentially dangerous, component failures.
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Figure 7.40 4 An integrating amplifier.

7.7 The Integrating Amplifier

Recall from the introduction to Chapter 5 that one reason for our interest
in the operational amplifier is its use as an integrating amplifier. We are
now ready to analyze an integrating-amplifier circuit, which is shown in
Fig. 7.40. The purpose of such a circuit is to generate an output voltage
proportional to the integral of the input voltage. In Fig. 7.40, we added the
branch currents i and i, along with the node voltages v, and ), to aid
our analysis.

We assume that the operational amplifier is ideal. Thus we take
advantage of the constraints

iy + i =0, (7.61)
Uy = V. (7.62)
Because v, = 0,

. Vg
= — 7.63
Ly R, (7.63)

dv

ir=Cy dzo' (7.64)

Hence, from Egs. 7.61, 7.63, and 7.64,

dvo__ 1 7 65
i RC* (7.65)

Multiplying both sides of Eq. 7.65 by a differential time dr and then inte-
grating from ¢, to ¢ generates the equation

, t
(1) = _R:Cf/,; v dy + v,(tp)- {7.66)

In Eq.7.66, ¢y represents the instant in time when-we begin the integration.
Thus v,(1o) is the value of the output voltage at that time. Also, because
v, = v, = 0, v,(tp) is identical to the initial voltage on the feedback
capacitor Cy.

Equation 7.66 states that the output voltage of an integrating ampli-
fier equals the initial value of the voltage on the capacitor plus an inverted
(minus sign), scaled (1/R.Cy) replica of the integral of the input voltage. If
no energy is stored in the capacitor when integration commences, Eq.7.66
reduces to

1 4
V(1) = _RCf/v‘ dy. (7-67)



If v, is a step change in a dc voltage level, the output voltage will vary lin-
early with time. For example, assume that the input voltage is the rectan-
gular voltage pulse shown in Fig. 7.41. Assume also that the initial value of
v,(¢) is zero at the instant v, steps from O to V,,. A direct application of
Eq.7.66 yields

P, = ——=VL+0, 0=t=1. (7.68)

When 1 lies between 1 and 2¢,,

1 {
= - -~V ))dy — V.t
Yo R;Cf g ( m) y Rscf mtl
v, 2V,
=,y =t =2 7.
RSCft RC; b 4 1 (7.69)

Figure 7.42 shows a sketch of v,(¢) versus r. Clearly, the output voltage is
an inverted, scaled replica of the integral of the input voltage.

The output voltage is proportional to the integral of the input voltage
only if the op amp operates within its linear range, that is, if it doesn’t sat-
urate. Examples 7.14 and 7.15 further illustrate the analysis of the inte-
grating amplifier.

T ICWAA R  Analyzing an Integrating Amplifier

voltage shown in Fig. 7.41 are ¥, = S0 mV and
¢ty = 1s. This signal voltage is applied to the
integrating-amplifier circuit shown in Fig, 7.40. The

C; = 0.1 pF, and V¢ = 6 V. The initial voltage on
the capacitor is zero.

a) Calculate v,(¢).

b) Plot v,(¢) versus ¢. () (V)

7.7 The Integrating Amplifier

261

0 2] 24

_vm_

Figure 7.41 & An input voltage signal.

2,(2)

G i3} 21

th 1
R.C;

Figure 7.42 A The output voltage of an integrating
amplifier,

Assume that the numerical values for the signal Forl =t =25,

v, = (5t — 10) V.

circuit parameters of the amplifier are R, = 100 k(), b) Figure 7.43 shows a plot of v,(¢) versus z.

Solution
a)For0 =1 = 1s,

-1

= 50 X 107 + 0
(100 X 10°)(0.1 X 107%)

Vo

219

)

=-5V, 0=r=ls. Figure 7.43 4 The output voltage for Example 7.14.
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m Analyzing an Integrating Amplifier that has Sequential Switching

At the instant the switch makes contact with termi- Thus, 9 ms after the switch makes contact with ter-
nal a in the circuit shown in Fig. 7.44, the voltage on minal a, the output voltage is =5 + 9, or4 V.

the 0.1 uF capacitor is 5 V. The switch remains at The expression for the output voltage after the
terminal a for 9 ms and then moves instantaneously switch moves to terminal b is

to terminal b. How many milliseconds after making
contact with terminal b does the operational ampli-

fiet saturate? b, =4 — 1_2 /I 8 dy
107 Jox1072

=4 — 800(/ — 9 X 109)

= (112 - 8001 V.

During this time interval, the voltage is decreas-
ing, and the operational amplifier eventually satu-
rates at —6 V. Therefore we set the expression for v,

Figure 7.44 4 The circuit for Example 7.15. equal to —6 V to obtain the saturation time
Solut'ion 11.2 — 800t5 = —6,
The expression for the output voltage during the or
time the switch is at terminal a is
1 ! t, = 21.5 ms.
Vp = —SE= F/(*l())dy
0 Thus the integrating amplifier saturates 21.5 ms
= (=5 + 1000r) V. after making contact with terminal b.

From the examples, we see that the integrating amplifier can perform
the integration function very well, but only within specified limits that
avoid saturating the op amp. The op amp saturates due to the accumula-
tion of charge on the feedback capacitor. We can prevent it from saturat-
ing by placing a resistor in parallel with the feedback capacitor. We
examine such a circuit in Chapter 8.

Note that we can convert the integrating amplifier to a differentiating
amplifier by interchanging the input resistance R, and the feedback capac-
itor Cf. Then

dv,
v, = =R, I (7.70)

We leave the derivation of Eq.7.70 as an exercise for you. The differentiat-
ing amplifier is seldom used because in practice it is a source of unwanted
or noisy signals.

Finally, we can design both integrating- and differentiating-amplifier
circuits by using an inductor instead of a capacitor. However, fabricating
capacitors for integrated-circuit devices is much easier, so inductors are
rarely used in integrating amplifiers.
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Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor

7.9  There is no energy stored in the capacitor at 7.10 a) When the switch closes in the circuit
the time the switch in the circuit makes contact shown, there is no energy stored in the
with terminal‘a. The switch remains at position capacitor. How long does it take to saturate
a for 32 ms and then moves instantaneously to the op amp?

Position b. ng many'mﬂliseconds.after mak- b) Repeat (a) with an initial voltage on the
ing contact with terminal a does the op amp capacitor of 1 V, positive at the upper
saturate? terminal.

10 k$ 40 kQ
02 uF A AW
¥4
40 kO a 1€ l
160 kO 10V

VoV 90k

e 32 ms

SV (575

Answer: (a) 1.11 ms;
Answer: 262 ms. (b) 1.76 ms.

NOTE: Also try Chapter Problems 7.92 and 7.93.

Practical Perspective
A Flashing Light Circuit

We are now ready to analyze the flashing light circuit introduced at the start R

of this chapter and shown in Fig. 7.45. The lamp in this circuit starts to iS —L e (e /
conduct whenever the lamp voltage reaches a value V.. During the time . l &
the lamp conducts, it can be modeled as a resistor whose resistance is R;. Vi— ¢ 41 T
The lamp will continue to conduct until the lamp voltage drops to the value = T T ¥ N
Vimin- When the lamp is not conducting, it behaves as an open circuit. >t Lamp

Before we develop the analytical expressions that describe the behavior
of the circuit, let us develop a feel for how the circuit works by noting the
following. First, when the lamp behaves as an open circuit, the dc voltage
source will charge the capacitor via the resistor R toward a value of V, volts. v
However, once the lamp voltage reaches V;,,,, it starts conducting and the ,
capacitor will start to discharge toward the Thévenin voltage seen from the N
terminals of the capacitor. But once the capacitor voltage reaches the cut- ate
off voltage of the lamp (V). the lamp will act as an open circuit and the
capacitor will start to recharge. This cycle of charging and discharging the
capacitor is summarized in the sketch shown in Fig. 7.46.

In drawing Fig. 7.46 we have chosen ¢ = 0 at the instant the capacitor
starts to charge. The time ¢, represents the instant the lamp starts to con-  Figure 7.46 4 Lamp voltage versus time for the
duct, and . is the end of a complete cycle. We should alsoc mention that in  circuit in Fig. 7.45.

Figure 7.45 4 A flashing light circuit.

min
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Y= C o~y

Figure 7.47 & The flashing light circuit at r = 0,
when the lamp is not conducting.

R
AM

: S
Yan = CTL‘L R;
Figure 7.48 & The flashing light circuit at ¢ = ¢,
when the lamp is conducting.

constructing Fig. 7.46 we have assumed the circuit has reached the repeti-
tive stage of its operation. Our design of the flashing light circuit requires
we develop the equation for ¥, (¢) as a function of V.., Viuin, Vi, R, C, and
R, for the intervals 0 to ¢, and ¢, to ¢..

To begin the analysis, we assume that the circuit has been in operation
for a long time. Let £ = O at the instant when the lamp stops conducting.
Thus, at-¢ = 0, the lamp is modeled as an open circuit, and the voltage drop
across the lamp is V,;,, as-shown in Fig. 7.47.

From the circuit, we find

'UL(OO) = K_,
v2(0) = Vi,
T = RC.

Thus, when the lamp is not conducting,
DL.(t) = Vc + (Vmin = Vc)e_'/RC'

How long does it take before the lamp is ready to conduct? We can find this
time by setting the expression for v;(¢) equal to V,,,, and solving for ¢. If
we call this value 7,, then
Viiw — Vi
t, = RC In—"—=,
A Vmax = Vs
When the lamp begins conducting, it can be modeled as a resistance R;,
as seen in Fig. 7.48. In order to find the expression for the voltage drop
across the capacitor in this circuit, we need to find the Thévenin equivalent
as seen by the capacitor. We leave to you to show, in Problem 7.106, that
when the lamp is conducting,

vL(t) T V’[‘h -t (Vmax 2 V]‘_‘h)e_(l—l")/?,

where
Vi = __RE__‘/:
R+ Ry
and
il RR,C
R+R

We can determine how long the lamp conducts by setting the above expres-
sion for v; (1) to Vi, and solving for (¢, — 1,), giving

RRLC I V;nax = Vrh
& n .
R+ Ry, Viiw — Vi

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 7.103-7.105.
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+ A first-order circuit may be reduced to a Thévenin (or
Norton) equivalent connected to either a single equiva-
lent inductor or capacitor. (See page 230.)

« The natural response is the currents and voltages that
exist when stored energy is released to a circuit that
contains no independent sources. (See page 228.)

+ The time constant of an RL circuit equals the equiva-
lent inductance divided by the Thévenin resistance as
viewed from the terminals of the equivalent inductor.
(See page 232.)

+ The time constant of an RC circuit equals the equiva-
lent capacitance times the Thévenin resistance as
viewed from the terminals of the equivalent capacitor.
(See page 237.)

« The step response is the currents and voltages that
result from abrupt changes in dc sources connected to a
circuit. Stored energy may or may not be present at the
time the abrupt changes take place. (See page 240.)

Problems

The solution for either the natural or step response of
both RL and RC circuits involves finding the initial and
final value of the current or voltage of interest and the
time constant of the circnit. Equations 7.59 and 7.60
summarize this approach. (See page 249.)

Sequential switching in first-order circuits is analyzed
by dividing the analysis into time intervals correspon-
ding to specific switch positions. Initial values for a par-
ticular interval are determined from the solution
corresponding to the immediately preceding interval.
(See page 254.)

An unbounded response occurs when the Thévenin
resistance is negative, which is possible when the
first-order circuit contains dependent sources. (See
page 258.)

An integrating amplifier consists of an ideal op amp, a
capacitor in the negative feedback branch, and a resis-
tor in series with the signal source. It outputs the inte-
gral of the signal source, within specified limits that
avoid saturating the op amp. (See page 260.)

Section 7.1

7.1 In the circuit shown in Fig. P7.1, the switch makes
contact with position b just before breaking contact
with position a. As already mentioned, this is known
as a make-before-break switch and is designed so
that the switch does not interrupt the current in an
inductive circuit. The interval of Ume between
“making” and “breaking” is assumed Lo be negligi-
ble. The switch has been in the a position for a long
time. At t = 0 the switch is thrown from position a
to position b.

a) Determine the initial current in the inductor.

b) Determine the time constant of the circuit (or
t > 0.

¢) Find i, vy, and v, for ¢t = 0.

d) What percentage of the initial energy stored in
the inductor is dissipated in the 20 Q resistor
12 ms after the switch is thrown from position a
to position b?

Figure P7.1
50 a 200

7.2 The switch in the circuit in Fig. P7.2 has been closed
e for a long time before opening atr = 0.

a) Find i;(07) and i»(0).

b) Find i,(0%) and i,(0").

¢) Find i1(f) fort = 0.

d) Find iy(¢) fort = 0%,

e) Explain why i,(07) # i,(0").
Figure P7.2

15kQ) 1SkQ)
><\ — L

= 3

9V H1215kQ 30 mH

|
2y
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7.5

Response of First-Order RL and RC Circuits

The switch shown in Fig. P7.3 has been open a long
time before closing att = 0.

a) Find i,(07).

b) Find i, (07).

¢) Find i,(0).

d) Find i, (0).

e) Find i,(00).

[) Find i, (0}.

g) Write the expression for i; (1) forr = 0.
h) Find v,(07).

i) Find v, (0%).

j) Find v, (00).

k) Write the expression for v, (¢) for = 0.
1) Write the expression for i (¢) for t = 0%,

Figure P7.3

00 100 (

200 Q)

In the circuit in Fig. P7.4, the voltage and current
expressions are

» =100V, = 0%
i= 48 A, t=0.
Yind
a) R
b) 7 (in milliseconds).
c) L.

d) the initial energy stored in the inductor.

e) the time (in milliseconds) it takes to dissipate
80% of the initial stored energy.

Figure P7.4

The switch in the circuit seen in Fig. P7.5 has been
in position 1 for a long time. At ¢ = 0, the swilch
moves instantaneously to position 2. Find the value
of R so that 50% of the initial energy stored in the
20 mH inductor is dissipated in R in 10 us.

7.6

7.7

FSPICE

7.8

PSPICE

7.9

Figure P7.5
1 X2
t=10
10A 50 woma SR

In the circuit in Fig. P7.5, let I, represent the dc cur-
rent source, o represent the fraction of initial
energy stored in the inductor that is dissipated in ¢,
seconds, and L represent the inductance.

a) Show that

Lin[l/(1 — o))
}2 — __________EE;:;__________.

b) Test the expression derived in (a) by using it to
find the value of R in Problem 7.5.

The switch in the circuit in Fig. P7.7 has been open
for a long time. At ¢ = 0 the switch is closed.

a) Determine i,(0") and i,(0).

b) Detcrmine i (¢) for ¢t = 0%,

¢) How many milliseconds after the switch has been
closed will the current in the switch equal 3.8 A?

Figure P7.7

16 O

30V

The switch in the circuit in Fig. P7.8 has been closed a
long time. At r = 0 it is opened. Find »,(r) forr = 0.

Figure P7.8

t=10
150

Assume that the switch in the circuit in Fig. P7.8 has
been open for one time constant. At this instant,
what percentage of the total energy stored in the
0.2 H inductor has been dissipated in the 20
resistor?



7.10

PSPICE

711

PSPICE

In the circuit shown in Fig. P7.10, the switch has
been in position a for a long time. Atr = 0, it moves
instantaneously from a to b.

a) Find v,(¢) forz = 0.

b) What is the total energy delivered to the 1 kQ
resistor?

¢) How many time constants does it take to deliver
95% of the energy found in (b)?

Figure P7.10

The switch in the circuit in Fig. P7.11 has been in
position 1 for a long time. At r = 0, the switch moves
instantaneously to position 2. Find v,(¢) for r = 0"

Figure P7.11

70 1 50 96 mH
222 2

sQ 2oa§

J I

7.12 For the circuit of Fig. P7.11, what percentage of the

713

- 60 mA

initial energy stored in the inductor is eventually
dissipated in the 20 (} resistor?

In the circuit in Fig. P7.13, the switch has been
closed for a long time before opening at ¢ = 0.

a) Find the value of L so that v,(f) equals 0.25 v,(0%)
when ¢t = 5 ms.

b) Find the percentage of the stored energy that
has been dissipated in the 50 () resistor when
{ = 5ms.

Figure P7.13

7.14

PSPICE

715

Problems 267

The switch m the circuit in Fig. P7.14 has been
closed for a long time before opening at¢ = 0. Find
v,(t) for t = 07,

Figure P7.14

=0
i S

The switch in Fig. P7.15 has been closed for a long
time before opening at £ = 0. Find

a) iy (1), t = 0.
b) v, (1), t = 0",
) iA(t), t = 0%

Figure P7.15

7.16

7.17

What percentage of the initial energy stored in the
inductor in the circuit in Fig. P7.15 is dissipated by
the current-controtled voltage source?

The two switches in the circuit seen in Fig. P7.17 are
synchronized. The switches have been closed for a
long time before opening at t = 0.

a) How many microseconds after the switches are
open is the energy dissipated in the 60 k(} resis-
tor 25% of the initial energy stored in the 200 mH
inductor?

b) At the time calculated in (a), what percentage of
the total energy stored in the inductor has been
dissipated?

Figure P7.17
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7.18 The 220 V, 1 Q) source in the circnit in Fig. P7.18 is
rsrice  inadvertently short-circuited at its terminals a,b. At

the time the fault occurs, the circuit has been in
operation for a long time.

a) What is the initial value of the current i, in the
short-~circuit connection between terminals a,b?
b) What is the final value of the current i,?

¢) How many microseconds after the short circuit
has occurred is the current in the short equal
to 210 A?

Figure P7.18

10 a
A~ & &

120 600

2mH 15 mH

b

7.19 The two switches shown in the circuit in Fig. P7.19
pspice  gperate simultaneously. Prior to ¢+ = 0 each switch

has been in its indicated position for a long time. At
t = 0 the two switches move instantaneously to
their new positions. Find

a) v,(r), ¢ = 0"
b) i,(t),t = 0.

Figure P7.19
+
r=0
20 mH
: [ XK
+ L 0 25k03
5mA $1kQ 380 mH v, iry348 mH

7.20 For the circuit seen in Fig. P7.19, find

a) the total energy dissipated in the 2.5 k) resistor.
b) the energy trapped in the ideal inductors.

Section 7.2

721

7.22

7.23

PSPICE

The switch in the circuit in Fig. P7.21 has been in
position a for a Jong time and v, = 0 V. At/ = 0,
the switch is thrown to position b. Calculate

a) i,v;, and v, fort = 0.

b) the energy stored in the capacitor at ¢ = 0.

c) the energy trapped in the circuit and the total

energy dissipated in the Sk{) resistor if the
switch remains in position b indefinitely.

Figure P7.21
47kl a2 b

75V

In the circuit in Fig. P7.22 the voltage and current
expressions are

v = 100 10% v = 0
i = 5071000 At = 0t
Find
a) R.
b) C.

¢) 7 (in milliseconds).
d) the initial energy stored in the capacitor.

e) how many microseconds it takes to dissipate
80% of the initial energy stored in the capacitor.

Figure P7.22

The switch in the circuit in Fig. P7.23 is closed at
t = 0 after being open for a long time.

a) Find {,(07) and i,(0").
b) Find i,(0%) and i,(0).
¢) Explain why i,(07) = £,(0%).



d) Explain why i,(07) # ip(0%).
e) Find i((¢) for: = 0.
f) Find iy(¢) fort = 0*.

Figure P7.23
100 A

7.24 The switch in the circuit in Fig. P7.24 has been in
position a for a long time. At t = 0, the switch is
thrown to position b.

a) Find i,(¢) fort = 0*.

b) What percentage of the initial energy stored in
the capacitor is dissipated in the 4 k{) resistor
250 us after the switch has been thrown?

Figure P7.24

7.25 Both switches in the circuit in Fig. P7.25 have been
esrice closed for a long time. At ¢ = 0, both switches open
simultaneously.

a) Find i (1) for ¢ = 0"
b) Find »,(¢) for: = 0.

c) Calculate the energy (in microjoules) trapped in
the circuit.

Figure P7.25

=0 2 kO ‘f=U><

S + |
Iy

150 nF v, T 300 nF 10 k\.Q
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726 In the circuit shown in Fig. P7.26, both switches
operate together; that is, they either open or close at
the same time. The switches arc closed a long time
before opening at { = ().

a) How many microjoules of energy have been
dissipated in the 12 k) resistor 2 ms after the
switches open?

b) How long does it take to dissipatc 95% of the
initially stored energy?

Figure P7.26

t=40 =10
1.8 ki}

7.27 The switch in the circuit in Fig. P7.27 has been in
e position 1 for a long time before moving to posi-
tion 2 at t = 0. Find i,(¢) for t = 0".

Figure P7.27

= 25 oF

7.28 The switch in the circuit seen in Fig. P7.28 has been
in position x for a long time. At t = 0, the switch
moves instantaneously to position y.

a) Find « so that the time constant for ¢ > 0is 1 ms.
b) For the « found in (a), find v,.

Figure P7.28
20k

18 mA S5k 10kQ




270

7.29

7.30

PSPICE

Response of First-Order RL and RC Circuits

a) In Problem 7.28, how many microjoules of
energy arc gencrated by the dependent current
source during the time the capacitor discharges
to 0 V?

b) Show that for t = 0 the total energy stored and
generated in the capacitive circuit equals the
total energy dissipated.

After the circuit in Fig. P7.30 has been in operation

for a long time, a screwdriver is inadvertently con-

nected across the terminals a,b. Assume the resist-

ance of the screwdriver is negligible.

a) Find the current in the screwdriver at¢ = 0" and
[ = o0,

b) Derive the expression for the current in the
screwdriver for r = 0%,

Figure P7.30

731

1 J‘50;..1:
25mA<D 200 in ‘o

2 pF

b

At the time the switch is closed in the circuit shown
in Fig. P7.31, the capacitors are charged as shown.

a) Find v,(¢) for t = 0.

b) What percentage of the total energy initially
stored in the three capacitors is dissipated in the
25 kQ resistor?

¢) Find v(t) for t = 0.
d) Find »,(¢) fort = 0.

e) Find the energy (in millijoules) trapped in the
ideal capacitors.

Figure P7.31

X

+
=10

10V T 4 uF by 4
+ —
. e $25KkQ

7.32 At the time the switch is closed in the circuit in
Fig. P7.32, the voltage across the paralleled capaci-
tors is 30 V and the voltage on the 200 nF capacitor
is10 V.

a) What percentage of the initial energy stored in
the three capacitors is dissipated in the 25 k()
resistor?

b) Repeat (a) for the 625 () and 15 kQ resistors.

c) What percentage of the initial energy is trapped
in the capacitors?

Figure P7.32

+10V — =

10 an_;—_LAiO nF
T 30_V T

7.33 The switch in the circuit seen in Fig. P7.33 has been

eseice closed for a long time. The switch opens at £ = 0.
Find the numerical expressions for i,(¢) and v,(t)
when ¢ = 0",

Figure P7.33

20 k2 5 kO s,

240 V T 60 k) 0,(1)3 250 mH

Section 7.3
7.34 The switch in the circuit shown in Fig. P7.34 has
rsrice been closed for a long time before opening at ¢ = 0.

a) Find the numerical expressions for i;{t) and
v,(¢) fort = 0.

b) Find the numerical values of v, (0*) and v,(0%).

Figure P7.34
120 5mH L
==

W' 8- &
¥
t=10
KYAY v, <80 6 A




7.35 The switch in the circuit shown in Fig. P7.35 has
PsFice been in position a for a long time. At ¢ = 0, the
switch moves instantaneously Lo position b.

a) Find the numerical expression for i,(¢) when
t=0.

b) Find the numerical expression for v,(¢) for
t = 0"

Figure P7.35

(=0
_ a_ b — 5‘\/\2
60 0 bo
40 A 40 v, 2200 10 mHé
240V

7.36 After the switch in the circuit of Fig. P7.36 has been
open for a long time, it is closed at ¢ = 0. Calculate
(a) the initial value of i; (b) the final value of i
(c) the time constant for ¢ = 0; and (d) the numeri-
cal expression for i(f) whent = 0.
Figure P7.36

5kQ 4kQO

75 mH

20k0

150V

7.37 The current and voltage at the terminals of the
inductor in the circuit in Fig. 7.16 are

i) = (10 = 1039 A, ¢ =0;

w(t) = 20030V, t=0".

a) Specify the numerical values of V,, R, I, and L.

b) How many milliseconds after the switch has
been closed does the cnergy stored in the induc-
tor reach 25% of its final value?

7.38 The switch in the circuit shown in Fig. P7.38 has
been closed for a long time. The switch opens at
t =0.Fort = (0"

a) Find v,(t) as a tunction of I,, Ry, Ry, and L.

b) Explain what happens to v,{!) as R, gets larger
and larger.

¢) Find vsw as a function of I, R, R,, and L.

d) Explain what happens to vsw as R, gets larger
and larger.

7.39

7.40

741

PSPICE
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Problems

Figure P7.38
><F =0
/
R,
AN
T Vs T i
L le L30,(1)

The switch in the circuit in Fig. P7.39 has been
closed for a long time. A student abruptly opens the
switch and reports (o her instructor that when the
switch opened, an electric arc with noticeable per-
sistence was cslablished across the switch, and at
the same time the voltmeter placed across the coil
was damaged. On the basis of your analysis of the
circuit in Problem 7.38, can you explain to the stu-
dent why this happened?

Figure P7.39

=0
d'Arsonval 13
voltmeter

a) Derive Eq. 7.47 by first converting the Thévenin
equivalent in Fig. 7.16 to a Norton equivalent
and then summing the currents away from the
upper node, using the inductor voltage v as the
variable of interest.

b) Use the separation of variables technique to find
the solution to Eq.7.47. Verify that your solution
agrees with the solution given in Eq. 7.42.

The switch in the circuit in Fig. P7.41 has been open
a long time before closing at ¢+ = (. Find i,(r) for
1 = 0.

Figure P7.41

87.2 mH

10 Q

o
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7.42 The switch iu the circuit in Fig. P7.42 has been open
rrice 3 long time before closing at ¢ = 0. Find v,(¢) for
§ =07

Figure P7.42
100

150 =0

t
~N
I
SQ ?-"‘u 2mH 4Q4iA 1 mA

7.43 There is no energy stored in the inductors L, and L,
at the time the switch is opened in the circuit shown
in Fig. P7.43.

a) Derive the expressions for the currents i;(¢) and
ir(t) fort = 0.

b) Use the expressions derived in (2) to find i;(c0)
and 12( OO)

Figure P7.43

=10

I, R, a0} 30 b0, 3L

7.44 The switch in the circuit in Fig. P7.44 has been in

reice position 1 for a long time. At ¢t = 0 it moves instan-
taneously to position 2. How many milliseconds
after the switch operates does v, equal —80 V?

Figure P7.44

16 O

0V

7.45 For the circuit in Fig. P7.44, find (in joules):
a) the total energy dissipated in the 80 Q resistor;
b) the energy trapped in the inductors;

c) the initial energy stored in the inductors.

7.46 The make-before-break switch in the circuit of

rseice - Fig. P7.46 has been in position a for a long time. At
t = 0, the switch moves instantaneously to posi-
tion b. Find

a) v,(r), t = 0%,
b) i1(t), t = 0.
C) lz(t) t=0.

figure P7.46

10 A

7.47 The switch in the circuit in Fig. P7.47 has been open

reice 3 long time before closing at ¢ = 0. Find v,(¢) for
t = 0"

Figure P7.47

2,40 mH 50

200 10 A

60 mH 5V

7.48 The switch in the circuit in Fig. P7.48 has been in
pseice position x for a long time. The jnitial charge on the
15 nF capacitor is zero. At ¢ = 0, the switch moves
instantaneously to position y.
a) Find v,(¢) fort = 0"
b) Find vy(¢) fort = 0.

Figure P7.48
X Y 15nF
4k / I :
+
g

30V 16 k)




7.49 For the circuit in Fig. P7.48, find (in microjoules)
a) the energy delivered to the 200 k() resistor;
b) the energy trapped in the capacitors;
c) the initial energy stored in the capacitors.

7.50 The switch in the circuit shown in Fig. P7.50 has
e been closed a long time before opening at ¢ = 0.
For ¢t = 07, find

a) v,(1).

b) i,(2).

c) i(#).

d) 5(6).

e) i(0%).
Figure P7.50

i) 4%Q

* ¢ Y + |
10mA (0| 35k 1,(), 320 kO Vo< 25 nF
(=0 E B /l\

7.51 The circuit in Fig. P7.51 has been in operation for a

rseice long time. At ¢ = 0, the voltage source drops from
100V to 25V and the current source reverses direc-
tion. Find v,(¢) for: = 0.

Figure P7.51
S5kQ

2kQ

“”1_.

100V 20k 210 mA 12k 3 0.05 uF T v,

7.52 The current and voltage at the terminals of the
capacitor in the circuit in Fig. 7.21 are

i(t) = S0e2%% mA,
v(t) = (80 — 80e PW) VY,

r=0":
t = 0.

a) Specify the numerical values of I, V,, R, C,
and 7.

b) How many microseconds after the switch has
been closed does the energy stored in the capac-
itor reach 64% of its final value?

7.53 Assume that the switch in the circuit of Fig. P7.53
has been in position a for a long time and that at
t = 0 it is moved to position b. Find (a) v(0%);
(b) ve(0); () 7fort > 0; (d) i(0%); (&) ve, t = 0
and (f) i, t = 0%,

Problems 273

Figure P7.53

50kQ

7.54 The switch in the circuit of Fig. P7.54 has been in
position a for a long time. At = @ the switch is
moved to position b. Calculate (a) the initial voltage
on the capacitor; (b) the final voltage on the capaci-
tor; (c) the time constant (in microseconds) for
t > 0; and (d) the length of time (in microseconds)
required for the capacitor voltage to reach zero
after the switch is moved to position b.

Figure P7.54
20 k)
& AMA—
Lei=a
15k0E

7.55 The switch in the circuit shown in Fig. P7.55 has
eseice been closed a long time before opening at ¢ = 0.

a) What is the initial value of i,(¢)?

b) What is the final value of i,(z)?

c) What is the time constant of the circuit for t = 0?
d) What is the numerical expression for i,(¢f) when

t = 0%
e) What is the numerical expression for v,(¢) when
t = 0%
Figure P7.55
4k 6.8k

75V <02 uF
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7.56 The switch in the circnit seen in Fig. P7.56 has been in
PSPICE position a for a long time. At ¢ = 0, the switch moves
instantaneously to position b. For ¢ = 0%, find

a) v,(b).
b) is(f).
) v,(e).
@) v,(0%).

Figure P7.56
10kQ

; 25kQ
= () o—AW\

i,() T
kN 10kOS V(1)
Uu(:) =

1.6 mA

e
4
q

7.57 The switch in the circuit seen in Fig. P7.57 has been

PsPICE In position a for a long fime. At r = 0, the switch
moves instantaneously to position b. Find v,(¢) and
i(t) for t = 0*.

Figure P7.57

25 mA

b/ \a

7.58 The switch in the circuit shown in Fig. P7.58 opens at

et = 0 after being closed for a long time. How many
milliseconds after the switch opens is the energy
stored in the capacitor 90% of its final value?

Figure P7.58

7.589 The switch in the circuit shown in Fig. P7.59 has

psrice been i the OFF position for a long time. At £ = 0,
the switch moves instantaneously to the oN posi-
tion. Find v,(¢) for t = 0.

Figure P7.59

7.60 Assume that the switch in the circuit of Fig. P7.59

rseice has been in the ON position for a long time before
switching instantaneously to the OFF position at
¢t = 0. Find v,(¢) forr = 0.

7.61 a) Derive Eq. 7.52 by first converting the Norton
equivalent circuit shown in Fig. 7.21 to a Thévenin
equivalent and then summing the voltages around
the closed loop, using the capacitor current i as the
relevant variable.

b) Use the separation of variables tcchnique to find
the solution to Eq. 7.52. Verify that your solution
agrees with that of Eq. 7.53.

7.62 There is no energy stored in the capacitors C, and
C, at the time the switch is closed in the circuit seen
in Fig. P7.62.

a) Derive the expressions for »,(f) and w,(r) for
t = 0.

b) Use the expressions derived in {(a) to find »,(c0)
and v,(00).

Figure P7.62

Rg X\I=U

4
C] T (r)

v IF

(1)

QT_

7.63 The switch in the circuit of Fig. P7.63 has bcen in
P position a for a long time. At/ = 0, it moves instau-
taneously to position b. For t = 07, find

a) v,(0).

400 nA 12kQ 36k 2 304, 15 kO

t=10

8 pF —~

b) i,(t).
| c) vi(l)-
d) vy(t).
e) the energy trapped in the capacitors as ¢ — oo.




Figure P7.63

22k0 ‘s

7.64 The switch in the circuit in Fig. P7.64 has been in

rsrite position a for a long time. At ¢ = 0, the switch
moves instantaneously to position b. At the instant
the switch makes contact with terminal b, switch 2
opens. Find v,(¢) for r = 0.

Figure P7.64

Section 7.4
7.65 There is no energy stored in the circuit of Fig. P7.65
at the time the switch is closed.
a) Find i,(f) for¢ = 0.
b) Find v,(t) fort = 0*.
¢) Find i (¢) fort = 0.
d) Find iy(¢) for ¢t = 0.

e) Do your answers make sense in terms of known
circuit behavior?

Figure P7.65

B Xi=0 , —=i
il Y + @ /10111_[—1\:

15V Yo

7.66 Repeat (a) and (b) in Example 7.10 if the mutual
inductance is reduced to zero.
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7.67 There is no energy stored in the circuit in Fig. P7.67
psrice  at the time the switch is closed.

a) Find i,{¢) forf = 0.

b) Find »,(t) for r = 0%,

c) Find i4(r) fort = 0.

d) Find i,(¢) fort = 0.

¢) Do your answers make sense in terms of known
circuit behavior?

Figure P7.67
250 Q) t=0

30 o=y
7 ‘- e |~ 025H~
05H
10V 0y | i 0.25H
L {3
= iy ®

7.68 There is no energy stored in thc circuit in Fig. P7.68
psrice  at the time the switch is closed.

a) Find i(¢) fort = 0.
b) Find v(z) for r = 0*.
c¢) Find vy(r) fort = 0.

d) Do your answers make sense in terms of known
circuit behavior?

Figure P7.68

+ ou()
500 )< (=1 4H
BR4E 7Y 1 AN *
5H
200V NCI8H wl)

7.69 Repeat Problem 7.68 if the dot on the 8 H coil is at
rseice the top of the coil.

Section 7.5

7.70 In the circuit in Fig. P7.70, switch A has been open

pseice and switch B has been closed for a long time. At
t = 0, switch A closes. One second after switch A
closes, switch B opens. Find i;(¢) for t = 0.

Figure P7.70
t=1s
b
40 -
B\

f;.(")

5V A 20 10 mH
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7.71 There is no energy stored in the capacitor in the cir-

PSPICE

cuit in Fig. P7.71 when switch 1 closes at 1 = Q.
Three microseconds later, switch 2 closes. Find v,(¢)
fort = 0.

Figure P7.71

ImA

772

FEPICE

12V

The action of the two switches in the circuit seen in
Fig. P7.72 is as follows. For £ < 0, switch 1 is in posi-
tion a and switch 2 is open. This state has existed for
a long time. At ¢t = 0, switch 1 moves instanta-
neously from position a to position b, while switch 2
remains open. Two hundred fifty microseconds
after switch 1 operates, switch 2 closes, rcmains
closed for 400 us, and then opens. Find v,(¢) 1 ms
after switch 1 moves to position b.

Figure P7.72

80 mA

7.73

7.74

PSPICE

0 + 250 ps
500 ° T SN,
.|_ *

0,325mH 750%

L g L

For the circuit in Fig. P7.72, how many milliseconds
after switch 1 moves to position b is the energy
stored in the inductor 4% of its initial value?

The capacitor in the circuit seen in Fig. P7.74 has
been charged to 494.6 mV. At ¢ = 0, switch 1 closes,
causing the capacitor to discharge into the resistive
network. Switch 2 closes 50 us after switch 1 closes.
Find the magnitude and direction of the current in
the second switch 100 us after switch 1 closes.

Figure P7.74

494.6 mV ~

7.75

PSPICE

t=0-+50 s

600 k2 $200 kQ

The switch in the circuit shown in Fig. P7.75 has
been in position a for a long time. At ¢ = 0, the
switch is moved to position b, where it remains for
100 ps. The switch is then moved to position c,
where it remains indefinitely. Find

a) i(0M).

b) i(25 ps).
c) (200 us).
d) v(100™ ps).
e) »(100* us).

Figure P7.75

7.76

PSPICE

The switch in the circuit in Fig. P7.76 has been in
position a for a long fime. At ¢ = 0, it moves instan-
taneously to position b, where it remains for 250 ms
before moving instantaneously to position c. Find
v, for¢ = 0.

Figure P7.76

50 mA

g 6.25 k)




7.77 In the circuit in Fig. P7.77, switch 1 has been in posi-

PSPICE

tion a and switch 2 has been closed for a long time.
At 1 = 0, switch 1 moves instantaneously to posi-
tion b, Four hundred microseconds later, switch 2
opens, remains open for 1ms, and then recloses.
Find v, 1.6 ms after switch 1 makes contact with
terminal b,

Figure P7.77

8§ mA

7.78

1.79

PSPICE

7.80

PSFICE

0 + 400 us

210k0

For the circuit in Fig. P7.77, what percentage of the
initial energy stored in the S0 nF capacitor is dissi-
pated in the 10 k() resistor?

The voltage waveform shown in Fig. P7.79(a) is
applied to the circuit of Fig. P7.79(b). The initial
current in the inductor is zero.

a) Calculate v,(t).
b) Make a sketch of v,(¢) versus ¢,
c) Findi,at¢ = 4 us.

Figure P7.79
v, (V)

20k

100

0 2
(@)

{ (us)
(b)

The current source in the circuit in Fig. P7.80(a)
generates the current pulse shown in Fig. P7.80(b).
There is no energy stored at ¢t = 0.

a) Derive the numerical expressions for v,(¢) for
the time intervals ¢ < 0, 0 < ¢ < 50 us, and
50 us <t < 00,

b) Calculate v, (50~ us) and v, (507 us).
¢) Caleulate i, (50~ us) and i, (50" us).

Problems 277
Figure P7.80
is (mA)
f".
T 25
i_: Skﬂ U, 250 mH
j 0 50 t{ps)
(a) (b)
7.81 The voltage waveform shown in Fig. P7.81(a) is

PSPICE

applied to the circuit of Fig. P7.81(b). The initial
voltage on the capacitor is zero.

a) Calculate v,(t).
b) Make a sketch of v,(2) versus ¢.

Figure P7.81

vs (V) 20 nF
& e
v, 500 k) W,
0 6 t(ms) * )} *
(a) (b)
7.82 The voltage signal source in the circuit in Fig, P7.82(a)

PSPICE

is generating the signal shown in Fig, P7.82(b). There is
no stored energy at ¢t = 0.

a) Derive the expressions for v,(¢) that apply in the
intervals 1t <0 0=</=10ms, 10ms ==
20 ms;and20ms =t < o0

b) Sketch v, and v, on the same coordinate axes.
¢) Repeat (a) and (b) with R reduced to 10 k(.

Figure P7.82

R =50k

MA- ® 4

1 ]

Ve 400 DFT v,

(2)
v:(V)
40
0 10 20 ¢ (ms)

(b)
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7.83 The current source in the circuit in Fig. P7.83(a)
mrce generates the current pulse shown in Fig, P7.83(b).
There is no energy stored at s = 0.

a) Derive the expressions for i (¢) and v,(z) for the
time intervals ¢ < 0; 0<7t < 0.5ms; and
05ms <t < oo

b) Calculate i,(07); i,(0%); i,(0.00057); and
i,(0.0005™).

¢) Caleulate ,(07); v,(07); v,(0.00057); and
26(0.0005™).

d) Sketch i, (f) versus ¢ for the interval
-2ms < ¢ < 2ms.

e) Sketch wv,(¢) versus ¢ for the interval
-2ms < ¢ < 2ms.

Figure P7.83
0.5 ¢ (ms)

(b)

Section 7.6

7.84 The inductor current in the circuit in Fig. P7.84 is

pseice 25 mA at the instant the switch is opened. The
inductor will malfunction whenever the magnitude
of the inductor current equals or exceeds 12 A.
How long after the switch is opened does the induc-
tor malfunction?

Figure P7.84
2k

o AAA— .
= 'L‘,‘b +
o, t=10 _4

SHEF 25 mA 15X 107" vy 6 k()

7.85 The capacitor in the circuit shown in Fig. P7.85 is

pseice  charged to 25 V at the time the switch is closed. If
the capacitor ruptures when its terminal voltage
equals or exceeds 50 kV, how long does it take to
rupture the capacitor?

Figure P7.85

75 X 10°, 25 KO
)( A . AMA
—+ \ ~ —
t=0 in
25V A<25nF 100 k2

7.86 The gap in the circuit seen in Fig. P7.86 will arc over

rsrice whenever the voltage across the gap reaches 36 kV.
The initial current in the inductor is zero. The value
of B is adjusted so the Thévenin resistance with
respect to the terminals of the inductor is —3 k{}.

a) Whatis the value of 8?

b) How many microseconds after the switch has
been closed will the gap arc over?

Figure P7.86

2k0
R —t
=00 §,
120V 6kQ3 Bi, 300 mH [Gap

7.87 The switch in the circuit in Fig. P7.87 has been

rseice closed for a long time. The maximum voltage rating
of the 16 nF capacitor is 930 V. How long after the
switch is opened does the voltage across the capaci-
tor reach the maximum voltage rating?

Figure P7.87
4kQ

L LI )
LT e
1150, SkQTlﬁnF ‘Al 16 k2 16 mA

7.88 The circuit shown in Fig. P7.88 is used to close the
switch between a and b for a predetermined length
of time. The electric relay holds its contact arms
down as long as the voltage across the relay coil
exceeds 5 V. When the coil voltage equals 5V, the
relay contacts return to their initial position by a
mechanical spring action. The switch between a and
b is initially closed by momentarily pressing the
push button. Assume that the capacitor is fully
charged when the push button is first pushed down.




The resistance of the relay coil is 25kQ2, and the
inductance of the coil is negligible.

a) How long will the switch between a and b
remain closed?

b) Write the numerical expression for i from the
time the relay contacts first open to the time the
capacitor is completely charged.

¢) How many milliseconds (after the circuit
between a and b is interrupted) does it take the
capacitor to reach 85% of its final value?

Figure P7.88

Push button
ae

4—.‘)

aay

P Electric
d D relay +

D —80V

34x0

2 uF <

Section 7.7

7.89

PSFICE

7.90

The energy stored in the capacitor in the circuit
shown in Fig. P7.89 is zero at the instant the switch
is closed. The ideal operational amplifier reaches
saturation in 3 ms. What is the numerical value of R
in kilo-ohms?

Figure P7.89
60 nF

?;{J .J.O k_Q

At the instant the switch is closed in the circuit of
Fig. P7.89, the capacitor is charged to 5V, positive at
the right-hand terminal. If the ideal operational
amplifier saturates in 8 ms, what is the value of R?

7.91

PSPICE

Problems 279

There is no energy stored in the capacitors in the
circuit shown in Fig, P7.91 at the instant the two
switches close.

a) Find v, as a function of v,, 2, R,and C.

b) On the basis of the result obtained in (a),
describe the operation of the circuit.

c) How long will it take to saturate the amptifier
if v, = 10mV; 2, = 60mV; R = 40kQ;
C=25nF;and Vo =12 V?

Figure P7.91

7.92

PSPICE

At the instant the switch of Fig. P7.92 is closed, the
voltage on the capacitor is 16 V. Assume an ideal
operational amplifier. How many milliseconds
after the switch is closed will the output voltage v,
equal zero?

Figure P7.92

11 kO 39k
\ AN~
t=1{
30 kQ)
4V
15V
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At the time the double-pole switch in the circuit
shown in Fig. P7.93 is closed, the initial voltages on
the capacitors are 45 mV and 15 mV, as shown. Find
the numerical expressions for v,(t), v(r), and v (1)
that are applicable as long as the ideal op amp oper-
ates in its linear range.

Figure P7.93

7.94

PSPICE

-+

10mV u(f) 15 mV T 12.5 nF

The voltage pulse shown in Fig. P7.94(a) is applied
to the ideal integrating amplifier shown in
Fig. P7.94(b). Derive the numerical expressions for
v,(t) when v,(0) = 0 for the time intervals

a) 1 <0.

b) 0 = ¢ < 50 ms.

¢) S0ms = ¢ = 100 ms.
d) 100 ms = ¢ < 00,

Figure P7.94

v, (mV)
500 -
0 50 100 ¢ (ms)
=500
(a)
50 nF
40 k)
WA
Y
=0

(b)

7.95
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7.96
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Repeat Problem 7.94 with a 4 M) resistor placed
across the SO nF feedback capacitor.

The voltage source in the circuit in Fig. P7.96(a) is
generating the triangular waveform shown in
Fig. P7.96(b). Assume the energy stored in the
capacitor is zero at = (.

a) Derive the numerical expressions for v,(t) for
the following time intervals: 0 =1 = 5 pus;
Spus =t = 15us;and 15 us < ¢ < 20 us.

b) Sketch the output waveform between 0 and 20 us.

c¢) If the triangular input voltage continues to repeat
itself for 1 > 20 us, what would you expect the
output voltage to be? Explain.

Figure P7.96

25 nF

Ve Yo
v v
(2)
v, (V)
3 ==
| 1 ]
0 5 1(\5/7) 1 (us)
_3 -

Sections 7.1-7.7

1.97

The circuit shown in Fig. P7.97 is known as an
astable multivibrator and finds wide application in
pulse circuits. The purpose of this problem is to
rclate the charging and discharging of the capaci-
tors to the operation of the circuit. The key to ana-
lyzing the circuit is to undcrstand the behavior of
the ideal transistor switches Ty and T,. The circuit is
designed so that the switches automatically alter-
nate between ON and oOFF. When T, is OFF, T, is ON



and vice versa. Thus in the analysis of this circuit, we
assume a switch is either ON or OFF. We also assume
that the ideal transistor switch can change its state
instantaneously. In other words, it can snap from
OFF to ON and vice versa. When a transistor switch is
ON, (1) the base current iy is greater than zero,
(2) the terminal voltage vy, is zero, and (3) the ter-
minal voltage v, is zero. Thus, when a transistor
switch is ON, it presents a short circuit between the
terminals b,e and c,e. When a transistor switch is
OFF, (1) the terminal voltage vy, is negative, (2) the
base current is zero, and (3) there is an open circuit
between the terminals ¢,e. Thus when a transistor
switch is OFF, it presents an open circuit between
the terminals b,e and c,e. Assume that T, has been
on and has just snapped OFF, while T, has been OFF
and has just snapped ON. You may assume that at
this instance, C, is charged to the supply voltage
Vce, and the charge on C; is zero. Also assume
C1 = C2 and Rl = R2 = ]_ORL

a) Derive the expression for vy, during the inter-

val that T, is OFF.

b) Derive the expression for v, during the inter-
val that T, is OFF.

¢) Bud the length of time T, is OFF.

d) Find the value of v, at the end of the interval
that T, is OFF.

e) Derive the expression for #,; during the interval
that T, is OFF.

f) Find the value of iy at the end of the interval
that T, is OFF.

g) Sketch v, versus f during the interval that T,
i$ OFF.

h) Sketch é,, versus ¢ during the interval that T,
is OFF.

Figure P7.97

Problems 281

7.98 The component values in the circuit of Fig. P7.97

7.99

7.100

7.101

are Voe = 9V; R, =3kQ; €y = C, =2 nF; and

R, = R, = 18k,

a) How long is T} in the OFF state during one cycle
of operation?

b) How long is T, in the ON state during one cycle
of operation?

¢) Repeat (a) for Ty.

d) Repeat (b) for 'f’;.

e) At the first instant after T} turns ON, what is the
value of iy,?

f) At the instant just before T; turns OFF, what is
the value of i,?

g) What is the value of v, at the instant just
before T, turns ON?

Repeat Problem 7.98 with C; =3 nF and
C, = 2.8nF. All other component values are
unchanged.

The astable multivibrator circuit in Fig. P7.97 is to
satisfy the following criteria: (1) One transistor
switch is to be ON for 48 us and oFF for 36 us for
each cycle; (2) Ry =2kQ; (3) Vec=35V;
(4) Ry = Ry; and (5) 6R; = R, = 50R,. What are
the limiting values for the capacitors C; and C,?

The circujt shown in Fig. P7.101 is known as a
monostable multivibrator. The adjective monosrable
is used to describe the fact that the circuit has one
stable state. That is, if left alone, the electronic
switch T, will be ON, and T, will be OFF. (The opera-
tion of the ideal transistor switch is described in
Problem 7.97.) T, can be turned OFF by momentar-
ily closing the switch S. After S returns to its open
position, T, will return to its ON state.

a) Show that if T, is oN, T is OFF and will stay OFF.

b) Explain why T, is turned OFF when § is momen-
tarily closed.

¢) Show that T, will stay OFF for RCIn2s.
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Figure P7.101

Y ) -

7.102 The parameter values in the circuit in Fig. P7.101
are V=6V, R =50kQ; R, =20k,

C = 250 pF;and R = 23,083 Q.

a) Sketch v, versus ¢, assuming that after S is
momentarily closed, it remains open until the
circuit has reached its stable state. Assume S is
closed at r = 0. Make your sketch for the inter-
val =5 <t =< 10 ps.

b) Repeat (a) for iy, versus ¢,

7103

PRACTICAL
PERSPECTIVE

Suppose the circuit in Fig. 7.45 models a portable
flashing light circuit. Assume that four 1.5 V batter-
ies power the circuit, and that the capacitor value is
10 uF. Assume that the lamp conducts when its
voltage reaches 4 V and stops conducting when its
voltage drops below 1 V. The lamp has a resistance
of 20 k) when it is conducting and has an infinite
resistance when it is not conducting.

a) Suppose we don’t want to wait more than 10 s in
between flashes. What value of resistance R is
required to meet this time constraint?

b) For the value of resistance from (a), how long
does the flash of light last?

7.104

PRACTICAL
_PERSPECI' VE

T PSPICE

In the circuit of Fig. 7.45, the lamp starts to conduct
whenever the lamp voltage reaches 15 V. During
the time when the lamp conducts, it can be modeled
as a 10 kQ resistor. Once the lamp conducts, it will

7.105

PRACTICAL
PERSPECTIVE

" PSPICE

7.106

PRACTICAL
PERSPECTIVE

continue to conduct until the lamp voltage drops to

5 V. When the lamp is not conducting, it appears as

an open circuit. V; =40V; R = 800k{}; and

C =25 uF.

a) How many times per minute will the lamp
turn on?

b) The 800 k{} resistor is replaced with a variable
resistor R. The resistance is adjusted until the
lamp flashes 12 times per minute. What is the
value of R?

In the flashing light circuit shown in Fig. 7.45, the
lamp can be modeled as a 1.3 k{ resistor when it is
conducting. The lamp triggers at 900 V and cuts off
at 300 V.

a) If ¥, =1000V, R =37k, and C = 250 uF,
how many times per minute will the light flash?

b) What is the average current in milliamps dcliv-
ered by the source?

c) Assume the flashing light is operated 24 hours
per day. If the cost of power is 5 cents per kilowatt-
hour, how much does it cost to operate the light
per year?

a) Show that the expression for the voltage drop
across the capacitor while the lamp is conduct-
ing in the flashing light circuit in Fig. 7.48 is
given by

vL(r) = VTh + (Vmax - v"l"l\)e—(r_[U)/T

where
Ry
Viy = ——————V.
™ R+ R
_ RR,C
"TR+R,

b) Show that the expression for the time the lamp
conducts in the flashing light circuit in Fig. 7.48
is given by

RR,C

L) = I
D=ER+R "

Vma.x -
‘/min -

VTh
V’T’h ’

(rc -
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7.107 The relay shown in Fig. P7.107 connects the 30 V.dc  Figure P7.107
Jucca. penerator to the de bus as long as the relay current
is greater than 0.4 A. If the relay current drops to
0.4 A or less, the spring-loaded relay immediately = 30V
connects the dc bus to the 30 V standby battery. The 7 o b @
resistance of the relay winding is 60 (. The induc-

tance of the relay winding is to be determined.

a) Assume the prime motor driving the 30 V dc
generator abruptly slows down, causing the gen- s
erated voltage to drop suddenly to 21 V. What

e DC BUS
value of L will assure that the standby battery 0¥ /F\  relay &5 Compressed
. . de 7 g springs DC loads
will be conmected to the dc bus in 0.5 seconds? - coil ¢

gen (R,L)

b) Using the value of I, determined in (a), state
how long it will take the relay to operate if the
generated voltage suddenly drops to zero.




8.1

8.2

8.3

8.4

8.5

Introduction to the Natural Response of a
Parallel RLC Circuit p. 286

The Forms of the Natural Response of a
Parallel RLC Circuit p. 291

The Step Response of a Parallel

RLC Circuit p. 301

The Natural and Step Response of a Series
RLC Circuit p. 308

A Circuit with Two Integrating

Amplifiers p. 322

1 Be able to determine thé natural response and
the step response of parallel RLC circuits.

2 Be able to determine the natral response and
the step response of series RLC circuits.

284

Natural and Step
Responses of RLC Circuits

In this chapter, discussion of the natural response and step
response of circuits containing both inductors and capacitors is
limited to two simple structures: the parallel RLC circuit and the
series RLC circuit. Finding the natural response of a parallel RLC
circuit consists of finding the voltage created across the parallel
branches by the release of energy stored in the inductor or capac-
itor or both. The task is defined in terms of the circuit shown in
Fig. 8.1 on page 286. The initial voltage on the capacitor, Vj, repre-
sents the initial energy stored in the capacitor. The initial current
through the inductor, /;, represents the initial energy stored in the
inductor. If the individual branch currents are of interest, you can
find them after determining the terminal voltage.

We derive the step response of a parallel RLC circuit by using
Fig. 8.2 on page 286. We are interested in the voltage that appears
across the parallel branches as a result of the sudden application
of a dc current source. Energy may or may not be stored in the
circuit when the current source is applied.

Finding the natural response of a series RLC circuit consists
of finding the current generated in the seriesconnected elements
by the release of initially stored energy in the inductor, capacitor,
or both. The task is defined by the circuit shown in Fig. 8.3 on
page 286. As before, the initial inductor current, /o, and the initial
capacitor voltage, V4, represent the initially stored energy. If any
of the individual element voltages are of interest, you can find
them after determining the current.

We describe the step response of a series RLC circuit in terms
of the circuit shown in Fig. 8.4. We are interested in the current
resulting from the sudden application of the dc voltage source.
Energy may or may not be stored in the circuit when the switch
is closed.

If you have not studied ordinary differential equations, deriva-
tion of the natural and step responses of parallel and series RLC
circuits may be a bit difficult to follow. However, the results are
important enough to warrant presentation at this time. We begin
with the natural response of a parallel RLC circuit and cover



Practical Perspective

An Ignition Circuit

In this chapter we introduce the step response of an RLC cir-
cuit. An automobile ignition circuit is based on the transient
response of an RLC circuit. In such a circuit, a switching oper-
ation causes a rapid change in the current in an inductive
winding known as an ignition coil. The ignition coil consists
of two magnetically coupled coils connected in series. This
series connection is also known as an autotransformer. The
coil connected to the battery is referred to as the primary
winding and the coil connected to the spark plug is referred
fo as the secondary winding. The rapidly changing current in
the primary winding induces via magnetic coupling (mutual
inductance) a very high voltage in the secondary winding.
This voltage, which peaks at from 20 to 40 kV, is used to
ignite a spark across the gap of the spark plug. The spark
ignites the fuel-air mixture in the cylinder.

Ignition coil
(autolransformeh‘

Capacitor

(distributor point) (condenser)

A schematic diagram showing the basic components of an
ignition system is shown in the accompanying figure. In
foday’s automobile, electronic (as opposed to mechanical)
switching is used to cause the rapid change in the primary
winding current. An understanding of the electronic switching
circuit requires a knowledge of electronic components that is
beyond the scope of this text. However, an analysis of the
older, conventional ignition circuit will serve as an introduc-
tion to the types of problems encountered in the design of a
useful circuit.

285
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Figure 8.1 4 A circuit used to illustrate the natural

response of a parallel RLC circuit.

EEEE

+&

Figure 8.2 A A circuit used to illustrate the step
response of a parallel RLC circuit.

Figure 8.3 4 A circuit used to illustrate the natural

response of a sevies RLC circuit.

Figure 8.4 A A circuit used to illustrate the step
response of a series RLC circuit.

this material over two scctions: one to discuss the solution of the
differential equation that describes the circuit and one to present the
three distinct forms that the solution can take. After introducing these
three forms, we show that the same [orms apply to the step responsc of a
paraliel RLC circuit as well as to the natural and step responses of series
RLC circuits,

8.1 Introduction to the Natural
Response of a Parallel RLC Circuit

The first step in finding the natural response of the circuit shown in Fig. 8.1
is to derive the differential equation that the voltage v must satisfy. We
choose to find the voltage first, because it is the same for each component.
After that, a branch current can be found by using the current-voltage
relationship for the branch component. We easily obtain the differential
equation for the voltage by summing the currents away from the top node,
where each current is expressed as a function of the unknown voltage »:

v 1 (' dv
s = + I+ C—=0. A
= ledT 0+ C =0 (8.1)

We eliminate the integral in Eq, 8.1 by differentiating once with respect to ¢,
and, because [ is a constant, wc get

L d_?) 2 + d_zv = 0 8.2
Rdt L g ®2)
We now divide through Eq. 8.2 by the capacitance C and arrange the
derivatives in descending order:

.@4. L d1)+_1)_:0 8.3
d?  RC dt ' (83)

Comparing Eq. 8.3 with the differential equations derived in Chapter 7
reveals that they differ by the presence of the term involving the second
derivative. Equation 8.3 is an ordinary, second-order differential equation
with constant coefficients. Circuits in this chapter contain both inductors and
capacitors, so the differential equation describing thesc circuits is of the sec-
ond order. Therefore, we sometimes call such circuits second-order circuits.

The General Solution of the Second-Order Differential
Equation

We can’l solve Eq. 8.3 by separating the variables and integrating as we
were able to do with the first-order equations in Chapter 7. The classical
approach to solving Eq. 8.3 is to assume that the solution is of exponential
form, that is, to assume that the voltage is of the form

v = Ae”, (8.4)

where A and s are unknown constants.



8.1 Introduction to the Natural Response of a Paratlel RLC Circuit

Before showing how this assumption leads to the solution of Eq. 8.3,
we need to show that it is rational. The strongest argument we can make in
favor of Eq. 8.4 is to note from Eq. 8.3 that the second derivative of the
solution, plus a constant times the first derivative, plus a constant times the
solution itself, must sum to zero for all values of ¢ This can occur only if
higher order derivatives of the solution have the same form as the solu-
tion. The exponential function satisfies this criterion. A second argument
in favor of Eq. 8.4 is that the solutions of all the first-order equations we
derived in Chapter 7 were exponential. It seems reasonable to assume that
the solution of the second-order equation also involves the exponential
function.

If Eq. 8.4 is a solution of Eq. 8.3, it must satisfy Eq. 8.3 for all values of .
Substituting Eq. 8.4 into Eq. 8.3 generates the expression

As Ae"
2 st ST I
As?e® + RCC + i7a 0,
or
Ae! s2+i+L =0 (8.5)
RC LC ’ '

which can be satisfied for all values of ¢ only if A is zero or the parentheti-
cal term is zero, because ¢ # 0 for any finite values of st. We cannot use
A = 0 as a general solution because to do so implies that the voltage is
zero for all time—a physical impossibility if energy is stored in either the
inductor or capacitor. Therefore, in order for Eq. 8.4 to be a solution of
Eq. 8.3, the parenthetical term in Eq. 8.5 must be zero, or

Sy oy (8.6)

Equation 8.6 is called the characteristic equation of the differential equa-
tion because the roots of this quadratic equation determine the mathe-
matical character of v(z).

The two roots of Eq. 8.6 are

PR S | e (8.7)
: 2RC 2RC LC’ )

S__i_ iz_i (88)
2 2RC 2RC ILC’ )

< Characteristic equation, parallel
RLC circuit
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If either root is substituted into Eq. 8.4, the assumed solution satisfies the
given differential equation, that is, Eq. 8.3. Note from Eq. 8.5 that this
result holds regardless of the value of A. Therefore, both

v = A and

v = Azeﬁ'(

satisfy Fq. 8.3. Denoting these two solutious v, and v,, respectively, we can
show that their sum also is a solution. Specifically, if wc Jet

V=t v = AT+ Ase™, (8.9)
then
dv
d? = Alé'le'ﬁl + AzSzeozt, (8.10)
d* .
i = A;55e" + Aysie. (8.11)
t

Substituting Eqs. 8.9-8.11 into Eq. 8.3 gives

1 1 1 1
A]eﬁ’(é% *eH Tt E) + Age®” (s% *xet E) =0. (812

But each parenthetical term is zero because by definition s, and s, are
roots of the characteristic equation. Hence the natural response of the
paralle] RLC circuit shown in Fig. 8.1 is of the form

o= Ale&lt + Azézr. (8.13)

Equation 8.13 is a repeat of the assumption made in Eq. 8.9. We have
shown that »; is a solution, v, is a solution, and »; + », is a solution.
Therefore, the general solution of Eq. 8.3 has the form given in Eqg. 8.13.
The roots of the characteristic equation (s; and s,) are determined by the
circuit parameters R, L,and C.The initial conditions determine the values
of the constants 4, and A,. Note that the form of Eq. 8.13 must be modi-
fied if the two roots s; and s, are equal. We discuss this modification when
we turn to the critically damped voltage response in Section 8.2.

The behavior of v(¢) depends on the values of s, and s,. Therefore the
first step in finding the natural response is to determine the roots of the
characteristic equation. We return to Eqs. 8.7 and 8.8 and rewrite them
using a notation widely used in the literature:

s;=—a+ Vo — w3, (8.14)

§y = —a — Vo — w%, (8.15)
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where

L
.._a—.."z—ﬁa, (8.16)

el
wo'_\'/fc__" (8.17)

These results are summarized in Table 8.1.

The exponent of ¢ must be dimensionless, so both s; and s, (and
hence « and wy) must have the dimension of the reciprocal of time, or fre-
quency. To distinguish among the frequencies sy, s, @, and w,, we use the
following terminology: s, and s, are referred to as complex frequencies, o
is called the neper frequency, and wy is the resonant radian frequency. The
full significance of this terminology unfolds as we move through the
remaining chapters of this book. All these frequencies have the dimen-
sion of angular frequency per time. For complex frequencies, the neper
frequency, and the resonant radian frequency, we specify values using the
unit radians per second (rad/s). The nature of the roots s; and s, depends
on the values of o and w,. There are three possible outcomes. First, if
w§ < a?, both roots will be real and distinct. For reasons to be discussed
later, the voltage response is said to be overdamped in this case. Second,
if w3 > o2, both 5, and s, will be complex and, in addition, will be conju-
gates of each other. In this situation, the voltage response is said to be
underdamped. The third possible outcome is that wf = o2, In this case, s,
and s, will be real and equal. Here the voltage response is said to be
critically damped. As we shall see, damping affects the way the voltage
response reaches its final (or steady-state) value. We discuss each case
separately in Section 8.2.

Example 8.1 illustrates how the numerical values of s; and s, are
determined by the values of R, L, and C.

TABLE 8.1 Natural Response Parameters of the Parallel RLC Circuit

Value In
Parametey Terminology Natural Response
5y, $2 Characteristic roots s51= —a+ Vol —
5y = —a — \/ﬂz_w(z]
1
o Neper frequenc o =—
P q Y >RC
1
@, Resonant radian frequen wy = —F—
(1] q cy (1} \/L?

< Neper frequency, parallel RLC crcuit

<4 Resonant radian frequency, parallel
RLC circuit
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FE I Finding the Roots of the Characteristic Equation of a Parallel RLC Circuit

a) Find the roots of the characteristic equation that
governs the transient behavior of the voltage
shown in Fig. 8.5if R = 200 0}, L = 50 mH, and
C =02 uF.

b) Will the response be overdamped, underdamped,
or critically damped?

c) Repeat (a) and (b) for R = 312.5 Q.

d) What value of R causes the response to be criti-
cally damped?

Solution

a) For the given values of R, L, and C,

1 10t
~ 2RC  (400)(0.2)

= 1.25 X 10%rad/s,

o

10%)(10°
wf = é = W = 10% rad?/s%.

From Eqs. 8.14 and 8.15,

s; = —1.25 X 10* + V1.5625 x 108 — 108

—12,500 + 7500 = —5000 rad/s,

~1.25 x 10* = V1.5625 x 108 — 10°

1

$2

—12,500 — 7500 = —20,000 rad/s.

b) The voltage response is overdamped because
2 2
g < a’.

& rY

+ ®

o[
C/|\Vo Lllo R "

Figure 8.5 4 A circuit used to itlustrate the natural response of
a parallel RLC circuit.

¢) For R = 3125 Q,

108

a= M = 8000 rad/s,

o? = 64 x 10° = 0.64 x 10% rad?/s%

As w} remains at 10° rad?/s?,

5y = —8000 + j6000 rad/s,

1l

5, = —8000 — j6000 rad/s.
(In electrical engineering, the imaginary number
V-1 is represented by the letter j, because the
letter i represents current.)

In this case, the voltage response is under-
damped since w} >

d) For critical damping, o = w}, so

1 V¢ 1
— | =— =108
<2RC) LC ’

or
1
— =101
2RC ’
and
10¢

R=————=2500.
(2 x 10%(0.2)
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Objective 1—Be able to determme the natural response and the step response of parallel RLC circuits

8.1 The resistance and mductanoe of the circuit in Answer' (d) 500 nF

Fig. 8.5 are 100 € and 20 mH, respectively.

a) Find the value of C that makes the voltage o (b) C—1r

response critically damped.

b) If Cis adjusted o give a neper frequency of
5 krad/s, find the value of C and the roots of
the characteristic equation.

s; = —5000 + 5000 rad/s
$3 = —5000 — j5000 rad/s;

¢) If Cis adjusted to give a resonant frequency (c) C = 125 nF,

of 20 krad/s, find the value of C and the
roots of the characteristic e_qqatlpn :

NOTE: Also try Chapter Problem 8.1.

8.2 The Forms of the Natural Response
of a Parallel RLC Circuit

So far we have seen that the behavior of a second-order RLC circuit depends
on the values of s, and s,, which in turn depend on the circuit parameters R,
L, and C.Therefore, the first step in finding the natural response is to calcu-
late these values and, relatedly, determine whether the response is over-,
under-, or critically damped.

Completing the description of the natural response requires finding two
unknown coefficients, such as A; and A, in Eq. 8.13. The method used to do
this is based on matching the solution for the natural response to the initial
conditions imposed by the circuit, which are the initial value of the current (or
voltage) and the initial value of the first derivative of the current (or voltage).
Note that these same initial conditions, plus the final value of the variable, will
also be needed when finding the step response of a second-order circuit.

In this section, we analyze the natural response form for each of the
three types of damping; beginning with the overdamped response. As we will
see, the response equations, as well as the equations for evaluating the
unknown coefficients, are slightly different for each of the three damping
configurations. This is why we want to determine at the outset of the problem
whether the response is over-, under-, or critically damped.

The Overdamped Voltage Response

When the roots of the characteristic equation are real and distinct, the volt-
age response of a parallel RLC circuit is said to be overdamped. The solu-
tion for the voltage is of the form

v = A’ + A, (8.18)

—5359 rad/s, \
—74,641 rad/s.

Il

S
S

< Voltage natural response—overdamped
parallel RLC circuit
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where s; and s, are the roots of the characteristic equation. The constants
Aj; and A, are determined by the initial condilions, specifically from the
values of »(0") and dv(0™)/dt, which in turn are determined from the jni-
tial voltage on the capacitor, Vj, and the initial current in the inductor, I;.

Next, we show how to use the initial voltage on the capacitor and the
initial current in the inductor to find A; and A,. First we note from Eq.8.18
that A; and A,. First we note from Eq- 8.18 that

v(0") = A, + A, (8.19)
dv(0%)
A1 = S]_A]_ + S2A2. (8.20)

With sy and s, known, the task of finding A; and A, reduces to finding
»(0%) and dv(0%)/dr. The value of »(0*) is the initial voltage on the capac-
itor V5. We get the initial value of dv/dt by first finding the current in the
capacitor branch at ¢ = 0%, Then,

+ s N
dv(0) _ ic(0") o
dt C

We use Kirchhoff’s current law to find the initial current in the capac-
itor branch. We know that the sum of the three branch currents at r = 0"
must be zero, The current in the resistive branch at t = 0% is the initial
voltage V; divided by the resistance, and the current in the inductive
branch is /. Using the reference system depicted in Fig. 8.5, we obtain

-V
ic(07) = ?0 = 1. (8.22)

After finding the numcrical value of i-(0"), we use Eq. 8.21 to find the ini-
tial value of dv/dr.

We can summarize the process for finding the overdamped response,
(1), as follows:

1. Find the roots of the characteristic equation, sy and s,, using the val-
uesof R, L, and C.
2. Find »(0") and dv(0")/d! usiug circuit analysis.

3. Find the values of A; and A, by solving Eqgs. 823 and 8.24
simultaneously:

w0 = A + A, (8.23)

av(0") _ ic(0")

41 C = SIA] + SzAz. (824)

4, Substitutc the values for sy, 55, A;, and A, into Eq. 8.18 to deter-
mine the expression for v(¢) fort = 0.

Examples 8.2 and 8.3 illustrate how to find the overdamped response of a
parallel RLC circuit.
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SEDIEE A Finding the Overdamped Natural Response of a Parallel RLC Circuit

For the circuit in Fig. 8.6, »(0") =12V, and
i,(0) = 30 mA.

a) Find the initial current in each branch of the
circuit,

b) Find the initial value of dv/dt.

¢) Find the expression for v(r).

d) Sketch »(1) in the interval 0 < ¢ =< 250 us.

Solution

a) The inductor prevents an instantancous change
in its current, so the initial value of the inductor
current is 30 mA:

i;(07) = iz (0) = i (0") = 30 mA.

The capacitor holds the initial voltage across the
parallel efements to 12 V. Thus the initial current
in the resistive branch, ig(0"), is 12/200, or
60 mA. Kirchhoff’s current law requires the sum
of the currents leaving the top node (o equal
zero at every instant. Hence

ic(07) = —i,(0%) — ig(0")
—90 mA.

Note that if we assumed the inductor current and
capacitor voltage had reached their dc values at
the instant that energy begins to be released,
ic(07) = 0. In other words, there is an instanta-
neous change in the capacitor current at ¢ = 0.

b) Because i = C(dv/dt),
dv(0*)  —90 x 1073

o = 02 X 105 = —450kV/s.

c) The roots of the characteristic equation come
from the values of R, L, and C. For the values
specified and from Egs. 8.14 and 8.15 along with
8.16 and 8.17,

-1.25 X 10* + V1.5625 x 10% — 108
—12,500 + 7500 = —5000 rad/s,

5, = —1.25 X 10* — V/1.5625 x 108 — 108
~12,500 — 7500 = —20,000 rad/s.

$1

1

Because the roots are real and distinct, we know
that the response is overdamped and hence has

il | + i [
Cy ! Ry

1Y,
O.ZFFTVO 50 mH '|10 2000 B

Figure 8.6 & The circuit for Example 8.2.

the form of Eq. 8.18. We find the co-efficients A,
and A, from Eqgs. 8.23 and 8.24. We’ve already
determined s4, 55, 9(0%), and dv(0")/dz, so

12 = Al + Az,
—450 X 10° = —5000A4, — 20,000A4,.

We solve two cquations for A and A, to obtain
A, = —14V and A; = 26 V. Substituting these
values into Eq. 8.18 yields the overdamped volt-
age response:

() = (—14e759% 4+ 2660 v,y = 0.

As a check on these calcunlations, we note that
the solution yields v(0) = 12V and dv(0™)/dt
= —450,000 V/s.

d) Figure 8.7 shows a plot of v(¢) versus f over the
interval 0 = t =< 250 us.

(1) (V)
12 J
10

8

0 Lo ( (us)
0 100 150 200 250

Figure 8.7 & The voltage response for Example 8.2.
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EETERE  Calculating Branch Currents in the Natural Response of a Parallel RLC Circuit

Derive the expressions that describe the three
branch currents ig, iy, and ic in Example 8.2
{Fig. 8.6) during the time the stored energy is being

A second approach is to find the current in the
capacitive branch first and then use the fact that
igx + iy + ic = 0. Let’s use this approach. The cur-

released. rent in the capacitive branch is
d
ie(t) = C—
Solution

2 -5 —5000 —~20,000¢
We know the voltage across the three branches = 0.2 X 107°(70,000¢™ — 520,000¢ )

from the solution in Example 8.2, namely, + (146_5000, - 104@‘20‘000‘) mA, £5i6%
w(f) = (—14e 0 i 06200y, fi= 10, o : _
Note that i{~(0") = —90 mA, which agrees with the
result in Example 8.2.

Now we obtain the inductive branch current
from the relationship

The current in the resistive branch is then

V(¢
ir(t) = 5556) = (=70 4+ 130720000y mA | 1 = 0.

ir(t) = —ig(t) — ic(t)

(5673000 — 2672000y A, 1= 0.

There are two ways to find the current in the induc-
tive branch. One way is to use the integral relation-
ship that exists between the current and the voltage
at the terminals of an inductor:

Il

We leave it to you, in Assessment Problem 8.2, to
show that the integral relation alluded to leads to
the same result. Note that the expression for i,
agrees with the initial inductor current, as it must.

!
iL(t) = %\/{; UL(X)dX ar IO.

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.2  Use the integral reiationship'bct-ween;-i randv T * T
to find the expression for i, in Fig. 8.6. et Bl e 7
o e
Answer: i, (1) = (56¢7°% — 26072000 mA ¢t = 0. T 5 Sy '
8.3 The element values in the circuit shown are Answer: (a) 0;

= 2k, L = 250 mH, and C = 10 nF. The i (A
uutnl current I in the inductor is —4 A, and e (c) 4 X 103 V/s;
the initial voltage on the capacitor is O_V The o (d) 1-.-3::3,53' v
output signal is the voltage v. Find (a) ip(0"); e morn i
(D) ic(0°); (€) 4v(0)/dr: (d) Ay () Ay and e
(£) v(t) when ¢ = 0. : (D) 13,333(en 0 - MR

NOTE: Also try Chapter Prob[ems;&'.?,' 8.5, and '8."1.9.
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The Underdamped Voltage Response

When wj > o?, the roots of the characteristic equation are complex, and
the response is underdamped. For convenience, we express the roots s,
and s; as

$y = —a+ V—(a} — ?)

—a + j\/a)% - o
= —a T jwy (8.25)

§ = —a — jwy, (8.26)

where

(8.27)

The term wy is called the damped radian frequency. We explain later the
reason for this terminology.
The underdamped voltage response of a parallel RLC circuit is

(8.28)

which follows from Eq. 8.18. In making the transition from Eq. 8.18 to
Eq. 8.28, we use the Euler identity:

e = cosd + jsind. (8.29)
Thus,

v(t) = Aot 4 4 (atjua)

= A1e-m6jw‘1 + AQE_Me_jw‘t

Il

e_m(Al cos wyt + jAsinwyt + Ay coswyt — jA,sin a)dt)

e “[(A; + Ay)coswgt + j(A — Aj)sinwgt].

<§ Damped radian frequency

< Voltage natural response—underdamped
parallel RLC circuits
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At this point in the transition from Eq. 8.18 to 8.28, replace the arbitrary
constants A; + A, and j(A; — A,) with new arbitrary constants denoted
B, and B, to get

v = e *(B;coswyt + Bysinwyt)

Bie™ cos wyt + Boe ™ sin wyt.

The constants By and B, are real, not complex, because the voltage is
a real function. Don’t be misled by the fact that By = j(A; — A;). In this
underdamped case, A; and A, are complex conjugates, and thus B, and B,
are real. {See Problems 8.13 and 8.14.) The reason for defining the under-
damped response in terms of the coefficients By and B, is that it yields a
simpler expression for the voltage, ». We determine B; and B, by the ini-
tial energy stored in the circuit, in the same way that we found A, and A,
for the overdamped response: by evaluating » at ¢ = 0" and its derivative
att = 0". As with §; and s,, @ and wy are fixed by the circuit parameters R,
L,and C.

For the underdamped response, the two simultaneous equations that
determine B, and B, are

v(0Y) =V, = By, (8.30)

dv(0%) (0"
D‘Et _) = —[ (C ) = —aBl + a)de. (8.31)

Let’s look at the general nature of the underdamped response. First,
the trigonometric functions indicate that this response is oscillatory; that
is, the voltage alternates between positive and negative values. The rate at
which the voltage oscillates is fixed by w,. Second, the amplitude of the
oscillation decreases exponentially. The rate at which the amplitude falls
off is determined by a. Because o determines how quickly the oscillations
subside, it is also referred to as the damping factor or damping coefficient.
That explains why w, is called the damped radian frequency. If there is no
damping, @ = 0 and the frequency of oscillation is wy. Whenever thereis a
dissipative element, R, in the circuit, « is not zero and the frequency of
oscillation, wy, is less than wy. Thus when @ is not zero, the frequency of
oscillation is said to be damped.

The oscillatory behavior is possible because of the two types of energy-
storage elements in the circuit: the inductor and the capacitor. {A mechan-
ical analogy of this electric circuit is that of a mass suspended on a spring,
where oscillation is possible because energy can be stored in both the
spring and the moving mass.} We say more about the characteristics of the
underdamped response following Example 8.4, which examines a circuit
whose response is underdamped. In summary, note that the overall
process for finding the underdamped response is the same as that for the
overdamped response, although the response equations and the simulta-
neous equations used to find the constants are slightly different.
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HEER R Finding the Underdamped Natural Response of a Parailel RLC Circuit

In the circuit shown in Fig. 8.8, ¥, =0, and
Iy = —1225 mA.

a) Calculate the roots of the characteristic equation.
b) Calculate » and dv/dt att = 07,

¢) Calculate the voltage response forr = 0.

d) Plot wv(¢) versus ¢ for the time interval
0=<:=11lms

anl] L -
B I "R' )

icy 25y
0125 uF=<Vs 8H 310 20kQ v

Figure 8.8 2 The circuit for Example 8.4.

Solution
a) Because
1 108
o= = 3 = 200 rad/s,
2RC  2(20)10°(0.125)
1 10°
= 10% rad/s,

®0 = VI T V(8)(0.125)
we have
w% > o
Therefore, the response is underdamped. Now,

w; = Va§ — & = V10° - 4 X 10* = 10096

= 979.80 rad/s,
5y = —a + jog = —200 + j979.80 rad/s,
$ = —a — jog = —200 — j979.80 rad/s.

For the underdamped case, we do not ordinarily
solve for sy and s, because we do not use them

explicitly. However, this example emphasizes
why s, and s, are known as complex frequencies.

b) Because v is the voltage across the terminals of a
capacitor, we have

»(0) = v(0") =V, = 0.

Becanse »(0") = 0, the current in the resistive
branch is zero at t = 0*. Hence the current in
the capacitor at r = 0" is the negative of the
inductor current:

ic(0") = —(—12.25) = 1225 mA.

Thereflore the initial value of the derivative is

do(0") _ (12.25)(107)
dt (0.125)(107%)

= 98,000 V/s.

¢) From Eqgs. 8.30 and 831, B, = 0 and

98,000
B, = =~ 100 V.
Wy

Substituting the numerical values of «, w,, Bj,
and B, into the expression for v(r) gives

v(®) = 100e 2 5in 979.80t V, = 0.

d) Figure 8.9 shows the plot of v(¢) versus ¢ for the
first 11 ms after the stored energy is released. It
clearly indicates the damped oscillatory nature
of the underdamped response. The voltage v(¢)
approaches its final value, alternating between
values that are greater than and less than the
final value. Furthermore, these swings about the
final value decrease exponentially with time,

v (V)
80
60_
40
20
2 S TR i s, "NID

123\45¢7 8 9 ¢
~20

1(ms)

Figure 8.9 A The voltage response for Example 8.4.




298  Natural and Step Responses of RLC Circuits

Characteristics of the Underdamped Response

The underdamped response has several important characteristics. First, as
the dissipative losses in the circuit decrease, the persistence of the oscilla-
tions increases, and the frequency of the oscillations approaches wy. In
other words, as R — oo, the dissipation in the circuit in Fig. 8.8 approaches
zero because p = v*/R. As R— 00, @ — (), which tells us that w; — @,
When o = 0, the maximum amplitude of the voltage remains constant;
thus the oscillation at wy is sustained. In Example 8.4, if R were increased
to infinity, the solution for v(¢) would become

() = 98sin 1000t V, t = 0.

Thus, in this case the oscillation is sustained, the maximum amplitude of
the voltage is 98 V. and the frequency of oscillation is 1000 rad/s.

We may now describe gualitatively the difference between an under-
damped and an overdamped response. In an underdamped system, the
response oscillates, or “bounces,” about its final value. This oscillation is
also referred to as ringing. In an overdamped system, the response
approaches its final value without ringing or in what is sometimes
described as a “sluggish” manner. When specifying the desired response of
a secondorder system, you may want to reach the final value in the short-
est time possible, and you may not be concerned with small oscillations
about that final value. If so, you would design the system components to
achieve an underdamped response. On the other hand, you may be con-
cerned that the response not exceed its final value, perhaps to ensure that
components are not damaged. In such a case, you would design the system
components to achieve an overdamped response, and you would have to
accept a relatively slow rise to the final value.

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.4 A 10 mH inductor. a | gF capacitor, and a vari- _ i ) T
able resistor are connected in parallel in the gy |FEinh R ? Ry
circuit shown. The resistor is adjusted so that CHVYo Lyl R v
the roots of the characteristic equatjon are 3 =
—8000 + j6000 rad/s. The initial voltage on the 7 ¢ et
capacitor is 10 V, and the initial current in the
inductor is 80 mA. Find Answer: (a) 62.5 Q;
R (b) 240,000 V//s;
b) dv(07)/dr: (¢) By = 10V, B, = —80/3 V;
¢) B, and B; in the solution for v; and (d) iy (1) = 1_0-6—8001):'[8 cos 6000¢
dj i.(p). + (82/3) sin 6000/] mA when ¢t = 0.

NOTE: Also try Chapter Problems 8.3 and 8.20.
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The Critically Damped Voltage Response

The second-order circuit in Fig. 8.8 is critically damped when w} = o?, or
wy = o. When a circuit is critically damped, the response is on the verge of
oscillating. In addition, the two toots of the characteristic equation are
real and equal; that is,

1
=5 =—a=———. 8.32
51 =% o 2RC (8.32)
When this occurs, the solution for the voltage no longer takes the form
of Eq. 8.18. This equation breaks down because if 5, = 5, = —a, it pre-
dicts that
v = (A + A)e ™ = Ape™, (8.33)

where A, is an arbitrary constant. Equation 8.33 cannot satisfy two inde-
pendent initial conditions (V;, /) with only one arbitrary constant, Ay,
Recall that the circuit parameters R and C fix a.

We can trace this dilemma back to the assumption that the solution
takes the form of Eq. 8.18. When the roots of the characteristic equation
arc equal, the solution for the differential equation takes a different
form, namely

o(t) = Dyte ™ + D_ze'ﬂ"; (8.34)

Thus in the case of a repeated root, the solution involves a simple expo-
nential term plus the product of a linear and an exponential term. The jus-
tification of Eq. 8.34 is left for an introductory course in differential
equations. Finding the solution involves obtaining D and D, by following
the same pattern set in the overdamped and underdamped cases: We use
the initial values of the voltage and the derivative of the voltage with
respect to time to write two equations containing Dy and/or D,.

From Eq. 8.34, the two simultaneous equations needed to determine
D, and D, are

v(0%) = Vy = D, (8.35)

do(0?) _ iel0) _

P C Dy — aD,. (8.36)

As we can see, in the case of a critically damped response, both the
equation for ¥(t) and the simultaneous equations for the constants Dy and
D, differ from those for over- and underdamped responses, but the general
approach is the same. You will rarely encounter critically damped systems
in practice, largely because wg must equal o exactly. Both of these quanti-
ties depend on circuit parameters, and in a real circuit it is very difficult to
choose component values that satisfy an exact cquality relationship.

Example 8.5 illustrates the approach for finding the critically damped
response of a paralle]l RLC circuit.

< Voltage natural response—critically
damped parallel RLC circuit
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'"Exa_'m_'ple 8 Finding the Critically Damped Natural Response of a Parallel RLC Circuit

a) For the circuit in Example 8.4 (Fig. 8.8), find the Egs. 8.35 and 8.36, D, = 0 and D; = 98,000 V/s.
value of R that results in a critically damped volt- Substituting these values for @, Dy, and D, into
age response. Eq. 8.34 gives

b) Calculate »(¢) for ¢ = 0. et
o(t) = 98,000t 10y, { = 0,
c) Plot v(¢) versus tfor 0 < r =< 7 ms.

c) Figure 8.10 shows a plot of »(t) versus ¢ in the
interval 0 = ¢t =< 7 ms.

Solution
a) From Example 8.4, we know that wj = 10° Z{%)
Therefore for critical damping, 40 -
1 32 -
a=10"= — >
2RC 24
or 16
S i :
(2000)(0.125) : [P B RS L ¢ (ms)
N T
b) From the solution of Example 8.4, we know that
v(07) = 0 and dv(0")/dr = 98,000 V/s. From Figure 8.10 4 The voltage response for Example 8.5.

Objective 1—Be able to determme the natural and the step response of parailel RL _c1rcu|t5 .

8.5  The resistor in the circuit m ASseSSment L _Ans_we_r (a) ]00 Q
Problem 8.4 is adjusted for crl_tlcal\_dampmg_ ' i o) 50 V
The inductance and capacitance values are e R
0.4 H and 10 uF, r‘espe'ctwely The initial energy (o) 90 mA"'-T Ei -
stored in the circuitis 25 mJ and is distributed | ' /s 50_‘; i

equally between the inductor and capacztor e i ﬁ(d) 50 000.-- i
Find (a) R; (b) Vi (c) Iy; (d) Dy and D2 inthes ey in(t) = (= 300ze“5°ﬁf & 0505—‘“’0’) A,
mluttonforv and(e)th>0+" _ i e t>0 -

NOTE: Also try Chapter Problems 8.4 and 821

A Summary of the Results

We conclude our discussion of the parallel RLC circuit’s natural response
with a brief summary of the results. The first step in finding the natural
response is to calculate the roots of the characteristic equation. You then
know immediately whether the response is overdamped, underdamped, or
critically damped.

If the roots are real and distinct (0§ < a?), the response is over-
damped and the voltage is

'U(f) = A-]_CJ‘I + Aze"2’,



where
s = —~a+ o — w%,
o= o VZ_ &
__1
2RC’
1
wg = ic

The values of A, and A, are determined by solving the foliowing simuita-
neous equations:

1)(0"-) = A+ Az,
dv(0) _ ic(0)
dt C

If the Toots are complex w} > o the response is underdamped and
the voltage is

= S]_Al + SzAzA

v(t) = Bie ¥ cos wyt + Bre ™ sinwgyt,
where
w, = OJ% - dz.

The values of By and B, are found by solving the following simultaneous
equations:

v(0") =V, = By,
dv(0")  ic(0%)
T = C? = —aB; + w;B,.

If the roots of the characteristic equation are real and equal (v = %),
the voltage response is

v(t) = Dyte™ + Die™™,
where « is as in the other solution forms. To determine values for the con-
stants D, and D,, solve the following simultaneous equations:
1.)(0+) = VE) =D 25

a0 _ ic(0) _

dt C D1 - aD2.

8.3 The Step Response of a Parallel
RLC Circuit

Finding the step response of a parallel RLC circuit involves finding the
voltage across the parallel branches or the current in the individunal
branches as a result of the sudden application of a dc current source. There
may or may not be energy stored in the circuit when the current source is
applied. The task is represented by the circuit shown in Fig. 8.11. To
develop a general approach to finding the step response of a second-order

8.3 The Step Response of a Parallel RLC Circuit
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+ ®

Figure 8.11 A A circuit used to describe the step
response of a parallel RLC circuit.
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circuit, we focus on finding the current in the inductive branch (i;). This
current is of particular interest because it does not approach zero as ¢
increases. Rather, after the switch has been open for a long time, the induc-
tor current equals the dc source current /. Because we want to focus on the
technique for finding the step response, we assume that the initial energy
stored in the circuit is zero. This assumption simplifies the calculations and
doesn’t alter the basic process involved. In Example 8.10 we will see how
the presence of initially stored energy enters into the general procedure.

To find the inductor current i;, we must solve a second-order differ-
ential equation equated to the forcing function I, which we derive as fol-
lows. From Kirchhoff’s current law, we have

iL+iR+iC=I)

or
dv
+—+C— = 8.37
iL R d (8.37)
Because
diy
= L—= 838
v t (8.38)
we get
B L‘—ii (8.39)
dt dr*’ )
Substituting Eqgs. 8.38 and 8.39 into Eq. 8.37 gives
L di; d%;
jp +—=—=+ LC— =1 8.40
Lt R T (840
For convenience, we divide through by LC and rearrange terms:
d 1 di ] !
Ly DL L (8.41)

22 "RC 4t | IC IC

Comparing Eq. 8.41 with Eq. 83 reveals that the presence of a nonzero
term on the right-hand side of the equation alters the task. Before showing
how to solve Eq. 8.41 directly, we obtain the solution indirectly. When we
know the solution of Eq. 8.41, explaining the dircct approach will be easier.

The Indirect Approach

We can solve for i; indirectly by first finding the voltage v. We do this with
the techniques introduced in Section 8.2, because the differential equation
that » must satisfy is identical to Eq. 8.3. To see this, we simply return to
Eq. 837 and express i, as a function of »; thus

/vdr + =+ CE = I (8.42)
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Differentiating Eq. 8.42 once with respect to t reduces the right-hand side
to zero because [ is a constant. Thus

or

dr RC dt  LC 43)

As discussed in Section 8.2, the solution for v depends on the roots of the
characteristic equation. Thus the three possible solutions are

v = A" + Ay e, (8.44)
v = Bie ¥ coswyt + Bye ™ sin wy, (8.45)
v = Dite™ + Dye™, (8.46)

A word of caution: Because there is a source in the circuit for + > 0, you
must take into account the value of the source current at 1 = 0" when you
evaluate the coefficients in Eqs. 8.44-8.46.

To find the three possible solutions for i;, we substitute Eqs. 8.44-8.46
into Eq. 8.37. You should be able to verify, when this has been done, that
the three solutions for i, will be

ip =1+ A" + Aye™, (8.47)
ip=1+ B’le_‘” CoOs wyt + B’ze_"' sin w4, (8.48)
iy = 1 + Dite ™ + Dye™, (8.49)

where Aj, A3, By, B, D, and Dy, are arbitrary constants,

In each case, the primed constants can be found indirectly in terms of
the arbitrary constants associated with the voltage solution. However, this
approach is cumbersome.

The Direct Approach

It is much easier to find the primed constants directly in terms of the ini-
tial values of the response function. For the circuit being discussed, we
would find the primed constants from i;(0) and di, (0)/dr.

The solution for a second-order differential equation with a constant
forcing function equals the forced response plus a response function iden-
tical in form to the natural response. Thus we can always write the solution
for the step response in the form

. function of the same form
i=1;+ , (8.50)

as the natural response
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or

function of the same form
v=V + (8.51)

as the patural response |’

where I; and V; represent the final value of the response function. The
final value may be zero, as was, for example, the case with the voltage » in
the circuit in Fig. 8.8.

Examples 8.6-8.10 illustrate the techmique of finding the step
response of a parallcl RLC circuit using the direct approach.

2ElUEEEGR  Finding the Overdamped Step Response of a Parallel RLC Circuit

The initial energy stored in the circuit in Fig. 8.12 is ¢) From the circuit elements, we obtain
zero. At ¢ = 0, a dc current source of 24 mA is 1 102
applicd to the circuit. The value of the resistor is W= ——=—— =16 X 10%,
400 0. "7 LC T (25)(25)
: — : 10°
a) What is the initial value of i;? a = 1 _ =5 x 10*rad/s
b) What is the initial value of di, /dt? ZRC (2)(400)(25)
c¢) What are the roots of the characteristic equation? or
d) What is the numerical expression for i (t) when o’ =25 x 108,
=07

Because wj < o2, the roots of the charactcristic
equation are real and distinct. Thus

. o s; = =5 X 10 + 3 X 10* = —20,000 rad/s,
|
f( iRy _ 4_ 4_
55 nF SmH SR v $5=-5X10"—-3X10 80,000 rad/s.
T = d) Because the roots of the characteristic equation
® * are real and distinct, the inductor current response
Figure 8.12 A The circuit for Example 8.6. will be overdamped. Thus i, (¢) takes the form of

Eq. 847, namely,

ZL ) If +_ Al Sif. +'A,26321_
Solution B Inductor current in overdamped parallel

. . S RLC circuit step response
a) No energy is stored in the circuit prior to the pTesp

application of the dc¢ current source, so the initial
current in the inductor is zero. The inductor pro-
hibits an instantaneous change in inductor cur-

Hence, from this solution, the two simultaneous
equations that determine Aj and A5 are

rent; therefore {,(0) = 0 immediately after the i(0) =1y + AL + A3 = 0,
switch has been opened. diy, , ’
b) The initial voltage on the capacitor is zero (0) Sl + 524 =
before the switch has been opened; therefore it . ! and AL o
will be zero immediately after. Now, because Solving for Aj and 43 gives
v = Ldi,/dt, Al = -32mA and A5 = 8mA.
di, The numerical solution for ir(f) is
(0+) = 0.

ir(t) = (24 — 32720000 4 g8y Ay = (),
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Bely A Finding the Underdamped Step Response of a Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is increased to 625 Q. Find i, (¢) for ¢t = 0.

Solution

Because L and C remain fixed, wg has the same
value as in Example 8.6; that is, wi =16 X 108
Increasing R to 625{) decreases « to
32 X 10*rad/s. With w} > o?, the roots of the
characteristic equation are complex. Hence

—3.2 X 10* + j2.4 X 10%rad/s,

51

5, = —3.2 X 10* — j2.4 X 10* rad/s.

The current response is now underdamped and
given by Eq. 8.48:

i1(1) = L + Ble ®coswt + Bye sinwy.

& Inductor current in underdamped parallel
RLC circuit step response

Here, « is 32,000 rad/s, oy is 24,000 rad/s, and
I;is 24 mA.

As in Example 8.6, B} and Bj are determined
from the initial conditions. Thus the two simultane-
ous equations are

i,(0) = I, + B; = 0,

%(O) = wyB; — aB;] = 0.
Then,
By = =24 mA
and
By = =32 mA.

The numerical solution for Z; (¢) is
i () = (24 — 24¢7329% 0524, 000

— 32¢ 732000 5in 24 0007) mA, ¢ = 0.

FeiphCRRE Finding the Critically Damped Step Response of a Paraltel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is set at 500 ). Find i, for ¢ = 0.

Solution

We know that w3 remains at 16 X 108. With R set at
500 Q, @ becomes 4 X 10*s7!, which corresponds
to critical damping. Therefore the solution for i, (¢)
takes the form of Eq. 8.49:

ir(t) = I; + Dite™ + D™

B Inductor current in critically damped parallel
RLC circuit step response

Again, D} and D5 are computed from initial
conditions, or

di
—, (0 = Di —aDi=0.
Thus

D} = —960000mA/s and D= —24mA.

The numerical expression for i, (¢) is

ir(t) = (24 — 960,0007¢™400000 — 24400000y A ¢ =,
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BElpi Bl Comparing the Three-Step Response Forms

a) Plot on a single graph, over a range from {) to
220 us, the overdamped, underdamped, and
critically damped responses derived in
Examples 8.6-8.8.

b) Use the plots of (a) to find the time required for
i) to reach 90% of its final value.

¢) On the basis of the results obtained in (b), which
response wounld you specify in a design that puts
a premium on reaching 90% of the final value of
the output in the shortest time?

d) Which response would yon specify in a design
that must ensure that the final value of the cur-
rent is never exceeded?

Solution

a) See Fig. 8.13.

b) The final value of i is 24 mA, so we can read the
times off the plots corresponding to7; = 21.6 mA.
Thus¢,; = 130 s, t.y = 97 us,and t,; = 74 us.

¢) The underdamped response reaches 90% of the
final value in the fastest time, so it is the desired
response type when speed is the most important
design specification.

26 I &jnderdampcnl (R=06250)

| :Overdampcd (R =4004)
| Critically damped (R = 500 (2)

|

Figure 8.13 & The current plots for Example 8.9.

d) From the plot, you can see that the under-
damped response overshoots the final value of
current, whereas neither the critically damped
nor the overdamped response produces currents
in excess of 24 mA. Although specifying cither of
the latter two responses would meet the design
specification, it is best to use the overdamped
response. It would be impractical to require a
design to achieve the exact component values
that ensure a critically damped response.

FENDICRRTE Finding Step Response of a Parallel RLC Circuit with Initial Stored Energy

Energy is stored in the circuit in Example 8.8
(Fig. 8.12, with R = 500 Q) at the instant the dc cur-
rent source is applied. The initial current in the
inductor is 29 mA, and the initial voltage across the
capacitor is 50 V. Find (a) i;(0); (b) di;(0)/dt,
(©) iy (1) for t = 0;(d) v(z) forr = 0.

Solution

a) There cannot be an instantaneous change of cur-
rent in an inductor, so the initial value of i; in the
first instant after the dc current source has been
applied must be 29 mA.

b) The capacitor holds the initial voltage across the
inductor to 50 V. Therefore

di

L—L(0%) = 50,
di, 50
—=(0") = — x 10° = 2000 A/s.
200 =% /s

¢) From the solution of Examplc 8.8, we know that
the current response is critically damped. Thus

i(f) = I; + Dige™ + Dse™,
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where Thus the numerical expression for iy (t) is
1

a = oon = 40,000 rad/s and I; =24mA. in(f) = (24 + 2.2 X 10%e40.000¢

Notice that the effect of the nonzero initial 4 570000 A 4=,

stored energy is on the calculations for the con-
stants D] and Dj, which we obtain from the ini-

tial conditions. First we use the initial value of d) W? can get lh_e GXQI‘GSSiOH for o(t), t = 0 by
the inductor current: using the relationship between the voltage and

current in an inductor:
i (0) = Iy + D5 =29 mA, s
158

v(t) = L— 7

from which we get

D) =29 — 24 = S5mA.

(25 X 107)[(2:2 X 10°)(—40,000)z2 400

The solution for Dj is + 2.2 X 108400001

dlL

FrY it A S
R ol = 20, + (5)(—40,000)¢ 0 | x 1073

ar

—22 X 100700000 | 50740000 7 4 = .

D = 2000 + aDj
To check this result, let’s verify that the initial
= 2000 + (40,000)(5 x 107%) voltage across the inductor is 50 V:

= 2200 A/s = 2.2 X 10® mA/s. p(0) = —2.2 X 108(0)(1) + 50(1) = 50 V.

Objective 1—Be able to determme the natural response ‘and the step response of parallel RLC creuits

8.6 In the circuit shown, i 500 a, L=064H, Ans_w_gr. (a) 80 mA
C= 1,uF and ] = i A. The. m(tlal Voltage e . (b) L 58 A '
drop across the capacxtor is 40 V and the mmal! e L
inductor current is 0.5 A. Find (a);zR(O ) o .-’;’(c) 62.'5 A/s
- (b) ie(0); (c) dip(0%)/dr; (d) s, s3; \( B e
Nl and (f) v(t) for; ) 0+ \ . (d)( . 1000_+ 75Q) rad/s

' +'2'.[J 3sm7:>.0t] A fort > 0;

o (f) & 10940 cos 750;-— 2053 33 sm’]SOt) Vv,
fort‘»"O*"' . feaiiina

NOTE: Also 1ry Chapter Problems 8.25-8.27.
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Ik CT;"

Figure 8.14 4 A circuit used to illustrate the natural
response of 2 senes RLC circuit.

Characteristic equation—series
RLC circuit #

Neper frequency—series RLC circuit »

Resonant radian frequency—series
RLC circuit ¥

8.4 The Natural and Step Response
of a Series RLC Circuit

The procedures for finding the natural or step responses of a series RLC
circuit are the same as those used to find the natural or step responses of a
paraliel RLC circuit, because both circuits are described by differential
equations that have the same form. We begin by stmming the voltages
around the closed path in the circuit shown mn Fig. 8.14. Thus

R+L—+—/ldr+%=0 (8.52)
We now differentiate Eq. 8.52 once with respect to / to get
di | d4 i
=+ L+ == :
Rdt-l-Ld2 c =0, (8.53)
which we can rearrange as
> Ldt LC ) (8.5

Comparing Eq. 8.54 with Eq. 8.3 reveals that they have the same form.
Therefore, to find the solution of Eq. 8.54, we follow the same process that
led us to the solution of Eq. 8.3.

From Eq. 8.54, the characteristic equation for the series RLC circuit is

el =0 (8.55)
S Ty = ¢ .
L LC
The roots of the characteristic equation are
R, JRY 1 s
127 oL 2L} IC (8.56)
or
S]'Q = —at C!2 - wg. (8.57)
The neper frequency () for the series RLC circuit is
LR
a= L rad/s (8.58)
and the expression for the resonant radian frequency is
- 1 ..r'ad/s (8.59)
Wy =" ; .
VIC

Note that the neper frequency of the series RLC circuit differs from that of
the parallel RLC circuit, but the resonant radian frequencies are the same.
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The current response will be overdamped, underdamped, or critically
damped according to whether w3 < o2, w) > o?, or w§ = a? respectively.

Thus the three possible solutions for the current are as follows:

i) = A’ + Ayt (overdamped), (8.60)
it) = Bie*‘?"cos w-dt'+ Bye Sin @yt (underdamped), (8.61)
i(t) = Dite ™ + Dype ™ (critically damped). (8.62)

When you have obtained the natural current response, you can find the
natural voltage response across any circuit clement.

To verify that the procedure for finding the step response of a series
RLC circuit is the same as that for a parallel RLC circuit, we show that the
differential equation that describes the capacitor voltage in Fig. 8.15 has
the same form as the differential equation that describes the inductor cur-
rent in Fig. 8.11. For convenience, we assume that zero energy is stored in
the circuit at the instant the switch is closed.

Applying Kirchhoff’s voltage law to the circuit shown in Fig. 8.15 gives

di
— + Vc. (&63)

V =Ri+
Ri Ldt

The current (¥) is related to the capacitor voltage (vc) by the expression

| = C% 8.64
I = dl 3 ( - )
from which
di aai)c
—=C . 8.65
a P (8.65)

Substitute Egs. 8.64 and 8.65 into Eq. 8.63 and write the resulting
expression as

d*ve  Rdve » 14
o+ L= (8.66)
dt L dr LC LC

Equation 8.66 has the same form as Eq. 8.41; therefore the procedure for
finding v parallels that for finding ;. The three possible solutions for v,
are as follows:

ve =V + Aje™ + Aje’” (overdamped), - - (8.67)
ve = Vi + Ble ™ cos wgt + Bhe ™™ sin wyt (underdamped), (8.68)

ve = V; + Dite ™ + Dje ™ (critically damped), (869

where V4 is the final value of v¢. Hence, from the circuit shown in Fig, 8.15,
the final value of v, is the dc source voltage V.

Example 8.11 and 8.12 illustrate the mechanics of finding the natural
and step responses of a series RLC circuit.

< Current natural response forms in series
RLC circuits

Figure 8.15 4. A circuit used to illustrate the step
response of a series RLC cireuit.

<4 Capacitor voltage step response forms in
series RLC circuits
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FEICRNUE Finding the Underdamped Natural Response of a Series RLC Circuit

The 0.1 uF capacitor in the circuit shown in
Fig. 8.16 is charged to 100 V. At ¢ = 0 the capacitor
is discharged through a series combination of a
100 mH inductor and a 560 Q resistor.

a) Find i(¢) for t = 0.
b) Find vc(¢) for ¢ = 0.

t=1{0
)< 100 mH

Lot
100 VA<01uF e ,3 560 Q1
T

Figure 8.16 & The circuit for Example 8.11.

Solution

a) The first step to finding i(r) is to calculate the
roots of the characteristic equation. For the given
element values,

-1
LC

_ (10)(a0%) _

~(100)(0.1)

_R
2L

560
= x 10*
2a00)

= 2800 rad/s.

w)
108,

(44

Next, we compare wj to o and note that w} > o?,
because

& = 784 x 10°
= 0.0784 x 108

At this point, we know that the response is
underdamped and that the solution for i(r) is of
the form

i(t) = Bie “coswyt + Bye ' sinwyt,

where o = 2800 rad/s and w,; = 9600 rad/s.
The numerical values of B; and B, come from

the initial conditions. The inductor current is
zero before the switch has been closed, and
hence it is zero immediately after. Therefore

i(0) = 0 = B,.

To find By, we evaluate di(0")/dt. From the cir-
cuit, we note that, because i(0) = 0 immediately
after the switch has been closed, there will be no
voltage drop across the tesistor. Thus the initial
voltage on the capacilor appears across the ter-
minals of the inductor, which leads to thc

expression,
di(0")
=V
Y o
or
di(0" W
di L 100
= 1000 A/s.

Because B; = 0,

i
d—; = 400B,¢ %% (24 cos 9600t — 7 sin 9600¢).
Thus
@ _ 96003
d »
1000
2= gegp = 01042 A.

The solution for i(f) is
i(1) = 0.1042¢ 8% 5in 9600¢ A, = 0.

b) To find v.(¢), we can use either of the following
relationships:

1 t
Ve = —E/(;id'r + 100 or

di
=iR+ [—.
ve = IR Ldt

Whichever expression is used (the second is rec-
ommended), the result is

ve(t) = (100 cos 96007 + 29.17 sin 9600¢)e 2V, ¢ = 0.




8.4 The Natural and Step Response of a Series RLC Circuit 311

Seluh RS PS Finding the Underdamped Step Response of a Series RLC Circuit

No energy is stored in the 100 mH inductor or the
0.4 uF capacitor when the switch in the circuit
shown in Fig. 8.17 is closed. Find v¢(z) for ¢t = 0.

48V 04 MF% U

Figure 8.17 A The circuit for Example 8.12.

Solution

The roots of the characteristic equation are

j __@+\/@ T
L) 0.2 (0.1)(0.4)

(—1400 + j4800) rad/s,

$3 = (—1400 — j4800) rad/s.

The roots are complex, so the voltage response is
underdamped. Thus

ve(t) = 48 + Ble %% cos 48001
+ Bhe M40gin 4800, r = 0.

No energy is stored in the circuit initially, so both
v¢(0) and dve(0")/dt are zero. Then,

v0(0) = 0 = 48 + B},

Ao (0"
—”CE(t—) — 0 = 4800B) — 1400B;.

Solving for B] and B; yields

B} = —48V,
B, = —14 V.

Therefore, the solution for v¢(¢) is
ve(t) = (48 — 487149 cos 4800t

— 147 4%in 4800/) V, t = 0.

Objective 2—Be able to determine the natural response and the step response of series RLC circuits '

8.7  The switch in the circuit shown has been in

position a for a long time. At ¢ = 0, it moves to

position b. Find (a) i(07); (b) v(07);
(c) di(0")/dt; (d) 1. s5; and (e) i(t) for ¢ = 0.
Answer: (a) 0; | o .
(bSO
(¢) 10,000 A/s;
(d) (—8000 + j6000) rad/s,
(=8000 — 76000) rad/s;
(e) (1675 sin 6000t) A for ¢ = 0.

NOTE: Also try Chapier Problems 8.45-8.47.

8.8  Find ve(t) for £ = 0 for the circuit in

Assessment Problem 8.7.

Answér: (100 — efgom"(-SO cos 6000z
+ 66.67 sin 6000¢)] V for¢ = 0.
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8.5 A Circuit with Two Integrating
Amplifiers

A circuit containing two integrating amplifiers connected in cascade! is
also a second-order circuit; that is, the output voltage of the second inte-
grator is related to the input voltage of the first by a second-order differ-
ential equation. We begin our analysis of a circuit containing two cascaded
amplifiers with the circuit shown in Fig. 8.18.

We assume that the op amps are ideal. The task is to derive the differ-
ential equation that establishes the relationship between v, and v,. We
begin the derivation by summing the currents at the inverting input termi-
nal of the first integrator. Because the op amp is ideal,

kil + Cli(o — v,) = 0. (8.70)
R, di ¢
From Eq. 8.70,
dvol 1
7 = “mg. (8.71)

Now we sum the currents away from the inverting input terminal of the
second integrating amplifier:

O_Tzv‘” + CZ%(O -, =0, (8.72)
or
dv, 1
a —E’Um‘ (8-73)
Differentiating Eq. 8.73 gives
d*, = 1 dv,

= — A 8.74
4P - T R,C, dt (8.74)

We find the differential equation that governs the relationship between v,
and v, by substituting Eq. 8.71 into Eq. 8.74:

d*v, _ 1 1

= (. 8.75
dr* RCy Ry C, 8 ( )
G
[( G
I\ |

Figure 8.18 4 Two integrating amplifiers connected in cascade.

! In a cascade connection, the output signal of the first amplifier (v, in Fig. 8.18) is the inpul

signal for the second amplifier.
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Example 8.13 illustrates the step response of a circuit containing two cas-
caded integrating amplifiers.

SElERWER Analyzing Two Cascaded Integrating Amptifiers

No energy 18 stored in the circuit shown in Fig. 8.19
when the input voltage v, jumps instantaneously
from 0 to 25 mV.

a) Derive the expression for v,(t) for0 < ¢ < 1,
b) How long is it before the circuit saturates?
Solution

a) Figure 8.19 indicates that the amplifier scaling
factors are

1o 1o
RC,  (250)0.1)
1 1000
2.

R,C,  (500)(1)

Now, because v, = 25mV for ¢ > 0, Eq. 8.75
becomes

2
d:;" = (40)(2)(25 X 10°%) = 2.
To solve for v, we let
dv,
{} =
86y =7
then,
dg(t
40 _ 5 and dg(f) = 2dt.
di
Hence
0] t
/ dy = 2/dx,
8(0) 0
[rom which
g(r) — g(0) = 2¢.
However,
dv,(0)
0) =———=14(,
8(0) ot

0.1 uF
—— i
{
250 kQ "
*— AW\ PAY
+
r—&
Yy e
= . -9V Uy
v v v &
v

Figure 8.19 & The circuit for Example 8.13.

because the energy stored in the circuit ini-
tially is zero, and the op amps are ideal. (See
Problem 8.53.) Then,

[

dr

d
o _ 9, and v, = > + v,(0).

But v,(0) = 0, so the experssion for v, becomes

2, =¥,

0 =1t =<1,

b) The second integrating amplifier saturates when
v, reaches 9 V or ¢ = 3 5. But it is possible that
the first integrating amplifier saturates before
t = 3s.To explore this possibility, use Eq. 8.71 to
find dv,,/dr:

av,,
—% = —40(25) X 1073 = 1.
” 40(25) X 10 1

Solving for v, yields
Y1 = — L

Thus, at ¢t = 3, v,y = —3V, and, because the
power supply voltage on the first integrating
amplifier is +5 V, the circuit reaches saturation
when the second amplifier saturates. When one
of the op amps saturates, we no longer can use
the linear modecl Lo predict the behavior of the
circuit.

NOTE: Assess your understanding of this material by trying Chapter Problem 8.58.
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Two Integrating Amplifiers with Feedback Resistors

Figure 8.20 depicts a variation of the circuit shown in Fig. 8.18. Recall from
Section 7.7 that the reason the op amp in the integrating amplifier satu-
rates is the feedback capacitor’s accumulation of charge. Here, a resistor is
placed in parallel with each feedback capacitor (C; and C;) to overcome
this problem. We rederive the equation for the output voltage, v,, and
determine the impact of these feedback resistors on the integrating ampli-
fiers from Example 8.13.

We begin the denivation of the second-order diffcrential equation that
relates v,y to v, by summing the currents at the inverting input node of the
first integrator:

0 - Vg 0 — v, d
3 + R + ClI(O - v,) = 0. (8.76)

We simplify Eq. 8.76 to read

dvol 1 —”Ug

+ = . 8.77
dr | RC ™ T RG (&.77)
For convenience, we let 7, = R,C, and write Eq. 8.77 as
d —v
I A (8.78)

dt T1 Racl ’

The next step is to sum the currents at the inverting input terminal of the
second integrator:

0—v, 0-u, d
+ + C—(0 —v,) = 0. 8.79
R,
AW R,
c A
1
G,
q
——(——+ ‘ E {
R, Veer
:—'\Mr Ry, Veer
i '—
¥ =Veer Yot +
— — -V, o,
- ! - cz Y

Figure 8.20 . Cascaded integrating amplifiers with feedback resistors.



We rewrite Eq. 8.79 as

v | Y _ Va1 8.80
dt T RGC, (8.80)
"where 7, = R,C,. Differentiating Eq. 8.80 yields
& 1d dv,
L MW w—l—ﬂ. (8.81)
a7 dt R,C, dt
From Eq. 8.78,
dv,,  —Vpy Vg
o RC, (8.82)
and from Eq. 8.80,
d’Do RbC2
Vol R,Cy T _g"DOA (8.83)

We use Lgs. 8.82 and 8.83 to eliminate dv,;/dt from Eq. 8.81 and obtain
the desired relationship:

leo + (l 4+ l)% + (_1_),0 - —’Dg— 8 84)
de? T T2/ dt T172) ¢ R.CyRyC»' ®.

From Eq. 8.84, the characteristic equation is

1
s + (l + l)s +—=0. (8.85)

1 T2 T17T2

The roots of the characteristic equation are real, namely,

-1

i, =T (8.86)
-1

=g (8.87)

Example 8.14 illustrates the analysis of the step response of two cascaded
integrating amplifiers when the feedback capacitors are shunted with
feedback resistors.

8.5 A Circuit with Two Integrating Amplifiers
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SR SPE Analyzing Two Cascaded Integrating Amplifiers with Feedback Resistors

The parameters for the circuit shown in Fig. 8.20
are R, = 100kQ, R, =500kQ, C;=01uF,
R, =25%Q, R, = 100k, and C; = 1 uF. The
power supply voltage for each op amp is 26 V. The
signal voltage (v,) for the cascaded integrating
amplifiers jumps from 0 to 250 mV at 7 = 0. No
energy is stored in the feedback capacitors at the
instant the signal is applied.

a) Find the numerical expression of the differential
equation for v,,.

b) Find v,(¢) for ¢t = 0.

¢) Find the numerical expression of the differential
equation for v,;.

d) Find v,,(¢) for ¢ = 0.

Solution

a) From the numerical values of the circuit parame-
ters, we have 7 = RiC; = 0.05s; mp = Ry,(C,
= 0.10 5, and v,/R,C,RyC, = 1000 V/s?. Substi-
tuting these values into Eq. 8.84 gives

dv, dv,
+ 30—=2 + 200v, = 1000.
o 30 T 200v, = 1000

b) The roots of the characteristic equation are
sy = —20rad/s and s, = —10rad/s. The final
value of v, is the input voltage times the gain of
each stage, because the capacitors behave as
open circuits as t — o0. Thus,

(=500) (~100) _

v,(0) = (250 X 1073) 0

5V.

The solution for v, thus takes the form:

v, =5+ AleIO + ALe20r

With v,(0) = 0 and dv,(0)/dr = 0, the numeri-
cal values of Aj and A5 are A} = —10V and
Aj = 5§ V. Therefore, the solution for v, is

v(f) = (5 — 10e7Y + 562V, = 0.

The solution assumes that neither op amp
saturates. We have already noted that the final
value of 2, is 5 V, which is less than 6 V; hence the
second op amp does not saturate. The final value
of vy is (250 X 1073)(=500/100), or ~1.25 V.
Therefore, the first op amp does not saturate, and
our assumption and solution are correct.

c) Substituting the numerical values of the parame-
ters into Fg. 8.78 generates the desired differen-
tial equation:

dv,
71 + 200, = —25.

d) We have already noted the initial and final val-
ues of v,, along with the time constant 7,. Thus
we write the solution in accordance with the
technique developed in Section 7.4:

= =125 + [0 — (-1.25)]e™ 2™

S
&
|

—1.25 + 1.25¢72%V, ¢=0.

NOTE: Assess your understanding of this material by trying Chapier Problem 8.59.




Practical Perspective

An Ignition Circuit

Now let-us return to the conventional ignition system introduced at the
beginning of the chapter. A circuit diagram of the system is shown in
Fig. 8.21. Consider the circuit characteristics that provide the energy to
ignite the fuel-air mixture in the cylinder. First, the maximum voltage avail-
able at the spark plug, vy,, must be high enough to ignite the fuel. Second,
the voltage across the capacitor must be limited to prevent: arcing across
the switch or distributor points. Third, the current in the primary winding of
the autotransformer must cause sufficient energy to be stored in the system
to ignite the fuel-air mixture in the cylinder. Remember that the energy
stored in the circuit at the instant of switching is proportional to the pri-
mary current squared, that is, w, = 3Li(0).

EXAMPLE

a) Find the maximum voltage at the spark plug, assuming the following val-
ues in the circuit of Fig. 8.21: V3. =12V, R =4, L = 3mH,
C = 0.4 uF, and a = 100.

b) What distance must separate the switch contacts to prevent arcing at
the time the voltage at the spark plug is maximum?

Solution

a) We analyze the circuit in Fig. 8.21 to find an expression for the spark
plug voltage vg,. We limit our analysis to a study of the voltages in the
circuit prior to the firing of the spark plug. We assume that the current
in the primary winding at the time of switching has its maximum possi-
ble value V;./R, where R is the total resistance in the primary circuit.
We also assume that the ratio of the secondary voltage (v,) to the pri-
mary voltage (v;) is the same as the turns ratio No/N;. We can justify
this assumption as follows. With the secondary circuit open, the voltage
induced in the secondary winding is

di

=iV 8.
Vy Mdl‘ ( 88)

and the voltage induced in the primary winding is

v = Lj—;. (8.89)

It follows from Egs. 8.88 and 8.89 that

Uy M
By | T S 8.90
e T (8.90)

Practical Perspective

Figure 8.21 & The circuit diagram of the conven-
tional automobile ignition system.
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It is reasonable to assume that the permeance is the same for the fluxes
11 and ¢y in the iron-core autotransformer; hence Eq. 8.90 reduces to

v, N;N,® N
22 Penlen il le s o (8.91)
Yy N3 Ny

We are now ready to analyze the voltages in the ignition circuit.
The values of R, L, and C are such that when the switch is opened, the
primary coil current response is underdamped. Using the technigues
developed in Section 8.4 and assuming ¢ = 0 at the instant the switch
is opened, the expression for the primary coil current is found to be

2 A VdC —oef (21 =
=t coswgt + | — |simwyf |, (8.92)
R Wy
where
R
= Ty
2L

)
Wy = E—az.

(See Problem 8.62(a).) The voltage induced in the primary winding
of the autotransformer is

i I e
v = LE; = wdRz‘e tsin awyt. (8.93)

(See Problem 8.62(b).) It follows from Eq. 8.91 that

vy = Ve or ogt. (8.94)
{UdRC

The voltage across the capacitor can be derived either by using the
relationship

{
Vp = l/ idx + v.(0) (8.95)
CJo

or by summing the voltages around the mesh containing the primary
winding:

; di
v = Vi — iR — L. (8.96)

In either case, we find

V. = Vige[l — e ¥ coswgt + Ke ™ sinwgt], (8.97)



b)

where

1 1
K=—|——al.
w0 (RC “)
(See Problem 8.62(c).) As can be seen from Fig. 8.21, the voltage
across the spark plug is

2)sp o V;ic I V2

aVae
(DdRC

a =
= %C[l = wdRCc !sin a)dt} (8.98)

To find the maximum value of ¥, we find the smallest positive value of
time where dvg,/dt is zero and then evaluate vg, at this instant. The

expression for £,y 1s
l =Y (115
e = —tann = |; (8.99)
Wy a

(See Problem 8.63.) For the component values in the problem statement,
we have

A — e “sin w4t

R 4 x10°
@ = —— =

2L 6

109
Wy = A )% — (666.67)* = 28,859.81 rad/s.

Substituting these values into Eqg. 8.99 gives

= 666.67 rad/s,

and

Lmax = 53.63 us.
Now use Eq. 8.98 to find the maximum spark plug voltage, ve,(fmay):
Vep(tmax) = —25,975.69 V.
The voltage across the capacitor at £, i5 obtainéd from Eq. 8.97 as
V(fmax) = 262.15 V.

The dielectric strength of air is approximately 3 X 10° V/m, so this
result tells us that the switch contacts must be separated by
262.15/3 X 10°, or 87.38, um to prevent arcing at the points at £,yay-

Practical Perspective
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In the design and testing of ignition systems, consideration must
be given to nonuniform fuel-air mixtures; the widening of the spark plug
gap over time due to the erosion of the plug electrodes; the relationship
between available spark plug voltage and engine speed; the time it takes
the .primary current to build up to its initial value after the switch
is closed; and the amount of maintenance required to ensure reliable
operation, .

We can use the preceding analysis of a conventional ignition system
to explain why electronic switching has replaced mechanical switching in
today’s automobiles. First, the current emphasis on fuel economy and
exhaust emissiens requires a spark plug with a wider gap. This, in turn,
requires a higher available spark plug voltage. These higher voltages {up
to 40 kV) cannot be achieved with mechanical switching. Electronic
switching also permits higher initial currents in the-primary winding of
the autotransformer. This means the initial stored. energy in the system is
larger, and hence a wider range of fuel-air mixtures and running condi-
tions can be accommodated. Finally, the electronic switching circuit elim-
inates the need for the point contacts. This means the deleterious effects

of point contact arcing can be removed from the system.

NOTE: Assess your understanding of the Practical Perspective by trying Chapter
Problems 8.64 and 8.65.

Summary

The characteristic equation for both the parallel and
series RLC circuits has the form

§2 + 2as + i =0,

where @ = 1/2RC for the parallel circuit, @ = R/2L for
the series circuit, and w§ = 1/LC for both the paralle]
and series circuits. (See pages 287 and 308.)

The roots of the charactéristic equation are
512 = —a =+ Va? — w%.

{See page 288.)

The form of the natural and step responses of series and
parallel RLC circuits depends on the values of a* and
w%; such responses can be overdamped, underdamped,
or critically damped. These terms describe the impact of
the dissipative element (R) on the response. The neper
frequency, o, reflects the effect of R. (See page 289.)
The response of a second-order circuit is overdamped,
underdamped, or critically damped as shown in
Table 8.2.

In determining the natural response of a second-order
circuit, we first determine whether it is over-, under-, or

critically damped, and then we solve the appropriate
equations as shown in Table 8.3.

In determining the step respomse of a second-order cir-
cuit, we apply the appropriate equations depending on
the damping, as shown in Table 8.4.

For each of the three forms of response, the unknown
coefficients (i.c., the As, B s, and Ds).are obtained by
evaluating the circuit to find the initial value of the
response, x(0), and the initial value of the first deriva-
tive of the response, dx(0)/d:.

When two integrating amplifiers with ideal op amps are
connected in cascade, the output voltage of the second
integrator is related to the input voltage of the first by an
ordinary, second-order differential equation. Therefore,
the techniques developed in this chapter may be used to
analyze the behavior of a cascaded integrator. (See
page 312.)

We can overcome the limitation of a simple integrating
amplifier—the saturation of the op amp due to charge
accumnlating in the feedback capacitor—by placing a
resistor in parallel with the capacitor in the feedback
path. (See page 314.)
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TABLE 8.2  The Response of a Second-Order Circuit is Overdamped, Underdamped, or Critically Damped

The Circuit is When Qualitative Nature of the Response

Overdamped o> 0} The voltage or current approaches its final value without oscillation
Underdamped o* < wf The voltage or current oscillates about its final value

Critically damped o’ =} The voltage or current is on the verge of oscillating about its final value

TABLE 8.3  In Determining the Natural Response of a Second Order Circuit, We Flrst Determme Whether 1t 15 Over-, Under—-
or Critically Damped, and Then We Solve the Appropnate Equations

Damping ~Natural Response Equations _ Coefficient Equations

Overdamped x(1) = A;f + Aze™ x(0) = A, + 4

dx/dt(0) = Aysy + Assy
Underdamped x(z) = (By cos wyt + B, sin wt)e ™! x(0) = By;

dx/di(0) = —aB; + w;B,,

where w; = Vi — o
Critically damped x(t) = (Dit + Dy)e ™ x(0) = Dy,

d;_/dt(O) =Dy—aD,

TABLER.4 In Determmmg the Step Response of a Second Order Circmt We Apply the Appmpnate Equatlons Dependmg
on the Dampmg

Damping Step Response Equations® Coefficient Eqnations

Overdamped x(t) = X; + Ale'! + Ay e x(0) = Xy + A} + A);
dx/di(0) = Al sy + Aj sy

Underdamped x(t) = Xy + (Bicoswyt + B; sinwgt)e™ x(0) = Xy + Bj;
dx/di(0) = —aB| + w;B5

Critically damped x(t) = X; + Djte ® + Dye x(0) = X; + Dj;

dx/di(0) = D; — aD5

®where X ; is the final value of x(t).

Problems
Sections 8.1-8.2
8.1 The resistance, inductance, and capacitance in a ¢) What value of R will yield a damped frequency
parallel RLC circuit are 5000 Q, 1.25 H, and & nF, of 6 krad/s?
respectively.

d) What are the roots of the characteristic equation

a) Calculate the roots of the characteristic equation for the value of R found in (c)?

that describe the voltage response of the circuit.

b) Will the response be over-, under-, or critically ¢) What value of R will result in a critically damped
damped? response?
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8.2

83

84

8.5

(Hin

8.6

PSPICE

Natural and Step Responses of RLC Circuits

Suppose the capacitor in the circuit shown in
Fig. 8.1 has a value of 0.05 ¢F and an initial voltage
of 15 V. The initial current in the inductor is zero.
The resulting voltage response fort = 0is

o(r) = =550 + 2072000y,
a) Determine the numerical values of R, L, o,
and w,.
b) Calculate ig(t), i;(t), and i-(¢) for r = 0"

The natural voltage response of the circuit in
Fig.8.11s

v(t) = 125¢%%%(cos 3000r — 2sin 30001)V, ¢ = 0,

when the capacitor is 50 nF. Find (a) L; (b) R,
(¢) Voi (d) Iy; and (e) ir(2).

The voltage response for the circuit in Fig. 8.1 is
known to be

v(t) = Dyte OV 4 D00 Ty =,

The initial curreat in the inductor (Iy) is 5 mA, and
the initial voltage on the capacitor (V3) is 25 V. The
inductor has an inductance of 5 H.

a) Find the value of R, C, Dy, and D,.

b) Find io(¢) for ¢ = 0*.

The initial value of the voltage v in the circuit in
Fig. 8.1 is zero, and the initial value of the capacitor

current, i.(07), is 15 mA. The expression for the
capacitor current is known to be

i) = A g3 + A ¢ = 0F
when R is 200 ). Find
a) the value of e, wg, L, C, A;, and A,

= dic(0) _ _dig(0)  dig(0) _ »(0) _ 1 ic(07)
Codr at dt L R C

b) the expression for v(¢),t = 0,
c) the expression for iz(r) = 0,
d) the expression for ir(t) = 0.

The circuit elements in the circuit in Fig. 8.1 are
R =2k, C = 10nF, and L = 250 mH. The ini-
tial inductor current is —30 mA, and the initial
capacitor voltage is 90 V.

a) Calculate the initial current in each branch of
the circuit.

b) Find v(f) for ¢t = 0.
¢) Find i, (1) forr = 0.

8.7

The resistance in Problem 8.6 is increased to

pseice 2.5 k(). Find the expression for o(¢) for ¢ = 0.

8.8

The resistance in Problem 8.6 is increased to

pseice 12,500/3 (). Find the expression for »(¢) for r = 0.

8.9

8.10

PSPICE

8.11

PSPICE

8.12

PSPICE

813

The natural response for the circuit shown in Fig. 8.1
is known to be

() = 12 + By, ¢ = 0.

If C = 18 uF, find i, (0%) in milliamperes.

In the circuit shown in Fig. 8.1, a 5 H inductor is
shunted by a 8 nF capacitor, the resistor R is
adjusted for critical damping, ¥, = —25V, and
Iy = —1mA.

a) Calculate the numerical value of R.

b) Calculate v(¢) for ¢ = 0.

¢) Find »(¢) when io(¢) = 0.

d) What percentage of the initially stored energy

remains stored in the circuit at the instant
ic(r) is 0?

In the circuit in Fig. 81, R=280, L =04H,
C=025F,V,=0V,and Iy = -3 A.

a) Find v(f) forr = 0.

b) Find the first three values of ¢ for which dv/dt

is zero. Let these values of ¢ be denoted 1, 15,
and ¢5.

¢) Show thatty; — t; = Ty

d) Show thatt, — 1, = T4/2.

e) Calculate v(1y), v(t,), and v(t3).

f) Sketch v(z) versus tfor 0 <t < .

a) Find »(r) for ¢t = 0 in the circuit in Problem 8.11
if the 2 Q resistor is removed from the circuit.

b) Calculatc the frequency of ©(z) in hertz.
c) Calculate the maximum amplitude of v(¢) in volts.

Assume the underdamped voltage response of the
circuit in Fig. 8.1 is written as

v(t) = (A + A))ecoswar + j(A — Ay)e ™ sinwyt

The initial value of thc inductor current is I, and
the initial value of the capacitor voltage is V. Show
that A, is the conjugate of A;. (Hint: Use the same
process as outlined in the text to find A and A;.)



8.14 Show that the results obtained from Problem 8.13—

that is, the expressions for A, and A,—are consis-
tent with Eqs. 8.30 and 8.31 in the text.

8.15 The resistor in the circuit in Example 8.4 is changed

PSPICE

8.16

PSPICE

to 4000/V2 Q.

a) Find the numerical expression for (!) when
t=0.

b} Plot w»(¢) versus ¢ for the Ume interval
0 =t = 7ms. Compare this response with
the one in Example 8.4 (R =20kQ) and
Example 8.5 (R = 4 k). In particular, compare
peak values of ©(¢) and the times when these
peak values occur.

The switch in the circuit of Fig, P8.16 has been in
position a for a long time. At + = 0 the switch
moves instantaneously to position b. Find v,(¢) for
t=0.

Figure P8.16

4kQ

8.17 The capacitor in the circuit of Fig. P8.16 is

8.18

8.19

PSPICE

decreased to 1 nF and the inductor is increased to
10 H. Find v,(t) for ¢t = 0.

The capacitor in the circuit of Fig. P8.16 is
decreased to 800 pF and the inductor is increased to
12.5 H. Find v,(¢) for¢t = 0.

The two switches in the circuit seen in Fig. P8.19
operate synchronously. When switch 1 is in position
a, switch 2 is in position d. When switch 1 moves to
position b, switch 2 moves to position c. Switch 1 has
been in position a for a long time. At ¢ = 0, the
switches move to their alternate positions. Find
v,(t) fort = 0.

Figure P8,19

8.20

PSPICE

8.21

PSPICE
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The resistor in the circuit of Fig. P8.19 is increased
from 1.6 X} to 2 k) and the inductor is decreased
from 1 H to 640 mH. Find v,(¢) forr > 0.

The resistor in the circuit of Fig. P8.19 is decreased
from 1.6 k() to 800 (},and the inductor is decreased
from | H to 160 mH. Find v,(¢) for t = 0.

Section 8.3

8.22

FSPICE

8.23

PSPICE

8.24

PSPICE

8.25

PSPICE

8.26

FSPICE

8.27

PSPICE

8.28

PSPICE

For the circuit in Example 8.6, find, for ¢ = 0,

(a) v(t); (b) ig(1); and (¢) ic(1)-

For the circuit in Example 8.7, find, for ¢ = 0,
(a) v(t) and (b) ic(¢).

For the circuit in Example 8.8, find v(¢) for ¢ = 0.

Assume that at the instant the 15 mA dc current
source is applied to the circuit in Fig. P8.25, the ini-
tial current in the 20 H inductor is —30 mA, and the
initial voltage on the capacitor is 60 V (positive at
the upper terminal). Find the expression for i, (1)
for ¢t = Qif R equals 800 ().

Figure P8.25

15 mA () 320H %5@ R

The resistance in the circuit in Fig. P8.25 is changed
t0 1250 Q. Find i,(r) fort = 0.

The resistance in the circuit in Fig. P8.25 is changed
to 1000 Q). Find i;(¢) for ¢ = 0.

The switch in the circuit in Fig. P8.28 has been open
for a long time before closing at ¢ = 0. Find v,(¢)
fort = 0.

Figure P8.28

800 O

30V
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8.29

PSPICE

8.30

PSPICE

831

PSPICE

8.32

PSPICE

8.33

PSPICE

Natural and Step Responses of RLC Circuits

a) For the circuit in Fig. P8.28, find i, forz = 0.

b) Show that your solution for i, is consistent with
the solution for v, in Problem 8.28.

There is no energy stored in the circuit in Fig, P8.30
whep the switch is closed at 1 = 0. Find »,(¢) for
t=0.

Figure P8.30

8000 > o

a) For the circuit in Fig. P8.30, find i, for r = 0.

b) Show that your solution for i, is consistent with
the solution for v, in Problem 8.30.

The switch in the circuit in Fig. P8.32 has been
open a long time before closing at ¢ = 0. At the
time the switch closes, the capacitor has no stored
energy. Find v, for ¢ = 0.

Figure P8.32
400 Q)

12V Vs A~ 125 uF

The switch in the circuit in Fig. P8.33 has been open

Figure P8.33

250 O

25V

8.34

PSPICE

Use the circuit in Fig. PB.33
a) Find the total energy delivered to the inductor.

b) Find the total energy delivered to the equivalent
resistor.

c) Find the total energy delivered to the capacitor.

d) Find the total energy delivercd by the cquiva-
lent current source.

e) Check the results of parts (a) through (d)
against the conservation of energy principle.

8.35

PSPICE

The switch in the circuit in Fig. £8.35 has been
open a long time before closing at + = 0. Find £, (¢)
fort = 0.

Figure P8.35
150 O

- . .

ST
120 mA 3300 O i’-l 3125 mHTSOO aF( P )av

I Gme bef losi £7 — 0. Plivd 8.36 Switches 1 and 2 in the circuit in Fig. P8.36 are syn-
a‘ong fime be ore+c osRg Aty =" Tin eseice chronized. When switch 1 is opened, switch 2 closes
a) w,(1) fort = 07, and vice versa. Switch 1 has been open a long time
b) i;(t) forz = 0. before closing at r = 0. Find i, (¢) fort = 0.

Figure P8.36

5kQ




Section 8.4

8.37 The initial energy stored in the 50 nF capacitor in
the circuit in Fig. P8.37 is 90 pJ. The initial energy
stored in the inductor is zero. The roots of the char-
acteristic equation that describes the natural behav-
ior of the current i are —1000 s* and —4000 s .

a) Find the numerical values of R and L.

b) Find the numerical values of i(0} and di{0)/d:
immediately aftcr the switch has been closed.

¢) Findi(¢) for¢ = 0.

d) How many microseconds after the switch closes
does the current reach its maximum value?

e) Whatis the maximum valuc of ; in milliamperes?

f) Find v, (¢) fort = 0.

Figure P8.37

50 nF A

8.38 The current in the circuit in Fig. 8.3 is known (o be
i = B 8% cos 600t + Be ¥ sin 600z, = 0.

The capacitor has a value of 500 pF; the initial value
of the current is zero; and the initial voltage on the
capacitor is 12 V.Find the values of R, L, B, and B,.

8.39 Find the voltage across the 500 pF capacitor for the
circuit described in Problem 8.38. Assumec the refer-
ence polarity for the capacitor voltage is positive at
the upper terminal.

8.40 The switch in the circuit shown in Fig. P8.40 has
e been closed for a long time. The switch opens at
t = 0. Find
a) i,(¢) fort =

0’
b) v,(r) fort = 0.
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Figure P8.40

ity T

120V 0,(t) Z<250 nF

8.41 In the circuit in Fig. P8.41, the resistor is adjusted
rseice for critical damping. The initial capacitor voltage is
90V, and the initial inductor current is 24 mA.

a) Find the numerical value of R.

b) Find the numerical values of i and di/d¢ immedi-
ately after the switch is closed.

¢) Find vp(t) forr = Q.

Figure P8.41

R
¢ R
+ [ i=0¥ 5
¢ 7~ 160 nF 250 mH

8.42 The switch in the circuit in Fig. P8.42 has been in
pseice position a for a long time. At ¢ = 0, the switch
moves instantaneously to position b.

a) What is the initial value of »,?
b) What is the initial value of dv,/dt?

¢) What is the numerical expression for v,(¢) for
t=0?

Figure P8.42

4 2000 6000
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8.43 The make-before-break switch in the circuit shown

rsrice n Fig. P8.43 has been in position a for a long time.
At r = 0, the switch is moved instantaneously to
position b. Find i(r) for t = 0.

Figure P8.43

500
WA
¢70V

8.44 The switch in the circuit shown in Fig. P8.44 has
rseice been closed for a long time. The switch opens at
t = 0. Find v,(¢) for ¢t = 0.

\ y 200 Q)

a\ /b —JW\L
/ f
=0

¥
T

3100 mH
200 nF

Figure P8.44

300
WA
2H
10
40 %
380 10 mF =< v,

100V

8.45 The initial energy stored in the circuit in Fig. P8.45
pofice s zero. Find v,(¢) fort = 0.

Figure P8.45

400mH 4k
t=0 +

40V 50 oF 7= ©,1)

8.46 The capacitor in the circuit shown in Fig. P8.45 is
changed to 100 nF. The initial energy stored is still
zero. Find v,(¢) fort = 0.

8.47 The capacitor in the circuit shown in Fig. P8.45 is
changed to 156.25 nF. The initial energy stored is
still zero. Find »,{t) for: = 0.

8.48 The switch in the circuit shown in Fig. P8.48 has
been closed for a long time before it is opened at
t = 0. Assume that the circuit parameters are such
that the response is underdamped.

a) Derive the expression for v,(t) as a function of
Vg, &, wg, C,and R for ¢ = 0.

b) Derive the expression for the value of ¢ when
the magnitude of v, is maximum.

Figure P8.48
t=10

8.49 The circuit parameters in the circuit of Fig. P8.48
e are R =120Q, L =5mH, C =500nF, and
v = —600V.
a) Express v,(t) numerically for t = 0.
b) How many microseconds after the switch opens
is the inductor voltage maximum?
¢) What is the maximum value of the inductor
voltage?
d) Repeat (a)—(c) with R reduced to 12 ().

8.50 The circuit shown in Fig. P8.50 has been in opera-
e tion for a long time. At ¢ = 0, the source voltage
suddenly drops to 100 V. Find v,(¢) for r = 0.

Figure P8.50
40 40 mH

AAA~ LYY\

l e
10 mF,I\ v(2)

8.51 The switch in the circuit of Fig. P8.51 has been in
e position a for a long time. At ¢ = ( the switch
moves instantaneously to position b. Find

a) v,(0)
b) dv,(0%)/dt
¢) v,(t) fort = 0.

200V




Figure P8.51

b 24kQ
,_A,N\,_

4kQ 2 | 12kQ 200 mH

A &~ l AWV : YV

20V

8.52 The two switches in the circuit seen in Fig. P8.52

psrice  operate synchronously. When switch 1 is in position a,
switch 2 is closed. When switch 1 is jn position b,
switch 2 is open. Switch 1 has been in position a for
a long time. At ¢t = 0, it moves instantancously to
position b. Find ».(¢) for t = 0.

Figure P8.52
200 O a

Dmov 600 O
60V

8.53 Assume that the capacitor voltage in the circuit of
Fig. 8.15 is underdamped. Also assume that no
energy is stored in the circuit elements when the
switch is closed.

a) Show that dvc/dt = (w§/ws)Ve™ sin wgt.
b) Show that dvo/dt = 0 when ¢ = nw/wy, Where

n=2012,....
c) Let ¢, = nw/wy, and show that we(t,)
=V = V(-1ye e,
d) Show that
1 ‘Uc(tl) -V
@=L~

n b
Ty wve(ts) -V

where T; = 13 - 1.

8.54 The voltage across a 200 nF capacitor in the circuit
of Tig. 8.15 is described as follows: After the switch
has been closed for several seconds, the voltage is
constant at 50 V. The first time the voltage exceeds
50 V, it reaches a peak of 63.505 V. This occurs
/12 ms after the switch has been closed. The sec-
ond time the voltage exceeds S0V, it reaches a peak
of 50.985 V. This second peak occurs 7/4 ms after
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the switch has been closed. At the time when the
switch is closed, there is no energy stored in either
the capacitor or the inductor. Find the numerical
values of R and L. (Hint: Work Problem 8.53 first.)

8.55 Show that, if no energy is stored in the circuit
shown in Fig. 8.19 at the instant v, jumps in value,
then dw,/dt equals zero att = 0.

8.56 a) Find thc equation for v,(¢) for 0 = ¢ < 15, in
the circuit shown in Fig. 8.19 if v,;(0) = 5V and
2,(0) = 8 V.
b) How long does the circuit take to reach
saturation?

8.57 a) Rework Example 8.14 with feedback resistors
Ry and R, removed.

b) Rework Example 8.14 with v,,{(0) = —2V and
2,(0) = 4 V.

Section 8.5

8.58 The voltage signal of Fig. P8.58(a) is applied to

e the cascaded integrating amplifiers shown in
Fig. P8.58(b). There is no energy stored in the
capacitors at the instant the signal is applied.

a) Derive the numerical expressions for v,(¢) and
v,4(¢) for the time intervals 0 < ¢ < 0.2s and
02s <t =<1,

b) Compute the value of 1.

Figure P8.58

v, (mV)

400

| t(s)
0
(a)
50 kO
Ve
v
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8.59

FSPICE

8.60

Natural and Step Responses of RLC Circuits

The circuit in Fig. P8.58(b) is moditied by adding a
250 k{ resistor in parallel with the 2 pF capacitor
and a 250 k{} resistor in paralle! with the 4 uF
capacitor. As in Problem 8.58, there is no energy
stored in the capacitors at the time the signal is
applied. Derive the numerical expressions for v,(t)
and v,(¢) for the time intervals 0 < ¢ < 0.2 s and
1= 02s.

a) Derive the differential equation that relates the
output voltage to the input voltage for the cir-
cuit shown in Fig. P8.60.

b) Compare the result with Eq. 8.75 when
R1C1 = _R2C2 = RC LnFig8]8,

¢) What is the advantage of the circuit shown in
Fig. P8.607

Figure P8.60

8.61

C C
At o [(
[N I

We now wish to illustrate how several op amp cir-
cuits can be interconnected to solve a differential
equation.

a) Derive the differential equation for the spring-
mass system shown in Fig. P8.61(a). (See
page 329.) Assume that the force exerted by the
spring is directly proportional to the spring dis-
placement, that the mass is constant, and that
the frictional force is directly proportional to the
velocity of the moving mass.

b) Rewrite the differential equation derived in (a)

so that the highest order derivative is expressed

as a function of all the other terms in the cqua-
tion. Now assume that a voltage equal to &?x/dt*

is available and by successive intcgrations gen-
erales dx/dr and x. We can synthesijze the coeffi-
cients in the equations by scaling amplifiers, and
we can combine the terms required to generate
d*x/d¢* by using a summing amplifier. With
these ideas in mind, analyze the interconnection
shown in Fig. P8.61(b). In particular, describe
the purpose of each shaded area in the circuit
and describe the signal at the points labeled B,
C. D, E, and F, assuming the signal at A repre-
sents d*x/dr*. Also discuss the parameters R; Ry,
Ci; Ry, Cy; Ry, Ry Rs, Rg; and Ry, Ry in terms
of the coefficients in the differential equation.

Sections 8.1-8.5

8.62

PRACTICAL
PERSPECTIVE

8.63

FRACTICAL
PERSPECTIVE

8.64

PRACTICAL
PERSPECTIVE

8.65

PRACTICAL
PERSPECTIVE

a) Derive Eq. 8.92.
b) Derive Eq. 8.93.
c¢) Derive Eq.8.97.

Derive Eq. 8.99.

a) Using the same numerical values used in the
Practical Perspective example in the text, find
the instant of time when the voltage across the
capacitor is maximum.

b) Find the maximum value of v,.
¢) Compare the values obtained in {(a) and (b) with
tmax and ’vc(rmax)'

The values of the parameters in the circuit in

Fig. 821 are R =3§; L =5mH; C = 0.25 uF;

Vie = 12 V; and a = 50. Assume the switch opens

when the primary winding current is 4 A.

a) How much energy is stored in the circuit at
t =072

b) Assume the spark plug does not fire. What is the
maximwmn voltage available at the spark plug?

c) What is the voltagc across the capacitor when

the voltage across the spark plug is at its maxi-
mum value?
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Figure P8.61

(b)




9.1 The Sinusoidal Source p. 332
9.2 The Sinusoidal Response p. 335
9,3 The Phasor p. 337

9.4 The Passive Circuit Elements in the
Frequency Domain p. 342

9.5 Kirchhoff’s Laws in the Frequency
Domain p. 346

9.6 Series, Parallel, and Delta-to-Wye
Simplifications p. 348

9.7 Source Transformations and
Thévenin-Norton Equivalent Circuits p. 355

9.8 The Node-Voltage Method p. 359
9.9 The Mesh-Current Method p. 360
9.10 The Transformer p. 361

9.11 The Ideal Transformer p. 365
9.12 Phasor Diagrams p. 372

1 Understand phasor concepts and be able to
perform a'ph_asortrans_fprm and an inverse
phasor transform.

2 Be able to transform a circuit with a sinusoidal |

source into the frequency domain using phasor
concepts. . {

3 Know how to use the following circuit analysis
technigues to solve a circuit n the frequency

- domain:
= Kirchhoff’s laws; ;
+ Series, parallel, and delta-to-wye

simplifications;

» Voltage and current division;
s Thévenin and Norton equivalents;
+ Node-voltage method; and
»  Mesh-current method.

4 Be able to analyze circuits containing linear
transformers using phasor methods.

5 Understand the ideal transformer constraints
‘and be able to analyze circiiits containing ideal
transformers using phasor methods.
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Sinusoidal
Steady-State Analysis

Thus far, we have focused on circuits with constant sources; in
this chapter we are now ready to consider circuits energized by
time-varying voltage or current sources. In particular, we are inter-
ested in sources in which the value of the voltage or current varies
sinusoidally. Sinusoidal sources and their effect on circuit behavior
form an important area of study for several reasons. First, the gen-
eration, transmission, distribution, and consumption of electric
energy occur under essentially sinusoidal steady-state conditions.
Second, an understanding of sinusoidal behavior makes it possible
to predict the behavior of circuits with nonsinusoidal sources.
Third, steady-state sinusoidal behavior often simplifies the design
of electrical systems. Thus a designer can spell out specifications in
terms of a desired steady-state sinusoidal response and design the
circuit or system to meet those characteristics. If the device satis-
ties the specifications, the designer knows that the circuit will
respond satisfactorily to nonsinusoidal inputs.

The subsequent chapters of this book are largely based on a
thorough understanding of the techniques needed to analyze cir-
cuits driven by sinusoidal sources. Fortunately, the circuit analysis
and simplification techniques first introduced in Chapters 1-4
work for circuits with sinusoidal as well as dc sources, so some of
the material in this chapter will be very familiar to you. The chal-
lenges in first approaching sinusoidal analysis include developing
the appropriate modeling equations and working in the mathe-
matical realm of complex numbers.



_ Practical Perspective

A Household Distribution Circuit

Power systems that generate, transmit, and distribute electri-
cal power are designed to operate in the sinusoidal steady
state. The standard household distribution circuit used in the
United States is the three-wire, 240/120 V circuit shown in
the accompanying figure.

The transformer is used to reduce the utility distribution
voltage from 13.2 kV to 240 V. The center tap on the second-
ary winding provides the 120 V service. The operating fre-
quency of power systems in the United States is 60 Hz. Both
50 and 60 Hz systems are found outside the United States.

The voltage ratings alluded to above are rms values. The rea-
son for defining an rms value of a time-varying signal is
explained in Chapter 10.

KXh|



332 Sinusoidal Steady-State Analysis

v
AN
Vo
0
_V)_
"It Tl

Figure 9.1 A A sinusoidal voltage.

9.1 The Sinusoidal Source

A sinusoidal voltage source (independent or dependent) produces a volt-
age that varies sinusoidally with time. A sinusoidal current source (inde-
pendent or dependent) produces a current that varies sinusoidally with
time. In reviewing the sinusoidal function, we use a voltage source, but our
observations also apply to current sources.

We can express a sinusoidally varying function with either the sine
function or the cosine function. Although either works equally well, we
cannot use both functional forms simultaneously. We will use the cosine
function throughout our discussion, Hence, we write a sinusoidally varying
voltage as

v =V, cos (wf + ¢). (9-1)

To aid discussion of the parameters in Eq. 9.1, we show the voltage
versus time plot in Fig, 9.1.

Note that the sinusoidal function repeats at regular intervals. Such a
function is called periodic. One parameter of interest is the length of time
required for the sinusoidal function to pass through all its possible values.
This time is referred {o as the period of the function and is denoted 7. It is
measured in seconds. The reciprocal of T gives the number of cycles per
second, or the frequency, of the sine function and is denoted f, or

f= % (9.2)

A cycle per second is referred to as a hertz, abbreviated Hz. (The term
cycles per second rarely is used in contemporary technical literature.) The
coefficient of ¢ in Eq. 9.1 contains the numerical value of 7 or f. Omega (w)
represents the angular frequency of the sinusoidal function, or

w = 2nrf = 27T (radians/second). (9.3)

Equation 9.3 is based on the fact that the cosine (or sine) function passes
through a complete set of values each time its argument, wt, passes
through 27 rad (360°). From Eq. 9.3, note that, whenever ¢ is an integral
multiple of 7, the argument w! increases by an integral multiple of 2+ rad.

The coefficient V,, gives the maximum amplitude of the sinusoidal
voltage. Because +1 bounds the cosine function, £V}, bounds the ampli-
tude. Figure 9.1 shows these characteristics.

The angle ¢ in Eq. 9.1 is known as the phase angle of the sinusoidal
voltage. It determines the value of the sinusoidal function at ¢t = 0; there-
fore, it fixes the point on the periodic wave at which we start measuring
time. Changing the phase angle ¢ shifts the sinusoidal function along the



time axis but has no effect on either the amplitude (V},) or the angular fre-
quency (w). Note, for example, that reducing ¢ to zero shifts the sinusoidal
function shown in Fig. 9.1 ¢/w time units to the right, as shown in Fig. 9.2.
Note also that if ¢ is positive, the sinusoidal function shifts to the left,
whereas if ¢ is negative, the function shifts to the right. (See Problem 9.4.)

A comment with regard to the phase angle is in order: vt and ¢ must
carry the same units, because they are added together in the argument of
the sinusoidal function. With «f expressed in radians, you would expect ¢
to be also. However, ¢ normally is given in degrees, and ot is converted
from radians to degrees before the two quantities are added. We continue
this bias toward degrees by expressing the phase angle in degrees. Recall
from your studies of trigonometry that the conversion from radians to
degrees is given by

o

(number of degrees) = (number of radians). (9.4)

T

Another important characteristic of the sinusoidal voltage (or cur-
rent) is its rms value. The rms value of a periodic function is defined as the
square root of the mean value of the squared function. Hence, if
v = V,,cos (wt + ¢), the rms value of v is

1 10+T
Vs = F / V2 cosHwt + P)dt. (9.5)
&

Note from Eq. 9.5 that we obtain the mean value of the squared voltage by
integrating »* over one period (that is, from #y to y + 7)) and then dividing
by the range of integration, 7. Note further that the starting point for the
integration 1 is arbitrary.

The quantity under the radical sign in Eq. 9.5 reduces to VZ/2. (See
Problem 9.6.) Hence the rms value of » is

Vin

V;msl = "\./—5 (9-6)

The rms value of the sinusoidal voltage depends only on the maximum
amplitude of », namely, V,,. The rms value is not a function of either the
frequency or the phase angle. We stress the importance of the rms value as
it relates to power calculations in Chapter 10 (see Section 10.3).

Thus, we can completely describe a specific sinusoidal signal if we know
its frequency, phase angle, and amplitude (either the maximum or the rms
value). Examples 9.1, 9.2, and 9.3 illustrate these basic properties of the
sinusoidal function. In Example 9.4, we calculate the rms value of a periodic
function, and in so doing we clarify the meaning of root mean square.
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Figure 9.2 A The sinusoidal voltage from Fig. 9.1
shifted to the right when ¢ = Q.

< rms value of a sinusoidal voltage source
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FELIER M Finding the Characteristics of a Sinusoidal Current

A sinusoidal current has a maximum amplitude of
20 A.The current passes through one complete cycle
in 1 ms. The magnitude of the current at zero lime
is10 A.

a) What is the frequency of the current in hertz?

b) What is the frequency in radians per second?

c) Write the expression for i(t) using the cosine
function. Express ¢ in degrees.

d) What is the rms value of the current?

Solution

a) From the statement of the problem, 7 = 1 ms;
hence f = 1/T = 1000 Hz.

b) o = 27f = 20007 rad/s.
¢) We have i(t) = I,,cos (ot + ¢) = 20 cos(20007¢

+ ¢), but i(0) = 10 A. Therefore 10 = 20 cos ¢
and ¢ = 60°. Thus the expression for i(¢) becomes

i(t) = 20 cos (20007t + 60°).

d) From the derjvation of Eq. 9.6, the rms value of a
sinusoidal current is 7,,/V2. Therefore the rms
value is 20/V2, or 14.14 A.

FEBICEE Finding the Characteristics of a Sinusoidal Voltage

A sinusoidal voltage is given by the expression
v = 300 cos (1207t + 30°).

a) What is the period of the voltage in milliseconds?
b) What is the frequency in hertz?
¢) What is the magnitude of v at ¢ = 2.778 ms?

d) What is the rms value of v?

Solution

a) From the expression for v, w = 1207 tad/s.
Because w = 27/T, T = 27/w =45 5,
or 16.667 ms.

b) The frequency is 1/T, or 60 Hz.

¢) From (a), w = 27/16.667; thus, at t = 2.778 ms,
of is mnearly 1.047 rad, or 60°. Therefore,
(2,778 ms) = 300 cos (60° + 30°) = 0 V.

d) Vims = 300/V2 = 212,13 V.

FEl R Translating a Sine Expression to a Cosine Expression

We can translate the sine function to the cosine
function by subtracting 90° (/2 rad) from the argu-
ment of the sine function,

a) Verify this translation by showing that

sin (wt + 6) = cos(wt + 8 — 90°).

b) Use the result in (a) to express sin (ot + 30°) as
a cosine function.

Solution

a) Verification involves direct application of the
trigonometric identity

cos{ea — B) =cosacos B + sinasin .

Weleta = of + 8and 8 = 90°. As cos90° =0
and sin 90° = 1, we have

cos(a — B) = sine = sin{wr + 9) = cos(wt + 6 — 90%).

b) From (a) we have
sin(wt + 30°) = cos(wf + 30° — 90°) = cos(wt — 60°).
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FETERRA Calculating the rms Value of a Triangular Waveform

Calculate the rms value of the periodic triangular 9
current shown in Fig. 9.3. Express your answer in

terms of the peak current 7. ete.

| }
T/A T2 3T/4A T

|
e ~T/2-T/4 0l
P etc.

/ Figure 9.4 & i% versus t,
' t

!
-T/\ -T/4 T/4 T/ 3T/4

The analytical expression for i in the interval 0 to
~II- T/41is
. T 4]
Figure 9.3 & Periodic triangular current. i=—F 0<i< /4,
T
Solution The area under the squared function for one
From Eq. 9.5, the rms value of i is period is
1 [T to+T /41612 2T
Irms = ?/ idr. / i*dt = 4/ Lty = 2
fo ) 0 T 3

Interpreting the integral under the radical sign as
the area under the squared function for an interval
of one period is helpful in finding the rms value.
The squared function with the area between 0 and

The mean, or average, value of the function is simply
the area for one period divided by the periced. Thus

2
T shaded is shown in Fig. 9.4, which also indicates ; _1 Il _i,
that for this particular function, the area under the mean T 3 3
squared current for an interval of one period is
equal to four times the area under the squared cur- The rms value of the current is the square root of
rent for the interval 0 to 7/4 seconds; that is, this mean value. Hence
t+T T/4 I
2 2 P
zdt=4/ i“dr. I =—.
/0 0 ™3

NOTE: Assess your understanding of this material by trying Chapter Problems 9.1, 9.5, 9.8.

9.2 The Sinusoidal Response

Before focusing on the steady-state response to sinusoidal sources, let’s
consider the problem in broader terms, that is, in terms of the total
response. Such an overview will help you keep the steady-state solution in v, L
perspective. The circuit shown in Fig. 9.5 describes the general nature of
the problem. There, v, is a sinusoidal voltage, or

Figure 9.5 4 An RL circuit excited by a sinusoidal
v, = V,,cos (! + ¢). (9.7)  voltage source.
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For convenicnce, we assume the initial current in the circuit to be zero and
measure time from the moment the switch is closed. The task is to derive
the expression for i(¢) when ¢ = 0. It is similar to finding the step response
of an RL circuit, as in Chapter 7. The only difference is that the voltage
source is now a time-varying sinusoidal voltage rather than a constant, or
dc, voltage. Direct application of Kirchhoff’s voltage law to the circuit
shown in Fig. 9.5 leads to the ordinary differential equation

L% + Ri = V,,cos (wt + ¢), (9.8)

the formal solution of which is discussed in an introductory course in dif-
ferential equations. We ask those of you who have not yet studied dilfer-
ential equations to accept that the solution for 7 is

-V
1 = —__'f‘”—__z.COS ((P - 9)5_(R/L)‘ +

VR + 'L

JE + o0 cos (wt + o — 0),
W
(9.9)

where 8 is defined as the angle whose tangent is wl./R. Thus we can easily
determine 4 for a circuit driven by a sinusoidal source of known frequency.

We can check the validity of Eq. 9.9 by determining that it satisfies
Eq. 9.8 for all values of ¢ = 0 this exercise is left for your exploration in
Problem 9.10.

The first term on the right-hand side of Eq. 9.9 is referred to as the
transient component of the current because it becomes infinitesimal as
time elapses, The second term on the right-hand side is known as the
steady-state component of the solution. It exists as long as the switch
remains closed and the source continues to supply the sinusoidal voltage.
In this chapter, we develop a technique for calculating the steady-state
response directly, thus avoiding the problem of solving the differential
equation, However, in using this technique we forfcit obtaining either the
transient component or the total response, which is the sum of the tran-
sient and steady-state componcnts.

We now focus on the steady-state portion of Eq. 9.9. It is important to
remember the following characteristics of the steady-state solution:

1. The steady-state sotution is a sinusoidal function.

2. The frequency of the response signal is identical to the frequency of
the source signal. This condition is always true in a linear circuit
when the circuit parameters, R, L, and C, arc constant. (If frequen-
cics in the response signals are not present in the source signals,
therc is a nonlinear element in the circuit.)

3. The maximum amplitude of the steady-state response, in general,
differs from the maximum amplitude of the source. For the circuit
being discussed, the maximum amplitude of the response signal is
V/ VR? + o’ and the maximum amplitude of the signal source
isV,,.

4. The phase angle of the response signal, in general, differs from the
phase angle of the source. For the circuit being discusscd, the phase
angle of the current is ¢ — 6 and that of the voltage source is ¢.



These characteristics are worth remembering because they help you
understand the motivation for the phasor method, which we introduce in
Section 9.3. In particular, note that once the decision has been made to
find only the steady-state response, the task is reduced to finding the max-
imum amplitude and phase angle of the response signal. The waveform
and frequency of the response are already known.

NOTE: Assess your understanding of this material by trying Chaptey
Problem 9.9.

9.3 The Phasor

The phasor is a complex number that carries the amplitude and phase
angle information of a sinusojdal function.! The phasor concept is rooted
in Euler’s identity, which relates the exponential function to the trigono-
metric function:

e = cosf % jsiné. (9.10)

Equation 9.10 is important here because it gives us another way of express-
ing the cosine and sine functions. We can think of the cosine function as the
real part of the exponential function and the sine function as the imaginary
part of the exponential function; that is,

Il

cosf = R{e"}, (9.11)

and
sing = & {e}, (9.12)
where R means “the real part of” and & means “the imaginary part of.”
Because we have already chosen to use the cosine function in analyz-
ing the sinusoidal steady state (see Section 9.1), we can apply Eq. 9.11
directly. In particular, we write the sinusoidal voltage function given by

Eq. 9.1 in the form suggested by Eq. 9.11:

v =1V, cos (vt + @)
=V, R (/+9}

= VR (/). (9.13)

We can move the coefficient V,, inside the argument of the real part of the
function without altering the result. We can also reverse the order of the
two exponential functions inside the argument and write Eq. 9.13 as

v = R{V,ePe*}. (9.14)

! If you feel a bit uneasy about complex numbers, peruse Appendix B.

9.3
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Phasor transform B

In Eq. 9.14, note that the quantity V,,¢/® is a complex number that carries
the amplitude and phase angle of the given sinusoidal function. This
complex number is by definition the phasor representation, or phasor
transform, of the given sinusoidal function. Thus

V = Vet = PV, cos (0t + ¢)}, (9.15)

where the notation P{V,, cos (vt + ¢)} is read “the phasor transform of
V,,cos (wt + ¢).” Thus the phasor transform transfers the sinusoidal func-
tion from the time domain to the complex-number domain, which is also
calied the frequency domain, since the response depends, in general, on w.
As in Eq. 9.15, throughout this book we represent a phasor quantity by
using a boldface letter.

Equation 9.15 is the polar form of a phasor, but we also can express a
phasor in rectangular form. Thus we rewrite Eq. 9.15 as

V =V,,cos¢ + jV, sin . (9.16)

Both polar and rectangular forms are useful in circuit applications of the
phasor concept.

One additional comment regarding Eq. 9.15 is in order. The frequent
occurrence of the exponential function ¢/4 has led to an abbreviation that
lends itself to text material. This abbreviation is the angle notation

1/¢° = 1e®.

We use this notation extensively in the material that follows.

Inverse Phasor Transform

So far we have emphasized moving from the sinusoidal function to its pha-
sor transform. However, we may also reverse the process. That is, for a
phasor we may write the expression for the sinusoidal function. Thus for
V =100/—-26°, the expression for v is 100 cos (wt — 26°) because we
have decided to use the cosine function for all sinusoids. Observe that we
cannot deduce the value of w from the phasor. The phasor carries only
amplitude and phase information. The step of going from the phasor
transform to the time-domain expression is referred to as finding the
inverse phasor transform and is formalized by the equation

PHV, e} = R{V, /%), (9.17)



where the notation # {V,,¢”®} is rcad as “the inverse phasor transform of
V,,¢/®.” Equation 9.17 indicates that to find the inverse phasor transform,
we multiply the phasor by ¢/’ and then extract the real part of the product.

The phasor transform is useful in circuit analysis because it reduces
the task of finding the maximum amplitude and phase angle of the steady-
state sinusoidal response to the algebra of complex numbers. The follow-
ing observations verify this conclusion:

1. The transient component vanishes as time elapses, so the steady-
state component of the solution must also satisfy the differential
equation. (See Problem 9.10(b].)

2. In a linear circuit driven by sinusoidal sources, the steady-state
response also is sinusoidal, and the frequency of the sinusoidal
response is the same as the frequency of the sinusoidal source.

3. Using the notation introduced in Eq. 9.11, we can postulate that the
steady-state solution is of the form R {AePel*'}, where A is the
maximum amplitude of the response and § is the phase angie of the
response.

4. When we substitute the postulated steady-state solution into the
differential equation, the exponential term &/*" cancels out, leaving
the solution for A and 8 in the domain of complex numbers.

We illustrate these observations with the circuit shown in Fig. 9.5 (see
p- 335). We know that the steady-state solution for the current i is of the form

i(t) = R{I e}, (9.18)

where the subscript “ss” emphasizes that we are dealing with the steady-
state solution. When we substitute Eq. 9.18 into Eq. 9.8, we generate the
expression

R{joLl,ePe*} + R{RI, P} = R{V,el¢eio"}. (9.19)

In deriving Eq. .12 we recognized that both differentiation and multipli-
cation by a constant can be taken inside the real part of an operation. We
also rewrote the right-hand side of Eq. 9.8, using the notation of Eq. 9.11.
From the algebra of complex numbers, we know that the sum of the real
parts is the same as the real part of the sum. Therefore we may reduce the
left-hand side of Eq.9.19 to a single term:

R{(joL + R)I,ePe®} = R{V, %}, (9.20)

Recall that our decision to use the cosine function in analyzing the
response of a circuit in the sinusoidal steady state results in the use of the

9.3
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R operator in deriving Eq. 9.20. If instead we had chosen to use the sine
function in our sinusoidal steady-state analysis, we would have applied
Eq. 9.12 directly, in place of Eq. 9.11, and the result would be Eq. 9.21:

S{(joL + R} = {V,el®/*}), (9.21)

Note that the complex quantities on either side of Fq. 9.21 are identical to
those on either side of Eq. 9.20. When bath the real and imaginary parts of
two complex quantities are equal, then the complex quantities are them-
selves equal. Therefore, from Egs. 9.20 and 9.21,

(joL + R, =V, e/,
or

V,,el®

]meiﬂ = m (9.22)

Note that ¢/ has been eliminated from the determination of the ampli-
tude {/,,) and phase angle (8) of the response. Thus, for this circuit, the
task of finding I,, and 8 involves the algebraic manipulation of the com-
plex quantities V,,¢/* and R + jwl. Note that we encountered both polar
and rectangular forms.

An important warning is in order: The phasor transform, along with
the inverse phasor transform, allows you to go back and forth between the
time domain and the frequency domain. Therefore, when you obtain a
solution, you are cither in the time domain or the frequency domain. You
cannot be in both domains simultaneously. Any solution that contains a
mixture of time domain and phasor domain nomenclature is nonsensical.

The phasor transform is also useful in circuit analysis because it applies
directly to the sum of sinusoidal functions. Circuit analysis involves sum-
ming currents and voltages, so the importance of this observation is abvi-
ous. We can formalize this property as follows: If

v=vt+t vt -+, (9.23)

where all the voltages on the right-hand side are sinusoidal voltages of the
same frequency, then

V=V+V%+- - +V, (9.24)

Thus the phasor representation is the sum of the phasors of the individual
terms. We discuss the development of Eq. 9.24 in Section 9.5.
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Before applying the phasor transform to circuit analysis, we illustrate
its usefuluess in solving a problem with which you are already familiar:
adding sinusoidal functions via trigonometric identities. Example 9.5
shows how the phasor transform greatly simplifies this type of problem.

SelnERBECR  Adding Cosines Using Phasors

If y; = 20 cos (wt — 30%) and y, = 40 cos (wt + 60°),
express y = y, + y; as a single sinusoidal function.

a) Solve by using trigonometric identities.
b) Solve by using the phasor concept.

Solution

a) First we expand both y; and y,, using the cosine
of the sum of two angles, to get

y1 = 20cos wt cos 30° + 20sin wr sin 30°;

vo = 40 cos ot cos 60° — 40 sin wr sin 60°.

Adding y, and y,, we obtain
y = {20 cos 30 + 40 cos 60) cos wt
+ (20sin 30 — 405in 60) sin wt
= 37.32 cos wt — 24.64 sin wt.
To combine these two terms we treat the
co-efficients of the cosine and sine as sides of a right
triangle (Fig. 9.6) and then multiply and divide the

right-hand side by the hypotenuse. Our expression
for y becomes

37.32 24.64
y =447 ( E7 cos wt 4472 smwt)

= 44.72( c08 33.43° cos wt — sin 33.43" sin wt).

Again, we invoke the identity involving the
cosine of the sum of two angles and write

y = 44.72 cos (ot + 33.43°).

44.72 24.64
33.43°
k. J
37.32

Figure 9.6 .4 A right triangle used in the solution for y.

b) We can solve the problem by using phasors as
follows: Because

Y=yt oy,
then, from Eq. 9.24,
Y = Yl + Yz

= 20/-30° + 40/60°

= (1732 — j10) + (20 + j34.64)
= 37.32 + j24.64

=44.72/3343".

Once we know the phasor Y, we can write the
corresponding trigonometric function for y by
taking the inverse phasor transform:

y = @—1{44.726133.43} — ﬂ{44.72€j33'436jm}
= 44.72 cos (ot + 33.43°).

The superiority of the phasor approach for
adding sinusoidal functions should be apparent.
Note that it requires the ability to move back
and forth between the polar and rectangular
forms of complex numbers.
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Objective I—Understand phasor concepts and be able to perform a phasor transform and an mverse phasor transform

9.1 Fmd the pha.sor transform of each tngonornet- e (c) 11 18(—26 Sl A

ric funcuon _
a) v = 170 ¢ cos (377r = 40 ) V.
b) i = 10sin (10002 i 20° ) AL

¢) i = [5cos(wt + 3687 i 1Ocos(wt3 i o

~ 5313°)] A

d) v = [300 cos (20,000t fasy
— 100:5in(20,0007¢ + 30°)] mV

Al’lswer: (a) 1701_@: v. i
O dbay Chﬂpter Problem 9 2

Figure 9.7 4 A resistive element carrying a sinusoidal
cdrrent.

(d) 339.90/61. G

9.2 Flnd the time- domam expressmn correspon—
: ding to each phasor: :._3 dn ;

. ,a) v- = 18 6/_’—54 V.

_'c) V- (20 5 /80 —"30 1515 ) V.

_A’riswer’ (a) 18 6cos (wt ?: 54 ) N
() 48 81 cos (wt - 126 68° } mA;

- (9) 7279 cos (wt + 97.08°) V.

9.4 The Passive Circuit Elements
in the Frequency Domain

The systematic application of the phasor transform in circuit analysis
requires two steps. First, we must establish the relationship between the
phasor current and the phasor voltage at the terminals of the passive cir-
cuit elements. Second, we must develop the phasor-domain version of
Kirchhoff’s laws, which we discuss in Section 9.5. Int this section, we estab-
lish the relationship between the phasor current and voltage at the termi-
nals of the resistor, inductor, and capacitor. We begin with the resistor and
use the passive sign convention in all the derivations.

The V-I Relationship for a Resistor

From Ohm’s law, if the current in a resistor varies sinusoidally with time—
thatis,if i = 1, cos (wt + 0;)—the voltage at the terminals of the resistor,
as shown in Fig. 9.7, is

=
|

= R[!,,cos (wt + 6))]

= RI,,[cos (ot + 6)], {9.25)

where 1,, is the maximum amplitude of the current in amperes and 6; is
the phase angle of the current.
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The phasor transform of this voltage is

V = Rl,e% = RI,/8; (9.26)

But 1,,/6; is the phasor representation of the sinusoidal current, so we can
write Eq. 9.26 as

V = RI, (9-27)
which states that the phasor voltage at the terminals of a resistor is simply
the resistance times the phasor current. Figure 9.8 shows the circuit dia-
gram for a resistor in the frequency domain.

Equations 9.25 and 9.27 both contain another important piece of
information—mnamely, that at the terminals of a resistor, there is no phase
shift between the current and voltage. Figure 9.9 depicts this phase rela-
tionship, where the phase angle of both the voltage and the current wave-
forms is 60°. The signals are said to be in phase because they both reach

corresponding values on their respective curves at the same time (for
example, they are at their positive maxima at the same instant).

The V-I Relationship for an Inductor

We derive the relationship between the phasor current and phasor voltage
at the terminals of an inductor by assuming a sinusoidal current and using
Ldi/dt to establish the corresponding voltage. Thus, for i = I,, cos (wt
+ 6;), the expression for the voltage is

di
v = Ld_i = —oLl,, sin(wt + 6)). (9.28)
We now rewrite Eq. 9.28 using the cosine function:
v = —wLl,, cos{wt + 6; — 90°). (9.29)
The phasor representation of the voltage given by Eq. 9.29 is
V = —oLJ, %),
= —@LI, e 1%
(9.30)

= jwLl, e

= jwLlL
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< Relationship between phasor voltage and
phasor current for a resistor

R
*——"WN\——9
4 v-_ -
T
Figure 9.8 & The frequency-domain equivalent circuit of
a resistor.
v, i
2
i

A

|
13
3T/ 2T

~T/40

v v

Figure 9.9 4 A plot showing that the voltage and cur-
rent at the terminals of a resistor are in phase.

<{ Relationship between phasor voltage and
phasor current for an inductor
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Figure 9.10 A The frequency-domain equivalent circuit
for an inductor.

Figure 9.11 2. A plot showing the phase relationship
between the current and voltage at the terminals of an
inductor (8; = 60°).

Note that in deriving Eq. 9.30 we uscd the identity
e = 00s90° — jsin90° = —j.

Equation 9.30 states that the phasor voltage at the terminals of an
inductor equals jwl times the phasor current. Figure 9.10 shows the
frequency-domain equivalent circuit for the inductor. It is important to
note that the relationship between phasor voltage and phasor current for
an inductor applies as well for the mutual inductance in one coil due to
current flowing in another mutually coupled coil. That js, the phasor volt-
age at the terminals of one coil in a mutually coupled pair of coils equals
jwM times the phasor current in the other coil.

We can rewrite Eq. 9.30 as

V = (0L /90, /6,

= wLl,, /{6; + %0)", (9.31)

which indicates that the voltage and current are out of phase by exactly
90°. In particular, the voltage leads the current by 90°, or, equivalently, the
current lags behind the voltage by 90°. Figure 9.11 illustrates this concept
of voltage leading current or current lagging voltage. For example, the volt-
age reaches its negative peak exactly 90° before the current reaches its
negative peak. The same observation can be made with respect to the
zero-going-positive crossing or the positive peak.

We can also express the phase shift in seconds. A phase shift of 90°
corresponds to one-fourth of a period; hence the voltage leads the current
by T/4, or % second.

The V-I Relationship for a Capacitor

We obtain the relationship between the phasor current and phasor voltage
at the terminals of a capacitor from the derivation of Eq. 9.30. In other
words, if we note that for a capacitor that

I=CI’

and assume that
v =V, cos(wt + 6,),
then

I = jwCV. (9.32)
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Now if we solve Eq. 9.32 for the voltage as a function of the current, we get

V= j'a)_CI-'

(9.33)
Equation 9.33 demonstrates that the equivalent circuit for the capacitor in
the phasor domain is as shown in Fig. 9.12.

The voltage across the terminals of a capacitor lags behind the current
by exactly 90°. We can easily show this relationship by rewriting Eq. 9.33 as

1
V=—/-901,/6
—= /=901, /6;

(9.34)

I
= i /(6; — 90)°.

The alternative way to express the phase relationship contained in Eq. 9.34
is to say that the current leads the voltage by 90°. Figure 6.13 shows the
phase relationship between the current and voltage at the terminals of a
capacitor.

Impedance and Reactance

We conclude this discussion of passive circuit elements in the frequency
domain with an important observation. When we compare Eqs. 9.27, 9.30,
and 9.33, we note that they are all of the form

V=21 (9.35)

where Z represents the impedance of the circuit element. Solving for Z in
Eq.9.35, you can see that impedance is the ratio of a circuit element’s volt-
age phasor to its current phasor. Thus the impedance of a resistor is R, the
impedance of an inductor is jol, the impedance of mutual inductance is
joM, and the impedance of a capacitor is 1/jwC. In all cases, impedance
is measured in ohms. Note that, although impedance is a complex number,
it is not a phasor. Remember, a phasor is a complex number that shows up
as the coefficient of e/*". Thus, although all phasors are complex numbers,
not all complex numbers are phasors.

Impedance in the frequency domain is the quantity analogous to
resistance, inductance, and capacitance in the time domain. The imaginary
part of the impedance is called reactance. The values of impedance and
reactance for each of the component values are summarized in Table 9.1.

And finally, a reminder. If the reference direction for the current in a
passive circuit element is in the direction of the voltage rise across the ele-
ment, you must insert a minus sign into the equation that relates the volt-
age to the current.
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< Relationship between phasor voltage and
phasor current for a capacitor

1/joC
4 -
==

Figure 9.12 4 The frequency domain equivalent circuit
of a capaditor.

Figure 9.13 & A plot showing the phase relationship
between the current and voltage at the terminals of a
capacitor (8; = 60°).

<¢ Definition of impedance

. TABLE 91 : I'_r_r_lp'_e'dzih:ce:ﬁnd '-Re:hi:.t_éhcé_'_\'faldeg

Circnit

Element Impedance Reactance
Resislor R -
Inductor JjolL oL
Capacitor J(—1/aC) -1/wC




346

Sinusoidal Steady-State Analysis

9.5 Kirchhoff's Laws
in the Frequency Domain

We pointed out in Section 9.3, with reference to Eqs. 9.23 and 9.24, that the
phasor transform is useful in circuit analysis because it applies to the sum
of sinusoidal functions. We illustrated this usefulness in Example 9.5. We
now formalize this observation by developing Kirchhoff’s laws in the fre-
quency domain.

Kirchhoff’s Voltage Law in the Frequency Domain
We begin by assuming that vy — v, represent voltages around a closed
path in a circuit. We also assume that the circuit is operating in a sinusoidal
steady state. Thus Kirchhoff’s voltage law requires that

7)1+U2+"' +v,,=0, (9.36)

which in the sinusoidal steady state becomes complex

Vi cos (of + 6;) + V,, cos(wt + 8,) + -+ + V), cos(wt + 6,) = 0.
(9.37)

We now use Euler’s identity to write Eq. 9.37 as

R{V, e} + R{V, %/} + - + R{V,, Pe®)  (3.38)



which we rewrite as
RV, e + V,, el + -+ Y, e} =0, (9.39)
Factoring the term ¢/*' from each term yields
R{(V & + Vol + - + V, e} = 0,
or
R{(Vi + V, + -+ +V,)e*} = 0. (9.40)
But ¢/ # 0, so
V1_+ V,+ -+ V¥, =_0,' (9.41)

which is the statement of Kirchhoff’s voltage law as it applies to phasor
voltages. In other words, Eq. 9.36 applies to a set of sinusoidal voltages in
the time domain, and Eq. 9.41 is the equivalent statement in the fre-
quency domain.

Kirchhoff's Current Law in the Frequency Domain

A similar derivation applies to a set of sinusoidal currents. Thus if
h+ip+ - +i,=0, (8.42)
then
L+L+ B o e D)6 (9.43)

where I, I,,---, 1, are the phasor representations of the individual cur-
Tents iy, by, -, ipe

Equations 9.35, 9.41, and 9.43 form the basis for circuit analysis in the
frequency domain. Note that Eq. 9.35 has the same algebraic form as
Ohm’s law, and that Egs. 9.41 and 9.43 state Kirchhoff’s laws for phasor
quantities. Therefore you may use all the techniques developed for analyz-
ing resistive circuits to find phasor currents and voltages. You need learn
no new analytic techniques; the basic circuit analysis and simplification
tools covered in Chapters 2—4 can all be used to analyze circuits in the fre-
quency dornain. Phasor circuit analysis consists of two fundamental tasks:
(1) You must be able to construct the frequency-domain model of a cir-
cuit; and (2) you must be able to manipulate complex numbers and/or
quantities algebraically. We illustrate these aspects of phasor analysis in
the discussion that follows, beginning with series, parallel, and delta-to-
wye simpiifications.

9.5  Kirchhoff's Laws in the Frequency Domain

< KVL in the frequency domain

< KCL in the frequency domain
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ObJechve 3-—Know how to use cn‘cuzt analys1s techmques to solve a arcu m the frequency d omain

9.5  Four branches termmate at a common nodc b : 'f i = 100 cgs ((ut +'25 ) e
The reference dtrecuon of each branch current o iy =100 ) A, Ell'ld
(L5, and is)is toward the node I e e ]OOCOS (cot = 95 ) A, fmd I

NOTE: Alsoiry Chaprer-Probl.e'm.si9,f1_4fan4- 9_;516." e Answer. . 4 = O

9.6 Series, Parallel, and Delta-to-Wye
Simplifications

The rules for combining impedances in series or parallel and for making
delta-to-wye transformations are the same as those for resistors. The only
difference is that combining impedances involves the algebraic manipula-
tion of complex numbers.

Combining Impedances in Series and Parallel

ae—| 7, |l Impedances in series can be combined into a single impedance by simply

+ adding the individual impedances. The circuit shown in Fig. 9.14 defines the
1 problem in general terms. The impedances Z4, Z,,-- -, Z,, are connected in
series between terminals a,b. When impedances are in series, they carry the
same phasor current I. From Eq. 9.35, the voltage drop across each imped-
ance is Z{I, Z,1,-+-, Z, I, and from Kirchhoff’s voltage law,

A aby

be

Figure 9.14 & Impedances in series.
Vab = Z]_I ar ZQI I Yye e ZnI

=(Z1+ 2, + - +Z)L (9.44)

The equivalent impedance between terminals a,b is

Y.
Zo=—r 25 %h 2, (9.45)

Example 9.6 illustrates a numerical application of Eq. 9.45.
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FEL I CRNE Combining Impedances in Series

A 90 Q resistor, a 32 mH inductor, and a 5 uF The phasor transform of v, is

capacitor are connected in series across the termi-

nals of a sinusoidal voltage source, as shown in V, =750 /30° V.

Fig. 9.15. The steady-state expression for the source

voltage v, is 750 cos (5000t + 30°) V. Figure 9.16 illustrates the frequency-domain

; : equivalent circuit of the circuit shown in Fig. 9.15.
a) Construct the frequency-domain equivalent y i
b) We compute the phasor current simply by divid-

circuit.
_ ek ‘ ing the voltage of the voltage source by the equiv-
b) Calculate the steady-state current i by the phasor alent impedance between the terminals a,b. From
method. Eq. 9.45

Zp = 90 + j160 — j40

90 O 32 mH =90 + j120 = 150/53.13° .
Thus
750 /30°
e =3 D B R A
150 /53.13° 21 A

Figure 9.15 A The circuit for Example 9.6.
We may now write the steady-state expression
for i directly:

Solution i = 5cos (5000r — 23.13°) A.

a) From the expression for o, we have
w = 5000 rad/s. Therefore the impedance of the a 900 j160Q
32 mH inductor is ]

750/30° ;
Z; = joL = j(5000