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Building the Literature of a Profession

Fifteen prominent chemical engineers first met in New York more than 60 years ago
to plan a continuing literature for their rapidly growing profession. From industry
came such pioneer practitioners as Leo H. Baekeland, Arthur D. Little, Charles L.
Reese, John V. N. Dorr, M. C. Whitaker, and R. S. McBride. From the universities
came such eminent educatdrs  as William H. Walker, Alfred H. White, D. D. Jackson,
J. H. James, Warren K. Lewis, and Harry A. Curtis. H. C. Parmelee, then editor
of Chemical and Metallurgical Engineering, served as chairman and was joined
subsequently by S. D. Kirkpatrick as consulting editor.

After several meetings, this committee submitted its report to the McGraw-Hill
Book Company in September 1925. In the report were detailed specifications for a
correlated series of more than a dozen texts and reference books which have since
become the McGraw-Hill Series in Chemical  Engineering and which became the
cornerstone of the chemical engineering curriculum.

From this beginning there has evolved a series of texts surpassing by far the
scope and longevity envisioned by the founding Editorial Board. The McGraw-Hill
Series in Chemical Engineering stands as a unique historical record of the devel-
opment of chemical engineering education and practice. In the series one finds the
milestones of the subject’s evolution: industrial chemistry, stoichiometry, unit oper-
ations and processes, thermodynamics, kinetics, and transfer operations.

Chemical engineering is a dynamic profession, and its literature continues to
evolve. McGraw-Hill, with its editor B. J. Clark and its consulting editors, remains
committed to a publishing policy that will serve, and indeed lead,. the needs of the
chemical engineering profession during the years to come.
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PREFACE

The field of process control has grown rapidly since its inception in the INOs.  Direct
evidence of this growth in the body of knowledge is easily found by comparing the
lengths of the textbooks written over this time period. The first process control book
(Cealgske, 1956) was a modest 230 pages. The popular Coughanowr and Koppel
(1965) text was 490 pages. The senior author’s first edition ( 1973) was 560 pages.
The text by Seborg et al. (1989) was 710 pages. The recently published text by
Ogunnaike and Ray (1994) runs 1250 pages!

It seems obvious to us that more material has been developed than can be taught
in a typical one-semester undergraduate course in process control. Therefore, a short
and concise textbook is needed that presents only the essential aspects of process
control that every chemical engineering undergraduate ought to know. The purpose
of this book is to fulfill this need.

Our intended audience is junior and senior undergraduate chemical engineering
students. The book is meant to provide the fundamental concepts and the practical
tools needed by all chemical engineers, regardless of the particular area they eventu-
ally enter. Since many advanced control topics are not included, those students who
want to specialize in control can go further by referring to more comprehensive texts,
such as Ogunnaike and Ray (1994).

The mathematics of the subject are minimized, and more emphasis is placed
on examples that illustrate principles and concepts of great practical importance.
Simulation programs (in FORTRAN) for a number of example processes are used to
generate dynamic results. Plotting and analysis are accomplished using computer-
aided software (MATLAB).

One of the unique features of this book involves our coverage of two increas-
ingly important areas in process design and process control. The first is the interac-
tion between steady-state design and control. The second is plantwide control with
particular emphasis on the selection of control structures for an entire multi-unit pro-
cess. Other books have not dealt with these areas in any quantitative way. Because
we feel that these subjects are central to the missions of process design engineers
and process control engineers, we devote two chapters to them.

We have injected some~  examples and problems that illustrate the interdisci-
plinary nature of the control field. Most control groups -in  industry utilize the tal-
ents of engineers from many disciplines: chemical, mechanical, and electrical. All
engineering fields use the same mathematics for dynamics and control. Designing
control systems for chemical reactors and distillation columns in chemical engineer-
ing has direct parallels with designing control systems for F-16 fighters, 747 jumbo
jets, Ferrari sports cars, or garbage trucks. We illustrate this in several places in the
text.

This book is intended to be a learning tool. We try to educate our readers, not
impress them with elegant mathematics or language. Therefore, we hope you find
the book readable, clear, and (most important) useful.

xix
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When you have completed your study of this book, you will have covered the
essential areas of process control. What ideas should you take away from this study
and apply toward the practice of chemical engineering (whether or not you specialize
as a control engineer)?

I. The most important lesson to remember is that our focus as engineers must be
on the process. We must understand its operation, ob-jectives,  constraints, and
uncertainties. No amount of detailed modeling, mathematical manipulation, or
supercomputer exercise will overcome our ignorance if we ignore the true subject
of our work. We need to think of Process control with a capital P and a small c.

2. A steady-state analysis, although essential, is typically not sufficient to operate
a chemical process satisfactorily. We must also understand something about the
dynamic behavior of the individual units and the process as a whole. At a mini-
mum, we need to know what characteristics (deadtimes, transport rates, and ca-
pacitances) govern the dynamic response of the system.

3. It is always best to utilize the simplest control system that will achieve the desired
objectives. Sophistication and elegance on paper do not necessarily translate into
effective performance in the plant. Careful attention must be paid to the practical
consequences of any proposed control strategy. Our control systems must ensure
safe and stable operation, they must be robust to changes in operating conditions
and process variables, and they must work reliably.

4. Finally, we must recognize that the design of a process fundamentally determines
how it will respond dynamically and how it can be controlled. Considerations
of controllability need to be incorporated into the process design. Sometimes the
solution to a control problem does not have anything to do with the control system
but requires some modification to the process itself.

If we keep these ideas in mind, then we can apply the basic principles of process
control to solve engineering problems.

Michael L. Luyben
William L. Luyben
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As the field of process control has matured over the last 30 years, it has become one
of the core areas in chemical engineering along with thermodynamics, heat trans-
fer, mass transfer, fluid mechanics, and reactor kinetics. Any chemical engineering.
graduate should have some knowledge not only of these traditional areas but also
of the fundamentals of process control. For those of us who have been part of this
period of development, the attainment of parity with the traditional areas has been
long overdue.

The literature in process control is enormous: over a dozen textbooks and thou-
sands of papers have been published during the last three decades. This body of
knowledge has become so large that it is impossible to cover it all at the undergrad-
uate level. Therefore, we present in this book only those topics we feel are essential
for gaining an understanding of the basic principles of process control.

One of the important themes that we emphasize is the need for control engineers
to understand the process-its operation, constraints, design, and objectives. The
way the plant is designed has a large impact on how it should be controlled and what
level of control performance can be obtained. As the mechanical engineers say, you
can’t make a garbage truck drive like a Ferrari!

We present in the following section three simple examples that illustrate the
importance of dynamic response; show the structure of a single-input, single-output
conventional control system; and illustrate a typical plantwide control system.
Throughout the rest of the book, many more real-life examples and problems are
presented. All of these are drawn from close to 50 years of collective experience
of the authors in solving practical control problems in the chemical and petroleum
industries.
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*. - ,. Gravity flow tank.

1.1
EXAMPLES OF PROCESS DYNAMICS AND CONTROL

E X A M P L E  1. I. Figure I. 1 shows a tank into which an incompressible (constant-density)
liquid is pumped at a variable rate Fo (gal/min).  This inflow rate can vary with time
because of changes in operations upstream. The height of liquid in the vertical cylindrical
tank is h (ft). The flow rate out of the tank is F (gal/min).

Now Fo,  h, and F will all vary with time and are therefore functions of time 1.
Consequently, we use the notation Fo(,),  II(,), and F(,). Liquid leaves the base of the tank
via a long horizontal pipe and discharges into the top of another tank. Both tanks are
open to the atmosphere.

Let us look first at the steady-state conditions. By “steady state” we mean the con-
ditions when nothing is changing with time or when time has become very large. Math-
ematically this corresponds to having all time derivatives equal to zero or allowing time
to approach infinity. At steady state the flow rate out of the tank must equal the flow rate
into the tank: Fo  = F. In this book we denote the steady-state value of a variable by an
overscore or bar.

For a given F, the height of liquid in the tank at steady state h is a constant, and
a larger flow rate requires a higher liquid level. The liquid height provides just enough
hydraulic pressure head at the inlet of the pipe to overcome the frictional pressure losses
of the liquid flowing down the pipe.

The steady-state design of the tank involves the selection of the height and diameter
of the tank and the diameter of the exit pipe. For a given pipe diameter, the tank height
must be large enough to prevent the tank from overflowing at the maximum expected
flow rate. Thus, the design involves an engineering trade-off, i.e., an economic balance
between the cost of a taller tank and the cost of a bigger-diameter pipe. A larger pipe
diameter requires a lower liquid height, as illustrated in Fig. 1.2. A conservative design
engineer would probably include a 20 to 30 percent over-design factor in the tank height
to permit future capacity increases.

Safety and environmental reviews would probably recommend the installation of a
high-level alarm and/or an interlock (a device to shut off the feed if the level gets too high)
to guarantee that the tank could never overfill. The tragic accidents at Three Mile Is-
land, Chernobyl, and Bhopal illustrate the need for well-designed and well-instrumented
plants.

Now that we have considered the traditional steady-state design aspects of this fluid
flow system, we are ready to examine its dynamics. What happens dynamically if we
change Fo,  and how will h(,,  and F(,,  vary with time? Obviously, F eventually has to end
up at the new value of Fo.  We can easily determine from the steady-state design curve
of Fig. 1.2 where h will be at the new steady state. But what dynamic paths or time
trajectories will h(,,  and F(,,  take to get to their new steady states? Fig. 1.3 shows two
nncc,hlp t,-a.,,,r,~n,  f-nc.,.,,\n,~,,<r  /r...r..n..  I -- ?\ r-..  I- 1 1 fl t # , . .
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2.4 2.6 2 .8 3 3.2
Pipe diameter (ft)

3 .4 3 .6 3 .8

FIGURE 1.2
Gravity flow tank.

Time FIGURE 1.3

in h and F to their new steady-state values. Curves 2, however, show the liquid height
rising above (“overshooting”) its final steady-state value before settling out at the new
liquid level. Clearly, if the peak of the overshoot in h were above the top of the tank, we
would be in trouble.

Our steady-state design calculations tell us nothing about the dynamic response of
the system. They tell us where we start and where we end but not how we get there. This
L;nr{ fif;nfnrmnt;,.,  :” r- ..,.,. I-A I- 1 ’ ,- ’ . .
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EXAMPLE 1.2. Consider the heat exchanger sketched in Fig. 1.4. An oil stream passes
through the tube side of a tube-in-shell heat exchanger and is heated by condensing
steam on the shell side. The steam condensate leaves through a steam trap (a device
that permits only liquid to pass through it, thus preventing “blow-through” of the steam
vapor). We want to control the temperature of the oil leaving the heat exchanger. To do
this, a thermocouple is inserted in a thermowell in the exit oil pipe. The thermocouple
wires are connected to a “temperature transmitter,” an electronic device that converts the
millivolt thermocouple output to a 4- to 20-mA  “control signal.” This current signal is
sent to a temperature controller, an electronic, digital, or pneumatic device that compares
the desired temperature (the “setpoint”) with the actual temperature and sends out a
signal to a control valve. The temperature controller opens the steam valve a little if the
temperature is too low and closes the valve a little if the temperature is too high.

We consider all the components of this temperature control loop in more detail later
in this book. For now we need only appreciate the fact that the automatic control of some
variable in a process requires the installation of a sensor, a transmitter, a controller, and a
final control element (usually a control valve). A major component of this book involves
learning how to decide what type of controller should be used and how it should be
“tuned,” i.e., how the adjustable tuning parameters in the controller should be set so that
we do a good control job. n

EXAMPLE 1.3. Our third example illustrates a typical control scheme for a simplified
version of an entire chemical plant. Figure 1.5 gives a sketch of the process configuration
and its control system. Two liquid feeds are pumped into a reactor, in which they react to
form products. The reaction is exothermic, and therefore heat must be removed from the
reactor. This is accomplished by adding cooling water to a jacket surrounding the reactor.
The reactor effluent is pumped through a preheater into a distillation column that splits
it into two product streams.

Traditional steady-state design procedures are used to specify the various pieces of
equipment in the plant:

Fluid mechanics: pump heads, rates, and power; piping sizes; column tray layout
and sizing; heat-exchanger tube and shell side baffling and sizing

Hear trcrmfer: reactor heat removal; preheater, reboiler, and condenser heat transfer
areas; temperature levels of steam and cooling water

Chenticd kinetics: reactor siLe  and operating conditions (temperature, pressure,
catalyst, etc.)

Tllerrno~i~tl~lmi~s czrlcl  NULV fr~rns/tit.:  operating pressure, number of plates and re-
II . , . . . .
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But what procedure do we use to decide how to control this planC’l  We spend most ol‘oul

time in this book exploring this important design and operating problem. Our studies of‘

process control are aimed a~  undcrs~anding  the dynamics of processes and control sys-

tems so that we can develop and design plants that operate more efficiently and safely,

produce higher-quality products, arc more easily controlled, and are more  cnvironmen-

tally friendly.

For now let us merely say that the control system shown in Fig. I .S is a typical
conventional system. It is about the minimum rhat would be needed to run this plant

automatically without constant operator attention. Even in this simple plant. with a min-

imum of instrumentation, IO control loops are required. We will find that most chemical

engineering processes are multivariable. The key to any successful control system is

understanding how the process works. n

1.2
SOME IMPORTANT SIMULATION RESULTS

In the preceding section we discussed qualitatively some concepts of dynamics and
control. Now we want to be more quantitative and look at two numerical examples
of dynamic systems: The first involves level control in a series of tanks. The second
involves temperature control in a three-tank process. These processes are simple,
but their dynamic response is rich enough that we can observe some very important
behavior.

1.2.1 Proportional and Proportional-Integral Level Control

The process sketched in Fig. 1.6 consists of two vertical cylindrical tanks with a level
controller on each tank. The feed stream to the first tank comes from an upstream
unit. The liquid level in each of the tanks is controlled by manipulating the flow
rate of liquid pumped from the corresponding tank. The level signal from the level
transmitter on each tank is sent to a level controller. The output signal from each
controller goes to a control valve that sets the outflow rate.

FO

I

FIGURE 1.6
Level control.
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A clynnlnic  model  of this process contains two ordinary differential equations,
which arise from  the lotal  mass balance on each of the tanks. We assume constant
density.

(1.1)

(1.2)

where A,, = cross-sectional area of izth  tank
h,, = liquid height in nth tank
F,,  = volumetric flow rate of liquid from nth tank
Fo  = volumetric flow rate of feed to process

The flow rates F1  and F2  are set by the controller output signals CO, and CO2  from
the two level controllers. The process variable signals PV, and PV2  from the two
level transmitters depend on the two liquid levels 111  and 152.  In this example we
express these PV and CO signals as fractions of the full-scale range of the signals.
The signals from transmitters and controllers are voltage, current, or pressure signals,
which vary over standard ranges (0 to 10 V, 4 to 20 mA, or 3 to 15 psig).

maxF,  = CO,& (1.3)

F2 = CO-,F:““” (1.4)

where F,‘Fax = flow rate when the control valve is wide open.

PVI  = vh,a” U-5)

PV2  = Whpan U-6)

where h,,,span  = the “span” of the level transmitter, i.e., the difference between the
maximum and minimum liquid levels measured in the tank. Numerical values of all
parameters and the values of the variables at the initial steady-state conditions are
given in Table 1.1. The FORTRAN program used to simulate the dynamics of the
process is given in Table 1.2. For more background on dynamic modeling and sim-
ulation methods, refer to W. L. Luyben, Process Modeling, Simulation and Control
for Chemical Engineers, 2d ed. (1990),  McGraw-Hill, New York.

TABLE 1.1

Values of parameters and steady-state variables

Diameter of tank = 10 ft
Cross-sectional area of tank = 78.54 ft*
Span of level transmitters = 20 ft
Maximum flow rate through control valves = 200 ft3/min
Steady-state flow rates = 100 ft3/min
Steady-state levels = 10 ft
Bias value of level controllers = Bias = 0.5 fraction of full scale
Setpoint  signals of controller = SP = 0.5 fraction of full scale
Steady-state value of controller outputs = CO = 0.5 fraction of full  scale
Steady-state value of level transmitter outputs = PV = 0.5 fraction of full  scale



data delta, mop/. 1,200./
data spL?*O.S/
data area,JW78..54,100./
data kc/O.5,1.5,0.628,0.3/4/
data reset/O.,O.,S.,5./
data dtprint.dtplot/S.,.2/

c Disturbance is +lO%  fo
fo=~OO.*l.  I

c Make four runs with dlffererzt controller settings
do 1000 nc=l,4
time=O.

tprint=O.
tplot=O.
np=o
do 10  ntank=l,2
h(ntank)= IO.
erint(ntarlk)=O.

10 f(ntank)=lOO.
c controller calculations to get flow-  rates
c All control signals (pv, sp,  and co) are in fractions of full scale

100 do 20 ntank=1,2
pv(ntank)=h(ntank)/20.
if(pv(ntank).gt. I.)pv(ntank)=  1.
if(pv(ntank).lt.O.)pv(ntank)=O.
e(ntank)=sp(ntank)-pv(ntank)
co(ntank)=O.S-kc(nc)*e(ntank)
if(reset(nc).gt.O.)

+co(ntank)=O.S-kc(nc)*(e(rztank)+erint(ntank)/reset(n~))
if(co(ntank).gt.  I.)co(ntank)=l.
if{co(ntank).lt.O.)co(ntank)=O.
f(ntank)=co(ntank)*Jw2.

20 continue

c in
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TARt,E:1.2  (CONTINUED)

FORTRAN simulation program for PI level control

c print and store far  plotting
if( time. Lt. tprin  t)go to 30
write(6,2  I)time,  h, f

21  ,format(’  t=‘,f6.2,  ‘ h= ‘,2f7.2,’  f=‘,2f7.2)
tprint=tprint+dtprint

30 if(time.It.  tplot)go to 40
np=np+  I
tp(np)=time
hIp(nc,np)=h(l)
h2p(nc,np)=h(2)
flp(ncnp)=f(l)
f2p(nwp)=f(2)
tplot=tplot+dtplot

40 continue
c evaluate all derivatives

dh(l)=(fo-f(l))/area
do 50 ntank=2,2

SO dh(ntank)=(f(ntank-  I)-f(ntank))/area
c integrate a la Euler

time=time+delta
do 60 ntank=I,2
h(ntank)=h(ntank)+dh(ntank)*delta

60 erint(ntank)=erint(ntank)+e(ntank)*delta
if(time.  It. tstop)go  to IO0

1000 continue
c store data for plotting using MATLAB

do 110 j=I,np
write(7,~~~)tp(j),h~p(~J),h2pt~,j),f~p(lj),f2p(l,j)
writt-0,  Ill)hlp(2,j),h2p(2,j),fIp(2J),  f2p(2,j)
write(9,Ill)hlp(3,j),h2p!3J),flp(3,j),f2p(3J)

110  ~r~te(lO,l~l)hlp(4,j),h2p(4J),flp(4J),f2p(4,j)
111 fomlt(7(lx,f7.3))

stop
end

TWO types of controllers are studied in this example. The first is a “proportional”
controller, in which the CO signal varies in direct proportion to the change in the PV
signal.

CO, = Bias,  - K,l(SPl  - PV,) U-7)

CO2 = Bias2 - K,2(SP2  - PV2) (1.8)

where Bias, = a constant (the value of CO when PV is equal to SP),
I& = controller gain
SP, = setpoint of the controller, i.e., the desired value of PV

Note that if the liquid level goes up, PV goes up, CO goes up, and F increases. This
is the correct response of the level controller to an increase in level.

Figure 1.7 shows the dynamic responses of the two liquid levels and the two
outflow rates when a 10 percent increase in the feed flow rate to the process occurs
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FIGURE 1.7
Level control of two tanks in series using P controllers.



abwrrx  I: Introduction 1 I

at time equal zero. The commercial software package MATLAB  is used to plot the
results, and Table 1.3 gives the “m-file” used. If you do not already have some ex-
posure to programming in MATLAB,  you can pick up the essentials pretty quickly.
A general reference for MATLAB  programming is The Srudenr  Edition of MAT-
LAB,  1992, The Math Works Inc., Prentice Hall, Englewood Cliffs, NJ.  Two books
that discuss the use of the MATLAB  Control Toolbox to analyze dynamic systems

T A B L E  1.3

MATLAB program to plot data
aLls
% matlub program “1evel.m”  to plot results for P and PI controller
load levl.dat
load lev2.dat
load lev3.dat
load lev4.dat

t=levl(:,l);
hll=levl(:,2);
hl2=levl(:,3);
fll=levl(:,4);
f12=levl(:,S);

h21 =lev2(:,  I);
h22=lev2(:,2);
@I=lev2(:,3);
j22=lev2(:,4);

h31=lev3(:,1);
h32=lev3(:,2);
f31 =lev3(:,3);
$32=lev3(:,4);

h41 =lev4(:,  I);
h42=lev4(:,2);
f41 =lev4(:,3);
f42=lev4(:,4);

c/f
subplot(2ll)
plot(t,hll,‘- ‘,t,h12,‘-  - ‘)
title(  ‘P Level Control (Kc=O.5)‘)
ylubel(  ‘Tank Height (ft,‘)
xlahel( ‘Time (min) ‘)
legend(‘Hl’,‘H2’)
grid
subplor(212)
pIot(t,fll,  ‘- ‘,&f/2,  (- - ‘)
ylabel(  ‘Exit Flow (ft3/min)  ‘)
xlabel( ‘Time (min)‘)
legend(‘Fl  ‘,‘FZ’)
grid
puitse
print -dps  pleve1.p.s



MATLAB program to plot data

subplot(2  II)
plot(t,h2/, (- ‘,t,h22,  ‘- - ‘)
title(  ‘P Level Corltrol  (Kc= 1.5)‘)
vlal~el( ‘Tnnk Height  I’)  ‘)
xlahcl(  ‘Time (mill)  ‘)
legend(  ‘HI ‘, ‘H2 ‘)
grid
subplot(2  12)
plot(t.f2/.‘-‘,t,f22.‘--‘)
ylabcl(  ‘Exit Flow (ft3/min)‘)
xlabel(‘Time  (min)‘)
legend(  ‘FI  ‘,  ‘F2’)
grid
pause
print -dps  -append plevel

c/f
subplot(2  I I)
plot(t,h31,  ‘- ‘,t,h32,‘- - ‘)
title(‘PI  Level Control, Reset=5,  K~O.628’)
ylabel(  ‘Tank Height (f)  ‘)
xlabel(  ‘Time (min) ‘)
legend(  ‘HI  ‘,  ‘H2  ‘)
grid
subplot(2  12)
plot(t,f3/,  ‘- ‘,t,f32,  ‘- - ‘)
ylabel(  ‘Exit Flow (jt3/min)‘)
xlabel(  ‘Time (min)‘)
legend(  ‘Fl ‘,  ‘F2  ‘)
grid
pause
print -dps  -append plevel

4f
subplot(211)
plot(t,h41,‘-‘,t,h42,‘--‘)
title(‘PI  Level Control, Reset=5.  KczO.314’)
ylabel(  ‘Tank Height (ft)‘)
xlabel(  ‘Time (min) ‘)
legend(  ‘HI  ‘( ‘ff2 ‘)
grid
subplot(2  12)
plot(t,f41,‘-‘J,f42,‘--‘)
ylabel(  ‘Exit Flow Cfr3/min)  ‘)
xlabrl(  ‘Time (min)‘)
legerrd( ‘FI ‘, ‘F2’)
grid
pause
print -dps  -append plevel

.
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are  MATLAB Tools jitr  Control System Ana1,y.ysi.s  and Design by B. C. Kuo and
D. C. Hanselman, 1994, Prentice Hall, Englewood Cliffs, NJ; and Using  MATLAB
to Analyze and Design Contml  Systems by N. E. Leonard and W. S. Levine, 1992,
Benjamin-Cummings, New York.

In Fig. I .7a  the controller gain K,.  is 0.5 and in Fig. 1.76 it is I .5.  The changes in
both liquid levels and outflow rates are gradual, but the dynamic changes occur more
quickly when a higher gain is used. The inflow rate has increased to 110 ft”/min, so
the flow rates from both tanks eventually climb up to 110 ft”/min, and at this point
the levels in both tanks stop changing.

You should note a very important point: the levels do not return to their original
steady-state values of IO ft. For a controller gain of 0.5, tank levels increase to 12
ft and stay there. For a gain of 1.5, they increase to about 10.7 ft. So at the new
steady-state conditions, the value of SP is not equal to PV in Eqs. (1.7) and (1.8). We
call this “steady-state error” or “offset.” This example illustrates that a proportional
controller does not give zero steady-state error. For the control of levels in surge
tanks we normally are not concerned about holding a constant level, so offset is not
a problem. But for many control loops, we do want to drive the PV back to the SP
value. This is accomplished by adding “integral” or “reset” action to the controller.

The second type of level controller is a “proportional-integral” (PI) controller,
in which the CO signal varies with both the PV signal and time integral of “error”
(the difference between the SP and PV signals).

CO, = Bias,, - K,,, (SP,, - PV,) + $ (SP,, - PV,) dt
[ I 1 (1.9)

where r1  = integral time or reset time (with units of minutes). The addition of the
integral term forces the SP and PV signals to become equal at steady state because
if the (SP - PV) term is not zero, the CO continues to change because of the integral
action. Figure 1.8 demonstrates this for the same change in the feed rate. The outflow
rates start and end at the same values as found with P control, but the liquid levels
are returned to their SP values.

However, there is a price to be paid for this elimination of steady-state error.
When P control was used, the flow rates simply increased to their new steady-state
values. With PI control these flow rates increase above their final steady-state values
for a period of time. This occurs because the only way that the level can be lowered
back to its desired value is to have the insta,ntaneous  flow rate out of the tank be
larger than the flow rate into the tank.

Figure 1.8~  shows that the maximum instantaneous value of the flow rate Fl is
114 ft3/min  and the maximum for F2  is 119 ft3/min.  Remember that the initial flow
rate is 100 and the final flow rate is 110, giving a change of 10 ft3/min.  The peak
flow rate from the second tank of 119 corresponds to a change of 19 ft3/min,  which
is an overshoot of almost 100 percent. Thus the use of PI control results in an ampli-
fication of the flow rate disturbances to the system, and this amplification becomes
larger as we add more tanks in series. Figure 1.9 illustrates the difference between P
and PI control in another way. We impose on the process a “noisy” disturbance-the
feed flow rate Fo  into the process is changing in a random way-and compare the
responses of the levels and flow  rates in the system for P and PI control. The fil-
tering of flow rate disturbances by P control is clearly demonstrated. If constant level
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FIGURE 1.8
Level control using PI controllers.
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P and PI Level Control with Noisy inflow
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control is desired and flow rate variations are less important (e.g., level control in a
chemical reactor in which we want to keep holdup constant), a PI controller does a
better job.

You might suspect that we could change the controller tuning and reduce this
amplification. Reducing controller gain usually slows down the dynamics of the sys-
tem and produces.less oscillatory response. However, this is not what happens for
this process, as the results in Fig. 1.86 illustrate. The controller gain is cut in half,
resulting in a slower response. But the peak flow rate from the second tank becomes
larger (122 ft3/min).  We analyze this process quantitatively in Chapter 8 and explain
mathematically why we observe these simulation results.

These results illustrate the importance Lf the selection of the type of controller
and the control objectives. The simulation results have important implications for
the plantwide control problem (multi-units connected in a complex flowsheet). They
suggest that most level controllers should be proportional, not proportional-integral,
to obtain smoothing (filtering or attenuation) of flow rate changes throughout a
process.

1.2.2 Temperature Control of a Three-Tank Process

As a second simple example that demonstrates some very important and far-reaching
principles, let us consider the control of temperature in a single tank and then in a



series of two and three tanks. The dynamic model  for three heated tanks in series is
given in Eqs. ( I. IO)  to ( I. 12). Constant holdup and constant physical properties are
assumed. The, FORTRAN program used to simulate the process is given in Appen-
dix A.

The temperature in one of the tanks (TI,  7’2,  or Tj) is controlled by a propor-
tional temperature controller that manipulates the heat input Ql to the first tank. The
disturbance is a drop in inlet feed temperature To from 90°F to 70°F at time 0 hours.
Three different values of controller gain (K,. = 2,4,  and 8) are used.

dTI
VI  CpP-

dt
= Fc,dTo  - TI  1 + QI (1.10)

dT2
V2C,,P-dt

= Fc,,PVI  - T2) (1.11)

6
V3CpP-dt

= Fq,pV;!  - T3) (1.12)

where V,, = tank volume in nth tank = 100 ft3

CP = heat capacity of process fluid = 0.75 Btu/lb  “F
p = density of process fluid = 50 lb/f?
F = flow rate = 1000 ft”/hr

Control signals of 4 to 20 mA are used. The range of the temperature transmitter is
50 to 200°F.

PV = 4 + s (Tcontro,  - 50) (1.13)

where we will consider three cases for Tcontrol  fT1, T2,  and T3).
The control valve can pass enough steam to transfer 10 X lo6  Btu/hr of heat into

the first tank.

c o - 4
QI = 16 (:10  x 10”) (1.14)

The proportional controller equation is

CO = 7.6 + K,(SP  - PV) (1.15)

with setpoint SP = 12 mA.
The values of variables at the initial steady state are

To  = 90°F

A. Control of T1

T,  =  T2  =  T3  =  150’F PV = 12 mA

Figure 1.10 gives the temperature in the first tank and the heat input for three
values of controller gain K,. As gain increases, the dynamics of the system get faster
and there is less steady-state offset: the final steady-state value of Tl is closer to
150°F. The dynamic responses all show gradual asymptotic trajectories to their final
values. There is no overshoot and no oscillation.
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0

3

-i- 2.8
\
3

g 2.6

5

E; 2.4

Time (hours)

0.25

Time (hours)

FIGURE 1.10

B. Control of T2

Figure 1.11 shows what happens when we switch from controlling the temper-
ature in the first tank to controlling the temperature in the second tank, T2.  The dis-
turbance is the same, and the three controller gains are the same. Now we begin to
see some overshooting and oscillatory responses for the larger values of controller
gain.

C. Control of TJ

Figure 1.12 gives results when we control the temperature in the third tank, T3.
For a controller gain of KC  = 2, the system”is  only slightly oscillatory and the system
settles out at a new steady state. The oscillations become larger for K, = 4, and it
takes longer for the system to settle out. However, for K, = 8 the amplitude of the
oscillations continues to grow. This system is “unstable.”

D. Control of T1 with deadtime

“Deadtime” is a term that we use to describe the situation where there is a de-
lay between the input and the output of a system. A common chemical engineering
example is the turbulent flow of fluid through a pipe. Let us assume that the flow is
essentially plug flow with a residence time of D minutes. If the temperature of the
stream entering the pipe changes, the temperature of the stream leaving the pipe will
not change for D minutes. This is called a deadtime  of D minutes.
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P Temperature Control of Three Tanks
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Suppose we have a deadtime  of D = 0.01 hr in the measurement of the temper-
ature 7’,  . The temperature controller sees a PV signal that is delayed by D hours. The
effect this has on control is illustrated in Fig. 1.13. Notice that Ql does not change
for 0.01 hr because of the deadtime. Comparing Figs. 1.10 and 1.13 shows clearly
that the dynamic performance with deadtime  is worse. Higher gains now give oscil-
latory behavior. The FORTRAN program used for the deadtime  simulation is given
in Appendix A.

These simulation results illustrate some profoundly important principles:

1. As controller gain is increased, the response of the process becomes faster but
more oscillatory. This suggests that there is an. inherent engineering trade-off
between speed of response and oscillatory behavior. The terminology used in
process control is the trade-off between “performance” and “robustness.” A fast
process response (a small time constant) is good performance. A less oscillatory
response (a higher damping coefficient) is good robustness; i:e.,  the process is not
close to the situation where the oscillations will continue to grow. We illustrate
this trade-off in several other situations later in this book.

2. As more tanks are added to the system, the control becomes more difficult.
Controlling TI with Ql (we call this a first-order system) is easy: the system is
never oscillatory. Controlling T2  with Ql (a second-order system) gives some OS-
cillatory behavior, but controller gains have to be quite large before the oscillation
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bccomcs a problem. However,  controlling Tj with Qt (a third-order system)  is
more difficult since high controller gains can lead to instability. Thus, as the order
of the system is increased, the dynamic performance becomes worse. This, of
course, suggests that we should avoid high-order systems in our plant designs
and control system structures.

3. The addition of deadtime  in a control loop degrades dynamic performance.

Later in this book we explain quantitatively and mathematically the results ob-
served in the examples considered above.

1.3
GENERAL CONCEPTS AND TERMINOLOGY

It may be useful at this point to define some very broad and general concepts and
some of the terminology used in the field.

I. Dynamics: Time-dependent behavior of a process. The behavior with no con-
trollers in the system is called the openloop  response. The dynamic behavior with
controllers included with the process is called the closedloop response.

2. Variables:
a. Manipulated variables: Typically flow rates of streams entering or leaving a

process that we can change to control the plant.
b. Controlled variables: Flow rates, compositions, temperatures, levels, and

pressures in the process that we will try to control, either trying to hold them
as constant as possible or trying to make them follow some desired time
trajectory.

c. Uncontrolled variables: Variables in the process that are not controlled.
d. Load disturbances: Flow rates, temperatures, or compositions of streams en-

tering (but sometimes leaving) the process. We are not free to manipulate
them. They are set by upstream or downstream parts of the plant. The con-
trol system must be able to keep the plant under control despite the effects of
these disturbances.

3. Feedback control: The traditional way to control a process is to measure the vari-
able that is to be controlled, compare its value with the desired value (the setpoint
to the controller), and feed the difference (the error) into a feedback controller
that changes a manipulated variable to drive the controlled variable back to the
desired value. Information is thus “fed back” from the controlled variable to a
manipulated variable. Action is taken after a change occurs in the process.

4. Feedforward control: The basic idea is to take action before a disturbance
reaches the process. As shown in Fig. 1.14, the disturbance is detected as it enters
the process and an appropriate change is made in the manipulated variable such
that the controlled variable is held constant. Thus, we begin to take corrective
action as soon as a disturbance entering the system is detected instead of waiting
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I Manipulated variable
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device
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Feedforward ,,

controller
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FIGURE 1.14
Feedforward control.

(as we do with feedback control) for the disturbance to propagate all the way
through the process before a correction is made.

5. Stability: A process is said to be unstable if its output becomes larger and larger
(either positively or negatively) as time increases. Examples are shown in Fig.
1.15. No real system actually does this, of course, because some constraint will
be met; for example, a control valve will completely shut or completely open, or
a safety valve will “pop.” A linear process is right at the limit of stability if it
oscillates, even when undisturbed, and the amplitude of the oscillations does not
decay.

Most processes are openloop  stable, i.e., stable with no controllers on the system.
One important and very interesting exception that we will study in some detail is the
exothermic chemical reactor, which can be openloop  unstable. All real processes can
be made closedloop unstable (unstable when a feedback controller is in the system)
if the controller gain is made large enough. Thus, stability is of vita1 concern in
feedback control systems.

Time

FIGURE 1.15
Stability.
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1.4
LAWS, LANGUAGES, AND LEVELS OF PROCESS CONTROL

1.4.1 Process Control Laws

Several fundamental laws have been developed in the process control field as a result
of many years of experience. Some of these may sound similar to some of the laws
attributed to Parkinson, but the process control laws are not intended to be humorous.

First Law:  The best control system is the simplest one that will do the job.

Complex and elegant control systems look great on paper but soon end up on
“manual” (taken out of service) in an industrial environment. Bigger is definitely
not better in control systems design.

Second LAW:  You must understand the process before you can control it.

No degree of sophistication in the control system (from adaptive control, to ex-
pert systems, to Kalman filters, to nonlinear model predictive control) will work if
you do not know how your process works. Many people have tried to use complex
controllers to overcome ignorance about the process fundamentals, and they have
failed! Learn how the process works before you start designing its control system.

Third Law: Liquid levels must always be controlled.

The structure of the control systems must guarantee that the liquid levels in
tanks, column base, reflux drums, etc. are maintained between their maximum and
minimum values. A common error is to develop a control structure in which tank
levels are not controlled and to depend on the operator of the plant to control tank
levels manually. This increases the workload on the operator and results in poor
plant performance because of inconsistencies among various operators concerning
what should be done under various conditions. Having an automatic, fixed inven-
tory control structure produces smoother, more consistent plant operation. The only
exception to this law occurs in recycle systems, where the level in a recycle surge
drum is typically not controlled, but floats up and down with recycle circulation
rate.

1.4.2 Languages of Process Control

As you will see, several different approaches are used in this book to analyze the
dynamics of systems. Direct solution of the differential equations to give functions of
time is a “time domain” technique. The use of Laplace  transforms to characterize the
dynamics of systems is a “Laplace  domain” technique. Frequency response methods
provide another approach to the problem.
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All of these methods arc useful because each has its advantages and disadvan-
tages. They yield exactly the same results when applied to the same problem but
provide different perspectives. These various approaches are similar to the use of
different languages by people around the world. A table in English is described by
the word “table.” In Russian a table is described by the word “CTOJI.”  In Chinese
a table is “ -
table. 83

.” In German it is “der Tisch.” But in any language a table is still a

In the study of process dynamics and control we will use several languages.

English: time domain (differential equations, yielding exponential time function
solutions)

Russian: Laplace domain (transfer functions)
Chinese: frequency domain (frequency response Bode and Nyquist plots)
Greek: state variables (matrix methods apply to differential equations)
German: z domain (sampled-data systems)

You will find that the languages are not difficult to learn because the vocabulary
required is quite limited: only 8 to 10  “words” must be learned in each language.
Thus, it is fairly easy to translate back and forth between the languages.

We will use “English” to solve some simple problems. We will find that more
complex problems are easier to understand and solve using “Russian.” As problems
get even more complex and realistic, the use of “Chinese” is required. So we study
in this book a number of very useful and practical process control languages.

We chose the five languages listed above simply because we have had some
exposure to all of them over the years. Let us assure you that no political or nation-
alistic motives are involved. If you prefer French, Spanish, Italian, Japanese, and
Swahili, please feel free to make the appropriate substitutions! Our purpose in us-
ing the language metaphor is to try to break some of the psychological barriers that
students have to such things as Laplace  transforms and frequency response. It is a
pedagogical gimmick that we ha;e used for over two decades and have found to be
very effective with students.

1.4.3 Levels of Process Control

There are four levels of process control. aoving up these levels increases the im-
portance, the economic impact, and the opportunities for process control engineers
to make significant contributions.

The lowest level is controller tuning, i.e., determining the values of controller
tuning constants that give the best control. The next level is algorithms-deciding
what type of controller to use (P, PI, PID, multivariable, model predictive, etc.).

’ The third level is control system structure--determining what to control, what
to manipulate, and how to match one controlled variable with one manipulated vari-
able (called “pairing”). The selection of the control structure for a plant is a vitally
important function. A good choice of structure makes it easy to select an appropriate
algorithm and to tune. No matter what algorithm or tuning is used, it is very unlikely
that a poor structure can be made to give effective control.



The top level is process design-developing a process flowshcet and using de-
sign parameters that produce an easily controllable plant. The steady-state econom-
ically optimal plant may be much more difficult to control than an alternative plant
that is perhaps only slightly more expensive to build and operate. At this level, the
economic impact of a good process control engineer can be enormous, potentially
resulting in the difference between a profitable process and an economic disaster.
Several cases have been reported where the process was so inoperable that it had to
be shut down and the equipment sold to the junk man. Chapters 5 and 6 discuss this
vitally important aspect in more detail.

1.5
C O N C L U S I O N

In this chapter we have attempted to convey three basic notions:

1. The dynamic response of a process is important and must be considered in the
process design.

2. The process itself places inherent restrictions on the achievable dynamic perfor-
mance that no amount of controller complexity and elegance can overcome.

3. The choices of the control system structure, the type of controller, and the tuning
of the controller are all important engineering decisions.



PART ONE

Time Domain Dynamics
and Control

In this section we study the time-dependent behavior of some chemical engineering
systems, both openloop  (without control) and closedloop (with controllers included).
Systems are described, by differential equations and solutions are given in terms
of time-dependent functions. Thus, our language for this part of the book will be
“English.” In the next part we will learn a little “Russian” so that we can work in the
Laplace  domain, where the notation is simpler than “English.” In Part Three we will
study some “Chinese” because of its ability to easily handle much more complex
systems.

Most chemical engineering systems are modeled by equations that are quite
complex and nonlinear. In the remaining parts of this book only systems described
by linear ordinary differential equations will be considered (linearity is defined in
Chapter 2). The reason coverage is limited to linear systems is that practically all the
analytical mathematical techniques currently available ,are applicable only to linear
equations.

Since most chemical engineering systems are nonlinear, studying methods that
are limited to linear systems might initially appear to be a waste of time. However,
linear techniques are of great practical importance, particularly for continuous pro-
cesses, because the nonlinear equations describing most systems can be linearized
around some steady-state operating condition. The resulting linear equations ade-
quately describe the dynamic response of the system in some region around the
steady-state conditions. The size of the region over which the linear model is valid
varies with the degree of nonlinearity of the process and the magnitude of the dis-
turbances. In many processes the linear model can be successfully used to study
dynamics and, more important, to design controllers.

Complex systems can usually be broken down into a number of simple elements.
We must understand the dynamics of these simple systems before we tackle the more

25
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complex ones. We start out looking at some simple uncontrolled processes in Chap-
ter 2. We examine the openloop  dynamics or the response of the system with no
feedback controllers to a disturbance starting from some initial condition.

In Chapters 3 and 4 we look at closedloop systems. Instrumentation hardware,
controller types and performance, controller tuning, and various types of control sys-
tem structures are discussed.



Time Domain Dynamics

Studying the dynamics of systems in the time domain involves the direct solution
of differential equations. Computer simulations are general in the sense that they
can give solutions to very complex nonlinear problems. However, they are also very
specific in the sense that they provide a solution to only the particular numerical case
fed into the computer.

The classical analytical techniques discussed in this chapter are limited to linear
ordinary differential equations. But they yield general analytical solutions that apply
for any values of parameters, initial conditions, and forcing functions.

We start by briefly classifying and defining types of systems and types of distur-
bances. Then we learn how to linearize nonlinear equations. It is assumed that you
have had a course in differential equations, but we review some of the most useful
solution techniques for simple ordinary differential equations.

The important lesson of this chapter is that the dynamic response of a linear
process is a sum of exponentials in time, such as eQr. The sk terms multiplying time
are the roots of the characteristic equation or the eigenvalues of the system. They
determine whether the process responds quickly or slowly, whether it is oscillatory,
and whether it is stable.

2.1
CLASSIFICATION AND DEFINITION

Processes and their dynamics can be classified in several ways:

1. Number of independent variables
a. Lumped: if time is the only independent variable; described by ordinary dif-

ferential equations
b. Distributed: if time and spatial independent variables are required; described

by partial differential equations

2 7



2. Linearity
a. Linear: if all functions in the equations are linear (see Section 2.2)
b. Nonlinear: if not linear

3. Stability
a. Stable: if “self-regulatory” so that variables converge to some steady state

when disturbed
b. Unstable: if variables go to infinity (mathematically)

Most processes are openloop  stable. However, the exothermic irreversible
chemical reactor is a notable example of a process that can be openloop  un-
stable.

All real processes can be made closedloop unstable (unstable with a feed-
back controller in service), and therefore one of the principal objectives in
feedback controller design is to avoid closedloop instability.

4. Order: If a system is described by one ordinary differential equation with deriva-
tives of order N, the system is called Nth order.

dNx dN-‘x d x
aN  dtN
- + aN-l-

dtN-’
+ . . . + al dt + a0x = fit) (2.1)

where ai are constants and f([)  is the forcing function or disturbance. Two very
important special cases are for N = 1 and N = 2:

First-order:

d x
al dt + a0x  = f(t)

Second-order:

d*x dx
a2x  f aidt  + aox  = f(,)

The “standard” forms that we will usually employ for these are
First-order:

d x
T-& + x = &t,

Second-order:

(2.2)

(2.3)

(2.4)

(2.5)

where T = process time constant (either openloop  or closedloop)
[ = damping coefficient (either openloop  or closedloop)

One of the most important parameters that we will use in the remaining sections
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Disturbances can also bc classified  and defined in several ways.

I. Shape (see Fig. 2. I)
a. Step: Step disturbances are functions that change instantaneously from one

level to another and are thereafter constant. If the size of the step is equal to
unity, the disturbance is called the unit stq~,function  M,,(,),  defined as

1’ll(/) =I fort>0

l’ll(l) = 0  for-r50
(2.6)

The response of a system to a step disturbance is called the step response or
the transient response.

b. Pulse: A pulse is a function of arbitrary shape (but usually rectangular or tri-
angular) that begins and ends at the same level. A rectangular pulse is simply
the sum of one positive step function made at time zero and one negative step
function made D minutes later. D is the length of the pulse.

Rectangular pulse of height I and width D = u,,(,)  - u,,(,-n) (2.7)

c. Impulse: The impulse is defined as the Dirac delta function, an infinitely high
pulse whose width is zero and whose area is unity. This kind of disturbance is,
of course, a pure mathematical fiction, but we will find it a useful tool.

d. Ramp: Ramp inputs are functions that change linearly with time.

Ramp function = Kt w3)

where K is a constant. The classic example is the change in the setpoint to an
anti-aircraft gun as the airplane sweeps across the sky. Chemical engineering
examples include batch reactor temperature or pressure setpoint changes with
time.

e. Sinusoid: Pure periodic sine and cosine inputs seldom occur in real chemical
engineering systems. However, the response of systems to this kind of forc-
ing function (called thefrequency response of the system) is of great practical
importance, as we show in our “Chinese” lessons (Part Three) and in multi-
variable processes (Part Four).

2. Location of disturbance in feedback loop: Let us now consider a process with
a feedback controller in service. This closedloop system can experience distur-
bances at two different spots in the feedback loop: load disturbances and setpoint
disturbances.

Most disturbances in chemical engineering systems are load disturbances,
such as changes in throughput, feed composition, supply steam pressure, and
cooling water temperature. The feedback controller’s function when a load distur-
bance occurs is to return the controlled variable to its setpoint by suitable changes
in the manipulated variable. The closedloop response to a load disturbance is
called the regulator response or the closedloop load response.

Setpoint changes can also be made, particularly in batch processes or in
changing from one operating condition to another in a continuous process. These
setpoint changes also act as disturbances to the closedloop system. The function
of the feedback controller is to drive the controlled variable to match the new
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I. s t e p
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f(I)

3 . Impulse (Dirac delta function a,,,)

4.  Ramp

5. Sine wave

fo,

I h i

where o = aP ’ radians per time

FIGURE 2.1
Disturbance shapes.
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setpoint. The closedloop response to a setpoint disturbance is called the sew0
~C,S~IO~I.SC’  (from the early applications of feedback control in mechanical servo-
mechanism tracking systems).

2.2
LINEARIZATION AND PERTURBATION VARIABLES

2.2.1 Linearization

As mentioned earlier, we must convert the rigorous nonlinear differential equations
describing a chemical system into linear differential equations so that we can use the
powerful linear mathematical techniques.

The first question to be answered is, just what is a linear differential equation?
Basically, it is one that contains variables only to the first power in any one term of
the equation. If square roots, squares, exponentials, products of variables, etc. appear
in the equation, it is nonlinear.

Linear example:

d x
al dt + a0x  = f([) (2.9)

where a0  and ai  are constants or functions of time only, not of dependent variables
or their derivatives.

Nonlinear examples:

d x
al  dt + w

0.5 _
- f(l) (2.10)

(2.11)

d x
al dt + a0e x = fit, (2.12)

dxl
al dt + a0xi(f)x2(f)  = Al) (2.13)

where XI and x2 are both dependent variables.
Mathematically, a linear differential equation is one for which the following two

properties hold:

1. If xCI)  is a solution, then CX(,)  is also a solution, where c is a constant.
2. If XI is a solution and x2 is also a solution, then XI + x2 is a solution.

Linearization is quite straightforward. All we do is take the nonlinear functions,
expand them in Taylor series around the steady-state operating level, and neglect all
terms after the first partial derivatives.

Let us assume we have a nonlinear functionf of the process variables xl and

x2:  J;x,m)- For example, XI could be mole fraction or temperature or flow rate. We



Linear approximation:

FIGURE 2.2
Linearization.

will denote the steady-state values of these variables by using an overscore:

XI = steady-state value of XI

~2  = steady-state value of x2

Now we expand the function &,,Xl) around its steady-state value fc3,,a,).

fi.V*) = fiX,.zf2) + g _ _( 1
?f(XI -X1)  + -’ (XlJ2) ( 1dX2 (7,,7i2)  tx2 - jc2)

+ d2f
t-1

(x1 - %I2
ax: 2! +*--

(xl,q)

(2.14)

Linearization consists of truncating the series after the first partial derivatives.

fc a.f
XIJ2) = fiXG2)  + -g _ _ (Xl( 1 -X1)+  -l 1,ax2 (m, ~*) (x2 - X2) (2.13

’ (x1,x2)

We are approximating the real function by a linear function. The process is sketched
graphically in Fig. 2.2 for a function of a single variable. The method is best illus-
trated by some common examples.

EXAMPLE 2. I. Consider the square-root dependence of flow out of a tank on the liquid
height in the tank.

F(h)  = K h (2.16)

The Taylor series expansion around the steady-state value of h, which is h in our nomen-
clature. is

(2.17)

ZZ Kdi+K(h-7;)
2&

n
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E X A M P L E :  2 . 2 . The Arrhenius tcmperaturc  dependence  of the specific reaction rate k is
a highly nonlinear function that is linearized as follows:

EXAMPLE 2.3. The product of two dependent variables is a nonlinear function of the
two variables:

~;c,,.F)  = CAF (2.20)

Linearizing:

(F -F) (2.2 1)

G(,)h)  = C/IF + WA(,) - G 1 + cdF(,,  - n (2.22)

Notice that the linearization process converts the nonlinear function (the product of two
dependent variables) into a linear function containing two terms. m

EXAMPLE 2.4. Consider the nonlinear ordinary differential equation (ODE) for a
gravity-flow tank, which is derived from a momentum balance around the exit pipe.

(2.23)

where v = velocity of liquid in the pipe
h = liquid height in the tank
L = length of pipe

KF = friction factor constant
p = density

A,, = cross-sectional area of pipe
s = gravitational force

SC  = gravitational constant

Linearizing the v2 term gives

v* = li*  + (2V)(  v - V) (2..24)

Thus Eq. (2.23) becomes

(2.25)

This ODE is now linear. The terms in the parentheses are constants; they depend, of
course, on the steady state around which the system is linearized. m
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EXAM PI,E 2.5.  The component balance equation for an irreversible rlth-order. non-

isothermal reaction occurring in a constant-volume, variable-throughput continuous

stirred-tank reactor (CSTR) is

Linearization gives

VdCn  - - - -
- =  [FOCAO  +  FO(CAO  - CA0d t ) + CAO(FO - &) 1

- -
- [ F  CA  +  F(CA  - -6,)+ CA(F - F)]

#CA- = FOCAO - FCA  - V(CA)“Q~-“‘~~
dt

(2.26)

(2.27)
---n

---n
- V[kc,  + nk?-‘(CA - CA)  + -

kC,E

RT2
CT - r)l n

So far we have looked at examples where all the nonlinearity is in the deriva-
tive terms, i.e., the right-hand sides of the ODE. Quite often the model of a system
will give an ODE that contains nonlinear terms inside the time derivative itself. For
example, suppose the model of a nonlinear system is

4h3)  =
dt

Kh (2.28)

T’he  correct procedure for linearizing this type of equation is to rearrange it so that
all the nonlinear functions appear only on the right-hand side of the ODE, and then
linearize in the normal way. For the example given in Eq. (2.28),  we differentiate
the h3 term to get

3h2$  = K,/i

Then rearrangement gives

dh- = !$h)-l.s
dt

Now we are ready to linearize.

dh
d t - 3

- !$j$-‘.5  + $ (h - h)

= $1;)~1.5  + - ‘;” K (&)-2.5

= ?@-I.5  + (q(x)-‘.‘)h

(2.29)

(2.30)

(2.3 1)

(2.32)

(2.33)

This is a linear ODE with constant coefficients:



2.2.2 Perturbation Variables

For practically all the linear dynamics and control studies in the rest of the book, it
is useful to look at the changes of variables away from steady-state values instead
of the absolute variables themselves. Why this is useful will become apparent in the
following discussion.

Since the total variables are functions of time, x(r),  their departures from the
steady-state values x will also be functions of time, as sketched in Fig. 2.3. These
departures from steady state are called perturbations, perturbation variables, or de-
viation variables. We use, for the present, the symbol x&. Thus, the perturbation in
x is defined as

XC)  9 X(f) - x (2.35)

The equations describing the linear system can now be expressed in terms of
these perturbation variables. When this is done, two very useful results occur:

1. The constant terms in the ordinary differential equation drop out.
2. The initial conditions for the perturbation variables are all equal to zero if the

starting point is the steady-state operating condition around which the equations
have been linearized.

Both of these results greatly simplify the linearized equations. For example, if the
perturbations in velocity and liquid height are used in Eq. (2.25),  we get

Since V is a constant,

(2.37)

Now consider Eq. (2.23) under steady-state conditions. At steady state u will be equal
to V,  a constant, and h will be equal to h, another constant.

(2.38)

Therefore the last term in Eq. (2.37) is equal to zero. We end up with a linear ordinary
differential equation with constant coefficients in terms of perturbation variables.

FIGURE 2.3
-t Perturbation variables.



(2.39)

In a similar way Eq. (2.27) can lx written in terms of perturbations in C,,,,  COO,  Fo.
F, and T.

VGA + cl;,  _ -
dt - (Fo)Cjl,,  + (Cno)F:,’  - (F‘)C/I;  - (C,,)F”

(2.40)

- -
+ [F&o  - F CA  - VkC;]

Application of Eq. (2.26) under steady-state conditions shows that the last term in
Eq. (2.40) is just equal to zero. So we end up with a simple linear ODE in terms of
perturbation variables.

dC”
VA = (&>C,“,  + (CA,))

dt
F - (F)Cj; - (CJF”:’

(2.41)

Since we use perturbation variables most of the time, we often do not bother
to write the superscript p. It is understood that whenever we write the linearized
equations for the system, all variables are perturbation variables. Thus, Eqs. (2.39)
and (2.41) can be written

dC/iV-
dt = (%)CAO + (&M’o  - (F)G - (&IF

- -
- (VnkC;-‘)C/,  +

(2.42)

(2.43)

Note that the initial conditions of all these perturbation variables are zero since all
variables start at the initial steady-state values. This will simplify things significantly
when we use Laplace  transforms in Part Two.

2.3
RESPONSES OF SIMPLE LINEAR SYSTEMS

2.3.1 First-Order Linear Ordinary Differential Equation

Consider the general first-order linear ODE

(2.44)
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with a given value  ofx  known a1 a fixed point in time:  xclo)  = ~0,  Llsually  this is an
initial condition where f()  = 0.

Multiply both sides of Eq. (2.44) by the integrating factor exp(l Pnt).

Combining the two terms on the left-hand side of the equation gives

Integrating yields

where cl is a constant of integration and can be evaluated by using the boundary or
initial condition. Therefore, the general solution of Eq. (2.44) is

(2.45)

E X A M P L E 2 . 6 . An isothermal, constant-holdup, constant-throughput CSTR with a first-
order irreversible reaction is described by a component continuity equation that is a first-
order linear ODE:

2 +(; +h)C,,  = ($)G, (2.46)

Let the concentrations Cno  and Cn  be total values, not perturbations, for the present. The
reactant concentration in the tank is initially zero.

Initial condition:

c nco, = 0

At time zero a step change in feed concentration is made from zero to a constant value
Gl.

Forcing function:

C nocr, = Go

Comparing Eqs. (2.44) and (2.46),

Therefore,

x = CA p=;+l, Q=%
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The solution to tlq.  (2.46) is, according to IQ.  (2.45).

The initial condition is now used to find the value of (‘1

Therefore, the time-dependent response of C,,  to the step disturbance in feed concentra-
tion is

(2.48)

where T = V/F and is the residence time of the vessel. The response is sketched in
Fig. 2.4 and is the classical first-order exponential rise to the new steady state.

The first thing you should always do when you get a solution is check if it is con-
sistent with the initial conditions and if it is reasonable physically. At f = 0. Eq. (2.48)
becomes

CA@=())  =
GO

l+k7u  - II = 0

so the initial condition is satisfied.
Does the solution make sense from a steady-state point of view? The new steady-

state value of CA  that is approached asymptotically by the exponential function can be
found from either the solution [Eq. (2.48)],  letting time go to infinity, or from the orig-
inal ODE [Eq. (2.46)],  setting the time derivative dCA/dt  equal to zero. Either method
predicts that at the final steady state

CA(r
Go

-cc)  = CA = m (2.49)

Is this reasonable? It says that the consumption of reactant will be greater (the ratio of
?!A to C,O  will be smaller) the bigger k and T are. This certainly makes good chemical
engineering sense. If k is zero (i.e., no reaction), the final steady-state value of c..,
will be equal to the feed concentration CAo,  as it should be. Note that CA(,) would not
be dynamically equal to cA(); it would start at 0 and rise asymptotically to its final steady-

FIGURE 2.4
Step response of ;I  lirst-
order system.
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state value. Thus. rhc  predictions 01‘ the solution stem  to check with the real physical
world.

The ratio of the change  in the steady-state  value of the output divided by the mag-
niludc of rhc  step change made in the input is called  the st~(/~!\~-.~f~~f~  pritz  of the pro-
cess K,,.

K,,  E $i = 1
C‘,\O I + kr

(2.50)

These steady-state gains will be cxtrcmely  important in our dynamic studies and in con-
troller design.

Does the solution make sense dynamically? The rate of rise will be determined by
the magnitude of the (k + I/T)  term in the exponential. The bigger this term, the faster the
exponential term will decay to zero as time increases. The smaller this term, the slower
the decay will be. Therefore, the dynamics are set by (k + I/T).

The reciprocal of this term is called the process openloop  rime  comfnnt,  and we
use the symbol T,,. The bigger the time constant, the slower the dynamic response will
be. The solution [Eq. (2.48)] predicts that a small value of k or a big value of T will
give a large process time constant. Again, this makes good physical sense. If there is no
reaction, the time constant is just equal to the residence time T = V/F.

Before we leave this example, let us put Eq. (2.46) in the standard form

(2.5 1)

This is the form in which we want to look at many systems of this type. Dividing by the
term (k + I /7) does the trick.

I dCA~-
k+l/r d t

+ c* = (2.52)

1
70 = ~ = process openloop  time constant with units of time

k +  I/T

1
K,, = ~

kr+ I
= process steady-state gain with units of concentration

in product stream divided by concentration in feed stream

Then the solution [Eq. (2.48)] becomes

CA(r)  = &K,,(  I - e-“Tg) (2.53) _

In this example we have used total variables. If we convert Eq.(2.46) into perturba-
tion variables, we get

d(CA  + C;>
+ ; + k (C,,  + C,f  1 = f (& + C:,,)

i I- O

,~:~;+k]C;;  =(~)C~~~-[(~+k)C1-(~)Cinj (2.54)

The last term in this equation is zero. Therefore, Eqs. (2.54) and (2.46) are identical,
except one is in terms of total variables and the other is in terms of perturbations. When-
ever the original ODE is already linear, either total or perturbation variables can be used.
Initial conditions will. of course. differ bv  the steadv-state  values of all variables. n
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EXAM PI.12 2.7. si~pposc the l’ccc~  concentration in the C’S’IX  system consitierctl  abo\,e
is ramped up with time:

~~AO(,,  = Kf (2.55)

where K is a constant. C,,  is initially xro.
Rearranging Eq. (2.5 I) gives

tll*.
IL!!  + I(-,,  = K!E,

tl! 7,) To
(2.56)

The solution, according to Eq. (2.45),  is

(2.57)

The integral in Eq. (2.57) can be looked up in mathematics tables or found by integrating
by parts. Let

11  = t and dv  = &11  dt

Then du = dt and v = ~oe”r~l

Since j udv = uv - j vdu,

I
ter’T~,  dt  = TOtel’T(~  -

I
T,e’lT~~  dt

= T(,&“T”  - (&pIJ

Therefore Eq. (2.57) becomes

CA(,) = K,,K(t  - T,,)  + c-1 e-“TcJ

Using the initial condition to find cl,

(2.59)

(2.60)

FIGURE 2.5
Ramp response of a first-order system.



The  linal solulioli is

The ramp response  is skc~chctl  in f;ig.  2.5. n

I1 is 1’rcc~uc1~t~y  uscl’ul to bc  abic to dc~crminc  the  time constant of a first-order

system from cxpcrimcntal  step  rcspotisc  d:Ua.  This is easy  to do.  When time is equal

to T,,  in Eq.  (2.53). the  Icrm  ( I - 0 “Tlt)  hecomcs ( I - c ’ ) = 0.623. This means

that the output variable has undergone 62.3 percent of the total change it is going to
make. Thus, the time constant of a first-order system is simply the time it takes the
step response to reach 62.3 percent of its new final steady-state value.

2.3.2 Second-Order Linear ODES with Constant Coefficients

The first-order sysfem considered in the previous section yields well-behaved expo-
nential responses. Second-order systems  can be much more exciting since they can
give an oscillatory or underdmlpecl  response.

The first-order linear equation [Eq.  (2.44)]  could have a time-variable coeffi-
cient; that is, Pt,) could be a function of time. We consider only linear second-order
ODES  that have constant coefficients (T,, and 5 are constants).

,d’X CIX

7-0  __clt’
+ 25rq + x = m(,) (2.62)

Analytical methods are available for linear ODES  with variable coefficients, but their
solutions are usually messy infinite series, and we do not consider them here.

The solution of a second-order ODE can be deduced from the solution of a first-
order ODE. Equation (2.45) can be broken up into two parts:

X(t) =

(2.63)

The variable xc is called the complementary  solution. It is the function that satisfies
the original ODE with the forcing function Q(,, set equal to zero (called the homo-
geneous differential equation):

dX
dt +  P(,)X  =  0

The variable x,’  is called the prricuiur  solution. It is the function that satisfies the
original ODE with a specified Q,,,. One of the most useful properties of linear ODES
is that the total solution is the sum of the complementary solution and the particular
solution.

Now we are ready to extend the preceding ideas to the second-order ODE of Eq.
(2.62). First we obtain the complementary solution x,.  by solving the homogeneous
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equation

(2.65)

Then we solve for the particular solution x,’ and add the two to obtain the entire
solution.

A. Complementary solution

Since the complementary solution of the first-order ODE is an exponential, it
is reasonable to guess that the complementary solution of the second-order ODE is
also of exponential form. Let us guess that

XC
= ce”t (2.66)

where c and s are constants. Differentiating xc with respect to time gives

dxc- II= (-seS’
dt

a n d  d2Xc
dt2

= c&~t

Now we substitute the guessed solution and its derivatives into Eq. (2.65) to find the
values of s that satisfy the assumed form [Eq. (2.66)].

7,2(cs2es’)  + 257-O(cseSt)  + (ceSf)  = 0

I 1

7,2s2 + 257,s + 1 = 0 (2.67)

This equation, called the characteristic equation, contains the system’s most impor-
tant dynamic features. The values of s that satisfy Eq. (2.67) are called the roots of
the characteristic equation (they are also called the eigenvalues of the system). Their
values, as we will shortly show, dictate if the system is fast or slow, stable or unsta-
ble, overdamped or underdamped. Dynamic analysis and controller design consist
of finding the values of the roots of the characteristic equation of the system and
changing their values to obtain the desired response. Much of this book is devoted to
looking at roots of characteristic equations. They represent an extremely important
concept that you should fully understand.

Using the general solution for a quadratic equation, we can solve Eq. (2.67) for
its two roots

S=
27;

5,= ---
70

(2.68)

Two values of s satisfy Eq. (2.67). There are two exponentials of the form given in
Eq. (2.66) that are solutions to the original homogeneous ODE [Eq. (2.65)].  The sum
of these solutions is also a solution since the ODE is linear. Therefore, the comple-
mentary solution is (for sI  # ~2)

x, = cle31t  + c2e”*’ (2.69)
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where cl and c2 are constants. The two roots .SI and s2 are

(2.70)

(2.7 1)

The shape of the solution curve depends strongly on the values of the physical
parameter 5, called the damping coefficient. Let us now look at three possibilities.

5 > I (overdamped system). If the damping coefficient is greater than unity, the

quantity inside the square root is positive. Then SI  and s2 will both be real numbers,
and they will be different (distinct roots).

EXAMPLE 2.8. Consider the ODE

(2.72)

Its characteristic equation can be written in several forms:

s2+5s+6=0 (2.73)

(s + 3)(S + 2) = 0 (2.74)

($s’+2(4(&)s+l =o (2.75)

All three are completely equivalent. The time constant and the damping coefficient for
the system are

The roots of the characteristic equation are obvious from Eq. (2.74), but the use of Eq.
(2.68) gives

,=-&-  A”-1 = -5 + L
70 70 2-2

St  = -2

s2  =  - 3

The two roots are real, and the complementary solution is

XC = cte -21 + c2e-31

The values of the constant cl  and c2  depend on the initial conditions.

(2.76)

n
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l=l( crl KU y‘t’ 11  damped  system). If the damping coefficient is equal to unity,
the term inside the square root of Eq. (2.68) is zero. There is only one value  of s that
satisfies the characteristic equation.

(2.77)

The two roots are the same and are called reputed  roots. This is clearly seen if a
value of J = 1 is substituted into the characteristic equation [Eq. (2.67)]:

T(yS2  + 2r,,s + I = 0 = (7,s + l)(T,S  + I) (2.78)

The complementary solution with a repeated root is

XC = (c, + c*t)e”t  = (c, + c*t)e -t/r,, (2.79)

This is easily proved by substituting it into Eq. (2.65) with 5 set equal to unity.

E X A M P L E 2.9. If two CSTRs  like the one considered in Example 2.6 are run in series,
two first-order ODES  describe the system:

Differentiating the
second-order ODE:

(2.80)

$$ +(; +k,)C,z = (-$A, (2.8 1)

second equation with respect to time and eliminating CA!  give a

d2G2--+(;+k,+;+k~)~+(~+k,)(~+k+~=
dt2

If temperatures and holdups are the same in both tanks, the specific
holdup times T will be the same:

k, = k2=k 3-1  = 72 = 7

The characteristic equation is

(2.82)

reaction rates k and

s2+2(;+k)r+(l+Pr  =O

(s+;+k)(s+;+k)=O

The damping coefficient is unity and there is a real, repeated root:

The complementary solution is

(CA2)c  = ((.I  + Qf).c (k+ I/T)/

5 < 1 (underdampedsystem). Things begin to get interesting when the damp-
ing coefficient is less than unity. Now the term inside the square root in Eq. (2.68)

(2.83)

(2.84)
1
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is negative, giving an imaginary number in the roots.

5 2-I$---t Jr__=- i,;J-T
70 7,) 7,) 70

The roots are complex numbers with real and imaginary parts.

(2.85)

(2.86)

(2.87)

To be more specific, they are complex conjugnfes since they have the same real parts
and their imaginary parts differ only in sign. The complementary solution is

xc = clesl’ + c2es2’

= cl exp
ii
-i+iF)l}  +Czexp[(-&---iy)t]

= e-!Jf/To {c, eIp(+i yt)+ C:exp(-i  yt)]

Now we use the relationships

e ix = cos x + isinx

cos(  -x) = cos x

sin(-x)  = - sinx

Substituting into Eq. (2.88) gives

XC = e+“~~(+  [ cos(  ,/I,t)+ isin(  J’-t)]

+ cz[  cos(  il_t)- isin(  yt)l)

= epcfiTo[  (cl + q)cos(  yt

The complementary solution consists o

1 + i(cl - c2)sin

f oscillating sinus

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

;oidal  terms multiplied
by an exponential. Thus, the solution is oscillatory or underdamped for [ < 1. Note
that as long as the damping coefficient is positive (c > 0), the exponential term will
decay to zero as time goes to infinity. Therefore, the amplitude of the oscillations
decreases to zero, as sketched in Fig. 2.6.

If we are describing a real physical system, the solution xc must be a real quan-
tity and the terms with the constants in Eq. (2.92) must all be real. So the term cl + Q
and the term i(cl - c2) must both be real. This can be true only if cl and c2 are com-
plex conjugates, as proved next.
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I+- - - J , Sinusoidd  terms

FIGURE 2.6
Complementary solution for 5 < 1.

Let z, be a complex number and 7 be its complex conjugate.

z = x + iy and 7 = x - iy

Now look at the sum and the difference:

z + -2 = (x + iy) + (x - iy) = 2x a real number

z - Z = (x + iy) - (x - iy) = 2yi a pure imaginary number

i(z-2)  = -2y a real number

So we have shown that to get real numbers for both ct + c2 and i(q - 4,  the numbers
cl and c2 must be a complex conjugate pair. Let ct = cR + ic’ and c2 = cR - ic’.
Then the complementary solution becomes

Xc(r) = e -@To{ (2cR)cos(  yt) - (2c’)sin(  Tl)] (2.93)

EXAMPLE 2.10. Consider the ODE

d2x  dx
dt2+dt+X=0

Writing this in the standard form,

We see that the time constant TV = 1 and the damping coefficient 5 = 0.5. The charac-
teristic equation is

s2+s+1  = o

Its roots are

I

1

r

I

t

C

tl
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The complementary solution is

(2.95)

5 = 0 (undamped system). The complementary solution is the same as Eq.
(2.93) with the exponential term equal to unity. There is no decay of the sine and
cosine terms, and therefore the system oscillates forever.

This result is obvious if we go back to Eq. (2.65) and set 5 = 0.

You might remember from physics that this is the differential equation that describes
a harmonic oscillator. The solution is a sine wave with a frequency of I/T,. We dis-
cuss these kinds of functions in detail in Part Three, when we begin our “Chinese”
lessons covering the frequency domain.

5 < 0 (unstable system). If the damping coefficient is negative, the exponential
term increases without bound as time becomes large. Thus, the system is unstable.

This situation is extremely important because it shows the limit of stability of a
second-order system. The roots of the characteristic equation are

s=  -<kiJ1-52

70 70

If the real part of the root of the characteristic equation (-l/r,)  is a positive number,
the system is unstable. So the stability requirement is:

A system is stable if the real parts of all the roots of the characteristic equation
are negative.

We use this result extensively throughout the rest of the book since it is the foundation
upon which almost all controller designs are based.

B. Particular solution

Up to this point we have found only the complementary solution of the homo-
geneous equation

This corresponds to the solution for the unforced or undisturbed system. Now we
must find the particular solutions for some specific forcing functions m(,). Then the
total solution will be the sum of the complementary and particular solutions.

Several methods exist for finding particular solutions. Laplace transform meth-
ods are probably the most convenient, and we use them in Part Two. Here we present
the method c~undetermined  coefficients. It consists of assuming a particular solution
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with the same form as the forcing function. The method is illustrated in the following
examples.

EX  A MPLK  2.  I I. The ova-damped system of Example 2.8 is forced with a unit step func-
tion.

-+&+6x=  I
d2X

dt2 dt
(2.97)

Initial conditions are

X(O)  = 0 and
dX

i 1dt  (0) =
0

The forcing function is a constant, so we assume that the particular solution is also a
constant: xP = ~3. Substituting into Eq. (2.97) gives

0 + 5(O)+ 6~3 = 1 -$ ~3 = i (2.98)

Now the total solution is [using the complementary solution given in Eq. (2.76)]

x = xc + xp = c,c2’  + c*e-3’  + ; (2.99)

The constants are evaluated from the initial conditions, using the total solution. A com-
mon mistake is to evaluate them using only the complementary solution.

X(0)  = 0 = Cl  + c2 + ;

dx

c-idt (0)
= 0 = (-2c.,e-2’  - 3c2ep3’)(,=0)  = -2cr - 3c2  = 0

Therefore

q = -; and c2  = f

The final total solution for the constant forcing function is

X(f)  = +-2'  + +-3r  + ; (2.100)

w

EXAMPLE 2.12. A general underdamped second-order system is forced by a unit step
function:

(2.101)

Initial conditions are

X(0)  = 0 and

Since the forcing function is a constant, the particular solution is assumed to be a con-
stant, giving x, = 1. The total solution is the sum of the particular and complementary
solutions [see Eq.  (2.93)].

( (2cx)cos(~t)  - (2c’)sinj  vt)l (2.102 )
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Using lhe initial conditions to CVillllntC  COllSlillllS,

-t-(o) = 0 = I + [2P(l)  - 2c'(O)]

(1X
i 1
-
tit (0)

= () = --(@)  + -Qt ( :I,)
Solving for the constants gives

2cR = -1 and 2~’  = s
JF-p

I.5

0 2

FIGURE2.7
Step responses of

4 6 8
Time O&J

a second-order underdamped system.

IO
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The total solution is

This step response is sketched in Fig. 2.7 for several values of the damping coefficient.
Note that the amount the solution overshoots the final steady-state value increases as the
damping coefficient decreases. The system also becomes more oscillatory. In Chapter 3
we tune feedback controllers so that we get a reasonable amount of overshoot by selecting
a damping coefficient in the 0.3 to 0.5 range. n

It is frequently useful to be able to calculate damping coefficients and time con-
stants for second-order systems from experimental step response data. Problem 2.7
gives some very useful relationships between these parameters and the shape of the
response curve. There is a simple relationship between the “peak overshoot ratio”
and the damping coefficient, allowing the time constant to be calculated from the
“rise time” and the damping coefficient. Refer to Problem 2.7 for the definitions of
these terms.

EX A M PLE 2.13 The overdamped system of Example 2.8 is now forced with a ramp
input:

d*x
-+5%+6x=r
dt*

(2.104)

Since the forcing function is the first term of a polynomial in f, we will assume that the
particular solution is also a polynomial in t.

xI’ = b. + b,t + b2t2  + b3t3  f -- ’ (2. I OS)

where the b; are constants to be determined. Differentiating Eq. (2.105) twice gives

dx,  = b, + 2bg  + 3b3t2  + *. .
dt

d2X,  = 2b2  + 6b3t  + *-a
dt2

Substituting into Eq. (2.104) gives

(2b2  + 6b3t  + . . .) + 5(b,  + 2b2t  + 3b7t2  + . . .) + 6(bo  + b,t + b2t2  + b3t3  + . ..) = t

Now we rearrange the above expression to group together all terms with equal powers
of t.

. . . + t3(6b3  + . . .) + t2(6b2  + 15b3  + . . -)  + t(6b3  + lob2 + 6b,)

+ (2b2  + 5b,  + 6bo)  = t

Equating like powers oft on the left-hand and right-hand sides of this equation gives the
simultaneous equations

6b3  + . . . = 0

6b2  + 15b3  + . * * = 0

6b3  + IOh:! + 6b,  = 1

2h2  + SO,  + 6bo  = 0
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.  = 0

(2.106)

Solving simultaneously gives

h(, = - &

The particular solution is

The total solution is

X(I)  = - $ + it + c,c-*’  + c2e-3’

If the initial conditions are

dX
xCo)  = 0 and - =

( idt (0)
0

the constants cl and c2  can be evaluated:

X(O)  = 0 = -& +c1 +c*

dx

iidt (0)
= 0 = t - 2c, - k2

Solving simultaneously gives

Cl  = $ a n d  cz=--k

And the final solution is

-q/) = -6 + .!t + .!e-2[ - +-3r

(2.107)

(2.1 OS)

(2.109)

w

2.3.3 Nth-Order Linear ODES with Constant Coefficients

The results obtained in the last two sections for simple first- and second-order sys-
tems can now be generalized to higher-order systems. Consider the Nth-order ODE

(2.110)

The solution of this equation is the sum.of a particular solution xP and a complemen-
tary solution xc.  The complementary solution is the sum of N exponential terms. The
characteristic equation is an Nth-order polynomial:

aNsN  + aNml.sNd’  + -” f a1.s  + a() = 0 (2.111)

There are N roots ~k(k = 1, . . . , N) of the characteristic equation, some of which
may be repeated (twice or more). Factoring Eq. (2.111) gives

(s - s, )(s - .s2)(,s  - sj)-  . -(s  - s,j- , )(s - SN)  = 0 (2.112)

where the sk are the roots (or zeros) of the polynomial. The complementary solution
is (for all distinct roots, i.e., no repeated roots)

X(.(t) = C,e””  + C#f + . . . + CNesNt



N

X(,)  = XI,(,)  + 1 ckesAt
k=l

(2. I 13)

The roots of the characteristic  equation can be real or con~plcx.  But if they are
complex, they must appear in complex conjugate pairs. The reason for  this is illus-
trated for a second-order system with the characteristic equation

s2 + als + a0 = 0 (2.114)

Let the two roots be sI  and ~2.

(s - SI)(S - s2) = 0

s2 + (-Sl - s2)s  + SIS2  = 0
(2.115)

The coefficients a() and at can then be expressed in terms of the roots:

a0 = sls.2 and at = -(st + ~2) (2.116)

If Eq. (2.114) is the characteristic equation for a real physical system, the coeffi-
cients ao and at must be real numbers. These are the coefficients that multiply the
derivatives in the Nth-order differential equation. So they cannot be imaginary.

If the roots si  and s2 are both real numbers, Eq. (2.116) shows that ao and al

are certainly both real. If the roots st  and s2 are complex, the coefficients a0 and al
must still be real and must also satisfy Eq. (2.116). Complex conjugates are the only
complex numbers that give real numbers when they are multiplied and when they
are added together. To illustrate this, let z be a complex number: z = x + iy. Let
Z be the complex conjugate of z:  z = x - iy. Now zz = x2  + y* (a real number),
and z + Z = 2x (a real number). Therefore, the roots st  and s2 must be a complex
conjugate pair if they are complex. This is exactly what we found in Eq. (2.85) in
the previous section.

For a third-order system with three roots sl  , ~2,  and ~3,  the roots could all be real:
st  = cyt, s2 = cy2,  and s3 = CY~.  Or there could be one real root and two complex
conjugate roots:

SI =a{’ (2.117)

s2 =  cy2 +  io2 (2.118)

s3  = t2y2 - iw2 (2.119)

where ak = real part of sk = Re[sk]
Ok = imaginary part of sk = lm[.sk]

These are the only two possibilities. We cannot have three complex roots.
The complementary solution would be either (for distinct roots)

x, = clesIf + c2es2’,  + cjes3t

or x,.  = C@ + e”2f[(c2  + c3) cos(02t)  + i(c2  - c3)  sin(ozr)]

(2.120)

(2.121)
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where the constants ~2 and cj must also  hc complex conjugates in the latter equation,

as discussed in the previous section.
If some of the roots are repeated (not distinct), the complementary solution con-

tains exponential terms that are multiplied by various powers of t. For example, if
CY,  is a repeated root of order 2, the characteristic equation would be

(s - Q 1 )2(.s  - &Sj)(S  - sq). . .(s - SrJ)  = 0

and the resulting complementary solution is

N

xc = (c, + C&en” + 2 ckeskt
k=3

(2.122)

If Q i is a repeated root of order 3, the characteristic equation would be

(.s  - a, )3(s  - 5-4)’ . f.7  - s&f)  = 0

and the resulting complementary solution is

N

xc  =  (c,  +  c2t  +  c3t2)enif $ 2 ckeSAf (2.123)
k=4

The stability of the system is dictated by the values of the real parts of the roots.
‘The system is stable if the real parts of all roots are negative. since the exponential
terms go to zero as time goes to infinity. If the real part of nrzv  one of the roots is
positive, the system is unstable.

The roots of the characteristic equation can be very conveniently plotted in a
two-dimensional figure (Fig. 2.8) called the “s plane.” The ordinate is the imaginary

Stable region

w

A Wd

** Unstable region -

-72
‘)-,  Stability limit

4

---------- +(02

Complex Real

conjugate root

roots I s I Re(s)
*a

aI
Real axis

4 Imaginary

- - - - - - - - - -  -02 axis

sj =s,

FIGURE 2.8
s plane plot of the roots of the characteristic equation.
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part o of the root s, and the abscissa is the real part cy of the root s. The roots of
Eqs. (2.117) to (2.119) are shown in Fig. 2.8. We will use these s-plane plots extcn-
sively in Part Two.

The stability criterion for an Nth-order system is:

The system is stable if all the roots of its characteristic equation lie in the kft
half of the s plane.

2.4
SOLUTION USING MATLAB

In the previous section we solved linear ordinary differential equations analytically,
obtaining general solutions in terms of the parameters in the equations. Numerical
methods can also be used to obtain solutions, using a computer. In Chapter 1 we
looked at the dynamic responses of several processes by using numerical integration
methods (Euler integration-see Table 1.2).

Solutions of linear ODES  can also be found using the software tool MATLAB.
To demonstrate this, let us consider the three-heated-tank process studied in Chapter
1. The process is described by three linear ODES  [Eqs. (1. lo), (1.1 l),  and ( 1.12)].
If flow rate F,  volume V (assuming equal volumes in the three tanks), and physical
properties p and cP are all constants, these three equations are linear and can be
converted into perturbation variables by inspection.

dT1-=
dt $To  - Tl)  + IQ1

VPCp

dTz-=
dt ;vt - T2)

dT3- = ;(T2 - T3)
dt

(2.124)

(2.125)

(2.126)

To solve these equations in MATLAB  we put them into “state variable” form (this
subject is discussed more fully in Chapter 12).

(2.127)

~=CX+DU- -  -_ (2.128)- -

where x = vector of the three temperatures T1,  T2,  and T3
u = vector of the two inputs To  and Qr-
y = vector fo measured variables (in our case just the scalar quantity T3)
A, B, C, and D are matrices of constants=== =



A ==
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F
V

0 0

F F
v -v

0 (2.129)

F l-

v vpq,
0 0
0 0

(2.130)

0
c =  0- i! D = [o o]

1
(2.131)

Table 2.1 gives a MATLAB  program that calculates the step response of the
openloop  process for a step change of -20°F in the inlet temperature To.  The numer-
ical values of parameters are the same as those used in Chapter 1. The four matrices
of constants are first defined. The time vector is defined, starting at zero and going
to 1.5 hours at increments of 0.005 hours:

t=[0:0.005:1.5];
Then the step command is used to calculate the response of y (Tj)  to a unit step input
in the first input (To)  by specifying iu= 1.

[y,x]=step(a,b,c,d,iu,t); (2.132)

The variable y is the output T3,  and the variables x are the three state variables: T1,
T2,  and TJ. Figure 2.9 gives the response of T3  for a 20°F decrease in TO.

The above steps calculate the openloop  response of the system with the Qt input
fixed. To calculate the closedloop response with a P controller manipulating Qt to
control T3,  we substitute for Qt in Eq. (2.124):

QI  = -UWVGT>T~ (2.133)

where K, = controller gain
Gv = valve gain = 10 X lo6  Btukrll6  mA  in the numerical example from

Chapter 1
GT  = transmitter gain = 16 mA/200”F in the numerical example

Remember that all variables are perturbation variables and there is no change in the
setpoint. The u input vector is now just a scalar: u = TO. The four matrices for the
closedloop system are:

A =ZZ

F
- -

V
0 - &G&T

VPC,
F F
v -v

0 (2.134)



TABLE 2.1
MATLAB program-Openloop

% Program “fenipsfafeol.nt” 14~~s  Maflab to calcufafe openloop  sfep  responses
% to change in To for three-heated-tank process
70

% Using state-space .formulafion  for openloop
%

% Third-order system
70

% Openloop  A matrix
a=[-10  0  0

IO -IO 0
0 IO  -IO];

b=[IO IN750
0 0
0 01;

c=[O  0 I];
d = [ O  01;
70

% Define time vector (from 0 to I hours)
t=([0:0.005:1.5]);
% “iu”=l  is inlet femperafure disturbance
iu=I;
% Use “step” function to get time responses for unit step in TO
[y,x]=step(a,  b,c,d,  iu, t);
70
% y=T3 for unit step (TO=1
70
df
plot(t,  -2O*y)
title(‘3 Heated Tanks; Openloop  -20 Step Disturbance in TO’)
xlabel( ‘Time (hours) ‘)
ylabel(  ‘Changes in T3 (degrees)‘)
grid
pause
print -dps pjg29.ps

(2.135)

0
c =  0II D = O (2.136)-

1 -

Table 2.2 gives a MATLAB  program that calculates the closedloop response of T3
for two values of controller gain: KC  = 4 and 8. Figure 2.10 gives results, which are
exactlv  the same BS  those in Chgntw 1
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TAIILE:  2 . 2

MATLAB program&losedloop

% Program “tempst~ctec~l.m  ” u.w.s  MATLAR  to calculate closedloop step responses
% to change in To .for ~hrce-hec~teci-tclnk  process
%

% Using  G a t e - s p a c e  form4lafion

%

940

% U s e “step” ,function  to gel  lime response
% Define time vector (from 0 to I hours)
t=([o:o.oos:1.s]);
% “iu”=l  is inlet temperature disturbance
70
% Closedloop
%
kc=4;
al3=kc*lOe6/37.50/200:
acl=[-10  0 -a13

10 -IO 0
0 10 -IO];

bcl=[lO  0 O];
dcl=O;
ccl=[O 0  l ] ;
[yclI,xcll]=step(acl,bcl,ccl,dcl,iu,t);
%
kc=&
a13=kc*10e6/3750/200;
ac l=[-10  0  -al3

10 -10 0
0 10 -IO];

[ycl2,xcl2]=step(acl,bcl,ccl,dcl,iu,t);

c/f
plot(t,-20*ycll,  ‘-‘,t,-2o*yc12,  ‘--‘)
title{‘3  Heated Tanks; -20 Step Disturbance in TO’}
xlabel(‘Time  (hours)‘)
ylabel(  ‘Changes in T3 (degrees)‘)
legend (‘Kc=4’,  ‘Kc=8’)
grid
pause
print - dps pjig2  IO. ps

2.5
CONCLUSION

The important concept contained in this chapter is that the dynamic response of a
linear process is a sum of exponentials in time such as es!J. The sk terms multi-
plying time are the roots of the characteristic equution or the eigenvalues  of the
system. They determine whether the process responds quickly or slowly, whether it
is oscillators, and whether it is .vtnhl~
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The values of ,sk are either real or complex conjugate pairs. If these roots are
complex, the dynamic response of the system contains some oscillatory components.
If the real parts of all the roots are negative, the system is stable. If the real part of
crrly  of the roots is positive, the system is unstable. It only takes one bad apple to spoil
the barrel !

PROBLEMS

2.1. Linearize the following nonlinear functions:

(a) Ax,  =  Y(x)  =
Cl!X

1 + (a - 1)x
where Q is a constant

w hT, =  p&,  =  eAIT+B where A and B are constants
(c) A,,,  = CJ,,, = K(v)“.~ where K is a constant
(4 A/t)  =  &,)  =  K(h)312 where K is a constant

2.2. A fluid of constant density p is pumped into a cone-shaped tank of total voluine HTR~/~.
The flow out of the bottom of the tank is proportional to the square root of the height h
of liquid in the tank. Derive the nonlinear ordinary differential equation describing this
system. Linearize the ODE.

FO I

t
H

1 F=KJ7; FIGURE P2.2

2.3. Solve the ODES:

(a) d$+5g+4x=2 X(O) =(Jg cl
i 1(0)

(b) d$ +2g +2x = 1 xtw 4 =o
( 1(0)

2.4. The gravity-flow tank discussed in Chapter 1 is described by two nonlinear ODES:

dh
A T -  = Fo-F

dt

dv-+--
d t

KF&  v2

PAP

Linearize these two ODES  and show that the linearized system is a second-order system.
Solve for the damping coefficient and the time constant in terms of the parameters of the



2.5. Solve the second-order ODE describing the steady-state flow of an incompressible,
Newtonian liquid through a pipe:

1 r

What are the boundary conditions‘?

2.6. A feedback controller is added to the CSTR of Example 2.6. The inlet concentration C’,,O
is now changed  by the controller to hold Cn  near its setpoint value Cr’.

CA0  =  CAM  +  CAD

where CAD  is a disturbance composition. The controller has proportional and integral
action:

CAM  = CAM  +K(E+  $jEdf)

where Kc  and 71 are constants.

CAM  = steady-state value of CAM
E = CFt  - CA

Derive the second-order equation describing the closedloop process in terms of pertur-
bation variables. Show that the damping coefficient is

5=
I + kr + K,

2JK,7/7,

What value of K, will give critical damping? At what value of K, will the system become
unstable?

2.7. Consider the second-order underdamped system

+ x = Kprn(,)

where K,,  is the process steady-state gain and m(,) is the forcing function. The unit step
response of such a system can be characterized by rise time tR,  peak time tp,  settling
time ts,  and peak overshoot ratio POR. The values of fR and tp are defined in the sketch
below. The value of ts is the time it takes the exponential portion of the response to decay
to a given fraction F of the final steady-state value of x, xss.  The POR is defined as

POR =
X(1,,)  - xss

XSS

FIGURE P2.7
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Show that

(b) ; = Z-J
0

(c) ” = In[  l/(F sin +)]

(d) PbR  =

cos (b
e-“‘oll$

(a) Linearize the following two ODES,  which describe a nonisothermal CSTR with
constant volume. The input variables are TO,  TJ,  Cno, and F.

V&t__  = F(C,,o  - CA) - VkCA
dt

VpC,,$  = FC,,p(T”  - T) - AVkC,, - UA(T  - T,)

where k = cxe-“lRT
(b) Convert to perturbation variables and arrange in the form

dCA

dT

(c) Combine the two linear ODES  above into one second-order ODE and find the roots
of the characteristic equation in terms of the aij coefficients.

The flow rate F of a manipulated stream through a control valve with equal-percentage
trim is given by the following equation:

F = CL.cP-’

where F is the flow  in gallons per minute and C, and a! are constants set by the valve
size and type. The control valve stem position x (fraction of wide open) is set by the
output signal CO of an analog electronic feedback controller whose signal range is 4
to 20 mA. The valve cannot be moved instantaneously. It is approximately a first-order
system:

dX c o - 4
Q+x=  16

The effect of the flow rate of the manipulated variable on the process temperature T is
given by

Derive one linear ordinary differential equation that gives the dynamic dependence of
process temperature on controller output signal CO.

To ensure an adequate supply for the upcoming set-to with the Hatfields, Grandpa
McCoy has begun to process a new batch of his famous Liquid Lightning moonshine.
He begins by pumping the mash at a constant rate Fo  into an empty tank. In this tank
the ethanol undergoes a first-order reaction to form a product that is the source of the
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high potency of McCoy’s Liquid Lightning. Assuming that the concentration of ethanol
in the feed, Co,  is constant and that the operation is isothermal, derive the equations
that describe how the concentration C of ethanol in the tank and the volume V of liquid
in the tank vary with time. Assume perfect mixing and constant density.

Solve the ODE to show that the concentration C in Grandpa McCoy’s batch of
Liquid Lightning is

2.11. Suicide Sam slipped his 2000 lb,,,  hotrod  into neutral as he came over the crest of a
mountain at 55 mph. In front of him the constant downgrade dropped 2000 feet in 5
miles, and the local acceleration of gravity was 3 I .O ft/sec’.

Sam maintained a constant 55-mph speed by riding his brakes until they heated
up to 600°F and burned up. The brakes weighed 40 lb,,, and had a heat capacity of
0. I Btu/lb,,,  “F. At the crest of the hill they were at 60°F.

Heat was lost from the brakes to the air, as the brakes heated up, at a rate propor-
tional to the temperature difference between the brake temperature and the air temper-
ature. The proportionality constant was 30 Btu/hr “F.

Assume that the car was frictionless and encountered negligible air resistance.
(a) At what distance down the hill did Sam’s brakes burn up?
(6) What speed did his car attain by the time it reached the bottom of the hill?

2.12. A farmer fills his silo with chopped corn. The entire corn plant (leaves, stem, and ear)
is cut up into small pieces and blown into the top of the cylindrical silo at a rate WC).
This is similar to a fed-batch chemical reaction system.

Silo

Bed of chopped corn
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The diameter  of the silo is 1) and its height is H. The density of the chopped corn
in the silo varies  with the depth of the bed. The density /I at a point that has z feet of
material above it is

Pt.-)  = PO + Pz

where p()  and p are constants.
((I) Write the equations that describe the system, and show how the height of the bed

/I(,) varies as a function of time.
(I,)  What is the total weight of corn fodder that can be stored in the silo?

2.13. Two consecutive, first-order reactions take place in a perfectly mixed, isothermal batch
reactor.

Assuming constant density, solve analytically for the dynamic changes in the concen-
trations of components A and B in the situation where kl = k?. The initial concentra-
tion of A at the beginning of the batch cycle is C,,,O.  There is initially no component B
or C in the reactor.

What is the maximum concentration of component B that can be produced, and at
what point in time does it occur?

2.14. The same reactions considered in Problem 2.13 are now carried out in a single, perfect-
ly mixed, isothermal continuous reactor. Flow rates, volume, and densities are con-
stant.
(a) Derive a mathematical model describing the system.
(b) Solve for the dynamic change in the concentration of component A, CA,  if the con-

centration of A in the feed stream is constant at C,JO  and the initial concentrations
of A, B, and C at time zero are CA(O)  = CA0  and CB(~) = CC(O)  = 0.

(c) In the situation where kl = k2, find the value of holdup time (T = V/F) that maxi-
mizes the steady-state ratio of CB/Cno. Compare this ratio with the maximum found
in Problem 2.13.

2.15. The same consecutive reactions considered in Problem 2.13 are now carried out in
two perfectly mixed continuous reactors. Flow rates and densities are constant. The
volumes of the two tanks (V) are the same and constant. The reactors operate at the
same constant temperature.
(a) Derive a mathematical model describing the system.
(0) If kl = k2, find the value of the holdup time (T = V/F) that maximizes the steady-

state ratio of the concentration of component B in the product to the concentration
of reactant A in the feed.

2.16. A vertical, cylindrical tank is tilled with well water at 65°F. The tank is insulated at the
top and bottom but is exposed on its vertical sides to cold 10°F night air. The diameter
of the tank is 2 feet and its height is 3 feet, The overall heat transfer coefficient is 20
Btu/hr “F  ft’. Neglect the metal wall of the tank and assume that the water in the tank
is perfectly mixed.
(a) Calculate how many minutes it will be until the first crystal of ice is formed.
(b) How long will it take to completely freeze the water in the tank? The heat of fusion

of water is 144 Btu/lb,,,.
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2.17. An isothermal, first-order, liquid-phase, reversible reaction is carried out in a constant-
volume, perfectly mixed continuous reactor.

ki
A-tB

4

The concentration of product B is zero in the feed and is CS  in the reactor. The feed
rate is F.
(a) Derive a mathematical model describing the dynamic behavior of the system.
(6) Derive the steady-state relationship between CA  and C’n().  Show that the conversion

of A and the yield of B decrease as k2  increases.
(c) Assuming that the reactor is at this steady-state concentration and that a step change

is made in Cne  to (Cno  + ACAO),  find the analytical solution that gives the dynamic
response of CA(,).

2.18. An isothermal, first-order, liquid-phase, irreversible reaction is conducted in a constant
volume batch reactor.

A:B

The initial concentration of reactant A at the beginning of the batch is CA”.  The specific
reaction rate k decreases with time because of catalyst degradation:

(a) Solve for CA(,).
(b)  Show that in the limit as p --+ 0, CA(,)  = CAee-“0’.
(c) Show that in the limit as p + 03, CA(,)  = CAo.

2.19. There are 3460 pounds of water in the jacket of a reactor that are initially at 145°F. At
time zero, 70°F cooling water is added to the jacket at a constant rate of 416 pounds
per minute. The holdup of water in the jacket is constant since the jacket is completely
filled with water, and excess water is removed from the system on pressure control as
cold water is added. Water in the jacket can be assumed to be perfectly mixed.
(a) How many minutes does it take the jacket water to reach 99°F if no heat is trans-

ferred into the jacket?
(6) Suppose a constant 362,000 Btu/br  of heat is transferred into the jacket from the

reactor, starting at time zero when the jacket is at 145°F. How long will it take the
jacket water to reach 99°F if the cold water addition rate is constant at 416 pounds
per minute?

2.20. Hay dries, after being cut, at a rate that is proportional to the amount of moisture it con-
tains. During a hot (90°F) July summer day, this proportionality constant is 0.30 hr-’  .
Hay cannot be baled until it has dried down to no more than 5 wt% moisture. Higher
moisture levels will cause heating and mold formation, making the hay unsuitable for
horses.

The effective drying hours are from 11:OO  A.M. to 5:00 P.M.. If hay cannot be baled
by 5:00 P.M., it must stay in the field overnight and picks up moisture from the dew. It
picks up 25 percent of the moisture that it lost during the previous day.

If the hay is cut at 1l:OO A.M. Monday morning and contains 40 wt% moisture at
the moment of cutting, when can it be baled?

2.21. Process liquid is continuously fed into a perfectly mixed tank in which it is heated
by a steam coil. Feed rate F is 50,000 lb,/hr  of material with a constant density  p of
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SO lb,,,/ft’  and heat capacity C’,, of 0.5 Btu/lh,,, “F.  Holdup in the tank V is constant at
4000  lb,,,.  Inlet  (‘eed  tcnywalurc  ‘C(,  is WF.

Steam is added at a rate S Ib,,,/hr  that heats the process liquid up to temperature  T.

At the initial steady state, 7‘ is IOO”F.  The Intent heat of vaporization & of the steam is
900 Btu/lb,,,  .
((I) Derive a mathematical model of the system, and prove that process temperature is

described dynamically by the ODE

where 7 = VIF
K, = 1
K2 = A,JC,,F

(b) Solve for the steady-state value of steam flow  s.
(c) Suppose a proportional feedback controller is used to adjust steam flow rate,

S = s + K,.(190  - T)

Solve analytically for the dynamic change in Tc,, for a step change in inlet feed
temperature from 80°F down to 50°F. What will the final values of T and S be at
the new steady state for a K,. of 100 Ib,,,/hr/“F’?

2.22. Use MATLAB to solve for the openloop  and closedloop responses of the two-heated-
tank process using a proportional temperature controller with K,.  values of 0, 2,4, and
8; T2  is controlled by Ql.

2.23. Use MATLAB to solve for the openloop  and closedloop responses of the two-heated-
tank process using a PI temperature controller with T/  = 0. I hr and K,.  values of 0, 2,
4, and 8.

2.24. A reversible reaction occurs in an isothermal CSTR.

A+B&C+D
k,

The reactor holdup VK (moles) and the flow rates into and out of the reactor F (mol/hr)
are constant. The concentrations in the reactor are zj (mole fraction componentj).  The
reaction rates depend on the reactor concentrations to the first power. The reactor feed
stream concentration is Zoj.

((1) Write the dynamic component balance for reactant A.
(h) Linearize this nonlinear ODE and convert to perturbation variables.

2.25. A first-order reaction A 5 B occurs in an isothermal CSTR. Fresh feed at a flow rate
FO  (mol/hr)  and composition z. (mole fraction A) is fed into the reactor along with a
recycle stream. The reactor holdup is VK (moles). The reactor effluent has composition
z (mole fraction A) and flow rate F (mol/hr).  It is fed into a flash drum in which a
vapor stream is removed and recycled back to the reactor at a flow rate R (molPhr)  and
composition ye (mole fraction A).

The liquid from the drum is the product stream with flow rate P (mol/hr)  and com-
position xIa (mole fraction A). The liquid and vapor streams are in phase equilibrium:
yK = Kx,), where K is a constant. The vapor holdup in the flash  drum is negligible.
The liquid holdup is MI,.
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(n) Write the steady-state equations describing this system. If E;,,  zo,  -\‘I’, K, k. and  VH
are all specified, solve for F, z, R, and yK.

(b) Write the dynamic equations describing this system.

2.26. A vertical cylindrical tank, IO feet in diameter and 20 feet tall, is partially filled with
pure liquid methylchloride. The vapor phase in the tank is pure methylchloride vapor.
The temperature in the tank is 100°F.  The vapor pressure of methylchloride at 100°F
is I25 psia. The liquid height in the tank is 2 feet.

A safety valve suddenly opens, releasing vapor from the top of the tank at a flow
rate F (lb/min),  which is proportional to the pressure difference between the tank and
the atmosphere:

F = K(P - Pat,)

where K = 0.544 Ib/min/psi.  Assume the gas is ideal and that the temperature of the
contents of the tank remains constant at 100°F. The molecular weight of methylchloride
is 50, and the density of liquid methylchloride at 100°F is 45 lb/ft3.

Solve analytically for the dynamic changes in liquid level I+,, tank pressure Per),
and vapor flow rate F(,,  from the tank.

2.27. A vertical cylindrical tank, 0.5 feet in diameter and 1 foot tall, is partially filled with
pure liquid water. The vapor phase in the tank is pure water vapor. The temperature in
the tank is 80°F. The vapor pressure of water at 80°F is 0.5067 psia. The liquid height
in the tank is 2.737 in.

2.28.

2.29.

A small hole suddenly develops at the bottom of the tank. The flow rate of material
out of the hole is proportional to the pressure difference between the pressure at the hole
and the atmosphere.

where K = 0.544 lb/min/psi.  Assume the gas is ideal and that the temperature of the
contents of the tank remains constant at 80°F. The density of liquid water at 80°F is
62.23 lb/ft3.

Solve analytically for the dynamic changes in liquid level !+I, tank pressure PC,),
and flow rate Fc,,  from the tank.

A milk tank on a dairy farm is equipped with a refrigeration compressor that removes
4 Btu/min  of heat from the warm milk. The insulated, perfectly mixed tank is initially
filled with V,  (ft3)  of warm milk (99.5”F).  The compressor is then turned on and begins
to chill the milk. At the same time, fresh warm (99.5”F) milk is continuously added at
a constant rate F (ft3/min)  through a pipeline from the milking parlor. The total volume
after all cows have been milked is VT (ft3).

Derive the equation describing how the temperature T of milk in the tank varies
with time. Solve for T(,,. What is the temperature of the milk at the end of the milk-
ing? How long does it take to chill the milk down to 35”F?  Parameter values are
F = 1 ft3/min,  p = 62.3 lb,,/ft”,  C,,  = 1 Btu/lb, “F,  Vo  = 5 ft3,  VT = 100 ft3,
4 = 300 Btu/min.

Calculate the b and 2 matrices for the state-variable representation of the closedloop
two-heated-tank process when a PI temperature controller is used to control T2  by ma-
nipulating Q,.
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In this chapter we study control equipment, controller performance, controller tun-
ing, and general control system design concepts. Questions explored include: How
do we decide what kind of control valve to use? What type of sensor can be used,
and what are some of the pitfalls we should be aware of that can give faulty signals?
What type of controller should we select for a given application? How do we “tune”
a controller?

First we look briefly at some of the control hardware that is currently used in pro-
cess control systems: transmitters, control valves, controllers, etc. Then we discuss
the performance of conventional controllers and present empirical tuning techniques.
Finally, we talk about some important design concepts and heuristics that are useful
in specifying the structure of a control system for a process.

3.1
CONTROL INSTRUMENTATION

Some familiarity with control hardware and software is required before we can
discuss selection and tuning. We are not concerned with the details of how the var-
ious mechanical, pneumatic, hydraulic, electronic, and computing devices are con-
structed. These nitty-gritty details can be obtained from the instrumentation and
process control computer vendors. Nor are we concerned with specific details of
programming a distributed control system (DCS). These details vary from vendor’to
vendor. We need to know only how they basically work and what they are supposed
to do. Pictures of some typical hardware are given in Appendix B.

There has been a real revolution in instrumentation hardware during the last
several decades. Twenty years ago most control hardware was mechanical and
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pneumatic (using instrument air pressure lo drive gadgets  and tar control signals).
Tubing had to be run back and forth  between  the  process cquipmcnt  and the ccntraI
location (called the “contro1  room”) where all the controIlcrs and rccordcrs wcrc
installed. Signals wcrc recorded on strip-char-1 paper recorders.

Today most new plants use DCS hardware-microprocessors that serve several
control loops simultaneously. Information is displayed on CRTs (cathode ray tubes).
Most signals are still transmitted  in analog electronic fhrm  (usually current signals),
but the use of digital data highways and networks is increasing. These systems pro-
vide much more computing power and permit mathematical models 01‘  Ihc process
to be run on-line (while the process is operating).

Despite all these changes in hardware, the basic concepts of control system
structure and control algorithms (types of controllers) remain essentially the same
as they were 30 years ago. It is now easier to implement control structures; we just
reprogram a computer. But the process control engineer’s job is the same: to come
up with a control system that will give good, stable, robust performance.

As we preliminarily discussed in Chapter 1,  the basic feedback control loop
consists of a sensor to detect the process variable, a transmitter to convert the sensor
signal into an equivalent “signal” (an air-pressure signal in pneumatic systems or a
current signal in analog electronic systems), a controller that compares this process
signal with a desired setpoint value and produces an appropriate controller output
signal, and a final control element that changes the manipulated variable based on the
controller output signal. Usually the final control element is an air-operated control
valve that opens and closes to change the flow rate of the manipulated stream. See
Fig. 3.1.

The sensor, transmitter, and control valve are physically located on the process
equipment (“in the field”). The controller is ‘usually located on a panel or in a com-
puter in a control room that is some distance from the process equipment. Wires
connect the two locations, carrying current signals from transmitters to the controller
and from the controller to the final control element.

The control hardware used in chemical and petroleum plants is either analog
(pneumatic or electronic) or digital. The analog systems use air-pressure signals (3
to 15 psig) or current/voltage signals (4 to 20 mA, 10 to 50 mA, or 0 to 10  V DC).
They are powered by instrument air supplies (25 psig air) or 24 V DC electrical
power. Pneumatic systems send air-pressure signals through small tubing. Analog
electronic systems use wires.

Since most valves are still actuated by air pressure, current signals are usually
converted to an air pressure. An “Z/P” (current to pressure) transducer is used to
convert 4 to 20 mA  signals to 3 to 15  psig signals.

Also located in the control room is the manual/automatic switching hardware
(or software). During start-up or under abnormal conditions, the plant operator may
want to be able to set the position of the control valve instead of having the controller
position it. A switch is usually provided on the control panel or in the computer sys-
tem, as sketched in Fig. 3.2. In the “manual” position the operator can stroke the
valve by changing a knob (a pressure regulator in a pneumatic system or a poten-
tiometer in an analog electronic system). In the “automatic” position the controller
output goes directly to the valve.
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FIGURE 3.1
Feedback control loop.

Each controller must do the following:

I

1. Indicate the value of the controlled variable-the signal from the transmitter

2. Indicate the value of the signal being sent to the valve-the controller output

(CO).
3. Indicate the setpoint signal (SP).
4. Have a manual/automatic/cascade switch.
5. Have a knob to set the setpoint  when the controller is on automatic.
6. Have a knob to set the signal to the valve when the controller is on manual.

All controllers, whether 30-year-old pneumatic controllers or modern distributed
microprocessor-based controllers, have these features.

3.1.1 Sensors

Let’s start from the beginning of the control loop at the sensor. Instruments for on-line
measurement of many properties have been developed. The most important variables
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Manual/automatic switching.

are flow rate, temperature, pressure, and level. Devices for measuring other proper-
ties, such as pH, density, viscosity, infrared and ultraviolet absorption, and refrac-
tive index are available. Direct measurement of chemical composition by means of
on-line gas chromatographs  is quite widespread. These instruments, however, pose
interesting control problems because of their intermittent operation (a composition
signal is generated only every few minutes). We study the analysis of these discon-
tinuous, “sampled-data” systems in Part Five.

We briefly discuss here some of the common sensing elements. Details of their
operation, construction, relative merits, and costs are given in several handbooks,
such as Instrument Engineers’ Handbook by B. G. Liptak, Chilton, Radnor, PA,
1970; and Measurement Fundamentals by R. L. Moore, Instrument Society of Amer-
ica, Research Triangle Park, NC, 1982.

A. Flow

Orifice plates are by lar the most common type of How rate sensor. The pres-
sure drop across the orifice varies with the square of the tlow in turbulent How, so
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measuring the differential pressure gives a signal that can be related to flow rate.
Normally, orifice plates are designed to give pressure drops in the range of 20 to 200
inches of water. Turbine meters are also widely used. They are more expensive but
give more accurate flow measurement. Other types of flow meters include sonic flow

meters, magnetic flow  meters, rotameters, vortex-shedding devices, and pitot  tubes.
In gas recycle systems, where the pressure drop through the flow meter can mean a
significant amount of compressor work, low-pressure drop flow meters, such as the
last two mentioned above, are used.

When a flow sensor is installed for accurate accounting measurements of the
absolute flow  rate, many precautions must be taken, such as providing a long sec-
tion of straight pipe before the orifice plate. For control purposes, however, one may
not need to know the absolute value of the flow, but only the changes in flow rate.
Therefore, pressure drops over pieces of equipment, around elbows, or over sections
of pipe can sometimes be used to get a rough indication of flow rate changes.

The signals from flow rate measurements are usually noisy, which means they
fluctuate around the actual value because of the turbulent flow. These signals often
need to be filtered (passed through an electronic device to smooth out the signal)
before being sent to the controller.

B. Temperature

Thermocouples are the most commonly used temperature-sensing devices. They
are typically inserted into a thermowell, which is welded into the wall of a vessel or
pipe. The two dissimilar wires produce a millivolt signal that varies with the “hot
junction” temperature. Iron-constantan thermocouples are commonly used over the
0 to 1300°F temperature range.

Filled-bulb temperature sensors are also widely used. An inert gas is enclosed
in a constant-volume system. Changes in process temperature cause the pressure ex-
erted by the gas to change. Resistance thermometers are used where accurate tem-
perature or differential temperature measurement is required. They use the principle
that the electrical resistance of wire changes with temperature.

The dynamic response of most sensors is usually much faster than the dynamics
of the process itself. Temperature sensors are a notable and sometimes troublesome
exception. The time constant of a thermocouple and a heavy thermowell can be 30
seconds or more. If the thermowell is coated with polymer or other goo, the response
time can be several minutes. This can significantly degrade control performance.

C. Pressure and differential pressure

Bourdon tubes, bellows, and diaphragms are used to sense pressure and differ-
ential pressure. For example, in a mechanical system the process pressure force is
balanced by the movement of a spring. The position of the spring can be related to
the process pressure.

D. Level

Liquid levels are detected in a variety of ways. The three most common are:

1.  Following the position of a float that is lighter than the fluid (as in a bathroom
toilet).
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FIGURE 3.3
Differential-pressure level measurement.

prcssure

Bubble tube

2. Measuring the apparent weight of a heavy cylinder as it is buoyed up more or less
by the liquid (these are called displacement meters).

3. Measuring the difference in static pressure between two fixed elevations, one in
the vapor above the liquid and the other under the liquid surface. As sketched in
Fig. 3.3, the differential pressure between the two level taps is directly related to
the liquid level in the vessel.

In the last scheme the process liquid and vapor are normally piped directly to the
differential-pressure measuring device (Al’ transmitter). Some care has to be taken
to account for or to prevent condensation of vapor in the connecting line (called the
“impulse line”) from the top level tap. If the line fills up with liquid, the differential
pressure will be zero even though the liquid level is all the way up to or above the
top level tap, leading you to think that the level is low. If safety problems can occur
because of a high level, a second level Sensor should be used to independently detect
high level. Keeping the vapor impulse line hot or purging it with a small vapor flow
can sometimes keep it from filling with liquid. Purging it with a small liquid flow also
works because you know that the line is always filled with liquid, so the “zero” (the
AP at which the transmitter puts out its 4-mA signal) can be adjusted appropriately
to indicate the correct level.

Because of plugging or corrosion problems, it is sometimes necessary to keep
the process fluid out of the AP transmitter. This is accomplished by mechanical di-
aphragm seals or by purges (introducing a small amount of liquid or gas into the
connecting lines, which flows back into the process).

If it is difficult to provide a level tap in the base of the vessel (for mechanical
design reasons, for example, in a glass-lined or jacketed vessel), a bubble tube can
L,,  “..,,,-.,,l,A  4.-.-  CL,. .,....  -CCL,. . ..-.““.l  ,-I  -...-  ..,A,,+L?.  l:,..:A  “..,C,.,.,  _”  ..L _...^ :“.
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Fig. 3.3. A small gas purge through the tube gives a pressure on the high-pressure

side of the A.P transmitter that is the same as the static pressure at the base of the
bubble tube. This type of level measurement can give incorrect level readings when
the pressure in the vessel is increasing rapidly because the liquid can back up in the

dip-tube if the gas purge flow rate is not large enough to compensate for the pressure
increase.

For very hard-to-handle process fluids, nuclear radiation gauges are used to de-
tect interfaces and levels.

As you can tell from the preceding discussion, it is very easy to be fooled by a
differential-pressure measurement of level. We have been bitten many times by these
problems and highly recommend redundant sensors and judicious skepticism about
the validity of instrument readings. Remember the Fourth Law of Process Control:
“Never believe the instruments.”

3.1.2 Transmitters

The transmitter serves as the interface between the process and its control system.
The job o,f  the transmitter is to convert the sensor signal (millivolts, mechanical
movement, pressure differential, etc.) into a control signal (4 to 20 mA, for example).

Consider the pressure transmitter shown in Fig. 3.4a.  Let us assume that this
particular transmitter is set up so that its output current signal varies from 4 to 20 mA

onnection  with process

(a) Pressure

crmocou  p,ie wires

Temperature

,

transmitter
range SO - 250°F

4 - 20 mA
output signal

Pipe

Taps

kifice
date

High-
pressure

side

4 - 2 0 m A
output signal

(h)  Temperature

FIGURE 3.4

(c)  Flow (orifice plate)

Typical transmitters. ((I)  Pressure. (h)  Temperature. (c)  Flow (orifice plate).



as the process pressure in the vessel varies from 100  to 1000 kPa  gauge. This is
called the rmge  of the transmitter. The .S~UII  of the transmitter is 900 kPa.  The zero
of the transmitter is 100  kPa  gauge. The transmitter has two adjustment knobs that
can be changed to modify the span or the zero. Thus, if we shifted the zero up to 200
kPa gauge, the rmge  of the transmitter would now be 200 to II00  kPa gauge while
its span would still be 900 kPa.

The dynamic response of most transmitters is usually much faster than the pro-
cess and the control valves. Consequently, we can normally consider the transmitter
as a simple “gain” (a step change in the input to the transmitter gives an instanta-
neous step change in the output). The gain of the pressure transmitter considered
above would be

20mA-4mA 16 mA

1000 kPa  - 100 kPa = 900 kPa
(3.1)

Thus, the transmitter is just a “transducer” that converts the process variable to an
equivalent control signal.

Figure 3.46 shows a temperature transmitter that accepts thermocouple input
signals and is set up so that its current output goes from 4 to 20 mA as the process
temperature varies from 50 to 250°F. The range of the temperature transmitter is
50 to 250°F,  its span is 200°F,  and its zero is 50°F. The gain of the temperature
transmitter is

20mA-4mA 16 mA=-
250°F - 50°F 200°F

(3.2)

As noted in the previous section, the dynamics of the thermowell-thermocouple sen-
sor are often not negligible and should be included in the dynamic analysis.

Figure 3.4~  shows a AP transmitter used with an orifice plate as a flow trans-
mitter. The pressure drop over the orifice plate (the sensor) is converted to a control
signal. Suppose the orifice plate is sized to give a pressure drop of 100 in Hz0  at
a process flow rate of 2000 kg/hr. The AP transmitter converts inches of Hz0  into
milliamperes, and its gain is 16 mA/lOO  in H20. However, we really want flow rate,
not orifice plate pressure drop. Since AP is proportional to the square of the flow
rate, there is a nonlinear relationship between flow rate F and the transmitter output
signal:

(3.3)

where PV = transmitter output signal, mA
F = flow rate, kg/hr

Equation (3.3) comes from the square-root relationship between velocity and pres-
sure drop. Dropping the flow by a factor of 2 cuts the AP signal by a factor of 4. For
system analysis we usually linearize Eq. (3.3) around the steady-state value of flow
rate, F;.
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where PV and b’ = perturbations from steady state
F = steady-state flow rate, kg/hr

'IllilX = maximum full-scale flow  rate = 2000 kglhr in this example

3.1.3 Control Valves

The interface with the process at the other end of the control loop is made by the
final control element. In a vast majority of chemical engineering processes the final
control element is an automatic control valve that throttles the flow of a manipulated
variable. In mechanical engineering systems the final control element is a hydraulic
actuator or an electric servo motor.

Most control valves consist of a plug on the end of a stem. The plug opens or
closes an orifice opening as the stem is raised or lowered. As sketched in Fig. 3.5,
the stem is attached to a diaphragm that is driven by changing air pressure above the
diaphragm. The force of the air pressure is opposed by a spring.

There are several aspects of control valves: their action, characteristics, and
size.

A. Action

Valves are designed to fail either in the completely open or the completely shut
position. Which action is appropriate depends on the effect of the manipulated vari-
able on the safety of the process. For example, if the valve is handling steam or fuel,
we want the flow to be cut off in an emergency (valve to fail shut). If the valve is
handling cooling water to a reactor, we want the fiow to go to a maximum in an
emergency (valve to fail wide open).

The valve shown in Fig. 3.5 is closed when the stem is completely down and
wide open when the stem is at the top of its stroke. Since increasing air pressure
closes the valve, this is an “air-to-close” (AC) valve. If the air-pressure signal should
drop to zero because of some failure (for example, if the instrument-air supply line
were cut or if it plugged with ice during a cold winter night), this valve would fail
wide open since the spring would push the valve open. The valve can be made “air-
to-open” (AO) by reversing the action of the plug to close the opening in the up
position or by reversing the locations of the spring and air pressure (with the air
pressure under the diaphragm). Thus, there are A0 and AC valves, and the deci-
sion about which to use depends on whether we want the valve to fail shut or wide
open.

B. Size

The flow rate through a control valve depends on the size of the valve, the pres-
sure drop over the valve, the stem position, and the fluid properties. The design
equation for liquids (nonflashing) is
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FIGURE 3.5
Typical air-operated control valve.

where F = flow rate, gpm
C, = valve size coefficient

x = valve stem position (fraction of wide open)
f&) = fraction of the total flow area of the valve (the curve of f&j versus x

is called the “inherent characteristics” of the valve, discussed later)
sp gr = specific gravity (relative to water)
AP,, = pressure drop over the valve. psi

More detailed equations are available in publications of the control valve manu-
facturers [for example, the Masonielan Handbook for Control Valve Sizing, 6th ed.
(1977),  Dresser Industries] that handle flows of gases, flashing liquids, and critical
flows with either English or SI units.

Sizing of control valves is one of the more controversial subjects in process con-
trol. The sizing of control valves is a good example of the engineering trade-off that
must be made in designing a plant. Consider the process sketched in Fig. 3.6. Sup-

FIGURE 3.6
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post the Ilow  rate at design conditions is I()()  gpm, the pressure in the feed tank is
~~tmosphcric.  the pressure drop ovc’r  the heat  exchanger (ALP”) at the design flow rate
is  40 psi, and the pressure in the linal  tank, P,,7 is I50  psig. Let us assume that we
want the control valve hall‘opcn (,f;  ,) = 0.5) at the design flow and that the specific

gravity of the liquid is I.
The process engineer  has  to size both the centrifugal pump and the control valve.

The bigger the control valve, the less pressure drop it requires. This results in a pump
with a lower pressure head and lower cncrgy costs because less power is consumed
by the pump motor. Without considering control, the process engineer wants to de-
sign a system that has a low pressure drop across the control valve. From a steady-
state standpoint, this makes perfect sense.

However, the control engineer wants to take a large pressure drop over the valve.
Why? Basically, it is a question of “rangeability”: the larger the pressure drop, the
larger the changes that can be made in the flow rate (in both directions-increase
and decrease). Let’s examine two different designs to show why it is desirable from
a dynamic viewpoint to have more pressure drop over the control valve.

In case 1 we size the valve so that it takes a 20-psi  pressure drop at design flow
when it is half open. This means that the pump must produce a differential head
of 1.50 + 40 + 20 = 210 psi at design. In case 2 we will size the valve so that it
takes an go-psi pressure drop at design. Now a higher head pump will be needed:
150 + 40 + 80 = 270 psi.

Using Eq. (3.5),  both control valves can be sized.
Case 1:

F = Cvfix) J
Af’v-
sP gr

100 = C”,(OS)  J20 3 C,,, = 44.72 when the design valve pressure drop
is 20 psi

Case 2:

100 = &(0.5)  480 3 C,,2  = 22.36 when the design valve pressure drop
is 80 psi

Naturally, the control valve in case 2 is smaller than that in case 1.
Now let’s see what happens in the two cases when we open the control valve

all the way: j& = 1. Certainly the flow rate will increase, but how much? From a
control point of view, we may want to be able to increase the flow  substantially. Let’s
call this unknown flow F,,,.

The higher flow rate will increase the pressure drop over the heat exchanger as
the square of the flow rate.

APH =  40(2r  =  4O(!&j (3.6)

where pd,, = design flow. The higher How rate might also reduce the head that the
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rapidly with throughput. For simplicity, let us assume that the pump curve is Hat.
This means that the total pressure drop across the heat exchanger and the control
valve is constant. Therefore, the pressure drop over the control valve must decrease
as the pressure drop over the heat exchanger increases.

A P,, = A PJ.(,,~, - AP,, (3.7)

Plugging in the numbers for the two cases yields the following results.
Case 1 (20-psi design):

APTotal  = 60 psi C,, = 44.72

Fmax = (44.72)(1.0)/60-  40# (3.8)

This equation can be solved for Fmax  = 115 gpm. The maximum flow through the
valve is only 15 percent more than design if a 20-psi pressure drop over the valve is
used at design flow rate.

Case 2 (80-psi design):

AP,,,, = 120 psi C, = 22.36

Fmax = (22.36)(1.0)/120  - 40(%7 (3.9)

Solving for Fmax yields 141 gpm. So the maximum flow through this valve, which
has been designed for a higher pressure drop, is over 40 percent more than design.

We can see from the results above that the valve designed for the larger pressure
drop can produce larger flow rate increases at its maximum capacity.

Now let’s see what happens when we want to reduce the flow. Control valves
don’t work too well when they are less than about 10 percent open. They can become
mechanically unstable, shutting off completely and then popping partially open. The
resulting fluctuations in flow are undesirable. Therefore, we want to design for a
minimum valve opening of 10 percent. Let’s see what the minimum flow rates will
be in the two cases when the two valves are pinched down so that j&j  = 0.1.

In this case the lower flow rate will mean a decrease in the pressure drop over
the heat exchanger and therefore an increase in the pressure drop over the control
valve.

Case 1 (20-psi design):

Fmin  = (0.1)(44.72)/60  - 40($)1

Solving gives Fmin = 33.3 gpm.
Case 2 (SO-psi design):

Fmin = (O.l)(2?36)J120  - 4O($r

This Fmin  is 24.2 gpm.
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These results show that the minimum 110~  rate  is lower for the valve designed
for a larger pressure drop. So not only can we increase the flow more, but we also
can reduce it more. Thus the t~r.r~tlo\~‘~  rrrtio  (the ratio of F,,,,, to F’,,,i,)  of the big AP
valve is larger.

Turndown ratio for 20-psi  design valve = g = 3.46
_ _ .

I41
Turndown ratio for N-psi  design valve = __

24.2
= 5.83

We have demonstrated why the control  engineer wants more pressure drop over the
valve.

So how do we resolve this conflict between the process engineer wanting low
pressure drop and the control engineer wanting large pressure drop?

A commonly used heuristic recommends that the pressure drop over the control
valve at design should be 50 percent of the total pressure drop through the system.
Although widely used, this procedure makes little sense to us. In some situations
it is very important to be able to increase the flow rate above the design conditions
(for example, the cooling water to an exothermic reactor may have to be doubled or
tripled to handle dynamic upsets). In other cases this is not as important (for example,
the feed flow rate to a unit).

A logical design procedure is based on designing the control valve and the pump
so that both a specified maximum flow rate and a specified minimum flow rate can
be achieved. The design flow conditions are used only to get the.pressure drop over
the heat exchanger (or fixed-resistance part of the process).

The designer must specify the maximum flow rate that is required under the
worst conditions and the minimum flow rate that is required. Then the valve flow
equations for the maximum and minimum conditions give two equations and two
unknowns: the pressure head of the centrifugal pump APp and the control valve
size C,.

EXAMPLE 3. I. Suppose we want to design a control valve for admitting cooling water
to a cooling coil in an exothermic chemical reactor. The normal flow rate is 50 gpm. To
prevent reactor runaways, the valve must be able to provide three times the design flow
rate. Because the sales forecast could be overly optimistic, a minimum flow rate of 50
percent of the design flow rate must be achievable. The pressure drop through the cooling
coil is 10 psi at the design flow rate of 50 gpm. The cooling water is pumped from an
atmospheric tank. The water leaving the coil runs into a pipe in which the pressure is
constant at 2 psig. Size the control valve and the pump.

The pressure drop through the coil depends on the flow rate F:

(3.12)

The pressure drop over the control valve is the total pressure drop available (which we
don’t know yet) minus the pressure drop over the coil.

(3.13)
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Now we write  OIW equation fi)~

ifnufn. At the maximum  conditions:
t h e  maximum  H o w  c o n d i t i o n s  :uld  o n e  ti)r the tnifl-

(3.14)

A t  the:  m i n i m u m  condifions:

2s = C,,(O.l)/LL@ (3. IS)

Solving simultaneously for the two unknowns yields the control valve size (C,,  = 21.3)
and the pump head (AP,, = APT  + 2 = 139.2 + 2 = 141.2 psi).

At the design conditions (50 gpm), the valve fraction open (.f&) will be given by

50 = 21.3&s  J139.2 - 10 3 j& = 0.206 (3.16)

n

The control valve and pump sizing procedure proposed above is not without its
limitations. The two design equations for the maximum and minimum conditions in
general terms are:

F IllilX (3.17)

(3.18)

where APT  = total pressure drop through the system at design flow rates
(APH)+~  = pressure drop through the fixed resistances in the system at de-

sign flow
Jnin  = minimum valve opening
Fdes  = flow rate at design

A flat pump curve is assumed in the above derivation. Solving these two equations
for APT  gives:

(3.19)

It is clear from Eq. (3.19) that as the second term in the denominator approaches
unity, the required pressure drop goes to infinity! So there is a limit to the achievable
rangeability of a system.

Let us define this term as the rangeability index of the system, CR.

(3.20)



The parameters on the right sick of Eq. (3.20) n~t.st  be chosen such that Y!. is less
than unity.

This can bc illustrated using the numbers from Example 3.1. If the minimum
flow rate is reduced from SO percent of design (where APT was 139.2 psi) to 40
percent, the new APT becomes 202 psi. If Fmin  is reduced further to 35 percent
of design, AP,r  is 335  psi. In the limit as Fmin goes to 30 percent of design, the
rangeability index becomes

()A  Es .fininFmax = (0.1)(150)  = ,
Fmin I5

and the total pressure drop available goes to infinity.
The value of .f;nin  can be reduced below 0.1 if a large turndown ratio is required.

This is accomplished by using two control valves in parallel, one large and one small,
in a split-range configuration. The small valve opens first, and then the large valve
opens as the signal to the two valves changes over its full range.

C. Characteristics

By changing the shape of the plug and the seat in the valve, different relation-
ships between stem position and flow area can be attained. The common flow char-
acteristics used are linear-trim valves and equal-percentage-trim valves, as shown
in Fig. 3.7. The term “equal percentage” comes from the slope of the j&) curve being
a constant fraction off.

If constant pressure drop over the valve is assumed and if the stem position
is 50 percent open, a linear-trim valve gives 50 percent of the maximum flow and
an equal-percentage-trim valve gives only 15 percent of the maximum flow. The

Stem position x (fraction of maximum lift)

3 psig t-  air-to-open valve  -I5 psig
IS psig +------air-to-close valve -----+ 3 psig

FIGURE 3.7
Control valve characteristics.



equations for these valves arc
Linear:

Equal percentage:

.k\-,  = -x- (3.21)

j&)  = w-’ (3.22)

where Q is a constant (20 to 50) that depends on the valve design. A value of 50 is
used in Fig. 3.7.

The basic reason for using different control valve trims is to keep the stability
of the control loop fairly constant over a wide range of flows. Linear-trim valves are
used, for example, when the pressure drop over the control valve is fairly constant
and a linear relationship exists between the controlled variable and the flow  rate of
the manipulated variable. Consider the flow of steam from a constant-pressure sup-
ply header. The steam flows into the she11 side of a heat exchanger. A process liquid
stream flows through the tube side and is heated by the steam. There is a linear
relationship between the process outlet temperature and steam flow  (with constant
process flow rate and inlet temperature) since every pound of steam provides a cer-
tain amount of heat.

Equal-percentage-trim valves are often used when the pressure drop available
over the control valve is not constant. This occurs when there are other pieces of
equipment in the system that act as fixed resistances. The pressure drops over these
parts of the process vary as the square of the flow rate. We saw this in the examples
discussing control valve sizing.

At low flow rates, most of the pressure drop is taken over the control valve since
the pressure drop over the rest of the process equipment is low. At high flow rates, the
pressure drop over the control valve is low. In this situation the equal-percentage trim
tends to give a more linear relationship between flow and control valve position than
does linear trim. Figure 3.8 shows the installed characteristics of linear and equal-

Linear trim Equal percentage trim

U 1
Stem position .r
(fraction open)

0 I
Stem position x
(fraction open)

FIGURE 3.8
Control-valve performance in a system (“installed characteristics”).



percentage valves for  different ratios of the fixed rcsistancc  prcssurc drop (API,  for
the heat cxchangcr  cxamplc)  to the pressure drop over the control  valve at design
conditions. The larger this ratio, the more nonlinear are the installed characteristics
of a linear vaivc.

The ir~hcwnt  c.lltrrtrcreri.sti(:,s  are those that relate flow to valve position in the
situation whcrc the pressure drop over the control valve is constant. These are the
(AP,,lAf’,q) = 0 curves in Fig. 3.8. Installed charucteris~ics  are those that result
from the variation in the pressure drop over the valve.

In conventional valves the air-pressure signal to the diaphragm comes from an
l/P  transducer  in analog electronic systems. Control valves sometimes can stick,
particularly large valves or valves in dirty service. A sticky valve can cause a control
loop to oscillate; the controller output signal changes, but the valve position doesn’t
until the pressure force gets high enough to move the valve. Then, of course, the
valve moves too far and the controller must reverse the direction of change of its
output, and the same thing occurs in the other direction. So the loop will fluctuate
around its setpoint even with no other disturbances.

This problem can be cured by using a “valve positioner.” These devices are built
into control valves and are little feedback controllers that sense the actual position of
the stem, compare it to the desired position as given by the signal from the controller,
and adjust the air pressure on the diaphragm to drive the stem to its correct position.
Valve positioners can also be used to make valves open and close over various ranges
(split-range valves).

Control valves are usually fairly fast compared with the process. With large
valves (greater than 4 inches) it may take 20 to 40 seconds for the valve to move full
stroke.

3.1.4 Analog and Digital Controllers

The part of the control loop with which we spend most of our time in this book is the
controller. The job of the controller is to compare the process signal from the trans-
mitter with the setpoint signal and to send out an appropriate signal to the control
valve. We will go into more detail about the performance of the controller in Section
3.2. In this section we describe what kinds of action standard commercial controllers
take when they detect a difference between the desired value of the controlled vari-
able (the setpoint) and the actual value.

Analog controllers use continuous electronic or pneumatic signals. The con-
trollers see transmitter signals continuously, and control valves are changed con-
tinuously. Digital computer controllers are discontinuous in operation, looking at a
number of loops sequentially. Each individual loop is polled every sampling period.
The analog signals from transmitters must be sent through analog-to-digital (A/D)
converters to get the information into the computer in a form that it can use. After the
computer performs its calculations in some control algorithm, it sends out a signal
that must pass through a digital-to-analog (D/A) converter and a “hold” that sends
a continuous signal to the control valve. We study these sampled-data systems in
detail in Chapters I4 and IS.



Three basic types of controllers are commonly used for continuous feedback
control. The details of construction of the analog devices and the programming of
the digital devices vary from one manufacturer to the next, but their basic functions
arc essentially the same.

A. Proportional action

A proportional-only feedback controller changes its output signal, CO, in direct
proportion to the error signal E, which is the difference between the setpoint signal
SP and the process variable signal PV coming from the transmitter.

CO = Bias -t K,(SP  - PV) (3.23)

The Bias signal is a constant and is the value of the controller output when there
is no error. K, is called the controller gain. The larger the gain, the more the con-
troller output will change for a given error. For example, if the gain is I, an error of
10 percent of scale (1.6 mA  in an analog electronic 4-20 mA system) will change
the controller output by IO percent of scale. Figure 3.9~  sketches the action of a
proportional controller for given error signals E.

Some instrument manufacturers use an alternative term, proportional hand
(PB), instead of gain. The two are related by

PB = F

c

P”,,,  p+f

High gain

Time

(3.24)

co,I,ET
Time

(b)

Time

FIGURE 3.9
Action of a feedback controller. (a) Proportional. (b)  Integral. (c) Ideal
derivative.



The higher or “wider” the proportional band, the lower  the gain, and vice versa. The
term “proportional band” refers to the range over which the error must change to
drive the controller output over its full range. Thus, a wide PB is a low gain, and a
narrow PB is a high gain.

The gain on the controller can be made either positive or negative by setting a
switch in an analog controller or by specifying the desired sign in a digital controller,
A positive gain results in the controller output decreasing when the process variable
increases, This “increase-decrease” action is called a “reverse-acting” controller. For
a negative gain, the controller output increases when the process variable increases,
and this is called a “direct-acting” controller. The correct sign depends on the action
of the transmitter (which is usually direct), the action of the valve (air-to-open or
air-to-close), and the effect of the manipulated variable on the controlled variable.
Each loop should be examined closely to make sure the controller gives the correct
action.

For example, suppose we are controlling the process outlet temperature of a heat
exchanger as sketched in Fig. 3.10. A control valve on the steam to the shell side
of the heat exchanger is manipulated by a temperature controller. To decide what
action the controller should have we first  look at the valve. Singe this valve puts
steam into the process, we would want it to fail shut. Therefore, we choose an air-
to-open (AO) control valve.

Next we look at the temperature transmitter. It is direct-acting (when the pro-
cess temperature goes up, the transmitter output signal, PV, goes up). Now if PV

Steam supply

Control valve
2

I I

Hotn Heat n
U - oil

exchanger
To T exit

F

”Steam
trap

II
I, SP

:: PV

Cool
o i l  -
inlet

FIGURE 3.10
Heat exchanger.

t
Condensate

IT = temperature transmitter
TC = temperature controller
CO = controller output
SP = setpoint
PV = process variable
T, = process inlet tentperature
T = process outlet temperature

F, = steam tlow rate
F = process flow rate



incrcascs, WC want to have less  steam. This means that the controller output must
decrease  since the valve is AO. Thus, the controller must bc rcvcrsc-acting and have
a positive gain.

If we wcrc cooling instead ofhcating, we would want the coolant flow to increase
when the temperature increased. But the controller action would still be reverse bc-
cause the control  valve would be an air-to-close valve, since we want it to fail wide
open.

As a final example, suppose we are controlling the base level in a distillation col-
umn with the bottoms product flow rate. The valve would be A0 because we want it
to fail shut (and prevent the loss of base level in an emergency). The level transmitter
signal increases if the level increases. If the level goes up, we want the bottoms flow
rate to increase. Therefore, the base level controller should be “increase-increase”
(direct-acting).

B. Integral action (reset)

Proportional action moves the control valve in direct proportion to the magnitude
of the eri-or. Integral action moves the control valve based on the time integral of the
error, as sketched in Fig. 3.90.

I
CO = Bias + 71

i
Et,)  dr (3.25)

where T/  is the integrul time or the reset  time with units of minutes.
If there is no error, the controller output does not move. As the error goes positive

or negative, the integral of the error drives the controller output either up or down,
depending on the action (reverse or direct) of the controller.

Most controllers are calibrated in minutes (or minutes/repeat, a term that comes
from the test of putting into the controller a fixed error and seeing how long it takes
the integral action to ramp up the controller output to produce the same change that a
proportional controller would make when its gain is 1; the integral reperrts  the action
of the proportional controller).

The basic purpose of integral action is to drive the process back to its setpoint
when it has been disturbed. A proportional controller will not usually return the con-
trolled variable to the setpoint when a load or setpoint disturbance occurs. This per-
manent error (SP - PV) is called steady-state error or offset. Integral action reduces
the offset to zero.

Integral action usually degrades the dynamic response of a control loop. We
demonstrate this quantitatively in Chapter 8. It makes the control loop more oscil-
latory and moves it toward instability. But integral action is usually needed if it is
desirable to have zero offset. This is another example of an engineering trade-off that
must be made between dynamic and steady-state performance.

C. Derivative action

The purpose of derivative action (also called rote orpwcrct)  is to anticipate whcrc
the process is heading  by looking at the time rate of change of the controlled variable
(its derivative). If we were able to take the derivative of the error signal (which we
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cannot do pdwrly. as WC explain more  fully in Chapter  8). we would have ideal
dcrivativc  action. 7

CO = Bias + ~1’; (3.26)

where 71)  is the tlrrivfrtive  time (minutes).
In theory, derivative  action should always improve dynamic response, and it

dots  in many loops. In others, howcvcr, the problem of noisy signals (fluctuating
process variable signals) makes the USC of derivative  action undesirable.

D. Commercial controllers
The three actions just described are used individually or combined in commer-

cial controllers. Probably 60 percent of all controllers are PI (proportional-integral),
20 percent are PID (proportional-integral-derivative), and 20 percent are P-only (pro-
portional). We discuss the reasons for selecting one type over another in Section 3.2.

3.1.5 Computing and Logic Devices

A wide variety of computations and logical operations can be performed on control
signals. Electronic devices are used in analog systems, and computer software is
used in DCS systems. For example, adders, multipliers, dividers, low selectors, high
selectors, high limiters, low limiters, and square-root extractors can all be incorpo-
rated in the control loop. They are widely used in ratio control, in computed variable
control, in feedforward  control, and in override control. These are discussed in the
next chapter.

In addition to the basic control loops, all processes have instrumentation that (1)
sounds alarms to alert the operator to any abnormal or unsafe condition, and (2) shuts
down the process if unsafe conditions are detected or equipment fails. For example, if
a compressor motor overloads and the electrical control system shuts down the motor,
the rest of the process will usually have to be shut down immediately. This type of
instrumentation is called an “interlock.” It either shuts a control valve completely or
drives the control valve wide open. Other examples of conditions that can “interlock”
a process down include electrical power failures, failure of a feed or reflux pump,
detection of high pressure or temperature in a vessel, and indication of high or low
liquid level in a tank or column base. Interlocks are usually achieved by pressure,
mechanical, or electrical switches. They can be included in the computer software
in a computer control system, but they are usually “hard-wired” for reliability and
redundancy.

3 . 2
PERFORMANCE OF FEEDBACK CONTROLLERS

3.2.1 Specifications for Closedloop Response

There are a number of criteria by which the desired performance of a closedloop
system can be specified in the time domain. For example, we could specify that the
closedloop system be critically damped so that there is no overshoot or oscillation.
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We must then sclcct the type of controller and set  its  tuning constants so that, when
coupled  with the  process, it gives  the  dcsircd  closcdloop  rcspor~se.  Naturally. the
control specification must be physically attainable.  We cannot make a Boeing 747
jumbo jet behave like a11  F-IS lighter. We cannot violate  constraints on the manipu-
lated variable (the control  valve can only go wide open or completely shut), and we
cannot require a physically unrealizable  controller (more about the mathematics  of
this in Chapter 8).

There are a number of time-domain specifications. A few of the most frequently
used dynamic specifications follow (see also Problem 2.7). The traditional test input
signal is a step change in setpoint.

1.  Ciosedloop damping coefficient (as discussed in Chapter 2)
2. Overshoot: the magnitude by which the controlled variable swings past the set-

point
3. Rise time (speed of response): the time it takes the process to come up to the new

setpoint
4. Decay ratio: the ratio of maximum amplitudes of successive oscillations
5. Settling time: the time it takes the amplitude of the oscillations to decay to some

fraction of the change in setpoint
6. Integral of the squared error: ISE = [tT(Ec,,)2 c/t

Notice that the first five of these assume an underdamped closedloop system, i.e.,
one that has some oscillatory nature.

Many years of experience have led to our personal preference of designing for
a closedloop damping coefficient of 0.3 to 0.5. As we see throughout the rest of this
book, this criterion is easy to use and reliable. A criterion such as ISE can be used for
any type of disturbance, setpoint or load. Some “experts” (remember, an “expert” is
one who is seldom in doubt but often in error) recommend different tuning parame-
ters for the two types of disturbances. This makes little sense to us. What you want is
a reasonable compromise between performance (tight control, small closedloop time
constants) and robustness (not too sensitive to changes in process parameters). This
compromise is achieved by using a closedloop damping coefficient of 0.3 to 0.5 since
it keeps the real parts of the roots of the closedloop characteristic equation a reason-
able distance from the imaginary axis, the point where the system becomes unstable
(see Chapter 2). The closedloop damping coefficient specification is independent of
the type of input disturbance.

The steady-state error is another time-domain specification. It is not a dynamic
specification, but it is an important performance criterion. In many loops (but not all)
a steady-state error of zero is desired, i.e., the value of the controlled variable should
eventually level out at the setpoint.

3.2.2 Load Performance

The job of most control loops in a chemical process is one of regulation  or load
rejection, i.e., holding the controlled variable at its setpoint in the face of load dis-
t,,,-hcanrP~  I ,xt ,,p Ir,nL  r,t +h, .x&Y-n,.+,.  ,I‘  I,..,1  -L _.-I _-I.  .  ..L-- rl- _ .  .  .  .  .  .  .I  1  -~ L-
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Wc use it simple  heat  cxchmgcr process (Fig. 3. IO) in which an oil stream  is
hcatcd with stca~n.  The process outlet tcmpcraturc 7’ is control led by manipulating
the steam Ilow  txtc  I;\.  to the  shell  side of the heat exchanger.  The oil flow rate F
and the inlet  oil  tcmpcraturc 7’0  arc load disturbances. The signal from the t,emper-
aturc transmitter (TT) is the process variable signal, PV. The setpoint signal is SP.
The output signal, CO, from the temperature controller (TC) goes through an I/P
transducer  to the stcarn  control valve. The valve is A0 bccausc we want it to fail
closed.

A. On/off control

The simplest controller would be an on/off controller like the thermostat in your
home heating system. The manipulated variable is either at maximum flow  or at
zero flow. The on/off control Icr is a proportional controller with a very high gain and
gives “bang-ban g” control action. This type of control is seldom used in a continuous
process because of the cycling nature of the response, surging flows, and wear on
control valves.

In the heat exchanger example the controlled variable T cycles as shown in
Fig. 3. I Icl.  When a load disturbance in inlet temperature (a step decrease in To)
occurs, both the period and the average value of the controlled variable T change.
You have observed this in your heating system. When the outside temperature is
colder, the furnace runs longer and more frequently, and the room temperature is
lower on average. This is one of, the reasons you feel colder inside on a cold day than
on a warm day for the same setting of the thermostat. The system is really unstable
in the classic linear sense. The nonlinear bounds or constraints on the manipulated
variable (control  valve position) keep it in a “limit cycle.”

B. Proportional controller

The output of a proportional controller changes only if the error signal changes.
Since a load change requires a new control valve pos’ition,  the controller must end
up with a new error signal. This means that a proportional controller usually gives a
steady-state error or of3set.  This is an inherent limitation of P controllers and is why
integral action is usually added. Our introductory simulation example in Chapter 1
illustrated this point.

As shown in Fig. 3. I lh for the heat exchanger example, a decrease in process
inlet temperature To requires more steam. Therefore, the error must increase to open
the steam valve more. The magnitude of the offset depends on the size of the load
disturbance and on the controller gain. The bigger the gain, the smaller the offset. As
the gain is made bigger, however, the process becomes underdamped, and eventually,
at still higher gains, the loop will go unstable, acting like an on/off controller.

Steady-state error is not always undesirable. In many level control loops the
absolute level is unimportant as long as the tank does not run dry or overflow. Thus,
a proportional controller is often the best type for level control. We discuss this in
more detail in Section 3.3.

C. Proportional-integral (PI) controller

Most controI  loons use PI controllers. The integral action eliminates steady-state
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reduced. But the system bccomcs more  underdamped as q is reduced. If it is made
too small, the loop becomes unstable.

D. Proportional-integral-derivative (PID) controller

PID controllers are used in loops  where signals are not noisy and where tight
dynamic response is important. The derivative action helps to compensate for lags in
the loop. Temperature controllers in reactors are usually PID. The controller senses
the rate of movement away from the setpoint and starts moving the control valve
earlier than with only PI action (see Fig. 3. I Iti).
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Derivative action.
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Derivative action can bc used on either the error signal (SP - PV)  or just the
process variable (PV). lfit  is on the error signal, step changes  in sctpoint will product
large bumps in the control valve. Therefore, in most process control applications, the
derivative action is applied only to the PV signal as it enters the controller. The P and
I action is then applied to the difference between the sctpoint and the output signa
from the derivative unit (see Fig. 3.12).

3.3
CONTROLLER TUNING

There are a variety of feedback controller tuning methods. Probably 80 percent of
all loops are tuned experimentally by an instrument mechanic, and 75 percent of the
time the mechanic can guess approximately what the settings will be by drawing on
experience with similar loops. We discuss a few of the time-domain methods below.
In subsequent chapters we present other techniques for finding controller constants
in the Laplace  and frequency domains.

3.3.1 Rules of Thumb

The common types of control loops are level, flow, temperature, and pressure. The
type of controller and the settings used for any one type are sometimes pretty much
the same from one application to another. For example, most flow control loops use
PI controllers with wide proportional band and fast integral action.

Some heuristics are given next, but they are not to be taken as gospel. They
merely indicate common practice, and they work in most applications.

A. Flow loops
PI controllers are used in most flow loops. A wide proportional band setting

(PB = 150) or low gain is used to reduce the effect of the noisy flow signal due to
flow turbulence. A low value of integral or reset time (7,  = 0.1 minutes/repeat) is
used to get fast, snappy setpoint tracking. The dynamics of the process are usually
very fast. The sensor sees the change in flow almost immediately. The control valve
dynamics are the slowest element in the loop, so a small reset time can be used.

There is one notable exception to fast PI flow control: flow control of condensate-
throttled reboilers. As sketched in Fig. 3.13, the flow rate of vapor to a reboiler is
sometimes controlled by manipulating the liquid condensate valve. Since the vapor
flow depends on the rate of condensation, vapor flow can be varied only by changing
the area for heat transfer in the reboiler. This is accomplished by raising or lowering
the liquid level in this “flooded” reboiler. Changing the liquid level takes some time.
Typical time constants are 3 to 6 minutes. Therefore, this flow control loop would
have much different controller tuning constants than suggested in the rule of thumb
cited above. Some derivative action may even be used in the loop to give faster flow
Iwntrnl
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FIGURE 3.13
Condensate-throttle flow control.

B. Level loops

Most liquid levels represent material inventory used as surge capacity. In these
cases it is relatively unimportant where the level is, as long as it is between some
maximum and minimum values. Therefore, proportional controllers are often used
on level loops to give smooth changes in flow rates and to filter out fluctuations in
flow rates to downstream units. We demonstrated this important concept in one of
our simulation examples in Chapter 1.

One of the most common errors in laying out a control structure for a plant with
multiple units in series is the use of PI level controllers. If P controllers are used, the
process flows rise or fall slowly down the train of units with no overshoot of flow
rates. Liquid levels rise if flows increase and fall if flows decrease. Levels are not
maintained at setpoints.

If PI level controllers are used, the integral action forces the level back to its
setpoint. In fact, if the level controller is doing a “perfect” job, the ievel is held
right at its setpoint. This means that any change in the flow rate into the surge tank
will immediately change the flow rate out of the tank. This defeats the purpose of
buffering. We might as well not even use a tank; just run the inlet pipe right into the
outlet pipe! Thus, this is an example of where tight control is not desirable. We want
the flow rate out of the tank to increase gradually when the inflow increases So that
downstream units are not upset.

Suppose the flow rate Fo  increases to the first tank in Fig. 3.14. The level hl
in the first tank will start to increase. The level controller will start to increase F1.
When F1  has increased to the point that it is equal to Fo,  the level will stop changing
since the tank is just an integrator. Now, if we use a P level controller, nothing else
will happen. The level will remain at the higher level, and the entering and exiting
flows  will be equal.
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P versus PI level control.
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FIGURE 3.15
Pressure control. (a) Fast pressure loop; (h) slow pressure loop.
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II‘. howcvcr, WC USC  ;I PI ICVCI  conlrolicr,  [IlC controller will continue to increase
the  outllow hc~orlcl  the  WIUC  01‘ the:  inflow to drive the  level  back down to its set-
point. So an inherent problem with PI level controllers is that they amplify flow rate

changes  of this type. The change  in the:  flow rate  out of the tank is actually larger  (for
a period of time) than the change i,n the flow rate into the tank. This amplification
gets worse as it works its way down through the series of units. What started out at
the beginning  as a small disturbance  can result in large fluctuations by the time it
rcachcs the last unit in the  train.

There arc, of course, many situations where it is desirable to control level tightly,
for example, in a reactor where control of rcsidencc  time is important.

The tuning of proportional level controllers is a trivial -job.  For example, we
could set the bias value at 50 percent of full scale, the setpoint at 50 percent of full
scale, and the proportional band at 50. This means that the control valve will be half
open when the tank is half full, wide open when the tank is 75 percent full, and
completely shut when the tank is 25 percent full. Changing the proportional band to
100  would mean that the tank would be completely full to have the valve wide open
and completely empty to have the valve shut.

C. Pressure loops

Pressure loops vary from very tight, fast loops (almost like flow control) to slow
averaging loops (almost like level control). An example of a fast pressure loop is the
case of a valve throttling the flow of vapor from a vessel, as shown in Fig. 3.15~.  The
valve has a direct handle on pressure, and tight control can be achieved. An example
of a slower pressure loop is shown in Fig. 3.156. Pressure is held by throttling the
water flow to a condenser. The water changes the AT driving force for condensation
in the condenser. Therefore, the heat transfer dynamics and the lag of the water flow-
ing through the shell side of the condenser are introduced into the pressure control
loop.

D. Temperature loops

Temperature control loops are usually moderately slow because of the sensor
lags and the process heat transfer lags. PID controllers are often used. Proportional
band settings are fairly low, depending on temperature transmitter spans and control
valve sizes. The reset time is of the same order as the process time constant; i.e.,
the faster the process, the smaller T/ can be set. Derivative time is set something
like one-fourth the process time constant, depending on the noise in the transmitter
signal. We quantify these tuning numbers later in the book.

3.3.2 On-Line Trial and Error

To tune a controller on-line, a good instrument mechanic follows a procedure some-
thing like the following:

I. With the controller on manual, take all the integral and derivative action out
of the controller; i.e., set T/ at maximum minutes/repeat and 7~)  at minimum
minutes.
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2 .
3_ .
4 .

5 .
6 .

7 .
8 .

9 .

10.

11.

Set the K,.  at a low value, perhaps 0.2.
Put the controller in automatic.
Make a small setpoint or load change and observe the response of the controlled
variable. The gain is low, so the response will be sluggish.
Increase K,.  by a factor of 2 and make another small change in setpoint or load.
Keep increasing K,,,  repeating step 5 until the loop becomes very underdamped
and oscillatory. The gain at which this occurs is called the ultimate gairl.
Back off K,.  to half this ultimate value.
Now start bringing in integral action by reducing T/ by factors of 2, making
small disturbances at each value of r/ to see the effect.
Find the value of rf that makes the loop very underdamped, and set r1  at twice
this value.
Start bringing in derivative action by increasing 70.  Load changes should be
used to disturb the system, and the derivative should act on the process variable
signal. Find the value of 70  that gives the tightest control without amplifying
the noise in the process variable signal.
Increase K, again by steps of 10  percent until the desired specification on damp-
ing coefficient or overshoot is satisfied.

It should be noted that there are some loops for which these procedures do not work.
Systems that exhibit “conditional stability” are the classic example. These processes
are unstable at high values of controller gain and at low values of controller gain,
but are stable over some intermediate range of gains. We discuss some of these in
Chapter 9.

3.3.3 Ziegler-Nichols Method

The Ziegler-Nichols (ZN) controller settings (.I. G. Ziegler and N. B. Nichols, Trans.
ASME 64: 759, 1942) are pseudo-standards in the control field. They are easy to
find and to use and give reasonable performance on some loops. The ZN settings
are benchmarks against which the performance of other controller settings are com-
pared in many studies. They are often used as first guesses, but they tend to be too
underdamped for most process control applications. Some on-line tuning can im-
prove control significantly. But the ZN settings are useful as a place to start.

The ZN method consists of first finding the ultimate gain K,,  the value of gain at
which the loop is at the limit of stability with a proportional-only feedback controller.
The period of the resulting oscillation is called the ultimate period, P,  (minutes
per cycle). The ZN settings are then calculated from K, and P,, by the formulas
given in Table 3.1 for the three types of controllers. Notice that a lower gain is used
when integration is included in the controller (PI) and that the addition of derivative
permits a higher gain and faster reset.

As an example, let us consider the three-heated-tank process simulated in Chap-
ter 1. As we prove in Chapter 8, the ultimate gain of this process is 6 and its ultimate
period is 0.363 hours. The ZN settings for this system are given in Table 3.2. The
response of the closedloop  system to a step load disturbance in To  is shown in Fig.
3.16 with P and PI controllers using the ZN settings.
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Ziegler-Nichols and TLC
settings

Ziegler-Nichols

Tyrcus-Luyben

K,. _

TABLE  3.2

ZN and TLC settings for three-heated-tank process
~~~.*- . . ..a _ -*B@qswi%Rrm

Uhimate  values: K,, = 6 w,, = 17.3  radhr P,,  = 0.363 hr

P PI PID

Ziegler-Nichols

K 3 2.73 3.53
71 (hr) - 0.302 0. I8 I

71)  ON - - 0.0454

Tyreus-Luyben

K - I .88 -

71  (hr) - 0.8 -

These results show some interesting things:

1. There is a steady-state error in the controlled variable TJ when a P controller is
used. This offset results because there is no integral term to drive the error to zero.

2. The ZN settings result in a fairly underdamped system: the responses show sig-
nificant oscillation. The closedloop damping coefficient of this system is about
0. I to 0.2.

In many process control applications, it is undesirable to have this kind of re-
sponse. It is too snappy and calls for rapid and large changes in the manipulated
variable. For example, in the control of a tray temperature in a distillation column,
we want tight temperature control, but we do not want rapid or large changes in the
heat input to the reboiler because the column may flood during one of the transients.
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P and PI Temperature Control
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FIGURE 3.16

If the surge in vapor rate is too rapid, we could even mechanically damage the trays
in the column. So we must sacrifice some performance (tight control) for smoother
and less violent changes in the manipulated variable.

3.3.4 Qreus-Luyben Method

The Tyreus-Luyben method procedure is quite similar to the Ziegler-Nichols method
but gives more conservative settings (higher closedloop damping coefficient) and
is more suitable for chemical process control applications. Our processes are more
like 747 jumbo jets. We want to treat them with “tender loving care” (hence, we
call these controller settings TLC settings) and will gladly sacrifice performance for
robustness. If we were designing the flight controls for an F- 16 jet fighter, we would
probably design for two situations: an “attack” mode (when we are ready to engage
in a dogfight with a MIG) and a “landing” mode (when we are trying to land on the
deck of an aircraft carrier). The attack mode setting could be Ziegler-Nichols (small
damping coefficient, small time constant), and the landing mode settings could be
Tyreus-Luyben (big damping coefficient, large time constant).

The method (B. D. Tyreus and W. L. Luyben, Z&EC Research 31: 2625, 1992)
uses the ultimate gain K,,  and the ultimate frequency w,.  The formulas for PI  and
PID controllers are given in Table 3.1, and the TLC settings for the three-heated-
tank process are given in Table 3.2. The performance of these settings is shown in
Fig. 3.16.
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The use  of I’ll>  controllers in process control is limited. primarily because of
pr~blcms with noisy signals. The derivative action amplifies this noise and gives
poor performance in some applications. There are sornc  reactor temperature control
loops that can (and sometimes must) use derivative action, but these are usually in
situations where the temperature signal is not noisy (filtering is sometimes required).

3.4
CONCLUSIONS

We have discussed concepts and ideas in this chapter that are of great practical
importance. You need to have some appreciation of the hardware and software of
process control. You need to know what conventional P and PI controllers can and
cannot do. You need to be able to tune these controllers. In this chapter we have
presented some of the basics. In the next three chapters we discuss more advanced
topics.

PROBLEMS

3.1. (a) Calculate the gain of an orifice plate and differential-pressure transmitter for flow
rates from 10 percent to 90 percent of full scale.

(b) Calculate the gain of linear and equal-percentage valves over the same range, as-
suming constant pressure drop over the valve.

(c) Calculate the total loop gain of the valve and the sensor-transmitter system over this
range.

3.2. .The  temperature of a CSTR is controlled by an electronic (4 to 20 mA) feedback con-
trol system containing (1) a 100 to 200°F temperature transmitter, (2) a PI controller
with integral time set at 3 minutes and proportional band at 25, and (3) a control valve
with linear trim, air-to-open action, and C,,  = 4 through which cooling water flows. The
pressure drop across the valve is a constant 25 psi. If the steady-state controller output
is 12 mA, how much cooling water is going through the valve? If a sudden disturbance
increases reactor temperature by YF,  what will be the immediate effect on the controller
output signal and the water flow rate?

3.3. Simulate the three-CSTR system on a digital computer with an on/off feedback con-
troller. Assume that the manipulated variable C AM is limited to -C  1 mole of A/ft3  around
the steady-state value. Find the period of oscillation and the average value of CAM for
values of the load variable CAD  of 0.6 and 1.

3.4. Two ways to control the outlet temperature of a heat exchanger cooler are sketched on
the following page. Comment on the relative merits of these two systems from the stand-
points of both control and heat exchanger design.

.%  Specify the following items for the bypass cooler system of Problem 3.4:
((I) The action of the valves (A0 or AC) and kind of trim.

.  . .  .
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3.6. Assume that the bypass cooling system of Problem 3.4 is designed so that the total pro-
cess flow of 50,000 lb&r  (heat capacity of 0.5 Btu/lb, “F) is split under normal condi-
tions with 25 percent going around the bypass and 75 percent going through the cooler.
Process inlet and outlet temperatures under these conditions are 250 and 150°F. Inlet
and outlet water temperatures are 80 and 120°F. Process side pressure drop through the
exchanger is 10 psi. The control valves have linear trim and are designed to be half open
at design rates with a 10 psi drop over the valve in series with the cooler. Liquid density
is constant at 62.3 lb,/ft3.

What will the valve positions be if the total process flow is reduced to 25 percent
of design and the process outlet temperature is held at 150”F? _

3.7. A liquid (sp gr = 1) is to be pumped through a heat exchanger and a control valve at
a design rate of 200 gpm. The exchanger pressure drop is 30 psi at design throughput.
Make plots of flow rate versus valve position x for linear and equal-percentage (a = 50)
control valves. Both valves are set at j& = 0.5 at design rate. The total pressure drop
over the entire system is constant. The pressure drop over the control valve at design
rate is:
(a) 10 psi
(b) 30 psi
(c) 120psi

3.8. Process designers sometimes like to use “dephlegmators” or partial condensers mounted
directly in the top of the distillation column when the overhead product is taken off as
a vapor. They are particularly popular for corrosive, toxic, or hard-to-handle chemicals
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since they eliminate a separate condenser shell, a reflux drum, and a reflux pump. Com-
ment on the relative controllability of the two process systems sketched above.

3.9. Compare quantitatively by digital simulation the dynamic performance of the three cool-
ers sketched on the next page with countercurrent flow, cocurrent  flow, and circulating
water systems. Assume the tube and shell sides can each be represented by four perfectly
mixed lumps. Process design conditions are:

Flow rate =50,000  lb,,/hr -
Inlet temperature = 250°F
Outlet temperature = 130°F
Heat capacity =OS Btu/lb,,,  “F

Cooling-water design conditions are:

A. Countercurrent:
Inlet temperature = 80°F
Outlet temperature = 130°F

B. Cocurrent:
Inlet temperature = 80°F
Outlet temperature = 125°F

C. Circulating system:
Inlet temperature to cooler = 120°F
Outlet temperature from cooler = 125°F
Makeup water temperature to system = 80°F

Neglect the tube and shell metal. Tune PI controllers experimentally for each system.
Find the outlet temperature deviations for a 25 percent step increase in process flow
rate.
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3.10. The overhead vapor from a depropanizer distillation column is totally condensed in
a water-cooled condenser at 120°F and 227 psig. The vapor is 95 mol% propane and
5 mol% isobutane. Its design flow rate is 25,500 lb,/hr,  and average latent heat of
vaporization is 125 Btu/lb,.

Cooling water inlet and outlet temperatures are 80°F and lOS’F,  respectively. The
condenser heat transfer area is 1000 ft2. The cooling water pressure drop through the
condenser at design rate is 5 psi. A linear-trim control valve is installed in the cooling
water line. The pressure drop over the valve is 30 psi at design with the valve half open.

The process pressure is measured by an electronic (4-20 mA) pressure transmit-
ter whose range is 100-300 psig. An analog electronic proportional controller with a
gain of 3 is used to control process pressure by manipulating cooling water How. The
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electronic signal from the controller (CO) is converted to a pneumatic signal in the I/P
transducer.
(N) Calculate the cooling water flow rate (gprn) at design conditions.
(/I) Calculate the size coefficient (C,,)  of the control valve.
(c) Specify the action of the control valve and the controller.
(d)  What are the values of the signals PV, CO, SP, and P,.;,,,,  at design conditions?
(e) Suppose the process pressure jurnps IO psi. How much will the cooling water Row

rate increase? Give values for PV, CO, and Pvi,lvc at this higher pressure. Assume
that the total pressure drop over the condenser and control valve is constant.

3.11. A circulating chilled-water system is used to cool an oil stream from 90 to 70°F in a
tube-in-shell heat exchanger. The ternperature of the chilled water entering the process
heat exchanger is maintained constant at 50°F by pumping the chilled water through a
refrigerated cooler located upstream of the process heat exchanger.

The design chilled-water rate for normal conditions is 1000 gpm, with chilled
water leaving the process heat exchanger at 60°F. Chilled-water pressure drop  through
the process heat exchanger is 15 psi at 1000 gpm. Chilled-water pressure drop through
the refrigerated cooler is 15 psi at 1000 gpm. The heat transfer area of the process heat
exchanger is I 143 ft*.

The temperature transmitter on the process oil stream leaving the heat exchanger
has a range of 50 to 150°F.  The range of the orifice differential-pressure flow transmitter
on the chilled water is 0 to 1500 gpm. All instrumentation is electronic (4 to 20 mA).
Assume the chilled-water pump is centrifugal with a flat pump curve.
(~1) Design the chilled-water control valve so that it is 25 percent open at the 1000

gpm design rate and can pass a maximum flow of 1500  gpm. Assume linear trim
is used.

(b) Give values of the signals from the temperature transmitter, temperature controller,
and chilled-water flow transrnitter when the chilled-water flow is 1000 gpm.

(c) What is the pressure drop over the chilled-water valve when it is wide open?
(cl) What are the pressure drop and fraction open of the chilled-water control valve

when the chilled-water How rate is reduced to 500 gpm? What is the chilled-water
flow transmitter output at this rate’?

(e) If electric power costs 2.5 cents/kilowatt-hour, what are the annual pumping costs
for the chilled-water pump at the design 1000 gpm rate’!  What horsepower motor
is required to drive the chilled-water pump? (I hp = 550 ft-lbtkec  = 746 W.)
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3.12. Tray 4 temperature on the Lehigh distillation column is controlled by a pneumatic PI
controller with a 2-minute reset time and a 50 percent proportional band. Tempera-
ture controller output (COT)  adjusts the setpoint of a steam flow controller (reset time
0.1 minutes and proportional band 100 percent). Column base level is controlled by a
pneumatic proportional-only controller that sets the bottoms product withdrawal rate.

Transmitter ranges are:

Tray 4 temperature
Steam flow
Bottoms flow
Base level

60-l 20°C
O-4.2 lb,/min (orificelAP  transmitter)
O-l gpm (orificelAP  transmitter)
O-20 in Hz0

PVL

c

Bottoms

1
'OF &-, pvF

75 psig

steam

SP

FIGURE P3.12
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Srcxly-slate  operating  conditions arc:

Tray  4 tcnipcrati~rc

13asc  lcvcl
Stcnlll  flow

Ho~tolns  flow

8 3 ° C

55% full
3.5 Ib,,,/niin
0.6 gpm

Prcssurc drop over the control valve on the bottoms product is constant at 30 psi.
This control valve has linear trim and a C,,  of 0.5. The formula for steam flow  through
a control valve (when the upstream pressure P,Y  in psia is greater than twice the down-
stlxam pressure) is

where W = steam flow rate (Ib,,,/hr)
c,,  =  4
X = valve fraction open (linear trim)

(a) Calculate the control signals from the base level transmitter, temperature transmit-
ter, steam flow transmitter, bottoms flow transmitter, temperature controller, steam
flow controller, and base level controller.

(b) What is the instantaneous effect of a +S’C step change in tray 4 temperature on
the control signals and flow rates?

3.13. A reactor is cooled by a circulating jacket water system. The system employs a double
cascade reactor temperature control to jacket temperature control to makeup cooling
water flow control. Instrumentation details are as follows (electronic, 4-20 mA):

Reactor temperature transmitter range: 50-250°F
Circulating jacket water temperature transmitter range: 50-l 50°F
Makeup cooling water flow transmitter range: O-250 gpm

(orifice plate + differential pressure transmitter)
Control valve: linear trim, constant 35-psi  pressure drop

Normal operating conditions are:

Reactor temperature = 140°F
Circulating water temperature = 106”
Makeup water flow rate = 63 gpm
Control valve 25% open

(u) Specify the action and size of the makeup cooling water control valve.
(b) Calculate the milliampere control signals from all transmitters and controllers at

normal operating conditions.
(c)  Specify whether each controller is reverse or direct-acting.
(d) Calculate the instantaneous values of all control signals if reactor temperature in-

creases suddenly by 10°F.
Proportional band settings of the reactor temperature controller, circulating jacket water
temperature controller, and cooling water flow controller are 20, 67, and 200, respec-
tively.
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3.14. Three vertical cylindrical tanks ( IO feet high, 10 feet in diameter) are used in a process.
Two tanks are process tanks and are level-controlled by manipulating outflows using
proportional-only level controllers (PB = 100). Level transmitter spans are 10 feet.
Control valves are linear, 50 percent open at the normal liquid rate of 1000 gpm, and
air-to-open, with constant pressure drop. These two process tanks are 50 percent full at
the normal liquid rate of 1000 gpm.

I Process I Process

vessel  2

i

Surge

tank
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‘l‘hc third tallk  is ;I surge tank  wl~osc lcvcl  is uncontrolled. Liquid is  pumped  from
this tank to the lirst  process vessel,  on to the second tank in series, and then back to the
surge tank. If the surge tank is half full when 1000  gpm  of liquid are circulated, how
full will the surge tank be, at the new steady state, when the circulating rate around the
system is cut to 500 gpm?

3.15. Liquid (sp gr = I ) is pumped from a tank at atmospheric pressure through a heat
exchanger and a control valve into a process vessel  held at 100 psig pressure. The
system is designed  for a maximum flow rate of 400 gpm. At this maximum flow rate
the pressure drop across the heat exchanger is SO psi.

A centrifugal pump is used with a performance curve that can  be approximated
by the relationship

AP,, = 198.33 - 1.458 x 10P”F2

where AP,, = pump head in psi

F = fIow  rate in gpm

The control valve has linear trim.
(cl) Calculate the fraction that the control valve is open when the throughput is reduced

to 200 gpm by pinching down on the control valve.
(0) An orifice-plate differential-pressure transmitter is used for flow measurement. If

the maximum full-scale flow reading is 400 gpm, what will the output signal from
the electronic flow transmitter be when the flow rate is reduced to I50 gpm?

3.16. Design liquid level control systems for the base of a distillation column and for the
vaporizer shown. Steam flow to the vaporizer is held constant and cannot be used to
control level. Liquid feed to the vaporizer can come from the column and/or from the
surge tank. Liquid from the column can go to the vaporizer and/or to the surge tank.

Liquid

f e e d

FIGURE P3.16

Vapor
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Since  the  liquid  must  be  cooled  if it is ~ellt  to the  SllrgC  tank and then rcheatcd in
the vaporizer, there is an energy COSt penalty aSWciated  with SClldillg  111WC  INaterial  (0

the surge tank than is absolutely necessary. Your level control system should therefore
hold both levels and also minimize the amount of material sent to the surge tank. (If;rlt:
One way to accomplish this is to make sure that the valves in the lines  to and from the
surge tank cannot be open simultaneously.)

3.17. A chemical reactor is cooled by a circulating oil system as shown. Oil is circulatctl
through a water-cooled heat exchanger and through control valve VI. A portion of the
oil stream can be bypassed around the heat exchanger through control valve VI. The
system is to be designed so that at design conditions:

l The oil flow rate through the heat exchanger is 50 gpm (sp gr = I) with a IO-psi
pressure drop across the heat exchanger and with the VI control valve 25 percent
open.

l The oil flow rate through the bypass is 100 gpm with the VI  control valve SO
percent open.

Both control valves have linear trim. The circulating pump has a fat pump curve. A
maximum oil flow rate through the heat exchanger of 100 gpm is required.
(a) Specify the action of the two control valves and the two temperature controllers.
(b) Calculate the size (C,) of the two control valves and the design pressure drops over

the two valves.
(c) How much oil will circulate through the bypass valve if it is wide open and the

valve in the heat exchanger loop is shut?

Y2 Circulating oil

FIGURE P3.17

3.18. The formula for the flow of saturated steam through a control valve is

w = 2. K,.f&)  J(P, 4 f-q(P,  - P2)

where W = Ib,/hr  steam
PI  = upstream pressure, psia
P2 = downstream pressure, psia
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The temperature of the steam-cooled reactor shown is 285°F. The heat that must
be transferred from the reactor into the steam generation system is 2.5 X IO” Btu/hr. The
overall heat transfer coefficient for the cooling coils is 300 Btu/hr ft’  “F. The steam dis-
charges into a 25psia steam header. The enthalpy difference between saturated  steam
and liquid condensate is 1000 Btu/lb,,,.  The vapor pressure of water can be approxi-
mated over this range of pressure by a straight line.

T(“F)  = 195 + f.8P(psia)

Design two systems, one where the steam drum pressure is 40 psia at design and another
where it is 30 psia.
(a) Calculate the area of the cooling coils for each case.
(b) Calculate the C,,  value for the steam valve in each case, assuming that the valve is

half open at design conditions: fix, = 0.5.
(c) What is the maximum heat removal capacity of the system for each case‘?

3.19. Cooling water is pumped through the jacket of a reactor. The pump and the control
valve must be designed so that:
(a) The normal cooling water flow rate is 250 gpm.
(b) The maximum emergency rate is 500 gpm.
(c) The valve cannot be less than IO percent open when the flow rate is 100 gpm.
Pressure drop through the jacket is IO psi at design. The pump curve has a linear slope
of -0. I psi/gpm.

Calculate the C,,  value of the control valve, the pump head at design rate, the size
of the motor required to drive the pump, the fraction that the valve is open at design,
and the pressure drop over the valve at design rate.

3.20. A CZ  splitter column uses vapor recompression. Because of the low temperature re-
quired to stay below the critical temperatures of ethylene and ethane, the auxiliary
condenser must be cooled by a propane refrigeration system.
(u) Specify the action of all control valves.
(b) Sketch a control concept diagram that accomplishes the following objectives:

Level in the propane vaporizer is controlled by the liquid propane flow from the
refrigeration surge drum.
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Column pressure is controlled by adjusting the speed of the column compressor
through a steam flow control-speed control-pressure control cascade system.

Reflux is flow controlled. Reflux drum level sets distillate flow. Base level sets
bottoms flow.

Column tray 10 temperature is controlled by adjusting the pressure in the propane
vaporizer, which is controlled by refrigeration compressor speed.

High column pressure opens the valve to the flare.

(c) How effective do you think the column temperature control will be? Suggest an
improved control system that still achieves minimum energy consumption in the
two compressors.

3.21. Hot oil from the base of a distillation column is used to reboil two other distillation
columns that operate at lower temperatures. The design flow rates through reboilers 1
and 2 are 100 gpm and 150 gpm, respectively. At these flow rates, the pressure drops
through the reboilers are 20 psi and 30 psi. The hot oil pump has a flat pump curve.

Size the two control valves and the pump so that:

l Maximum flow rates through each reboiler can be at least twice design.
l At minimum turndown rates, where only half the design flow rates are required,

the control valves are no less than 10 percent open.
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3.22. A reactor is cooled by circulating liquid through a heat exchanger that produces low-
pressure (10 psig) steam. This steam is then split between a compressor and a turbine.
The portion that goes through the turbine drives the compressor. The portion that goes
through the compressor is used by 50-psig  steam users. The turbine can also use IOO-
psig steam to provide power required beyond that available in the IO-psig steam. (See
the figure on the next page.)

Sketch a control concept diagram that includes all valve actions and the following
control strategies:

l Reactor temperature is controlled by changing the setpoint of the turbine speed
controller.

l Turbine speed is controlled by two split-range valves, one on the IO-psig inlet
to the turbine and the other on the lOO-psig  inlet. Your instrumentation system
should be designed so that the valve on the lo-psig steam is wide open before
any lOO-psig  steam is used.

l Liquid circulation from the reactor to the heat exchanger is flow controlled.
l Condensate level in the condensate drum is controlled by manipulating BFW

(boiler feed water).
l Condensate makeup to the steam drum is ratioed  to the lo-psig steam flow rate

from the steam drum. This ratio is then reset by the steam drum level controller.
l Pressure in the 50-psig  steam header is controlled by adding lOO-psig  steam.
l A high-pressure controller opens the vent valve on the lo-psig header when the

pressure in the IO-psig header is too high.
l Compressor surge is prevented by using a low-flow controller that opens the

valve in the spillback line from compressor discharge to compressor suction.

3.23. Water is pumped from an atmosphere tank, through a heat exchanger and a control
,IQI\,P ;nt,\  ‘, nrP~cllr-;-,~A \IOCCPI  The r\n~ratin<r nr~cc,,rp  i n  the vr~~cr~l  c.:,,,  v:,t-v  l’r,,,n
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200 to 300 PSI@‘0  but is 250 psig at design. Design flow rate is 100 gpm with a 20-psi
pressure drop through the heat exchanger. Maximum flow rate is 250 gpm. Minimum
flow rate is 25 gpm. A centrifugal pump is used that has a straight-line pump curve
with a slope of -0.1 psi/gpm.

Design the control valve and pump so that the maximum and minimum flow rates
can be handled with the valve never less than 10 percent open.

3.24. Reactant liquid is pumped into a batch reactor at a variable rate. The reactor pressure
also varies during the batch cycle. Specify the control valve size and the centrifugal
pump head required. Assume a flat pump curve.

The initial flow rate into the reactor is 20 gpm (sp gr = 1). It is decreased linearly
with time down to 5 gpm at 5 hours into the batch cycle. The initial reactor pressure is
50 psig. It increases linearly with time up to 350 psig at 5 hours. The reactant liquid
comes from a tank at atmospheric pressure.

3.25. Water is pumped from an atmospheric tank into a vessel at 50 psig through a heat
exchanger. There is a bypass around the heat exchanger. The pump has a flat curve.
The heat exchanger pressure drop is 30 psi with 200 gpm of flow through it.



FIGURE P3.25

Size the pump and the two control valves so that:

l 200 gpm can be bypassed.
l Flow through the heat exchanger can be varied from 75 gpm to 300 gpm.

3.26. An engineer from Catastrophic Chemical Company has designed a system in which
a positive-displacement pump is used to pump water from an atmospheric tank into a
pressurized tank operating at 150 psig. A control valve is installed between the pump
discharge and the pressurized tank.

With the pump running at a constant speed and stroke length, 350 gpm of water is
pumped when the control valve is wide open and the pump discharge pressure is 200
psig.

If the control valve is pinched back to 50 percent open, what will be the flow rate
of water and the pump discharge pressure?

3.27. Hot oil from a tank at 400°F is pumped through a heat exchanger to vaporize a liquid.
boiling at 200°F. A control valve is used to set the flow rate of oil through the loop.
Assume the pump has a flat pump curve. The pressure drop over the control valve is

_ 30 psi and the pressure drop over the heat exchanger is 35 psi under the normal design
conditions given below:

Heat transferred in heat exchanger = 17 X IO6  Btu/hr
Hot oil inlet temperature = 400°F
Hot oil exit temperature = 350°F
Fraction valve open = 0.8

200°F

FIGURE P3.27



The hot oil gives  off sensible  heat only (hear capacity -= 0.5  13tu/lb,,,  “F. density =
4.58 Ih,,,/gal). ‘The heat transfer area  in the cxhangcr is 652 ft’,  Assume the temperature
on  the tube  side of the heat exchanger stays constant at 200°F and the inlet hot oil

temperature stays constant at 400°F. A log mean temperature difference must be used.
Assuming the heat transfer coefficient  dots  not change with the tlow  rate, what

will the valve opening be when the heat transfer rate in the heat exchanger is half the
normal design value?

3.28. A control valve-pump system proposed by Connell  (Cller~i~rl  Etlgiuec~r-i/lg.  September
28, 1987, p. 123) consists of a centrifugal pump, several heat exchangers, a furnace, an
orifice, and a control valve. Liquid is pumped through this circuit and up into a column
that operates at 20 psig. Because the line running up the column is full of liquid, there
is a hydraulic pressure differential between the base of the column and the point of
entry into the column of 15 psi.

The pump suction pressure is constant at IO psig. The design flow rate is 500 gpm.
At this flow rate the pressure drop over the flow orifice is 2 psi, through the piping is
30 psi, over three heat exchangers is 32 psi, and over the furnace is 60 psi. Assume a
flat pump curve and a specific gravity of 1.

Connell  recommends that a control valve be used that takes a 76-psi pressure drop
at design flow rate. The system should be able to increase flow to I20 percent of design.
(a) Calculate the pressure drop over the valve at the maximum flow rate.
(b) Calculate the pump discharge pressure and the control valve C,.
(c) Calculate the fraction that the valve is open at design.
(d) If turndown is limited to a valve opening of 10 percent, what is the minimum flow

rate?

3.29. A circulating-water cooling system is used to cool a chemical reactor. Treated water is
pumped through a heat exchanger and then through the cooling coils inside the reactor.
Some of the circulating water is bypassed around the heat exchanger. Cooling tower
water is used on the shell side of the heat exchanger to cool the circulating water.

Two linear-trim control valves are used. Valve 1 in the bypass line is AO, and _
valve 2 in the heat exchanger line is AC. Both valves get their inputs from the CO
signal from a temperature controller.

Design conditions are: CO is 75 percent of scale, flow through valve 1 is 300 gpm,
flow through valve 2 is 100 gpm, pressure drop through the coil is 20 psi, and pressure
drop through the heat exchanger is 5 psi. The centrifugal pump has a flat pump curve.

If the maximum flow rate through the heat exchanger is 300 gpm when the CO
signal is 0 percent of scale, calculate the C, value of both control valves and the required
pump head. What is the flow rate through valve 1 when the CO signal is 100 percent
of scale?

3.30. A gravity-flow condenser uses the hydraulic head of the liquid in the line from the con-
denser to overcome the pressure drop over the control valve and the difference between
the pressure at the top of the distillation column PI and the pressure at the bottom of the
condenser Pz.  The pressure difference is due to the flow of vapor through the vapor line
and condenser. When the flow rate of vapor from the top of the column is 14 1.6 Ib,,/min,
the pressure drop PI  - PI is 2 psi. The pressure drop due to the liquid flowing through
the liquid return line is negligible. Liquid density is 62.4 lb,,/ft’.
(a) If we want the height of liquid in the return line to be 5 ft at design conditions

(141.6 lb,/min of liquid with the control valve half open), what is the required
control valve C,.‘?
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(/I) If the vapor and liquid how  ra!cs  both increase to 208.2 Ib,,,/min  when the control
valve is wide O~XI~,  what  is the height of liquid in the liquid return line?

3.31. A hot vapor bypass pressure control system is used on a distillation column. Some of
the vapor from the top of the column passes through a control valve and is added to
the vapor space in the top of the reflux drum. The column operates at 7 atm and the
ovcrhcad vapor is essentially pure isobutane. The vapor pressure of isobutane is given
by the following equation:

In P = 9.91552 - 2586.8/(T  + 273)

where P is in atmospheres and T is in degrees Celsius.
Since the flow  through the valve is isenthalpic, the temperature in the hot vapor

space in the reflux drum is the same as the temperature in the top of the column (as-
suming isobutane is an ideal gas at this pressure).

Most of the vapor from the top of the column is condensed and subcooled in a
condenser. This subcooled liquid then flows into the base of the reflux drum. There is
heat transfer between the hot vapor and the cooler vapor-liquid interface (at tempera-
ture 7J and between the vapor-liquid interface and the cooler-subcooled reflux in the
tank (at temperature TK).  The vapor film coefficient is 10 Btu/hr  “C  ft*,  and the liquid
film coefficient is 30 Btu/hr “C  ft*. The heat transfer area on the surface of the liquid
is 72 ft*. The heat of vaporization of isobutane is 120 Btu/lb,.

The control valve is sized to be IO percent open during summer operation, when
the temperature of the subcooled liquid in the tank is 45°C. Use the control valve sizing
formula

where F = Ib/hr of vapor flow
PCd = pressure in the column = 7 atm

P = pressure in the reflux drum = saturation pressure of isobutane at the
temperature T of the interface between the liquid and vapor phases.

(a) Calculate the 6, value of the control valve.
(b) Calculate the fraction that the valve will be open during winter operation, when

the temperature of the subcooled reflux is 15°C. Column pressure is constant at
7 atm.

3.32. The steam supply to a sterilizer comes from an 84.7-psia  header and is saturated vapor
with an enthalpy of 1184.1 Btu/lb.  It flows through a control valve into the sterilizer,
where a temperature of 250°F is desired (saturation pressure of 29.82 psia and saturated
liquid enthalpy of 218.48 Btu/lb).  Condensate leaves through a steam trap. The heat
required to maintain the sterilizer at its desired temperature is 200,000 Btu/hr. The
control valve should be 25 percent open at these steady-state conditions. A pressure
controller is used to control pressure in the sterilizer. The pressure transmitter has a
range of O-75 psig. Ail instrumentation is electronic with a signal range of 4 to 20 mA.

The equation for steam flow through a control valve when the upstream pressure
is more than twice the downstream pressure is

where Fs  = steam flow rate, Ib/hr
/Is = upstream pressure, psia



((I) Slloultl  tllc steam  control valve  bc  A0 or AC?

(h) Calciilate lhc  C,,  value  of the control valve.
(c*)  Calculate the PV signal from the pressure transmitter and the CO signal from the

pressure controller under steady-state conditions.

((1) If the proportional band of the controller is 75 and the pressure in the sterilizer

suddenly drops by 5 psi, calculate the instantaneous value of the controller output

and the new value of the steam flow rate.

3.33. Design a centrifugal pump and control valve system so that a maximum flow rate ot

75 gpm and a minimum flow rate of 25 gpm are achievable with the control valve at

100  percent and IO percent open, respectively. Liquid is pumped from a tank whose

pressure can vary from 50 to 75 psia. The material is pumped through a heat exchange1

(which takes 30-psi  pressure drop at 50 gpm)  and a control valve into a tank whose

pressure can vary from 250 to 300 psia. Assume a flat pump curve.
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Advanced Control Systems.

In the previous chapter we discussed the elements of a conventional single-input,
single-output (SISO) feedback control loop. This configuration forms the backbone
of almost all process control structures.

However, over the years a number of slightly more complex structures have
been developed that can, in some cases, significantly improve the performance of a
control system. These structures include ratio control, cascade control, and override
control.

4.1
RATIO CONTROL

As the name implies, ratio control involves keeping constant the ratio of two or more
flow rates. The flow rate of the “wild” or uncontrolled stream is measured, and the
flow rate of the manipulated stream is changed to keep the two streams at a constant
ratio with each other. Common examples include holding a constant reflux ratio on a
distillation column, keeping stoichiometric amounts of two reactants being fed into a
reactor, and purging off a fixed percentage of the feed stream to a unit. Ratio control
is often part of afeedforward control structure, which we will discuss in Section 4.7.

Ratio control is achieved by two alternative schemes, shown in Fig. 4.1. In the
scheme shown in Fig. 4. la, the two flow rates are measured and their ratio is com-
puted (by the divider). This computed ratio signal is fed into a conventional PI con-
troller as the process variable (PV) signal. The setpoint of the ratio controller is the
desired ratio. The output of the controller goes to the valve on the manipulated vari-
able stream, which changes its flow rate in the correct direction to hold the ratio of
the two flows constant. This computed ratio signal can also be used to trigger an
alarm or an interlock.

In the scheme shown in Fig. 4. lh, the wild flow is measured and this flow signal
is multiplied by a constant, which is the desired ratio. The output of the multiplier is
the setpoint of a remote-set how  controller on the manipulated variable.

117
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Ratio control. (n) Ratio compute.
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If orifice plates are used as flow sensors, the signals from the differential-pres-
sure transmitters are really the squares of the flow rates, Some instrument engineers
prefer to put in square-root extractors and convert everything to linear flow signals.

4.2
CASCADE CONTROL

One of the most useful concepts in advanced control is cascade control. A cascade
control structure has two feedback controllers, with the output of the primary (or



master) controIlcr  changing the sctpoint  of the secondary (or slave) controller. The

output of the secondary goes to the valve,  as  shown in Fig. 4.2.

There arc two purposes for cascade control: ( I ) to eliminate the effects of some

disturbances, and (2) to improve the dynamic performance of the control loop.

To illustrate the disturbance re.jection effect, consider the distillation column re-

boiler shown in Fig. 4.2~1.  Suppose the steam supply pressure increases. The pressure
drop over the control valve will bc larger, so the steam flow rate will increase. With

Conventional  single loop Cascade control loop
Primary
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Circulation

pump

I Cooling
water
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TT = temperature transmitter

TC = temperature controller

LC = level controller

(h)

FIGURE 4.2
Conventional versus cascade control. ((1) Distillation*column-reboiler  temperature
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the single-loop tcmpcrafure  controller, no correction will be made until the higher
steam flow rate increases the vapor boilup  and the higher vapor rate begins to raise
the temperature on tray 5. Thus, the whole system is disturbed by a supply steam
pressure change.

With the cascade control system, the steam flow controller will immediately see
the increase in steam flow and will pinch back on the steam valve to return the steam
flow rate to its setpoint. Thus, the reboiler and the column are only slightly affected
by the steam supply pressure disturbance.

Figure 4.2~3  shows another common system where cascade control is used. The
reactor temperature controller is the primary controller; the jacket temperature con-
troller is the secondary controller. The reactor temperature control is isolated by the
cascade system from disturbances in cooling-water inlet temperature and supply
pressure.

This system is also a good illustration of the improvement in dynamic perfor-
mance that cascade control can provide in some systems. As we show quantitatively
in Chapter 9, the closedloop time constant of the reactor temperature will be smaller
when the cascade system is used than when the reactor temperature sets the cooling
water makeup valve directly. Therefore, performance is improved by using cascade
control.

We also talk in Chapter 9 about the two types of cascade control: series cascade
and parallel cascade. The two examples just discussed are both series cascade sys-
tems because the manipulated variable affects the secondary controlled variable, and
then the secondary variable affectsthe primary variable. In a parallel cascade system
the manipulated variable affects both the primary and the secondary controlled vari-
ables directly. Thus, the two processes are basically different and result in different
dynamic characteristics. We quantify these ideas later.

4.3
COklPUTED  VARIABLE CONTROL

One of the most logical and earliest extensions of conventional control was the idea
of controlling the variable that was of rea’l  interest by computing its value from other
measurements.

For example, suppose we want to control the mass flow rate of a gas. Controlling
the pressure drop over the orifice plate gives only an approximate mass flow rate
because gas density varies with temperature and pressure in the line. By measur-
ing temperature, pressure, and orifice plate pressure drop and feeding these signals
into a mass-flow-rate computer, the mass flow rate can be controlled as sketched in
Fig. 4.3a.

Another example is shown in Fig. 4.3b,  where a hot oil stream is used to reboil a
distillation column. Controlling the flow rate of the hot oil does not guarantee a fixed
heat input because the inlet oil temperature can vary and the 1T requirements in the
reboiler can change. The heat input Q can be computed from the flow rate and the
inlet and outlet temperatures, and this Q can then be controlled.

As a final example, consider the problem of controlling the temperature in a dis-
tillation column where significant pressure changes occur. We really want to measure
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and control composition, hut tennpcrature  is used to infer composition because tcm-
pcraturc measurements are much more reliable and inexpensive  than composition
measurements.

In a binary system, composition depends only on pressure and temperature:

x = .1;7..rq (4.1)

Thus, changes in composition depend on changes in temperature and prcssurc.

Ax = ($j7,AP  + [$],,AT (4.2)

where x = mole fraction of the more volatile component in the liquid.
The partial derivatives are usually assumed to be constants that are evaluated at

the steady-state operating level from the vapor-liquid equilibrium data. Thus, pres-
sure and temperature on a tray can be measured, as shown in Fig. 4.32,  and a compo-
sition signal or pressure-compensated temperature signal generated and controlled.

ATPC  = K,AP - K2AT (4.3)

where T”’ = pressure-compensated temperature signal
KI and K2  = constants

Forty years ago these computed variables were calculated using pneumatic de-
vices. Today they are much more easily done in the digital control computer. Much
more complex types of computed variables can now be calculated. Several variables
of a process can be measured, and all the other variables can be calculated from a
rigorous model of the process. For example, the nearness to flooding in distillation
columns can be calculated from heat input, feed flow rate, and temperature and pres-
sure data. Another application is the calculation of product purities in a distillation
column from measurements of several tray temperatures and flow rates by the use
of mass and energy balances, physical property data, and vapor-liquid equilibrium
information. Successful applications have been reported in the control of polymer-
ization reactors.

The computer makes these “rigorous estimators” feasible. It opens up a number
of new possibilities in the control field. The limitation in applying these more pow-
erful methods is the scarcity of engineers who understand both control and chemical
engineering processes well enough to apply them effectively. Hopefully, this book
will help to remedy this shortage.

4.4
OVERRIDE CONTROL

There are situations where the control loop should monitor more than just one con-
trolled variable. This is particularly true in highly automated plants, where the oper-
ator cannot be expected to make all the decisions that are required under abnormal
conditions. This includes the startup and shutdown of the process.

Override control (or “selective control,” as it is sometimes called) is a form of
multivariable control in which a vzanipulnted  variable can be set at any time by one
of a number of different c*orzrmlled  variables.
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The idea is best explained with an example. Suppose the base level in a distilla-
tion column is normally held by bottoms product withdrawal as shown in Fig. 4.4a.
A temperature in the stripping section is held by steam to the reboiler. Situations
can arise where the base level continues to drop even with the bottoms flow at zero
(vapor boilup  is greater than the liquid rate from tray 1). If no corrective action is
taken, the reboiler may boil dry (which could foul the tubes) and the bottoms pump
could lose suction.

An operator who saw this problem developing would switch the temperature
loop into “manual” and cut back on the steam How. The control system in Fig. 4.40
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will perfirm  this “override” control automatic~~lly.  Vie low sclcctor  (IS) sends  to

the steam valve the lower of the two signals. If the steam valve is air-to-open, the
valve will be pinched back by cithcr high tempcraturc  (through the reverse-acting
tcmpcrature controlIcr) or low base lcvcl  (through the low-base-level override con-
troller).

In level control applications, this override controller can be a simple fixed-gain
relay that acts like a proportional controller. The gain of the controller shown in Fig.
4.40  is 5. It would bc “zeroed” so that as the level transmitter dropped from 20 to
0 percent of full scale, the output of the,  relay would drop from 100 to 0 percent of
scale. This means that under normal conditions when the level is above 20 percent,
the output of the relay will be at IO0 percent. This will be higher than the signal from
the temperature controller, so the low selector will pass the temperature controller
output signal to the valve. However, when the base level drops below 20 percent
and continues to fall toward 0 percent, the signal from the relay will drop and at
some point will become lower than the temperature controller output. At this point
the temperature controller is overridden by the low-base-level override controller.

Other variables might also take over control of the steam valve. If the pressure in
the column gets too high, we might want to pinch the steam valve. If the temperature
in the base gets too high, we might want to do the same. So there could be a number
of inputs to the low selector from various override controllers. The lowest signal will
be the one that goes to the valve.

!n temperature and pressure override applications the override controller usually
must be a PI controller, not a P controller as used in the level override controller. This
is because the typical change in the transmitter signal over which we want to take
override action in these applications (high pressure, high temperature, etc.) is only a
small part of the total transmitter span. A very high-gain P controller would have to
be used to achieve the override control action, and the override control loop would
probably be closedloop unstable at this high gain. Therefore, a PI controller must be
used with a lower gain and a reasonably fast reset time to achieve the tightest control
possible.

Figure 4.46 shows another type of selective control system. The signals from
the three temperature transmitters located at various positions along a tubular reac-
tor are fed into a high selector. The highest temperature is sent to the temperature
controller, whose output manipulates cooling water. Thus, this system controls the
peak temperature in the reactor, wherever it is located.

Another very common use of this type of system is in controlling two feed
streams to a reactor where an excess of one of the reactants could move the com-
position in the reactor into a region where an explosion could occur. Therefore, it
is vital that the flow rate of this reactant be less than some critical amount, relative
to the other flow. Multiple, redundant How measurements would be used, and the
highest flow signal would be used for control. In addition, if the differences between
the flow measurements exceeded some reasonable quantity, the whole system would
be “interlocked down” until the cause of the discrepancy was found.

Thus, override and selective controls are widely used to handle safety problems
and constraint problems. High and low limits on controller outputs, as illustrated in
Fig. 4.4c,  are also widely used to limit the amount of change permitted.



(~IIAITI:K 4:  Advanced Control Systems 125

When a controller with integral action  (PI or PID) sees an error signal for a long

period of time, it intcgratcs the error until it reaches a maximum (usually 100  percent

of scale) or a minimum (usually 0 percent). This is called reset windup. A sustained
error signal can occur for a number of reasons, but the use of override control is
one major cause. If the main controller has integral action, it will wind up when the
override controller has control of the valve. And if the override controller is a PI
controller,  it will wind up when the normal controller is setting.the  valve. So this
reset windup problem must be recognized and solved.

This is accomplished in a number of different ways, depending on the controller
hardware and software used. In pneumatic controllers, reset windup can be prevented
by using external reset feedback (feeding back the signal of the control valve to
the reset chamber of the controller instead of the controller output). This lets~the
controller integrate the error when its output is going to the valve, but breaks the
integration loop when the override controller is setting the valve. Similar strategies
are used in analog electronics. In computer control systems, the integration action is
turned off when the controller does not have control of the valve.

4.5
NONLINEAR AND ADAPTIVE CONTROL

Since many of our chemical engineering processes are nonlinear, it would seem ad-
vantageous to use nonlinear controllers in some systems. The idea is to modify the
controller action and/or settings,in  some way to compensate for the nonlinearity of
the process.

For example, we could use a variable-gain controller in which the gain K, varies
with the magnitude of the error:

K,. = KCo(  1 + 6lEl) (4.4)

where Kc0 = controller gain with zero error
/El  = absolute magnitude of error

6 = adjustable constant

This would permit us to use a low value of gain so that the system is stable near the
setpoint over a broad range of operating levels with changing process gains. When
the process is disturbed away from the setpoint, the gain will become larger. The
system may even be closedloop unstable at some point. But the instability is in the
direction of driving the loop rapidly back toward the stable setpoint region.

Another advantage of this kind of nonlinear controller is that the low gain at the
setpoint reduces the effects of noise.

The ‘parameter b can be different for positive and negative errors if the noniin-
earity of the process is different for increasing or decreasing changes. For example,
in distillation columns a change in a manipulated variable that moves product com-
positions in the direction of higher purity has less of an effect than a change in the
direction toward lower purity. Thus, higher controller gains can be used as product
purities rise, and lower gains can be used when purities fall.
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Another type of nonlinear control can bc achieved  by using nonlinear transfor-
mations of the controlled variables. For example, in chemical reactor control the
rate of reaction can be controlled instead of the temperature. The two are, of course,
related through the exponential temperature relationship. In high-purity distillation
columns, a logarithmic transformation of the type shown below can sometimes be
useful to “linearize” the composition signal and produce improved control with a
conventional linear controller still used.

(4.5)

(4.6)

where the subscript TR indicates transformed variables.
Adaptive control has been an active area of research for many years. The full-

blown ideal adaptive controller continuously identifies (on-line) the parameters of
the process as they change and retunes the controller appropriately. Unfortunately,
this on-line adaptation is fairly complex and has some pitfalls that can lead to poor
performance (instability or very sluggish control). Also, it takes considerable time
for the on-line identification to be achieved, which means that the plant may have
already changed to a different condition. These are some of the reasons on-line adap-
tive controllers are not widely used in the chemical industry.

However, the main reason for the lack of wide application of on-line adaptive
control is the lack of economic incentive. On-line identification is rarely required
because it is usually possible to predict with off-line tests how the controller must be
retuned as conditions vary. The dynamics of the process are determined at different
operating conditions, and appropriate controller settings are determined for all the
different conditions. Then, when the process moves from one operating region to
another, the controller settings are automatically changed. This i‘s called “openloop-
adaptive control” or “gain scheduling.”

These openloop-adaptive controllers are really just another form of nonlinear
control. They have been quite successfully used in many industrial processes, par-
ticularly in batch processes where operating conditions can vary widely and in pro-
cesses where different grades of products are made in the same equipment.

The one notable case where on-line adaptive control has been widely used is
in pH control. The wide variations in titration curves as changes in buffering occur
make pH control ideal for on-line adaptive control methods. Several instrument ven-
dors have developed commercial on-line adaptive controllers. Seborg, Edgar, and
Shah (AIChE  Journal 32:88  1, 1986) give a survey of adaptive control strategies in
process control.

4.6
VALVE POSITION (OPTIMIZING) CONTROL

Shinskey [Chem. Erg.  Prog. 72(5):73,  1976; Chem.  Eng. Prog.  74(5):43,  19781  pro-
posed the use of a type of control configuration that he called vdve position control.
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This strategy provides a very simple and cffcctive  method for achieving “optimizing

control.” The basic idea is illustrated by several important applications.
Since relative volatilitics increase in most distiliation systems as pressure de-

creases, the optimal operation would be to minimize the pressure at all times. One
way to do this is to completely open the control valve on the cooling water. The
pressure would then float up and down as cooling-water temperature changed.

However, if there is a sudden drop in cooling-water temperature (as can oc-
cur during a thundershower or “blue not-the?), the pressure in the column can fall
rapidly. This can cause flashing of the liquid on the trays, will upset the composition
and level controls on the column, and could even cause the column to flood.

To prevent this rapid drop, Shinskey  developed a “floating-pressure” control
system, sketched in Fig. 4.5. A conventional PI pressure controller is used. The out-
put of the pressure controller goes to the cooling-water valve, which is AC so that
it will fail open. The pressure controller output is also sent to another controller, the
“valve position controller” (VPC). This controller looks at the signal to the valve,
compares it with the VPC setpoint  signal, and sends out a signal that is the setpoint
of the pressure controller. Since the valve is AC, the setpoint of the VPC is about 5
percent of scale to keep the cooling-water valve almost wide open.

The VPC scheme is a different type of cascade control system. The primary ~_  I-;
control is the position of the valve. The secondary control is the column pressu=~‘E@e==::+
pressure controller is PI and is tuned fairly tightly so that it can prevent the~~~_~_‘~~~-I~--
drops in pressure. Its setpoint is slowly changed by the VPC to drive the~~~~~~~~~  ~~~~~~~~~
water valve nearly wide open. A slow-acting, integral-only controller shouId~&~+~~E&  1:--r=
in the VPC.

Figure 4.6 shows another example of the application of VPC to optimize%@~~~1>
cess. We want to control the temperature of a reactor. The reactor is cooled b+&&&  ~~ ~~~~
cooling water flowing through a jacket surrounding the reactor and by~comL-&
vapor that boils off the reactor in a heat exchanger cooled by a refrigerant.~~‘&~~
of cdoling is called “autorefrigeration.”

FIGURE 4.5
Floating pressure control (VPC).
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Use of VPC to minimize energy

From an energy cost perspective, we would like to use cooling water and not
refrigerant because water is much cheaper. However, the dynamic response of the
temperature to a change in cooling water may be much slower than the response to
a change in refrigerant flow. This is because the change in water flow must than

in the reactor, which is reflected in reactor temperature almost immediately.

reactor temperature control application, there are two manipulated variables and two
controlled variables (temperature and refrigerant valve position).

4.7
FEEDFORWARD CONTROL CONCEPTS

Up to this point we have used only feedback controllers. An error must be detected

in a controlled variable before the feedback controller can take action to change the
manipulated variable. So disturbances must upset the system before the feedback
controller can do anything.
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It SCCI~S  reasonable that  if‘ WC could detect a disturbance entering a process,

we should begin to correct for it hc~/i)/~~  it upsets the process, This is the basic idea
of fccdforward control. If WC can mcasurc the disturbance, we can send this sig-

nal  through a feedforward control algorithm that makes appropriate changes in the
manipulated variable to keep the controlled variable near its desired value.

We do not yet have all the tools to deal quantitatively with feedforward controller
design. We will come back to this subject in Chapter 9, when our Russian lessons
(Laplace  transforms) have been learned.

However, we can describe the basic structure of several feedforward control sys-
tems. Figure 4.7 shows a blending system with one stream that acts as a disturbance;
both its flow rate and its composition can change. In Fig. 4.70  the conventional feed-
back controller senses the controlled composition of the total blended stream and
changes the flow rate of a manipulated flow. In Fig. 4.7b  the manipulated Row is sim-
ply ratioed to the wild flow. This provides feedforward control for flow rate changes.
Note that the disturbance must be measured to implement feedforward control.

In Figure 4.7~  the ratio of the two flows is changed by the output of a compo-
sition controller. This system is a combination of feedforward and feedback control.
Finally, in Fig. 4.71t  a feedforward system is shown that measures both the flow rate
and the composition of the disturbance stream and changes the flow  rate of the ma-
nipulated variable appropriately. The feedback controller can also change the ratio.
Note that two composition measurements are required, one measuring the distur-
bance and one measuring the controlled stream.

4 . 8
CONTROL SYSTEM DESIGN CONCEPTS

Having learned a little about hardware and about several strategies used in control,
we are now ready to talk-about some basic concepts for designing a control system.
At this point the discussion will be completely qualitative. In later chapters we will
quantify most of the statements and recommendations made in this section. Our pur-
pose here is to provide a broad overview of how to go about finding an effective
control structure and designing an easily controlled process.

A consideration of dynamics should be factored into the design of a plant at an
early stage,- preferably as early as the conceptual design stage. It is often easy and
inexpensive in the early stages of a project to design a piece of process equipment
so that it is easy to control. If the plant is designed with !ittle  or no consideration of
dynamics, an elaborate control system may be required to make the most of a poor
situation.

For example, it is important to have liquid holdups in surge vessels, reflux
drums, column bases, etc. large enough to provide effective damping of distur-
bances (a much-used rule of thumb is 5 to 10 minutes). A sufficient excess of heat
transfer area must be available in reboilers, condensers, cooling jackets, etc. to be
able to handle the dynamic changes and upsets during operation. The same is true
of flow rates of manipulated variables. Measurements and sensors should be located
so that they can be used for effective control.
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FIGURE4.7
Feedforward control.
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Some guidelines and recomtnendations  are discussed below, together wi

I.71

th  a
few examples of their application. The books by Buckley (R~%niques  c~f  Process
Control. 1964, Wiley, New York) and Shinskey  (Process-Control Systems, 1967,
McGraw-Hill, New York) are highly recommended for additional coverage of this
itnportant topic.

I. Keep the control system as simple as possible. Everyone involved in the pro-
cess, from the operators up to the plant manager, should be able to understand the
system, at least conceptually. Use as few pieces of control hardware as possible.
Every additional gadget included in the system is one more item that can fail or

. drift. The instrument salesperson will never tell you this, of course.
2. Use feedforward control to compensate for large, frequent, and measurable dis-

turbances.
3. Use override control to operate at or to avoid constraints.
4. Avoid large time lags and deadtimes in feedback loops. Control is improved by

keeping the lags and deadtimes inside the loop as small as possible. This means
that sensors should be located close to where the manipulated variable enters the
process.

EXAMPLE 4.1. Consider the two blending systems shown in Fig. 4.8. The flow rate or
composition of stream 1’ is the disturbance. The flow rate of stream 2 is the manipulated
variable. In Fig. 4.8~  the sensor is located after the tank, and therefore the dynamic lag
of the tank is included in the feedback control loop. In Fig. 4.8b  the sensor is located at
the inlet of the tank. The process lag is now very small since the tank is not inside the
loop. The control performance in part b, in terms of speed of response and load rejection,
would be better than the performance in part n.  In addition, the tank now acts as a filter
to average out any fluctuations in composition. n

EXAMPLE 4.2. Composition control in distillation columns is frequently done by con-
trolling a temperature somewhere in the column. The location of the best temperature
control tray is a popular subject in the.process  control literature. The ideal location for
controlling distillate composition xg with reflux flow by using a tray temperature would
be at the top of the column for a binary system (see Fig. 4.9a).  This is desirable dynami-
cally because it keeps the measurement lags as small as possible. It is also desirable from

Stream 1

Stream 2

Stream 1

Stream 2

CT = composition transmitter
CC = composition controller

FIGURE 4.8
Blending systems. (a) With tank inside loop. (6)  With tank outside loop.
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FIGURE 4.9
(a) Temperature control tray location. (b) Interaction. (c) Pressure control.

a steady-state standpoint because it keeps the distillate composition constant at steady
state in a constant-pressure, binary system. Holding a temperature on a tray farther down
in the column does not guarantee that XD  is constant, particularly when feed composition
changes occur.

However, in many applications the temperature profile is quite flat (very little
temperature change per tray) near the top of the column if the distillate product is of
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mart)  probable  that ;hc limiting t’actor will hc p~xxur~ changes swamping the effects  of
composition. In addition, if‘ the systcul  is uot binary hut has some lighter-than-light key

coml~~ncnts,  these  cornl~)nents will hc  at their  highest concentration near the top of the
column. In this cast, the optimal tcmpcraturc  to hold  constant is not at the top of the
column, even from a steady-state  standpoint.

For these reasons an intermediate  tray is selected down the column where the tern-
perature  profile  begins to break. Pressure compensation of the temperature signal should
be used if column pressure or pressure drop varies  significantly.

If bottoms cotnposition is to be controlled  by vapor boilup,  the control tray should
be located as close to the base of the column as possible in a binary system. In multicom-
ponent  systems where heavy components in the feed have their highest concentration in
the base of the column, the optimal control tray is higher in the column. n

5. Use proportional-only level controls where the absolute level is not important
(surge tanks and the base of distillation columns) to smooth out disturbances.

6. Eliminate minor disturbances by using cascade control systems where possible.
7. Avoid control loop interaction if possible, but if not, make sure the controllers

are tuned to make the entire system stable. Up to this point we have discussed
tuning only single-input, single-output (SLSO) control loops. Many chemical en-
gineering systems are multivariable and inherently interacting, i.e., one control
loop affects other control loops.

The classic example of an interacting system is a distillation column in
which two compositions or two temperatures are controlled. As shown in Fig.
4.9b, the upper temperature sets reflux and the lower temperature sets heat in-
put. Interaction occurs because both manipulated variables affect both controlled
variables.

A common way to avoid interaction is to tune one loop very tight and the
other loop loose. The performance of the slow loop is thus sacrificed. We discuss
other approaches to this problem in Part Four.

8. Check the control system for potential dynamic problems during abnormal con-
ditions or at operating conditions that are not the same as the design. The ability
of the control system to work well over a range of conditions is called flexi-
bility. Startup and shutdown situations should also be studied. Operation at low
throughputs can also be a problem. Process gains and time constants can change
drastically at low flow rate, and controller retuning may be required. Installation
of dual control valves (one large and one small) may be required.

Rangeability problems can also be caused by seasonal variations in cooling-
water temperature. Consider the distillation column pressure control system
shown in Fig. 4.9~.  During the summer, cooling-water temperatures may be
as high as 90°F and require a large flow rate and a big control valve. During the
winter, the cooling-water temperatures may drop to 50°F,  requiring much less
water. The big valve may be almost on its seat, and poor pressure control may
result. In addition, the watei  outlet temperature may get quite high under these
low-flow conditions, presenting corrosion problems. In fact, if the process vapor
temperature entering the condenser is above 2 I2’F, the cooling water may even
start to boil! Ambient effects can be even more severe in air-cooled condensers.

9. Avoid saturation of a manipulated variable. A good example of saturation is the
level control of a reflux  drum in a distillation column that has a very high reflux
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FIGURE 4.10
High-reflux-ratio column.

ratio. Suppose the reflux ratio (RID) is 20, as shown in Fig. 4.10. Scheme A uses
distillate flow rate D to control reflux drum level. If the vapor boilup  dropped
only 5 percent, the distillate flow would go to zero. Any bigger drop in vapor
boilup  would cause the drum to run dry (unless a low-level override controller
were used to pinch back on the reflux valve). Scheme B is preferable for this
high-reflux-ratio case.

10. Avoid “nesting” control loops. Control loops are nested if the operation of the ex-
ternal loop depends on the operation of the internal loop. Figure 4.11 illustrates
a nested loop. A vapor sidestream is drawn off a column to hold the column
base level, and a temperature higher up in the column is held by heat input to
the reboiler. The base liquid level is affected only by the liquid stream entering
and the vapor boiled off, and therefore is not directly influenced bv the amount
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sidcstream

FIGURE 4.11
Nested control loops.

sidestream unless the temperature control loop is in operation. Then the change
in the net vapor sent up the column will affect the temperature, and the vapor
boilup  will be changed by the temperature controller. This finally has an effect
on the base level.

If the temperature controller is on “manual,” the level loop cannot work.
In this process it probably would be better to reverse the pairing of the loops:
control temperature with vapor sidestream and control base level with heat input.
Notice that if the sidestream were removed as a liquid, the control system would
not be nested. Sometimes, of course, nested loops cannot be avoided. Notice that
the recommended scheme B in Fig. 4.10 is just such a nested system. Distillate
has no direct effect on tray temperature. It is only through the level loop and its
changes in reflux that the temperature is affected.

4 . 9
CONCLUSION

In this chapter we have discussed in a qualitative way some control structures that
go beyond the single-input, single-output structure. These ideas are widely applied
in the chemical processing industries. They offer significant advantages in perfor-
mance, safety, and flexibility. However, you should keep in mind that the use of more
sensors and more components in a control loop has the effect of reducing reliabil-
ity because if any one of the components fails, the whole loop will fail. One of the
important features of any control system is its failure performance: will it degrade
gracefully or catastrophically?

PROBLEMS

4.1. The suction pressure of an air cotnpressor is controlled by manipulating an air stream
from an off-site process. An override system is to be used in conjunction with the
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basic loop to prevent overpressuring or underpressuring the compressor suction during
upsets. Valve actions are indicated on the sketch above.

The pressure transmitter span is 0 to 20 psig. The pressure controller setpoint is IO
psig. If the pressure gets above 15 psig, the vent valve is to start opening and is to be
wide open at 20 psig. If the pressure drops below 5 psig, the recycle valve is to start
opening and is to be wide open at 0 psig.

Specify the range and action of the override control elements required to achieve
this control strategy.

4.2. Design an override control system that will prevent the liquid level in a reflux drum
from dropping below 5 percent of the level transmitter span by pinching the reflux con-
trol valve. The system must also prevent the liquid level from rising above 90 percent
of the level transmitter span by opening the retlux  control valve. Normal level control is
achieved by manipulating distillate flow over the middle 50 percent of the level trans-
mitter span using a proportional level controller (proportional band setting is 50).

4.3. Design an override control system for the chilled-water loop considered in Problem 3.1 I.
The flow rate of chilled water is not supposed to drop below 500 gpm. Your override
control circuit should open the chilled-water control valve if chilled-water flow gets
below 500 gpm, overriding the temperature controller.

4.4. Vapor feed to an adiabatic tubular reactor is heated to about 700°F in a furnace. The
reaction is endothermic. The exit temperature of gas leaving the reactor is to be controlled
at 600°F.

Draw an instrumentation and control diagram that accomplishes the following ob-
jectives:

l Feed is flow controlled.
l Fuel gas is flow controlled and ratioed  to feed rate.
l The fuel to feed ratio is to be adjusted by a furnace exit temperature controller.
l The setpoint  of the furnace exit temperature controller is to be adjusted by a reactor

exit temperature controller.
l Furnace exit temperature is not to exceed 750°F.
- ‘T. I P *
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FIGURE P4.4

4.5. Sketch control system diagrams for the following systems.
(CI)  Temperature in a reactor is controlled by manipulating cooling water to a cooling

coil. Pressure in the reactor is controlled by admitting a gas feed into the reactor. A
high-temperature override pinches reactant feed gas.

(h) Reflux drum level is controlled by a reflux flow rate back to a distillation column.
Distillate flow  is manipulated to maintain a specified reflux ratio (reflux/distiIlate).
This specified reflux ratio can be changed by a composition controller in the top of
the column.

4.6. Sketch a control concept diagram for the distillation column shown. The objectives of
your control system are:

l Reflux is flow controlled, ratioed to feed rate, and overridden by low reflux drum
level.

Compressor bypass

1

Feed
*

Reflux

Turbine

Bottoms

FIGURE P4.6
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l Steam is flow controlled, with the flow controller sctpoint coming from a tcmpcraturc
controller that controls a tray temperature in the stripping section of the column. Lo\{
base level or high column pressure pinches the steam valve.

l Base level is controlled by bottom product flow rate.
l Reflux drum level is controlled by distillate product flow rate.
l Column pressure is controlled by changing the setpoint of a speed controller on the

compressor turbine. The speed controller output sets a flow controller on the high-
pressure steam to the turbine.

l A minimum flow controller (“antisurge”) sets the valve in the compressor bypass line
to prevent the flow rate through the compressor from dropping below some minimum
flow rate.

4.7. A distillation column operates with vapor recompression.
(a) Specify the action of all control valves.
(b) Sketch a control concept diagram with the following loops:

l Reflux is flow controlled and overridden by low reflux drum level.
l Reflux drum level is controlled by distillate flow.
l Steam to the turbine driving the compressor is flow controlled, reset by a speed

controller, which is reset by a distillate composition controller.

Column

-

Compressor Turbine

Condenser

#

Reboiler=I--
Bottoms

FlGUUE P4.7
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l Column prcssurc  is controlled  by the valve under the condcnscr,  which Hoods or
exposes tubes in the condenser to vary the heat transfer area.

l High reflux drum pressure overrides the stcarn  valve on the compressor  turbine.
(c) At design conditions, the total flow through the compressor is 120,000 lb,&,  the

flow through the hot side of the reboiler is 80,000 Ib,,,/hr,  the pressure drop through
the condenser is 2 psi, the pressure drop through the hot side of the reboiler is 10
psi, and the control valve below the condenser is 25 percent open. Density of the
liquid is 5 Ib,,,/gal.
(i) What is the C,, value of the control valve?

(ii) What is the flow rate through the hot side of the reboilcr when the control valve
.

is wide open? Assume that the pressure in the reflux drum is constant and that
the distillate composition controller will adjust compressor speed to keep the
total flow through the compressor constant.

4.8. Sketch a control concept diagram for a chemical reactor that is cooled by generating
steam (see Problem 3.18).

l Steam drum pressure is controlled by the valve in the steam exit line.
l Condensate flow is ratioed to steam flow.
l Steam drum liquid level is controlled by adjusting the condensate to steam ratio.
l Feed is flow controlled.
l Reactor liquid level is controlled by product withdrawal.
l Reactor temperature is controlled by resetting the setpoint of the steam pressure con-

troller.
l The override controls are as follows:

High reactor temperature pinches the reactor feed valve.
Low steam drum level pinches reactor feed.

4.9. A chemical plant has a four-header steam system. A boiler generates 900-psig  steam,
which is let down through turbines to a 150-psig header and to a 25psig header. There
are several consumers at each pressure level. There are also other producers of 25-psig
steam and IO-psig steam. (See the figure on the next page.) Sketch a control system
that:

l Controls pressure in the 900-psig  header by fuel firing rate to the boiler.
l Controls pressure in the 150-psig header by valve A.
l Controls pressure in the 25-psig  header by opening valve B if pressure is low and

opening valve C if pressure is high.
l Controls pressure in the IO-psig header by opening valve C if pressure is low and

opening valve D if pressure is high.

4.10. Sketch a control system for the two-column heat-integrated distillation system shown.

l Reflux drum levels are controlled by distillate flows on each column.
l Reflux flow is ratioed  to distillate flow on each column.
l Column pressure drop is controlled on the first column by manipulating steam flow

to the auxiliary reboiler.
l Temperature in the second column is controlled by steam flow to its reboiler.
l Base levels are controlled by bottoms flow rates on each column.
l High or low base level in the first column overrides both steam valves.
l High or low base level in the second column overrides the steam valve on its re-

boiler.



I SO psig
steam
consumers

I 25 psig
steam

I consumers

900  psig  hc:ulc~

I
Generator

ti

A23
I50 psig
header

Turbine

3 B

25 psig header

25 psig
steam&Iproducers

1 consumers 1 10  psig header

D
Atmospheric
vent

FIGURE P4.9

Feed

3-LJolumn

FIGURE P4.10

Iolumn

2



-+YTL.P.

steam J-

(IIAI~I‘I~K  4:  Advanced Control Systems 141

Y- Vapor

sidestrcam

4

Bottoms

Distillate

FIGURE P4.11

4.11. The distillation column sketched above has an intermediate reboiler and a vapor side-
stream. Sketch a control concept diagram showing the following control objectives:

l Column top pressure is controlled by a vent/bleed system; i.e., inert gas is added if
pressure is low, and gas from the reflux drum is vented if pressure is high.

l Reflux drum level is controlled by distillate flow.
l Reflux is ratioed to feed rate.
l Low-pressure steam flow rate to the intermediate reboiler is ratioed to feed rate.
l Vapor sidestream flow rate is set by a temperature controller holding tray 10 temper-

ature.
l Base level is controlled by high-pressure steam flow rate to the base reboiler.
l Bottoms purge flow is flow controlled.
l Low base level overrides the low-pressure steam flow to the intermediate reboiler.
l High column pressure overrides both steam valves.

4.12. Hot oil is heated in a furnace in three parallel passes. The oil is used as a heat source
in four parallel process heat exchangers. Draw a control concept diagram that achieves
the following objectives:

l The temperature of each process stream leaving the four process heat exchangers is
controlled by manipulating the hot oil flow rate through each exchanger.

l Furnace hot oil exit temperature is controlled by manipulating fuel flow rate.
l A valve position controller is used to reset the setpoint  of the furnace exit temperature

controller such that the most open of the four control valves on the hot oil streams
flowing through the process heat exchangers is 80 percent open.
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l The flow rates of hot oil through the three parallel passes in the furnace are main-
tained equal.

4.13. Terephthalic acid (TPA) is produced by air oxidation of paraxylene at 200 psig. The
reaction is exothermic. Nitrogen plus excess oxygen leaves the top of the reactor.

xylene + 02 + TPA + water

Liquid products (TPA and water) are removed from the bottom of the reactor. Heat is
removed by circulating liquid from the base of the reactor through a water-cooled heat
exchanger. The air compressor is driven by a steam turbine.
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FIGURE P4.13



Specify the action of all control valves and sketch :I con(rol  system (ha1  will
achicvc  the following objcctivcs:

l Xylcne  feed is flow conbullctl.

.

l Air feed is flow controlled  by ad.justing  the speed of the turbine.
l Reactor temperature  is controlled through a cascade system. Circulating water tem-

peraturc is controlled by makeup cooling water. The setpoint of this temperature
controller is set by the reactor temperature controller. The circulation rate of process
liquid through the cooler is flow controlled.

l Reactor pressure is controlled by the gas leaving the reactor.
l Base liquid level is controlled by liquid product flow.
l Air flow rate is adjusted by a composition controller that holds 2 percent oxygen in

the gas leaving the reactor.
l High reactor pressure overrides steam flow to the air compressor turbine.

4.14. Overhead vapor from a distillation column passes through a partial condenser. The
uncondensed portion is fed into a vapor-phase reactor. The condensed portion is used
for reflux in the distillation column.

The vapor fed to the reactor can also come from a vaporizer, which is fed from a
surge tank. To conserve energy, it is desirable to feed the reactor with vapor directly
from the column instead of from the vaporizer. The only time the vaporizer should be
used is when there is not enough vapor produced by the column.

Sketch a control concept diagram showing the following characteristics:

l Total vapor flow rate to the reactor is flow controlled by valve VI.
l Reflux drum pressure is controlled by valve VI.
l Vaporizer pressure is controlled by valve VJ.
l Vaporizer liquid level is controlled by valve Vd.
l Column reflux is flow controlled by valve Vs.
l Reflux drum level is controlled by valve Vg.
l High reflux drum level opens valve VT.
l High vaporizer pressure overrides valve Vz.
l High reflux drum pressure overrides valve Vg.

‘OndTFV a p o r  f e e d  c6

M Reflux

drum

FIGURE P4.14



4.15. Two distillalion  columns arc heat inlegrulcd,  as shown in the sketch. The tirst  column
has an auxi tiary condenser to Iakc any cxccss  vapor that the second  column dots  no1
need. The second column has an auxiliary rehoitcr (hat  provides additional heat if rc-
quired.

Prepare a control concept diagram that includes the following control objectives:

l Base levels are controlled by bottoms flows.
l Reflux drum levels are control ted by distit tale flows.
l Reflux flows are flow control ted.
l The pressure in the first column is controlled by vapor flow rate to the auxiliary

condenser. A low-pressure override pinches the vapor valve to the second column
reboi ter.

l The pressure in the second column is controlled by manipulating cooling water to
the condenser.

l A temperature in the stripping section of the first  column is controlled by manipu-
lating steam to the reboiler.

l A temperature in the stripping section of the second column is controlled by ma-
nipulating the vapor to the reboiler of the second column that comes from the first

Feed

r
a--

7

1 -D
Feed
-

Auxiliary
reboiler
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column and by manipulating the steam to the auxiliary reboiler. A split-range system

is used so that steam to the auxiliary reboiler is used only when insufficient heat is

available from the vapor from the first column.

l High column pressures in both columns pinch reboiler steam.

4.16. The sketch below shows a distillation column that is heat integrated with an evaporator.

Draw a control concept diagram that accomplishes the following objectives:

l In the evaporator, temperature is controlled by steam, level by liquid product, and

pressure by auxiliary cooling or vapor to the reboiler. Level in the condensate re-

ceiver is controlled by condensate.

Feed

Feed
A Distillate

A receiver qw Condensate

Evap-
orator

Evaporator
steam

t

Liquid product
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. In the column,  l-eflux  is flow controlled, reflux drum level is controlled by distii-
late, base  level  by bottotns, pressure by vent vapor, and tcni&xratUre  by stcanl  to the

auxiliary  reboilcr or vapor from the evaporator.
l A high-column-pressure override controller pinches steam to both the evaporator and

the auxiliary reboiler.

4.17. Sketch a control scheme for the cryogenic stripper shown on the next page, which is
used for removing small amounts of propane from  natural gas.

l Cooling-water valve V, is manipulated to control the gas temperature leaving the
cooler.

l Valve V2 controls a temperature on tray 15 in the stripper.
l Valve V3  controls the total flow rate of gas into the compressor.
l Valve V4 controls the temperature of the propane bottoms product leaving the

unit.
l Valve Vs controls the column base level.
l Valve V6 controls the Liquid level in tank 1.
l Valve VT controls the speed of the expander turbine.
l A valve position controller is used to keep valve VT nearly wide open by adjusting

the setpoint of the expander speed controller.
l A pressure controller opens valve V8 if the pressure in tank 1 gets too high.
l Valve Vg  controls tank 2 level.
l Valve Vi” controls tank 2 pressure.
l Valve VI 1 controls the pressure in the stripper.
l If the pressure in the stripper gets too high, an override controller pinches both valves

VI and Vj.
a

4.18. A distillation column is used to separate two close-boiling components that have a
relative volatility close to 1. The reflux  ratio is quite high (15), and many trays are re-
quired ( 150). To control the compositions of both products, the flow rates of the product
streams (distillate D and bottoms B) are manipulated. Gas chromatographs are used to
measure the product compositions. Base level is controlled by steam flow rate to the
reboiler, and reflux drum level is controlled by reflux flow rate.
(a) Design an override control system that will use bottoms flow rate to control base

level if a high limit is reached on the steam flow.
(b) Design an override control system that will use very low composition transmit-

ter output signals to detect if either of the chromatographs has failed or is out
of service. The control system should switch the structure of the control loops as
follows:

l If the distillate composition signal is not available, reflux should be held constant
at the given flow rate and reflux drum level should be held by distillate flow rate.

l If the bottoms composition signal is not available, steam should be held constant
and base level should be held by bottoms flow rate.

4.19. A furnace control system consists of the following loops:

l Temperature of the process stream leaving the furnace changes the setpoinr of a flow
controller on fuel.

l Air flow  is ratioed to fuel flow, with the ratio changed by a stack-gas excess air
controller.
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Show how some simple first-order lags and selectors can be used to produce a control
system in which:

* The air flow 1end.v  the fuel tlow when an increase in fuel flow occurs.
l The air flow fugs the fuel flow when a decrease in fuel flow occurs.
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(Nirrl:  Sketch  the rcspoilscs  lix  both  posirivc and  llC!gilliVl2  slc[, cllangcs  iii lllc inptil  to
il circuit tllilt consists of il  first-order lag with unity gain and a low-sclcctor. ‘fllc input
signal goes in parallel to the lag and to the low-selector. The output of the Ii\g goes  to
the other input of the low-selector.)

4.20. Figure P4.20 shows the Amoco Model 4 Uuidized-bed  catalytic cracking unit. Scvcral
hydrocarbon feeds  (gas oil, slurry recycle,  etc.) are fed into the reactor aloll::  with hot
solid catalyst from the regenerator. The endothermic cracking reactions cool the caIalyst
and deposit coke on it. The catalyst from the reactor is circulated back to the regenerator,
where air is added to burn off the coke. The heat from the combustion reaction heats
the catalyst.

This model cat cracker does not use slide valves to control catalyst circulation.
Instead, the lift air (valve VI) is used to transport catalyst from the reactor into the
regenerator. The flow rate of catalyst from the regenerator to the reactor is controlled
by changing the pressure differential between the reactor and the regenerator using
valve VI. Pressure in the reactor is controlled by valve V3 on the suction of the wet gas
compressor.

Sketch a control concept diagram that shows the following features:

l Reactor temperature is controlled by changing the setpoint of the AP controller.
l The level of catalyst in the regenerator standpipe is controlled by manipulating valve

VI.
l Oxygen concentration in the flue gas from the regenerator changes the setpoint of

a total air controller. This total air controller looks at the sum of the lift air, spill
air, and combustion air and manipulates the suction valve V4 on the combustion air
compressor.

Spilln
Lift air

bT

-42-J.

-ii-
VI

Lift
air

v4  Lb---
Combustion
air blower

Regenerated
catalyst

d

Spent catalyst

FIGURE P4.20



l If valve V., starts to approach the wide-open position, the valve on the spill air line
(V,)  should be opened enough to keep Vj about 90 percent open.

l If valve VJ on the wet gas compressor is less  than 90 percent open, the setpoint  to
the feed flow controller should bc increased (i.e., bring in as much feed as the wet
gas compressor can handle).

4.21. A process stream is fed into a flash tank that is heated by adding steam to an internal
coil in the tank. The feed to the tank comes from an upstream process and is a load
disturbance to the tank. Vapor from the tank flows into a pipeline that is at constant
pressure. Liquid from the tank is pumped through a control valve into another vessel.

Sketch a control scheme that will accomplish the objective of taking 10 percent
of the feed stream out of the top of the flash tank as vapor. Assume all the necessary
measurements can be made.

4.22. International Paper operates a 200-ton/day iime kiln at one of its pulp and paper mills.
A CaCOJHzO  slurry (70 percent solids) is fed into one end of the kiln. It is dried and
CO2  is driven off to produce CaO.  Heat is supplied by burning natural gas in the other
end of the kiln. The hot gases flow countercurrent to the solids and leave through an
adjustable damper.

Sketch a control system that accomplishes the following:

l Fuel gas controls the temperature of the solid CaO leaving the hot end of the kiln.
l Damper opening controls the temperature of the gas leaving the cool end of the kiln

by changing the amount of combustion air drawn into the kiln.
l If the oxygen content of the gas leaving the kiln drops below 2 percent, an override

controller should begin to open the damper.
l It is more important to keep exit gas temperature near its setpoint than exit solid

temperature. Therefore, if the exit gas temperature cannot be held by the damper
opening, it should be held by fuel gas flow rate.

4.23. The temperature in a chemical reactor can be controlled by manipulating cooling-water
flow rate to the cooling coil. The flow rate of a reactant fed into the reactor also affects
the temperature. The reaction is exothermic.

Sketch a control scheme that embodies the following concepts:

l Reactant is flow controlled.
l The flow rate of cooling water is ratioed to reactant flow.
l Reactor temperature is controlled by changing the water to reactant ratio.
l High reactor temperature or high reactor pressure overrides the reactant feed valve.

4.24. In a celi harvesting operation, a mixture of cells and liquid is fed into a tank. The
material in the tank is continuously pumped by a positive displacement pump through
the high-pressure side of a cross-flow filter. The material that does not flow through the
filter membrane to the low-pressure side recycles back to the tank. There is a control
valve in the return line to the tank downstream from the filter. The liquid that passes
through the filter membrane leaves through another control valve. Sketch a controI
concept diagram that achieves the following objectives:

l Flow rate of recycled material back to the tank is controlled by manipulating pump
speed.

l Liquid level in the tank is controlled by feed to the tank.
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l Pressure on the high-pressure side of the filter is controlled  by the control valve in
the recycle  line back to the tank.

l The pressure differential between the high- and low-prcssurc sides of the filter (the
transmembrane  pressure) is controlled by the control valve on the filtrate liquid Icav-
ing the filter.

l A high-pressure override controller on the high-pressure side of the filter reduces the
setpoint to the pump speed controller.

l A low-flow override controller on the filtrate tlow  rate increases the setpoint to the
differential-pressure controller.

. l A low-level override controller on tank level reduces the setpoint of the pump speed
controller and reduces the opening of the control valve on the filtrate stream.

4.25. There are two ways to control the idling speed of a gasoline engine: manipulate the
throttle opening or manipulate the spark advance. Because of the electronic ignition,
the dynamic response of idle speed is much faster to spark advance (0.0 I set  deadtime)
than to throttle speed (0.1 set).  Therefore, tighter idle speed control can be achieved
by the use of spark advance. However, using spark advance degrades fuel efficiency,
so throttle opening should be used under normal steady-state conditions. Develop a
control strategy to handle this problem, and sketch a block diagram of your closedloop
system.



Interaction between Steady-State
Design and Dynamic Controllability

In this chapter we discuss some important concepts that are central to the histori-
cal mission of chemical engineers: developing, designing, building, and operating
chemical plants. We give some specific examples that illustrate the trade-offs be-
tween steady-state design and dynamic controllability, and some general guidelines
for improving controllability are presented.

5.1
INTRODUCTION

The traditional approach to developing a process has been to perform the design and
control analyses sequentially. The task of the process design engineer focused on de-
termining (synthesizing) the flowsheet structure, parameter values, and steady-state
operating conditions required to meet the production goals. The objective was to
optimize economics (minimize annual cost, maximize annual profit, maximize net
present value, etc.) considering only steady-state operation in evaluating the large
number of alternative flowsheets and design conditions and parameters satisfying
the operational requirements. Little attention was given to dynamic controllability
during the early stages of design. After a final design had been developed, the de-
tailed plans were “thrown over the wall” to the process control engineers.

The task of the process control engineer then centered on establishing a control
strategy to ensure stable dynamic performance and to satisfy product quality require-
ments. These objectives must be met in the face of potential disturbances, equipment
failures, production rate changes, and transitions from one product to another.

It has long been recognized that this traditional sequential approach is a poor
way to do business. The design of a process determines its inherent controllability,
which qualitatively means how well the process rejects disturbances and how eas-
ily it moves from one operating condition to another. Consideration of the dynamic

151
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controllability of a process should be an integral part of the design synthesis activ-
ity, Over the past two decades competitive pressures, safety issues, energy costs,
and environmental concerns have increased the complexity and sensitivity of pro-
cesses. Plants have become more highly integrated with respect to both material
flows (complex configurations, recycle streatns, etc.) and energy (heat integration).
These high-performance processes are often difficult to control.

There are several reasons the traditional approach was taken. One involved the
lack of computer-aided design tools for plantwide dynamic studies. Over the past
several years, many advances in this area have occurred. We anticipate that easy-
to-use software tools will soon be available to permit the design engineer and the
control engineer to move seamlessly between steady-state flowsheet development
and dynamic controllability analysis. Another reason the traditional approach has
been used is the technology barriers separating design engineers (who know little
about control) from the control engineers (who know little about design). We hope
this book in some small way helps to break down these barriers.

During the last decade the concept of reducing product quality variability has
become widespread. In the past, good control meant meeting or exceeding product
specifications. Now customers often demand “on-aim” control, where variability in
either direction from a specification means poor control. This makes the job of a
process control engineer significantly more difficult and emphasizes the importance
of developing an easily controllable process, i.e., one that almost flies itself and has
low sensitivity to disturbances.

A growing amount of evidence points to the desirability of incorporating dy-
namic controllability considerations into all phases of the plant design. It may be
better in the long run to build a process that has higher capital and energy costs if the
plant provides more stable operation and achieves less variability in product qual-
ity. We present several examples in this chapter illustrating the inherent trade-off
between steady-state economics and dynamic controllability.

5.2
QUALITATIVE EXAMPLES

52.1 Liquid Holdups

The most common and important trade-off involves specifying liquid holdup vol-
umes in tanks, column bases, reflux  drums, etc. From a steady-state viewpoint, these
volumes should be kept as small as possible to minimize capital investment and re-
duce potential safety and pollution problems. For example, the more holdup needed
in the base of a distillation column, the taller the column must be. In addition, if
the material in the base of the column is heat sensitive, it is very desirable to keep
holdup as small as possible to reduce the time that the material is at the high base
temperature. Large holdups also increase safety and pollution risks in the handling of
hazardous or toxic materials because equipment failures have the potential to release
large amounts of material.

All these considerations suggest the use of small liquid holdups. However.



sudctcn  large  changes  in inlet or outIc)t  Ilow  rates. For example, in a distillation col-
umn WC want to bc able to ride through disturbances without losing liquid levels in
the base or rcflux drum. Suppose a large amount of light noncondensable  material
enters the column and reduces condenser heat transfer rates because of lower tem-
peratures. The liquid level  in the rcflux drum will drop and, unless enough surge
capacity exists, we may lose reflux flow and have to shut down the column.

Over the years some heuristics have been developed for estimating liquid
holdups in most systems.  Holdup times (based on total flow in and out of the surge
volume) of about 5 to IO minutes work well. If a distillation column has a fired
reboiler, the base holdup should be made larger. If a downstream unit is particularly
sensitive to rate or composition changes, then holdup volumes in upstream equip-
ment should be increased. Such matters should be considered when the vessels are
designed.

5.2.2 Gravity-Flow Condenser

Another trade-off is exemplified by a gravity-flow condenser design. Suppose we are
cooling a reactor by removing vapor overhead and condensing it in a heat exchanger
located above the reactor. The condensed material returns to the reactor as liquid
through a return line. The pressure in the reactor must be higher than the pressure
in the condenser for vapor to flow. The return liquid stream must flow back into
the reactor against this positive pressure gradient. This is achieved by building up
a leg of liquid in the liquid return line of sufficient height to overcome the pressure
gradient and any frictional pressure drop through the line.

Under normal operating conditions, the liquid height may be several feet. But
since pressure drop through the vapor line increases as the square of the vapor flow
rate, the liquid height must increase by a factor of 4 if the vapor rate doubles. Thus,
the control engineer pushes the design engineer to mount the condenser much higher
in the air than the steady-state conditions require, and this increases the cost ofequip-
ment.

5.3
SIMPLE QUANTITATIVE EXAMPLE

To illustrate the design/control trade-off more quantitatively, let us consider a simple
chemical engineering system: a series of continuous stirred-tank reactors (CSTRs)
with jacket cooling. This type of reactor system is widely used in industry. The re-
actions and the reactors are quite simple, but they provide some irnp@‘t+~g&:=  1-y  ;F
into evaluating the trade-offs between  s&&y-slate  &sign-and  cont~~._“~~~~~~~~

In this section we consider the simp&?  pos&@le  rea&Gn  case: r_pt~e
reaction A -+ B, equal-size reactors, and given (and equal)  temp@a~~+~+
i6i-<-lihii  serves to Show-t~~ta~r~~~~R~~  YI ;&~~
provides much better temperature control than a less eqpen~ive..~~~~~~~~~__

-~------
CSTRs  in series). The next section deats with the prcjb&i  o~~%&xs&J$$EE~~~~::~~  : ::m
reactor temperature to illustrate how a more complex kinetic system fe&~@:~~+++,;



between steady-state econotnics and dynamic controllability that affect both capital
cost and product yield.

The main objective of this section is to provide a quantitative example in which
the “best” process is not the optimal steady-state economic design. In this example
reactor system, temperature control is the measure of product quality. For this type
of system, dynamic controllability is improved by increasing the heat transfer area
in the reactor.

* 53.1 Steady-State Design

The first-order irreversible e.xothermic  reaction A + B occurs in the liquid phase
of one or more stirred-tank reactors in series. In a series configuration all reactors
have the same volume and operate at the same specified temperature. A height-
diameter ratio of 2 is assumed in the design. The reaction rate is

a,, = Vnk,,z,, (5

where $!& = rate of consumption of reactant A (lb-mol/hr) in the nth reactor stage
V,, = holdup of nth reactor (lb-mol)
k,, = specific reaction rate (hr-‘) in the nth reactor stage
Zfl = concentration of reactant A in the nth reactor (mole fraction A)

In the dynamic simulation, the following data are used. The steady-state operating
temperature of all reactors is 140°F with a specific reaction rate of 0.5 hr- ’ and an
activation energy of 30,000 Btu/lb-mol. The fresh feed enters the first reactor at a
flow rate F = 100 lb-mol/hr  with temperature To  = 70°F and concentration zo = 1
(mole fraction A). Molecular weight is 50 lb/lb-mol, and liquid density is 50 lb/ft3.
The heat of reaction is -30,000 Btu/lb-mol unless otherwise noted.

The reactor is cooled by flowing cooling water at a rate FJ (ft3/hr)  through a
jacket that surrounds the vertical walls of the reactor. Perfect mixing in the jacket is
assumed with a 4-in jacket clearance. Inlet cooling water has a temperature of 70°F.
The overall heat transfer coefficient U is assumed to be constant (300 Btu/hr OF  ft*).

Given the fresh feed flow rate and composition, the steady-state design proce-
dure is:

1. Specify the conversion x.

2. Calculate the concentration of the product stream leaving the last (n = N) reactor
stage ZN.

ZN  = ZOtl  -x>

3. Calculate the required reactor size for N = 1, 2, and 3.
a. one CSTR (N = 1):

(5.2)

- v, = FX
k(l  -x>

(5.3)

ZI  = zou  - x> (5.4)



b. Two CSTRs  (A’ = 2):

”
1

= ”
2

= ‘;(’ - 53
k J-q

(5.3

z2 = zo( 1 - xl (5.6)

FZ()
ZI =

F+V,k

c. Three CSTRs  (N = 3):

v, = v2 = vj = F[l  - (1 - x)“.31
k( 1 - x)“3

(5.7)

(5.8)

z3 = zo( 1 - x> (5.9)

Fzo
” = F + V,k

FZI
z2= F+V*k

(5.10)

(5.11)

4. Calculate the diameter, length, and heat transfer area of each reactor, and deter-
mine its capita1 cost (J. M. Douglas, Conceptual Desigrz  of Chemical Processes,
1988, McGraw-Hill, New York).

D, = (2V,,17#‘3 (5.12)

L, = 2D,, (5.13)

Cost = 1916.9(D,,)‘~“““(L,)o~802 (5.14)

This is the cost of a tank. In some of our later cases we assume that the cost of a
reactor is three times the cost of a simple tank. Clearly, reactor cost depends on the
complexity of the reactor, its materials of construction, and the cost of catalyst.

AHn = 2,~fD~)~ (5.15)

5. Calculate the heat-removal rate Qn, the jacket temperature TJ,,  and the cooling-
water flow rate FJ, for each reactor stage.

QI  = -(zo  - .zdFA  - c,MF(TI  - To) (5.16)

Qn = -(zn-I  - znP (5.17)

where h = heat of reaction (Btu/lb-mol)
Z.Z heat capacity reaction liquid = 0.75 (Btu/lb  “F)

2 = reactor temperature = 140 (OF)
TO  = feed temperature = 70 (OF)

QnTJ,, = T, - ~
C/An,,

FJ,,  =
Qn

PJCJ(TJH - TJO>

(5.18)

(5.19)



v = 3800

; = 0.05

T= 140

F= 100

zfj= 1

&-

i;J = X3

7;= 132

Q  = 2588

A = 1132

k = 0.5

Conversion = 0.95

*
Units

* Two-CSTR Process

FJ,  = 80.9

TJ,  = 121

Q, = 2067

A, = 364

Three-CSTR Process

zI = 0.368

T, = 140

I

FJ,  = 70.8

T,, = 116

Q, = 1632

A, = 228

V,  = 695

22  = 0.05

T2  = 140

FJ2=  16

TJ2  = 135

a Q,=521

I
A, = 364

t

A, = 228
I ,

Holdup: lb-mol
Composition: Mole fraction
Flow: lb-mol/hr
Coolant flow: gpm
Q: 1000 Btu/hr
Area: ft2
Temperatures: “F

FIGURE 5.1
Alternative designs.

where FJ = flow rate of cooling water (ft3/hr)
pJ  = density of cooling water = 62.3 (Ib/ft3)
CJ  = heat capacity of coolant = 1 (Btu/lb  OF)

TJO = inlet temperature of cooling water = 70 (OF)

Figure 5.1 gives flowsheet conditions for three alternative processes for the 95
percent conversion case. Table 5.1 gives more steady-state design results for a num-
ber of cases. Conversion is varied from 99.5 to 75 percent, and specific reaction
rate is varied from 0.1 to 2.5 hr-I. These results show some interesting trends that
provide us with important insights about the controllability of these various design
cases.

1. The heat removal rate is much higher in the first stage than in the later stages.
This occurs because the concentration of reactant is the highest at this point. This
makes control of the first stage the most difficult.

2. As conversion increases, the required reactor holdups increase. This increases
the size of the reactors, giving larger heat transfer areas. Therefore, jacket tem-
nPmt,,rPc  :>,-,a  h;nhor  ,.,A -n-I:--  --.-A-  ”
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the larger heat transfer area improves the controllability of the system. So reactor
systems with high conversions are easier to control than reactor systems with low
conversions.

3. As specific reaction rates incrkase, reactor sizes decrease. This decreases the heat
transfer area and degrades the controllability of the process. So reactor systems
with small specific reaction rates are easier to control than reactor systems with
large specific reaction rates (at the same level of conversion).

TABLE 5.1

Steady-state designs of CSTR processes

k 0.10 0.10 0. IO 0. IO 0.50 0.50 0.50 0.50
X 0.995 0.975 0.95 0.75 0.995 0.975 0.95 0.75

1 CSTR

V 199,000 39,000 19,000 3000 39,800 7800 3800 600
D 50.2 29.16 76.82 1 2 . 4 29.4 17.06 13.42 7.25
AH  15,800 5344 3309 967 5417 1828 1131 228

L 0.005 2722 0.025 2662 0.05 2588 0.25 1988 0.005 2722 0.025 2662 0.05 2588 0.25 1988
TJ  139.43 138.34 137.39 133.15 138.32 135.14 132.38 119.96
FJ  78.46 77.95 76.82 62.97 79.72 81.77 82.99 79.59

2 CSTRs

VII 13,142 5325 3472 1000 2628 1065 694 400
D,,  20.3 15.02 13.02 8.60 11.87 8.78 7.62 5.03
AH  2588 1417 1066 465 885 485 364 159
ZI 0.0707 0.1581 0.2236 0.50 0.0707 0.1581 0.2236 0.50
z2 0.005 0.025 0.05 0.25 0.005 0.025 0.05 0.25
is: 2525 197 2263 399 521 2067 750 1238 2525 197 2263 399 2067 521 750 1238

TJI  136.75 134.68 133.54 131.12 130.49 124.43 121.1 114.05
TJ~  139.75 139.06 138.37 134.62 139.26 137.25 135.24 124.27
FJI  75.7 70.01 65.08 40.51 83.53 83.18 80.92 56.21
FJ~  5.66 1 1 . 5 7 15.24 23.22 5.69 1 1 . 8 8 15.97 27.65

3 CSTRs

VII 4847 2420 1714 587 969 484 343 1 1 7 . 5
D, 14.55 1 1 . 5 5 10.29 7.2 8 . 5 1 6.75 6.02 4.21
AH  1331 838 666 326 455 286 228 112
ZI 0.171 0.2924 0.3684 0.63 0.171 0.2924 0.3684 0.63
z2 0.0293 0.0855 0.1357 0.3969 0.0293 0.0855 0.1357 0.3969
z3 0.005 0.025 0.05 0.25 0.005 0.025 0.05 0.25
ii: 425 2224 621 1860 698 1632 8 4 8  6 9 9 425 2224 621 1860 698 1632 699 848

Q3 72.7 182 257 441 72.7 182 257 441
T 134.43Jl 132.6 131.83 131.33 123.71 118.36 116.1 114.66
TJZ 138.93 137.53 136.5 132.85 136.89 132.78 129.78 119.09
T 139.82J3 139.28 138.71 135.49 139.47 137.89 136.23 126.83
FJ~ 69.1 59.5 52.8 2 7 . 6 82.9 77.0 70.8 38.0
FJ~  12.3 1 8 . 4 21.0 22.3 12.7 19.8 23.4 28.5
z;..  3 I c7 7c I7  c 3 I c/l 711 155
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TAIi1.E 5.1 (CON’I‘INIJI~I))

Steady-state designs of CS’I’K  processes

k 2 . 5 2.5 2 . 5 2 . 5

X 0.995 0.975 0.95 0.75

I CSTR

v 7960 IS60 760 I 20
D 17.17 9.97 7.85 4.24
AtI I853 625 387 II3

‘ z 0.005 0.025 0.05 0.25
e 2722 2642 2588 I988
TJ 135.  IO I 25.80 117.72 81.42
FJ 83.67 95.46 108.49 348.24

2 CSTRs

v,, 1051 426 139 *

Q, 6.94 5.14 4.45
AH 303 166 12.5
ZI 0.0707 0.1581 0.2236

0.005 0.025 0.05
;I 2525 2263 2067
Q2 197 399 521
TJI 112.19 94.49 84.74
TJ~ 137.83 131.97 126.07
FJI 119.75 I 84.88 280.6
FJZ 5 . 8 1 12.89 1 8 . 5 8

3 CSTRs

vu 194 96.8 68.6
D, 4.98 3.95 3.52
AH 156 98 77.9
ZI 0.171 0.2924 0.3684
22 0.0293 0.0855 0. I357
z3 0.005 0.025 0.05
Ql 2224 I860 1632
e2 425 621 698
Q3 72.7 182 257
TJI 130.89 76.72 70.!3
7.~2 130.89 118.88 110.12
T/3 138.44 133.82 128.99
FJI 198.9 553.9 24,330
FJZ 1 4 . 0 25.4 34.8
FJS 2. I 5.7 8.7

*Design not feasible.

Nure:  FJ  in gpm, Q in IO3 Btdhr.

Note that for very high specific reaction rates, a multistage reactor system is
not feasible for the numerical case studied. This is because the reactor size gives
a transfer area that is so small that the required jacket temperature is lower than
the temperature of the available cooling water. Refrigeration could be used or heat
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The capita! costs of some  of the alternative processes are summarized as follows:

Case 1: k = 0.5 and 95  percent conversion
Cost of one-CSTR process = $427,300
Cost of two-CSTR process = $296,600
Cost of three-CSTR process = $286,700

Case 2: k = 0.5 and 99 percent conversion
Cost of one-CSTR process = $ I, 194,000
Cost of two-CSTR process = $536,700
Cost of three-CSTR process = $458,200

These numbers show that the optimal economic steady-state design is the multiple-
stage reactor system. The higher the conversion, the larger the economic incentive
to have multiple stages. At 95 percent conversion, the capital cost of a three-CSTR
process is 67 percent that of a one-CSTR process. At 99 percent conversion, the cost
is only 38 percent. Thus, if only steady-state economics is considered, the design of
choice in these numerical cases is a process with two or three CSTRs in series,

5.3.2 Dynamic Controllability

Now let us examine the dynamic aspects of these alternative designs using rigor-
ous nonlinear simulations to study their controllability. Three differential equations
describe each stage: reactor component balance, reactor energy balance, and jacket
energy balance (see Appendix A). Two l-minute first-order lags (we define these in
Chapter 8) in the temperature measurement and PI temperature controllers are used.
Controller tuning uses the TLC method with some empirical adjustments to give
reasonable closedloop damping coefficients with the tightest control of temperature
possible.

Figure 5.2 gives the response of a one-CSTR process for step changes in feed
rate from 100 to 150  lb-mol/hr and from 100 to 50 lb-mol/hr for the system with
k = 0.5 and 95 percent conversion. When feed rate is increased, the temperature
in the reactor initially decreases. This is due to the sensible heat effect of the colder
feed (70’F versus 140’F).  After about five minutes, the temperature starts to increase
because the concentration of reactant has increased, which increases the rate of re-
action. The maximum temperature deviation is only O.O6’F,  but it takes over five
hours to return to the setpoint because of the slow change in reactor concentration
and the large reset time.

Figure 5.3 shows the response of the two-CSTR process for the same distur-
bances. Now the maximum temperature deviation in the first reactor is about 0.6”F.
This is 10  times larger than the deviation experienced in the one-CSTR process.
Thus, we find that the control of the two-CSTR process is considerably worse than
the control of the one-CSTR process. Things get even worse when the three-CSTR
process is evaluated. The responses to changes in feed flow rate exhibit larger tem-
perature deviations (l.2”F).

To test these alternative reactor systems with a fairly severe upset, the heat of
reaction is increased at time zero. This disturbance could correspond to a sudden
rh:lnop  in ,-lt;al\rct  !,,-ti\,;t\,  nr  tn  thp initiatinn  nf :a pi&  rpartinn  with I?  hioher  heat of
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reaction. In Fig. 5.4 the heat of reaction increases from 30,000 to 45,000 Btu/lb-mol.
Now the better controllability and rangeability of the one-CSTR process is striking
compared to the two-CSTR process. A single CSTR handles this disturbance with
only a 1.5”F  temperature deviation. In a two-reactor system, this disturbance causes
a 10°F jump in the temperature in the first reactor. In many reaction systems, product
quality may be sensitive to temperature control, sb these large temperature deviations
would yield poor-quality product.

These results clearly demonstrate that the most economical process from a
steady-state point of view is not the best from a dynamic point of view.

The explanation of why the one-CSTR process gives better temperature control
than the two-CSTR process involves heat transfer. The total amount of heat generated
in the reaction system is the same whether there is one reactor or two reactors. But in
the one-CSTR process the heat transfer area is quite large, so the jacket temperature
is only a little bit lower than the reactor temperature. Since the inlet cooling-water
temperature is much lower than the jacket temperature, a modest increase in the
cooling-water flow rate drops the jacket temperature appreciably and gives a large
increase in the heat transfer rate. We can easily double or triple the temperature
difference between the reactor and the jacket and achieve large increases in heat
transfer rates. This means that we can achieve good temperature control because
the manipulated variable (cooling-water flow rate) has a big effect on the controlled
variable (reactor temperature).

On the other hand, the two-CSTR process has two small reactors with small
heat transfer areas. The heat transfer rate in the first reactor (where the reactant
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concentration is higher) is about 80 percent  of the total heat gencratcd  in the ‘pro-
cess. The large amount of heat must be transfcrrcd  through a smaller arca, and this
requires a larger temperature difference between the reactor and the jacket. The de-
sign temperature difference between the reactor and the jacket is a larger fraction
of the maximum available temperature difference (reactor temperature minus inlet
cooling-water temperature). Now when the cooling-water flow rate is increased, the
jacket temperature can be decreased only slightly, and large changes in heat transfer
rates are not possible. This translates into poorer temperature control.

53.3 Maximum Heat Removal Rate Criterion

The next logical question is, how do we reconcile these conflicts between steady-
state economics and dynamic controllability? In Section 5.6 we present a general
procedure that permits quantitative comparisons between alternative designs, tak-
ing into account both steady-state economics and dynamic controllability for any
chemical process.

For the specific jacket-cooled CSTR process considered in this section and the
next, a simple heuristic approach can be used to incorporate quantitatively the limi-
tations of controllability into the steady-state design. The idea is to specify a design
criterion that ensures good controllability. In the reactor temperature control prob-
lem we use the criterion of a specified ratio of the maximum heat removal rate to the
heat removal rate at design conditions. This simple approach is easily understood by
designers and operators, and it requires no dynamic simulation or control analysis.
We illustrate its usefulness in the following section to determine the “best” reactor
operating temperature.

A vital issue in the design of reactors is the ability of the cooling system to
handle momentary or sustained heat removal rates that are larger than the nominal
design heat removal rate Q. This maximum heat removal rate Qmax  may have to
be only slightly higher than normal if disturbances and uncertainties in kinetic and
thermodynamic properties are small. However, this is seldom true, particularly in
new processes. So the ratio of Qmax to Q may have to be quite large in some kinetic
systems. Typical numbers range from 2 to 4 depending on the severity of reaction
disturbances and the consequences of a reactor runaway. Specifying this ratio limits
the reactor design and establishes the maximum feed rate that can be achieved in a
single CSTR with only jacket cooling for a given inlet coolant temperature.

To calculate the maximum steady-state heat removal capacity, we assume that
the cooling-water flow rate at design is 25 percent of its maximum. Thus, when the
control valve is wide open, four times the design flow rate of coolant is available. We
also assume that the reactor temperature is held at its specified value. The steady-
state heat transfer rate under these conditions can be calculated from the following
equations:

Q max = UAH(TR - 7’J”““) (5.20)

Q max = FJmaxpJcJ(TJmax  - TJ()) (5.21)

F;“a~  = 4FJdesign (5.22)
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Combining gives

max  _ UAHTR + FJmaxcJp~T~~
TJ - Fmax

J  CJpJ  +  I/AH
(5.23)

Then Qmax can be found from Eq. (5.20).
Figure 5.5 shows how reactor holdup VR, the ratio Qmax/Q,  and the temperature

difference between the reactor and the jacket, AT, vary with reactor temperature for
three feed flow rates (95 percent conversion and a specific reaction rate at 140°F of
0.5 hr-I). The higher the temperature and the lower the feed rate, the smaller the re-
actor holdup is. The higher the temperature and the higher the feed rate, the larger the
temperature difference is. The Qmax/Q curves are not monotonic. At low reactor tem-
peratures the reactor is large, the heat transfer area is large, and AT is small. But the
jacket temperature is only slightly above the inlet cooling-water temperature (70°F).
This means that the cooling-water flow rate at design conditions is quite large, and
even if it is increased to four times the design flow rate, the jacket temperature can-
not be lowered below the inlet cooling-water temperature. Therefore, as we move
to higher temperatures, we see an increase in the Q,,,,x/Q ratio because the jacket
temperature at design conditions is increasing. However, as reactor temperature is
increased still further, the decrease in reactor heat transfer area begins to rapidly
increase AT at design conditions. When cooling water is increased by a factor of 4 in
these high-temperature designs, the jacket temperature cannot be decreased enough
to change AT (and Q) that much. At low temperatures, maximum heat removal is
limited by inlet cooling water temperature. At high temperatures, it is limited by
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a specified ratio QIIILIX/Q  , there arc two possible designs. The first would have a
low reactor temperature and a large  reactor volume. The second would have a high
reactor temperature and a small reactor volume. Naturally, the latter is the design of
choice since it offers the same control lability at a lower capital cost.

There is no guarantee that the specified Qmax /Q ratio can be achieved at the
specified feed flow rate. Figure 5.5 shows that the highest ratio obtainable for a feed
rate of 100  lb-mol/hr under the base-case conditions is 2.3. If we desired a ratio
greater than this, the process would have to be modified to provide more heat transfer
area than is given by just jacket cooling. This can be accomplished in several ways:
use an external heat exchanger with circulation of reaction liquid, use evaporative
cooling with a condenser mounted above the reactor, use internal cooling coils, 01
use two (or more) reactors in ~~arczllcl.

5 . 4
IMPACT OF CONTROLLABILITY ON CAPITAL
INVESTMENT AND YIELD

Let us consider the situation where reactor temperature is a design parameter. We
explore the impact of controllability questions on the choice of the “best” temperature
for two kinetic cases: a simple reaction case A -+ B, and a consecutive reaction case
A -+ B + C. Only single-CSTR processes are discussed.

54.1 Single-Reaction Case

The optimal reactor temperature from the standpoint of steady-state economics is the
highest possible temperature since this minimizes reactor holdup for a given conver-
sion, which results in the smallest capital cost. The upper temperature limitation may
be due to metallurgical constraints, product thermal degradation, safety, undesirable
side reactions, or other factors.

We demonstrate in this section that the “best” temperature from the standpoint of
controllability is not the highest possible. This results from the reduction in cooling-
jacket heat transfer area that occurs as the size of the reactor is reduced. The tem-
perature difference between the reactor and the jacket becomes bigger, resulting in
a reactor that is more difficult to control.

The numerical values of parameters in this simulation are the same as those used
previously. Several different values of conversion, feed flow rate, and heat transfer
coefficient were studied. The specific reaction rate at a base temperature of 140°F
(k140)  is assumed to be 0.5 hr-‘.

The steady-state design procedure is outlined for a given fresh feed flow rate
F and fresh feed composition (~0  = 1, pure reactant) and a specified conversion x,
overall heat transfer coefficient I/, and k140.

1. Calculate the concentration of the reactant in the reactor, :.

7. = zo(  1 - xl (5.24)



2. Select a reactor tempcraturc,  7’~.
3. Calculate the specitic reaction rate at this tcmpcraturc.

k = k()C rflK(TR  +4(x))

where kc)  = kt4()~,~“~‘~‘~
E = activation energy = 30,000 Btu/lb-mol
R = 1.99 Btu/lb-mol  “R

(5.25)

(5.26)

4. Calculate the required reactor holdup.

(5.27)

5. Calculate the diameter DR  and length LR  of the reactor, the heat transfer area AH,
and the installed capital cost.

6. Calculate the heat removal rate Q, the jacket temperature TJ, and the cooling
w a t e r  f l o w  r a t e  FJ.

7. Repeat steps 3 through 6 for a range of reactor temperatures.

Detailed steady-state design results for two levels of conversion are given in
Table 5.2, and the significant results are illustrated in Fig. 5.5. These steady-state
design calculations all indicate that the reactor should be operated at the highest

TABLE 5.2

Steady-state designs of CSTR processes (U = 100, k140  = 0.5)

Conversion = 95% (2 = 0.05)

TR 1 0 0 120 140 160 180 200
VR 22,867 9038 3800 1690 790 387
DR 24.4 1 17.91 13.42 10.24 7.95 6.27
AH 3744 2016 1132 659.3 397.3 246.9
Q 2737 2662 2587 2512 2437 2362

- TJ 92.69 106.80 117.14 121.89 I 18.65 104.30
FJ 241.4 144.8 109.8 96.9 100.3 137.8
AT 7.31 13.2 22.86 3 8 . 1 1 61.35 95.70
z: 6325 83.1 90.53 5942 93.81 5228 4427 92.86 88.20 3647 2945 80.69

Ratio Q,,,JQ 2.311 2.232 2.021 1.762 1.497 1.247
cost 1306 733 427 258 161 103

Conversion = 99% (z = 0.01)

TR 120 140 160 180 200
VR 47,09 1 19,800 8804 4118 2017
DR 31.05 23.27 17.76 13.78 10.87
AH 6059 3401 1981 1194 742
Q 2782 2707 2632 2557 2482
TJ 115.41 132.04 146.71 158.58 166.54
FJ 122.6 87.3 68.7 57.8 51.5
AT 4.59 7.96 13.29 21.42 33.46
g,: 8726 105.6 8075 116.26 7298 123.17 6457 125.91 5603 124.47

Ratio Q,,,,,/Q 3.137 2.983 2.773 2.525 2.257
cost 2048 1194 721 449 288

NOW:  Q in IO”  Btu/hr;  FJ in gpm: capital cost in $1000:  temperatures in “F.
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possible temperature to minimize reactor size. However, as reactor temperature in-
creases and reactor volume decreases, the heat transfer area AH also decreases. The
rate of heat transfer decreases only very slightly as reactor temperature increases be-
cause most of the heat to be removed comes from the heat of reaction, and sensible
heat effects are quite small. This means that the heat transfer differential temperature
AT between the reactor and the cooling jacket must increase.

As we have already demonstrated, this increase in AT indicates that the control
of the reactor is more difficult. Anything that increases AT gives a less controllable
reactor. Therefore, reactors with low conversions, high feed rates, and low overall
heat transfer coefficients are difficult to control.

5.4.2 Consecutive Reactions Case

Here we examine reactor design and stability when the kinetic system consists of
consecutive reactions A -+ B + C with component B as the desired product. When
the activation energy is larger for the first reaction than for the second, the highest
yield of component B is obtained by operating at the highest possible temperature.
However, dynamic controllability limits this maximum temperature for a given reac-
tor size. Thus, controllability constraints not only give higher capital costs, but they
also result in lower yields of product B. Yields have a significant effect on process
economics. First we look at the reactor by itself, and then we look at a reactor-column
system with recycling of unreacted component A back to the reactor.

Two consecutive reactions occur in a single isothermal CSTR.

A&&

k. = kioe-E’lRTR1 (5.28)

where ki = specific reaction rate of ith reaction (hr-t  )
kio  = preexponential factor
Ei = activation energy t

TR = reactor temperature (OR)

The reaction rates for the two reactions are each first-order in the concentrations of
components A and B. The activation energy for the first reaction is 30,000 But/lb-
mol and for the second is 15,000 Btu/lb-mol. The specific reaction rate of the first
reaction is 0.5-t  and of the second reaction is 0.05 hr-t at a temperature of 140’F.

31 = VRklZA (5.29)

a2 = VdQZB (5.30)

where 99i = reaction rate of ith reaction (lb-mol/hr  of A or B)
ZA = concentration of reactant A in the reactor (mole fracti0n.A)
zB = concentration of reactant B in the reactor (mole fraction B)

In all the numerical cases studied the following design parameters are assumed
to be constant:

U = overall heat transfer coefficient = 100 Btu/hr  ft2  “F
TJo = inlet cooling-water temperature = 70°F
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AHR = heat of reaction for each reaction = 20,000 Btu/lb-mol  of component A
or component B

To  = fresh feed temperature = 70°F
~0 = fresh feed composition = 1 mole fraction component A

To gain some understanding of the steady-state design aspects of the reactor by
itself, the following procedure is used:

1. Pick a reactor holdup VR,  a reactor temperature TR, and a fresh feed rate F.
2.  Calculate the concentrations zn and .zs in the reactor from component balances.

Fzo
zA = F + VRk,.

Vdl ZA
” = F + VRk2

(5.3 1)

(5.32)

3. Calculate the heat removal rate Q, the jacket temperature TJ, and the coolant flow
rate FJ  under these design conditions.

Q = -hvR(klzA  + k2zB)  - c,,MF(TR  - To) (5.33)

The heat of reaction A is assumed to be the same for the two reactions in Eq. (5.33).
4. Calculate the Qmax /Q ratio using Eqs. (5.20) and (5.23).

Results for several numerical cases are shown in Fig. 5.6. The fresh feed rate is
set at 50 lb-mol/hr. The concentration of the desired component B is plotted for three
reactor temperatures (150, 175, and 200°F) over a range of reactor holdups. It is clear
that for the highest yields, the reactor should operate at the highest temperature and
the optimal reactor holdup is small. This prevents too much of component B from
reacting to form the undesired component C.

However, we can see that the small reactors have small Q,,,JQ  ratios and are
more difficult to control. For example, if we could operate a 60-lb-mol reactor at
200”F,  we could achieve 72 percent yield of component B. However, the QmaX/Q
ratio of this reactor is only 1.15, indicating that temperature control will be poor and
reactor runaways can easily occur. A 120-lb-mole reactor at 175°F has a Qmax/Q
ratio of 1.3 and will show better dynamic controllability, but the yield is only 66
percent.

Suppose our design criterion is a Qmax /Q ratio of 1.5. Figure 5.6 shows that this
requires the 200°F reactor to have a holdup of about 170 lb-mol, giving a yield of
62 percent (point C on the figure). A 175°F reactor would have a holdup of 220
lb-mol, giving a yield of about 63 percent (point B). A 150°F reactor would have a
holdup of 270 lb-mol, giving a yield of 61 percent. Thus, there is an optimal reactor
temperature and a maximum attainable yield that is limited by the controllability
criterion.

So far we have looked at just the reactor by itself. In a real chemical plant the
reactor is typically part of a reaction-separation system to increase the yield of the
desired product. The concentration of component B in the reactor is kept low so
that little component C is produced. But the higher concentration of component A in
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Ternary reactor, two-column process (a = 4/2/I)

RECYCLE

v,=  150

T

k,= 1

k,=  1

D, = 4.51

F=324

z,.,  = 0.6600

zB = 0.2324

zc=0.1076

FIGURE 5.7
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D,, = 4.42

D, = 224
XD1.A = 0.95
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XB,,A  = 0.0100

XB1.B = 0.6413

xBI,C = 0.3487

I
D,, = 2.83

D, = 65.4
X[&,  = 0.0 I53
XD2.H = 0.9147
Xlj2.C = 0.0 100

cC$- B,=94.6
I

I,
I +2,B = 0.0  1

XB2.C = 0.99

Ternary reactor, two-column process (a = 4/2/l).

the reactor effluent requires a recycle of this component back to the reactor. Much
higher yields can be obtained from this type of recycle system. However, the reactor
still encounters controllability limitations.

Figure 5.7 is a sketch of the plant under consideration. Fresh feed enters the
reactor at a flow rate FO  and composition z()A = 1 (pure component A in the fresh
feed). We assume that the relative volatilities of components A, B, and C, CYA/(YB/QC,
are 4/2/l,  respectively, so unreacted component A comes overhead in the first distil-
lation column and is recycled back to the reactor at a rate Dr and composition XD~  . .
Reactor effluent F is fed into the first distillation column. The flow  rates of reflux
and vapor boilup  in this column are Rt and VI. Bottoms Bt from the first column is
fed into the second column, in which components B and C are separated into product
streams with about 1 percent impurity levels.

Steady-state component balances around the whole system and around each of
the units are used to solve for the conditions throughout the plant for a given recycle
flow rate Dr. The reactor holdup VR  and the reactor temperature TR necessary to
achieve a specified &,JQ  ratio are calculated as part of the design procedure.
The other fixed design parameters are the kinetic constants (preexponential factors,
activation energies, and heats of reaction for both reactions), the fresh feed flow rate
and composition, the overall heat transfer coefficient in the reactor, the inlet coolant
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temperature, and the following product purity specifications:

XDI,C  = 0 XDI,[j  = 0.05 X[jI,A  = 0.01

XD2.C  = 0.01 X,g7J = 0.01 XB2.A = 0

The design procedure is as follows:

1. Set Dt.  There is an optimal value of this recycle flow
yield of B.

2. Calculate F = Fo  + Dt and Bt = Fo.

3.  Calculate  ZA.

rate that maximizes the

4. Calculate the product of VR  and kt .

[vRkl,l = FO(ZO,A  - xf?l,A)/ZA

5. Guess a value of reactor temperature TR.
a. Calculate kt and k2.
b. Calculate VR  from the [V~ki] product calculated in Eq. (5.35).
c. Calculate the diameter DR and length LR of the reactor.
d. Calculate the circumferential heat transfer area of the jacket.
e. Calculate zg.

(5.34)

(5.35)

ZB =
VRhZA  - DPDI,B

F + VRk2
(5.36)

f. Calculate Q, TJ, FJ,  and Qmax.
g. If the QmaX/Q  ratio is not equal to the desired value, reguess reactor tempera-

ture.

6. Calculate remaining flow rates and compositions in the columns from component
balances.

XBI,B  = V’ZB  - DPDLBYBI (5.37)
xBI,C  = 1 - XBI,A  - XBl,B

B
2

= BI(l - xD2,C - Xf?I,A  - %B)

l - x
(5.38)

D2,C - XB2,B

D2 = BI - B2 (5.39)

XD2,A = BIXBI,AID~ (5.40)

7. Size the reactor and the distillation columns (using 1.5 times the minimum num-
ber of trays and 1.2 times the minimum reflux ratio for each column).

8. Calculate the capital cost, the energy cost, and the total annual cost.

Table 5.3 gives detailed results of these calculations for several feed rates, and
‘Fig. 5.8 shows some of the important results.
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TABLE  5.3

Reactor-column designs

FO 4 0 5 0 6 0

Reactor

opt
D,

TR

VR

2

ctl

TJ

FJ

AH

DR

20 17 I5
126.76 130.63 I 34.90
431.9 593.6 744.  I
0.3233 0.2485 0. I980
0.5325 0.5514 0.5548
95.22 96.94 98.85
66.43 82. I2 95.46
265.6 328.3 381.7
6.50 7.23 7 .79
837.4 II06 1376
1256 1659 2064

Column 1

NTINF 1517 1517 1516
BI 4 0 50 60
DI 20 I7 I5
RI 59.0 63 .6 68.5
VI 79.0 80.6 83.5
Dct 1 . 6 3 1 . 6 5 1 . 6 8

Column 2

&-/NF 19/12 19112 19/10
& 8.43 13.17 18.30
DZ 31.57 36.83 11.70
Rl 44.0 56.0 67.85
VZ 75.6 92.8 109.6
Dcz 1.60 1 . 7 7 1.92
Energy 1 . 9 3 2.17 1 . 4 1

costs

Reactor 1 1 0 . 3 134.5 154.8
Column 1 57.3 57.9 59.0
Column 2 67.6 75.5 82.4
HtEx. 141.3 152.5 163.5
Capital 379.3 123.2 162.8
Total annual cost 211.1 236.0 760.0
Yield 78.93 73.66 69.85

xV~‘otes:  Total annual cost = JlOOO/\;r,  capital cost = S 1000.  diam-
~trr = fast. rnerg = IO’  Btu/hr. composition = mole fraction,
How rate  = lb-mol/hr.  holdup = lb-mol

1. There is an optimal recycle flovv.  rate for a given feed rate that maximizes yield.
2. The maximum attainable yield in the reactor-column recycle process is higher

than for just a reactor for the same controllability. The reactor alone with a feed
rate of 50 lb-mol/hr  gives a maximum yield of about 63 percent for a QiltaX/Q
ratio of 1.5. For the same ratio. the reactor-column system  with the same fresh
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FIGURE 5.8 (CONTINUED)
CSTR-column design.

feed rate gives a yield of 73.5 percent. Of course, the energy and capital costs are
higher.

3. The maximum yield depends strongly on the feed flow rate.

The last result suggests that we may want to modify the process to achieve better
yields but, at the same time, maintain controllability. This dan be done by increasing
the heat transfer area in the reactor.

5 . 5
GENERAL TRADE-OFF BETWEEN CONTROLLABILITY
AND THERMODYNAMIC REVERSIBILITY

The field of engineering contains many examples of trade-offs. You have seen some
of them in previous courses. In distillation there is the classical trade-off between the
number of trays (height) and the reflux ratio (energy and diameter). In heat transfer
there is the trade-off between heat exchanger size (area) and pressure drop (pump
or compressor work); more pressure drop gives higher heat transfer coefficients and
smaller areas but increases energy cost. We have mentioned several trade-offs in
this book: control valve pressure drop versus pump head, robustness versus perfor-
mance, etc.

The results from the design-control interaction examples discussed in previous
sections hint at the existence of another important trade-off: dynamic controllability
versus thermodynamic reversibility. As we make a process more and moie efficient
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(reversible  in a thermodynamic sense), we are reducing driving forces, i.e., pressure
drops, temperature differences, etc. These  smaller driving forces mean that we have
weaker handles to manipulate, so that it becomes more difficult to hold the process
at the desired operating point when disturbances occur or to drive the process to a
new operating point.

Control valve pressure drop design illustrated this clearly. Low-pressure-drop
designs are more efficient because they require less pump energy. But low-pressure-
drop designs have limited ability to change the flow  rates of manipulated variables.

The jacketed reactor process also illustrates the principle. The big reactor has
a lot of heat transfer area, so only a fraction of the available temperature difference
between the inlet cooling water and the reactor is used. A thermodynamically re-
versible process has no temperature difference between the source (the reactor) and
the sink (the inlet cooling water). So the big reactor is thermodynamically inefficient,
but it gives better control.

We could cite many other examples of this controllability/reversibility trade-off,
but the simple ones mentioned above should convey the point: the more efficient the
process, the more difficult it is to control. This general concept helps to explain in
a very general way why the steady-state process engineer and the dynamic control
engineer are almost always on opposite sides in process synthesis discussions.

5.6
QUANTITATIVE ECONOMIC ASSESSMENT OF STEADY-STATE
DESIGN.AND  DYNAMIC CONTROLLABILITY

One of the most important problems in process design and process control is how
to incorporate dynamic controllability quantitatively into conventional steady-state
design. Normally, steady-state economics considers capital and energy costs to cal-
culate a total annual cost, a net present value, etc. If the value of products and the
costs of raw materials are included, the annual profit can be calculated. The process
that minimizes total annual cost or maximizes annual profit is the “best” design.

However, as we have demonstrated in our previous examples, this design is
usually not the one that provides the best control, i.e., the least variability of product
quality. What we need is a way to incorporate quantitatively (in terms of dollars/year)
this variability into the economic calculations. We discuss in this section a method
called the capacity-based approach that accomplishes this objective. It should be
emphasized that the method provides an analysis tool, not a synthesis tool. It can
provide a quantitative assessment of a proposed flowsheet or set of parameter values
or even a proposed control structure. But it does not generate the “best” flowsheet or
parameter values; it only evaluates proposed systems.

5.6.1 Alternative Approaches

A. Constraint-based methods

The basic idea behind constraint-based approaches is to take the optimal steady-
state design and d&r-mine  how far away from this optimal point the plant must
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operate in order not to violate constraints during dynamic upsets. The steady-state
economics are then calculated for this new operating point. Alternative designs are
compared on the basis of their economics at their dynamically limited operating
point. This method yields realistic comparisons, but it is computationally intensive
and is not a simple, fast tool that can be used for screening a large number of alter-
native conceptual designs.

B. Weighting-factor methods
With weighting-factor methods, the basic idea is to form a multiobjective opti-‘

mization problem in which some factor related to dynamic controllability is added
to the traditional steady-state economic factors. These two factors are suitably
weighted, and the sum of the two is minimized (or maximized). The dynamic con-
trollability factor can be some measure of the “goodness” of control (integral of
the squared error), the cost of the control effort, or the value of some controllability
measure (such as the plant condition number, to be discussed in Chapter 9). One real
problem with these approaches is the difficulty of determining suitable weighting
factors. It is not clear how to do this in a general, easily applied way.

5.6.2 Basic Concepts of the Capacity-Based Method

The basic idea of the capacity-based approach is illustrated in Fig. 5.9 for three plant
designs. The dynamic responses of these three hypothetical processes to the same set
of disturbances can be quite different. The variable plotted indicates the quality of
the product stream leaving the plant. Better control of product quality is achieved in
plant design 3 than in the other designs.

Suppose the dashed lines in Fig. 5.9 indicate the upper and lower limits for “on-
aim” control of product quality. Plant 3 is always within specification, and there-
fore all of its production can be sold as top-quality product. Plant 1 has extended
periods when its product quality is outside the specification range. During these pe-
riods the production would have to be diverted from the finished-product tank and
sent to another tank for reworking or disposal. This means that the capacity of plant
1 is reduced by the fraction of the time its products are outside the specification
range. This has a direct effect on economics. Thus, the three plant designs can be
directly and quantitatively compared using the appropriate capacity factors for each
plant.

The annual profit for each plant is calculated by taking the value of the on-
specification products and subtracting the cost of reprocessing off-specification ma-
terial, the cost of raw materials, the cost of energy, and the cost of capital. Plant
3 may have higher capital cost and higher energy cost than plant 1, but since its
product is on-specification all the time, its annual profit may be higher than that of
plant 1.

Two approaches can be used to calculate the capacity factors (the fraction of
time that the plant is producing on-specification product). The more time-consuming
approach is to use dynamic simulations of the plant and impose a series of distur-
bances. The other approach is more efficient and more suitable for screening a large
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FIGURE 5.9
Closedloop dynamic responses for three hypothetical plant designs.

number of alternative designs. It uses frequency-domain methods, which we discuss
in Chapter 10.

We illustrate the method in the next section, considering a simple reactor-column
process with recycle. In this example the flowsheet is fixed, and we wish to determine
the “best” values of two design optimization parameters.
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56.3 Reactor-Column-Recycle Example

A first-order, irreversible liquid-phase reaction A L B occurs in a single CSTR with
constant holdup VR.  The reactor operates at 140°F with a specific reaction rate k of
0.34086 hr- I. The activation energy E is 30,000 Btu/lb-mol.

Figure 5.10 gives the flowsheet of the process and defines the nomenclature.
Fresh feed to the reactor has a flow rate of Fa = 239.5 lb-mol/hr and a composition
zo = 0.9 mole fraction component A (and 0.1 mole fraction component B). A recycle
stream D from the stripping column is also fed into the reactor. The reactor is cooled
by the addition of cooling water into the jacket surrounding the vertical reactor walls.

The reactor effluent is a binary mixture of components A and B. Its flow  rate
is F lb-mol/hr  and its composition is z mole fraction component A. It is fed as satu-
rated liquid onto the top tray of a stripping column. The volatility of component A
to component B is cy = 2, so the bottoms from the stripper is a product stream of
mostly component B, and the overhead from the stripper is condensed and recycled
back to the reactor. Product quality is measured by the variability of xg, the mole
fraction of component A impurity in the bottom. The nominal steady-state value of
XB  is 0.0105 mole fraction component A.

We assume constant density, equimolal overflow, theoretical trays, total con-
denser, partial reboiler, and five-minute holdups in the column base and the over-
head receiver. Tray holdups and the liquid hydraulic constants are calculated from
the Francis weir formula using a one-inch weir height.

Given the fresh feed flow rate Fo,  the fresh feed composition ~0,  the specific
reaction rate k, and the desired product purity xg, this process has 2 design degrees
of freedom; i.e., setting two parameters completely specifies the system. Therefore,
there are two design parameters that can be varied to find the “best” plant design.
Let us select reactor holdup VR  and number of trays in the stripper NT  as the design

FlGURE 5.10
Reactor/stripper process.



th
of

*e.
In
le
:d
Is.
te
u-
A
of
:d
le
of

n-
!I--
m

iC
es
*e,
,n.
Y

<IIAI~IIS s: Interaction between Steady-State  Design and Dynamic Controllability I79

parameters. The following steady-state design procedure can bc used to calculate the
values of all other variables given VK  and NT.

I. Calculate the reactor composition from an overall component balance for A.

(5.41)

2. Use a steady-state tray-to-tray rating program for the stripper to calculate the
vapor boilup  Vs. First guess a value for Vs, and then calculate F from Eq. (5.42)
(since B = Fo).

F = Vs + F. (5.42)

Then calculate tray by tray from XR  up NT  trays (using component balances and
constant relative volatility vapor-liquid equilibrium relationships) to obtain the
vapor composition on the top tray y,v~. Compare this value with that obtained
from a component balance around the reactor, Eq. (5.43).

Fz + VRkz  - Fozo
YNT =

VS
(5.43)

If the two values of YNT  are not the same, guess a new value of VS.
3. Calculate the size of the reactor (from VR) and the size of the column (from Vs

and NT).  Then calculate their capital costs.
4. Calculate the size and the capital costs of the reboiler and condenser (from Vs).

Calculate the annual cost of energy (also from Vs).
5. Calculate the total annual cost (TAC) for each VR-NT  pair of design parameters.

TAC = annual energy cost

+ total capital cost (column + reactor ==I  heat exchangers)/3

A three-year payback on capital costs is assumed.

By calculating TACs for a range of values of VR  and NT, the minimum steady-
state optimal plant turns out to have a reactor holdup of 3000 lb-mol and a stripper
with 19 trays. With no consideration of dynamic controllability, this is the “best”
plant.

Now let us apply the capacity-based approach. Positive and negative 10 percent
disturbances are made in the fresh feed flow rate Fo  and in the fresh feed composition
zo.  Dynamic simulations (confirmed by frequency-domain analysis, to be discussed
in Chapter 10) show that the variability in product quality XB  is decreased by in-
creasing reactor volume or by decreasing the number of trays in the stripper.

For a very large specification range on xB (3 mol%),  all the process designs
produce on-specification products 100 percent of the time, so the maximum profit
plant naturally corresponds to the minimum-TAC plant. However, as the specifica-
tion range is reduced, the most profitable plant is not the minimum-TAC plant. The
less controllable plants produce more off-specification products because they have
more variability in XI{,  and this reduces their annual profit.
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FIGURE 5.11
Disturbances in zo and Fo.

For example, with a specification range of 0.72 mol% (50.36  mol%),  the most
profitable design has a reactor holdup VR = 5000 lb-mol  and a 12-tray  stripper. The
total annual cost of this plant (energy plus capital) is $725,8OO/yr,  which is higher
than the $693,00O/yr TAC of the V R = 3000 and NT  = 19 plant. However, the an-
nual profit for the 5000/12  design is $1,524,00O/yr,  which is larger than the annual
profit of the 3000/19  design ($737,00O/yr).  This is caused by the differences in the
capacity factors. The 5000/i 9 design produces product that is inside the specification
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FIGURE 5.12
Responses of two designs.

range 7112  percent of the time; i.e., its capacity factor is 0.712. The 3OW14 de-
sign produces product that is inside the specification range 92.9 percent of the time.
The sequences of disturbances in feed flow rate and feed composition are shown in
Fig. 5.1 1. The responses of product purity (x0) for the two designs are shown in
Fig. 5.12, along with the changes in the vapor boilup  in the column.

The method just discussed permits a quantitative comparison of alternative de-
signs that incorporates both steady-state economics and dynamic controllability in a
logical and natural way. This approach handles the very important question of prod-
uct quality variability in an explicit way.



However, a control structure must be chosen, controllers must be tuned, and a
series of disturbances must be specified. The closedloop system is then simulated,
and the capacity factors are calculated for each design. Using dynamic simulation
can require a lot of computer time. In Chapter 10 we describe how the procedure can
be made much easier and quicker using a frequency-domain approach.

5 . 7
CONCLUSION

This chapter has discussed some very important concepts that are basic to the prac-
tice of chemical engineering. Plant designs should not be developed only on the basis
of steady-state operation. If we had no disturbances coming into the process, such
an approach would be fine. But all chemical processes have disturbances, upsets, or
changes in operating conditions. Therefore, it is vital to consider the dynamic effects
of these disturbances. By modifying some of the design parameters, we may be able
to develop a process that has only slightly higher capital and energy cost but is less
sensitive to disturbances and therefore produces products with less variability.
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Plantwide Control

In this chapter we study the important question of how to develop a control system
for an entire plant consisting of many interconnected unit operations.

6.1
SERIES CASCADES OF UNITS

Effective control schemes have been developed for many of the traditional chemical
unit operations over the last three or four decades. If the structure of the plant is a
sequence of units in series, this knowledge can be directly applied to the plantwide
control problem. Each downstream unit simply sees disturbances coming from its
upstream neighbor.

The design procedure for series cascades of units was proposed three decades
ago (P. S. Buckley, Techniques of Process Control, 1964, Wiley, New York) and has
been widely used in industry for many years. The first step is to lay out a logical and
consistent “material balance” control structure that handles the inventory controls
(liquid levels and gas pressures). The “hydraulic” structure provides gradual, smooth
flow rate changes from unit to unit. This filters flow rate disturbances so that they
are attenuated and not amplified as they work their way down through the cascade
of units. Slow-acting, proportional level controllers provide the most simple and the
most effective way to achieve this Bow smoothing.

Then “product quality” loops are closed on each of the individual units. These
loops typically use fast proportional-integral controllers to hold product streams
as close to specification values as possible. Since these loops are typically quite
a bit faster than the slow inventory loops, interaction between the two is often
not a problem. Also, since the manipulated variables used to hold product qualities
arc quite often streams internal to each individual unit, changes in these manipulated
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variables may have little effect on downstream processes. The manipulated variables
frequently are utility streams (cooling water, steam, refrigerant, etc.), which are pro-
vided by the plant utility system. Thus, the boiler house may be disturbed, but the
other process units in the plant do not see disturbances coming from other process
units. This is, of course, true only when the plant utility systems themselves have
effective control systems that can respond quickly to the many disturbances coming
in from units all over the plant.

The preceding discussion applies to cascades of units in series. If recycle streams
, occur in the plant, which frequently happens, the procedure for designing an effec-

tive “plantwide” control system becomes much less clear, and the literature provides
much less guidance. Since processes with recycle streams are quite common, the
heart of the plantwide control problem centers on how to. handle recycles. The typi-
cal approach in the past for plants with recycle streams has been to install large surge
tanks. This isolates sequences of units and permits the use of conventional cascade
process design procedures. However, this practice can be very expensive in terms of
tankage capital costs and working capital investment. In addition, and increasingly
more important, the large inventories of chemicals, if dangerous or environmentally
unfriendly, can greatly increase safety and environmental hazards.

The purpose of this chapter is to present some evolving ideas about plantwide
control by looking at both the dynamic and the steady-state effects of recycles.

6.2
EFFECT OF RECYCLE ON TIME CONSTANTS

One of the most important effects of recycle is to slow down the response ,of the
process, i.e., increase the process time constant. Consider the simple two-unit sys-
tem shown in Fig. 6.1. The input to the process u is added to the output x from the
unit in the recycle loop, giving z, (Z = u + x). The variable z is fed into the unit
in the forward path, and the output of this unit is y. Thus, if there is no recycle,
u simply affects y through the forward unit. However, the presence of the recycle
means that there is a feedback loop from y back through the recycle unit, which again
affects y.

The unit in the forward path has a steady-state gain KF and a time constant 7~.
The unit in the recycle path has a gain KR  and time constant 7~.  The load disturbance

X
4 T,$+s=  KRy

-! FIGURE 6.1
Simple recycle system.



into the plant is U, and the output of the plant is y. Suppose the dynamics of the two
units can be described  by simple first-order ODES.

dYrp& + y  =  K & + x ) (6-U

ClX
wcII +  x =  KRY (6.2)

Differentiating Eq. (6.1) with respect to time and combining with  Eq.  (6.2) give

Remember from Chapter 2 that the characteristic equation of this system is

A2 + 275s  + 1 = 0 (6.4)

where the overall time constant of the process 7 is given by

J

7-r; T/3
r=

1 - KFKR (6.5)

Equation (6.5) clearly shows that the time constant of the overall process depends
very strongly on the product of the gains around the recycle loop, KFKR.  When the
effect of the recycle is small (KR is small), the time constant of the process is near
the geometric average of r~ and 7~.  However, as the product of the gains around the
loop KFKR  gets closer and closer to unity, the time constant of the overall process
becomes larger and larger. This simple process illustrates mathematically why time
constants in recycle systems are typically much larger than the time constants of the
individual units. The dynamics slow down as the recycle loop gain increases.

It should be noted that this system has positive feedback, so if the loop gain is
greater than unity, the process is unstable.

6.3
SNOWBALL EFFECTS IN RECYCLE SYSTEMS

An important phenomenon has been observed in the operation of many chemical
plants with recycle streams. The same phenomenon has been observed and quanti-
tied in numerical simulation studies of industrial processes with recycles. A small
change in a load variable causes a very large change in the flow rates around the
recycle loop. We call this the “snowball” effect.

It is importanl to note that snowballing is a steady-state phenomenon and has
nothing to do with dynamics. It does, however, depend on the structure of the control
system, as we illustrate in a mathematical analysis of the problem. Large changes in
recycle flows mean large load changes for the distillation separation section. These
are very undesirabIc  because a column can tolerate only a limited turndown ratio,
which is the ratio ol‘the  maximum vapor boilup  (usually limited by column flooding)
to the minimum vapor boilup  (usually limited by poor liquid distribution or weeping).
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Reactor-column process with recycle. (a) Constant VR  control structure. (b) Constant F control
structure.

To illustrate snowballing quantitatively, let us consider the simple process with
one reactor and one column sketched in Fig. 6.2. The reaction is the simple irre-
versible A ---j  B. The reactor effluent is a mixture of A and B. Its flow rate is F and
its composition is z (mole fraction component A). Component A is more volatile than
component B, so in the distillation column the bottoms is mostly component B and
the distillate is mostly unreacted component A. First-order kinetics and isothermal
operation are assumed in the reactor.

9t = VRkz (6.6)

where ‘3X  = rate of consumption of reactant A (mol/hr)
VR  = reactor holdup (mol)

k = specific reaction rate (hr- ‘)
z = concentration of reactant A in the reactor (mole fraction A)

Two different control structures are explored. The conventional control is called
the constant VR  structure.

l Control reactor holdup VK  by manipulating reactor effluent flow rate F.
l Flow-control fresh feed flow rate Fo.
l Control the impurity of component A in the base of the column .rn  by manipulating

heat input.
l Control reflux drum level in the column by manipulating distillate flow rate 0.
l Control the impurity of component B in the distillate (1 - xn)  from the column by

manipulating reflux.
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Note that this control structure has both of the flow rates in the recycle loop (reactor
effluent F and distillate from the column D) set by level controllers.

The second control structure is called the constant F scheme. It switches the first
two loops in the conventional structure.

l Flow-control reactor effluent.
l Control reactor level by manipulating fresh feed flow rate.

A. Conventional structure (constant reactor holdup)

The variables that are constant are VR,  k,  xg,  and xg. The variables that change
when disturbances occur are F, z,  and the recycle flow rate D. The steady-state equa-
tions that describe the system are as follows.

Process overall:

F. = l3 (6.7)

FOZO  = BXB + VRkz (6.8)

Reactor:

Fo+D=F

Fozo  + DXD = Fz + VRkz

(6.9)

(6.10)

Equations (6.7) and (6.8) can be combined to yield Eq. (6.11),  which shows how
reactor composition z must change as fresh feed flow rate FO  and fresh feed compo-
sition zo change when the conventional control structure is employed (i.e., reactor
volume is constant).

z = Fotzo  - XB>
kh

Equations (6.9) and (6.10) can be combined to give recycle flow rate D:

(6.11)

D =
z(Fo  + kV,d - Fozo

(6.12)
XD - z

Substituting Eq. (6.11) into Eq. (6.12) gives an analytical expression showing how
the recycle flow rate D changes with disturbances in fresh feed flow rate Fo  and fresh
feed composition ~0.

FO  - bxB

D = ,&cnlFo-  1
(6.13)

kVRw h e r e  p = - -
a - XB

(6.14)

It is useful to look at the limiting (high-purity) case in which xg = 1 and xg,  = 0.
Under these conditions, Eq. (6.13) becomes

(6.15)
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This equation clearly shows the strong dependence of the recycle flow rate on the
fresh feed flow rate: increasing Fo  increases the numerator (as the square) and de-
creases the denominator. Both effects tend to increase D sharply as Fu  increases.
Results from a numerical example are given later.

B. Reactor effluent fixed structure (variable reactor holdup)

The variables that are constant with the alternative structure are F, k, XD, and
x0.  The variables that change when disturbances occur are VR, z,  and the recycle
flow rate D. Equations (6.7) through (6. IO) still describe the system, but now F is
constant while VR varies. Combining these equations gives

D=F-FO

kVR  =
FFo(zo  - XB)

FxD  - &)(xD  - xS>

(6.16)

(6.17)

Equation (6.16) shows that the recycle flow rate D changes in direct proportion to the
change in fresh feed flow rate and does not change at all when fresh feed composition
changes. Equation (6.17) shows that reactor holdup VR  changes as fresh feed flow
rate and fresh feed composition change.

It is useful to look at the limiting, high-purity case in which XD = 1 and xg = 0.
Under these conditions, Eq. (6.17) becomes

FFozo
kVR= F-F

0
(6.18)

This equation shows that reactor holdup changes in direct proportion to fresh feed
composition and is less dependent on fresh feed flow rate since the FO  term in the nu-
merator is now only to the first power. Keep in mind that FO  is not really a disturbance
with this structure since fresh feed is used to control reactor holdup. However, the
changes required in the setpoint of the level controller to accomplish a desired change
in fresh feed flow rate can be calculated from Eq. (6.18). Note that the fresh feed flow
rate changes as fresh feed composition changes for a constant reactor holdup.

Figure 6.3 gives numerical results for a system with the values of design parame-
ters given in Table 6.1. The large changes in recycle flow rates when the conventional
(constant VR)  control structure is used are clearly shown.

The fundamental reason for the occurrence of snowballing in recycle systems is
the large changes in reactor composition that some control structures produce when
disturbances occur. The final steady-state values of the reactor composition must
satisfy the steady-state component balances. These composition changes represent
load disturbances to the separation section, and separation units usually cannot han-
dle excessively large throughput changes.

A very useful heuristic rule has been developed as a result of our studies of
recycle systems:

Note that the constant-reactor-effluent structure used in the simple process just dis-
cussed follows this rule and does indeed prevent snowballing. The control structures
discussed in examples presented later in this chapter follow this rule.
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FIGURE 6.3
Reactor-column process with recycle.
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TABLE 6.1

Parameter values for reactor-column process

At normal design conditions:
Fresh feed composition = zo  = 0.9 mole fraction component A
Fresh feed flow rate= F,,  = 239.5 mol/hr
Reactor holdup= VK  = I250  mol
Reactor effluent flow rate= F = 500 mol/hr
Recycle flow rate= distillate flow rate = 0 = 260.5 mol/hr

Parameter values:
Specific reaction rate = k = 0.34086 hr-’
Bottoms composition = x B = 0.0105 mole fraction component A
Distillate composition = x0 = 0.95 mole fraction component A

6 . 4

USE OF STEADY-STATE SENSITIVITY ANALYSIS
TO SCREEN PLANTWIDE CONTROL STRUCTURES

A chemical plant typically has a large number of units with multiple recycle streams.
Many different control strategies are possible, and it would be impractical to perform
a detailed dynamic study for each alternative. We would like to have an analysis pro-
cedure to screen out poor control structures. The steady-state snowball analysis of the
simple process in the previous section logically suggests that a similar steady-state
analysis may be useful for screening out poor control structures in more realistically
complex processes. If a steady-state analysis can reveal structures that require large
changes in manipulated variables when load disturbances occur or when a change
in throughput is made, these structures can be eliminated from further study.

The idea is to specify a control structure (fix the variables that are held constant
in the control scheme) and specify a disturbance. Then solve the nonlinear algebraic
equations to determine the values of all variables at the new steady-state condition.
The process considered in the previous section is so simple that an analytical solu-
tion can be found for the dependence of the recycle flow rate on load disturbances.
For realistically complex processes, analytical solution is out of the question and nu-
merical methods must be used. Modern software tools (such as SPEEDUP,  HYSYS,
or GAMS) make these calculations relatively easy to perform.

To illustrate the procedure, we consider a fairly complex process sketched in
Fig. 6.4, which shows the process flowsheet and the nomenclature used. In the con-
tinuous stirred-tank reactor, a multicomponent, reversible, second-order reaction oc-
curs in the liquid phase: A + B ?-, C + D. The component volatilities are such that
reactant A is the most volatile, product C is the next most volatile, reactant B has
intermediate volatility, and product D is the heaviest component: aA > (xc > aye >
(YL).  The process flowsheet consists of a reactor that is coupled with a stripping col-
umn to keep reactant. A in the system, and two distillation columns to achieve the
removal of products C and D and the recovery and recycle of reactant B.

The two recycle streams are DI from the first column (mostly component A)
and I)3 from the third column (mostly component B). The two product streams arc
the distillate from the second column, 02,  and the bottoms from the third coiurnn,  B.1.
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FIGURE 6.4
Reactor-three-column-two-recycle-four-component process.

The former is mostly component C with impurities of component A (XDz,A)  and of
component B (xD~,B).  The latter is mostly component D with impurity of component
B h13.d

6.4.1 Control Structures Screened

This process has 15 control valves, so there is an enormous number (16 factorial)
of possible simple SISO control structures. The nine inventories (six levels and the
three pressures) must be controlled. The three impurities in the two product streams
must also be controlled. The production rate must also be set. This leaves 15 - 9 -
3 - 1 = 2 control valves that can be set to accomplish other objectives (typically
economic objectives, such as minimizing energy costs).

For purposes of illustration, let us consider the three alternative control structures
shown in Fig. 6.5. The following loops are used in all three structures:

l Reactor effluent is flow controlled.
l Column base levels are held by bottoms flows.
l Component A impurity in 02 is held by controlling x~l,A  by manipulating heat

input VI.
l Component B impurity in Dz  is held by manipulating heat input V2.
l Component B impurity in 83  is held by manipulating heat input v3.
l Pressures are controffed  by coolant flow rates in condensers.
l The reflux  in the second column, Rz, is flow controlled.
l Reflux  drum level in the second column is controlled by distillate D2.

7-tlcse  dec sions  naturally eliminate certain alternative control strategies.
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A. Structure Sl

Fresh feed of component A (F~A) is flow controlled. Fresh feed of component B
(E’~,~~)  is manipulated to control the composition of component B in the reactor (zg).
Reactor level is held by 03 recycle. Level in the reflux  drum of the third column is
controlled by reflux R3.

When a very small change is made in the composition of the FOB  stream (ZOS,J
changed from I to 0.999 and zo8.A  changed from 0 to O.OOl),  the process can barely
handle it. The steady-state value of Rs in the third column changes 15 percent for
this very small disturbance. Thus, the steady-state analysis predicts that this structure
will not work. Dynamic simulations confirmed this; very small disturbances drive
the control valves on R3  and V3  wide open, and product quality cannot be maintained.

B. Structure S2

Fresh feed of component A (Fan) is manipulated to control the composition of
component A in the reactor (zA).The level in the refIux  drum in the third column is
controlled by manipulating the fresh feed FOH, which is added to the distillate from
the third column, D3.  The total of 03  and Foil  is manipulated to control reactor level.
The reflux R3  is flow controlled.

When a large change is made in z0B.B  (to 0.90),  the new steady-state values of
the manipulated variables were only slightly different from the base-case values.
The makeup flow rates of fresh feed change: FOA  increases IO percent and FOB  de-
creases 10 percent. Production rates of 02 and B3  stay the same, as do other flow  rates
and compositions throughout the process. Thus, the steady-state sensitivity analysis
suggests that this structure should handle disturbances easily. Dynamic simulations
confirm that this control structure works quite well.

C. Structure S3

The loops are the same as in S2 except that the fresh feed FoA is flow controlled.
There is no control of any reactor composition.

A small change in the composition of the fresh feed of component A from
ZOA,A = 1 to ZOA,A = 0.99 and ZOA,B = 0.0 1 produces 15 to 20 percent changes in
the recycle flow rates VI and D3. Therefore, the steady-state sensitivity analysis
predicts that this control structure will not be able to handle large disturbances.

It is interesting to note that this control structure exhibits multiple steady-state
solutions. There are two sets of recycle flow rates, reactor temperatures, and reactor
compositions that give the same production rates for the same feed rates. Structures
that give multiple steady states should be avoided because the operation of the plant
may be quite erratic.

These results suggest that we need to have direct (or indirect) measurement of
compositions in the reaction section. This is discussed more fully in the next section,
where a generic rule is proposed:
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6 . 5
SECOND-ORDER REACTION EXAMPLE

As our last plantwide control example, let us consider a process in which a second-
order reaction A + B -+ C occurs. There are two fresh feed makeup streams. The
process flowsheet consists of a single isothermal, perfectly mixed reactor followed
by a separation section. One distillation column is used if there is only one recycle
stream. Two are used if two recycle streams exist.

Two cases are considered: (1) instantaneous and complete one-pass conversion
of one of the two components in the reactor so that there is an excess of only one
component that must be recycled, and (2) incomplete conversion per pass so that
there are two recycle streams.

6.51 Complete One-Pass Conversion

Figure 6.6 shows the process for complete one-pass conversion. Pure component
B is fed into the reactor on flow control. The concentration of B in the reactor, ZB,
is zero (or very small) because we assume complete one-pass conversion of B. A
large recycle stream of component A is fed into the reactor. The reactor effluent is a
mixture of unreacted component A and product C. This binary mixture is separated
in a distillation column. We assume that the relative volatility of A is greater than
that of C, so the distillate product is recycled back to the reactor.

This simple system is encountered in a number of commercial processes. It
occurs when reaction rates are so fast that B reacts quickly with A, but a large excess

Fresh feed A

c??

Recycle A
,

X0.A

xD.C

[F I G U R E  ,6.6
Process with complete one-pass conversion of component H.
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01‘  A is needed. There are several reasons that a large recycle of one component may
be needed. An important one is to prevent the occurrence of undesirable side reac-
tions. The alkylation process in petroleum refining is a common example. Another
reason for recycle may be the need to limit the temperature rise through an adiabatic
reactor by providing a thermal sink for the heat of reaction. Avoiding explosivity
composition regions, particularly for oxidation reactions, often requires an excess of
one reactant.

A. Steady-state design

The purity of the product stream B leaving the bottom of the distillation column,
XB,A, is set at 0.0 1 mole fraction component A, with the concentration of component
C being 0.99. There is no component B in the feed to the column because complete
on&-pass conversion is assumed. The column is designed for a distillate purity XD,A

of 0.95 mole fraction component A. In the base case the fresh feed flow rate is
100 lb-mol/hr (FOB),  and it is pure component B. Since component B is com-
pletely converted, the amount of component C in the product stream must also be
100 lb-mol/hr  at steady state. Therefore, the total flow rate of the product stream and
the flow rate of the makeup fresh feed of component A, F’oA, can both be calculated.

B = FOB/(1  - X&A) (6.19)

FOA =  FOB +  BXB,A (6.20)

Under the assumption of complete one-pass conversion of component B, in the-
ory both the recycle flow rate D and the holdup of the reactor VR  can be set at any
arbitrary values. Once these are selected, the system can be designed. The feed flow
rate F and composition ZA to the column can be calculated once D has been specified.

F = B + D (6.21)

FZA = DXD,A  + BXB,A (6.22)

The separation in the distillation column is binary between A and C, so the design
of the column is straightforward. Typically, the reflux ratio is set at 1.2 times the
minimum, and tray-to-tray calculations give the total number of trays NT  and the
optima1 feed tray NF.

These steady-state design calculations show that as recycle flow rate D is in-
creased, the concentration of A in the reactor, ZA, increases. This causes the ret&x
flow rate to increase initially, and then decrease. At very high recycle flow rates,
the refIux  rate goes to zero, indicating that the distillation column becomes just a
stripping column. As recycle flow rate increases, energy consumption, capital in-
vestment, and total cost all increase. Thus, the recycle flow  rate should be kept as
low as possible, subject to the constraints on the minimum recycle flow, e.g.. pre-
venting undesirable side reactions from occurring or limiting adiabatic temperature
rise through the reactor.

B. Dynamics and control

TWO alternative control  schemes are evaluated. In scheme A both of the fresh
feed streams. F,, ,-antI F;,,,.  arc  How  contrnlled (nr one ic mtinwi tn thP nthrr\ Thic
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Kecycle  A
4

Fresh feed A

_ .Fresh feed B

-h

Product C

FIGURE 6.7
Scheme A: Makeup feeds flow controlled.

is a control strategy seen quite commonly in plants, but it has major weaknesses, as
will be demonstrated. We think it is important to point out these problems clearly
and to illustrate them quantitatively by means of a numerical example.

As sketched in Fig. 6.7, control structure scheme A has reactor level controlled
by column feed. Column base level is held by bottoms. Reflux drum level is held by
distillate recycle back to the reactor. Reflux flow rate is flow controlled. Distillate
composition is not controlled since the recycle is an internal stream within the pro-
cess. Bottoms product purity is controlled by manipulating heat input. Note that this
scheme violates the rule for liquid recycles since the streams in the recycle loop (F
and 0)  are both on level control.

In control scheme B, sketched in Fig. 6.8, the total recycle flow rate to the reactor
(distillate plus makeup A) is flow controlled. The makeup of reactant A is used to
hold the level in the reflux drum. This level indicates the inventory of component A
in the system.

Dynamic simulations of the process were made using these two control struc-
tures. Figure 6.9 shows what happens using scheme A when the flow rate of makeup
A is incorrect by only 1 percent, which is smaller than any real flow measurement
device can achieve in most plants. The recycle flow rate D and the composition of
component A in the reactor ramp up with time, and it takes more and more vapor
boilup  in the column to keep component A from dropping out the bottom. These
trends would continue until the column floods; some other constraint in heat input,
heat removal, or pumping capacity is encountered; or the operator intervenes manu-
ally. Figure 6.10 shows that when a pulse is made in Fan, the system goes through a
transient and lines out with a new recycle flow rate and a new reactor composition.

These results quantitatively illustrate the basic flaw in control structure A: both
reactants cannot be flow controlled because flow measurement inaccuracy makes
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Scheme B: Component A feed on level control.

it impossible to achieve perfect stoichiometric amounts of the two reactants in an
openloop  system. Thus, this is not a workable scheme. Somehow the amount of com-
ponent A in the system must be determined, and the makeup of component A must
be adjusted to maintain its inventory at a reasonable level. The problem cannot be
solved by the use of other types of controllers.

Control structure B provides good control of the system. Figure 6.11 shows what
happens using scheme B when the total recycle flow rate is reduced from 500 to
400 lb-mol/hr. The system goes through a transient and ends up at the same fresh
feed flow rate for reactant A. The reflux drum level controller adjusts the flow rate
of FOA  to maintain the correct inventory of component A in the system. Note that the
concentration of component A in the reactor, z ,.,,  decreases when the recycle flow rate
is decreased. This has no effect on the reaction rate because we have assumed the
instantaneous reaction of component B. Figure 6.12 shows the response for a step in-
crease in FOB.  The control system automatically increases the makeup of component
A to satisfy the stoichiometry of the reaction.

6.5.2 Incomplete Conversion Case

We now look at the more common situation in which both reactants are present in the
reactor since one-pass conversion of neither reactant  is 100 percent, and therefore
both reactants must be recycled. The concentrations of the two reactants in the reactor
are z/\ and ~8.
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The volatilities of the A, B, and C components dictate what the recycle streams
will be. If components A and B are both lighter or heavier than component C, a single
column can be used, recycling a mixture of components A and B from either the top
or the bottom of the column back to the reactor and producing product at the other
end. If the volatility of component C is intermediate between components A and B,
two columns and two recycle streams are required.

As sketched in Fig. 6.13, the process studied has volatilities that are CYA = 4,
CYB  = 1, and a~ = 2. Component B, the heaviest, is recycled from the bottom of the
first column back to the reactor. Component A, the lightest, is recycled from the top

‘
of the second column back to the reactor. The alternative flowsheet (recycling A from
the top of the first column and recycling B from the bottom of the second column)
would give similar results. We use the first flowsheet because in many processes we
want to keep column base temperatures as low as possible, and this is accomplished
by removing the heaviest component first.

Second-order isothermal kinetics are assumed in the reaction A + B -+ C:

3 = V/&,&j (6.23)

where % = reaction rate (lb-mol/hr)
VR = holdup in reactor (lb-mol)

k = specific reaction rate (hr-‘)

FOA ‘-7
r

l-

‘D1.A ‘DI,B  ‘DI,C

FIGURE 6.13
f’rocess with two recycles and second-order  rtxclion.

‘D2.A  xD2.C

D2
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zn = concentration of component A in the reactor (mole fraction A)
ZR = concentration of component B in the reactor (mole fraction B)

Note that “moles” are not conserved in this system.

A. Steady-state design

.

The process is described by three component balances for each unit: reactor,
column I, and column 2. There are a number of ways to solve the nine nonlinear
algebraic equations, but the following procedure is straightforward and involves no
iteration.

1. The flow rate of the product stream B2 leaving the bottom of the second column
is fixed at 100 lb-mol/hr.

2. The composition of this stream is specified to be XB2.A  = 0.01, XB~,B  = 0.01,_
and XB~,C  = 0.98.

3. The flow rate of the light recycle stream 02 from the top of the second col-
umn is fixed (to be varied later to determine the optimal flow rate). The com-
position of this recycle stream is specified to be XD2,A  = 0.99, nD2,J = 0, and
xD2,C = 0.01.

4. The flow rate of the heavy recycle stream BI from the bottom of the first col-
umn is fixed (to be varied later to determine the optimal flow rate). The com-
position of this recycle stream is specified to be XBr,A  = 0, XB~,B  = 0.99, and
XBl,C  = 0.01.

5. Calculate the feed to the second column:

Dl  = B2+D2 (6.24)

hDI,A  = B~XB~,A  + D~~D'L,A (6.25)

&DI,B  = B~xB~,B  + D~XD~,B (6.26)

6. Calculate the feed to the first column:

F = BI + D1 (6.27)

FZA = B&I~,A  + &XDI,A (6.28)

FZB = BIXBI,B  + DPDI,B (6.29)

7. The rate of production of product C is equal to Bzxez,c,  and this must be equal
to the rate of generation of component C in the reactor (assuming the two fresh
feed streams contain no component C). Therefore, the reactor volume can be
calculated:

VR = B2X~2.c

kZA  Zg
(6.30)

Note that there is a unique reactor size for each selected pair of light and heavy
recycle Bow rates.

8. Calculate the fresh feed makeup flows  of both component A (FoA)  and compo-
nent B Vhd.

FOA  = FZA -t-  vl.!kZA  28 - &XD~,A (6.3 1)

i;;,~  =  FZB +  Vt&znzB  - &XBI,II ( 6 . 3 2 )
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9. Calculate the minimum number of trays for each column from the Fenske equa-
tion and the minimum reflux ratio from the Underwood equations (see E. J.
Henley and J. D. Seader, Equilibrium-Stuge  Separution  Operations in Chemi-
cal Engineering, 198 1,  Wiley, New York). Set the actual number of trays equal
to I.5 times the minimum, and set the actual reflux ratio equal to I .2 times the
minimum.

10. Calculate capital and energy costs for each set of recycle flows chosen (02 and

4).

Figure 6.14 shows how several design parameters vary as the heavy and light
recycle flow rates are varied. Low flow rates of either light or heavy recycle result in
very large reactor size and high capital cost but low energy cost. As heavy recycle B1
is increased, reactor holdup VR  decreases, the concentration of component B in the
reactor increases, energy cost increases slightly, and capital cost decreases slightly.
There is a minimum in the total cost curve at some heavy recycle flow rate because of
the trade-off between increasing energy cost and decreasing capital cost (due to the
decrease in reactor size). As light recycle D2 increases, reactor holdup decreases, the
concentration of component A in the reactor increases, energy cost increases rapidly,
and capital cost decreases.

There is an optimal pair of light and heavy recycle flow rates. As can be seen
in Fig. 6.15, the minimum total cost ($798,90O/yr)  occurs with a light recycle flow
rate 02 = 40 lb-mol/hr and a heavy recycle flow rate B1 = 60 lb-mol/hr.

A specific reaction rate k = 1 hr-’  was used in the preceding calculations. If
other values of k are used, the optimal light and heavy recycle flow rates and the
minimum total cost change. This occurs primarily because the size of the reactor
depends directly on the value of k. The smaller the value of k, the larger the optimal
recycle flow rates and the higher the total cost.

B. Dynamics and control

A number of alternative control structures can be proposed for this process. No
control structure that violates the recycle rule has been found to work. Unless one
flow somewhere in the recycle loop is fixed, the recycle flow grows to very high rates
when a disturbance occurs or when additional throughput is desired. Four typical
control structures are sketched in Fig. 6.16.

In all the schemes, the following control loops are used:

1. The reflux flow rates on both columns are fixed; dual composition control is not
used to keep the column control systems as simple as possible. In some situations
better control may be achieved by using dual composition control in the columns
to prevent the impurity levels in the recycle streams from becoming so large that
they affect conditions in the reactor.

2. Vapor boilup  in the first column controls the impurity of B in the final product
stream (the bottoms from the second column) through a composition/composition
cascade strategy.

3. Impurity of component A in the final product is controlled by vapor boilup  in the
second column.
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In control structure scheme 1,  both total recycle streams (Fan  + D2 and Foa  + 51)
are flow controlled. Reactor level is controlled by reactor effluent. Fresh feed makeup
of component A controls the level in the reflux drum in the second column. Fresh
feed makeup of component B controls the level in the base of the first column. This
scheme works well. Throughput can be changed by changing either (or better yet,
both) of the recycle flow rates or the reactor temperature. Figure 6.17 shows how
this control structure handles an increase in reactor feeds.

In control structure scheme 2 the fresh feed makeup FoA  is fixed. Fresh feed
makeup FOB  of component B is used to control reactor level. Reactor effluent is
fixed. This scheme is similar to scheme B in the previous section in that the lim-
iting component is flow controlled into the reactor. The difference here is that the
limiting component is not completely converted per pass through the reactor. This
scheme does not work. Figure 6.18 shows what happens when a 5 percent increase
is made in F()A. The process shuts down in about 150 hours. Component A builds
up in the reactor, and component B becomes depleted. The reactor level controller
shuts down on the makeup FOB  as the reactor level increases because component A
is building up.

In control structure scheme 3 fresh feed makeup of component A is fixed. Fresh
feed makeup of component B is used to control the composition of component B
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FIGURE 6.18
Base-case VR,  disturbance of 1.05 x t;on.
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in the reactor. Reactor level is controlled by reactor effluent. This scheme does not
work because of the “snowball” effect. As shown in Fig. 6.19, the flow rates of reactor
effluent, light recycle, and heavy recycle change drastically when the feed rate FOA  is
changed. This control structure has liquid level controllers in both recycle feedback
loops, so snowballing can easily occur.
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In control structure scheme 4 fresh feed makeup F()n controls reactor level. Fresh
feed makeup Folj  controls the reactor composition ~11.  Reactor effluent is flow con-
trolled. This scheme works well. However, it requires an additional composition ana-
lyzer, This may be a serious drawback in many processes because of the high capital
and operating costs of some analyzers and because of their poor reliability.

6.5.3 Interaction between Design and Control

The second-order, two-column, two-recycle process studied above provides another
good example of the interaction between design and control. In this section we
analyze control structure scheme 2 in more detail to understand why it does not
work and how it can be made to work by modifying our steady-state design param-
eters.

The two control structures that were found to work both lack the convenient
feature of being able to set the production rate directly. Structure 4 has the additional
major probIem of requiring a composition measurement. Composition analyzers are
often both expensive and unreliable. It would be nice to be able to find a control
structure that does not have these drawbacks.

Control structure 2 overcomes these problems. No reactor composition measure-
ment is used, and throughput is directly fixed by flow-controlling the fresh feed F()A.
This control scheme is intuitively appealing and is often proposed in developing
control strategies for this type of process. Unfortunately, as we demonstrated in the
previous section, it does not work.

Figure 6.20 shows that it will handle a very small (2 percent) increase in FOA.
But we already demonstrated in Fig. 6.18 that it cannot handle a 5 percent increase;
the process shuts down in about 150 hours. Note the very slow drift in the reactor
compositions ZA and zg.  The initial concentrations of components A and B are 13.00
and 25.38 mol%, respectively. At about 70 hours these concentration trajectories
cross, and 70 hours later a shutdown occurs. We will show the important insights
that can be gained from examining these reactor composition effects.

To understand why scheme 2 does not work we can look at the steady-state
effects of various parameters under certain design conditions. This will provide valu-
able insights into the physically realizable regions of operation. The following as-
sumptions are made for values of recycle compositions (xBr  and x& and losses of
reactants in the’ product stream &.

1. There is no component A leaving the bottoms of the first column (xB1.A  = 0).
Therefore, XB~,~  = 1 - x~~,~.

2. There is no component B leaving the top of the second column (xn2,B = 0).
Therefore, ~~2,~ = 1 - xD2,c.

3. The composition of component C in Bl is xBi,c = 0.01.
4. The composition of component C in D2 is xo2,~  = 0.01.
5. The losses of reactants A and B in the product stream 82  are AI,,, = 1 lb-mol/hr

and RI,,,~  = 1 lb-mol/hr  based on a production rate of component C of 98 Ib-
mo:/hr (x’H~,A  = Xg?,[]  = 0.01 mole fraction).
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Base-case VR,  disturbance of 1.02 X FOA.

A. Steady-state analysis at fixed production rate
We first look at alternative designs for a fixed production rate of component C.

Our calculation procedure is:

1. Fix the value of reactor holdup (VR = 2971 lb-mol), production rate of com-
ponent C (%c  = 98 lb-mol/hr), specific reaction rate (k = 1 hr-‘), Aloss  =
1 lb-mol/hr, and Z310ss  = 1 lb-mol/hr.

2. Specify a value of reactor composition zg (to be varied later).
3. Calculate zA  from Eq. (6.33).

ZA = %clVRkZB (6.33)

4. Calculate values for the fresh feed makeups and product streams.

FOA  =  ac +  4oss (6.34)

F O B  =  ac  +  &xs (6.35)

Bz = FOA  + FOB - 92~ (6.36)

5. From the two steady-state component balances and steady-state total molar bal-
ance (remember that the reaction is nonequimolar) around the reactor, we can
solve for the three unknowns: the reactor effluent flow rate F, the heavy recycle
BI, and the light recycle &.
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Component A balance:

FOA  + &XIX,A  = FZA  + %c
Component B balance:

(6.37)

FOB  + RI XBI,B = FZB  + %c (6.38)

Total molar balance:

FOA  + FOB  + BI  + 02 = F + CRC (6.39)

, Combining Eqs. (6.37),  (6.38),  and (6.39) gives

FOA +  FOB +
ac - FOB + ac - FOA  _ s

c

F = xBI,B XD2.A

1 - ZAIXD2sA  - ZBIXBI.B

(6.40)

D2 = FZA - FOA  + CRn,
(6.41)

XD2.A

B, =
F:B - FOB + %c

(6.42)
XBI,B

All variables on the right side of Eq. (6.40) are known, so F can be calculated. Then
Eqs. (6.41) and (6.42) give the two recycle flow rates. Note that the design is phys-
ically realizable if the flow rates are all positive and the compositions ZA and zc
(ZC = 1 - ZA - zB > are between 0 and 1 for the specified value of ZB.  Not a11 regions
of the ZB-ZA plane give operable plants.

Figure 6.21 gives results for the case where VR  = 2971 lb-mol and SIC =
98 lb-mol/hr.  Figure 6.21~1  shows the hyperbolic relationship between the selected
value of zg and the required value of ZA. The process can be operated at any point
on this curve, giving the same production rate for the given reactor volume, but the
reactor effluent and recycle flow rates will be different, as shown in Figure 6.21b.
For small values of ZB, there is more component A in the reactor, so the 02 recy-
cle is large. For large values of ZB, there is more component B in the reactor, so the
B1 recycle is large. The reactor effluent flow rate F becomes large for either large
or Small V&ES of ZB.  There is a value of zg that gives a minimum reactor  effluent
flow rate, and this occurs in the region where ZA and ZB are similar in value. As Eq.
(6.33) shows, the reaction rate depends on the product of the two concentrations, so
designs with similar ZA and ZB concentrations would be expected to be the optimum.
As we will show, these designs will not provide the best dynamic controllability
when control structure 2 is used, so there is a trade-off between design and control.

Figure 6.2 lb also demonstrates that there are two different values of ZB that give
the same production rate in the same reactor for the same value of reactor effluent
flow rate F. These two alternative operating points have different light and heavy re-
cycle flow rates, 02 and Br . This type of multiplicity was pointed out in the previous
section.

B. Steady-state analysis for variable production rate
Now we vary the production rate (%c) with reactor volume held constant and

l-,.1.  -1. AL-  -l-~.-:--ll~.  ---1:--l-1  _ ._-._  _--  -c  --._-.__-L_._- r--  .._  - L Q? - -I--.  _.,. L ^._,  -
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gives  the required changes in reactor cflluent flow rate F.  Remember that control
structure 2 fixes  the flow rate of the reactor effluent. If F is fixed at the design point
of I60 lb-mol/hr, Fig. 6.22h  clearly shows that there is no way that a production rate
of I20 lb-mol/hr  can be attained. To get to this production rate, F must be at least
2 10  lb-mol/hr.  This steady-state analysis provides a simple explanation of why con-
trol structure scheme 2 cannot handle throughput changes and confirms the dynamic
simulation results.

Of course, this suggests that it may be possible to modify the process operating
conditions (recycle flow rates) or the process design parameters (reactor holdup) and
move away from the steady-state economic optimum point to be able to use control
structure 2 with its advantages of allowing production rate to be directly set and not
requiring a composition measurement.

Figure 6.23 gives results for a design with a larger reactor (twice the base case).
Now higher production rates can be achieved for the same reactor effluent flow rate.
Dynamic simulations of the system with a larger reactor demonstrate the improved
rangeability of the process. Figure 6.24 shows that now a 10 percent increase in FOA
can be handled with scheme 2. But the system cannot handle a 20 percent increase.
Increasing the reactor holdup for the same reactor effluent flow rate changes the re-
actor compositions in the direction of increasing zg (25 to 33 percent) and decreasing
ZA (13 to 5 percent). The larger difference between the two compositions makes then
reactor more stable. We explain this mathematically in the next section.

This case study is another illustration of the important linkage between steady-
state design and dynamic controllability. The lesson to be taken away from the:pree- ~~
ceding steady-state analysis is that there are a number of possible combim.&ons  &_I~ -I  m:
reactor compositions ZA and zg for a given production rate. Each set of compositions
puts different loads on the separation section. The possible composition combma-
tions vary with reactor size and temperature.

6.5.4 Stability Analysis

The dynamic simulation study of the system with control structure 2 indicatesl$hat
a reactor shutdown occurs when the disturbance in FOA  drives the reactor com@osi-
tions into a region where ZA becomes greater than ZB.  To understand the fundamental
reason for this observed phenomenon, we develop a linearized model of a simplified
process. The separation section is assumed to be at steady state, and the only dy-
namics are in the reactor compositions. Perfect reactor level control is assumed. The
disturbance is the fresh feed flow rate FOA. Reactor effluent flow rate F is fixed. State
variables are ZA and Q. Algebraic dependent variables at any point in time are the
flow rates Bl  , &, and F0~. To simplify the analysis we assume that the losses of
components A and B (A loss and Brass)  in the product B2 stream are constant.

Note that we are looking at the closedloop system with control structure scheme
2 in place. Therefore, we are exploring the closedloop stability of the system. The
closedloop process is described by two nonlinear ordinary differential equations and
three algebraic equations.

&A
VR---

cl1
=  Fan +  /!?X/m  - Fe* - V&Z,qZB (6.43)
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CiZlj
V P - -cir = Few  + BIXSIJ~  - Fzn  - VKkznzR (6.44)

FOA  + FOB  + 02 + BI  = F + VR k.zAz.lJe (6.45)

D
2

= FZA  - 4oss

XD2.A

(6.46)

B, = FZe  - Bioss (6.47)
X51,B

Substituting Eqs. (6.45),  (6.46),  and (6.47) into Eqs. (6.43) and (6.44),  linearizing
around the steady-state values ?A  and &, and combining the two first-order ODES
into one second-order ODE give the characteristic equation of the closedloop system.

s2 + s
F ZA- - -

VRXBl,B XD2,A

I (6.48)

The linear analysis predicts that the process will become unstable whenever

-ZB  < -iA- - (6.49)
XBl,B xD2,  A

If the two recycle purity levels are about the same (XBt,B = XDZA),  which is assumed
in the process studied, the linear analysis predicts that instability will occur when the
reactor compositions cross. Remember that the initial steady-state values are &4,  =
0.1300 and ZB =’  0.2538; i.e., the concentration of component A is lower than that
of component B. Thus, any disturbance that pushes the compositions in the direction
of increasing ZA and decreasing zg tends to make the system unstable.

The linear analysis predicts the observed behavior of the system.

6.6
PLANTWIDE CONTROL DESIGN PROCEDURE

So far in this chapter we have considered some specific features and problems con-
cerning plantwide control. In this section we present a design procedure that can be
used to generate an effective plantwide control structure.

The number of variables that can be controlled in any plant equals the number
of control valves. Most of these “control degrees of freedom” must be used to set
production rate, control product quality, account for safety and environmental con-
straints, control liquid levels, and control gas pressures. Any remaining degrees of
freedom can be used to achieve economic or dynamic objectives.

The method consists of six basic steps. The steps may require some iteration
through the procedure.

1. Count the number of control valves (make sure all are legitimate, i.e., only one
valve in a liquid-filled line). This is the number of control degrees of,freedom.

2. Determine what valve will be used to set production rate. Often this decision is
established by the design basis of the plant. Production rate is fixed hv a feed
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sent to the plant. Production rate is fixed by the flow rate of a product stream if a
downstream process can demand an arbitrary flow rate. If neither of these design
requirements is specified, we are free to select the valve that provides smooth and
stable production rate transitions and rejects disturbances. This may be the flow
rate of the feed stream to a separation section, the flow rate of a recycle stream,
the flow rate of a catalyst to a reactor, or a reactor heat removal rate. Controller
setpoints of reactor temperature, level, or pressure can also be used to change
production rate. Dynamic simulations of alternatives are required to select the

. best structure.
3. Select the “best” manipulated variables to control each of the product quality

variables and the safety and. environmental variables. These manipulated vari-
ables are selected to give the tightest possible control of these important vari-
ables. The dynamic relationships between controlled and manipulated variables
should feature small time constants and deadtimes, sufficiently large gains, and
wide rangeability of manipulated variables. These decisions must consider some’
other factors, such as the magnitudes of flow rates. For example, in a high-reflux
ratio column, the distillate flow rate should be used to control product quality
because the reflux flow rate must be used to control reflux drum liquid level.
Another common example is the control of temperature and base level in a distil-
lation column with a very small bottoms flow rate. In most columns, temperature
should be controlled by reboiler heat input, and base level controlled by bottoms
flow rate. When the bottoms flow rate is less than about 20 percent of the rate of
liquid entering the column base, these loops should be reversed (even though this
results in “nested’ loops).

4. Determine the valves to use for inventory control: all liquid levels (except for
surge volumes in liquid recycle systems) and gas pressures must be controlled.
Select the largest stream to control levels whenever possible. Use proportional-
only level control in nonreactive level loops for cascaded units. Fresh feed
makeup streams are often- used to hold levels or pressures when these vari-
ables reflect the inventory of specific components in the process. There should
be a flow controller somewhere in all liquid recycle loops.

5. Make sure that the overall component balances for all chemical components can
be satisfied. Light, heavy, and intermediate inert components must have a way to
exit the system. Reactant components must be consumed in the reaction section or
leave the system as impurities in product streams. Therefore, either reaction rates
(temperature, pressure, catalyst addition rate, etc.) must be changed or the flow
rates of the fresh feed makeup streams must be manipulated somehow. Makeups
can be used to control compositions in the reactor or in recycle streams, or to
control inventories that reflect the amount of the specific components contained
in the process. For example, bring in a gaseous fresh feed to hold the pressure
somewhere in the system, or bring in a liquid fresh feed to hold the level in a
reflux drum or column base where the component is in fairly high concentration
(typically in a recycle stream).

6. Use the remaining control valves for either steady-state optimization (minimize
energy, maximize yield, etc.) or to improve dynamic controllability. A common
example is controlling purities of recycle streams. Even though these streams

.are not products and do not have any quality specifications, the steady-state and
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dynamic ability of the process to handle load and production rate changes is some-
times improved by controlling recycle purities (perhaps not at precise setpoints,
but sufficiently to prevent excessive build-up of impurities in the recycles).

The examples presented in this chapter illustrate these various steps. Once the
control structure has been selected, dynamic simulations of the entire process can
be used to evaluate controller performance. Commercial software is being devel-
oped that will facilitate plantwide dynamic simulation studies. To tune controllers,
each individual unit operation can be isolated and controllers tuned using the relay-
feedback test (discussed in Chapter 16).

6.7
CONCLUSION

The development of control structures for processes with multiple interconnected
units has been discussed in this chapter. Two important heuristic rules have been
presented:

1. A stream somewhere in a liquid recycle loop should be flow controlled.
2. A reactant cannot be flow controlled into a reactor in which a second-order reac-

tion takes place unless its concentration in the reactor is much smaller than that
of the other reactant.

The use of steady-state sensitivity analysis for screening out poor control struc-
tures was illustrated.

The area of plantwide control is the active focus of research in process control.
Improved methodologies and approaches to the problem should be developed in the
future. The incentives are great, as are the challenges.

PROBLEMS

6.1. A second-order reaction occurs in a continuous stirred-tank reactor (CSTR).

A+B:C

Pure reactant A is fed into the reactor at a flow rate of FOA  kg-mol/hr.  Pure reactant B
is fed into the reactor at a flow rate of FOB  kg-mol/hr.  The mole fractions of components
A, B, and C inside the reactor are zA,  zg,  and zc, respectively. The rate of production of
product C is given by the kinetic expression

%c  = VRkZAZB

where 9~ = kg-mol/hr  of component C produced
VR = holdup in the reactor = 337.1 kg-mol

k = specific reaction rate constant = 2 hr-’

The reactor effluent is fed into a distillation column. The volatilities of components A,
B, and C are (YA,  ?B, and CYC,  respectively. Since (Y~ > &!B  > LYC,  the distillate Stream

from the column contains all the component A in the column feed and most of compo-
nent B, witha small amount of component C: x D.A = 0.60 mole fraction A, XD,B  = 0.35
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mole fraction B, and xD,c  = 0.05 mole fraction C. The’distillate  is recycled back to the
reactor.

The composition of the bottoms stream from the column is 0.01 mole fraction com-
ponent B and 0.99 mole fraction component C. The flow rate of the bottoms product
from the column is 100 kg-mol/hr.
(a) Calculate how much component C is produced in the reactor.
(b) Calculate the flow rates of the two fresh feed makeup streams FOA  and FOB.
(c) Calculate the flow rates of the reactor effluent and the recycle streams.
(d) Calculate the zA and z~ compositions in the reactor.
(e) Sketch a plantwide control concept diagram for this process.

6.2. We want to develop a process flowsheet and plantwide control structure for a plant in
which the reaction A + B -+ C + D occurs in a CSTR. Fresh feed makeup streams of
pure component A (FOA)  and pure component B (FOB)  are used. The per-pass conversion
is not 100 percent, so the reactor effluent contains all four components.

Distillation is used to achieve the required separation of components into fairly
pure product streams and the necessary recycle- of the reactants. The volatilities of the
chemical components are (YA > crc  > (YB > cxg.
(a) Sketch a reasonable flowsheet for this process showing major pieces of equipment

and process flows.
(b) Propose a control structure for your process that incorporates the basic principles of

plantwide control.

6.3. The Eastman plantwide control process contains seven components, a liquid-phase
reactor (with only a vapor stream leaving the reactor), a stripper, and a gas recycle
stream. Figure P6.3 gives a sketch of the process. There are four reactions occurring:

FOA  +k+

FOD -a

Recycle 16%

Reactor

L-J Purge
Compressor

~

Separator I

FIGURE P6.3

Stripper

9 -Product
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A+C+D--,G,  A+C+E-+H,  A+E+F,  30-+2F.  Four gas fresh feed
streams enter the process. One of these is fed into the bottom of the stripper. The
vapor stream leaving the reactor is cooled before entering a separator. Liquid from the
separator is fed into a stripper, which produces a bottoms product stream. Vapor from
the separator is split between a gas purge and a recycle stream back to the reactor. The
vapor from the stripper is also fed into the reactor. The reactor is cooled by manipulating
cooling-water flow rate to cooling coils.

Develop a plantwide control system for this process.

6.4. The vinyl acetate process shown contains seven components. The chemistry consists of
two reactions, which produce vinyl acetate (C4H602) from ethylene, oxygen, and acetic
acid (CzH402)  and form by-products of water and carbon dioxide.

C2H4  + C2H402 + ;O,  -+C4H602  + H20

C2H4  + 302 + 2C02 + 2H20

Fresh acetic acid and a liquid acetic acid recycle stream are fed into a vaporizer
along with a gas recycle stream and fresh ethylene feed. Oxygen is added after the va-
porizer, and reactions occur in a gas-phase reactor. Reactor effluent is cooled and fed into
a separator. Vapor from the separator is compressed and fed into an absorber to recover
vinyl acetate. Recycle acetic acid is used as lean oil in the absorber. Exit gas from the
absorber is sent to a CO;!  removal unit, which produces a CO2 purge stream and gas
recycle. Another purge stream is used to remove the small amount of ethane that is in
the fresh ethylene makeup feed.

Oxygen feed

Ethylene
feed

, 1 Recycle gas
I

T Compressor

A Reactor

Acetic acid
feed

“f Acetic acid
recycle

I CO, exit

1, Lean oil
VentCondenser _

P t+‘GDecanter

Aqueous
product

‘r I- I

Bottoms

FIGURE P6.4
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6.5. The following consecutive chemical reactions occur in a CSTR.

The liquid streams from the separator and the bottom of the absorber are combined
and fed into a distillation column. The bottoms from the column is split into two streams:
absorber lean oil and recycle acetic acid. The overhead vapor condenses into two liquid
phases because of the nonideality of the phase equilibrium. The aqueous phase from the
decanter is removed as product and sent to further processing, which we do not consider
here. Some of the organic phase (mostly vinyl acetate) is refluxed  back to the column,
and some is removed for further processing.

Develop a plantwide control systetn for this process.

A+B-+M+C

M+B--+D+C

D+B+T+C

Fresh feed streams of A and B are fed into a reactor. The reactor effluent, a mixture of
unreacted A and B with products M, D, T, and C, is fed into a sequence of distillation
columns. The light-out-first (direct) sequence is used, i.e., the lightest component is
removed overhead in the first column, the next lightest component is removed overhead
in the second column, and so on. The relative volatilities are A > M > D > T > B > C.

Unreacted A and B are recycled back to the reactor. Product streams of components
M, D, T, and C are removed from the distillation train.
(a) Sketch a reasonable flowsheet for this process showing major pieces of equipment

and process flows.
(b) Propose a plantwide control system for this process.





PART  TWO

Laplace-Domain
Dynamics and Control

It is finally time for our Russian lessons! We have explored dynamics and control in
the “English” time domain, using differential equations and finding exponential so;
lutions. We saw that the important parameters are the time constant, the steady-state
gain, and the damping coefficient of the system. If the process has no controllers, the
system is openloop  and we look at openloop  time constants and openloop  damping
coefficients. If controllers are included with the process, the analysis considers the
closedloop system. We tune the controller to achieve certain desired closedloop time
constants and closedloop damping coefficients. It is important that you keep track
of the kind of system you are looking at, openloop  or closedloop. We do not want to
compare apples and oranges in our studies.

In the next three chapters we develop methods of analysis of dynamic systems,
both openloop  and closedloop, using Laplace  transformation. This form of system
representation is much more compact and convenient than the time-domain repre-
sentation. The Laplace-domain description of a process is a “transfer function.” This
is a relationship between the input to a system and the output of the system. Transfer
functions contain all the steady-state and dynamic information about a process in a
very compact form.

You will find it very useful to learn a little “Russian.” Don’t get too concerned
about having to learn an extensive Russian vocabulary. As you will see, there are
only nine “words” that you have to learn in Russian: nine transfer functions can
describe almost all chemical engineering processes.

Laplace  transformation can be applied only to linear ordinary differential equa-
tions. So for most of the rest of this book, we will be dealing with linear systems.

‘37
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Laplace-Domain Dynamics

The use of Laplace  transformations yields some very useful simplifications in no-
tation and computation. Laplace-transforming the linear ordinary differential equa-
tions describing our processes in terms of the independent variable t converts them
into algebraic equations in the Laplace  transform variable S. This provides a very
convenient representation of system dynamics.

Most of you have probably been exposed to Laplace transforms in a mathematics
course. We lead off this chapter with a brief review of some of the most important re-
lationships. Then we derive the Laplace  transformations of commonly encountered
functions. Next we develop the idea of transfer functions by observing what hap-
pens to the differential equations describing a process when they undergo Laplace
transformation. Finally, we apply these techniques to some chemical engineering
systems.

7.1
LAPLACE  TRANSFORMATION FUNDAMENTALS

7.1.1 Definition

The Laplace  transformation of a function of time &, consists of “operating on” the
function by multiplying it by ePsr and integrating with respect to time t from 0 to
infinity. The operation of Laplace  transforming is indicated by the notation

(7.1)

where 2 =Laplace  transform operator
s = Laplace  transform variable

n ,nt.cxt,,-,,>ttnrr  hot,xrm,an the  Acxf;n;ta  Iimitc  nf‘  n 3nA  ;nfGn;t\, -';ntnnrc,tn  ntbt" rha
ln integrating berween the definite limits of 0 and infinity, Gg  “integrate out” the
time variable t and are left with a new quantity that is a function of s.  ‘Ne  use the

279
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notation

The variable s is a complex number.
Thus, Laplace  transformation converts functions from the time domain (where

t is the independent variable) to the Laplace  domain (where s is the independent
variable). The advantages of using this transformation will become clear later in this
chapter.

7.1.2 Linearity Property

One of the most important properties of the Laplace  transformation is that it is linear.

a.fi(,,  + h(r)1 = ~e[fl,,,l  + xf2(t,l (7-3)

This property is easily proved:

i

a;

~e[fl(r,  + f&t)1  = M(t)  + fi(l,le -” dt
0

=
I

O” fl(t)e-st dt + m f2(r)e-sf  dt
0 I0

7.2
LAPLACE  TRANSFORMATION OF IMPORTANT FUNCTIONS

(7.4)

Let us now apply the definition of the Laplace  transformation to some important time
functions: steps, ramps, exponential, sines,, etc.

Consider the function

At, = mz(r) (7.5)
where K is a constant and u n(r) is the unit step function defined in Section 2.1 as

l&(t)  = 1 t > 0

= o  tso

Note that the step function is just a constant (for time greater than zero).
Laplace-transforming this function gives

(7.6)
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since qt) is just equal to unity over the range of integration.K --s, t=x
~[KU,,(,)] = ---e-[ 1 = -

s t=O
gro - l]  = ; (7.7)

Therefore, the Laplace  transformation of a step function (or a constant) of magnitude
K is simply K( l/s).

7.2.2 Ramp

The ramp function is one that changes continuously with time at a constant rate K.

fit, = Kt (7.8)

Then the Laplace  transformation is

2[Kt]  =
i

m,Kt]e-stdt
0

Integrating by parts, we let

u = t and dv = eVS’ dt

Then

1 --stdu=dt  a n d  v =  - - e
s

Since

K

(7.9)

= [O - 01 - K --St[# I::,  = K(i),

Therefore, the Laplace  transformation of a ramp function is

(7.10)

7.2.3 Sine

For the function

At, = sin(ot) (7.11)



where o = frequency (radians/time),

g[sin(ot)l  = x[sin(wt)le”’  c/t
i0

Using

sin(ot)  = e
iwt _ e -iwt

2i

, .Y[sin(ot)]  =

e-(s-iw)t  _ e-(.s+iw)t

2i
I

dt

1 r _ e-(s-iw)t ,-(s+iw)t  1’ =m 1

2i L
1XI-.....-

s - iw
+

s + iw 1 =-[2i s - iw
t = O

Therefore,

7.2.4 Exponential

1
s + io

(7.12)

(7.13)

Since we found in Chapter 2 that the responses of linear systems are a series of
exponential terms, the Laplace  transformation of the exponential function is the most
important of any of the functions.

A[)  = fPf (7.14)

= b+Q)t]  dt

t=cx
=

[

- 1 ,-(s+a)t
I

1=
s+a t = O sfa

Therefore

g[e-“‘I  z  -!I..-

s+a
(7.15)

We will use this function repeatedly throughout the rest of this book.

7.2.5  Exponential Multiplied by Time

In Chapter 2 repeated roots of the characteristic equation yielded time functions that
contained an exponential multiplied by time.
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Integrating by parts,

u=t dv = e-(.s+d’dt

du = dt
1“X---.-..- e-(.s+u)r

s+a

I
om[re-(S+U)‘,  dt = [ -;;‘;‘f)f ]:I: + 1; ‘;;;  dt

= [O-01-
1

f=Zt
(s+a)2e -(s+a)r 1 I=0

Therefore,

1
~W”‘l  = ($ + a)2

Equation (7.17) can be generalized for a repeated root of nth order to give

n!
atne-a’l  = @ + @+*

(7.17)

(7.18)

7.2.6 Impulse (Dirac Delta Function Stt$

The impulse function is an infinitely high spike that has zero width and an area of 1
(see Fig. 7.1~).  It cannot occur in any real system, but it is a useful mathematical
function that is used in several spots in this book.

One way to define $1 is to call it the derivative of the unit step function, as
sketched in Fig. 7. lb.

dun(r)
%r)  = dt

Now the unit step function can be expressed as the limit of the first-order exponential
step response as the time constant goes to zero.

Now

Uncf)  = J%(l  - emriT) (7.20)
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h+-=

%(I)

1
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,
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/

/
/’

(1 -e-‘/T)

/I
I

I tt
0

(b)
FIGURE 7.1
a(,,  function.

Therefore,

~ec$t,l  = 1 (7.21)

7.3
INVERSION OF LAPLACE  TRANSFORMS

After transforming equations into the Laplace  domain and solving for output vari-
ables as functions of s, we sometimes want to transform back into the time domain.
This operation is called inversion or inverse Laplace transformation. We are trans-
lating from Russian into English. We will use the notation

ye-’  u$)l  = fit, (7.22)

There are several ways to invert functions of s into functions of t. Since s is a
complex number, a contour integration in the complex s plane can be used.

(7.23)

Another method is simply to look up the function in mathematics tables.
The most commoI1  inversion method is called pcrrriLlIfl-ilL’riOtZ.~  e.rpansion.  The

function to be inverted, Ft,sj,  is merely rearranged into a sum of simple functions:

F(,y, = /;‘,(.s) + F2ts)  + : . . + FpJ(.y) (7.24)
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Then each term is inverted (usually by inspection, because they are simple). The
total time-dependent function is the sum of the individual time-dependent functions
[see Eq. (7.3)].

./if,  = 2f-I [FI(.s,l  + .2f-’  F2(s)l  + . * * + 3-I [hqs)l (7.25)
=  J-l(r)  +  f2(r)  +  * - .  +  fN(d

As we will shortly find out, the FC,)‘s  normally appear as ratios of polynomials in S.

(7.26)

where Zt,) = Mth-order polynomial in s
Pt,) = Nth-order polynomial in s

Factoring the denominator into its roots (or zeros)  gives

F(s)  =
Z

(s - mm - P2)b  - P3). . -0  - PN)
(7.27)

where the pi are the roots of the polynomial PC,), which may be distinct or repeated.
If all the pi are different (i.e., distinct roots), we can express Ft,, as a sum of N

terms:

A+B+C+ W
F(,, = ~ ~ ~ . . . +

s - Pl s - P2 s - P3 s - PN
(7.28)

The numerators of each of the terms in Eq. (7.28) can be evaluated as shown below
and then each term inverted.

(7.29)

W = )yN [(s - p,Y)F~s)]

EXAMPLE 7.1. Given the following FcSj, find its inverse jj,,  by partial fractions ex-
pansion.

F’(s)  = &GO
S(T,S  + 1)

F(s)  =
K&,Iq,  A + B

s(s + l/7-,)  = s s + l/T,

The roots of the denominator are 0 and - l/7,.

(7.30)

1 = - K,K/\o
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Therefore,

I
s + I/T,, 1 (7.3 I)

The two simple functions in Eq. (7.3 I) can be inverted by using Eqs. (7.7) and (7.15).
-

h, = &CAO[~  - e
-1/r,,

1 (7.32)
n

If there are some repeated roots in the denominator of Eq. (7.27) we must ex-
pand FtS,  as a sum of N terms:

F(s)  =
Z

6 - PI 12(s  - p3m - p4).  * 4s - PN)
(7.33)

A
F(s)  =  (s - p,)2 +

B + c +
,W

_ _ _  _ _ _ . . . + (7.34)
s - PI s - P3 s - PN

This is for a repeated root of order 2. If the root is repeated three times (of order 3),
the expansion would be

F -
Z

(s) - (s - p1)3(s  - p4)(s - p5)*  . .(s - ply)
(7.35)

A B
F(s)  =  (s - p,)3 +  (s - p,)2 +

c +
W. . . +

s - Pl
(7.36)

s - PN

The numerators of the terms in Eq. (7.34) are found from the following relation-
ships. These are easily proved by merely carrying out the indicated operations on
Eq. (7.34).

A = $7, [(s - Pd2&,l

c = )i$(s  - ~3F’(s)l

(7.37)

To find the C numerator in Eq. (7.36) a second derivative with respect to s would
have to be taken. Generalizing to the mth term A, of an Nth-order root at pl,

EXAMPLE 7.2. Given the following Fc,Yj,  find its inverse.

(7.38)

A = lim - 4,
s+O (T,,S + I)*

= K,
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B = lim
K,‘tT: 4)_ _ _  = - -

Therefore,

I l/T, 1
; - (s + 1/T,)2 - s + l/T”

Inverting term by term yields

7 . 4
TRANSFER FUNCTIONS

Our primary use of Laplace  transformations in process control involves representing
the dynamics of the process in terms of “transfer functions.” These are output-input ~~~
relationships and are obtained by Laplace-transforming algebraic and differentktl
equations. In the following discussion, the output variable of the process is ~(~1.  The ~~~~
input variable or the forcing function is ~(~1.

7.4.1 Multiplication by a Constant

Consider the algebraic equation

Y(t)  = KU(t) (74lj~~  mm

Laplace-transforming both sides of the equation gives

I

02 cc

o Ywe -dt = K
i

tqt)P’ dt
0

Y(Y)  = KU(s)

(7.42)

where YtS,  and Ut,) are the Laplace  transforms of y& and ~(~1.  Note that U(Q  is an
arbitrary function of time. We have not specified at this point the exact form of the
input. Comparing Eqs. (7.41) and (7.42) shows that the input and output variables ~~
are related in the Laplace  domain in exactly the same way as they are related in the
time domain. Thus, the English and Russian words describing this situation are the
same.

Equation (7.42) can be put into transfer function form by finding the outputiinput
ratio:

Y(.d _ K__ -
U(s)

(7.43)
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%) -v(f)
* ‘Time  domain

* Laplace  domain
FIGURE 7.2
Gain transfer function.

For any input UcS)  the output Y(,,  is found by simply multiplying Ucs) by the constant
K. Thus, the transfer function relating YtS,  and Uc,y, is a constant or a “gain.” We can
represent this in block-diagram form as shown in Fig. 7.2.

7.4.2 Differentiation with Respect to Time

Consider what happens when the time derivative of a function ‘ytt)  is Laplace trans-
formed.

Integrating by parts gives

(7.44)

u = p dv = 2dt
dt

du = -sedsf dt v = y

Therefore,

-st dt = [yC’]::; + sye-.”  dt

I-

a

= 0 - Y(t=O)  + s Y(t)e-  dto

The integral is, by definition, just the Laplace  transformation of ycr),  which we call
Y(s).

= sq,, - Y(f=O) (7.45)

The result is the most useful of all the Laplace  transformations. It says that the op-
eration of differentiation in the time domain is replaced by multiplication by s in
the Laplace  domain, minus an initial condition. This is where perturbation variables
become so useful. If the initial condition is the steady-state operating level, all the
initial conditions like Y(~=o)  are equal to zero. Then simple multiplication by s is
equivalent to differentiation. An ideal derivative unit or a perfect differentiator can
be represented in block diagram form as shown in Fig. 7.3.

The same procedure applied to a second-order derivative gives

2 = s2  Y,,)  - sy(,  =()) - (7.46)
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Y(s) SY(,,
+ Laplace  domain

42 Time domain

Y(s) 2Y(s)
* Laplace  domain

FIGURE 7.3
Differential transfer function.

Thus, differentiation twice is equivalent to multiplying twice by S, if all initial con-
ditions are zero. The block diagram is shown in Fig. 7.3.

The preceding can be generalized to an Nth-order derivative with respect to
time. In going from the time domain into the Laplace  domain, dNxldtN  is replaced
by sN. Therefore, an Nth-order differential equation becomes an Nth-order algebraic
equation.

dNY dN-’ y
‘IN dtN
- + aN-l- dY

dtN-’
+ . . . + al dt + a0y  = U(t) (7.47)

aNsN  Y(s)  + aN-  1s N-‘Y@) + **- +‘a&,)  +  a0Y(,)  =  &) (7.48)

(aNsN + aN-lsNel  + ” ’ + als  + aO>Y(,)  = u(s) (7.49)

Notice that the polynomial in Eq. (7.49) looks exactly like the characteristic equa-
tion discussed in Chapter 2. We return to this not-accidental similarity in the next
section.

7.4.3 Integration

Laplace-transforming the integral of a function yet) gives

Integrating by parts,

u =
J

ydt dv = e-.” dt

du = ydl
1” = --e--.s’
s
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Y(l) IY(,#f
+ Time domain

t I ; Y(.s,
s =- Laplace  dolnain FIGURE 7.4

Integration transfer function.

Therefore,

2 if 1y(,)dt = ‘Y + As w s (7.50)

The operation of integration is equivalent to division by s in the Laplace  domain,
using zero initial conditions. Thus integration is the inverse of differentiation. Fig-
ure 7.4 gives a block diagram representation.

The l/s is an operator or a transfer function showing what operation is performed
on the input signal. This is a completely different idea from the simple Laplace  trans-
formation of a function. Remember, the Laplace  transform of the unit step function
is also equal to l/s.  But this is the Laplace  transformation of a function. The l/s
operator discussed above is a transfer function, not a function.

7.4.4 Deadtime

Delay time, transportation lag, or deadtime  is frequently encountered in chemical en-
gineering systems. Suppose a process stream is flowing through a pipe in essentially
plug flow and that it takes D minutes for an individual element of fluid to flow from
the entrance to the exit of the pipe. Then the pipe represents a deadtime  element.

If a certain dynamic variable fit,, such as temperature or composition, enters the
front end of the pipe, it will emerge from the other end D minutes later with exactly
the same shape, as shown in Fig. 7.5.

pp,FIGURE ,.5

t=O t=D Effect of a dead-time element.
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- Time domain

Laplace  domain
FIGURE 7.6
Deadtime  transfer function.

Let us see what happens when we Laplace-transform a function h,-o,  that has
been delayed by a deadtime. Laplace  transformation is defined in Eq. (7.5 1).

af,,,1 =
IY

(@I dt  = F(s)o (7.5 1)

The variable t in this equation is just a “dummy variable” of integration. It is inte-
grated out, leaving a function of only s. Thus, we can write Eq. (7.5 1) in a completely
equivalent mathematical form:

(7.52)

where y is now the dummy variable of integration. Now  let y = t - D.

F(s) = I m fit-&SO--D)  d(t - 0) = p m fit-D,e-“’  dt
0 f0 (7.53)

F(,)  = eD”3Lf&d
Therefore,

%ht-o)l  = e-DsFcs) (7.54)

Thus, time delay or deadtime  in the time domain is equivalent to multiplication by
eeDS  in the Laplace  domain.

If the input into the deadtime  element is ~(~1  and the output of the deadtime
element is y(+  then u and y are related by

Y(f) = q-D)

And in the Laplace  domain,

Y(,)  = e
-Ds

4) (7.55)

Thus, the transfer function between output and input variables for a pure deadtime
process is epDS, as sketched in Fig. 7.6.

7.5
EXAMPLES

Now we are ready to apply all these Laplace  transformation techniques to some typ-
ical chemical engineering processes.
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E x A M P I, E 7.3. Consider the isothermal CSTR of Example 2.6. The equation describing
the system in terms of perturbation variables is

- + L + k
CiCn
dt i 17

CA(,)  = L CAOW7
(7.56)

where k and r are constants. The initial condition is CA(o)  = 0. We do not specify what
Cnocr,  is for the moment, but just leave it as an arbitrary function of time. Laplace-
transforming each term in Eq. (7.56) gives

scA(s) - CA(t=O)  + (7.57)

The second term drops out because of the initial condition. Grouping like terms in CA($)
gives

Thus, the ratio of the output to the input (the “transfer function” Cc,,)  is

%s)Gtsj  zz - = l/r

CAO(s) s+k+ l/r
(7.58)

The denominator of the transfer function is exactly the same as the polynomial in s
that was called the characteristic equation in Chapter 2. The roots of the denominator of
the transfer function are called the poles of the transfer function. These are the values of
s at which Gc,,  goes to infinity.

The roots of the characteristic equation are equal to the poles of the transfer function.

This relationship between the poles of the transfer function and the roots of the charac-
teristic equation is extremely important and useful.

The transfer function given in Eq. (7.58) has one pole with a value of -(k + l/r).
Rearranging Eq. (7.58) into the standard form of Eq. (2.51) gives

G(,)  =
s+l

6=-
7,s + 1

(7.59)

where K, is the process steady-state gain and r,, is the process time constant. The pole
of the transfer function is the reciprocal of the time constant.

This particular type of transfer function is called a jrst-order lag. It tells us how
the input CAO  affects the output CA, both dynamically and at steady state. The form of
the transfer function (polynomial of degree 1 in the denominator, i.e., one pole) and the
numerical values of the parameters (steady-state gain and time constant) give a com-
plete picture of the system in a very compact and usable form. The transfer function
is a property of the system only and is applicable for any input. We can determine the
dynamics and the steady-state characteristics of the system without having to pick any
specific forcing function.

If the same input as used in Example 2.6 is imposed on the system, we should be
able to use Laplace transforms to find the response of CA  to a step change of magni--
tude CAM.
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We take the Laplace transform of Cncy,,,  substitute into the system transfer function,
solve for CA(,~),  and invert back into the time domain to find CA(,).

~e[cAO,,,l  =  CA(@)  =  r,O; (7.61)

(7.62)

Using partial fractions expansion to invert (see Example 7.1) gives

Cn(t) = K,C,q)  (1 - e-y

This is exactly the solution obtained in Example 2.6 [Eq. (2.53)]. n

EXAMPLE 7.4. The ODE of Example 2.8 with an arbitrary forcing function uct) is

d2y  dy- + 5& + 6y = u(t)
dt2

with the initial conditions

(7.63)

(7.64)

Laplace  transforming gives

s2  Y(s)  + 5q,,  + 6Y(,,  = u(s)

YG)(s3  + 5s + 6) = U(s)

The process transfer function Gcs)  is

s = GcS)  = s2 + ;, + 6 =
1

4s) (s + 2)(s  + 3)

Notice that the denominator of the transfer function is again the same polynomial in
s as appeared in the characteristic equation of the system [Eq. (2.73)].  The poles of the
transfer function are located at s = -2 and s = -3. So the poles of the transfer function
are the roots of the characteristic equation.

If uct) is a ramp input as in Example 2.13,

(7.66)

Y(s) = G(s)  U(s)  = (,+:,ih)(~)=  s2(s+:)(s+3)

Partial fractions expansion gives

AB C
Y(s) =  p + ; +  -s i- 2

A = li$ ,s2 YWi i
= lim

e-+0

B = lim
s-o

= lim
c +o

;(s2y(v,j]  = ;5&$2+:J+fj)]

-(2x + 5 ) 1 5

(s’ + 5s + 6)’ = - 36
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Therefore,

Yt,s,]  = lim
.s+-2

Y(,s)] = lim
s-r-3

5 I
Y(,.)  = h - E + -s--  - -95 s2 s s + 2 s+3

(7.68)

Inverting into the time domain gives the same solution as Eq. (2.109).

jr(,) = it - 6 + $!-2f  - $-3f (7.69)

EXAMPLE 7.5. An isothermal three-CSTR system is described by the three linear
ODES

dCAr
dt

dcii2
dt

The variables can be either total or perturbation variables since the equations are linear
(all k’s and r’s are constant). Let us use perturbation variables, and therefore the initial
conditions for all variables are zero.

CA  l(0) =  CA*(O)  =  cA3(0)  =  0 (7.71)

Laplace  transforming gives

(3 +  kr +  -+(sj  =  -$AO(,,

(S +  k2 +  -$A,,,,  =  $-A,(s)

(S + k3 +  +(s,  =  ;cA2(s)

These can be rearranged to put them in terms of transfer functions for each tank.

G CAl(s)
I(J)  = - =

l/T,
c AC’(s) s + k, + UT,

G
c_ AXE) 1172

2(s)
_
- CA  I($) s + k2 + l/~~

CA3(s)G3(s) = - =
l/T3

C A2(s) s + k3 + l/~~

(7.72)

(7.73)
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CAOW CAI(,) GZ(.s) &3(s)
___L G(s) - G2(s) + G(s) L

GO(s) CAR(s)
------cc I(s) G2(s) . G3(s)

t-

FIGURE 7.7
Transfer functions in series.

If we are interested in the total system and want only the effect of the input CAO  on the
output CAM,  the three equations can be combined to eliminate CA,  and CA*.

CA3(s) = G3CA2(s) = G3 (G2CA,(s))  = ‘GG2 (G CAOW) (7.74)

The overall transfer function Go)  is

G(s)  =
C’A3(s)- = G(.&s)G(s)
CAO(s)

(7.75)

This demonstrates one very important and useful property of transfer functions. The total
effect of a number of transfer functions connected in series is just the product of all the
individual transfer functions. Figure 7.7 shows this in block diagram form The overall
transfer function is a third-order lag with three poles.

G(s) =
l/TtQT3

(s + kt + l/~t)(s + k2 + 1/r2)(s + k3 + 11~~)
(7.76)

Further rearrangement puts the above expression in the standard form with time con-
stants roi  and a steady-state gain K,.

1 1 1

G =
(1 + klT1)  (1 + km)  (1 + km)

i

71 s+l
ji

7 2 s+l 7 3

1 + k,q 1 + k2r2 1 + k3r3
s+l (7.77)

G(s)  = K?J
(701s  + 1x702s  + 1)(703s  + 1)

Let us assume a unit step change in the feed concentration CAO  and solve for the
response of cA3.  We will take the case where all the T,~‘s  are the same, giving a repeated
root of order 3 (a third-order pole at s = - l/7,).

CAW) = &r(l) +’ CAO(s)  = f

C =  G(.FJCAO(.X)  =
K, 1-=

K/Jr,3
AX(s)

(7,s  + I>3 s s(s + l/7,)3

(7.78)
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Applying partial fractions expansion,

= K,,

J

I
1 2K&-___

Inverting Eq. (7.79) with the use of Eq. (7.18) yields

1 z-z
1 2,  s3

1

- KP

(7.80)

m

EXAMPLE 7.6. A nonisothermal CSTR can be linearized (see Problem 2.8) to give two
linear ODES  in terms of perturbation variables.

dCA- = a,,C,‘j  + czl;?T + Q,jCAO  + a15F
dr

dT
- = a?lC~  + n22T  + a2JTo  + a2SF  + az6TJ
dt

where

Fa,, = -_ -k a12 =
-Z?;AEk F

V RT2
aI3  = -

V

a15 =
c,, - c, -AT; -hkE&  F

V
a*1  = - a22 = - -

PC, pC,RT2  v

F
a24 = -

7,)  - ;7; VA
V

a2.j  = ____
V a26  = vpc,

(7.81)

UA (7.82)
VPC,

The variables CAo,  TO.  F. and T, are all considered inputs. The output variables are
CA  and T. Therefore, eight different transfer functions are required to describe the sys-
tem completely. This multivariable aspect is the usual situation in chemical engineering
systems.
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The Gi,j  are, in general, functions of s and arc the transfer functions relating inputs and
outputs. Since the system is linear, the output is the sum of the effects of each individual
input. This is called the principle of superposition.

To find these transfer functions, Eqs. (7.81) are Laplace transformed and solved
simultaneously.

SC/j  = cz,,Cn  + a,*T  + U,JCA()  + a,sF

ST  = a21CA  + a22T + a24To  + a2SF  + az6TJ

(s - a,,)Cn  = a12T  + n13C/tO  + a15F

(s - a&T = a2ICA + a2dTo  + a2sF  + a26T.i

Combining,

(s - all)CA = al2
a21C~ + a24To + ad’  + az6TJ

fal3CAO + ad
s - a22

Finally,

CA(s)  =

z),, = (~)~o+(~+~,~)F+(~)Ti+a,lC*o

a136  - a22)s* 1 C- (a11 + u22)s  + alla22  - a12421
A&)

+
a2a24

s2  - (a11  + 022)s  + alla22  - a212a21 1 Tow
( 7 . 8 4 )

+
a12a26

s2  - (QII  + a**>s + alla22  - a12a21
TJ(G

T(s) = a13a21

s2 - (all + u22)s  + alla22  - a12a21 I CA%)

+
[

a24b  - alI)
s2  - (all  + a22b  + UllU22  A a12a21 1 Tow

(7.85)

+
~15~~21  + a256  -ad

s2 - (ali  + u22b  + alla22  - a12a21 1 FOi
+

a26b  -all>

s2 - (all  + u22)s  + alla22  - Q12U21 1 TJW

The system is shown in block diagram form in Fig. 7.8.
Notice that the G’s are ratios of polynomials in s. The s - ati  and s - a22  terns  in

the numerators are calledJirst-or&r lea& Notice also that the denominators of all the
G’s are exactly the same. m
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cA(s)

G24(s)

G23(s)

FIGURE 7.8
Block diagram of a multivariable linearized nonisothermal CSTR system.

EXAMPLE 7.7. A two-heated-tank process is described by two linear ODES:

dTI
PC,  VI --&- = PC,W’O - 7’1) f QI

dT2
P&V2 --5- = PC,WI  - T2)

The numerical values of variables are:

F = 90 ft3/min p = 40 Ib,/ft3 C, = 0.6 Btu/lb, “F

v, = 450 ft3 I/2 = 90 ft3

Plugging these into Eqs. (7.86) and (7.87) gives

(40)(0.6)(450)% = (W9O)(O.W’o  - TI) + QI

(40)(0.6)(90)$ = (40)(90)(0.6)(&  - 7-z)

(7.86)

(7.87)

(7.88)

(7.89)
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dT,
5-

(21
dt + TI  = To  + m

d7-2dt +T2 = T,

(7.90)

(7.91)

Laplace transforming gives

(5s + 1 VI,,,  = Tow  + &QI

(s + IV’2(s) = TI(,,

Rearranging and combining to eliminate TI give the output variable T2 as a function of
the two input variables, To  and Q,.

7-2(s)
1

=
(s + 1)(5S + 1) T0(s)  +1 .[ l/2160

(s + 1)(5s  + 1) QUS)I (7.92)

The two terms in the brackets represent the transfer functions of this openloop  process. In
the next chapter we look at this system again and use a temperature controller to control
T2 by manipulating Q,. The transfer function relating the controlled variable T2 to the
manipulated variable Q, is defined as GMcs,. The transfer function relating the controlled
variable T2  to the load disturbance TO  is defined as GL(~).

T2w  =  %s)To(s)  +  GWQIW (7.93)

Both of these transfer functions are second-order lags with time constants of 1 and 5
minutes. m

7.6
PROPERTIES OF TRANSFER FUNCTIONS

An Nth-order system is described by the linear ODE

d%
= bM---

dtM
+b,,g+

where ai and b; = constant coefficients
y = output
u = input or forcing function

7.6.1 Physical Realizability

(7.94)

+b@+bu
‘dt ’

For Eq. (7.94) to describe a real physical system, the order of the right-hand side, M,
cannot be greater than the order of the left-hand side, N. This criterion for physical
realizability is

NZM (7.95)
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This requirement can be proved intuitively from the following reasoning. Take a case
where/V =  OandM =  I.

du
soy = b, - + bou

dt

This equation says that we have a process whose output y depends on the value of
the input and the value of the derivative of the input. Therefore, the process must
be able to differentiate, perfectly, the input signal. But it is impossible for any real
system to differentiate perfectly. This would require that a step change in the input
produce an infinite spike in the output, which is physically impossible.

This example can be generalized to any case where M I N to show that dif-
ferentiation would be required. Therefore, N must always be greater than or equal to
M. Laplace-transforming Eq. (7.96) gives

This is a first-order lead. It is physically unrealizable; i.e., a real device cannot be
built that has exactly this transfer function.

Consider the case where M = N = 1.

dY du
aldt  + soy = blx + bou (7.97)

It appears that a derivative of the input is again required. But Eq. (7.97) can be
rearranged, grouping the derivative terms:

-$aly  - blu) = 2 = bou  - soy (7.98)

The right-hand side of this equation contains functions of time but no derivatives.
This ODE can be integrated by evaluating the right-hand side (the derivative) at
each point in time and integrating to get z at the new point in time. Then the new
value of y is calculated from the known value of u: y = (z + bl u)lal  . Differentiation
is not required, and this transfer function is physically realizable. Remember, nature
always integrates, it never differentiates!

Laplace-transforming Eq. (7.97) gives

Y(s)  _ bl s + bo- -
4s) als + ag

This is called a lead-lag element and contains a first-order lag and a first-order lead.
See Table 7.1 for some commonly used transfer function elements.

7.6.2 Poles and Zeros

Returning now to Eq. (7.94), let us Laplace  transform and solve for the ratio of output
Yes) to input U(sj, the system transfer function Gts).
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TABLE 7.1

Common transfer functions

Terminology Ge,

Gain
Derivative

Integrator

First-order lag

First-order lead
Second-order lag

Underdamped, 6 < I

Critically damped, < = I

Overdamped, 5 > 1

Deadtime

Lead-lag

s

I

7s  -t I

7s + 1

1
7252  + 2753 + 1

1
(7s + l)?

1
(7,s + l)(T*S  + 1)

e -Ds

7,s  + 1
T/p + 1

Yts, _ bMsM + bM+sM-’  + . . . + bls  + bO
G(,, = - -

4s) N + aN-lsNwl + ’ ” + als f a()aNs
(7.99)

The denominator is a polynomial in s that is the same as the characteristic equation
of the system. Remember, the characteristic equation is obtained from the homoge-
neous ODE, that is, considering the right-hand side of Eq. (7.94) equal to zero.

The roots of the denominator are called the poles of the transfer function. The
roots of the numerator are called the zeros of the transfer function (these values of s
make the transfer function equal zero). Factoring both numerator and denominator
yields

(3 - z&s - ~2). * .(s  - ZM)
(s - pl)(s - p2>-  “(s - PN)

(7.100)

where zi  = zeros of the transfer function
pi = poles of the transfer function

As noted in Chapter 2, the roots of the characteristic equation, which are the poles
of the transfer function, must be real or must occur as complex conjugate pairs. In
addition, the real parts of all the poles must be negative for the system to be stable.

A system is stable if all its poles lie in the left half of the s plane.

The locations of the zeros of the transfer function have no effect on the stability of the
system! They certainly affect the dynamic response, but they do not affect stability.
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7.6.3 Steady-State Gains

One final point should be made about transfer functions. The steady-state gain K,
for all the transfer functions derived in the examples was obtained by expressing the
transfer function in terms of time constants instead of in terms of poles and zeros.
For the general system of Eq. (7.94) this would be

G(s)  = K,>
(w + M7-z2~  + W'(W.~ + 0

o-,AS + 1)(71'2s + 1). * '@vS + 1)
(7.101)

The steady-state gain is the ratio of output steady-state perturbation to the input per-
turbation.

YP
= u” (7.102)

In terms of total variables,

Thus, for a step change in the input variable of AZ, the steady-state gain is found sim-
ply by dividing the steady-state change in the output variable AL by AZ, as sketched
in Fig. 7.9.

Instead of rearranging the transfer function to put it into the time-constant form,
it is sometimes more convenient to find the steady-state gain by an alternative method
that does not require factoring of polynomials. This consists of merely letting s = 0
in the transfer function.

---------1----------------

I
tit FIGURE7.9

t=O Steady-state gain.

(7.103)
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By definition, steady state corresponds to the condition that all time derivatives are
equal to zero. Since the variable s replaces cfldt in the Laplace domain, letting s go
to zero is equivalent to the steady-state gain.

This can be proved more rigorously by using the final-value  theorem of Laplace
transforms:

(7.104)

If a unit step disturbance is used,

This means that the output is

1
Y(s)  = G(s);

The final steady-state value of the output will be equal to the steady-state gain since
the magnitude of the input was 1.

For example, the steady-state gain for the transfer function given in Eq- (7.99)
is

It is obvious that this must be the right value of gain since at steady state Eq(7.94)
reduces to

a07  = bou (7.106)

For the two-heated-tank process of Example 7.7, the two transfer functions were
given in Eq. (7.92). The steady-state gain between the inlet temperature To and-the
output T2 is found to be l”F/“F  when s is set equal to zero. This says that a lo change
in the inlet temperature raises the outlet temperature by lo,  which seems reasonable.
The steady-state gain between T2 and the heat input Qt is l/2160 “F/Btu/min. YOU
should be careful about the units of gains. Sometimes they have engineering units,
as in this example. At other times dimensionless gains are used. We discuss this in
more detail in Chapter 8.
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7.7
TRANSFER FUNCTIONS FOR FEEDBACK CONTROLLERS

As discussed in Chapter 3, the three common commercial feedback controllers
are proportional (P), proportional-integral (PI), and proportional-integral-derivative
(PID). The transfer functions for these devices are developed here.

The equation describing a proportional controller in the time domain is

CO(,) = Bias + K,(SP(,)  - PV,,)) (7.107)

where CO = controller output signal sent to the control valve
Bias = constant

SP = setpoint
PV = process variable signal from the transmitter

Equation (7.107) is written in terms of total variables. If we are dealing with pertur-
bation variables, we simply drop the Bias term. Laplace  transforming gives

CO(,) = +K,(sP@,  - PV,,,) = f-K&, (7.108)

where E = error signal = SP - PV. Rearranging to get the output over the input
gives the transfer function Gccs) for the controller.

cow _- -
E(s)

+K,  = Gccs) (7.109)

So the transfer function for a proportional controller is just a gain.
The equation describing a proportional-integral controller in the time domain is

CO(,) = Bias + &[4,)  + $1  &df] (7.110)

where ~1  = reset time, in units of time. Equation (7.110) is in terms of total variables.
Converting to perturbation variables and Laplace  transforming give

Thus, the transfer function for a PI controller c(xrtains a first-order lead and an in-
tegrator. It is a function of s, having numerator and denominator polynomials of
order 1.

The transfer function of a “real” PID controller, as opposed to an “ideal” one, is
tke  PI transfer function with a ‘lead-‘tag element placed in series.

co,,,--
E(s)

= Gccr) = -t Kc 71)s + 1
u!T@.  + 1

where rr;, = derivative time constant, in units of time
. A. F.-q.-

(7.112)
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FIGURE 7.10
Derivative unit.

The lead-lag unit is called a “derivative unit,” and its step response is sketched in
Fig. 7.10. For a unit step change in the input, the output jumps to l/a!  and then decays
at a rate that depends on 70.  So the derivative unit approximates an ideal derivative.
It is physically realizable since the order of its numerator polynomial is the same as
the order of its denominator polynomial.

7 . 8
CONCLUSION

In this chapter we have developed the mathematical tools (Laplace  transforms) that
facilitate the analysis of dynamic systems. The usefulness of these tools will become
apparent in the next chapter.

PROBLEMS

7.1. Prove that the Laplace transformations of the following functions are as shown.

zz .y’F df
(.! ) - .s,f;(),  - -L! idt (r  -0)
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7.2. Find the Laplace transformation of a rectangular pulse of height H, and duration T,.

7.3. An isothermal perfectly mixed batch reactor has consecutive first-order reactions

,

The initial material charged to the vessel contains only A at a concentration CAO.  Use
Laplace  transform techniques to solve for the changes in CA  and Ca with time during
the batch cycle for:
(a) h ’ k2
(b)  kl = k2

7.4. Two isothermal CSTRs  are connected by a long pipe that acts as a pure deadtime  of
D minutes at the steady-state flow rates. Assume constant throughputs and holdups
and a first-order irreversible reaction A -& B in each tank. Derive the transfer func-
tion relating the feed concentration to the first tank, CAo,  and the concentration of A
in the stream leaving the second tank, CAZ. Use inversion to find CA2(,) for a unit step
disturbance in CAM.

7.5. A general second-order system is described by the ODE

,d2x dx
r. p + 27-dd,  + x = KPqt)

If 5 > 1, show that the system transfer function has two first-order lags with time con-
stants T,I and 7,~. Express these time constants in terms of TV and 5.

7.6. Use Laplace  transform techniques to solve Example 2.7, where a ramp disturbance
drives a first-order system.

7;7. The imperfect mixing in a chemical reactor can be modeled by splitting the total volume
into two perfectly mixed sections with circulation between them. Feed enters and leaves
one section. The other section acts like a “side-capacity” element.

FIGURE P7.7

FIGURE P7.4
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.

Assume holdups and-  flow rates are constant. The reaction is an irreversible, tirst-
order consumption of reactant A. The system is isothermal. Solve for the transfer func-
tion relating C~0 and CA.  What are the zeros  and poles of the transfer function? What
is the steady-state gain?

7.8. One way to determine the rate of change of a process variable is to measure the dif-
ferential pressure AP = P,,, - Pin  over a device called a derivative unit that has the
transfer function

Pout(.r) 7s  + 1
- zz

Pin(.r) (d6)s + 1

(a) Derive the transfer function between AP and Pi,.
(6) Show that the AP signal will be proportional to the rate of rise of Pin, after an initial

transient period, when Pi, is a ramp function.

Process p.
I” Derivative P

variable ___Jt__t ,I out
I, -

signal unitL

L-c  -Ap
4

measurement
__ft__c  AP signal

A FIGURE P7.8

7.9. A convenient way to measure the density of a liquid is to pump it slowly through a
vertical pipe and measure the differential pressure between the top and the bottom of
the pipe. This differential head is directly related to the density of the liquid in the pipe
if frictional pressure losses are negligible.

Suppose the density can change with time. What is the transfer function refating
a perturbation in density to the differential-pressure measurement? Assume the fluid
moves up the vertical column in plug flow at constant velocity.

Process fluid out 7-l

Process fluid in
Differential

-
with density P(,)

pressure // -)I, AP signal
measurement

FIGURE P7.9

7.10. A thick-walled kettle of mass MM, temperature TM, and specific heat CM is filled \vith
a perfectly mixed process liquid of mass M, temperature T, and specific heat C. A
heating fluid at temperature TJ is circulated in a jacket around the kettle wall. The
heat transfer coefficient between the process fluid and the metal wall is U and between
the metal outside wall and the heating fluid is U ,,,,. Inside and outside heat transfer
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areas A are approximately the same. Neglecting any radial temperature gradients
through the metal wall, show that the transfer function between T and TJ is two
first-order lags.

The value of the steady-state gain K,, is unity. Is this reasonable?

7.11. An ideal three-mode PID (proportional-integral-derivative) feedback controller is de-
scribed by the equation

CO,,, = Bias + K,. 1
Derive the transfer function between CO(s)  and E(,Q.  Is this transfer function physically
realizable?

7.12. Show that the linearized nonisothermal CSTR of Example 7.6 can be stable only if

UA

vPc~ > pC,RT2

-Ak  CAE  _ ,$ _ k

7.13. A deadtime  element is basically a distributed system. One approximate way to get
the dynamics of distributed systems is to lump them into a number of perfectly mixed
sections. Prove that a series of N mixed tanks is equivalent to a pure deadtime  as N
goes to infinity. (Hint: Keep the total volume of the system constant as more and more
lumps are used.)

7.14. A feedback controller is added to the three-CSTR system of Example 7.5. Now CAM is
changed by the feedback controller to keep CA3  at its setpoint, which is the steady-state
value of CAJ. The error signal is therefore just - CA3  (the perturbation in C,Q).  Find the
transfer function of this closedloop system between the disturbance CA, and CAM.  List
the values of poles, zeros, and steady-state gain when the feedback controller is:
(a) Proportional: CAO  = CAD  + &(-C,43)

(b) Proportional-integral: CA0  = CAD  + Kc [-Cm  + ;/t-C,l)dr]

Note that these equations are in terms of perturbation variables,

7.15. The partial condenser sketched on the following page is described by two ODES:

Vol dPc-1 QC
R T  d t-=F-V-m

dMR  Qc _ L
d t  =i?i

where P = pressure
Vol = volume of condenser
MR  = liquid holdup

F = vapor feed rate
V = vapor product
L = liquid product



CIIWIXK  7: Laplace-Domain Dynamics 259

L FIGURE P7.15

(a) Draw a block diagram showing the transfer functions describing the openloop
system.

(b) Draw a block diagram of the closedloop system if a proportional controller is used
to manipulate QC  to hold MR and a PI controller is used to manipulate V to hold P.

7.16. Show that a proportional-only level controller on a tank will give zero steady-state error
for a step change in level setpoint.

7.17. Use Laplace transforms to prove mathematically that a P controller produces steady-
state offset and that a PI controller does not. The disturbance is a step change in the
load variable. The process openloop transfer functions, GM  and GL,  are both first-order
lags with different gains but identical time constants.

7.18. Two loo-barrel tanks are available to use as surge volume to filter liquid flow rate
disturbances in a petroleum refinery. Average throughput is 14,400 barrels per day.
Should these tanks be piped up for parallel operation or for series operation? Assume
proportional-only level controllers.

7.19. A perfectly mixed batch reactor, containing 7500 lb, of liquid with a heat capacity of
1 Btu/lb, OF,  is surrounded by a cooling jacket that is filled with 2480 lb, of perfectly
mixed cooling water.

At the beginning of the batch cycle, both the reactor liquid and the jacket ivater
are at 203°F. At this point in time, catalyst is added to the reactor and a reaction occurs
that generates heat at a constant rate of 15,300 Btu/min. At this same moment, makeup
cooling water at 68°F is fed into the jacket at a constant 832-lb,/min flow rate.

The heat transfer area between the reactor and the jacket is 140 ft*. The overall
heat transfer coefficient is 70 Btu/hr  “F  ft2. Mass of the metal walls can be neglected.
Heat losses are negligible.
(a) Develop a mathematical model of the process.
(0) Use Laplace transforms to solve for the dynamic change in reactor temperature

%
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(c) What is the peak reactor temperature and when does it occur‘?
(n) What is the final  steady-state reactor temperature?

7.20 . The flow of air into the regenerator on a catalytic cracking unit is controlled by two
control valves. One is a large, slow-moving valve that is located on the suction of the
air blower. The other is a small, fast-acting valve that vents to the atmosphere.

The fail-safe condition is to not feed air into the regenerator. Therefore, the suction
valve is air-to-open and the vent valve is air-to-close. What action should the flow
controller have, direct or reverse?

The device with the following transfer function Gcs)  is installed in the control line
to the vent valve.

7s P valve(s)
G(s) =  7s =  ~

CO(s)

The purpose of this device is to cause the vent valve to respond quickly to changes in
CO but to minimize the amount of air vented (since this wastes power) under steady-
state conditions. What will be the dynamic response of the perturbation in P,,I,,  for a
step change of 10 percent of full scale in CO? What is the new steady-state value of
P valve-

Atmospheric Air to
suction

I
Vent

A /;
//,

c o
// I,
I/ II II

cat. cracker
regenerator

FIGURE P7.20

7.21. An openloop process has the transfer function

Calculate the openloop response of this process to a unit step change in its input. What
is the steady-state gain of this process?

7.22. A chemical reactor is cooled by both jacket cooling and autorefrigeration (boiling liq-
uid in the -reactor). Sketch a block diagram, using appropriate process and control
system transfer functions, describing the system. Assume these transfer functions are
known, either from fundamental mathematical models or from experimental dynamic
testing.
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Liquid
return

Cooling
jacket

Makeup
cooling
water

* Discharge

25 pump

FIGURE P7.22

7.23. Solve the following problem, which is part of a problem given in Levenspiel’s Chem-
ical Reaction Engineering (1962, John Wiley, New York), using Laplace transform
techniques. Find analytical expressions for the number of Nelson’s ships N(,)  and the
number of Villeneuve’s ships Vo) as functions of time.

The great naval battle, to be known to history as the battle of Trafalgar (1805),  was
soon to be joined. Admiral Villeneuve proudly surveyed his powerful fleet of 33
ships stately sailing in single file in the light breeze. The British fleet under Lord
Nelson was now in sight, 27 ships strong. Estimating that it would still be two
hours before the battle, Villeneuve popped open another bottle of burgundy and
point by point reviewed his carefully thought out battle strategy. As was the custom
of naval battles at that time, the two fleets would sail in single file parallel to each
other and in the same direction, firing their cannons madly. Now, by long experi-
ence in battles of this kind, it was a well-known fact that the rate of destruction of a
fleet was proportional to the fire power of the opposing fleet. Considering his ships
to be on a par, one for one, with the British, Villeneuve was confident of victory.
Looking at his sundial, Villeneuve sighed and cursed the light wind; he’d never
get it over with in time for his favorite television western. “Oh’well,” he sighed,
“c’est  la vie.” He could see the headlines next morning. “British Fleet annihilated,
Villeneuve’s losses are. . . .” Villeneuve stopped short. How many ships would he
lose? Villeneuve called over his chief bottle cork popper, Monsieur Dubois. and
asked this question. What answer did he get?

7.24. While Admiral Villeneuve was doing his calculations about the outcome of the battle
of Trafalgar, Admiral Nelson was also doing some thinking. His fleet was outnumbered
33 to 27, so it didn’t take a rocket scientist to predict the outcome of the battle if the
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normal battle plan was followed (the opposing He&s  sailing parallel to each other). So
Admiral Nelson turned for help to his trusty young assistant Lt. Steadman, who for-
tunately was an innovative Lehigh graduate in chemical engineering (Class of 1796).
Steadman  opened up her textbook on Laplace transforms and did some back-of-the-
envelope calculations to evaluate alternative battle strategies.

After several minutes of brainstorming and calculations (she had her PC on board,
so she could use MATLAB to aid in the numerical calculations), Lt. Steadman  devised
the following plan: The British fleet would split the French fleet, taking on 17 ships first
and then attacking the other I6 French ships with the remaining British ships. Admiral
Nelson approved the plan, and the battle was begun.

Solve quantitatively for the dynamic changes in the number of British and French
ships as functions of time during the battle. Assume that the rate of destruction of a fleet
is proportional to the firepower of the opposing fleet and that the ships in both fleets are
on a par with each other in firepower.

7.25. Consider a feed preheater-reactor process in which gas is fed at temperature TO  into a
heat exchanger. It picks up heat from the hot gas leaving the reactor and exits the heat
exchanger at temperature T,  . The gas then enters the adiabatic tubular reactor, where
an exothermic chemical reaction occurs. The heat of reaction heats the gas stream, and
the gas leaves the reactor at temperature T2.

The transfer functions describing the two units are

TI = G(s,To  + G(J2

T2 = Gq.$Y

Derive the openloop transfer function between TI  and To.

7.26. A second-order reaction A + B A C occurs in an isothermal CSTR. The reaction rate
is proportional to the concentrations of each of the reactants, zA and zg (mole fractions
of components A and B).

3 = kVRZAZB (moles of component C produced per hour)

The reactor holdup is VR  (mol) and the specific reaction rate is k (hr-‘).
Two fresh feed streams at flow  rates FOA  and FOB  (mol/hr)  and compositions z0A.j

and zoe,j  (mole fraction componentj,  j = A, B, C) are fed into the reactor along with
a recycle stream. The reactor effluent has composition zj and flow rate F (mol/hr).  It
is fed into a flash drum in which a vapor stream is removed and recycled back to the
reactor at a flow rate R (mol/hr)  and composition YR,;.

The liquid from the drum is the product stream with flow rate P (mol/hr)  and com-
position xp.j. The liquid and vapor streams are in phase equilibrium: J+R.A  = K,JX~A
and YR,B  = KBXPJ,  where KA  and KB  are constants. The vapor holdup in the flash
drum is negligible. The liquid holdup is MD  (mol).

The control system consists of the following loops: fresh feed FoA  is manipulated to
control reactor composition :A,  fresh feed FOR  is manipulated to control reactor holdup
VR, reactor effluent F is How controlled, product flow rate P is manipulated to hold
drum holdup M,j  constant, and recycle vapor R is manipulated to control product com-
position ~p.8. Assume VK  and ML) are held perfectly constant. The molecular weight
of componenr  A is 30: the molecular weight of component B is 70.
(n) Write the dynamic equarions  describing the openloop  process.
(h) Using the following numerical values for the parameters  in the system, calculate

the values of F(,,.,.  F(),;. I.‘,  VK, :,\,  and zIs at steady.state. The amount of component
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C produced is 100 mol/hr, and it all leaves  in the product stream P. Fresh feed FOA
is pure component A, and fresh feed I;o,j  is pure component B.

R = 300 mol/min k = IO hr-’

x/:A  = 0.01 mole fraction component A K/z,  = 40
xIJ,N  = 0.01 mole fraction component B Ke  = 30

7.27. A first-order reaction A 5 B occurs in an isothermal CSTR. Fresh feed at a Ilow  rate
F. (mol/min)  and composition zo (mole fraction A) is fed into the reactor along with a
recycle stream. The reactor holdup is VH (mol). The reactor effluent has composition
z (mole fraction A) and flow rate F (mol/min).  It is fed into a flash drum in which a
vapor stream is removed and recycled back to the reactor at a flow rate R (moI/min)
and composition ye (mole fraction A).

The liquid from the drum is the product stream with flow rate P (mol/min)  and’
composition xp (mole fraction A). The liquid and vapor streams are in phase equi-
librium: yR = Kxp, where K is a constant. The vapor holdup in the flash drum is
negligible. The liquid holdup is Mo.

The control system consists of the following loops: fresh feed FO is flow controlled,
reactor effluent F is manipulated to hold reactor holdup VR  constant, product flow rate
P is manipulated to hold drum holdup h4o  constant, and recycle vapor R is manipulated
to control product composition xp.  Assume VR  and Mo are held perfectly constant.
(a) Write the dynamic equations describing the openloop  process system.
(b) Linearize the ODES  describing the system, assuming VR, MD, Fo, k, K, zo,  and P

are constant. Then Laplace transform and show that the openloop  transfer function
relating controlled variable xp to manipulated variable R has the form

GM(~) =
K,,(w  + 1)

(72s + l)(TjS + 1)

(c) Using the following numerical values for the parameters in the system, calculate
the values of R and z at steady state.

FO  = 100 mol/min

VR = 500 moles

z. = 1 mole fraction component A

xp = 0.05 mole fraction component A

k = 1 min-’

K = 10

7.28. The 1940 Battle of the North Atlantic is about to begin. The German submarine fleet,
under the command of sinister Admiral von Dietrich, consists of 200 U-boats at the be-
ginning of the battle. The British destroyer fleet, under the command of heroic Admiral
Steadman  (a direct descendant of the intelligence officer responsible for the British vic-
tory at the Battle of Trafalgar), consists of 150 ships at the beginning of the battle. The
rate of destruction of submarines by destroyers is equal to the rate of destruction of
destroyers by submarines: 0.25 ships/week/ship.

Germany is launching two new submarines per week and adding them to its fleet.
President Roosevelt is trying to decide how many new destroyers per week must be sent
to the British fleet under the Lend-Lease Program in order to win the battle. Admiral
Steadman  claims she needs I5 ships added to her fleet per week to defeat the U-boat
fleet. The Secretary of the Navy, William Gustus, claims she only needs 5 ships per
week. Who is correct?

7.29. Captain James Kirk is in command of a fleet of I6 starships. A Klingon fleet of20 ships
has been spotted approaching. The legendary Lt. Speck  has recently retired, so Cap-

. tain Kirk turns to his new intelligence officer, Lt. Steadman (Lehigh Class of 2196 in
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1

chemical engineering), for a prediction of the outcome of the upcoming battle. Stead-
man has been working with the new engineering officers in the fleet, Lt. Moquin and
Lt. Walsh, who have replaced the retired Lt. Scott. These innovative officers have been
able to increase the firepower of half of the vessels in Kirk’s fleet by a factor of 2 over
the firepower of the Klingon vessels, which all have the same firepower. The firepower
of the rest of Kirk’s fleet is on a par with that of the Klingons. But these officers have
also been able to improve the defensive shields on this second half of the fleet. The
more effective shields reduce by 50 percent the destruction rate of these vessels by the
Klingon firepower.

Thus, there are two classes of starships: eight vessels are Class Et with increased
firepower, and eight vessels are Class E2  with improved defensive shields. Assume that
half of the Klingon fleet is firing at each class at any point in time.

Calculate who wins the battle and how many vessels of each type survive.



CHAI’TEK  8

Laplace-Domain Analysis
of Conventional Feedback
Control Systems

Now that we have learned a little Russian, we are ready to see how useful it is in
analyzing the dynamics and stability of systems. Laplace-domain methods provide a
lot of insight into what is happening to the damping coefficients and time constants as
we change the settings on the controller. The root-locus plots that we use are similar
in value to the graphical McCabe-Thiele diagram in binary distillation: they provide
a nice picture in which the effects of parameters can be easily seen.

In this chapter we demonstrate the significant computational and notational ad-
vantages of Laplace  transforms. The techniques involve finding the transfer function
of the openloop  process, specifying the desired performance of the closedloop sys-
tem (process plus controller), and finding the feedback controller transfer function
that is required to do the job.

8.1
OPENLOOP  AND CLOSEDLOOP SYSTEMS

8.1.1 Openloop  Characteristic Equation

Consider the general openloop  system sketched in Fig. 8. la. The load variable Lt,,
enters through the openloop  process transfer function GLcsJ.  The manipulated vari-
able A4,,,  enters through the openloop  process transfer function GM(~).  The controlled
variable Yts,  is the sum of the effects of the manipulated variable and the load vari-
able. Remember, we are working with linear systems in the Laplace  domain, so
Superposition applies.

Figure 8.10 shows a specific example: the two-heated-tank process discussed in
Example 7.7. The load variable is the inlet temperature To.  The manipulated \,ariable
is the heat input to the first tank (21.  The two transfer functions GL(.~J  and Gblrs,  were
derived in Chapter 7.



(a) General

TO I

(s  + I)(%  + I)

Ql ,!
l/2160

(s + l)(% + 1) * T2

(b) Example
FIGURE 8.1
Openloop  process.

The dynamics of this openloop  system depend on the roots of the openloop  char-
acteristic equation, i.e., on the roots of the polynomials in the denominators of the
openloop transfer functions. These are the poles of the openloop  transfer functions.
If all the roots lie in the left half of the s plane, the system is openloop  stable. For
the two-heated-tank example shown in Fig. 8.lb,  the poles of the openloop  transfer
function are s = - 1 and s = - i, so the system is openloop  stable.

Note that the GL(~) transfer function for the two-heated tank process has a steady-
state gain with units of “F/OF.  The GMtsj transfer function has a steady-state gain
with units of OF/Btu/min.

8.1.2 Closedloop Characteristic Equation
and Closedloop Transfer Functions

Now let us put a feedback controller on the process, as shown in Fig. 8.2~.  The con-
trolled variable is converted to a process variable signal PV by the sensor/transmitter
element GT(~J.  The feedback controller compares the PV signal to the desired set-
point signal SP, feeds the error signal E through a feedback controller transfer func-
tion Gets),  and sends out a controller output signal CO. The controller output signal
changes the position of a control valve, which changes the flow rate of the manipu-
lated variable M.

Figure 8.26 gives a sketch of the feedback control system and a block diagram
for the two-heated-tank process with a controller. Let us use an analog electronic
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FIGURE 8.2
Closedloop system.

system with 4 to 20 mA control signals. The temperature sensor has a span of lOOoF,
so the GT  transfer function (neglecting any dynamics in the temperature measure-
ment) is

G
PV(,)  _ 16  mA

T(s)  = - - ~
Tw 100°F

(8.1)

The controller output signal CO goes to an ZIP transducer that converts 4 to 20 mA
to a 3- to 15psig  air pressure signal to drive the control valve through which steam
is added to the heating coil. Let us assume that the valve has linear installed char-
acteristics (see Chapter 3) and can pass enough steam to add 500,000 Btu/min  to
the liquid in the tank when the valve is wide open. Therefore, the transfer function
between Ql and CO (lumping together the transfer function for the ZIP transducer
and the control valve) is

G - Qw = 500,000 Btu/min
v(s) - CO(,) 16mA

(8.2)

Looking at the block diagram in Fig. 8.2a,  we can see that the output Y(,j  is
given by

Y = G(.s$  + Gms)M

But in this closedloop system, /WCs) is related to Yts):

(8.3)

M = Gv(,s,CO  = Gq,s&-(,s~~  = Gv(.s)G(.s)W’  - PV>
(8.4)

M = G\/,,,G&SP - GrI,s,Y)
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(b)  Example

FIGURE 8.2 (CONTINUED)
Closedloop system.

Combining Eqs. (8.3) and (8.4) gives

Y = GL(&  + GMM(~)Gv(~)Gc(~)(SP  - Gr(s,U

11  + G~cs,Gv(s)Gc(s)Gr(s)l  Y = GL($ + GM~.~~Gv( .s) Gas) SP

1 GL(~) IL.\ + G(s) G&c(s) 1
x-&YLsl  = . - - - sp,,,

Equation (8.5) gives the transfer functions describing the close&oop system, so these :
are closedloop transfer functions. The two inputs are the load ,!,,,,  and the setpoint

7 SP,,y,.  The controlled variable is Yfs).
-<

Note that the denominators of these closedloop $
transfer functions are identical. 2
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15 x A M I’I,K 8. I. The closedloop transfer functions for the two-heated-tank process can
be calculated from the openloop  process transfer functions and the feedback controller
transfer function. We choose a proportional controller, so Gco)  = Kc.  Note that the di-
mensions of the gain of the controller are mA/mA,  i.e., the gain is dimensionless. The
controller looks at a milliampere signal (PV) and puts out a milliampere signal (CO).

I “F/OF
GLw  = (s + I)(57 + 1)

GM(s) =
l/2160  “F/Btu/min

(s + I)(%  + I)

G(s) =
500,000 Btu/min

16mA

16mA
G ~T(s)  = 100°F

The closedloop transfer function for load changes is

T2-= GLW

To 1 + G~(s)Gv(s)Gc(s)G(s')

1 “F/OF

= (s + l)(% + 1)

1 + 1/2160”F/Btu/min
(s + 1)(5s + 1)

l”F/“F l”F/“F

= (s + 1)(5s + 1) + 5OOKJ216 = 5s2  + 6s + 1 + 500KJ216

The closedloop transfer function for setpoint  changes is

T2-= G~(s,Gv(s)Gc(s,

SP 1 + Gus)  Gvcs, Gc(s)G-(s)

l/2160 “F/Btu/min 500,000 Btu/min
(s + 1)(5s + 1) I(

16 mA !
WC)

=
l + l/2160 “F/Btu/min  5 0 0 , 0 0 0  Btu/min

[
(s + 1)(5s + 1) I( 16 mA )(Kc)(%)

.
50,000K,/216/16  “F/mA

= 5s2 + 6s + I + 5OOKJ216.

(8.6)

(8.7)

If we look at the closedloop transfer function between PV and SP, we must multiply the
above by Gr.

PV 500 Kc/2  16 mAImA
sp= 5s2 + 6s + 1 + 500KJ2 I6

(5.8)

Notice that the denominators of all these closedloop transfer functions are identical. No-
tice also that the steady-state gain of the closedloop servo transfer function PV/SP  is not
unity; i.e., there is a steady-state offset. This is because of the proportional controller.
We can calculate the PV/SP  ratio at steady state by letting s go to zero in Eq. (8.8 t.
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lim !TY -
( )

SOOK,./  I6 I
Ida SP - I + SOOK,./  = 216 + I

500K,.

Equation (8.9) shows that the bigger the controller gain, the smaller the offset. m

Since the characteristic equation of any system (openloop or closedloop) is the
denominator of the transfer function describing it, the closedloop characteristic equa-
tion for this system is

1 + G~(.s)Gv(.s)Gc(.s)G~(.s)  = 0 (8.10)

This equation shows that closedloop dynamics depend upon the process openloop
transfer functions (GM, Gv, and GT) and on the feedback controller transfer function
(Gc).  Equation (8.10) applies for simple single-input, single-output systems. We
derive closedloop characteristic equations for other systems in later chapters.

The first closedloop transfer function in Eq. (8.5) relates the controlled variable
to the load variable. It is called the closedloop regcdator  transfer function. The second
closedloop transfer function in Eq. (8.5) relates the controlled variable to the setpoint.
It is called the closedloop servo transfer function.

Normally we design the feedback controller Gets)  to give some desired closed-
loop performance. For example, we might specify the damping coefficient that we
want the closedloop system to have. However, it is useful to consider the ideal sit-
uation. If we could design a controller without any regard for physical realizability,
what would the idea1 closedloop regulator and servo transfer functions be? Clearly,
we would like a load disturbance to have no effect on the controlled variable. So the
ideal closedloop regulator transfer function is zero. For setpoint changes, we would
like the controlled variable to track the setpoint perfectly at all times. So the ideal
servo transfer function is unity.

Equation (8.5) shows that both of these could be achieved if we could simply
make Gets)  infinitely large. This would make the first term zero and the second term
unity. However, as we saw in Chapter 1 in our simulation example, stability limita-
tions prevent us from achieving this ideal situation.

Instead of considering the process, transmitter, and valve transfer functions sep-
arately, it is often convenient to combine them into just one transfer function. Then
the closedloop block diagram, shown in Fig. 8.3, becomes simple and is described

L

pet FIGURE 8.3
Simplified feedback loop.
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Y(s)  =
CL(s)1 + Gv(.s)Gc(.s) 1 L,.s,  t G/v(.s$k(.s)

1  + Gv(.s)Gc(.s) I yg (8.11)

This is the equation that we use in most cases because it is more convenient. Keep
in mind that the GM(~) transfer function in Eq. (8.11) is a combination of the pro-
cess, transmitter, and valve transfer functions. The closedloop characteristic equa-
tion is

I I

1 + G~(.s)Gc(.s)  = *I (8.12)

8.2
STABILITY

The most important dynamic aspect of any system is its stability. We learned in
Chapter 2 that stability is dictated by the location of the roots of the characteristic
equation of the system. In Chapter 7 we learned that the roots of the denominator of
the system transfer function (poles) are exactly the same as the roots of the charac-
teristic equation. Thus, for the system to be stable, the poles of the transfer function
must lie in the left half of the s plane (LHP).

This stability requirement applies to any system, openloop  or closedloop. The
stability of an openloop  process depends on the location of the poles of its openloop
transfer function. The. stability of a closedloop process depends on the location of
the poles of its closedloop  transfer function. These closedloop poles will naturally
be different from the openloop  poles because of the introduction of the feedback
loop with the controller. Thus, the criteria for openloop  and closedloop stability are
different. Most systems are openloop  stable but can be either closedloop stable or
unstable, depending on the values of the controller parameters. We will show that
any real process can be made closedloop unstable by making the gain of the feedback
controller large enough. There are some processes that are openloop  unstable. We
will show that these systems can usually be made closedloop stable by the correct
choice of the type of controller and its settings.

The most useful method for testing stability in the Laplace domain is direct
substitution. This method is a simple w,ay  to find the values of parameters in the
characteristic equation that put the system just at the limit of stability.

We know the system is stable if all the roots of the characteristic equation are
in the LHP and unstable if any of the roots are in the RHP. Therefore, the imaginary
axis represents the stability boundary. On the imaginary axis s is equal to some pure
imaginary number: s = io.

The technique consists of substituting io for s in the characteristic equation and
solving for the values of o and other parameters (e.g., controller gain) that satisfy.  the
resulting equations, The method can be best understood by looking at the t’olloi!ing
example.
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EXAMPLE 8.2. A three-CSTR system has an openloop  transfer function GA,,,)  relating
the controlled variable Cnjtsj  to the manipulated  variable Cnoo).

(8.13)

We want to look at the stability of the closedloop system with a proportional controller:
Cc($)  = K,. First, however, let us check the openloop  stability of this system. The open-
loop characteristic equation is the denominator of the openloop  transfer function set equal
to zero.

(s+1)3=.s3+332+3S+l  = o (8.14)

The roots of the openloop  transfer function are sI  = s2 = s3  = - 1. These all lie in the
LHP, so the process is openloop stable.

Now let us check for closedloop stability. The system is sketched in Fig. 8.4. The
closedloop characteristic equation is

I
1 + G&c(s) = 0 =  l+K’(s;l)l

s3  + 3s2  + 3s + 1 + $ = 0

(8.15)

Substituting s = io gives

-iw3 - 3w2  + 3io + 1 + % = 0
(8.16)

1 + $30 - w3) = 0 + io

Equating the real and imaginary parts of the left- and right-hand sides of the equation
gives two equations:

1 + % - 3w2  = 0 and 30 - w3 = 0

Therefore,

w2=3 * W=+J5 (8.17)

KC-zz8 3w2 - 1 = 3(3) - 1 3 K, = 64 (8.18)

cAD(s)

FIGURE 8.4
Three-CSTR svstem.
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The value of the gain at the limit of stability is 64. It is called the ultimate gairt  K,,. The  w
at this limit is the value of the imaginary part of.s when the roots lie right on the imaginary
axis. Since the real part of s is zero, the systcrn  will show a sustained oscillation with
this frequency w,, called the ultinznte,f~eqlretlc?! in radians per time. The period of the
oscillation is exactly the same as the ultimate period P,, that we defined in Chapter 2 in
the Ziegler-Nichols tuning method.

p,  = 2 (8.19)
0 N

w

EXAMPLE 8.3.  Suppose the closedloop characteristic equation for a system is

$s’  + 8s2 + 9.s  + I + K, = 0 (8.20)

To find the ultimate gain K, and ultimate frequency w,, we substitute io for s.

--giw’ - &J* + yiw + 1 + K, = 0
(8.21)

(~+K,-~w*)+~(-~w~+$‘w)=O+~O

Solving the resulting two equations in two unknowns gives

w, = J -? and Ku = 19.8 (8.22)
I

In Chapter 10 we show that we can convert from the Laplace  domain (Russian) to the
frequency domain (Chinese) by merely substituting io  for s in the transfer function
of the process. This is similar to the direct substitution method, but keep in mind that
these two operations are different. In one we use the transfer function; in the other
we use the characteristic equation.

8.3
PERFORMANCE SPECIFICATIONS

To design feedback controllers we must have some way to evaluate their effect on
the performance of the closedloop system, both dynamically and at steady state.

8.3.1 Steady-State Performance

The usual steady-state performance specification is zero steady-state error. We will
show that this steady-state performance depends on both the system (process and
controller) and the type of disturbance. This is different from the question of stability
of the system, which, as we have previously shown, is a function only of the system
(roots of the characteristic equation) and does not depend on the input.

The error signal in the Laplace  domain, E(,,,,  .is defined as the difference between
the setpoint Y[(“:  and the process output Y(.<).

FL(J) -- y;;; - y,, ) (8.23)
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Assuming that there is a change in the setpoint YE{ but no change in the load distur-
bance (L(,J = 0) and substituting for Yc,)  from Eq. (8.11) give

1

= 1 + Gu(s)Gc(.s)

To find the steady-state value of the error, we will use the final-value theorem from
Chapter 7.

E = lim Ef--*r (t)  = ~I_mobE’“‘I (8.25) I

Now let us look at two types of setpoint inputs: a step and a ramp.

A. Unit step input

1 1

’ 1 + GM&C(~) i 1
= li.,,

s-+0 11 + G&c(s) 1
Im-

If the steady-state error is to go to zero, the term l/(1  + GM(~)Gc(,J)  must go to zero
as s goes to zero. This means that the term G c(~)GMM(~J must go to infinity as s goes to
zero. Thus, Gc(~JGMM(~, must contain a l/s  term, which is an integrator. If the process
GM($)  does not contain integration, we must put it into the controller Gc(~). So we
add reset or integral action to eliminate steady-state error for step input changes in 1.
setpoint.

If we use a proportional controller, the steady-state error is

1 1 1=
1 + Gv(s)Gc(s) 1 + K, ZlZ2"'ZM

- plp2"'pN

where zi  = zeros of G‘M(~)
pi = poles of G/M(~)

Thus the steady-state error is reduced by increasing Kc, the controller gain.

B. Ramp input

E = lim
1 1 1

s 1
=s-o + G~~.s)Gc(.s))  1

If the steady-state error is to go to zero, the term I/s(  1 + GM(sjGC(sJ)  must go to zero .j
as s goes to zero. This requires that G ,-~,s~G~~~.r~ must contain a l/s’  term. Double m~$

e$
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integration is needed to drive the steady-state error to zero for a ramp input (to make
the output track the changing setpoint).

8.3.2 Dynamic Specifications

The dynamic performance of a system can be deduced by merely observing the loca-
tion of the roots of the system characteristic equation in the s plane. The time-domain
specifications of time constants and damping coefficients for a closedloop system can
be used directly in the Laplace  domain.

1. If all the roots lie in the LHP, the system is stable.
2. If all the roots lie on the negative real axis, we know the system is overdamped

or critically damped (all real roots).
3. The farther out on the negative axis the roots lie, the faster the dynamics of the

system will be (the smaller the time constants).
4. The roots that lie close to the imaginary axis will dominate the dynamic response

since the ones farther out will die out quickly.
5. The farther any complex conjugate roots are from the real axis, the more under-

damped the system will be.

There is a quantitative relationship between the location of roots in the s plane
and the damping coefficient. Assume we have a second-order system or, if it is of
higher order, assume it is dominated by the second-order roots closest to the imagi-
nary axis. As shown in Fig. 8.5, the two roots are sr  and ~2 and they are, of course,
complex conjugates. From Eq. (2.68) the two roots are

J .Ji-=--Fs1=--+1
7

5 J-i-$
s2 = ----1

7 7

T and 5 are the time constant and damping coefficient of the system. If the system is
openloop, these are the openloop  time constant and openloop  damping coefficient.

s plane

*a

FiGURE  8.5
Dominant second-order root in the s plane.

\
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if the system is closedloop, these are the closedloop time constant and closedloop
damping coefficient.

The hypotenuse of the triangle shown in Fig. 8.5 is the distance from the origin
out to the root ~1.

(8.27)

The angle (b  can be defined from the hypotenuse and the adjacent side of the’triangle.

(8.28)

Thus the location of a complex root can be converted directly to a damping coefficient
and a time constant. The damping coefficient is equal to the cosine of the angle
between the negative real axis and a radial line from the origin to the root. The
time constant is equal to the reciprocal of the radial distance  from the origin to the
root.

Notice that lines of constant damping coefficient are radial lines in the s plane.
Lines of constant time constant are circles.

8.4
ROOT LOCUS ANALYSIS

8.4.1 Definition

A root locus plot is a figure that shows how the roots of the closedloop characteristic
equation vary as the gain of the feedback controller changes from zero to infinity.
The abscissa is the real part of the closedloop root; the ordinate is the imaginary
part. Since we are plotting closedloop roots, the time constants and damping coef-
ficients that we pick off these root locus plots are all closedloop time constants and
closedloop damping coejkients.

The following examples show the types of curves obtained and illustrate sofie
important genera1 principles.

EXAMPLE 8.4. Let us start with the simplest of all processes, a first-order lag. We
choose a proportional controller. The system and controller transfer functions are

GmGc(s)  =

where K,, = steady-state gain of the openloop process

70 = time constant of the openloop process
K,  = controller gain
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The closedloop characteristic equation is

1 + Gqs)Gc(s)  = 0

&Xc
l+- =

7*s + 1
0

7,s + 1 + K,K, = 0

Solving for the closedloop root gives

s=- 1 + K,K,

70

FIGURE 8.6
Root locus for first-order
system.

(8.30)

(8.31)

There is one root and there is only one curve in the s plane. Figure 8.6 gives the root
locus plot. The curve starts at s = - l/r, when K, = 0. The closedloop root moves out
along the negative real axis as KC is increased.

For a first-order system, the closedloop root is always real, so the system can never
be underdamped or oscillatory. The closedloop damping coefficient of this system is
always greater than 1. The larger the value of controller gain, the smaller is the closedloop
time constant because the root moves farther away from the origin (remember, the time
constant is the reciprocal of the distance from the root to the origin). If we wanted a
closedloop time constant of $ro (i.e., the closedloop system is 10 times faster than the
openloop system), we would set KC equal to 9/K,. Equation (8.31) shows that at this
value of gain the closedloop root is equal to - lo/~,.

This first-order system can never be closedloop unstable because the root always lies
in the LHP. No real system is only first order. There are always small lags in the process,
in the control valve, or in the instrumentation that make all real systems of order higher
than first. n

EXAMPLE 8.5. Now let’s move up to a second-order system with a proportional con-
troller.

GM(~) =
1

(s + 1)(5s + 1)

The closedloop characteristic equation is

1 +-  Gw.&(s,
1

= O = l + (s + 1)(5s  + 1) Kc

5s' + 6s + 1 + K,. = 0

(8.32)
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KJO.5.~  + 1)

Ga~)Gw~)  = (s + , )(cJs  + 1 )

K,. = 30

Kc.=  0

“
-1

i” .
I s plane

+I

-CT-A--

s plane

- C X

--c

;s+ 1)(.5s+  l)(OSs+  1)

w

Poles X

zeros 0

s plane
Kc=
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FIGURE 8.7
Root locus CLIWCS.
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The quadratic formula gives the two closedloop roots:

.~ = -6 + Jw - (4)(5)(1 + Kc)
(2)(5)

(8.33)

The locations of these roots for varioug values of K, are shown in Fig. 8.7~.
When K, is zero, the closedloop roots are at s = - i and s = - 1. Notice that these

values of s are the poles of the openloop  transfer function. The root locus plot always
starts at the poles of the openloop  transfer function.

For K, between zero and :, the two roots are real and lie on the negative real axis.
The closedloop system is critically damped (the closedloop damping coefficient is 1) at
K, = f since the roots are equal. For values of gain greater than 8, the roots will be
complex.

s= -z?i$Jm (8.34)

As the gain goes to infinity, the real parts of both roots are constant at -5 and the
imaginary parts go to plus and minus infinity. Thus, the system becomes increasingly
underdamped. The closedloop damping coefficient goes to zero as the gain becomes
infinite.

However, this second-order system never becomes closedloop unstable since the
roots are always in the LHF?

Suppose we wanted to design this system for a closedloop damping coefficient of
0.707. Equation (8.28) tells us that

q5  = arccos 0.707 = 45”

Therefore, we must find the value of gain on the root locus plot where it intersects a 45”
line from the origin. At the point of intersection the real and imaginary parts of the roots
must be equal. This occurs when K, = s.  The closedloop time constant 7c of the system
-at this value of gain can be calculated from the reciprocal of the radial distance from the
origin.

(8.35)

m

E x A M PL E 8.6. Let us change the system transfer function from the preceding example
by adding a lead or a zero.

K,($  + 1)
Gw#%.o = (s + 1)(5s + 1)

The closedloop characteristic equation becomes

f

t

1 + Gw$&(.~,  = 1 +
Kc+  + 1)

(s + 1)(5s  + 1)

5s'+6+~s+K,+l=O
i 1

(8.36)
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The roots are

(8.37)

For low values of K,.  the term inside the square root will be positive, since the + 16 will
dominate; the two closedloop roots are real and distinct. For very large values of gain,
the Kz term will dominate and the roots will again be real. For intermediate values of K,
the term inside the square root will be negative and the roots will be complex.

The range of K, values that give complex roots can be found from the roots of

K,’  - 14K
4 c + 16 = 0 (8.38)

K,, = 28 - 12 &

Kc2  = 28-k 12,h
(8.39)

where &.I  = smaller value of Kc  where the square-root term is zero
Kc.2  = larger value of Kc where the square-root term is zero

The root locus plot is shown in Fig. 8.7b.
Note that the effect of adding a zero or a lead is to pull the root locus toward a more

stable region of the s plane. The root locus starts at the poles of the openloop  transfer
function. As the gain goes to infinity, the two paths of the root locus go to minus infinity
and to the zero of the transfer function at s = -2. We will find that this is true in general:
the root locus plot ends at the zeros of the openloop  transfer function.

The system is closedloop stable for all values of gain. The fastest-responding system
would be obtained with K, = Kc2,  where the two roots are equal and real. n

EXAMPLE s.7. Now let us add a pole or a lag, instead of a zero, to the system of Exam-
ple 8.5. The system is now third order.

GwGc(s)  =
KC

(s + 1)(5S + l)(fs + 1)

The closedloop characteristic equation becomes

1 + GwGcc,, =
KC

l+ (s + 1)(5S + l)($ + 1)

?s’ + 8s2  + !$s + 1 + K, = 02

(8.40)

(8.41)

We discuss how to solve for the roots of this cubic equation in the next section. The root
locus CLITL.~S  are sketched in Fig. 8.7~.  There are three curves because there are three
roots. The root locus plot starts at the three openloop  poles of the transfer function: -1,
-2, and - $.

The effect of adding a lag or a pole is to pull the root locus plot toward the unstable
region. The two cur\‘es that start at s = - 4 and s = - 1 become complex conjugates
and cur\‘t’  off into the RHP. Therefore, this third-order system is closedloop unstable
if K,. is grctuter  than K,, = 20. This was the same result that we obtained in Exam-
ple 8.3. I
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.

The preceding examples have illustrated a very important point: The higher the
order of the system, the worse the dynamic response of the closedloop system. The
first-order system is never underdamped and cannot be made closedloop unstable
for any value of gain. The second-order system becomes underdamped as gain is
increased but never goes unstable. Third-order (and higher) systems can be made
closedloop unstable. If you remember, these arc exactly the results we found in our
simulation experiments in Chapter I. Now we have shown mathematically why these
various processes behave the way they do.

One of the basic limitations of root locus techniques is that deadtime  cannot be
handled conveniently. TheJirst-or&r  fade approximation of deadtime  is frequently
used, but it is often not very accurate.

ps ~ 1 - (p)s

1 + ($)s
(8.42)

8.4.2 Construction of Root Locus Curves

Root locus plots are easy to generate for first- and second-order systems since the
roots can be found analytically as explicit functions of controller gain. For higher-
order systems things become more difficult. Both numerical and graphical methods
are available. Root-solving subroutines can be easily used on any computer to do the
job. The easiest way is to utilize some user-friendly software tools. We illustrate the
use of MATLAB  for making root locus plots.

A. Rules for root locus plots
There are several rules that enable engineers to quickly check the plots generated

by the computer.

1. The root loci start (K, = 0) at the poles of the system openloop  transfer function
Gqs)Gc(s)-

2. The root loci end (K, = ~0)  at the zeros of GM(S)Gc(s).
3. The number of loci is equal to the order of the system, i.e., the number of poles

of GM(~)  Cc(s)  -
4. The complex parts of the curves always appear as complex conjugates.
5. The angle of the asymptotes of the loci (as s -+ ~0)  is equal to

+ 180”
-N-M

where N = number of poles of GM(,~)G~(.~J
M = number of zeros of GM(SIG~(s)

Rules 1 to 4 are fairly self-evident. Rule 5 comes from the fact that at a point on the
root locus plot the complex number s must satisfy the equation

1 + Gv~~(s)Gc(.r)  = 0

GM(.s~GC~s~  = - 1 + i0 (8.13)
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Therefore, the argument of G,,,csjGc(s, on a root locus must always be

arg GA.,(.~JGc(~)  = arctan 3 = +rr (8.W

Now GM(,~JGc(,)  is a ratio of polynomials, Mth order in the numerator and Nth order
in the denominator.

bMsM  + bM-,s M-l
Glu(s)Gc(s,  =

+ . . -+b,s+bo

aNsN  + aN-lsN-’  + -” + als  + a()

On the asymptotes, s gets very big, so only the sN  and sM terms remain significant.

Putting s into polar form (s = IX?) gives

The angle or argument  of G~Q~~)GQ~)  is

lim [arg  GM~~)Gc(~)]  = -(N - A4)fJ
s-r=

Equation (8.44) must still be satisfied on the asymptote, and therefore, Q.E.D.,

(N - kf>e  = +7r

Applying Rule 5 to a first-order process (N = 1 and M = 0) gives asymptotes
that go off at 180” (see Example 8.4). Applying it to a second-order process (N = 2
and M = 0) gives asymptotes that go off at 90” (see Example 8.5). Example 8.6 has a
second-order denominator (N = 2),  but it also has a first-order numerator (M = 1).
SO this system has a “net order” (N - M) of 1, and the asymptotes go off at 180”.
Example 8.7 shows that the asymptotes go off at 60” since the order of the system is
third. *

B. Use of hIATLAB software

The commercial software MATLAB  makes it easy to generate root locus plots.
The Control Toolbox contains programs that aid in this analysis. We illustrate in the
following example the use of some simple MATLAB  programs to generate root LOCUS

plots. Similar programs will be used in Chapter 11 to compute frequency response
results.

E X A M PL E 8 .s. Our three-heated-tank process considered in Chapter 1 is an interesting
one to explore via root locus since it is third order. We use different types of feedback
controllers and different settings and see how the root loci change.

Process. The process is described in Section I .2.2. The temperature in the third tank T3
is controlled by a feedback controller by manipulating the heat input Qr  to the first tank-

*Rule 5 must be modified slightly’ for higher-order systems. See de Moivre’s theorem.
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The disturbance is a drop in inlet feed tcmpcrature  7’0  from 90°F to 70°F at time = 0
hours. Proportional and proportional-integral controllers are used. The ODES  describing
the system are

d7-I
VI c/,p---

dt
= Fc,,p(To - 7’1)  + QI

dT2
V2CpP- = Fc,,P(TI  - T2)

dt /

dT3
W,,Px = Fc,p(T2  - T3)

(8.46)

(8.47)

(8.48)

The numerical values of parameters are V, = 100 ft3, cp = 0.75 Btu/lb  OF,  p =
50 lb/ft3, and F = 1000 ft3/hr. The span of the temperature transmitter is 200°F. The
control valve has linear installed characteristics and when wide open passes steam at a
rate corresponding to a heat transfer rate .of  10 X lo6  B tu/hr.

Openloop process transfer function. These three ODES  are linear, so we do not have
to linearize. Converting to perturbation variables, Laplace transforming, and solving for
the transfer function between the controlled variable T3  and the manipulated variable Ql
give

GM(~) =
2.667 X 1O-5  “F/Btu/hr

(0.1s + 1)X
(8.49)

The transfer functions for the control valve and the temperature transmitter are

G
10 x lo6  Btu/hr

V(s)  = 16 mA

16 mA
G ~Tb) = 200°F

(8.50)

(8.5 1)

The closedloop characteristic equation is

1 + G~(s)Gv(s)Gr(s)Gc(s)  = 0

1.333 mA/mAG
I + (0.  Is + I)3 m)  = O

(8.52)

(8.53)

When a proportional controller is used,

G C(s) = K,

When a proportional-integral controller is used,

G
T/s+ 1

C(s)  -- K c - - - - = K,
s + l/7,

-0s s

This adds a lead (a zero at s = - l/7,)  and an integrator (a pole at s = 0) to the system.

Ultimate gain and frequency. Using a proportional controller, the closedloop charac-
teristic equation is a third-order polynomial.

1.333/c,
’ + (0.1s + I)3 = O

(8.54)
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70 Program “tetnlmrat.m  ” uses  Matlah  to muke  root locus plots
O/O ,f;lr  PI controllers with ZieSlcr-Nichols  and Tyrcus-Luyhen settings
70
% Form transfer function of openloop  process
num= 1.333;
den=conv([O. I l],[O. I I]):
den=conv(den, 10. I I]);
70 Given ultimute  gain and .frequency
kult=6.;
wuit=  17.32;
010 (Ultimate period is in “hours “; ultimate frequency is in r-ad&s/hour)
pult=2+3.14/6/wulr;
7o Calculate ZN and TL controller settings (k’s and ti’s)
kzn=kult/2.2:
tizn=pult/l.2;
ktl=kult/3.2;
titl=pult*2.2;
% Form transfer functions for total openloop  (process times controller)
7o  Ziegler-Nichols
nzn=conv(num,[tizn I ] ) ;
dzn=conv(den,[tizn 01);
70 Tyreus-Luyben
ntl=conv(num,(titl I ] ) ;
dtl=conv(den,[titl  O]);
% Define range of controller gains (500 values on log scale from 0.001 to 100)
kc=logspace(-3,2,500);
o/oo***********y********************
% P control
% Solve for roots of closedloop characteristic equation at all values of kc
% “sp”  are the real and imaginary parts
[sp,kc]=rlocus(num,den,kc);
plot(sp,  ‘0’)
axis( ‘square ‘)
axis ( [ -20  2  -I 211);
title(‘3 Heated Tanks; P control’)
xlabel ( ‘Real(s) ‘)
ylabel  ( ‘Imaginary(s) ‘)
% Draw lines for a 0.3 damping coejficient
70 and time constants for 0.08, 0.1 and 0.12 hours
wn=[l/O.08  l/O.1  l/0.12/;
sgrid(0.3, wn)
grid
text(- IS,  l9,[‘Ku=  ‘,num2str(kult)])
text(  - 1.5, /8,( ‘wu=  ‘,num2str(wult)])
text(-  19,16, ‘Damping Coeflcient  Line at 0.3’)
text(-  l9,15,  ‘Time Constant Lines at 0.08, 0. I and 0.12 hours’)
pause
% print -dps pjiglO8.ps
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TABLE  8 .  I  ( C O N T I N U E D )

q. PI  control: ZN reset time
Iszrz,kc]=rlocus(nzn,dzn,  kc);
plot(szn,  ‘0’)
axis(  ‘square ‘)
~XiS([  -20 2 - I 2 I]);
title(  ‘3 Heated Tanks: PI control with ZN ‘)
xlabel(  ‘Real(s)‘)
Flabel(  ‘Imaginary(s) ‘)
grid
sgrid(0.3,wn)
text(  - 15,19,[  ‘Kc= ’ ,num2str(kzn)])
text(-  15,18,[  ‘Reset= ’ ,num2str(tizn)])
text(  - 19,16, ‘Damping Coefjcient Line at 0.3 ‘)
text(  - 19,15, ‘Time Constant Lines at 0.08, 0. I and 0.12 hours’)
pause
% print -dps  -append p&/O8
7~ PI control: TL reset time
[stl,kc]=rlocus(ntl,dtl,kc);
plot(stl,  ‘0 ‘)
axis(  ‘square’)
axis([-20 2 -1 211);
grid
sgrid(0.3, wn)
text{ - 15,19,[  ‘Kc= ’ ,num2str(ktl)])
text(  - 15,  I&[  ‘Reset= ’ ,num2str(titl)])
text(-  19,16, ‘Damping Coefficient Line at 0.3’)
text(-19,15,  ‘Eme  Constant Lines at 0.08, 0.1 and 0.12 hours’)
title{‘3  Heated Tanks; PI control with TL ‘)
xlabel(‘Real(s)‘)
ylabel(  ‘Imaginary(s)‘)
pause
print -dps -append pjigIO8

Using the direct substitution method, we let s = iw in Eq. (8.54) and solve the resulting
two equations for the unknowns, K, and 0,.

K,,  = 6 w, = 17.3 rad/hr

MATLABprogrum. Table 8.1 gives a MATLAB program for generating root locus plots
for three controllers: a proportional controller, a PI controller using the Ziegler-Nichols
value for reset, and a PI controller using the Tyreus-Luyben value for reset.

The key MATLAB functions used in the program are briefly described here. More
details can be found by using the help feature.

1. num and den are defined as the numerator and denominator polynomials of the
transfer function. They are given as row vectors of the numerical coefficients mul-
tiplying the powers of s in decreasing order. For example, consider a denominator
polynomial

(3s + I)(.s + I) = 3s2  + 4s + I (8.55)

WP rsn d‘di”P  //PM = 13 4 1 1
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2. ~OIII~  is used to multiply Iwo polynomials together (from c.olrl,oliIlion).  We could cal-
culate the denominator polynomial given in Eq. (8.55) in the following way:

den = conv(l3  I], [ 1 I]) (8.56)

3. clxiscommands  deline  the type of axis we want. For root locus plots we usually like the
abscissa and ordinate scales to be the same, so we use the LI.YI’S(  ‘syntrr-r  ‘) command.

4. sgrid  draws lines of constant damping coefficient (radial lines from the origin) and
lines of constant time constant (circles around the origin).

Figure 8.8 gives the root locus plot for a proportional controller. The three curves
start at - 10 on the real axis (only one complex root is shown). Two of the loci go off at
60” angles and cross the imaginary axis at 17.3 (the ultimate frequency) when the gain
is 6 (the ultimate gain). For a closedloop damping coefficient of 0.3 (the radial line), the
closed-loop time constant is about 0.085 hours.

Figure 8.9 gives the root locus plot for a PI controller with a reset time r/ = 0.302
hours (the Ziegler-Nichols value), Now there are four loci. One starts at the origin

3 Heated Tanks; P &ntrol

16
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16

6

3 Heated Tanks; PI con&l  with ZN
I , 1 I

,..,....,,..,..._,_:..._....._...._,................................. . . . . . . . . . . . . . . . . . . . . . .

&ZN = 2.727 i

Reset =  0 .3023 !.L.,.._..,..,_,,.......~.,.,.,.........
‘Zeti=0.3
.. . . . . . . . . . . . . . . . . . . . . . . .

:
:

_’
:

,,........................................~..........~.:.....

:

:

FIGURE 8.9

-10
Real(s)

(because of the integrator giving a pole at s = 0) and goes to the zero at s = - l/7,.  For
a closedloop damping coefficient of 0.3, the closedloop time constant is about 0.1 hours,
which  is slower than the P controller  for 0% same damping coefficient.

Figure 8.10 gives the root Iocus plot for aPI  controller with reset time 71 = 0.798

hours (the Tyreus-Luyben value). The zero moves closer to the origin.
The time-domain transient responses for this process with the three controllers are

given in Fig. 3.16. a

8.5
CONCLUSION

Plotting the roots of the closedloop characteristic equation as functions of the con-
troller gain is an illuminating way to understand and visualize what happens to the
dynamics of a closedloop process as we change the controller tuning constants. These
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root locus plots provide valuable insights into how different types of processes, dif-
ferent types of controllers, and different values of controller tuning parameters affect
closedloop performance. They provide us with a quantitative method for controller
tuning.

PROBLEMS

8.1. Find the ultimate gain and period of the fourth-order system given below. The controller
is proportional and the system openloop  transfer function is

Gqs, =
(0.047)(  112)(2)(0.12)

(0.083s + 1)(0.017s  + 1)(0.432s + 1)(0.024x + 1)

8.2. Find the ultimate gain of the closedloop three-CSTR system with a PI controller:
(a) For ~-1 = 3.03.
(h)  For ~1 = 4.5.
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8.3. Find the ultirnate gain and period of a closedloop system with a proportional controller
and openloop  transfer function

I
GM(s)  =

(s + I)(%  + I)($ + 1)

8.4. Find the value of feedback controller gain that gives a closedloop damping coefficient
of 0.8 for the system with a proportional controller and openloop  transfer function

GM(~)  =
s+4

s(s + 2)

8.5. The liquid level h(,) in a tank is held by a PI controller that changes the flow rate F(,,  out
of the tank. The flow rate into the tank Fa(,)  and the level setpoint hs$  are disturbances.
The vertical cylindrical tank is 10 ft* in cross-sectional area. The transfer function of the
feedback controller plus the control valve is

F/,.I -- 1. 1 \ . ft3/min
G(s) = 2 = -Kc11 + 7,s J with units of ~

ft
-\“I \ - I

(a) Write the equations describing the openloop  system.
(b) Write the equations describing the closedloop system.
(c) Derive the openloop  transfer functions of the system:

G H(s) 4s)
M(s) = -

4s)
a n d  GL(~)  =  -

FWS)

I (d)  Derive the two closedloop transfer functions of the system:

H(s) 4s)- a n d  -
H(?$ FO(d

(e) Make a root locus plot of the closedloop system with a value of integral time r1 = 10
minutes.

(f) What value of gain K, gives a closedloop system with a damping coefficient of
0.707?  What is the closedloop time constant at this gain?

(g) What gain gives critical damping? What is the time constant with this gain?

8.6. Make a root locus plot of a system with openloop  transfer function

Gc(s)G~(s)  =
KC TDS  + 1

(s + 1)(5s + I)& + 1) (&-TDS  + 1)

(a) For 70 = 2.5.
(b) For +o = 5.
(C) For ?-D = 7.5.

8.7. Find the ultimate gain and period of the closedloop three-CSTR system with a PID con-
troller tuned at T/  = TD  = 1. Make a root locus plot of the system.

8.8. Make a root locus plot of a system with openloop  transfer function
(I( e-2s

Gc(s,G~(.s, = +

Use the first-order Pade approximstion  of a deadtime. Find the ultimate gain.

I
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8.9. Make a root locus plot for a process with the openloop  transfer function

3(-3s + I)

GMcs)  = (s + 1)(5s + I)

when a proportional feedback controller is used.

8.10. A two-tank system with recycle is sketched below. Liquid levels are held by propor-
tional controllers: Ft  = Ktht  and F2  = Kzh2.  Flow into the system FO and recycle
flow FR can be varied by the operator.
(a) Derive the four closedloop transfer functions relating the two levels and the two

load disturbances:

(b) Does the steady-state level in the second tank vary with the recycle flow rate FR?
Use the final-value theorem of Laplace  transforms.

FIGURE P&10

8.11. The system of Problem 8.3 is modified by using the cascade control system sketched
below.

/
Slave controller

-*s-.-T--  - -  -a

/
Master controller



CHAPTER x:  Laplace-Domain Analysis of Conventional Feedback Control Systems 2 9 1

(a) Find the value of gain K.,  in the proportional controller that gives a 0.707 damping
coefficient for the closedloop slave loop.

(6) Using this value of K,  in the slave loop, find the maximum closedloop-stable value
of the master controller gain KM. Compare this with the ultimate gain found without
cascade control in Problem 8.3. Also compare ultimate periods.

8.12. Repeat Problem 8.5 using a proportional feedback controller [parts (b) and (&I. Will
there be a steady-state error in the closedloop system for (a) a step change in setpoint
h”“’ or (b) a step change in feed rate C;,?

8.13. We would like to compare the closedloop dynamic performance of two types of re-
boilers.
(a) In the first type, there is a control valve on the steam line to the reboiler and a

steam trap on the condensate line leaving the reboiler. The flow transmitter acts
like a first-order lag with a &second time constant. The control valve also acts like
a &second lag. These are the only dynamic elements in the steam flow control loop.
If a PI flow  control is used with 71 = 0.1 minutes, calculate the closedloop time
constant of the steam flow loop when a closedloop damping coefficient of 0.3 is
used.

(b) In the second type of reboiler, the control valve is on the condensate line leaving
the reboiler. There is no valve in the steam line,.so the tubes in the reboiler see full
steam-header pressure.
Changes in steam flow are achieved by increasing or decreasing the area used for

condensing steam in the reboiler. This variable-area flooded reboiler is used in some
processes because it permits the use of lower-pressure steam. However, as you will
show in your calculations (we hope), the dynamic performance of this configuration is
distinctly poorer than direct manipulation of steam flow.

The steam flow meter still acts like a first-order lag with a 6-second time constant,
but the smaller control valve on the liquid condensate can be assumed to be instanta-
neous.

The condensing temperature of the steam is 300°F. The process into which the heat
is transferred is at a constant temperature of 2m”F.  The overall heat transfer coefficient
is 300 Btu/hr  “F  ft*.  The reboiler has 509 tubes that are 10 feet long with 1 inch inside

Steam

300°F '

FIGURE P8.13

r

200°F
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diameter. The steam and condensate are inside the tubes. The density of the condensate
is 62.4 lb,,,/ftJ,  and the latent heat of condensation of the steam is 900 Btu/lb,. Neglect
any sensible heat transfer.

Derive a dynamic mathematical model of the flooded-condenser system. Calcu-
late the transfer function relating steam flow rate to condensate flow rate. Using a PI
controller with T/  = 0.1 minute, calculate the closedloop time constant of the steam
flow control loop when a closedloop damping coefficient of 0.3 is used. Compare this
with the result found in (a).

8.14. A chemical reactor is cooled by both jacket cooling water and condenser cooling wa-
ter. A mathematical model of the system has yielded the following openioop transfer
functions (time is in minutes):

T
- 2 (OF/gpm)

E - s+l

T
- = loit 1 C’Fkpm)
FJ

The range of the temperature transmitter is lOO-200°F.  Control valves have linear trim
and constant pressure drop, and are half open under normal conditions. Normai con-
denser flow is 30 gpm. Normal jacket flow is 20 gpm. A temperature measurement lag
of 12 seconds is introduced into the system by the thermowell.

If a proportional feedback temperature controller is used, calculate the controller
gain Kc that yields a closedloop damping coefficient of 0.707, and calculate the closed-
loop time constant of the system when:
(a) Jacket water only is used.
(b) Condenser water only is used.
Derive the closedloop characteristic equation for the system when both jacket and con-
denser water are used.

Liquid

3
-

2

c Cooling
water to

L condenser

Vapor

Jacket
cooling

water
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Ratio3
t

Water

- FL

FW

Liquid-filled~decanter

IF.

FIGURE P&15

8.15. Oil and water are mixed together and then decanted. Oil flow rate is ratioed-@  water Y
flow rate Fw.  Interface is controlled by oil flow FL  from the decanter with a proportional
level controller. Water flow (FH)  from the decanter, which is liquid full, is on pressure
control (PI). Steady-state flow rates are

Oil 177.8 gpm
Water 448.2 gpm

Water and oil holdups in the decanter are each 1130 gallons at steady state,
(a) Derive the closedloop transfer function between FH and Fw  in terms of level  con-

troller gain K,.
(b) Determine the transient response of FH for a step change in FI.V  of 1 gpm when-~~~ mm~

level controller gain is 6.36 gpm/gal.

8.16. The openloop transfer function relating steam flow rate to temperature in a feed pre-7~
heater has been found to consist of a steady-state gain K, and a first-order lag withtime
constant rO.  The lag associated with temperature measurement is rm. A proportional-
only temperature controller is used.
(a) Derive an expression for the roots of the closedloop characteristic equation in terms

of the parameters TV,  K,,  T,,  and K,.
(b) Solve for the value of controller gain that will give a critically damped clos&loop

system when K, = 1, r0 = 10, and
(i) 7, = 1

(ii) 7m = 5

8.17. The liquid flow rate from a vertical cylindrical tank, 10 feet in diameter, is flow con-
trolled. The liquid flow into the tank is manipulated to control liquid level in the tank.
The control valve on the inflow stream has linear installed characteristics and can pass
1000 gpm when wide open, The level transmitter has a span of 6 feet of liquid. A
proportional controller is used with a gain of 2. Liquid density is constant.



294 PARTTWO:  Laplace-Domain Dynamics and Control
I

(a) Should the control valve be A0 or AC?
(b) Should the controller be reverse or direct acting?
(c) What is the dimensionless openloop  system transfer function relating liquid height

and inflow rate?
(d) Solve for the time response of the inflow rate to a step change in the outflow rate

from 500 to 750 gpm with the tank initially half full.

8.18. A process has a positive pole located at (-t- 1,O)  in the s plane (with time in minutes). The
process steady-state gain is 2. An additional lag of 20 seconds exists in the control loop.
Sketch root locus plots and calculate controller gains that give a closedloop damping
coefficient of 0.707 when:
(a) A proportional feedback controller is used.
(b) A proportional-derivative feedback controller is used with the derivative time set

equal to the lag in the control loop. The ratio of numerator to denominator time
constants in the derivative unit is 6.

8.19. A process has an openloop  transfer function that is a first-order lag with a time constant
r0 and a steady-state gain K,,. If a PI feedback controller is used with a reset time T!,
sketch root locus plots for the following cases:
(a> -J-o  < TI
@4 ‘IO = +n
tc> To > T/
What value of the T~/T*  ratio gives a closedloop system that has a damping coefficient
of 4 J5 for only one value of controller gain?

8.20. The openloop process transfer functions relating the manipulated and load variables
(M and L) to the controlled variable (Y) are first-order lags with identical time con-
stants (TV,>  but with different gains (KM and KL). Derive equations for the closedloop
steady-state error and the closedloop time constant for step disturbances in load if a
proportional feedback controller is used.

8.21. The liquid level in a tank is controlled by manipulating the flow out of the tank, using
a PI controller. The outflow rate is a function of only the valve position. The valve has
linear installed characteristics and passes 20 ft”/min  when wide open.

The tank is vertical and cylindrical with a cross-sectional area of 25 ft2 and a 2-ft
level transmitter span.
(a) Derive the relationship between the feedback controller gain K, and the reset time

TI  that gives a critically damped closedloop system.
(b) For a critically damped system with ~1 = 5 minutes, calculate the closedloop time

constant.

8.22. A process has an openloop  transfer function GM relating controlled and manipulated
variables that is a first-order lag TV,  and steady-state gain K,.  There is an additional
first-order lag r,,, in the measurement of the controlled variable. A proportional-only
feedback controller is used.

Derive an expression relating the controller gain K,. to the parameters T,,  TV,  and
K,, such that the closedloop system damping coefficient is 0.707. What happens to Kc
as T,,  gets very small or very large? What is the value of T,,, that provides the smallest
value of K,?
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8.23. A fixed-gain relay is to be used as a low base-level override controller on a distillation
column. The column is 7 ft in diameter and has a base-level transmitter span of 3 ft. The
density of the liquid in the base is 50 lb,/ft3. Its heat of vaporization is 200 Btu/lb,.

The reboiler steam valve has linear installed characteristics and passes 30,000
lb,/hr  when wide open. Steam latent heat is 1000 Btu/lb,.

There is a first-order dynamic lag of T minutes between a change in the signal to
the steam valve and vapor boilup. The low base-level override controller pinches the
reboiler steam valve over the lower 25 percent of the level transmitter span.

Solve for the value of gain that should be used in the relay as a function of T to
give a ciosedloop damping coefficient of 0.5 for the override level loop.

8.24. A process has openloop transfer functions

KM
GM  = (7,s + 1>*

KL
GL  = (T($  + 1)2

If a PI controller is used with r1 set equal to r,,  calculate:
(a) The value of controller gain that gives a closedloop damping coefficient of 0.707.
(b) The closedloop time constant, using this value of gain.
(c) The closedloop transfer function between the load variable and the output variable.
(d)  The steady-state error for a step change in the load variable.

8.25. Two tanks are connected by a pipe through which liquid can flow in either direction,
depending on the difference in liquid levels.

Fc  = &dh  - h2)

where KB is a constant with units of ft*/min.  Disturbances are the flow rates &t, F&
and F2.  The manipulated variable is the flow rate F1.  Cross-sectional areas of the ver-
tical cylindrical tanks are Al  and AZ.
(a) Derive the openloop  transfer function between the height of liquid in tank 1 (hi)

and FI.
(b) What are the poles and zeros of the openloop  transfer function? What is the open-

loop characteristic equation?
(c) If a proportional-only level controller is used, derive the closedloop characteristic

equation and sketch a root locus plot for the case where Al = AZ.

FIGURE P8.25
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8.26. A heat exchanger has the openloop  transfer function relating the controlled variable
temperature T to the manipulated variable steam flow rate S

5 (“F/l000  Ib,,/hr)
GMw  = (5s + l)(s + I)*

The span of the temperature transmitter is 50°F. The steam control valve has lin-
ear installed characteristics and passes 30,000 Ib,/hr  of steam when wide open. A
proportional-only temperature controller is used.
(a) What are the poles and zeros of the openloop  system? Is it openloop  stable?
(b) What is the minimum value of proportional band that gives a stable closedloop

system?
(c) Using a controller gain of 2, what is the closedloop servo transfer function relating

the temperature transmitter output PV to the setpoint SP?
(d) The openloop transfer function relating the controlled variable T to the load vari-

able feed flow rate F is

2(2s  + 1) (“F/100 gpm)
&a(s)  = (5s + l)(s + 1)2

Using a controller gain of 2, what is the closedloop regulatory transfer function
relating temperature T to feed flow F?

8.27. A process has the following openloop transfer function relating the controlled variable
Y and the manipulated variable M.

Y(s)  _ 1- -
4s) (s + 1>*

(a) What are the poles, zeros, and steady-state gain of this transfer function? Is the
process openloop stable or unstable?

(b) If a proportional controller is used, what is the closedloop characteristic equation?
(c) Derive a relationship between the roots of the closedloop characteristic equation

and the controller gain K,.
(d) Derive equations that show how the closedloop time constant rc~ and the closed-

loop damping coefficient & vary with controller gain.

8.28. For the process considered in Problem 8.27, the openloop  transfer function relating the
controlled variable and the load variable L is

Y(s)  _ 0.5- -
LW (s + 1)2

(a) If a proportional controller is used with a gain of 10.11, derive the closedloop trans-
fer function relating the controlled variable Y and the load variable L.

(b) What is the steady-state gain of this closedloop transfer function?

8.29. A two-stage evaporator is used to concentrate a brine solution of NaCl in water. Assume
that the NaCl is completely nonvolatile. Steam is fed into the reboiler in stage 1 at a rate
Vo (kg/hr). If we neglect sensible heat effects, this amount of steam will produce about
the same amount of vapor in stage 1 (V,  , kg/hr), and condensing V, in a reboiler in
stage 2 will produce about the same amount of vapor in stage 2 (V,, kg&). Thus, for a
simplified model we will assume that V.  = VI  = Vz = V. Since NaCl  is nonvolatile,
these vapors are pure water.
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Feed is introduced into stage 2 at a rate F (kg/hr)  and concentration z (wt fraction
NaCI). The concentrations of brine in the two stages are XI  and x2 (wt fraction NaCl).

The brine liquid (Lz) from stage 2 is pumped into stage I. The liquid from stage I is
the concentrated product (L,).  The liquid holdups in the two stages are WI  and W2  (kg)
and are assumed constant: WI  is controlled by L2,  and W2  is held by F. Production rate
is established by flow-controlling L,. The composition of brine in stage 1 is controlled
by manipulating steam flow rate Vo.

Vapor holdup is negligible. Assume that both evaporators are perfectly mixed.
Assume also that the dynamics of the reboilers and the condenser are instantaneous.
Feed flow rate F is constant.
(a) Derive the nonlinear ODE dynamic mathematical model of this simplified process.

(Hint: Your model should consist of two ODES.)
(6) Convert the model to two linear ODES.
(c) Using the following steady-state values of parameters, show that the linear model

is

dxi
dt=

-1.5x,  + 3.25~~  + (0.5

d-n
dt=

-3.25~~  -i- 5z  + (0.154

F = 10,000 kg/hr
z = 0.20
v = 3500 kg/hr

W,  = Wz  = 2000 kg

3 x 10-3)v

: 10-3)v

(d) Starting with the equations given above for the linear model, derive the openloop
transfer function that relates xl to V.

(e) If a composition transmitter is used with a span of 0.5 wt fraction and a controt
valve on the steam can pass 10,000 kg/hr  when wide open, draw a root locus ptot~
for the system if a proportional controller is used.

8.30. A process has the following openloop  transfer function relating the controlled variable
I’ and the manipulated variable M.

Yes)  _ 0.2e-7.4S- -
Ws) s

The deadtime  function eWDS can be approximated by a first-order Pade approximation.

e-D.y z

1 - (D/2)&s
1 + (D/2)s

(a) Using this approximation and assuming a proportional controller, what is the
closedloop characteristic equation?

(b) Sketch a root locus plot.
(c) Determine the ultimate gain and ultimate frequency.
(d) If the controller gain is set equal to 0.675, what are the closedloop damping coef-

ficient and closedloop time constant?

8.31. A process has an openloop  transfer function CM(,~) relating controlled and manipulated
variables that has a steady-state gain of 3 and two identical first-order lags in series
with 5-minute  time constants.
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8.33.

8.34.
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(b)

Using a proportional controller, derive the closedloop characteristic equation.
Sketch a root locus plot. Solve for the value of controller gain that gives a closed-
loop damping coefficient of 0.3. What is the closedloop time constant using this
controller gain?
Using a proportional-integral controller with reset time set equal to 5 minutes, re-
peat all the parts of (a),

A satellite tracking antenna has an angle 8 (radians) with the horizontal axis that must
change as the satellite travels across the sky. To accomplish this, a feedback controller
Gco) is used. The controller’s setpoint  is the desired angle tYsct, and its output is the
drive motor torque on the antenna Tc. Wind also exerts a torque on the antenna TD.
The equation of motion of the antenna is

Jti + 06 = Tc  + To

where 6 = time derivative of 8
8 = time derivative of 6
J = moment of inertia of the antenna
D = damping due to back emf of the DC motor driving the antenna

(a) Derive the openloop block diagram of the antenna. The inputs are TC and TD.  The
output is 0.

(b) The feedback controller has the transfer function -=-

GW) - Tc(s) -
E(s)

lOs+ 1
s+l

where E = tP’  - 13. The numerical values are D = 0.5 and J = 5. What are the $
closedloop damping coefficient and the closedloop time constant of the system? -2

338
The temperature of water in a tank is controlled by adding a stream of hot water into the ~-3
tank. A stream of cold water is also added to the tank. The transfer function between -4
tank temperature T and hot-water flow rate FH is

GM(s) =
84.2

= 0.98s+1 (°Fkpm)

Time is in minutes. The temperature transmitter has a range of 50-200°F  and has a --~$
dynamic response that can be approximated by a 0.5-min  first-order lag. The hot-water
control valve has linear installed characteristics and passes 4 gpm when wide open. Its
dynamic response is a IO-set first-order lag.

:i

Calculate the ultimate gain and ultimate frequency of a proportional temperature -j
controller.

The openloop transfer function G Moj  of a sterilizer relating the controlled variable tern- z
perature T(,,  and the manipulated variable steam how  rate .Fscs)  is a gain K, = 2 (with 3
units of mA/mA  when transmitter and valve gains are included), a first-order lag with e
time constant T~  = 1 minute, and an integrator in series.
(a) Calculate the gain K,.  of a proportional feedback controller that gives a closedloop :

damping coefficient equal to 0.707. 2
(b) Calculate the closedloop time constant when this value of gain is used.
(c) Sketch a root locus plot for this system when a P-only controller is used. $
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(d) Sketch several root locus plots for this process when a PI controller is used for
several values of reset T[, starting with very large values and then reducing reset
toward T/  = I minute.

(e) Calculate the gain K, of a proportional-derivative (PD) feedback controller that
gives a closedloop damping coefficient equal to 0.707 when used to control this
process.

G
s+l

C(.v) = Kc7
p+  1

(f) Compare the closedloop time constant obtained in part (e) using a PD controller
with that determined in part (b) using a P-only controller.

8.35. A process has an openloop  transfer function GM~.~,  relating the controlled variable Yes)  to
the manipulated variable MC,, that consists of a steady-state gain of -2 mol%/gpm and
two first-order lags in series with time constants of 2 and 10 minutes. A composition
transmitter witti a gain of 0.1 mA/mol%  is used. The control valve gain is 25 gpm/mA.
(a) What are the poles and zeros of the openloop  process? Is it openloop  stable?
(b) Solve for the openloop  response of the process to a unit step change in the manip-

ulated variable; i.e., solve analytically for y(,).
(c) If a proportional feedback controller is used with a value of K, = 3.8, derive the

closedloop transfer function relating the output signal from the composition trans-
mitter (PV) to the controller setpoint signal (SP).

(d) What are the poles and zeros of the closedloop system? Is it closedloop stable? Is
it overdamped or underdamped?

(e) Solve for the closedloop response of the PV signal for a unit step change in the SP
signal.

8.36. The openloop  transfer function between the controlled variable (tray 4 temperature)
and the manipulated variable (steam flow rate) is

7-4(s)GMcs)  =  - =
3 x 1o-3

Fs(.v) (10s + 1)(2S + 1) (OF/lb  steam/hr)

Time constants are in minutes. The steam control valve has linear installed characreris-
tics and passes 50,000 Ib/hr when wide open. The span of the temperature transmitter
is 200°F. The temperature sensor has a dynamic first-order lag of 30 seconds.
(a) Calculate the ultimate gain and ultimate frequency if a proportional controller is

used. Sketch a root locus plot.
(b) Calculate the ultimate gain and ultimate frequency if a PI controller is used ivith a

reset time of 1 minute. Sketch a root locus plot.

8.37. A control system is needed to maintain the desired “roll attitude” of a space station.
The openloop  transfer function relating controlled variable 6 (angle of rotation from
the horizontal, in degrees) to the manipulated variable M (fuel flow to the thruster jets
on the outside of the space station shell, in kg/set)  is a gain (5”/kg/sec) in series with
two integrators. This transfer function is derived from an angular force balance on the
space station. A roll-attitude sensor/transmitter has a span of 90”. The maximum flop
rate through the control valve to the thrusters is 2 kg/set.
(CI)  Can a proportional controller yield a closedloop-stable system‘? Explain your an-

swer using a.root  locus plot.
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8.38.

(b)

Cc)

Sketch a root locus plot to show how a PD controller can be used to give a closed- i
loop stable system.

G(s)  = Kc
q)s+  1

O.lTgs+  I

If a ho of 1’0 seconds is used, calculate the value of controller gain Kc  that gives $/
an effective closedloop damping coefficient of 0.3. [Hint: For an underdamped

.-j
0

system, the roots of a cubic characteristic equation must have one real root (st  =
al) and two complex-conjugate roots (~2 = (~2  + io2 and s3  = (~2  - iw2). This -
means that the characteristic equation is -3

:ij
(s-a,)(s-a2+ iw2)(s  - a2 - iw2)  = 0 3

Thus, there are three unknowns: (Y I, (~2, and 02. So you need three equations.]

3
A process has the following openloop transfer function relating controlled and manip-
mated  variables.

‘1
3
-2

GM(s) = xw (-5.339 x lo-4)(s + 1)_
4s)

(o.3838s  + l)(l. 121s + 1) (mole fraction Almollmin)

The maximum flow rate of recycle R through a control valve is 200 mol/min,  and the
control valve has linear installed characteristics. The composition transmitter measur-
ing xp has a span of 0.20 mole fraction component A and has a dynamic first-order irtg
of 1 minute.
(a) What is the closedloop characteristic equation of the system if a proportional con-

troller is used?
(b) Find the value of controller gain KC that gives a closedloop damping coefficient-~

of 0.3. --’
(c) What is the closedloop time constant?

-q ?
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Laplace-Domain Analysis of
Advanced Control Systems

In the last chapter we used Laplace-domain techniques to study the dynamics and
stability of simple closedloop control systems. In this chapter we apply these same
methods to more complex systems: cascade control, feedforward control, openloop-
unstable processes, and processes with inverse response. We also discuss an altema-
tive way to look at controller design that is called “model-based” control.

The tools used in this chapter are those developed in Chapters 7 and 8. We use
transfer functions to design feedforward controllers or to develop the characteristic
equation of the system and to find the location of its roots in the s plane.

9.1
CASCADE CONTROL

Cascade control was discussed qualitatively in Section 4.2. It employs two control
loops; the secondary (or “slave”) loop receives its setpoint from the primary (or
“master”) loop. Cascade control is used to improve load rejection and performance
by decreasing closedloop time constants.

We can apply cascade control to two types of process structures. If the manipu-
lated variable affects one variable, which in turn affects a second controlled variable,
the structure leads to series cascade control. If the manipulated variable affects both
variables directly, the structure leads to parallel cascade.

9.1.1 Series Cascade

Figure 9. la shows an openloop  process in which two transfer functions Gi and G2  are
connected in series. The manipulated variable A4 enters Gi and produces a change
in Yt  . The Yt variable then enters G2  and changes Y2.

301
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(a) Openloop  process

(bI) Conventional feedback control

Secondary
controller
(slave)

Primary
controller
(master)

(c) Series cascade

(d) Reduced block diagram

(q) Example 9.1

FIGURE 9.1
Series cascade. (a) Openloop
process. (b) Conventional
feedback control. (c) Series
cascade. (d) Reduced block
diagram. (e) Example 9.1.
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Figure 9. lb shows the conventional feedback control system, where
controller senses the controlled variable Y2  and changes the manipulated
M. The closedloop characteristic equation for this system was developed
ter 8.

1 + G(s,G(s)Gc(s)  = 0

a single
variable
n Chap-

cw

Figure 9. lc shows a series cascade system. There are now two controllers. The
secondary controller Get adjusts 44  to control the secondary variable Yt . The setpoint
signal YTt to the Get controller comes from the primary controller; i.e., the output of
the primary controller Gc~ is the setpoint for the Gcr controller. The Gc2 controller
setpoint is Yr’ .

The closedloop characteristic equation for this system is nut the same as that
given in Eq. (9.1). To derive it, let us first look at the secondary loop by itself. From
the analysis presented in Chapter 8, the equation that describes this closedloop sys-
tem is

Y, = GGCI set

1 + GGCI
Yl

So to design the secondary controller Gel we use the closedloop characteristic equa-
tion

1 + GIGcl  = 0 (9.3)

Next we look at the controlled output variable Y2.  Figure 9. Id shows the reduced
block diagram of the system in the conventional form. We can deduce the closed-
loop characteristic equation of this system by inspection.

1 +GzGCI(1  +GzGcr)=  0

However, let us derive it rigorously.

Y2  = G2YI

Substituting for Yt from Eq. (9.2) gives

Y2  = G2 GIGCI  pet
1 + GGcl

1

But Yyt is the output from the Gc2  controller.

Yyt = GC2(Yrr  - Y2)

Combining Eqs. (9.6) and (9.7) gives

Y2  = c,( 1 +C$+2V;t

Y+ + WCZ(~ pz;c,)]  = G2Gc2JI +“z;c,)Y;’

-

(9.4)

(9.5)

(9.6)

(9.7)

Y2)
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Rearranging gives

G2Gc2  (, :$,,)
+-(1 :::c,)i

y ii”’ (9.8)

So Eq. (9.4) gives the closedloop characteristic equation of this series cascade sys-
tem. A little additional rearrangement leads to a completely equivalent form:

Y2 =
GGGCIGCI

1 + GGciU + GGcd
YF (9.9)

An alternative and equivalent closedloop characteristic equation is

1 + G,Gc,(l  + G2GC2)  = 0 (9.10)

The roots of this equation dictate the dynamics of the series cascade system. Note that
both of the openloop  transfer functions are involved as well as both of the controllers.
Equation (9.4) is a little more convenient to use than Eq. (9.10) because we can
make conventional root locus plots, varying the gain of the Gc~ controller, after the
parameters of the G~1 controller have been specified.

The tuning procedure for a cascade control system is to tune the secondary con-
troller first and then tune the primary controller with the secondary controller on au-
tomatic. As for the types of controller used, we often use a proportional controller in
the secondary loop. Since it has only one tuning parameter, it is easy to tune. There
is no need for integral action in the secondary controller because we donlt care if
there is offset in this loop. If we use a PI primary controller, the offset in the primary
loop will be eliminated, which is our control objective.

EXAMPLE 9.1. Consider the process with a series cascade control system sketched in
Fig. 9.le. A typical example is a secondary loop in which the flow rate of condensate
from a flooded reboiler is the manipulated variable M, the secondary variable is the flow
rate of steam to the reboiler, and the primary variable is the temperature in a distillation
column. We assume that the secondary controller Gct and the primary controller Cc2
are both proportional only.

In this example

G Cl = KI cc2 = K2

G, =
1

c;s  + l)(S + 1)
G2 = -ii--

5s + 1

Conventionalcontrol. First we look at a conventional single proportional controller (K,)
that manipulates M to control YFl. The closedloop characteristic equation is

1

’ + ($s + l)(S + I)(%  + 1)
Kc = 0

;.s’  + 8s’  -t +s + 1 + K, = 0 (9.12)

To solve for the ultimate gain and ultimate frequency, we substitute io for .i.
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-iiw7 - 80~  + ~LJw  + I + K,. = 0
(9.13)

(-8~~ + I + K,.)  + i(  +J - ;u3) = 0 + io

Solving the two equations simultaneously for the two unknowns gives

K =?t?u 5 and w, =

Designing the secondary (slave) loop. We pick a closedloop damping coefficient spec-
ification for the secondary loop of 0.707 and calculate the required value of Ki.  The
closedloop characteristic equation for the slave loop is

1 -t K,
1

- 0 =  ls2+l~+1+K
(is + l)(s + 1) - * 2

I (9.14)

Solving for the closedloop roots gives

s=-$tiiJm (9.15)

To have a damping coefficient of 0.707, the roots must lie on a radial line whose an-
gle with the real axis is arccos(0.707) = 45”. See Fig. 9.2~. On this line the real and
imaginary parts of the roots are equal. So for a closedloop damping coefficient of 0.707

;=+Jm  3 K,=J4
(9.16)

Now the closedloop relationship between Y1 and Ypt  is

1 /5\

Y,  =
GIGI

1 + G&q
ys,t  = (is + l)(s  + l&d

1 5

0

yy’

l+ (is + l)(S + 1) z

Y, = s
s* + 3s + ; ys,t

(9.17)

(9.18)

Designing the primary (master) loop. The closedloop characteristic equation for the
master loop is

l+-(l:g)= l+(~)(s2+js+p)=0
(9.19)

5s3 + 16s2  + ys + ; + ;K2  = 0 (9.20)

Solving for the ultimate gain K,  and ultimate frequency w, by substituting iw for s gives

K, = 30.8 co,, = ,/5.1  = 2.26

It is useful to compare these values with those found for a single conventional control
loop, K, = 19.8 and w, = 1.61. We can see that cascade control results in higher con-
troller gain and a smaller closedloop time constant (the reciprocal of the frequency).
Therefore, the system will show faster response with cascade control than with a single
loop. Figure 9.2b gives a root locus plot for the primary controller with the secondary
controller gain set at i. Two of the loci start at the complex poles s = - $ 5 ii  that
come from the clo;edloop  secondary loop. The other curve starts at the pole s = - i. n
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Im

Kc=0

-2 -1

(a) Root locus for secondary loop

J

K2=0

X,=0

(6) Root ldcus  for primary loop

Im

I s plane

- Re
\

f

I‘Ku= 30.8

s plane

1

- Re

FIGURE 9.2
(n) Root locus for secondary loop.
(b) Root locus for primary loop.
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9.1.2 Parallel Cascade

Figure 9.3~  shows a process where the manipulated variable affects the two con-
trolled variables Yt  and Y2  in parallel. An important example is in distillation col-
umn control where reflux flow affects both distillate composition and a tray temper-
ature. The process has a parallel structure, and this leads to a parallel cascade control
system.

If only a single controller Gc~ is used to control Yz by manipulating M, the
closedloop characteristic equation is the conventional

1 + G&m(s)  = 0 (9.21)

(a) Openloop  process

(b) Parallel cascade process

w G,

(~1  Reduced block diagram

FIGURE 9.3
Parallel cascade. (a) Openloop
process. (b)  Parallel cascade
control. (c)  Reduced block
diagram.
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If, however, a cascade control system is used, as sketched in Fig. 9.36, the closedloop
characteristic equation is not that given in Eq. (9.21). To derive it, let us start with
the secondary loop.

YI  =  G,M  =  GIGc,(YF’  - YI)

Y, = GIGCl  pet

1 + GGCI
i

(9.22)

(9.23)

Combining Eqs. (9.22) and (9.23) gives the closedloop relationship between M
and UT”‘.

y ,se t  = GCI set

1 + GIGI
Yl (9.24)

Now we solve for the closedloop transfer function for the primary loop with the
secondary loop on automatic. Figure 9.3~  shows the simplified block diagram. By
inspection we can see that the closedloop characteristic equation is

(9.25)

Note the difference between the series cascade [Eq. (9.4)]  and the parallel cascade
[Eq. (9.25)]  characteristic equations.

9.2
FEEDFORWARD CONTROL

Most of the control systems we have discussed, simulated, and designed thus far
in this book have been feedback control devices. A deviation of an output variable
from a setpoint  is detected. This error signal is fed into a feedback controller, which
changes the manipulated variable. The controller makes no use of any information
about the source, magnitude, or direction of the disturbance that has caused the output
variable to change.

The basic notion of feedforward control is to detect disturbances as they enter
the process and make adjustments in manipulated variables so that output variables
are held constant. We do not wait until the disturbance has worked its way through
the process and has upset everything to produce an error signal. If a disturbance
can be detected as it enters the process, it makes sense to take’immediate action to
compensate for its effect on the process.

Feedforward control systems have gamed wide acceptance in chemical engi-
neering in the past three decades. They have demonstrated their ability to improve
control, sometimes quite spectacularly. The dynamic responses of processes that
have poor dynamics from a feedback control standpoint (high-order systems or SYS-

terns with large deadtimes or inverse response) can often be greatly improved by
using feedforward control. Distillation columns are one of the most common ap-

plications of feedforward control. We illustrate this improvement in this section by
comparing the responses of systems using feedforward control with systems using
conventional feedback control when load disturbances occur.
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Feedforward control is probably used more in chemical engineering systems
than in any other field of engineering. Our systems are often slow-moving, nonlinear,
and multivariable, and contain appreciable deadtime. All these characteristics make
life miserable for feedback controllers. Feedforward controllers can handle all these
with relative ease as long as the disturbances can be measured and the dynamics of
the process are known.

9.2.1 Linear Feedforward Control

A block diagram of ,a simple openloop  process is sketched in Fig. 9.4~.  The load
disturbance LQJ and the manipulated variable Mts, affect the controlled variable YQJ.
A conventional feedback control system is shown in Fig. 9.4b.  The error signal I?(,)
is fed into a feedback controller Gccs) that changes the manipulated variable MC,).

Figure 9.4~  shows the feedforward control system. The load disturbance L+)  still
enters the process through the GLqs) precess transfer function. The load disturbance
is also fed into a feedforward control device that has a transfer function GF(~).  The
feedforward controller detects changes in the load Lt,, and adjusts the manipulated
variable Mt,).

Thus, the transfer function of a feedforward controller is a relationship between
a manipulated variable and a disturbance variable (usually a load change).

G
A 4

F(s) = z =
0 (

manipulated variable
disturbance 1

(9.26)
(4 Y constant

To design a feedforward controller, that is, to find GF(~),  we must know both GL(~)
and GM(~).  The objective of most feedforward controllers is to hold the controlled
variable constant at its steady-state value. Therefore, the change or perturbation in
Yes) should be zero. The output Yc,) is given by the equation

Y(s)  = G~(s&(s)  + %(s,M(s, (9.27)

Setting Yes,  equal to zero and solving for the relationship between &Qs)  and L+)  give
the feedforward controller transfer function.

(9.28)

EXAMPLE 9.2. Suppose we have a distillation column with the process transfer func-
tions GMM(,~)  and GLEN,  relating bottoms composition xg to steam flow rate F, and to feed
flow rate FL.

=  GM(s)  =
KM

T-MS+  1

=  CL(S)  =
KL

T/g  + I

(9.29)

All these variab1e.s  are perturbations from steady state. These transfer functions could
have been derived from a mathematical model of the column or found experimenrally.
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(a) Openloop

= GM(s)

Y(S)
c

(6) Feedback control

(c) Feedforward control

(4 Combined feedforward/feedback  control

FIGURE 9.4
Block diagrams. (a) Openloop. (b) Feedback control. (c) Feed-
forward control. (d) Combined feedforward/feedback control.

We want to use a feedforward controller GF(~) to make adjustments in steam flow to
the reboiler whenever the feed rate to the column changes, so that bottoms composition
is held constant. The feedforward controller design equation [Eq. (9.28)] gives

(&) = 23 z

i !

- KLI(q,S  + 1) -z‘&Qfs+  1ZZ-
G

(19.30)
kf (s) KMI(7M.s  + 1) KM  TLS + I

The feedforward controller contains a steady-state gain and dynamic terms. For this sys-

tem the dynamic element is a first-order lead-lag. The unit step response of this lead-lag
is an initial change to a value  that is (- KLIKM)(~M/~L),  followed by an exponential rise
or decay to the final steady-state value - KL,IKM. 8
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The advantage of feedforward control over feedback control is that perfect con-
trol can, in theory, be achieved. A disturbance produces no error in the controlled
output variable if the feedforward controller is perfect. The disadvantages of feed-
forward control are:

1. The disturbance must be detected. If we cannot measure it, we cannot use feed-
forward control. This is one reason feedforward control for throughput changes is
commonly used, whereas feedforward control for feed composition disturbances
is only occasionally used. The former requires a flow measurement device, which
is usually available. The latter requires a composition analyzer, which is often not
available.

2. We must know how the disturbance and manipulated variables affect the process.
The transfer functions GL($)  and GM(~)  must be known, at least approximately. One
of the nice features of feedforward control is that even crude, inexact feedforward
controllers can be quite effective in reducing the upset caused by a disturbance.

In practice, many feedforward control systems are implemented by using ratio
control systems, as discussed in Chapter 4. Most feedforward control systems are
installed as combined feedforward-feedback systems. The feedforward controller
takes care of the large and frequent measurable disturbances. The feedback controller
takes care of any errors that come through the process because of inaccuracies in the
feedforward controller as well as other unmeasured disturbances. Figure 9.4d  shows
the block diagram of a simple linear combined feedforward-feedback system. The
manipulated variable is changed by both the feedforward controller and the feedback
controller.

For linear systems the addition of the feedforward controller has no effect on
the closedloop stability ,of  the system. The denominators of the closedloop transfer
functions are unchanged. ,

With feedback control:

Y(s) = Gw ‘G(s)  G(s)
1 + G&c(s)

Lw  +
1 + G~(s)Gc(s)

pet
(s)

With feedforward-feedback control:

Y(s) =
GL(~)  + G(s)Gqs)

4s)  +
GM(~)  G(s)

1 + %(s)Gc(s) 1 + Gw(s)Gc(s) yss”,’

(9.3 1)

(9.32)

In a nonlinear system the addition of a feedforward controller often permits tighter
tuning of the feedback controller because it reduces the magnitude of the distur-
bances that the feedback controller must cope with.

Figure 9.5a shows a typical implementation of a feedforward controller. A dis-
tillation column provides the specific example. Steam flow to the reboiler is ratioed
to the feed flow rate. The feedforward controller gain is set in the ratio device. The
dynamic elements of the feedforward controller are provided by the lead-lag unit.

Figure 9.5b  shows a combined feedforward-feedback system where the feed-
back signal is added to the feedforward signal in a summing device. Figure 9.5~. ^ . . . . , . I 1 I ~--  AC-
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Feed

1
R a t i o  +I

Ratio1
set _I---.-------

Dynamic
elements

Steady-state
gain
element

Reboiler

Column

(a) Feedforward control

Feed

Lead-lag

Feedforward
Ratio

s i g n a l  \

Summer

Ratio
set Column

I
I, /I signal
I, I/ I

Steam flow

(h) Feedforward-feedback control with additive signals

FIGURE 9.5
Feedforward systems.
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Lead-lag 1

# I

Steam

Column

3

(c) Feedforward-feedback control with feedforward gain modified

FIGURE 9.5 (CONTINUED)
Feedforward systems.

feedforward controller gain in the ratio device. Figure 9.6 shows a combined
feedforward-feedback control system for a distillation column where feed rate dis-
turbances are detected and both steam flow and reflux flow are changed to hold
constant both overhead and bottoms compositions. Two feedforward controllers are
required.

Figure 9.7 shows some typical results of using feedforward control. A first-
order lag is used in the feedforward controller so that the change in the manipulated
variable is not instantaneous. The feedforward action is not perfect because the dy-
namics are not perfect, but there is a significant improvement over feedback control
alone.

It is not always possible to achieve perfect feedforward control. If the GM(,)
transfer function has a deadtime  that is larger than the deadtime  in the GL(~)  transfer
function, the feedforward controller will be physically unrealizable because it re-
quires predictive action. Also, if the GM(~) transfer function is of higher order than
the GL(~)  transfer function, the feedforward controller will be physically unrealizable
[see Eq. (9.28)].

9.2.2 Nonlinear Feedforward Control

There are no inherent linear limitations in feedforward control. Nonlinear feedfor-
ward controllers can be designed for nonlinear systems. The concepts are illustrated
in Example 9.3. r.
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Feed

FIGURE 9.6
Combined feedforward-feedback system with two controlled variables.

EXAMPLE 9.3. The nonlinear ODES  describing the constant-holdup. nonisothermal
CSTR system are

de/i-=
dt

$CAO  - CA) - C&w-E’RT (9.33)

dT
dt=v

$0 - T) - (--+,cM-~‘~~ - ($$(I  - T,> (9.34)

Let us choose a feedforward control system that holds both reactor temperature T
and reactor concentration CA  constant at their steady-state values, T and CA.  The feed
flow rate F and the jacket temperature TJ  are the manipulated variables. Disturbances
are feed concentration CAO  and feed temperature TO.

Noting that we are dealing with total variables now and not perturbations, the feed-
forward control objectives are

c A(f) = c, and Tct, = r

Substituting these into Eqs. (9.33) and (9.34) gives

(9.35)
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Feedforward
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Feedback
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* Time

FIGURE 9.7
Feedforward control performance for load disturbance.

dT
F(r)dt  = 0 = +Tot,)  - T) -- (-&-)cJ  - ($-JF - 73  -?9.37)

Rearranging Eq. (9.36) to find F,,,,  the manipulated variable, in terms of the disturbance
CAO(~)  gives the nonlinear feedforward controller relating the load variable CA0  to the
manipulated variable F.

- -

F(r) =
CAkV

CAO(r) - c*
(9.38)

The relationship is hyperbolic, as shown in Fig. 9.8. Feed rate must be decreased as feed
concentration increases. This increases the holdup time, with constant volume, so that
the additional reactant is consumed. Equation (9.38) tells us that feed flow rate does not
have to be changed when feed temperature TO changes.

Substituting Eq. (9.38) into Eq. (9.37) and solving for the other manipulated variable
TJ  give

C(I) =T+ C,(T - TO(l)>
cAO(r) - CA 1 (9.39)

This is a second nonlinear feedforward relationship that shows how cooling-jacket tem-
perature TJ(,) must be changed as both feed concentration CAocr)  and feed temperature
To(,) change. Notice that the relationship between TJ  and CA0  is nonlinear, but the rela-
tionship between TJ and To is linear. a
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controller

Feed concentration CAO(,)

FIGURE 9.8
Nonlinear relationship between feed rate and feed concentration.

The preceding nonlinear feedforward controller equations were found analy-
tically. In more complex systems, analytical methods become too complex, and
numerical techniques must be used to find the required nonlinear changes in ma-
nipulated variables. The nonlinear steady-state changes can be found by using the
nonlinear algebraic equations describing the process. The dynamic portion can often
be approximated by linearizing around various steady states.

9.3
OPENLOOP-UNSTABLE PROCESSES

We remarked earlier in this book that one of the most interesting processes that chem-
ical engineers have to control is the exothermic chemical reactor. This process can
be openloop  unstable.

Openloop instability means that reactor temperature will take off when there is
no feedback control of cooling rate. It is easy to visualize qualitatively how this can
occur. The reaction rate increases as the temperature climbs and more heat is given
off. This heats the reactor to an even higher temperature, at which the reaction rate
is still faster and even more heat is generated.

There is also an openloop-unstable mechanical system: the inverted pendulum.
This is the problem of balancing a stick on the palm of your hand. You must keep
moving your hand to keep the stick vertical. If you put your brain on manual and
hold your hand still, the stick topples over. So the process is openloop  unstable. If
you think balancing an inverted pendulum is tough, try controlling a double inverted
pendulum (two sticks on top of each other). You can see this done using a feedback
controller at the French Science Museum in Paris.

We explore the effects of openloop  instability quantitatively in the s plane.
We discuss linear systems in which instability means that the reactor temperature
theoretically goes to infinity. Because any real reactor system is nonlinear, reactor
temperature will not increase without bounds. When the concentration of reactant
begins to drop, the reaction rate eventually slows down. However, before it gets to
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that point the reactor may have blown a rupture disk or melted down! Nevertheless,
linear techniques are very useful in looking at stability near some operating level.
Mathematically, if the system is openloop  unstable, its openloop  transfer function
G,,J(.~J  has at least one pole in the RHP.

9.3.1 Simple Systems

As a simple example, let us look at just the energy equation of the nonisothermal
CSTR process of Example 7.6. We neglect any changes in CA for the moment.

dT
- = aTaT  -I-  a26TJ  + *. -
dt

Laplace  transforming gives

(S - n22)T(.s)  =  026T.Q)  +  * - -

T(,s,  = a26
s - a22

TJ(,) + . . .

(9.40)

(9.41)

Thus, the stability of the system depends’on the location of the pole a22.  If this pole
is positive, the system is openloop  unstable. The value of a22  is given in Eqs. (7.82).

-AkEC/,  F UA
a22 = -_--

pC,RT2  v VPC,

For the system to be openloop  stable, a22 < 0.

-AkEc/, F UA <o- - -
pC,RT2  ’ VP%

-hkEi?/,  <‘+ UA

PC, RT2 v VPC,

(9.42)

The left side of Eq. (9.43) represents the heat generation due to reaction. The right
side represents heat removal due to sensible heat and the heat transfer to the jacket.
Thus, our simple linear analysis tells us that the heat removal capacity must be
greater than the heat generation if the system is to be stable. The actual stabil-
ity requirement for the nonisothermal CSTR system is a little more complex than
Eq. (9.43) because the concentration CA does change.

A. First-order openloop-unstable process
Suppose we have a first-order process with the openloop  transfer function

(9.44)

Note that this is not  a first-order lag because of the negative sign in the denominator.
The system has an openloop  pole in the RHP at s = + l/r,.  The unit step response

I- .I . : ,.I l-l-.  * P *> : .--~-.
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Can we make the system stable by using feedback control‘? That is, can an
openloop-unstable process be made closedloop stable by appropriate design of the
feedback controller? Let us try a proportional controller: Gc(sj  = K,..  The closedloop
characteristic equation is

1 +  G~(s)Gc(s)  =  1 + KPr s _ l Kc = 0
0

s =
I - K,K,,

70

There is a single closedloop root. The root locus plot is given in Fig. 9.9a. It starts at
the openloop pole in the RHP. The system is closedloop unstable for small values of
controller gain. When the controller gain equals l/K,,  the closedloop root is located
right at the origin. For gains greater than this, the root is in the LHP, so the system
is closedloop stable.

Thus, in this system there is a minimum stable gain. Some of the systems studied
up to now have had maximum values of gain K,,, (or ultimate gain K,,) beyond
which the system is closedloop unstable. Now we have a case that has a minimum
gain Kmin  below which the system is closedloop unstable.

vp
(a) First-order: GC(sjGMcs,=  -g-q

0

Kc = 0
I  .

1

50 I

w
s plane

Kc = 0

t

s plane

Kc=+
P

*
K,.=O

\,I\
I-

roz

+a

‘00

K,.  Kp
= (q,,s  +  1)(2(,7--  I)

FIGURE 9.9

Root locus curves for openloop  unstable processes (positive

poles).
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(d) Third-order: Gccs,GMc,,  = Kc&
(74x+  l)(z,*s+  1)(7,3s-  1)

FIGURE 9.9 (CONTINUED)
Root locus curves for openloop  unstable processes (positive poles).

B. Second-order openloop-unstable process

Consider the process given in Eq. (9.44) with a first-order lag added.

(9.46)

One of the roots of the openloop  characteristic equation lies in the RHP at s =
+ l/7,2.

Can we make this system closedloop stable? A proportional feedback controller
gives a closedloop characteristic equation:

1 + %.f(.Y)GC(.V)  = 1 + 4,
(TOIS  + wo2s  - 1)

K,. = 0
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Two conditions must be satisfied if there are to be no positive roots of this closedloop
characteristic equation:

(9.48)

Therefore, if 7,2 < 7,1  a proportional controller cannot make the system closedloop
stable. A controller with derivative action might be able to stabilize the system. Fig-
ures 9.9b  and c give the root locus plots for the two cases 7,~  > ~~1 and 7,2 < ~~1.  In
the latter case there is always at least one closedloop root in the RHP, so the system
is always unstable.

C. Third-order openloop-unstable process

‘If an additional lag is added to the system and a proportional controller is used,
the closedloop characteristic equation becomes

1 + Gv(s)Gc(s)  = 1 + KIJ
(GlS +  M702s  +  1)(703s  - 1)

K, = 0 (9.49)

Figure 9.9d gives a sketch of a typical root locus plot for this type of system. We now
have a case of conditional stability. Below Kmin  the system is closedloop unstable.
Above K,,, the system is again closedloop unstable. A range of stable values of
controller gain exists between these limits:

Kmin  < Kc < Kmax (9.50)

Clearly, the closer the values of K,,,  and Kmin are to each other, the less controllable
the system will be.

EXAMPLE 9.4. The transfer function relating process temperature T to cooling-water
flow rate F, in an openloop-unstable chemical reactor is

G
-0.7 (“F/gpm)

M(s) = (3 + 1)(7s - 1)
(9.5 1)

where the time constants 1 and T are in minutes. The temperature measurement has a
dynamic first-order lag of 30 seconds. The range of the analog electronic (4 to 20 mA)
temperature transmitter is 200 to 400°F. The control valve on the cooling water has Iinear
installed characteristics and passes 500 gpm when wide open. The temperature controller
is proportional.

(a) What is the closedloop characteristic equation of the system?

We must include the OS-minute lag of the temperature transmitter and the gains for
both the transmitter and the valve.

1 + G~(.~)G~(s)Gv(s)Gc(s)  = o

Note that the gain of the controller is chosen to be positive (reverse acting), so the con-
troller output decreases as temperature increases, which increases cooling-water flow
through the AC valve (this  makes the gain of the control valve negative).

(0.ST).S3  + (I.57 - 0.S).s2  + (7 - l.S)s + (1.7SK,.  - I) = 0 (9.52)
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(h) What is the minimum value of controller gain, K,,in, that gives a closedloop-stable
system?

Letting s = io in Eq. (9.52) gives two equations in two unknowns: Kc  and w.
From the real part:

0.5~~ - 1.50%  + l.75K, - I = 0

From the imaginary part:

WT - 1.50 - 0.5TW 3’0

There are two solutions for Eq. (9.54):

(9.53)

(9.54)

J 7 - I.5
w=Oandw= ___

0.57
(9.55)

Using w = 0 gives the minimum value of gain.

I

Kmin = -
1.75

(c) Derive a relationship between T (the positive pole) and the maximum closedloop
stable gain, K,,,.

Using the second value of w in Eq. (9.55) gives K,,,.

Llax  =
1.5 - 4.57 + 3T2

1.757
(9.56)

(d) Calculate K,,,, when T = 5 minutes and 10 minutes.

For T = 5, K,,, = 6.17

For T = 10, K,,, = 14.7

Note that this result shows that the smaller the value of T (i.e., the closer the positive pole
is to the value of the negative poles: s = - 1 and -2), the more difficult it is to stabilize
the system.

(e) At what value of T will a proportional-only controller be unable to stabilize the
system?

When K,,, = Kmin the system will always be unstable.

1.5 - 4.57 f 3T2 1= - =1.757 I.75 3 7 1.5 minutes

Note that there are actually two values of T that satisfy the equation above, but the lim-
iting one is the larger of the two.

9.3.2 Effects of Lags

The systems explored in the preceding section illustrate a very important point about
the control of openloop-unstable systems: The control of these systems becomes
more difficult as the order of the system is increased and as the magnitudes of the
first-order lags increase. Our examples demonstrated this quantitatively. For this rea-
son, it is vital to design  a reactor control system with very fast measurement d~nnm-
its and very fast heat removal dynamics. If the thermal lags in the temperature sensor
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and in the cooling jacket are not small, it may not be possible to stabilize the reactor
with feedback control. Bare-bulb thermocouples and oversized cooling-water valves

are often used to improve controllability.

9.3.3 PD Control

Up to this point we have looked at using proportiona
unstable systems. Controllability can often be improved
in the controller. An example illustrates the point.

.l controllers on openloop-
by using derivative action

EXAMPLE 9.5. Let us take the same third-order process analyzed in Example 9.4. For
T = 5 minutes and a proportional controller, the ultimate gain was 6.17 and the ultimate
frequency was 1.18 rad/min.

Now we use a PD controller with ~0 set equal to 0.5 minutes (just to make the
algebra work out nicely; this is not necessarily the optimal value of 7~). The closedloop
characteristic equation becomes

1.75 1 TgS + 1

(S i I)(%  - l)(o.%  + 1) Kc  0.17~s  + 1 = ’ (9.57)

o.25s3  + 5.2s*  + 3.95s + 1.75K, - 1 = 0

Solving for the ultimate gain and frequency gives KU  = 47.5 and o,  = 3.97. Comparing
these with the results for P control shows a significant increase in gain and reduction in
closedloop time constant.

9.3.4 Effect of Reactor Scale-up on Controllability

One of the classical problems in scaling up a jacketed reactor is the decrease in the
ratio of heat transfer area to reactor volume as size is increased. This has a profound
effect on the controllability of the system. Table 9.1 gives some results that quan-
tify the effects for reactors varying from 5 gallons (typical pilot plant size) to 5000
gallons. Table 9.2 gives parameter values that are held constant as the reactor is
scaled up.

TABLE 9.1

Effect of scale-up on controllability

Reactor volume (gal) 5 500 5ooo
Feed rate (Ib,,,/hr) 27.8 2780 27,800

Heat transfer ( 1 O6  BtuIhr) 0.0028 0.28 2.8
Reactor height (ft) 1 SO4 6.98 15.04

Reactor diameter (ft) 0.752 3.49 7.52
Heat transfer area (ft2) 3.99 86.15 400

Cooling-water flow (gpm) 0.086 11.58 240
Jacket (“F)temperature 135.3 118.3 93.3
Controller- gains

MltX 169 100 144
b4;,, I 77 I nc n Al
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Reactor parameters

Reactor lwldup  time
Jacket holdup time
Overall heat transfer coefficient
Heat capacity of products and feeds
Heat capacity of cooling water
Density of products and feeds
Density of cooling water
Inlet cooling-water temperature
Temperature measurement lag
Feed concentration
Feed temperature
Reactor temperature
Preexponential factor
Activation energy
Heat of reaction
Steady-state concentration
Specific reaction rate
Temperature transmitter span
Cooling-water valve maximum flow rate

1.2  h
0.077 h
I.50  Btu/h  ft*  “F
0.75 Btu/lb,,,  “F

I .O Btu/lb,,,  “F
50 Ib,,/ft’
62.3 Ib,,/f+
70°F
30 s
0.50 lb-mol A/ft”
70°F
140°F
7.08 x IO’O  h-’
30,000 Btu/lb-mol
-30,000 Btu/lb-mol
0.245 lb-mol A/ft3
0.8672 h-’
100°F
Twice normal design flow rate

Notice that the temperature difference between the cooling jacket and the reactor
must be increased as the size of the reactor increases. The flow rate of cooling water
also increases rapidly as reactor size increases.

The ratio of K,,, to Kmi”,  which is a measure of the controllability of the system,
decreases from 124 for a Sgallon  reactor to 33 for a 5000-gallon  reactor.

9.4
PROCESSES WITH INVERSE RESPONSE

Another interesting type of process is one that exhibits inverse response. This phe-
nomenon, which occurs in a number of real systems, is sketched in Fig. 9.10b.  The
response of the output variable yo) begins in the direction opposite of where it fin-
ishes. Thus, the process starts out in the wrong direction. You can imagine what this
sort of behavior would do to a poor feedback controller in such a loop. We show
quantitatively how inverse response degrades control loop performance.

An important example of a physical process that shows inverse response is the
base of a distillation column with the reaction of bottoms composition and base level
to a change in vapor boilup.  In a binary distillation column, we know that an increase
in vapor boilup  V must drive more low-boiling material up the column and therefore
decrease the mole fraction of light component in the bottoms xg. However, the tray
hydraulics can produce some unexpected results. When the vapor rate through a tray
is increased, it tends to (1) back up more liquid in the downcomer to overcome the
increase in pressure drop through the tray and (2) reduce the density of the liquid
and vapor froth on the active part of the tray. The first effect momentarily reduces
the liquid flow rates through the column while the liquid holdup in the downcomer is
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FIGURE 9.10
Process with inverse response. (n) Block diagram. (b) Step response.
(c)  Root locus plot.

building up. The second effect tends to momentarily increase the liquid rates since
there is more height over the weir.

Which of these two opposing effects dominates depends on the tray design and
operating level. The pressure drops through valve trays change iittle  with vapor rates
unless the valves are cotioletrlv  lifted Therefnre  thP c~rnd  pffant  ;c  o,-.mn+;m,~
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increase in liquid rates down the column. This increase in liquid rates carries material
that is richer in light component into the reboiler and momentarily increases x0.
Eventually, of course, the liquid rates will return to normal when the liquid inventory
on the trays has dropped to the new steady-state levels. Then the effect of the increase
in vapor boilup  will drive xn down. Thus, the vapor-liquid hydraulics can produce
inverse response in the effect of V on xg (and also on the liquid holdup in the base).

Mathematically, inverse response can be represented by a system that has a
transfer function with a positive zero, a zero in the RHP. Consider the system
sketched in Fig. 9.1 Oa. There are two parallel first-order lags with gains of opposite
sign. The transfer function for the overall system is

Ws)
If the K’s and

the system will
rearranged as

701s + 1 702s + 1

0’s  are such that

ro2  > - > 1K2-
701  KI

show inverse response, as sketched in Fig. 9.10b.  Eq. (9.58) can be

(9.59)

Thus, the system has a positive zero at

K2 - &
s = K&2  - Kg,,

Keep in mind that the positive zero does not make the system openloop  unstable.
Stability depends on the poles of the transfer function, not on the zeros. Positive
zeros in a system do, however, affect cZosedoop  stability, as the following example
illustrates.

EXAMPLE 9.6. Let us take the same system used in Example 8.7 and add a positive
zeroats = ++.

G
-3s+ 1

M(s) = (s + l)(Ss + 1)

With a proportional feedback controller the closedloop characteristic equation is

1 + G~(.Jkys)  = 1 +
-3s+ 1

(s + 1)(5s  + l)Kc

(9.60)

(9.61)

5s2 + (6 - 3K,)s  + 1 -t- Kc  = 0

The root locus curves are shown in Fig. 9.10~. The loci start at the.  poles of the open-
loop transfer function: s = - 1 and s = - i. Since the loci must end at the zeros of the
openloop  transfer function (s = + f), the curves swing over into the RHP. Therefore, the’
system is closedloop unstable for gains greater than 2.

Remember that in Example 8.8 adding a lead or a negative zero made the closedloop
system more stable. In this example we have shown that adding a positive zero has the
reverse effect. a
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9 . 5
MODEL-BASED CONTROL

Up to this point we have generally chosen a type of controller (P,  PI, or PID) and
determined the tuning constants that gave some desired performance (closedloop
damping coefficient). We have used a model of the process to calculate the con-
troller settings, but the structure of the model has not been explicitly involved in the
controller design.

There are several alternative controller design methods that make more explicit
use of a process model. We discuss two of these here.

9.5.1 Direct Synthesis

In direct synthesis the desired closedloop response for a given input is specified.
Then, with the model of the process known, the required form and tuning of the
feedback controller are back-calculated. These steps can be clarified with a simple
example.

EXAMPLE 9.7. Suppose we have a process with the openloop transfer function

(9.62)

where KP and rO are the openloop gain and time constant. Let us assume that we want
to specify the closedloop servo transfer function to be

$- 1

TZ - ~7,s  + 1
(9.63)

That is, we want the process to respond to a step change in setpoint as a first-order process
with a closedloop time constant rc.  The steady-state gain between the controlled variable
and the setpoint  is specified as unity, so there will be no offset.

Now, knowing the process model and having specified the desired closedloop servo
transfer function, we can solve for the feedback controller transfer function Gccs).  We
define the closedloop servo transfer function as Scs).

ywS(s)  = yset = GwGc(s)
(s) 1 + Gw%s,

(9.64)

Equation (9.64) contains only one unknown (i.e., the feedback controller transfer func-
tion Gccsj).  Solving for Gc(~) in terms of the known values of G,,!,,,  and ScsJ  gives

(9.65)

Equation (9.65) is a general solution for any process and for any desired closedloop servo
transfer function. Plugging in the values for G,,,,($) and Sts, for the specific example gives

I

G-(x)  =
T(.S  + 1 T,S  + 1
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Equation (9.66) can be rearranged to look just like a PI controller if K,.  is set equal to
r,,/~,  K,, and the rcsct  time T/  is set equal to T,,.

r/s  + I
Gcc,y)  = Kc  - =

71s
(9.67)

Thus, we find that the appropriate structure for the controller is PI, and we have solved
analytically for the gain and reset time in terms of the parameters of the process model
and the desired closedloop response.

Before we leave this example, it is important to make sure that you understand the
limitations of the method. Suppose the process openloop  transfer function also contained
a deadtime.

KKD”GM(s) = ___7,s  + 1

Using this GM~,~)  in Eq. (9.65 ) gives a new feedback controller:

G(s) =
(7,s + I)e+DS

K&S

(9.68)

(9.69)

This controller is not physically realizable. The negative deadtime  implies that we can
change the output of the device D minutes before the input changes, which is impossible.

This case illustrates that the desired closedloop relationship cannot be chosen arbi-
trarily. You cannot make a jumbo jet behave like a jet fighter, or a garbage truck drive
like a Ferrari! We must select the desired response so that the controller is physically
realizable. In this case all we need to do is modify the specified closedloop servo trans-
fer function So)  to include the deadtime.

(9.70)

Using this Scs)  in Eq. (9.65) gives exactly the same G,-cs) as found in Eq. (9.66), which
is physically realizable.

As an additional case, suppose we had a second-order process transfer function.

KP
Gm = (Tos + 1)2

Specifying the original closedloop servo transfer function [Eq. (9.63)] and solving for
the feedback controller using Eq. (9.65) gives

Gee;,  = !‘(”  + ‘j25
K,m

Again, this controller is physically unrealizable because the order of the numerator is
greater than the order of the denominator. We would have to modify our specified S,,, to
make this controller realizable. n

This type of controller design has been around for many years. The “pole place-
ment” methods used in aerospace systems employ the same basic idea: the controller
is designed to position the poles of the closedloop transfer function at the desired lo-
cation in the s plane. This is exactly what we do when we specify the’closedloop
time constant in Eq. (‘3.63).



9.5.2 Internal Model Control

Garcia and Moral-i  (lnd.  Eq. Chcm. Pt-oce.ss  Des. Dev. 21: 308, 1982) have used a
similar approach in developing “internal model control” (IMC). The method gives
the control engineer a different perspective on the controller design problem. The
basic idea of IMC is to use a model of the openloop  process GMM(.~J  transfer function in
such a way that the selection of the specified closedloop response yields a physically
realizable feedback controller.

Figure 9.11 gives the IMC structure. The model of the process GM(~)  is run in
parallel with the actual process. The output of the model Y is subtracted from the
actual output of the process Y, and this signal is fed back into the controller GIMC(~).
If our model is perfect (GM = GM), this signal is the effect of load disturbance on
the output (since we have subtracted the effect of the manipulated variable M). Thus,
we are “inferring” the load disturbance without having to measure it. This signal is

-------------
1

Model

(a) Basic structure

r - - - - - - - _ - _ 1
:+a -@ , y=

1 -_-------- -J ‘ T r a d i t i o n a l  G,

(b) Reduced structure

FIGURE 9.11
IMC.
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YI,, the output of the process load transfer function, and is equal to GQ~JLQ).  We
know from our studies of feedforward control [Eq. (9.28)]  that if we change the
manipulated variable Mts)  by the relationship

-CL
M(s)  = -( 1GbJl  (s)

L(s) (9.72)

we get perfect control of the the output Ycsj.  This tells us that if we could set the
controller

1
GIMCW  = -

G(s)
(9.73).

we would get perfect control for load disturbances. In addition, this choice.of GIMC(~)
gives perfect control for setpoint disturbances: the total transfer function between
the setpoint  Yset and Y is simply unity. Thus, the ideal controller is the inverse of
the plant. We use this notion again in Chapter 13 when we consider multivariable
processes.

However, there are two practical problems with this ideal choice of the feed-
back controller GIMC(~).  First, it assumes that the model is perfect. More important,
it assumes that the inverse of the plant model GM(~) is physically realizable. This is
almost never true since most plants have deadtime  or numerator polynomials that
are of lower order than denominator polynomials.

So if we cannot attain perfect control, what do we do? From the IMC perspective,
we simply break up the controller transfer function GIMC(~)  into two parts. The first
part is the inverse of GM(+ The second part, which Garcia and Morari call a “filter,”
is chosen to make the total GIMC(~)  physically realizable. As we will show, this second
part turns out to be the closedloop servo transfer function that we defined as Sts)  in
Eq. (9.64).

Referring to Fig. 9.11 and assuming that GM  = GM, we see that

Y = GLL + GM&!  = YL  + GMGIMC(~)(Y~~~  - YL)

Y = (GMGIMc(~))Y~~~ + (1 - GM'%MC&'L

Now if the controller transfer function GIMC(~)  is selected as

GIMC(S)  =
1
- %)
cm)

Eq. (9.75) becomes

Y(s)  = S(s)  Y;.;; + (1 - S(,))GL(,)L(,)

(9.74)

(9.75)

(9.76)

(9.77)

So the closedloop servo transfer function St,, must be chosen such that G1h.f~~)  is
physically realizable.

EXAMPLE 9.8. Let’s take the process studied in Example 9.7. The process openloop
transfer function is
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I

We want to design G~Mc(,~)  using Eq.  (9.76).

GIMC(s)  =
I

-S(s) =
1

GM(s)
K S(.y)  = (9.78)

I’

T(,S  + I

Now the logical choice of Scsj that will make GIMC(,~) physically realizable is the same as
that chosen in Eq. (9.63).

Y(s) I
S(s)  =  y”“’ =  ____

(.\) rc.s + 1

So the IMC controller becomes a PD controller.

GIMC(S)  =
7,s + I

fqw + 1)
(9.79)

I

The IMC structure is an alternative way of looking at controller design. The
model of the process is clearly indicated in the block diagram. The tuning of the
GIMC(~)  controller reduces to selecting a reasonable closedloop servo transfer func-
tion.

The reduced block diagram for the EMC structure shows that there is a precise
relationship between the traditional feedback controller Gccs)  and the GIMC(~J  con-
troller used in IMC.

4s) _ GIMC(S)- -

4s)
G-(s)  =

1-G G[MC(s) M(s)
(9.80)

The negative sign in the denominator of Eq. (9.80) comes from the positive feedback
in the internal loop in the controller. Applying this equation to Example 9.8 gives

T@s  + 1

G(s) =
GIMC(S) Kp(w  + 1)

1 - GIMC(S)  M(T)($ = 1 _ 7,s + 1 K,
= ‘; ;sl (9.81)

PC
Kp(TcS  + 1) 7-0s  + 1

This is exactly the same result (a PI controller) that we found in Eq. (9.66).

EXAMPLE 9.9. Apply the IMC design to the process with the openloop  transfer function

(9.82)

Using Eq. (9.76) and substituting Eq. (9.82) give

Clearly the best way to select  the closedloop servo transfer function S,,, to make G1~cc.r)
physically realizable is



.78)

e as

.79)

n

The
the
inc-

5se
:on-

80)

ack
:S

81)

tion

.82)

K(s)

.83)

&IAWXO:  Laplace-Domain  Analysis of Advanced Control Systems 331

The response of Y to a step change in setpoint will be a deadtime  of D minutes followed
by an exponential rise. The IMC controller becomes a PD controller.

G
7,s + I e-“” T(,S + 1

IMC(s) =  ~ ~ =Kpe-DS  TcS  + 1 K,,(w  + 1)
(9.84)

It should be noted that the equivalent conventional controller GQ~)  does not have the
standard P, PI, or PID form.

7,s + I

G(s)  =
GIMCW fqw + 1)

1 - G~r&r\  = I _ 7,s + 1 K,KD”
&,,(T,S  +  1) 7,s  +  1

7,s + 1
= &(T,S + 1 - e-OS)

This controller has a uniquely new transfer function. n

Maurath, Mellichamp, and Seborg (EC  Res.  27:956,  1988) give guidelines for
selecting parameter values in IMC designs.

One final comment should be made about model-based control before we leave
the subject. These model-based controllers depend quite strongly on the validity of
the model, particularly its dynamic fidelity. If we have a poor model or if the plant
parameters change, the performance of a model-based controller is usually seriously
affected. Model-based controllers are less “robust” than the more conventional PI
controllers. This lack of robustness can be a problem in the single-input, single-
output (SISO) loops that we have been examining. It is an even more serious problem
in multivariable systems, as we discuss in Chapters 12 and 13.

9.6
CONCLUSION

The material covered in this chapter should have convinced you of the usefulness
of the “Russian” (Laplace  domain) language. It permits us to look at fairly com-
plex processes in a nice, compact way. We will find in the next two chapters that
“Chinese” (frequency response) is even more useful for analyzing more realistically
complex processes.

PROBLEMS

9.1. The load and manipulated-variable transfer functions of a process are

Y,,,  = GMcs, = - I

M(s) (s + 1)(5s  + I)

Y(s)
~ = G>(.r)  =

2

L(s) (s + I)(%  + l)($ + 1)
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J

Derive the feedforward controller transfer function that will keep the process output Yfsj
constant with load changes Lcs).

;j

-2-ii

9.2. Repeat Problem 9.1 with

9.3. The transfer functions of a binary distillation column between distillate composition xg
and feed rate F, reflux rate R,  and feed composition z are 3-=.7

XD K~~-DF.~ XD KZeeDZS  XD KRe-DR”
.-...--I= -= -=
F (TFS + 1>* 2 (TzS + I)* R 7/&Y+  1

Find the feedforward controller transfer functions that will keep XD  constant, by manip-
ulating R, despite changes in z and F. For what parameter values are these feedforward
controllers physically realizable?

~-Tam~~_
a-2zC~

9.4. Greg Shinskey  has suggested that the steady-state distillate and bottoms compositions :‘?
in a binary distillation column can be approximately related by

xD/(l - XD)

-Ml - xe)
= SF

where SF is a separation factor. At total reflux it is equal to o?“r+‘,  where (Y is the
relative volatility and NT is the number of theoretical trays. Assuming SF is a con-
stant, derive the nonlinear steady-state relationship showing how distillate drawoff  rate
D must be manipulated, as feed rate F and feed composition z vary, in order to hold
distillate composition XD  constant. Sketch this relationship for several values of SF
and XD.

9.5. Make root locus plots of first- and second-order openloop-unstable processes with PI
feedback controllers.

&--A
9.6. Find the closedloop stability requirements for a third-order openloop-unstable process

-.gg

with a proportional controller:
f$$
=*.;m~-gzm

--ST

Kc&

-zt=~

Gc(s)Gt(s)  =

:*

(TOIS + 1)(7-02s + lN703s - 1) ~~ymt-

9.7. Find the value of feedback controller gain K, that gives a closedloop system with a
--Et-
&

damping coefficient of 0.707 for a second-order openloop-unstable process with ~~2  > ~-Tm

TOI  :
9-

Gc(s)Gqs)  =
&Xc

(701s + 1)(702S - 1)

9.8. What is the ultimate gain and period of the system with a positive zero:

Gv(.s)  =
-3s + I

(s + I)(%  + 1)

(a) With a proportional controller?
(h) With a PI  controller for T/  = 2?
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9.9. (N) Sketch the root locus plot  of  a system with openloop  transfer function

KC
GCwGM(s)  = (s + I )(s + 5)(s - 0.5)

(h) For what values of gain K, is the system closedloop stable?

9.10. Design a feedforward controller for the two-heated-tank process considered in Ex-
ample 8.1. The load disturbance is inlet feed temperature To.

9.11. Modify your feedforward controller design of Problem 9.10 so that it can handle both
feed temperature and feed flow rate changes and uses a feedback temperature controller
to trim up the steam flow.

9.12. A “valve position controller” is used to minimize operating pressure in a distillation
column. Assume that the openloop  process transfer function between column pressure
and cooling-water flow GM = PIF, is known.
(a) Sketch a block diagram of the closedloop system.
(b) What is the closedloop characteristic equation of the system?

Column

co  :=co  :=
I,  )I,  )I,I, VPCVPC

////
,,//

S PS P

FIGURE P9.12

9.13. A proportional-only controller is used to control the liquid level in a tank by manipulat-
ing the outflow. It has been proposed that the steady-state offset of the proportional-only
controller could be eliminated by using a combined feedforward-feedback system.

The flow rate into the tank is measured. The flow signal is sent through a first-
order lag with time constant 7~. The output of the lag is added to the output of the level
controller. The sum of these two signals sets the outflow rate. Assume that the flow  rate
follows the setpoint signal to the flow  controller exactly.,
(a) Derive the closedloop transfer function between liquid level I? and inflow rate Fo.
(0) Show that there is no steady-state offset of level from the setpoint for step changes

in inflow rate.



334 PARTTWO:  Laplace-Domain Dynamics and Control

9.14. A process has a positive zero:

-3s+I
GM = (s + I)(%  + 1)

When a proportional-only feedback controller is used, the ultimate gain is 2. Outline
your procedure for finding the optimal value of rr, if a proportional-derivative controller
is used. The optimum TO  will give the maximum value for the ultimate gain.

9.15. Draw a block diagram of a process that has two manipulated variable inputs Mi and &
that affect the output Y. A feedback controller Get is used to control Y by manipulating
Mi since the transfer function between Mt and Y (GM,)  has a small time constant and
small deadtime.

However, since Mt is more expensive than M2,  we wish to minimize the long-
term steady-state use of MI.  Therefore, a “valve position controller” Gc2  is used to
slowly drive Ml to its setpoint  My'. What is the closedloop characteristic equation of
the system?

9.16. Make root locus plots for the two processes given below, and calculate the ultimate
gains and the gains that give closedloop damping coefficients of 0.707 for both pro-
cesses.

ta) GMGc  = (10s + l)(SOs  + 1)

K,(-7s  + 1)
W GM& = tlos + 1)c50s  + 1) with  7 = 6

For part (b) derive your expression for the ultimate gain as a general function of T.

9.17. An openloop-unstable process has a transfer function containing a positive pole at + UT
and a negative pole at - ~/UT.  Its steady-state gain is unity. If a proportional-only con-
troller is used, what is the value of c1  that gives a closedloop damping coefficient of 0.5
when the controller gain is 10 times the minimum gain?

9.18. The “Smith predictor” for deadtime  compensation is a feedback controller that has been
modified by feeding back the controller output into the controller in@.tt  through a trans-

M
iY

w

--=A --I1,

r

L yset

FIGURE P9.18
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fer function Gscsj = GMwn  - GM. The transfer function GMwn  is the portion of the
process openloop transfer function GM that does not contain the deadtime  D. What is
the closedloop characteristic equation of the system?

9.19. We want to analyze the floating pressure “valve position control” (VPC) system pro-
posed by Shinskey. Let the transfer function between cooling water flow and column
pressure be

GUM(~)  =
0. I psi/gpm

s(s + 1)

The span of the pressure transmitter is 50 psi. The control valve has linear installed
characteristics and passes 600 gpm when wide open. A proportional-only pressure con-
troller is used.

GCI  = KI

An integral-only valve‘ position controller is used.

K2
Cc2 = s

(a) Draw a block diagram of this VPC closedloop system.
(b) What is the closedloop characteristic equation of this system?
(c) Considering only the pressure control loop, determine the value of the pressure con-

troller gain K, that gives a closedloop damping coefficient of 0.707 for the pressure
control loop. Sketch a root locus plot for the pressure control loop.

(d) Using the value of Kr found above and with the pressure controller on automatic,
determine the VPC tuning constant (Kz) that makes the entire VPC-pressure con-
troller system critically damped, i.e., that gives a closedloop damping coefficient
of unity. Sketch a root locus plot for the VPC controller with the pressure controller
on automatic.

9.20. Two openloop  transfer functions GM~(~)  and G~2o)  are connected in parallel. They
have the same input MC,, but each has its own output, Yi(,)  and YQ),  respectively. In
the closedloop system, a proportional controller Kr is installed to control Yi by chang-
ing M.

However, a cascade system is used where another proportional controller K, is
used to control Y2  by changing the setpoint  of the K1 controller. Thus we have a parallel
cascade system.
(a) Draw a block diagram of the system.
(b) Derive the closedloop transfer function between Y2  and YFt.
(c) What is the closedloop characteristic equation?
Suppose the openloop process transfer functions are

1 1
GMI(S) = (s + 1)2

G -Mm) = 5s + 1

(d) Determine the value of KI  that gives a closedloop damping coefficient of 0.5 in the
secondary loop.

(e) Determine the ultimate gain in the primary K2  loop when the secondary loop gain
is K, = 3.
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FIGURE P9.21

9.21. The openloop transfer function of a process is

KIJGqs)  = -7-0s + 1

(a) If a conventional PI controller is used with gain K, and reset time ~1,  derive the
closedloop servo transfer function between the output YcS)  and the setpoint Yg;.

(b) A block diagram of a nonconventional PI controller is sketched in the accompa-
nying figure. There are two feedback loops, one using proportional action on the
process output and the other using integral action on the error signal. The element
in the proportional loop is Kc, and the element in the integral loop is &I(T,s).  De-
rive the closedloop servo transfer function between the output YcS)  and the setpoint
Yt:; when this control structure is used.

(c) Compare the closedloop characteristic equations of the two types of controllers and
the zeros of the two closedloop transfer functions.



PART THREE

Frequency-Domain
Dynamics and Control
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int .’ Our  language lessons are coming along nicely. You should be fairly fluent in both
English (differential equations) and Russian (Laplace  transforms) by this time. We
have found that only a small vocabulary is needed to handle our controller design
problems. You must know the meaning and the pronunciation of only nine “words”
in the two languages: first-order lag, first-order lead, deadtime, gain, second-order
underdamped lag, integrator, derivative, positive zero, and positive pole.

We have found that dynamics are more conveniently handled in the Russian
transfer function language than in the English ODE language. However, the ma-
nipulation of the algebraic equations becomes more difficult as the system becomes
more complex and higher in order. If the system is Nth order, an Nth-order polyno-
mial in s must be factored into its N roots. For iV  greater than 2, we usually abandon
analytical methods and turn to numerical root-solving techniques, which are conve-
niently available in many commercial software packages such as MATLAB.  Also,

. deadtime  in the transfer function cannot be handled easily by the Russian Laplace-
domain methods.

To overcome these problems, we must learn another language: Chinese. This
is what we call the frequency-domain methods. These methods are a little more re-
moved from our mother tongue of English and a little more abstract. But they are
extremely powerful and very useful in dealing with realistically complex processes.
Basically, this is because the manipulation of transfer functions becomes a problem
of combining complex numbers numerically (addition, multiplication, etc.). This is
easily done on a digital computer.

In Chapter IO we learn this new “Chinese” language (including several dialects:
Bode, Nyquist, and Nichols plots). In Chapter 11 we use frequency-domain methods
to design closedloop feedback control systems.
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As with Russian, you must learn only a limited Chinese vocabulary. The learning
of 2000 to 3000 Chinese characters is nut required (thank goodness)! Only nine
Chinese words must be learned in each of the three dialects. It takes a little practice
to get the hang of handling the complex numbers in various coordinate systems, but
the effort is well worth it.
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Frequency-Domain Dynamics

10.1
DEFINITION

For most processes thefrequency  response  is defined as the steady-state behavior of
the system when forced by a sinusoidal input. Suppose the input ~(~1  to the process
is a sine wave ~~(~1  of amplitude u and frequency o as shown in Fig. 10.1.

qt) = 77  sin(wt) (10.1)

The period of one complete cycle is T units of time. Frequency is expressed in a va-
riety of units. The electrical engineers usually use units of hertz (cycles per second):

w (hertz) = f (10.2)

We chemical engineers find it more convenient to use frequency units of radians per
time:

o (radians/time) = $ (10.3)

The reason for this preference will become clear later in this chapter. Be very care-
ful that you use frequency units that are consistent in terms of both time (seconds,
minutes, or hours) and angles (cycles or radians). A very common error is to be off
by a factor of 27~  because of the radians/cycles variation or to be off by a factor of
60 because of mixing minutes and hours.

In a linear system, if the input is a sine wave with frequency o,  the output is also
a sine wave with the same frequency. The output has, however, a different amplitude
and “lags” (falls behind) or “leads” (rises ahead of) the input. Figure 10.2~ shows
the output y,cr, lagging the input us(t)  by Ty  units of time. Figure 10.2b  shows the
output leading the input by T,. Thephuse angle 8 is defined as the angular difference

339
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Radians per time

FIGURE 10.1
Sine wave input.

FIGURE 10.2
Sinusoidal input-output. (a) Output lags. (b) Output leads.

between the input and the output. In equation form,

y,lf) = 7 sin(ot + 0)

where ystr)  = output resulting from the sine wave input of frequency o
y = maximum amplitude of the output y,
8 = phase angle, in radians

If the output lags the input, 8 is negative. If the output leads the input, 8 is positive.

6’ =  22~  (radians) 8 = $360 (degrees) (10.5)

The magnitude ratio MR is defined as the ratio of the maximum amplitude of
the output over the maximum amplitude of the input:

(10.6)
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For a given process, both the phase angle 8 and the magnitude ratio MR will
change if frequency o is changed. We must find out how 8 and MR vary as w covers
a range from zero to infinity. Then we will know the system’s frequency response
(its Chinese translation). Different processes have different dependence of MR and
0 on o.  Since each process is unique, the frequency-response curves are like finger-
prints. By merely looking at curves of MR and 8, we can tell the kind of system (its
order) and the values of parameters (time constants, steady-state gain, and damping
coefficient).

There are a number of ways to obtain the frequency response of a process, Ex-
perimental methods, discussed in Chapter 16, are used when a mathematical model
of the system is not available. If equations can be developed that adequately describe
the system, the frequency response can be obtained directly from the system transfer
function.

10.2
BASIC THEOREM

We will show that the frequency response of a system can be found simply by substi-
tuting io  for s in the system transfer function G(,),  Making the substitution s = io
gives a complex number G(iw)  with the following features:

1. A magnitude IG(iw)I  that is the same as the magnitude ratio MR that would be
obtained by forcing the system with a sine wave input of frequency o.

2. A phase angle or argument, arg  G(i,,,  that is equal to the phase angle 8 that would
be obtained from forcing the system with a sine wave of frequency o.

I IG(iw) = M&J, (10.7)

a@%,) = &) (10.8)

G(iw,  is a complex number, so it can be represented in terms of a real part and an
imaginary part:

G(iw) = WG(i,)l + i ImK&)l
In polar form, the complex number G(iu)  is represented as

Gtiw,  = IGtiw,  1 ei  arg’%im)

where

(10.9)

(10.10)

I IG(iw) = absolute value of G(im)  = J(Re[G(i,#2  + (Im[G(i,)])2 (10.11)

arg G+)  = argument of Gci,, = arctan (10.12)

This very remarkable result [Eqs.  (10.7) and (10.8)]  permits us to go from the
Laplace  domain to the frequency domain with ease.

.s=iw

Russian Laplace  domain Cc;., =$ Chinese frequency domain Gliw,
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Before we prove that this simple substitution is valid, let’s illustrate its application
in a specific example.

E x A M P L E t o. I. Suppose we want to find the frequency response of a first-order process
with the transfer function

(10.13)

Substituting s = io gives

G(iuJ)  = KP
1 + io7,

(10.14)

Multiplying numerator and denominator by the complex conjugate of the denominator
gives

G(iw)  = KP 1 - iw7, = K,(l  - iwd
1 + jWT,  1 - iWT, 1 +&V =0

Therefore

Therefore

KPRdGd  = l + w2T20
- K,OT,

ImP&d = 1 + w2720

8
1 + 6.972

= arg GuW) = arctan K ’ = arctan(--07,)
P

1 + 6JV0

Notice that both MR and 8 vary with frequency o.

( 10.16)

(10.17)

(10.18)

(10.19)

n

Now let us prove that this simple substitution s = io  really works. Let G($)
be the transfer function of any arbitrary Nth-order system. The only restriction we
place on the system is that it is stable. If it were unstable and we forced it with a sine
wave input, the output would go off to infinity. So we cannot experimentally get the
frequency response of an unstable system. This does not mean that we cannot use
frequency-domain methods for openloop-unstable systems. We return to this subject
in Chapter 11.

If the system is initially at rest (all derivatives equal zero) and we start to force it
with a sine wave u,(~),  the output ye) will go through some transient period as shown
in Fig. 10.3 and then settle down to a steady sinusoidal oscillation. In the Laplace
domain, the output is by definition

Y(s)  = G(s)  (-4,s) ( 10.20)
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y(t)
7 Transient period

- Steady-state response-

FIGURE 10.3
Response of a system to a sine wave input.

For the sine wave input U(Q = usin( Laplace  transforming,

Therefore, the output with this sine wave input is

GCsj  is a ratio of polynomials in s that can be factored into poles and zeros.

G(s)  =
(s - Zl)(S - z2)-  * -(s  - ZM)

(s - pm - P2).  * *(s - PA4

= (s - Zl)(S - Z2)‘.  *(s - ZM) VWy( )
s

(s - p1)(s - p2)-.  -(s  - pN) ( )s2 + w2

(s - Zl)(S  - Z2)“G - ZM) iVW

=  ( s  - fq)(s  - p2)- * *(s  - pAf>  ( s  +  iw)(s  - iw)

Partial fractions expansion gives

A + B + c +...+ wY@)  = - ~
s + iw s - iw s - Pl s - PN

where WV’+,,[ 1 u
A  = l i m  [ ( s  +  iw)Yt,)] = ,liy, s _ iw = -zG(-iu)

s-+--h

Substituting into Eq. (10.23) and inverting to the time domain,

(10.21)

(10.22)

(10.23)

(10.24)

Now we are interested only in the steady-state response after the initial transients
have died out and the system has settled into a sustained oscillation. As time goes
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to infinity, all the exponential terms in the summation shown in Eq. (10.24) decay
to zero. The system is stable, so all the poles />j  must be negative. The steady-state
output with a sine wave input,,which  we called ystr), is

(10.25)

The G(iw)  and Gt-iw,  terms are complex numbers and can be put into polar form:

Equation (10.25) becomes

Ys(t) = 77 IG(iw)  1

&(of+arg  Gc;~,)  _ e-i(wf+arg Gc;w,)

2i

Therefore,

Jk-#  = IG(iw)  1 sin(ot + arg  G(i@,)

(10.26)

(10.27)

We have proved what we set out to prove: (1) the magnitude ratio MR is the absolute
value of Gts)  with s set equal to io, and (2) the phase angle is the argument of G(,J
with s set equal to io.

10.3
REPRESENTATION

Three different kinds of plots are commonly used to show how magnitude ratio (abso-
lute magnitude) and phase angle (argument) vary with frequency o.  They are called
Nyquist, Bode (pronounced “Bow-dee”), and Nichols plots. After defining each of
them, we show what some common transfer functions look like in the three different
plots.

10.3.1 Nyquist Plots

A Nyquist plot (also called apolarplot or a Gplaneplot)  is generated by plotting the
complex number G(im) in a two-dimensional diagram whose ordinate is the imagi-
nary part of G(iw)  and whose abscissa is the real part of G(iw).  The real and imaginary
parts of G(iw)  at a specific frequency o t define a point in this coordinate system. As
shown in Fig. 10.4n,  either rectangular (real versus imaginary) or polar (absolute
magnitude versus phase angle) can be used to locate.the point. As frequency is var-
ied  continuously from zero to infinity, a curve is formed in the G plane, as shown in
Fig. 10.4b.  Frequency is a parameter along this curve. The shape and location of the
curve are unique characteristics of the system. Let us show what the Nyquist plots
of some simple transfer functions look like.



my
tate

,25)

I:

26)

27)

ute

%

Ed
of

ent

.he
gi-

IrY
A S
rte
3r-
in
he
>ts

CIIAII‘I~K  IO: Frequency-Domain Dynamics 345

Im

(4

Im (G)

T

u = 03

6I
Re (G)

w=o * Re  (0

Increasing-xj9 a=64

w = I32 G(ico)

@I

A. First-order lag

G(s)  = 6
70s  + 1

FIGURE 10.4
Nyquist plots in the G plane.
(a) Single point G(i,,).
(b) Complete curve Gti,,.

We developed Gci,, for this transfer function in Example 10.1 [Eqs. (10.18) and
(10.19)3.

1 G(ica) arg G(io,  = arctan( --wrO) (10.28)

When frequency is zero, ]Gl  is equal to K, and arg G is equal to zero. So the Nyquist
plot starts (o  = 0) on the positive real axis at Re[G] = K,.

When frequency is equal to the reciprocal of the time constant (o  = 11~~).

I IG+J) = J& = 3
arg Gcim)  = arctan[ -( l/7,)7,] = -45” = - 9 radians

This illustrates why we use frequency in radians per time: there is a convenient
relationship between the time constant of the process and frequency if these units
are used.
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As frequency goes to infinity, IG(;wll  bToes to zero and arg Gt;,)  goes to -90” or

-7~/2 radians. All of these points are shown in Fig. 10.5. The complete Nyquist plot
is a semicircle. This is a unique curve. Anytime you see it, you know you are dealing
with a first-order lag. The effect of changing the gain K, is also shown in Fig. 10.5.
The magnitude of each point is changed, but the phase angle is not affected.

B. First-order lead

Gts)  = rzs + 1 + Gtiw,  = 1 + i07~

The real part is constant at + 1. The imaginary part increases directly with frequency.

IG(iw)l  = m arg Gtiw)  = arctatr(oT,) (10.29)

Wheno = O,argG = OandIGi = 1.A s o goes to infinity, 1~1  becomes infinite
and arg G goes to +90” or +n/2  radians. The Nyquist plot is shown in Fig. 10.6.

C. Deadtime

Gqs) = e-Ds + Gcjw, zzz e-'wD

This is a complex number with magnitude of 1 and argument equal to -oD.

I IG(iw)  = 1 arg G(iw)  = -oD (10.30)

Deadtime  changes the phase angle but has no effect on the magnitude; the magnitude
is unity at all frequencies. The Nyquist plot is shown in Fig. 10.7. The curve moves
around the unit circle as o increases.

D. Deadtime  and first-order lag
Combining the transfer functions for deadtime  and first-order lag gives

G(s)  =
KpepDS

7,s + 1

= P

J-k-

&arctan(-wTO)-Dw]  ,

2 2
0

Therefore,

I%JI = J& arg Gti,) = arctan(-or,)  - Do (10.31)

Note that the magnitude is exactly the same as for the first-order lag alone. Phase
angle is decreased by the deadtime  contribution. Figure 10.8 shows that the Nyquist
plot is a spiral that wraps around the origin as it shrinks in magnitude.

This example illustrates a very important property of complex numbers. The
magnitude of the product of two complex numbers is the product of their magnitudes.
The argument of the product of two complex numbers is the sum of their arguments.
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1 W - 3 0 FIGURE 10.9
Nyquist plot for an integrator.

E. Integrator

The transfer function for a pure integrator is Gt,) = l/s.  Going into the fre-
quency domain by substituting s = iw gives

Gci,)  is a pure imaginary number (its real part is zero), lying on the imaginary axis. It
starts at minus infinity when o is zero and goes to the origin as o -+ ~0.  The Nyquist
plot is sketched in Fig. 10.9.

I I
1

G(iw,  = ;

arg Gtiw)  = arctan
- l / O
___

0

( 1 0 . 3 2 )

ZE - 90” = -s radians

F. Integrator and first-order lag

Combining the transfer functions for an integrator and first-order lag gives

G(s)  = KP
S(T,S + 1)

G(iw)  = KP -Kp~o~  - K,i
-w*r, + io =  L&J*T~ +  1 )

I IG(iw)  = ( 1 0 . 3 3 )

arg G(iw)  = arctan

The Nyquist curve is shown in Fig.’ 10.10. Note that the results given in Eq. (10.33)
could have been derived by combining the magnitudes and arguments of an integra-
tor [Eq.  (10.32)]  and a first-order lag [Eq. (10.28)].

G. Second-order underdamped system

The second-order underdamped system is probably the most important transfer
function that we need to translate into the frequency domain. Since we often design
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[m ((2

t

Re (G)

FIGURE 10.10
Nyquist plot of an integrator and first-order
lag.

for a desired closedloop damping coefficient, we need to know what the Nyquist
plot of such a system looks like. Most of the underdamped systems that we have in
chemical engineering are closedloop systems (process with a controller).

%4  = (1 _
KLJ = K,(l  - 7&2)  - iKp(2j7,w)

7f02)  + i(2JToO) (1 - 7,202)2  + (2Jr00  j2

I IG(iw)  = KP (10.34)
J(1 - 7,209)2  + (257&9

argG(i,)  = arctan (10.35)

Figure 10.11 shows the Nyquist plot. It starts at KP  on the positive real axis. It in-
tersects the imaginary axis (arg G = -n/2) when o = l/7,.  At this point, [Gl  =
KJ25.  Therefore, the smaller the damping coefficient, the farther out on the negative
imaginary axis the curve will cross. This shape is unique to an underdamped system.
Anytime you see a hump in the curve, you know the damping coefficient must be
less than unity. As o goes to infinity, the magnitude goes to zero and the phase angle
goes to - 7~  radians (- 1 SO”).

FIGURE 10.11
Nyquist plot of a second-order
system.
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The results of the preceding examples show that adding lags (poles) to the trans-
fer function moves the Nyquist plot clockwise around the origin in the G plane.
Adding leads (zeros) moves it counterclockwise. We will return to this generaliza-
tion in the next chapter when we start designing controllers that shift these curves in
the desired way.

10.3.2 Bode Plots

The Nyquist plot presents all the frequency information in a compact, one-curve
form. Bode plots require two curves to be plotted instead of one. This increase in the
number of plots is well worth the trouble because complex transfer functions can be
handled much more easily using Bode plots. The two curves show how magnitude
ratio and phase angle (argument) vary with frequency.

Phase angle is usually plotted against the log of frequency, using semilog graph
paper as illustrated in Fig. 10.12. The magnitude ratio is sometimes plotted against
the log of frequency on a log-log plot. However, usually it is more convenient to
convert magnitude to log  modulus, defined by the equation

L = log modulus = 2Ologto  IG(iw)l (10.36)

Then semilog graph paper can be used to plot both phase angle and log modulus
versus the log of frequency, as shown in Fig. 10.12. There are very practical reasons
for using these kinds of graphs, as you will find out shortly.

The units of log modulus are decibels (dB), a term originally used in com-
munications engineering to indicate the ratio of two values of power. The scale in
Fig. 10.13 is convenient to use to convert back and forth from magnitude to decibels.

Let us look at the Bode plots of some common transfer functions. We calculated
the magnitudes and phase angles for most of them in the previous section. The job
now is to plot them in this new coordinate system.

0

g - 1 0
L

s
3-g - 2 0
E
2

ml  - 3 0

0.01 0.1 I .o 0.0 I 0.1 1 .0

Frequency w, radians per time Frequency o, radians per time

FIGURE 10.12
Bode plots of phase angle and’log modulus versus the logarithm of frequency.



CHARTER IO: Frequency-Domain Dynamics 35 1

1 8

-18

-24

I I Ill1 I I Ill1

0.05 0.1 0.2 0.5 1 2 5 1 0 2 0
Magnitude ratio

FIGURE 10.13
Conversion between magnitude ratio and log modulus.

A. Gain
If Gg) is just a constant K,, IG(iw)  1 = K, and phase angle = arg G(io)  = 0.

Neither magnitude nor phase angle varies with frequency. The log modulus is

L = 2010glo‘~KP~ (10.37)

Both the phase angle and log modulus curves are horizontal lines on a Bode plot, as
shown in Fig. 10.14.

If KP  is less than 1, L is negative. If KP  is unity, L is zero. If KP  is greater than 1,
L is positive. Increasing K, by a factor of 10 (a “decade”) increases L by a factor of

I I I I I I I I

0.1 I IO 0.1 1 10
W, radians per time O,  radians per time

FIGURE 10.14
Bode plots of gain.
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20 dB. Increasing K, moves the L curve up in the Bode plot. Decreasing K,, moves
the L curve down.

B. First-order lag

G(s),  =
1

7,s  + 1

From Eq. (10.28) (with K, = 1)

IG(ico)I  = Ji-& Argo  = arctan(--070) ( 10.38)

L = 2Olog,()
&m

= - lOlog,o(  1 + o”r,‘> (10.39)
0

The Bode plots are shown in Fig. 10.15. One of the most convenient features of Bode
plots is that the L curves can be easily sketched by considering the low- and high-
frequency asymptotes. As o goes to zero, L goes to zero. As o becomes very large,
Eq. (10.39) reduces to

lim L = - 10 1og&J2~~)  = -2Olog&J)  - 20  log&o) (10.40)
w-+=-J

0

% -6
ki

-12

-18

A

&.-----------
Breakpoint
frequency

1 Low-frequency asymptote

I
I = -20 dBldecade

Breakpoint t
. frequency

\,
i

+i
\

*

I IO FIGURE 10.15
t, z,

log  w
Bode plots for first-order lag.
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This is the equation of a straight line of L versus log o.  It has a slope of -20. L will
decrease 20 dB as log o increases by 1 (or as o increases by 10, a decade). Therefore
the slope of the high-frequency asymptote is -20 dB/decade.

The high-frequency asymptote intersects the L = 0 line at w = l/7,.  This is
called the breakpoint frequency. The log modulus is “flat” (horizontal) out to this .
point and then begins to drop off.

Thus, the L curve can be easily sketched by drawing a line with slope of -20
dB/decade from the breakpoint frequency on the L = 0 line. Notice also that the
phase angle is -45” at the breakpoint frequency, which is the reciprocal of the time
constant. The L curve has a value of -3 dB at the breakpoint frequency, as shown
in Fig. 10.15.

C. First-order lead

G(,, = rzs + 1 Gtiw)  = 1 + iorz

From Eq. (10.29),

IG,iw,I = J1+w27,2 arg  G(i,,  = arctan(oT&

L = 2Olog,o  Ji-Z@
(10.41)

These curves are shown in Fig. 10.16. The high-frequency asymptote has a slope
of +20  dB/decade. The breakpoint frequency is l/7,. The phase angle goes from zero

90

‘M
2
2 45
‘0
6

0

0

Iog 0

Breakpoint frequency
c

FIGURE 10.16
Bode plots for first-order lead.
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to +90”  and is +45” at o = l/r,.  Thus, a lead contributes positive phase angle. A
lag contributes negative phase angle. A gain doesn’t change the phase angle.

D. Deadtime

Gci,) = e- iDw

L = 2Ologto  IG(iw)I  = 2OlOgto(l)  = 0 (10.42)

argG(i,)  = -oD (10.43)

As shown in Fig. 10.17, the deadtime  transfer function has a flat L = 0 dB curve
for all frequencies, but the phase angle drops off to minus infinity. The phase angle
is down to - 180” when the frequency is ?r/D.  So the bigger the deadtime, the lower
the frequency at which the phase angle drops off rapidly.

E. nth power of s
The general category of sn plots includes a differentiator (n = + 1) and an inte-

grator (n = - 1).

Gts)  = sn n = +1,+2 , . . . Gciw)  = w”in
(10.44)

L = 2010g&P)  = 20n  10&o@

The L curve is a straight line in the (G log o)  plane of the Bode plot with a slope of
20n. See Fig. 10.18.

arg Gciu,  = arctan

If n is odd, Gciw, is a pure imaginary number and the phase angle is the arctan of
infinity (6 = + 90°,  ?270”,  . . .). If n is even, Gcim)  is a real number and the phase
angle is the arctan  of zero (0 = s~O”,  + 1 80°,  . . .). Therefore, the phase angle changes
by 90” or 7r/2  radians for each successive integer value of n.

arg  Gtim)  = n (10.45)

The important specific values of n are:

1. n = 1: This is the transfer function of an ideal derivative.

Gtiw)  = in  + L = 2OlOgloO

This is a straight line with a slope of +20  dB/decade.

(10.46)

8 =  arctan z =  +90”
0

So an ideal derivative increases phase angle by 90”.
2. n = - 1: This is the transfer function of an integrator.



FIGURE 10.17
Bode plots for deadtime.
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This is a straight line with a slope of -20 dB/decade.

argGowj  = arctan

Thus, an integrator decreases phase angle by 90”.
3. II = -2: Two integrators in series would produce a straight-line L curve with a

slope of -40 dB/decade  and a straight-line 8 curve at - 180”.

F. Second-order underdamped lag
Equations (10.34) and (10.35) give (with K,  = 1)

I IG(iw)  =
1

J(1 - 7,2W*)*  + (2&r&#
arg Gfiw,  = arctan

L = 2Olog,o [J 1

(1 - +J)2 + (257-&I>* 1 ( 10.50)

Figure 10.19 shows the Bode plots for several values of damping coefficient J. The
breakpoint frequency is the reciprocal of the time constant. The high-frequency
asymptote has a slope of -40 dB/decade.

l i m  L  =  2010&u  & =
( )

-40 log{&JTo)
W--+~ 0

Note the unique shape of the log modulus curves in Fig. 10.19. The lower the damp-
ing coefficient, the higher the peak in the L curve. A damping coefficient of about 0.4
gives a peak of about +2  dB. We use this property extensively in tuning feedback
controllers. We adjust the controller gain to give a maximum peak of +2  dB in the
log modulus curve for the closedloop servo transfer function YIYSet.

G. General transfer functions in series
The historical reason for the widespread use of Bode plots is that, before the

use of computers, they made it possible to handle complex processes fairly easily
using graphical techniques. A complex transfer function can be broken down into
its simple elements: leads, lags, gains, deadtimes, etc;  Then each of these is plotted
on the same Bode plots. Finally, the total complex transfer function is obtained by
adding the individual log modulus curves and the individual phase curves at each
value of frequency.

Consider a general transfer function GcsI that can be broken up into two simple
transfer functions Gt(,, and GltsI:

In the frequency domain
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- Log modulus 1
- - - Phase angle :

-36

-180

Frequency w, radians per time

FIGURE 10.19
Second-order system Bode plots.

Each of the G’s is a complex number and can be expressed in polar form:

G1(;,, = IGl(iwjl  ei’gGl(io)

G2+,)  = 1 G2+,)  1 e’ arg  G2(iw)

Gtiw)  = IG(~~)  1 eiargG(iut

Combining,

G(iw)  = IGt(iw)

I IG(iw)  e
i ar Gciw,

g = Gl(iw)

Taking the logarithm of both sides gives

In (Cl  + iarg  G = In ]G, 1 + In IG,l + i(arg  G1 + arg G2)
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Therefore, the log modulus curves and phase angle curves of the individual compo-
nents are simply added at each value of frequency to get the total L and 8 curves for
the complex transfer function.

2Olog,o  ICI = 2Obit,o  IG, 1 + 20@,,  l&l ( 10.53)

argG  = argGt  + argG2 ( 10.54)

EXAMPLE 10.2. Consider the transfer function Gtsj:

G(s) =
1

(%S + 1)(702s + 1)

Bode plots of the individual transfer functions Gr  and G2 are sketched in Fig. 10.20 and
added to give GtiwJ.

G(s)  =
1

G
1

701s  + 1 2(s) =
7,z.Y  + 1

Note that the total phase angle drops down to - 180” and the slope of the high-frequency
asymptote of the log modulus line is -40 dB/decade,  since the process is net second
order. n

-180 t

\ -40 dB/decade

FIGURE 10.20
Bode plots for two lags.
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-180 1

4
-10

-20

FIGURE 10.21
Bode plots for two lags and one lead.

EXAMPLE 10.3. Bode plots for the transfer function

G(s)  =
rzs+  1

(GIS +  1)(7025  +  1)

are sketched in Fig. 10.21. Note that the phase angle goes to -90” and the slope of the
log modulus line is -20 dB/decade at high frequencies because the system is net first
order (the order of the numerator polynomial M is 1 and the order of the denominator
polynomial N is 2). n

E x A M P L E 10.4. Figure 10.22 gives Bode plots for a transfer containing a first-order lag
and deadtime.

e-D~

G(s) = -
s+l

Several different values of deadtime  D are shown. The L curve is the same for all values

of D. Only the phase-angle curve is changed as D changes. The larger the value of D,
the lower the frequency at which the phase angle drops to - 180”. As we learn in Chap-
ter 11, the lower the phase angle curve, the poorer the control. We show quantitatively in
Chapter 11 how increasing deadtime  degrades feedback control performance. You have
already seen this effect in our simulation studies in Chapter 1. n
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FIGURE 10.22
Bode plots for lag and deadtime.

10.3.3 Nichols Plots

The final plot that we need to learn how to make is called a Nichols plot. It is a single
curve in a coordinate system with phase angle as the abscissa and log modulus as
the ordinate. Frequency is a parameter along the curve. Figure 10.23 gives Nichols
plots of some simple transfer functions.

At this point you may be asking why we need another type of plot. After all,
the Nyquist and the Bode plots are simply different ways to plot complex numbers.
As we will see in Chapter 11, all of these plots (Nichols, Bode, and Nyquist) are
very useful for designing control systems. Each has its own application, so we have
to learn all three of them. Keep in mind, however, that the main workhorse of our
Chinese language is the Bode plot. We usually make it first since it is easy to con-
struct from its individual simple elements. Then we use the Bode plot to sketch the
Nyquist and Nichols plots.

10.4
COMPUTER PLOTTING



ie
n

k)

FIGURE 10.23FIGURE 10.23

8, degrees 8, degrees

I I I I I ~

-270 -180 -90 0
0, degrees

cc>

9 +*'

4
0

-90
8, degrees

(4

(b)

-90 0
0, degrees

W

+lO

i

G(icio =

%
0

4
-10

-20
I I I *

-180 -90
8, degrees

(f)

(1 - W22$ + i(2z,&H)

-180 -90 0
8, degrees



362 PART THREE: Frequency-Domain Dynamics and Control

of complex numbers, a digital computer can easily generate any of the desired forms
of the complex number: real and imaginary parts, magnitude, log modulus, and phase
angle. We give two approaches for generating these plots on a computer: using FOR-
TRAN and using MATLAB.

10.4.1 FORTRAN Programs for Plotting Frequency Response

Table 10.1 gives a FORTRAN program that calculates the frequency response of
several simple systems. Figure 10.24 gives Bode plots for four different trans-
fer functions. The variables must be declared COMPLEX at the beginning of the
program. Note in the program how the phase angles are calculated by summing the

T A B L E  1 0 . 1

FORTRAN program for frequency response

c DIGITAL PROGRAM TO CALCULATE FREQUENCY RESPONSE
DIMENSION G(4),DB(4),  DEG(4)
COMPLEX G
OPEN(1,  FILE= ‘FREQ.DAT’)
WRITE(  7, I)
WRITE(7,2)

1 FORMAT(lX, ‘FREQ REGI IMGI REG2  IMG2 REG3 IMG3  REG4
+ IMG4 ‘)

2 FORMAT(lX,‘DBGl  DEGGl DBG2 DEGGZ  DBG3 DEGG3 DBG4
i-DEGG4’)

C W IS FREQUENCY IN RADIANS PER MINUTE
W=O.OI
DW=IO.**(O.2)
DO 100 l=l,ll

C Gl IS FIRST ORDER LAG WITH TAU = 1
G(l)=l./CMPLX(l.,l.O*W)

C G2 IS TWO FIRST-ORDER LAGS WITH TAU’S = 1
G(2)=G(l)*G(l)

C G3 IS TWO FIRST-ORDER LAGS WITH TAU’S = 1 AND 10
G(3)=G(l)/CMPLX(l.,lO.*W)

C G4 IS SECOND-ORDER UNDERDAMPED LAG WITH TAU=l  AND ZETA=O.3
G(4)=l./CMPLX(l.-  W**2,2.*W*O.3)
DO 10 J=1,4

10 DB(J)=20.*ALOGlO(CABS(G(J)))
DEG(l)=ATAN(-  W)*l80./3.1416
DEG(2)=DEG(l)+DEG(l)
DEG(3)=DEG(l)+ATAN(-lO.*W)*180./3.1416
DEG(4)=ATAN2(-2.*W*O.3,1.-  W**2)*180./3.1416
WRlTE(7,4)KG
WRITE(7,3)(DB(J),DEG(J),J=1.4)

4 FORMAT(lX,9F7.3)
3 FORMAT(SX,8F7.1)

100 W=W*DW
STOP
END



‘ms
ase
,R-

of
IlS-

the
the

CIIAITEK IO: Frdquency-Domain Dynamics 363

6 1 I I I1111 I I I I1111 1 ll1llll

I I I I1111 I I llllll

0.01 0.1 1.0 10
w = frequency, radians per time

FIGURE 10.24
Bode plots of several systems.

arguments of the individual components. This is particularly useful when there is a
deadtime  element in the transfer function. If you try to calculate the phase angle from
the final total complex number, the FORTRAN subroutines ATAN and ATAN  can-
not determine what quadrant you are in. ATAN  has only one argument and therefore
can track the complex number only in the first or fourth quadrant. So phase angles
between -90” and - 180”  will be reported as +90”  to 0”. The subroutine ATAN2,
since it has two arguments (the imaginary and the real part of the number), can accu-
rately track the phase angle between + 180” and - 180°,  but not beyond. Getting the
phase angle by summing the angles of the components eliminates all these problems.

A complex number G always has two parts: real and imaginary. These parts can
be specified using the statement

G= CMPLX(X, Y)

where G = complex number
X = real part of G
Y = imaginary part of G

Complex numbers can be added (G=GI  +G2), multiplied (G=GI*G2),  and divided
(C=GZ/G2).  The magnitude of a complex number can be found by using the state-
ment

XX=CARS(G)
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where XX = the real number that is the magnitude of G. Knowing the compk~~

number G, we can find its real and imaginary parts by using the statements

X=REAL(G) Y=AIMAG(G)

A deadtime  ,element Gtsj  = eens

Gtiw,  = e- iD” = cos(Dw) - isin ( 10.55)

can be calculated using the statement

G=FMPLX(COS(D”W),-SIN(D*W))

where D = deadtime
W = frequency, in radians per minute in the FORTRAN program

The program in Table 10.1 illustrates the use of some of these complex FORTRAN
statements.

10.4.2 MATLAB  Program for Plotting Frequency Response

Table 10.2 gives a MATLAB  program that generates Nyquist, Bode, and Nichols
plots for the three-heated-tank process. Figure 10.25 gives the plots. The num and
den polynomials are defined in the same way as in the root locus plots in Chapter 8.
The frequency range of interest is specified by a logspace  function from o = 0.01
to 10 radians/time. The magnitudes and phase angles of Gfio>  are found by using
the [magphase,  w] = bode(num,den, w)  statement. The ultimate gain and frequency
are found by searching through the vector of phase angles until the - 180” point is
crossed.

The real and the imaginary parts of Gfiwj for making.the  Nyquist plot can be
found in two different ways. The easiest is to use the {greaZ,gimag,  w] = nyquist(num,
den,w) statement. Alternatively, the real part can be calculated from the product of
the magnitude and the cosine of the phase angle (in radians) at each frequency. This
term-by-term multiplication is accomplished in MATLAB  by using the . * operation.

Handling deadtime  in MATLAB  is not at all obvious. Larry Ricker (private
communication, 1993) suggested a method for accomplishing it using the polyval
function. As illustrated in the program given in Table 10.3, the numerator and de-
nominator polynomials are evaluated at each frequency point. Then these polynomi-
als are divided at each frequency point by using the . /division operation. Finally,
each of the resulting complex numbers is multiplied by the corresponding deadtime
exp(-d*w)  at that frequency by the .* multiplication operation.

Another problem encountered in systems with deadtime  is large phase angles.
As the curves wrap around the origin for higher frequencies, it becomes difficult
to track the phase angle. MATLAB  has a convenient solution to this problem: the
unwrap  command. As illustrated in Table 10.3, the phase angles are first calculated
for each frequency by using a “for” loop to run through all the frequency points.
Then the unwrup(r-adiarzi)  command is used to avoid the jumps in phase angle.
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MATLAB program for frequency response plots

% Program “tempb0de.m  ” uses Matlab  to plot Bode, Nyquist
% and Nichols plots for three heated tank process
70

% Form numerator and denominator polynomials
num=i.333;
&n=conv([o.  I I],[O.  I I]);
den=conv(den,[O.  I I]);
% Specijy  frequency range from 0.1 to 100 radians/hour (600 points)
w=logspace( - 1,2,600);
70

% Calculate magnitudes and phase angles at all frequencies
% using the “bode” function
70
[mag,phase, w/= bode(num,den,  w);
db=2O*loglO(mag);
70
% Calculate ultimate gain and frequency
n=l;
while phase(n)>= - 180;n=n+l;end
kult=l/mag(n);
wult=w(n);
70
% Plot Bode plot
70
C/f
axis(  ‘normal ‘)
subplot(211)
semilogx(w,db)
title(  ‘Bode Plot for Three Heated Tank Process’)
xlabel( ‘Frequency (radians/hr)‘)
ylabel(‘Log  Modulus (dB)  ‘)
grid
text(2, - lO,[ ‘Ku= ‘,num2str(kult)])
text(2, -2O,[  ‘wu=  ‘,num2str(wult)])
subplot(212)
semilogx( w,phase)
xlabel( ‘Frequency (radians/hr) ‘)
ylabel(  ‘Phase Angle (degrees) ‘)
grid
pause
print -dps pjiglO2S.p~
70
% Make Nichols plot
%

elf
plot(phase,db)
title(‘Nicho1  Plot for Three Heated Tank Process’)
.rlabel(  ‘Phase Angle (degrees) ‘)
.dahell ‘Log  Modulus (dB)  ‘)
grid
pause
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MATLAB program for frequency response plots

% Alternatively you can USE “nichols  ” command
% [mugphase, w]=nichols(num.den,  w);
print -dps -append pjiglO25
Of0

9’0  Make Nyquist  plot
70

% Using the “nyquist”  command
[grealgimag,  w]=nyquist(num,den,  w);
% Alternatively you can calculate the real and imaginary parts
70 from the magnitudes and phase angles
%radians=phase*3.1416/180;
%greal=mag.*cos(radians);
%gimag=mag.*sin(radians);
elf
axis(  ‘square ‘)
plot(greal,gimag)
grid
title(‘Nyquist  Plot for Three Heated Tank Process’)
xlabel( ‘Real(G)‘)
ylabel( ‘Imag(G)  ‘)
pause
print -dps -append p$g1025

Bode Plot for Three Heated Tank Process
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FIGURE 10.25

. Frequency response plots for three-heated-tank process.
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TABI, IO.3

MATLAB program for deadtime Bode plots

70  Program “deadtime.m”
% Calculate frequency response of process with deadtime
% using the Larry  Ricker  method.
%
% Process is a first-order lag with time constant tau=lO  minute,
70  a steady-state gain qf kp=l and a d=S  minute deadtime.
940

tau=lO;  kp=l;  d=S;
num= I;
den=(lO I];
% Specify frequency range from 0.01 to 1 radians/minute (400 points)
w=logspace(-2,0,400);
% Define complex variable “s”
s=w*sqrt(-I);
70

% Evaluate numerator and denominator polynomials at all frequencies
% Note the “.I  operator which does term by term division
70

g=polyval(num,s)  ./  polyval(den,s);
%

% Multiple by deadtime
% Note the “.*” operator which does term by term multiplication
950

gdead=g  . * exp(  - d*s);
70

% Calculate log modulus
%

db=20*loglO(abs(gdead));
70

% Calculate phase angles
70

nw=length(w);
for n=l:nw
radians(n)=atan2(imag(gdead(n)),real(gdead(n)));
end
70  Use “unwrap” operator to remove 360 degree jumps in phase angles
phase=180*(unwrap(radians))/3.1416;
70
% Plot Bode plot
df
axis{  ‘normal ‘)
subplot(211)
semilogx(w,db)
title(‘Bode  Plot for Deadtime  Process’)
xlabel(  ‘Frequency (radiandmin)  ‘)
ylabel(‘Log  Modulus (dB)‘)
text(0.02, - 10, ‘Tau=lO’)
text(0.02, - 15,  ‘Deadtime=S’)
grid
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‘rAIiI,1(  10.3 (CONTINUED)

MATLAB program For deadtime  Bode plots

subplot{2  12)
semilogx(w,phase)
xlabel( ‘Frequency (rudiandmin)  ‘)
ylabel(  ‘Phase Angle (degrees) ‘)
grid
pause
print - dps  pjig  IO26.p.~

Bode Plot for Deadtime Process
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FIGURE 10.26

Figure

10.5

10.26 gives the resulting plots for a first-order lag and deadtime  process.

CONCLUSION

(10.56)

We have laid the foundation for our adventure into the China mainland. We’ve
learned the language,*and we have learned some useful graphical and computer soft-
ware tools for working with it. In the next chapter we apply all these to the problem
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of designing controllers for simple SlSO  systems. In later chapters tie use these
frequency-domain methods to tackle some very complex and important problems:
multivariable systems and system identification.

PROBLEMS

10.1. Sketch Nyquist, Bode, and Nichols plots For the following transfer functions:

I
(a)  G(s)  =  (s +  1)3

1

@) G(s) = (s + l)(lOs  + I)( loos 91)

Cc>  G(s)  =
1

sqs  + 1)

7-s + 1
@)  Gw =  (d6)s  +  1

(e> G(s) = &

V>  G(s)  =
1

(10s + l)(s2 + s + 1)

10.2. Draw Bode plots for the transfer functions:
(a) Gcs)  = 0.5
(b) G(s) = 5.0

10.3. Sketch Nyquist, Bode, and Nichols plots for the proportional-integral feedback con-
troller Gc(,)  :

10.4. Sketch Nyquist, Bode, and Nichols plots for a system with the transfer function

-3s+ 1
G(s) = (s + 1)(5s + 1)

10.5. Draw the Bode plots of the transfer function

G(.s) =
7.5(s  +  0 . 2 )

s(s + 1)3

10.6. Write a digital computer program that gives the real and imaginary parts, log modulus,
and phase angle for the transfer functions:

PIlP22  - Pf2P?I
(a) (Xi, = Gcc.v,- A

P 22
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where

p~~c”)  = (1 + 167s)(l + s)(l  + 0.1~)~

PI2(s)  =
0.85

(1 + 83s)(l  + s)*

p2 I (s)  =
0.85

(1 + 167.x)(  1 + 0.5~)~(  I + s)

P 1
22(s)  = (1 + 167s)(l  + s)*

(b) G(s) =

(.-O.L5

s + 1 + e-O.‘J

10.7. Draw Bode, Nyquist, and Nichols plots for the transfer functions:

(a) h,(s)  =
G(s)

1 + Gc(s)G(s)

where

Gcw =K, l+’
i 7/s

1
G(s) = ___

7,s + 1

10.8. Draw the Bode plot of

K, = 6 q = 6

To = 10

1 - e-D~
G(.s,  = s

10.9. A process is forced by sinusoidal input u,~Q).  The output is a sine wave y,cl).  If these two
signals are connected to an x-y recorder, we get a Lissajous plot. Time is the parameter
along the curve, which repeats itself with each cycle. The shape of the curve will change
if the frequency is changed and will be different for different kinds of processes.
(a) How can the magnitude ratio MR and phase angle 8 be found from this cur\,e?
(6) Sketch Lissajous curves for the following systems:

(9 (-4s) = K,,

(ii) G ’C.7) = ; at o = 1 radian/time

1
at w = - radians/time

70



CHAPTER II

Frequency-Domain Analysis
of Closedloop Systems

372

The design of feedback controllers in the frequency domain is the subject of this
chapter. The Chinese language that we learned in Chapter 10 is used to tune con-
trollers. Frequency-domain methods have the significant advantage of being easy to
use for high-order systems and for systems with deadtime.

We show in Section 11.1 that closedloop stability can be determined from the
frequency response plot of the total openloop transfer function of the system (process
openloop  transfer function and feedback controller G~~(i~jGc(i~)).  This means that
a Bode plot of GM(~~~Gc(;~) is all we need. As you remember from Chapter 10, the
total frequency response cuive  of a complex system is easily obtained on a Bode plot
by splitting the system into its simple elements, plotting each of these, and merely
adding log moduli and phase angles together. Therefore, the graphical generation
of the required G M(;~)G~(~~) curve is relatively easy. Of course, all this algebraic
manipulation of complex numbers can be even more easily performed on a digital
computer.

11.1
NYQUIST STABILITY CRITERION

The Nyquist stability criterion is a method for determining the stability of systems in
the frequency domain. It is almost always applied to closedloop systems. A working,
but not completely general, statement of the Nyquist stability criterion is:

!f (1 pd~r*  plot qf’tht>  total  openloop transferfunction of the system  GM(iwjGC(iw)
wraps  U~O~~IIC/  the (- 1, 0) point in the GMG~  plane as frequency w goes from
zero to iilfirlit\:  tilt’  s\~.vtcm  is closedloop unstable..



F this
con-
sy to

n the
xess
; that
1,  the
! plot
erel y
ation
braic
lgital

ns in
ting,

C(iw)

frorn

Curve A
wraps around
(-1,0) so is
closedloop
unstable

(b)

Cttwtw  I I: Frequency-Domain Analysis of Closc~.lloop  Systems 373

Im (GMGc)

G,G, plane

Curve B does not wrap
around (-1,O) so is
closedloop stable

@I

Yl

-

Cc)

= arg(s - z,)

* k(s) where s = a, + in,

Z1 =x,  + iy,
a w

FIGURE 11.1
(a) Polar plots showing closedloop stability or instability. (b)  s plane location
of zeros and poles. (c) Argument of (s - ~1).

The two polar plots sketched in Fig. 11. la show that system A is closedloop unstable
whereas system B is closedloop stable.

On the surface, the Nyquist stability criterion is quite remarkable. We are able
to deduce something about the stability of the closedloop system by making a fre-
quency response plot of the c~perzlo~~p  system! And the encirclement of the mystical,
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magical  (-- I, 0) point somehow tells US that the system is closedloop unstable. This
all looks like blue smoke and mirrors. However, as we will prove, it all goes back
to finding out if there are any roots of the closedloop characteristic equation in the
RHP (positive real roots).

11.1.1 Proof

A. Complex variable theorem

The Nyquist stability criterion is derived from a theorem of complex variables.

If a complex function F,,, has Z zeros and P poles inside a certain area of the s
plane, the number N of encirclements of the origin that a mapping of a closed
contour around the area makes in the F plane is equal to Z - P.

Z - P = N (11.1)

Consider the hypothetical function F,,, of Eq. (11.2) with two zeros at s = zt
ands =  z2andonepoleats  =  pl.

F( )
s

= (s - Zl)(S - z2)

s - Pl
(11.2)

The locations of the zeros and the pole are sketched in the s plane in Fig. 11.  lb.
The argument of Fc,, is

arg  F~,J  = arg (s - am - z2)

s - PI I (11.3)

arg F(,)  = =g(s  - zl > + arg(s - z2) - arg(s - pl>

Remember, the argument of the product of two complex numbers zt  and z2 is the
sum of the arguments.

~1~2  = (rle’Bi)(r2ei82)  = rlr~ei(el+e2)

q(z1z2)  = 81 + 62

And the argument of the quotient of two complex numbers is the difference between
the arguments.

arg  2
0

= 8,  -02
Z2

Let us pick an arbitrary point s on the contour and draw a line from the zero zt
to this point (see Fig. Il. lc). The angle between this line and the horizontal, 6,, , is
equal to the argument of (s - ~1).  Now let the point s move completely around the
contour. The angle 6:,  or arg(s - ~1)  will increase by 2n radians. Therefore, arg  Fts)
will increase by 27r  radians for each zero inside the contour.
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A similar development shows that arg FQ, &creases  by 27~  for each pole inside
the contour because of the negative sign in Eq. ( 1 I .3).  Two zeros and one pole mean
that arg Fc,, must show a net increase of +2+rr.  Thus, a plot of F&,  in the complex F
plane (real part of F(,j versus imaginary part of Ftg))  must encircle the origin once
as s goes completely around the contour.

InthissystemZ  = 2andP = 1,andwehavefoundthatN = Z-P =  2 - l  =
I. Generalizing to a system with Z zeros and P poles gives the desired theorem
[Eq. ill].

If any of the zeros or poles are repeated, of order M, they contribute 27rM  radi-
ans. Thus, Z is the number of zeros inside the contour with Mth-order zeros counted
M times. And P is the number of poles inside the contour with Nth-order poles
counted N times.

B. Application of theorem to closedloop stability

To check the stability of a system, we are interested in the roots or zeros of the
characteristic equation. If any of them lies in the right half of the s plane, the system
is unstable. For a closedloop system, the characteristic equation is

1 -1-  Gqs)Gc(s)  = 0 (11.4)

So for a closedloop system, the function we are interested in is

F(s) = 1 + Gys,Gc(s> (11.5)

If this function has any zeros in the RHP, the closedloop system is unstable.
If we pick a contour that goes completely around the right half of the s plane

and plot 1 + GM(~JGc(+ Eq. (11.1) tells us that the number of encirclements of the
origin in this (1 + GMG~)  plane will be equal to the difference between the zeros
and poles of 1 + GMG~  that lie in the RHP. Figure 11.2 shows a case where there
are two zeros in the RHP and no poles. There are’two  encirclements of the origin in
the (1 + GMG~)  plane.

We are familiar with making plots of complex functions like GM(iw)Gc(iw)  in
the GMG~  plane. It is therefore easier (but more confusing unless you are careful to
keep track of the “apples” and the “oranges”) to use the GMGC plane instead of the
(1 + GMGc) plane. The origin in the (1 + GMG~)  plane maps into the (- 1,O) point
in the GMG~  plane since the real part of every point is moved to the left one unit.
We therefore look at encirclements of the (- 1,O) point in the GMGC plane, instead
of encirclements of the origin in the (1 + GMGc) plane.

After we map the contour into the G,+rGc plane and count the number N of
encirclements of the (- 1,  0) point, we know the difference between the number of
zeros 2 and the number of poles P that lie in the RHP. We want to find out if there
are any zeros of the function Ftsj  = 1 + GM(~,Gc(~)  in the RHP. Therefore, we must
find the number of poles of Fts,  in the RHP before we can determine the number of
zeros.

Z=N+P (11.6)

The poles of the function F’(,s, = I + GMcsjGctsj  are the same as the poles
of Gw(.s)Gc(s,. It the process is openloop  stable, there are no poles of GM(~,Gc(~)  in
the RHF? Ai1  openloop-stable process means that P = 0. Therefore, the number N of
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s plane

Contour goes completely
around RHP

* Re W

Zeros

z=2
P=O

Im ( 1 + G,G,)

-4Two encirclements
of origin
N=2

\

(b)

-Re(l +G,Gc)

Im (Gd%)

I

FIGURE 11.2
I\ I I. . ,*. I~ I -



encirclements of the (- I, 0) point is equal to the number of zeros of I + C~M(,r~G~~s~
in the RHP for an openloop-stable process. Any encirclement means the closedlqop
system is unstable.

If the process is openloop  umtable,  G,+,M(,rJ  has one or more poles in the RHP, so
F(s)  =  1 +  G~u(x)Gc(.s) also has one or more poles in the RHP. We can find out how
many poles there are by solving for the roots of the openloop characteristic equation
(the denominator of GM(.~J). Once the number of poles P is known, the number of
zeros can be found from Eq. (I 1.6).

11.1.2 Examples

Let us illustrate the mapping of the contour that goes around the entire right half of
the s plane using some examples.

E x A M P I, E ii. I. Consider the three-CSTR process

I

GW.Q = (s +B I)3

With a proportional feedback controller, the total openloop  transfer function (process and
controller) is

$K,
GW)GCW  =  (s +  1 >3 (11.7)

This system is openloop  stable (the three poles are all in the left half of the s plane), so
P = 0.

The contour around the entire RHP is shown in Fig. 11.2~.  Let us split it up into three
parts: C+, the path up the positive imaginary axis from the origin to +m;  CR,  the path
around the infinitely large semicircle; and C-, the path back up the negative imaginary
axis from --co to the origin.

C, contour. On the C,  contour the variable s is a pure imaginary number. Thus, s = iw
as o goes from 0 to +m. Substituting io for s in the total openloop  system transfer
function gives

We now let o take on values from 0 to +m and plot the real and imaginary parts of
G,+,M(;wjG~(iw). This, of course, is just a polar plot of GM~,~)Gc(~J, as sketched in Fig 11.3~.
The plot starts (w = 0) at i K,. on the positive real axis. It ends at the origin, as o goes
to infinity, with a phase angle of -270”.

CR  contour. On the CR contour,

s = Re” (11.9)

R will go to infinity and 8 will take 011  values from +7r/2 through 0 to -7r/2 radians.
Substituting Eq. ( I I .9)  into GM(,)Gc,(,,)  gives
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As K becomes large, the + I term in the denominator can be neglected.

lim GMG~  = lim
R-m

(11.11)

The magnitude of GMGc  goes to zero as R goes to infinity. Thus, the infinitely large
semicircle in the s plane maps into a point (the origin) in the GwGc plane (Fig. 1 I .3b).
The argument of G,+,Gc  goes from -342 through 0 to +3~/2 radians.

C-  contour. On the C- contour s is again equal to io, but now o takes on values from
--co to 0. The GMG~  on this path is just the complex conjugate of the path with positive
values of w. See Fig. 11.3~.

(a) Contour C+

Im W
A s plane

(b) Contour CR

K I8GM&(~)  = c
(s + I)3

(c) Contour C

Re (GMGc)

Im (G&C)
A G,G,  plane

‘\
m Re(G,&c)

cR

Im (GM&)

t

G,Gc  plane

W=O
- Re(GMGc)

FIGURE 11.3
Nyquist plots of three-CSTR system with proportional controller.
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.~

1111 (G,G,.)

t

G,G,  plane

(d) Complete contour

Kc  > 64 stability
Kc = Ku  = 64

Kc<  64

(e) Intersections on negative real axis

FIGURE 11.3 (CONTINUED)
Nyquist plots of three-CSTR system with proportional controller.

The complete contour is shown in Fig. 11.3d.  The bigger the value of K,, the farther
out on the positive real axis the GMG~  plot starts, and the farther out on the negative real
axis is the intersection with the GMGc  plot.

If the GMGc  plot crosses the negative real axis beyond (to the left of) the critical
(- 1,O)  point, the system is closedloop unstable. There would then be two encirclements
of the (- I, 0) point, and therefore N = 2. Since we know P is zero, there must be two
zeros in the RHP.

If the G,MGc  plot crosses the negative real axis between the origin and the ( - 1.0)
point, the system is closedloop stable. Now N = 0, and therefore Z = N = 0. There
are no zeros of the closedloop characteristic equation in the RHP.

There is some critical value of gain K,. at which the GMGC  plot goes right through
the (- I, 0) point. This is the limit of closedloop stability. See Fig. 11.3e.  The \alue of
K,. at this limit should be the ultimate gain K,, that we dealt with before in making root
locus plots of this system. We found in Chapter 8 that K, = 64 and o, = fi. Let us
see if the frequency-domain Nyquist stability criterion studied in this chapter gives the
same results.
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At the limit of closedloop  stiihility

GM(;,,~GQ;,,,~  =  - I  +  i  0 (11.12)

1 K,.

I -

AK,
s3  + 3s’ + 3s + I

.v=io
(I - 309 + i(3w - 0’)

(bK,)(l  - 3w2)
= (1 - 3w2)2  + (30 - coy

(A K&o”  - 30)
+ 1 (I - 3w2)2  + (30 - d)*

Equating the imaginary part of the preceding equation to zero gives

(I 1.13)

(A K&d3 - 30)

(1- 3w2)2  + (30 - 69)2 = O

co= h=w,,

This is exactly what we found from our root locus plot. This is the value of frequency at
the intersection of the GMGc  plot with the negative real axis.

Equating the real part of Eq. (11.13) to - 1 gives

(&)(I - 3w2)

(1 - 3w2)”  + (3w - LtJ3)2  = -l

($KJl  - 3(3)1

[I - 3(3>]2 + (3 J? - 3 & =
-I

-Kc
-=--I 1$ J&=64=&

64

This is the same ultimate gain that we found from the root locus plot.
Remember also that for gains greater than the ultimate gain, the root locus plot

showed two roots of the closedloop characteristic equation in the RHP. This is exactly
the result we get from the Nyquist stability criterion (N = 2 = 2). n

EXAMPLE 11.2. The system of Example 8.5 is second order.

KC
GmGm = (s + 1)(5s + l) (11.14)

It has two poles, both in the LHP: s = - 1 and s = - f. Thus, the number of poles of
GMG~  in the RHP is zero: P = 0. Let us break up the contour around the entire RHP
into the same three parts used in the previous example.

C, contour. s = iw as o goes from 0 to +m. This is just the polar plot of GM(iw)GC(iw).
See Fig. I I .4n.

~ ,

CR contour. s = Re” as R -+ ~0 and 8 goes from ~12 to -rf2,

GwGc(.,~  =
KC

(Re’” + I)(SR@ + 1)
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:;:-Ic
Im (4

Kc=3

Kc=2

-rY \

w=o e
+3

Re (4

Re (G,Gc)

FIGURE 11.4
(a) Nyquist plot of the second-order system. (b) s plane contour to avoid pole at
origin.
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FIGURE 11.4 (CONTINUED)
(c) Nyquist plot of system with integrator.

Thus, the infinite semicircle in the s plane again maps into the origin in the GrnGc  plane,
This happens for all transfer functions where the order of the denominator is greater than
the order of the numerator.

C- contour. s = io as o goes from --oo to 0. The GM(~~JGc(~~) curve for negative values
of w is the reflection over the real axis of the curve for positive values of o. So we
really don’t need to plot the C- contour. The C,  contour gives us all the information we
need.

The complete Nyquist plot is shown in Fig. 11.4~  for several values of gain K,.
Notice that the curves will never encircle the (- 1,O) point, even as the gain is made
infinitely large. This means that this second-order system can never be closedloop un-
stable. This is exactly what our root locus curves showed in Chapter 8.

As the gain is increased, the GMG~  curve gets closer and closer to the (- 1,O)  point.
Later in this chapter we use the closeness to the (- 1,0) point as a specification for de-
signing controllers. n

E X A M P L E 11.3. If the openloop  transfer function of the system has poles that lie on the
imaginary axis, the s plane contour must be modified slightly to exclude these poles. A
system with an integrator is a common example.

(11.16)

This system has a pole at the origin. We pick a contour in the .s plane that goes counter-
clockwise around the origin, excluding the pole from the area enclosed by the contour.
As shown in Fig. 11.4h,  the contour Co is a semicircle of radius r(). And I-~) is made to
approach zero.
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C,.  contour. s = iw as o goes from rr) to K, with r() going to 0 and R going to +m.

GM(iw)Gc(rw,  =
K‘

iw(  I + io7,,I)(  I + io7,2)

-K&T,,,  + 7,~)  - iK,( 1 - ~~1  TRAWL)
(11.17)

ZZ
W2(To,  + To~)~  + @(I - 7,1TozW~)~

The polar plot is shown in Fig. 11.4~

CR  contour. s = Re’“.

Gm Gc(.s)  =
K

Reie(Tt,l  Reie  + ~)(T,~Rc?~~  + 1)

lim[GM(sjGc(,)] = ,lilim eP30i = 0
R--+x

R?7K,r
01  02

(11.18)

The CR contour maps into the origin in the GMG~  plane.

C- contour. The GMGc  curve is the reflection over the real axis of the GMGC  curve for
the C+ contour.

Co  contour. On this small semicircular contour

s = roe it!? (11.19)

The radius ro goes to zero and 8 goes from --n/2 through 0 to +~/2 radians. The system
transfer function becomes

GM(~) C(s)  =
KC

rOeie(To,rOeie  + 1)(To2roeie  + 1)
(11.20)

As 1-0 gets very small, the ~~lroe'~ and T02r-aeie  terms become negligible compared with
unity.

lim (G~(~~G~(~))  = lim
Q--+0 ro-.($) = ::o($-ie) (11.21)

Thus, the Co contour maps into a semicircle in the GMG~  plane with a radius that goes to
infinity and a phase angle that goes from +m/2  through 0 to -rr/2. See Fig. 11.4~.  The
Nyquist plot does not encircle the (- 1,O) point if the polar plot of GM(;o)Gc(iw)  crosses
the negative real axis inside the unit circle. The system would then be closedloop stat7le.

The maximum value of Kc  for which the system is still closedloop stable can be
found by setting the real part of GM(iojGc(iw) equal to - 1 and the imaginary part equal
to 0. The results are

K, = 701 + To2
0, = (11.22)

To I To2
n

As we have seen in the three examples, the C+ contour usually is the only one
that we need to map into the GMG~ plane. Therefore, from now on we make only
polar (or Bode or Nichols) plots of GM(iw)Gc(iu).

EXAMPLE I 1.4. Figure 11.5n  shows the polar plot of an interesting system that has
conditional stability. The system openloop transfer function has the form

Kc(7,,.s  + I)
GMM(s’GC(s) =  (T,,S  +  i)(T,2S  + i)(T,j.S  + l)(Td.S  +  1)

( 11.23)

If the controller gain K,. is such that the (- 1,O)  point is in the stable region indicated in
Fig. 1 I .5tr,  the system is closedloop stable. Let us define three values of controller gain:
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[m (G,&)
Stable regions A

(a) Nyquist plot

Im (s)

(b) Root locus plot

FIGURE 11.5
System with conditional stability.

K1 = value of K, when 1 GMcjw, ,Gc(io,, 1 = 1

K2  = value of KC when IGM(iqjGC(iq)/  = 1

K3 = value of KC  when [G~~~~,,G~~~~,,~  = 1

The system is closedloop stable for two ranges of feedback controller gain:

K, < K, and K2  < K, < K3 (11.24)

This conditional stability is shown on a root locus plot for this system in Fig. 11.5b. w

11.1.3 Representation

In Chapter 10 we presented three different kinds of graphs that were used to represent
the frequency response of a system: Nyquist, Bode, and Nichols plots. The Nyquist
stability criterion was developed in the previous section for Nyquist or polar plots.
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The critical point for closedloop stability was shown to be the (- I, 0) point on the
Nyquist plot.

Naturally we also can show closedloop stability or instability on Bode and
Nichols plots. The (- I, 0) point has a phase angle of - 180” and a magnitude of
unity or a log modulus of 0 decibels. The stability limit on Bode and Nichols plots

(a) Nyquist plot

+10

0

%d - 1 0

-20

-30

(b) Bode plot

+10

0

3
4-

-10

-20
I
I I I

-770 -IX0 -90 0
8. degrees

-270

FIGURE 11.6
Stable and unstable
closedloop systems in
Nyquist, Bode, and Nichols
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is therefore the (0 dB, - 180”) point. At the limit of closedloop stability

L = 0 dB and 8 = - 180” (11.25)

The system is closedloop stable if

L<OdB at8  =  - 1 8 0 ”

t9>-180”  a t L = O d B

Figure 11.6 illustrates stable and unstable closedloop systems on the three types of
plots.

Keep in mind that we are talking about closedloop stability and that we are
studying it by making frequency response plots of the total openloop system trans-
fer function. These log modulus and phase angle plots are for the openloop  system.
So we could use the terminology h and 80  for our Bode and Nichols plots of the
openloop  GM  Gc frequency response plots.

We consider openloop-stable systems most of the time. We show how to deal
with openloop-unstable processes in Section 11.4.

11.2
CLOSEDLOOP SPECIFICATIONS IN THE FREQUENCY DOMAIN

There are two basic types of specifications commonly used in the frequency do-
main. The first type, phase margin and gain margin, specifies how near the openloop
GM(iwJGc(iw)  polar plot is to the critical (- 1,O) point. The second type, maximum
closedloop log  modulus, specifies the height of the resonant peak on the log modu-
lus Bode plot of the closedloop servo transfer function. So keep the apples and the
oranges straight. We make openloop transfer function plots and look at the (- 1,O)
point. We make closedloop  servo transfer function plots and look at the peak in the
log modulus curve (indicating an underdamped system). But in both cases we are
concerned with closedloop  stability.

These specifications are easy to use, as we show with some examples in Sec-
tion 11.4. They can be related qualitatively to time-domain specifications such as
damping coefficient.

11.2.1 Phase Margin

Phase margin (PM) is defined as the angle between the negative real axis and a
radial line drawn from the origin to the point where the GMGc  curve intersects the
unit circle. See Fig. 11.7. The definition is more compact in equation form.

PM  = 180”  + (arg GMGc)~~~G~I= 1 (11.26)

If the GMGC polar plot goes through the (- 1,O)  point, the phase margin is zero. If
the GMGr  polar  nlot  crosses  the ncmtive  renl auir  tn the r;=ht  nfthn  /-  1 fi\ n-l-+ l hr.
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phase margin is some positive angle. The bigger the phase margin, the more stable
is the closedloop system. A negative phase margin means an unstable closedloop
system.

Phase margins of around 45” are often used. Figure 11.7 shows how phase mar-
gin is found on Bode and Nichols plots.
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11.2.2 Gain Margin

Gain margin (GM) is defined as the reciprocal of the intersection of the GMG~  polar
plot on the negative real axis.

1

GM  = kXklarg~M~c  = - IW
(11.27)

A

- GM(iw~GC(i<o)L
(a) Nyquist plot

0

(6) Bode plot

(c) Nichols plot
FIGURE 11.8
Gain margin.
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Figure I 1.8 shows gain margins on Nyquist, Bode, and Nichols plots. Gain margins
are sometimes reported in decibels.

If the GMG~  curve goes through the critical (- 1,O)  point, the gain margin is
unity (0 dB). If the GMG~  curve crosses the negative real axis between the origin
and - 1, the gain margin is greater than 1. Therefore, the bigger the gain margin, the
more stable the system is, i.e., the farther away from - 1 the curve crosses the real
axis. Gain margins of around 2 are often used.

A system must be third or higher order (or have deadtime) to have a meaning-
ful gain margin. Polar plots of first- and second-order systems do not intersect the
negative real axis.

11.2.3 Maximum Closedloop Log Modulus (Ly)

The most useful frequency-domain specification is the maximum closedloop log
modulus. The phase margin and gain margin specifications can sometimes give poor
results when the shape of the frequency response curve is unusual.

For example, consider the Nyquist plot of a process sketched in Fig. 11.9a,  where
the shape of the GMG~  curve gives a good phase margin but the curve still passes
very close to the (- 1,0) point. The damping coefficient of this system would be quite
low. This type of GMG~  curve is commonly encountered when the process has a large
deadtime. Figure 11.9b  shows a GMG~  curve that has a good gain margin but passes
too close to the (- 1,0) point. These two cases illustrate that using phase or gain
margins does not necessarily give the desired degree of damping. This is because
each of these criteria measures the closeness of the GMG~  curve to the (- LO) point
at only one particular spot.

The maximum closedloop log modulus does not have this problem since it di-
rectly measures the closeness of the GinGc curve to the (- 1,O)  point at all frequen-
cies. The closedloop log modulus refers to the closedloop servo transfer function:

Y(s)  _ G&c(s)- -
yset (11.28)

(s) 1 + G~(s,Gc(s)

The feedback controller is designed to give a maximum resonant peak or hump in
the closedloop log modulus plot.

All the Nyquist, Bode, and Nichols plots discussed in previous sections have
been for openfoop  system transfer functions G~~iw~Gc(iW).  Frequency response plots
can be made for any type of system, openloop  or closedloop. The two closedloop
transfer functions that we derived in Chapter 8 show how the output Y(,)  is affected
in a closedloop system by a setpoint input Yf$  and by a load Lt,,. Equation (11.28)
gives the closedloop servo transfer function. Equation (11.29) gives the closedloop
load transfer function.

yw _ CL(~)~ - (11.29)
L(S) 1 + Gw.s)Gc(s)
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1
-GM

Typical log modulus Bode plots of these two closedloop transfer functions are shown
in Fig. 11.10~.  If it were possible to achieve perfect or ideal control, the two ideal
closedloop transfer functions would be

Y(.d  _- - 0 and yset -Y(s)  _ 1
Lb, (3)

Equation (11 .30)  says that we want the output to track the setpoint perfectly for all
frequencies, and we want the output to be unaffected by the load disturbance for
all frequencies. Log modulus curves for these ideal (but unattainable) closedloop
systems are shown in Fig. 1 I. 1 Oh. .
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FIGURE 11.10
Closedloop log modulus curves.

In most systems, the closedloop servo log modulus curves move out to higher
frequencies as the gain of the feedback controller is increased. The system has a
“wider bandwidth,” as the mechanical and electrical engineers say. This is desirable
since it means a faster closedloop system. Remember, the breakpoint frequency is
the reciprocal of the closedloop time constant.

But the height of the resonant peak also increases as the controller gain is in-
creased. This means that the closedloop system becomes more underdamped. The
effects of increasing controller gain are sketched in Fig. 11 .lOc.
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A commonly used maximum closedloop log modulus specification is +2 dB.
The controller parameters are adjusted to give a maximum peak in the closedloop
servo log modulus curve of +2  dB. This corresponds to a magnitude ratio of 1.3 and
is approximately equivalent to an underdamped system with a damping coefficient
of 0.4.

Both the openloop  and the closedloop frequency response curves can be eas-
ily generated on a digital computer by using the complex variables and functions
in FORTRAN discussed in Chapter 10 or by using MATLAB  software. The fre-
quency response curves for the closedloop servo transfer function can also be fairly
easily found graphically by using a Nichols chart. This chart was developed many
years ago, before computers were available, and was widely used because it greatly
facilitated the conversion of openloop  frequency response to closedloop frequency
response.

A Nichols chart is a graph that shows what the closedlcop log modulus L,
and closedloop phase angle 8, are for any given openloop  log modulus b and
openloop  phase angle 130.  See Fig. I 1.1 la. The graph is completely general and can
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be used for any SISO system. To prove this, let us choose an arbitrary openloop~
GMtiw)Gc(io).  In polar form, the openloop  complex function is

GM(iw)Gc(iw)  = roeieo ( 1 1 . 3 1 )

where ro  = magnitude of the openloop  complex function at frequency w
80  = argument of the openloop  complex function at frequency w

The closedloop servo transfer function is

.~W.~)%d  = roe
if30

1 + Gqs)Gc(s) 1 + r0 eieo
(11.32)

Putting this complex function into polar form gives

(1 I .33)

where r, = magnitude of the closedloop complex function at frequency o
8,.  = argumed  of the closedloop complex function at frequency CO
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Equation (11.33) can be rearranged to get rc and 0,.  as explicit functions of ro
and $0.

rc= J& (11.34)

0, = arctan
sin 00

( 1r-0  cos 80
(11.35)

Thus, for any arbitrary system with the given openloop  parameters 80  and Lo,  Eqs.
(11.34) and (11.35) give the closedloop parameters 8, and L,. The Nichols chart is
a plot of these relationships.

The graphical procedure for using a Nichols chart is first to construct the open-
loop  Gn/rGc  Bode plots. Then we draw an openloop  Nichols plot of GM(imjGc(iw).
Finally we sketch this openloop  curve of b versus 80  onto a Nichols chart. At each
point on this curve (which corresponds to a certain value of frequency), the values
of the closedldop log modulus L, can be read off.

Figure 11.1 lb is a Nichols chart with two G,+,Gc curves plotted on it. They are
from the three-CSTR system with a proportional controller.

GM(~)  G(s) =
$&

(s + 1)3

The two curves have two different values of controller gain: K, = 8 and K, = 20.
The openloop Bode plots of GMG~  and the closedloop Bode plots of G~t,jGc(,)/
(1 + GMM(~)Gc(~)),  with K, = 20, are given in Fig. 11.12.

The lines of constant closedloop log modulus L, are part of the Nichols chart. If
we are designing a closedloop system for an Ly specification, we merely have to
adjust the controller type and settings so that the openloop  GMGC  curve is tangent to
the desired L, line on the Nichols chart. For example, the GMGc  curve in Fig. 11.1 lb
with K, = 20 is just tangent to the +2  dB L, line of the Nichols chart. The value of
frequency at the point of tangency, 1.1 rad/min,  is the closedloop resonant frequency
or. The peak in the log modulus plot is clearly seen in the closedloop curves given
in Fig. 11.12.

There are two aspects of using the maximum closedloop log modulus specifi-
cation that you should be aware of. First, the L, curves can display multiple peaks
because the Nyquist plot of some complex processes can approach the (- 1,O) point
at several frequency points along its trajectory. We are always looking for the highest
peak, so make sure you cover the entire frequency range of interest when you plot the
L, curve. This multiple-peak phenomenon can be a particularly confusing problem
when you are using a computer program to determine the controller gain that gives
a desired LF. Keep in mind that multiple peaks can occur in some systems.

The second thing that you should be alert to is that a plot of G,(,,G&
(1 + GM(.~JGc(,))  tells you only how close you are to the (- 1,0) point. As you make
the gain bigger and bigger, approaching the ultimate gain, the peak in the curve
increases. At the ultimate gain the peak height is infinite. However, if you continue
to make the same plot for gains greater than the ultimate gain, the peak height will
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decrease. This is because the function we are plotting measures only the closeness
of the GMG~  curve to the (- 1,0) point. After the (- 1,O) point has been encircled,
increasing the controller gain moves the GMGCC  curve further away from the (- 1,0)
point on the other side. So be sure to check that the GMGC curve does not encircle
the (- 1,O) point.

11.3
FREQUENCY RESPONSE OF FEEDBACK CONTROLLERS

Before we give some examples of the design of feedback controllers in the frequency
domain, it would be wise to show what the common P,  PI, and PID controllers look
like in the frequency domain. This forms the G c(iw) that we combine with the process
GM(;~)  to get the total openloop  Bode plots of GMtiwjGC(io).
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FIGURE 11.13
Bode plots of controllers.

11.3.1 Proportional Controller (P)

The transfer function of a P controller is G cCs) = KC. Substituting s = iw  gives

Gc(iw) = Kc (11.37)

A proportional controller merely multiplies the magnitude of GM(~~,  at every fre-
quency by a constant K,. On a Bode plot, this means that a proportional controller
raises the log modulus curve by 2010g,~  K, decibels but has no effect on the phase
angle curve. See Fig. 11.13~.

11.3.2 Proportional-Integral Controller (PI)

The transfer function of a PI controller is



~‘IIAIWK  I I: F;requency-I>otllaitl  Analysis of Closedloop  Systems 397

G(i,,)  = Kc (11.38)

The Bode plot of this combination of an integrator and a first-order lead is shown in
Fig. 1 I. 13h. At low frequencies, a PI controller amplifies magnitudes and contributes
-90” of phase angle lag. This loss of phase angle is undesirable from a dynamic
standpoint since it moves the GMG~  polar plot closer to the (- I, 0) point.

11.3.3 Proportional-Integral-Derivative Controller (PID)

G(s) = Kc (““i i :  1)(::2’1)
(11.39)

The Bode plot for the lead-lag element is sketched in Fig. 11.13~.  It contributes
positive phase angle advance over a range of frequencies between l/r0 and l/are.

The lead-lag element can move the GMG~  curve away from the (- 1,O) point
and improve stability. When the derivative setting on a PID controller is tuned, the
location of the phase angle advance is shifted so that it occurs near the critical (- 1,O)
point.

11.4
EXAMPLES

11.4.1 Three-CSTR Process

The openloop  transfer function for a three-CSTR process is
I

G M(s) = (s +8 1)3

Before we design controllers in the frequency domain, it might be interesting to see
what the frequency-domain indicators of closedloop performance turn out to be when
the Ziegler-Nichols settings are used on this system. Table 11.1 shows the phase

TABLE 11.1

Frequency-domain indicators that result from Ziegler-Nichols settings and 0.316
damping coefficient settings

0.316 damping coefficient

P PI PID P PI PID PID

KC 32 29.1 37.6 17 13 30 17
71 - 3.03 1.82 - 3.03 1.82 1.82
70 - - 0.45 - - 0.9 0.45
Phase margin (“) 28 13 22 64 52 38 -II

Gain margin 2 I .6 7 3.8 3.5 I O I5
I,;!-’  (dB) 6.9 I3 8.3 0.5 I .9 3.8 1.2

Resonant frequency w, (rad/min) I.3 1 .3 1.6 I.0 0.8 I .6 I . 0
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and gain margins and the maximum closedloop log moduli that the Ziegler-Nichols
settings give. Also shown in Table 11.1 are the results when the settings for a damp-
ing coefficient of 0.3 16 are used.

The Ziegler-Nichols settings give quite small phase and gain margins and large
maximum closedloop log moduli. The 5 = 0.316 settings are more conservative.
Figure 11.14 shows the closedloop and openloop  Bode plots for the PI controllers
with the two different settings.

Now we are ready to find the controller settings required to give various
frequency-domain specifications with P, PI, and PID controllers.

A. Proportional controller

Gain margin. Suppose we want to find the value of feedback controller gain
K, that gives a gain margin GM = 2. We must find the value of & that makes the
Nyquist plot of

G~(s)Gc(,s)  =
+K,,

(s + 1)3

i
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cross the negative real axis at (-0.5,O).  As shown in Fig. 11.1%  the ultimate gain
is 64. Thus, a gain of 32 will reduce the magnitude of each point by one-half and
make the GMGC polar curve pass through the (-0.5,O) point.

Figure 11.16 shows the same result in Bode plot form. When the phase angle
is - 180” (at frequency 0,  = ,/?), the magnitude must be 0.5 or the log modulus
must be -6 dB. Thus, the log modulus curve must be raised + 12 dB (gain 4) above
its position when the controller gain is 8. Therefore, the total gain must be 32 for
GM = 2. Notice that this is the Ziegler-Nichols setting.

Phase margin. To get a 45”  phase margin, we must find the value of K, that
makes the Nyquist plot pass through the unit circle when the phase angle is - 135’,
as shown in Fig. 1 l_  15b. The real and imaginary parts of GMG~  must both be equal
to -i  ,/2 at this point on the unit circle. Solving the two simultaneous equations
gives

32K,. = __
J

= 22.6 and o = 1 rad/min
2



400  PARTTHREE: Frequency-Domain Dynamics and Control

- 6

- 1 2

- 3 0

- 3 6

- through this point for .
- phase margin of 45”

t

1  1 I  I I  I II I 1  II  1111’

L curve must  pass
penloop %(s,G(.s,  =

K,./8_

I
(s + I) ~

.
--\

--\
. \ \ \ \ \t?

lo
\

\
\

\
\

\
\

\
\

\
\

\ I
\

tt
G M = 2G M = 2

6 ,6 ,
00III L curve must

0

6
2M
-2

- 6 0  6

I I I I I II

0.2 0.5 1 2 5
Frequency w, radians per minute

FIGURE 11.16
Bode plots of a three-CSTR system with proportional controller.

On a Bode plot (Fig. 11.16),  the log modulus curve of GMG~  must pass through the
0-dB point when the phase angle curve is at - 135”. This occurs at o = 1 rad/min.
The log modulus curve for K, = 8 must be raised +9 dB (gain 2.82). Therefore, the
controller gain must be (EQ(2.82)  = 22.6.

Notice that this gain is lower than that needed to give a gain margin of 2. The
gain margin with K, = 22.6 can be easily found from the Bode plot. When the phase
angle is - 180°,  the log modulus is - 18 dB (for K, = 8). If the gain of 22.6 is used,
the log modulus is raised +9  dB. The log modulus is now -9 dB at the - i 80”
frequency, giving a gain margin of 2.82.

Maximum closedloop log modulus. We have already designed (in Section
11.2.3) a proportional controller that gave LFax  of +2 dB. Figure 11.116 gives a
Nichols chart with the GMG~  curve for this system. A gain of 20 makes the open-
loop GMGC curve tangent to the +2-dB  L,. curve on the Nichols chart.
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From the three preceding cases we can conclude that, for this third-order system
with three equal first-order lags, the +2-dB ,?‘I’ specification is the most conserva-
tive, the 45” PM is next, and the 2 GM gives the controller gain that is closest to
instability. These results are typical, but different types of processes can give differ-
ent results.

B. Proportional-integral controllers

A PI controller has two adjustable parameters, and therefore we should, theoret-
ically, be able to set two frequency-domain specifications and find the values of 7-r
and K, that satisfy them. We cannot make this choice of specifications completely
arbitrary. For example, we cannot achieve a 45” phase margin and a gain margin of
2 with a PI controller in this three-CSTR system. A PI controller cannot reshape the
Nyquist plot to make it pass through both the (- i b, - & &) point and the (-0.5,O)
point because of the loss of phase angle at low frequencies.

Let us design a PI controller for a +2-dB LFax specification. For proportional
controllers, all we have to do is find the value of K, that makes the GMGC curve
on a Nichols chart tangent to the +2-dB  L, line. For a PI controller there are two
parameters to find. Design procedures andguides have been developed over the years
for finding the values of ~1.

One easy approach is to use the Ziegler-Nichols value or the Tyreus-Luyben
value for reset time. Integral action is utilized only to eliminate steady-state offset,
so it is not too critical what value is used as long as it is reasonable, i.e., about the
same magnitude as the process time constant.

In the three-CSTR example the ultimate gain and ultimate frequency are K, =
64 and oU = ,/?.  The Ziegler-Nichols value for 71 for a PI controller is 3.03 minutes,
and the Tyreus-Luyben value is 3.63 minutes. Figure 11.17 gives Bode plots of the
openloop  and closedloop system with a PI controller using the two reset times. The
controller gains that give +2-dB maximum closedloop log modulus for the two reset
times are K, = 12.97 with ZN reset and 17.32 for TL reset. Note that the bandwidth
using the TL reset is a little wider (resonant frequency is 1.02 rad/min compared to
0.848 rad/min for ZN reset), so the closedloop time constant is smaller.

C. Proportional-integral-derivative controllers

PID controllers provide three adjustable parameters. We should theoretically be
able to satisfy three specifications. A practical design procedure that we have used
with good success for many years is outlined below.

I. Set r/ equal to the Ziegler-Nichols value or the Tyreus-Luyben value.
2. Pick a value of 70  and find the value of K, that gives +2-dB Ly.
3. Repeat step 2 for a whole range of 7~1  values, with a new value of K, calculated

at each new value of 70  such that an L,T”’  = +2  dB is achieved.
4. Select the value of ?-D  that gives the maximum value of &.. This T;” gives the

largest gain and therefore the smallest closedloop time constant for a specified
closedloop damping coefficient (as inferred from the LFax  specification). Fig-
ure I I _ I8 gives the plot of K,.  ver.;lus  ho for the three-CSTR process. The optimal
value for the derivative tirnc:  is 1.0 minutes, giving a controller gain of 25.
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This procedure leads to the controller settings KC  = 25,q  = 3.03 min, and TL, = 1
min. The gain and phase margins with these settings are 6.3 and 48O,  respectively.
The Ziegler-Nichols settings are KC  = 37.6, q = 1.82 min, and rD = 0.45 min.
The maximum closedloop log modulus for the ZN settings is +8.3 dB (Table 11. I),
which is too underdamped for most chemical engineering systems.

11.4.2 First-Order Lag with Deadtime

Many chemical engineering systems can be modeled by a transfer function involving
a first-order lag with deadtime. Let us consider a typical transfer function:
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We look at several values of deadtime  D. For all cases the values of K, and T(, are
unity. Other values of r,, simply modify the frequency and time scales. Other values
of K,, modify the controller gain.

The Bode plot of GM(iu) is given in Fig. I I.19 for D = 0.5. The ultimate gain
is 3.9 (I I .6 dB), and the ultimate frequency is 3.7 rad/min. The ZN controller set-
tings for P and PI controllers and the corresponding phase and gain margins and log
moduli are shown in Table 11.2 for several values of deadtime  D. Also shown are
the K, values for a proportional controller that gives +2-dB maximum closedloop
log modulus.

Notice that the ZN settings give very large phase margins for large deadtimes.
This illustrates that the phase margin criterion would result in poor control for large-
deadtime  processes. The ZN settings also give LFax  values that are too large when
the deadtime  is small, but too small when the deadtime  is large. The Lyx  = +2 dB
specification gives reliable controller settings for all values of deadtime.

Figure 11.19 shows the closedloop servo transfer function Bode plots for P and
PI controllers with the ZN settings for a deadtime  of 0.5 minutes. The effect of the
deadtime  on the first-order lag is to drop the phase angle below - 180”. The system
can be made closedloop unstable if the gain is high enough. Since there is always
some deadtime  in any real system, all real processes can be made closedloop unstable
by making the feedback controller gain high enough.

TABLE 11.2

Settings for first-order lag process with
deadtime  (IL, = 7O = 1)

Deadtime  D

0.1 0.5 2

ZN  0’)

KC
G M
PM Co)
Ly\  (dB)

8.18 1.90 0.760
2.0 2.0 2.0

51 71 180
2.8 1.6 0.34

ZN (PI)

K

ZM
PM (“1
L:,“’  (dB)

7.43 1.73

0.321 I .9 2.0 1.42
30 53

6.0 2.9

t-2 dI5  tuning (P)

0.690

4.58 2.1
98

0.43

KC. 7.70 I .9.5 0.833
G M 2.1 2.0 1.8
PM  (“1 54 7 3 180
L:““‘ (d B ) 2.0 2.0 2.0
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Notice in Fig. 11.19 that the L, curve for the P controller does not approach 0 dB
at low frequencies. This shows that there is a steady-state offset with a proportional
controller. The Lc  curve for the PI controller does go to 0 dB at low frequencies
because the integrator drives the closedloop servo transfer function to unity (i.e., no
offset).

11.4.3 Openloop-Unstable Processes

The Nyquist stability criterion can be used for openloop-unstable processes, but
we have to use the complete, rigorous version with P (the number of poles of the
closedloop characteristic equation in the RHP) no longer equal to zero.

Consider the simple openloop-unstable process

GW) =
K/J

7 s _ 1 (11.41)
0

We found in Chapter 9, using Laplace-domain root locus plots, that we could make
this system closedloop stable by using a proportional controller with a gain K, greater
than l/K,.  Let us see if the Nyquist stability criterion leads us to the same conclusion.
It certainly should if it is any good, because a table in Chinese must be a table in
Russian!

First of all, we know immediately that the openloop  system transfer function
GM(~JG,,-(~)  has one pole (at s = + l/7,)  in the RHP. Therefore, the closedloop char-
acteristic equation

1 + Gqs)Gc(s)  = 0

must also have one pole in the RHP, so P = 1.
On the C+ contour up the imaginary axis, s = io.  We must make a polar plot

of Gqiw)Gc(iw)  .

Gqiw)Gc(iw)  =
Kc&, =

K,K,( - 1 - z.070)

7-&d  - 1 i + lA*
(11.42)

0

Figure 11.20 shows that the curve starts (w = 0) at -K,K,,,  on the negative real axis
where the phase angle is - 180”. It ends at the origin, coming in with an angle of
-90”. The CR  contour maps into the origin. The C- contour is the reflection of the
C+ contour over the real axis.

If K, > l/K,>,  the (- 1,O)  point is encircled. But the encirclement is in a COLUZ-
terclockwise direction! You recall that all the curves considered up to now haye en-
circled the (- 1,O) point in a clockwise direction. A clockwise encirclement is a
positive N. A counterclockwise encirclement is a negative N. Therefore, N = - 1
for this example if Kc  > l/K,.  The number of zeros of the closedloop characteristic
equation in the RHP is then

Z=P+N=  I+(-l)=O

Thus, the system is closedloop stable if K,.  > I/K,,.  This is exactly the conclusion
we reached using root locus methods. So the Chinese frequency-domain conclusions
9*-p the CQ~P QC thP Rllrcian  1 c\nlnt-p-dnm:lin  ponc.lttsinns.
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Notice in Fig. 1 I. 19 that the L, curve for the P controller does not approach 0 dB
at low frequencies. This shows that there is a steady-state offset with a proportional
controller. The L, curve for the PI controller does go to 0 dB at low frequencies
because the integrator drives the closedloop servo transfer function to unity (i.e., no
offset).

11.4.3 Openloop-Unstable Processes

The Nyquist stability criterion can be used for openloop-unstable processes, but
we have to use the complete, rigorous version with P (the number of poles of the
closedloop characteristic equation in the RHP) no longer equal to zero.

Consider the simple openloop-unstable process

(11.41)

We found in Chapter 9, using Laplace-domain root locus plots, that we could make
this system closedloop stable by using a proportional controller with a gain K, greater
than l/K,.  Let us see if the Nyquist stability criterion leads us to the same conclusion.
It certainly should if it is any good, because a table in Chinese must be a table in
Russian!

First of all, we know immediately that the openloop  system transfer function
GM(~)GQ)  has one pole (at s = + 117,)  in the RHP. Therefore, the closedloop char-
acteristic equation

1 + Gt(s)Gc(.s)  = 0

must also have one pole in the RHP, so P = 1.
On the C+ contour up the imaginary axis, s = io.  We must make a polar plot

of Gqiw)Gc(iw)  .

GM(iw)Gc(ico)  =
Kc&

7 i. _ l =
K,K,(-1  - iqJ

i + 0*7*
(11.42)

0 0

Figure 11.20 shows that the curve starts (o  = 0) at - K,K,  on the negative real axis
where the phase angle is - 180”.  It ends at the origin, coming in with an angle of
-90”. The CR  contour maps into the origin. The C- contour is the reflection of the
C+ contour over the real axis.

If K, > l/K,), the (- 1,O)  point is encircled. But the encirclement is in a CO~UZ-
terclockwise  direction! You recall that all the curves considered up to now have en-
circled the (- 1,O)  point in a clockwise direction. A clockwise encirclement is a
positive N. A counterclockwise encirclement is a negative N. Therefore, N = - 1
for this example if K,. > l/K,.  The number of zeros of the closedloop characteristic
equation in the RHP is then

Z=P+N=I+(-l)=O

Thus, the system is closedloop stable if K,.  > l/K,>. This is exactly the conclu?;ion
we reached using root locus methods. So the Chinese frequency-domain conclusions
are the same as the Russian Iqlace-domain conclusions.
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If K, < l/K,), the (- I, 0) point is not encircled and N = 0. The number of zeros
of the closedloop characteristic equation is

Z=P+N=  l+O=l

The closedloop system has one zero in the RHP and is unstable if K, < l/K,.
Figure 11.21 gives Nyquist plots for higher-order systems. For the third-order

system, conditional stability can occur: the closedloop system is stable for controller
‘gains between Kmin  and K,,,. For gains greater than K,,, there is one positive en-
circlement of the (- 1,O) point, so N = 1 and 2 = P + N = 1 + 1 = 2. The system
is closedloop unstable. For gains less than Kmin  there is no  encirclement, and N = 0.
This makes 2 = 1, and the system is again closedloop unstable. But for gains be-
tween Kmin  and K,,, there is one negative encirclement of the (- LO) point, SO

N = - 1 and Z = P + N = 1 - 1 = 0. The system is closedloop stable since its
closedloop characteristic equation has no zeros in the right half of the s plane.

11.5
USE OF MATLAB  FOR FREQUENCY RESPONSE PLOTS

The MATLAB  Control Toolbox makes it quite easy to generate frequency response
plots for both openloop  and closedloop systems. Table 11.3 gives a MATLAB pro-
gram that generates Bode plots and Nichols plots. The process example is the three-
heated-tank system with the openloop  transfer function

G~(s)Gv(s)G(s) =
1.333

(0.1s + 1)s
(11.43)

The program goes through the following steps:

1. The numerator and denominator polynomials are formed for the openloop  trans-
fer function.

2. The ultimate gain and frequency are calculated.
3. The Ziegler-Nichols and Tyreus-Luyben settings for PI controllers are calcu-

lated.
4. The numerator and denominator polynomials are formed for the total openloop

transfer functions: the product of the GM  and Gc transfer functions. Three con-
trollers are studied: a proportional controller with K, = KJ2,  a PI controller
with ZN settings, and a PI controller with TL settings.

5. The magnitudes and phase angles of the total openloop  transfer functions are
calculated using the bode function.

6. The numerator and denominator polynomials of the closedloop servo transfer
functions are formed using the [numcl,dencl]  = cloop(numol,denol, - 1) com-
mand. This command converts an openloop  transfer function into a closedloop
transfer function, assuming negative unity feedback. A block diagram of a unity
feedback system is given in Fig. 11.22.

7. The magnitudes and phase angles of the closedloop servo transfer functions are
. .
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TABLE 11.3

MATLAB program for openloop and closedloop frequency response plots

940  Program “tempfreqm” USES Mutluh  to analyze the three-heated-tank process.
% (I) Calculate ultimate gain and frequency
% (2) Make Bode plot of total openloop  transfer function
% (process and control) for P and PI controllers
% with ZN and Tl settings.
% (3) Make Nichols plots of rhree controllers
O/O

% Form openloop  process transfer ,fimction  numerator and denominator
num=1.333;
den=conv([O.  I I],[O.I  I]);
den=conv(den,[O. 1 I]);
70

70  Specify frequency values
w=logspace(0,2,600);
%

% Caiculute  magnitudes and phase angles for  all frequencies
[mag,phase,w]=bode(num,den,w);
%

% Calculate ultimate gain and frequency
iz=I;
while phase(n)>= - 180;n=n+  1;end
kult=  I/mag(n);
wult=w(n);
% Calculate Ziegler-Nichols and Tyreus-Luyben PI controller settings
pult=2*3.1416/wult;
kzn=kult/2.2;
tzn=pult/l.2;
ktl=kult/3.2;
ttl=2*2*pult;
%

% Form transfer functions for process and PI controllers
nzn=kzn*conv(num,[tzn  I]);
dzn=conv(den,[tzn  01);
ntl=ktl*conv(num,[ttl  I]);
dtl=conv(den,[ttl  01);
% Form transfer functions for process and P controller (Kc=Kult/2)
np=kult*num/2;
qoo********************************
% Calculate magnitudes and phase angles
70
% For P control
[mag,phase,w]=bode(np,den,rv):
db=20*loglO(mag);
70

% Form unity-feedbnck closedloop  transfer  functions
[ncl,dcl]=cloop(np,den,  - I);
~mcl.pcl,w~=bode(ncl,dcl,w);
cldb=20*logIO(~i~~l);
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‘l‘Alll,I<  1 1 . 3  (CONTINUfcI~)

MATLAIJ  program for openloop and closedloop frequency response plots

% Pick up nruxirnum  CL peuk  and resonant frequency
~dt~~~~Nx,t~nlux]=rn~~(cldh);
wr= w(nmax);
o/u
O/O Plot openloop  and closedloop  log  modulus
cd{
.scmilogx(  w,db,  ’ - ‘. w,  cldb,  ‘ - - ‘)
xlahel( ‘Frequency (radiandhr)  ‘)
ylubel(  ‘Log Modulus (dB)  ‘)
grid
title(  ‘Three Heated Tank Process; P control’)
text(wr;  I5,[  ‘Lcmax=  ‘,num2str(dbmax)])
text(wr;  lO,(  ‘wr=  ‘,nurn2str(wr)])
text(2, - IO,[‘Ku= ‘,num2str(kult)])
text(2,  - IS,[  ‘wu=  ‘,num2str(wuLt)])
legend{ ‘Openloop’, ‘Closedloop ‘)
pause
print -dps  pjig1123.p.~
70

% Form closedloop transfer functions
[nclzn,dclzn]=cloop(nzn,dzn, - I);
[mcLzn,pclzn,  w]=bode(nclzn,dclzn,  w);
[mzn,pzn,w]=bode(nzn,dzn,w);
clzn=20*log10(mclzn);
70 Pick up maximum CL peak
[dbznmax,nmax]=max(clzn);
wrzn=w(nmax):
%
% Form closedloop transfer functions
(ncltl,dcltL]=cloop(ntL,dtl,  -I);
[mcltl,pcltl,w]=bode(ncltl,dcltl,w);
[mtl,ptl,w]=bode(ntl,dtl, w);
cltl=20*loglO(mcltl);
% Pick up maximum CL peak
[dbtlmax,nmax]=max(cltl);
wrtl=w(nmax);
010

% Plot closedloop  log modulus ,for ZN and Tl  settings
semilogx( w,clzn,  ‘ - ‘, w,cltl,  ‘ - - ‘)
slabel(  ‘Frequency (rtidians/hr)‘)
ylabel(  ‘CL Lol:  Modulus (dB)‘)
title(‘Three Heated Tank Process; Closedloop Lc  with PI control’)
Srid
legend( ‘PI ZN’, ‘Pi TL’)
tcxt(wrzn.  15.1  ‘ZNmax=  1,nur~~2str(dbzru~~ax)])
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‘rABI,E  1 1 . 3  (CONTINUEI))

MATLAB program for openioop and closedloop frequency response plots

text(wrzn,  IO,[‘ZNwr=  ‘,num2sir(wrzn)])
text(wrt1,  -20,J  ‘TLmax=  ‘,num2str(cthtbnnw)~)
text(wrt1,  -3O,[  ‘TLwr= ‘,num2str(wrtl)])
text(2, - lO,[  ‘KZN=  ‘,num2str{kzn)])
text(2, - 15,[  ‘TZN=  ‘,num2str(tzn)])
text(2, -2O,[  ‘KTL=‘,num2str(ktl)])
text(2, -2S,[  ‘TTL=  ‘,num2str(ttl)])
pause
print -dps pfig1124
%

% Make Nichols plots
70

dbzn=20*loglO(mzn);
dbtl=20*logIO(mtl);
plot(pzn,dbzn,  ‘- ‘,ptl,dbtl,  ‘.  ‘,phase,db,  ‘- - ‘)
title(  ‘Three Heated Tank Process; Nichols Plots’)
xlabel(  ‘Open-Loop Phase (deg) ‘)
ylabel(  ‘Open-Loop Gain (db) ‘)
ngrid
legend(‘PI  ZN’, ‘PI TL’, ‘P’)
pause
print -dps p&1125

Yset Y
I: G

m
-1

Y G FIGURE 11.22-=-
Yet 1 + G Unity feedback loop.

8. The peak in the closedloop log modulus curve (dbmax)  and the frequency at
which it occurs (WT,  the resonant frequency of the closedloop system) are calcu-
lated using the [dbmax,nmax]  =max(cldb)  command, which selects the lar-
gest value in a vector of numbers cldb and gives the row nmax where it is
located.

9. Bode plots are generated (Figs. 11.23 and 11.24) using the semilagx  plotting
command, which gives a logarithmic scale on th,e  abscissa.

10. Nichols plots are generated (Fig. 11.25). The ngrid command draws the Nichols
chart curves of closedloop log modulus L,..

We again find that the Ziegler-Nichols settings give large peaks in the L,.  curve
(f 13 dB for the PI controller). The Tyreus-Luyben settings give a more conservative
+3.5  dB.
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11.6
CAPACITY-BASED METHOD FOR
QUANTIFYING CONTROLLABILITY

Back in Chapter 5 we discussed a method for quantitatively incorporating the eco-
nomics of control into conventional steady-state design economics. For a given pro-
cess and control system, the idea is to specify upper and lower limits on product
quality and determine what fraction of the time the process is within these specifica-
tion limits. The capacity of the plant is equal to this fraction times the product flow
rate. Periods of off-specification production must be handled by reworking or dispos-
ing of the material, which carries some economic cost. The steady-state economic
calculations are made using the on-specification capacity.

In Chapter 5 we illustrated how this capacity factor can be obtained from sim-
ulation studies. These can be time consuming, and the screening of a large number
of alternative flowsheets becomes intractable. In addition, simulation studies require
the specification of a time sequence of disturbances. At the conceptual design stage
we seldom know exactly what type of disturbances the plant will experience. We
may be able to estimate what the disturbance variables are and their likely magni-
tudes, but we rarely can estimate the frequency content of the disturbances, i.e., how
rapidly they change.



z eco-
n pro-
‘oduct
:ifica-
t flow
ispos-
comic

1 sim-
lmber
:quire
stage

e. we
lagni-
,, how

- 3 0

-35

-55

- 6 0

-

/
-

-

-I-

1O-2

-

-

-

-

-

-

-

-

/

-

-

-

-

CIIAYI‘I~K I I: Frequency-Donlain  Analysis of Clbsedloop  Systems 413

f
/

/
/

c
/

4
I’

/
/

I

I

- _

I

7 -

-

-

-

/’
-

/

- ;

/
I

/- _

- _

IO”
Frequency (rad/hr)

FIGURE 11.26
Closedloop regulator transfer function.

Frequency-domain methods can greatly simplify the procedure. The idea is to
use a linear model of the process, design a control system, and calculate the mag-
nitude ratios of the closedloop regulator or load transfer functions over a frequency
range. Figure 11.26 illustrates the typical shape of these curves. The example is the
reactor-stripper process with recycle discussed in Chapter 5. The measure of prod-
uct quality is the bottoms composition xg in the stripper. The load disturbance is a
change in the fresh feed composition ~0.  The closedloop regulator transfer function
is  -QI(&o(~).

At low frequencies the PI controller eliminates steady-state offset, so the
x~(~~)/zo(~)  ratio goes to zero and the log modulus goes to minus infinity. At high
frequencies the process itself filters out the disturbances. There is a maximum in the
curve at some frequency. A disturbance entering the closed!oop  system at this fre-
quency gives the largest variation in the output. Therefore a “worst-case” situation
is to have a sine wave load disturbance at this frequency with a maximum expected
amplitude. Figure 11.26 clearly shows the significant effect of reactor holdup VR  on
controllability. As VR  increases, the control of xa becomes better and better.

The time-domain response of the linear system to this sinusoidal input can be
calculated analytically, and the fraction of time that the output variable is outside
a given specification range can be easily computed. Then the profitability is deter-
mined using this fraction of on-specification product and combining the conventional
capital, energy, and raw material costs.
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11.3. (a) Make Bode, Nyquist, and Nichols plots of the system with K, = 1

K,(-3s + I)

(h) Find the ultimate gain and frequency.
(c) Find the value of & that gives a phase margin of 45”.
(d) Find the value of K,.  that gives a gain margin of 2.
(e) Find the value of K,.  that gives a maximum closedloop log modulus of +2 dB.

11.4. Repeat Problem 11.3 for the system

GM&C(~)  = Kc
-3s+  1

(s + 1)(5s + 1)

11.5. How would you use the “Z - P = IV”  theorem to develop a test for openloop  stability?

11.6. A process has GM and CL  openloop  transfer functions that are first-order lags and
gains: TM, TL, KM,  and KL.  Assume TM  is twice TV.  Sketch the log modulus Bode plot
for the closedloop load transfer function when:
(a) A proportional-only feedback controller is used with K,KM  = 8.
(b) A PI controller is used, with T[  = rM and the same gain as above.

11.7. (a) Sketch Bode, Nichols, and Nyquist plots of the closedloop servo and closedloop
load transfer functions of the process

G
1

L(s) = GM(s) = 10s + 1 G C(s) = 6 1 + d
i )

(b) Calculate the phase margin and maximum closedloop log modulus for the system.

11.8. Using a first-order Pade approximation of deadtime, find the ultimate gain and fre-
quency of the system

Gqs,Gccs,  =
K e-o.5Sc
s+l

Compare your answers with Section 11.4.2.

11.9. (a) Draw Bode, Nyquist, and Nichols plots of the system

KC
G"(s)Gc(s)  = (s t l)(s  + 5)(s - 0.5)

(6) Use the Nyquist stability criterion to find the values of Kc for which the system
is closedloop stable.

11.10. (a) Make Nyquist and Bode plots of the openloop  transfer function

(b) Is this system closedloop stable‘? Will using a PI controller stabilize it?
(c)  Will a lead-la,” element used as ;I feedback controller provide enough phase angle

advance to meet a 45” phase margin specification? Will two lead-lags in series be
enough?
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(d) Use two elements and find the values of 7~ and Kc  that give a 45” phase margin.
What is the gain margin?

2
G C(s)  = Kc

T&i  + 1

(TD/2O)S  + 1 I

11.11. Find the largest value of deadtime  D that can be tolerated in a process

GM(~) = eeDSls

and still achieve a 45” phase margin with a feedback controller having a reset time
constant T/  = 1 minute. Find the value of gain K,. that gives the 45” of phase margin
with the value of deadtime  found above.

11.12. A process consists of two transfer functions in series. The first, GM,,  relates the manip-
ulated variable M to the variable xl and is a steady-state gain of I and two first-order
lags in series with equal time constants of 1 minute.

The second, GMT,  relates XI  to the controlled variable ~2 and is a steady-state gain of
1 and a first-order lag with a time constant of 5 minutes.

1
G42(s)  = ~5s + 1

If a single proportional controller is used to control x2 by manipulating M, determine
the gain that gives a phase margin of 45“. What is the maximum closedloop log mod-
ulus when this gain is used?

11.13. Suppose we want to use a cascade control system in the process considered in Problem
11.12. The secondary or slave loop will control XI  by manipulating M. The primary or
master loop will control x2 by changing the setpoint xyt of the secondary controller.
(a) Design a proportional secondary controller (Kl) that gives a phase margin of 45”

for the secondary loop.
(b) Using a value of gain for the secondary loop of KI = 6.82, design the master

proportional controller (K2)  that gives a phase margin of 45” for the primary loop.
(c) What is the maximum closedloop log modulus for the primary loop when this

value of gain is used?

11.14. A process has the following transfer function:

1
GM = (7,s + 1)2

It is controlled using a PI controller with T/  set equal to TV.
(a) Sketch a root locus plot and calculate the controller gain that gives a closedloop

damping coefficient of 0.4.
(b) Sketch Bode, Nyquist, and Nichols plots of GMGc.
(c) Calculate analytically the gain that gives a phase margin of 45” and check your

answer graphically.
(d) Determine the values of the maximum closedloop log modulus for the two values

of gains from (a) and (c.).
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11.15. An openloop-unstable, second-order process has one positive pole at + I/T,  and one
negative  pole at - l/72.  If a proportional controller is used and if ~1 < T:,  show by
using a root locus plot and then by using the Nyquist stability criterion that the system
is always unstable.

11.16. A process has the openloop  transfer function GM = K,,/[s(T,,s  + I)] . A proportional-
only controller is used. Calculate analytically the closedloop damping coefficient that
is equivalent to a phase margin of45”.  What is the maximum closedloop log modulus
when the controller gain that gives a 45” phase margin is used?

11.17. A process has the openloop  transfer function
K e - 1)s

where K, = 1, T()  = 1, D = 0.3.
(a) Draw a Bode plot for the openloop  system.
(6) What is the ultimate gain and ultimate frequency of this system?
(c) Using Ziegler-Nichols settings, draw a Bode plot for GMG~  when a PI controller

is used on this process.

11.18. Cold, 70°F liquid is fed at a rate of 250 gpm into a 500-gallon, perfectly mixed tank.
The tank is heated by steam, which condenses in a jacket surrounding the vessel. The
heat of condensation of the steam is 950 Btu/lb. The liquid in the tank is heated to
180”F,  under steady-state conditions, and continuously withdrawn from the tank to
maintain a constant level. Heat capacity of the liquid is 0.9 Btu/lb  “F;  density is 8.33
lb/gal.

The control valve on the steam has linear installed characteristics and passes 500
lb/min when wide open. An electronic temperature transmitter (range 50-250°F)  is
used. A temperature measurement lag of 10 seconds and a heat transfer lag of 30
seconds can be assumed. A proportional-only temperature controller is used.
(a) Derive a mathematical model of the system.
(6) Derive the openloop  transfer functions between the output variable temperature

(I”) and the two input variables steam flow rate (F,Y)  and liquid inlet temperature
(To>.

(c) Sketch a root locus plot for the closedloop system.
(d) What are the ultimate gain and ultimate frequency w,,?
(e) If a PI controller is used with T/  = 5/w,,, what value of controller gain gives a

maximum closedloop modulus of +2 dB?
(,f) What are the gain margin and phase margin with the controller settings of part

(e)?

11.19. Prepare a plot of closedloop damping coefticient  versus phase margin for a process
with openloop  transfer function

K,.
GMGc  = (T,,S + I)’

11.20. A process has the following transfer function relating controlled and manipulated \,ari-
LlhlcS:
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0 Log modulus Phase angle
(rad/min) (dW (“)

0.1 2.50 - 2
0.4 2.54 - 6
0.8 2.65 -12
1.0 2.74 -16
2.0 3.39 -34
4.0 3.90 -90
6.3 - 2.31 -151
8 - 7.1 -172

10 -12.1 -187
16 -22.3 -211
20 -27.6 -221
4 0 -44.5 -244
80 -64.6 -256

11.27. Gas at 100°C flows through two pressurized cylindrical vessels in series at a rate of
1000 kg/hr. The first tank is 2 meters in diameter and 5 meters high. The second is
3 meters in diameter and 8 meters high. The molecular weight of the gas is 30.

The first tank operates at 2000 kPa  at the initial steady state. There is a pressure
drop between the vessels that varies linearly with gas flow rate F1. This pressure drop
is 100 kPa when the flow rate is 1000 kg/hr.

P, - P2 = K,F,

Assume the perfect gas law can be used [R = 8.314 (kPa m3)/(kg-mol K)]. Assume
the pressure transmitter range is 1800-2000 kPa and that the valve has linear installed
characteristics with a maximum flow rate of 2000 kg/hr.
(a) Derive a mathematical model for the system.
(b) Determine the openloop transfer function between PI and the two inputs Fo  and F2.
(c) Assuming a proportional-only controller is used to manipulate F2  to control PI,

make a root locus plot and calculate the controller gain that gives a closedloop
damping coefficient of 0.3.

(d) Draw Bode, Nyquist, and Nichols plots for the openloop  process transfer function
P,IF2.

(e) Calculate the controller gain that gives 45” of phase margin.

FO
* PI  _

Fl
- p2 F2

u u FIGURE P11.27

11.28. A process has the following openloop  transfer function GM relating controlled to ma-
nipulated variables:

e-D~

GM(S)  = ___
7,s  -  I

(u) Sketch Bode, Nyquist, and Nichols plots for the system.
(h) If a proportional feedback controller is used, what is the largest ratio of D/T,,  for

which a phase margin of 45” can be obtained?
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If a proportional-only controller is used, what value ofcofitroller gain will give ii max-
imum closedloop log modulus of +2 dB?
(a) Solve this problem analytically.
(h) Check your answer graphically using Bode and Nichols plots.
(c) Draw a root locus plot and determine the closedloop damping coefficient for the

value of gain found in (a) and (b).

11.21. A process has openloop  process transfer function

GM  =
I

(s - 1)(&s + 1>*

(a) Plot Bode, Nyquist, and Nichols plots for this system.
(6) If a proportional-only controller is used, over what range of controller gains K,

will the system be closedloop stable? Use frequency-domain methods to deter-
mine your answer, but confirm with a root locus plot.

(c) What value of gain gives the smallest maximum closedloop log modulus?

11.22. Derive an analytical relationship between openloop  maximum log modulus and damp-
ing coefficient for a second-order underdamped openloop  system with a gain of unity.
Show that a damping coefficient of 0.4 corresponds to a maximum log modulus of
+2.7 dB.

11.23. A first-order lag process with a time constant of 1 minute and a steady-state gain of
5”F/103  Ib/hr is to be controlled with a PI feedback controller.
(a) Sketch Bode plots of GMGc  when the reset time T/  is very much smaller than 1

minute and when it is much larger than 1 minute.
(b) Find the biggest value of reset time r1 for which a phase margin of 45” is feasible.

11.24. A process has an openloop  transfer function that is approximately a pure deadtime  of
D minutes. A proportional-derivative controller is to be used with a value of cy equal
to 0.1. What is the optimal value of the derivative time constant Q-D? Note that part of
this problem involves defining what is meant by “optimal.”

11.25. A process has the following openloop  transfer function:

0.5
GM = (10s + 1)(5Os  + 1)

A proportional-only feedback controller is used.
(a) Make a root locus plot for the closedloop system.
(b) Calculate the value of controller gain that will give a closedloop damping coeffi-

cient of 0.707.
(c) Using this value of gain, what is the phase margin?
(d) What is the maximum closedloop log modulus?

11.26. The following frequency response data were obtained by pulse-testing a closedloop
system that contained a proportional-only controller with a proportional band of 25.
Controller setpoint was pulsed, and the process variable signal was recorded as the
output signal.
((I) What is the openloop  frequency response of the process?
(h) What is the openloop  process transfer function?
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11.29. A process has a transfer function GM = I/[s(T,,s+  I )I. It is controlled by a PI  controller
with rcsct  time ~1. Sketch the G,+,Gc,  plot ofphasc  angle  versus frcqucncy, the Nyquist
plot of GMG(.,  and a root locus plot for the case where:
((I) T,,  > T/
07) 7-0 -=I T/

11.30. A process has an openloop  transfer function that contains a positive pole at + I/T,,,  a

negative pole at - lo/~,,, and a gain of unity. If a proportional-only controller is used,
find the two values of controller gain that give a maximum closedloop log modulus of
+2 dB.
((1) Do this problem graphically.
(h) Solve it analytically.

11.31. A two-pressurized-tank process has the openloop  transfer function

4)
GM(‘y)  = (TJ  + 1 ).S

If a PI controller is used, find the smallest value of the ratio of the reset time T/ to the
process time constant T,,  for which a maximum closedloop log modulus of +2 dB  is
attainable.

11.32. A process with an openloop  transfer function consisting of a steady-state gain, dead-
time, and first-order lag is to be controlled by a PI controller. The deadtime  (D) is
one-fifth the magnitude of the time constant (7,).

Sketch Bode, Nyquist, and Nichols plots of the total openloop  transfer function
(GMGC)  when:
(a) T/  > 57,>
(b)  T/  = 7,)
(c) T/ = 2Dl7r

11.33. Write two computer programs, one in FORTRAN and one in MATLAB, that calcu-
late the feedback controller gain K, that gives a maximum closedloop log modulus of
+2 dB for a process with the openloop  transfer function

GM = s
0

and a PI controller with the reset time set equal to 2Dl7r.

11.34. A process has the openloop  transfer function

GM =
1

(s - I)(O.ls  + 1)

Sketch phase angle plots for GMG~  and root locus plots when:
((0 A proportional controller is used.
(0) A PI controller is used with:

(i)  T/  z+  0 . 1

(ii) T/  =c  0. I
(iii) T/ = 0. 1

How would you find the maximum value of T/  for which a 45” phase margin is attain-
able’?
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II.35  The frequency response Bode plot of the ouIpul  of a closedloop system for sctpoint
changes, using a proportional controller with 3 gain of IO,  shows,the  following fca-
tures:

l The low-frequency asymptote on the log modulus plot is -0.828 dB.
l The breakpoint frequency is I I rad/min.

l The slope of the high-frequency asymptote is -20 dB/decade.
l The phase angle goes to -90” as frequency becomes large.

Calculate the form and the constants in the openloop transfer function relating the
controlled and the manipulated variables.

11.36.  A process has the following transfer function:

24.85(5.s  -I- 1)~‘”
GMts)  = (2.93s + 1)(16.95s  + I)

(a) Make a Bode plot of the openloop  system.
(b) Determine the ultimate gain and frequency if a proportional controller is used.
(c) What value of gain for a proportional controller gives a maximum closedloop log

modulus of +2 dB?
(d) If a PI controller is used with Ziegler-Nichols settings, what are the phase margin,

gain margin, and maximum closedloop log modulus?

11.37. The block diagram of a DC motor is shown.
(a) Show that the openloop  transfer function between the manipulated variable M

(voltage to the armature) and the controlled variable Y (angular position of the
motor) is

GM =
16.13

~(0.129s + I)

calcu-
ulus of

M

L

Load torque

TL
Motor
c - - - - - - - - - - - - -
I t

__-__--__________---
1

!

I I
I

t

I

I

I- - 1 _I
I - Y

JMs + R, s
I Angular
I
I position,

-4, - I radians
I

I I I I

L------------------------------- _--_I

r - - - - - - - - - - - - - - - - - - ,
I I I I

Controller
1
-------- J

Position transmitter

J

attain-

Sctpoint,

radians

FIGURE P11.37



(6) .Draw  a root locus plot for this sytem if a proportional feedback controller is used.
(c) What value of gain gives a closedloop damping coefricicnt of 0.707?
(d) What value of gain gives a phase margin of 45”?
(e) What is the maximum closedloop log modulus using this gain?

R, = armature resistance = 1 iZ
K,,  = motor torque constant = 10 oz-in/A
Kb  = back emf constant = 0.052 V/rad/sec
J,+,  = motor inertia = 0.08 oz-in/rad/sec2
BM = motor viscous friction = 0.1 oz-in/rad/sec

K,y  = transmitter gain = I V/t-ad
K, = feedback controller gain (V/V)

11.38. A process has the following openloop  transfer function:

GM =
1

(s + 1)(2s + 1)

(a) Sketch the root locus diagram if a proportional feedback controller is used. Show
on the root locus plot the range of K, values for which the system is overdamped.
For what Kc  values is the system underdamped? What value of Kc  yields a system
with a damping coefficient of 0.707?

(b) Suppose a PI controller is used with reset time equal to 1 minute. Sketch the
root locus diagram and identify the range of Kc values that give an underdamped
response.

(c) Sketch the root,locus  diagram if the integral time r1 is much greater than 1 minute.
Repeat the sketch for ~1 values that are much smaller than 1 minute. Make clear
on your sketches whether the system can become unstable.

(d) Consider the case where T/  = 3 minute. Sketch the Bode diagram. It is suffi-
cient to build the overall sketch from the component transfer functions. Label all
asymptotes, slopes, and breakpoint frequencies.

(e) Sketch the Nyquist plot for case (d). Is the closedloop system stable for any K,?
(f) Give the characteristic equation for the closedloop system with a PI controller and

arbitrary reset time. Is there a range of 71 values for which the system is always
stable regardless of K, value?

11.39. Consider the process

G
(?-3s

Mb) = (s + 1)2(2s  + 1)

(a) Use frequency-domain methods to solve analytically for the ultimate gain and
ultimate frequency of a proportional controller.

(b) Suppose a PID controller is used with a reset time of 10.73 minutes and a deriva-
tive time of 0.15 minutes. The LY constant in the derivative unit denominator is
0.1. Use graphical frequency-domain methods to find the value of controller gain
that gives a maximum closedloop log modulus of +2 dB.

11.40. A process has an openloop  transfer function relating controlled and manipulated vari-
ables that is a steady-state gain of unity and two first-order lags in series. The two
time constants are 1 and 5 minutes. A proportional feedback controller is used.
((I) Develop an analytical relationship between the closedloop  time constant 7,. and

the closedloop damping coefficient &..
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(b) If a closedloop damping coeflicient  of03  is desired, what value of controller gain
is rcquircd and what is the closedloop  time constant‘?

(c) Repeat parts (a) and (0) using a proportional-derivative (PD) controller with 71) =
I and cx = 0. I.

(d) Using a proportional controller, what value ofcontroliergain gives a phase margin
of 45”?

(e) What is the maximum closedloop log modulus when the controller gain is lo?
When it is 20?

11.41. The openloop  process transfer function relating the controlled and manipulated vari-
ables is

0.488e-0.2s

GMw  = (I I ..5s + I)(O.  167s + 1)(0.083s + 1)

(a) Draw Bode plots for the openloop  log modulus and openloop  phase angle.
(b) Find graphically the ultimate gain and ultimate frequency.
(c) Determine the value of controller gain that gives 45” of phase margin using a

proportional controller.
(d) Determine the value of controller gain that gives a +2-dB maximum closedloop

log modulus.

11.42. A process has one openloop  pole located at + I/T and one openloop  pole located at
- ~/UT.  The steady-state gain of the openloop  process is unity. A proportional con-
troller is used. Using frequency-domain methods:
(a) Show that the parameter a must be less than unity fo; the system to be closedloop

stable.
(b) Show that the minimum controller gain is unity.
(c) Find the largest value of n that will still permit a phase margin of 45” to be

achieved.

11.43. The openloop  transfer function GM(,)  of a sterilizer relating the controlled variable
temperature Tc,, and the manipulated variable steam flow rate F.Q)  is a gain K,  = 2
(with units of mA/mA when transmitter and valve gains have been included), a first-
order lag with time constant TV = 1 minute, and an integrator in series.

The value of gain for a proportional-only controller that gives 45” of phase margin
is K, = 0.707.
(a) Calculate the closedloop damping coefficient of the system when this gain is used.
(b) Sketch several Bode plots of the openloop  phase angle for this process when a

PI controller is used for several values of reset ?/, starting with very large values
and then reducing reset toward r/ = 1 minute.

(c) Calculate the gain K, of a proportional-derivative (PD) feedback controller that
gives a phase margin of 45” when used to control this process.

s+l
Gcw = Kc  I

g+ 1

(d) Sketch a Nichols plot and use a Nichols chart to estimate the maximum closedloop
log modulus when the PD controller is used with the gain calculated in part (c).

11.44. We can often capture the feedback-control-relevant dynamics of a process by assum-
ing that the openloop  process transfer function GMc,Y, relating the controlled and the
manipulated variables  is a simple gain, a deadtime, hnd  a pure integrator in series.
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(a) Sketch Bode and Nyquist plots for  this process for a gain K,, = I and a deadtime
1) = 0.5 minutes.

(b) Calculate the ultimate frequency o,, and ultimate gain K,, ctnalyticdly for arbi-
trary values of gain and deadtime, and confirm your results gt-aphictrl/>~  using the
Bode plot from part (a) for the specific numerical values given.

(c) Calculate analytically and graphically the value of controller gain that gives a
phase margin of 45”.

(d) Use a Nichols chart to determine the maximum closedloop log modulus if the
gain calculated in part (c) is used.

(e) Calculate the TLC settings for a PI controller (K,. = KJ3.2;  r/ = 2.2P,,)  and
generate a Bode plot for GMGc  when these controller constants are used.

(f) What are the phase margin, gain margin, and maximum closedloop log modulus
when this PI controller is used?

11.45. A process has the following openloop  transfer function between the controlled variable
Y and manipulated variable M:

(a) If a proportional analog controller is used, calculate the ultimate gain and ultimate
frequency for the numerical values K,,  = 2, 70 = 10, and D = I.

(6) Sketch Nyquist and Bode plots of GM(iwj. Calculate the value of controller gain
that gives a phase margin of 45”.

(c) Use a Nichols chart to determine the maximum closedloop log modulus if the
controller gain is 3.19.

11.46. A process has an openloop  transfer function that is a double integrator.

(a) Using a root locus plot, show that a proportional feedback controller cannot pro-
duce a closedloop stable system.

(b) Using frequency-domain methods, show the same result as in (a).

11.47. The openloop  transfer function for a process is

KO
GM(~) = ~7,s + 1

(a) If a proportional-only controller is used, calculate the closedloop servo transfer
function Y/pet,  expressing the closedloop gain Kc, and closedloop time constant
T,I in terms of the openloop  gain Ko,  the openloop  time constant TV,,  and the con-
troller gain K,.. Sketch a closedloop log modulus plot for several values of con-
troller gain.

(b) Repeat part (n) using a proportional-integral feedback controller with reset time
r/ = 7,.

11.48. The openloop  transfer function G M(.sJ of a process relating the controlled variable
Yc,~,  and the manipulated variable Mc,s,  is a gain K,, = 3 (with units of mA/mA when

i
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transmitter and valve gains have been included) and two lirst-order lags in series with
time constants 71 = 2 min and 72 = 0.4 min.
(n) If a proportional controller is used, sketch a root locus plot.
(h) Calculate the controller gain that gives a closedloop damping coefficient of 0.3.
(c) What is the closedloop time constant when this gain is used?
(d) Make a Bode plot of the openloop  system.
(e) Using a controller gain of 6.3, calculate the phase margin analytically and graph-

ically.

11.49. A deadtime  element (D = 0. I min) is added in series with the lags in the process
considered in Problem I I .48.
(a) Make a Bode plot of the openloop  system with a proportional controller and

Kc = I.
(h) Determine graphically the ultimate frequency and the ultimate gain.
(c) Determine graphically the phase margin if a controller gain of 6.3 is used.
(d) Determine graphically the maximum closedloop log modulus if a controller gain

of 6.3 is used.
(e) Calculate the Tyreus-Luyben settings for a PI controller.
(.f‘)  Determine graphically the phase and gain margins when these settings are used.
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PART FOUR

“, ., .

Multivariable Processes

Perhaps the area of process control that has changed the most drastically in the last
two decades is multivariable control. This change was driven by the increasing oc-
currence of highly complex and interacting processes. Such processes arise from
the design of plants that are subject to rigid product quality specifications, are more
energy efficient, have more material integration, and have better environmental per-
formance. The tenfold increase in energy prices in the 1970s spurred activity to make
chemical and petroleum processes more efficient. The result has been an increasing
number of plants with complex interconnections of both material flows and energy
exchange. The control engineer must be able to design control systems that give
effective control in this multivariable environment. Multivariable systems contain
more than one controlled variable and manipulated variable (the type of system we
have studied so far).

We need to learn a little bit of yet another language! In previous chapters we
have found the perspectives of time (English), Laplace  (Russian), and frequency
(Chinese) to be useful. Now we must learn some matrix methods and their use in the
“state-space” approach to control systems design. Let’s call this state-space method-
ology the “Greek” language.

The next two chapters are devoted to this subject. Chapter 12 summarizes some
useful matrix notation and discusses stability and interaction in multivariable sys-
tems. Chapter 13 presents a practical procedure for designing conventional multiloop
SISO controllers (the diagonal control structure).

It should be emphasized that the area of multivariable control is still in an early
stage of development. Many active research programs are under way around the
world to study this problem, and every year brings many new developments. The
methods and procedures presented in this book should be viewed as a summary of
some of the practical tools developed so far. Improved methods will undoubtedly
grow from current and future research.
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Matrix Representation and Analysis

12.1
MATRIX REPRESENTATION

Many books have been written on matrix notation and linear algebra. Their elegance
has great appeal to many mathematically inclined individuals. Many hard-nosed en-
gineers, however, are interested not so much in elegance as in useful tools to solve
real problems. We attempt in this chapter to weed out most of the chaff, blue smoke,
and mirrors. Only those aspects that we have found to have useful engineering ap-
plications are summarized here. For a more extensive treatment, the readable book
Control System Design: An Introduction to State-Space Methods by Bernard Fried-
land (1986, McGraw-Hill, New York) is recommended.

We use the symbolism of a double underline (A) for a matrix and a single un-
derline (x) for a vector, i.e., a matrix with only one zlumn.  This helps us keep track
of which-quantities are matrices, which are vectors, and which are scalar terms.

We assume that you have had some exposure to matrices so that the standard
matrix operations are familiar to you. All you need to remember is how the inverse
of a matrix, the determinant of a matrix, and the transpose of a matrix are calculated
and how to add, subtract, and multiply matrices.

12.1.1 Matrix Properties

A host of matrix properties have been studied by the mathematicians. We discuss
only the notions of “eigenvalues” and “singular values” since these are valuable
in our design methods for multivariable systems. Eigenvalues is simply another
name for the roots of the characteristic equation of the system. Singular values give
us a measure of the size of the matrix and an indication of how close it is to be-
ing “singular.” A matrix is singular if its determinant is zero. Since the determinant

1’9
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appears in the denominator when the inverse of a matrix is taken [ Eq. ( 12.  I )], the
inverse will not exist if the matrix is singular.

rg-’  =
[Cofactor[&])  IT

Det A
(12.1)

=

A. Eigenvalues

The eigenvalues of a square N x N matrix are the N roots of the scalar equation

I I

Det[hL - A] = 0 (12.2)

where A is a scalar quantity. Since there are N eigenvalues, it is convenient to define
the vector A, of length N, that consists of the eigenvalues: Al, AZ, A3,  . . . , AN.

(12.3)

We use the notation that the expression AtA] means the vector of eigenvalues of the-
matrix 4. Thus, the eigenvalues of a matriG  [i + GM  Gc] is written &,+G~  cc].- -- - = =xE==

EX A MPLE 12.  I. Calculate the eigenvalues of the following matrix A.=

A == (12.4)

Det[AL  - &]  = 0

Det[AZ  - A] = Det
(A + 2) 0

-2
(A + 4) 1 = (A + 2)(A  + 4) - (O)(-2)

= =

A’ + 6A + 8 = 0 = (A + 2)(A  + 4)

The roots of this equation are A = -2 and A = -4. Therefore, the eigenvalues of the
matrix given in Eq. (12.4) are A, = --2 and A2  = -4.

- 2
hl$ = -4[ 1 (12.5)

n

It might be useful at this point to provide some motivation for defining such
seemingly abstract quantities as eigenvalues. Consider a system of N linear ordinary
differential equations that model a chemical process.
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dX-zz= Ax+Budt =- =-- (12.6)

where x = vector of the N state variables of the system
A = N X N matrix of constants=
B = a different N X A4 matrix of constants
z = vector of the M input variables of the system-

We show in Section 12. I .3 that the eigenvalues of the A matrix are the roots of
the characteristic equation of the system. Thus, the eigenTalues tell us whether the
system is stable or unstable, fast or slow, overdamped or underdamped. They are
essential for the analysis of dynamic systems.

B. Singular values

The singular values of a matrix are a measure of how close the matrix is to being
“singular,” i.e., to having a determinant that is zero. A matrix that is N X N has N
singular values. We use the symbol (pi for a singular value. The largest magnitude
Cri  is called the maximum singular value, and the notation amax is used. The smallest
magnitude gi is called the minimum singular value (amin).  The ratio of the maximum
and minimum singular values is called the “condition number.”

The N singular values of a real N X N matrix (i.e., all elements of the matrix are
real numbers) are defined as the square root of the eigenvalues of the matrix formed
by multiplying the original matrix by its transpose.

ai[A]  =
J

h[ATA] i = 1,2,...,N (12.7)
= ==

12.1.E x A M P L E 12.2. Find the singular values of the A matrix from Example=

2 = [i2 !T4] LT = [-lj2 i4]

To get the eigenvalues of this matrix we use Eq. (12.2).

Det[A[ - bT4]  = 0

8
(A - 16) 1 = 0 = (A - 8)(A  - 16) - 64

A’ - 24h + 128 - 64 = 0 = A*  - 24A + 64

A, = 20.94 A2  = 3.06

CT]  = J%iFi  = 4.58 02 = J3.06 = 1.75

(12.8)

(12.9)

Neither  of these  singular values is small, so the matrix is not close to being singular. The
determinant of A is 8, so it is indeed not singular. n

Z-Z
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EXAMPLE 12.3. Calculate the singular values of the matrix

A =
-1 1

= [ I1 - 1

Note that the determinant of this matrix is zero, so it is singular.

1
AT = I’ -i= [ 1

ATA  = [I’ !J[l’ II] = [_‘,  -;“I==
Det[AZ  - ATA] = 0= ==

2 = = - - -(A - 2) I 0 (A 2)(h 2) 4

A2  - 4A f 4 - 4 = A(A - 4) = 0

A,=0 h2=4 a,=0  a*=2

The singular value of zero tells us that the matrix is singular. n

The singular values of a complex matrix are similar to those of a real matrix.
The only difference is that we use the conjugate transpose.

Oi[A]  =
= Jh%$j  i = 1,2,...,N

(12.10)

First we calculate the conjugate transpose (the transpose of the matrix with all of
the signs of the imaginary parts changed). Then we multiply A by it. Then we cal-
culate the eigenvalues. These can be found using Eq. (12.2) f; simple systems. In
more realistic problems we use MATLAB  or the 1MSL  subroutine EIGCC. Note
that the product of a complex matrix with its conjugate transpose gives a com-
plex matrix (called a “hermitian” matrix) that has real elements on the diagonal
and has real eigenvalues. Thus, all the singular values of a complex matrix are real
numbers.

EXAMPLE 12.4. Calculate  the singular values of the complex matrix

A = (1 + 4 (1 + 9
= [(2+i) (1 +i)

ACT  = t1 +>  (2-i)
= (1 -i) (1 -i)

ACTA = ( 1 - i ) (1 +i) (1 ti) = 7 (5 + i)
= = ( 1 - i ) (l+i)I [ (5 - i) 4 1

Det[Al - ACTA] = 0= cc

1 0

0 1 I i 7-
(5 - i)

(5 + 9 = o
4 II

(12.11)
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Det ( A - 7 )
[

(-5-i) =()
(-5 + i) (A - 4) 1

A*-lIA+28-2S-I=A*-llA+2=0

A, = 10.63 A2  = 0.185 uI = 3.29 CT~  = 0.430

Note that the singular values are real.

12.1.2 Transfer Function Representation

A. Openloop system

Let us first consider an openloop  process with iV  controlled variables, N ma-
nipulated variables, and one load disturbance. The system can be described in the
Laplace  domain by N equations that give the transfer functions showing how all
of the manipulated variables and the load disturbance affect each of the controlled
variables through their appropriate transfer functions.

YI = G~,,rnl + G~,?rn2  + ... + GM,,,,mN  + GL,L

Y2 = GM,,  ml + GMz2rn2  + . . . + GM2,,,mN  + GL,*  L
(12.12)

YN = GM,,  ml + GMN2m2  + . . . + GMNNmN  + GL+ L

All the variables are in the Laplace  domain, as are all of the transfer functions. This
set of N equations is very conveniently represented by one matrix equation.

Y = G~(,p(s) + &s+(s)- __I (12.13)

where Y = vector of N controlled variables
Cl = N X N matrix of process openloop  transfer functions relating the con-

trolled variables and the manipulated variables
m = vector of N manipulated variables

GL  = vector of process openloop  transfer functions relating the controlled-
variables and the load disturbance

Lt,) = load disturbance

These relationships are shown pictorially in Fig. 12.1. We use only one load variable
in this development to keep things as simple as possible. Clearly, there could be sev-
eral load disturbances, which would just appear as additional terms to Eqs. (12.12).
Then Lc,r,  in Eq. (12.13) becomes a vector, and CL  becomes a matrix with N rows
and as many columns as there are load disturbances. Since the effects of each of the
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load disturbances can be considered one at a time, we do it that way to simplify
the mathematics. Note that the effects of each of the manipulated variables can also
be considered one at a time if we were looking only at the openloop  system or if we
were considering controlling only one variable. However, when we go to a multivari-
able closedloop system, the effects of all manipulated variables must be considered
simultaneously.

B. Closedloop system

Figure 12.2 gives the matrix block diagram description of the openloop  system
with a feedback control system added. The I matrix is the identity matrix. The s(S)
matrix contains the feedback controllers. M&t industrial processes use conventional
single-input, single-output (SISO) feedback controllers. One controller is used in
each loop to regulate one controlled variable by changing one manipulated variable.
In this case the Gets)  matrix has only diagonal elements. All the off-diagonal ele-
ments are zero.

Gc, 0 -0.  0

Gc(s)  =
0 Cc2  0 . . .

. . . . . . . . . . . . . . . . . . . . . . 1 (12.14)

I 0 . . . 0 GCN]

whereGcr,GC2,..., GcN  are the individual controllers in each of the N loops. We
call this multiloop SISO system a “diagonal controller” structure. It is important to
recognize right from the beginning that having multiple SISO controllers does not
mean that we can tune each controller independently. As we will soon see, the dy-
namics and stability of this multivariable closedloop process depend on the settings
of all controllers.

Controller structures that are not diagonal but have elements in all positions in
the S(s) matrix are called multivariable controllers.

Gcw =

- i

Gc21 Gc22  * *. GUN
. . . . . . . . . . . . . . . . . . . . . . . . . .

GCNI GcN:!  . *. GCNN

(12.15)

The feedback controller matrix gives the transfer functions between the manip-
ulated variables and the errors.

m = Gc& (12.16)- - -

FIGURE 12.2
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Since the errors are the differences between setpoints and controlled variables,

m =  &(,)[YSC’  - Y ]- - - -

Substituting for m in Eq. (12.13) gives-

(12.17)

Y = G~(s)Gc(.s,[yS~’  - xl + &s)Q.s)- - =
Bringing all the terms with y to the left side gives

(12.18)

(12.19)

rf + &f(&(s,lY  = &4(.&c(s)Yset  + GLda (12.20)
- - - -

y =- [I + hf(~&s)l-‘~(s,Gccs,  ret= - - I (12.21)

Equation (12.2 1) gives the effects of setpoint and load changes on the controlled
variables in the closedloop multivariable environment. The matrix (of order iV  X N)
multiplying the vector of setpoints is the closedloop servo transfer function matrix.
The matrix (N X 1) multiplying the load disturbance is the closedloop regulator trans-
fer function vector.

It is clear that this matrix equation is very similar to the scalar equation describ-
ing a closedloop system derived back in Chapter 8 for SISO systems.

(12.22)

Now we have matrix inverses to worry about, but the structure is essentially the
same.

12.1.3 State Variables

The “states” of a dynamic system are simply the varitibles  that appear in the time
differential. The time-domain differential equation description,of  multivariable sys-
tems can be used instead of Laplace-domain transfer functions. Naturally, the two
are related, and we derive these relationships below. State variables are very popu-
lar in electrical and mechanical engineering control problems, which tend to be of
lower order (fewer differential equations) than chemical engineering control prob-
lems. Transfer function representation is more useful in practical process control
problems because the matrices are of lower order than would be required by a state
variable representation. For example, a distillation column can be represented by a
2 X 2 transfer function matrix. The number of state variables of the column might
be 200.

State variables appear naturally in the differential equations describing chemi-
cal engineering systems because our mathematical models are based on a number of
I. . . . . . . * , : I TT .L  _.__



are N such equations, they can bc linearized (if necessary) and written in matrix form

dx
==Ax+Brn+DL(-jr =-- =-  -

(12.23)

where x = vector of the N state variables of the system.-

EXAMPLE 12.5.  The irreversiblechemical reaction A -+ B takes place in two perfectly
mixed reactors connected in series, as shown in Fig. 12.3. The reaction rate is propor-
tional to the concentration of reactant. Let xl be the concentration of reactant A in the
first tank and x2 the concentration in the second tank. The concentration of reactant in
the feed is ~0. The feed flow rate is F.  Both x0 and F can be manipulated. Assume the
specific reaction rates k, and k2 in each tank are constant (isothermal operation). Assume
constant volumes VI and Vz.

The component balances for the system are

v,-- = F(x()  -x,) - k,V,x,
dt

dx2
V2 __ = F(x, - x2)  - k2V2x2

dt

Linearizing around the initial steady state gives two linear ODES.

V, $ = -(F + kl V,)x,  + @)x0 + (x0 - X,)F

V2f$  = (F)x,  - (7;; + k2Vz)xz + (‘55, - 32)F

These two equations in matrix form are

+

( 12.24)

(12.25)

[ 1“F” ( 1 2 . 2 6 )

0

The state variables are the two concentrations. The feed concentration x0 and the
feed flow rate F are the manipulated variables. To take a specific numerical case,
let kl = 1 min-‘, k2 = 2 min-‘, VI = 100 ft3, and V2  = 50 ft3. The initial steady-
state conditions are F = 100 ft3/min, X0 = 0.5 mol A/ft3, Xl = 0.25 mol A/ft3, and
XI = 0.125 mol  A/ft3. This gives the A matrix that we used in Example 12.1.=

A =
-2 0

= [ 12 - 4

-t-o -rI .r,
- e -
F VI V,

FIGURE 12.3
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The B matrix is=

State variable representation can be transformed into transfer function repre-
sentation by Laplace-transforming the set of N linear ordinary differential equations
[Eq. (12.23)].

d x
--==Ax+Bm+DLdt =- r- -

(12.27)

Comparing this with Eq. (12.13) and considering the case where the controlled vari-
ables Y are the same as the state variables, we see how the transfer function matrix
GM(~)  and transfer function vector GL(~)  are related to the A and B matrices and to- = =
the D vector.-

EXAMPLE 12.6. Determine the transfer function matrix GM(,)  for the system described
A\- I

in Example 12.5.

ii [::1 =  [i2 _oq][::] +  [; Ei::]~

1 [ -2 0-
2 - 4

0.00250.0025 1

-I 1II 1 0.0025
0 0.0025

1 0.0025
s+2 s+2

2 0.0025
(s + 2)(s + 4) s + 2

I

(12.28)

The system considered in the preceding example has a characteristic equation
that is the denominator of the transfer function set equal to zero. This is true, of
course, for any system. Since the system is uncontrolled, the openloop  characteristic
equation is [using Eq. (12.28)]

(s + 2)(s  + 4) = 0
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The roots of the openloop  characteristic equation are s = - 2 and s = -4. These are
exactly the values we calculated for the eigenvalues of the A matrix of this system=
(see Example 12.1) !

The eigenvalues of the A matrix are equal to the roots qf the characteristic
equation of the system. =

The A matrix is the matrix that multiplies the x vector when the differential equations
are iTthe  standard form dxldt = A x. -

We have considered oienloopTy<tems  up to this point, but the mathematics ap-
ply to any system, openloop  or closedloop. Suppose an openloop  system is described
bY

2 = Ax+Bm+DLdt =- =- - ( 12.29)

The eigenvalues of the A matrix, ALAI, are the openloop  eigenvafrtes  and are equal-
to the roots of the openlo;p  characterstic  equation. To help us keep straight on what
are “apples” versus “oranges,” we call the openloop  eigenvalues hog.

Now suppose a feedback controller is added to the system. The manipulated
variables m are set by the feedback controller. To keep things as simple as possible,
let us make two assumptions that are not very good but permit us to illustrate an
important point. We assume that the feedback controller matrix Gc(,, consists of just

F==
constants (gains) K, and we assume that there are as many manipulated variables m
as state variables 7

-
-

m = K[xset  - x] (12.30)- =- -

Substituting into Eq. (12.29) gives

dx
= = Ax + B K[xset  - x] + DL
dr =- ==- - -

Rearranging to put the differential equations in the standard form gives

g = [~-BK]x+BKxse’+QL (12.31)- - -  - - -- - - -

This equation describes the closedloop system. Let us define the matrix that multi-
plies x as the “closedloop A” matrix and use the symbol ACL.- =

d x
= = ACL  x + B K’xset  + DL
dt =-

(12.32)==--

Thus, the characteristic matrix for this closedloop system is the ACL  matrix. Its eigen-
values will be the closedloop eigenvulues, and they will be the roots of the closedloop
characteristic equation.

The purpose of the preceding discussion is to contrast openioop  eigenvalues and
closedloop eigenvalues. We must use the appropriate eigenvalue for the system we
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are studying. The “Greek” state-space language uses the term eigerzvalue  instead
of the Russian-language, Laplace transfer function term root of rhe  characferistic
equation. But whatever the language, they are exactly the same thing. So we have
openloop  and closedloop eigenvalues, or we have roots of the openloop  and closed-
loop characteristic equations.

EXAMPLE 12.7. The openloop  eigenvalues for the two-reactor system studied in Ex-
ample 12.6 were AcL = -2, -4. Calculate the closedloop eigenvalues if two propor-
tional controllers are used. Ccl  manipulates x0 to control xl, and Cc2  manipulates F to
control x2.

ACL=A-BK=--- = _-

-0.0025K2
(-4 - 0.0025K2) 1

1
(12.33)

Using Eq. (12.2) to solve for the eigenvalues of this matrix gives the closedloop eigen-
values.

- i
t

FIGURE  12.4
Closedloop  cigenvalucs.
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Det[h@  - &I  = 0 (12.34)

1 01 [c-2- KI) -0.0025K2_
0 1 2 (-4 - 0.0()25K2) 11 = ’

Det  &L+2+&)

[

0.0025K2
-2 (Al-L  + 4 + 0.0025K2)  = O1

AcL + hcL(6  + K, + 0.0025K2)+  (8 + 4K,  + 0.01K2  + O.O025K,K2)  = 0 (12.35)

For Kt = 1 and K2 = 100, the closedloop eigenvalues are hc~  = -3.62 2 i0.33 1. For
KI = 5 and K2 = 500,hCL  = -6.12 + i1.32. Figure 12.4 is a plot of the closedloop
eigenvalues as a function of the two controller gains. Note that this is not a traditional
SISO root locus plot, so some of the traditional rules do not apply. Both gains are chang-
ing along the curves. The shapes of the curves are quite unusual. For example, the two
loci both run out the negative real axis as the gains become large. w

12.2
STABILITY

12.2.1 Closedloop Characteristic Equation

Remember that the inverse of a matrix has the determinant of the matrix in the
denominator of each element. Therefore, the denominators of all of the transfer
functions in Eq. (12.21) contain Det[Z  + G ~(~jGc(,)]. Now we know that the char-
acteristic equation of any system is &e dzm%tor  set equal to zero. Therefore,
the closedloop characteristic equation of the multivariable system with feedback
controllers is the simple scalar equation

rj (12.36)

We use this multivariable closedloop characteristic equation in Chapter 13 to design
controllers in a multivariable process.

EXAM P LE 1 z .s. Determine the closedloop characteristic equation for the system whose
openloop transfer function matrix was derived in Example 12.6. Use a diagonal controller
structure (two SISO controllers) that are proportional only.

G(s)  =
KI 0[ 10 K2

I 0.0025
s+2 s+2

2 0.0025
s+2L(s + 2)(s + 4)

KI 0.0025K2
s + 2 s+2

2Ki 0.0025K1-
/c .L 3\/, I A\ ‘. t ?
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0.0025K2  -
s + 2

I + 0.0025K2
s+2

(I + -&)(I  + o’k:2~)-~~~~)((s+:)::+4)1=  0 (12.37)

Kl1+-
O.O05K,K2

-
0

s+2
+ 0.0025Kz  + 0.0025K,K2

s+2 (s + 2)2 (s + 2)2(s  + 4) =

KI
1+-

s+2
+ O.O025K;!  + 0.0025K1K2

s+2 (s + 2)2

KIl+-
+ 0.0025K2  + = o

s+2 s+2

KIl+-
+ 0.0025K2  + 0.0025K1K2 o

s+2 s+2 (s + 2)(s + 4) =

s* + 6s + 8 + K,(s  + 4)+ O.O025K&s  + 4) + O.O025K,Kz  = 0

s2 + ~(6 + K, + O.O025K2)+(8 + 4K,  + 0.01K2  + 0.0025K,K2)  = 0 (12.38)

Note that this is exactly the same characteristic equation that we found using the transfer
function notation [see Eq. (12.35)]. Remember  that these values of s are the roots of the
closedloop characteristic equation. n

EXAMPLE 12.9.  Determine the closedloop characteristic equation for a 2 X 2 process
with a diagonal feedback controller.

GM(~)  =
GMII GMIZ

G421 GMZ I
(12.39)

Det[Z  + GM~~)G~(~)]  = Det= -=zzz==

Det 1 0 + GC~GMII

I  [

Gc~GMI~

0 1 %GMM~I Gc2Gn-122 II = o

(12.40)
Det

L

(1 + GCIGMII) (GczGMI~)

(GclG~a) (1 +  Gc2G~d  =I 0

(I + GCIGMII)(~  + GCZGMZ~)  - GC~GMIIGC~G,WI = 0

1 +  GCIGMII  -t GCZGMM~~  +  Gc,Gc~GMI,GMz  - GMIICM~I)  =  0

Notice that the closedloop characteristic equation depends on the tuning ofhofh feedback
controllers. m



12.2.2 Multivariable Nyyuist Plot

The Nyquist stability criterion developed in Chapter I1 can be directly applied to
multivariable processes. As you should recall, the procedure is based on a complex
variable theorem that says that the difference between the number of zeros and poles
of a function inside a closed contour can be found by plotting the function and looking
at the number of times it encircles the origin. We can use this theorem to find out
if the closedloop characteristic equation has any roots or zeros in the right half of
the s plane. The s variable follows a closed contour that completely surrounds the
entire right half of the s plane. Since the closedloop characteristic equation is given in
Eq. (I 2.36),  the function of interest is

&I = DetC[  + ~(.&(.y)l (12.41)

The contour of F,,, is plotted in the F plane. The number of encirclements of the
origin made by this plot is equal to the difference between the number of zeros and
the number of poles of Fts, in the right half of the s plane.

If the process is openloop  stable, none of the transfer functions in &ts,  has any
poles in the right half of the s plane. And the feedback controllers in Gee,,  are alwaysZCZ===
chosen to be openloop  stable (P, PI, or PID action), so (&)  has no poles in the right
half of the s plane. Clearly, the poles of Fc,, are the poles of GM~~,G~(~).  Thus, if
the process is openloop  stable, the F,,, function has no poles in= right half of the
s plane. So the number of encirclements of the origin made by the F’c,~,  function is
equal to the number of zeros in the right half of the s plane.

Thus the Nyquist stability criterion for a multivariable openloop-stable process
is:

Ifa  plot of Det[Z  + G
unstable! =

>(io,)&(iw)]  encircles the origin, the system is closedloop

Remember that this is a simple scalar curve in the F plane, which varies with fre-
quency cc).

The usual way to use the Nyquist stability criterion in scalar SISO systems is not
to plot 1 + GM(iw)Gc(iu) and look at encirclements of the origin. Instead we simply
plot just GM(ic(,,GC(iu)  and look at encirclements of the (- 1,0) point. To use a similar
plot in multivariable systems we define a function W(iw,  as follows:

W(iw)  = - 1 + Det[L  + ~(iw)&~ia)l- - (12.42)

Then the number of encirclements of the (- 1,O)  point made by Wciw)  as o varies
from 0 to ~0 gives the number of zeros of the closedloop characteristic equation in
the right half of the s plane.

EXAMPLE 12.10. The Wood and Berry (Chem. Eng.  Sci. 28.1707, 1973) distillation
column is a 2 X 2 system with the following openloop  process transfer functions:

12.tw.’ - 18.9e--7”

16.7s  + 1 21s  + 1

6.6e  -7.v - 19.4e-3”

T0.9.s + I 14.4s + I

(12.43)
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The process is openloop  stable with no poles in the right half of the s plane. The au-
thors used a diagonal controller structure with PI  controllers and found, by empirical
tuning, the following settings: K,t = 0.20, Kc2  = -0.04, 711 = 4.44, and 712 = 2.67.
The feedback controller matrix was

r K~I(TIIS + I)
0 1

( 12.44)

Table 12.1 gives a MATLAB program that generates a W plot for the Wood
and Berry column. After the four transfer functions are formed for the process and
the two transfer functions are formed for the controllers, they are evaluated at each
frequency using the polyvaf  command. The identity matrix is formed by using the
eye(size(g))  command. Then the W function is caiculated  at each frequency using the
wnyquist(nw)=- I +det(eye(size(g))+g*gc);  command. This calculation is a good example
of how easy it is to handle complex matrix calculations in MATLAB.

Figure 13 5 gives the W plane plots when the empirical settings are used and when
the Ziegler-Nichols (ZN) settings for each individual controller are used (K,r  = 0.960,
Kc2 = -0.19, ~11  = 3.25, and ri2 = 9.2). The curve with the empirical settings does not
encircle the (- 1,O)  point, and therefore the system is closedloop stable. Figure 12.6 gives
the response of the system to a unit step change in xyt, verifying that the multivariable
system is indeed closedloop stable.

The W plane curve using the ZN settings gets very close to the (- 1,O)  point, indi-
cating that the system is closedloop unstable with these settings. This example illustrates
that tuning each loop independently with the other loops on manual does not necessarily
give a stable system when all loops are on automatic.

Note that the W plots with PI controllers start on the negative real axis. This is due
to the two integrators, one in each controller, which give 180” of phase angle lag at low
frequencies. As shown in Eq. (12.40),  the product of the Gcr  and Gc~  controllers appears
in the closedloop characteristic equation. : .;, .., n

T A B L E  1 2 . 1

W curves for 2 X 2 Wood and Berry column

% Program “ wnyquist.m  ”
% Plots W curves for 2x2 Wood and Berry column
950
% Define  transfer functions without deadtimes
numgll=12.8;
dengll=[16.7  I];
numgl2=-18.9;
deng12=[21  I];
numg2 I =6.6;
deng21=[10.9  I];
numg22=-  19.4;
deng22=[14.4  I];
d=[I  3

7 31;
% Give ZN settings
kczn=(0.96  0

0 -0.19/;
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TAIILE  12.1 (CONTINUED)

W curves For 2 x 2 Wood and Berry column

resetzn=[3.25  0
0 9.281;

% Give Empirical settings
kcemp=[0.2  0

0 -0.041;

resetemp=[4.44  0
0 2.671;

70  Set frequencies
i=sqrt(-  1);
w=logspace(-1,1,200):
s=i*w;
YO

% Use Ziegler-Nichols settings
% Form controller transfer function
numgcznll=kczn(l,I)*[resetzn(I,I)  11;
dengcznll=[resetzn(I,I)  01;
numgczn22=kczn(2,2)*[resetzn(2,2)  I];
dengczn22=[resetzn(2,2)  01;
%
% Use empirical settings
% Form controller transfer function
numgcempll=kcemp(l,I)*[resetemp(l,I)  I];
dengcempll  =[resetemp(l,l)  01;
numgcemp22=kcemp(2,2)*[resetemp(2,2)  I];
dengcemp22=(resetemp(2,2)  01;
940
70  Loop to vary frequency
nwtot=length(w);
for nw=l:nwtot
wn=w(nw);
70  Process gS
g(l,I)=polyval(numgll.s(nw))  / polyval(denglI,s(nw));
g(l,I)=g(l,l)*exp(-d(l,l)*s(nw));
g(l,2)=polyval(numgl2,s(nw))  / polyval(dengl2,s(nw));
g(1,2)=g(1,2)*exp(-d(1,2)*s(nw));
g(2,l)=polyval(numg21,s(nw))  / polyval(deng2l,s(nw));
gCT~)=g(2,l)*exp~-d(2,I~*s(nw));
g(2,2)=polyval(numg22,s(nw))  / polyval(deng22,s(nw));
g(2,2J=g(2,2)*exp(-d(2,2)*s(nw));
% Controller gck
% Ziegler-Nichols
gczn(l,I)=polyval(numgcznII,s(nw))  / polyval(dengcznII,s(nw));
gczn(l,2)=0;
gczn(2,  I )=O;
gczn(2,2)=polyval(numgczn22,s(m\~))  / polyval(dengczn22,s(nw));
% Empirical
gcemp(I,  I)=polyval(numgc.e~?lpll.s(nw))  / pol~~val(dengcempIl,s(nw));

gcemp(l,2)=0;

gcemp(2, I )=O;

gcemp(2,2)=po!\~vcrl(n~l~m~~~etnp22,.~(~~w))  / pol~vvrtl(den~~cemp22,s(nw));
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W curves for 2 X 2 WoocI  and Ikrry column

o/o  Calculate wzn  and wemp jiinctiorl
YO “eye” operation forms an identity matrix
wzn(nw)=  - I+det(eye(size(g))+g*gczn);
wemp(nw)=  - I+det(eye(size(g))+g*gcemp);
end
% End of frequency loop
YO

%

% Plot W function
elf
axis(  ‘equal ‘);
plot(real(wzn),imag(wzn),  ‘ - ‘, real(  wemp), imag(  wemp),
axis ( [ -2  I  -2  I]);
xlabel( ‘Real(W) ‘)
ylabel(  ‘Imag(  W) ‘)
text(-IS,-l,‘KZN=O.96/-0.19’)
text(-  1.5, - 1.2, ‘ResetZN=3.25/9.28’)
text(0,  - I, ‘Kemp=O.2/-0.04’)
text(0,  - 1.2, ‘Resetemp=4.44/2.61’)
legend( ‘ZN Settings’, ‘Empirical’)
grid
pause
print -dps  pjigI2S.p~

‘--
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FIGURE 12.5
W function for Wood-Berry column with %N and empirical tuning.
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Wood and Berry
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FIGURE 12.6

12.2.3 Niederlinski Index

A fairly useful stability analysis method is the Niederlinski index. It can eliminate
unworkable pairings of variables at an early stage in the design. The settings of the
controllers do not have to be known, but it applies only when integral action is used
in all loops. It utilizes only the steady-state gains of the process transfer function
matrix.

The method is a “necessary but not sufficient condition” for stability of a closed-
loop system with integral action. If the index is negative, the system will be unstable
for any controller settings (this is called “integral instability”). If the index is posi-
tive, the system may or may not be stable. Further analysis is necessary.

Niederlinski index = NI =
Det[Kpl

II:= 1 KPjj
(12.45)

where & = GM(~)  = matrix of steady-state gains from the process openloop  GM- -
transfer function

KP,,  = diagonal elements in steady-state gain matrix

EXAMPLE I 2. I 1. Calculate the Niederlinski index for the Wood and Berry column.

KP  = GMW =
12.8 - 18.9

=- 6.6 - 19.4 I
( 12.46)
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Detl  K,t  1
NI  =

1 I;= ,x1,,,

= (12.8)(  - 19.4) - (- 18.9)(6.6)  = o 4g8
( 12.8)(  - 19.4)

( 12.47)

Since the NI is positive, the closedloop system with the specified pairing may be stable.
Notice that pairing assumes that distillate composition xg is controlled by reflux R

and that bottoms composition xg is controlled by vapor boilup  V.

-18 .9  RIi 1- 1 9 . 4  v

If the pairing had been reversed, the steady-state gain matrix would be

-J

6 0

nate
r the
used
tion

sed-
able
bosi-

.45)

n.

l.46)

I
-18.9 12.8 V
-19.4 IC I6.6 R

and the NI for this pairing would be

NI =
Det[Kpl

n ;=, KP,,,

= (-18.9X6.6)  - (12.8X-19.4)  = -o 991
(- 18.9)(6.6)

( 12.48)

(12.49)

Therefore, the pairing of xg with V and XB with R gives a closedloop system that is
“integrally unstable” for any controller tuning. a

12.3
INTERACTION

Interaction among control loops in a multivariable system has been the subject of
much research over the last 30 years. All of this work is based on the premise that
interaction is undesirable. This is true for setpoint disturbances. We would like to
change a setpoint in one loop without affecting the other loops. And if the loops do
not interact, each individual loop can be tuned by itself, and the whole.system should
be stable if each individual loop is stable.

Unfortunately, much of this interaction analysis work has clouded the issue of
how to design an effective control system for a multivariable process. In most pro-
cess control applications the problem is not setpoint response but load response. We
want a system that holds the process at the desired values in the face of load distur-
bances. Interaction is therefore not necessarily bad; in fact, in some systems it helps
in rejecting the effects of load disturbances. Niederlinski (AICM Journal 17: 1261,
1971) showed in an early paper that the use of decouplers made the load rejection
worse.

Therefore, the following discussions of the relative gain array (RGA) and de-
coupling are quite brief. We include them not because they are all that useful, but
because they are part of the history of multivariable control. You should be aware of
what they are and what their limitations are so that when you see them being misap-
plied (which, unfortunately, occurs quite often) you can be knowledgeably skeptical
of the conclusions drawn.
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12.3.1 Relative Gain Array

Undoubtedly the most discussed method for studying interaction is the RGA. It was
proposed by Bristol (IEEE Truns.  Autom. Control AC-II: 133,1966)  and has been ex-
tensively applied (and, in our opinion, often misapplied) by many workers. Detailed
discussions are presented by Shinskey  (Process Control Systems, 1967, McGraw-
Hill, New York) and McAvoy (Interaction Analysis; 1983, Instr. Sot. America, Re-
search Triangle Park, NC). The RGA has the advantage of being easy to calculate
and requires only steady-state gain information.

A. Definition
The RGA is a matrix of numbers. The i jth element !n the array is called p;j.

It is the ratio of the steady-state gain between the ith controlled variable and the
jth manipulated variable when all other manipulated variables are constant, divided
by the steady-state gain between the same two variables when all other controlled
variables are constant.

[Yilmjlm,
“j = [ Yilmj]y,

(12.50)
I

For example, suppose we have a 2 X 2 system with the steady-state gains KPij.

YI  =  &ml +  &,p2 (12.51)

For this system, the gain between Yt and ml when rn2  is constant is

[Yl~mlli?i*  = K/J,,

The gain between Y1 and ml when Y2  is constant (Y2 = 0) is found from solving
the equations

J’I  =  &,,ml  +  KP,p2
(12.52) i/

0 = KP2,m  + KP22m2

h = KP,,w  + KP,2[-KPZimdKP221

Y, =
I

KP,  I 4’22 - ~P124-91
K

I
4

P??

[h/ml  Iv2 =
L

KPl  I KP22 - KP12KP21
K

P22 1
Therefore, the pi t term in the RGA is

!

( 1 2 . 5 3 )

(12.54)

(12.55)
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PII = K’ K ( 12.56)
l- 1’12 1’21

K/J  I I K/J22

EXAM PLII  I 2. I 2. Calculate the PI I element of the RGA for the Wood and Berry col-
umn.

KP = GJW)  =
[

12.8 -18.9
=- 6.6 - 19.4 1

j& = K’ K = 1

’ - K”” K””
, _ (-18.9)(6.6) = 2’o’

1�1  I I � 2 2 (12.8)(- 19.4) n

Equation (12.56) applies to only a 2 X 2 system. The elements of the RGA can
be calculated for a system of any size by using the following equation.

/3ij = (ijth element of Kp)(ijth element of [Kp-‘lT) (12.57)

Note that Eq. (12.57) does not say that we take the ijth element of the product of the
Kp and [KpwllT matrices.

EXAMPLE~~.~~.  UseEq.(l2.57)tocalculatealloftheelementsoftheWoodandBerry
column.

- [

K = 12.8 -18.9
P- 6.6 - 19.4 1

-19.4 18.9

’Kp-’ - 6 . 6  1 2 . 8 I 1=
-123.58

= 2.01

This is the same result we obtained using Eq. (12.56).

P21  = (6.6)  -y5,
( .I

= -1.01

Note that the sum of the elements in each row is 1. The sum of the elements in each
column is also 1. This property holds for- any RGA, so in the 2 X 2 case we only have to
calculate one element. n

EXAMPLE I 2.1 J. Calculate the RGA for the 3 X 3 system studied by Ogunnaike and
Ray (A/G% Journnl25:  1043, 1979).
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MATLAB  program to calculate RGA for Ogunnaike-Ray column

% Prqrum  “rgam”

% Culculates  rga for OR column

% Give steady-state gairt matrix
k=(O.66 -0 .61  -0 .0049

1.11 -2.36 -0.012
-34.68 46.2 0.871;

% Calculate mntrix inverse
kinvers=inv(k);
% Elke trunspose
kintran=kinvers  ‘;
70
% Do term-by-term multiplication using ‘I.*  ” operator
rga=k  .*  kintran

GlLlI.S)  =

(j&-‘.65 4)61e-“.5.S -o.o049e-”
6.7s  + 1 8.64s + 1 9.06s + 1

1. 1 le-"J" -2.36e-3" -0~0~2~- I.ZJ

3.25s t 1 5s t 1 7.09s t 1

-34 f&-9.25 46.2e-9.4” 0.87(11.61s  + l)e-’
8.15s + 1 10.9s + 1 (3.89s + 1)(18.8s + 1)

0.66 - 0 . 6 1  -0.0049
KP  = 1.11 - 2 . 3 6  - 0 . 0 1 2=

-34.68 46.2 0.87

( 12.59)

Table 12.2 gives a MATLAB program using Eq. (12.57) to calculate the elements of the
3 X 3 RGA matrix.

1.96 -0.66 -0.30
RGA = i -0.67 1.89 -0.22 i

-0.29 -0.23 1.52

Note that the sums of the elements in all rows and all columns are 1.

(12.60)

n

B. Uses and limitations

The elements in the RCA can be numbers that vary from very large negative
values to very large positive values. If the RGA is close to 1, there should be little
effect on the control loop by closing the other loops in the multivariable system.
Therefore, there should be less interaction, so the proponents of the RGA claim that
variables should be paired so that they have RGA elements near 1.  Numbers around
0.5 indicate interaction. Numbers that are very large indicate interaction. Numbers
that are negative indicate that the sign of the controller may have to be different when
other loops are on automatic.

As pointed out earlier, the problem with pairings to avoid interaction is that
interaction is not necessarily a bad thing. Therefore, the use of the RGA in de-
ciding how to pair variables is not an effective tool for process control applica-
tions. Likewise, the use of the RGA in deciding what control structure (choice ot
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manipulated and controlled variables) is best is not effective. What is important is
the ability of the control system to keep the process at setpoint in the face of load
disturbances. Thus, load rejection is the most important criterion for deciding what
variables to pair and what controller structure is best.

The RGA is useful for avoiding poor pairings. If the diagonal element in the
RGA is negative, the system may show integral instability-the same situation that
we discussed in the context of the Niederlinski index. Very large values of the RGA
indicate that the system can be quite sensitive to changes in the parameter values.

12.3.2 Decoupling

Some of the earliest work in multivariable control involved the use of decouplers
to remove the interaction between the loops. Figure 12.7 gives the basic structure
of the system. The decoupling matrix Dts)  is chosen such that each loop does not
affect the other. Figure 12.8 shows the=details  of a 2 x 2 system. The decoupling
element Dij can be selected in a number of ways. One of the most straightforward
is to set Dtt = 022  = 1 and design the 012  and D2i elements so that they cancel
(in a feedforward way) the effect of each manipulated variable in the other loop. For
example, suppose Yr  is not at its setpoint but Y:!  is. The Gci controller changes ml
to drive Yi back to Yiet. But the change in ml disturbs Y2  through the GM21  transfer
function.

FIGURE 12.8

Block diagram of 2 x 2 systc~n  with decouplers.



If, however, the 1121  decoupler element is set equal to (-G~2t/G~22),  there is
a change in 1722  that comes through the GM22 transfer function and cancels out the
effect of the change in mt on Y2.

D21 =
-Gf2I

GM22

Using the same arguments for the other loop, the Dt
t o

(12.61)

2 decoupler could be set equal

(12.62)

This “simplified decoupling” splits the two loops so that they can be independently
tuned. Note, however, that the closedloop characteristic equations for the two loops
are not 1 + G~ttGcr  = 0 and 1 + GM22GC2 = 0. The presence of the decouplers
changes the closedloop characteristic equations to

1 +&I

Gdhm - G~G~I  = o

(5,122

(12.63)

I+ Cc2
GwiG~22  - GWIZGMM~I  =

Gl4II
0‘ (12.64)

Other choices of decouplers are also possible. However, since decoupling may de-
grade the load rejection capability of the system, the use of decouplers is not recom-
mended except in those cases where setpoint changes are the major disturbances.

12.4
CONCLUSION

The notation used for multivariable systems was reviewed in this chapter, and some
important concepts were developed. The most important topic is the derivation of
the characteristic equation for a closedloop multivariable process, which permits us
to determine if the system is stable or unstable.

PROBLEMS

12.1. Wardle and Wood (Irzst.  Cher~.  Erzg.  Sy~zp.  Ser. 32: 1, 1969) give the following transfer
function matrix for an industrial distillation column:

-o.l26r-“’ -0 l()]e~-l’”

6osx
GM  =

(48s + 1)(4%  + I)
- -

0.094c  x.v -0.  I2&3”
- - - -

- 38s + I 35s + I
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The empirical PI controller settings reported were

K, = 18, -24 r/ = 19,24

(a) Use a multivariable Nyquist plot to see if the system is closedloop stable.
(6) Calculate the values of the RGA and the Niederlinski index.

12.2. A distillation column has the following transfer function matrix:

34 -44.7
G _ (54s + l)(OSS + 1)2 (114s + 1)(0.5s + I)2

M-
E I 31.6 -45.2

(78s + l)(OSs  + 1)2 (42s + 1)(0.5s + 1)2

Empirical PI diagonal controller settings are:

K, = 1.6, -1.6 T/ =  20,9  minutes

(a) Check the closedloop stability of the system using a multivariable Nyquist plot.
(6) Calculate values of the RGA and the Niederlinski index.

12.3. A distillation column is described by the following linear ODES:

dxr,- = -4.74~~  + 5.99~~  + 0.708R  - 0.472V
dt

d-Q- = 10.84~~ - 18.24~~  + 1.28R  - 1.92V  + 42
dt

(a) Use state-variable matrix methods to derive the openloop  transfer function matrix.
(b) What are the openloop  eigenvalues of the system?
(c) If the openloop  steady-state gain matrix is

= [
K = 0.958 -0.936

P 0.6390 -0.661 1
calculate the RGA and the Niederlinski index.

12.4. A 2 x 2 process has the openloop  transfer function matrix

1 2 -1
s= (Sf1)  2  2[ I

A diagonal proportional feedback controller is used with both gains set equal to K,..
Time is in minutes.
(n) What is the openloop  time constant of the system?
(b) Calculate the closedloop eigenvalues as functions of K,..
(c) What value of K,. will give a closedloop time constant of 0.1 minute?

12.5. Air and water streams are fed into a pressurized tank through two control valves. Air
flows out of the top of the tank through a restriction, and water flows out the bottom
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through another restriction. The linearized equations describing the  syskm ;w

dP
_ = -0.81 + O.SF(,  + 0. IF,,.
dt

dh
- = -0.4P - O.lh  + 0.51;,,.
dt

where P = pressure
h = liquid height

F, = air flow rate into tank
F, = water flow rate into tank

Use state variable methods to calculate:
(a) The openloop  eigenvalues and the openloop  transfer function matrix.
(b) The closedloop eigenvalues if two proportional SISO controllers are used with

gains of 5 (for the pressure controller manipulating air flow) and 2 (for the level
controller manipulating water flow).

(c) Calculate the RGA and the Niederlinski index for this system.

12.6. A 2 X 2 process has the openloop  transfer function matrix

1 2 1
s=(S+l) 1  2[ 1

A diagonal proportional feedback controller is used with both gains set equal to K,.
Time is in minutes.
(a) What is the openloop  eigenvalue of the system?
(b) What value of K, will give a minimum closedloop eigenvalue of - lo?

12.7. Calculate the RGA, Niederlinski index, minimum singular value, and condition num-
ber of the following matrix of steady-state gains.

[

-37.7 0.647
-43.8 - 1.71 I

12.8. An openloop  system is described by the following two differential equations:

5% + xl = K,m

dX*

nt  +x2  = x’

(a) Calculate the openloop  eigenvalues of the system.
(6) Suppose we use a multivariable proportional controller of the type

m = K,.,x, + Kc2xz

Derive the closedloop characteristic equation as a polynomial in A in terms of the
process gain K,, and the controller gains K,.,  and K(.z.

(c) What values must the controller gains have to position the closedloop eigenvalues
at -2?

((1) Repeat(c) to position them at -5.
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12.9. A distillation column has the following transfer function matrix relating controlled
variables x’1)2(2) and X/QJ) with manipulated  variables R2 and (&I:

l.6e--lA

=I .

_ , &y 1.05s

G _ (13s  + l)(3s + I) (15.5s + 1)(3s  + i)
M- -7 5e-2.h~ 23.1 e-.”

(37.3s + 1)(2s + I) (42s + 1)(2s  + 1)

(a) Calculate values of the RCA  and the minimum singular value.
(6) Calculate the Niederlinski index for the two possible pairings:

(4 x~2(2)  - R2 and -w(3)  - QRZ

(ii)  X~2(2)  - QR~ and -@2(3)  - R2

12.10. The dynamics of a Patriot missile launcher located somewhere in Saudi Arabia to
shoot down incoming SCUD missiles are given by the following openloop  transfer
function between 8 (the angle between the horizon and the missile direction) and M
(the power to the motor that positions the launcher):

e 1-=
A4 GM(~) = s(s + 1)

(a) Convert the openloop  Patriot missile launcher from Laplace-domain transfer func-
tion form to state-space form

j=Ax+Bm=- -

where XI  = 8 and x2 = 6.
(6) What are the openloop  eigenvalues ho of the system?
(c) Suppose a state feedback controller is used: m = K, 8 + K20.  Calculate the values

of the controller gains that will position the closedloop eigenvalues at h, = -5
in the complex plane.

12.11. A process has an openloop  transfer function relating controlled and manipulated vari-
ables that is a steady-state gain K, and two first-order lags in series (~1 and 72).
(a) Convert this process to openloop  state-space form. What are the openloop  eigen-

values?
(b) Calculate the gains required in a state feedback controller that will position both

closedloop eigenvalues at TCL.  Your answer should be general equations in terms
of the openloop  parameters. ,

12.12. A multivariable process is described by two ODES:

2% + x1 = 0.5x2  + 2m,  + 0.5m2

10’2 + x2 = 1.5x1 + ml  + 3m2

((1) What is the characteristic equation of the system?
(h) What are the eigenvalues of the system?
(c)  Put into state variable form and calculate the A and B matrices.

= =
(rf)  Calculate the Gh,(.V) transfer function matrix.
(E) Calculate the RCA  and the Niederlinski index.
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Design of Controllers
for Multivariable Processes

In the last chapter we developed some mathematical tools and some methods of an-
alyzing multivariable closedloop systems. This chapter studies the development of
control structures for these processes. Because of their widespread use in real in-
dustrial applications, conventional diagonal control structures are discussed. These
systems, which are also called decentralized control, consist of multiloop SK0 con-
trollers with one controlled variable paired with one manipulated variable. The major
idea in this chapter is that these SISO controllers should be tuned simultaneously,
with the interactions in the process taken into account.

13.1
PROBLEM DEFINITION

Most industrial control systems use the multiloop SISO diagonal control structure.
It is the most simple and understandable structure. Operators and plant engineers
can use it and modify it when necessary. It does not require an expert in applied
mathematics to design and maintain it. In addition, the performance of these diago-
nal controller structures is usually quite adequate for process control applications. In
fact, there has been little quantitative unbiased data showing that the performances
of the more sophisticated controller structures are really any better! The slight im-
provement is seldom worth the price of the additional complexity and engineering
cost of implementation and maintenance.

A number of critical questions must be answered in developing a control system
for a plant. What should be controlled? What should be manipulated? How should
the controlled and manipulated variables be paired in a multivariable plant? How do
we tune the controllers?

The procedure discussed in this chapter provides a practical approach to an-
swering these questions. It was developed to provide a workable, stable, simple

456
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SISO system with only a modest amount 01’  engineering ef’foi-t.  The resulting di-
agonal controller can then serve as a realistic benchmark, against which the more
complex multivariable controller structures can be compared.

The limitations of the procedure should be pointed out. It does not apply to
openloop-unstable systems. It also does not work well when the time constants of
the transfer functions are quite different, i.e., some parts much faster than others.
The fast and slow sections should be designed separately in such a case.

The procedure has been tested primarily on realistic distillation column mod-
els. This choice was deliberate because most industrial processes have similar gain,
deadtime, and lag transfer functions. Undoubtedly, some pathological transfer func-
tions can be found that the procedure cannot handle. But we are interested in a prac-
tical engineering tool, not elegant, rigorous, all-inclusive mathematical theorems.

The steps in the procedure are summarized below. Each step is discussed in
more detail in later sections of this chapter.

1. Select controlled variables. Use primarily engineering judgment based on pro-
cess understanding.

2. Select manipulated variables. Find the set of manipulated variables that gives
the largest minimum singular value of the steady-state gain matrix.

3. Eliminate unworkable variable pairings. Eliminate pairings with negative
Niederlinski indices or that have obvious poor dynamic relationships.

4. Find the best pairing from the remaining sets.
a. Tune all combinations using BLT tuning.
b. Select the pairing that gives the lowest-magnitude closedloop regulator trans-

fer function.

13.2
SELECTION OF CONTROLLED VARIABLES

13.2.1 Engineering Judgment

Engineering judgment is the principal tool for deciding what variables to control.
A good understanding of the process leads in most cases to a logical choice of what
needs to be controlled. Considerations such as economics, safety, constraints, and the
availability and reliability of sensors must be factored into this decision. We must
control inventories (liquid levels and gas pressures), product qualities, and produc-
tion rate.

For example, in a distillation column we are usually interested in controlling
the purity of the distillate and bottoms product streams. In chemical reactors, heat
exchangers, and furnaces the usual controlled variable is temperature. In most cases
these choices are fairly obvious. It should be remembered that controlled variables
need not be simple, directly measured variables. They can also be computed from a
number of sensor inputs. Common examples are heat removal rates, mass flow rates,
and ratios of flow rates.



However, sometimes selection of the appropriate controlled variable is not so
easy. For example, in a distillation column it is frequently difficult and expensive
to measure product compositions directly with sensors such as gas chromatographs.
Instead, temperatures on various trays are controlled. The selection of the best con-
trol tray to use requires a considerable amount of knowledge about the column, its
operation, and its performance. Varying amounts of non-key components in the feed
can significantly affect the best choice of control trays.

13.2.2 Singular Value Decomposition

The use of singular value decomposition (SVD), introduced into chemical engineer-
ing by Moore and Downs (Pruc.  JACC, Paper WP-7C, 1981),  gives some guidance
on the question of what variables to control. They used SVD to select the best tray
temperatures in a distillation column. SVD involves expressing the matrix of plant
transfer function steady-state gains K, as the product of three matrices: a U matrix,=
a diagonal 2 matrix, and a VT matrix.= =

K, = UCVT (13.1)- - -- - - -

The diagonal C matrix contains as its elements the singular values of the K, matrix.
-

The biggest elements  in each column of the U matrix indicate which outputs of the
process are the most sensitive. Thus, SVD zn be used to help select which tray
temperatures in a distillation column should be controlled. The following example
from the Moore and Downs paper illustrates the procedure.

EXAMPLE 13.1. A nine-tray distillation column separating isopropanol and water has
the following steady-state gains between tray temperatures and the manipulated vari-
ables reflux R and heat input Q.

Tray  number ATJAR ATJAQ

-0.0077327 I 0.0134723
-0.2399404 0.2378752
-2.5041590 2.4223 120
-5.9972530 5.7837800
-1.6773120 1.6581630

0.0217166 0.0259478
0.1976678 -0.1586702
0.1289912 -0.1068900
0.0646059 -0.0538632

The entries in this table are the elements in the steady-state gain matrix of the column
K,,  which has nine rows and two columns.

(13.2)
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Now K,, is decomposed into the product of three matrices.
-

K,  = UCVT- - -= - - -

I/==

-0.0015968
-0.0361514
-0 .3728  142
-0 .8915611
-0 .2523673
-0 .0002581

0.0270092
0.0178741
0.0089766

-0.082898 1
-0 .0835548
-0.0391486

0.1473784
-0.6482796
-0 .6482796
-0 .4463671
-0.245045 1
-0.1182182

(13.3)

(13.4)

(13.5)
0

0.052061 1
VT  II

0.7191619 -0.6948426
-0.6948426 -0.7191619 I

(13.6)=

The largest element in the first column in U is -0.8915611, which corresponds to tray 6.
Therefore, SVD would suggest the controlof  tray 6 temperature. n

The software to do the SVD calculations is readily available (Computer Methods for
Mathematical Computations by Forsythe, Malcolm, and Moler, 1977, Prentice Hall,
Englewood Cliffs, NJ), and they can be easily performed using MATLAB.

13.3
SELECTION OF MANIPULATED VARIABLES

Once the controlled variables have been specified, the control structure depends only
on the choice of manipulated variables. For a given process, selecting different ma-
nipulated variables will produce different control structure alternatives. These con-
trol structures are independent of the controller structure, i.e., pairing of variables
in a diagonal multiloop SISO structure or one multivariable controller.

For example, in a distillation column the manipulated variables could be the flow
rates of reflux and vapor boilup  (R, V) to control distillate and bottoms compositions.
This choice gives one possible control structure. Alternatively, we could choose to
manipulate the flow rates of distillate and vapor boilup  (D, V). This yields another
control structure for the same basic distillation process.

The set of manipulated variables that gives the largest minimum singular value
u min of the steady-state gain matrix is the best. In Chapter 9 we showed that a perfect
controller would be the inverse of the plant. Therefore, we want a plant that can be
easily inverted (not close to singular). Since the minimum singular value measures
how close the gain matrix is from being singular, the choice of manipulated variables
should be based on finding the set that gives a plant with a large minimum singular
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The difference in these values must be fairly large  to be meaningfui. If one
set of manipulated variables has a u”‘~” of IO and another set has a ~9”~~  of I, you
can conclude that the first set is better. However, if the two sets give numbers that
are close, such as IO and 8, there is probably little difference, and the two sets of
manipulated variables may be equally effective.

This selection of control structure is independent of variable pairing and con-
troller tuning. The minimum singular value is a measure of the inherent ability of
the process (with the specified choice of manipulated variables) to handle distur-
bances, changes in operating conditions, etc.

The problem of the effect of scaling on singular values is handled by expressing
the gains of all the plant transfer functions in dimensionless form. The gains with
engineering units are divided by transmitter spans and multiplied by valve gains.
This yields the dimensionless gain that the controller sees and has to cope with.

13.4
ELIMINATION OF POOR PAIRINGS

The Niederlinski index (Section 12.2.4) can be used to eliminate some of the pair-
ings. Negative values of this index mean unstable pairings, independent of controller
tuning. As illustrated in Example 12.12, pairing xg with V and x5 with R in the Wood
and Berry column gives a negative Niederlinski index, so this pairing should not be
used.

For a 2 X 2 system, a negative Niederlinski index is equivalent to pairing on
a negative RGA element. For example, in Example 12.13 the /311  RGA element is
positive (2.01). This says that the xg to R pairing is okay. However, the p12  element
is negative (- l.Ol),  telling us that the XD to V pairing is not okay.

Probably the most important method for eliminating poor pairings is the use of
a little common sense. We know that more lags or bigger deadtimes in a control
loop lead to poorer performance. We also know that the manipulated variable should
be able to cause a significant change in the controlled variable; i.e., we need a big
stick. In addition, we know that the manipulated variable should affect the controlled
variable quickly,

Therefore, we should pair variables that are related through low-order transfer
functions having large steady-state gains, small time constants, and small deadtimes.
A number of dynamically poor pairings can be eliminated by inspection.

For example, in distillation we generally do not attempt to control a temperature
or composition in the base of the column by manipulating reflux. There is typically
a liquid hydraulic lag of 6 seconds per tray, so a change in reflux to the top of a
50-tray  column does not change the liquid flow at the bottom of the column for
about 5 minutes. The dynamic performance of this loop is poor, so we do not pair
bottoms composition with reflux  no matter what the RGA tells us to do. On the
other hand, the vapor boilup  affects all sections of the column quite quickly, so it

can be paired with a controlled variable at the top of the column with no dynamic
prob!em.
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13.5
BLT TUNING

One of the major questions in multivariable control is how to tune controllers in
a diagonal multiloop SISO system. If PI controllers are used, there are 2N tuning
parameters to be selected. The gains and reset times must be specified so that the
overall system is stable and gives acceptable load responses. Once a consistent and
rational tuning procedure is available, the pairing problem can be attacked.

The tuning procedure discussed in this section (called BLT, biggest log-modulus
tuning) provides such a standard tuning methodology. It satisfies the objective of ar-
riving at reasonable controller settings with only a small amount of engineering and
computational effort. We do not claim that the method produces the best possible
results or that some other tuning or controller structure will not give superior per-
formance. However, the method is easy to use, is easily understandable by control
engineers, and leads to settings that compare very favorably with the empirical set-
tings found by the exhaustive and expensive trial-and-error tuning methods used in
many studies.

The method should be viewed in the same light as the classical SISO Ziegler-
Nichols method. It gives reasonable settings that provide a starting point for further
tuning and a benchmark for comparative studies.

BLT tuning involves the following four steps:

1 . Calculate the Ziegler-Nichols settings for each individual loop. The ultimate gain
and ultimate frequency o,, of each diagonal transfer function Gjj(s)  are calcu-
lated in the classical SISO way. To do this numerically, a value of frequency o
is guessed. The phase angle is calculated, and the frequency is varied to find the
point where the Nyquist plot of Gjj(iw,  crosses the negative real axis (phase angle
is - 180”). The frequency where this occurs is w,.  The reciprocal of the real part
of Gjj(io)  IS the ultimate gain.

2. A detuning factor F is assumed. F should always be greater than 1. Typical values
are between 1.5 and 4. The gains of all feedback controllers Kci are calculated
by dividing the Ziegler-Nichols gains KZNi  by the factor F.

KZNiK,i = -
F

(13.7)

where KZNi  = K,,i/2.2.  Then all feedback controller reset times r1i  are calculated
by multiplying the Ziegler-Nichols reset times rZN by the same factor F.

T/i  = 7ZNiF (13.8)

where

27r
TZNi  = -

1.20,j
(13.9)

The F factor can be considered as a detuning factor that is applied to all loops.
The larger the value of F, the more stable the system is, but the more slug-
gish are the setpoint and load responses. The method yields settings that gi\,e  a
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reasonable compromise between stability (robustness) and pcrformancc (quick-
ness) in multivariable systems.

3. Based on the guessed value of F and the resulting controller settings, a multivari-
able Nyquist plot of the scalar function Wtiw)  = - 1 + Det]f  + GM(;~~JGc.(~~~)]  isE 2zrzzz
made. [See Section 12.2.2, Eq. (12.42).]  The closer this contour is to the (- I, 0)
point, the closer the system is to instability. The quantity Wl(  I + W) is similar
to the closedloop servo transfer function for a SISO loop GluGcl( I + GMG~).
Therefore, based on intuition and empirical grounds, we define a multivariable
closedloop log modulus L,,.

L c m = 2Olog,,  &
I I

(13.10)

The peak in the plot of L C,71 over the entire frequency range is the biggest log
modulus L;:.

4. The F factor is varied until Lz,a,X  .is  equal to 2N,  where N is the order of the system.
For N = 1, the SISO case, we get the familiar +2 dB maximum closedloop log
modulus criterion. For a 2 X 2 system, a +4 dB value of LEx  is used; for a 3 X 3,
+6  dB;  and so forth. This empirically determined criterion has been tested on
a large number of cases and gives reasonable performance that is a little on the
conservative side.

This tuning method should be viewed as giving preliminary controller settings
that can be used as a benchmark for comparative studies. The procedure guarantees
that the system is stable with all controllers on automatic and also that each individual
loop is stable if all others are on manual (the F factor is limited to values greater than
1, so the settings are always more conservative than the Ziegler-Nichols values).
Thus, a portion of the integrity question is automatically answered. However, further
checks of stability would have to be made for other combinations of manual and
automatic operation.

The method weights each loop equally; i.e., all loops are equally detuned. If it
is important to keep tighter control of some variables than others, the method can
be easily modified by using different weighting factors for different controlled vari-
ables. The less important loop could be detuned more than the more important loop.

Table 13.1 gives a MATLAB  program that calculates the BLT tuning for the
Wood and Berry column, and Fig. 13.1 shows the W(iw,  plot with the BLT settings.
The program forms the numerator and denominator polynomials for all four openloop
process transfer functions. Then a “while” loop is used to converge on the value of
f that gives dbmux  = 4. At each value off, the controller constants are calcuiated
and the controller numerator and denominator polynomials are formed. Then the
process and controller transfer functions are calculated using the polyvuf  operation
over a range of frequencies (using a “for” loop). The wnyquist is calculated at each
frequency. The peak in the log modulus curve is picked off using the mux(dbcf)
operation. Simple interval halving is used to change the guessed value off‘ at each
pass through the loop.

The resulting controller settings are compared with the empirical setting in Ta-
ble 13.2. The BLT settings usually have larger gains and larger reset times than the
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MAI’IAR  program for BLT  tuning
~~
% I’rojyctm  “h1twh.m  ”
% does BLI’  tuning j:>r  the 2x2 Wood und  Berry column
% I
% Define  transfer functions without deudtimes
numg11=12.8;
dengll=[16.7  I];
numg12=-18.9;
deng12=[21  I];
numg2/=6.6;
deng21=(10.9  I];
numg22=  - 19.4;
deng22=[14.4  11;
d=[l 3

7 31;
% Give ZN settings
kczn=[0.96  0

0 -0.191;
resetzn=[3.25  0

0 9.281;
i=sqrt( - I);
w=logspace(  - 1,0.8,200);
s=i*w;
f=2.54;
df=O.Ol;
loop=O;
Jiagm=-I;
jlagp=-I;
dbmax= - 100;
940

% Main loop to vary f in BLT tuning
70

while abs(dbmax-4)>0.05
kc=kczn/’
reset=reserzn*f;
% Form controller transfer function
numgcll=kc(l,I)*[reset(l,l)  11;
dengcil  =[reset(I,  I) 01;
numgc22=kc(2,2)*[reset(2,2)  11;
dengc22=[reset(2,2)  01;
70

% Inside loop to vary frequency
nwtot=length(w);
f o r  nw=l:nwtot
wn=w(nw);
70  Process g’s
g(l,I)=polyval(nu~ngII,s(nw))  / polyval(dengIl,s(nw));
g(l,I)=g(l,I)*exp(-d(l,I)*s(nw)):
g(l,2)=polyval(numgl2,s(nw)) / polyval(deng12,s(nw));
g(l,2)=g(l,2)*exp(-d(l,2j*s(nw));
g(2, I)=polyvul(numg21,s(nw))  / polyval(deng2I,s(nw));
cq(2. I)=g(2. I)*exp(-d(2S  I)*s(nw));
~~(2.2)=~~olyvul(nutmg22.s(nw))  / polyvcrl(cleng22,s(nw));
s(2,2~=,~(2,2)~~~xJ)(-r1(2,2)*s(nru)):



TAULE 13 .1  (CONTINUED)

MATLAB program for BLT  tuhing

% Controller gc’s
gc(l, l)=polyval(numgcll,s(nw))  / polyval(clengclI,s(nw));
gc(1,2)=0;
gc(2, I)=O;
gc(2,2)=polyvaf(numgc22,s(nw))  / polyvul(dengc22,s(nw));
70 Calculate w function
70  “eye” operation forms an identity matrix
wnyquist(nw)=  - 1 +det(eye(size(g))+g*gc);
70  Calculate lc function
lc(nw)=wnyquist(nw)/(l+wnyquist(nw));
dbcl(nw)=20*loglO(abs(lc(nw)));
%
% End of inside loop sweeping through frequencies
end
% Pick off peak in closedloop log modulus

[dbmax,nmax]=max(dbcl);
wmax=  w(nmax);
70
ioop=loop+l;
if loop>lO,break,end
%
% Test if +4 dB and reguess f factor
70
if dbmax>4
if fIagp>O,df=dfn;end
$agm=l;
f=f+dJ
else
if Jlagm>O,df=dfL;end
Pqp=l;
f=f-dfi
if f<l,f=l;end
end
% End of “while” loop to find  correct f factor
end
70
% Plot W function
4f
axis(  ‘equal ‘);
plot(real(wnyquist),imag(wnyquist))
axis([-2 1 -2 11);
xlabel( ‘Real(  W) ‘)
ylabel( ‘Imag(  W) ‘)
grid
text(-  1.8,.4,[  ‘f=  ‘,num2str(f)])
text(-  l.S,.2,[‘Kc=  ‘,num2str(kc(I,  I)), ‘/‘,num2str(kc(2,2))]);
text(  - 1.8,0,(  ‘Reset= ‘,num2str(reset(l,  I)), ‘//‘,num2str(reset(2,2))]);
pause
print -dps pJigI3l.p

464
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FIGURE 13.1
W function for WB column with BLT tuning.

TABLE 13.2

BLT, Ziegler-Nichols, and empirical controller tuning

Wood and Berry

Empirical

Ogunnaike and Ray

KC 0.2/-0.04 1.2/-o.  lYO.6
71 4.44t2.61 5/10/4

Z-N

K 0.96/--O.  19 3.24/-0.63f5.66
71 3.2519.2 7.6218.3613.08

BLT

L;;  (dB) +4 +6
F factor 2.55 2.15
KC 0.375/-0.075 1.51/k0.29512.63
7/ 8.29123.6 16.4/18/6.61
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FIGURE 13.2
Wood and Berry column: BLT and empirical tuning.

empirical. Time responses using the two sets of controller tuning parameters are
compared in Fig. 13.2.

Results for the 3 X 3 Ogunnaike and Ray column are given in Table 13.2 and in
Fig. 13.3. The “+4”  and “+6”  refer to the value of Lyz used. Both of these cases
illustrate that the BLT procedure gives reasonable controller settings.

As noted previously, if the process transfer functions have greatly differing time
constants, the BLT procedure does not work well; it tends to give a response that is
too oscillatory. The problem can be handled by breaking up the system into fast and
slow sections and applying BLT to each subsection.

The BLT procedure was applied with PI controllers. The method can be ex-
tended to include derivative action (PID controllers) by using two detuning factors:
F detunes the ZN reset and gain values, and Fo detunes the ZN derivative value. The
optimum value of FD  is that which gives the minimum value of F and still satisfies
the +2N maximum closedloop log modulus criterion (see the paper by Monica, Yu,
and Luyben in EC Res.  27:969,  1988).

13.6
LOAD REJECTION PERFORMANCE

In most chemical processes the principal control problem is load rejection. We want
a control system that keeps the controlled variables at or near their setpoints in the
face of load disturbances. Thus, the closedloop regulator transfer function is the most
important.

The ideal closedloop relationship between the controlled variable and the load
is zero. Of course, this can never be achieved, but the smaller the magnitude of the
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FIGURE 13.3
Ogunnaike and Ray column: BLT and empirical tuning.

closedloop regulator transfer function, the better the control. Thus, a rational criterion
for selecting the best pairing of variables is to choose the one that gives the smallest
peaks in a plot of the elements of the closedloop regulator transfer function matrix.

The closedloop relationships for a multivariable process were derived in Chap-
ter 12 [Eq. (12.21)].

For a 3 X 3 system there are three elements in the x vector, so three curves are plotted
for each of the three elements in the vector [[I <Gr~(i~jG~(i~)]-~ G~ti~,]  for the-
specified load variable L. Table 13.3 gives a MKTLB  program that calculates these
curves for the 3 X 3 Ogunnaike and Ray column. Figure 13.4 plots the log modulus
of the three closedloop regulator transfer functions.
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TAII1.K 13.3

Load rejection for the Ogunnaike-Ray column

% Program  “1reject.m  ”

% calculales closedloop regulator transfer functions

% for Ogunnnikc and Ray 3x3 column
%

% D+e  GM transfer functions without deadtimes
numgll=O.M;
dengIl=[6.7 I ] :
numg12=-0.61;
deng12=[8.64  I ] ;
numgl3=-0.0049;
deng13=[9.06  I ] ;

numg21=1.11;
deng21=[3.25  I ] ;
numg22= -2.36;
deng22=[5  I];
numg23=-0.012:
deng23=[7.09  I];

numg31=  - 34.68;
deng31=[8.  IS I];
numg32=46.2;
deng32=[10.9  I];
numg33=0.87*[11,6/  I];
deng33=conv([3.89  1],(18.8  I ] ) ;

d=[2.6  3 .5  I
6.5 3 1.2
9.2 9.4 I];

70

% Give empirical settings
kc=[1.2  0  0

0  - 0 . 1 5  0
0  0  0.61;

reset=[5  0  0
0 10 0
0 0 41;

%

% Form GL transfer functions
numgL1  =O. 14;
dengLl=[6.2  I ];
numgL2=0..53;
dengL2=[6.9  I];
numgL3=-11.54;
dengL3=[7.01  I ] ;
% GL deadtimes
dgL=[I2  10 .5  0.61;
%

i=syrt(-  I);
w=logspace( - 2, I I 90);
.y=i*w.
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Load  rejection For the Ogunnaike-Ray column

% Form controller transfer function
numgcl=kc(l,l)*[reset(l,l)
dengcl =[reset(l,  1) O];
numgc2=kc(2,2)*[reset(2,2)
dengc2=[reset(2,2)  O];
numgc3=kc(3,3)*[reset(3,3)
dengc3=[reset(3,3)  Of;
70

% Loop to vary frequency
nwtot=length(w);
far  nw=l:nwtot
wn=w(nw);

% Process GM tranfer functions
g(l,l)=polyval(numgll.s(nw))  / polyval(dengll,s(nw));
g(l,l)=g(l,l)*exp(-d(l,l)*s(nw));
g(l,2)=polyval(numgl2,s(nw))  / polyval(dengl2,s(nw));
g(l,2)=g(l,2)*expf-d(1,2)*sfnw));
g(1,3)=polyval(numgl3,s(nw))  / polyval(dengl3,s(nw));
g(1,3)=g(1,3)*exp(-d(l,J)*s(nw));

g(2,I)=polyval(numg2l,s(nw))  / polyval(deng2l,s(nw));
g(.Z  l)=gG  IJ*exp(-d(2,  I)*s(nw));
g(2,2)=polyval(numg22,s(nw))  / polyval(deng22,s(nw));
g(2,2)=g(2,2)*exp(-df2,2)*s(nw));
g(2,3)=polyval(numg23,s(nw))  / polyval(deng23,s(nw));
g(2,3)=gW)*exp(--d(2,3)*s(nw));

g(3,I)=polyval(numg3l,s(nw))  / polyval(deng3l,s(nw));
g(3,1)=g(3,l)*exp(-dt3,I)*s(nw));
g(3,2)=polyval(numg32,s(nw))  / polyval(deng32,s(nw));
g(3,2)=g(3,2)*exp(-d(3,2)*s(nw));
g(3,3)=polyvul(numg33,s(nw))  / polyval(deng33,s(nw));
g(3,3)=g(3,3)*exp(-d(3,3)*s(nw));
%

70 Calculate GL transfer functions
gL1 =polyval(numgLl,s(nw))  / polyval(dengLl,s(nw));
gLI=gLI+exp(-dgL(l)*s(nw));
gL2=polyval(numgL2,s(nw))  / polyval(dengU,s(nw));
gL2=gL2*exp(-dgL(2)*s(nw));
gW=polyval(numgL3,s(nw))  / polyval(dengW,s(nw));
gL3=gW*exp(-dgL(3)*s(nw));
% Form vector of GL transfer functions
gL=[gLl  g L 2  gW];
70 Controller gcS
gc(l,l)=polyval(numgcl.s(nw))  / polyval(dengc I.s(nw));
.gI(l,2)=0;
gc(1,3)=0;
gc(2,1)=0;
gc(2,2)=polyval(numgc2,s(nw))  / polyval(dengc2,s(nw));
gc(2,3)=0;
gc(3,1)=0;
gc(3,2)=0;
gc(3,3)=polyval(numgc3,s(nw))  / polyvul(dengc3,sfnw));

469
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TABLE 13.3 (CONTINUED)

Load rejection for the Ogunnaike-Ray column

% Calculate closedloop regulator function
9 0
clreg=inv(eye(size(g))+g*gc)*gL;
dbcll(nw)=20*loglO(abs(clreg(1)));
dbcl2(nw)=20*loglO(abs(clreg(2)));
dbcl3(nw)=20*logIO(abs(clreg(3)));

%
end
90 End of frequency loop
9 0
9 0
% Plot dbcl function
c/f
semilogx(w,dbcll,  ‘-‘,w,dbcl2,‘--‘,w,dbcl3,‘-.‘)
xlabel( ‘Frequency (radians/minute)‘)
ylabel(‘Closedloop  Regulator (dB)‘)
grid
legend(  ’ YI/L’,  ‘Y2/L  ‘,  ’ Y3/L’)

print -dps  pjgl34.ps
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The set of variable pairings that gives the smallest peaks in these closedloop
regulator transfer functions should be selected since it provides a control structure
with the best load rejection.

13.7
MODEL PREDICTIVE CONTROL

In the past decade, a great deal of activity in industry and in academia has focused on
the use of process models to develop new types of multivariable controllers. Numer-
ous papers have been published over the last several years on multivariable control
systems generically called mode1 predictive control (MPC). MPC applications have
been reported for the most part in the petroleum industry, on units such as fluid cat-
alytic crackers, hydrocrackers, and petroleum fractionating towers. Such operations
are characterized by being multivariable in nature, having many constraints, and pro-
cessing large volumes of material. One of the most popular commercial applications
of MPC is dynamic matrix control (DMC). However, MPC has yet to demonstrate
any advantages over conventional strategies on a number of important processes,
particularly in the chemical industry. A particularly insightful test of MPC has re-
cently been reported by N. L. Ricker and J. H. Lee (Cornput.  Chem.  Eng. 19:961,
1995),  in which they state that MPC is no panacea.

We present here only some of the basic ideas of mode1 predictive control. A
thorough treatment of this subject would be quite extensive and is available in other,
more advanced textbooks (see Ogunnaike and Ray, Process Dynamics, Modeling,
and Control, 1994, Oxford University Press, New York, pp. 991-1032; or Seborg,
Edgar, and Mellichamp, Process Dynamics and Control, 1989, Wiley, New York,
pp. 649-667). Our objective in this book is to strip away everything but the essen-
tials. A chemical engineer who is thoroughly grounded in the essence of chemical
process control will be capable of understanding the features of model predictive
control should the need arise.

The basic idea of MPC is to use a process model (either linear or nonlinear) to
calculate the best changes in the manipulated variables that will achieve a specified
desired result in the controlled variables. At each point in time the output variables
are measured. Then the optimization procedure calculates the moves in the manip-
ulated variables for several time steps into the future. The first of these changes is
made and has a certain effect on the controlled variables. At the next time step the
new values of the controlled variables are measured and incorporated into the opti-
mization problem, which is re-solved to obtain new manipulated variable values.

Suppose we have a model that relates the process outputs yet) to the manipulated
variables ~(0:

Y(r)  = fhl (13.12)

We also have desired values for the output variables yf:;. Then we can formulate
an optimization problem to minimize an objective function  J, which is typically the
square of the difference between the setpoints and the controlled variables over a
specified time period P.
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min J = [y$ - yt,)j2 with I over period P (13.13)
u(t)

We solve this optimization problem for the manipulated inputs as functions of time
that provide the smallest value of the specified objective funct’on.  The model is used
to predict what the output variables will be in the future (yr;““).  Since the model is
not perfect and does not contain information about all unmeasured disturbances, the
MPC algorithm must account for this by updating the model prediction information
at each time step from the measured output values.

The simple objective function shown in Eq. (13.13) does not consider other fac-
tors such as the magnitudes of the changes in manipulated variables at each point
in time. In many processes rapid and large swings in the manipulated variables are
undesirable. Therefore, other forms of the objective function can be used. We can
penalize changes in the manipulated variables by adding to the objective function a
term that weights the changes in L+).

min J = [y:F;  - y(r,]2  + Wu& (13.14)
‘4

The manipulated and controlled variables have physical constraints that must
be considered in the optimization. The values of the outputs predicted by the model
can be used to avoid hitting constraints. In conventional control these constraints are
handled by overrides, whereas in MPC they are incorporated into the optimization
algorithm.

MPC is basically just an alternative way to look at the process control problem.
We hope this brief summary conveys a little of what is behind this approach and
helps to remove a little of the mystery from the method.

13.8
CONCLUSION

This chapter has presented a simple procedure for developing control structures for
multivariable processes. The method has been applied to many real industrial plants
with good success. It requires a modest amount of engineering time to obtain the
transfer functions of the process (see Chapter 16 for more discussion on this subject).
The calculations are easily accomplished on a small computer.

PROBLEMS

13.1. Calculate the BLT settings for the Wardle and Wood column (see Problem 12. I).

13.2. Determine the BLT settings for the 2 x 2 multivariable system given in Problem 12.2.

13.3. Alatiqi (/EC Proc.  Des.  D~v. 25:762,  1986)  presented the transfer functions for a 4 X 4
multivariable complex distillation column with sidestream stripper for separating a
ternary mixture into three products. There are four controlled variables: purities of the
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for
nts
the
2).

!.2.

;<4

5”

the

three product streams (.~,~t, x,s~, and XI{~)  a~nd  a temperature difference AT to minimize
energy consumption. There are four manipulated variables: reflux R, heat input to the
reboiler QR,  heat input to the stripper reboilcr Qs,  and flow rate of feed to the stripper
Ls.  The 4 X 4 matrix of openloop  transfer functions relating controlled and manipulated
variables is

4 09e- 1.3s

(33s -t- 1)(8.3s + I)

- 4  l7e-5”

45s + 1

1.73e-  ‘%~
(13s + I)2
_ 11 2e-2.6S

-(43s + 1’)(6.5s  i- I)

-6 36e- 1.2s

(3 1.6s + 1)(2Os  + 1)
6 93e- 1.025’

44.6s + 1

5. I le-‘2.r
(13.3s f 1)2

14( 10s + l)e-(mZ”
(45s + 1)(17.49 + 3s + 1)

-0 25,‘.4” -0.49e-6”
21s + I (22s + 1)2

-0.05ee6” 1 53e-3.8S

(34.5s + 1>2 48s+  1
4 61e-1.01.T -5 49e-I.SS

18.5s  + 1 15s+  1

0 1 e -0.0% 4.49e-0.6s
(31.6s + 1)(5s + 1) (48s + 1)(6.3s + l),

Calculate the BLT settings.

13.4. Both the temperature T and the liquid height H in a tank are controlled simultaneously
by manipulating the flow rates of hot water FH and cold water Fc into the vessel. Liquid
leaves the vessel through a hand valve, so the flow rate out of the vessel depends on
the square root of the height of liquid in the tank: F = K ,I% The inlet temperature
of the cold water is 70°F and for the hot water it is 160°F. The diameter of the tank is
12 inches. The temperature transmitter range is 50-200°F.  The level transmitter range
is O-16 inches of water. The hot and cold water control valves have linear installed
characteristics and can pass 3 gpm and 4 gpm, respectively, when wide open.

At the initial steady state, the height of liquid in the tank is 8 inches and the flow
rates of hot and cold water are each 2 gpm. A stream of cold water can be added to the
tank at a rate of FL (gpm) as a load disturbance, FL is initially zero.

The temperature transmitter has a dynamic response that can be approximated by
a 30-second first-order lag. The level transmitter has a S-second first-order lag. Both
control valves have lo-second first-order lags.
(a) Develop a nonlinear mathematical mode1 of the process. Linearize to obtain a linear

mode1 in terms of perturbation variables that has the form

d h
- = allh + alzT + bl,Fc + b*ZFH  + dlFL
dt

dT
_ = a2lh  + aI?T + bz,Fc  + b22FH  f d2FL
d t

(b) Laplace-transform and rearrange to obtain the openloop  transfer functions between
the controlled variables (h and T) and the manipulated variables (Fc and FH).

(c) Determine the ultimate gain and ultimate frequency of each individual control loop
using the diagonal elements of the openloop  transfer function matrix. Calculate the
Ziegler-Nichols settings for each controller assuming the use of PI controllers.

(cl) Simulate the nonlinear system. Test each controller individually (with the other on
manual) for small setpoint changes. Then put both loops on automatic and make a
load disturbance in F,,.

(e) Calculate the BLT settings for the multivariable system and test these settings on
the nonlinear model for a load disturbance in FL.
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PART FIVE

-----.-

Sampled-Data Systems

All the control systems we have studied in previous parts of this book used continu-
ous analog devices. All control signals were continuously generated by transmitters,
fed continuously to analog controllers, and sent continuously to control valves. The
development of digital control computers and chromatographic composition analyz-
ers has resulted in a large number of control systems that have discontinuous, inter-
mittent components. The operational nature of both these devices means that their
input and output signals are discrete.

A distributed control system (DCS) uses digital computers to service a number
of control loops. At a given instant in time, the computer looks at one loop, checking
the value of the controlled variable and computing a new signal to send to the control
valve. The controller output signal for this loop is then held constant as the computer
moves on to look at all the other loops. The controller output signal is changed only
at discrete momems in time.

To analyze systems with discontinuous control elements we need to learn an-
other new “language.” The mathematical tool of z transformation is used to design
control systems for discrete systems. As we show in the next chapter, z transforms
are to sampled-data systems what Laplace transforms are to continuous systems. The
mathematics in the z domain and in the Laplace  domain are very similar. We have
to learn how to translate our small list of words from English and Russian into the
language of z transforms, which we call German.

In Chapter 14 we define mathematically the sampling process, derive the z trans-
forms of common functions (learn our German vocabulary), develop transfer func-
tions in the z domain, and discuss stability. Design of digital controllers is studied
in Chapter 15 using root locus and frequency response methods in the z plane. We
use practically all the stability analysis and controller design techniques that we in-
troduced in the Laplace  and frequency domains, now applying them in the z domain
for sampled-data systems.
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CHAPTER  14

Sampling, z Transforms, and Stability

14.1
INTRODUCTION

14.1.1 Definition

Sampled-data systems have signals that are discontinuous or discrete. Figure 14.1
shows a continuous analog signal or function ftt,  being fed into a sampler. Every
Ts  minutes the sampler closes for a brief instant. The output of the sampler fs~)
is therefore an intermittent series of pulses. Between sampling times, the sampler
output is zero. At the instant of sampling the output of the sampler is equal to the
input function.

h(t)  = hIr,, for t = nT,

h(t) = 0 for t # nT,
(14.1)

14.1.2 Occurrence of Sampled-Data Systems in Chemical Engineering

Chromatographs and digital control computers are the principal components that pro-
duce sampled-data systems in chemical engineering processes. Figure 14.2 shows a
typical chromatograph system. The process output variable y([) is sampled every T,
minutes. The sample is injected into a chromatographic column that has a retention
time of D, minutes, which is essentially a pure time delay or deadtime. The sampling
period T,q is usually set equal to the chromatograph cycle time D,. The detector on
the output of the column produces a signal that can be related to composition. The
“peak picker” (or an area integrator) converts the detector signal into a composition
signal. The maximum value or peak on the chromatograph curve can sometimes be
used directly, but usually the areas under the curves are integrated and converted to
a composition signal. This signal is generated only every T,7 minutes. It is fed into a
digital computer, which serves as a feedback controller. The output of the computer
is fed into a device called a hold that clamps the signal until the next sampling psriod;

477
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FIGURE 14.2
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i.e., the output of the hold is maintained at a constant value over the sampling p&o&

The hold converts the discrete signal, which is a series of pulses, into a continuous
signal that is a stairstep function. The equivalent block diagram of this system is
shown at the bottom of Fig. 14.2. The transfer function of the hold is H(,).  The transfer
function of the computer controller is D&,.

Figure 14.3 shows a digital control computer. The process output variables yt,
y2,. * *t yIy are sensed and converted to continuous analog signals by transmitters
TI,T'L,.-., TN.  These data signals enter the digital computer through a multiplexed
analog-to-digital (A/D) converter. The feedback control calculations are done in the

J

<

! ;;
I II/ I,I, I,

*N

: Ts.

t

Digital
computer

t
D/A 1

FIGURE 14.3
Computer control.
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computer using some algorithm, and the calculated controller output signals are sent I
to holds associated with each control valve through a multiplexed digital-to-analog
(D/A) converter. A block diagram of one loop is shown in the bottom of Fig. 14.3.

The sampling rate of these digital control computers can vary from several times
a second to only several times an hour.‘The  dynamics of the process dictate the sam-
pling time required. The faster the process, the smaller the sampling period Ts must
be for good control. One of the important questions that we explore in this chapter
and the following one is what the sampling rate should be for a given process. For
a given number of loops, the smaller the value of T, specified, the faster the com-
puter and the input/output equipment must be. This increases the cost of the digital
hardware.

14.2
IMPULSE SAMPLER

A real sampler (Fig. 14.1) is closed for a finite period of time. This time of closure
is usually small compared with the sampling period T,. Therefore, the real sampler
can be closely approximated by an impulse sampler: An impulse sampler is a device
that converts a continuous input signal to a sequence of impulses or delta functions.
Remember, these are impulses, not pulses. The height of each of these impulses is
infinite. The width of each is zero. The area or “strength” of the impulse is equal to
the magnitude of the input function at the sampling instant.

,

(14.2) ;
t

If the units of fit, are, for example, kilograms, the units of &, are kilograms/minute.
The impulse sampler is, of course, a mathematical fiction; it is not physically

realizable. But the behavior of a real sampler-and-hold circuit is practically identi-
cal to that of the idealized impulse sampler-and-hold circuit. The impulse sampler
is used in the analysis of sampled-data systems and in the design of sampled-data
controllers because it greatly simplifies the calculations.

Let us now define an infinite sequence of unit impulses 6tt)  or Dirac delta func-
tions whose strengths are all equal to unity. One unit impulse occurs at every sam-
pling time. We call this series of unit impulses, shown in Fig. 14.4, the function I(+

41, = $f) + &T,)  + S(t-27-,)  + &3T,)  + . . .

I(f) = i:  $-nT,)
(14.3)

II =o

Thus, the sequence of impulses 4;) that comes out of an impulse sampler can be
expressed as
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FIGURE 14.4
Impulse sampler.

Laplace-transforming Eq. (14.4) gives

(14.5)
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Equation (14.4) expresses the sequence of impulses that exits from an impulse sam-
pler in the time domain. Equation (14.5) gives the sequence in the Laplace  domain.
Substituting io  for s gives the impulse sequence in the frequency domain.

F&,,  = 2 j&,T,vle-in”T’ (14.6)
n=O

The sequence of impulses &, can be represented in an alternative manner. The
It,) function is a periodic function (see Fig. 14.4) with period T.y and a frequency o,
in radians per minute.

27T
0,  = -

TS

Since ItI) is periodic, it can be represented as a complex Fourier series:

where

he
-inw,t  dt (14.9)

(14.7)

(14.8)

Over the interval from -T,/2  to +T,/2  the function Zct, is just 6ct).  Therefore,
Eq. (14.9) becomes

Remember, multiplying a function f&J by the Dirac delta function and integrating
give f&. Therefore, Zcr) becomes

I(t) = f ym einWsf

s n=-cc

The sequence of impulses &, can be expressed as a doubly infinite series:

4;) = j&) = f “fgrn fit)einw,f (14.11)
s n=--m

Remember that the Laplace  transformation of a function multiplied by an expo-
nential ear  is simply the Laplace  transform of the function with (s - a) substituted
for s.

So Laplace-transforming Eq. (14.11) gives

(14.12)
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Substituting io  for s gives

F;iw) = f ‘y ~~i(“+n,.,), (14.13)
s n=-m

Equation (14.4) is completely equivalent to’ Eq. (14.11) in the time domain.
Equation (14.5) is equivalent to Eq. (14.12) in the Laplace  domain. Equation (14.6)
is equivalent to Eq. (14.13) in the frequency domain. We use these alternative forms
of representation in several ways later.

14.3
BASIC SAMPLING THEOREM

A very important theorem of sampled-data systems is:

To obtain dynamic information about a plant from a signal that contains com-
ponents out to a frequency omax, the sampling frequency o,  must be set at a
rate greater than twice urnax.

0s > 2wnax (14.14)

EXAMPLE 14.1. Suppose we have a signal that has components out to 100 rad/min.  We
must set the sampling frequency at a rate greater than 200 rad/min.

w, > 200 rad/min

T, = F = & = 0.0314 min
us

This basic sampling theorem has profound implications. It says that any high-
frequency components in the signal (for example, 60-cycle-per-second electrical
noise) can necessitate very fast sampling, even if the basic process is quite slow.
It is therefore always recommended that signals be analog filtered before they are
sampled. This eliminates the unimportant high-frequency components. Trying to fil-
ter the data after it has been sampled using a digital filter does not work.

To prove the sampling theorem, let us consider a continuous fit,  that is a sine
wave with a frequency 00 and an amplitude Ao.

.

f& = AO sin(wd (14.15)

iqt

f(t)  = Ao
e _ e-iuot

2i
(14.16)

Suppose we sample this Al1  with an impulse sampler. The sequence of impulses 4;)
coming out of the impulse sampler will be, according to Eq. (14.1 l),

- .’  n = -I) = .> ,,=-% \

Ao
n=+=

=2iT,-Je“!
i(w,)+nw,)r _ ,--i(w,-nw,)1

,, z x
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Now we write out a few of the terms, grouping some of the positive and negative n
terms.

of)  = 2

i

(+ot ,:‘-.,d  + ~~(w+w.d’  ;i’ -i(w(,+w,v)t &q, + 2hJv)t _ e -i(wo  t 2w.v  )t

+
J 2i

eibO-w,v)t  - e-i(wO-w,v)f &(o(j-2~,~)t  _ e-i(o,j-2w,v)f

+
2i

+ + . . .
2i

Aoj& = c ( sin(out)  + sin[(wo  + o,)t]  + sin[(oo + 2o,>t]
+ sin[(oo - os)t]  + sin[(oo - 20,)t]  + * * *)

(14.17)

Thus, the sampled function 4;) contains a primary component at frequency wo plus
an infinite number of complementary components at frequencies 00 + os,  oo+
2%, * . * ,mo - o,, 00 - 20,,  . . . . The amplitude of each component is the amplitude
of the original sine wave fttJ attenuated by l/T,. The sampling process produces a
signal with components at frequencies that are multiples of the sampling frequency
plus the original frequency of the continuous signal before sampling. Figure 14.52
illustrates this in terms of the frequency spectrum of the signal. This is referred to
by electrical engineers as “aliasing.”

Now suppose we have a continuous function fit)  that contains components over
a range of frequencies. Figure 14%  shows its frequency spectrum f&j. If this signal
is sent through an impulse sampler, the output f(T)  has a frequency spectrum &, as
shown in Fig. 14%.  If the sampling rate or sampling frequency os is high, there is no
overlap between the primary and complementary components. Therefore, &, can be
filtered to remove all the high-frequency complementary components, leaving just
the primary component. This can then be related to the original continuous function.
Therefore, if the sampling frequency is greater than twice the highest frequency in
the original signal, the original signal can be determined from the sampled signal.

If, however, the sampling frequency is less than twice the highest frequency
in the original signal, the primary and complementary components overlap. Then
the sampled signal cannot be filtered to recover the original signal, and the sampled
signal predicts incorrectly the steady-state gain and the dynamic components of the
original signal.

Figure 143  shows that J:, is a periodic function of frequency o. Its period
is ws.

This equation can also be written

Going into the Laplace  domain by substituting s for io  gives

(14.18)

(14.19)

( 14.20)

Thus Ft., is a periodic function of s with period io,. We use this periodicity property
to develop pulse transfer functions in Section 14.5.
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FIGURE 14.5
Frequency spectrum of continuous and sampled signals.



14.4
z TRANSFORMATION

14.4.1 Definition

Sequences of impulses, such as the output of an impulse sampler, can be z trans-
formed. For a specified sampling period T,,  the z transformation of an impulse-
sampled signal & is defined by the equation

‘[-fi;,]  = ho, + hz-’ + &r,,Z-* + fi~~,z-~  + * * * + j&)z-‘*  + . . - (14.2 1)

The notation ‘%[I  means the z. transformation operation. The j&T,rj  values are the
magnitudes of the continuous function ftl,  (before impulse sampling) at the sampling
periods. We use the notation that the z transform of 4;; is F(,).

The z variable can be considered an “ordering” variable whose exponent represents
the position of the impulse in the infinite sequence j&.

Comparing Eqs. (14.5) and (14.22),  we can see that the s and z variables are
related by

pZ’e”” (14.23)

We make frequent use of this very important relationship between these two complex
variables.

Keep in mind the concept that we always take z tran’sforms of impulse-sampled
signals, not continuous functions. We also use the notation

(14.24)

This means exactly the same thing as Eq. (14.22). We can go directly from the time
domain 4;) to the z domain. Or we can go from the time domain hT, to the Laplace
domain FTsl  and on to the z domain Fez).

14.4.2 Derivation of z Transforms of Common Functions

Just as we did in learning Russian (Laplace  transforms), we need to develop a small
German vocabulary of z transforms.

t P
t1

t:

A. Step function I
c
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Passing the step function through an impulse sampler gives J;;, = K~~(~jlt,),  where
ltI)  is the sequence of unit impulses defined in Eq. (14.3). Using the definition of z
transformation [Eq. (14.22)J  gives

~[.I$)1  = 2 J&7$-n = f(O) + hT,)P + A2w
-2 + *..

n =o

= K + Kz-’ + Kz-2  + Kz-’  + - * *

= K( 1 + z-’  + z-2 + y3  + . . -)

K
1=

1 -z-’

provided Iz-‘I < 1. This requirement is analogous to the requirement in Laplace
transformation that s be large enough that the integral converges. Since z-’ = ePTsS,
s must be large enough to keep the exponential less than 1.

The z transform of the impulse-sampled step function is

B. Ramp function

J-(t)  = Kt 3 &;, = K+,

3&f)]  = 2 finTs)Z-n  = fro,  + jj7& + fi2zS
-2 + . . .

n=O

= 0 + KT,z-' + ~KT,z-~  + ~KT,z-~  + a.+

= KTsz-‘(l + 22-l  + 3z-2  + . . .) = KTd-’
(1 - z-1)2

for Iz-’ 1 < 1. The z transform of the impulse-sampled ramp function is

%Kt~(,,  1 =
K&z

(z  - 1>2

(14.25)

Notice the similarity between the Laplace  domain and the z domain. The Laplace
transformation of a constant (K) is K/s and of a ramp (Kt) is Kls2. The z transfor-
mation of a constant is Kzl(z - 1) and of a ramp is KT,d(z - 1)2.  Thus, the s in the
denominator of a Laplace  transformation and the (z - 1) in the denominator of a :
transformation behave somewhat similarly.

You should now be able to guess the z transformation oft*. We know there will
be an s3 term in the denominator of the Laplace  transformation of this function. So we
can extrapolate our results to predict that there will be a (z - 1)3  in the denominator
of the z transformation.

We find later in this chapter that a (2 -- 1) in the denominator of a transfer function
in the z domain means that there is an integrator in the system, just as the presence
of an s in the denominator in the Laolace domain tells us there is an integrator.
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C. Exponential

f(,)  = KC”

=K

1

1 - prT,,  z- I
for I,-@tz-‘I  < 1

The z transform of the impulse-sampled exponential function is

(14.27)

Remember that the Laplace  transformation of the exponential was Kl(s + a).
So the (s + a) term in the denominator of a Laplace transformation is similar to the
(z - ewaTs)  term in a z transformation. Both indicate an exponential function. In the
s plane we have a pole at s = -a. In the z plane we find later in this chapter that we
have a pole at z = e?Tv . So we can immediately conclude that poles on the negative
real axis in the s plane “map” (to use the complex-variable term) onto the positive
real axis between 0 and + 1.

ID. Exponential multiplied by time

In the Laplace  domain we found that repeated roots l/(s  + ~2)~  occur when we
have the exponential multiplied by time. We can guess that similar repeated roots
should occur in the z domain. Let us consider a very genera1 function:

This function can be expressed in the alternative form

K a+P>
At,  = (-l>p-

p! dap

The z transformation of this function after impulse sampling is

F(,) = g- I)$ d”(;;p
OflT,)  Z-n

II =o

= (-#,K dp
P!  dal’ [&Pe-uTxr]

= (-l)PK”  z
i 1p! JaP z - e-aT.5

EXAMPLE 14.2.  Take the case where p = 1.

(14.29)

( 14.30)

(14.3 I)

So we get a repeated root in the : plane, just as we did in the s plane. _
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E. Sine

ftr) = sin(wt)
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1

i

z- ’ (2i) sin(o  Ts)

1

z sin(o r,)YE-
2i 1 + zw2 - 22-l cos(oT.y)  = z2 + 1 - 2zcos(oT,)

F. Unit impulse function
By definition, the z transformation of an impulse-sampled function is

(14.32)

4) = ho,  + &)z-’ + fi27,)z-2  + . . .
If f& is a unit impulse, putting it through an impulse sampler should give an &T,  that
is still just a unit impulse a([).  But Eq. (14.4) says that

But if& must be equal to just au), the term ho) in the equation above must be equal
to 1 and all the other terms f(T,), &T,), . . . must be equal to zero. Therefore, the z
transformation of the unit impulse is unity.

~e[S,,,l  = 1 (14.33)

14.4.3 Effect of Deadtime 9

Deadtime  in a sampled-data system is very easily handled, particularly if the dead-
time D is an integer multiple of the sampling period T,. Let us assume that

D = kT, (14.34)

where k is an integer. Consider an arbitrary function f&o). The original function
j&)  before the time delay is assumed to be zero for time less than zero. Running the
delayed function through an impulse sampler and z transforming give

~[J;:-D)]  = >: .&T,-kT.,)Z-n
II =o

Now we let x = y1- k.

.u=-k



since ftxr) = 0 for .X < 0.  The term in the brackets is just the I mnsform  of  .(I,
since x is j dummy variable of summation.

-1 (14.35)

Therefore, the deadtime  transfer function in the z domain is zwk.

14.4.4 z Transform Theorems

Just as for Laplace  transforms, there are several useful theorems for z transforms.

A. Linearity
The linearity property is easily proved from the definition of z transformation.

wf;(,)  + &,I = w-;;*,I  + ~[f;c,,l (14.36)

B. Scale change

%[e-“‘f;;,]  = F(te~~s)  = F(,,)  = ~if&l (14.37)

The notation ‘Zel  [] means z transforming using the z1  variable where ZI E zeaT,.
This theorem is proved by going back to the definition of z transformation.

%[e-af  A;)] = -g e-anT.y  fi,&)z-n  = 2 finTs)(ZeuT’)-”
n=O n = O

Now substitute zl  = zeaT’  into the equation above.

3e-“‘f;l‘,l  = 2 fin7dzr = F(z,)
n = O

Q

EXAMPLE 14.3. Suppose we want to take the z transformation of the function ft,  =
Kte-“‘Z(,,.  Using Eqs. (14.26) and (14.37) gives

cE(Kte-“‘z(,)]  = %,[CKff(,)]  = ,zyf)2

Substituting ~1 = zeaT,-  gives

KT,zeaTs KTsD?-aT’
~‘[Kfe-“‘z(~)l  =  (ze”Ts  - 1)2 =  (z _ ,-UT,)2

(14.38)

This is exactly what we found in Example 14.2.

C. Final-value theorem

lim h,, = iirr( --t  x

n

(14.39)
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To prove this theorem, let ,f;,, be the step response of an arbitrary, openloop-stable
Nth-order system:

Iv
h,  = Kb,(,)  + Kie-ar’

The steady-state value of fit,  or the limit of At, as time goes to infinity is K. Running
j&J through an impulse sampler and z transforming give

Multiplying both sides by (z - 1)/z and letting z + 1 give

lim ’ - ’
Z+l i i

----F(z)
Z

=  K =  h&j&

D. Initial-value theorem

(14.40)

The definition of the z transform of f(;, is

F(z) = fro, + j&z-’  + j&52 + . . .
Letting z go to infinity (for Iz-‘j < 1) in this equation gives fro,, which is the limit
of f(t) as t -+ 0.

14.4.5 Inversion

We sometimes want to invert from the z domain back to the time domain. The inver-
sion gives the values of the function f& only at the sampling instants.

ZE.-’  [Ft,,]  = &T,~) for n = 0, 1,2,  3, . . . (14.41)

The z transformation of an impulse-sampled function is unique; i.e., there is only
one Ft,, that is the z transform of a given &. The inverse z transform of any F,,, is
also unique; i.e., there is only one fCnT,)  that corresponds to a given FtI,.

However, keep in mind that more than one continuous function At, gives the
same impulse-sampled function &. The sampled function f(‘;, contains informa-
tion about the original continuous function ftt,  only at the sampling times. This
nonuniqueness between fCT,  (and Fc,)) and fct,  is illustrated in Fig. 14.6. Both contin-
uous functions f,(,) and j$r) pass through the same points at the sampling times but
are different in between the sampling instants. They would have exactly the same z
transformation.

ml ..^ 1 .,.. .I. e- : . ..1.  ,.-e  .7 t ,-,,  n‘>f,\,-mc
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I I I I I I I I I -1

0 7-s  27-s 3Ts 4T, 5T, 6T, 7T, STs ST,

FIGURE 14.6
Continuous functions with identical values at sampling time.

A. Partial-fractions expansion

The classical mathematical method for inverting a z transform is to use the lin-
earity theorem [Eq. (14.36)].  We expand the function FCzj  into a sum of simple terms
and invert each individually. This is completely analogous to Laplace transforma-
tion inversion. Let F(,,  be a ratio of polynomials in z, Mth-order in the numera-
tor and Nth-order in the denominator. We factor the denominator into its N roots:

F(z)  = Z(:)
(z - Pl>(z  - p2k  - p3>--k  - pN>

(14.42)

where Zcz) = Mth-order numerator polynomial. Each root pi can be expressed in
terms of the sampling period:

pj = e-a;L ( 14.43)

Using partial-fractions expansion, Eq. (14.42) becomes

F(z)  = ___  ~ ~
AZ + Be + Cz + . . . + wz

z - PI z - P2 z - P3 z - PN
(14.44)

AZ  + Bz  + Cz wz=
z - e-a~T.s z - e-azT.s z - e-ajT,  + ‘. . + z - ~-NNT.>

(14.45)

The coefficients A, B, C, . . . , W are found and F(,,  is inverted term by term to give

3-1  [F,,,] = hnT,) = Ae-“16  + &-“NT., + . . . + we-wT.~ ( 14.46)

EXAMPLE 14.4. We show in Example 14.8 that the closedloop response to a unit step
change in setpoint with a sampled-data proportional controller and a first-order process
is

5:) =
K,. K,,(  I - 1~):

(i: - l)[z - b + K,  K,,(I - 6)1
(14.47)

n
u

I1
it
n
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'I-AIil.I%  14.1

Results for Example 14.4

YW,)

1 n Kc = 4.5 Kc = 12

0 0 0 0
0.2 I 0.8159 2.176
0.4 2 0.8184 -0.8098
0.6 3 0.8184 3.254
0.8 4 0.8184 -2.310

KC  = feedback controller gain
K, = process steady-state gain

7,) = process time constant

For the numerical values of K, = T(,  = 1, K, = 4.5, and T, = 0.2, Y(,, becomes

Y(z)  =
0.81592

(z - l)(z - 0.003019)

Expanding in partial fractions gives

Y(z)  =
0.81592 0.8159~

z - l  -z - 0.003019

The pole at 0.003019 can be expressed as
0 003019 = y5.803  = p’T.s

The value of the term nT,  is 5.803.

0.8 1592 0.8159~
y(z) = z - 1 - z - e-5.8o3

(14.48)

(14.49)

(14.50)

Inverting each of the terms above by inspection gives

y(,$,)  = y(~.~,~)  = 0.8159 - 0.8159e-“uT.Y  = 0.8159(1 - e-5.803n) (14.51)

Table 14.1 gives the calculated results of y(jzr,)  as a function of time. n

B. Long division

An interesting z transform inversion technique is simple long division of the nu-
merator by the denominator of F(,.. The ease with which z transforms can be inverted
with this technique is one of the reasons z transforms are often used.

By definition,

F(z)  = fro,  + hr,,z-’  + h27;)z-2 + jj3T,,z-3  + . . .

If we can get F(:) in terms of an infinite series of powers of z-t, the coefficients
in front of all the terms give the values of fCllr,,,. The infinite series is obtained by
merely dividing the numerator of F,,, by the denominator of Fczj.

F Z(c)(3 = - = ./;o,  + f(T,,Z -3 +..*
P(z)

- ’ + Ji2T.$ -I? + h3T,,Z (14.52)
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where Ztzj  and f’(;) are polynomials in z. The method is easily understood by looking

at a specific example.

EXAMPLE 14.5. The function considered in Exatnple  14.4 is

0.8 159~

Long division gives

yw = z2 - 1.0030192 + 0.003019

0.81592-l  + 0.8184~-~ + 0.8184z+ +
Z2 - 1.003019~ + 0.003019)0.8159z

0.8159~ - 0.8184 + O.O025z-’

0.8184 - O.O025z-’
0.8184 - 0.82092-l  + 0.0025~-~

0.8 184z-’ - 0.0025~-~
.._.....................

fro,  = 0

f(~,y)  = fio.2)  = 0.8  1%

fi2Ts)  = fiO.4)  = 0.8184

fi3T,) = fiO.6)  = 0.8184

These are, of course, exactly the same results we found by partial-fractions expansion in
Example 14.4. n

EXAMPLE 14.6. If the value of K, in Example 14.4 is changed to 12,.we show later in
this chapter that Ycz,  becomes

Y(z)  =
2.1756z

z2 + 0.3722~ - 1.357

Inverting by long division gives

Ycz)  = 2.17562-l - 0.8098~-~  + 3.254~-~ - 2.310~-~ + . . . (14.53)

The system is unstable for this value of gain (KC  = 12),  as we show later in this chapter.
Notice that this example demonstrates that a first-order process controlled by a sampled-
data proportional controller  can be made closedloop unstable if the gain is high enough.
With the use of an analog controller, the first-drder process can never be closedloop
unstable. Thus, there is a very important difference between continuous and discrete
closedloop systems. Analog continuous controllers have an inherent advantage over dis-
crete sampled-data controllers because they know what the output is doing at all points
in time. The discrete controller knows only what the output is at the sampling times. w

Inversion of z transforms by long division is very easily accomplished numeri-
cally by a digital computer. The FORTRAN subroutine LONGD given in Table 14.2
performs this long division. The output variable Y is calculated for NT sampling
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c does long-division using subroutine longd
dimension a( IO),  h( IOj,y( 100)

c Case  for kc=12

aO=O.
a(Ij=2.1756
a(2)=0.
b(lj=0.3722
b(2)= - 1.357
n=2
m=I
nt=6
yo=o.
call longd(aO,a,b,yO.y,n,m,nt)

do 10  k=l,nt
write(6,l)k,y(k)

10  continue
I format(’ n= ‘,i2,  ’ y= ‘,flO.S)

stop
end

C

subroutine longd(aO,a,b,yO,y,n,m,nt)
dimension a(IOj,b(lOj,y(lOO),d(IO)
nm.ax=n
if{m.gt.n)  nmax=m
do 10 k=l,nmax
d(kj=a(kj
if(k.gt.mj  d(k)=O.

10 continue
d(nmax+  Ij=O.
iflaO.eq.O. )go to 30
yO=aO
do 20 k=l,nmav

20 d(k)=d(k)-yO*b(k)
y(I)=d(l)
go to 40

30 yo=o.
y(lj=afl)

40 do 100 j=2,nt
do 50 k=l,nmax

SO d(kj=d(k+l)-y(j-  l)*b(kj
100 y(j)=d(lj

return
end
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TAULE 14.3

MATLAB  program for inversion

% Progrum “te.stdim~~ul.se.rtr  ”

% Inverts z transform from Example 14.6 (Kc= 12)

%

% Forrn numerutor  atrd  denominator polytwmials

num=[2.  I756 O];

den=[l  0.3722 - 1.3571;

% SpeciJj,  number c?f  samphrg  periods und  sampling period Ts

ntotal=5;

ts=o.2;

010

% Use “dimpulse ” command to invert F(z)

[y,x]=dimpulse(nunz,den,ntotal);

70

% Calculate time

npts=length(y);

points=[O:I:(npts-l)];

t=ts*points;

df
PwtPY)
pause

times, given the coefficients AO, A(l), A(2), . . . , A(M) of the numerator and the co-
efficients B( 1), B(2), . . . , B(N) of the denominator.

Y(z)  = YO  + Y(l)z -’ + Y(2)z-2  + Y(3)zC3 + --*

A0 + A( l)z-’ + A(~)z-~ + . . . + A(M)z-~ (14.54)

= 1 + B(l)z-’  + B(2).@  + * * * + B(N)z-N

C. Use of MATLAB  for inversion
Now that we have discussed the classical inversion methods, we are ready to

see how inversion of z transforms can be easily accomplished using MATLAB  soft-
ware. Specific numerical values of parameters must be specified. Table 14.3 gives
a program that solves for the values of the output at the sampling periods for the
Ycz)  considered in Example 14.6. First the numerator and denominator polynomials
are formed. The number of sampling periods (ntotul)  is specified, and the sampling
period is set. Then the [y,x]=nimpulse(num,den,r~totnl)  command is used to gener-
ate the output sequence ytn~,) at each value of n. The results are the same as those
obtained by long division.

14.5
PULSE TRANSFER FUNCTIONS

We know how to find the : transformations of functions. Let us now turn  to the
problem of expressing input/output transfer function relationships in the z domain.
Figure 14.7 shows a system with samplers on the input and on the output of the
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Pulse transfer functions.

process. Time-, Laplace-, and z-domain representations are shown. Gtz)  is called a
pulse transferfunction. It is defined below.

A sequence of impulses z.$, comes out of the impulse sampler on the input of
the process. Each of these impulses produces a response from the.process.  Consider
the kth impulse L(TkT,  )( . Its area or strength is u(kr,Y).  Its effect on the continuous output
of the plant y(,)  is

Yk(t)  = g(t-kT,)qkT,) (14.55)

where yk([)  = response of the process to the kth impulse
g([)  = unit impulse response of the process = 2-l  [Gel]

Figure 14.7 shows these functions.
The system is linear, so the total output y(,)  is the sum of all the yk's.

Tc tc

Y(r)  =  >1  Yk(l)  =  7:  S(t-kr.,)qkr.,) (14.56)
k =o k=O

At the sampling times, the value of y(,)  is y(,l~,).

( 1 4 . 5 7 )



498 PART FIVE: Sarnpkd-thta  Systems

The continuous function yt,) coming out of the process is then impulse sampled,
producing a sequence of impulses yt, If we z-transform yf,), we get

my;,,1  = >7  Y(nT,$)z-‘*  = Y(z)
II =o

%, = 5
i

!x

2 &nT,-kT.,)qkT.~) Z-n
tl=O  k = O

Letting p = n - k and remembering that g(,)  = 0 for t < 0 give

p=Ok=O

- k

(14.58)

(14.59)

(14.60)

The pulse transfer function Gcz)  is defined as the first term on the right-hand side
of Eq. (14.59).

G(z)  = 2 &T$-’ (14.61)
p=o

Defining G(,) in this way permits us to use transfer functions in the z domain
[Eq. (14.60)]  just as we use transfer functions in the Laplace  domain. Gtz)  is the z
transform of the impulse-sampled response g;;, of the process to a unit impulse func-
tion 6~~).  In z-transforming functions, we used the notation %[&I  = %[F;“,,]  = F~,J.
In handling pulse transfer functions, we use similar notation.

%&I = ‘W&l  = G(z) (14.62)

where G&  is the Laplace  transform of the impulse-sampled response g&, of the pro-
cess to a unit impulse input.

(14.63)

G&  can also be expressed, using Eq. (14.12),  as

Grs)  = f ‘F G(s+inw,) (14.64)
s n=--3c

We show how these pulse transfer functions are applied to openloop  and closedloop
systems in Section 14.7.

14.6
HOLD DEVICES

A hold device is always needed in a sampled-data process control system. The zero-
order hold converts the sequence of impulses of an impulse-sampled function ,f;l;, to
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FIGURE 14.8
Zero-order hold.

a continuous stairstep function fHtI).  The hold must convert an impulse f*  of area.w
or strength f&,) at time t = rzT,  to a square pulse (not an impulse) of height  fcnr,$,
and width T,. See Fig. 14.8. Let the unit impulse response of the hold be defined as
hi).  If the hold does what we want it to do (i.e., convert an impulse to a step up and
then a step down after Ts minutes), its unit impulse response must be

h(t) = h(t) - bz(t-TX) (14.65)

where Untt) is the unit step function. Therefore the Laplace-domain transfer function
Ht,) of a zero-order hold is

e-TsS
H(s)  =  %+,)I  =  =%u(t)  - +TJl  =  f - -

s

f& = ’ - ;-Ts’ (14.66)

14.7
OPENLOOP  AND CLOSEDLOOP SYSTEMS

We are now ready to use the concepts of impulse-sampled functions, pulse transfer
functions, and holds to study the dynamics of sampled-data systems. Consider the
sampled-data system shown in Fig. 14.9a  in the Laplace  domain. The input enters
through an impulse sampler. The continuous output of the process Yc,)  is

Y (.\) = G(s)  u;.)

Yes) is then impulse sampled to give Y;‘r,.  Equation (14.13) says that YFs, is

ys, = ; ‘y Y(.s+inw,).\ ,,=-”

(14.67)
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(b)  Series elements with intermediate sampler

(c) Series elements that are continuous

r” tu(o

-c_,t9I)

41, YlW Y&j 4(2(l)

With sampler between

L
yw

Without sampler

(d) System of Example 14.7

FIGURE 14.9
Openloop sampled-data systems.

Substituting for Yts+inw,y),  using Eq. (14.67),  gives

We showed [Eq. (14.20)]  that the Laplace  transform of an impulse-sampled function
is periodic.
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‘l:s)  = u&+iw,)
= I/*-.<s WJ,~) = u~v+iZw,) = “* ( 14.69)

Therefore, the U~~+i,lw,~~ terms can be factored out of the summation in Eq. (14.68)
to give

(

I r1=+a

y&) = y 7: G(.~+inw,v)  u;s)
J ,1=--m 1

The term in the parentheses is Gt, according to Eq. (14.64),  and therefore the output
of the process in the Laplace  domain is

qs, = qs,qs, (14.70)

By z-transforming this equation, using Eq. (14.61),  the output in the z domain is

Y(z)  = G(dh (14.71)

Now con$idcr the system shown in Fig. 14.9b,  where there are two elements
separated by a sampler. The continuous output Yt(,, is

Y I(S) = G~(s,u(Is~

When  h(s)  g oes through the impulse sampler it becomes Yycs,,  which can be ex-
pressed [see Eq. (14.69)]  as

1 R=t”

yF(s,  = T, 7: G u*l(s+inw,)  (s+ino,) = G(s) Ut, (14.72)
R=z---m

Y*3s) =  G;(s,yT(s,  = G,s,G,s,  ‘/(*s,) (14.73)

= G(s,G(s, q,

The continuous function YQ) is

Y3s) = %)G(s)

The impulse-sampled YS,,,  is

In the z domain, this equation becomes

Y2(z)  = G u:+%(z)  u(z) (14.74)

Thus, the overall transfer function of the process can be expressed as a product of
the two individual pulse transfer functions if there is an impulse sampler between
the elements.

Consider now the system shown in Fig. 14.9c,  where the two continuous ele-
ments GltSJ  and G2CsI  do not have a sampler between them. The continuous output
Y2(.v)  is

Y?(s) =  G2c.r) Cc,,  =  Gxs$h(.s,U;, (14.75)
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Sampling the output gives

( 14.76)

The term in parentheses is the Lapiace  transformation of the impulse-sampled re-
sponse of the total combined process to a unit impulse input. We call this (GI G2);,)
in the Laplace  domain and (GtGz)(-.)  in the z domain.

Y;,,, = 6%  G2&  u;v, ( 14.77)

Yq,) = G G2)(3  u(z) (14.78)

Equation (14.78) looks somewhat like Eq. (14.74),  but it is not at all the same. The
two processes are physically different: one has a sampler between the GI  and Gz
elements, and the other does not.

G I G2);s)  # G;,.s,G;,s, (14.79)
GIG)(~)  f G&2(2)

Let us take a specific example to illustrate the difference between these two
systems.

EXAMPLE 14.7. Suppose the system has two elements as shown in Fig. 14.9d.

1
G(s)  = ; G

1
2(s) = -s+l

With an impulse sampler between the elements,, the overall system transfer function is,
from Eq. (14.74),

In the preceding calculation, we went through the time domain, getting g(,) by inverting
Gc,)  and then z-transforming gt,. The operation can be represented more concisely by
going directly from the Laplace domain to the ; domain.

( 14.82)

This equation is a shorthand expression for Eq. (14.8 I ). The inversion to rhe impulse
response g(,) and the impulse sampling to get s;~, is implied in the notation 3Y[l/s]  and

%[ l/(s + l)].

G,(;,G2(:) = T[;]f  [ $1 = (s+)(; -;-T,) (14.83)

The responses of ?I;,,, .vl(,),  and )‘l ,,)  to II unit step change in u(,) at-e sketched in Fig. 14.7d.
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Without a sampler between the elements, the overall system transfer function is
[Eq. (14.78)]

= ~14,)4l(,)  - I(,)0 = 5 -
Z

z - e-T.s
(14.84)

z(z - e-7;.)

= (7, - l)(z  - e-y

Using the shorthand notation,

z(z  - cTq
= (7, - l)(z - e-T,)

From now on we use the shorthand, Laplace-domain notation, but keep in mind what is
implied in its use.

Notice that Eq. (14.83) is not equal to Eq. (14.84). The responses of the two sys-
tems’ y2(,) are not the same, as shown in Fig. 14.9d,  because the systems are physically
different. w

Now let us look at a closedloop system with a sampled-data digital controller as
shown in Fig. 14.10. The equations describing the system are

Y,,,  = G(s)&)  + H(s)G~(s,~“s, (14.85)

M(s)  = q&;;* - Y&)> (14.86)

z transforming and combining give

FIGURE 14.10
Closedloop sampled-data block diagram.
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In this system we obtain an explicit input/output transfer function relationship be-
tween YCzj  and Yr‘c,‘:

Y(z)  _ (~GMM)(zP(z,- -
yset

(2) 1 + wGd(z)~(I)

EXAMPLE  14.8. Consider a first-order process with the transfer function

KPGM(s)  = -T(,S + 1
(14.89)

A zero-order hold and a proportional controller are used.

Dcz)  = K,
1 - e-L.~

fq.T, = s

(14.90)

(14.91)

We want to find the response of the closedloop system to a unit step change in setpoint.

We need to find (HGM)(,)  and Yfz”,’  to plug into Eq. (14.88). There is no load disturbance,
so L is equal to zero.

%[HGM] = ‘3.
1 - e-T”S K

P
s 7,s + 1

since

%[HGM] = K, L 1 -; I[ % ;
1

-
s + l/7, 1z-1 z=K,--- - - -i I[ Z2 z- 1 z - b 1 (14.93)

where

= K,,U - b)

z - b

1, = e -T.,lro (14.94)

Since Y$ = I/.7, : transforming gives

z
YF:“:  = p-i (14.95)
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Y(z)  =
WGdk)~(:)  ys’, =

1 + WGd&,, (,-) (14.96)

K&,(1  - b)
= [z - b + K,.K,,(  I - b)]  yyFi

Combining Eqs. (14.95) and (14.96) gives

ye)  =
K,K,(l  - b)z

7.2 - 17[ 1 + b - K,.K,,(  I - b)] + [b - K,K,( 1 - b)]
(14.97)

Let us take a specific numerical case where T,, = K, = 1, T, = 0.2, and K, = 4.5. The
value of b is E-~.$‘G~ = e-W” = 0.8 187. Equation (14.97) gives

0.81592
‘(-)  = z2 - 1.00302~ + 0.0030 19

(14.98)

This is the function we used in Example 14.4. n

In the preceding example we derived the expression for Yczj  analytically for a
step change in Yt.$. An alternative approach is to use MATLAB to calculate the step
response of the closedloop servo transfer function

Equation (14.96) shows that for the process considered in the example

(14.99)

Table 14.4 gives a MATLAB  program that calculates the step response using
the [y,x]=dstep(rzulrz,de~,n) command. The numerator and the denominator of the

T A B L E  1 4 . 4

MATLAB program for step response
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TAllLE  1 4 . 4  (CONI’INUED)

MATLAB program for step response

ntottrl=S;
ts=O.2;
h=e.Kp(  - ts):

90 Kc=4.5
kc=4.S;
numI=kc*(I-b);
den/=(/  (-b+kc*(l-h))];
90 Calculate Y step response
~yl,x]=dstep(numl,denl,ntotul);
% Calculate M step response
nummI=kc*[z-b];
(ml,x]=dstep(numml,denl,ntotal);

% Kc=657
kc=6.57;
num2=kc*(l -b);
den2=(i  (-b+kc*(l-b)}];
% Calculate Y step response
[y2,x]=dstep(num2,den2,ntotal);
90  Calculate M step response
numm2=kc*[z-b];
[m2,x]=dstep(numm2,den2,ntotai);

% Kc=12
kc= 12;
num3=kc*(l -b);
den3=[1  (-b+kc*(l-b))];
% Calculate Y step response
[y3,x]=dstep(num3,den3,ntotal);
90 Calculate M step response
numm3=kc*[z-b];
[m3,x]=dstep(numm3,den3,ntotal  I:
90
90  Convert number of points to time scale
npts=length(yl);
points=[O:l:(npts-I)]‘;
t=ts*points;
%

90  Convert A4  plots for zero-order  hc~1d.q
(tl,t~tMzl]=stairs(t,ml);
[t2,intl221=stairs(t,m2);
[t3,mm3]=stairs(t,m3);

df
orient tull
suhplot(2  I I)
plot(t,yl. ‘+ ‘.t,y2,  ‘x’,t,y3,  ‘0’)
.rluhel(  ‘Time (minutes) ‘)
ylabcl(‘OlttpLlt  Y,)
p-id

Icgc~trcl(‘Kc=4.S’,‘Kc=(,.57’.‘Kc.=  I.?‘)



TAllLE  14.4 (CONTINUED)

MATLAB  program for step response
-
subplot(212)
plot(tl,mml,‘:‘,t2,mm2,‘--‘,t3,mm3,’-’)

xlabel(  ‘Time (minutes) ‘)
ylabel(  ‘Manipulated Variable M’)
grid
Legend(‘Kc=4.5’,  ‘Kc=6.57’,  ‘Kc=12’)

print -dps pJigl4ll.p~
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FIGURE 13.11
Sampled-data control: T, = 0.2.
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ts=O.  2;
%
% Find sampled-duta  transfer  jirnction  using “c2tlm  ” command

[numd,dend~=c2dm(t~wlr,dcrz,ts,  WI ‘);
printsys(numd,dend,  ‘z’)
pause
%

% Second exumple  is GM(s)~2.3/5/~(.s+l)/Ss+l)l,  with 7&0.5
num2=2.315;
den2=conv([I  I I,[.5  I]);
printsys(num2,den2,  ‘s’)
pause
ts2=0..5,
[numd2,dend2]=c2dm(num2,den2,  rs2,  ‘zoh  ‘1;
printsys(numd2,dend2,  ‘2’)
roots(numd2)
roots(dend2)
pause

T A B L E  1 4 . 6

MATLAB  program to obtain closedloop transfer function from openloop
transfer function

% Program “discretejl3.m”
% Calculates closedloop transfer functions
% from openloop  pulse transfer fitnctions  using “cloop”  command
% Process is G(s)=//(s+l)
% Sampled-data controller is proportional with Kc=4.5
kc=4.5;
num=  I;
den=[l I ] ;
ts=0.2;
70
70  Convert continuous to discrete using zero-order  hold
%
[rz~lmd,dendl=c2clm(rllr,ll,de3l,  Is. ‘;oh ‘);
print.sp.s(numd,dend,  ‘: ‘)
pause
O/O

‘10  Ccrlculate unity-feedhLlck  c~losedloo~3  discrete ttunsfer ,fhc.iion

[ncl,dcl]=  1 1 (c 00  I lrlrrrlcl~~Xc,dol~l. - I ) ;

print.~~~.s(ncl,cl~~l,  ‘;:  ‘)
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closedloop servo transfer function are formed using Eq. (14.99) for three different
values of controller gain. Results are plotted in Fig. 14.11. Both the output Y and
the manipulated variable A4 are plotted. The stairs command produces the stairstep
functions of the manipulated variables coming from the zero-order hold. The values
of Y are plotted only at the sampling points. These are what the computer sees. The
continuous output of the process y([) is a series of exponential responses between the
sampling points.

Instead of analytically deriving the z-domain pulse transfer functions, we can use
MATLAB  to convert from GMt.y)  to HGM(,) with the [numd,dend]=c2dm(num,den,
ts,  ‘zoh’) command. Table 14.5 gives a program that illustrates the procedure for two
different processes: a first-order lag and a second-order lag.

Instead of deriving the closedloop transfer function analytically, we can have
MATLAB  do it for us by using the [numcl,dencl]=cloop(numol,denol,-1)  com-
mand as shown in Table 14.6.

14.8
STABILITY IN THE z PLANE

The stability of any system is determined by the location of the roots of its charac-
teristic equation (or the poles of its transfer function). The characteristic equation
of a continuous system is a polynomial in the complex variable S. If all the roots of
this polynomial are in the left half of the s plane, the system is stable. For a continu-
ous closedloop system, all the roots of 1 + GM~s~Gc~s~ must lie in the left half of the
s plane. Thus, the region of stability in continuous systems is the left half of the s
plane.

The stability of a sampled-data system is determined by the location of the roots
of a characteristic equation that is a polynomial in the complex variable z.  This char-
acteristic equation is the denominator of the system transfer.function set equal to
zero. The roots of this polynomial (the poles of the system transfer function) are
plotted in the z plane. The ordinate is the imaginary part of z,  and the abscissa is the
real part of z.

The region of stability in the z plane can be found directly from the region of
stability in the s plane by using the basic relationship between the complex variables
s and z [Eq. (14.23)].

z = eT.r.~ (14.100)

Figure 14.12 shows the s plane. Let the real part of s be cy and the imaginary part of
s be o.

s = a + iw (14.101)

The stability region in the s plane is where cy, the real part of S, is negative. Substi-
tuting Eq. (14.101) into Eq. (14.100) gives

z
_ ,T,(tu-t-h)  __ cerrT, )eiWT, (14.102)
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Ims = w

- Stable -----t

lmz = j

FIGURE 14.12
Stability regions in the s plane and in the z plane

The absolute value of z,  /zj,  is e”rT. When cy is negative, 1.~1 is less than 1. When OJ
is positive, 1.~1 is greater than 1. Therefore, the left half of the s plane maps into the
inside of the unit circle in the z plane, as shown in Fig. 14.12.

A sampled-data system is stable ifall  the roots of its characteristic equation
(the poles of its transferfunction)  lie inside the unit circle in the z plane.

First let’s consider an openloop  system with the openloop  transfer function

H G
(z - Zl)(Z  - Z2)’  * ‘(Z - ZM)

M(z)  =
(z  - Pl>k - P2). . ‘(Z  - PN)

(14.103)

The stability of this openloop  system depends on the values of the poles of the open-
loop transfer function. If all the pi lie inside the unit circle, the system is openloop
stable.

The more important problem is closedloop stability. The equation describing the
closedloop digital control system of Section 14.7 is

The closedloop stability of this system depends on the location of the roots of the
characteristic equation:

1 + WGd(,,~(z,  = 0 (14.105)

If all the roots lie inside the unit circle, the system is closedloop stable.

EXAMPLE 14.9. Consider a first-order process with a zero-order hold and proportional
sampled-data controller.
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As we developed in the previous section, the openloop pulse transfer function for this
process is

tfGf)(z.)  = 5%
1 - ,--7‘0 K,

s T,,S  + 1

The c~penloop  characteristic equation is

z-b=0

1
= Kptl-b)

z - b
106)(14.

(14. 107)

The root of the openloop  characteristic equation is b.  Since b is less than 1, this root lies
inside the unit circle and the system is openloop  stable.

The closedloop characteristic equation for this system is

1 + WGd&,, = 1 + &K,U  - 6) = o
z - b

since DCsj  = K,. Solving for the closedloop root gives

z = b - K,K,(l  - b) (14.109)

There is a single root. It lies on the real axis in the z plane, and its location depends on
the value of the feedback controller gain K,. When the feedback controller gain is zero
(the openloop  system), the root lies at z = b.  As Kc is increased, the closedloop root
moves to the left along the real axis in the z plane. We return to this example in the next
chapter. w

14.9
CONCLUSION

In this chapter we have learned some of the mathematics and notation of z trans-
forms and developed transfer function descriptions of sampled-data systems. The
usefulness of MATLAB  in obtaining transfer functions and step responses has been
illustrated. The stability region is the interior of the unit circle in the z plane.

PROBLEMS

14.1. Derive the z transforms of the following functions:

(a> 4;) = hf2
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(f) .I;f, = Io)e-tr(r-krS) where k is an integer

14.2. Find the pulse transfer functions in the z domain (HG,,,, ) (,) for the following systems
(HoI  is zero-order hold):

(a) GfM(S)  = (r,,,s + 1)(7&S + 1)
K e-k&”

P
(7,I.S  + l)(TdS + 1)

14.3. Find ~(,~r,~) for a unit step input in u(,) for the system in part (a) of Problem 14.2 by
partial-fractions expansion and by long division. Use the following numerical values
of parameters:

K,, = T,,:!  = I 701  = 5 T, = 0.5

14.4. Repeat Problem 14.3 for part (b) of Problem 14.2. Use k = 3.

14.5. Use the subroutine LONGD given in Table 14.2 to find the response of the closedloop
system of Example 14.4 to a unit step load disturbance. Use values of r0 = K,  = 1:
(a) With T.y  = 0.2 and K, = 2,4,6, 8, 10, 12
(b) With T,v  = 0.4 and Kc  = 2,4,6,  8, 10, 12
(c) With T,v  = 0.6 and K,.  = 2,4,6, 8, 10, 12
What do you conclude about the effect of sampling time on stability from these results?

14.6. Find the outputs Y~(,~T,,)  of the two systems of Example 14.7 for a unit step input in u([).
Use partial-fractions expansion and long division.

14.7. Repeat Problem 14.6 for a ramp input in u(,).

14.8. A distillation column has an approximate transfer function between overhead compo-
sition xo and reflux flow rate R of

G XLq.7) 0.0092 mole fraction
M(s)  =  ___  =

R(.x) ( 5 s  +  1)2 mol/min

A chromatograph must be used to detect xo. A sampled-data P controller is used with a
gain of 1000. Calculate the response of xo to a unit step change in setpoint for different
chromatograph cycle times L>,  (5, 10, and 20 minutes). The sampling period T, is set
equal to the chromatograph cycle time.

14.9. A tubular chemical reactor’s response to a change in feed concentration is found to
be essentially a pure deadtime  D with attenuation K,. A computer monitors the outlet
concentration CA~(rl  and changes the feed concentration CAo(,),  through a zero-order
hold, using proportional action. The sampling period Ts can be adjusted to an integer
multiple of D. Calculate the response of CAL for a unit step change in setpoint CFi  for
DIT,v = 1 and D/T,  = 2:
(a) With K,. = 1/K,,
(b) With K, = IPK,,
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CHAPTER 15

Stability Analysis of
Sampled-Data Systems

We developed the mathematical tool of z transformation in the last chapter. Now we
are ready to apply it to analyze the dynamics of sampled-data systems. Our primary
task is to design sampled-data feedback controllers for these systems. We explore
the very important impact of sampling period TS on these designs.

The first two sampled-data controller design methods use conventional root locus
and frequency response methods, which are completely analogous to the techniques
in continuous systems. Instead of looking at the s plane, however, we look at the
z plane. The third sampled-data controller design method is similar to the direct
synthesis method discussed in Chapter 9.

15.1
ROOT LOCUS DESIGN METHODS

With continuous systems we make root locus plots in the s plane. Controller gain is
varied from zero to infinity, and the roots of the closedloop characteristic equation are
plotted. Time constants, damping coefficients, and stability can be easily determined
from the positions of the roots in the s plane. The limit of stability is the imaginary
axis. Lines of constant closedloop damping coefficient are radial straight lines from
the origin. The closedloop time constant is the reciprocal of the distance from the
origin.

With sampled-data systems root locus plots can be made in the z plane in almost
exactly the same way. Controller gain is varied from zero to infinity, and the roots
of the closedloop characteristic equation 1 + HGM~ZJD~,j  = 0 are plotted. When the
roots lie inside the unit circle, the system is closedloop stable. When the roots lie
outside the unit circle, the system is closedloop unstable.

In continuous systems lines of constant damping coefficient [ in the s plane are
radial lines from the origin, as sketched  in Fig. IS. 1.

y = cos  6, (15.1)
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1111 s = Q

Res=a

(a) In the s plane

Imz
c

-1 -0.8 -0.6 -0.4 -0.2 0 +0.2  +0.4  +0.6  +0.8  + 1

(b) In the z plane

FIGURE 15.1
Lines of constant damping coefficient.

where 8 is the angle between the radial line and the negative real axis. Along a line
of constant 1: in the s plane, the tangent of 8 is

tan0  = W = (J-T)/,  JFp
a! -p/r  = -5

(15.2)

Using Eq. (15.2), the real part of S, cy, can be expressed in terms of the imaginary
part of S, w, and the damping coefficient c.

(15.3)

These lines of constant damping coefficient can be mapped into the z plane. The
7 variable along a line of constant damping coefficient is.,

z = ,Ls = g-Wi(O)  = ,tur,  pll‘,  = exp (15.4)
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Lines of constant damping coefficient in the z plane can be generated by picking
a value of { and varying o in Eq. (15.4) from 0 to 0,~/2.  See Section 15.2 for a
discussion of the required range of o.

Figure 15.lb shows these curves in the z plane. On the unit circle, the damping
coefficient is zero. On the positive real axis, the damping coefficient is greater than
1. At the origin, the damping coefficient is exactly unity.

Notice the very significant result that the damping coefficient is less than I on
the negative real axis. This means that in sampled-data systems a real root can give
underdamped response. This can never happen in a continuous system; the roots
must be complex to give underdamped response.

So  we can design sampled-data controllers for a desired closedloop damping
coefficient by adjusting the controller gain to position the roots on the desired damp-
ing line. Some examples illustrate the method and point out the differences and the
similarities between continuous systems and sampled-data systems.

EXAMPLE IS. 1.  Let us make a root locus plot for the first-order system considered in
Example 14. IO.

KPGM(~)  = ~
K,(l - b)

T*S + 1
3 uwd(t) = z _ b

Using a proportional sampled-data controller, the closedloop characteristic equation for
this system is

1 + WGw)&z) = 1 +

K&d - b) = o

z-b

The closedloop root is

z = b - K&(1  - b) (15.5)

Figure 15.2 shows the root locus plot. It starts (KC  = 0) at z = b on the positive real
axis inside the unit circle, so it is openloop stable. As K, is increased, the closedloop
root moves to the left.

Y
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I I
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\
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5.4) FIGURE 15.2
- plane location of roots (Example 1.5. I). .
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At the origin (where z = 0) the damping coefficient is unity. Solving Eq. (15.5) for
the value of controller gain that gives this “critically damped” system yields

(15.6)

For gains less than this, the system is overdamped. For gains greater than this, the system
is underdamped! This is distinctly different from continuous systems, where a first-order
continuous system can never be underdamped.

If we wanted to design for a closedloop damping of 0.3, we would use Eq. (I 5.4)
with 5 = 0.3 and with oT,~  = rr because we are on the negative real axis, where the
argument of z is V. Equation (15.4) shows that the argument of z on a line of constant
damping coefficient is UT,%.

argz = oTs = v (15.7)

z=exp(-  J&)eim  = (0.372)(cosr + i sinn) = -0.372 (15.8)

So positioning the closedloop root on the negative real axis at -0.372 gives a closedloop
system with a damping coefficient of 0.3. Solving for the required gain gives

-0.372 = b - K,K,,(l  - 6)
b + 0.372

+ (K&=0.3  = K t1 _ b) (15.9)
P

The system reaches the limit of closedloop stability when the root crosses the unit
circle at z = - 1. The value of controller gain at this limit is the ultimate gain K,.

-1 = b - K,,K,(l  -b) 3 K, =
l + b

&Al - b)
(15.10)

Let us take some numerical values to show the effect of changing the sampling pe-
riod. Let K, = rO- = 1. Table 15.1 gives values for the critical gain (5 = l), the gain that
gives 5 = 0.3, and the ultimate gain for different sampling periods. Note that the gains
decrease as T,  increases, showing that control gets worse as the sampling period gets big-
ger. Remember from Example 14.10 with T, = 0.2 that a K, of 12 gave a closedloop-
unstable response. Table 15.1 shows that K, = 10 for this T,. 8

TABLE 15.1

Effect of sampling period

b (Kc)c=  I (K,)[  =,,.3  K,

First-order lag

0. I 0.905 9.51 13.4 20.0
0 . 2 0.819 4.52 6.57 10.0
0.5 0.606 1.54 2.49 4.08
1.0 0.368 0.582 1.17 2.16

First-order lag with deadtime  D = Ts

0. I 2.15 10.5
0 . 2 0.925 5.52
0.5 0.234 2.54
I .o 0.054 1.58
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This example demonstrates several extremely important facts about sampled-
data control. This simple first-order system, which could never be made closed-
loop unstable in a continuous control system, cun  become closedloop unstable in
a sampled-data system. This is an extremely important difference between continu-
ous control and sampled-data control. It points out that continuous control is almost
always better than sampled-data control!

It is logical to ask at this point why we use sampled-data, digital-computer con-
trol if it is inherently worse than continuous analog control. Computer control offers
a number of advantages that outweigh its theoretical dynamic disadvantages: cost;
ease of configuring and tuning control loops; ease of maintenance; reliability; data
acquisition capability; built-in alarms; ability to handle nonstandard, complex, and
nonlinear control algorithms; etc. But keep in mind that from a purely technical con-
trol performance standpoint, an analog controller can do a better job than a sampled-
data controller in most applications. The process of sampling results in some loss of
information: we don’t know what is going on in between the sampling periods. Thus,
there is an inherent degradation of dynamic performance.

EXAMPLE 15.2. Consider the first-order lag process with a deadtime  of one sampling
period.

(15.11)

The addition of the one-sampling-period deadtime  increases the order of the denomina-
tor polynomial to 2. Using a proportional sampled-data controller gives the closedloop
characteristic equation

1 + (HGM)&zj  = 1 +
wqJ(1 - b) o

=z(z - b) (15.12)

z2 - bz + K,K,,(l  - b) = 0

There are two root loci, as shown in Fig. 15.3~  for the numerical values K,  = TV  = 1
and T,  = 0.2 (b = 0.819).

z = b t Jb2  - 4K,K,,(l  - b)

2
(15.13)

The paths start (K, = 0) at z = 0 and z = b.  They come together on the positive real
axis at z = b/2  when

b2
” = 4K,,(l  - 6)

= 0.925

This value of controller gain gives a critically damped system. For larger controller gains,
the system is underdamped. The complex roots are

b .1z=  -+1-2 2 /iK,.K,,(l  - b) - b’ (15.14)

The value of gain that gives a closedloop damping coefficient of 0.3 can be found by
using Eqs. (lS.4)  and (15.14) with 5 = 0.3.

exp(- J~.~~\)?)eiW’V  = g ti-!-J4K,.K,,(I  -b)-b’



, K,, = K,,  = ---!-- = 5.5
/ K,,(  I - 6)

(a) * + Gf(z)% = 1 +
K,K,,(l  - b)

z(z _ 6)

= 0.92

I
\
\ I
\ I
\ /
\ /
\

\

/
\
\ /
\ /
‘--- .’

---M

(6)  fG,(,)  =
K/,(1  -6)

z2(z--b)
FIGURE 15.3
Root locus plots in z plane.

e-“~3’45wT~[cos(oT,)  + isin(wT,$)] = $ Z if J4K,K,(l - b) - b2

Equating the real and imaginary parts of the left and right sides of the above equation
gives two equations in the two unknowns, w and K,, for a given sampling period T,.

The maximum K, for which the closedloop system is stable occurs when the paths
cross the unit circle. At that point the magnitude of z, Ii], is unity:

(15.15)

Table IS.  I shows numerical values for different sampling periods. The addition of the
deadtime  to the lag reduces th,:  gains. l .,,

: .  �,
;L;g�  *
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EXAMPLE I 5.3. Adding a dendtime  to the tirsl-order  lag process that is equal to two
sampling periods gives a third-order system in the z plane.

(15.16)

z3  - bz2  + K,K,(  1 - b) = 0

Figure 15.3b  shows the root locus plot in the z plane. There are now three loci. The
ultimate gain can occur on either the real-root path (at z = - 1) or on the complex-
conjugate-roots path. We can solve for these two values of controller gain and see which
is smaller.

Atz = - 1. Using Eq. (15.16) gives

-l-b+K,K,,(l-b)=O  3 K,, =
l + b

K,U - b)
(15.17)

For the numerical cast  K, = 70 = 1 and T.v  = 0.5, the result  is 4.09.

On the complex-conjugatepath. At the unit circle z = eie. Substituting into Eq. (15.16)
gives

e i3e - bei2’  + Ku KP(  1 - b) = 0

cos(30) + i sin(38)  - b[cos(28)  + i sin(28)]  + K,K,(  1 - b) = 0

{ cos(30) - bcos(20) f K,K,(  1 - b)} + i { sin(36)  - b sin(26))  = 0 + i0

Equating real and imaginary parts of both sides of the equation above gives two equations
and two unknowns: 8 and Ku.

cos(38) - bcos(2B)  + K,K,(  1 - b) = 0 (15.18)

sin(38)  - bsin(28)  = 0 (15.19)

Equation ( 15.19) can be solved for 8. For the numerical case K, = 70 = 1 and T, = 0.5,
the result is 8 = 0.83 radians. Then Eq. (15.18) can be solved for K, ( = 1.88 for the
numerical case). Since this is smaller than that calculated from Eq. (15.17),  the ultimate
gain is 1.88. Note that this is lower than the ultimate gain for the process with the smaller
deadtime. n

EXAMPLE 15.4. Now let’s look at a second-order system.

GM(s)  = KP
(TUIS + 1)(702s + 1)

Using a zero-order hold gives an openloop  transfer function

fGw(,)  =
K,,ao(z  - ZI)

(z - Pl)(Z - P2)

where

?.I  =
171  P’-(~,,z  - 701)  + P2ToI  - PI Tu2

701 - 707 + [QT,,2  - p I Toi

(15.20)

(15.21)

(15.32)

(15.33)

(15.34)



As a specific numerical exa~~~ple,  consider the two-heated-tank process from Exam-
ple 9. I with the openloop  transfer function

2.315
GML4  = (s + 1)(5&S + I)

Using a zero-order hold and a sampling period T,,  = 0.5 minutes gives

HG
2.315(0.0209)(~  + 0.8133)

M(T.)  = (z - 0.607)(2  - 0.905)
(15.25)

Several important features should be noted. The first-order process considered in
Example 15.1 gives a pulse transfer function that is also first order; i.e., the denominator
of the transfer function is first order in z. The second-order process considered in this ex-
ample gives a sampled-data pulse transfer function that has a second-order denominator
polynomial. These results can be generalized to an Nth-order system. The order of s in
the denominator of the continuous transfer function is the same as the order of z in the
denominator of the corresponding sampled-data transfer function.

However, note that in the case of the second-order system, the sampled-data transfer
function has a zero, whereas the continuous transfer function does not. So in this respect
the analogy between continuous and sampled-data transfer functions does not hold.

The closedloop characteristic equation for the second-order system with a propor-
tional sampled-data controller is

1 + HGdh  = 1 +
~cfQo(z  - Zl) = 0
(z - Pl>(Z  - P2)

For the numerical example

1 + O.O479K,(z  + 0.8133) _ o
(z - 0.607)(z  - 0.905) -

z2 + z(O.O479K,  - 1.512) + 0.549 + 0.039& = 0 (15.27)

‘1
\
\
\
\
\
\

\

\

\

\

\

\

\

K,.=O \ Kc=0  ;
I

P2
I
I

I
/

I
I

/
/

/
/

/////

(15.26)

FIGURE 15.4
Second-order
process.’
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To lind the uhimate  gain for  rhc  second-order system,  we set 1~1 = I and solve
for K,,.

z=
-(O.O479K,,  - I .S 12)  + i J4(0.549  + O.O39K,)  - (0.0479#,,  - 1.512)2

-
2 2

I= O.O479K,,  - I.512 44(0.549  + O.O39K,,)  - (O.O479K,,  - 1.512)2
2 2

K,, = Il.6

This is the ultimate gain  if the sampling period is 0.5 minutes. If T, = 2 minutes is used,
the openloop  pulse transfer function becomes

HGM(,I  =
0.4535(7.  + 0.455)

(z - 0.135)(z  - 0.67)
( 15.28)

The location of the zero is closer to the origin. This reduces the radius of the circular part
of the root locus plot (see Fig. 15.4) and reduces the ultimate gain to 4.45. n

15.2
FREQUENCY-DOMAIN DESIGN TECHNIQUES

Sampled-data control systems can be designed in the frequency domain by using
the same techniques that we employed for continuous systems. The Nyquist stability
criterion is applied to the appropriate closedloop characteristic equation to find the
number of zeros outside the unit circle.

15.2.1 Nyquist Stability Criterion

The closedloop characteristic equation of a sampled-data system is

1 + HGM(,)Dt,, = 0

We want to find out if the function F (zj = 1 + HG~@~Z~  has any zeros or roots
outside the unit circle in the z plane. If it does, the system is closedloop unstable.

We can apply the 2 - P = N theorem of Chapter 11 to this new problem. We
pick a contour that goes completely around the area in the z plane that is outside the
unit circle, as shown in Fig. 15.5. We then plot HGMM(,)&  in the HGMD plane and
look at the encirclements of the (- 1,O)  point to find N.

If the number of poles of HGMc:) D (:) outside the unit circle is known, the number
of zeros outside the unit circle can be calculated from

Z=N+P (15.29)

If the system is openloop  stable, there will be no poles of HGM(~~D(~J  outside the
unit circle, and P = 0. Thus, tile  Nyyuist  stability criterion can be applied directly
to sampled-data systems. .
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of (-1,O)  = N

FIGURE 15.5
Nyquist stability criterion.

152.2 Rigorous Method

The relationship between z and s is

z = &s

Going from the Laplace  domain to the frequency domain by substituting s = io
gives

z = ,ioT, (15.30)

To make a Nyquist plot, we merely substitute eiwTS  for z in the HG~@(,) function
and make a polar plot as frequency w goes from 0 to 0,/2, where

27T
0, = -

TS
(15.31)

The reason we have to cover only this frequency range is demonstrated in the next
example.

EXAMPLE I 5.5. Let’s consider the first-order lag process with a proportional sampled-
data controller.

(15.32)

Note that this function has fzo poles outside the unit circle, so P = 0.
We must let z move around a closed contour in the z plane that completely encloses

the area outside the unit circle. Figure 15.6a shows such a contour. The C, contour starts
at z = + 1 and moves along the top of the unit circle to z = - 1. The C,,, contour goes
from z = - 1 to --co.  The CR contour is a circle of infinite radius going all the way
around the z plane. Finally, the Ci” and C- contours get us back to our starting point at
z = +1.

On the C, contour : = e” since the magnitude of z is unity on the unir circle. The
angle 8 goes from 0 to +n. Now, from Eq. (15.30),
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Therefore, on the C, contour

As 8 goes from 0 to +r, o must go from 0 to IT/T.~.  Using Eq. (15.3 1) gives

Therefore, moving around the top of the unit circle is equivalent to letting frequency o
vary from 0 to ~,~/2.

Substituting z = eiwT,  into Eq. (I 5.32) gives

(15.33)

Figure 15.G  shows the Nyquist plot. At w = 0 (where z = + l), the plot starts on the
positive real axis at f&K,,.  When w = wJ2 (where z = - 1)

ffGM(iws/2)D(iw,/2)  =
wql - b) = _ K&u - b)

- 1 - b l + b
(15.34)

( n )  z - p l a n e  c o n t o u r s

1 UC,,, D plane

c, c o n t o u r

c-C, c o n t o u r

(11)  First-order lag

circle

FIGURE 15.6
Frequency-domain methods.
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HG,D plant

(c) First-order lag with deadtime  (D = T.J

A HG,D plane

0 =w,/2
o=o

-z

*

-O.OWK, --O.O029K, Kc Kp

(d) Second-order lag

FIGURE 15.6
(CONTINUED)
Frequency-domain methods.

Thus, the Nyquist plot of the sampled-data system does not end at the origin as the
Nyquist plot of the continuous system does. It ends on the negative real axis at the value
given in Eq. (15.34).

As we show later after completing the contours, this means that if the controller gain
is made big enough, the Nyquist plot does encircle the (- 1,0) point. If N = 1, Z = 1 for
this system since P = 0. Thus, there is one zero or root of the closedloop characteristic
equation outside the unit circle.

The limiting gain occurs when the HG M(iw)Dciw) curve ends right at - 1. From
Eq. (15.34)

-1 = J4&dl  -17) l + b
l + b ’ Ku=  &(1-b)

This is exactly what our root locus analysis showed.
On the C,,, contour, z = rein = --r as r goes from 1 to cc.  Substituting --Y for z in

Eq. (15.32) gives

fG&k,  =
K,.K,(l  - 17)

- r - b
( 15.35)

As r goes from 1 to ~0, HGM~~~D~,, goes from -K,.K,,(  1 - b)l( 1 + b)  to 0. See Fig.
15.6b.
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On the CR contour, z = Re’”  where R + 00 and 8 goes from 7r through 0 to --7~.
Substituting into Eq. ( 15.32) gives

~GWzP(z)  =
&K,>(l - b)

Rei8  - b
(15.36)

As R -+ m, f-G@(,) -+ 0. Therefore, the infinite circle in the z plane maps into the
origin in the ffG,+,(,)D(,)  plane.

The Ci, contour is just the reverse of the C,,, contour, going from the origin out
along the negative real axis. The C- contour is just the reflection of the C+  contour over
the real axis. So, just as in a continuous system, we only have to plot the C+ contour. If
it goes around the (- 1,O)  point, this sampled-data system is closedloop unstable since
P = 0.

The farther the curve is from the (- 1,O)  point, the more stable the system. We
can use exactly the same frequency-domain specifications we used for continuous sys-
tems: phase margin, gain margin, and maximum closedloop log modulus. The last is ob-
tained by plotting the function HGM(iw,Dcio,l(  1 + HGM(iu)D(io)). For this process (with
70 = K, = 1) with a proportional sampled-data controller and a sampling period of 0.5
minutes, the controller gain that gives a phase margin of 45” is K, = 3.43. The controller
gain that gives a +2-dB  maximum closedloop log modulus is Kc = 2.28. The ultimate
gain is K, = 4.08. n

EX A M PL E 15.6. If a deadtime  of one sampling period is added to the process considered
in the previous example,

~Gd4z) =
K&(1  - b)

z(z - b)
(15.37)

We substitute eiwTs for z in Eq. (15.37) and let o go from 0 to 0,/2. At o = 0, where
z = + 1, the Nyquist plot starts at KcKp on the positive real axis. At o = 0,/2, where
z = - 1, the curve ends at

HGM(iw)D(iw)  =
K&(1 - b) = Kc&,(1  - b)
-1(-l - b) l + b

(15.38)

This is on the positive real axis. Figure 15.6~  shows the complete curve in the HGM~D
plane. At some frequency the curve crosses the negative real axis. This occurs when the
real part of HG~(i~&,) is equal to -0.394 for the numerical case considered in the
previous example. Thus the ultimate gain is

i K, = l/O.394 = 2.54

Note that this is smaller than the ultimate gain for the process with no deadtime. The
controller gain that gives a +2-dB maximum closedloop log modulus is Kc = 1.36.

The final phase angle (at 0,/2) for the first-order lag process with no deadtime  was
- 180”. For the process with a deadtime  of one sampling period, it was -360’. If we
had a deadtime  that was equal to two sampling periods, the final phase angle would be
-540”. Every multiple of the sampling period subtracts 180” from the final phase angle.

Remember that in a continuous system, the presence of deadtime  made the phase
angle go to ---co  as u went to ~0. So the effect of deadtime  on the Nyquist plots of sampled-
data systems is different than its effect in continuous systems. n

EXAMPLE 15.7. As our last example, let’s consider the second-order two-heated-tank
process studied in Example 15.4.

GMts)  = -
2.315

(s + l)(5s + I)
E
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Using a zero-order hold, a proportional sampled-data controller, and a sampling period
of T, = 0.5 minutes gives

h~Guz, =
O.O479K,(z  + 0.8133)
(z - 0.607)(z - 0.905)

We substitute eiwrs  for z and let o vary from 0 to wJ2.

(15.39)

2T.r 271. - 4=
us = - = - -T,f 0.5

At o = 0, the Nyquist plot starts at 2.315&. This is the same starting point that the
continuous system would have. At o = 0,/2 = 27r,  where z = - 1, the Nyquist plot
ends on the negative real axis at

0.0479&(-  1 + 0.8133)

(- 1 - 0.607)(- 1 - 0.905)

= -o 0029K

. ’

The entire curve is given in Fig. 15.M. It crosses the negative real axis at -0.087&.  So
the ultimate gain is K, = l/O.087 = 11.6, which is the same result we obtained from
the root locus analysis.

The controller gain that gives a phase margin of 45“ is KC = 2.88. The controller
gain that gives a +2-dB maximum closedloop log modulus is K, = 2.68. n

15.2.3 Approximate Method

To generate the HGM+) Nyquist plots discussed above, the z transform of the appro-
priate transfer functions must first be obtained. Then ejwTs is substituted for z,  and o
is varied from 0 to 0,/2.  There is an alternative method that is often more convenient
to use, particularly in high-order systems. Equation (15.40) gives a doubly infinite
series representation of HG~ci~j.

1 +m
ffGM(iu)  = T >: H(iw+inw,)G~(iw+ino,) (15.40)

S n=-CC

where Ht,, and GM($)  are the transfer functions of the original continuous elements
before z transforming.

If the series in Eq. (15.40) converges in a reasonable number of terms, we can
approximate H GMtiw) with a few terms in the series. Usually two or three are all that
are required.

1 +m
ffGM(ico)  = 7 >: H(iw  +inw,)Gn/r(iw  +irwy) (15.41)

S n=-cc

1
ffG~~(iw)  2:  Ti’H(iw)GM(iw)  + H(icx+-iwr)G~(iw+iwJ)  + H(iw-iwS)GM(iw-iw,)

S

+ H(i,+i2w,,)G~(iw+i2ws)  + H(iw-i2u,)G~(iw-i20,)1 (15.42)

This series approximation can be easily generated on a digital computer.
The big advantage of this method is that the analytical step of taking the z trans-

formation is eliminated. You just deal with the original continuous transfer functions.
For complex, high-order systems, this ca;r elintinate  a lot of messy algebra.
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15.2.4 Use of MATLAB

The frequency response of sampled-data systems can be easily calculated using
MATLAB  software. Table 15.2 gives a program that generates a Nyquist plot for
the first-order process with a deadtime  of one sampling period.

After parameter values are specified (K, = 3, T, = 0.2, r0  = 1, and K, =
i), the frequency range is specified from o = 0.01 to o = wJ2.  The vector of
complex variables z for each frequency is calculated. Then the complex function
HGM(iW&,)  is calculated in two steps:

hgmd= kc*kp*(l  -b)./(z-6);
hgmd = hgmd .I z;

Term-by-term division is specified by the use of the “I” operator.

T A B L E  1 5 . 2

MATLAB  program for discrete frequency response

70  Program “dfreq.m”  generates Nyquist plot
70 for jirst-order process with deadtime  = sampling period
% using a sampled-data P controller and zero-order hold
% GM(s) = Kp*exp(  -Ts*s)/(tauo*s+l)
%
950 Give parameter values
kc=3;
ts=0.2;
tauo=l;
kp=l;
b=exp(-ts/tauo);
% Calculate sampling frequency
ws=2*pi/ts;
940 Specify frequency range from 0.01 up to ws/2
w=[0.01:0.01:ws/2];
% Calculate vector of 2 values
i=sqrt(-1);
z=exp(i*w*ts);
70

% Calculate value of HGM(iw)*D(iw)  at each frequency
70
hgmd=kc*kp*(  1 -b)  ./  (z-b);
hgmd=hgmd ./  z;
%

elf
plot(hgmd)
grid
title(  ‘Polar Plot for HGM(iw)*D(iw)‘)
axis(  ‘square ‘)
clxis([-I  3 . 5  - 2 . 5  21);
xlabel(  ‘Real HGM*D’)
yiabel(  ‘[mag HGM*D  ‘)

/
.

i
t

text(O.S. -0.5, ‘Ts=O.Z.  Kc=3’)
pause
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15.3
PHYSICAL REALIZABILITY

In a digital computer control system the feedback controller DtZ) has a pulse transfer
function. What we need is an equation or algorithm that can be programmed into
the digital computer. At the sampling time for a given loop, the computer looks at
the current process output yu),  compares it with a setpoint, and calculates a current
value of the error e(,). This error plus some old values of the error and old values
of the controller output or manipulated variable that have been stored in computer
memory are then used to calculate a new value of the controller output m(,).

These algorithms are basically difference equations that relate the current value
of m to the current value of e and old values of m and e. These difference equations
can be derived from the pulse transfer function &I.

Suppose the current moment in time is the nth sampling period t = nT,.  The
current value of the error et,) is e(,Ts). We will call this e,. The value of et,)  at the
previous sampling time was e,-1.  Other old values of error are en-z, en-j, etc. The
value of the-controller output m(,)  that is computed at the current instant in time t =
nT,  is rn(,~~)  or m,. Old values are m,-1,  mn-2,  etc. Suppose we have the following
difference equation:

mn = hoe,  + blend1  + b2en-2  + ** * + bMen-M

- aim,-] - u2mn-2  - u3mn-3  - ” - - ahIm,-N (15.43)

m(nTs)  = boe(nl;) + ble(nTs-T,)  f he(nT,-2T,)  + * * * + b,we(nTS--,w,)

- vqnTS-T3)  - a2m(nTs-2Ts)  - a3m(c-3TS)  - . . . - aNm(,TS-NT3)

(15.44)
Limiting t to some multiple of T,,

mw = he(t)  + hqt-Ts) + b2+2T,) + . . . + h@-,t4Ts) (15.45)
- alm(f-T,)  - a2m(j-2Ts)  - a3m(t-3T,)  - '. . - aNfl(f-NTJ

If each of these time functions is impulse sampled and z transformed, Eq. (15.45)
becomes

Mcz)  = boEc,)  + blz-‘EcZ,  + b2z-2EtZj  + b3z-3Et,j  + . . .

- q-7 -‘hf(,)  - u2z-2k!(z)  - . ’ - - uNzmNhrl(,)
(15.46)

Putting this in terms of a pulse transfer function gives

M,,,  _ b. + b,z-’  + b2z-2  + *.a + bMz+
D(,)  = - -

4,) 1 + alz-’  + a2ze2 + *.  . + aNzeN
(15.47)

A sampled-data controller is a ratio of polynomials in either positive or negative
powers of z. It can be directly converted into a difference equation for programming
into the computer.

Continuous transfer functions are physically realizable if the order of the poly-
nomial in s of the numerator is less than or equal to the order of the polynomial in s
of the denominator.
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The physical realizability of pulsed transfer functions uses the basic criterion
that the current output of a device (digital computer) cannot depend upon future
information about the input. We cannot build a gadget that can predict the future.

If DtZJ is expressed as a polynomial in negative powers of Z, as in Eq. (15.47),
the requirement for physical realizability is that there must be a “1” term in the
denominator. If DtZ) is expressed as a polynomial in positive powers of z,  as shown
in Eq. (15.48) below, the requirement for physical realizability is that the order of the
numerator polynomial in z must be,less than or equal to the order of the denominator
polynomial in z.  These two ways of expressing physical realizability are completely
equivalent, but since the second is analogous to continuous transfer functions in s, it
is probably used more often.

M(z)D($ =  - =
bOzM + b,z”-’  + b2zM-2  + *. . + bM

E(z) ZN -k alZN-’ + a2zNp2  +“’ + aN
(15.48)

Multiplying numerator and denominator by zeN and converting to difference equa-
tion form give the current value of the output m,:

ml = b@,+M-N  + b,e,+,+N-1 + ‘. . + bMen-N

- am-1 - a2mn-2  - ” ’ - aNmn-N (15.49)

If the order of the numerator M is greater than the order of the denominator N in,
Eq. (15.48),  the calculation of m, requires future values of error. For example, if
M - N = 1, Eq. (15.49) tells us that we need to know e,+l  or e(,+~~)  to calculate m,
or m(,). Since we do not know at time t what the error e(,+TX) will be one sampling
period in the future, this calculation is physically impossible.

15.4
MINIMAL-PROTOTYPE DESIGN

One of the most interesting and unique approaches to the design of sampled-data
controllers is called minimal-prototype design. It is one of the earliest examples of
model-based or direct-synthesis controllers.

The basic idea is to specify the desired response of the system to a particular
type of disturbance and then, knowing the model of the process, back-calculate the
controller required. There is no guarantee that the minimal-prototype controller is
physically realizable for the given process and the specified response. Therefore,
the specified response may have to be modified to make the controller realizable.

Let us consider the closedloop response of an arbitrary system with a sampled-
data controller.

Y(z) =
D(~,HGM(~,  ’ G&z)

1 + D(z,HGM(z)
Yg;  +

1 + &,HGM(,,

If we consider for the moment only changes in setpoint,

(15.50)

&.I= D(,)HGM(z)
Yg l + &$GM(z)

(15.51)
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If we specify the form of the input YF$ and the desired form of the output Ytzj,  and
if the process and hold transfer functions are known, we can rearrange Eq. (I 5.5 I)
to give the required controller designed for setpoint changes QT(~..

(15.52) j

If all of the terms on the right side of this equation have been specified, the controller
can be calculated.

EXAMPLE 15.9.  The first-order lag process with a zero-order hold has a pulse transfer
function

HGnr(,,  =
K,(l - b)

z-b
(15.53)

where b E eeTsJ7~~. Suppose we want to derive a minimal-prototype controller for step
changes in setpoint.

(15.54)

We know that it is impossible to have the output of the process respond instanta-
neously to the change in setpoint. Therefore, the best possible response that we could
expect from the process would be to drive the output YCZ,  up the setpoint in one sampling
period. This is sketched in Fig. 15.7~.  Remember, we are specifying only the values of
the variables at the sampling times.

The output at t = 0 is zero. At t = T,, the output should be 1 and should stay at’1
for all subsequent sampling times. Therefore, the desired YtEJ is

y(z) = y(0)  +  y(T$-’  +  y(2Ts)z-2  +  y(3Ts,z-3  +  .  ”

= 0 + z-1  + z-2  + z-3 + . . * (15.55)

i

Z -I

Y(z)  =
1

1-z-l  =-z - l

Plugging these specified functions for YQ)  and Y$ into Eq. (15.52) gives

1

(15.56)

h(z)  =
Y(2) z - l=

HGm,tY;Z”;  - Y(z))
(fGqz,) 5 - --!-

z - 1
(15.57)

D
1

‘(,-) = HGM(<)(z  - 1)

Now, for this first-order process, Eq. (15.53) gives HGMCZJ. Plugging this into Eq. (15.57)
gives the minimal-prototype controller.

D
1 1

s(z)  = HGMc,,(z  - 1) = K,>(  1 - b)
z - b

K,,(  I - b)(z - 1)
(15.58)

This sampled-data controller is physically realizable since the order of the polynomial
in the numerator is equal to the order of the polynomial in the denominaror.  Therefore,
the desired setpoint  response  is achievable for this process.
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FIGURE 15.7
Minimal-prototype responses. (a) Desired response to unit step change in
setpoint. (b) Response of first-order process. (c) Response of second-order
system when driven to setpoint  in one sampling period. (d) Modified response
of second-order system to take two sampling periods to reach setpoint without
rippling.
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Before we leave this example, let’s look at the closedloop characteristic equation of

the system.

1 +  DScZ)HGM(z)  =  0

If we substitute Eqs. (I 5.58) and (15.53),  we get

I+
Z - h K,U-6)  =.

&,(I  -b)(z-  1 )  z - b

I+ I-=o j z=o
z - l

Thus, the closedloop root is located at the origin. This corresponds to a critically damped
closedloop system ([ = 1). The specified response in the output was for no overshoot,
so this damping coefficient is to be expected. n

E X A M P L E 15.10. If we have a first-order lag process with a deadtime  equal to one sam-
pling period, the process transfer function becomes

HGMI(~)  =
Kp(l  - b)
z(z - b)

(15.59)

Suppose we specified the same kind of response for a step change in setpoint as in Ex-
ample 15.9: the output is driven to the setpoint  in one sampling period. Substituting our
new process transfer function into Eq. (15.58) gives

D
1 1

S(z)  =
HGM,,,(z - 1) = K,(l - 6)

z(z - b)
=  K,(l - b)(z  - 1 )

(15.60)

z(z  - 6)
(z - 1)

This controller is WC physically realizable because the order of the numerator is higher
(second) than the order of the denominator (first). Therefore, we cannot achieve the re-
sponse specified. This result should really be no surprise. The deadtime  does not let the
output even begin to change during the first sampling period, and we cannot drive the
output up to its setpoint  instantaneously at t = TX.

Let us back off on the specified output and allow two sampling periods to drive the
output to the setpoint.

Y(z)  = Y(0)  + Y(T,)z-’  + y(*T,)z-*  + y(J&)z-3 + . . .

= o+(o)~-‘+~-*+z-3+...

Y(z)  =
Z-* 1

1 - z-’ = z(z  - 1)

Now the minimal-prototype controller for step changes in setpoint is

1

D
Y

S(z) =
(z)

HG,w(~,(Y;',~:  - Yc,I)  = PW - b)
z(z - 1)

I[ z 1___  -
Z - 1 z(z  - 1)

(15.61)

(15.62)

-
I (15.63)

z(z - 6)
= K,(l  -6)(22-i)
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3) Using long division to see the values of VZ(,T,~)  gives

The controller is physically realizable since N = 2 and M = 2. Note that there are two
poles, one at z = + 1 and the other at z = - I, and there are two zeros (at z = 0 and
z = b). n

A first-order process can be driven to the setpoint in one sampling period and
held right on the setpoint even between sampling periods. This is possible be-
cause we can change the slope of a first-order process response curve, as shown in
Fig. 15.76.

If the process is second or higher order, we are not able to make a discontin-
uous change in the slope of the response curve. Consequently, we would expect a
second-order process to overshoot the setpoint if we forced it to reach the setpoint  in
one sampling period. The output would oscillate between sampling periods, and the
manipulated variable would change at each sampling period. This is called rippling
and is illustrated in Fig. 15.7~.

Rippling is undesirable since we do not want to keep wiggling the control valve.
We may want to modify the specified output response to eliminate rippling. Allowing
two sampling periods for the process to come up to the setpoint gives us two switches
of the manipulated variable and should let us bring a second-order process up to the
setpoint  without rippling. This is illustrated in Example 15.11. In general, an Nth-
order process must be given N sampling periods to come up to the setpoint if the
response is to be completely ripple free.

Since we know only the values of the output ytn~,) at the sampling times, we
cannot use Yt,)  to see if there are ripples. We can see what the manipulated variable
rn(,~~)  is doing at each sampling period. If it is changing, rippling is occurring. SO

we choose Ytz,  such that Mt,, does not ripple.

If the controller is designed for setpoint changes [Eq. (15.52)],

D(z) = Y(z)
HGdY(Z)set - Y(z)>

Y(z)
M(z) = HGMM(,)

Let’s check the first-order system from Example 15.9.

&Al - b) 1
HGM(z)  =

z - b
a n d  Ytz)  =  -

z - l

1

M Y(z) Z - l z - b

(‘) =  HGM(Z,  =  K,(l  - b) =  I$(  1 - b)(z - 1)
z - b

1
M -___ 1 -I 1 -2,  It-‘+...

(‘) = K,,(l-b)+K,Z +Gz  KP

(15.64)

(15.65)

(15.66)

(15.67)
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Thus, the manipulated variable holds constant after the first sampling period, indi-
cating no rippling.

E X A M P L, E t s.  t I . The second-order process considered in Example 15.4 has the follow-
ing openloop transfer function:

Using a zero-order hold gives an openloop transfer function

~GI(,) =
K,ao(z  - ZI>

(z - PINZ  - P2)
(15.69)

We want to design a minimal-prototype controller for a unit step setpoint  change. The
output is supposed to come up to the new setpoint in one sampling period. Substituting
Eq. (15.69) into Eq. (15.52) gives

1 1
DS(z) = =

fG,&.  - 1) K,aok  - ZI) cz  _ 1>

(2 - Pl>(Z  - P2) (15.70)

(z - Pl>(Z  - P2)

= K,,ao(z  - ZI)(Z  - 1)

This controller is physically realizable. Therefore, minimal-prototype control should be
attainable. But what about intersample rippling? Let us check the manipulated variable.

1
yw (z-pd(z-P2)  ’
- =

M(z)  = HGM(,,
z-1

K,ao(z  - zr > = ao(z  - l)(z - Zl>
(15.71)

(z - PINZ - P2)

. Long division shows that the manipulated variable changes at each sampling period, SO

rippling occurs.
For a specific numerical case (Kp  = rol  = 1; 7,~ = 5; T, = 0.2) the parameter

values are p1 = 0.8187, p2  = 0.9608, aa = 0.0037, and ZI = -0.923.

Mcz)  = 270 -4602-l + 4272 -2 - 392~-~ + 364~-~ - 334z-’ + . . . (15.72)

This system exhibits rippling.
To prevent rippling, we.modify our desired output response to give the system two

sampling periods to come up to the setpoint. The value of yCr) at the first sampling period,
the yl shown in Fig. 15.711, is unspecified at this point. The output YcZ)  is now

Y(z)  = VIZ
- I  +z-2+z-3+...

= y,  z-1 + z-2(1 + z-1 + z-2 + z-3 -t . . .)

=  y,z-’  +  z-2&

Y(z)  =
Ylz+
.

1 -yt
z(z  - I) -

(15.73)

The setpoint  disturbance is still a unit step:
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The new controller is

y1z+  1 - Yl

D(z)  =
Y(z) z(z - 1)

HGdY(,)sel  - Y(z))  = K,ao(z  - I I> y1z+  1 -Yi
(z - Pl>(Z  - P2) I[ z ” 1 z(z - 1) 1 (15.74)

= (z-pl)(z-P2)(YIz+  1 -Yd
Qo(Z  - ZlMZ  - l)(z + 1 - Yl>

The manipulated variable is

Y(z)
4) =  HGrcr(l)  =

(z - Pl>(Z  - p2xy1z  + 1 - yt)
Kpao(z - Zi)Z(Z  - 1)

(15.75)

Rippling occurs whenever the denominator of M(,) contains any terms other than z
or z - 1. Therefore, the z - zt term must be eliminated by picking yt such that the term

z - zt cancels out.

Then Mcz)  becomes

M(z)  =

=

1 -y1 1~ = -z,
YI

+ y1 = 1 - z,

Yl(Z  - Pl>(Z  - p2)

q?aoz(z  - 1)

Yl
&a0

+ (1 - PI - P2) z-I + z-2 + z-3 + z-4 + . . .

&a0

Thus, there is no rippling.

15.5
CONCLUSION

(15.76)

(15.77)

n

The design of digital compensators was discussed in this chapter. The conventional
root locus, frequency response, and direct synthesis methods used in continuous
systems in the s plane can be directly extended to sampled-data systems in the z
plane.

PROBLEMS
‘3)

15.1. Find the maximum value of K, for which a proportional sampled-data controller with
zero-order hold is closedloop stable for the three-CSTR process

1

c‘ M ( s )  = (S +81)3

Use sampling times of 0.1 and I minute.
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15.2. Repeat Problem 15.1  using a sampled-data PI controller.

Use r/ values of 0.5 and 2 minutes.

15.3. Make Nyquist plots for the process of Problem 15.1 and find the value of gain that gives
the following specifications:

l Gain margin of 2
l Phase margin of 45”
l Maximum closedloop log modulus of +2 dB

15.4. Make a root locus plot of the system in Problem 15.1 and find the value of gain that
gives a closedloop damping coefficient 5 equal to 0.3.

15.5. A distillation column has an approximate transfer function between distillate compo-
sition xg and reflux flow rate R of

0.0092
Gw,) = (Ss + 1)2

Distillate composition is measured by a chromatograph  with a deadtime  equal to the
sampling period. If a proportional sampled-data controller is used with a zero-order
hold, calculate the ultimate gain for T,  = 2 and 10.

15.6. Grandpa McCoy has decided to open up a new Liquid Lightning plant in the California
gold fields. He plans to stay in Kentucky, and he must direct operation of the plant using
the pony express. It takes two days for a message to be carried in either direction, and
a rider arrives each day.

The new Liquid Lightning reactor is a single, isothermal, constant-holdup CSTR
in which the concentration of ethanol, C, is controlled by manual changes in the feed
concentration, Co. Ethanol undergoes an irreversible first-order reaction at a specific
reaction rate k = 0.2Yday.  The volume of the reactor is 100 barrels, and the throughput
is 25 barrels/day.

Grandpa will receive information from the plant every day telling him what the
concentration C was two days earlier. He will send back instructions on how to change
Co. What is the largest change Grandpa can make in Co as a percentage of C without
causing the concentration in the reactor to begin oscillating?

15.7. A process has the following transfer function relating the controlled and manipulated
variables:

G
--s + 1

M(s)  = ____ss 1

(a) If a zero-order hold and a proportional digital controller are used with sampling
period T,,,  determine the openloop  pulse transfer function HGM~;).

(6) Calculate the value of controller gain that puts the system right at the limit of
closedloop stability.

(c) Calculate the controller gain that gives a closedloop damping coefficient of 0.3.
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15.8. A process controlled by a proportional digital controller with zero-order hold and sam-
pling period T,  = 0.25 has the openloop pulse transfer function

HG
-z + 1.2212

M(z)  = z - 0.7788

If a unit step change is made in the setpoint, calculate the closedloop response of the
process at the sampling times if a controller gain of 0.722 is used.

15.9. Make a root locus plot for the process considered in Problem 15.7 in the z plane.

15.10. A first-order lag process with a zero-order hold is controlled by a proportional
sampled-data controller.
(a) What value of gain gives a critically damped closedloop system?
(b) What is the gain margin when this value of gain is used?
(c) What is the steady-state error for a unit step change in setpoint when this value

of gain is used?

15.11. A pressurized tank has the openloop transfer function between pressure in the first
tank and gas flow from the second tank

GM(~) =
0.2386

s(O.7137.Y  + 1)

If a zero-order hold and a proportional sampled-data controller are used and the sam-
pling time is 1 minute:
(n) Make a root locus plot in the z plane.
(b) Find the value of controller gain that gives a damping coefficient of 0.3.
(c) Find the controller gain that gives 45” of phase margin.
(d) Find the gain that gives a maximum closedloop log modulus of +2 dB.

15.12. Repeat Problem 15.11 for a process with the openloop  transfer function

-s+ 1
GM(s)  = (s + 1)2

15.13. For the process considered in Problem 15.11, generate Nyquist and Bode plots by the
rigorous method and by the approximate method using several values of n.

15.14. A process has the following openloop transfer function relating the controlled and
manipulated variables:

GMcs)  = s

If a zero-order hold is used with sampling period T,, the openloop  pulse transfer func-
tion is

HGM(,,  =
-z+2-b

z - b

Design a sampled-data minimal-prototype digital compensator for step changes in
setpoint  that does not ripple.
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I

15.15. A process has openloop load and manipulated variable transfer functions

GM(s)

The digital compensator that
changes is

C’-TrS e -2T,s
=-

s+ I
G,(s) = s+l

gives minimal-prototype setpoint response for step

Ds(:)  =
z(z - b)

(z2  - l)(l - h)

Determine the closedloop response of the system when this controller is used and a
unit step change in the load input occurs.

15.16. An openloop-unstable, first-order process has the transfer function

G KP
M(s) = ~7,s - 1

A discrete approximation of a PI controller is used.

(a) Sketch a root locus plot for this system. Show the effect of changing the reset
time ~1 from very large to very small values.

(b) Find the maximum value of controller gain (Km,,)  for which the system is
closedloop stable as a general function of r,,  q, and T,.

(c) Calculate the numerical value of K,,,  for the case rO = K,  = q = 1 and T, = _
0.25.

15.17. Design a minimal-prototype sampled-data controller for the pressurized tank process
considered in Problem 15.11 that will bring the pressure up to the setpoint in one
sampling period for a unit step change in setpoint.
(a) Calculate how the manipulated variable changes with time to test for rippling.
(b) Repeat for the case when the controller brings the pressure up to the setpoint in

two sampling periods without rippling.

15.18. Design a minimal-prototype sampled-data controller for a first-order system with a
deadtime  that is three sampling periods. The input is a unit step change in setpoint.

15.19. Design minimal-prototype controllers for step changes in setpoint and load for a pro-
cess that is a pure integrator.

GM(s)
1

=  G(s) =  ;

For setpoint  changes, the process should be brought up to the setpoint in one sampling
period. For load changes, the process should be driven back to its initial steady-state
value in two sampling periods. Calculate the controller outputs for both controllers to
check for rippling.
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15.20, Dmign a minimal-pl-vtvtyp~  aamplcd-data  controller  for a process with an opcnloop
process rtmsf’er  f’uncrion  rhar  is a pure  dca&ime.

GM(.r)  = C’
PT,.v

where k is an integer. Design the controller for a unit step change in setpoint and the
best possible response in the controlled variable.

15.21. A process has the following openloop  transfer function relating the controlled variable
Y and the manipulated variable M.

&J= I

M(S, (s + I ) ’

(a) If a proportional analog controller is used, derive the relationships that show how
the closedloop time constant FL and the closedloop damping coefficient [CL vary
with controller gain K,..

(b) If a proportional digital controller is used with a zero-order hold and sampling
time T,v:
(i) Derive the openloop  pulse transfer function HGMC,,  for any sampling period

and for a specific value of 0.5 minutes.
(ii) Make a root locus plot in the z plane.
(iii) Prove that the ultimate gain is 9.84.

15.22. The output of a process Y is affected by two inputs iI41 and M2 through two transfer
functions G,  and G2.

Y  =  G,M,  +G2M2

where

1
G1  = -

0.2
s + l

a n d  G2 =  ___
5s + 1

Since the transfer function G,  has a smaller time constant and larger gain, we want to
use MI to control Y.
(a) Using a digital proportional controller D1 and zero-order hold with sampling

period T,  = 0.5, find the value of controller gain K, that gives a closedloop
damping coefficient of 0.5.

However,, using manipulated variable Ml is more expensive than using M2 because
M2 is cheaper. Therefore, we want to use a “valve position controller” (VPC), a simple
type of optimizing control, that will slowly change M2 in such a way that only a small
amount of MI is used under steady-state conditions. This is accomplished by using a
second digital controller 02 that has as its “process variable” signal the output signal
from the DI controller (MT)  and has as its setpoint  signal A4rt, which is set at a small
value. The output of the 02 controller (M;)  is sent to a zero-order hold whose output
is M2.
(6) Draw a block diagram of this sampled-data VPC system.
(c) What is the closedloop characteristic equation of the entire system with the DI

controller tuned using the gain determined in part (Al)?
(d) Solve for the roots of the closedloop characteristic equation as functions of the

gain K,  of the 112 controller.
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15.23. A process has an opcnloop  transfer function relating the controlled variable Y and the
manipulated variable  M that is a pure integrator with unity gain.

(u) Sketch root locus plots in the s plane for analog P and PI controllers.
(h) Derive the openloop  pulse transfer function for the sampled-data system if a

zero-order hold is used with a sampling time T,v.
(c) Sketch the root locus plot in the z plane if a proportional sampled-data controller

is used. What value of controller gain gives a critically damped closedloop SYS-
tern? What is the ultimate gain?

(d) Sketch the root locus plot in the z plane if the following sampled-data controller
is used.

Kc?-CV
D(r)  = - -

a! z - l

?Iwhere Q =  ___
71 + Ts

7j = reset time
K, = controller gain

(e) Derive the relationship between the ultimate gain and the parameters T/  and T.y.
( f ) What is the maximum closedloop damping coefficient that can be achieved in this

system? Your result should be an equation that gives &CL  as a function of (Y.  For
the numerical values T/  = 1 and T,y  = 0.2, the maximum closedloop damping
coefficient should be 0.298.

15.24. (a) Make a frequency response Nyquist plot for the pure integrator process with a
proportional sampled-data controller.

(b) Use the Nyquist stability criterion to find the ultimate gain.
(c) What is the phase margin of the system if Kc = l/T,7?

15.25. A pure integrating process with unity gain is controlled by a PI controller with reset
71 = 1 minute.

If the controller is analog, what value of controller gain gives a closedloop damp-
ing coefficient of 0.3?
Now suppose the controller is sampled-data and a zero-order hold is used.

where cx = T,/(T,  + Ts).  Sketch a root locus plot in the z plane.
What values of controller gain give a closedloop damping coefficient of 0.3, and
what is the ultimate gain if the sampling period T,v  = 0.2?
Sketch Nyquist plots of G MCiwjGCCrCO, for the continuous system and of
HGM~;,,)D~;,)  for the sampled-data system.

15.26. A process has the following openloop  transfer function relating controlled and manip-
ulated variables:
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GM(,$)  =  ; =
2

s(lOs + 1)

where time is in minutes.
(a) If a sampled-data proportional controller is used with a zero-order hold and sam-

pling period T,,  derive the openloop  pulse transfer function of the process.
(b) Using a sampling period of 0.5 minutes, show that the openloop  pulse transfer

function is

ffG~(z) =
O.O2459(z  + 0.9835)
(z - l)(z - 0.9512)

(c) Sketch a root locus plot.
(d) Calculate the ultimate gain and ultimate frequency of this sampled-data system.

15.27. Derive an analytical relationship that can be used to calculate the damping coefficient
of a sampled-data system from known values x and y of the real and imaginary parts
of the complex variable z for any location in the z plane. Check your result by showing
that the damping coefficient is 0.3 when z = -0.372 + i0.

15.28. (a) Design a minimal-prototype controller for a pure integrator process with a zero-
order hold and a sampled-data controller that, for step changes in setpoint, brings
the process output up to the setpoint in one sampling period.

(b) If the process has an openloop  transfer relating the output to the load input that
is also a pure integrator with unity gain, find the output of the closedloop system
for a step change in load when the controller derived in part (a) is used.

15.29. A process has the same transfer functions relating the controlled variable to the ma-
nipulated variable and to the load variable:

GM(~) = (k(s)  =
1

(T,lS  + 1)(7&r  + 1)

When a zero-order hold is used in a sampled-data system with Ts = 0.2, ~1 = 1, and
~2 = 5, the pulse transfer function is

ffG~(,,  =
O.O037(z  + 0.923)

(z - 0.8187)(z  - 0.9608)

Design a minimal-prototype sampled-data controller for a step change in load that
will not give rippling.

15.30. A process has the following transfer functions relating load disturbance L and manip-
ulated input M to the controlled variable Y.

Y KMGMcs)  = - = ~
Y KL

M 7,s + 1
GLcs)  = - = ~

L 7,&s+  1

Design a minimal-prototype controller for a unit step change in load such that the max-
imum change in the manipulated variable M cannot exceed some specified maximum
value M,,,  .

Mrnax = RKJKM
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K is a number greater than unity but less than I + 17, where h = c~7~~‘T~1  for sampling
period T,.

15.31. The openloop transfer function of a process is

(a)

(b)
Cc)

(4

(e>

GM(~) =

K e-T.y~v
I’

s

If an analog proportional controller is used, calculate the ultimate gain and ulti-
mate frequency.
If a digital proportional controller and zero-order hold are used, derive HGM(,).
Sketch a root locus plot in the z plane and find the ultimate gain and ultimate
frequency.
Design a minimal-prototype digital compensator for step changes in setpoint.
Sketch the time-domain curves for the output and the manipulated variable.
If a digital compensator is used on this process that has the form

4) =
Kc(z  - ZI>

(2 - PI)

where zi = 1 and pl = 0, sketch a root locus plot in the z plane and calculate
the ultimate gain and ultimate frequency.

15.32. The process considered in Problem 11.45 is now controlled by a digital controller.
(a) Using a zero-order hold in the sampled-data system with sampling period T,

(where D = TX), derive the pulse transfer function of the system.
(b) For a sampling period r, = 1 and the numerical values of parameters given in

Problem 11.46, calculate the ultimate gain and frequency if a proportional digital
compensator is used.

(c) Calculate the value of the gain of a proportional digital compensator that gives a
closedloop damping coefficient of 0.3.

(d) Sketch a Nyquist plot of the sampled-data system.
(e) Design a minimal-prototype digital compensator for a step change in setpoint.
( f ) Sketch time-domain plots of the controlled and manipulated variables.

15.33. The openloop transfer function GMtsJ of a process relating the controlled variable Y(,)
and the manipulated variable MC,,  is a gain K,  (with units of mA/mA  when transmitter
and valve gains are included) and a first-order lag with time constant TV.  A sampled-
data PI feedback controller DC:)  is used with a sampling period T.y.

4) =
&(z  - a)
cy(z  - 1)

where K, = controller gain
a = T,/(T,  + T,)
71 = reset time

(a) What is the closedloop characteristic equation?
(h) If T,  = 0.5 minutes and T/  = I minute, sketch a root locus plot.
(c) Calculate the ultimate gain in terms of a, K,,  T,, and T,,. Calculate a numerical

value for K,, if K,,  = T(, = I.
(d) Calculate the value of controller gain that gives a closedloop damping coefficient

of 0.3.
(e) Sketch a Nyquist plot of HGMciw)D(,w).
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Process Identification

Th de ynamic  relationships discussed thus far in this book have been determined
from mathematical models of the process. Equations based on fundamental physical
and chemical laws were developed to describe the time-dependent behavior of the
system. We assumed that the values of all parameters, such as holdups, reaction
rates, and heat transfer coefficients, were known. Thus, the dynamic behavior was
predicted on essentially a theoretical basis.

For a process already in operation, there is an alternative approach based on ex-
perimental dynamic data obtained from plant tests. The experimental approach is
sometimes used when the process is thought to be too complex to model from first
principles. More often, however, we use it to find the values of some model param-
eters that are unknown. Although many of the parameters can be calculated from
steady-state plant data, some must be found from dynamic tests (e.g., holdups in
nonreactive systems). Additionally, we employ dynamic plant experiments to con-
firm the predictions of a theoretical mathematical model. Verification is a critical
step in a model’s development and application.

In performing plant tests it is important to consider how much the process can
be upset and how long testing can last. In devising tests we need to consider all of
the disturbances and upsets that can potentially occur during the course of the test.

Experimental identification of process dynamics has been an active area of re-
search for many years by workers in several areas of engineering. The literature is
extensive, and entire books have been devoted to the subject. The theoretical aspects
are covered in System Identification, by L. Ljung (1987, Prentice-Hall, Englewood
Cliffs, NJ.) A user-friendly discussion of some of the practical aspects of identifi-
cation is provided by R. C. McFarlane  and D. E. Rivera in “Identification of Dis-
tillation Systems,” Chapter 7 in Practical Distillation Control (1992, Van Nostrand
Reinhold, New York).

Although many techniques have been proposed, we limit our discussion to the
methods that are widely used in the chemical and petroleum industries. Only the
identification of linear transfer function models is discussed. We illustrate the use of
the MATLAB  System Identification Toolbox.

545
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16.1
FUNDAMENTAL CONCEPTS

16.1.1 Control-Relevant Identification

Whenever we want to identify a model of the process, we have to specify how we will
use the information. In this book we are interested in control, so we want to obtain
good models for designing controllers. To design feedback controllers, a model must
be accurate over the frequency range near the (- 1,O) point. Its fidelity at higher or
lower frequencies is not important. This means that an accurate value of the steady-
state gain (the o = 0 point) is not required.

Figure 16.1 illustrates the point. Suppose we have two models of a process,
model A and model B, and we know exactly what the true transfer function of the
process is. The step responses of the alternative models are compared with the re-
sponse of the real process in Fig. 16. la. Model A fits the real plant well near the final
steady state, but its fidelity is poor during the initial part of the transient. Model B is
just the opposite. Which model is better for use in designing a feedback controller?

Figure 16. lb gives the Nyquist plots of the plant and the two models. The model
B curve is closer than the model A curve to the real process curve over the frequency
range near the (- 1,O) point. Therefore, model B should be used for feedback con-
troller design.

However, for feedforward controller design, model A should be used because
having the correct steady-state gain is more important in feedforward control than
the correct dynamics.

Process
- - - - - - -  ModelA

Model B

* ReG

(b)
FIGURE 16.1
Control-relevant models.
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16.1.2 Frequency Content of the Input Signal

Identification requires that the process be disturbed by some input signal. If the input
signal has little frequency content (small magnitude) over some frequency range, the
accuracy of the identified model is poor. This is because we are obtaining a transfer
function that is a ratio of functions.

(16.1)

If the input U does not provide enough excitation of the process over the important
frequency range, the model fidelity is poor, particularly in processes with appreciable
noise. This is why direct sine wave testing at a frequency near the ultimate frequency
and relay feedback testing are such useful methods.

; 16.1.3 Model Order

Part of the identification problem is to determine the “best” order of the model. The
higher the order, the more parameters there are to identify and the more difficult the
estimation problem becomes. A “parsimonious” model (one with few parameters) is
the easiest to identify. A large number of parameters gives high variance (a measure
of the difference between the model predictions and the actual plant) and a poorly
conditioned estimation problem (the matrix to be inverted in the numerical solution
technique is nearly singular). These difficulties can be overcome by using a large
number of data points, but this increases the duration of the plant testing, which is
undesirable because it increases the likelihood of the plant being disturbed by other
events.

A common way to determine the best model order is to use “model validation.”
The experimental data are separated into two sets. A specific number of parameters is
assumed. The first set is used in the numerical calculations to identify a model. Then
the predictions of this model are compared with the actual data from the second set
(the variance is calculated). A different model order is assumed and the procedure is
repeated. A plot of the variance of the model in the prediction of the second set of data
versus the number of parameters is usually a curve that goes through a minimum.
This is the best model order.

16.2
DIRECT METHODS

16.2.1 Time-Domain Fitting of Step Test Data

The most direct way of obtaining an empirical linear dynamic model of a process is
to find the parameters (deadtime, time constant, and damping coefficient) that fit the
experimentally obtained step response data. The process being identified is usually
openloop, but experimental testing of closedloop systems is also possible.
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FIGURE 16.2
Step response.

We put in a step disturbance qt) and record the output variable ycr) as a function
of time, as illustrated in Fig. 16.2. The quick-and-dirty engineering approach is to
simply look at the shape of the y(,)  curve and find some approximate transfer function
GQ)  that would give the same type of step response.

Probably 80 percent of all chemical engineering openloop  processes can be mod-
eled by a gain, a deadtime, and one lag.

( 16.2)

The steady-state gain K,, is easily obtained from the ratio of the final steady-state
-I--  . .I 1 * .I . I. .I i-- ma I I.
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easily read from the y(,)  curve. The time constant can be estimated from the time it
takes the output y(l)  to reach 62.3 percent of the final steady-state change.

Closedloop processes are usually tuned to be somewhat underdamped, so a
second-order underdamped model must be used.

e-DS

G(.d =  KP72S2 +  Z7C8 +  1 (16.3)

As shown in Fig. 16.2, the steady-state gain and deadtime  are obtained in the same
way as with a first-order model. The damping coefficient 5 can be calculated from
the “peak overshoot ratio,” POR (see Problem 2.7),  using Eq. (16.4).

POR  = e-m’o’+ (16.4)

A
where POR =

Y(r,) - AY
-
AY

(16.5)

4 = arccosl VW,

Aytt,)  = change in ytt)  at the peak overshoot
t, = time to reach the peak overshoot (excluding the deadtime)

Then the time constant 7 can be calculated from Eq. (16.7).

tR n-4-=
7 sin 4

(16.7)

where tR is the time it takes the output to reach the final steady-state value for the
first time (see Fig. 16.2).

These “eyeball” estimation methods are simple and easy to use. They can pro-
vide a rough model that is adequate for many engineering purposes. For example,
an approximate model can be used to get preliminary values for controller settings.

However, these crude methods cannot provide a precise, higher-order model,
and they are quite sensitive to nonlinearity. Most chemical engineering processes are
fairly nonlinear. A step test drives the process away from the initial steady state, and
the values of the parameters of a linear transfer function model may be significantly
in error. If the magnitude of the step change could be made very small (sometimes
as small as lop4 to lop6 percent of the normal value of the input), nonlinearity
would not be a problem. But in most plant situations, such small changes give output
responses that cannot be seen because of the normal noise in the signals. Thus, step

n
0

n

testing has definite limitations for plant studies.

16.2.2 Direct Sine Wave Testing

l-

2

e
e

The next level of dynamic testing is with direct sine waves. The input of the plant,
which is usually a control valve position or a flow controller setpoint, is varied si-
nusoidally at a fixed frequency o.  After waiting for all transients to die out and for -
a steady oscillation in the output to be established, the amplitude ratio and phase
angle are found by recording input and output data. The data point at this frequency
is plotted on a Nyquist, Bode, or Nichols plot. See Fig. 16.3~~.  Then the frequency
is changed to another value, and a new amplitude ratio and a new phase angle are
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FIGURE 16.3
Fitting an approximate transfer function to experimental frequency response
data.

determined. Thus, the complete frequency response curve is found experimentally
by varying frequency over the range of interest. Once the Gtiw)  curves have been
found, they can be used directly to examine the dynamics and stability of the system
or to design controllers in the frequency domain (see Chapter 11).

If a transfer function model is desired, approximate transfer functions can be fit
to the experimental Gci,) curves. First the log modulus Bode plot is used. The low-
frequency asymptote gives the steady-state gain. The time constants can be found
from the breakpoint frequency and the slope of the high-frequency asymptote. The
damping coefficient can be found from the resonant peak.

Once the log modulus curve has been adequately fitted by an approximate trans-
fer function G&,, the phase angle of Cc,, is compared with the experimental phase
angle curve. The difference is usually the contribution of deadtime. The procedure
is illustrated in Fig. 16.30.
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FIGURE 16.3 (CONTINUED)
Fitting an approximate transfer function to experimental frequency response
data.

It is usually important to get an accurate fit of the model frequency response to
the experimental frequency response near the critical region where the phase angle
is between - 135” and - 180”. It doesn’t matter how well or how poorly the approx-
imate transfer function fits the data once the phase angle has dropped below - 180”.
So the fitting of the approximate transfer function should weight heavily the differ-
ences between the model and the data over this frequency range.

Direct sine wave testing is an extremely useful way to obtain precise dynamic
data. Damping coefficients, time constants, and system order can all be quite accu-
rately found. Direct sine wave testing is particularly useful for processes with signals
that are noisy. Since you are putting in a sine wave signal with a known frequency
and the output signal has this same frequency, you can easily filter out all of the
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noise signals at other frequencies and obtain an output signal with a much higher
signal-to-noise ratio.

The main disadvantage of direct sine wave testing is that it can be very time
consuming when applied to typical chemical process equipment with large time con-
stants. The steady-state oscillation must be established at each value of frequency. It
can take days to generate the complete frequency response curves of a slow process.
While the test is being conducted over this long period of time, other disturbances and
changes in operating conditions can occur and affect the results of the test. Therefore,
direct sine wave testing is only rarely used to get the complete frequency response.
However, it can be very useful for obtaining accurate data at one or two important
frequencies. For example, it can be used to get amplitude and phase angle data near
the critical - 180” point.

16.3
PULSE TESTING

One useful and practical method for obtaining experimental dynamic data from
many chemical engineering processes is pulse testing. It yields reasonably accu-
rate frequency response curves and requires only a fraction of the time that direct
sine wave testing takes.

An input pulse ~(~1  of fairly arbitrary shape is put into the process. This pulse
starts and ends at the same value and is often just a square pulse (i.e., a step up
at time zero and a step back to the original value at a later time tu).  See Fig. 16.4.
The response of the output is recorded. It typically returns eventually to its original
steady-state values. If y(,)  and ~(~1  are perturbations from steady state, they start and
end at zero.

The input and output functions are then Fourier transformed and divided to give
the system transfer function in the frequency domain Gti,,.  These calculations can
be done using the spa function in MATLAB.  The vectors of input values (u) and
output values (y) are combined into the vector z.

z=lj, ul;

FIGURE 16.4
Pulse lest input and output cLIrves.
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The sampling time (rs)  and the frequency range of interest (w) are defined; for exam-
ple: w = 10.  l:O.O/: /O/; Then SIXI is used to get the frequency response. The simple
version is

g = spa(z);

We have found that using the default values for the arguments in the spa function
often gives poor results, so the full version is recommended.

g=.spfl(z,M,w,[],t.s);

The (/ is a default value for the fourth parameter. The M parameter should be varied
by starting with M = total number of data points and reducing it until reasonable
results are obtained. For noise-free pulse test data, setting M equal to the number of
data points works well. As the noise level increases, M should be reduced.

Bode plots can be generated by calculating the magnitude ratios and phase an-
gles of G by using the get&f  command.

[w,mag,phase]  = getff((s);

In theory, only one pulse input is required to generate the entire frequency re-
sponse curve. In practice, several pulses are usually needed to establish the required
size and duration of the input pulse. We need to keep the width of the pulse fairly
small to prevent its “frequency content” from becoming too low at higher frequen-
cies. A good rule of thumb, is to keep the width of the pulse less than about half the
smallest time constant of interest. If the dynamics of the process are completely un-
known, it takes a few trials to establish a reasonable pulse width. If the width of the
pulse is too small for a given pulse height, the system is disturbed very little, and
it becomes difficult to separate the real output signal from noise and experimental
error. The height of the pulse can be increased to “kick” the process more, but there
is a limit here also.

We want to obtain an experimental linear dynamic model of the system in the
form of Gtiw).  It must be a linear model since the notion of a transfer function applies
only to a linear system. The process is usually nonlinear, and we are obtaining a
model that is linearized around the steady-state operation level. If the height of the
pulse is too high, we may drive the process out of the linear range. Therefore, pulses
of various heights should be tried. It is also a good idea to make both positive and
negative pulses in the input (increase and decrease). The computed G(iwj’~  should
be identical if the region of linearity is not exceeded. For highly nonlinear processes,
this is difficult to do. Therefore, pulse testing does not work very well with highly
nonlinear processes.

Pulse testing also has problems in situations where load disturbances occur at
the same time as the pulse is occurring. These other disturbances can affect the shape
of the output response and produce poor results. The output of the process may not
return to its original value because of load disturbances. We are trying to extract a
lot of information from one pulse test, i.e., the whole frequency response curve. This
is asking a lot from one experiment.
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16.4
RELAY FEEDBACK ItiENTIFICATiON

If the purpose of our identification is to obtain information for feedback controller
design, we really need data only in the frequency range where the phase angle ap-
proaches - 180”. For example, we might use the ultimate frequency o,, and the ul-
timate gain K, to calculate the Ziegler-Nichols or Tyreus-Luyben settings. In many
situations what we need is not an accurate frequency response curve over the entire
frequency range, but only the ultimate gain and ultimate frequency.

16.4.1 Autotuning

Astrom and Hagglund (Proceedings of the 1983 IFAC Conference, San Francisco)
suggested an “autotune” procedure that is a very attractive technique for determining
the ultimate frequency and ultimate gain. We call this method ATV, for “autotune
variation.” The acronym also stands for “all-terrain vehicle” which makes it easy to
remember and is not completely inappropriate since ATV does provide a useful tool
for the rough and rocky road of process identification.

ATV is illustrated in Fig. 16.5. A relay of height h is inserted as a feedback
controller. The manipulated variable m is increased by h above the steady-state value.
When the controlled variable y crosses the setpoint, the relay reduces m to a value
h below the steady-state value. The system responds to this “bang-bang” control by
producing a limit cycle, provided the system phase angle drops below - 180°,  which
is true for all real processes.

The period of the limit cycle is the ultimate period (P,) for the transfer function
relating the controlled variable y and the manipulated variable m.  So the ultimate
frequency is

The ultimate gain of the same transfer function is given by

K =!!u
an-

(16.9)

where h = height of the relay
a = amplitude of the primary harmonic of the output y

It should be noted that Eqs. (16.8) and (16.9) give approximate values for w,, and
K,, because the relay feedback introduces a nonlinearity into the system. However,
for most systems, the approximation is close enough for engineering purposes.

Astrom’s autotune method has several distinct advantages over openloop  pulse
testing:

1. There is no need for a priori knowledge of the system time constants. The method
automatically results in a sustained oscillation at the critical frequency of the
process. The only parameter that has to be specified is the height ol‘.the  relay
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step. This would typically be set at 5 to 10 percent of the manipulated variable
range.

2. ATV is a closedloop test, so the process will not drift away from the setpoint. This
keeps the process in the linear region where we are trying to get transfer functions.
This is precisely why the method works well on highly nonlinear processes. The
process is never pushed very far away from the steady-state conditions.

3. Accurate information is obtained around the important frequency, i.e., near phase
angles of - 180”. In contrast, pulse testing tries to extract information for a range
of frequencies. It is inherently less accurate than a method that concentrates on
a specific frequency. Remember, however, that we do not have to specify the
frequency. The relay feedback automatically finds it.

16.4.2 Approximate Transfer Functions

Once the relay feedback test has been. performed and the ultimate gain and ulti-
mate frequency have been determined, we may simply use the results to calculate
controller setting. Alternatively, it is possible to use this information to calculate ap-
proximate transfer functions. The idea is to pick a very simple form for the transfer
function and find  the parameter values that fit the ATV results.
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These simple approximate transfer function models are particularly useful in
multivariable systems. For example, to use the BLT method discussed in Chap-
ter 13, we need all the N X N transfer functions relating the N inputs to the N out-
puts. The ATV method provides a quick and fairly accurate way to obtain all these .
transfer functions.

The simplest possible form for a transfer function is a gain, an integrator, and a
deadtime. We have used this model with good success on a variety of processes. It
works well for feedback controller design because it does a good job in fitting the
important frequency range near the (- 1,O) point.

G(s)  = K,:D’ (16.10)

From the autotune test, the frequency (cc,,,), the argument of G(iw,  at this frequency
(--7~  radians), and the magnitude of Gtiw,  (= l/K,) are known. From Eq. (I 6.10)

I I
1  KP

G(iw,  = K = o,
u

EXAMPLE 16.1. Suppose an ATV test gives the
rad/min.  Equation (16.11) is solved for D, and Eq.

D=&
II

K, zz F
I(

- Dco, (16.11)

(16.12)

results Ku  = 5.05 and w, = 0.542
(16.12) is solved for K,.

(16.13)

(16.14)

For the example, D = 2.90 minutes and Kp = 0.107. The approximate transfer func-
tion is

G( )
s

= 0. 107e-2.9”

s

Let us emphasize once again that the important feature of the ATV method is to
give transfer function models that fit the frequency response data very well near the
ultimate frequency, which determines closedloop stability.

16.5
LEAST-SQUARES METHODS

Instead of converting the step or pulse responses of a system to frequency response
curves, it is fairly easy to use classical least-squares methods to solve for the “best”
values of model parameters that fit the time-domain data. Any type of input forcing
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ample is a heat exchanger in which the manipulated variable is steam flow rate and
the output variable is the temperature of the process stream leaving the exchanger.

A very popular sequence of inputs is the “pseudo-random binary sequence”
(PRBS), which is illustrated in Fig. 16.6. It is easy to generate and has some at-
tractive statistical properties (see System Identification for Self-Adaptive Control,
by W. D. T. Davies, 1970, Wiley-Interscience, London).

Whatever the form of the input, the basic idea is to use a difference equation
model for the process in which the current output yn is related to previous values of
the output (y,-1,  ~~-2,  . . .) and present and past values of the input (u,,  u,-1,  . . .). In
the simple model structures, the relationship is linear, so classical least-squares can
be used to solve for the best values of the unknown coefficients. These difference
equation models occur naturally in sampled-data systems (see Chapter 15) and can
be easily converted to Laplace-domain transfer function models.

For example, consider a process with a continuous transfer function

Y(s) _ KpeeDS- -
U(s)

G(s)  = T(,S  + 1
(16.15)

The pulse transfer function of this process with a zero-order hold is [see Chapter 14,
Eq. (14.93)]

Y(z) _ K,U - b) K,,( 1 - h)z-’- -
U/(Z)

f-Q,,  = ~~ = -
z”k(z  - h) $( I - hz-‘) =

z-““(bo  + hi+)  (16  16)

1 +a,z-’ .
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where nk = D/T,
T, = sampling period
b = exp(-T,/T,)

b. = 0
b, = K,(l  - b)
al =  - b

The discrete transfer function has three parameters that need to be identified: nk, 61,
and al. Of course, if we are identifying an unknown plant, we do not know what
the real order of the systems is. A crucial part of the identification problem is the
determination of what model structure yields the best fit to the real plant. In addition
to finding the deadtime  (nk), we must find the number of a&  terms (na) and the
number of bk terms (nb) to use in the model.

A process with two lags in series has the continuous transfer function

G(s)  =
KpemDS

(71s  + l)(QS + 1)
(16.17)

The discrete transfer function with a zero-order hold is [see Chapter 15, Eq. (15.21)
for the definitions of ao,  ~1,  ~1, and p2 in terms of 71,  r2,  and T,]

ffG(z,  =
Z -nkKpao(z  - ~1)  = zmnkKpaO(zel  - z1zv2)
(z  - Pl>(Z  - P2) 1 - (p1 +  p2)z-l  +  PlP2z-2 (16.18)
zPk(b,z-’  + b2z-2)=
1 + alz-*  + a2zm2

where bo = 0
bl = Kpao
b2 = -KpaOzl
al = -(PI  + p2)

a2 = ~1~2

Now there are five parameters to identify: nk, bl, b2,  al, and a2.
Let us assume a model of the general form

7n = blu,-1  + b2Un-2  + * * * + bnbUn-,b

- alYn--1  - a2yn-2  - ” * - GaYn-na

(16.19)

where J?n = the predicted value of the current output of the process. The unknown pa-
rameters are bl, . . . , bnb,  al, a2,  . . . , ana. In the identification literature, models such
as Eq. (16.19) are usually written .

Y(f)  =
4z)
-U(r-nk)
A(z)

(16.20)

where the deadtime  (D = nkT,) is factored out. Other types of models are often
used in which disturbances and noise are included in the equations. These require
other numerical solution methods, which are available in the MATLAB  Identification
Toolbox, as illustrated in the next section.
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It is convenient to define a vector 8 that contains these unknow~r  tlarameters.-

S=[b, b2  . . . (16.21)

There are trrb  + rta)  unknown parameters. Let us define NC as this  total.  So the
vector has NC ro\vs.

Son- suppose we have NP  data points that give values of the oult~ut  .VII for known
values  of ?‘n- 1,  ?‘r:-2,  . . . , yn-N, u,, u,+ . . . , u,+,,. The data could he grouped as
sho\vn:

?‘a
values

Yn-1
\-al ues . . .

Yn-N USI
values values

un-M
values

1 \-. c \‘I n-l Yl.n-N Ul.n Ul.rt-I Ul,P+l.
2 ? : r !‘z.n- I Y2.eN U2.rr u2.w  I U2.wM

!VP ?'VPvI YNPA-N uNP.n UN/‘,,,  I llNP,n-hl
._..-

Our objecti\-s  is to minimize the sum of the squares  of the dil’li:rcnceS  between
the actual  measured data points (yi ,J and those predicted  by our  tidal  equation
(7i.n  1.

i = l

(16.22)

This is  a least-squares  problem that is solved by taking partial deriv:l~ives  Of J with
respect  to each of the unknown parameters (the NC elements of the’0 vector) and
settin,o  these  ParGal  derivatives equal to zero. This gives NC equations in NC un-
knoLxn<.  The solution is compactly written in matrix form:

g = @Tg-‘~TY (16.23)
-

whcrt th? --I  matrix (with NP rows and NC columns) and the y vector (with NP
rows ) are d~finsd  to represent the data points

?‘l.n-  1 Y1,n-2  . . ’ yl,n-N ul,rt  I.. L1l.n  M

.-I =
!“.r1-  1 Y2,n-2  ‘-  * y2,n-N  u2.n  . . . m,tr  M (16.24)= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *..

“.vP,n- 1 . . . ~~Nl’,/r  M I_-

” = hl  y2.n  y3.n  . . . y2,NplTL

S=~-SKL~  s~rnrnsrcial  software packages are available that make iI easy to Perform
this 11-x  ?f idsnrincation. We illustrate the use of MATLAB  in lhc  rrcxt  Section.- -

0~2 importxrt  comment should be made at this point.  These Icasl-squares  meth-
ods ~‘trg  ;t;rin $ 01s  best fit in the time domain, and they tend to give lnodels  that are
mar- 2‘c -‘-xxtt  li’i !a\?.  frequencies than near the ultimate frequcucy. soI you should be
car??~~!~:~  J our  r=<ring  to make sure that your input  signal has ;1 sigtriticant frequency
co”:>---  .-a.LL . . . .__ .:I-  rhcz  slrimate  frequency.



16.6
USE OF THE MATLAB  IDENTIFICATION TOOLBOX

We illustrate some of the simple MATLAB  identification tools in this section. Ta-
ble 16.1 gives a MATLAB  program that analyzes some real experimental data from
a tube-in-shell heat exchanger in the Interdisciplinary Controls Laboratory at Lehigh
University. The output variable (y) is the temperature of the hot water leaving the
heat exchanger (in degrees centigrade). The input variable (u) is the signal to the
cold-water control valve (in percent of scale). The input test signal is a PRBS varia-
tion of the signal to the control valve. Figure 16.6 shows the raw experimental data.
There are a total of 135 1 data points. The sampling period is 2 seconds.

In the program in Table 16.1, the data are “detrended” (the mean is subtracted
from each data point), and the spa function is used to calculate the frequency re-
sponse of the transfer function relating y and u.  Figure 16.7 gives results. The pa-
rameter A4 is set equal to 300.

Then a parametric mode1 is calculated from the data by using the arx command
to fit a first-order model to the data. The detrended input and output data are com-
bined in z:

z=[--y  u];

The negative sign is used on y since the steady-state gain is negative for this pro-
cess (an increase in cold-water flow causes a decrease in exit hot-water temperature).
From step test data of the process, the deadtime  is estimated to be 16 seconds. There-
fore a value of nk = 8 is assumed. Various other values of nk can be explored to find
the one that gives the minimum variance.

A first-order model is assumed, so na  and nb are both set equal to 1. The
command th = arx[z,[na nb nk]); calculates the values of bt = 0.00 16 and at =
-0.953. The variance is given in the th matrix of results in the (1, 1) element
(0.0022). Choosing values of nk greater or less than 8 gives larger variances. The
time constant and steady-state gain can be calculated from the al and bt values:
70 = 113 seconds and K, = -O.O779”C/%. These results are similar to those
found by fitting a first-order model to step test data from the process.

G(s)  =
-0.0779e-‘6S

113s + 1
(16.26)

The frequency response of this first-order mode1 is compared in Fig. 16.7 with that
calculated directly from the data. The last part of the program in Table 16.1 calculates
the predicted output of the process ycalc by feeding the actual input values into the
model. The mode1 predictions are compared with the actual experimental data in
Fig. 16.8.

If a second-order mode1 is used, the parameters na and nb are changed to 2. The
variance is reduced to 0.0019. Parameter values are

al = -0.6739
a2 = -0.3077
6, = -0.03051
b2 = 0.0025
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Use of MATLAB identification toolbox

O/o Progrum  “prhstes1.m  ” to use matlab  functions on prbs data
loud prbs3.dut
o/ Read variables
t=prbs3(:,  I);
temp=prbs3(:,2);
cw=prbs3(:,9);
O/o Initiulize  time
t=t-t(l);
O/o  Plot raw data
elf
subplot(211)
plot(t,  temp)
grid
title(  ‘Heat Exchanger Experimentul  Data (2/24/9.5)‘)
xlubel(  ‘Time (seconds) ‘)
ylabel(  ‘Temperature (C) ‘)
subplot(2  12)
plot(t,cw)
grid
xlabel(  ‘Time (seconds)‘)
ylabel(  ‘Controller Output (70)‘)
pause
% Detrend data
y=detrend(temp);
u=detrend(cw);
70
% Dejne  vector z
% Use negative y because transfer function gain is negative
z.=[-y  u];
70
% Set frequency
w=[0.001:0.001:0.15];
010

% Calculate frequency response from data
70
nu=length(u);
ts=2;
g=spa(z,300,w,tl,ts);
(w,mag,phasel=getff(g);
db=20*loglO(mug);
70

O/o Get first-order model
IlU=l;
nb= I;
nk=8;
z=[-y 111;

th=urx(z,[nn  nb nk]);
ls=2;
&=sett(th,  ts);



502 PAW  IWE:  Sampled-Data Systems

‘~‘Alll,lC 1 6 . 1  ( C O N T I N U E D )

1 lsc of MATLAB identification toolbox

‘5,  i’iot Bode plot
,iI~=2O*iogIO(mug),~
ril~rtrr~tl~~l=20*log10(n~agmodel);
J/’
.vlrl~i,iol(2l/)
.~c.ttriio,sx(w,cib,  ‘- ‘,  w,dbmodel,  ‘- - ‘)
ti~lc>(  ‘Frequency Response ‘)
,q  rid
i~*gc~ri(  ‘Data (M=300,  D= I6 set) ‘,  ‘First-Order Model’)
\ itri~i(  ‘Frequency (radians/set) ‘)
\~ltrbcd(  *Log Modulus (dB)  ‘)
rrrl~i’lot(2l2)
.\,(,trriioS.\‘(w,phase,  ‘- ‘,  w,phasemodel,  ‘- - ‘)
$ rid
I~~~c~ci(  ‘Data ‘,  ‘Model ‘)
&d~i(  ‘Frequency (&dians/sec)  ‘)
~ltrl~i(  ‘Phase Angle (degrees) ‘)
plus”
r~trritrncr~=th(  I, I)
,t+th(2.  I)
,11=111(3.  I)

~~i=th(Z.na+1)
[WLW
ttluo= - ts/log(-al)
&hi/(  I +al)
~“llL\‘P
(‘1.‘C
k’k  t&&xlate  model using +y to get correct sign in  gain
:=I.\,  111:
.9I=tlr\-(:.(na  nb nk]);
1.c  = 2 :
:il=.sc’ff(  rh,ts);
.‘i,

k’(,  (‘~llcxlare time response of model with input u
~~.~l(c.=ir(.~inl(u,th);

.:‘jc  ,I(  I..\:  . - ‘, t,ycalc,  ‘ - - ‘)

i’i’C mi(  ‘Data  I,  ‘Model ‘)
:::!Q  ‘IIllta  versus First-Order Model Predictions (D= I6 sec.) ‘)
::,:hd(  ‘Time  (seconds) ‘)
L!'.:ik.l(  'olrtpllt')

_I ?.l‘!
:
- -
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Figures 16.9 and 16.10 give frequency response and time-domain results for the
second-order model.

Using the MATLAB  Identification Toolbox and PRBS test signals is much more
complex than using simple step tests or relay feedback tests. Much more data are
required and the analysis is more difficult. However, the PRBS method is probably
better in situations where the’signals from the process are heavily corrupted by noise
that cannot be simply filtered out.

16.7
CONCLUSION

This chapter has illustrated several identification methods that are used to determine
dynamic parameters or models from experimental plant data. The simple and effec-
tive relay feedback test is a powerful tool for practical identification if the objective
is the design of feedback controllers. The more complex and elegant statistical meth-
ods are currently popular with the theoreticians, but they require a very large amount
of data (long test periods) and their effective use requires a high level of technical
expertise. It is very easy to get completely inaccurate results from these sophisti-
cated tests if the user is not aware of all the potential pitfalls (both fundamental and
numerical).

It is almost never possible to take a huge quantity of data from the plant historian
files and gain any understanding of how the process works, either at steady state or
dynamically. Deliberate and well-conceived plant tests are usually required to gain
useful information.

We strongly recommend the use of the simplest method that does the job. In most
applications the tool of choice is the relay feedback test (ATV). It is quick, simple,
and accurate, and it works to accomplish its goal. What more could be asked of a
practical tool?

PROBLEMS

16.1 Using the simulation program given in Appendix A for the three-heated-tank process
and a relay feedback test, determine the ultimate gain and ultimate frequency for the
loop in which the temperature in the third tank T3  is controlled by manipulating the heat
input to the first tank Q,. Compare these results with the theoretical values obtained in
Example 8.8.

16.2 Perform a step test on the three-heated-lank process and fit a first-order lag plus dead-
time model to the response curve. Calculate the ultimate gain and the ultimate frequency
from the transfer function and compare with the results from Problem 16.1.

16.3 The following frequency response data were obtained from direct sine wave tests of a
chemical plant. Fit an approximate transfer function GcS,  to these data.
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Frequency Real
(rad/min) part

Imaginary Log modulus
part (W Phase angle ( o )

0.01 6.964 -0.522 16.88 -4.2
0.02 6.859 - 1.028 16.82 -8.5
0.04 6.467 - 1.942 16.59 - 16.7
0.08 5.254 -3.202 15.78 -31.3
0.10 4.568 -3.554 15.25 -37.9
0.20 2.096 -3.673 12.52 -60.2
0.40 0.324 -2.741 8.82 -83.2
0.63 -0.557 -2.234 7.49 -103
0.80 - 1.462 - 2.083 8.11 -125
1.00 -2.472 -0.104 7.87 -177
1.41 -0.282 0.547 -4.21 -243
2.00 -0.021 0.160 - 15.81 -262
4.00 0.004 0.016 -35.5 -285
8.00 0.001 0.001 -53.9 -312

16.4 Disturb the three-heated-tank process with a PRBS input. Use the MATLAB Identifi-
cation Toolbox to identify several alternative models, ranging from first to third order.
Compare the ultimate frequencies and ultimate gains calculated from these models with
the values obtained in Problem 16.1.

16.5 Simulate several first-order lag plus deadtime  processes on a digital computer with a
relay feedback. Compare the ultimate gains and frequencies obtained by the autotune
method with the real values of w, and K, obtained from the transfer functions.



APPENDIX A

TABLE A.1

c Program “tc3.f”
c
c P temperature control of three heated tanks in series

dimension t(3)
real kc(3)
dimension dt(3)
dimension tp(2000),  tlp(3,2000),  t2p(3,2000),  t3p(3,2000)
dimension qlp(3,2000)
open(‘/,,file=  ‘templ.dat’)
open(&file=  ‘temp2.dat’)
open(9,jle= ‘temp3.dat’)
data delta,tstop/OOl,l./
data to, f,VO.,  1 OOO./
da ta  k&.,4.,8./
data dtprint,dtplot/O.05,.01/

c Make three runs with different controller settings
do 1000 nc=1,3
time=O.
tprint=O.
tplot=O.
np=O
do IO ntank=I,3

10 t(ntank)=1.50.
c controller calculation to get Ql
c All control signals are in 4-20 milliamperes

100 continue
pv=4.+(t(3)-50.)*16./200.
ij{pv.gt.2O.)pv=20.
if(pv.lt.4.)pv=4.
e=li.  -pv
co=7.6+kc(nc)*e



-

if(co.gt.2O.)co=20.
if(co.It.4.)co=4.
qI=(co-4.)*lO.e06/16.

c print and store for plotting
if(time.lt.  tprint)go  to 30
write(6,2l)time,t,ql*I.e-06

21  format(  ‘ time= ‘,f6.2,  ’ t= ‘.3f/.2.  ’ ql= ‘$7.2)
tprint=tprint+dtprint

30 if(time.lt.tplot)go  to 40
np=np+l
tp(np)=time
tlp(nc,np)=t(l)
t2p(nc,np)=t(2)
t3p(nc,np)=t(3)
qlp(nc,np)=q1/1000000.
tplot=tplot+dtplot

40 continue
c evaluate all derivatives

dt(l)=f*(to-t(I))/lOO.+  q1/(100.*50.*0.75)
do 50 ntank=2,3

50 dt(ntank)=f*(t(ntank-I)-t(ntank))/lOO.
c integrate ala Euler

time=time+delta
do 60 ntank=1,3

60 t(ntank)=t(ntank)+dt(ntank)*delta
if(time.It.  tstop)go  to 100

c change controller settings
1000  continue

c store data for plotting using MATLAB
do 110 j=l,np
write(Z ~~~)tP(j),t~p(~,j),t2p~I,j),t3p(l,j),glp(l,j)
write@,  lll)tlp(2,j),t2p(2,j),t3p~2,j~,qlp(2J)

110 writet9,lll~tlp(3J),t2p(3J),t3p(3J),qlp(3,j)
111 format(7(IxJ7.3))

stop
end
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TA II I, E: A.Z

c P tempertrtrrw  uJntro[  of  ollc  heated tank with deadtime
real Ix(.j),udeud
dimerrsio~~ tp(2000),  tIp(3,2OOO),q/p(3,2000),  t Idead(  1000)
ope,l(  7.,/il(~=  ‘temp  I.dat ‘)
open(S.~il(*=  ‘temp2.dat’)
open(  Y.,/ih~=  ‘temp3.dat  ‘)
data ric~l1tr,1.stcJp~0001,0.25/
data  to,~j?O.,  iOOO./
data k&.,4.,8./
duta  c~t~~rint,dtplot/O.OS,.OI/

c Disturbance is dr(Jp  in To from 90 to 70
to = 70.

c Make three runs with difSerent controller settings
do 1000 nc=l,S
tiJne=O.
tprint=O.
tplot=O.
np=o
tl=  i50.

c Initialize tldcud  array
dead=O. 0 /
ndead=dead/delta
iflndeud.;:t.999)then

writct6,a)’  ndead too big’
StCJ[J

end{/
do 5 j=l,ndead

5 tldead(j)=fl
c controller cuLcuLation  to get Ql
c All control .signuls  are in 4-20 milliamperes

100 continue
p\.=4.  +(t ldead(ndead)-50.)*16./200.
if(pv.~t.2O.)pv=20.
lypv.lI.4.)f?v=4.
e= 12.  -~ ~JV
co=7./,+kc(nc)*e
1~co.f$2O.)C.o=20,
l~~co.lt.4.)co=4.
q/ =((:I/ 4.)*10.e06/16.

c print arzd  ~t//rc?  .ftir  plotting
[irlitne.it.ljJrint)go  to 30
~.rite(f,,2/)time,tl,ql*l.e-0.6

21 jhnnutl'  lime=‘,f6.2.  ‘ tl=  ‘$7.2,  ‘ ql=‘,_jf7.2)
rprint=tprint+dtprint

30  (? IifW./l.I~JkJt)gO  (0 40

n,3  =np + J

r.Fi  fl,J  J  =  [ltflcL’

r.‘~~ln~.,np/=tl
L; .;,,rJnf  r//J)  =q l/I  000000.
iTI:%t=  rphf  tdrpfor

- -
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TABLE A .2  (CONTINIED)

4 0  c o n t i n u e

c evoluute  derivatives
dtI=f*(to-tI)/IOO.+ ql/tl!UI.*.50.*0.7-5)

c integrate alu  Euler
time=time+delm
tl=tl+dtl*delta

c*********************r
c Deadtime  shift

do SO j=l,ndead
50 tldead(ndead+l -j,=tldeabndead-j,

tldead(l)=tl
c**********************

if(time.lt.tstop)go  fo 100
c change controller settings

1000 continue
c store data for plotting ltsing  M-ITLAB

do I10 j=l.np
write(7,Ill)tp(j),rlp(I,j),ql~~  1.j)
write(8,Ill)tlp(2,j),qlp(2,jr

110 write (9, Ill)tlp(3J),qlp(3.j~
111 format(3(Ix,j7.3))

stop
end



APPENDIX A 57  1

NONLINEAR MODEL

The equations describing the rzth  jacketed, constant holdup. nonisothermal CSTR
are

where F = flow  rate (lb-mol hr-I) = 100
Zfl = composition in 12th  stage (mole fraction A)
ko = preexponential factor (hr-‘)
E = activation energy (Btu lb-mol-‘)  = 30,000
R = 1.99 Btu lb-mol-’  OR-’

T, = reactor temperature (OF)  = 140 at steady state

where T,*  = temperature of nth reactor (OF)
h = heat of reaction (Btu (lb-mol of A)-‘)  = 3(),()()()

M = molecular weight (lb lb-mol-’  ) = 50
U = overall heat-transfer coefficient (Btu h-’ “F- ’ 1’1  ‘)

AH,~ = heat-transfer area through reactor wall (ft2)  = fll)lrL~
D,, = reactor diameter (ft)
L, = reactor height (ft) = 20,,

TJ,, = temperature in cooling jacket of rzth  reactor (Vt”)

dT./n- =
dt

where FJ,, = coolant flow rate in jacket of nth stage (ft3  he  ‘)
VJ, = jacket volume in nth stage (ft3)  = AHn(0.333)  silrcc  a4-in jacket  was

assumed
TJO  = inlet coolant temperature (OF)  = 70
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FIGURE B.l
Pneumatic difffr?nrial  pressure transmitter. Typical installation with orifice
plate to sense Him rate. (~Courteg~  of Fischer and Porter Compan~~.)
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FIGURE B.2
Electronic differential-
pressure transmitter.
(Courtesy of Honeywell.)
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FIGURE B.3
Filled-bulb temperature
transmitter. (Courtesy of
Moore Products.)
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FIGURE B.4
Control valve. (Co~tesy  of Honeybvell.)
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FIGURE B.5
Butterfly control valve with positioner. (Courtesy of Foxbom.)

i
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FIGURE B.6
Pneumatic : control station.
Moore Prc ?ducts.)

(Court6 ‘SY of
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FIGURE B.7
Single-station microprocessor controller.
(Courtesy of Moore Products.)
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FIGURE B.8
Microprocessor control system (TDC 3000). (Courtesy of Honeywell.)

FIGURE B.9
Typical control roonl  with computer control. (Courtesy of Horzeywefl.)



FIGURE B.10
Computer control console (CRT display). (Courtesy of Honeywell.)
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Adaptive control, 125
Aliasing, 484
Argument, 34 1
ATV, 552
Autorefrigeration. 127
Autotuning, 552

BLT tuning, 461
Bode plot, 350
Breakpoint frequency, 353

Capacity-based approach, 175, 4 12
Cascade control. 118

series and parallel, 120, 301
Characteristic equation, 42

closedloop, 266. 270, 27 1. 440
openloop, 265
roots of, 27, 42

Closedloop regulator transfer function,
270, 389, 435

Closedloop servo transfer function, 270,
389,435

Complementary solution, 1 I
Complex conjugates, 45
Computed variable. I20

Condition number, 43 1
Conditional stability, 96, 320, 383
Conjugate transpose, 432
Control valves, 75

characteristics, 81, 82, 83
design procedure, 79
linear and equal-percentage trim, 81
turndown ratio, 79

Controller action, reverse and
direct, 85

Controller gain, 84
Converter, A/D and D/A, 479,480
Convolution, 286
Critically damped, 44

Damping coefficient, 28, 43, 88, 275
DC& 68,475
Deadtime, 240, 489

handling in MATLAB, 364
Decay ratio, 88
Decentralized control, 456
Decoupling, 45 1
Degrees of freedom, 220
Derivative action, 86
Derivative unit, 255
Deviation variables, 35
Diagonal controller, 434
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Differential pressure transmitter, 72
Dirac delta function, 233
Direct substitution, 27 1
Direct synthesis, 326
Displacement meter, 72
Distinct roots, 43

Eigenvalues, 27, 42, 429
openloop and closedloop, 438

Estimators, 122
Excitation, input, 545

Feedforward control, 20, 128, 308
nonlinear, 3 13

Fidelity, model, 545
Final value theorem, 253
Flexibility, 133
Flooded reboiler, 92
Frequency response, 339, 547

Gain margin, 388
Gain scheduling, 126
GAMS, 190

Harmonic oscillator, 47
Hermitian matrix, 432
Hold, zero-order, 477, 498
Homogeneous equation, 4 1
HYSYS, 190

Identification, 543
control-relevant, 544

Impulse, 233
Impulse sampler, 480
Integral action (reset), 86, 274
Integral instability, 446
Integral squared error, 88
Integrity, 462
Interaction, 447
Interlock, 87

Internal model control, 328
inverse of matrix, 430
Inverse response, 323
Inversion

Laplace transforms, 234
z transforms, 491

Lag, first-order, 242
Lead, 247
Lead-lag, 250, 255
Level control, P and PI, 6
Limit cycle, 89
Linearity, 230
Linearization, 3 1
Load rejection, 466
Load response, closedloop, 29
Log modulus, 350
Logarithmic transformation, 126

Magnitude ratio, 340
Material balance control, 183
MATLAB,  11, 54, 282, 364, 407, 505,

558
Maximum closedloop log modulus, 389
Maximum heat removal rate, 162
Method of undetermined coefficients, 47
Minimal prototype design, 529
Model-based control, 326
Model predictive control, 47 1
Multivariable controller, 434

Nested loops, 134, 22 1
Nichols plot, 360
Nichols chart, 392
Niederlinski index, 446
Nonlinear control, 125
Nyquist plot, 344

multivariable, 442
Nyquist stability criterion, 372

ODE
tirst-order, 36
second-order, 4 I



Offset, 84, 89
On-aim control, 152,  I76
On/off control, 89
Openloop-unstable process, 3 16, 377,

405
Optimal economic steady-state design,

159
Overdamped, 43
Override control, I22
Overshoot. 88

Pade approximation, 28 1
Parsimonious model, 545
Partial fractions expansion, 234, 492
Particular solution, 41, 47
PD control, 322
Perturbation variables, 35, 238
Phase angle, 339
Phase margin, 386
Physical realizability, 249, 528
PI controller, 89
PID controller, 91
Plantwide control design procedure,

220
Poles, 242, 251
Positive pole, 321
Positive zero, 325
PRBS testing, 555
Pressure-compensated temperature,

122
Proportional band, 84
Proportional controller, 84, 89
Pulse, 29
Pulse test, 550
Pulse transfer functions, 496

Ramp, 29
Rangeability, 133
Ratio control, 117,  195, 3 I1
Recycle

effect on time constants, 184
snowball effects, 185

Regulator response, 29
Relay feedback, 552
Repeated roots, 44

Reset, 86, 274
Reset windup, I25
RGA, 448
Rippling, 533
Rise time, 88
Root locus plots, 265, 276, 5 13
Roots of characteristic equation, 242

Sampling theorem, 483
Scaleup  of reactors, 322
Selective control, 122
Sensitivity analysis, steady-state,

190
Sensors, 69
Servo response, 31
Settling time, 88
Singular value decomposition, 458
Singular values, 43 1

effect of scaling, 460
Snowball effects, 185, 211
SPEEDUP, 190
Stability, 27 1, 509
State variables, 435
Steady-state error, 86, 89, 274
Steady-state gain, 39, 252
Steady-state offset, 269
Steady-state performance, 273
Step function, 29
Step response, 29
Step test, 545
Superposition, 247

Taylor series, 31
Temperature sensing, 7 1
Time constant, 28, 39, 275
TLC tuning, 98
Trade-off between control and design.

174
Transfer function, 227, 237

closedloop, 266
properties, 249

Transient response, 29
Transmitter, 73

range, zero, span, 74
Tt-;mp0se  of matrix, 43 I



Tuning, 92, 96, 9X

Turndown ratio, I85

Ultimate gain, 96

Ultimate period, 96

Undamped system, 47

Underdamped system, 44

Unstable system, 47

Validation, model, 545

Valve position control, I26

z transformation, 486

Zeros, 25 I

Ziegler-Nichols tuning, 96

i

-- -_1__
--


	contens
	1 introducción
	2 time domain dynamics & control
	3 conventional control systems & hardware
	4 advanced control systems
	5 interaction between staedy-state design & dynamic controllability
	6 plantwide control
	pert two: Laplace domain dynamics & control
	7 Laplace domain dynamics
	8 Laplace-domain analysis of conventional feedback control systems
	9 Laplace domain analysis of advanced control systems
	part three: frequency domain dynamics & control
	10 fraquency domain dynamics
	11 fraquency domain analysis of closedloop systems
	part 4: multivariable processes
	13 design of controllers for multivariable processes
	14 sampling z transforms & stability
	15 stability analysis of sampled data systems
	16 process identification
	appendix A
	Appendix B
	Index

