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LECT. 1  

Computer control design and modeling 
Lecture 1 

 
 

 
Introduction 
A system or a process or a plant is a segment of environment that is under 
consideration. 
 
Control is a term that describes the process of forcing a system to behave in 
a desired way in order to achieve certain objective(s)/goal(s). 
 
Examples. 
• Automobile steering control. 
• Thousands of industries consider control in some or the other form such as    

quality control, production control, temperature control, pollution control,  
Precision control, etc. 

• Robot control. 
• Human body implements highly sophisticated control schemes for 

numerous purposes such as body temperature regulation, hormone level 
control, etc. 

 
Control Engineering is not restricted to one field of engineering but equally 
applicable to different branches of engineering such as mechanical, 
chemical, civil, computer, electrical etc. 
 
 
Control systems 
Typically, a system (process) has one or more inputs and one or more 
outputs, which can be represented by a block, as shown in figure 1. 
 
 
 
 
 
 

 
Figure 1: Typical representation of a process 
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Control System is an interconnection of components forming a system 
configuration that will provide a desired system response. 
 
Open-loop and closed-loop control systems 
Depending on configuration, control systems can be categorized into mainly 
two classes: 

i) open-loop control systems; 
ii) closed-loop (or feedback) control systems. 
 

Open-loop control systems 
An open-loop control system utilizes a controller or actuating device to 
obtain a desired response directly without using feedback. 
 
 
 
 
 
 
 

Figure 2: Open-loop control system 
 

Example of an open loop control system: room temperature control. The 
structure of this system is presented in figure 3. In this system the inlet vent 
temperature is the input (control signal), and the output (controlled variable) 
is the room air temperature. The actuator comprises of the furnace and a pre-
programmed on-off switch that triggers the furnace, which in turn activates 
the inlet vent temperature. The ambient temperature acts as a disturbance. 
 
 
 
 
 
 
 
 
 
Figure 3: Example of an open loop control system: room temperature control 
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The open-loop control system cannot adjust to changes of the ambient 
temperature. 
 
Example of an open loop control system: controlling the position of a 
missile launcher from a remote location. This system is illustrated in 
figure 4. The input is the desired angular position of the missile launcher, 
and the control system consists of potentiometer, power amplifier, motor, 
gearing between the motor and missile launcher, and the missile launcher. 
For accurate positioning, the missile launcher should be precisely calibrated 
with reference to the angular position of the potentiometer, and the 
characteristics of the potentiometer, amplifier and motor should remain 
constant. Except for the potentiometer, the components that comprise this 
open loop control system are not precision devices. Their characteristics can 
easily change and result in false calibration and poor accuracies. In practice, 
simple open-loop control systems are never used for the accurate positioning 
of fire-control systems because of the inherent possibility of inaccuracies 
and the risks involved. 
 
 
 
 
 
 
 
 
 
 
Figure 4: Example of an open loop control system: controlling the position 
of a missile launcher from a remote location 
 
 
Closed-loop (feedback) control systems 
 
The structure of a simple closed-loop feedback system is shown in figure 5. 
In contrast to an open-loop control system, a closed-loop utilizes the 
additional measure of the actual output to compare the actual output with the 
desired output (reference or command). This additional measure of the 
output is called the feedback. 
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Figure 5: Closed-loop control system 
 
Example of a closed-loop control system: room temperature control. 
The previous example is now modified by incorporating the measure of the 
output, i.e. the room air temperature. The controller is the thermostat that 
takes into account a reference signal and the output feedback in order to set 
the switch position. Ideally, the thermostat should trigger the switch as soon 
as the error is negative and switch off when the room air has 
reached/exceeded the reference temperature. The features of this scheme are: 
 
 
 
 
 
 
 
 

 
Figure 6: Example of a closed-loop control system: room temperature 

control 
 
• If room temperature < reference temperature, the furnace is switched on 

automatically, until room temperature ≥ reference temperature. 
• Can handle changes in the system (e.g. change in ambient temperature). 
• It is negative feedback (the measured output is subtracted from the 

reference signal). 
 
Example of a closed-loop control system: controlling the position of a 
missile launcher from a remote location 
The previous example is modified by introducing a position feedback loop. 
This feedback loop consists of potentiometer R2 and the difference amplifier. 
Should an error exists, it is amplified and applied to a motor drive which 
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adjusts the output-shaft position until it agrees with the input-shaft position, 
and the error is zero. 
 
 
 
 
 
 
 
 
 
Figure 7: Example of a closed-loop control system: controlling the position 
of a missile launcher from a remote location 
 
Feedback control systems used to control position, velocity, and acceleration 
are very common in industrial applications. 
The important feature of the using of feedback is that the feedback control 
system can handle changes in the system. On the other hand, improper use of 
feedback can make the system unstable, so the stability issue arises. 
 
Example of a closed-loop control system: Automatic depth control of a 
submarine 
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Figure 8: Automatic depth control of a submarine 
 
Suppose the captain of the submarine wants the submarine to”hover” at a 
desired depth, and sets the desired depth as a voltage from calibrated 
potentiometer. The actual depth is measured by a pressure transducer which 
produces a voltage proportional to depth. The difference between the desired 
and the actual depth is amplified which then drives a motor that rotates the 
stern plane actuator angle θ in order that the stern plane rotation reduces the 
depth error of the submarine to zero. 
 
Given a process, there are three steps to design a feedback control system 
which are: 

1. Modeling. Obtain mathematical description of the system. 
2. Analysis. Analyze the properties of the system. 
3. Design. Given a plant, design a controller based on performance 

specifications. 
 

End of Lecture One 
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Computer control design and modeling 
Lecture 2 

 
 

Mathematical models, Linear Systems and Linearization 
 
Mathematical Models of Physical Systems 
 
To understand and control complex systems, we must obtain mathematical 
models of these systems. The term mathematical model, in the control 
engineering perspective, implies a set of differential equations that describe 
the dynamic behavior of a process. 
The set of differential equations that describe the behavior of physical 
systems are typically obtained by utilizing the physical laws of the process. 
These types of models are often called first principles models. Several 
examples of first-principles models are considered below. 
 
Models of simple mechanical systems 
The equations of a mechanical system may be obtained by a direct 
application of Newton second law. 
 
Example: Ideal Mass-Spring System. This system is shown on figure 1. 
 
 
 
 
 
 
 

Figure 1: Ideal Mass-Spring System 
 

In order to write the equation of motion, we consider the set of forces acting 
on the mass M. The force F from the spring acts against the displacement 
and is proportional to the displacement of the spring, i.e. F = −ky, where k is 
spring constant. Assume a frictionless surface. Applying Newton’s second 
law, one can get the following equation of motion 
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The equation (1) is a second-order linear differential equation. 
 
Example: Mass-Spring System with a Damper. The previous example is 
now modified by the addition of a damper with resistance R. Additionally; 
we assume that the body is subjected to an external force Fe. 
 
 
 
 
 
 
 
 

Figure 2: Mass-Spring System with a Damper 
 
The damping force Fd is assumed to be proportional to the velocity  and 
acts against the motion of the body, i.e. 
 
 
Such a damping is called viscous damping. Using Newton’s second law, we 
can write the equations of motion as follows: 
 
 
 
 
 
Modeling of RLC Electrical Systems 
 
Consider RLC electrical circuit shown in figure 3. 
It consists of a source of current r(t), a resistor characterized by it’s 
resistance R, a capacitor characterized by it’s capacitance C, and an inductor 
with inductance L. Differential equation of the RLC circuit can be obtained 
by utilizing Kirchhoff’s laws, and the voltage-current relationships for R, L, 
and C. Indeed, Kirchhoff’s current law implies that 
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Figure 3: RLC Circuit 
 
where ir, ic, and il are currents through the resistor, the capacitor, and the 
inductor respectively. On the other hand, Kirchhoff’s voltage law implies in 
this particular case that the voltage v across any of the elements R, L, or C is 
the same. We have the following voltage-current relationships for R, L, and 
C: 
 
 
 
 
Thus, we get the following equation of RLC circuit 
  

        
 
It is worth noting that the equation (3) is analogous to the equation (2) of the 
Mass-Spring System with Damper. Indeed, if we rewrite the equation (2) in 
terms of the velocity , we get 
 

             
 
The equations (3) and (4) are of equivalent form, and this fact represents so 
called velocity-voltage analogy between mechanical and electrical systems. 
 
This equivalence between systems is beneficial to the analyst in 
understanding multidisciplinary systems that are similar to each other. The 
main advantage is that the solution to one system can be extended to all the 
analogous systems governed by the same set of differential equations. 
Therefore, a mechanical engineer can immediately extend the knowledge 
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gained about the analysis and design of mechanical engineering systems to 
that of analogous systems in the other branches of engineering. 
 
Linear Systems 
 
Linear systems represent a very important class of systems. To introduce the 
notion of a linear system, consider a system represented by it’s block 
diagram, as shown in the figure 4. 
 
 
 
 
 

Figure 4: Representation of a system 
Below, by G(u) we will denote the output (reaction) of the system 
corresponding to given input (excitation) u. 
 
Definition 1. System G is linear, if and only if 
 

i) It obeys the superposition principle, 
 
 
 
for any possible inputs u1, u2. 
 

ii) It obeys the principle of homogeneity, i.e. 
 

 
for any possible input u and any constant γ ∈ R. 
In essence, G is linear if and only if 
 
 
for any possible inputs u1, u2, and any constants α, β ∈ R. 
 
Otherwise, the system is called non-linear. 
 
The principle of superposition, which applies to linear systems, is one of the 
most powerful tools in systems analysis. It allows us to say that the response 
of a system to sum of inputs is equal to the sum of the responses of the 
system to the inputs taken individually. This has very deep implications for 
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analysis. If a complicated input to a linear system can be represented as a 
sum of simpler inputs, then the response of the system to the simpler inputs 
can be calculated separately and then added to get the response of the system 
to the complicated input. 
 
 
 
 
 
 
Linear dynamical systems 
Consider a dynamical system described by an ordinary differential equation 
of the form 
 

  
 
The system (5) is an example of linear dynamical systems. However, the 
notion of linearity, in the sense of the above definition, cannot be directly 
applied to dynamical systems of the form (5). Indeed, a solution of the 
system (5) is not uniquely determined by input f(t), but also depends on 
initial conditions                                 For linear dynamical systems, a more 
general version of superposition principle must be satisfied, which also 
includes some form of linearity with respect to initial states. For the 
purposes of this subject, however, the following slightly informal definition 
of a linear dynamical system will be sufficient. 
 
Definition 2. A dynamical system is called linear if and only if it can be 
described by linear differential equations. 
 
Linearization 
 
All real life systems are nonlinear. However, almost all physical systems can 
be closely approximated by linear models within some range of the 
variables. The main reason to use linear models is that linear models make 
the analysis and design problems much simpler in terms of understanding 
and applicability. The process of finding a linear model which gives good 
approximation of given nonlinear model is known as linearization. 
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To illustrate the process of linearization, consider the following very simple 
example. Consider the function 
 
 
 
 
Suppose we need to find a linear function which approximate f(x) near the 
point x0 = 1. Clearly (see the figure), this linear approximation is given as 
follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Linearization of the function y = x2 near the point x0 = 1 
 
In general, linearization can be obtained using Taylor series expansion about 
the operating point. Suppose a (nonlinear) function y = f(x) is given, then 
Taylor series expansion about the point x0 is as follows 
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Example: linearization of the pendulum equations. The pendulum is 
described by the following equation 
 
 
 
 
In the point q = 0 the torque T = mgl sin q = 0. The linear approximation of 
the torque about the point q = 0 is given as follows 
 
 
 
 
 
Therefore, the linearized equations of the pendulum about the point q = 0 is 
as follows 
 
 

 
End of Lecture Two 
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Computer control design and modeling 
Lecture 3 

 
Solution of linear differential equations using Laplace 
transform 
In general, the procedure of solving linear differential equation using 
Laplace transform consists of the following three steps: 
 
• Take Laplace transform of each term in the differential equation. This step 

eliminates time and all of the time derivatives from the original equation 
and results in an algebraic equation in s. 

• Solve the resulting algebraic equation for the transform of the desired time 
function. 

• Obtain the inverse Laplace transform. This last step gives the solution of 
the differential equation. 

Example: Ideal mass-spring system. The system is described by the 
following linear differential equation 
 

                   
 
where M is mass and k is spring constant. 
Problem. Find the solution of (1) corresponding to initial conditions y(0) = 
y0, (0) = 0. y&
Solution. Applying Laplace transform to both sides of the equation (1), one 
can write 
 
 
Taking into account initial conditions, we get 

  
Equation (2) is an algebraic one. Its solution is 
  
 
 
Using Laplace transform table, one can easily find the inverse Laplace 
transform of Y(s): 

  
1 
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Example: forced differential equation. Consider the following differential 
equation 

  
 
 
Problem: Find the solution corresponding to zero initial conditions y(0) =   

(0) = 0. y&
Solution. Taking the Laplace transform of both sides, we obtain 
 
 
 
and, due to zero initial conditions, 
 
 
 
Solving for Y(s) yields 
 
 
 
Partial fraction expansion for Y(s) has the form 
 
 
 
Residues are 
 
 
 
 
 
 
 
Therefore, 
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The Transfer Function 
 
In this lecture we will formulate the system representation by establishing a 
definition of a function that algebraically relates a system’s output to its 
inputs. This function allows us to algebraically combine mathematical 
representations of subsystems to yield a total system representation. 
 
Definition of transfer function 
 
Consider a system described by linear time-invariant differential equation, 

  
 
where r(t) is input, and y(t) is output of the system. Taking the Laplace 
transform of both sides of equation (5), we get 

  
where R(s) and Y(s) are Laplace transform of r(t) and y(t) respectively. If we 
assume that all initial conditions are equal to zero, the equation (6) reduces 
to 

 
 
The last equation can be rewritten as follows 
 

  
 
Denote by G(s) the ratio of the output transform Y(s) divided by input 
transform R(s): 

   
 
 
The ratio G(s) is called transfer function of the system (5). Thus we have 
the following definition. 
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Definition 1. Transfer function of a linear system is the ratio of Laplace 
transform of the output variable to the Laplace transform of the input 
variable, with all initial conditions assumed to be zero. 
 
Transfer function is a property of the system elements only and is not 
dependent on the excitation (input). As we shall see later, the transfer 
function completely characterizes system’s performance. 
 
The transfer function can be represented as a block diagram with input, 
output, and the system transfer function inside the block, as shown in figure 
1. 
 
 
 
 

Figure 1: Block Diagram of a Transfer Function 
From (9) it follows that 
                                                                                                                      
 
 
i.e. under zero initial conditions, the Laplace transform of the output 
(response) is equal to the product of the transfer function and the Laplace 
transform of the input. 
 
Example: transfer function. Suppose the system is described by the 
following differential equation 
 
 
 
where r(t) is input, and y(t) is output. Taking Laplace transform of both sides 
of (11), and assuming zero initial conditions, we have 
 
 
Therefore, the transfer function of system (11) is as follows 
 
 
 
Problem: find the response of (11) to the input r(t) = u(t), where u(t) is unit 
step function, assuming zero initial conditions. 
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Solution. To solve this problem, one can use formula (10). The Laplace 
transform of unit step function r(t) = u(t) is 
 
 
Therefore, using formula (10), we see that the Laplace transform of the 
output y(t) is 
 
 
Expanding by partial fractions, we have 
 
 
Calculating residues, we get 
 
 
 
 
 
so the partial fraction expansion of Y(s) is 
 
 
Applying the inverse Laplace transform, we finally get 
 
 
 
Example: Transfer function of mass-spring system with a damper. 
Consider a mass-spring system with a damper (see figure 2). 
 
 
 
 
 
 

Figure 2: Mass-Spring System with a Damper 
 

It is described by the following differential equation 
 
 
Taking Laplace transforms of both sides of (12), and assuming zero initial 
conditions, we get  
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Where Y(s) = L(y(t)) and (s) = L(FeF̂ e(t)). The transfer function of the 
system is 
 
 
 
 
Impulse response function 
 
Consider a linear system, and suppose all initial conditions are zero. The 
response of the system to an impulse input signal δ(t) is called the impulse 
response function of the system. The impulse response function is usually 
denoted by h(t). 
 
The impulse response function h(t) is closely related with the transfer 
function of the system. Indeed, let G(s) be the transfer function of the 
system. Using formula (10), we get 
 
 
(zero initial conditions are assumed). But we already proved that L[δ(t)] = 1, 
therefore 
 
 
 
The last equality can be considered as an alternative definition of the transfer 
function, as follows. 
 
Definition 2. The transfer function of a system is equal to the Laplace 
transform of the impulse response function. 
 
Problem. Find the transfer function 
 
 
 
from input f(t)to output x1(t)o f the coupled mass-spring system. 
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Figure 3: Coupled mass-spring system 
 
Solution. The differential equations governing for the system are 
 

(14) 

1  
 
 
Applying Laplace transform to both sides of (13), (14), we get the following 
matrix equation 

 
(15) 

 
To obtain the transfer function description, one have to solve equation (15) 
with respect to variables X1(s),X2(s). This can be done, for example, as 
follows. Consider the equation 

 (16) 

 
To calculate the solution of (16), one can use so called Cramer’s rule. 
According to Cramer’s rule, 
 
 
 
where xi is i-th element of vector x, and Ai is a matrix formed by replacing 
the i-th column of A by y. 
Then 

⎥
⎦

⎤
⎢
⎣

⎡
++

−
∆

=
kbsMs0

k)s(F1)s(X 21
 
 
 

∆
++

=∴
kbsMs)s(F)s(X

2

1
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Then 
 

∆
++

==
kbsMs

Fs
)s(X)s(G

2
1

1
(17)  

 
Where ∆ is the determinant of the matrix in the left-hand side of the equation 
(15) 

End of Lecture Three 
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Computer control design and modeling 
Lecture 4 

 
Block Diagram Models 
Graphically, a linear system can be represented as a block diagram with 
input, output, and the system transfer function inside the block, as shown in 
figure 1. 
 
 
 
 

Figure 1: Block Diagram of a Transfer Function 
 
In this lecture, we will learn more about block diagram representation of 
linear systems. 
 
A block diagram of a system is a pictorial representation of the functions 
performed by components of the systems and the flow of signals between 
the components of the system. Obviously, there is no more information in 
the block diagram than in the set of simultaneous equations that represents 
the system; however, the block diagram depicts the same information much 
more concisely. 
 
Example. Block diagram of a two-input, two-output system. Consider a 
linear system with two inputs and two outputs as shown below: 
 
 
 
 
 
 

Figure 2: Two-input, two-output system 
 
Using transfer function relations, this system can be written as follows 
 
 
 
where Gij is the transfer function relating the ith output variable to the jth 
input variable. Then, the corresponding block diagram is shown in figure 3. 
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Figure 3: Block diagram of two-input, two-output system 
 
Block diagram transformations 
In practice, most of the control engineering systems involve variables that 
can be heavily interrelated. A complicated block diagram involving many 
blocks, summing points, and pickoff points can be reduced to a single 
equivalent block by a set of transformations. Below, we consider several 
examples of elementary block diagram transformations. All these 
transformations can be derived by simple algebraic manipulation of the 
equations represented the blocks. 
 
Combining blocks in cascade 
 
 
 
 
 
 
 
 
 
 
 
 
Parallel subsystem 
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Algebraically, we have 

 
Moving a summing point behind a block 
 
 
 
 
 
 
 
 
 
 
Moving a summing point ahead of a block 
 
 
 
 
 

 
 
Moving a pick-off point ahead of a block 
 
 
 
 
 
The transformation is algebraically trivial. 
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Moving a pick-off point behind a block 
 
 
 
 
 
 
 
 
 
Eliminating a (negative or positive) feedback loop 
 
To obtain the algebraic expression for transfer function of a negative 
feedback loop, one can write 

 
 
 
 
 
 

 
Following the same line of reasoning, one can easily see that the transfer 
function of a positive feedback loop is given by the formula 
 
 
 
The formulas (2), (3), are particularly important, because they represent 
many of the existing practical control schemes. 
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Block Diagram Reduction 
 
The block diagram transformations described before allow us to reduce a 
block diagram of multiple subsystems to a single block representing the 
transfer function from input to output. 
 
Example: block diagram reduction. Consider a multiple loop feedback 
control system shown in figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4: Multiple loop feedback control system 
 

Problem. Find transfer function of the system 
)s(R
)s(Y)s(G =    

Solution. The solution can be obtained, for example, as follows. 
 
Step 1. Move H2 behind block G4. The result is presented on figure 5.    
 
 
 
 
 
 
 
 
 

Figure 5: Step 1 
 

Step 2. Eliminate the (positive) feedback loop G3G4H1 to obtain the system 
presented in figure 6. 
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Figure 6: Step 2 
 

Step 3. Eliminate the (negative) feedback loop containing 
4

2

G
H .The result is 

presented in figure 7. 
 
 
 
 
 

Figure 7: Step 3 
 

Step 4. Obtain the transfer function by eliminating the (negative) feedback 
loop containing H3 (see figure 8). 
 
 
 
 

Figure 8: Step 4 
 

Remarks 
• The advantage of the block diagram approach is that it provides the 

engineer with a graphical representation of the system and the 
relationships between the input and output variables. 

 
• In general, the block diagram reduction process is not unique, i.e. there can 

be multiple solutions to a block diagram reduction problem (with the 
same final result). 

 
 

End of Lecture Four  
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Signal-Flow Graph Models 
 
In the previous lecture, we considered the block diagram representation of a 
linear system, and studied the block diagram reduction technique. Block 
diagrams are good for the representation of the interrelationships of 
controlled and input variables. However, it can get tedious and cumbersome 
as the block diagrams become more and more complex. An alternative 
method for determining the relationships between system variables has been 
developed by Mason and is called signal-flow graph method. Signal-flow 
graph models are designed to handle many more variables with greater ease 
than block diagrams. The main advantage of the signal-flow graph method is 
the availability of a flow graph gain formula, which provides the relation 
between system variables without requiring any reduction procedure or 
manipulation of the flow graphs. 
 
A signal flow graph is a diagram consisting of nodes that are connected by 
several directed branches and is a graphical representation of a set of linear 
relations. The representation of systems in the signal-flow graph method is 
somewhat similar to the block diagram representation except that the block 
is replaced with a branch as shown in figure 1. 
 

G(s)  
 
 
 

Figure 1: 
 

The input/output points (junctions) are called nodes. The relation between 
each pair of variables is written next to the directional arrow. Given below 
are a list of terms that are commonly used in this representation. 
 
A path is a branch or a continuous sequence of branches that can be 
traversed from one signal (node), to another signal (node). 
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A loop is a closed path that originates and terminates at the same node, and 
along the path no node is met twice. 
 
Two loops are nontouching if they do not have a common node. 
 
Example: signal-flow graph of a two-input, two-output system. Consider 
a linear system with two inputs and two outputs as shown below: 
 
 
 
 
 
 

Figure 2: Two-input, two-output system 
 

This system is described by transfer function relations as follows 
 
 
 
 
where Gij is the transfer function relating the ith output variable to the jth 
input variable. The corresponding signal-flow graph representation is shown 
on figure 3. 
 
 
 
 
 
 
 

Figure 3: Signal-flow graph of a two-input, two-output system. 
 

Example. Consider a system described by the following set of algebraic 
equations 
 
 
 
where r1, r2 are input variables, and x1, x2 are output variables. The 
corresponding signal-flow graph is shown in figure 4. 
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Figure 4: Signal-flow graph of the system (2), (3). 
 
Equations (2), (3), can be rewritten as follows 
 
 
 
Using Cramer’s rule, one can get the following solution of the equations (4), 
(5), 
 
 
and 
 
 
 
where ∆ is the determinant of the set of equations (2), (3), 
 
 
 
Let us analyze the equations (6), (7). The determinant ∆ can be rewritten as 
follows 
 
 
Where 
 
 
 
Note that the term I1 is a sum of gains of all loops of the system. On the 
other hand, I2 is a sum of gain products of all possible two loops that do not 
touch each other. 
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Note also that numerators of transfer functions from an input ri to an output 
xj is equal to product of the gain of the corresponding path and the 
determinant of the part of the graph that does not touch the path. For 
example, numerator of transfer function from input r1 to output x1 is 1 − a22 
which is equal to product of the gain 1 of the path from r1 to x1 and the 
determinant 1 − a22 of the part of the graph that does not touch the path r1 
→x1. 
 
The generalization of the above considerations is called Mason’s rule. 
 
Mason’s rule 
 
Suppose we have a complex multiloop system, and we need to find 
the transfer function of this system from a given input R(s) to a given 
output Y(s). This transfer function can be found by using the 
following Mason’s formula: 
 
 
 
Here: 
 
∆(s) is the determinant of the system. ∆(s) can be calculated as follows 

∆(s) = 1 − {sum of all different loop gains} 
+{sum of the gains product of all combinations of two nontouching 
loops} 
−{sum of the gains product of all combinations of three nontouching 
loops} 
+. . . 

(9) 
 
Further, n is a number of different forward paths from input R(s) to output 
Y(s). 
 
Gi is gain of the i-th path from R(s) to Y(s). 
 
∆i(s) is the determinant of the i-th forward path. ∆i is a value of determinant 
∆ for that part of the signal flow graph that does not touch the i-th forward 
loop.  
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Example: signal-flow graph. Consider a multiple loop feedback control 
system shown in figure 5. 
 
 
 
 
 
 
 
 
 

Figure 5: Multiple loop feedback control system 
 

Problem. Find transfer function of the system 
)s(R
)s(Y)s(G =   using 

Mason’s rule 
Solution. By drawing the signal-flow graph for the above system we have, 
 
   
 

 
 

 
 
 
 
 

 -H3 

R(s)

-H2 

1 G1 G2 G3 G4 1

H1 

Y(s)

Figure 6: Signal-Flow graph for the above system 
 
From the above figure there are three loops which are: 
L1 = - G2 G3 H2
L2 = G3 G4 H1 
L3 = - G1 G2 G3 G4 H3 
 
And one forward path between the output and the input given by: 
 
PG1 = G1 G2 G3 G4
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Since there are no two (or more) nontouching loops, then: 
 
∆(s) = 1- (L1 + L2 + L3) 
 
And since the forward path touches all loops in the graph, then, 
 
∆1(s) =1    
 
Then 

  
)s(R
)s(Y)s(G =  =

∆
∆11PG  = 

34321232143

4321

HGGGGHGGHGG1
GGGG
++−

 

 
End of Lecture Five 
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Computer control design and modeling 
Lecture 6 

 
 
State Space Analysis 
 
Introduction 
A state space model is a description in terms of a set of first-order 
differential equations which are written compactly in a standard matrix form. 
This standard form has permitted the development of general computer 
programs, which can be used for the analysis and design of even very large 
systems. 
  
State Space Models 
The derivation of state space models is not different from that of transfer 
functions in that the differential equations describing the system dynamics 
are written first. In transfer function models these equations are transformed 
and variables are eliminated between them to find the relation between 
selected input and output variables. For state models, instead, the equations 
are arranged into set of first order differential equations in terms of selected 
state variables, and the output are expressed in these same state variables. 
State variables should not normally derived from transfer functions, but 
directly from the original systems equations. But in this lecture examples 
will be given to relate state models to the transfer functions. 
Consider a system described by the nth-order differential equation 
 

rwa
dt
dwa..........

dt
wda

dt
wd

121n

1n

nn

n

=++++
−

−

      (1) 

 
Or the equivalent transfer function. A state model for this system is not 
unique but depends on the choice of a state variables x1 (t), x2 (t),…….xn (t). 
One possible choice is the following: 

w= wx2 &=                      …….. 
                    )1n(

n wx
−

= (2) 
 
 
Directly from these definitions and by substitution (1), n first-order 
differential equations are obtained: 
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 2

32 xx =&                 ………..  xx = xx

3s9s6s
5W

=
                                                         

R 23 +++

 
rxa...xaxax nn2211n +−−−−=&  

n1n =−&21&

 
The output w can be expressed in terms of these state variables: 

w=x1 
It only remains to write in a standard vector-matrix from. The general from 
of a state-space model is as follows: 
 

BuAxx +=&  (state equation) 
                            (output equation)            (3) DuCxy +=             

 
Here x is the state vector, the vector of the state variables; u is the control 
(input) vector, and y the output vector. A is the system matrix. In the 
example above the control (input) vector is the scalar function r and the 
output vector the scalar function w. It may be seen that 
 
 

 
 

 x B A ⎥
⎥

⎢
⎢=⎥⎢= . ⎥⎢= .⎢

⎢=
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⎥
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⎢

⎣

⎡

− )1n(
n

2

1
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.
.

.
w
w

x
.
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.

x
x

&

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎢
⎢
⎢

⎣

⎡

1
0
.
.
.
0

..
0100
0..010

n21
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎢
⎢
⎢

⎣

⎡

−−−

)4(

a...aa
10
..
.

⎥
⎥
⎥

C = [1     0    …    0]      D = 0 
 

Example 1: A Transfer function without Zeros.  
 

 
                
                 r5w3w9w6w =+++ &&&&&&  
Choose state variables x1(t), and x2(t), then 
 

x1 = w        x2 =      xw& 3 =   w&&
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Then a state model representing this transfer function or the corresponding 
differential equation is obtained as in general case. The definitions and the 
differential equation yield 

21 xx =&         32 xx =& r5x6x9x3x 3213 +−−−=&  
In matrix form and with the output w expressed also in terms of all state 
variables. 
 

x           r      w=[1   0   0] x 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

5
0
0

x
693

100
010

x&

 
 
Example 2: A Transfer function with Zeros. 
 
 
   396sR +++

=
ss
2s2s5W

23

2 ++

Or 
 r2r2r5w3w9w6w ++=+++ &&&&&&&&&
 
First, consider only the denominator: 
 

3s9s6s
1

R
V

23 +++
=  rv3v9v6v =+++ &&&&&&

 
As in Example 1 
 
 
x   r ⎢

⎢= ⎢
⎢= 0x

⎥
⎥
⎥

⎦

⎤

⎢⎣

⎡

v
v
v

&&

&

⎣

⎡

−−− 1
0
0

x
693

10
010

&

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢ 
 
 
But  
W = (5s2+2s+2) V       or      w = 5 +2 +2v = [2  2  5] x v&& v&
 
Hence the output equation, with y=w, is  

y = C x                    C= [2  2  5] 
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Example 3:  
  
                              or  aKY +

= by &&y +
 U bs

)s(
+

uKKau +=

By the approach of the last example, V/U = 1/(s+b) yield a state equation  
= -bv+u. with state variable v. But then Y = K(s+a)V, so Y = K +Kav, and 

 is now not a state variable. With equal powers in numerator and 
denominator, the method of Example 2 can be used if a division is 
performed first: 

v&
v&

v&

 
 Where  XKUbaKY +=⎟

⎞−
= bKX a(

U +
−

=U
bs

1
⎠

⎜
⎝
⎛

+
+

bs
)

 
 
This yield .xKuy,u)ba(Kbxx +=−+−=&   
 
Example 4: RC Simple Lag Circuit. 
In this circuit input voltage ei(t) and output voltage eo(t) are related by  
  
  eeRC =+ 1E

=e&
 
The output is measurable and meaningful and a suitable state variable, 
identified as x. This is also the output y. Thus, with input ei = u, both the 
differential equation and the transfer function lead to the state model  

1RCsEi

o

+
ioo

 
   RCRC

x += xy
ux−

& = )e( =u i

 
Example 5: Spring-Mass-Damper. 
Mass position x and applied force f are related by  

  1X
= 

 
kcsms)s(F

)s(
2 ++

fkxxcxm =++ &&&

Here also the transfer function and differential equation descriptions will 
yield the same state model (x1 = x  x2 =   u = f  y = xx& 1): 
 

 
   ⎥

⎤
⎢
⎡

−− ck=x x 1 ⎥⎢+ [y =
   ⎥⎦⎢⎣ mm ⎥⎦⎢⎣

u
m

0 ⎤⎡10
x]01&

 
End of Lecture six 
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Computer control design and modeling 
Lecture 7 

 
Time-domain response of a first-order and second-order 

control systems 
 
In this lecture, we will study in details the time-domain response of a first-
order and a second-order control systems. In particular, we will 
• study how to use poles and zeros to determine time-response of a system, 
• introduce performance specifications of transient response of a first-order 
system, 
• learn how to determine transfer function of a first order system from time-
domain response data. 
• describe different types of natural responses of a second-order (stable) 

system, 
• define performance specifications for a second-order system, 
• learn how to use poles to determine the nature of response without exact 
calculation of the response. 
 
Poles and zeros of a transfer function  
 
Let us recall the definitions of poles and zeros of a transfer function. 
Consider a transfer function 
 
 
 
 
Poles of a signal (system) are the roots of the denominator polynomial A(s). 
 
It is clear that poles of the system may also be defined as the values of s that 
cause the transfer function to become infinite. If the factor in denominator 
can be canceled by the same factor in the numerator, the transfer function 
may be not infinite at the root of this factor. In control systems, however, the 
root of the canceled factor in the denominator is usually also referred as a 
pole even though the transfer function is not infinite at this value. 
 
Zeros of a signal (system) are the roots of the numerator polynomial B(s). 
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Similarly to the case of poles, the root of the canceled factor in the 
numerator is usually also referred as a zero even though the transfer function 
may be not zero at this value. 
Example. Poles, zeros, and time response of a first order system 
Consider a system described by the transfer function 
 
 
 
Let us find the unit step response of the system. The Laplace transform of a 

unit step signal is
s
1 , therefore the Laplace transform of the unit step 

response of the system is 
 
 
 
The residues are 
 
 
 
 
 
Thus, the time-domain response of the system is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System response 
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• The part of the response that corresponds to the poles of the input function 
is called forced response. One can see that a pole of the input function 
determine the form of the forced response. 
• The part of the response that corresponds to the poles of the transfer 
function is called natural response. Again, a pole of the transfer function 
determines the form of the natural response. 
• Since a pole of the transfer function is located at the real axis, the natural 
response of the system has an exponential form Ke−at. The farther to the left 
a pole on the negative real axis, the faster the exponential response will 
decay to zero. 
 
Transient response specifications of a first-order system 
 
Time constant 
 
Consider a first-order system 
 
 
The Laplace transform of its step response is as follows 
 
 
 
Taking the inverse Laplace transform, one can find the time-domain step 
response as follows 
 
 
 
The response (1) is plotted in figure 2 (for simplicity, K = a is assumed). 
 
Definition 1. The value 
 
 
 
is called the time constant of the response. 
When t = 1 /a, we have 
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We see that the time constant is the time that takes for the step response to 
rise to 63% of its final value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: First order system response to a unit step 
 
The time constant can obviously be evaluated from the pole as shown in 
figure 3. One can say that the pole is located at the reciprocal of the time 
constant, and the farther the pole from imaginary axis, the faster the transient 
response. 
 
Rise time and settling time 
 
The time constant can be considered as a transient response specification for 
a first-order system. The following two transient response specifications can 
also be used. 
 
Rise time Tr is defined as the time for the response to go from 0.1 to 0.9 of 
its final value. To determine rise the time from the time constant, denote t0, 
t1 as follows c(t1) = 0.9, c(t0) = 0.1. We have 1 − e−at1 = 0.9, therefore at1 = 
ln10 ≈ 2.31. On the other hand, 1 − e−at0 = 0.1, 
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Figure 3: Pole plot 
 

therefore at0 = ⎟
⎠
⎞

⎜
⎝
⎛

9
10ln  ≈ 0.11. Therefore the rise time can be calculated as 

follows 
 
 
 
where T = 1 /a is the time constant. 
 
Settling time Ts is the time for the response to reach, and stay within, 2% of 
it’s final value. To calculate settling time, put 1 − e−aTs = 0.98, therefore aTs 
= ln50 ≈ 3.91, and we have 
 
 
 
 
First-order transfer functions via testing 
 
Often it is not possible or practical to obtain a system’s transfer function 
analytically. However, with a step input, we can measure the time constant 
and steady state value, from which the transfer function can be calculated.  
 
Consider again a first-order system 
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and it’s step response is 
 
 
 
 
 
One can identify K and a from laboratory testing as follows. Assume, the 
input step response is given in figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Step response of a system 

From the response, is, the time for the 
mplitude to reach 63% of its final value. Since the final value is about 0.72, 

o find K it is clear that the forced response reaches a steady state value of 

 
we measure the time constant, that 

a
the time constant is evaluated where the curve reaches 0.63 × 0.72 ≈ 0.45, 
i.e. about 0.13. Hence 
 
 
T
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Since a ≈ 0.13, we see that K ≈ 5.54. Therefore 

 
ime-domain response of a s cond-order control system 

 system 
xhibits a wide range of responses. For example, a second order system can 

eros described by a transfer 

enote

 
 
 
T e
 
Comparing to the simplicity of a first-order system, a second order
e
display characteristics much like a first-order system or display damped or 
pure oscillations for its transient response. Second order systems are very 
important in control systems engineering, since many control systems design 
methods are based on second-order system analysis.  
 
A second-order system without zeros 
 
Consider a second-order system without z
unction of the following general form f

 
 
 

D
n

n w2
 

a,b =ξ . Equation (2) can therefore be rewritten as follows w =

 

 is clear th e or input 
ultiplying factor that can take on any value without affecting the form of 

                                                     

stem, and ζ 
 called da

 
It at the term in the numerator is simply a scal
m
the derived results. For simplicity, we take k = ωn

2, and finally get a transfer 
function of the following form 
 
                                                   
 
The parameter ωn is called natural frequency of a second order sy
is mping ratio. 
Consider a unit step response of a second order system (4). We have 
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The first term in the right-hand side of equation (5) corresponds to forced 

he form  

ase ζ = 0 

 ζ = 0, we have two imaginary complex conjugate poles s1,2 =  jω. These 

Case 0 < ζ < 1 

 this case equation (6) results in a pair of complex conjugate poles with 

hese poles generate a natu  of damped sinusoid with 

response, while the second term determines the natural response of a second-
order system. It is easy to see that K1 = 1. Solving for the poles of the 
transfer function in equation (4) yields 
 
 
T  of the natural unit step response of a second-order (stable) system
is determined by the value of damping ratio ζ. 
 
C
 
If
poles generate a sinusoidal natural response whose frequency is equal to ωn. 
This type of response is called undamped. It is shown in figure 5. 
 
 
 
 
 
 
 

Figure 5: Undamped response 
 

 
In
negative real part 
 

±

 
T ral response of the form
an exponential envelope whose time constant is equal to the reciprocal of the 
pole’s real part. This type of response is called underdamped response. It is 
shown in figure 6. 
 

Figure 6: Underdamped response 
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ase ζ > 1 

 ζ > 1, then the formula (6) gives two negative real poles s1 = −ζωn + 

C
 
If
ωn 12 −ζ , s2 = −ζωn − ωn 12 −ζ . The corresponding natural response is 
equal to sum of two exponen ith time constants equal to reciprocal of 
the pole locations 
 

tials w

his case is illustrated in figure 7. The response is called overdamped. 

 
ase ζ = 1 

 this case formula (6) gives two equal real poles 

he corresponding natural time ain response has a form 

his type of response is cal response. This is the fastest 

Figure 8: Critically damped response 

 
T
 
 
 
 
 
 

Figure 7: Overdamped response 

C
 
In
 
 
T -dom
 
 
T led critically damped 
possible response without overshoot. 
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Performance specifications of a second-order system 
 
In this section we will introduce performance specifications for an 
underdamped second-order system. As in the case of first order systems, 
standard performance measures are usually defined in terms of the step 
response of a system. 
 
The step response of the second order system (4) with 0 < ζ < 1 is given by 
the following formula 
 
 
 
where . The following performance specifications can 
be defined for the underdamped response of a second-order system. 
 
Peak time Tp The time required to reach the first peak. Peak time can be 
calculated by the formula 
 
 
 
Percent overshoot, %OS is the amount that the waveform overshoots the 
steady-state, or final, value at the peak time, expressed as a percentage of the 
steady-state value. Percent overshoot can be evaluated from ζ, ωn using the 
following formula 
 
 
It is clear that the percent overshoot is a function only of the damping ratio ζ. 
 
Settling time Ts is the time required for damped oscillations to reach and 
stay within  of the steady-state (final) value. Ts can be evaluated by 
the formula 
 
 
 
 
Rise time Tr is the time required for the waveform to go from 0.1 to 0.9 of 
the final value. It is difficult to obtain exact analytic expression for Tr. 
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Figure 9: Second order underdamped response specifications 
 

Performance characteristics vs. pole location 
 
Let us consider the relation between performance characteristics and the 
location of the poles. Consider an example of the pole plot of a second order 
underdamped system, shown in figure 10. It is clear that, in this figure, cos θ 
= ζ. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Pole plot for an underdamped second-order system 
 
Comparing equations (7), (8) with the pole location, we see that 
 
 
 
where ωd = ωn

21 ζ−  is the imaginary part of the pole. On the other hand, 
 

dn
s

44T
σ

=
ζω

= 
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where σd is the magnitude of the real part of the pole. 
 
We see that 
 
• The peak time Tp is inversely proportional to the imaginary part of the 

pole. 
• The settling time Ts is inversely proportional to the real part of the pole. 
• Since ζ = cosθ, radial lines are lines of constant ζ. Since percent overshoot 

is only a function of ζ, radial lines are lines of constant percent overshoot 
%OS. 

 
In figure 11 the step responses are shown as the poles are moved in vertical 
direction, keeping the real part the same. We see that the frequency changes, 
but the envelope remains the same. Since all curves fit under the same 
exponential decay curve, the settling time is virtually the same for all 
waveforms. 
 
 
 
 
 
 
 
 

Figure 11: Poles are moved in vertical direction 
 
In figure 12 the step responses are shown as the poles are moved in 
horizontal direction, keeping the imaginary part the same. As the poles move 
to the left, the response damps out more rapidly, while the frequency 
remains the same. It is clear that peak time is the same for all waveforms. 
 
 
 
 
 
 
 
 

Figure 12: Poles are moved in horizontal direction 
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In figure 13 the poles are moved along a constant radial line. We see that the 
percent overshoot remains the same. The farther the poles are from origin, 
the more rapid the response. 
 
 
 
 
 
 
 

Figure 13: Poles are moved along a constant radial line 
 
Example of finding ζ, ωn, Tp, %OS, and Ts from pole location 
 
Consider a pole plot shown in figure 11. 
 
Problem. Find ζ, ωn, Tp, %OS, and Ts. 
 
Solution. 
 
• The damping ratio is given by 
 
 
• The natural frequency 
 
 
• The peak time 
 
 
• The percent overshoot 
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Figure 14: Pole plot 
 

• The settling time 
 
 
 
 

End of Lecture seven 
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Computer control design and modeling 
Lecture 8 

 
Stability of linear systems. Routh-Hurwitz Criterion 
 
As previously given, the time response of a system is a sum of the forced 
and natural responses 
 

 
The form of natural response depends only on the system, not the input. 

On the other hand, the form of forced response is dependent on the input. If 
the natural response grows without bounds, then eventually the natural 
response will be much greater than the forced response, and the system is no 
longer controlled. Therefore, for a control system to be useful, the natural 
response must eventually approach zero, or, at worst, oscillate. 

 
Definition. A linear system is said to be: 

• stable if the natural response approaches zero as time approaches infinity; 
• unstable if the natural response grows without bound as time approaches 

infinity; 
• marginally stable if the natural response neither decays nor grows without 

bound, but remains constant or oscillates as time approaches infinity. 
 
Therefore, control system must be designed to be stable. 
 
Stability vs. poles location 
 
• Poles in the left half-plane yield either pure exponentially decreasing or 

damped sinusoidal natural responses. Therefore, if all the poles of the 
system are in the left half-plane (have negative real parts), then the system 
is stable. 

• Poles in the right half-plane yield either pure exponentially increasing or 
exponentially increasing sinusoidal natural responses. Therefore, if a 
system has at least one pole in the right half-plane (has positive real parts), 
then the system is unstable. 

• Poles of multiplicity greater than one on the imaginary axis lead to the sum 
of responses of the form 
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which grows without bound as ∞→t . Therefore, if a system has poles of 
multiplicity greater than one on the imaginary axis, then the system is 
unstable. 
 
• Poles of multiplicity one on the imaginary axis yield pure sinusoidal 

natural response. Thus, if all poles of the system are only in the left half 
plane or on the imaginary axis, and all the poles on the imaginary axis are 
of multiplicity one, then the system is marginally stable. 

 
A necessary condition for stability 

Suppose a transfer function has only left half-plane poles, i.e. the 
system is stable. Then the factors of denominator of the transfer function 
consists of products of terms such as (s+ai), where ai either real and positive, 
or complex with positive real parts. The products of such terms is a 
polynomial with all positive coefficients. Therefore: 

 
• if the system is stable, then all the coefficients of the denominator must be 

positive. 
 

It means that if any of the coefficients of the denominator polynomial is 
negative or missing, then the system is not stable. 

Unfortunately, if all the coefficients of the denominator are positive and 
not missing, we do not have definite information about the system’s pole 
location. 

 
Routh-Hurwitz Criterion 
 
• Routh-Hurwitz Criterion provides a method that yields stability 

information without the need to solve for poles of a system. 
• Using Routh-Hurwitz Criterion one can find how many poles are in the left 

half-plane, right half-plane, and on the imaginary axis. However, using 
this method, one cannot find the exact coordinates of the poles. 

• The method requires two steps: 
 
– generate a data table called Routh table; 
– interpret the Routh table to tell how many system poles are in each section 

(left half-plane, right half-plane, and imaginary axis) of the complex plane. 
 
Suppose, for example, we need to determine stability of the system 
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Figure 1: Initial Layout for Routh table 
 
Generating a basic Routh table 
 
• Create the initial Routh table shown in figure 1. 
 

– Label the rows with powers of s from the highest power of the 
denominator to s0. 

– In the first row, write horizontally the coefficients from the highest 
power to the lowest one, skipping every other coefficient. 

– In the second row, write horizontally all the coefficients that skipped in 
the first row, from the highest power to the lowest one. 

 
• Fill in the remaining entries as follows: 
 

– Each entry is a negative determinant of entries in the previous two rows 
divided by the entry in the first column directly above the calculated 
row. 

– The left column of the determinant is always the first column of the 
previous two rows. 

– The right column of the determinant is the column of the previous two 
rows that is above and to the right of the entry. 
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• Any row may be multiplied by a positive constant (not by a negative 
one!!!). This operation will not change the values of the rows below (this 
follows from the properties of determinant). 
• The table is completed when all the rows are completed down to s0. A 
completed Routh table is shown in figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Completed Routh table 
 
Example 1: Creating a Routh table. Consider a feedback system in figure 
3. 
 
 
 
 
 

Figure 3: Feedback system 
 
The transfer function of the closed loop system is as follows 

 
 
 
 
The problem is to generate the corresponding Routh table. The answer is 
shown in figure 4. 
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Interpreting the basic Routh table 
 
If there is no zeros in the first column of the Routh table, then the Routh 
table can be interpreted as follows: 
 
• The number of roots of the polynomial that are in the right half-plane is 

equal to the number of sign changes in the first column. 
 
For example, the table shown in figure 4 has two sign changes in the first 
column. Thus, the system (1) has two poles in the right half-plane, therefore 
it is unstable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Completed Routh table for example 1 
 
Routh-Hurwitz Criterion: Special Cases 
 
Zero in the first column of a row 
 
If the first element of the row is zero, division by zero would be required to 
form the next row. To avoid this, a small number ε is assigned to replace the 
zero in the first column. The value of ε is then allowed to approach zero 
from either positive or negative side, after which the signs of the entries in 
the first column can be determined. 
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Example 2. Consider a system 
 
 
 
It’s Routh table is shown on figure 5. 
There are two sign changes, therefore two poles are in the right half-plane. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Completed Routh table for example 2 
 
Entire row is zero 
Sometimes, we can find that an entire row consists of zeros. This case must 
be handled differently from the case of a zero only in the first column of the 
row.  
 
Example 3. Consider a system 
 
 
 
It’s Routh table is shown on figure 6. In particular, one can see that the third 
row consists of zeros. In this case we should: 
 
• Return to the row immediately above the row of zeros. 
 
• Form an auxiliary polynomial, using the entries of that row as coefficients. 

The polynomial will start from the power of s in the label column, and 
continue by skipping every other one and diminishing in power. Thus, the 
polynomial is as follows 
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• Differentiate the above polynomial with respect to s to obtain 
   
 
• Use coefficients of the last polynomial to replace the row of zeros. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Routh table for example 3 
 
The remainder of the table is formed in the standard way. We see that all 
entries in the first column are positive. Hence, there are no right half-plane 
poles, and the system is stable. 
 
Example 4. The characteristics equation of a given system is 

s4 + 6s3 + 11s2 + 6s + K = 0 
What the range of K values in order to insure that the system is stable? 
 

s4 1 11 K 
s3 6 6 0 
s2 10 K 0 
s1

10
K660 −  0  

s0 K   
 
For the system to be stable, the following restrictions must be placed upon 
the parameter K: 60 – 6K 〉 0 or K 〈10, and K 〉 0. Thus K must be greater 
than zero and less than 10. 
 

 
End of Lecture eight 
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Computer control design and modeling 
Lecture 9 

 
Steady-State Errors 
 
As given before, in feedback control systems (as shown in figure 1), the 
input signal usually represents a desired output response, and the role of 
control system is to force the actual output to follow the input (desired 
output). The accuracy of this process is one of the main concerns of control 
system engineers. For example, if a control system is designed to stop an 
elevator at a desired floor, then the elevator must eventually be level enough 
with the floor for the passengers to exit. In particular, one of the main 
characteristics of a control system is the difference between the desired 
output and the actual output as time tends to infinity. 
 
 

 
 
 
 
 

Figure 1: Feedback control system 
 

Definition. Steady-state error is the difference between the input and the 
output for a prescribed test input as ∞→t . 
 
Test inputs 
The following signals are usually used as test inputs as shown in figure 2: 
 
• Step input u(t) = 1(t). Step input represents constant position and it is 

useful in determining the ability of the control system to position itself 
with respect to stationary target. 

• Ramp input u(t) = t. Ramp input represents constant-velocity input and it is 
useful to determine the ability of the system to track a constant-velocity 
target. 
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• Parabola u(t) = 2t
2
1 . Parabolic input is a constant-acceleration input, so one 

can use this input to determine the ability of the system to track an 
accelerating target. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Test inputs for evaluating steady-state errors 
 

Steady-state Error in Unity Feedback Systems 
 
Consider the following unity feedback system as shown in figure 3. 
 
 
 
 

Figure 3: Unity feedback system 
 

In this figure, the signal E(s) is the error between the input R(s), and the 
output C(s). The goal of this section is to express the steady-state error in 
terms of transfer function G(s) in the forward path (open loop transfer 
function). 
From figure 3, we have 
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But 
 
 
Therefore it is easy to get 
 
 
 
Assume the closed-loop system is stable. Then, applying final value 
theorem, one can determine the value e(∞ ) =  as follows )t(elimt ∞→

 
 
 

Equation (1) allows us to calculate the steady-state error e( ) for given 
input R(s) and transfer function G(s). 

∞

 
Steady-state error for the step input 
 

For step input, R(s) = 
s
1  . Using equation (1), we get 

 
 
 
The value 
 
 
 
is called static position error constant. In order to have zero steady-state 
error, G(s) must satisfy 
 
 
 
To satisfy the previous equation, G(s) must take on the following form 
 
 
 
where n ≥  1, i.e. at least one pole of G(s) must be at the origin (when n = 1 
then the  system is called type 1 system), or equivalently, at least one pure 
integration must be present in the forward path. 
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If there is no integration (n = 0 or type 0 system), then we have 
 
 
 
i.e. the static position error constant Kp is finite, and therefore (as given in 
formula (2)), the corresponding steady-state error is finite. 
 
Steady-state error for the ramp input 
 

For ramp input, we have R(s) = 2s
1 . Using formula (1), we get 

 
 
 
The value 
 
 
is called static velocity error constant. To obtain zero steady-state error for a 
ramp input, one must have 
 
 
 
To satisfy the last equation, G(s) must be of the form (3) with n  2, i.e. 
there must be at least two integrations in the forward path (when n = 2 then 
the system is called type 2 system). 

≥

If only one integrator exists in the forward path (type 1 system), then 
 
 
 
is finite, i.e. we have constant steady-state error. 

If there is no integration in the forward path (type 0 system), then 
 
 
 
and the steady-state error is infinite and lead to diverging ramps. 
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Steady-state error for the parabolic input 
For the parabolic input u(t) = 2t

2
1 , it’s Laplace transform is R(s) = 3s

1 . Using 

formula (1), we get 
 
 
 
The value 
 
 
is called static acceleration error constant. In order to have zero steady-state 
error, we must have 
 
 
To satisfy the last equation, G(s) must take on the form (3), where n  3 
(when n = 3 then the system is called type 3 system). In other words, to have 
zero steady-state error for a parabolic input, there must be at least three 
integrators in the forward path. 

≥

If there are only two integrators in the forward path (type 2 system), then 
 
 
 
is finite, and therefore, the steady-state error for a parabolic input is finite. If 
the number of pure integrators in the forward path is less than two, then 
 
 
which implies the steady-state error for a parabolic input is infinite. 
The following table gives a summery of the different cases given above: 
 

 Step Input 
u(t)=1 

Ramp Input 
u(t)=t 

Acceleration 

u(t)= 2t
2
1  

Type 0 system 

pK1
1
+

 ∞  ∞  

Type 1 system 0 

vK
1  ∞  

Type 2 system 0 0 

aK
1  
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Static error constants as steady-state error performance 
specifications 
 
Static error constants can be used to specify the steady-state error 
characteristics of control systems. Just as damping ratio, settling time, peak 
time, and percent overshoot are used as specifications for a system’s 
transient response, so the static position error constant Kp,  static velocity 
error constant Kv, and static acceleration error constant, Ka, can be used as 
specifications for a control system’s steady state error. 
 
Example: Steady-state error via error constants 
 
Problem 1. For each system on figure 4, evaluate the static error constants 
and find the expected error for the standard step, ramp, and parabolic inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Feedback control systems for Problem 1 
 

Solution. First, we need to verify that all the systems are stable. Second, 
for the system in figure 4, (a), we see that 
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and 
 
 
Thus, for a step input, we have 
 
 
 
For a ramp input, 
 
 
 
and for a parabolic input 
 
 
For the system in figure 4, (b), we have 
 
 
 
 
 
 
Therefore 
 
 
 
 
 
 
Finally, for the system in figure 4, (c), 
 
 
 
 
 
 
Therefore 
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Example: Gain design to meet steady-state error specifications 
 
Problem 2. Given a control system in figure 5, find the value of K so that 
there is 10% error in the steady-state. 
 
 
 
 
 
 

Figure 5: Feedback control systems for Problem 2 
 

Solution. Since the system has one integrator, the error stated in the problem 
must apply to a ramp input. Thus, 
 
 
 
Therefore, 
 
 
 
which implies 
 
 
 
It remains to check, using Routh-Hurwitz criterion, that the closed-loop 
system is stable with this gain. 

 
 
 
 

End of Lecture nine 
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Computer control design and modeling 
Lecture 10 

 
Steady-state errors for nonunity feedback systems 
 
Control systems often do not have unity feedback because of compensation 
used to improve performance or because of the physical model for the 
system. In order to derive a method for handling steady state errors for 
nonunity feedback systems, take a nonunity feedback control system and for 
a unity feedback system by adding and subtracting unity feedback paths, as 
shown in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Forming an equivalent unity feedback system 
 

It is clear that when nonunity feedback is present, the plant actuating signal 
Ea(s) is not the actual error or difference between the input and the output. 
Example 1. For the system shown in figure 2, find the steady-state error for 
a unit step input. 

 
 
 
 
 
 

Figure 2: Feedback system for Example 1 
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Solution. The first step is to make sure that the system is stable. Second, the 
system should be converted into an equivalent unity feedback system. Using 
the formula 
 
 
 
where Ge(s) is the transfer function in the forward path of the equivalent 
unity feedback system, one can find 
 
 
 
The position error constant 
 
 
 
Finally, the steady-state error is 
 

 
 

Steady-state error for disturbances 
 
A disturbance signal is an unwanted input signal that affects the system’s 
behavior. Many control systems are subject to disturbances that cause the 
system to provide an inaccurate output. For example, 
• Electronic amplifiers have inherent noise generated within the integrated 
circuits or transistors. 
It is the job of control systems engineer to properly design the control 
system to partially eliminate the affects of disturbances. One of the 
advantages of using feedback is that the effect of unwanted disturbances can 
be effectively reduced. 

 
 
 
 
 
 
 

Figure 3: Feedback control system with disturbances 
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Consider a system with disturbances shown in figure 3. In this figure, a 
disturbance D(s) is injected between the controller and the plant. For the 
system with disturbances, the error E(s) is given by the following formula 
 
 
 
Applying final value theorem, we get 
 
 
where 
 
 
 
and 
 
 
 
Here, eR( ) is the steady-state error due to R(s), and e∞ D(∞ ) is the steady 
state error due to D(s). How to reduce the error due to disturbances? If it is 

assume for example that D(s) is a step disturbances, D(s) = 
s
1 . Substituting 

this value into the last equation, we get 
 
 
 
The value  is sometimes called dc gain of the system G)s(Glim 10s→ 1(s). The 
last formula shows that the steady-state error due to step disturbances can be 
reduced by increasing the dc gain of the controller G1(s). 
 
Example 2. Steady-state error due to step disturbances. Consider a 
system in figure 4. 
Problem. Find the steady-state error due to step disturbance D(s). 
Solution. The system is stable. Using formula (4), we get 

 
 
 
 
We see that, dc gain of G2(s) is infinite in this example, so the steady state 
error due to the step disturbance is inversely proportional to the dc gain of 
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the controller G1(s). Thus, the effect of the step disturbance can be reduced 
by increasing dc gain of the controller.  

 
 

 
 
 
 
 

Figure 4: Feedback control system for example 2 
 
Dynamic error constants 
Dynamic error constants can be used to relate error function with time. 
These constants give the error at any time and can be used to calculate 
steady state error.  
As given before,  
 

                                                                             (5) R1E
+

= )s(
)s(G1

)s(
 
and by dividing numerator by denumerator we have, 
  
                                                                                             (6) ...s

k
s

kk
E ⎜⎜ +++=

 
)s(R111)s( 2

321
⎟⎟
⎠

⎞

⎝
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Where k1 is the dynamic position error constant, 
           k2 is the dynamic velocity error constant, 
           k3 is the dynamic acceleration error constant. 
 
Then  
 
                                                                                 (7) ...(s1sR1R1

+++= )sR
k

)s(
k
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)s(E 2
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∴
 
 

and by taking the inverse Laplace transform, we have  
 

                                                                                    (8) ...1r1r1e +++= &&
 

)t(r
k

)t(
k

)t(
k

)t(
321

&

The last equation gives the error as a function of time. To calculate steady 
state error, we must use the following equation: 
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steady state error = )t(elimt ∞→ = ...))t(r
k
1)t(r

k
1)t(r

k
1(lim

321
t +++→∞ &&&       

                                                                                                             (9) 
Example 3. 
Calculate the dynamic error constants for the system with the following open 
loop transfer function (for unity feedback): 
 

 
 )1s(s

10)s(G
+

=

And then find the steady state error for the following input: 
 2

210 tataa)t(r ++=
 
Solution. 
Since  
 

 0
 
 

...s019.0s09.0s1.
ss10

ss
)s(G1

1
)s(R
)s(E 32

2

2
+−+=

++
+

=
+

=

Then, the dynamic error constants are: 
 
 k

63.52
019.0

1k

1.11
09.0
1k

10
1.0

1k

4

3

2

1

−=
−

=

==

==

∞=
 
 
 
 
 
 
 
 

Then  
...)s(Rs019.0)s(Rs09.0)s(sR1.0)s(E 32 +−+=Q  

and 
...)t(r019.0)t(r09.0)t(r1.0)t(e +−+=∴ &&&&&&  
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Then  
 e
 = ta2.0a18.0a1.0

)a2(09.0)ta2a(1.0)t(

221

221

++
++=

 
The steady state error can be calculated as given below: 
steady state error = 

 
 

)ta2.0a18.0a1.0(lim
)t(elim

221t

t

++= ∞→

∞→

Then from the last equation, it is clear that the steady state error is infinite as 
t .  ∞→

 
 
 
 

End of Lecture ten  
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Computer control design and modeling 
Lecture 11 

 
Root Locus Techniques  
Introduction 
Root locus is a graphical method for sketching the locus of the closed-loop 
system’s poles as a system parameter is varied. Root locus is a powerful 
method of analysis and design for stability and transient response which is 
applicable for higher-order systems. 
Consider a feedback control system shown in figure 1. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1: Feedback control system 
 

The transfer function of the closed-loop system is given by the following 
formula 
 
 
The equation 
 
 
is called characteristic equation of the closed-loop system (1), and the roots 
of the characteristic equation are the poles of the closed loop system. For the 
systems of order higher than two it is usually hard to determine the exact 
location of the poles of the closed-loop system based on knowledge of poles 
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location of G(s) and H(s). The root locus technique will be used to give us a 
picture of the poles of T(s) as K is varied. 
 
Definition of Root Locus 
Definition 1. The root locus is the path of the roots of the characteristic 
equation traced out in the complex plane as a system parameter is changed. 
 
Example. Root locus for a video camera control system  
Consider a control system of an automatic video camera shown in figure 2. 
 
 
 
 
 

 
Figure 2: Automatic video camera control system 

 
The closed-loop transfer function of ‘this system is as follows 
 
 
 
where K = K1K2. In figure 3, the pole location for different values of gain K 
is given. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Pole location as a function of gain 
 
The data of figure 3 is graphically displayed in figure 4 which shows each 
pole and it’s gain. 
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One can see that for K = 0 poles are p1 = −10, p2 = 0. As K increases, the 
pole p1 moves toward the right, while p2 moves toward the left. For K = 25, 
the poles p1 and p2 meet at −5, break away from the real axis, and move into 
the complex plane. We see that, if 0 < K < 25, the poles are real and distinct, 
and the system is overdamped. For K = 25, the poles are real and multiple, 
and the system is critically damped. For K > 25, the poles are complex 
conjugate, and the system is underdamped. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Pole plot 
 
The presented analysis is almost obvious for a second order system. The 
important point is that the root locus technique allows us to sketch the root 
locus and make the analogous analysis for systems of order higher than two. 
 
Properties of the Root Locus 
In this section we will consider some properties of the root locus. Using 
these properties, we will be able to sketch the root locus for a higher-order 
system. 
We start from the following observation. A complex number s is a pole of 
the closed-loop system (1), if and only if 
 
 
The last equation is equivalent to the following two equations 
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And 
 
 

 
Now let us recall some properties of complex numbers. Consider a rational 
function of the form 
 
 
 
 
Then the modulus of F(s) can be calculated as follows 
 
 
 
It is clear that, given a complex number s, then |s + z1| is the magnitude of 
the vector drawn from the zero of F(s) at −z1 to the point s, and, analogously, 
|s + p1| is the magnitude of the vector from the pole of F(s) at −p1 to the point 
s. 
Analogously, the argument θ  = ArgF(s) is given by the following formula 
 
 
 
Using these properties, one can see from equation (3) that a point s of the 
complex plane is on the root locus for a particular value of gain K, if 
 
 
 
 
On the other hand, suppose a point s is on the root locus. Then the value of 
the gain K at this point can be found by the formula 
 
 
                                                                                                                      
 
Where pj are poles and zi are zeros of the open-loop transfer function 
G(s)H(s).  
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Example. Consider a system on figure 5. 
 
 
 
 
 

Figure 5: Feedback control system 
The transfer function of the open-loop system (i.e. without feedback) is 
. 
 
 
The closed-loop transfer function can be found as follows 
 

 
 

If a point s is a pole of the closed-loop system for some value of K then (2) 
and (3) must be satisfied at this point. 
First, let us check the point s = −2 + j3. If this point is on the root locus, then 
the sum of angles of the zeros of the open-loop transfer function minus sum 
of angles of the poles must be an odd multiple of 180 o . From figure 6, we 
see that 
θ 1 + θ 2 − θ 3 −θ  4 = 56.31 o  + 71.57  − 90  − 108.43  = −70.55 o . o o o

This value is not an odd multiple of 180 , therefore s = −2 + j3 is not a point 
on the root locus, i.e. it is not a pole of the closed-loop system for any gain 
K. 

o

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Pole-zero location 
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On the other hand, for the point )2/2(j2s +−= we have 
 
 
 
Therefore, this point is on the root locus for some value of gain K. To find 
the value of K, one can use formula (6). We have 
 
 
 
Therefore, we get that for K = 0.33 the point )2/2(j2s +−=  is a pole of 
the closed loop system. 

 
 

End of Lecture eleven  

6 



LECT. 12 

Computer control design and modeling 
Lecture 12 

 
Sketching the Root Locus 
 
The following properties of the root locus allow us to sketch the root locus 
using minimal calculations. 
Property 1: Number of branches. Each closed-loop pole moves as the gain 
is varied. Therefore, number of separate loci (or branches of the root locus) 
is equal to the number of poles. 
Property 2: Symmetry about the real axis. Since the complex poles 
always appear in complex conjugate pairs, the root locus must be 
symmetrical about the real axis. 
Property 3: Location of the real-axis segment of the root locus. The root 
locus on the real axis always lies in a section of the real axis to the left of an 
odd number of (open-loop) poles and zeros.  
Property 4: Starting points and ending points. To determine starting and 
ending points of root locus, denote by NG(s), DG(s) the numerator and 
denominator polynomials of G(s) 
 
Correspondingly, i.e. 
 
 
 
On the other hand, let NH(s) (DH(s)) be the numerator (denominator) 
polynomial of H(s). Using these notations, the transfer function of the 
closed-loop system can be rewritten as follows 
 
 
 
Thus, the characteristic equation of the system is as follows 
 
 
  
 
or 
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If K        0, the equation (1) tends to the following one 
 
   
 
Solutions of the last equation are exactly the poles of the open-loop system. 
On the other hand, for positive K >0 the equation (1) can be rewritten as 
 
 
 
If K        + ∞ , the last equation tends to the following one 
 
 
 
Solutions of this last equation are exactly the zeros of the open-loop system. 
Thus, the following rule is valid: root locus begins at the poles of G(s)H(s) 
and ends at the zeros of G(s)H(s) as K increases from 0 to +∞ . 

 
Property 5: Location of infinite zeros. We will say that a function F(s) has 
a zero (pole) at infinity if F(s)      0 (F(s)      ∞ ) as s       ∞ . Every function 
has an equal number of zeros and poles if we include the infinite poles and 
zeros as well as finite poles and zeros. Consider, for example, a function 
 
 
 
This function has three finite poles at s1 = 0, s2 = −1, s3 = −2, and no (finite) 
zeros. However, if s approaches infinity, the function becomes 
 
 
 
Each s in the denominator causes the function to become zero as s 
approaches infinity. Therefore, the function has three infinite zeros. 
Thus, the root locus for equation (3) will begin at finite poles and end in 
infinite zeros. Where are the infinite zeros located? In general, if a function 
has np finite poles and nz finite zeros (np ≥ nz), then N = np − nz sections 
(branches) of the root locus will end at infinite zeros. The following rule 
helps us to locate the infinite zeros. 
The branches that end at infinite zeros approach the zeros along linear 
asymptotes. These asymptotes are centered at the point on the real axis given 
by 
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and their angles are 
 
 
 
Property 6: Location of the real-axis breakaway and break-in points. A 
point on the real axis is called breakaway point if the root locus departs 
from the real axis at this point. On the other hand, a point on the real axis is 
called break-in point if the root locus arrives to the real axis at this point. 
From the symmetry property it follows that the root loci at the breakaway 
(break-in) point are symmetrical with respect to the real axis.  
How to find the breakaway (break-in) points? Suppose we have two real axis 
poles which move towards each other as gain increases. One can conclude 
that the gain must be maximal at the point where breakaway occurs. Thus, 
the breakaway point is the point of maximum gain between two open-loop 
real-axis poles. 
Analogously, when the complex pair returns to the real axis, the gain will 
continue to increase as the closed-loop poles move toward the open-loop 
zeros. Therefore, one can conclude that the break-in point is the point of 
minimum gain between two real-axis zeros. 
These considerations allow us to use the following method to find 
breakaway and break-in points. As we already know, for any points s of the 
root locus the following equation 
 
 
 
is valid. On the real axis s is real, therefore H(s) and G(s) are real-valued 
function. To find points of maximum and minimum of K one can simply 
differentiate the equation (6) with respect to s and set the derivative equal to 
zero. Let’s consider an example. 
Example 1. Consider a unity negative feedback system with the following 
open-loop transfer function 
 
 
 
sketch the root locus. 
Solution. The system has two poles at p1 = −1, p2 = −2, and two finite zeros 
at z1 = 3 and z2 = 5. The root locus has two branches that start from the 
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poles, end in the zeros, and symmetrical with respect to real line. Using 
property 3, we see that the first real-axis segment of the root locus is located 
between −2 and −1, and the second one is located between 3 and 5. Let us 
calculate breakaway and break-in points. For the points of the root locus we 
have 
 
 
 
Solving for K yields 
 
 
 
Differentiating with respect to s and settling the derivative equal to zero, we 
get 
 
 
 
Solving for s, we find s1 = −1.45, s2 = 3.82. Clearly, s1 is the breakaway 
point, while s2 is the break-in point. The root locus is shown in figure 1.  
Another method to find the breakaway and break-in point is by using the 
following rule: 
• Breakaway and break-in points satisfy the following relationships 
 
 
 
where zi, and pj are zeros and poles, respectively, of G(s)H(s). 
 
Example. For the previous example, find the breakaway and break-in points 
without differentiation. 
Solution. Using (7), we get 
 

 
 

Simplifying, we get 
11s2 − 26s − 61 = 0, 

 
and solving for s, we obtain s1 = −1.45, s2 = 3.82. 
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Figure 1: Root locus for Example 1 

 
Property 7: Points of jω -axis crossings. The points where the root locus 
crosses the j  axis are important because they separate stable parts of root 
locus from unstable ones. To find the j

ω
ω -axis crossing , we can use the 

Routh-Hurwitz criterion as follows: forcing a row of zeros in the Routh table 
will yield the gain: going back one row to the even polynomial equation and 
solving for the roots (if possible) yields the points of the imaginary axis 
crossing. 
Example 2. Consider a unity negative feedback system with the following 
open-loop transfer function 
 
 
 
Sketch the root locus and find the range of K such that the closed-loop 
system is stable. 
Solution. The open-loop system has four poles p1 = 0, p2 = −1, p3 = −2, p4 = 
−4, and one finite zero z1 = −3, therefore, there are three infinite zeros. 
Using property 3, we see that there are three real axis segments of the root 
locus: first between 0 and −1, second between −2 and −3, and the third one 
is to the left of −4. To find the location of infinite zeros, let us calculate the 
asymptotes using formulas (4), (5). The asymptotes are centered at the point 
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The angles of asymptotes that intersect at −
3
4  are 

 
 
i.e. 
 
 
 
and 
 
 
 
A breakaway point must exist between the poles −1 and 0, and the 
corresponding branches tend to infinite zeros along the asymptotes with 
angles θ 1 and θ 3. Now, let us calculate the points where the root locus 
crosses the imaginary axis. First, one can find the transfer function of the 
closed loop system as follows 
 
 
 
The Routh table for the system (8) is given in figure 2. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Routh table for Example 2 
 
We know that a complete row of zeros yields the possibility for imaginary 
axis roots. For this system, only the s1 row can yield a row of zeros. This 
happens if 
 
 
Solving for K, we get 

K = 9.65. 
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Going one row back, one can form the following even polynomial 
(90 − K)s2 + 21K = 0, 

and for K = 9.65 we get 
80.35s2 + 202.65 = 0. 

Solving for s, we get s1,2 = ±j1.59. Thus, the root locus crosses the imaginary 
axis at ±j1.59 at a gain K = 9.65. The system is stable for 0  K < 9.65. The 
root locus is sketched in figure 3. 

≤

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Root locus for Example 2 
 

Property 8: Angles of Departure and Arrival. One can find angles of 
departure from the complex poles as well as angles of arrival to the complex 
zeros as follows. Consider figure 4, which shows the open-loop poles and 
zeros, some of them are complex. Take a pointε   of the root locus close to a 
complex pole, then the sum of angles drawn from all finite poles and zeros 
to this pole is equal to an odd multiple of 180o . Assume that all angles from 
all other poles and zeros are drawn directly to the pole that is near the point. 
The only unknown angle is the angle drawn from the pole that is close toε . 
We can solve for this unknown angle, which is actually the angle of 
departure from this complex pole. For example, for the pole-zero plot in 
figure 4, we have 
 
 
which implies 
 
 

7 



LECT. 12 

Angle of arrival to a complex zero can be calculated analogously. For 
example (for figure 5) 
 

 

 
 

Figure 4: Calculation of angle of departure 
 

 
 

Figure 5: Calculation of angle of arrival 
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3s2s
)2s(K)s(G 2

+
=    

Example 3. Consider a unity negative feedback system with the following 
open-loop transfer function 

+ +
 
Sketch the root locus. 
Solution. The open-loop system has two poles p1 = -1+j 2  and p2 = -1-
j 2 , and one finite zero z1 = -2, therefore, there is one infinite zero. Using 
property 3, we see that there is one real axis segment of the root locus 
between -2 and - . To find the location of infinite zero, let us calculate the 
asymptotes using formulas (4), (5). The asymptotes are centered at the point 

∞

 

0
1

22j12j1
0 =

+−−+−
=σ  

The angles of asymptotes are 
 

znpn,.....,2,1k;
znpn

180)1k2(
k −=

−
−

=θ  

 
i.e. 
 o1801 =θ

 
To determine the angle of departure from the complex-conjugate open-loop 
poles, we use the following equation: 
 321801 θ+θ−=θ
 
Where 

:1θ  The angle of departure 
:2θ The angle between p1 and p2 

:3θ  The angle between p1 and z1

Then o14555901801 =+−=θ 
And since the root locus is symmetric about the real axis, the angle of 
departure from the pole at s =-p2 is -145 . o

 
Let us calculate breakaway and break-in points. For the points of the root 
locus we have 
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2s
)3s2s(k

2

+
++

−=  

 
We have 
 

2

2

)2s(
)3s2s()2s)(2s2(

ds
dk

+
++−++

−=   
 
which gives 
s2 + 4s + 1 = 0 
or s = - 3.73    or s = - 0.268 
It is clear that points s = - 3.73 is on the root locus. Hence this point is an 
actual break-in point. Then the root locus is shown in figure 6. 
 
 
 
 
 
 
 
 
 
 

Figure 6: Root locus of Example 3 

 ωj

σ
-2 0 -4 

2  

-1 -3.73 

x 

x 

-145 ْ

145 ْ

2−  
 

 
 
 

End of Lecture twelve  
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Computer control design and modeling 
Lecture 13 

 
Design of Feedback Control Systems 
The design of a control system is concerned with the arrangement of the 
system structure and the selection of suitable components and parameters to 
meet requirements of stability and performance specifications. The alteration 
or adjustment of a control system in order to provide a suitable performance 
is called compensation. To alter the system response, an additional 
component is inserted within the structure of the feedback system. This 
additional component is often called a compensator or a controller. 
Two basic configurations of compensation are used in feedback control 
system design. They are a) cascade compensation, and b) feedback 
compensation. With cascade compensation, the compensator G1(s) is placed 
at the low-power end of the forward path in cascade with the plant (figure 1, 
(a)). In feedback compensation scheme, the compensator H1(s) is placed in 
the feedback path (figure 1, (b)). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Compensation configurations: a) cascade; b) feedback. 
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Improving steady-state error via cascade compensation 
There are two ways to improve the steady-state error of a feedback control 
system using cascade compensation. These are 
• ideal integral compensation; 
• lag compensation. 
 
Ideal integral compensation 
Steady-state error can be improved by placing an open-loop pole at the 
origin. For example, if the uncompensated system does not have pure 
integrations, then it’s response to a step input has finite steady-state error. 
After adding a pole at the origin, the system responds to a step input with 
zero steady-state error. To see how to improve the steady-state error without 
affecting the transient response, look at figures 2 and 3. Suppose the 
uncompensated system has desirable transient response generated by the 
closed-loop pole at A. If we add a pole at the origin, then the angular 
contribution of the open-loop poles at the point A is no longer 180 ْ and, 
therefore, A is no longer a pole of the closed-loop system (figure 2, (b)). To 
solve the problem, one should add a zero very close to the pole at the origin 
(figure 3)). Now, the angular contribution of the compensator zero and 
compensator pole cancel out, and the point A is still on the root locus. Thus, 
we have improved the steady-state error without affecting the transient 
response. 
A method of implementing an ideal integral compensator is shown in figure 
4.  

 
 

 
 
 
 
 
 
 
 

 
 
 

Figure 2: Pole at A is: a) on the root locus without compensator; b) not on 
the root locus with compensator pole added. 
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Figure 3: Pole at A is approximately on the root locus with compensator pole 

and zero added 
 

 
 

Figure 4: PI controller 
 
 
 
The compensator consists of proportional K1 and integral K2/s blocks. The 
transfer function of the compensator is 
 
 
 
so that the value of an additional zero can be adjusted by varying K2/K1. 
Since the compensator has both proportional and integral control, the ideal 

3 



LECT. 13 

integral controller (compensator) is given the alternate name PI 
(Proportional-Integral) Controller. 

 
Lag compensation 
The drawback of ideal compensators is that they must be implemented with 
active network, which require the use of active amplifiers and additional 
power sources. If we use passive networks (which consist of resistors and 
capacitors and do not require additional power sources), additional pole and 
zero are moved to the left, close to origin, as shown in figure 5.This 
placement of the pole, although it does not increase the number of 
integrators, does yield the improvement in the static error constant over an 
uncompensated system. 

 
Figure 5: Compensator pole-zero plot 

 
It is important to note that, to keep transient response characteristics 
unchanged, the compensator zero and compensator pole must be very close 
to each other. Thus, to obtain the improvement in steady-state error, one can 
place the, compensator’s zero-pole pair very close to origin. 
 
Lag compensation techniques based on the root-locus 
approach 
Consider the problem of finding a suitable compensation network for the 
case where the system exhibits satisfactory transient response characteristics 
but unsatisfactory steady-state error characteristics. Compensation in this 
case essentially consists of increasing the open loop gain without 
appreciably changing the transient response characteristics. This means that 
the root locus in the neighborhood of the dominant closed-loop poles should 
not be changed appreciably, but the open-loop gain should be increased as 
much as needed. This can be accomplished if a lag compensator is put in 
cascade with the given feedforward transfer function.  

T
1s

T
1s

        Consider a lag compensator Gc(s), where 
 

K                    (1) 
ˆ

1Ts
1TsK̂)s(G ccc

β
+

+
=

+β
β=

+ 
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An increase in the gain means an increase in the static error constants. If the 
open-loop transfer function of the uncompensated system is G(s). Then the 
static velocity error constant  of the uncompensated system is  vK
 )s(sGlimK

0sv
→

=
 

If the compensator is chosen as given by Equation (1), then for the 
compensated system with the open-loop transfer function Gc(s)G(s) the 
static velocity error constant  becomes vK̂
 

 
 
 
 

)s(G)s(sGlimK̂ c0sv
→

=

vc

vc0s

KK̂

K)s(Glim

β=
 

Thus if the compensator is given by Equation (1), then the static velocity 
error constant is increased by a factor of  where  is approximately 
unity. 

,K̂cβ cK̂

Design procedures for lag compensation by the root locus 
method  
The procedure for designing lag compensators for the system shown in 
figure (6) by the root locus method may be stated as follows: 
1. Draw the root locus plot for the uncompensated system whose open-loop 
transfer function is G(s). Based on the transient response specifications, 
locate the dominant closed-loop poles on the root locus. 
2. Assume the transfer function of the lag compensator to be  

 

 
 

 
 

=
→

T
1s

T
1s

K̂
1Ts

1TsK̂)s(G ccc

β
+

+
=

+β
+

β=

Then the open-loop transfer function of the compensated system becomes 
Gc(s)G(s). 
 
 
 

 
 

)s(G+ _ )s(Gc   

Figure 6: Control system 
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3. Evaluate the particular static error constant specified in the problem. 
4. Determine the amount of the increase in the static error constant 
necessary to satisfy the specifications. 
5. Determine the pole and zero of the lag compensator that produce the 
necessary increase in the particular static error constant without appreciably 
altering the original root loci. 
NOTE: the ratio of the value required in the specifications and the gain 
found in the uncompensated system is the required ratio between the 
distance of the zero from the origin and that of the pole from the origin. 
6. Draw a new root locus plot for the compensated system. Locate the 
desired dominant closed-loop poles on the root locus. 
7. Adjust gain  of the compensator from the magnitude condition so that 
dominant closed-loop poles lie at the desired location. 

cK̂

 
Example: Consider the system with the following feedforward transfer 
function is: 

)2s)(1s(s
06.1)s(G

++
=  

It is desired to increase the static velocity error constant Kv to about 5 sec-1
 

using lag compensator. 
Solution: 
The closed-loop transfer function becomes  

06.1)2s)(1s(s
06.1

)s(R
)s(C

+++
=  

)3386.2s)(5864.0j3307.0s)(05864j3307.0s(
06.1

+++−+
=  

The dominant closed loop poles are 
5864.0j3307.0s ±−=  

To find the damping ratio and the natural frequency of the dominant closed 
loop poles, we must use the following plot: 
One of the 
dominant poles J0.5864 

-0.3307 

θ

 
Figure 7: 

Illustration of 
using dominant 
pole location to 
calculate ζ and 

ωn   
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Then  

ζ = sin(θ) = )
5864.0
3307.0sin(tan 1− = 0.491. 

ωn = 22 )5864.0()3307.0( + = 0.673. 
 

And Kv =  = )s(sGlim
0s→ 2

06.1  = 0.53 sec-1. 

To increase the static error constant by a factor of 10, let us choose β = 10 
and place the zero and the pole of the lag compensator at s = -0.05 and         
s = -0.005, respectively. The transfer function of the lag compensator 
becomes: 

                                          Gc 
005.0s
05.0sK̂c +

+
=   

The open loop transfer function of the compensated system then becomes  
        
        
        
        
   

21s
1

0
0

++

0s(K
+++

+

)s)(s(
06.

005.s
05.sK̂)s(G)s(G cc +

+
=

 
)2s)(1s)(005.0s(s

)05.
=

where 
K = 1.06  cK̂

The block diagram of the compensated system is shown in figure (8) 
 
 

 
                                                         0K =ˆ

c

005.0s
05.0sK̂c +

+
 

)2s)(1s(s
06.1

++
 

966.  

+ _ 

 
 

Figure 8: Compensated system 
If the damping ratio of the new dominant closed-loop poles is kept the same, 
then the poles are obtained as given below: 
                            s1 = - 0.31 + j 0.55,        s2 = - 0.31 – j 0.55 
The open-loop gain K is 
 

 
 55.0j31.0s05.0s

)2s)(1s)(005.0s(sK
+−=+

+++
=

 0235.1=
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Then the lag compensator gain  is determined as  cK̂
 

 
Thus the transfer function of the lag compensator designed is 

9656.0
06.1

0235.1
06.1
KK̂c ===

 
 

Then the compensated system has the following open-loop transfer function: 
1s200
1s20656.9

005.0s
05.0s9656.0)s(Gc +

+
=

+
+

=

 
 
 

)2s)(1s)(005.0s(s
)05.0s(0235.1)s(G1 +++

+
=

 
 

 1
 

)1s5.0)(1s)(s200(s
)1s20(12.5

+++
+

=

The static velocity error constant  is vK̂
1

10sv sec12.5)s(sGlimK̂ −

→
==  

In the compensated system, the static velocity error constant has increased to 
5.12 sec -1 5.12/0.53 = 9.66 times the original value. (The steady-state error 
with ramp inputs has decreased to about 10 % of that of the original system). 
We have essentially accomplished the design objective of increasing the 
static velocity error constant to about 5 sec-1. 

 
End of Lecture thirteen  
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Computer control design and modeling 
Lecture 14 

 
Improving transient response 
When dealing with improving of transient response, the objective typically is 
to design a response that has a desirable percent overshoot and a shorter 
settling time than the uncompensated system. As well as in the case of 
improving of steady-state error characteristics, there exists two ways to                          
improve the transient response of a feedback control system using cascade 
compensation: 

• ideal derivative compensation; 
• lead compensation. 
 

Ideal derivative compensation 
One way to speed up the response of the system is to add a single zero to the 
forward path. This zero can be represented by a compensator with transfer 
function 
 

 
 

This function is a sum of differentiator and a pure gain. It is called an ideal 
derivative or PD (proportional-derivative) controller. The structure of PD 
controller is shown in figure 1. 
 

 
 
 
 
 
 
 
 

Figure 1: PD controller 
 
In this figure, the transfer function of the controller is 
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Hence, K1/K2 is chosen to equal the negative of the compensator zero, and 
K2 is chosen to contribute to the required loop-gain value. Transient 
response unattainable by a simple gain adjustment can be obtained by 
augmenting the systems poles and zeros with PD compensator. 
While the ideal derivative compensator can improve the transient response 
of the system, it has two drawbacks. First, it requires an active circuit to 
perform the differentiation. Second, differentiation is a noisy process: if the 
input noise has low level but high frequency, the result of differentiating 
may lead to large unwanted signals. The lead compensator is a passive 
network used to overcome the disadvantages of ideal differentiation and still 
retain the ability to improve the transient response. 

 
Lead compensation 
When passive networks are used, a single zero cannot be produced; rather, a 
compensator zero and pole result. However, the advantages of passive 
networks are: a) no additional power supplies are required, and b) noise due 
to differentiation is reduced. 
 
Lead compensation techniques based on the root-locus 
approach 
Consider a design problem in which the original system either is unstable for 
all values of gain or is stable but has undesirable transient response 
characteristics. In such a case, the reshaping of the root locus is necessary in 
the broad neighborhood of the jω  axis and the origin in order that the 
dominant closed-loop poles be at desired locations in the complex plane. 
This problem may be solved by inserting an appropriate lead compensator in 
cascade with the feedforward transfer function. 
The procedures for designing a lead compensator for the system shown in 
figure 2 by the root locus method may be stated as follows: 
1. From the performance specifications, determine the desired location for 
the dominant closed-loop poles. 
2. By drawing the root locus plot, ascertain whether or not the gain 
adjustment alone can yield the desired closed-loop poles. If not, calculate the 
angle deficiency . This angle must be contributed by the lead compensator 
if the new root locus is to pass through the desired locations for the 
dominant closed-loop poles. 

φ

3. Assume the lead compensator Gc(s) to be  
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)10(

T
1s

T
1s

K
1Ts

1TsK)s(G ccc 〈α〈

α
+

+
=

+α
+

α=                          (1) 

Where  and T are determined from the angle deficiency. Kα c is determined 
from the requirement of the open-loop gain. 
4. If static error constants are not specified, determine the location of the 
pole and zero of the lead compensator so that the lead compensator will 
contribute the necessary angleφ . If no other requirements are imposed on 
the system, try to make the value of α as large as possible. A larger value of 

 generally results in a larger value of Kα v which is desirable.  
5. Determine the open-loop gain of the compensated system from the 
magnitude condition. 
Once a compensator has been designed, check to see whether all 
performance specifications have been met. If the compensated system does 
not meet the performance specifications, then repeat the design procedure by 
adjusting the compensator pole and zero until all such specifications are met. 
If a large error constant is required, cascade a lag network or alter the lead 
compensator to a lag-lead compensator.   
     

+ _ R(s) C(s) 
)2(s s

4
+

 
 
 
 
 

)s(G+ _ )s(Gc   

Figure 2: Control system 
Example: Consider the system shown in figure 3. 
 

 
 
 
 
 

Figure 3: Control system example 
 
It is desired to modify the closed-loop poles so that ωn = 4 rad/sec is 
obtained, without changing the value of ξ using lead compensator. 
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Solution: 
The root-locus plot for this system is shown in figure 4.  
 
 ωj

4s2s
4

)s(R
)s(C

2 ++
=

)3j1s)(3j1s(
4

−+++ 
=

x 

 
 j3 

x  

j1 

j2 

-j1 

-j2 

-j3 

σ
-2 -3 -4 -5 

 
Closed-loop poles  

 
 
 
 
 
 
 

Figure 4: Root-locus of the system shown in figure 3 
 
The closed-loop transfer function becomes 
 
   

 
 
 

 
The closed-loop poles are located at 

 
3j1s ±−=  

The damping ratio of the closed-loop poles is 0.5. The undamped natural 
frequency of the closed-loop poles is 2 rad/sec. The static velocity error 
constant is 2 sec-1. 

 
In the present example, the desired locations of the closed-loop poles are 

s = -2 ±  j2 3  
 

In some cases, after the root loci of the original system have been obtained, 
the dominant closed-loop poles may be moved to the desired location by 
simple gain adjustment. This is however, not the case for the present system. 
Therefore, we shall insert a lead compensator in the feedforward path. 
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A general procedure for determining, the lead compensator is as follows: 
First, find the sum of the angles at the desired location of one of the 
dominant closed-loop poles with the open-loop poles and zeros of the 
original system, and determine the necessary angle φ  to be added so that the 
total sum of the angles is equal to± . The lead compensator 
must contribute this angle . (If the angle 

)1k2(180 +o

φ φ  is quite large, then two or more 
lead networks may be needed rather than a single one.) 

)s(GTK)s(G)s(G ⎟
⎟

⎜
⎜

=
         (Use equation (1)) 

T
1s

1s
c

⎟⎟
⎠

⎞

⎜⎜
⎝

⎛

α
+

+

If the original system has the open-loop transfer function G(s), then the 
compensated system will have the open-loop transfer function: 

 

c 
 
 

It is clear that there are many possible values for T and α  that will yield the 
necessary angle contribution at the desired closed-loop poles. 

jω PA

O DBC

T
1

−T
1
α

−

2
φ

The next step is to determine the locations of the zero and pole of the lead 
compensator. There are many possibilities for the choice of such locations. 
In what follows, we shall introduce a procedure to obtain the largest possible 
value for α  (a larger value of α  will produce a larger value of Kv. In most 
cases, the larger the Kv is, the better the system performance.) First, draw a 
horizontal line passing through point P, the desired location for one of the 
dominant closed-loop poles. This is shown as line PA in figure 5. Draw also 
a line connecting point P and the origin. Bisect the angle between the lines 
PA and PO, as shown in figure 5. Draw two lines PC and PD that make 
angles 2/φ±  with, the bisector PB. The intersections of PC and PD with the 
negative real axis give the necessary location for the pole and zero of the 
lead network. The compensator thus designed will make point P a point on 
the root locus of the compensated system. The open-loop gain is determined 
by use of the magnitude condition. 
 
 
 
 

σ  
 
 
 

Figure 5: Determination of the pole and zero of a lead network 
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In the present system, the angle of G(s) at the desired closed-loop pole is 
 

°−=+−=
+

21032j2s
)2s(s

4                                                                                                                                                      
 

 
 

Thus, if we need to force the root locus to go through the desired closed-loop 
pole, the lead compensator must contribute φ  at this point. By 
following the foregoing design procedure, we determine the zero and pole of 
the lead compensator, as shown in figure 6, to be  

o30=

Zero at s = -2.9,       Pole at s = -5.4  
Or 

T = 
9.2

1  = 0.345,      αT = 
4.5

1  = 0.185 

Thus  = 0.537.  α
 

)4.5s)(2s(s
)9.2s(K

)2s(s
4

4.5s
9.2sK)s(G)s(G cc ++

+
=

++
+

=

jω  

0 -2.9 -4 -5.4 

°15 
 
 

σ  
 
 
 
 

Figure 6: Determination of the pole and zero of the lead network for the 
above example  

The open-loop transfer function of the compensated system becomes 
 

 
 
Where K=4Kc. The gain K is evaluated from the magnitude condition as 
follows: 
 
  

1
)4 .5s)(2s(s

)9.2s(K

32j2s
=

++
+

+−= 
Or 

K = 18.7 
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It follows that 
 

)4.5s)(2s( s
)9.2s(7.18)s(G)s(Gc ++

+
=

 

68.4
4

7.18Kc ==

The constant Kc of the lead compensator is 
 

 
 

Hence, Kcα  = 2.51. The lead compensator, therefore, has the transfer 
function 
 
 

4.5s
9.2s68.4

1s 185.0
1s345.051.2)s(Gs +

+
=

+
+

=

 

)s(G)s(sGlimK c0sv
→

=
The static velocity error constant Kv is obtained from the expression 
 

)4.5s)(2s (s
)9.2s(7.18slim

0s ++
+

=
→

 
 

 
 1sec02.5 −=

 
 

End of Lecture fourteen  
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Computer control design and modeling 
Lecture 15 

 
Improving Transient response and Steady-State Error 
PID controllers and Lag-Lead Compensators 
To obtain simultaneous improvement in steady-state error and transient 
response, one can combine the methods described in the previous lectures. 
 
PID controller design 
A PID controller is a combination of PI and PD controllers. It’s structure is 
shown in figure 1. A PID controller is described by the following formula 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: PID controller 
The procedure for designing PID controller consists of the following steps: 
• Evaluate the performance of the uncompensated system to determine how 

much improvement in transient response is required. 
• Design the PD controller to meet the transient response specifications. The 

design includes the zero location and the loop gain. 
• Design the PI controller to yield the required steady-state error. 
• Determine the gains, K1, K2, and K3. 
• Simulate the system to be sure that all requirements have been met. 
• Redesign if simulation shows that requirements have not been met. 
 
Lag-lead compensators 
When passive networks are used, simultaneous improvement of transient 
response and steady-state error can be obtained using combination of a lag 
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compensator and a lead compensator rather than the ideal PID compensator. 
The resulting compensator is called lag-lead compensator. 
 
Lag-lead compensation techniques based on the root-locus 
approach 
 
Consider the system shown in figure 2. 
 
 
 
 
 
 

Figure 2: Control system 
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 Assume that we use the lag-lead compensator: 
              

2
1

3. Assuming that we later choose T2 sufficiently large so that the magnitude 
of the lag portion 
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Where  > 1 and γ > 1. (Kβ c is considered to belong to the lead portion of the 
lag-lead compensator.) 

Case 1. γ ≠ β. In this case, the design process is a combination of the design 
of the lead compensator and that of the lag compensator. The design 
procedure for the lag-lead compensator is as follows: 
1. From the given performance specifications, determine the desired 
location for the dominant closed-loop poles. 
2. Using the uncompensated open-loop transfer function G(s), determine the 
angle deficiency φ  if the dominant closed-loop poles are to be at the desired 
location. The lead portion of the lag-lead compensator must contribute this 
angleφ . 
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3 

is approximately unity, where s = s1 is one of the dominant closed-loop 
poles, choose the values of T1 and  from the requirement that  γ
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The choice of T1 and  is not unique. (Infinitely may sets of Tγ 1 and  are 
possible.) Then determine the value of K

γ
c from the magnitude condition: 
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4. If the static velocity error constant Kv is specified, determine the value of 
β to satisfy the requirements for Kv. The static velocity error constant Kv is 
given by 
 

 
 

 
 
 
 

 
 
 

Where Kc and  are aleady determined in step 3. Hence, given the value of 
K

γ
v, the value of β  can be determined from this last equation. Then, using the 

value of  thus determined, choose the value of Tβ 2 such that 
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Case 2. γ = β. If  β=γ  is required in equation (1), then the preceding design 
procedure for the lag-lead compensator may be modified as follows: 
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2. The lag-lead compensator given by equation (1) is modified to  
 
 
 

1. From the given performance specifications, determine the desired 
location for the dominant closed-loop poles. 

 
 

Where  1. The open-loop transfer function of the compensated system is 
G

β 〉
c(s)G(s). If the static velocity error constant Kv is specified, determine the 

value of constant Kc from the following equation: 
)s(G)s(sGlimK c0sv →

=  
 
 
 0

)s(GsKlim cs→
=

 
3. To have the dominant closed-loop poles at the desired location, calculate 
the angle contribution  needed from the lead portion of the lag-lead 
compensator. 

φ

4. For the lag-lead compensator, we later choose T2 sufficiently large so that 
 
 
 
 
 
 2

1

2
1

T
1s

T
1s

β
+

+

is approximately unity, where s = s1 is one of the dominant closed-loop 
poles. Determine the values of T1 and β  from the magnitude and angle 
conditions: 
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5. Using the value of β  just determined, choose T2 so that 
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The value ofβ , the largest time constant of the lag-lead compensator, 
should not too large to be physically realized.  

2T

 
Example 1: Consider the control system with the following feedforward 
transfer function: 
 

 
 
It is desired to make ξ of the dominant closed-loop poles to 0.5 and ωn = 5 
rad/sec and Kv =80 sec-1

. Design an appropriate compensator to meet all the 
performance specifications. 
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Solution:  
The system has closed-loop poles at 

9843.1j25.0s ±−=  
And ξ = 0.125, ωn = 2 rad/sec, and Kv = 8 sec-1. 
Let us assume that we use lag-lead having the transfer function: 
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Where γ ≠ β.  Then the compensated system will have the transfer function: 
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From the performance specifications, the dominant closed-loop poles must 
be at: 

33.4j5.2s ±−=  
Since  

 
o235

)5.0s(s
4

33.4j50.2s

−=
+

+−=
  

 
the lead portion of the lag-lead compensator must contribute 55 o  so that the 
root locus passes through the desired location of the dominant closed-loop 
poles. 

To design the lead portion of the compensator, we first determine the 
location of the zero and pole that will give 55 o  contribution. There are many 
possible choices, but we shall here choose the zero at s = -0.5 so that this 
zero will cancel the pole at s = -0.5 of the plant. Once the zero is chosen, the 
pole can be located such that the angle contribution is 55 . By simple 
calculation or graphical analysis, the pole must be located at s = -5.021. 
Thus, the lead portion of the lag-lead compensator becomes 

o
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Thus 

T1 = 2,       04.10
5.0

021.5
==γ  

Next we determine the value of Kc from the magnitude condition: 
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Hence, 
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The lag portion of the compensator can be designed as follows: First the 
value of β  is determined to satisfy the requirement on the static velocity 
error constant: 
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Hence, β  is determined as 

β  = 16.04 
Finally, we choose the value of T2 large enough so that 
 

 

 
 
 
 

and 
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Since T2 5 (or any number greater than 5) satisfies the above two 
requirements, we may choose 

≈

T2 = 5 
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Now the transfer function of the designed lag-lead compensator is given by  
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The compensated system will have the open-loop transfer function 
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Example 2: Consider the control system of example (1). Suppose that we 
use a lag-lead compensator of the from given by equation (2), or 
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Assuming the specifications are the same as those given in example (1), 
design a compensator Gc(s) 
 
Solution:  
The desired locations for the dominant closed-loop poles are at 

s = -2.5±  j 4.33 
 

The open-loop transfer of the compensated system is  
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Since the requirement on the static velocity error constant Kv is 80 sec-1, we 
have 
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Thus 
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The time constant T1 and the value of β  are determined from 
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As shown in figure 3, 
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Figure 3: determination of the desired pole-zero location 
 
We can easily locate points A and B such that 
 

8
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By using a graphical approach or trigonometric approach, the result is: 
34.8BO,38.2AO ==  
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503.3T34.8,42.0
38.2
1T 11 ==β==
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The lead portion of the lag-lead network thus becomes 
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Thus, the lag-lead compensator becomes 
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The compensated system will have the open-loop transfer function: 
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End of Lecture fifteen  
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Computer control design and modeling 
Lecture 16 

 
Analog Simulation 
Introduction 
The electronic analog computer consists of a set of computing components 
that perform the functions of addition, scaling, integration, etc., required in 
representing differential equations. The voltages of the analog computer 
represent the continuous solution of the differential equation programmed by 
the interconnection of the components (functions). The differential equation 
is a model of a physical (or natural) dynamic system. An analogy is made 
between the physical variables of the model and the voltages that represent 
them on the computer (thus the term “analog” computer). The analogy 
defines scale factors relating the units of the physical variables to volts in the 
computer variables. Since the solution of the physical system may be faster 
or slower than desired, the computer solution can be scaled in both time and 
magnitude. 
The underlying concept of analog computation is to interconnect or wire 
together those components (summers, scalers, integrators, etc.) required to 
represent the differential equations of interest. As discussed earlier, these 
differential equations can be expressed in classical form (a single nth-order 
differential equation) or state space form (n first-order differential 
equations), although both representations will result in essentially the same 
wiring diagram. It is easy to perform a single integration at a time on the 
analog computer, so the state space format is a more natural representation 
of dynamic systems for analog computation. Therefore, the setup procedure 
for analog computation will be developed in the state space format; the 
classical approach, however, will be briefly illustrated as well. 
 
Computing Components 
The basic computing element of the analog computer is a high-gain 
differential DC amplifier with feedback, called an operational amplifier or 
“op-amp.” The op-amp has extremely high input impedance, low output 
impedance, and high gain. The high input impedance results in negligible 
required input current into the amplifier. The low output impedance results 
in negligible loading effect upon the output voltage. The high gain G of the 
amp, accompanied by a sign change or inversion, is required in the 
computing equation. 
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2 

ao Gee −=                                                                                                                      (1)                           

The op-amp (shown in figure 1(a)) open-loop transfer equation (input-output 
relationship) is 

 
where ea is the amplifier input voltage, G is the gain, and eo is the output 
voltage. 
The op-amp is always used with input and feedback impedances, as shown 
in figure 1(b). Since a common ground line is always present in electronic 
analog computer circuits, and the op-amp is normally supplied with positive 
and negative voltage sources, these details can be omitted to reduce clutter in 
the circuit, as shown by figure 1(c). 
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 -Gei  

(c) 
Figure 1: Representations of an operational amplifier circuit. 

(a) Isolated op-amp. (b) Op-amp with input and feedback impedances. 
(c) Simplified schematic of analog computer circuit. 
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The circuit of figure 1(b) can be analyzed by the following component 
equations (neglecting the output impedance of the amplifier): 
 

i

ai
i Z

eei −
= (2) 

      
 

 

f

ao
f Z

eei −
= (3) 

 
The node equation at the amplifier may be simplified by taking into account 
the fact that Ia is negligibly small due to the high input impedance of the op-
amp and the low input voltage to the amplifier: 

  (4) 0iii ≈=+
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Substituting the component equations into the node equation yields  
afi

1
G
ee ⎟⎟
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⎛
+−= (5) 

 
Since the gain G is extremely large compared to 1 + (Zf / Zi), the first term 
can be neglected, yielding the basic computing equation 

 
i

i

f
o e

Z
Ze −= (6) 

 
This equation indicates that the closed-loop gain between input and output is 
Zf / Zi, accompanied by a sign change. Different combinations of the types 
of circuit elements used for Zf and Zi give rise to the various computing 
components discussed next. These computing components are as given 
below: 
1. Inverter or sign change 
If both the feedback and the input impedances are resistive and of equal 
magnitude, (e.g., Zf = Rf, Zi = Ri, where Rf = Ri), then the basic computing 
equation reduces to a sign change or inverter: 
 eo = -ei      (7) 
An inverter is commonly used to change the sign of a signal or variable; it is 
often used for subtraction in a summing junction. 
 
2. Scaler or Fixed-Gain Amplifier 
If both impedances are resistive, but not necessarily of equal magnitude, the 
basic computing equation reduces to a fixed-gain relation, or scaling, 
between the input and output: 
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i

i

f
o e

R
Re −= (8) 

 
This equation represents multiplication by a constant or simulates a 
coefficient in the differential equation. Most analog computers utilize fixed, 
or hard-wired, resistors in multiples of ten for scaling; thus, gains of 0.1, 1.0, 
10.0 are possible from typical fixed-gain amplifiers for determining the 
order of magnitude of coefficients. The setting of precise values for the 
coefficients is done with potentiometers. 
 
3. Potentiometer 
A variable electronic resistive voltage divider, or “pot,” is a passive element 
that can be used to adjust the exact numerical value of the coefficients of the 
differential equation. Mathematically, 
    where  io kee = 0.1k0 ≤≤  (9) 
It is clear that the gain of a pot is less than unity, so that a fixed-gain 
amplifier with a gain of 10.0 or 100.0 is required in conjunction with a pot to 
obtain coefficients greater than unity. A bank of several pots is always 
supplied with analog computers to allow system coefficients to be adjusted. 
 
4. Summing Junction 
Using more than one input resistor allows the addition, or summation, of 
several independent input signals. The computing equation reduces to a 
linear summation of the signals, with the possibility of different gains for 
each signal: 
  

        
 (10) f eRR

3
3

2
2

f
1

1

f
0 R

Re
R

e
R

e −−−=
 
Summing junctions are ordinarily used to sum together the various terms 
required to form the differential equation. 
 
5. Integrator 
The use of a capacitive feedback impedance with a resistive input impedance 
results in the integration function. The transfer gain can be stated, in 
operator notation, with D = d / dt, as  

 
i

fi
o e

DCR
1e −= (11) 
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Writing this equation in integral form and considering the initial condition 
eo(0) yields 

 
⎥
⎦

⎤
⎢
⎣

⎡
+−= ∫

t

0
oi

fi
o )0(edte

CR
1)t(e (12) 

 
The integration gain is 1 / (RiCf). The sign change across the amplifier 
requires that the initial condition be entered with a sign change. It is clear 
that by using multiple input resistors, a summing integrator is possible. 
 
6. Differentiator 
If a resistive feedback impedance and a capacitive input impedance are used, 
the resulting equation implies the function of differentiation. Specifically  
  (13) f DeCeo R−= ii

Or 
   

deCRe i
ifo −= (14) 

dt 
Differentiators amplify high-frequency signals more than low-frequency 
signals and hence produce more noise on the output. For this reason, 
differentiators are seldom used in analog computation. 
Table 1 illustrates the electronic circuit and the simplified analog computer 
block diagram symbol for each of the common linear operations just 
discussed. 
 

End of Lecture sixteen  
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Table 1 Basic analog computer operations. 
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Computer control design and modeling 
Lecture 17 

 
Classical analog computer diagrams 
The goal of classical analog computation is to solve the classical differential 
equation for the highest-order derivative of an nth-order equation and 
integrate n times to yield the solution. The equation that results for the nth 
derivative is formed at the input of the first integrator by summing the lower 
order derivatives with appropriate coefficients (gains). 
For example, consider the second-order differential equation 
   

)t(ve0.2e5.0e =++ &&& (1) 
with initial conditions 
                (2) e   

 

1 
10 
1 

)0(e& )0(e−

)t(v e&−
1 

e

5.0

2.0 e−

and 
  (3) e 
Solving for the highest order derivative yields 

int)0(e =

int)0(e && =

  (4) 
Assuming that this equation is formed at the input of an integrator, the 
output would be -e , and the initial condition  would have the opposite 
sign of -e  as shown in Figure (1). An integration of the -  signal yields e. 
The initial condition of e would be entered with the opposite sign of +e. 

& )0(e&
& e&

e0.2e5.0)t(ve −−= &&&

 
 
 

    
 
 
 

   
 
 
 

Figure 1: Classical analog computer diagram 
 

Now the equation for &  must be wired at the input to first integrator. Scaling 
 with a pot set at 0.5 yields one term. The e signal must be inverted, 

scaled by 0.2, and then entered into the summing integrator with a gain of 10 

e&
e&−
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to obtain the proper sign and coefficient of the term. The system input )t(v  
must be available from a function generator or some similar source, 
depending upon the input signal. Summation of these three terms with the 
gains shown yields equation (4) for& .  e&
 

x&

As mentioned earlier, the analog computer is designed to conveniently 
perform single integrations at a time; thus, having an nth-order dynamic 
system model of n first-order equations in state space format is 
advantageous, since single integrations of the derivative state vector     
yields the solution of the system. The equations for the derivatives of each of 
the state variables are formed or wired at the input of the integrators. This 
format is further attractive, since the coefficients in the A and B matrices 
will result in integrator gains when scaled in magnitude and time. 

State space Computer Diagrams 

Consider a state space system (with a single input) that has not magnitude 
scaled, namely, 

BuAxx +=&                                                                                                                      (5) 
 

or 
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This system simulated by the analog computer diagram shown in figure 2. 
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Figure 2: General state space analog computer diagram 

 
Now, the input to each integrator forms the equation of the derivative of a 
state, and the output will be that state variable with a sign change; an 
inverter often (but not always) will be required for computation or 
monitoring. It is clear that the initial condition of an integrator must be 
entered with a sign opposite to that of the output, which in this case allows 
the initial conditions to be entered with the same sign as that of the physical 
problem. 
For example, consider the second-order system of equation (1), which is 
used to illustrate the classical analog computer diagram. This system can be 
converted to state space form, yielding 
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The latter system is programmed on the analog computer as shown in figure 
3. It is clear that the solution for x1 is the output of the upper inverter, and 
the solution for x2 is the output of the lower inverter. The equation for  
contains -2x

2x&
1, that was obtained with a pot set at 0.2 and an integrator gain 

of 10.      
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Figure 3: State space analog computer diagram for a second-order system 
 

Magnitude and time scaling 
The purpose of analog computation is to develop an analogy between the 
physical system variables and the voltages that represent those variables on 
the analog computer; thus, a conversion must be made from physical 
variables to the analog computer variables. The analogy provides these 
conversion factors, or magnitude scale factors. A magnitude scale factor 
must be associated with each state variable. It is clear that this scaling must 
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be done in either the classical or the state space format. It is easily handled 
in the state space format with scaling matrices. 
 
A. Magnitude scaling 

BuAxx +=&                                                                                                                    (10)                     

Consider the set of nth-order linear state space equations with m inputs, 
denoted by 

With initial conditions 
x(0) = xint (11) 

 
where x and u are the variables and input vectors representing the physical 
system. Any system response or output y may be found by 

DuCxy +=                                                                                                                    (12) 
 

 

(13) x = α e                                                         

The physical system state variable x can be scaled to analog computer state 
variable e by the transformation 

where  
 

⎥
⎥
⎥
⎥
⎥

⎢
⎢ .                               α =                                                                                (14) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎢
⎢
⎢
⎢

⎣

⎡

α

α
α

α

n

3

2

1

..000
.
.

0...00
0...00
0...00

⎥
⎥
⎥

⎦

⎤

⎢
⎢

⎢
⎢
⎢

⎣

⎡

β

β
β

m

2

1

..00
.

0...0
0...0

 
 
                                

 

. 
 

 
is a constant nth-order diagonal scaling matrix (in physical units/volt).  

⎥
⎥
⎥
⎥

⎢
⎢ .

.
                                  β =                                                                             (16) 

. 

(15) 

In a similar fashion, the inputs u to the physical system can be scaled to 
inputs v to the analog computer system by the transformation 

u = βv    
where 
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is a constant mth-order diagonal scaling matrix (usually m = 1). 
Thus, observing that  and substituting the preceding expressions for x 
and u into equation (10), we obtain, after a bit of algebraic rearrangement, 

ex && α=

  vBeAe 11 βα+αα= −−&  (17) 
or 
   (18) + vB~eA~e =&
with initial conditions  
                                          e(0)      (0)      = (19) x1−α
and outputs 
   (20) + vDeCy βα=
or 
   (21) +
Now it is clear that the inverse of a diagonal matrix is merely a diagonal 
matrix with the scalar inverse of the respective elements; that is, 

vD~eC~y =

 
 

 
 
 
 

(22) 
 
 
 
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α

α

α

α

=

n

3

2

1

1...000

.

.

.

0...100

0...010

0...001

1−α

Thus, matrices become 
 

 
 
 

(23) 
 
 
 
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

=

nn
n

n
3n

n

3
2n

n

2
1n

n

1

n2
2

n
23

2

3
22

2

2
21

2

1

n1
1

n
13

1

3
12

1

2
11

1

1

a...aaa

.

.

.

a...aaa

a...aaa

αα= − AA~ 1

 
in which the diagonal elements are unchanged, and 
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βα= − BB~ 1

ij
j

ij bb~
β

=                                                                                                                    (25) 
iα 

 
 
 

                                   (24) ⎥
⎥α m2

2

 
 
 
 β
 α ⎥

⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α
β

α
β

α
β

β
α
β

α
β

α
β

α
β

α
β

α
β

α
β

=

nm
n

m
3n

n

3
2n

n

2
1n

n

1

m
23

2

3
22

2

2
21

2

1

m1
1

m
13

1

3
12

1

2
11

1

1

b...bbb

.

.

.

b...bbb

b...bbb

 
or, in general, the element in the ith row and jth column becomes 
     

And similarly for ija~ . 
For k outputs, 
 
 

 2
   (26) 

 
 
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ααα

ααα
ααα

=

nkn22k11k

nn222121

nn1212111

c...cc
.
.
.

c...cc
c...cc

α= CC~

and 
 

 
   (27) 

 
 
 
 ⎥

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

βββ

βββ
βββ

=

mkm22k11k

mm2222121

mm1212111

d...dd
.
.
.

d...dd
d...dd

β= DD~

B. Time scaling 
Often, the response of the physical system model proceeds at a slower or 
faster pace than is practical for recording or plotting purposes. That is, the 
response of the physical system may be complete in milliseconds or may 
take hours to arrive at steady state. For this reason, it is frequently desirable 

7 
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to slow down or speed up the simulated response on the computer. This can 
conveniently be done by making the transformation 
 

(2t = γ τ                                                   8) 
where γ is a time scaling factor, t is the real time of the physical system, and 
τ is computer time ( γ > 1 accelerates the solution of the system, while γ < 1 
retards the solution ). This transformation implies that  
 

(29) dt = γ dτ 
then  

dt
d

d
d

γ=                                                                                                                    (30) 
 

τ  
Thus, the analog computer state variable system becomes 
 

τd
d  e = γ eA~  + γBv~                                 (31) 

with initial conditions 
 

(32) e(0) = α-1x(0) 
and outputs 
 

y = vD~eC  ~ + (33) 
It is clear from the forgoing description of the system that time scaling 
affects only the A~ and B~  matrices and thus the integrator gains; it does not 
affect initial conditions or outputs. Time scaling affects only the time 
required to obtain a response (you will know if time scaling is necessary if 
all of the integrator gains are very large ( > 100) or very small ( < 0.01). 
 
Selection of Magnitude and Time Scale Factors 
The must difficult task in analog simulation is selecting the magnitude scale 
factors for each state variable. The scale factors α  establish the analogy 
between the physical variables and the analog computer variables. They are 
selected such that a maximum response in the physical system will result in 
a maximum response in the computer variables that will be within certain 
limits. 
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A. Selection of Magnitude Scale Factors 
The magnitude scale factors are selected in such a manner that the maximum 
(absolute) value of the physical response of a state variable xi will cause a 
maximum response of the computer variable ei to be about (but not greater 
than) 10 volts. Thus, 

 x

maxi

maxi
i e
=α (34) 

 
If the computed value of  is not a convenient number, it should be rounded 
off higher (rather than lower) to prevent overloading (e

α
i > ± 10 volts). For 

example, if  ximax is predicted to be 1.37 cm, then we would select 
   

volt
cm137.0

volt10
cm37.1

i ==α (35) 
 
which would be rounded off to 0.15 or 0.20 cm/volt. The input scale factors 
are selected in a similar manner as 

 

)0(x i

(36) 
 

The preceding discussion specifies how to select the scale factors, but the 
problem of predicting ximax and ujmax still faces us. Determining ujmax is 
relatively easy, since the system input is usually known (e.g., a step, a ramp, 
sinusoidal, etc). While the determination of ximax is slightly more difficult, it 
is greatly simplified by the approach set out next. 
In some systems, the largest value of a state variable occurs at its initial 
condition, and the response decays thereafter. In other instances, the 
maximum response occurs at or near the steady-state value, as shown in 
figure 4 
 

 
 x ∞

maxj

maxj

v
u

j =β

(i )
xiix

 
 
 
 

  Time Time 
 

Figure 4: Typical responses illustrating maximum values 
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The initial conditions are known, and the steady-state maxima can be 
estimated. To do the estimation, we observe that the steady-state values 
occur when , and thus, 0x =&
 Ax −=∞)(  Bu  (37) 
 
This yields a set of algebraic equations in which the energy or effort 
supplied by the inputs is put into the state variables. If we solve each of the 
equations for successive state variables, then assuming that all of the input 
effort goes into these variables entirely, we can observe the ultimate steady-
state maxima of the state variables. For example, consider a second-order 
system with one input; Equation (37) becomes 
  (38) 

(39) 
 
x 12222121

11212111

ub)(a)(xa
ub)(xa)(xa

−=∞+∞
−=∞+∞

Now, assuming that all of the input effort goes into x1 and none goes into x2 
we obtain the ultimate (indicated by *) steady-state maxima. From equation 
(38) with x2(∞ ) assumed to be zero, it follows that 
   (40) 

max1
11

1*
1 u

a
b)(x −

=∞ 
From equation (39) 

(41) 
max1

21

2*
1 u

a
b)(x −

=∞ 
 
Whichever of these two equations yields the largest absolute value for x1 
will be used as the steady-state maximum. Thus, 

    of  MAX)(x max
*
1 =∞

⎭
⎬
⎫

⎩
⎨
⎧

max1
21

2
max1

11

1 u
a
boru

a
b  (42) 

And similarly, 

    of  MAX)(x max
*
2 =∞

⎭
⎬
⎫

⎩
⎨
⎧

max1
22

2
max1

12

1 u
a
boru

a
b  (43) 

We are now ready to estimate the maximum value we expect from a state 
variable. The maximum will occur either at the initial condition or at the 
value estimated by the steady-state maximum method; that is 
    of  MAXx maxi = { }max

*
ii )(xor)0(x ∞  (44) 

The method just outlined should predict all the maximum expected values of 
the state variables necessary to allow the selection of magnitude scale factors 
α and β. Then, having selected the scale factors, we can compute the 
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matrices A~ and B~ . The elements in those matrices represent the integrator 
gains to be use in wiring the computer diagram and thus have units of 
1/second or 1/time. It is desirable for these gains to be in the range 0.1 to 10 
(or possibly 100). If all of the coefficients or gains are within this range, the 
solution of the system can be obtained directly. If all of the gains are in this 
range except for one or so, trade-offs can be made by raising one scale 
factor. It is clear equation (25) that increasing a scale factor will decrease the 
gains in one row and raise the gains in one column. Since the A matrix 
usually has numerous zero entries, the trade-off of lowering one gain while 
raising its symmetrical element can be effective. 
           
B. Selection of Time Scale Factors 
If all of the gains are either too low or too high, time scaling will be 
necessary. The time scale factor  alters all gains by a common amount in 
the 

γ
A~  and B~  matrices. The time scale factor is usually selected in multiples 

of 10. 
For example, if the matrix 
 

(45) 
 

were obtained, a time scale factor of 1/100 would reduce the coefficients to a 
usable value. After time scaling: 

⎥
⎦

⎤
⎢
⎣

⎡
=

75100
2500

A~

  
A~γ (46) 

 
⎥
⎦

⎤
⎢
⎣

⎡
=

75.00.1
5.20

 
Example 1: Fluid RLC System 
As an example of the scaling process, consider the series RLC fluid system 
with definitions of state variables 
                                    u1 = Pressure input (kPa) 

x1 = Pressure in capacitor (kPa) 
                                    x2 = Flow in inductor (cm3/s) 
state-space differential equations 

 
(47) [ ]1

2

3

2

1

2

3

3

2

1 u

kPas
cm10
s
10

x
x

s
15.2

kPas
cm10

cm
kPa5

s
10

x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
=⎥

⎦

⎤
⎢
⎣

⎡
&

&
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and initial conditions 
 ⎡−

⎥
⎦

⎤
⎢
⎣

=⎥
⎦

⎤
⎢
⎣

⎡
s/cm0

kPa20
)0(x
)0(x

3
2

1
(48) 

 
Let the system be subjected to a step input 
 u1 = 10 kPa       for t  ≥    0 (49) 
 
The first step in solving the system is to select the magnitude scale factors. 
This requires knowledge of ximax. The steady-state maximums can be 
predicted from equation (47) by setting = 0. The first equation yields no 
information, since the input has no direct influence on . The second 
equation results in  

x&
1x&

(50) 
By setting x2( )=0 and allowing all of the input effort to drive x∞ 1, we find 
that 

121 u10)(x5.2)(x10 =∞+∞

  (51) uu10(x == max1max1
*
1 10

)∞

kPa10)(x*
1 =∞

 
(52) 

 
By setting and allowing all of the input to go into the second state 
variable, we find that 

0)(x1 =∞

  (53) 
4u10(x == 

  (54) /40(x =
max1max1

*
2 u

5.2
)∞

cm) 3*
2 ∞ s

 
The maximum values for x can now be estimated from the maximum of 
either the initial conditions or the steady–state maxima: 
   of  MAXx max1 = { }max

*
11 )(xor)0(x ∞  (55) 

                                        of  MAX= { } kPa2010or20 =  
   of  MAXx max2 = { }max

*
22 )(xor)0(x ∞  (56) 

                                        of  MAX= { } s/cm4040or0 3=  
The magnitude scale factors can now be computed: 

(57) 
volt
kPa0.2

volt10
kPa20

e
x

max1

max1
1 ===α 

 
  (58) s/cms/40x

===α 0.4
volt10

cm
e

33

max2

max2
2 volt
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  (59) kPa10u
===β

volt
0.1

volt10
kPa

v max1

max1
1 

 
Next, we can compute the A~  and B~  matrices: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

α
α

α
α

=
5.25

100

aa

aa

2221
2

1

12
1

2
11  

A~ (60) 
 
 

 
 
  (61) B

⎤⎡
=⎥

⎥
⎢
⎢

=
0
⎥
⎦

⎢
⎣

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α
β
α
β

5.2b

b

2
2

1

1
1

1

~
 
 
 
The initial conditions of e are computed from the following equation: 
 e(0) = α-1 x(0) (62) 
or 
   volt1

(63) 
 

(64) 
 
 

The final simulation problem to be wired on the analog computer can be 
stated as 

 ⎤

volt0)s/cm0(
s/cm4

volt)0(x1)0(e

volt10)kPa20(
kPa2

)0(x)0(e

3
32

2
2

1
1

1

==
α

=

−=−=
α

=

⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
&

& [ ]1
2

1

2

1 v
5.2

0
e
e

5.25
100

e
e

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

(65) 
 
 

with initial conditions 
 

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
0
volt10

)0(e
)0(e

2

1
(66) 

 
The system input is a step input, or a constant for t  0. The magnitude of 
this constant is 

≥

 
volt10uv

1

1
1 =

β
= (67) 
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The elements in A~  and B~  represent integrator gains. The analog computer 
diagram for this system is shown in Figure 5 
 
 volt10−

1e−

2e−

 
 
 

volt 0

1e

2e

10

10 
1
1

0 
0     

 

volts10+
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0 
 

   

25.0
1v

25.0

 
 

 
 
 

 
Figure 5: Analog computer diagram for Example 1 
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Computer control design and modeling 
Lecture 18 

 
Digital Simulation 
Introduction 
While many low-order linear systems can be solved using standard 
differential equation solution procedures, numerical methods are 
advantageous when a large number of differential equations is necessary to 
describe the system or when the physical situation must be represented by 
nonlinear differential equations. In these cases, digital simulation is an 
indispensable tool. It is assumed that higher order systems can be 
transformed into an equivalent set of first-order, state space equations, and 
only first order equations are discussed here. 

Figure 1 shows the solution to a differential equation (solid line) and an 
approximate solution to the same equation obtained by a numerical method 
(dots). While a closed-form solution consists of an analytic function relating 
the dependent and independent variables (x and t, respectively), a numerical 
solution consists of a series of points xj obtained at a discrete set of points tj 
of time. The distance between the time points (the time step) is denoted by h. 
The figure makes clear the strong dependence of the quality of the numerical 
solution on the size of h. That is, toward the end of the record of time given, 
the analytic solution begins an oscillation that the discrete point spacing is 
unable to represent. A shorter time step is obviously needed in this region of 
the solution. 
 
 

h

t

x

1jx +

jx

jt 1jt +

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Numerical integration of a dynamic system 
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Euler’s method 
Suppose a single first-order differential equation is given in which f(x,t) may 
be a linear or a nonlinear function, depending on the problem at hand:    
 
 with initial condition x(t0) = x0                                 (1) )t,x(f

dt
dx

=
 
This is an initial-value problem, since x(t) is given at some initial time t0, 
and we desire the solution values at succeeding times t. Equation (1) may be 
written as  
   (2) 

+1+

=
j

j

1j

j

t

t

x

x

dt)t,fdx x(∫∫
 

jjjjjjj hf)t,(hf)t,(fxx ===− ∫                                                                                            (3) 
t 1   

Suppose the time step h = tj+1 - tj is small enough so that the slope )t,x(fx =&  
may be taken to be the constant f(xj ,tj) over the interval h. Then 

1 xdtx
j+

+

j t

...
dt2

hfxx 2jjj +++=                                                                                               (6)   
x

! j

22

1+

dh                                                                                                    

                          

      
                       

Thus, the new value of x, (xj+1) may be computed from previous values by 
the relation 
  (4) jj1j hfxx +=+

 
This simple technique of integration is called Euler’s method. 

Geometrically, the Euler process assumes that the slope dx/dt = f(x,t) is 
constant over the interval h. This assumption has obvious limitations. The 
error involved in using Euler’s method can be examined by considering a 
Taylor series expansion of x(t). Recalling the Taylor series expansion 
discussed in calculus, we write 

 dxh)t(x)t(x
j

2

22

j
j1j +++=+ (5) 

 
...

dt
xd

!2
h

dt

Replacing dx/dt with f(x,t) we obtain 

 
In Euler’s method, we neglect terms beyond hfj; hence, the error caused at 
each step is proportional to h2, and is called the truncation error. 
 
Example 1: Euler’s Method 
Use Euler’s method to solve the following first order equations. The first 
displays exponential behavior; the second has a harmonic solution. 
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xx −=&                        with initial condition x(0) = 1, 0 ≤ t ≤ 5 s,                            (7) 
 

And  

tsin10y3y +−=&                                     , with initial condition y(0) = -1, 0 ≤ t ≤ 12 s.         (8) 
 

 
Solution: 
For Equation (7) we select a step size of h = 0.5 s then 
At t = 0.5: then x1 = x0 + 0.5(-1) = 1 – 0.5 = 0.5                                          (9) 
At t = 1: then x2 = x1 + 0.5(-0.5) = 0.5 – 0.25 = 0.25                                 (10) 
And etc. 
This recursive process is continued until we reach the desired final time 
point, t = 5. The exact solution to Equation (7) can be found using classical 
methods as: 
 

(11) xe(t) = e-t                                           
      
It is clear that the exact solution approaches zero with increasing time. 
Table 1 gives a comparison of the Euler solution with the exact solution to 
this problem for step sizes, h = 0.5, h = 0.1, and h = 0.0125.The error in the 
calculated result at some specific time t is called the global error. It is clear 
from Table 2 that as the step size is halved; the global error of Euler’s 
method is approximately halved also. Thus, even though the pre-step 
(truncation) error is proportional to h2, the global error is approximately 
proportional to h. 
 
HOMEWORK: Solve the second differential equation.  
  
TABLE 1 SOLUTIONS TO 1)0(x,xx =−=&  
 

h = 0.5 
t 

 
x (Euler) 

 
x (exact) 

 
error (%) 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.500000 
0.250000 
0.125000 
0.062500 
0.031250 
0.015625 
0.007813 
0.003906 
0.001953 
0.000977 

0.606531 
0.367879 
0.223130 
0.135335 
0.082085 
0.049787 
0.030197 
0.018316 
0.011109 
0.006738 

17.56 
32.04 
43.98 
53.82 
61.93 
68.62 
74.13 
78.67 
82.42 
85.51 
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h = 0.1 

t 
 

x (Euler) 
 

x (exact) 
 

error (%) 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.590490 
0.348678 
0.205891 
0.121577 
0.071790 
0.042391 
0.025032 
0.014781 
0.008728 
0.005154 

0.606531 
0.367879 
0.223130 
0.135335 
0.082085 
0.049787 
0.030197 
0.018316 
0.011109 
0.006738 

2.64 
5.22 
7.73 

10.17 
12.54 
14.86 
17.11 
19.30 
21.43 
23.51 

 
 

h = 0.0125 
t 

 
x (Euler) 

 
x (exact) 

 
error (%) 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.604622 
0.365568 
0.221031 
0.133640 
0.080802 
0.048855 
0.029539 
0.017860 
0.010798 
0.006529 

0.606531 
0.367880 
0.223130 
0.135335 
0.082085 
0.049787 
0.030197 
0.018315 
0.011109 
0.006738 

0.31 
0.63 
0.94 
1.25 
1.56 
1.87 
2.18 
2.49 
2.80 
3.10 

 
 
TABLE 2 FINAL GLOBAL ERRORS USING EULER’S METHOD TO 
SOLVE  1)0(x,xx =−=&

Step size h(s) 
Global error in x(t=2), (percent) 

0.5 
53.8 

0.25 
26.0 

0.1 
10.2 

0.05 
5.04 

0.025 
2.51 

0.0125 
1.25 

 
More Accurate Methods 
Euler’s method uses only two items of information to propagate the solution 
from tj to tj+1: the current solution estimate xj and the function value or slope 
fj. If more information concerning the character of the solution is used, the 
numerical results will obviously be more accurate for a given step size; that 
is, they will have smaller per-step truncation errors. Many such methods 
have been devised over the years. Two are discussed here: Adams method 
and Runge-Kutta methods. 

The Adams method is typical of methods employing three pieces of 
information to advance the solution. It uses the equation 

   (12) 
)f(hxx −+= f3

2 1jjj1j −+ 
 

4 



LECT. 18 

5 

which employs a weighted combination of the slopes at time tj and time tj-1, 
to propagate the solution. With the Adams method, the per-step error term is 
proportional to h3, and hence, the global error is proportional to h2. It is clear 
that the method is not a self-starting process, since solutions must be known 
at tj and at tj-1 before the values at tj+1 can be determined. When starting the 
process, the initial value is used for the t0 point but a self-stating technique 
such as Euler method would have to be used to generate an estimate of the 
solution at t1 before the Adams method could be initiated. 
 
Runge-Kutta methods 
A technique that employs five information values and is also self-starting is 
Runge-Kutta scheme. The Runge-Kutta approach is based on retaining 
higher order terms in the Taylor series expansion of the dependent variable. 
The fourth-order method, utilizes information about the derivative at four 
points within the time-step interval. This provides a much more accurate 
estimate of the solution than the methods discussed previously, since 
curvature of the solution over the time step is now accounted for. Runge-
Kutta methods are widely used in system simulation studies because of their 
accuracy and ease of implementation. 
A frequently used fourth-order Runge-Kutta recursion process is defined by 
the equation 
 

)DC2B2A(
6
hxx j1j ++++=+                                                                                                                (13) 

         

 
where  
                                               A = f(xj, tj)                                                    (14) 

 
                                                                                                (15) ⎟

⎠
⎜
⎝

++=
2

tA
2

xfB j                    
 

⎞⎛ h,h
j

 
 

(16) 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

2
ht,B

2
hxfC jj

 
( )ht,hCxfD jj ++= (17) 

 
It is clear that the arguments of the functions defined in B, C, and D are not 
necessarily points on the solution curve x(t). The per-step and global errors 
of this method are proportional to h5 and h4, respectively. 
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Example 2: Runge-Kutta Method 
Solve the first-order problem of equation (7) using the fourth-order Runge-
Kutta method. 
Solution: The problem is solved using the Runge-Kutta method as just 
outlined, and the results are presented in Table 3. It is clear that for 
comparable step sizes, the Runge-Kutta method produces results that are 
much more accurate than does the Euler method. 
 

TABLE 3 RUNGE-KUTTA (R-K) 
SOLUTION TO 1)0(x,xx =−=&  

h = 0.5 
t 

 
x (R-K) 

 
x (exact) 

 
error (%) 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.606771 
0.368171 
0.223395 
0.135550 
0.082248 
0.049905 
0.030281 
0.018374 
0.011149 
0.006765 

0.606531 
0.367879 
0.223130 
0.135335 
0.082085 
0.049787 
0.030197 
0.018316 
0.011109 
0.006738 

-0.040 
-0.079 
-0.119 
-0.158 
-0.198 
-0.238 
-0.278 
-0.317 
-0.357 
-0.397 

 
This problem is solved several times using the Runge-Kutta method with 
different step sizes, and the effect of the step size on the global error is 
shown in Table 4. It is clear that as the step size is halved; the error is 
reduced by a factor of about 16. 
 
 

TABLE 4 RUNGE-KUTTA SOLUTION TO 1)0(x,xx =−=&  
Step size h(s) 
Global error in x(t=2), (percent) 

0.5 
0.158 

0.25 
0.008 

0.125 
0.00046 

 
 

End of Lecture eighteen 
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Computer control design and modeling 
Lecture 19 

 
Systems of Equations 
The methods discussed in lecture 18 may be used for more than one equation 
if we regard the symbols as vectors. That is, x and f are vectors, and we have 
a set of equations of the state-space form: 
  = Dx = f (x, t), with initial-condition vector x(tx& 0) = x0 (1) 
There is a separate of the derivative for each variable; that is, for n 
equations, 
 
 

 
(2) 

 
 
 
 
 ,

.

.

.
)t,x,...,x,x(fx
)t,x,...,x,x(fx

n2122

n2111

=
=

&

&

)t,x,...xx(fx n21nn =&

The functions fi express the coupling between the solution variables xi. In 
applying the fourth order Runge-Kutta method to a system of equations, we 
obtain the numerical solution for the vector of dependent variables, x, as 
given by the expression 
   x =+1j x (

6
h

j+ A + 2B + 2C + D) (3) 
where 
 A = f(xj, tj) (4) 

 

B = f(xj + 
2
h A, tj + 

2
h )                                  (5) 

 

C = f(xj + 
2
h B, tj + 

2
h ) (6) 

 
D = f(xj + C, th j + ) h (7) 

 
Here A, B, C, and D are vectors corresponding to the function evaluations 
shown in equations 3 through 7 above. 

1 



LECT. 19 

Example 1: Given a system with the following state-space equations.  
(8) 211 x0.4x5.0x −−=&  with x1(0) = 0 

and 
12 xx =&  with x2(0) = 2           (9) 

 
Calculate the values of x1 and x2 for t = 0 to 5 second (h = 0.5) by using the 
fourth-order Runge-Kutta method. 
Solution:  
To calculate the values of x1 and x2 at t = 0.5, for example, we use the 
following equations: 

(10) x1(0.5) = x1(0) + 
6
h  (A1 + 2B1 + 2C1 + D1)                                  

and 

x2(0.5) = x2(0) + 
6
h  (A2 + 2B2 + 2C2 + D2)       (11) 

where 
(12) A1 = f1(x1(0), x2(0), t) = -8 

 
(13) A2 = f2(x1(0), x2(0), t) = 0 

B1 = f1(x1(0) + 
2
h  A1, x2(0) + 

2
h  A2, t + 

2
h ) = -7  (14) 

B2 = f2(x1(0) + 
2
h  A1, x2(0) + 

2
h  A2, t + 

2
h ) = -2 (15) 

C1 = f1(x1(0) + 
2
h  B1, x2(0) + 

2
h  B2, t + 

2
h ) = -5.125 (16) 

C2 = f2(x1(0) + 
2
h  B1, x2(0) + 

2
h  B2, t + 

2
h ) =-1.75 (17) 

 
(18) D1 = f1(x1(0) + hC1, x2(0) + hC2, t + h) = -3.21875  

 
D2 = f2(x1(0) + hC1, x2(0) + hC2, t + h) = -2.5625 (19) 

9557.2)21875.35272(00(x −=−×−×−+=                                                                                                                    (20) 
Then 

125.8
6
5.)01 −

1615.1)5625.2222(02(x 2 =−×−×−+=                                                                                                                    (21) 75.10
6
5.)0

 

 
By the same approach we can calculate other values. The values of x1 and x2 
for t = 0 to t = 5 second (h = 0.5) are given in Table 1. 

2 



LECT. 19 

TABLE 1 SOLUTION OF EXAMPLE 1 
t x1 x2
0 0 2.0000 

0.5000 -2.9557 1.1615 
1.0000 -2.8869 -0.4175 
1.5000 -0.5261 -1.3091 
2.0000 1.7263 -0.9546 
2.5000 2.0944 0.0834 
3.0000 0.7061 0.8223 
3.5000 -0.9356 0.7384 
4.0000 -1.4617 0.0831 
4.5000 -0.7017 -0.4918 
5.0000 0.4489 -0.5448 

 
Selection of the Step Size 
It is clear that the accuracy with which the numerical solution is computed 
depends upon the step size employed. A fixed step size that is to large can 
give results either with large errors or cause the numerical process to 
become unstable. On the other hand, too small an h causes an inordinately 
large number of steps to be taken, which, in the extreme, can cause large 
computational errors due to round-off. This happens because computations 
are normally performed with a limited number of digits.  
 
1. Selection of A fixed Step Size 
In selecting the proper step size for a numerical method of solving a system 
equation, the primary goal is to divide the resulting waveform into enough 
pieces to be able to resolve the character of the wave accurately, without 
resorting to the use of an excessive number of points and thereby incurring 
significant round-off errors. Two different dynamic effects must be 
considered in the selection of the step size: 
a) The speed of the response, determined by the natural dynamics of the 
system. 
b) The waveform of the input signal. 
 
2. Selection of output interval and final time 
The output interval is the time between two distinct recordings of data, and 
of course, it must be an integer multiple of the step size. Although there are 
no definite rules, suggested output intervals are as follows: 
 
h for a first-order system 
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2h to 5h for a second-order system 
4h to 10h for a third-order system 
10h to 20h for a high-order system 
    
The final time is the ending time of the simulation and may also generally be 
a function of the natural dynamics of the system. Thus, it, too, may be based 
on the solution step size. The time required to achieve a desired response or 
reach a steady state is generally different for each simulation; however in the 
absence of other information, the following guidelines may be used for 
estimating the required final time: 
 
 
 
50h for a first-order system 
50h to 200h for a second-order system 
100h to 500h for a third-order system 
200h to 1000h for a high-order system 
 
Variable step size methods 
In some instances, the step size dictated by the requirements outlined in the 
previous section may not be required, except over a portion of the period 
during which the solution is formed. As time advances, the frequency 
content of the input function may change, or, in nonlinear systems, the 
system dynamic characteristics may change. 
In order to be able to change the integration time step as the solution 
progresses, some estimate of the current accuracy of the calculated results 
must be made, and different methods of doing this are available, depending 
on the particular numerical integration scheme that is being employed.  
One of the most straightforward approaches involves calculating the 
response at the next point in time in two ways. First, the new solution point 
is calculated in the usual way by advancing from t to t + h using a step of 
size h. Let this solution be xa. Then another approximation to the solution at 
t + h is found by taking two small steps of size h/2. Call this second solution 
estimate xc. 
An estimate of the truncation error that occurs during the step can be 
computed from the two separate solutions calculated for the value of x(t + 
h): 

12
xxE 1

ac
T −

−
≅                                                                                                                    (22) 
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Since the Euler method is a first-order method, the constant 2 appears to the 
first power in the above equation. If the analysis were repeated for a method 
of order p, we would obtain:  

12
xxE p

ac
T −

−
≅                                                                                                                    (23) 

  

 
for an estimate of the pre-step truncation error. 
For the fourth-order Runge-Kutta method, we could estimate the pre-step 
error by 

15
xxxxE ac

4
ac

T 12
−

=
−
−

≅                                                                                                                    (24) 
 

 
If, during the solution process, it is found that the pre-step error estimate is 
larger than some preselected value, the step size may be reduce at that point 
in the computation and the time advance continued. On the other hand, if the 
error is very small, the step size may safely be increased. 
An alternative method of estimating the error involves using integration 
methods of different orders to calculate the estimate over a given time step. 
For example, we might use a fourth-order Runge-Kutta method to advance 
the solution one time step and then repeat the calculation for that step using 
a fifth-order Runge-Kutta method. An estimate of the error can then be 
found from the difference in the two calculated values at the endpoint and a 
decision made about whether to change the step size.   
 

End of Lecture nineteen 
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