












































2
General Definition of Simulation Tools

2.1 Introduction

This chapter discusses several key topics to evaluate the transmission per-
formance of wireless communication systems by computer simulation
smoothly. This book primarily uses the excellent simulation software
MATLAB. Therefore, first of all, Section 2.2 introduces a basic tutorial to
use MATLAB by explaining selected commands that are frequently used
in this book. Moreover, Section 2.2 defines several indispensable functions
used frequently and commonly in the R&D of telecommunications by using
MATLAB simulation programs. Section 2.3 explains �data generation� and
BER by using the MATLAB program. Section 2.4 explains typical commu-
nication channels that are used to evaluate transmission performance and
describes the method for programming the communication channels. In
addition, Section 2.4 explains the AWGN channel and the Rayleigh fading
channel. Finally, Section 2.5 concludes this chapter with a brief summary.
Appendix 2A presents all the programs related to the chapter as does the
CD-ROM that accompanies the book.

2.2 Basic Tutorial

This book uses the MATLAB computer-simulation software, which is pro-
duced by MathWorks, Inc. MATLAB, a sophisticated language for matrix
calculations [1], stands for matrix laboratory. This book is not intended to
serve as a tutorial of MATLAB. Readers interested in a tutorial should con-
sult the MATLAB tutorial book [1].

29



2.2.1 Generation of Vectors and Matrices

First, we will provide you with a few examples demonstrating how easy it is to
use the MATLAB language. When you start to use MATLAB, you will find a
workspace. The workspace shows a command line.

You can directly input commands on the command line. Let�s generate
several vectors and matrices in the MATLAB workspace.

1. To make three vectors u =














2

1

4

, n = (1 −1 1), and s = 7, type on the

command line, and press enter,

〉〉 u=[ 2; 1; 4 ]

you will see:

u =
2
1
4

similarly type

〉〉 v=[1 -1 1 ]

and you set

v =

1 -1 1

and

〉〉 s=7
s =
7

2. To generate a 3-by-3 matrix

A =












1 2 1

2 1 2

1 1 2

30 Simulation and Software Radio for Mobile Communications



〉〉 A=[1 2 1 ; 2 1 2; 1 1 2]

A =

1  2  1

2  1  2

1  1  2

3. To transpose the vector and matrix, which operation-interchanges
between aij and aji, you only need to put �’� after the vector and
matrices. To transpose the n, type

〉〉 v’

MATLAB will output the result of the operations as

ans =

1

-1

1

To transpose A, type

〉〉 A’

and set

ans =

1  2  1

2  1  1

1  2  2

2.2.2 Indexing and Subscripting

We now describe how to obtain a subpart of a matrix or vector by using the
example matrix. First let�s generate the matrix.

B =












2 4 8

2 3 4

1 1 4

General Definition of Simulation Tools 31



〉〉 B=[2 4 8; 2 3 4; 1 1 4]

B =

2  4  8

2  3  4

1  1  4

The element in row i and column j of B is denoted by B (i, j ) in MATLAB. For
example, if you need the element B (2, 3), just type

〉〉 B(2,3)

ans =

4

If you need any part of a matrix or vector, including elements from row m to
row n and from column p to column q, you type B(m:n,p:q). For example, if
you need the elements from row 1 to row 2 and from column 2 to column 3,
you type as follows

〉〉 B(1:2,2:3)
ans =
4  8
3  4

To access subparts of a matrix or vector in which the elements from row m to
row n with increment a and from column p to column q with increment b, you
execute B(m:a:n,p:b:q). For example, if you need the elements from row 1 to
row 3 with increment 2 and from column 1 to column 3 with increment 2, you
type as follows

〉〉 B(1:2:3,1:2:3)
ans =

2  8
1  4

If you need all elements in row m of B or if you need all elements in col-
umn p of B, you also use the command �:�. By typing B(m,:) and B(:,p),
you can obtain all elements in row m of B or all elements in column p of B,
respectively.

For example, if you need all elements in row 3 of matrix B, type

〉〉 B(3,:)

ans =

32 Simulation and Software Radio for Mobile Communications



1  1  4

If you need all elements in column 2 of matrix B, type

〉〉 B(:,2)

ans =

4

3

1

2.2.3 Matrix and Vector Calculations

This section introduces the basic calculation methods for matrices and vectors
by MATLAB.

2.2.3.1 Addition and Subtraction

Addition and subtraction of matrices are defined just as they are for arrays�
element-by-element. Addition and subtraction of matrices A and B are done as
follows.

X=A+B

X =

3  6  9

4  4  6

2  2  6

〉〉 Y=X-A

Y =

2  4  8

2  3  4

1  1  4

Addition and subtraction require both matrices to have the same dimension. If
the dimensions are incompatible, an error occurs.

〉〉 X=A+u

Error using = => +

Matrix dimensions must agree.

〉〉 w=v+s

w =

8  6  8

General Definition of Simulation Tools 33



2.2.3.2 Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in
either order. The following are two examples.

x=v*u

x =

5

〉〉 x=u*v

x =

2  -2  2

1  -1  1

4  -4  4

2.2.3.3 Matrix Multiplication

The multiplication of matrices is defined in a way that reflects the composition
of the underlying linear transformations and allows for the compact representa-
tion of systems of simultaneous linear equations. The matrix product C = A ∗ B
is defined when the column dimension of A is equal to the row dimension of B,
or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C
is m-by-n. The next two examples illustrate the fact that matrix multiplication
is not commutative; A ∗ B is usually not equal to B ∗A .

〉〉 X=A*B

X =

7  11  20

8  13  28

6   9  20

〉〉 Y=B*A

Y =

18  16  26

12  11  16

7   7  11

Moreover, the power of the matrix (e.g., Z = A ∗ A = A ^ 2 ) is defined as

〉〉 Z=A^2

Z =

6  5  7

6  7  8

5  5  7

34 Simulation and Software Radio for Mobile Communications



A matrix can be multiplied on the right by a column vector and on the left by a
row vector.

〉〉 x=A*u

x =

8

13

11

〉〉 y=v*B

y =

1  2  8

2.2.3.4 Element-by-Element Calculation

If you have two vectors a = [a1, a2, a3, … aN] and b = [b1, b2, b3, … bN], and you
would like to obtain vector c = [A!a1∗b1, a2 ∗ b2, a3 ∗ b3, … bN ∗ bN], you can
use the � .* � command.

〉〉 c=a .* b

Moreover, if you would like to obtain vector c = [a1/b1, a2/b2, a3/b3, … aN/bN],
you can use the �./ � command.

〉〉 c=a ./ b

Moreover, if you would like to obtain vector c = [a1^b1, a2^ b2, a3^ b3, …
aN^bN], you can use the �.^� command.

〉〉 c=a .^ b

The following two examples illustrate the above calculations by using
a = [4, 9, 8], b = [4, 3, 4].

〉〉 a=[4,9,8]

a =

4  9  8

〉〉 b=[4,3,4]

b =

4  3  4

〉〉 c=a.*b

c =

16  27  32

General Definition of Simulation Tools 35



〉〉 c=a./b

c =

1.0000  3.0000  2.0000

〉〉 c=a.^b

c =

256  729  4096

These calculations are also valid for matrices, as shown by the following
examples.

〉〉 C=A.*B

C =

2  8  8

4  3  8

1  1  8

〉〉 C=B./A

C =

2  2  8

1  3  2

1  1  2

〉〉 C=A.^B

C =

1  16  1

4  1  16

1  1  16

Table 2.1 summarizes the MATLAB arithmetic operators.

2.2.4 Relational Operators

MATLAB provides the relational operators shown in Table 2.2.
These operators relate two vectors or two matrices; elements where the

specified relation is true receive the value 1, whereas elements where the rela-
tion is false receive the value 0. The following illustrates the effect of several
relational operators.

〉〉 A=[ 1 -1 -1; 1 1 1; -1 1 1]

A =

1  -1  -1

1  1   1

-1  1   1

36 Simulation and Software Radio for Mobile Communications



〉〉 B=[1 1 -1; -1 -1 -1; 1 -1 1]
B =

1   1  -1

-1  -1  -1

1  -1   1

〉〉 A<B

ans =

0  1  0

0  0  0

1  0  0

〉〉 A<=B

ans =

1  1  1

0  0  0

1  0  1

〉〉 A>B

ans =

0  0  0

1  1  1

0  1  0

〉〉 A>=B

ans =

General Definition of Simulation Tools 37

Table 2.1

Arithmetic Operators in MATLAB

+ Addition .^ Power (element-by-element)

− Subtraction (vector)� Transpose

.∗ Multiplication (element-by-element) ∗ Matrix multiplication

./ Right division (element-by-element) / Matrix, right division

+ Unary plus ^ Matrix power

− Unary minus

Table 2.2

Relational Operators in MATLAB

< Less than >= Greater than or equal to

<= Less than or equal to == Equal to

> Greater than ∼= Not equal to



1  0  1

1  1  1

0  1  1

〉〉 A==B

ans =

1  0  1

0  0  0

0  0  1

〉〉 A~=B

ans =

0  1  0

1  1  1

1  1  0

2.2.5 Logical Operators

MATLAB provides the logical operators shown in Table 2.3.
An expression using the AND operator, &, is true if both operands

are logically true. In numeric terms, the expression is true if both operands are
nonzero. The following example shows its effect.

〉〉 u=[ 2 0 1 0 0 2 ]

u =

2  0  1  0  0  2

〉〉 v=[ 2 1 3 0 1 0]

v =

2  1  3  0  1  0

〉〉 u & v

ans =

1  0  1  0  0  0

Elements having the value �1� indicate that the corresponding elements of u
and v both are nonzero.

An expression using the OR operator, |, is true if one operand is logically
true or if both operands are logically true. An OR expression is false only if both
operands are false. In numeric terms, the expression is false only if both oper-
ands are zero. The following example shows its effect.

38 Simulation and Software Radio for Mobile Communications

Table 2.3

Logical Operators in MATLAB

& AND | OR ∼ NOT



〉〉 u | v

ans =

1  1  1  0  1  1

An expression using the NOT operator, ∼, negates the operand. This produces
a false result if the operand is true and a true result if it is false. In numeric
terms, any nonzero operand becomes zero, and any zero operand becomes one.
The following example shows its effect.

〉〉 ~u

ans =

0  1  0  1  1  0

2.2.6 Flow Control

There are seven flow control statements in MATLAB, as shown in Table 2.4.
We will use only five flow control statements: if, switch, while, for, and
break in this book.

2.2.6.1 if, else, and elseif

The command, if, evaluates a logical expression and executes a group of state-
ments based on the value of the expression. The syntax is:

if logical_expression
statements

elseif
statements

end

General Definition of Simulation Tools 39

Table 2.4

Flow Control Operators in MATLAB

if Together with else and elseif, executes a group of statements based on
some logical condition

switch Together with case and otherwise, executes different groups of statements
depending on the value of some logical condition

while Executes a group of statements an indefinite number of times, based on some
logical condition

for Executes a group of statements a fixed number of times

break Terminates execution of a for or while loop

try...catch Changes flow control if an error is detected during execution

return Causes execution to return to the invoking function



If the logical expression is true (1), MATLAB executes all the statements
between the if and end lines. It resumes execution at the line following the
end statement. If the condition is false (0), MATLAB skips all the statements
between the if and end lines, and resumes execution at the line following the
end statement. The following is an example of using the if command.

[Program]
k=1
if k==1
fprintf( ‘Ok \n’);
end

[Result]
Ok

2.2.6.2 switch

The command switch executes certain statements based on the value of a
variable or expression. Its basic form is:

switch expression ( scalar or string )
case value1

statements
case value2

statements
.
.
.
otherwise

statements
end

The block consists of the following elements:

• The word switch followed by an expression to be evaluated.

• Any number of case groups. These groups consist of the word case

followed by a possible value for the expression, all on a single line. Sub-
sequent lines contain the statements to execute for the given value of
the expression. These can be any valid MATLAB statement including
another switch block. Execution of a case group ends when
MATLAB encounters the next case statement or the otherwise

statement. Only the first matching case is executed.

• An optional otherwise group. This consists of the word otherwise,
followed by the statements to execute if the expression�s value is not
handled by any of the preceding case groups. Execution of the other-
wise group ends at the end statement.

40 Simulation and Software Radio for Mobile Communications



• An end statement.

The following is an example of using the switch command.

[Program]
k=1;
switch k

case 1
fprintf(‘it is 1 \n’);

otherwise
fprintf(‘It is not 1 \n’);

end

[Result]
It is 1

The example prints out �it is 1� on the screen of MATLAB if k is equal to 1;
otherwise, it prints out �It is not 1�.

2.2.6.3 while

The while loop executes a statement or group of statements repeatedly as
long as the controlling expression is true (1). Its syntax is:

while expression
statements

end

The following is an example of using the while command. In the example, we
calculate a simple summation.

[Program]
n=1;
while n<100

n=n+1;
end
fprintf(‘%d \n’,n);

[Result]
100

2.2.6.4 for

The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index=start:increment:end
statements

end

General Definition of Simulation Tools 41



The default increment is 1. You can specify any increment, including a negative
one. For positive indexes, execution terminates when the value of the index
exceeds the end value; for negative increments, it terminates when the index is
less than the end value. For example, we calculate the sum from 1 to 100.

[Program]
total=0;
for n=1:100

total=total+n;
end
fprintf(‘%d \n’,total);

[Result]
5050

2.2.6.5 break

The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

[Program]
n=1;
while n<100

n=n+1;
if n>=50, break, end

end
fprintf(‘%d \n’,n);

[Result]
50

2.2.7 Custom-Made Functions

Except for the functions described in Section 2.2.6, we will make many built-in
functions in MATLAB. If you are interested in these functions, please see the
MATLAB textbooks [1]. This section summarizes several remarkable functions
used throughout this book. These functions are detailed in Tables 2.5�2.8.

2.2.8 Hierarchical Programming

Until now, MATLAB has been presented as interpreter type software. How-
ever, MATLAB can be used as a programming language like C, C++, and
FORTRAN. If you write program, the program consists of main-function and
subfunction files and has a hierarchical structure. The relationship between

42 Simulation and Software Radio for Mobile Communications



main-function and subfunction files is shown in Figure 2.1. This section stud-
ies how to create hierarchically structured programs by means of an example.

The objectives in the example are listed as follows:

General Definition of Simulation Tools 43

Table 2.5

Remarkable Functions Used in This Book (1)

Command Synopsis Description Examples

abs Y=abs(X) abs(X) is the absolute value of the
elements of X

abs(−5)=5

abs(3+4i)=5

acos(X)
asin(X)
atan(X)

Y=acos(X)
Y=asin(X)
Y=atan(X)

Inverse trigonometric functions acos(cos(p))=3.1416
asin(sin(p/2))=1.5708
atan(tan(p/4))=0.7854

ceil Y=ceil(X) ceil(X) rounds the elements of X to the
nearest integer which is greater than
or equal to X

X=[−1.9 −0.2 3.4 5.6 7.0]
ceil(X)=[−1 0 4 6 7]

conj Y=conj(X) conj(X) is the complex-conjugate of the
elements of X.

X=[1+3j 2−5j]
conj(X)=1.0000 − 3.0000i
2.0000 + 5.0000i

conv c=conv(a,b) c=conv(a,b) convolves vectors a and b.

( ) ( ) ( )c k a j b k j
j

= + −∑ 1

a=[1 2 3 4]
b=[10 20 30]
conv(a,b)=[10 40 100 160 170
120]

cos(X)
sin(X)
tan(X)

Y=cos(X)
Y=sin(X)
Y=tan(X)

Trigonometric functions cos(p/3)=0.5000
sin(p/6)=0.5000
tan(p/4)=1.0000

erf y=erf(x) The error function erf(x) is the integral
of the Gaussian distribution function
from 0 to x

( )erf x e tx
= −∫

2 2

0p

x=[1:30]
y=erf(x)
plot(x,y)

erfc y=erfc(x) The complementary error function
erfc(x) is the value of the
complementary erf(x)

( ) ( )erfc erfx e xt

x
= = −−∞

∫
2

1
2

p

x=[1:30]
y=erfc(x)
plot(x,y)

exp Y=exp(X) exp(X) returns e
x for each element of x exp(1)=2.7183

fclose fclose
(�filename�)

Fclose(fid) closes the specified file, if it
is open and returns 0 if successful and
−1 if unsuccessful

fid=�parameter.txt�
fopen(fid)
fclose(fid)



1. Generation of Gaussian random data;

2. Calculation of mean and variance by using subfunctions named
value and disper.

First of all, we define two subfunctions. The first function is for the calculation
of mean value. For a data set indata = [a1, a2, a3, … … aN] which consists of N
symbol data, the mean E is given as:

44 Simulation and Software Radio for Mobile Communications

Table 2.6

Remarkable Functions Used in This Book (2)

Command Synopsis Description Examples

fft
ifft

y=fft(x)
y=ifft(x)

ifft(x) is the fast Fourier transform (FFT)
of vector x.
fft(x,n) is the n-point inverse FFT
ifft(x) is the inverse FFT of vector x.

ifft(x,n) is the n-point inverse FFT

X=[1 1 −1 −1 −1 1 1 −1]
fft(ifft(X,8))=
[1 1 −1 −1 −1 1 1 −1]

fix Y=fix(X) fix(X) rounds the elements of X to
integers by eliminating the fractional
part.

X=[−1.9 −0.2 3.4 5.6 7.0]
fix(X)=[−1,0,3,5,7]

floor Y=floor(X) floor(X) rounds the elements of X to the
nearest integers

X=[−1.9 −0.2 3.4 5.6 7.0]
floor(X)=[−2 −1 3 5 7]

fopen fopen
(�filename�)

fopen(�filename�,�permission�)
fopen(�filename�,�permission�) opens
the file name in the mode specified by
permission
�r�: Open the file for reading
�r+�: Open the file for reading and
writing
�w�: Delete the contents of an existing
file or create a new file and open it for
writing
�w+�: Delete the contents of an existing
file or create a new file and open it for
reading and writing
�a�: Create and open a new file or open
an existing file for writing, appending
to the end of the file
�a+�: Create and open a new file or
open an existing file for reading and
writing, appending to the end of the file

fid=�parameter.txt�
fopen(fid,�r�)
fclose(fid)



( )E

a

N

k
k

N

indata = =
∑

1 (2.1)

General Definition of Simulation Tools 45

Table 2.7

Remarkable Functions Used in This Book (3)

Command Synopsis Description Examples

fprintf fprintf(fid,�format�,
A,…)
fprintf(�format�,A,…)

fprintf(fid,�format�, A,…) formats
the data in matrix A under control
of the specified format string
format is a string
\n newline
\t horizontal tab
%d decimal numbers
%e exponential notation
%f fixed point notation

a=3
b=1.2
c=0.0003
fprintf(�%d\t%f\t%e\t%
e\n�, a,b,c)
3 1.2000 3.0000e-004

fscanf fscanf(fid,�format�,
size)
fscanf(fid,�format�)

fscanf(fid, �format�, size) reads
data from the file specified by file
identifier fid, converts it according
to the specified format string, and
returns it in matrix or vector
The size is optional
n: read n elements into a column
vector
inf read to the end of the file,
[m,n] reads enough elements to
fill an m-by-n matrix
The format string can consist of
%d decimal numbers
%e,%f,%g floating point numbers

fidd=fopen(�test.txt�);
fscanf(fidd,�%g�,[1,1]);

log Y=log(X) log(X) is the natural logarithm of
the elements of X

log(exp(1))=1

log10 Y=log10(X) log10(X) is base 10 logarithm of
the elements of X

log10(1000)=3.0000

length y=length(X) length(X) calculates the length of
vector x.

x=[1,2,3}
length(X)=3

rand Y=rand(m,n) rand(m,n) is an m-by-n matrix with
uniformly distributed random
entries.

rand(2,3)=0.5828
0.3340 0.5798
0.4235 0.4329
0.7604



We will make a subfunction to express (2.1) in MATLAB. We use the follow-
ing notation:

46 Simulation and Software Radio for Mobile Communications

Main function. m

idata
qdata

iout
qout

idata
qdata

iout
qout

idata
qdata

iout
qout

Subfunction1. m Subfunction2. m Subfunction

Communication of arguments

Figure 2.1 The relationship between main-function and subfunction files.

Table 2.8

Remarkable Functions Used in This Book (4)

Command Synopsis Description Examples

randn Y=randn(m,n) randn(m,n) is an m-by-n matrix
with normally distributed
random entries

randn(2,2)=
−0.4326 0.1253 −1.1465
−1.6656 0.2877 1.1909

randperm p=randperm(n) p=randperm(n) is a random
permutation of the integers 1:n

randperm(6) might be the vector
[3 2 6 4 1 5] or it might be some
other permutation of 1:6

real X=real(Z) real(Z) is the real part of the
elements of Z

real(2+3.*i)=2

rem rem(x,y) rem(x,y) is x−n.∗y where
n=fix(x./y) is the integer part of
the quotient, x./y.

rem(5,2)=1

round Y=round(X) round(X) rounds the elements of
X to the nearest integers

X=[−1.9 −0.2 3.4 5.6 7.0]
round(X)=[−2 0 3 6 7]

sqrt Y=sqrt(X) sqrt(X) is the square root of the
elements of X

sqrt(2)=1.4142
sqrt(−2)=1.4142 i

sum Y=sum(X) sum(X) calculates the sum of
vector x

X=[1,2,3]
sum(X)=6



function [output1, output2, … ] = function_name
( input argument 1 input argument2, … ….)

% start of files
output variable 1 = calculation equation by using

input arguments
output variable 2 = calculation equation by using

input arguments
.
.
% end of files

where �%� indicates a comment. You must save the function with a name
like function_name.m in a directory of your computer where the extension
�.m� is valid for MATLAB function. As for this function, it is valid if MAT-
LAB�s current directory is the directory where the function_name.m is saved
or if you set MATLAB�s path by using the setup menu, we will study the proce-
dure to make subfunctions, by using an example in which we make a subfunc-
tion to calculate mean value.

First, open your favorite editor, like WordPad or mule (emacs) or the
MATLAB editors, and create a new file. If you would like to use MATLAB edi-
tor, you just type

〉〉 edit

You must create the program file that has a name mvalue.m shown in Program
2.1. In this case, the number of input and output arguments both equal one. In
the function, we add all the elements in a vector and divide the sum by the
length of input vector. The use of commands sum and length is described in
Section 2.2.7. Using them, we make subfunctions that can calculate dispersion
and standard deviation.

The dispersion and the standard deviation for a vector indata = [a1, a2,
a3, …, aN] is given as follows:

( )V

a

N

a

N

k
k

N

k
k

N

indata = −



















= =
∑ ∑2

1 1

2

(2.2)

( ) ( )s indata indata= V (2.3)

The next subfunction has two output arguments that are dispersion-value and
standard deviation�value. We define the output dispersion and output stan-
dard deviation as sigma2 and sigma, respectively. In addition, we utilize a vec-
tor indata as the input argument. The input data is given in Program 2.2.

General Definition of Simulation Tools 47



The program must be saved in the same directory as mvalue.m. Save it
with the name disper.m.

So far, we have made two subfunctions. Next, we will try to make
the main function. Please open a new file, and then make a program and save it
with the program name main.m in the same directory as the subfunctions. The
main.m is given Program 2.3 where random data is generated automatically,
and the values of mean and dispersion are calculated. After making the pro-
gram, enter the directory that has mvalue.m, disper.m, and main.m and exe-
cute main.m, then you should obtain the data below.

〉〉 main
meanvalue = 0.522608
dispersion = 0.111834
standard deviation=0.334415

As a result, we can utilize mean, dispersion, and standard deviation values in
main function and shrink the volume of main function. In this book, we will
produce many subfunctions. By the end you should have a good database for
the functions.

2.3 Data Generation and Bit Error Rate

We analyze the bit error rate to evaluate system performance. This section
defines bit error probability and shows how to calculate the BER with com-
puter software with a few examples. Using the above example, we generate data,
consisting of a 1-by-10 vector and the element in the data consists of 0 or 1.
The vector, which is named txdata, is given as follows:

〉〉 txdata = rand(1,10) > 0.5
txdata =

1 0 1 0 1 1 0 0 1 0

If an error occurs on the communication channel and txdata(1,7) changes
from 0 to 1, the received data rxdata is given as follows

〉〉 rxdata = txdata ;
〉〉 rxdata(1,7)=1

〉〉 rxdata(1,9)=0
rxdata =

1 0 1 0 1 1 1 0 0 0,

where the underlined data represents errors. By using transmitted data,
txdata, and received data, rxdata, we count the number of transmitted pieces
of data and the number of errors.

48 Simulation and Software Radio for Mobile Communications



To count the number of transmitted pieces of data, we need only the
length of txdata. MATLAB has a good command for the calculation of vector
size�that is, length. We define the number of transmitted data as nod:

〉〉 nod = length(txdata)
nod =

10

To calculate the number of errors, we execute the following procedure. First,
we subtract the transmitted data txdata from the received data rxdata. If no
error exists, you obtain a zero vector with the length of nod. Otherwise, you
obtain a nonzero vector in which �-1� or �1� data occurs at the error positions.
The subtraction vector is defined as subdata, which is given as follows:

〉〉 subdata=rxdata-txdata
subdata =

0 0 0 0 0 0 1 0 -1 0

As you can see in the vector subdata, if an element in txdata changes from 0
to 1 because of an error, the element of vector subdata at the error position
becomes �1�. On the other hand, if an element in txdata changes from 1 to 0
because of an error, the element of vector subdata at the error position
becomes �-1�. By taking the absolute value of the subdata elements, we can
make vector that has �1� at each error element.

〉〉 abs(subdata)
ans =

0 0 0 0 0 0 1 0 1 0

By adding all elements in the vector abs(subdata), we can calculate the
number of errors. For the element summation, MATLAB also has a good com-
mand, �sum .� If the number of errors is noe, we obtain, by utilizing the com-
mand �sum ,�

〉〉 noe=sum(abs(subdata))
noe =

2

Therefore, we can calculate the bit error probability by using noe and nod. We
define the bit error rate as ber, which is given by dividing noe by nod as follows:

〉〉 ber=noe/nod
ber =

0.2000

We use this procedure to obtain the BER throughout this book.

General Definition of Simulation Tools 49



2.4 Definition of a Radio Communication Channel

This book analyzes system performance under AWGN and/or multipath fad-
ing environments. This section explains AWGN and multipath fading and
shows how to simulate an AWGN and multipath fading environment by
MATLAB.

2.4.1 AWGN Channel

If we construct a mathematical model for the signal at the input of the receiver,
the channel is assumed to corrupt the signal by the addition of white Gaussian
noise, as illustrated in Figure 2.2 [2]. When we define transmitted signal, white
Gaussian noise, and received signal as s (t ), n (t ), and r (t ), the received signal is

( ) ( ) ( )r t s t n t= + (2.4)

where n (t ) is a sample function of the AWGN process with probability density
function (pdf ) and power spectral density as follows:

( )Φnn f N=
1

2
0[ ]W/Hz (2.5)

where N0 is a constant and often called the noise power density. To simulate in
MATLAB, we simply use the built-in function randn, which generates random
numbers and matrices whose elements are normally distributed with mean 0
and variance 1. Therefore, if we add AWGN noise with power 1 to the digital

50 Simulation and Software Radio for Mobile Communications

s(t) r(t)

n(t)

Additive white Gaussian noise

Amplitude

t

pdf of power spectrum density

1
2

N0

f

pdf

0

Variance power=

Amplitude

Figure 2.2 Example of an AWGN channel.



modulation signal with in-phase channel (I-channel) and quadrature-phase
channel (Q-channel) data vectors, idata and qdata, respectively, the output data
of I channel and Q channel, iout and qout, are given as follows:

( ) ( ) ( )
( ) ( ) ( )

iout t idata t randn t

qout t qdata t randn t

= +
= +

(2.6)

However, in the simulation, we sometimes calculate the BER performance by
varying the noise power, where we define the noise power as a variable, npow.
idata and qdata are voltages, not powers. Therefore, we must change the nota-
tion of npow from power to voltage. We define a variable attn as the root of
npow as

attn npow=
1

2
(2.7)

Therefore, the revised output data after contamination from noise with a power
of npow becomes

( ) ( ) ( )
( ) ( ) ( )

iout t idata t attn randn t

qout t qdata t attn randn t

= + ×
= + ×

(2.8)

Program 2.4 can add AWGN to the input data, which is expressed as digital
quadrature phase modulation. For the input data, we use idata and qdata. The
output data are iout and qout. We only input attn, idata, and qdata, to set the
noise-contaminated signal.

2.4.2 Rayleigh Fading Channel

The path between the base station and mobile stations of terrestrial mobile
communications is characterized by various obstacles and reflections. For
example, an indoor environment has business machines and furniture, and
buildings and trees constitute an outdoor environment. These have a large
influence on the received signal, when the radio wave is propagated from the
base station to the mobile station. The general characteristics of radio wave
propagation in terrestrial mobile communications are shown in Figure 2.3. The
radio wave transmitted from a base station radiates in all directions these radio
waves, including reflected waves that are reflected off of various obstacles, dif-
fracted waves, scattering waves, and the direct wave from the base station to the
mobile station. In this case, since the path lengths of the direct, reflected,

General Definition of Simulation Tools 51



diffracted, and scattering waves are different, the time each takes to reach the
mobile station will be different. In addition the phase of the incoming wave
varies because of reflections. As a result, the receiver receives a superposition
consisting of several waves having different phase and times of arrival. The
generic name of a radio wave in which the time of arrival is retarded in com-
parison with this direct wave is called a delayed wave. Then, the reception envi-
ronment characterized by a superposition of delayed waves is called a multipath
propagation environment. In a multipath propagation environment, the
received signal is sometimes intensified or weakened. This phenomenon is
called multipath fading, and the signal level of the received wave changes from
moment to moment. Multipath fading raises the error rate of the received data,
when a digital radio signal is transmitted in the mobile communication envi-
ronment. A compensation method for this multipath fading must be used to
ensure a high transmission performance. This section discusses the concept of
multipath fading and explains a programming method for simulations of mul-
tipath fading.

52 Simulation and Software Radio for Mobile Communications

qn

Figure 2.3 Principle of multipath channel.



Let us begin with the mechanism by which fading occurs [3, 4]. The
delayed wave with incident angle qn is given by (2.9) corresponding to
Figure 2.3, when a continuous wave of single frequency fc (Hz) is transmitted
from the base station.

( ) ( ) ( )[ ]r t e t j f tn n c= Re exp 2p (2.9)

where Re[] indicates the real part of a complex number that gives the complex
envelope of the incoming wave from the direction of the number n. Moreover,
j is a complex number. en(t ) is given in (2.10) by using the propagation path
length from the base station of the incoming waves: Ln (m), the speed of mobile
station, n (m/s), and the wavelength, l(m).

( ) ( ) ( )

( ) ( )

e t R t j
L t

x t jy t

n n

n n

n

n n

= −
−

+








= +

exp
cos2p n q

l
f

(2.10)

where Rn and fn are the envelope and phase of the nth incoming wave. xn(t )
and yn(t ) are the in-phase and quadrature phase factors of en( t ), respectively.
The incoming nth wave shifts the carrier frequency as n cos qn/l (Hz) by the
Doppler effect (Hz). This is called the Doppler shift in land mobile communi-
cation [3, 4]. This Doppler shift, which is described as fd, has a maximum value
of n/l, when the incoming wave comes from the running direction of mobile
station in cos qn = 1. Then, this maximum is the largest Doppler shift. The
delayed wave that comes from the rear of the mobile station also has a fre-
quency shift of −fd (Hz).

It is shown by (2.11), since received wave r (t ) received in mobile station
is the synthesis of the above-mentioned incoming waves, when the incoming
wave number is made to be N.

( ) ( )

( ) ( )

( )

r t r t

e t j f t

x t j

n
n

N

n
n

N

c

=

=
















= +

=

=

∑

∑
1

1

2Re exp

Re

p

( )( )( )[ ]
( ) ( )

y t f t j f t

x t f t y t f t

c c

c c

cos sin

cos sin

2 2

2 2

p p

p p

+

= −

(2.11)

where x (t ) and y (t ) are given by

General Definition of Simulation Tools 53



( ) ( )

( ) ( )

x t x t

y t y t

n
n

N

n
n

N

=

=

=

=

∑

∑
1

1

(2.12)

and x (t ) and y (t ) are normalized random processes, having an average value of
0 and dispersion of s, when N is large enough. We have (2.13) for the combi-
nation probability density p (x ,y ), where x = x (t ), y = y (t )

( )p x y
x y

, exp=
+








1

2 22

2 2

2ps s
(2.13)

In addition, it can be expressed as r (t ) using the amplitude and phase of
the received wave.

( ) ( ) ( )( )r t R t f t tc= +cos 2p q (2.14)

R (t ) and q(t ) are given by

( )
( ) [ ]

R t R x y

t y x

= = +

= = −

2 2

1q q tan /

(2.15)

By using a transformation of variables, p (x, y ) can be converted into p (R, q)

( )p R
R R

, expq
ps s

= −




2 22

2

2
(2.16)

By integrating p (R, q) over q from 0 to 2, we obtain the probability density
function p (R )

( )p R
R R

= −




s s2

2

22
exp (2.17)

Moreover, we can obtain the probability density function p(q) by integrating
p(R, q)over R from 0 to ∞.

( )p q
p

=
1

2
(2.18)

54 Simulation and Software Radio for Mobile Communications



From these equations, the envelope fluctuation follows a Rayleigh distribution,
and the phase fluctuation follows a uniform distribution on the fading in the
propagation path.

Next, let us try to find an expression for simulations of this Rayleigh fad-
ing. Here, the mobile station receives the radio wave as shown in Figure 2.3,
the arrival angle of the receiving incoming wave is uniformly distributed, and
the wave number of the incoming waves is N. In this case, the complex fading
fluctuation in an equivalent lowpass system is [3, 4]

( ) ( ) ( )r t x t j y t

N

n

N
f

n

Nn

N

d

= + ⋅

=
+





=

∑2

1
2

2

1 11 1

1

sin cos cos
p

p
p ( )













+
+











+
=

∑

t
N

f t

j
N

n

N

d

n

N

1

1
2

2

1

1 1

1

cos

sin

p

p

1 1

2
2



















cos cosp
p

f
n

N
td (2.19)

where N2 is an odd number and N1 is given by

N
N

1

1

2 2
1= −



 (2.20)

In this case, the following relations are satisfied

( )[ ] ( )[ ]
( ) ( )[ ]

E x t E y t

E x t y t

I Q

I Q

2 2 1

2

0

= =

=
(2.21)

and it is shown that the result of (2.19) takes the form of Program 2.5. In Pro-
gram 2.5, the output signal is obtained by inputting the complex modulating
signal formed by the transmitter and expressing it in an equivalent lowpass
system.

Next, let us discuss how a multipath propagation environment can be
simulated. In the multipath propagation environment, the mobile station
receives not only the direct wave but also delayed waves caused by reflection,
diffraction, and scattering that reach the time later than the direct wave. The
model of the relationship between this direct wave and the delayed wave is
shown in Figure 2.4.

It is clear that the amplitude has a Rayleigh distribution and that the
phase has a uniform distribution when we observe the received signal at the

General Definition of Simulation Tools 55



arrival time. It is also clear that there are fixed ratios of the average electric pow-
ers of the direct and delayed waves. That is to say, we have only to give the rela-
tive signal level and relative delay time of delayed waves in comparison with
the direct wave, when this multipath propagation environment is simulated; its
flowchart is shown in Figure 2.5. The program for simulations of multipath
fading is given in Programs 2.6 and 2.7.

In Program 2.6, we input the time resolution, relative signal levels, and
relative delay times of the direct and delayed waves, a complex modulating sig-
nal formed by the transmitter and expressed in an equivalent lowpass system,
and the simulation time for one simulation loop.

Consider, as an example, the case of a simulation time at one simulation
loop and a minimum time resolution of simulation use 50 ms and 0.5 ms,
respectively. It is assumed that three delayed waves have mean powers of 10 dB,
20 dB, and 25 dB smaller than that of the direct wave, respectively, and that the
relative arrival times were retarded with respect to the direct wave by 1, 1.5, and
2.0 ms, respectively. In this case, the input variable for the multipath fading
simulator is

tstp = 0.5.*10.^(-6);
itau = [0 floor(1.*10.^(-6)/tstp) floor(1.5.*10.^(-6)/tstp)

floor(2.0.*10.^(-6)/tstp)]= [0, 2, 3, 4];
dlvl = [0,10, 20,25];
nsamp = 50.*10.^(-6)/tstp = 100;

The parameter is set using such expressions for the simulator. Next, we describe
the operation of the multipath fading simulator. To begin, the input signal is

56 Simulation and Software Radio for Mobile Communications

Transmitter

4

3

2

1

3

2
1

2

3

4

4

Receiver

Delay profile

0 t1 t2 t3

Delayed waves

Normalized time

Direct wave

Figure 2.4 The configuration of multipath fading channel.



delayed by using the input parameters. Next, Rayleigh fading is added to the
delayed signals. Only the number of delayed waves set in the parameter repeats
this process. All are added afterwards. As a result, the output signal taken from
the multipath Rayleigh fading is obtained.

One problem exists in this case: Generally speaking, the distribution of
Rayleigh must be independent for each delay time. However, in this simula-
tion, the distributions are the same, because fading waveforms of all transmis-
sion paths are generated by a function. This characteristic is shown in Figure
2.6. Therefore, the technique that let the fading in each delay time generate
independently is needed.

There are various methods for generating an independently fading delay
time, and here, the fading counter method is shown as an example. A fading
counter gives the start time of fading generation to a fading generator such as
fade.m.

Figure 2.6 shows a fluctuated signal generated by a fading generator. In
the simulation, we use a fading generator; therefore, there is only one generated
waveform of fading. If the fading generators for all direct and delayed waves are
started simultaneously by setting fading counters for both waves the same, all
fading waveforms are the same as in Figure 2.6. However, if we give different

General Definition of Simulation Tools 57

For delayed wave #j

Shift of input data

by delayed time

Fade for the shifted

signal by subfunction

j the number of

delayed wave

=

end

y

j j 1= +

Input parameters

Input I ch data

Input Q ch data

Delayed time

Signal power of delayed waves

Time resolution

Simulation time in one simulation

Fading counter

: idata

: qdata

: itau

: dlvl

: tstp

: nsamp

: itn

Output Ich data: iout

Output Qch data: qout

Output data

n

Start 0j =

Figure 2.5 The flowchart to obtain the Rayleigh fading channel.



start times of fading generation to all direct and delayed waves by setting the
fading counters differently, as shown in Figure 2.7, the waveforms of the gener-
ated fadings in each propagation path will be different. Therefore, we can simu-
late an independently distributed Rayleigh fading environment.

58 Simulation and Software Radio for Mobile Communications

Signal fluctuation
by a fading simulator

Time

Start time to generate a
direct and a delayed wave

(a)

Time

Time

(b)

Figure 2.6 Signal fluctuation by a fading simulator when the start time to generate a direct

and a delayed wave is the same: (a) generated signal fluctuation for a direct

wave and (b) generated signal fluctuation for a delayed wave.



For this sefade.m, shown in Program 2.6, we use the evaluation program
shown in Program 2.8. The initial value of the fading counter is given in this
evaluation program. The size of the vector of this fading counter is equal to the
size of the vector that expresses the delay time of the delayed wave and the size
of the vector that shows the relative power level of the delayed wave. Then, the

General Definition of Simulation Tools 59

Signal fluctuation
by a fading simulator

Start time to generate
a direct wave

Time

(a)

(b)

Time

Time

Start time to generate
a delayed wave

Figure 2.7 Signal fluctuation by a fading simulator when the start time to generate a direct

and a delayed wave is different: (a) generated signal fluctuation for a direct

wave and (b) generated signal fluctuation for a delayed wave.



Rayleigh fading is independently formed in each delay time, by setting the
counter adaptively.

The fading counter is updated after each simulation loop by adding a
value, itnd0, corresponding to the simulation time to it. One hundred points
are added after each simulation loop in a case of a minimum time resolution of
0.5 ms and an observation time of 50 ms. The added value is called the update
time. The update time can be adjusted to reduce the simulation time. Figure
2.8 shows the simulated signal levels caused by a fading when the update time is
equal to the observation time [Figure 2.8(a)] and when the update time is larger
than the observation time [Figure 2.8(b)]. When the update time is equal to the
observation time, we can evaluate a transmission performance under a
continuous-changed signal level. However, it takes a long time to stabilize
the simulated performance, because the distribution of the signal fluctuation
becomes Rayleigh by many simulation loops. On the other hand, when the
update time is larger than the observation time, we can evaluate the trans-
mission performance under Rayleigh fading with a small number of simulation
loops as shown in Figure 2.8(b). However, the simulation result may not be

60 Simulation and Software Radio for Mobile Communications

Update
time

Observation
time

Start point
for loop 1

for
loop 2

for
loop 4

for
loop 6

for
loop 8

for
loop 10

for
loop 12

Fading counter

(a)

Update
time

Observation
time

Start point
for loop 1

Start point
for loop 2

Start point
for loop 3

Start point
for loop 4

Start point
for loop 5

Fading counter

(b)

Figure 2.8 Relationship between the observation time and the update time: (a) observation

time = update time and (b) observation time < update time.



precise. We therefore had better increase the update time when we check the
transmission performance briefly. This multipath fading simulator will be used
in the rest of the discussions in this book.

2.5 Conclusion

This chapter introduced the simulation language that will be used throughout
this book. Using the simulation language, we created several general-purpose
functions used frequently that will be employed in subsequent chapters. Chap-
ter 3�s method for simulating a mobile communication system is based on the
discussions and tutorials of this chapter.

References

[1] MathWorks Inc., �MATLAB Using MATLAB.�

[2] Proakis, J. G., Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.

[3] Jakes, W. C., Microwave Mobile Communications, New York: IEEE Press, 1994.

[4] Sampei, S., Applications of Digital Wireless Technologies to Global Wireless Communica-
tions, Upper Saddle River, NJ: Prentice Hall, 1997.

General Definition of Simulation Tools 61



Appendix 2A

Program 2.1

% Program 2-1
%
% calculate average
%
% Programmed by H. Harada
%

function outdata = mvalue(indata)

%*********************** variables **********************
% indata : Input data
%********************************************************

outdata=sum(indata)/length(indata);

% ********************* end of file *********************

Program 2.2

% Program 2-2
% disper.m
%
% calculate dispersion and standard deviation
%
% Programmed by H. Harada
%

function [sigma2, sigma]=disper(indata)

%*********************** variables **********************
% indata : Input data
% sigma2 : dispersion
% signa : standard deviation
%********************************************************

% calculate average value
mvalue= sum(indata)/length(indata);

% calculate square average
sqmean= sum(indata.^2)/length(indata);
% calculate dispersion
sigma2=sqmean-mvalue^2;

% calculate standard deviation
sigma=sqrt(sigma2);

%******************** end of file *********************

62 Simulation and Software Radio for Mobile Communications



Program 2.3

% Program 2-3
% main.m
%
% calculate mean, dispersion and standard deviation for
% the vector data
%
% Programmed by H. Harada
%

data=rand(1,20);
mvalue2=mvalue(data);
[sigma2, sigma]= disper(data);
fprintf( ‘meanvalue = %f \n’,mvalue2);
fprintf( ‘dispersion = %f \n’, sigma2);
fprintf( ‘standard deviation=%f \n’,sigma);

%******************** end of file *********************

Program 2.4

% Program 2-4
% comb.m
%
% Generate additive white gaussian noise
%
% Programmed by H. Harada
%

function [iout,qout] = comb (idata,qdata,attn)

%*********************** variables ********************
% idata : input Ich data
% qdata : input Qch data
% iout output Ich data
% qout output Qch data
% attn : attenuation level caused by Eb/No or C/N
%******************************************************

iout = randn(1,length(idata)).*attn;
qout = randn(1,length(qdata)).*attn;

iout = iout+idata(1:length(idata));
qout = qout+qdata(1:length(qdata));

%******************** end of file *********************

General Definition of Simulation Tools 63



Program 2.5

% Program 2-5
% fade.m
%
% Generate Rayleigh fading
%
% Programmed by H. Harada

function [iout,qout,ramp,rcos,rsin]=fade(idata,qdata,...
nsamp,tstp,fd,no,counter,flat)

%********************** variables *********************
% idata : input Ich data
% qdata : input Qch data
% iout : output Ich data
% qout : output Qch data
% ramp : Amplitude contaminated by fading
% rcos : Cosine value contaminated by fading
% rsin : Cosine value contaminated by fading
% nsamp : Number of samples to be simulated
% tstp : Minimum time resolution
% fd : maximum doppler frequency
% no : number of waves in order to generate fading
% counter : fading counter
% flat : flat fading or not

% (1-flat (only amplitude is fluctuated),0-normal
% (phase and amplitude are fluctutated))
%******************************************************

if fd ~= 0.0
ac0 = sqrt(1.0 ./ (2.0.*(no + 1)));

% power normalized constant(ich)
as0 = sqrt(1.0 ./ (2.0.*no));

% power normalized constant(qch)
ic0 = counter;

% fading counter

pai = 3.14159265;
wm = 2.0.*pai.*fd;
n = 4.*no + 2;
ts = tstp;
wmts = wm.*ts;
paino = pai./no;

xc=zeros(1,nsamp);
xs=zeros(1,nsamp);
ic=[1:nsamp]+ic0;

for nn = 1: no
cwn = cos( cos(2.0.*pai.*nn./n).*ic.*wmts );
xc = xc + cos(paino.*nn).*cwn;

64 Simulation and Software Radio for Mobile Communications



xs = xs + sin(paino.*nn).*cwn;
end

cwmt = sqrt(2.0).*cos(ic.*wmts);
xc = (2.0.*xc + cwmt).*ac0;
xs = 2.0.*xs.*as0;

ramp=sqrt(xc.^2+xs.^2);
rcos=xc./ramp;
rsin=xs./ramp;

if flat ==1
iout = sqrt(xc.^2+xs.^2).*idata(1:nsamp);

% output signal(ich)
qout = sqrt(xc.^2+xs.^2).*qdata(1:nsamp);

% output signal(qch)

else
iout = xc.*idata(1:nsamp) - xs.*qdata(1:nsamp);

% output signal(ich)
qout = xs.*idata(1:nsamp) + xc.*qdata(1:nsamp);

% output signal(qch)
end

else
iout=idata;
qout=qdata;

end

%********************* end of file ********************

Program 2.6

% Program 2-6
% sefade.m
%
% This function generates frequency selecting fading...
%
% Programmed by H. Harada
%

function[iout,qout,ramp,rcos,rsin]=sefade(idata,qdata,
itau,dlvl,th,n0,itn,n1,nsamp,tstp,fd,flat)

%********************** variables *********************
% idata input Ich data
% qdata input Qch data
% iout output Ich data
% qout output Qch data
% ramp : Amplitude contaminated by fading
% rcos : Cosine value contaminated by fading
% rsin : Cosine value contaminated by fading

General Definition of Simulation Tools 65



% itau : Delay time for each multipath fading
% dlvl : Attenuation level for each multipath fading
% th : Initialized phase for each multipath fading
% n0 : Number of waves in order to generate each
% multipath fading
% itn : Fading counter for each multipath fading
% n1 : Number of summation for direct and delayed
% waves
% nsamp : Total number of symbols
% tstp : Minimum time resolution
% fd : Maximum doppler frequency
% flat flat fading or not
% (1-flat (only amplitude is fluctuated),0-normal(phase
% and amplitude are fluctuated))
%******************************************************

iout = zeros(1,nsamp);
qout = zeros(1,nsamp);

total_attn = sum(10 .^( -1.0 .* dlvl ./ 10.0));

for k = 1 : n1

atts = 10.^( -0.05 .* dlvl(k));
if dlvl(k) = 40.0

atts = 0.0;
end

theta = th(k) .* pi ./ 180.0;

[itmp,qtmp] = delay (idata,qdata,nsamp,itau(k));
[itmp3,qtmp3,ramp,rcos,rsin] = fade (itmp,qtmp,...

nsamp,tstp,fd,n0(k),itn(k),flat);

iout = iout + atts .* itmp3 ./ sqrt(total_attn);
qout = qout + atts .* qtmp3 ./ sqrt(total_attn);

end

%******************** end of file *********************

Program 2.7

% Program 2-7
% delay.m
% Gives delay to input signal%
% Programmed by H. Harada
%
function [iout,qout] = delay(idata,qdata,nsamp,idel )

%********************** variables *********************

66 Simulation and Software Radio for Mobile Communications



% idata input Ich data
% qdata input Qch data
% iout output Ich data
% qout output Qch data
% nsamp Number of samples to be simulated
% idel Number of samples to be delayed
%******************************************************

iout=zeros(1,nsamp);
qout=zeros(1,nsamp);

if idel ~= 0
iout(1:idel) = zeros(1,idel);
qout(1:idel) = zeros(1,idel);

end

iout(idel+1:nsamp) = idata(1:nsamp-idel);
qout(idel+1:nsamp) = qdata(1:nsamp-idel);

%******************** end of file *********************

Program 2.8

% Program 2-8
% bpskev.m
%
% Evaluation program of fading counter based BPSK
% transmission scheme
% This program is one of example simulations that
% include fading
% As for the explanation, you can check Chapter 3.
%
% Programmed by H. Harada
%

%****************** Preparation part ******************

% Time resolution
% In this case, 0.5us is used as an example
tstp = 0.5*1.0e-6;

% Symbol rate
% In this case we assume that each sample time is equal
% to 1/(symbol rate).
% In this case 200 kbps is considered.
sr = 1/tstp ;

% Arrival time for each multipath normalized by tstp
% In this simulation four-path Rayleigh fading is
% considered
itau = [0, 2, 3, 4];

General Definition of Simulation Tools 67



% Mean power for each multipath normalized by direct
% wave.
% In this simulation four-path Rayleigh fading is
% considered.
% This means that the second path is -10dB less than the
% first direct path.
dlvl = [0 ,10 ,20 ,25];

% Number of waves to generate fading for each multipath.
% In this simulation four-path Rayleigh fading is
% considered.
% In normal case, more than six waves are needed to
% generate Rayleigh fading
n0=[6,7,6,7];

% Initial phase of delayed wave
% In this simulation four-path Rayleigh fading is
% considered.
th1=[0.0,0.0,0.0,0.0];

% Number of fading counter to skip (50us/0.5us)
% In this case we assume to skip 50 us
itnd0=100*2;

% Initial value of fading counter
% In this simulation four-path Rayleigh fading is
% considered.
% Therefore four fading counters are needed.

itnd1=[1000,2000, 3000, 4000];

% Number of direct wave + Number of delayed wave
% In this simulation four-path Rayleigh fading is
% considered
now1=4;

% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=200;

% Number of data to simulate one loop
% In this case 100 data are assumed to consider
nd = 100;

% You can decide two mode to simulate fading by changing
% the variable flat
% flat : flat fading or not
% (1-flat (only amplitude is fluctuated),0-normal(phase
% and amplitude are fluctuated))
flat =1;

%******************* START CALCULATION ****************

68 Simulation and Software Radio for Mobile Communications



nloop = 1000; % Number of simulation loop
noe = 0; % Initial number of errors
nod = 0; % Initial number of transmitted data
for iii=1:nloop

%******************* Data generation ******************

data=rand(1,nd) > 0.5; % rand: built in function

%******************* BPSK modulation ******************

data1=data.*2-1; % Change data from 1 or 0 notation
% to +1 or -1 notation

%******************* Fading channel *******************

% Generated data are fed into a fading simulator
% In the case of BPSK, only Ich data are fed into
% fading counter

[data6,data7]=sefade(data1,zeros(1,length(data1)),...
itau,dlvl,th1,n0,itnd1,now1,length(data1),tstp,...
fd,flat);

% Updata fading counter
itnd1 = itnd1+ itnd0;

%***************** BPSK Demodulation ******************

demodata=data6 > 0;

%***************** Bit Error Rate (BER) ***************

% count number of instantaneous errors
noe2=sum(abs(data-demodata));

% count number of instantaneous transmitted data
nod2=length(data); % length: built in function

fprintf(‘%d\t%e\n’,iii,noe2/nod2);

noe=noe+noe2;
nod=nod+nod2;

end % for iii=1:nloop

%******************* Output result ********************

%ber = noe/nod;
fprintf(‘%d\t%d\t%e\n’,noe,nod,noe/nod);

% ******************** end of file ********************

General Definition of Simulation Tools 69


















































































































































































































































































































































































































	000.pdf
	029.pdf
	2  General Definition of Simulation Tools  29
	2.1  Introduction  29
	2.2  Basic Tutorial  29
	2.3  Data Generation and Bit Error Rate  48
	2.4  Definition of a Radio Communication Channel  50
	2.5  Conclusion  61
	References  61
	Appendix 2A—Programs  62






