
Using Ada-Based Robotics to Teach Computer Science

Barry Fagin
Department of Computer Science

US Air Force Academy
2354 Fairchild Drive, Suite 6K41

USAFA, CO 80840, USA
barry.fagin@usafa.af.mil

www.rmi.net/~fagin

Abstract
We present an Ada-based interface to Lego Mindstorms TM,
a programmable robotics kit that has attracted considerable
attention in the computing community. We discuss our
motivations for choosing Ada over other high-level
languages, and our particular implementation over possible
alternatives. Robotics and Ada combine very nicely, for
teaching basic computing concepts to both technical and
non-technical majors, as shown with several examples.

1 Introduction
Computer science is an intellectually demanding discipline.
Much must be taught in the classroom in a short amount of
time, and much of the knowledge is foundational: newer
concepts require mastery of those taught before.

Accordingly, introductory computer science courses are
often frustrating for both students and faculty. When asked
to complete simple programming tasks that seem to
accomplish little, students are frustrated at the amount of
work they must put in for what seems to them little benefit.
Faculty in turn are challenged by the different learning
styles of their students, and by the breakneck pace of the
material.

This has led computer science faculty to constantly
experiment with new approaches to introductory computer
science courses [HP98] [UW99]. Educators are always
looking for new approaches that can a) provide a more
"hands-on" approach to computing, one that is seen as both

ITiCSE 2000 7•00 Helsinki, Finland
1-58113-207-710010007

relevant and interesting by the student, and b) teach the
same concepts more efficiently, presenting the essential
material while requiring less time for faculty to present and
students to master.

We believe that recent technological advances in the
marketplace make the use of simple robotics projects a
viable way to address some of these problems. We discuss
our proposed system below.

2 Lego Mindstorms
Mindstorrns is a product ffrom Lego Corporation that
enables kids (and, judging from the number of web sites,
many enthusiastic adults) to construct programmable
robots. The robots are built of conventional lego parts
attached to a programmable Lego brick called the RCX,
which contains three input ports and three output ports
attached to a Hitachi H8/3292 microcontroller. A simple
robot built around the RCX is shown in Figure 1. The
RCX is the box in the center; its input ports are connected
to wires.

The kit also comes with a Windows-based visual pro-
gramming environment for programming the robots you
build, shown in Figure 2. The resulting code is
downloaded into the RCX through an infra-red transmitter
(supplied with the kit) that plugs into the PC serial port.

3 Whya High Level Language?

While the visual programming environment provided with
the RCX is perfectly adequate for its intended market, we
believe it unsuited for teaching introductory computer
science. Most of the programming tasks students are likely
to encounter when they need to use the computer to solve a
problem are not likely to be solvable with visual
programming languages, nor do we see this changing in the
foreseeable future. Additionally, RCX code contains no
variables. This would substantially limit the kind of
problems our students could solve. Finally, there are
considerable restrictions on subroutines in the visual

148

environment: you can't have subroutines (called "my
commands" in the RCX world, see Figure 2) call other
subroutines, and they cannot have arguments. Again, this
seems unnecessarily restrictive for computer science
instruction.

4 Why Ada?

There are many candidates for a high level language to
replace the RCX code interface. We chose Ada for several
reasons. Ada has a long track record of use in introductory
computer science courses [Fe99] [Le95]. Ada also
embodies software engineering principles in a much more
rigorous way than C or C++. Visual Basic was, we
believed, too Windows-specific for the kind of general
problem solving we wanted to teach, and requires users to
be exposed to some rather intimidating technological
baggage in order to write RCX programs. C presents well-
known problems with arrays and pointers that we wished to
avoid, particularly since the vast majority of students in our
course will not become computer science majors. (The
course we are targeting is required for all students at our
institution, both technical and non-technical, regardless of
their chosen field of study).

Choosing Ada also permitted us to leverage our existing
Ada expertise and courseware. I f we had seen evidence
that other high level languages offered compelling
advantages, we could have used them for the robot projects
and left Ada separate for the more traditional programming
efforts typical of introductory computer science classes.
We found no such evidence.

5 Implementing the Interface

Once the language was chosen, we faced different
implementation choices. One possibility was to compile
Ada code directly to Hitachi bytecodes. This approach is
the cleanest and most efficient, but would have required
considerable effort to build an Ada/Hitachi cross-compiler.
We could also have discarded the RCX firrnware and
compiled to a different operating environment. Again, a
considerable amount of effort would have been required, so
this approach was temporarily shelved, although it remains
a target for future projects.

Instead, we chose to leverage existing resources in the
Mindstorrns user community. There is a C interface to
Mindstorms called Not Quite C, or NQC for short,
developed by David Baum [Ba99]. Using aftex and ayacc,
Ada versions of lex and yacc developed at the University of
California at Irvine, and the AdaGOOP parser generator
developed by our colleague Dr Martin Carlisle, we are
building an Ada-to-NQC translator that takes simple Ada
programs (strictly speaking, an Ada subset for Mindstorms
that we will defme) and converts them to their NQC
equivalents. This enables us to get the Ada advantages of
Ada programming for our students while at the same time

saving us the effort of writing a back end for a new
hardware architecture and OS.

We provide student access to the translator through a new
button on AdaGIDE, the GUI interface to our Ada
compiler:

I f translation is successful, the NQC compiler and
downloader will be invoked to send the program to the
student's robot.

6 Examples

Since our course is a computer science course and not a
robotics course, and since it is intended for both technical
and non-technical majors, we focus on the programming of
the robots and basic computer science constructs, not the
construction of the robots themselves. Basic concepts can
be illustrated with a very simple robot with two motors
connected to separate wheels and output ports, and a
Mindstorms touch sensor connected to a bumper and an
input port.

Our goals are to introduce students to basic computing
ideas, including sequential control flow, selection, iteration,
input/output, arrays, graphics, procedures, and file
processing. Some of these concepts easily lend themselves
to robotics, others are a better suited for a more
conventional paradigm.

Sequential control flow is the easiest to demonstrate. Here
is a simple sequential Ada program that makes a robot
move forward for two seconds, stop, turn right, go forward
for one second, and stop:

with Lego Package;
use Lego_Package;
procedure Sequential Robot Demo is
begin

Motors_Onfwd(Outputs => Output_A + OutputB);
--can use additive notation to combine ports
Wait(Time => 20);
--Time intervals are in tenths of a second
Motors_Off(Outputs => Output_A + OutputB);
Wait(Time => 10);
Motors_Onfwd(Outputs => Output_A);
--moving lett wheel causes tuna to right
Wait(Time => 10);
Motors_Off(Outputs => Output_A);

end Sequential_Robot_Demo;

Selection is not too much harder, and dramatically shows
students the power of decision making in a computer by
giving a device the ability to react to its environment. The
code below shows how to make a robot react if it runs into
something by backing up, turning right for one second, and
continuing:

149

if Sensor 1 = 1 then
--contact with the bumper activates touch sensor

Motors_OnRev(Outputs => Output_A + Outpnt B);
--back up robot
Wait(Time => 10);
--for one second
Motors_Off(Outputs => Output_A);
--start the turn
Wait(Time=> 10);
Motors OnFwd(Outputs => Output_A + Output B);
--and go forward again

end if;

Iteration can be shown with simple loop constructs. Here is
a program fragment that causes the robot to play
successively higher tones (the RCX unit comes with a
built-in speaker):

for I in 1.. 10 loop

Play_Tone(Freq => I * 100, Duration => 10);
Wait(Time => 10);

end loop;

The advantages of procedures for repetitive tasks can be
shown in a number of ways. Here's a procedure that makes
the robot turn back and forth a given number of times:

for computer science majors, considerably more
sophisticated tasks can be attempted. Institutions that want
to try something similar, however, need to be aware of
important logistical issues, including inventory control for
dozens or perhaps hundreds of Mindstorms kits.

Nonetheless, future work includes incorporating
Mindstorms into our upper level programming courses,
where we can develop more advanced programming
challenges and demonstrate more sophisticated
programming concepts like real time processing. We also
are developing a simulator for a simple robot and the Ada
interface, so that students can work on their robot
programming projects outside the laboratory. The NQC
and RCX firmware still impose limitations on how
subroutining and other coding is done, so it would be useful
to compile to a different operating environment like
Markus Noga's LegOS [No99]. Finally, we intend to
perform controlled studies to evaluate the effectiveness of
using robots in promoting student mastery of basic
computer science concepts.

This work was funded by a grant from the Institute for
Information Technology Applications, whose support is
gratefully acknowledged. We also gratefully acknowledge
the use of the Ada Generator of Object-Oriented Parsers
(AdaGOOP), developed by Dr Martin Carlisle here at the
US Air Force Academy.

procedure Shake(Times : in Integer) is
begin

for i in l..Times loop
Motors OnFwd(Outputs => OutputA);
Motors_OnRev(Outputs => OutputB);
Wait(Time => 10);
Motors_OnRev(Outputs => OutputA);
Motors_OnFwd(Outputs => Output_B);
Wait(Time => 10);

end loop;
end Shake;

Although NQC and the RCX support additional features
like data logging and a simple display, it is our current
belief that topics that might use those features (like file
processing, I/O, and graphics) do not map particularly well
to simple robotics projects. At this point, our plans are to
teach these topics using conventional prograrnming
exercises.

7 Conclusions and Future Work

We have only scratched the surface of the possibilities that
Mindstorms presents for computer science education. Much
of what is described here is dictated by our target audience
of both technical and non-technical majors. I f similar
approaches are taken for the standard introductory course

8 References

[Ba99] Baurn, The NQC web site (htttp://
www.enteract.com/~dbaum/nqc/)

[Fe99] Feldrnan, Ada as a Foundation Programming
Language, Fall 1999

[HP98] N. Herrmarm and J. Popyack, "Creating an
Authentic Learning Experience in Introductory
Programming Courses", ACMSIGCSE Bulletin, Vol 27,
No 1, pp 199-203.

[Kn99] Knudsen, The Unofficial Guide to LEGO
MINDSTORMS Robots, O'Reilly & Associates, ISBN:
1565926927

[Le95] Levy, Computer Language Usage In CS 1: Survey
Results, September 1995 SIGCSE Bulletin, Volume 27,
Number 3

[No99] Noga, The LegOS Operating System web site
(http://www.noga.de/legOS/)

[UW99] M. Urban-Lurain and D. Weinshank, "I Do and I
Understand: Mastery Model Learning for a Large Non-
Major Course", Proceedings of the 30 th SIGCSE Technical
Symposium on Computer Science Education, New Orleans,
LA, 1999, pp 150-154.

150

Figure 1: A Simple RCX Robot

Figure 2: The RCX Programming Environment

Figure 3: Accessing the Lego Interface Through AdaGIDE

151

