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PREFACE

The field of process control has grown rapidly since its inception in the 1950s. Direct
evidence of this growth in the body of knowledge is easily found by comparing the
lengths of the textbooks written over this time period. The first process control book
(Cealgske, 1956) was a modest 230 pages. The popular Coughanowr and Koppel
(1965) text was 490 pages. The senior author’s first edition ( 1973) was 560 pages.
The text by Seborg et a. (1989) was 710 pages. The recently published text by
Ogunnaike and Ray (1994) runs 1250 pages!

It seems obvious to us that more material has been developed than can be taught
in a typical one-semester undergraduate course in process control. Therefore, a short
and concise textbook is needed that presents only the essentia aspects of process
control that every chemical engineering undergraduate ought to know. The purpose
of this book is to fulfill this need.

Our intended audience is junior and senior undergraduate chemical engineering
students. The book is meant to provide the fundamental concepts and the practical
tools needed by all chemical engineers, regardliess of the particular area they eventu-
aly enter. Since many advanced control topics are not included, those students who
want to speciaize in control can go further by referring to more comprehensive texts,
such as Ogunnaike and Ray (1994).

The mathematics of the subject are minimized, and mere emphasis is placed
on examples that illustrate principles and concepts of great practical importance.
Simulation programs (in FORTRAN) for a number of example processes are used to
generate dynamic results. Plotting and analysis are accomplished using computer-
aided software (MATLAB).

One of the unique features of this book involves our coverage of two increas-
ingly important areas in process design and process control. The first is the interac-
tion between steady-state design and control. The second is plantwide control with
particular emphasis on the selection of control structures for an entire multi-unit pro-
cess. Other books have not dealt with these areas in any quantitative way. Because
we fedl that these subjects are central to the missions of process design engineers
and process control engineers, we devote two chapters to them.

We have injected some examples and problems that illustrate the interdisci-
ents of engineers from many disciplines. chemical, mechanical, and electrical. All
engineering fields use the same mathematics for dynamics and control. Designing
control systems for chemical reactors and distillation columns in chemical engineer-
ing has direct paralels with designing control systems for F-16 fighters, 747 jumbo
jets, Ferrari sports cars, or garbage trucks. We illustrate this in several places in the
text.

This book is intended to be a learning tool. We try to educate our readers, not
impress them with elegant mathematics or language. Therefore, we hope you find
the book readable, clear, and (most important) useful.

XiX



XX PREFACE

When you have completed your study of this book, you will have covered the
essential areas of process control. What ideas should you take away from this study
and apply toward the practice of chemical engineering (whether or not you speciaize
as a control engineer)?

I. The most important lesson to remember is that our focus as engineers must be
on the process. We must understand its operation, objectives, constraints, and
uncertainties. No amount of detailed modeling, mathematical manipulation, or
supercomputer exercise will overcome our ignorance if we ignore the true subject
of our work. We need to think of Process control with a capital P and a small c.

2. A steady-state analysis, although essentia, is typically not sufficient to operate
a chemical process satisfactorily. We must also understand something about the
dynamic behavior of the individual units and the process as a whole. At a mini-
mum, we need to know what characteristics (deadtimes, transport rates, and ca-
pacitances) govern the dynamic response of the system.

3. It isaways best to utilize the smplest control system that will achieve the desired
objectives. Sophistication and elegance on paper do not necessarily trandate into
effective performance in the plant. Careful attention must be paid to the practical
consequences of any proposed control strategy. Our control systems must ensure
safe and stable operation, they must be robust to changes in operating conditions
and process variables, and they must work reliably.

4. Finaly, we must recognize that the design of a process fundamentally determines
how it will respond dynamicaly and how it can be controlled. Considerations
of controllability need to be incorporated into the process design. Sometimes the
solution to a control problem does not have anything to do with the control system
but requires some modification to the process itself.

If we keep these ideas in mind, then we can apply the basic principles of process
control to solve engineering problems.

Michael L. Luyben
William L. Luyben
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CHAPTER 1
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Introduction

As the field of process control has matured over the last 30 years, it has become one
of the core areas in chemica engineering along with thermodynamics, heat trans-
fer, mass transfer, fluid mechanics, and reactor kinetics. Any chemical engineering.
graduate should have some knowledge not only of these traditional areas but also
of the fundamentals of process control. For those of us who have been part of this
period of development, the attainment of parity with the traditional areas has been
long overdue.

The literature in process control is enormous. over a dozen textbooks and thou-
sands of papers have been published during the last three decades. This body of
knowledge has become so large that it is impossible to cover it al at the undergrad-
uate level. Therefore, we present in this book only those topics we feel are essential
for gaining an understanding of the basic principles of process control.

One of the important themes that we emphasize is the need for control engineers
to understand the process-its operation, constraints, design, and objectives. The
way the plant is designed has a large impact on how it should be controlled and what
level of control performance can be obtained. As the mechanical engineers say, you
can't make a garbage truck drive like a Ferrari!

We present in the following section three simple examples that illustrate the
importance of dynamic response; show the structure of a single-input, single-output
conventional control system; and illustrate a typical plantwide control system.
Throughout the rest of the book, many more red-life examples and problems are
presented. All of these are drawn from close to 50 years of collective experience

of the authors in solving practical control problems in the chemical and petroleum
industries.
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FIGURE 11
Gravity flow tank.
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EXAMPLES OF PROCESSDYNAMICSAND CONTROL

exampLe 1. 1. Figurel. 1 shows a tank into which an incompressible (constant-density)
liquid is pumped a a variable rate Fjy (gal/min). This inflow rate can vary with time
because of changes in operations upstream. The height of liquid in the vertical cylindrica
tank is h (ft). The flow rate out of the tank is F (gal/min).

Now Fy, h, and F will dl vary with time and are therefore functions of time .
Consequently, we use the notation Fo,), k¢, and F,. Liquid leaves the base of the tank
via a long horizontal pipe and discharges into the top of another tank. Both tanks are
open to the atmosphere.

Let us look first at the steady-state conditions. By “steady state” we mean the con-
ditions when nothing is changing with time or when time has become very large. Math-
ematically this corresponds to having al time derivatives equa to zero or dlowing time
to approach infinity. At steady state the flow rate out of the tank must equa the flow rate
into the tank: Fo = F. In this book we denote the steady-state value of a variable by an
overscore or bar.

For a given F, the height of liquid in the tank at steady State } is a constant, and
a larger flow rate requires a higher liquid level. The liquid height provides just enough
hydraulic pressure head at the inlet of the pipe to overcome the frictional pressure losses
of the liquid flowing down the pipe.

The steady-state design of the tank involves the selection of the height and diameter
of the tank and the diameter of the exit pipe. For a given pipe diameter, the tank height
must be large enough to prevent the tank from overflowing at the maximum expected
flow rate. Thus, the design involves an engineering trade-off, i.e., an economic balance
between the cost of a taler tank and the cost of a bigger-diameter pipe. A larger pipe
diameter requires a lower liquid height, as illustrated in Fig. 1.2. A conservative design
engineer would probably include a 20 to 30 percent over-design factor in the tank height
to permit future capacity increases.

Safety and environmental reviews would probably recommend the ingtalation of a
high-level darm and/or an interlock (a device to shut off the feed if the level gets too high)
to guarantee that the tank could never overfill. The tragic accidents a Three Mile Is-
land, Chernobyl, and Bhopa illustrate the need for well-designed and well-instrumented
plants.

Now that we have considered the traditional steady-state design aspects of this fluid
flow system, we are ready to examine its dynamics. What happens dynamicaly if we
change Fy, and how will h,, and F, vary with time? Obvioudy, F eventudly has to end
up a the new vaue of Fy. We can easly determine from the steady-state design curve
of Fig. 1.2 where h will be a the new steady dtate. But what dynamic paths or time
trajectories will A, and F, take to get to their new steady stat&s? Fig. 13 shows two

nnaccthle tranciant rocnnneno {aonesan | == A .. T [ e
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in h and F to their new steady-state values. Curves 2, however, show the liquid height
risng above (“overshooting”) its final steady-state value before settling out at the new
liquid level. Clearly, if the peak of the overshoot in h were above the top of the tank, we
would be in trouble.

Our steady-state design calculations tell us nothing about the dynamic response of
the system. They tell us where we start and where we end but not how we get there. This
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exavvle 1.2. Consider the heat exchanger sketched in Fig. 1.4. An oil stream passes
through the tube side of a tube-in-shell heat exchanger and is heated by condensing
steam on the shell side. The steam condensate leaves through a steam trap (a device
that permits only liquid to pass through it, thus preventing “blow-through” of the steam
vapor). We want to control the temperature of the oil leaving the heat exchanger. To do
this, a thermocouple is inserted in a thermowell in the exit oil pipe. The thermocouple
wires are connected to a “temperature transmitter,” an electronic device that converts the
millivolt thermocouple output to a 4- to 20-mA “control signa.” This current signa is
sent to a temperature controller, an eectronic, digital, or pneumatic device that compares
the desired temperature (the “setpoint”) with the actual temperature and sends out a
signa to a control vave. The temperature controller opens the steam vave a little if the
temperature is too low and closes the valve a little if the temperature is too high.

We consider al the components of this temperature control loop in more detail later
in this book. For now we need only appreciate the fact that the automatic control of some
variable in a process requires the installation of a sensor, a transmitter, a controller, and a
final control element (usualy a control valve). A mgor component of this book involves
learning how to decide what type of controller should be used and how it should be
“tuned,” i.e., how the adjustable tuning parameters in the controller should be set so that
we do a good control job. ]

exavvle 1. 3. Our third example illustrates a typical control scheme for a smplified
version of an entire chemica plant. Figure 1.5 gives a sketch of the process configuration
and its control system. Two liquid feeds are pumped into a reactor, in which they react to
form products. The reaction is exothermic, and therefore heat must be removed from the
reactor. This is accomplished by adding cooling water to a jacket surrounding the reactor.
The reactor effluent is pumped through a preheater into a distillation column that splits
it into two product streams.

Traditional steady-state design procedures are used to specify the various pieces of
equipment in the plant:

Fluid mechanics: pump heads, rates, and power; piping sizes, column tray layout
and sizing; heat-exchanger tube and shell sde baffling and sizing

Hear transfer: reactor heat removal; preheater, reboiler, and condenser heat transfer
areas, temperature levels of steam and cooling water

Chemical kinetics: reactor size and operating conditions (temperature, pressure,
catalyst, etc.)

Thermodynamics and mass transfer: operating pressure, number of plates and re-

Ial
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1.2

CHAPTER 11 Introduction

But what procedure do we use to decide how to control this plant? We spend most of ou
time in this book exploring this important design and operating problem. Our studies of
process control are aimed ut undcrslanding the dynamics of processes and control sys-
tems so that we can develop and design plants that operate more efficiently and safely,
produce higher-quality products, arc more easily controlled, and are more environmen-
tally friendly.

For now let us merely say that th¢ control system shown in Fig. | .5 is a typical
conventional system. It is about the minimum that would be needed to run this plant
automatically without constant operator attention. Even in this simple plant. with a min-
imum of instrumentation, 1) control loops are required. We will find that most chemical
engineering processes are multivariable. The key to any successful control system is
understanding how the process works. u

SOME IMPORTANT SIMULATION RESULTS

In the preceding section we discussed qualitatively some concepts of dynamics and

control. Now we want to be more quantitative and look at two numerical examples

of dynamic systems: The first involves level control in a series of tanks. The second
involves temperature control in a three-tank process. These processes are smple,

but their dynamic response is rich enough that we can observe some very important
behavior.

1.2.1 Proportional and Proportional-Integral Level Control

The process sketched in Fig. 1.6 consists of two vertical cylindrical tanks with a level
controller on each tank. The feed stream to the first tank comes from an upstream
unit. The liquid level in each of the tanks is controlled by manipulating the flow
rate of liquid pumped from the corresponding tank. The level signa from the level

transmitter on each tank is sent to a level controller. The output signal from each

controller goes to a control valve that sets the outflow rate.

Fo F
| ]

PV, . PV,
LT % LC LT 4 LC

FIGURE 1.6
Level control.
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A dynamic model of this process contains two ordinary differential equations,
which arise from the total mass balance on cach of the tanks. We assume constant
density.

dh . .
A'Ttl =Fy—F (1.1)
1, .
e (1.2)
dt
where A,, = cross-sectional area of nth tank
h,, = liquid height in nth tank

F,, = volumetric flow rate of liquid from nth tank
Fy = volumetric flow rate of feed to process

The flow rates F; and F; are set by the controller output signals CO; and CO; from
the two level controllers. The process variable signals PV, and PV, from the two
level transmitters depend on the two liquid levels k) and h,. In this example we
express these PV and CO signals as fractions of the full-scale range of the signals.
The signals from transmitters and controllers are voltage, current, or pressure signals,
which vary over standard ranges (O to 10 V, 4 to 20 mA, or 3 to 15 psig).

Fy = CO,Fm (1.3)
F, = CO,Fiax (1.4)
where F"* = flow rate when the control valve is wide open.
PV = hi/hy spun (L.5)
PV, _ hylhy pan (1.6)

where hy gan = the “span” of the level transmitter, i.e., the difference between the
maximum and minimum liquid levels measured in the tank. Numerical values of al
parameters and the values of the variables at the initial steady-state conditions are
given in Table 1.1. The FORTRAN program used to simulate the dynamics of the
process is given in Table 1.2. For more background on dynamic modeling and sim-
ulation methods, refer to W. L. Luyben, Process Modeling, Simulation and Control
for Chemical Engineers, 2d ed. (1990), McGraw-Hill, New York.

TABLE 1.1
Values of parameters and steady-state variables

L
Diameter of tank = 10 ft

Cross-sectional area of tank = 78.54 ft?

Span of level transmitters = 20 ft

Maximum flow rate through control valves = 200 ft*/min

Steady-state flow rates = 100 ft*/min

Steady-state levels = 10 ft

Bias value of level controllers = Bias = 0.5 fraction of full scale

Setpoint signals of controller = SP = 0.5 fraction of full scale

Steady-state value of controller outputs = CO = 0.5 fraction of full scale
Steady-state value of level trangmitter outputs = PV = 05 fraction of full scde
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TABLE 1.2
FORTRAN simulation program for PI level control

¢ Program “level f™

¢ P and Pl control of two tank levels in series
dimension h(2),f(2).co(2),reset(4).erini(2).e(2).sp(2)
real pv(2).kc(4)
dimension dh(2)
dimension tp(2000),l1p(4,2000),h2p(4,2000)
dimension flp(4,2000), f2p(4,2000)
open(7, file="levl.dat’)
open(8, file="lev2.dat’)
open(9, file="lev3.dat’)
open(10, file="levd.dat’)

data delta, rstop/. 1,200./
data sp/2+0.5/
data area, fss/78.54,100./
data kc/0.5,1.5,0.628,0.314/
data reset/0.,0.,5.,5./
data diprint,diplot/s.,.2/

c Disturbance is +/0% fo
fo=100.x1.1

¢ Make four runs with different controller settings
do 1000 nc=1,4
time=0.
tprint=0.
plot=0.
np=0
do /0 ntank=1,2
h(ntank)= 10.
erint(ntank)=0.

10 fintank)=100.
c controller calculations to get flow" rates
c All control signals (pv, sp, and co) are in fractions of full scale
100 do 20 nrank=1,2
pv(ntank)=h{ntank)/20.
if(pv(ntank).gt. /. )pv(ntank)= 1.
ifipv(ntank).1t.0.)pv(ntank)=0.
e(ntank)=sp(ntank)—pv(ntank)
co(ntank)=0.5—kc(nc)*e(ntank)
ifireset(nc).gt.0.)
+co(ntank)=0.5—kc(nc)*(e(ntank)+erint(ntank)/reset(nc))
iflco(ntank).gt. I.)co(ntank)=1,
if{co(ntank).11.0. )co(ntank)=0.
fintank)=co(ntank )«fss*2.
20 continue
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TABLEL.2 (CONTINUED)
FORTRAN simulation program for Pl levd control
T 0 ot O A A A AN
¢ print and store for plotting
if(time. lt.aprint)go to 30
write(6,2] )time,h, f
21 format(‘ 1=",f6.2, ‘"h= "2(7.2," f="2(7.2)
tprint=tprint+diprint
30 if{time.lt. tplot)go t0 40
np=np+|
tp(np)=time
hip(nc,np)=h(l)
h2p(nc,np)=h(2)
flp(ne,np)=f1)
F2p(ncnp)=2)
tplot=tplot+diplot
40 continue
c evaluate all derivatives
dh(1)=(fo—f(1))/area
do 50 ntank=2,2
SO dh(ntank)=(fintank— 1)-f(ntank))/area
c integrate a la Euler
time=time+delta
do 60 ntank=1,2
h(ntank)=h(ntank)+dh(ntank)xdelta
60 erint(ntank)=erint(ntank)+e(ntank)*delta
if(time. It. tstop)go to 100
1000 continue
c store data for plotting using MATLAB
do 110 j=1,np
write(7,111)tp(j),h1p(1,j),h2p( 1), Flp(1.j).f2p(1,j)
write(8,111)h1p(2,j),h2p(2.),f1p(2,)). 2p(2.j)
write(9,111)h1p(3,j),h2p(3.j), fIp(3,j).f2p(3.j)
110 write(10,111)h1p(4,j).h2p(4,j).f1p(4.j).f2p(4,j)
111 format(7(1x,f7.3))
stop
end

Two types of controllers are studied in this example. The first is a*proportional”
controller, in which the CO signal variesin direct proportion to the change in the PV
signal.

CO| = Biasl - C](SPI - PVI) (17)
C02 = Bias2 — KCZ(SPZ - PVz) (18)

where Bias, = a constant (the value of CO when PV is equal to SP)
K., = controller gain
SP, = setpoint of the controller, i.e., the desired value of PV

Note that if the liquid level goes up, PV goes up, CO goes up, and F increases. This
is the correct response of the level controller to an increase in level.

Figure 1.7 shows the dynamic responses of the two liquid levels and the two
outflow rates when a 10 percent increase in the feed flow rate to the process occurs

e
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a time equal zero. The commercia software package MATLAB is used to plot the
results, and Table 1.3 gives the “m-file’ used. If you do not aready have some ex-
posure to programming in MATLAB, you can pick up the essentias pretty quickly.
A general reference for MATLAB programming is The Student Edition of MAT-
LAB, 1992, The Math Works Inc., Prentice Hall, Englewood Cliffs, NJ. Two books
that discuss the use of the MATLAB Control Toolbox to andlyze dynamic systems

TABLE 1.3

MATLAB program to plot data

% matlub program “levelm” to plot results for P and PI controller
load lev/.dat
load lev2.dat
load lev3.dat
load lev4.dat

t=levi(:1);

hil=levi(:2);
hil2=levi(:3);
fli=levi(:4);
fl2=levi(:5);

h21 =lev2(:,1);
h22=lev2(:,2),
R21=lev2(:3);
f22=lev2(:,4);

h3l=lev3(:1);
h32=lev3(:2);
l=lev3(:3),
f32=lev3(:4);

hal =lev4(:, 1),
h42=levd4(:2);
fal=lev4(:,3);
fA2=levd4(:4);

clf

subplot(211)

plot(t,hll, =" thi2,‘—=")

title( ‘P Level Control (Kc=0.5)’) .

ylabel( ‘“Tank Height (f)’)
xlabel( ‘Time (min)’)
legend(‘HI' ‘H2')

grid

subplot(212)

plot(t,fl1,' ="t fI2, '~ =")
ylabel( ‘Exit Flow (ft3/min)’)
xlabel( ‘Time (min)*)
legend(‘FI’,'F2’)

grid

pause

print ~dps plevel.ps




MATLAB program to plot data
"""

clf

subplot(2 1)

plot(th21,' ="t h22, '~ ~")
title( ‘P Levd Control (Kc= 1.5)")
vlabel( ‘Tank Height (ft)’)
xlabel( 'Time (min)’)
legend(‘Hl ' ‘H2’)

grid

subplot(212)
plot(t.f21,—"1,£22,-=")
ylabel( ‘Exit Flow (ft3/min)’)
xlabel(“Time (min)')
legend(‘FI',F2°)

grid

pause

print —dps -append plevel

clf

subplot(211)
plot(t,h31,'="t,h32,—=")
title(‘PI Level Control, Reser=5, Kc=0.628’)
ylabel( ‘Tank Height (fz)’)
xlabel( ‘Time (min) *)
legend('HI',‘H2’)

grid

subplot(212)
plot(t,f31,°="1,£32,~ =")
ylabel( 'Exit Flow (ft3/min)’)
xlabel( ‘Time (min)*)
legend( ‘'Fl",'F2’)

grid

pause

print —dps -append plevel

clf

subplot(211)

plof(t,h4l,'~" 1 h42,‘~—")
title(‘PI Level Control, Reset=35, Kc=0.314")
ylabel( 'Tank Height (ft))
xlabel( ‘Time (min) ')
legend(‘H1','H2’)

grid

subplot(212)
plot(t,f41,'=",1,f42,'~ ")
ylabel( 'Exit Flow (ft3/min)’)
xlabel( ‘Time (min)’)
legend(‘F1','F2’)

grid

pause

print —dps -append plevel
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are MATLAB Tools for Control System Analysis and Design by B. C. Kuo and
D. C. Hanselman, 1994, Prentice Hall, Englewood Cliffs, NJ; and Using MATLAB
to Analyze and Design Control Systems by N. E. Leonard and W. S. Levine, 1992,
Benjamin-Cummings, New Y ork.

In Fig. 1.7a the controller gain K. is 0.5 and in Fig. 1.76 it is1.5. The changesin
both liquid levels and outflow rates are gradual, but the dynamic changes occur more
quickly when a higher gain is used. The inflow rate has increased to 110 ft*/min, so
the flow rates from both tanks eventualy climb up to 110 ft3/min, and at this point
the levels in both tanks stop changing.

Y ou should note a very important point: the levels do not return to their original
steady-state values of 10 ft. For a controller gain of 0.5, tank levels increase to 12
ft and stay there. For a gain of 1.5, they increase to about 10.7 ft. So at the new
steady-state conditions, the value of SP is not equal to PV in Egs. (1.7) and (1.8). We
call this “steady-state error” or “offset.” This example illustrates that a proportional
controller does not give zero steady-state error. For the control of levels in surge
tanks we normally are not concerned about holding a constant level, so offset is not
a problem. But for many control loops, we do want to drive the PV back to the SP
value. This is accomplished by adding “integral” or “reset” action to the controller.

The second type of level controller is a “proportional-integral” (Pl) controller,
in which the CO signal varies with both the PV signa and time integral of “error”
(the difference between the SP and PV signals).

CO, = Bias,, - K,,,|(SP,, = PV,) + }17| (SP,, — PV,) dt (1.9)
where 7; = integral time or reset time (with units of minutes). The addition of the
integral term forces the SP and PV signals to become equal at steady state because
if the (SP — PV) term is not zero, the CO continues to change because of the integral
action. Figure 1.8 demonstrates this for the same change in the feed rate. The outflow
rates start and end at the same values as found with P control, but the liquid levels
are returned to their SP values.

However, there is a price to be paid for this elimination of steady-state error.
When P control was used, the flow rates simply increased to their new steady-state
values. With PI control these flow rates increase above their fina steady-state values
for a period of time. This occurs because the only way that the level can be lowered
back to its desired value is to have the instantaneous flow rate out of the tank be
larger than the flow rate into the tank.

Figure 1.8a shows that the maximum instantaneous value of the flow rate F is
114 ft3/min and the maximum for F, is 119 ft}/min. Remember that the initial flow
rate is 100 and the final flow rate is 110, giving a change of 10 ft3/min. The pesk
flow rate from the second tank of 119 corresponds to a change of 19 ft3/min, which
Is an overshoot of almost 100 percent. Thus the use of PI control results in an ampli-
fication of the flow rate disturbances to the system, and this amplification becomes
larger as we add more tanks in series. Figure 1.9 illustrates the difference between P
and PI control in another way. We impose on the process a “noisy” disturbance-the
feed flow rate F into the process is changing in a random way-and compare the
responses of the levels and flow rates in the system for P and PI control. The fil-
tering of flow rate disturbances by P control is clearly demonstrated. If constant level
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Pl Level Control, Reset=5, Kc=0.628
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P and PI Level Control with Noisy inflow
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control is desired and flow rate variations are less important (e.g., level control in a
chemical reactor in which we want to keep holdup constant), a Pl controller does a
better job.

You might suspect that we could change the controller tuning and reduce this
amplification. Reducing controller gain usually slows down the dynamics of the sys-
tem and produces.less oscillatory response. However, this is not what happens for
this process, as the results in Fig. 1.86 illustrate. The controller gain is cut in half,
resulting in a slower response. But the peak flow rate from the second tank becomes
larger (122 ft3/min). We analyze this process quantitatively in Chapter 8 and explain
mathematically why we observe these smulation results.

These results illustrate the importance of the selection of the type of controller
and the control objectives. The simulation results have important implications for
the plantwide control problem (multi-units connected in a complex flowsheet). They
suggest that most level controllers should be proportional, not proportional-integral,
to obtain smoothing (filtering or attenuation) of flow rate changes throughout a
process.

122 Temperature Control of a ThreeTank Process

As a second simple example that demonstrates some very important and far-reaching
principles, let us consider the control of temperature in a single tank and then in a
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series of two and three tanks. The dynamic model for three heated tanks in series is
givenin Egs. (1.10) to (1. 12). Constant holdup and constant physical properties are
assumed. The, FORTRAN program used to simulate the process is given in Appen-
dix A.

The temperature in one of the tanks (T, T,, or Ts) is controlled by a propor-
tional temperature controller that manipulates the heat input (), to the first tank. The
disturbance is adrop in inlet feed temperature T\, from 90°F to 70°F at time O hours.
Three different values of controller gain (K. = 2, 4, and 8) are used.

dT

Viewp— = Fepp(To = T1) + O, (1.10)
dT

Vacpp= = Fepp(Ty = T2) (1.12)
dT

Vicpp—r = Fepp(Ta = T3) (1.12)

where V,, = tank volume in nth tank = 100 ft3
cp = heat capacity of process fluid = 0.75 Btu/lb °F
p = density of process fluid = 50 Ib/ft’

F = flow rate = 1000 ft3/hr

Control signals of 4 to 20 mA are used. The range of the temperature transmitter is
50 to 200°F.

PV =4+ 21_0% (Tecontrol — 50) (1.13)

where we will consider three cases for Teongor (T, T2, @nd T3).
The control valve can pass enough steam to transfer 10 X 10° Btu/hr of heat into
the first tank.
co-4

0, = c (10 x 107) (1.14)

The proportional controller equation is

CO = 7.6 + K,(SP — PV) (1.15)

with setpoint SP = 12 mA.
The values of variables at the initial steady state are

Ty = 90°F Ty= T, = Ty = 150°F PV = 12 mA

A. Contral of T

Figure 1.10 gives the temperature in the first tank and the heat input for three
values of controller gain K. As gain increases, the dynamics of the system get faster
and there is less steady-state offset: the final steady-state value of T, is closer to
150°F. The dynamic responses all show gradual asymptotic trgectories to their final
values. There is no overshoot and no oscillation.
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P Temperature Control of One Tank
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B. Control of T,

Figure 1.11 shows what happens when we switch from controlling the temper-
ature in the first tank to controlling the temperature in the second tank, 7>. The dis-
turbance is the same, and the three controller gains are the same. Now we begin to
see some overshooting and oscillatory responses for the larger values of controller
gain.

C. Control of T,

Figure 1.12 gives results when we control the temperature in the third tank, 73.
For a controller gain of K. = 2, the system'is only slightly oscillatory and the system
settles out at a new steady state. The oscillations become larger for K. = 4, and it
takes longer for the system to settle out. However, for K. = 8 the amplitude of the
oscillations continues to grow. This system is “unstable.”

D. Control of T; with deadtime

“Deadtime’ is a term that we use to describe the situation where there is a de-
lay between the input and the output of a system. A common chemica engineering
example is the turbulent flow of fluid through a pipe. Let us assume that the flow is
essentially plug flow with a residence time of D minutes. If the temperature of the
stream entering the pipe changes, the temperature of the stream leaving the pipe will
not change for D minutes. Thisis called a deadtime of D minutes.
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P Temperature Control of Three Tanks
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P Temperature Control of One Tank with D=0.01 hours
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Suppose we have a deadtime of D = 0.01 hr in the measurement of the temper-
ature T, . The temperature controller sees a PV signal that is delayed by D hours. The
effect this has on control is illustrated in Fig. 1.13. Notice that (), does not change
for 0.01 hr because of the deadtime. Comparing Figs. 1.10 and 1.13 shows clearly
that the dynamic performance with deadtime is worse. Higher gains now give oscil-
latory behavior. The FORTRAN program used for the deadtime simulation is given
in Appendix A.

These simulation results illustrate some profoundly important principles:

1. As controller gain is increased, the response of the process becomes faster but
more oscillatory. This suggests that there is an. inherent engineering trade-off
between speed of response and oscillatory behavior. The terminology used in
process control is the trade-off between “performance” and “robustness.” A fast
process response (a small time constant) is good performance. A less oscillatory
response (a higher damping coefficient) is good robustness; 1.e., the process is not
close to the situation where the oscillations will continue to grow. We illustrate
this trade-off in several other situations later in this book.

2. As more tanks are added to the system, the control becomes more difficult.
Controlling T, with Q, (we cal this a first-order system) is easy: the system is
never oscillatory. Controlling T, with (0, (a second-order system) gives some 0s-
cillatory behavior, but controller gains have to be quite large before the oscillation
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becomes a problem. However, controlling Ty with Q, (a third-order system) is
more difficult since high controller gains can lead to instability. Thus, as the order
of the system is increased, the dynamic performance becomes worse. This, of
course, suggests that we should avoid high-order systems in our plant designs
and control system structures.

3. The addition of deadtime in a control loop degrades dynamic performance.

Later in this book we explain quantitatively and mathematically the results ob-
served in the examples considered above.

1.3
GENERAL CONCEPTS AND TERMINOLOGY

It may be useful at this point to define some very broad and genera concepts and
some of the terminology used in the field.

1. Dynamics. Time-dependent behavior of a process. The behavior with no con-
trollers in the system is caled the openloop response. The dynamic behavior with
controllers included with the process is called the closedloop response.

2. Variables:

a Manipulated variables: Typically flow rates of streams entering or leaving a
process that we can change to control the plant.

b. Controlled variables. Flow rates, compositions, temperatures, levels, and
pressures in the process that we will try to control, either trying to hold them
as constant as possible or trying to make them follow some desired time
trgjectory.

c. Uncontrolled variables: Variables in the process that are not controlled.

d. Load disturbances. Flow rates, temperatures, or compositions of streams en-
tering (but sometimes leaving) the process. We are not free to manipulate
them. They are set by upstream or downstream parts of the plant. The con-

trol system must be able to keep the plant under control despite the effects of
these disturbances.

3. Feedback control: The traditional way to control a process is to measure the vari-
able that is to be controlled, compare its value with the desired value (the setpoint
to the controller), and feed the difference (the error) into a feedback controller
that changes a manipulated variable to drive the controlled variable back to the
desired value. Information is thus “fed back” from the controlled variable to a
manipulated variable. Action is taken after a change occurs in the process.

4. Feedforward control: The basic idea is to take action before a disturbance
reaches the process. As shown in Fig. 1.14, the disturbance is detected as it enters
the process and an appropriate change is made in the manipulated variable such
that the controlled variable is held constant. Thus, we begin to take corrective
action as soon as a disturbance entering the system is detected instead of waiting
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FIGURE 1.14
Feedforward control.

(as we do with feedback control) for the disturbance to propagate all the way
through the process before a correction is made.

5. Sability: A processis said to be unstable if its output becomes larger and larger
(either positively or negatively) as time increases. Examples are shown in Fig.
1.15. No real system actually does this, of course, because some constraint will
be met; for example, a control valve will completely shut or completely open, or
a safety valve will “pop.” A linear process is right at the limit of stability if it
oscillates, even when undisturbed, and the amplitude of the oscillations does not
decay.

Most processes are openloop stable, i.e., stable with no controllers on the system.
One important and very interesting exception that we will study in some detail is the
exothermic chemical reactor, which can be openloop unstable. All real processes can
be made closedloop unstable (unstable when a feedback controller is in the system)
if the controller gain is made large enough. Thus, stability is of vital concern in
feedback control systems.

Unstable

Output

Time

FIGURE 1.15
Stability.
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1.4
LAWS, LANGUAGES, AND LEVELS OF PROCESS CONTROL

1.4.1 Process Control Laws

Severa fundamental laws have been developed in the process control field as a result
of many years of experience. Some of these may sound similar to some of the laws
attributed to Parkinson, but the process control laws are not intended to be humorous.

First Law: The best control system is the simplest one that will do the job.

Complex and elegant control systems look great on paper but soon end up on
“manual” (taken out of service) in an industrial environment. Bigger is definitely
not better in control systems design.

Second Law: You must under stand the process before you can control it.

No degree of sophistication in the control system (from adaptive control, to ex-
pert systems, to Kalman filters, to nonlinear model predictive control) will work if
you do not know how your process works. Many people have tried to use complex
controllers to overcome ignorance about the process fundamentas, and they have
falled! Learn how the process works before you start designing its control system.

Third Law: Liquid levels must always be controlled.

The structure of the control systems must guarantee that the liquid levels in
tanks, column base, reflux drums, etc. are maintained between their maximum and
minimum values. A common error is to develop a control structure in which tank
levels are not controlled and to depend on the operator of the plant to control tank
levels manualy. This increases the workload on the operator and results in poor
plant performance because of inconsistencies among various operators concerning
what should be done under various conditions. Having an automatic, fixed inven-
tory control structure produces smoother, more consistent plant operation. The only
exception to this law occurs in recycle systems, where the level in a recycle surge

drum is typicaly not controlled, but floats up and down with recycle circulation
rate.

1.4.2 Languages of Process Control

As you will see, severd different approaches are used in this book to anayze the
dynamics of systems. Direct solution of the differential equations to give functions of
timeisa“time domain” technique. The use of Laplace transforms to characterize the
dynamics of systems is a “Laplace domain” technique. Frequency response methods
provide another approach to the problem.
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All of these methods arc useful because each has its advantages and disadvan-
tages. They yidd exactly the same results when applied to the same problem but
provide different perspectives. These various approaches are similar to the use of
different languages by people around the world. A table in English is described by
the word “table.” In Russian a table is described by the word “CTOJIL.” In Chinese
atableis “% 5 In German it is “der Tisch.” But in any language a table is still a
table.

In the study of process dynamics and control we will use several languages.

English: time domain (differential equations, yielding exponential time function
solutions)

Russian: Laplace domain (transfer functions)

Chinese: frequency domain (frequency response Bode and Nyquist plots)

Greek: state variables (matrix methods apply to differential equations)

German: z domain (sampled-data systems)

You will find that the languages are not difficult to learn because the vocabulary
required is quite limited: only 8 to 10 “words’ must be learned in each language.
Thus, it is fairly easy to trandate back and forth between the languages.

We will use “English” to solve some simple problems. We will find that more
complex problems are easier to understand and solve using “Russian.” As problems
get even more complex and redlistic, the use of “Chinese” is required. So we study
in this book a number of very useful and practical process control languages.

We chose the five languages listed above simply because we have had some
exposure to al of them over the years. Let us assure you that no political or nation-
alistic motives are involved. If you prefer French, Spanish, Italian, Japanese, and
Swahili, please feel free to make the appropriate substitutions! Our purpose in us-
ing the language metaphor is to try to break some of the psychological barriers that
students have to such things as Laplace transforms and frequency response. It is a
pedagogical gimmick that we have used for over two decades and have found to be
very effective with students.

143 Leves of Process Control

There are four levels of process control. Moving up these levels increases the im-
portance, the economic impact, and the opportunities for process control engineers
to make significant contributions.

The lowest level is controller tuning, i.e., determining the values of controller
tuning constants that give the best control. The next level is agorithms-deciding
what type of controller to use (P, PI, PID, multivariable, model predictive, etc.).

" The third level is control system structure--determining what to control, what
to manipulate, and how to match one controlled variable with one manipulated vari-
able (called “pairing”). The selection of the control structure for a plant is a vitally
important function. A good choice of structure makes it easy to select an appropriate
algorithm and to tune. No matter what algorithm or tuning is used, it is very unlikely
that a poor structure can be made to give effective control.
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The top level is process design-developing a process flowshcet and using de-
sign parameters that produce an easily controllable plant. The steady-state econom-
ically optimal plant may be much more difficult to control than an alternative plant
that is perhaps only dightly more expensive to build and operate. At this level, the
economic impact of a good process control engineer can be enormous, potentially
resulting in the difference between a profitable process and an economic disaster.
Severa cases have been reported where the process was so inoperable that it had to
be shut down and the equipment sold to the junk man. Chapters 5 and 6 discuss this
vitally important aspect in more detail.

15
CONCLUSION

In this chapter we have attempted to convey three basic notions:

1. The dynamic response of a process is important and must be considered in the
process design.

2. The process itself places inherent restrictions on the achievable dynamic perfor-
mance that no amount of controller complexity and elegance can overcome.

3. The choices of the control system structure, the type of controller, and the tuning
of the controller are al important engineering decisions.
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and Control

In this section we study the time-dependent behavior of some chemical engineering
systems, both openloop (without control) and closedloop (with controllers included).
Systems are described, by differential equations and solutions are given in terms
of time-dependent functions. Thus, our language for this part of the book will be
“English.” In the next part we will learn alittle “Russian” so that we can work in the
Laplace domain, where the notation is simpler than “English.” In Part Three we will
study some “Chinese” because of its ability to easily handle much more complex
systems.

Most chemical engineering systems are modeled by equations that are quite
complex and nonlinear. In the remaining parts of this book only systems described
by linear ordinary differential equations will be considered (linearity is defined in
Chapter 2). The reason coverage is limited to linear systems is that practically al the
analytical mathematical techniques currently available are applicable only to linear
equations.

Since most chemical engineering systems are nonlinear, studying methods that
are limited to linear systems might initially appear to be a waste of time. However,
linear techniques are of great practical importance, particularly for continuous pro-
cesses, because the nonlinear equations describing most systems can be linearized
around some steady-state operating condition. The resulting linear equations ade-
quately describe the dynamic response of the system in some region around the
steady-state conditions. The size of the region over which the linear model is valid
varies with the degree of nonlinearity of the process and the magnitude of the dis-
turbances. In many processes the linear model can be successfully used to study
dynamics and, more important, to design controllers.

Complex systems can usually be broken down into a number of ssimple elements.
We must understand the dynamics of these simple systems before we tackle the more

25



26 pARTONE: Time Domain Dynamics and Control

complex ones. We start out looking at some simple uncontrolled processes in Chap-
ter 2. We examine the openloop dynamics or the response of the system with no
feedback controllers to a disturbance starting from some initial condition.

In Chapters 3 and 4 we look at closedloop systems. Instrumentation hardware,
controller types and performance, controller tuning, and various types of control sys-
tem structures are discussed.
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CHAPTER 2

Time Domain Dynamics

Studying the dynamics of systems in the time domain involves the direct solution
of differential equations. Computer simulations are genera in the sense that they
can give solutions to very complex nonlinear problems. However, they are aso very
specific in the sense that they provide a solution to only the particular numerical case
fed into the computer.

The classical analytical techniques discussed in this chapter are limited to linear
ordinary differential equations. But they yield genera analytical solutions that apply
for any values of parameters, initial conditions, and forcing functions.

We start by briefly classifying and defining types of systems and types of distur-
bances. Then we learn how to linearize nonlinear equations. It is assumed that you
have had a course in differentia equations, but we review some of the most useful
solution techniques for simple ordinary differential equations.

The important lesson of this chapter is that the dynamic response of a linear
process is a sum of exponentials in time, such as ¢**'. The s, terms multiplying time
are the roots of the characteristic equation or the eigenvalues of the system. They

determine whether the process responds quickly or sowly, whether it is oscillatory,
and whether it is stable.

2.1
CLASSIFICATION AND DEFINITION

Processes and their dynamics can be classified in severa ways.

1. Number of independent variables

a Lumped: if time is the only independent variable;, described by ordinary dif-
ferential equations

b. Distributed: if time and spatia independent variables are required; described
by partia differential equations

27
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Linearity
a. Linear: if all functions in the equations are linear (see Section 2.2)
b. Nonlinear: if not linear

Stability

a Stable: if “sdlf-regulatory” so that variables converge to some steady state
when disturbed

b. Unstable: if variables go to infinity (mathematically)

Most processes are openloop stable. However, the exothermic irreversible
chemical reactor is a notable example of a process that can be openloop un-
stable.

All rea processes can be made closedloop unstable (unstable with a feed-
back controller in service), and therefore one of the principal objectives in
feedback controller design is to avoid closedloop instability.

Order: If a system is described by one ordinary differential equation with deriva
tives of order N, the system is called Nth order.

dNx dV-tx dx
dN+aN|dtNl+"'+a|d+a0X—f(t) 2.1

where a; are constants and f{,y is the forcing function or disturbance. Two very
important special cases are for N = 1 and N = 2

First-order:
¢ dx
a) E; + QpX = f(,) (2.2)
Second-order:
d*x dx
i + ar st apx = fu (2.3)
The “standard” forms that we will usualy employ for these are
First-order:
dx
T +x = fo (2.4)
Second-order:
2d2
d2+2{ +x-f(,) (2.5)

where 7 = process time constant (either openloop or closedloop)
{ = damping coefficient (either openloop or closedloop)

One of the most |mportant parameters that we will use in the remaini ng sectl ons
of this hr)qk_/gg_tr ~tont o o -

"'h

tune a controller to give a closedloop system that haS%ﬁme specifi
coefficient.
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Disturbances can aso bc classificd and defined in several ways.

|. Shape (see Fig. 2. 1)
a Step: Step disturbances are functions that change instantaneously from one
level to another and are thereafter constant. If the size of the step is equal to
unity, the disturbance is called the unir step function u,. defined as

Upiy = 1 fort >0

(2.6)
Uy = 0 fort =0

The response of a system to a step disturbance is called the step response or
the transient response.

b. Pulse: A pulseis a function of arbitrary shape (but usually rectangular or tri-
angular) that begins and ends at the same level. A rectangular pulse is smply
the sum of one positive step function made at time zero and one negative step
function made D minutes later. D is the length of the pulse.

Rectangular pulse of height | and width D = u,y = uyg-py  (2.7)

c. Impulse: The impulse is defined as the Dirac delta function, an infinitely high
pulse whose width is zero and whose area is unity. This kind of disturbance is,
of course, a pure mathematical fiction, but we will find it a useful tool.

d. Ramp: Ramp inputs are functions that change linearly with time.

Ramp function = Kt (2.8)

where K is a constant. The classic example is the change in the setpoint to an
anti-aircraft gun as the airplane sweeps across the sky. Chemical engineering
examples include batch reactor temperature or pressure setpoint changes with
time.

e. Sinusoid: Pure periodic sine and cosine inputs seldom occur in real chemical
engineering systems. However, the response of systems to this kind of forc-
ing function (called thefrequency response of the system) is of great practical
importance, as we show in our “Chinese” lessons (Part Three) and in multi-
variable processes (Part Four).

2. Location of disturbance in feedback loop: Let us now consider a process with
a feedback controller in service. This closedloop system can experience distur-
bances at two different spots in the feedback loop: load disturbances and setpoint
disturbances.

Most disturbances in chemical engineering systems are load disturbances,
such as changes in throughput, feed composition, supply steam pressure, and
cooling water temperature. The feedback controller’s function when a load distur-
bance occurs is to return the controlled variable to its setpoint by suitable changes
in the manipulated variable. The closedloop response to a load disturbance is
called the regulator response or the closedloop load response.

Setpoint changes can aso be made, particularly in batch processes or in
changing from one operating condition to another in a continuous process. These
setpoint changes also act as disturbances to the closedloop system. The function
of the feedback controller is to drive the controlled variable to match the new
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Disturbance shapes.
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setpoint. The closedloop response to a setpoint disturbance is caled the servo
response (from the early applications of feedback control in mechanical servo-
mechanism tracking systems).

2.2
LINEARIZATION AND PERTURBATION VARIABLES

2.2.1 Linearization

As mentioned earlier, we must convert the rigorous nonlinear differentia equations
describing a chemical system into linear differential equations so that we can use the
powerful linear mathematical techniques.

The first question to be answered is, just what is a linear differential equation?
Basicdly, it is one that contains variables only to the first power in any one term of
the equation. If square roots, squares, exponentials, products of variables, etc. appear
in the equation, it is nonlinear.

Linear example:

dx

ay — + GoX = Jo (2.9)

where a, and a, are constants or functions of time only, not of dependent variables
or their derivatives.

Nonlinear examples:

dx

- 0.5 _ 2.10
ay .+ doX fo (2.10)
dx
a—- + ao(x)? = fiy (2.11)
t
dx
a 7 + aoe'” = f(,) (2.12)
t
dX|
ap _d[— + Ao XXy = fo (2.13)

where x; and x; are both dependent variables.

Mathematically, a linear differential equation is one for which the following two
properties hold:

1. If xyisasolution, then cx(, is aso a solution, where c is a constant.
2. If x,isasolution and x, is aso a solution, then x|+ x, is a solution.

Linearization is quite straightforward. All we do is take the nonlinear functions,

expand them in Taylor series around the steady-state operating level, and neglect all
terms after the first partial derivatives.

Let us assume we have a nonlinear function f of the process variables x; and
X320 fix,.xy)- FOr example, x; could be mole fraction or temperature or flow rate. We
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f(.x) = ﬂ
Slope x|
(%)
Linear approximation:
fo f
__________ | Jo*| 5| 7O
1 (X)
[
|
1
1
|
Nonlinear f, :T B
FIGURE 2.2
Linearization.

will denote the steady-state values of these variables by using an overscore:
X = Steady-state value of x;
X, = steady-state value of xj

Now we expand the function fi,.r,) around its steady-state value fiz, x,)-

af af _
X[, X2 f X, X') +< > (x - x ) +( ) (x - xz)
Jowr = Jomm 5 (x1.%2) X2 gz

Y Gt W C TR DA
&x% o 2!
(Xy,77)

Linearization consists of truncating the series after the first partial derivatives.

d
f(x..xz) ﬁxl %)t (af ) (xl - X))+ (—fo—2) (x9 = —x_z) (215)
(X1,%2) ] X.%)

(2.14)

Jxi

We are approximating the real function by a linear function. The process is sketched
graphically in Fig. 2.2 for a function of a single variable. The method is best illus-
trated by some common examples.

exavwvLe 2. |. Consider the square-root dependence of flow out of a tank on the liquid
height in the tank.

Fu = K Jh (2.16)

The Taylor series expansion around the steady-state value of h, which is % in our nomen-

clature. is
JF — (*F\ (h-h)?
= - - —_—
F(h) F(h) (&h )(/)(h nr (3;,2 >(F) 2!

~ Fgy + (1K) (=T (2.17)

ki X wow .

2k
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EXAMPLE: 2.2. The Arrhenius temperature dependence of the specific reaction rate k is
a highly nonlinear function that is linearized as follows:

o EIRT

kay = «a (2.18)
ok =
~ k; +(—> (T -T)
(T) oT )
—  Ek _
—F4 T -T) (2.19)
o7
where k = kg, u

EXAMPLE 2.3. The product of two dependent variables is a nonlinear function of the
two variables:

ﬂCA.F) = CuF (2.20)
Linearizing:
af — af) =
oy = fro o+ | —= Cir—Cp) + == (F-F) (221
fiewr = Jieyp (”CA )@.r)( e (‘”‘ (€. F)
CaFiy= CAF + F(Cppy = Ca) + Ca(Fiy = F) (2.22)

Notice that the linearization process converts the nonlinear function (the product of two
dependent variables) into a linear function containing two terms. L

exampie 2.4. Consider the nonlinear ordinary differential equation (ODE) for a
gravity-flow tank, which is derived from a momentum balance around the exit pipe.

dv 8 Kege ) »
Z =2 - 2.23
= 5) (pA,, ) .29
where v = velocity of liquid in the pipe
h = liquid height in the tank

L = length of pipe

Kr = friction factor constant

p = densty

A,, = cross-sectiona area of pipe
£ = gravitationa force

g. = gravitational constant

Linearizing the v? term gives
V= 7+ 20)(v - V) (2.24)
Thus Eg. (2.23) becomes

y v y i
dv._[8)\, _[2VKrgc\ . [V Krsc (2.25)
dt L pPA, pPA,
This ODE is now linear. The terms in the parentheses are constants; they depend, of
course, on the steady state around which the system is linearized. n
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exam PLE 2.5. The component balance equation for an irreversible nth-order, non-
isothermal reaction occurring in a constant-volume, variable-throughput continuous
stirred-tank reactor (CSTR) is

dCy

Vg = FoCa = FCy - V(Ca)'ae E/RT (2.26)
Linearization gives
V%-A": T [FoCaor  Fo(Cap}€.Cao(Fo — Fo)l
= ¢ Ca+ F(Ca—Ta Cu(F - F)] (2.27)
- V[ECy + nkCy l(CA—fA)+EI§—_T,1’f£(T~T)] .

So far we have looked at examples where al the nonlinearity is in the deriva
tive terms, i.e, the right-hand sides of the ODE. Quite often the model of a system
will give an ODE that contains nonlinear terms inside the time derivative itself. For
example, suppose the model of a nonlinear system is

d(h3 = K Jh (2.28)

The correct procedure for linearizing this type of equation is to rearrange it so that
al the nonlinear functions appear only on the right-hand side of the ODE, and then
linearize in the norma way. For the example given in Eq. (2.28), we differentiate
the h3 term to get

3h2 = K Jh (2.29)
Then rearrangement gives
dh K,  __
Now we are ready to linearize.
dh K 54 L5 _7
g 3M %( s 07) (=B (231)
- g@—*-s +< 135K(h) 25)(h h) (2.32)
= (h) o +( (h)~ 25) (2.33)

This is a linear ODE with constant coefficients:

dh
Ir = qg+ ah (2.34)
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2.2.2 Perturbation Variables

For practically all the linear dynamics and control studies in the rest of the book, it
is useful to look at the changes of variables away from steady-state values instead
of the absolute variables themselves. Why this is useful will become apparent in the
following discussion.

Since the total variables are functions of time, x,, their departures from the
steady-state values x will also be functions of time, as sketched in Fig. 2.3. These
departures from steady state are called perturbations, perturbation variables, or de-

viation variables. We use, for the present, the symbol x(,,. Thus, the perturbation in
x is defined as

XZ) = xp— ¥ (2.35)

The equations describing the linear system can now be expressed in terms of
these perturbation variables. When this is done, two very useful results occur:

1. The constant terms in the ordinary differential equation drop oui.

2. The initia conditions for the perturbation variables are al equa to zero if the
starting point is the steady-state operating condition around which the equations
have been linearized.

Both of these results greatly smplify the linearized equations. For example, if the
perturbations in velocity and liquid height are used in Eq. (2.25), we get

d(@ +v{) g\~ . .p 2VKrge \ V'Krg.
= |& -2+ V) + | — 2.36
dt (L>(h + o) PAp V%) PA, (259

Since v is a constant,

d P = 1, =2
o _ (&) - (PKese\p (s _TRes) o
dt L]® pA, |© L pA,
Now consider Eq. (2.23) under steady-state conditions. At steady state v will be equal
to v, a constant, and h will be equal to h, another constant.

dv _ o _ (87 _ [KF8c )2 2.38

Therefore the last term in EQ. (2.37) is equal to zero. We end up with alinear ordinary
differential equation with constant coefficients in terms of perturbation variables.

FIGURE 2.3
= ¢t Peturbation variables.
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(/\’p ) 2vK ¢
w _ (8 n SVRE8e Y p
=2 )h — ) 2.39
dt (L)I(’) ( pA,, )‘(r) ( )
In a similar way Eq. (2.27) can be written in terms of perturbations in Cy, Cao. Fy.
F,adT.

Vd(CA + CA})

dt "‘"(F())C/I\)() + (C/\())F(I)’ - (f)(‘//\’ - (6/‘ )F/)
—(Vnk Cy el + (Vk ¢ 35 )T,, (2.40)
RT

+ [F()CA() — i: éA — VEE;’\]
Application of Eqg. (2.26) under steady-state conditions shows that the last term in

Eq. (2.40) isjust equal to zero. So we end up with a smple linear ODE in terms of
perturbation variables.

dc? — — _ —
VEA‘ = (F)Chy + (Ca)Fy= (F)CY = (C)F?
——=n—1 VZEHE (241)
—(VnkC, )Cj;+<—:;‘—>TP
RT

Since we use perturbation variables most of the time, we often do not bother
to write the superscript p. It is understood that whenever we write the linearized
equations for the system, all variables are perturbation variables. Thus, Egs. (2.39)
and (2.41) can be written

dv _ (8, _ [2VKFg.
ar (L)h ( A, )V (242
dC,y _ _ _
V= = Fo)Cao+ (Cao)Fo = (F)Ca = (CA)F
o . (2.43)
- (vnkCy e, + (YECAE )y
RT

Note that the initial conditions of all these perturbation variables are zero since al
variables start at the initial steady-state values. This will ssmplify things significantly
when we use Laplace transforms in Part Two.

2.3
RESPONSES OF SIMPLE LINEAR SYSTEMS

2.3.1 First-Order Linear Ordinary Differential Equation

Consider the general first-order linear ODE

dx

T Py = Qq (2.44)
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with a given value of x known at a fixed point in time: x;,, = xy. Usually this is an
initial condition where r, = 0.

Multiply both sides of Eq. (2.44) by the integrating factor exp(| P dr).

ix ‘
5{—; cXp (IP(II)Jr P(,,xcxp( P(If) = Q(,,cprPdt)
¢ .

Combining the two terms on the [¢ft-hand side of the equation gives

%{xcprPdf)] - Q(,)exp(fpd,>

Integrating yields

dt + ¢

xexp([m): J[Q(,)ekpUPdt)

where ¢, is a constant of integration and can be evaluated by using the boundary or
initial condition. Therefore, the genera solution of Eq. (2.44) is

dr + Cl} (245)

e ol fra oo

exampLe 2.6. An isotherma, constant-holdup, constant-throughput CSTR with a first-
order irreversible reaction is described by a component continuity equation that is a first-

order linear ODE:
dC F F
ﬁd[/‘ + (V + l\’)C,\ — (V)CAO (246)

Let the concentrations C,o and C, be total values, not perturbations, for the present. The
reactant concentration in the tank is initialy zero.
Initial condition:

Cay = 0

At time zero a step change in feed concentration is made from zero to a constant vaue
Cao-
Forcing function:

Caoy = Cao
Comparing Egs. (2.44) and (2.46),

X=CA P =

exp([Pd,) — e(/’/\"k)l
J[Q(l)exp(fi)([[)jl dt = j(f_CVﬂL’)e(lv‘/thk)l dt

_[FCa ‘ QFIVER
v FIV + k

Therefore,
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The solution to Eq. (2.46) is, according to Eq. (2.45),

Cany = ('(I"/v.k):[(p?;’“’ )(I«'/Vl k),.l/"/\w/ql + (‘|]
+ (2.47)

FCa “(FIV +kn

+cye
T

The initia condition is now used to find the value of ¢,
FCpp
CA(()) =0 = Y, + ¢ (1)

Therefore, the time-dependent response of C, to the step disturbance in feed concentra-
tionis

_ 6/‘0 _ - (Ur+ky
CA(,) - l + kq‘ [l € (248)

where 1 = V/F and is the residence time of the vessdl. The response is sketched in
Fig. 24 and is the classica first-order exponentia rise to the new steady State.

The first thing you should always do when you get a solution is check if it is con-
sstent with the initid conditions and if it is reasonable physicaly. At ¢ = (), Eq. (2.48)
becomes

C
Cag=0) = 1+—A‘k)7[1 -1]1=0

S0 the initia condition is satisfied.

Does the solution make sense from a steady-state point of view? The new steady-
state value of C4 that is approached asymptoticaly by the exponential function can be
found from either the solution [Eqg. (2.48)], letting time go to infinity, or from the orig-
ina ODE [Eq. (2.46)], setting the time derivative dC4/dt equa to zero. Either method
predicts that at the final steady State

Cao
| + kr

Is this reasonable? It says that the consumption of reactant will be greater (the ratio of
C4 1o Cyo Will be smdler) the bigger k and 7 are. This certainly makes good chemical
engineering sense. If k is zero (i.e, no reaction), the fina steady-state vaue of C.
will be equal to the feed concentration C 4, as it should be. Note that C,,, would not
be dynamicaly equa to C,g; it would start at 0 and rise asymptotically to its final steady-

Cag—= = Cy = (2.49)

Cao

. e v Cao’
Asymptotic value (l e

N\

FIGURE 24
; Step response of a first-
o order system.
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state value. Thus. the predictions of the solution scem to check with the real physica
world.

The ratio of the change in the steady-state value of the output divided by the mag-
nitude of the step change made in the input is called the steady-state gain of the pro-
cess K,,.

C |

I, TR 0

These steady-state gains will be extremely important in our dynamic studies and in con-
troller design.

Does the solution make sense dynamicaly? The rate of rise will be determined by
the magnitude of the (k + 1/7) term in the exponential. The bigger this term, the faster the
exponentia term will decay to zero as time increases. The smaller this term, the dower
the decay will be. Therefore, the dynamics are set by (k + 1/7).

The reciprocal of this term is called the process openloop time constant, and we
use the symbol 7,. The bigger the time constant, the dower the dynamic response will
be. The solution [Eqg. (2.48)] predicts that a smal value of k or a big vaue of 7 will
give a large process time constant. Again, this makes good physical sense. If there is no
reaction, the time congtant is just equa to the residence time 7 = V/F.

Before we leave this example, let us put Eq. (2.46) in the standard form

dCy
dt

T( )

+ Ca = K,Cao (251

This is the form in which we want to look a many systems of this type. Dividing by the
term (k + | /7) does the trick.

I dCy I/ |

S IR TR k7+1CA°

(2.52)

T, = -km:L-l-.wT: process openloop time constant with units of time

K, = z ; = process steady-state gain with units of concentration
T in product stream divided by concentration in feed stream

Then the solution [EQ. (2.48)] becomes

Caiy = CaoKp(1=e7""™) (2.53)

In this example we have used tota variables. If we convert Eq.(2.46) into perturba
tion variables, we get
d(Ca + C , F — »
% + (Eva k(Ca+ C{) =15 (Cao + Clo)

I d

de F ) F ) F = F =l

d—[A + (V + k)Cf\ = (V)C’[m - [(V + k)CA - (V)CAO} (2.54)
The lagt term in this equation is zero. Therefore, Egs. (2.54) and (2.46) are identical,
except one is in terms of total variables and the other is in terms of perturbations. When-
ever the origina ODE is dready linear, either total or perturbation variables can be used.
Initial conditions will. of course. differ by the steady-state values of al variables. n



40 earrone Time Domain Dynamics and Control

exaM PLE 27. Suppose the feed concentration in the CSTR system considered above
is ramped up with time:

C‘A()(,) = Kt (255)
where K is a constant. C, isinitidly zcro.
Rearranging Eqg. (2.5 1) gives

dC, | K,K
_ + — C/ = vv/ 256
dt T, ‘ T, : (256)

The solution, according to Eq. (2.45), is

) 1
Cany = exp(—j 'rldt)H [K;Ktexp(J = dt)

K, K
_ (_ [reracs c.) 257)

T

de + cl]

The integra in Eq. (2.57) can be looked up in mathematics tables or found by integrating
by parts. Let

u =1t and dv = ™ dt
Then du = dt and v = 7,¢™

Since J udv = w — J vdu,

te'’™ dt = 1, te'"™ - I 7,e"™ dt

(2.58)
= 7t — (1,)%e"™
Therefore Eq. (2.57) becomes
Cany = KpK(t ~7,) + ¢ 7™ (2.59)
Using the initid condition to find ¢,
Caoy = 0 = K,K(—17,) + ¢, (2.60)

Forcing function
Cromn = Kt Slope = K,K

FIGURE 2.5
Ramp response of a first-order system.
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The final solution is

f

: s [ :
( Ay l\ /lk To (~‘ B l + e " ”) (2.61)
The ramp response is sketched in Fig. 2.5. L]

[t is frequently uscful to be able to determine the time constant of a first-order
system from experimental step response data. This is casy to do. When time is equal
to 7, in Eq. (2.53), the term (1 = ¢ ™) becomes (1 — ¢ ') = 0.623. This means
that the output variable has undergone 62.3 percent of the total change it is going to
make. Thus, the time constant of a first-order system is simply the time it takes the
step response to reach 62.3 percent of its new fina steady-state value.

2.3.2 Second-Order Linear QDEs with Constant Coefficients

The first-order system considered in the previous section yields well-behaved expo-
nential responses. Second-order systems can be much more exciting since they can
give an oscillatory or underdamped response.

The first-order linear equation {Eq. (2.44)] could have a time-variable coeffi-
cient; that is, P, could be a function of time. We consider only linear second-order
ODEs that have constant coefficients (r, and { are constants).

2L, 20 4 x = (2.62)
ogir T STy T Mo '

Anaytica methods are available for linear ODEs with variable coefficients, but their
solutions are usually messy infinite series, and we do not consider them here.

The solution of a second-order ODE can be deduced from the solution of a first-
order ODE. Equation (2.45) can be broken up into two parts:

= oo fra) <ol frafonolf i) x5

The variable x, is called the complementary solution. It is the function that satisfies
the original ODE with the forcing function (), set equal to zero (called the homo-
geneous differential equation):

dx
E’ + P(,)X = 0 (2'64)
The variable x,, is caled the parricular solution. It is the function that satisfies the
original ODE with a specified (,). One of the most useful properties of linear ODEs
is that the total solution is the sum of the complementary solution and the particular
solution.

Now we are ready to extend the preceding ideas to the second-order ODE of Eq.
(2.62). First we obtain the complementary solution x, by solving the homogeneous
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equation

2
,d*x dx
Toqa T 8T+ x (2.65)
Then we solve for the particular solution x, and add the two to obtain the entire

solution.

A. Complementary solution

Since the complementary solution of the first-order ODE is an exponential, it
is reasonable to guess that the complementary solution of the second-order ODE is
also of exponential form. Let us guess that

Xe = ce” (2.66)
where ¢ and s are constants. Differentiating x. with respect to time gives
dxc st dzxc 2
= c¢se” and —— = cs“e”
dt dr?

Now we substitute the guessed solution and its derivatives into Eq. (2.65) to find the
values of s that satisfy the assumed form [Eq. (2.66)].

T (cs?e”) + 2{T,(cse™) + (ce”) = 0

I 1

7252+ 2T,s +1=0 (2.67)

This equation, called the characteristic equation, contains the system’s most impor-
tant dynamic features. The values of s that satisfy Eq. (2.67) are caled the roots of
the characteristic equation (they are aso called the eigenvalues of the system). Their
values, as we will shortly show, dictate if the system is fast or ow, stable or unsta-
ble, overdamped or underdamped. Dynamic analysis and controller design consist
of finding the values of the roots of the characteristic equation of the system and
changing their values to obtain the desired response. Much of this book is devoted to
looking at roots of characteristic equations. They represent an extremely important
concept that you should fully understand.

Using the genera solution for a quadratic equation, we can solve Eq. (2.67) for
its two roots

212 To To

Uty JQUT? - 412 L + - (2.68)

Two values of s satisfy EQ. (2.67). There are two exponentials of the form given in
Eq. (2.66) that are solutions to the origina homogeneous ODE [Eq. (2.65)]. The sum
of these solutions is aso a solution since the ODE is linear. Therefore, the comple-
mentary solution is (for s; # s,)

Xo = 1€’ + e’ (2.69)
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where ¢ and ¢, are constants. The two roots s; and s, are

N S S| (2.70)
T() T()
2
5 = —T£ 'L S 57 ! (27 1)

The shape of the solution curve depends strongly on the values of the physica
parameter {, caled the damping coefficient. Let us now look at three possibilities.

{ > | (overdamped system). If the damping coefficient is grester than unity, the
quantity insde the sguare root is postive. Then §; and sy will both be red numbers,
and they will be different (distinct roots).

exaveLe  2.8. Consider the ODE

2
%t—f + 5% +6x=0
5 (2.72)
Ly xS LS N,
\/g dr? JE 2/5 dt
Its characteristic equation can be written in severa forms:
s +55+6=0 (2.73)
(s+3)(s+2=0 (2.74)
2
1
(..lf.ﬁ.) 2 2(%)(_.57) f1-0 )

All three are completely equivalent. The time constant and the damping coefficient for
the system are

1 ¢ 5
7‘0 = — = —
J6 2.6
The roots of the characteristic equation are obvious from Eq. (2.74), but the use of Eq.
(2.68) gives
Sz—éi\/gz_l:_itl
7, T, 2~ 2
S = -2
§ = -3

The two roots are real, and the complementary solution is
X, = cre Xt e (2.76)

The values of the constant ¢, and ¢, depend on the initial conditions. u
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{ = 1 (criticdly damped system). If the damping coefficient is equal to unity,
the term inside the square root of EqQ. (2.68) is zero. There is only one value of s that
satisfies the characteristic equation.

§ = —— (2.77)

The two roots are the same and are called repeated roots. This is clearly scen if a
value of { =1 is substituted into the characteristic equation [Eq. (2.67)}:

7252 + 27,5 + 1 = 0 = (7,5 + 1)(Tes + 1) (2.78)
The complementary solution with a repeated root is
Xe = (0 one’ = (cf+ cpt)e™ (2.79)

Thisis easily proved by substituting it into Eq. (2.65) with /' set equal to unity.

exampLe  2.9. If two CSTRs like the one considered in Example 2.6 are run in series,
two first-order ODEs describe the system:

dCa 1 I

ar + (;I— + k|)CA| = (’T_|)CAO (280)
ac | I

d;‘Z + <?2 + kz)CAz = (-T;)CA. (28 1)

Differentiating the second equation with respect to time and eliminating C4; give a
second-order ODE:

&2Ch {1 1 dCrr (1 1 1
—5 T (;l— +k + — + kz) ot (— + kl)(— + k2>CA2 = (T;_T;)CAO (2.82)

™ T] )

If temperatures and holdups are the same in both tanks, the specific reaction rates k and
holdup timesr will be the same:

k|:k2§k M=M=T

The characteristic equation is
5 1 1 ¥
SS+2(-+kls+{-+k] =0
T T
(2.83)

(s+l+k)(s+i+k)=o
T T

The damping coefficient is unity and there is a real, repeated root:
5§ = - (l + k)
T

(Caz)e = (¢ + cor)e” tkrtinn (2.84)
|

The complementary solution is

¢ < 1 (underdampedsystem). Things begin to get interesting when the damp-
ing coefficient is less than unity. Now the term inside the square root in Eq. (2.68)

- i
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is negative, giving an imaginary number in the roots.

Y SN el Y ) R &
s=—2x Y = -2 iy O (2.85)
T() T(J T() T()

The roots are complex numbers with real and imaginary parts.

A

ST = — = 4+ | —m— )
91 T(J , T() (2 86)
/1 _ 2
§2 = _£ - i—““‘g— (2.87)
To To

To be more specific, they are complex conjugates since they have the same real parts
and their imaginary parts differ only in sign. The complementary solution is

X = Clesll+ czeé‘zl
— 72 1 -2
- g exp{(..éﬁ_ﬂf )] p[(é I )]
0 To To To :
JI =2 J1 =
= ¢ 81 [cl exp(+i - { t)+ %) exp<—t—7—£t)] (2.88)
Now we use the relationships
¢'* = cos x + isinx (2.89)
cos( -X) = cos X (2.90)
sin(—x) = — sinx (2.91)

Substituting into Eq. (2.88) gives

X = e ¢ (cl { cos( /1 _£2t>+isin(-' 1 _gzt)}

TO T()
+ ¢ [ cos (-' IT_ £ t)— [ sin (___‘17—52[)] )

) —
= eg’”"{(cl + cz)cos<‘/T?t)+ i(c; — ¢3) sin <—17£t)] (2.92)

The complementary solution consists of oscillating sinusoidal terms multiplied
by an exponential. Thus, the solution is oscillatory or underdamped for { < 1. Note
that as long as the damping coefficient is positive (¢ > 0), the exponential term will
decay to zero as time goes to infinity. Therefore, the amplitude of the oscillations
decreases to zero, as sketched in Fig. 2.6.

If we are describing a real physical system, the solution x. must be a rea quan-
tity and the terms with the constants in EQ. (2.92) must all be real. So theterm ¢; + ¢
and the term i(c; — ¢) must both be real. This can be true only if ¢; and ¢; are com-
plex conjugates, as proved next.
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. Sinusoidal terms

FIGURE 2.6
Complementary solution for { < 1.

Let z, be a complex number and Z be its complex conjugate.

Z=x+iy ad 7 =x -~ iy

Now look at the sum and the difference:

z+7Z=X+iy) +(x —iy) = 2x a real number
Z—7=(x+1iy) —(x = iy) = 2yi a pure imaginary number
z—12) = -2y a rea number

So we have shown that to get real numbersfor both ¢; + ¢, and i(c¢j = ¢;), the numbers
¢; and ¢, must be a complex conjugate pair. Let ¢;= ¢R + ic! and ¢, = ¢ - icl.
Then the complementary solution becomes

To To

Xy = e M { (2c®) cos (»—l—:ﬁt) - (2c")sin (—————l_gzt)] (2.93)

exawLe 2.10. Consider the ODE

d’x  dx

27+:1—;+x=0

Writing this in the standard form,
d*x dx
N2== + .5)— =
(H i 2(1)(0.5) T +x=0

We see that the time constant 7, = 1 and the damping coefficient { = 0.5. The charac-
teritic equation is

ss+s+1=o0

Its roots are

To To (2.94)

I

e e s eea L et
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The complementary solution is

3
Xy = e " [ 2cR cos (?t)— 2¢' sin (—\é;t)} (2.95)

¢ = 0 (undamped system). The complementary solution is the same as Eq.
(2.93) with the exponential term equal to unity. There is no decay of the sine and
cosine terms, and therefore the system oscillates forever.

This result is obvious if we go back to Eg. (2.65) and set { = 0.

2d2

() d 2
Y ou might remember from physics that this is the differential equation that describes
a harmonic oscillator. The solution is a sine wave with a frequency of 1/7,. We dis-

cuss these kinds of functions in detail in Part Three, when we begin our “Chinese”
lessons covering the frequency domain.

+x=0 (2.96)

{ < 0 (unstable system). If the damping coefficient is negative, the exponential
term increases without bound as time becomes large. Thus, the system is unstable.

This situation is extremely important because it shows the limit of stability of a
second-order system. The roots of the characteristic equation are

I

To To

s =

If the real part of the root of the characteristic equation (—{/7,) is a positive number,
the system is unstable. So the stability requirement is:

A system is stableif the real parts of all the roots of the characteristic equation
are negative.

We use this result extensively throughout the rest of the book since it is the foundation
upon which amost al controller designs are based.

B. Particular solution

Up to this point we have found only the complementary solution of the homo-
geneous eguation

2d2

0d2+2{0 +x=0

This corresponds to the solution for the unforced or undisturbed system. Now we
must find the particular solutions for some specific forcing functions my,. Then the
total solution will be the sum of the complementary and particular solutions.
Severa methods exist for finding particular solutions. Laplace transform meth-
ods are probably the most convenient, and we use them in Part Two. Here we present
the method of undetermined coefficients. It consists of assuming a particular solution
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with the same form as the forcing function. The method is illustrated in the following
examples.

EXAMPLE 2.11. The ova-damped system of Example 2.8 is forced with a unit step func-
tion.

d*x | . dx o

Initial conditions are

dx
xoy = 0 and (——) _ 0
‘ dt o, =

The forcing function is a constant, so we assume that the particular solution is adso a
constant: x, = c3. Subgtituting into Eq. (2.97) gives

0+ 50)+6c; =1>c3 = 4 (2.98)
Now the total solution is [using the complementary solution given in Eq. (2.76)]

X=X+ X,= ce X+ e+ }5 (2.99)

The constants are evaluated from the initia conditions, using the total solution. A com-
mon mistake is to evaduate them using only the complementary solution.

X(O)ZO (,‘1+(,‘2+é

d
<d—);> =0 = (-—2016-2' - 3C26’_3’)(,=0) = —2C| - 3C2 =0
i(0)

Therefore
1
3
The fina total solution for the constant forcing function is

5 (2.100)
|

X = — %6_

exawle 2.12. A general underdamped second-order system is forced by a unit step
function:

zd2

) + 207 Tog t X = I (2.101)

Initial conditions are

dx
X = 0 ad (———) =0
dt J o,

Since the forcing function is a constant, the particular solution is assumed to be a con-
gant, giving x, = 1. The total solution is the sum of the particular and complementary
solutions [see Eq. (2.93)].

xp =1+ e‘g’”"{(ZcR)cos (—IT——{Z’> - (2Cl)8i"< s ’)} (2.102)

o (e}
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Using the initial conditions to evaluate constants,
xoy =0 =1 41281 = 2¢1(0))
dx , J1 =2 S =
— = ——ée o 1 2eR cos ___{ t|-2¢! sin ————7{r
d’ To To To
B J1-=0 (/1= 1 -2 J1I =2
+ o 61 { *2c"'7{ sm( ¢ |- 2! 4 cos L=¢ t
T() Tl) T() T{)

(dx )
dt )

Solving for the

-2
To 0

/1 =2
0= éV(zc’*) ( e YITE )
constants gives

2¢® = —1 and 2¢' = L

X

0.5

4 6
Time (i/1,)

FI GURE2. 7

Step responses of a second-order underdamped system.
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The total solution is

X(’) = l - ()"{HT(,
TU T()

cos(\/l - {2’>+ ¢ sin ( \ﬂ - §21>} (2.103)

This step response is sketched in Fig. 2.7 for severa vaues of the damping coefficient.

Note that the amount the solution overshoots the fina steady-state value increases as the
damping coefficient decreases. The system also becomes more oscillatory. In Chapter 3
we tune feedback controllers so that we get a reasonable amount of overshoot by selecting
a damping coefficient in the 0.3 to 0.5 range. L

It is frequently useful to be able to calculate damping coefficients and time con-
stants for second-order systems from experimental step response data. Problem 2.7
gives some very useful relationships between these parameters and the shape of the
response curve. There is a ssmple relationship between the “peak overshoot ratio”
and the damping coefficient, allowing the time constant to be calculated from the
“rise time” and the damping coefficient. Refer to Problem 2.7 for the definitions of
these terms.

EX A M pLE 2. 13 The overdamped system of Example 2.8 is now forced with a ramp
input:
d*x dx
L4550 4 6x = 2.104
ar P e (2.104)
Since the forcing function is the first term of a polynomid in ¢, we will assume tha the
particular solution is dso a polynomid in ¢.
Xp = by + byt + byt + byt + - (2.105)

where the b; are congtants to be determined. Differentiating Eq. (2.105) twice gives

dxp 9
—==Dh, + + 3patt +
at 2b2t 3bst

d’x, _

#—21)2"‘ 6b3t+"‘

Subdtituting into Eq. (2.104) gives
(Qby + 6bst + .. Y+ S(by+ 2byt + 3byt2 + . )+ 6(bg + byt + byt + by + . )=t

Now we rearrange the above expresson to group together al terms with equal powers
of t.

co F 36yt . )+ 16y + 1Sby+ .. ) + 1(6by + 10by + 6b))
+ (2by + 5b; + 6by) = ¢

Equating like powers oft on the left-hand and right-hand sdes of this equation gives the
smultaneous  equations

6b;+...=0
6by + 1503+ .+ =0
6by + 10b, + 6bh = |
2by + Sby+ 6by = 0
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Solving smultaneoudly gives

})O:—-% by = ; b=b1=...=0

The particular solution is

Xp = — b it (2.106)
The total solution is
Xy = wt e+ e (2.107)
If the initia conditions are
dx
Xy = 0 and(d;-> =0
[
the constants ¢; and ¢, can be evaluated:
xo = 0= —g‘% +c+ 0
dx)
=] =0=1-2¢-3q
(d’ ) §
Solving simultaneoudy gives
=3 and ¢ = —3 (2.1 09
And the fina solution is
X = —2 Tl je ¥ —ge™ (2.109)

2.3.3 Nth-Order Linear ODEs with Constant Coefficients

The results obtained in the last two sections for ssimple first- and second-order sys-
tems can now be generalized to higher-order systems. Consider the Nth-order ODE

dVx dV-1x

dx
aN TN + an-| + - +a1—‘+ apx = my,) (2.110)

dtN-1 dt

The solution of this equation is the sum of a particular solution x, and a complemen-
tary solution x,.. The complementary solution is the sum of N exponential terms. The
characteristic equation is an Nth-order polynomial:

ansM +ay_ sVt as+ap=0 (2.111)

There are N roots sy (k =1, ..., N) of the characteristic equation, some of which
may be repeated (twice or more). Factoring Eq. (2.111) gives

(s =SS —$)(s —853) . (s—sn—, s ~sn)=0 (2.112)

where the s, are the roots (or zeros) of the polynomial. The complementary solution
is (for all distinct roots, i.e., no repeated roots)

+

Y AN t
xey = e T e 4 T eye™
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And therefore the total solution i1s
N
Xy = Xpy * Z cpe™! 2.113)
k=1

The roots of the characteristic equation can be real or complex. But if they are
complex, they must appear in complex conjugate pairs. The reason for this is illus-
trated for a second-order system with the characteristic equation

s+ ais+ ay=0 (2.114)

Let the two roots be s, and s,.

(s=s1)s —s2) =0 (2.115)
s2 4 (=51 = 8)5 + 8§15 = 0
The coefficients ay and a; can then be expressed in terms of the roots:
ag = §185 and a = —(s; + $7) (2116)

If Eg. (2.114) is the characteristic equation for a real physical system, the coeffi-
cients gy and a; must be real numbers. These are the coefficients that multiply the
derivatives in the Nth-order differential equation. So they cannot be imaginary.

If the roots s, and s, are both real numbers, Eqg. (2.116) shows that ay and g
are certainly both real. If the roots s, and s, are complex, the coefficients ag and g
must still be real and must also satisfy Eq. (2.116). Complex conjugates are the only
complex numbers that give real numbers when they are multiplied and when they
are added together. To illustrate this, let z be a complex number: 7 = x + iy. Let
7 be the complex conjugate of z: 7= x —iy. Now zZ = x> + y? (a real number),
and 7 + 7 = 2x (areal number). Therefore, the roots sy and s must be a complex
conjugate pair if they are complex. This is exactly what we found in Eqg. (2.85) in
the previous section.

For athird-order system with three roots sy , s,, and s3, the roots could all be real:
§| =y, § = ay,and §3 = a3. Or there could be one rea root and two complex
conjugate roots:

S| = ay (2.117)
§7= ay t ilwy (2.118)
§3 = 0y — Wy (2.119)

where a; = real part of s, = Re[sy]
wy = imaginary part of s, = Im[sy]

These are the only two possibilities. We cannot have three complex roots.
The complementary solution would be either (for distinct roots)

Xe = ¢ + e’ + ze™ (2.120)

or X = e+ e™'[(cy + c3) cos(wyl) + i(cy = ¢3) sin(wot)] (2.121)
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where the constants ¢; and ¢y must also be complex conjugates in the latter equation,
as discussed in the previous section.

If some of the roots are repeated (not distinct), the complementary solution con-
tains exponential terms that are multiplied by various powers of . For example, if
oy IS a repeated root of order 2, the characteristic equation would be

(s — a1 ) (s~ s3)(s = 5q) . (s —sn) = 0

and the resulting complementary solution is

N
Xe = (¢ + eaf)e™ + Z cre'! (2.122)
k=3

If ais arepeated root of order 3, the characteristic equation would be
(s ~ a1 ) (s ~s4) . (s =sn)=0

and the resulting complementary solution is

N
Xe= (c1+ ot + c3the™ Z cre™ (2.123)
k=4
The stability of the system is dictated by the values of the real parts of the roots.
‘The system is stable if the rea parts of all roots are negative. since the exponential
terms go to zero as time goes to infinity. If the real part of any one of the roots is
positive, the system is unstable.
The roots of the characteristic equation can be very conveniently plotted in a
two-dimensional figure (Fig. 2.8) caled the “s plane.” The ordinate is the imaginary

w
A| Im(s)
—— Stable region ————»+4———— Unstable region —»
Stability limit
87
---------- + @,

|
|

Complex : Real

conjugate i root

roots N\ ' Re(s
5| e(s)
¥ -
Lo (04
i 2 l \Real axis
I
1
|
1 M4— Imaginary
oo -w, axis
53 = 52
FIGURE 2.8

s plane plot of the roots of the characterigtic equation.
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part @ of the root s, and the abscissa is the rea part « of the root s. The roots of
Egs. (2.117) to (2.119) are shown in Fig. 2.8. We will use these s-plane plots exten-
sively in Part Two.

The stability criterion for an Nth-order system is:

The system is stable if all the roots of its characteristic equation lie in the left
half of the s plane.

2.4
SOLUTION USING MATLAB

In the previous section we solved linear ordinary differential equations anaytically,
obtaining general solutions in terms of the parameters in the equations. Numerical
methods can also be used to obtain solutions, using a computer. In Chapter 1 we
looked at the dynamic responses of several processes by using numerical integration
methods (Euler integration-see Table 1.2).

Solutions of linear ODEs can also be found using the software tool MATLAB.
To demonstrate this, let us consider the three-heated-tank process studied in Chapter
1. The process is described by three linear ODEs [Egs. (1. 10), (1.1 1), and ( 1.12)].
If flow rate F, volume V (assuming equal volumes in the three tanks), and physical
properties p and c, are al constants, these three equations are linear and can be
converted into perturbation variables by inspection.

dl, _F 1

T = v o0 (2.124)
dT, F

e V(Tl T;) (2.125)
dT; F

T V(Tz - T3) (2.126)

To solve these equations in MATLAB we put them into “state variable” form (this
subject is discussed more fully in Chapter 12).

dx
i Ax+Bu (2.127)
y=Cx+tDu__ (2.128)
where x = vector of the three temperatures T, T,, and T3
u = vector of the two inputs Ty and Q,
y = vectorof measured variables (in our case just the scalar quantity Tx)
A, B, C, and D are matrices of constants

-
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E
v 0 0
F F
A = —
A v v 0 (2.129)
o <+ F
. vV 1%
rF |
1V Ve,
2— 0 0 (2.130)
| 0 0
FO
c=10 D = o o] (2.131)
1

Table 2.1 gives a MATLAB program that calculates the step response of the
openloop process for a step change of -20°F in the inlet temperature T. The numer-
ical values of parameters are the same as those used in Chapter 1. The four matrices
of constants are first defined. The time vector is defined, starting at zero and going
to 1.5 hours at increments of 0.005 hours:

t=[0:0.005:1.5];

Then the Step command is used to calculate the response of y (7'3) to a unit step input
in the first input (Ty) by specifying iu= 1.
[y,x]=step(a,b,c,d,iu,t); (2.132)
The variable y is the output T, and the variables x are the three state variables. T,
T,, and T. Figure 2.9 gives the response of T; for a 20°F decrease in Ty
The above steps calculate the openloop response of the system with the (y input

fixed. To calculate the closedloop response with a P controller manipulating Q; to
control T, we substitute for O, in Eq. (2.124):

Q1 = —(K.GvGr)T5 (2.133)
where K. = controller gain
Gy = valve gain = 10 X 10° Btu/hr/16 mA in the numerical example from

Chapter 1
Gr = transmitter gain = 16 mA/200°F in the numerical example

Remember that all variables are perturbation variables and there is no change in the
setpoint. The u input vector is now just a scalar: u = Ty. The four matrices for the
closedloop system are:

F, _KGGr
Vv Vpc,
F F
A= R 2.134
= 1% 4 0 ( )
o F F




56  pearTONE: Time Domain Dynamics and Control

TABLE 2.1
MATLAB program-Openloop

% Program “tempstateol.m” uses Matlab to calculate openloop step responses

%  to change in To for three-heated-tank process
%
% Using state-space formulation for openloop
%
% Third-order system
%
% Openloop A matrix
a=[-100 O
IO -J0 0
o 10 -10};
b={10 1/3750
00
0 0J;
c={0 0 ]
d=[O 0],
%

% Define time vector (from 0 to | hours)
1=([0:0.005:1.5]);

% “iu"=1is inlet temperature disturbance
iu=1;

% Use “step” function to get time responses for unit step in TO

[y.x]=step(a, b,cd, iu, 1),

%

% y=T3 for unit step (T0=1)
%

clf
plot(t, —20*y)

title(‘3 Heated Tanks; Openloop -20 Step Disturbance in TO’)

xlabel( ‘Time (hours) ’)

ylabel( ‘Changes in T3 (degrees)’)
grid

pause

print —dps pfig29.ps

c=|0f D

(2.135)

(2.136)

Table 2.2 gives a MATLAB program that calculates the closedloop response of T;
for two values of controller gain: K. = 4 and 8. Figure 2.10 gives results, which are

exactly the same a<thace in Chanter 1



Changes io T3 (degrees)

|
=
o

'
[N
N

N
I

1
AN
(o2}

-20

3 Heatad Tanks; Openloop -20 Step Disturbance in TO
0 T T

§
o]

.........................................................................................

............................................................................................

4| e N T,

Time (hours)

FIGJRE 2.9

Changes in T3 (degrees)

3 Heated Tanks; -20 Step Disturbance in TO

1.5

-10 | !

Time (hours)

FIGURE 2.10

1.5

57



58 parT onE: Time Domain Dynamics and Control

TABLE 2.2 ,
MATLAB program—Closedloop
G - KU D RS OUN R St

% Program “tempstatecl.m” uses MATLAB to calculate closedloop step responses
% to change in To for three-heated-tank process
%

% Using cate-space formulation

%

%

% uvse “step” function to get lime response

% Define time vector (from O to | hours)
1=({0:0.005:1.5]);

% “iu"=1is inlet temperature disturbance

%

% Closedloop

%

kc=A4;

al3=kcx10e6/3750/200;

acl={—-10 0 -—al3

10 -10 O
0 10 -]0j;
bel=[{10 0 0},
dcl=0;
cel=f0 0 I];

[ycll,xcll |=step(acl,bcl,ccl,dcl,iu,t);
%
ke=&
al3=kcx10e6/3750/200;
acl=[-10 0 —al3

10 -10 O

0 10 -10];
[ycl2,xcl2]=step(acl,bcl,ccl del,iu,t);

clf

plot(t,—20%ycll, ‘=" t, = 20%ycl2,*— =)

title(‘3 Heated Tanks; -20 Sep Disturbance in TO'}
xlabel(‘Time (hours)')

ylabel( *Changes in T3 (degrees)')

legend (‘Kc=4', ‘Kc=8")

grid

pause

print ~dps pfig2 10. ps

2.5
CONCLUSION

The important concept contained in this chapter is that the dynamic response of a
linear process is a sum of exponentials in time such as ¢°+. The s, terms multi-
plying time are the roots of the characteristic equution or the eigenvalues of the
system. They determine whether the process responds quickly or dowly, whether it
is oscillatory, and whether it is stahle
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The values of s, are either real or complex conjugate pairs. If these roots are

complex, the dynamic response of the system contains some oscillatory components.
If the real parts of all the roots are negative, the system is stable. If the rea part of
any of the roots is positive, the system is unstable. It only takes one bad apple to spoil

the barre !
PROBLEMS
2.1. Linearize the following nonlinear functions:
ax .
@ fo= Yo = T+ @-1x where « is a constant

2.2.

2.3.

() firy= P4, = €78 where A and B are constants
© fuy = Uy = KO)*®  where K is a constant
(d) fuy = Ly = K(hY?  where K is a constant

A fluid of constant density p is pumped into a cone-shaped tank of total voluine HwR%/3.
The flow out of the bottom of the tank is proportional to the square root of the height h

of liquid in the tank. Derive the nonlinear ordinary differential equation describing this
system. Linearize the ODE.

Fo

=

LY

—— - F=KJl  FIGURE P2.2

Solve the ODEs:

d?*x dx dx

X s Lax=2 oY) -
(@ Jz ¥ T o 0’(dz )(0) l

d*x dx dx

4+ 22— = = - =
(®) dr? ar = A0) 2’(dt >(0) 0

2.4 . The gravity-flow tank discussed in Chapter | is described by two nonlinear ODEs:

dh

AT- =F—-F
it 0
av. g, Krge 5
—_— = _h—- ——— g
dt L pA, i’

Linearize these two ODEs and show that the linearized system is a second-order system.
Solve for the damping coefficient and the time constant in terms of the parameters of the
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25. Solve the second-order ODE describing the steady-state flow of an incompressible,
Newtonian liquid through a pipe:

d d V. APg(
ar\"dr ,uL
What are the boundary conditions' ?
2.6. A feedback controller is added to the CSTR of Example 2.6. The inlet concentration C 4
isnow changed by the controller to hold C, near its setpoint vaue C5*.
Cro= Cam+ Cap

where Cyp is a disturbance composition. The controller has proportional and integral
action:

CAM—CAM+K(E+T—JEdt)
!

where K. and 7, are constants.
Cam = Steady-state value of Capy
E = Cf‘ﬂ - CA

Derive the second-order equation describing the closedloop process in terms of pertur-
bation variables. Show that the damping coefficient is

[ - |+ kr + K,
2 KC’T/T[
What value of K, will give critical damping? At what value of K, will the system become

unstable?

2.7. Consider the second-order underdamped system
d2

2
Toar
where K, is the process steady-state gain and my,) is the forcing function. The unit step
response of such a system can be characterized by rise time tg, peak time tp, settling
time g, and peak overshoot ratio POR. The values of ¢ and tp are defined in the sketch

below. The value of ¢ is the time it takes the exponential portion of the response to decay
to a given fraction F of the final steady-state value of x, xss5. The POR is defined as

+2'To£—— +x=K pMa

X - X
POR = (fp) A\
Xss

/

ip ip

FIGURE P2.7
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2.9.
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Show that
(@ 2 = - e sin |- &
Xss /] - é‘Z

a

r+ d)) where ¢ = cos™! ¢{

IR T~
®) To sing

ts _ In[I/(Fsndg)]
() ;{) = T osb

() POR = ¢ 7eotd

(@ Linearize the following two ODEs, which describe a nonisothermal CSTR with
constant volume. The input varigbles are Ty, T, Cpg, and F.

Vii—(%:‘— = F(C,\() - CA) - VkCA

d

where k = q¢ F/RT
(b) Convert to perturbation variables and arrange in the form

dC

-——d—tA = a“CA + alzT + (113CA() + a147‘0 +aisF + a16TJ
dT
o= a2 Ca + anT + ayCao + anTo + asF + axT,

(c) Combine the two linear ODEs above into one second-order ODE and find the roots
of the characteristic equation in terms of the a;; coefficients.

The flow rate F of a manipulated stream through a control valve with equal-percentage
trim is given by the following equation:

F= Ca*!

where F isthe flow in galons per minute and C, and ¢ are constants set by the valve

size and type. The control vave stem position x (fraction of wide open) is set by the
output signal CO of an analog electronic feedback controller whose signal range is 4
to 20 mA. The vave cannot be moved instantaneoudly. It is approximately a first-order
system:

Vi 16
The effect of the flow rate of the manipulated variable on the process temperature T is
given by

dT
L +T = K,F
Derive one linear ordinary differentia equation that gives the dynamic dependence of
process temperature on controller output signal CO.

To ensure an adequate supply for the upcoming set-to with the Hatfields, Grandpa
McCoy has begun to process a new batch of his famous Liquid Lightning moonshine.
He begins by pumping the mash a a constant rate Fy into an empty tank. In this tank
the ethanol undergoes a first-order reaction to form a product that is the source of the
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high potency of McCoy’s Liquid Lightning. Assuming that the concentration of ethanol
in the feed, C,, is constant and that the operation is isothermal, derive the equations
that describe how the concentration C of ethanol in the tank and the volume V of liquid
in the tank vary with time. Assume perfect mixing and constant dengity.

Solve the ODE to show that the concentration C in Grandpa McCoy’s batch of
Liquid Lightning is

Co(l — ¢ %)

Cin = kt

2.11. Suicide Sam dipped his 2000 |b,, hotrod into neutral as he came over the crest of a

mountain at 55 mph. In front of him the constant downgrade dropped 2000 feet in 5
miles, and the local acceleration of gravity was 3 | .O ft/sec?.

Sam maintained a constant 55-mph speed by riding his brakes until they heated
up to 600°F and burned up. The brakes weighed 40 Ib,,, and had a heat capacity of
0. | Btu/lb,, “F. At the crest of the hill they were at 60°F.

Heat was lost from the brakes to the air, as the brakes heated up, at a rate propor-
tiona to the temperature difference between the brake temperature and the air temper-
ature. The proportionality constant was 30 Btu/hr “F.

Assume that the car was frictionless and encountered negligible air resistance.
(8 At what distance down the hill did Sam’s brakes burn up?

(6) What speed did his car attain by the time it reached the bottom of the hill?

2.12. A farmer fills his silo with chopped corn. The entire corn plant (leaves, stem, and ear)

is cut up into small pieces and blown into the top of the cylindrical silo a a rate W,,.
This is smilar to a fed-batch chemicd reaction system.

Slo

S

Bed of chopped corn

.
.

>

Wagon
h(l)

Blower

g

A

-
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The diameter of the slois ) and its height is H. The density of the chopped corn
in the silo varies with the depth of the bed. The density p at a point that has 7 feet of
materid above it is

Py = PO + Bz

wherc py and B are constants.

(a) Write the equations that describe the system, and show how the height of the bed
hy varies as a function of time.

(h) What is the total weight of corn fodder that can be stored in the silo?

2.13. Two consecutive, first-order reactions take place in a perfectly mixed, isothermal batch
reactor.

ky ks
A—B—>C

Assuming constant density, solve analyticaly for the dynamic changes in the concen-
trations of components A and B in the Situation where k, = k,. The initia concentra
tion of A at the beginning of the batch cycle is Cyg. There is initially no component B
or C in the reactor.

What is the maximum concentration of component B that can be produced, and at
what point in time does it occur?

2.14. The same reactions considered in Problem 2.13 are now carried out in a single, perfect-
ly mixed, isothermal continuous reactor. Flow rates, volume, and densities are con-
stant.

(&) Derive a mathematicad model describing the system.

(b) Solve for the dynamic change in the concentration of component A, C,, if the con-
centration of A in the feed stream is constant at Cao and the initial concentrations
of A, B, and C at time zero are Cy) = Cao and Cg) = Cco) = 0.

(©) In the situation where k; = k,, find the value of holdup time (7 = V/F) that maxi-
mizes the steady-state ratio of Cg/Cag. Compare this ratio with the maximum found
in Problem 2.13.

2.15. The same consecutive reactions considered in Problem 2.13 are now carried out in
two perfectly mixed continuous reactors. Flow rates and densties are constant. The
volumes of the two tanks (V) are the same and constant. The reactors operate at the
same constant temperature.

(& Derive a mathematicad model describing the system.

(b) If ki = ko, find the vaue of the holdup time (7 = V/F) that maximizes the steady-
state ratio of the concentration of component B in the product to the concentration
of reactant A in the feed.

2.16. A vertical, cylindrica tank is tilled with well water a 65°F. The tank is insulated at the
top and bottom but is exposed on its vertical sides to cold 10°F night air. The diameter
of the tank is 2 feet and its height is 3 feet, The overall heat transfer coefficient is 20
Btwhr °F ft'. Neglect the metal wall of the tank and assume that the water in the tank
is perfectly mixed.
(@ Cdculate how many minutes it will be until the first crysta of ice is formed.

(b) How long will it take to completely freeze the water in the tank? The heat of fusion
of water is 144 Btu/lb,,.
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2.17. An isothermal, first-order, liquid-phase, reversible reaction is carried out in a constant-

volume, perfectly mixed continuous reactor.

kq
A=B
ky
The concentration of product B is zero in the feed and is Cy in the reactor. The feed
rateis F.
(@ Derive a mathematicad model describing the dynamic behavior of the system.
(6) Derive the steady-state relationship between C, and C4y. Show that the conversion
of A and the yield of B decrease as k; increases.
(c) Assuming that the reactor is at this steady-state concentration and that a step change
ismade in Capto (Cag + ACyg), find the andytica solution that gives the dynamic
response of Ca.

2.18. An isothermal, first-order, liquid-phase, irreversible reaction is conducted in a constant

2.19.

2.20.

2.21.

volume batch reactor.
k
A—B
The initial concentration of reactant A at the beginning of the batch is Co. The specific
reaction rate k decreases with time because of catalyst degradation:

k= koe P

(@) Solve for Ca.
(b) Show that in the limit as B — 0, Cayy = Cage™ 0.
(c) Show that in the limit as  — ©, Ca(y = Cpo.

There are 3460 pounds of water in the jacket of a reactor that are initidly at 145°F. At

time zero, 70°F cooling water is added to the jacket at a constant rate of 416 pounds
per minute. The holdup of water in the jacket is constant since the jacket is completely
filled with water, and excess water is removed from the system on pressure control as
cold water is added. Water in the jacket can be assumed to be perfectly mixed.

(8 How many minutes does it take the jacket water to reach 99°F if no hesat is trans-
ferred into the jacket?

(6) Suppose a constant 362,000 Btu/hr of heat is transferred into the jacket from the
reactor, starting at time zero when the jacket is at 145°F. How long will it take the
jacket water to reach 99°F if the cold water addition rate is constant at 416 pounds
per minute?

Hay dries, after being cut, at a rate that is proportional to the amount of moisture it con-
tains. During a hot (90°F) July summer day, this proportionality constant is 0.30 hr!.
Hay cannot be baled until it has dried down to no more than 5 wt% moisture. Higher
moisture levels will cause heating and mold formation, making the hay unsuitable for
horses.

The effective drying hours ae from 11:00 Am to 500 P.M. If hay canot be bded
by 5:00 . m, it must stay in the field overnight and picks up moisture from the dew. It
picks up 25 percent of the moisture that it lost during the previous day.

If the hay iscut a 11:00 A » Monday morning and contains 40 wt% moisture at
the moment of cutting, when can it be baed?

Process liquid is continuoudy fed into a perfectly mixed tank in which it is heated
by a steam coil. Feed rate F is 50,000 Iby/hr of materia with a constant density p of
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SO b, /{1 and heat capacity C',, of 0.5 Btu/lb,, °F. Holdup in the tank V is constant at
4000 lb,,. talet feed temperature Ty is 8OF.

Steam is added a arate § Ib,/hr that heats the process liquid up to temperature T.
At the initial steady state, 7 is 190°F. The Intent heat of vaporization A, of the steam is
900 Btu/loyy, .

(a) Derive a mathematical model of the system, and prove that process temperature is
described dynamicaly by the ODE

Tﬂ +T = K\Ty + K»rS
dt
where 7 = VIF
K, |
K, )\‘\./C,,F

(b) Solve for the steady-state value of steam flow S.
(c) Suppose a proportional feedback controller is used to adjust steam flow rate,
S=S+ K190 -7)

Solve andyticdly for the dynamic change in T, for a step change in inlet feed
temperature from 80°F down to 50°F. What will the final values of T and § be at
the new steady state for a K,. of 100 Ib,,,/hr/°F?

2.22. Use MATLAB to solve for the openloop and closedloop responses of the two-heated-

tank process using a proportiona temperature controller with K. values of 0, 2, 4, and
8; T, iscontrolled by Q.

2.23. Use MATLAB to solve for the openloop and closedloop responses of the two-heated-
tank process using a Pl temperature controller with 7, = 0. | hr and K. vaues of 0, 2,
4, and 8.

2.24. A reversible reaction occurs in an isotherma CSTR.
k
A+B k:»'C +D

The reactor holdup V, (moles) and the flow rates into and out of the reactor F (mol/hr)
are congtant. The concentrations in the reactor are z; (mole fraction component j). The
reaction rates depend on the reactor concentrations to the first power. The reactor feed
stream concentration is z,;.

(a) Write the dynamic component balance for reactant A.

(h) Linearize this nonlinear ODE and convert to perturbation variables.

2.25. A first-order reaction A L B occurs in an isotherma CSTR. Fresh feed at a flow rate
Fy (mol/hr) and composition gz, (mole fraction A) is fed into the reactor aong with a
recycle stream. The reactor holdup is V (moles). The reactor effluent has composition
z (mole fraction A) and flow rate F (mol/hr). It is fed into a flash drum in which a
vapor stream is removed and recycled back to the reactor at a flow rate R (mol/hr) and
composition yg (mole fraction A).

The liquid from the drum is the product stream with flow rate P (mol/hr) and com-
position xp (mole fraction A). The liquid and vapor streams are in phase equilibrium:
yg = Kxp, where K is a constant. The vapor holdup in the fiash drum is negligible.
The liquid holdup is M.
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(n) Write the steady-state equations describing this system. If Fy, z0, xp. K, k, and Vg
are al specified, solve for F, z, R, and yg.
(b) Write the dynamic equations describing this system.

2.26. A verticd cylindrical tank, 10 feet in diameter and 20 feet tal, is partidly filled with

pure liquid methylchloride. The vapor phase in the tank is pure methylchloride vapor.
The temperature in the tank is 100°F. The vapor pressure of methylchloride at 100°F
is 125 psa The liquid height in the tank is 2 feet.

A safety valve suddenly opens, releasing vapor from the top of the tank at a flow

rate F (Ib/min), which is proportional to the pressure difference between the tank and
the atmosphere:

F= K(P -Patm)

where K = 0.544 Ib/min/psi. Assume the gas is ided and that the temperature of the
contents of the tank remains constant at 100°F. The molecular weight of methylchloride
is 50, and the density of liquid methylchloride at 100°F is 45 1b/ft>.

Solve andyticdly for the dynamic changes in liquid level hy,), tank pressure Py,
and vapor flow rate Fi; from the tank.

2.27. A verticd cylindrica tank, 0.5 feet in diameter and | foot tal, is patidly filled with

2.28.

2.29.

pure liquid water. The vapor phase in the tank is pure water vapor. The temperature in
the tank is 80°F. The vapor pressure of water at 80°F is 0.5067 psia. The liquid height
in the tank is 2.737 in.

A small hole suddenly develops at the bottom of the tank. The flow rate of materia
out of the hole is proportiona to the pressure difference between the pressure at the hole
and the atmosphere.

F = K(Pnote = Pam)

where K = 0.544 1b/min/psi. Assume the gas is ideal and that the temperature of the
contents of the tank remains constant at 80°F. The density of liquid water at 80°F is
62.23 Ib/ft>.

Solve analyticaly for the dynamic changes in liquid level kg, tank pressure Py,
and flow rate Fy, from the tank.

A milk tank on a dairy farm is equipped with a refrigeration compressor that removes
q Btu/min of heat from the warm milk. The insulated, perfectly mixed tank is initidly
filled with V;, (ft®) of warm milk (99.5°F). The compressor is then turned on and begins
to chill the milk. At the same time, fresh warm (99.5°F) milk is continuoudly added at
a constant rate F (ft3/min) through a pipeline from the milking parlor. The total volume
after al cows have been milked is V7 (ft).

Derive the equation describing how the temperature T of milk in the tank varies
with time. Solve for T,. What is the temperature of the milk at the end of the milk-
ing? How long does it take to chill the milk down to 35°F? Parameter vaues are
F = 1 f/min, p = 62.3 Ib,/ft}, C, = 1 Bu/lb, °F, Vo = 5 £, V; = 100 {2,
g = 300 Btwmin.

Cdculate the A and B matrices for the state-variable representation of the closedloop
two-heated-tank process when a Pl temperature controller is used to control 7, by ma
nipulating Q.




CHAPTER 3

Conventional Control Systems
and Hardware

In this chapter we study control equipment, controller performance, controller tun-
ing, and general control system design concepts. Questions explored include: How
do we decide what kind of control valve to use? What type of sensor can be used,
and what are some of the pitfalls we should be aware of that can give faulty signals?
What type of controller should we select for a given application? How do we “tune”
a controller?

First we look briefly at some of the control hardware that is currently used in pro-
cess control systems. transmitters, control valves, controllers, etc. Then we discuss
the performance of conventional controllers and present empirical tuning techniques.
Finally, we talk about some important design concepts and heuristics that are useful
in specifying the structure of a control system for a process.

3.1
CONTROL INSTRUMENTATION

Some familiarity with control hardware and software is required before we can
discuss selection and tuning. We are not concerned with the details of how the var-
ious mechanical, pneumatic, hydraulic, eectronic, and computing devices are con-
structed. These nitty-gritty details can be obtained from the instrumentation and
process control computer vendors. Nor are we concerned with specific details of
programming a distributed control system (DCS). These details vary from vendor’'to
vendor. We need to know only how they basically work and what they are supposed
to do. Pictures of some typical hardware are given in Appendix B.

There has been a real revolution in instrumentation hardware during the last
several decades. Twenty years ago most control hardware was mechanical and
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preumatic (USING instrument air pressure 1o drive gadgets and for control signals).
Tubing had to be run back and forth between the process equipment ana the central
location (called the “control room”) where al the controllers and recorders were
installed. Signals were recorded on strip-char-1 paper recorders.

Today most new plants use DCS hardware-microprocessors that serve scveral
control loops ssimultaneously. Information is displayed on CRTSs (cathode ray tubes).
Most signals are still transmitted in analog éectronic form wsuary current signals),
but the use of digital data highways and networks is increasing. These systems pro-
vide much more computing power and permit mathematical models of the process
to be run on-line (while the process is operating).

Despite al these changes in hardware, the basic concepts of control system
structure and control algorithms (types of controllers) remain essentially the same
as they were 30 years ago. It is now easier to implement control structures; we just
reprogram a computer. But the process control engineer’s job is the same: to come
up with a control system that will give good, stable, robust performance.

As we preliminarily discussed in Chapter |, the basic feedback control loop
consists of a sensor to detect the process variable, a transmitter to convert the sensor
signa into an equivaent “signal” (an air-pressure signal in pneumatic systems or a
current signal in analog electronic systems), a controller that compares this process
signa with a desired setpoint value and produces an appropriate controller output
signal, and a final control element that changes the manipulated variable based on the
controller output signal. Usually the final control element is an air-operated control
valve that opens and closes to change the flow rate of the manipulated stream. See
Fig. 3.1.

The sensor, transmitter, and control valve are physically located on the process
equipment (“in the field”). The controller is ‘usually located on a panel or in a com-
puter in a control room that is some distance from the process equipment. Wires
connect the two locations, carrying current signals from transmitters to the controller
and from the controller to the final control element.

The control hardware used in chemical and petroleum plants is either analog
(pneumatic or electronic) or digital. The analog systems use air-pressure signas (3
to 15 psig) or current/voltage signals (4 to 20 mA, 10 to 50 mA, or 0to [0 V DC).
They are powered by instrument air supplies (25 psig air) or 24 V DC €lectrica
power. Pneumatic systems send air-pressure signals through small tubing. Analog
electronic systems use wires.

Since most valves are ill actuated by air pressure, current signals are usually
converted to an air pressure. An “Z/P’ (current to pressure) transducer is used to
convert 4 to 20 mA signalsto 3 to |5 psig signals.

Also located in the control room is the manual/automatic switching hardware
(or software). During start-up or under abnormal conditions, the plant operator may
want to be able to set the position of the control valve instead of having the controller
position it. A switch is usualy provided on the control panel or in the computer sys-
tem, as sketched in Fig. 3.2. In the “manual” position the operator can stroke the
valve by changing a knob (a pressure regulator in a pneumatic system or a poten-
tiometer in an analog electronic system). In the “automatic” position the controller
output goes directly to the valve.
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Feedback control loop.

Each controller must do the following:

1. Indicate the value of the controlled variable-the signa from the transmitter
(PV).

2. Indicate the value of the signal being sent to the valve-the controller output
(CO).

3. Indicate the setpoint signal (SP).

4. Have a manual/automatic/cascade switch.

5. Have a knob to set the setpoint when the controller is on automatic.

6. Have a knob to set the signal to the valve when the controller is on manual.

All controllers, whether 30-year-old pneumatic controllers or modern distributed
microprocessor-based controllers, have these features.

3.1.1 Sensors

Let’s start from the beginning of the control loop at the sensor. Instruments for on-line
measurement of many properties have been developed. The most important variables



70 part one: Time Domain Dynamics awl Control

(a) 1 n manual

Potentiometer to

4-20mA position valve
P ’—J{-——#——> ;i

Transducer

3 - 15 psig

Manual/automatic
switch in manual

Control position

valve

(h) In automatic

Setpoint

\
4 -20 mA

Transmitter —Af—Af——4A—-| Controller <+—Q—-E

OSSH

Process POtentiometer. to
stream Controller change sctpotnt
output
4 —20 mA

1
3 =15 psig
—— P\,

\ Manual/automatic
switch in automatic
position

Control
valve

FIGURE 3.2
Manua/automatic  switching.

are flow rate, temperature, pressure, and level. Devices for measuring other proper-
ties, such as pH, density, viscosity, infrared and ultraviolet absorption, and refrac-
tive index are available. Direct measurement of chemical composition by means of
on-line gas chromatographs is quite widespread. These instruments, however, pose
interesting control problems because of their intermittent operation (a composition
signal is generated only every few minutes). We study the analysis of these discon-
tinuous, “sampled-data’ systems in Part Five.

We briefly discuss here some of the common sensing elements. Details of their
operation, construction, relative merits, and costs are given in severa handbooks,
such as Instrument Engineers Handbook by B. G. Liptak, Chilton, Radnor, PA,
1970; and Measurement Fundamentals by R. L. Moore, Instrument Society of Amer-
ica, Research Triangle Park, NC, 1982.

A. Flow

Orifice plates are by far the most common type of How rate sensor. The pres-
sure drop across the orifice varies with the square of the flow in turbulent How, so
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measuring the differential pressure gives a signa that can be related to flow rate.

Normally, orifice plates are designed to give pressure drops in the range of 20 to 200

inches of water. Turbine meters are aso widely used. They are more expensive but

give more accurate flow measurement. Other types of flow meters include sonic fiow

meters, magnetic flow Meters, rotameters, vortex-shedding devices, and pitot tubes.

In gas recycle systems, where the pressure drop through the flow meter can mean a
significant amount of compressor work, low-pressure drop flow meters, such as the
last two mentioned above, are used.

When a flow sensor is installed for accurate accounting measurements of the
absolute flow rate, many precautions must be taken, such as providing a long sec-
tion of straight pipe before the orifice plate. For control purposes, however, one may
not need to know the absolute value of the flow, but only the changes in flow rate.
Therefore, pressure drops over pieces of equipment, around ebows, or over sections
of pipe can sometimes be used to get a rough indication of flow rate changes.

The signals from flow rate measurements are usually noisy, which means they
fluctuate around the actual value because of the turbulent flow. These signals often
need to be filtered (passed through an electronic device to smooth out the signal)
before being sent to the controller.

B. Temperature

Thermocouples are the most commonly used temperature-sensing devices. They
are typicaly inserted into a thermowell, which is welded into the wall of a vessel or
pipe. The two dissimilar wires produce a millivolt signal that varies with the “hot
junction” temperature. Iron-constantan thermocouples are commonly used over the
0 to 1300°F temperature range.

Filled-bulb temperature sensors are also widely used. An inert gas is enclosed
in a constant-volume system. Changes in process temperature cause the pressure ex-
erted by the gas to change. Resistance thermometers are used where accurate tem-
perature or differential temperature measurement is required. They use the principle
that the electrical resistance of wire changes with temperature.

The dynamic response of most sensors is usually much faster than the dynamics
of the process itself. Temperature sensors are a notable and sometimes troublesome
exception. The time constant of a thermocouple and a heavy thermowell can be 30
seconds or more. If the thermowell is coated with polymer or other goo, the response
time can be severa minutes. This can significantly degrade control performance.

C. Pressure and differential pressure

Bourdon tubes, bellows, and diaphragms are used to sense pressure and differ-
ential pressure. For example, in a mechanical system the process pressure force is
balanced by the movement of a spring. The position of the spring can be related to
the process pressure.

D. Level
Liquid levels are detected in a variety of ways. The three most common are:

1. Following the position of a float that is lighter than the fluid (as in a bathroom
toilet).
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2. Measuring the apparent weight of a heavy cylinder as it is buoyed up more or less
by the liquid (these are called displacement meters).

3. Measuring the difference in static pressure between two fixed elevations, one in
the vapor above the liquid and the other under the liquid surface. As sketched in
Fig. 3.3, the differential pressure between the two level taps is directly related to
the liquid level in the vessdl.

In the last scheme the process liquid and vapor are normally piped directly to the
differential-pressure measuring device (AP transmitter). Some care has to be taken
to account for or to prevent condensation of vapor in the connecting line (called the
“impulse ling”) from the top leve tap. If the line fills up with liquid, the differentia
pressure will be zero even though the liquid level is al the way up to or above the
top level tap, leading you to think that the level is low. If safety problems can occur
because of a high level, a second level Sensor should be used to independently detect
high level. Keeping the vapor impulse line hot or purging it with a small vapor flow
can sometimes keep it from filling with liquid. Purging it with asmall liquid flow also
works because you know that the line is always filled with liquid, so the “zero” (the
AP at which the transmitter puts out its 4-mA signal) can be adjusted appropriately
to indicate the correct level.

Because of plugging or corrosion problems, it is sometimes necessary to keep
the process fluid out of the AP transmitter. This is accomplished by mechanica di-
aphragm seals or by purges (introducing a small amount of liquid or gas into the
connecting lines, which flows back into the process).

If it is difficult to provide a level tap in the base of the vessel (for mechanical
design reasons, for example, in a glass-lined or jacketed vessel), a bubble tube can

A miscevmesmdnd Counen tha tase AL ¢l A sAanmA VA nevrstr ssencdac thha 1 avecd mivasfamn an oIh Arrrss oo
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Fig. 3.3. A small gas purge through the tubc gives a pressure on the high-pressure
side of the AP transmitter that is the same as the static pressure at the base of the
bubble tube. This type of level measurement can give incorrect level readings when
the pressure in the vessal is increasing rapidly because the liquid can back up in the
dip-tube if the gas purge flow rate is not large enough to compensate for the pressure
increase.

For very hard-to-handle process fluids, nuclear radiation gauges are used to de-
tect interfaces and levels.

As you can tell from the preceding discussion, it is very easy to be fooled by a
differential-pressure measurement of level. We have been bitten many times by these
problems and highly recommend redundant sensors and judicious skepticism about

the validity of instrument readings. Remember the Fourth Law of Process Control:
“Never believe the instruments.”

3.1.2 Transmitters

The transmitter serves as the interface between the process and its control system.
The job of the transmitter is to convert the sensor signa (millivolts, mechanical
movement, pressure differential, etc.) into a control signal (4 to 20 mA, for example).

Consider the pressure transmitter shown in Fig. 3.4q. Let us assume that this
particular transmitter is set up so that its output current signal varies from 4 to 20 mA

Connection with process
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as the process pressure in the vessdl varies from 100 to 1000 kPa gauge. This is
cdled the range of the transmitter. The span of the transmitter is 900 kPa. The zero
of the transmitter is 100 kPa gauge. The transmitter has two adjustment knobs that
can be changed to modify the span or the zero. Thus, if we shifted the zero up to 200
kPa gauge, the range of the transmitter would now be 200 to 1100 kPa gauge while
its span would still be 900 kPa.

The dynamic response of most transmitters is usualy much faster than the pro-
cess and the control valves. Consequently, we can normally consider the transmitter
as a smple “gain” (a step change in the input to the transmitter gives an instanta

neous step change in the output). The gain of the pressure transmitter considered
above would be

20 mA — 4 mA _ 16 mA
1000 kPa— 100 kPa 900 kPa

Thus, the transmitter is just a “transducer” that converts the process variable to an
equivalent control signal.

Figure 3.46 shows a temperature transmitter that accepts thermocouple input
signals and is set up so that its current output goes from 4 to 20 mA as the process
temperature varies from 50 to 250°F. The range of the temperature transmitter is

50 to 250°F, its span is 200°F, and its zero is 50°F. The gain of the temperature
transmitter is

(3.1)

20mA -4mA 16 mA
250°F — 50°F  200°F (3:2)

As noted in the previous section, the dynamics of the thermowell-thermocouple sen-
sor are often not negligible and should be included in the dynamic analysis.

Figure 3.4c shows a AP transmitter used with an orifice plate as a flow trans-
mitter. The pressure drop over the orifice plate (the sensor) is converted to a control
signal. Suppose the orifice plate is sized to give a pressure drop of 100 in H,O at
a process flow rate of 2000 kg/hr. The AP transmitter converts inches of H,O into
milliamperes, and its gain is 16 mA/100 in H,O. However, we redly want flow rate,
not orifice plate pressure drop. Since AP is proportional to the square of the flow
rate, there is a nonlinear relationship between flow rate F and the transmitter output
signal:

F 2

where PV = transmitter output signal, mA
F = flow rate, kg/hr

Equation (3.3) comes from the square-root relationship between velocity and pres-
sure drop. Dropping the flow by afactor of 2 cuts the AP signal by a factor of 4. For -

system analysis we usualy linearize Eg. (3.3) around the steady-state value of flow
rate, F.

o 32F
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where PV and F = perturbations from steady state
F = steady-state flow rate, kg/hr
Fiax = maximum full-scale flow rate = 2000 kg/hr in this example

3.1.3 Control Valves

The interface with the process at the other end of the control loop is made by the
final control element. In a vast majority of chemical engineering processes the final
control element is an automatic control valve that throttles the flow of a manipulated
variable. In mechanical engineering systems the fina control element is a hydraulic
actuator or an electric servo motor.

Most control valves consist of a plug on the end of a stem. The plug opens or
closes an orifice opening as the stem is raised or lowered. As sketched in Fig. 3.5,
the stem is attached to a diaphragm that is driven by changing air pressure above the
diaphragm. The force of the air pressure is opposed by a spring.

There are several aspects of control valves: their action, characteristics, and
size.

A. Action

Vaves are designed to fail either in the completely open or the completely shut
position. Which action is appropriate depends on the effect of the manipulated vari-
able on the safety of the process. For example, if the valve is handling steam or fuel,
we want the flow to be cut off in an emergency (valve to fail shut). If the valve is
handling cooling water to a reactor, we want the fiow to go to a maximum in an
emergency (valve to fail wide open).

The vave shown in Fig. 3.5 is closed when the stem is completely down and
wide open when the stem is at the top of its stroke. Since increasing air pressure
closes the valve, thisis an “air-to-close” (AC) vave. If the air-pressure signal should
drop to zero because of some failure (for example, if the instrument-air supply line
were cut or if it plugged with ice during a cold winter night), this valve would fail
wide open since the spring would push the valve open. The valve can be made “air-
to-open” (AO) by reversing the action of the plug to close the opening in the up
position or by reversing the locations of the spring and air pressure (with the air
pressure under the diaphragm). Thus, there are AO and AC valves, and the deci-
sion about which to use depends on whether we want the valve to fail shut or wide
open.

B. Size

The flow rate through a control valve depends on the size of the valve, the pres-
sure drop over the valve, the stem position, and the fluid properties. The design
equation for liquids (nonflashing) is

F = AP (3.5)
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where  F = flow rate, gpm
C, = valve size coefficient
x = valve stem position (fraction of wide open)
fx = fraction of the total flow area of the valve (the curve of f,, versus x
Is called the “inherent characteristics’ of the valve, discussed later)
Sp gr = specific gravity (relative to water)
AP,, = pressure drop over the vave. ps

More detailed equations are available in publications of the control valve manu-
facturers [for example, the Masonielan Handbook for Control Valve Szing, 6th ed.
(1977), Dresser Industries] that handle flows of gases, flashing liquids, and critical
flows with either English or Sl units.

Sizing of control valves is one of the more controversial subjects in process con-
trol. The sizing of control valves is a good example of the engineering trade-off that
must be made in designing a plant. Consider the process sketched in Fig. 3.6. Sup-

AP,
APy
a ! F Control
L Heat
Pump exchanget valve

FIGURE 3.6
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posc the flow rate at design conditions is 100 gpm, the pressure in the feed tank js
atmospheric, the pressure drop over the heat exchanger (APy) at the design flow rate
is 40 psi, and the pressure in the final tank, P is 150 psig. Let us assume that we
want the control valve hall open ( f,, = 0.5) at the design flow and that the specific
gravity of the liquid is I.

The process engineer has to size both the centrifugal pump and the control valve.
The bigger the control valve, the less pressure drop it requires. This resultsin a pump
with a lower pressure head and lower cnergy costs because less power is consumed
by the pump motor. Without considering control, the process engineer wants to de-
sign a system that has a low pressure drop across the control valve. From a steady-
state standpoint, this makes perfect sense.

However, the control engineer wants to take a large pressure drop over the valve.
Why? Basically, it is a question of “rangeability”: the larger the pressure drop, the
larger the changes that can be made in the flow rate (in both directions-increase
and decrease). Let’s examine two different designs to show why it is desirable from
a dynamic viewpoint to have more pressure drop over the control valve.

In case 1 we size the valve so that it takes a 20-psi pressure drop at design flow
when it is haf open. This means that the pump must produce a differentia head
of 1.50 + 40 + 20 = 210 psi at design. In case 2 we will size the valve so that it
takes an 80-psi pressure drop at design. Now a higher head pump will be needed:
150 + 40 + 80 = 270 psi.

Using Eq. (3.5), both control valves can be sized.

Case 1

AP
F=C, v
fm\/sp or
100 = C,1(0.5) /20 => C,

44.72 when the design valve pressure drop
iIs20 psi

Case 2;
100 = C,x(0.5) V80 > C»

22.36 when the design vave pressure drop
is80 psi

Naturally, the control valve in case 2 is smaller than that in case 1.

Now let’s see what happens in the two cases when we open the control valve
al the way: fi,y = 1. Certainly the flow rate will increase, but how much? From a
control point of view, we may want to be able to increase the flow substantially. Let’'s
call this unknown flow F,,,.

The higher flow rate will increase the pressure drop over the heat exchanger as
the square of the flow rate.

quX : lelX :
= = 4
APy 4()(chs ) 0( 100 ) (3.6)

where F4.s = design flow. The higher How rate might aso reduce the head that the
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rapidly with throughput. For simplicity, let us assume that the pump curve is fiat.
This means that the total pressure drop across the heat exchanger and the control
valve is constant. Therefore, the pressure drop over the control valve must decrease
as the pressure drop over the heat exchanger increases.

APv = APTolul - APH (3-7)

Plugging in the numbers for the two cases yields the following results.
Case 1 (20-psi design):

APTmal = 60 psi Cy = 44,72

2
_ oo — 4o Fm
Frax = (44.72)(1.0)\/ 60 40( 100 ) (3.8)
This equation can be solved for Frax = 115 gpm. The maximum flow through the

valve is only 15 percent more than design if a 20-psi pressure drop over the valve is
used at design flow rate.

Case 2 (80-psi design):
APy = 120 pSl C, = 22. 36

100

Solving for F,,, yields 141 gpm. So the maximum flow through this valve, which
has been designed for a higher pressure drop, is over 40 percent more than design.
We can see from the results above that the valve designed for the larger pressure
drop can produce larger flow rate increases at its maximum capacity.
Now let's see what happens when we want to reduce the flow. Control valves
don’'t work too well when they are less than about 10 percent open. They can become
mechanically unstable, shutting off completely and then popping partialy open. The

F 2
Frax = (22.36)(1.0) \/ 120 - 40( "“‘*) (3.9

resulting fluctuations in flow are undesirable. Therefore, we want to design for a

minimum valve opening of 10 percent. Let's see what the minimum flow rates will
be in the two cases when the two valves are pinched down so that f,) = 0.1.

In this case the lower flow rate will mean a decrease in the pressure drop over |

the heat exchanger and therefore an increase in the pressure drop over the control
valve.

Case 1 (20-psi design):

Fmin - (0 l)(4472)\/60 - 40 <fgg> (3.10) _'
Solving gives Frin = 33.3 gpm.
Case 2 (SO-ps design):
Foin V
Foin = (0.1)(22.36)\/120 ""40( lgg) (3.11)

This Fn 1S 24.2 gpm.

§:

3
f
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These results show that the minimum flow rate is lower for the valve designed
for a larger pressure drop. So not only can we increase the flow more, but we also
can reduce it more. Thus the furndown ratio (the ratio of Fy.x to Fiyin) of the big AP
valve is larger.

Turndown ratio for 20-psi design valve = 37 3.46
: o 141
Turndown ratio for 80-psi design valve = v 5.83

We have demonstrated why the control engineer wants more pressure drop over the
valve.

So how do we resolve this conflict between the process engineer wanting low
pressure drop and the control engineer wanting large pressure drop?

A commonly used heuristic recommends that the pressure drop over the control
valve at design should be 50 percent of the total pressure drop through the system.
Although widely used, this procedure makes little sense to us. In some situations
it is very important to be able to increase the flow rate above the design conditions
(for example, the cooling water to an exothermic reactor may have to be doubled or
tripled to handle dynamic upsets). In other cases thisis not as important (for example,
the feed flow rate to a unit).

A logica design procedure is based on designing the control valve and the pump
so that both a specified maximum flow rate and a specified minimum flow rate can
be achieved. The design flow conditions are used only to get the.pressure drop over
the heat exchanger (or fixed-resistance part of the process).

The designer must specify the maximum flow rate that is required under the
worst conditions and the minimum flow rate that is required. Then the valve flow
equations for the maximum and minimum conditions give two equations and two
unknowns. the pressure head of the centrifugal pump APp and the control vave
size C,.

exawle 3. |. SUPPOSe we want to design a control valve for admitting cooling water
to a cooling coil in an exothermic chemical reactor. The normal flow rate is 50 gpm. To
prevent reactor runaways, the valve must be able to provide three times the design flow
rate. Because the sales forecast could be overly optimistic, a minimum flow rate of 50
percent of the design flow rate must be achievable. The pressure drop through the cooling
coil is 10 ps at the design flow rate of 50 gpm. The cooling water is pumped from an

atmospheric tank. The water leaving the coil runs into a pipe in which the pressure is
constant at 2 psig. Size the control vave and the pump.

The pressure drop through the coil depends on the flow rate F:

F 2
AP, = 10(§6> (3.12)

The pressure drop over the control vave is the total pressure drop available (which we
don’t know yet) minus the pressure drop over the coil.

ap, = ar, - 10(£) 313
AP (50) (313
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NOw we write one equation fot the MAXHMUIM How conditions 4Nd one for the min-
inuin. At the maximum conditions:

S
C‘.(l.())\/AP, - 10('3(;)) (3.14)

,.,i 2
: - —qo0l= 3.15
C‘,(O.l)\/AP, 10(50) (3.15)

Solving simultaneoudy for the two unknowns yields the control valve size (C, = 21.3)
and the pump head (AP, = APy + 2 = 139.2 + 2 = 1412 ps).
At the design conditions (50 gpm), the valve fraction open ( f4.s) Will be given by

150

At the minimum conditions:

i

25

50 = 21.3 fyes J139.2 = 10 > fuee = 0.206 (3.16)

The control valve and pump sizing procedure proposed above is not without its
limitations. The two design equations for the maximum and minimum conditions in
general terms are:

Fonax |
Fmax = Cy \/APT - (APH)dcs<Fm ) (3.17)
des
F 2
Fmin = fmincv\/API - (APH)des(me) (3-18)
des

where APy = total pressure drop through the system at design flow rates
(APy)ges = pressure drop through the fixed resistances in the system at de-
sign flow
Sfmin = MinNimum valve opening
Fyes = flow rate at design

A flat pump curve is assumed in the above derivation. Solving these two equations
for APy gives:.

(Fmax)2 - (Fmin)2
APT _ (chs)2

(APp)ges o ( fmmFmax>2

(3.19)

Fmin

It is clear from Eq. (3.19) that as the second term in the denominator approaches
unity, the required pressure drop goes to infinity! So there is alimit to the achievable
rangeability of a system.

Let us define this term as the rangeability index of the system, 9.

R = fminqux (320)
Fmin
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The parameters on the right side of Eq. (3.20) must be chosen such that 98 is less
than unity.

This can bc illustrated using the numbers from Example 3.1. If the minimum
flow rate is reduced from SO percent of design (where APy WasS 139.2 psi) to 40
percent, the new AP, becomes 202 ps. If Fy,, is reduced further to 35 percent
of design, AP is 335 psi. In the limit as Fy,;, goes to 30 percent of design, the
rangeability index becomes

o — fminFmax _ (01)(150) — 1
Fmin 15

and the total pressure drop available goes to infinity.

Thevaueof f,,;, can be reduced below 0.1 if alarge turndown ratio is required.
This is accomplished by using two control valves in parale, one large and one small,
in a split-range configuration. The small valve opens first, and then the large valve
opens as the signal to the two valves changes over its full range.

C. Characteristics

By changing the shape of the plug and the seat in the valve, different relation-
ships between stem position and flow area can be attained. The common flow char-
acteristics used are linear-trim valves and equal-percentage-trim valves, as shown
in Fig. 3.7. The term “equal percentage” comes from the slope of the f,, curve being
a constant fraction off.

If constant pressure drop over the valve is assumed and if the stem position
Is 50 percent open, a linear-trim valve gives 50 percent of the maximum flow and
an equal-percentage-trim valve gives only 15 percent of the maximum flow. The
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equations for these valves arc
Linear:

f(_‘-) = X (321)
Equal percentage:
fioy = a*! (3.22)

where « is a constant (20 to 50) that depends on the valve design. A value of 50 is
used in Fig. 3.7.

The basic reason for using different control valve trims is to keep the stability
of the control loop fairly constant over a wide range of flows. Linear-trim valves are
used, for example, when the pressure drop over the control valve is fairly constant
and a linear relationship exists between the controlled variable and the flow rate of
the manipulated variable. Consider the flow of steam from a constant-pressure sup-
ply header. The steam flows into the shell side of a heat exchanger. A process liquid
stream flows through the tube side and is heated by the steam. There is a linear
relationship between the process outlet temperature and steam flow (with constant
process flow rate and inlet temperature) since every pound of steam provides a cer-
tain amount of heat.

Equal-percentage-trim valves are often used when the pressure drop available
over the control valve is not constant. This occurs when there are other pieces of
equipment in the system that act as fixed resistances. The pressure drops over these
parts of the process vary as the square of the flow rate. We saw this in the examples
discussing control valve sizing.

At low flow rates, most of the pressure drop is taken over the control valve since
the pressure drop over the rest of the process equipment is low. At high flow rates, the
pressure drop over the control valve is low. In this situation the equal-percentage trim
tends to give a more linear relationship between flow and control valve position than
does linear trim. Figure 3.8 shows the installed characteristics of linear and equal-
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percentage vaves for different ratios of the fixed resistance pressure drop (AP, for
the heat exchanger cxamplc) to the pressure drop over the control valve at design
conditions. The larger this ratio, the more nonlinear are the installed characteristics
of alinear vaivc.

The inherent characteristics are those that relate flow to valve position in the
situation where the pressure drop over the control valve is constant. These are the
(APy/AP,) = 0 curves in Fig. 3.8. Installed characteristics are those that result
from the variation in the pressure drop over the valve.

In conventional valves the air-pressure signa to the diaphragm comes from an
{/P transducer in analog eectronic systems. Control valves sometimes can stick,
particularly large valves or valves in dirty service. A sticky valve can cause a control
loop to oscillate; the controller output signal changes, but the valve position doesn’'t
until the pressure force gets high enough to move the valve. Then, of course, the
valve moves too far and the controller must reverse the direction of change of its
output, and the same thing occurs in the other direction. So the loop will fluctuate
around its setpoint even with no other disturbances.

This problem can be cured by using a “valve positioner.” These devices are built
into control valves and are little feedback controllers that sense the actual position of
the stem, compare it to the desired position as given by the signal from the controller,
and adjust the air pressure on the diaphragm to drive the stem to its correct position.
Valve positioners can aso be used to make valves open and close over various ranges
(split-range valves).

Control valves are usudly fairly fast compared with the process. With large
valves (greater than 4 inches) it may take 20 to 40 seconds for the valve to move full
stroke.

3.1.4 Analog and Digital Controllers

The part of the control loop with which we spend most of our time in this book is the
controller. The job of the controller is to compare the process signal from the trans-
mitter with the setpoint signal and to send out an appropriate signal to the control
valve. We will go into more detail about the performance of the controller in Section
3.2. In this section we describe what kinds of action standard commercial controllers
take when they detect a difference between the desired value of the controlled vari-
able (the setpoint) and the actual vaue.

Analog controllers use continuous electronic or pneumatic signals. The con-
trollers see transmitter signals continuously, and control valves are changed con-
tinuously. Digital computer controllers are discontinuous in operation, looking at a
number of loops sequentially. Each individual loop is polled every sampling period.
The analog signals from transmitters must be sent through analog-to-digital (A/D)
converters to get the information into the computer in aform that it can use. After the
computer performs its calculations in some control algorithm, it sends out a signal
that must pass through a digital-to-analog (D/A) converter and a “hold” that sends

a continuous signal to the control valve. We study these sampled-data systems in
detail in Chapters [4 and 5.
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Three basic types of controllers are commonly used for continuous feedback
control. The details of construction of the analog devices and the programming of
the digital devices vary from one manufacturer to the next, but their basic functions
arc essentially the same.

A. Proportional action

A proportional-only feedback controller changes its output signal, CO, in direct
proportion to the error signa E, which is the difference between the setpoint signal
SP and the process variable signal PV coming from the transmitter.

CO = Bias + K.(SP — PV) (3.23)

The Bias signal is a constant and is the value of the controller output when there
isno error. K, is caled the controller gain. The larger the gain, the more the con-
troller output will change for a given error. For example, if the gain is 1, an error of
10 percent of scale (1.6 mA in an analog electronic 4-20 mA system) will change
the controller output by 1O percent of scale. Figure 3.9a sketches the action of a
proportional controller for given error signals E.

Some instrument manufacturers use an aternative term, proportional hand
(PB), instead of gain. The two are related by
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The higher or “wider” the proportional band, the lower the gain, and vice versa. The
term “proportional band” refers to the range over which the error must change to
drive the controller output over its full range. Thus, a wide PB is alow gain, and a
narrow PB is a high gain.

The gain on the controller can be made either positive or negative by setting a
switch in an analog controller or by specifying the desired sign in adigital controller,
A positive gain results in the controller output decreasing when the process variable
increases, This “increase-decrease” action is called a “reverse-acting” controller. For
a negative gain, the controller output increases when the process variable increases,
and this is called a “direct-acting” controller. The correct sign depends on the action
of the transmitter (which is usually direct), the action of the valve (air-to-open or
air-to-close), and the effect of the manipulated variable on the controlled variable.
Each loop should be examined closely to make sure the controller gives the correct
action.

For example, suppose we are controlling the process outlet temperature of a heat
exchanger as sketched in Fig. 3.10. A control valve on the steam to the shell side
of the heat exchanger is manipulated by a temperature controller. To decide what
action the controller should have we first look at the valve. Since this valve puts
steam into the process, we would want it to fail shut. Therefore, we choose an air-
to-open (AO) control valve.

Next we look at the temperature transmitter. It is direct-acting (when the pro-
cess temperature goes up, the transmitter output signal, PV, goes up). Now if PV

Steam  supply
CO
AC w 1P = /4—SP
Control vdve/ :35 PV

TT
FX
Cool 0 Hot

. Heat
0il —= exchanger | —-cxl

inlet T, T

TT = temperature transmitter
Steam TC = temperature controller
trap CO = contraller output
l SP = setpoint
PV = process variable
Condensate T, = process inlet tentperature

T = process outlet temperature
F, = deam flow rate
F = process flow rate
FIGURE 3.10
Heat exchanger.
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increascs, WC want to have less stcam. This means that the controller output must
decrease since the valve is AO. Thus, the controller must be reversc-acting and have
a positive gain.

If we were cooling instcad ofhcating, we would want the coolant flow to increase
when the temperature increased. But the controller action would still be reverse be-
cause the control valve would be an air-to-close valve, since we want it to faill wide
open.

As afina example, suppose we are controlling the base level in a ditillation col-
umn with the bottoms product flow rate. The valve would be AQO because we want it
to fail shut (and prevent the loss of base level in an emergency). The level transmitter
signal increases if the level increases. If the level goes up, we want the bottoms flow
rate to increase. Therefore, the base level controller should be “increase-increase”
(direct-acting).

B. Integral action (reset)

Proportional action moves the control valve in direct proportion to the magnitude
of the eri-or. Integral action moves the control valve based on the time integral of the
error, as sketched in Fig. 3.90.

CO = Bias + TI—J Eq dt (3.25)
!

where 7; isthe integral time or the reser time with units of minutes.

If there isno error, the controller output does not move. Asthe error goes positive
or negative, the integral of the error drives the controller output either up or down,
depending on the action (reverse or direct) of the controller.

Most controllers are calibrated in minutes (or minutes/repeat, a term that comes
from the test of putting into the controller a fixed error and seeing how long it takes
the integral action to ramp up the controller output to produce the same change that a
proportional controller would make when its gain is 1; the integral repeats the action
of the proportional controller).

The basic purpose of integral action is to drive the process back to its setpoint
when it has been disturbed. A proportional controller will not usually return the con-
trolled variable to the setpoint when aload or setpoint disturbance occurs. This per-
manent error (SP — PV) is called steady-state error or offset. Integral action reduces
the offset to zero.

Integral action usually degrades the dynamic response of a control loop. We
demonstrate this quantitatively in Chapter 8. It makes the control loop more oscil-
latory and moves it toward instability. But integral action is usualy needed if it is
desirable to have zero offset. Thisis another example of an engineering trade-off that
must be made between dynamic and steady-state performance.

C. Derivative action

The purpose of derivative action (also called rare or preact) isto anticipate where
the process is heading by looking at the time rate of change of the controlled variable
(its derivative). If we were able to take the derivative of the error signal (which we
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cannot do perfectly, as wc explain more fully in Chapter 8). we would have ided
derivative action.
: dE
CO = Bias + 7p—— (326)
dt
where 7 isthe derivative time (minutes).
In theory, derivative action should aways improve dynamic response, and it
does in many loops. In others, howcever, the problem of noisy signals (fluctuating
process variable signals) makes the usc of derivative action undesirable.

D. Commercial controllers

The three actions just described are used individually or combined in commer-
cial controllers. Probably 60 percent of al controllers are Pl (proportional-integral),
20 percent are PID (proportional-integral-derivative), and 20 percent are P-only (pro-
portional). We discuss the reasons for selecting one type over another in Section 3.2.

3.1.5 Computing and L ogic Devices

A wide variety of computations and logical operations can be performed on control
signals. Electronic devices are used in analog systems, and computer software is
used in DCS systems. For example, adders, multipliers, dividers, low selectors, high
selectors, high limiters, low limiters, and square-root extractors can all be incorpo-
rated in the control loop. They are widely used in ratio control, in computed variable
control, in feedforward control, and in override control. These are discussed in the
next chapter.

In addition to the basic control loops, all processes have instrumentation that (1)
sounds alarms to alert the operator to any abnormal or unsafe condition, and (2) shuts
down the process if unsafe conditions are detected or equipment fails. For example, if
a compressor motor overloads and the electrical control system shuts down the motor,
the rest of the process will usually have to be shut down immediately. This type of
instrumentation is called an “interlock.” It either shuts a control valve completely or
drives the control valve wide open. Other examples of conditions that can “interlock”
a process down include electrical power failures, failure of a feed or reflux pump,
detection of high pressure or temperature in a vessel, and indication of high or low
liquid level in a tank or column base. Interlocks are usualy achieved by pressure,
mechanical, or electrical switches. They can be included in the computer software

in a computer control system, but they are usualy “hard-wired” for reliability and
redundancy.

3.2
PERFORMANCE OF FEEDBACK CONTROLLERS

3.2.1 Specifications for Closedloop Response

There are a number of criteria by which the desired performance of a closedloop

system can be specified in the time domain. For example, we could specify that the
closedloop system be critically damped so that there is no overshoot or oscillation.



xx  PARTONE: Time Domain Dynamics and Control

We must then select the (ype of controller and sct its tuning constants so that, when
coupled with the process, it gives the desired closedloop response. Naturally. the
control specification must be physicaly attainable. We cannot make a Boeing 747
jumbo jet behave like an F-IS lighter. We cannot violate constraints on the manipu-
lated variable (the control valve can only go wide open or completely shut), and we
cannot require a physicaly unrealizable controller (more about the mathematics of
this in Chapter 8).

There are a number of time-domain specifications. A few of the most frequently
used dynamic specifications follow (see aso Problem 2.7). The traditional test input
signa is a step change in setpoint.

1. Ciosedloop damping coefficient (as discussed in Chapter 2)

2. Overshoot: the magnitude by which the controlled variable swings past the set-
point

3. Risetime (speed of response): the time it takes the process to come up to the new
setpoint

4. Decay rétio: the ratio of maximum amplitudes of successive oscillations

5. Settling time: the time it takes the amplitude of the oscillations to decay to some
fraction of the change in setpoint

6. Integral of the squared error: ISE = J(;L(E(,))2 dt

Notice that the first five of these assume an underdamped closedloop system, i.e.,
one that has some oscillatory nature.

Many years of experience have led to our persona preference of designing for
a closedloop damping coefficient of 0.3 to 0.5. As we see throughout the rest of this
book, this criterion is easy to use and reliable. A criterion such as I SE can be used for
any type of disturbance, setpoint or load. Some “experts’ (remember, an “expert” is
one who is seldom in doubt but often in error) recommend different tuning parame-
ters for the two types of disturbances. This makes little sense to us. What you want is
a reasonable compromise between performance (tight control, small closedloop time
constants) and robustness (not too sensitive to changes in process parameters). This
compromise is achieved by using a closedloop damping coefficient of 0.3 to 0.5 since
it keeps the real parts of the roots of the closedloop characteristic equation a reason-
able distance from the imaginary axis, the point where the system becomes unstable
(see Chapter 2). The closedloop damping coefficient specification is independent of
the type of input disturbance.

The steady-state error is another time-domain specification. It is not a dynamic
specification, but it is an important performance criterion. In many loops (but not all)
a steady-state error of zero is desired, i.e., the value of the controlled variable should
eventualy level out at the setpoint.

3.2.2 Load Performance

The job of most control loops in a chemica process is one of regulation or load
regjection, i.e., holding the controlled variable at its setpoml in the face of load dlg-
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Wec use a simple heat exchanger process (Fig. 3. 10) in which an oil strcam is
heated with steam. The process outlet tcmpcraturc 7' is control led by manipulating
the steam flow rate I to the shell side of the heat exchanger. The oil flow rate F
and the inlet oil temperaturc Ty arc load disturbances. The signa from the temper-
ature transmitter (TT) is the process variable signal, PV. The setpoint signal is SP.
The output signa, CO, from the temperature controller (TC) goes through an I/ P
transducer to the stecam control valve. The valve is AQ because we want it to fail
closed.

A. On/off control

The simplest controller would be an on/off controller like the thermostat in your
home heating system. The manipulated variable is either at maximum flow or at
zero flow. The on/oftf control ler is a proportional controller with a very high gain and
gives “bang-bang” control action. This type of control is seldom used in a continuous
process because of the cycling nature of the response, surging flows, and wear on
control  valves.

In the heat exchanger example the controlled variable T cycles as shown in
Fig. 3. [ la. When a load disturbance in inlet temperature (a step decrease in T)
occurs, both the period and the average value of the controlled variable T change.
You have observed this in your heating system. When the outside temperature is
colder, the furnace runs longer and more frequently, and the room temperature is
lower on average. Thisis one of, the reasons you feel colder inside on a cold day than
on awarm day for the same setting of the thermostat. The system is realy unstable
in the classic linear sense. The nonlinear bounds or constraints on the manipulated
variable (control valve position) keep it in a “limit cycle.”

B. Proportional controller

The output of a proportional controller changes only if the error signal changes.
Since a load change requires a new control valve position, the controller must end
up with a new error signal. This means that a proportional controller usually gives a
steady-state error or offset. Thisis an inherent limitation of P controllers and is why
integral action is usualy added. Our introductory ssmulation example in Chapter |
illustrated this point.

As shown in Fig. 3. | 14 for the heat exchanger example, a decrease in process
inlet temperature Ty requires more steam. Therefore, the error must increase to open
the steam valve more. The magnitude of the offset depends on the size of the load
disturbance and on the controller gain. The bigger the gain, the smaller the offset. As
the gain is made bigger, however, the process becomes underdamped, and eventualy,
at still higher gains, the loop will go unstable, acting like an on/off controller.

Steady-state error is not always undesirable. In many level control loops the
absolute level is unimportant as long as the tank does not run dry or overflow. Thus,
a proportional controller is often the best type for level control. We discuss this in
more detail in Section 3.3.

C. Proportional-integral  (PI) controller
Most control loons use PI controllers. The integral action eliminates steady-state
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reduced. But the system becomes more underdamped as 7 is reduced. If it is made
too small, the loop becomes unstable.

D. Proportional-integral-derivative (PID) controller

PID controllers are used in loops where signals are not noisy and where tight
dynamic response is important. The derivative action helps to compensate for lags in
the loop. Temperature controllers in reactors are usualy PID. The controller senses
the rate of movement away from the setpoint and starts moving the control valve
earlier than with only Pl action (see Fig. 3. 11d).
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Derivative action can be used on either the error signa (SP = PV) or just the
process variable (PV). If itis on the error signal, step changes in sctpoint will produce
large bumps in the control valve. Therefore, in most process control applications, the
derivative action is applied only to the PV signa as it enters the controller. The P and
| action is then applied to the difference between the sctpoint and the output signal
from the derivative unit (see Fig. 3.12).

3.3
CONTROLLER TUNING

There are a variety of feedback controller tuning methods. Probably 80 percent of
al loops are tuned experimentaly by an instrument mechanic, and 75 percent of the
time the mechanic can guess approximately what the settings will be by drawing on
experience with similar loops. We discuss a few of the time-domain methods below.
In subsequent chapters we present other techniques for finding controller constants
in the Laplace and frequency domains.

3.3.1 Rules of Thumb

The common types of control loops are level, flow, temperature, and pressure. The
type of controller and the settings used for any one type are sometimes pretty much
the same from one application to another. For example, most flow control loops use
PI controllers with wide proportional band and fast integral action.

Some heuristics are given next, but they are not to be taken as gospel. They
merely indicate common practice, and they work in most applications.

A. Flow loops

Pl controllers are used in most flow loops. A wide proportional band setting
(PB = 150) or low gain is used to reduce the effect of the noisy flow signal due to
flow turbulence. A low vaue of integra or reset time (7, = 0.1 minutes/repeat) is
used to get fast, snappy setpoint tracking. The dynamics of the process are usually
very fast. The sensor sees the change in flow almost immediately. The control valve
dynamics are the slowest element in the loop, so a small reset time can be used.

There is one notable exception to fast Pl flow control: flow control of condensate-
throttled reboilers. As sketched in Fig. 3.13, the flow rate of vapor to a reboiler is
sometimes controlled by manipulating the liquid condensate valve. Since the vapor
flow depends on the rate of condensation, vapor flow can be varied only by changing
the area for heat transfer in the reboiler. This is accomplished by raising or lowering
the liquid leve in this “flooded” reboiler. Changing the liquid level takes some time.
Typical time constants are 3 to 6 minutes. Therefore, this flow control loop would
have much different controller tuning constants than suggested in the rule of thumb
cited above. Some derivative action may even be used in the loop to give faster flow

contrnld
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Condensate-throttle flow contral.

B. Level loops

Most liquid levels represent materia inventory used as surge capacity. In these
cases it is relatively unimportant where the level is, as long as it is between some
maximum and minimum values. Therefore, proportional controllers are often used
on level loops to give smooth changes in flow rates and to filter out fluctuations in
flow rates to downstream units. We demonstrated this important concept in one of
our simulation examples in Chapter 1.

One of the most common errors in laying out a control structure for a plant with
multiple unitsin series is the use of Pl level controllers. If P controllers are used, the
process flows rise or fal slowly down the train of units with no overshoot of flow
rates. Liquid levels rise if flows increase and fall if flows decrease. Levels are not
maintained at setpoints.

If PI level controllers are used, the integral action forces the level back to its
setpoint. In fact, if the level controller is doing a “perfect” job, the ievel is held
right at its setpoint. This means that any change in the flow rate into the surge tank
will immediately change the flow rate out of the tank. This defeats the purpose of
buffering. We might as well not even use a tank; just run the inlet pipe right into the
outlet pipe! Thus, thisis an example of where tight control is not desirable. We want
the flow rate out of the tank to increase gradually when the inflow increases So that
downstream units are not upset.

Suppose the flow rate F increases to the first tank in Fig. 3.14. The level hy
in the first tank will start to increase. The level controller will start to increase F).
When F| has increased to the point that it is equal to Fy, the level will stop changing
since the tank is just an integrator. Now, if we use a P level controller, nothing else
will happen. The level will remain at the higher level, and the entering and exiting
flows will be equal.
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1. howcver, we usce a Pllevel controller, the controller will continue to increase
the outflow heyond the value of the inflow to drive the level back down to its get-
point. So an tnherent problem with Pl level controllersis that they amplify flow rate
changes of this type. The change in the flow rate out of the tank is actudly larger (for
a period of time) than the change in the flow rate into the tank. This amplification
gets worse as it works its way down through the series of units. What started out at
the beginning as a small disturbance can result in large fluctuations by the time it
rcaches the last unit in the train.

There arc, of course, many Situations where it is desirable to control level tightly,
for example, in a reactor where control of residence time is important.

The tuning of proportional level controllers is a trivia job. For example, we
could set the bias value at 50 percent of full scale, the setpoint at 50 percent of full
scale, and the proportional band at 50. This means that the control valve will be half
open when the tank is haf full, wide open when the tank is 75 percent full, and
completely shut when the tank is 25 percent full. Changing the proportional band to
100 would mean that the tank would be completely full to have the valve wide open
and completely empty to have the vave shut.

C. Pressure loops

Pressure loops vary from very tight, fast loops (almost like flow control) to slow
averaging loops (almost like level control). An example of a fast pressure loop is the
case of avalve throttling the flow of vapor from a vessel, as shown in Fig. 3.154. The
valve has a direct handle on pressure, and tight control can be achieved. An example
of a slower pressure loop is shown in Fig. 3.156. Pressure is held by throttling the
water flow to a condenser. The water changes the AT driving force for condensation
in the condenser. Therefore, the heat transfer dynamics and the lag of the water flow-

ing through the shell side of the condenser are introduced into the pressure control
loop.

D. Temperature loops

Temperature control loops are usually moderately slow because of the sensor
lags and the process heat transfer lags. PID controllers are often used. Proportional
band settings are fairly low, depending on temperature transmitter spans and control
valve sizes. The reset time is of the same order as the process time constant; i.e.,
the faster the process, the smaler 7; can be set. Derivative time is set something
like one-fourth the process time constant, depending on the noise in the transmitter
signal. We quantify these tuning numbers later in the book.

3.32 On-Line Tria and Error

To tune a controller on-line, a good instrument mechanic follows a procedure some-
thing like the following:

[. With the controller on manual, take all the integral and derivative action out
of the controller; i.e, set 7, a maximum minutesrepeat and 7;, at minimum

minutes.
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2. Set the K, at a low value, perhaps 0.2.

3. Put the controller in automatic.

4. Make asmall setpoint or load change and observe the response of the controlled
variable. The gain is low, so the response w