Security, Authentication and Access Control for Mobile Communications

Vijaya Chandran Ramasami EECS 865

Overview

- Introduction.
- Requirements.
- Introduction to Cryptography.
- Common Techniques.
- GSM Security.
- 3GPP-UMTS Security.

Introduction

- Security
 - Implies the protection of "Subscriber" Assets.
- Authentication And Access Control
 - Implies the protection of "Network" Assets.

Security - Wired Vs Wireless

- Wireless Medium is a ubiquitous shared one.
 - Eaves-dropping cannot be prevented.
 - Presence of communication does not uniquely identify its originator.
 - Eaves-dropping cannot even be detected!

General Architecture of a Mobile Communication System

Security Requirements

- Requirements for End User Privacy.
 - Privacy of Call-Setup Information.
 - Privacy of Speech.
 - Privacy of Data.
 - Privacy of Location.
 - Privacy of User-ID.
 - Privacy of Financial Transactions.

Requirements (Contd...)

- Support for Roaming.
- Data Integrity.
- Theft of Service or Equipment.
 - "Cloning" of Equipment.
 - User-ID's and provisioning.
 - Equipment Identifiers.

Requirements (Contd...)

- Power/Bandwidth/Computational Usage.
 - Limited Computational Complexity.
 - Limited Outputs.
 - Limited number of transactions (for Authentication).
- System Lifetime.
- Export Control Requirements.
 - Export License Approval.
- Law Enforcement Requirements.

Cryptography

- A Cryptographic subsystem is required to satisfy the security requirements.
- Two major categories:
 - Secret Key Systems.
 - Public Key Systems.

Secret Key Systems

A Single (Shared) Secret Key between entities

Public Key Systems

- Two Keys
 - Public Key -> known to everyone.
 - Private Key -> known only to the respective entity.

Authentication (Secret Key Systems)

Challenge Response Mechanism.

Authentication (Public Key Systems)

No need to share secret Keys with others.

Digital Signatures

Used for Verification Purposes.

Commonly Used Techniques

- Authentication and Key Agreement (AKA).
 - Provisioning.
 - Roaming Support.
 - Verification and Cipher Key Generation.
- Encryption for Privacy.
 - Encryption of user traffic using the previously generated cipher key.

Secret Key Systems - Provisioning

GSM - SIM (Subscriber Identity Module) cards. (Ki - Secret Key).

Secret Key Systems - Provisioning

USDC - "A" Key and SSD (Shared Secret Data).

Secret Key Systems - Roaming Support

Verification and Session Key Establishment

- Challenge Response Mechanism.
- USDC
 - 32 bit broadcast global challenge.
 - Mobile (response + call-setup information).
 - Verification by Serving Network using SSD.
 - Cipher Key Generation.

Public Key Systems

GSM Security

GSM Security...

- SIM Subscriber Identity Module.
 - Permanent IMSI, Ki, A3, A8.
 - Temporary TMSI, LAI, Kc.
- HLR Home Location Register.
 - Subscriber specific parameters (Ki, IMSI, ...).
- AuC Authentication Center.
 - Calculation of Authentication Related Parameters.
- VLR Visitor Location Register.
 - Roaming Users. (TMSI, Kx, LAI, ...)
- EIR Equipment Identity Register.

GSM Security Features

- Subscriber Identity Confidentiality.
 - Protection of subscriber ID.
- Subscriber Identity Authentication.
 - Protection of Network Assets from unauthorized use.
- User Data Confidentiality on Physical Connection.
 - Protection of User Speech data.
- Connectionless User Data Confidentiality.
 - Protection of L3 connectionless User data.
- Signaling Information Element Confidentiality.
 - Protects sensitive signaling information.

Subscriber Identity Confidentiality

- Implemented using Temporary Identities (TMSI).
- Prevents long-term impersonation.
- TMSI local significance only.
- (TMSI, LAI) identifies a mobile.
- TMSI allocated during each location update.
- HLR must be notified of the update.

Subscriber Identity Authentication

- Secret-Key Authentication (Challenge-Response Mechanism)
- HLR -> Authentication Vectors -> VLR.
- Authentication Vector (Triplet)
 - Challenge (RAND).
 - Response (SRES).
 - Crypto-Key (Kc).

2G (GSM) Security Weaknesses

- Attacks using a false BTS is possible.
- Transmission of cipher keys in clear within networks.
- Absence of data integrity.
- Lack of scalability and flexibility.

3GPP-UMTS Security

3G Security Architecture

- Network Access Security.
- Network Domain Security.
- User Domain Security.
- Application Domain Security.
- Visibility and Configurability of Security.

Network Access Security

- User Identity Confidentiality.
 - Using TMUIs (like GSM).
- Authentication of Users.
 - Additional paramter 'AUTN' to verify the BTS.
- User Data Confidentiality.
 - Cipher Key (Kc).
- Data Integrity
 - Using a Integrity Key (IK) and an integrity Algorithm.
- Mobile Equipment Identification.
 - IMEI (International Mobile Equipment Identifier).

3G Security Architecture...

- Network Domain Security.
 - 3-Layered Security Architecture.
 - Provides for,
 - Network element authentication.
 - Signaling Data Confidentiality (between Networks).
 - Data Integrity.
 - Fraud Information Gathering System.
- User Domain Security.
 - Secret shared between User and USIM.
 - Secret shared between Terminal and USIM.

3G Security Architecture ...

- Application Domain Security
 - USIM Application Toolkit.
 - Provides for Application level authentication.
- Security Visibility and Configurability.
 - Indication of Security features to the user.
 - Configuration of Security.
 - Enabling/Diabling User-USIM Authentication.
 - Accepting/Rejecting incoming non-ciphered calls.
 - Setting up/not Setting up non-ciphered calls.
 - Accepting/Rejecting the use of certain ciphering algorithms.

Conclusion

- The issue of Security in Wireless Networks has been addressed right from its infancy.
- Security in Public Wired Networks is just a patch-work effect to uncover discovered security holes.
- Conclusion ??
 - In the near future, Wired Networks can never be as secure as Wireless Networks!!

References/Additional Reading

- Charlie Khaufman, Radia Pearlman, Mike Speciner, "Network Security -PRIVATE Communication in a PUBLIC World", Prentice Hall.
- IEEE Personal Communications Magazine, Aug 1995 issue.
- GSM Documents (http://webapp.etsi.org/pda/QueryForm.asp)
 - GSM 02.09 Security Aspects.
 - GSM 03.20 Security Related Network Functions.
 - GSM 02.17 SIM.
- 3GPP Documents (http://www.3gpp.org/ftp/Specs/December_99/)
 - Overview Harri Holma, Antti Toskala, "WCDMA over UMTS", John Wiley & Sons
 - 3G TS 33.102 Security Architecture.
 - 3G TS 21.133 Security Threats and Requirements.
 - 3G TS 33.120 Security Principles and Objectives.
 - 3G TS 33 900 A Guide to 3rd Generation Security.

Any Questions?

