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Preface

The creation of a truly autonomous and intelligent system — one that can sense,
learn from, and interact with its environment, one that can integrate seamlessly
into the day-to-day lives of humans — has ever been the motivating factor
behind the huge body of work on artificial intelligence, control theory and
robotics, autonomous (land, sea, and air) vehicles, and numerous other discip-
lines. The technology involved is highly complex and multidisciplinary, posing
immense challenges for researchers at both the module and system integra-
tion levels. Despite the innumerable hurdles, the research community has, as a
whole, made great progress in recent years. This is evidenced by technological
leaps and innovations in the areas of sensing and sensor fusion, modeling and
control, map building and path planning, artificial intelligence and decision
making, and system architecture design, spurred on by advances in related
areas of communications, machine processing, networking, and information
technology.

Autonomous systems are gradually becoming a part of our way of life,
whether we consciously perceive it or not. The increased use of intelligent
robotic systems in current indoor and outdoor applications bears testimony
to the efforts made by researchers on all fronts. Mobile systems have greater
autonomy than before, and new applications abound — ranging from fact-
ory transport systems, airport transport systems, road/vehicular systems, to
military applications, automated patrol systems, homeland security surveil-
lance, and rescue operations. While most conventional autonomous systems
are self-contained in the sense that all their sensors, actuators, and computers
are on board, it is envisioned that more and more will evolve to become open net-
worked systems with distributed processing power, sensors (e.g., GPS, cameras,
microphones, and landmarks), and actuators.

It is generally agreed that an autonomous system consists primarily of the
following four distinct yet interconnected modules:

(i) Sensors and Sensor Fusion
(ii) Modeling and Control

(iii) Map Building and Path Planning
(iv) Decision Making and Autonomy

These modules are integrated and influenced by the system architecture design
for different applications.

vii
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viii Preface

This edited book tries for the first time to provide a comprehensive treatment
of autonomous mobile systems, ranging from related fundamental technical
issues to practical system integration and applications. The chapters are writ-
ten by some of the leading researchers and practitioners working in this field
today. Readers will be presented with a complete picture of autonomous mobile
systems at the systems level, and will also gain a better understanding of the
technological and theoretical aspects involved within each module that com-
poses the overall system. Five distinct parts of the book, each consisting of
several chapters, emphasize the different aspects of autonomous mobile sys-
tems, starting from sensors and control, and gradually moving up the cognitive
ladder to planning and decision making, finally ending with the integration of
the four modules in application case studies of autonomous systems.

chapters treat in detail the operation and uses of various sensors that are crucial
for the operation of autonomous systems. Sensors provide robots with the cap-
ability to perceive the world, and effective utilization is of utmost importance.
The chapters also consider various state-of-the art techniques for the fusion
and utilization of various sensing information for feature detection and pos-
ition estimation. Vision sensors, RADAR, GPS and INS, and landmarks are

themselves in the form amenable to analysis as holonomic systems, and the
importance of nonholonomic modeling and control is evident. The four chapters

these highly complicated systems, focusing on discontinuous control, unified
neural fuzzy control, adaptive control with actuator dynamics, and the control
of car-like vehicles for vehicle tracking maneuvers, respectively.

of autonomous systems. This builds on technologies in sensing and control to

discusses the specifics of building an accurate map of the environment, using
either single or multiple robots, with which localization and motion planning
can take place. Probabilistic motion planning as a robust and efficient planning

chapters in this part treat in detail the issues of representing knowledge, high
level planning, and coordination mechanisms that together define the cognitive
capabilities of autonomous systems. These issues are crucial for the devel-
opment of intelligent mobile systems that are able to reason and manipulate

© 2006 by Taylor & Francis Group, LLC

discussed in detail in Chapters 1 to 4 respectively.

of this part, Chapters 5 to 8, thus present novel contributions to the control of

further improve the intelligence and autonomy of mobile robots. Chapter 9

scheme is examined in Chapter 10. Action coordination and formation control

available information. Specifically, Chapters 12 to 14 present topics pertaining

Modeling and control issues concerning nonholonomic systems are dis-

of multiple robots are investigated in Chapter 11.
Decision making and autonomy, the highest levels in the hierarchy of

The first part of the book is dedicated to sensors and sensor fusion. The four

cussed in the second part of the book. Real-world systems seldom present

The third part of the book covers the map building and path planning aspects

abstraction, are examined in detail in the fourth part of the book. The three
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Preface ix

to knowledge representation and decision making, algorithms for planning
under uncertainties, and the behavior-based coordination of multiple robots.

In the final part of the book, we present a collection of chapters that deal
with the system integration and engineering aspects of large-scale autonom-
ous systems. These are usually considered as necessary steps in making new
technologies operational and are relatively neglected in the academic com-
munity. However, there is no doubt that system integration plays a vital role
in the successful development and deployment of autonomous mobile systems.

hierarchical system architecture that encompasses and links the various (higher
and lower level) components to form an intelligent, complex system.

We sincerely hope that this book will provide the reader with a cohesive

truly intelligent autonomous robots. Although the treatment of the topics is
by no means exhaustive, we hope to give the readers a broad-enough view of
the various aspects involved in the development of autonomous systems. The
authors have, however, provided a splendid list of references at the end of each
chapter, and interested readers are encouraged to refer to these references for
more information. This book represents the amalgamation of the truly excellent
work and effort of all the contributing authors, and could not have come to
fruition without their contributions. Finally, we are also immensely grateful
to Marsha Pronin, Michael Slaughter, and all others at CRC Press (Taylor &
Francis Group) for their efforts in making this project a success.

© 2006 by Taylor & Francis Group, LLC

Chapters 15 and 16 examine the issues involved in the design of autonomous

picture of the diverse, yet intimately related, issues involved in bringing about

commercial robots and automotive systems, respectively. Chapter 17 presents a
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Abstract

As technology advances, it has been envisioned that in the very near future,
robotic systems will become part and parcel of our everyday lives. Even at
the current stage of development, semi-autonomous or fully automated robots
are already indispensable in a staggering number of applications. To bring
forth a generation of truly autonomous and intelligent robotic systems that will
meld effortlessly into the human society involves research and development on
several levels, from robot perception, to control, to abstract reasoning.

This book tries for the first time to provide a comprehensive treatment
of autonomous mobile systems, ranging from fundamental technical issues to
practical system integration and applications. The chapters are written by some
of the leading researchers and practitioners working in this field today. Readers
will be presented with a coherent picture of autonomous mobile systems at the
systems level, and will also gain a better understanding of the technological
and theoretical aspects involved within each module that composes the overall
system. Five distinct parts of the book, each consisting of several chapters,
emphasize the different aspects of autonomous mobile systems, starting from
sensors and control, and gradually moving up the cognitive ladder to planning
and decision making, finally ending with the integration of the four modules in
application case studies of autonomous systems.

This book is primarily intended for researchers, engineers, and graduate
students involved in all aspects of autonomous mobile robot systems design
and development. Undergraduate students may also find the book useful, as a
complementary reading, in providing a general outlook of the various issues
and levels involved in autonomous robotic system design.

xvii
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I
Sensors and Sensor Fusion

Mobile robots participate in meaningful and intelligent interactions with other
entities — inanimate objects, human users, or other robots — through sensing
and perception. Sensing capabilities are tightly linked to the ability to perceive,
without which sensor data will only be a collection of meaningless figures.
Sensors are crucial to the operation of autonomous mobile robots in unknown
and dynamic environments where it is impossible to have complete a priori
information that can be given to the robots before operation.

In biological systems, visual sensing offers a rich source of information to
individuals, which in turn use such information for navigation, deliberation,
and planning. The same may be said of autonomous mobile robotic systems,
where vision has become a standard sensory tool on robots. This is especially
so with the advancement of image processing techniques, which facilitates the
extraction of even more useful information from images captured from mounted
still or moving cameras. The first chapter of this part therefore, focuses on
the use of visual sensors for guidance and navigation of unmanned vehicles.
This chapter starts with an analysis of the various requirements that the use of
unmanned vehicles poses to the visual guidance equipment. This is followed by
an analysis of the characteristics and limitations of visual perception hardware,
providing readers with an understanding of the physical constraints that must be
considered in the design of guidance systems. Various techniques currently in
use for road and vehicle following, and for obstacle detection are then reviewed.
With the wealth of information afforded by various visual sensors, sensor fusion
techniques play an important role in exploiting the available information to

1
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2 Autonomous Mobile Robots

further improve the perceptual capabilities of systems. This issue is discussed,
with examples on the fusion of image data with LADAR information. The
chapter concludes with a discussion on the open problems and challenges in
the area of visual perception.

Where visual sensing is insufficient, other sensors serve as additional
sources of information, and are equally important in improving the naviga-
tional and perceptual capabilities of autonomous robots. The use of millimeter
wave RADAR for performing feature detection and navigation is treated in
detail in the second chapter of this part. Millimeter wave RADAR is capable of
providing high-fidelity range information when vision sensors fail under poor
visibility conditions, and is therefore, a useful tool for robots to use in perceiving
their environment. The chapter first deals with the analysis and characterization
of noise affecting the measurements of millimeter wave RADAR. A method is
then proposed for the accurate prediction of range spectra. This is followed by
the description of a robust algorithm, based on target presence probability, to
improve feature detection in highly cluttered environments.

Aside from providing robots with a view of the environment it is immersed
in, certain sensors also give robots the ability to analyze and evaluate its
own state, namely, its position. Augmentation of such information with those
garnered from environmental perception further provides robots with a clearer
picture of the condition of its environment and the robot’s own role within
it. While visual perception may be used for localization, the use of internal
and external sensors, like the Inertial Navigation System (INS) and the Global
Positioning System (GPS), allows refinement of estimated values. The third
chapter of this part treats, in detail, the use of both INS and GPS for position
estimation. This chapter first provides a comprehensive review of the Extended
Kalman Filter (EKF), as well as the basics of GPS and INS. Detailed treat-
ment of the use of the EKF in fusing measurements from GPS and INS is
then provided, followed by a discussion of various approaches that have been
proposed for the fusion of GPS and INS.

In addition to internal and external explicit measurements, landmarks in the
environment may also be utilized by the robots to get a sense of where they
are. This may be done through triangulation techniques, which are described
in the final chapter of this part. Recognition of landmarks may be performed
by the visual sensors, and localization is achieved through the association of
landmarks with those in internal maps, thereby providing position estimates.
The chapter provides descriptions and experimental results of several different
techniques for landmark-based position estimation. Different landmarks are
used, ranging from laser beacons to visually distinct landmarks, to moveable
landmarks mounted on robots for multi-robot localization.

This part of the book aims to provide readers with an understanding of the
theoretical and practical issues involved in the use of sensors, and the important
role sensors play in determining (and limiting) the degree of autonomy mobile
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Sensors and Sensor Fusion 3

robots possess. These sensors allow robots to obtain a basic set of observations
upon which controllers and higher level decision-making mechanisms can act
upon, thus forming an indispensable link in the chain of modules that together
constitutes an intelligent, autonomous robotic system.
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1.1 INTRODUCTION

1.1.1 Context

Current efforts in the research and development of visual guidance technology
for autonomous vehicles fit into two major categories: unmanned ground
vehicles (UGVs) and intelligent transport systems (ITSs). UGVs are primarily
concerned with off-road navigation and terrain mapping whereas ITS (or auto-
mated highway systems) research is a much broader area concerned with safer
and more efficient transport in structured or urban settings. The focus of this
chapter is on visual guidance and therefore will not dwell on the definitions of
autonomous vehicles other than to examine how they set the following roles of
vision systems:

• Detection and following of a road
• Detection of obstacles
• Detection and tracking of other vehicles
• Detection and identification of landmarks

These four tasks are relevant to both UGV and ITS applications, although
the environments are quite different. Our experience is in the development
and testing of UGVs and so we concentrate on these specific problems in this
chapter. We refer to achievements in structured settings, such as road-following,
as the underlying principles are similar, and also because they are a good starting
point when facing complexity of autonomy in open terrain.

This introductory section continues with an examination of the expectations
of UGVs as laid out by the Committee on Army Unmanned Ground Vehicle

of the key technologies for visual guidance: two-dimensional (2D) passive ima-
ging and active scanning. The aim is to highlight the differences between various

the  main  content of this chapter; here  we present a visual guidance system (VGS)
and its modules for guidance and obstacle detection. Descriptions concentrate
on pragmatic approaches adopted in light of the highly complex and uncer-
tain tasks which stretch the physical limitations of sensory systems. Examples

© 2006 by Taylor & Francis Group, LLC

Technology in its 2002 road map [1]. Next, in Section 1.2, we give an overview

options with regard to our task-specific requirements. Section 1.3 constitutes
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are given from stereo vision and image–ladar integration. The chapter ends

of visual sensors in meeting the key challenges for autonomy in unstructured
settings: terrain classification and localization/mapping.

1.1.2 Classes of UGV

The motivation or driving force behind UGV research is for military application.
This fact is made clear by examining the sources of funding behind prominent
research projects. The DARPA Grand Challenge is an immediate example at

an attempt to understand what a UGV is and how computer vision can play
a part in it, because the requirements are well defined. Another reason is that
as we shall see the scope and classification of UGVs from the U.S. military
is still quite broad and, therefore, encompasses many of the issues related to
autonomous vehicle technology. A third reason is that the requirements for
survivability in hostile environments are explicit, and therefore developers are
forced to face the toughest problems that will drive and test the efficacy of
visual perception research. These set the much needed benchmarks against
which we can assess performance and identify the most pressing problems.
The definitions of various UGVs and reviews of state-of-the-art are available in
the aforementioned road map [1]. This document is a valuable source for anyone
involved in autonomous vehicle research and development because the future
requirements and capability gaps are clearly set out. The report categorizes four
classes of vehicles with increasing autonomy and perception requirements:

Teleoperated Ground Vehicle (TGV). Sensors enable an operator to visualize
location and movement. No machine cognition is needed, but experience has
shown that remote driving is a difficult task and augmentation of views with
some  of the  functionality  of automatic  vision          would  help  the  operator. Fong [3] is
a good source for the reader interested in vehicle teleoperation and collaborative
control.

Semi-Autonomous Preceder–Follower (SAP/F). These devices are envis-
aged for logistics and equipment carrying. They require advanced navigation
capability to minimize operator interaction, for example, the ability to select a
traversable path in A-to-B mobility.

Platform-Centric AGV (PC-AGV). This is a system that has the autonomy
to complete a task. In addition to simple mobility, the system must include extra
terrain reasoning for survivability and self-defense.

Network-Centric AGV (NC-AGV). This refers to systems that operate as
nodes in tactical warfare. Their perception needs are similar to that of PC-AGVs
but with better cognition so that, for example, potential attackers can be
distinguished.

© 2006 by Taylor & Francis Group, LLC

hand [2]. An examination of military requirements is a good starting point, in

by returning to the road map in Section 1.4 and examining the potential role
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TABLE 1.1
Classes of UGV

Class kph Capability gaps Perception tasks TRL 6

Searcher (TGV) All-weather sensors Not applicable 2006
Donkey (SAP/F) 40 Localization and mapping

algorithms
Detect static obstacles,

traversable paths
2009

Wingman
(PC-AGV)

100 Long-range sensors and
sensors for classifying
vegetation

Terrain assessment to detect
potential cover

2015

Hunter-killer
(NC-AGV)

120 Multiple sensors and
fusion

Identification of enemy
forces, situation awareness

2025

The road map identifies perception as the priority area for development and
defines increasing levels of “technology readiness.” Some of the require-
ments and capability gaps for the four classes are summarized and presen-
ted in Table 1.1. Technology readiness level 6 (TRL 6) is defined as the
point when a technology component has been demonstrated in a relevant
environment.

These roles range from the rather dumb donkey-type device used to carry
equipment to autonomous lethal systems making tactical decisions in open
country. It must be remembered, as exemplified in the inaugural Grand
Challenge, that the technology readiness levels of most research is a long
way from meeting the most simple of these requirements. The Challenge is
equivalent to a simple A-to-B mobility task for the SAP/F class of UGVs. On
a more positive note, the complexity of the Grand Challenge should not be
understated, and many past research programs, such as Demo III, have demon-
strated impressive capability. Such challenges, with clearly defined objectives,
are essential for making progress as they bring critical problems to the fore and
provide a common benchmark for evaluating technology.

1.2 VISUAL SENSING TECHNOLOGY

1.2.1 Visual Sensors

We first distinguish between passive and active sensor systems: A passive sensor
system relies upon ambient radiation, whereas an active sensor system illumin-
ates the scene with radiation (often laser beams) and determines how this is
reflected by the surroundings. Active sensors offer a clear advantage in outdoor
applications; they are less sensitive to changes in ambient conditions. How-
ever, some applications preclude their use; they can be detected by the enemy

© 2006 by Taylor & Francis Group, LLC
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in military scenarios, or there may be too many conflicting sources in a civilian
setting. At this point we also highlight a distinction between the terms “act-
ive vision” and “active sensors.” Active vision refers to techniques in which
(passive) cameras are moved so that they can fixate on particular features [4].
These have applications in robot localization, terrain mapping, and driving in
cluttered environments.

1.2.1.1 Passive imaging

From the application and performance standpoint, our primary concern
is procuring hardware that will acquire good quality data for input to
guidance algorithms; so we now highlight some important considerations when
specifying a camera for passive imaging in outdoor environments.

The image sensor (CCD or CMOS). CMOS technology offers certain
advantages over the more familiar CCDs in that it allows direct access to indi-
vidual blocks of pixels much as would be done in reading computer memory.
This enables instantaneous viewing of regions of interest (ROI) without the
integration time, clocking, and shift registers of standard CCD sensors. A key
advantage of CMOS is that additional circuitry can be built into the silicon
which leads to improved functionality and performance: direct digital out-
put, reduced blooming, increased dynamic range, and so on. Dynamic range
becomes important when viewing outdoor scenes with varying illumination:
for example, mixed scenes of open ground and shadow.

Color or monochrome. Monochrome (B&W) cameras are widely used
in lane-following systems but color systems are often needed in off-road
(or country track) environments where there is poor contrast in detecting travers-
able terrain. Once we have captured a color image there are different methods
of representing the RGB components: for example, the RGB values can be
converted into hue, saturation, and intensity (HSI) [5]. The hue component of
a surface is effectively invariant to illumination levels which can be important
when segmenting images with areas of shadow [6,7].

circuit captured with an IR camera. The hot road surface is quite distinct as
are metallic features such as manhole covers and lampposts. Trees similarly
contrast well against the sky but in open country after rainfall, different types
of vegetation and ground surfaces exhibit poor contrast. The camera works on
a different transducer principle from the photosensors in CCD or CMOS chips.
Radiation from hot bodies is projected onto elements in an array that heat up,
and this temperature change is converted into an electrical signal. At present,
compared to visible light cameras, the resolution is reduced (e.g., 320 × 240
pixels) and the response is naturally slower. There are other problems to contend
with, such as calibration and drift of the sensor. IR cameras are expensive

© 2006 by Taylor & Francis Group, LLC

Infrared (IR). Figure 1.1 shows some views from our semi-urban scene test
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FIGURE 1.1 A selection of images captured with an IR camera. The temperature of sur-
faces gives an alternative and complementary method of scene classification compared
to standard imaging. Note the severe lens distortion.

and there are restrictions on their purchase. However, it is now possible to
install commercial night-vision systems on road vehicles: General Motors offers
a thermal imaging system with head-up display (HUD) as an option on the
Cadillac DeVille. The obvious application for IR cameras is in night driving but
they are useful in daylight too, as they offer an alternative (or complementary)
way of segmenting scenes based on temperature levels.

Catadioptric cameras. In recent years we have witnessed the increasing
use of catadioptric1 cameras. These devices, also referred to as omnidirec-
tional, are able to view a complete hemisphere with the use of a parabolic
mirror [8]. Practically, they work well in structured environments due to the
way straight lines project to circles. Bosse [9] uses them indoors and outdoors
and tracks the location of vanishing points in a structure from motion (SFM)
scheme.

1.2.1.2 Active sensors

A brief glimpse through robotics conference proceedings is enough to demon-
strate just how popular and useful laser scanning devices, such as the ubiquitous
SICK, are in mobile robotics. These devices are known as LADAR and are

1 Combining reflection and refraction; that is, a mirror and lens.
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FRANKL: “dk6033_c001” — 2006/3/31 — 16:42 — page 11 — #11

Visual Guidance for Autonomous Vehicles 11

available in 2D and 3D versions but the principles are essentially similar: a
laser beam is scanned within a certain region; if it reflects back to the sensor
off an obstacle, the time-of-flight (TOF) is measured.

2D scanning. The majority of devices used on mobile robots scan (pan)
through 180◦ in about 13 msec at an angular resolution of 1◦. Higher resolution
is obtained by slowing the scan, so at 0.25◦ resolution, the scan will take about
52 msec. The sensor thus measures both range and bearing {r, θ} of obstacles
in the half plane in front of it. On a moving vehicle the device can be inclined
at an angle to the direction of travel so that the plane sweeps out a volume as
the vehicle moves. It is common to use two devices: one pointing ahead to
detect obstacles at a distance (max. range∼80 m); and one inclined downward
to gather 3D data from the road, kerb, and nearby obstacles. Such devices are
popular because they work in most conditions and the information is easy to
process. The data is relatively sparse over a wide area and so is suitable for

in off-road applications, is caused by pitching of the vehicle on rough terrain:
this creates spurious data points as the sensor plane intersects the ground plane.
Outdoor feature extraction is still regarded as a very difficult task with 2D ladar
as the scan data does not have sufficient resolution, field-of-view (FOV), and
data rates [10].

3D scanning. To measure 3D data, the beam must be steered though
an additional axis (tilt) to capture spherical coordinates {r, θ ,φ: range, pan,
tilt}. There are many variations on how this can be achieved as an opto-
electromechanical system: rotating prisms, polygonal mirrors, or galvono-
metric scanners are common. Another consideration is the order of scan; one
option is to scan vertically and after each scan to increment the pan angle
to the next vertical column. As commercial 3D systems are very expensive,
many researchers augment commercial 2D devices with an extra axis, either by
deflecting the beam with an external mirror or by rotating the complete sensor
housing [11].

It is clear that whatever be the scanning method, it will take a protracted
length of time to acquire a dense 3D point cloud. High-resolution scans used
in construction and surveying can take between 20 and 90 min to complete a
single frame, compared to the 10 Hz required for a real-time navigation system
[12]. There is an inevitable compromise to be made between resolution and
frame rate with scanning devices. The next generation of ladars will incorporate
flash technology, in which a complete frame is acquired simultaneously on a
focal plane array (FPA). This requires that individual sensing elements on the
array incorporate timing circuitry. The current limitation of FLASH/FPA is the
number of pixels in the array, which means that the FOV is still small, but this
can be improved by panning and tilting of the sensor between subframes, and
then creating a composite image.

© 2006 by Taylor & Francis Group, LLC

applications such as localization and mapping (Section 1.4.2). A complication,
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In summary, ladar offers considerable advantages over passive imaging but
there remain many technical difficulties to be overcome before they can meet
the tough requirements for vehicle guidance. The advantages are:

• Unambiguous 3D measurement over wide FOV and distances
• Undiminished night-time performance and tolerance to adverse

weather conditions

The limitations are:

• Relatively high cost, bulky, and heavy systems
• Limited spatial resolution and low frame rates
• Acquisition of phantom points or multiple points at edges or

permeable surfaces
• Active systems may be unacceptable in certain applications

The important characteristics to consider, when selecting a ladar for a guid-
ance application, are: angular resolution, range accuracy, frame rate, and cost.
An excellent review of ladar technology and next generation requirements is
provided by Stone at NIST [12].

1.2.2 Modeling of Image Formation and Calibration

1.2.2.1 The ideal pinhole model

It is worthwhile to introduce the concept of projection and geometry and some
notation as this is used extensively in visual sensing techniques such as stereo
and structure from motion. Detail is kept to a minimum and the reader is referred
to standard texts on computer vision for more information [13–15]. The stand-
ard pinhole camera model is adopted, while keeping in mind the underlying
assumptions and that it is an ideal model. A point in 3D space {X̃ ∈ R3} pro-
jects to a point on the 2D image plane {x̃ ∈ R2} according to the following
equation:

x = PX: P ∈ R3×4 (1.1)

This equation is linear because we use homogeneous coordinates by aug-
menting the position vectors with a scalar (X = [X̃T 1]T ∈ R4) and likewise
the image point (x = [x y w]T ∈ R3: x̃ = x/w). A powerful and more natural
way of treating image formation is to consider the ray model as an example
of projective space. P is the projection matrix and encodes the position of the

© 2006 by Taylor & Francis Group, LLC
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camera and its intrinsic parameters. We can rewrite (1.1) as:

x = K[R T ]X̃: K ∈ R3×3, R ∈ SO(3), T ∈ R3 (1.2)

Internal (or intrinsic) parameters. These are contained in the calibration
matrix K, which can be parameterized by: focal length (f ), aspect ratio (α), skew
(s), and the location of the offset of the principal point in the image {u0, v0}.

K =



f s u0

0 αf v0

0 0 1


 (1.3)

External (or extrinsic) parameters. These are the orientation and position
of the camera with respect to the reference system: R and T in Equation 1.2.

1.2.2.2 Calibration

We can satisfy many vision tasks working with image coordinates alone and a
projective representation of the scene. If we want to use our cameras as meas-
urement devices, or if we want to incorporate realistic dynamics in motion
models, or to fuse data in a common coordinate system, we need to upgrade
from a projective to Euclidean space: that is, calibrate and determine the
parameters. Another important reason for calibration is that the wide-angle
lenses, commonly used in vehicle guidance, are subject to marked lens distortion

pinhole model.
A radial distortion factor is calculated from the coefficients {ki} and the

radial distance (r) of a pixel from the center {xp, yp}.

δ(r) = 1+ k1r2 + k2r4: r = ((x̃d − xp)
2 + (ỹd − yp)

2)0.5 (1.4)

The undistorted coordinates are then

{x̃ = (x̃d − xp)δ + xp, ỹ = (ỹd − yp)δ + yp} (1.5)

Camera calibration is needed in a very diverse range of applications and so
there is wealth of reference material available [16,17]. For our purposes, we
distinguish between two types or stages of calibration: linear and nonlinear.

1. Linear techniques use a least-squares type method (e.g., SVD) to
compute a transformation matrix between 3D points and their 2D pro-
jections. Since the linear techniques do not include any lens distortion
model, they are quick and simple to calculate.

© 2006 by Taylor & Francis Group, LLC

(see Figure 1.1); without correction, this violates the assumptions of the ideal
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2. Nonlinear optimization techniques account for lens distortion in
the camera model through iterative minimization of a determined
function. The minimizing function is usually the distance between
the image points and modeled projections.

In guidance applications, it is common to adopt a two-step technique: use
a linear optimization to compute some of the parameters and, as a second step,
use nonlinear iteration to refine, and compute the rest. Since the result from the
linear optimization is used for the nonlinear iteration, the iteration number
is reduced and the convergence of the optimization is guaranteed [18–20].
Salvi [17] showed that two-step techniques yield the best result in terms of
calibration accuracy.

Calibration should not be a daunting prospect because many software tools
are freely available [21,22]. Much of the literature originated from photo-
grammetry where the requirements are much higher than those in autonomous
navigation. It must be remembered that the effects of some parameters, such as
image skew or the deviation of the principal point, are insignificant in com-
parison to other uncertainties and image noise in field robotics applications.
Generally speaking, lens distortion modeling using a radial model is sufficient
to guarantee high accuracy, while more complicated models may not offer much
improvement.

A pragmatic approach is to carry out much of the calibration off-line in
a controlled setting and to fix (or constrain) certain parameters. During use,
only a limited set of the camera parameters need be adjusted in a calibration
routine. Caution must be employed when calibrating systems in situ because
the information from the calibration routine must be sufficient for the degrees of
freedom of the model. If not, some parameters will be confounded or wander in
response to noise and, later, will give unpredictable results. A common problem
encountered in field applications is attempting a complete calibration off essen-
tially planar data without sufficient and general motion of the camera between
images. An in situ calibration adjustment was adopted for the calibration of the

severe but were suitably approximated and corrected by a two-coefficient radial
distortion model, in which the coefficients (k1, k2) were measured off-line. The
skew was set to zero; the principal point and aspect ratio were fixed in the
calibration matrix. The focal length varied with focus adjustment but a default
value (focused at infinity) was measured. Of the extrinsic parameters, only the
tilt of the camera was an unknown in its application: the other five were set by
the rigid mounting fixtures. Once mounted on the vehicle, the tilt was estimated
from the image of the horizon. This gave an estimate of the camera calibration
which was then improved given extra data. For example, four known points
are sufficient to calculate the homographic mapping from ground plane to the
image. However, a customized calibration routine was used that enforced the

© 2006 by Taylor & Francis Group, LLC

IR camera used to take the images of Figure 1.1. The lens distortion effects were
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constraints and the physical degrees of freedom of the camera, yet was stable
enough to work from data on the ground plane alone. As a final note on calib-
ration: any routine should also provide quantified estimates of the uncertainty
of the parameters determined.

1.3 VISUAL GUIDANCE SYSTEMS

1.3.1 Architecture

The modules of a working visual guidance system (VGS) are presented in

delving into task-specific processes, we need to clarify the role of VGS within
the autonomous vehicle system architecture. Essentially, its role is to capture
raw sensory data and convert it into model representations of the environment
and the vehicle’s state relative to it.

1.3.2 World Model Representation

A world model is a hierarchical representation that combines a variety of sensed
inputs and a priori information [23]. The resolution and scope at each level are
designed to minimize computational resource requirements and to support plan-
ning functions for that level of the control hierarchy. The sensory processing
system that populates the world model fuses inputs from multiple sensors and
extracts feature information, such as terrain elevation, cover, road edges, and
obstacles. Feature information from digital maps, such as road networks, elev-
ation, and hydrology, can also be incorporated into this rich world model. The
various features are maintained in different layers that are registered together to
provide maximum flexibility in generation of vehicle plans depending on mis-
sion requirements. The world model includes occupancy grids and symbolic
object representations at each level of the hierarchy. Information at different
hierarchical levels has different spatial and temporal resolution. The details of
a world model are as follows:

Low resolution obstacle map and elevation map. The obstacle map consists
of a 2D array of cells [24]. Each cell of the map represents one of the follow-
ing situations: traversable, obstacle (positive and negative), undefined (such as
blind spots), potential hazard, and so forth. In addition, high-level terrain classi-
fication results can also be incorporated in the map (long grass or small bushes,
steps, and slopes). The elevation contains averaged terrain heights.

Mid-resolution terrain feature map. The features used are of two types,
smooth regions and sharp discontinuities [25].

A priori information. This includes multiple resolution satellite maps and
other known information about the terrain.

© 2006 by Taylor & Francis Group, LLC

Figure 1.2. So far, we have described the key sensors and sensor models. Before
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Model update mechanism. As the vehicle moves, new sensed data inputs can
either replace the historical ones, or a map-updating algorithm can be activated.

We will see real examples of occupancy grids in Section 1.5.3 and

1.3.3 Physical Limitations

We now examine the performance criteria for visual perception hardware with
regards to the classes of UGVs. Before we even consider algorithms, the phys-
ical realities of the sensing tasks are quite daunting. The implications must
be understood and we will demonstrate with a simple analysis. A wide FOV
is desirable so that there is a view of the road in front of the vehicle at close
range. The combination of lens focal length (f ) and image sensor dimensions
(H, V) determine the FOV and resolution. For example, a 1/2" sensor has image
dimensions (H = 6.4 mm, V = 4.8 mm). The angle of view (horizontally) is
approximated by

θH = 2 arctan
H

2f
(1.6)

and it is easily calculated that a focal length of 5 mm will equate to an angle
of view of approximately 65◦ with a sensor of this size. It is also useful to
quote a value for the angular resolution; for example, the number of pixels per
degree. With an output of 640 × 480 pixels, the resolution for this example is
approximately 10 pixels per degree (or 1.75 mrad/pixel).

Now consider the scenario of a UGV progressing along a straight flat road
and that it has to avoid obstacles of width 0.5 m or greater. We calculate the
pixel size of the obstacle, at various distances ahead, for a wide FOV and a
narrow FOV, and also calculate the time it will take the vehicle to reach the
obstacle. This is summarized in Table 1.2.

TABLE 1.2
Comparison of Obstacle Image Size for Two Fields-of-
View and Various Distances to the Object

Obstacle size (pixel) Time to cover distance (sec)

Distance, d (m) FOV 60◦ FOV 10◦ 120 kph 60 kph 20 kph

8 35 113 0.24 0.48 1.44
20 14 45 0.6 1.2 3.6
50 5.6 18 1.5 3 9
300 0.9 3 9 18 54

© 2006 by Taylor & Francis Group, LLC

Section 1.3.6 (Figure 1.8 and Figure 1.9).
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FIGURE 1.3 The ability of a sensor to image a negative obstacle is affected by the
sensor’s height, resolution, and the size of the obstacle. It is very difficult to detect holes
until the vehicle is within 10 m.

1. The higher the driving speed, the further the camera lookahead dis-
tance should be to give sufficient time for evasive action. For example,
if the system computation time is 0.2 sec and the mechanical latency
is 0.5 sec, a rough guideline is that at least 50 m warning is required
when driving at 60 kph.

2. At longer lookahead distances, there are fewer obstacle pixels in the
image — we would like to see at least ten pixels to be confident
of detecting the obstacle. A narrower FOV is required so that the
obstacle can be seen.

A more difficult problem is posed by the concept of a negative obstacle: a
hole, trench, or water hazard. It is clear from simple geometry and Figure 1.3
that detection of trenches from imaging or range sensing is difficult. A trench
is detected as a discontinuity in range data or the disparity map. In effect we
only view the projection of a small section of the rear wall of the trench: that is,
the zone bounded by the rays incident with the forward and rear edges.

2.5 m, a trench of width 1 m will not be reliably detected at a distance of 15 m,
assuming a minimum of 10 pixels are required for negative obstacle detection.
This distance is barely enough for a vehicle to drive safely at 20 kph. The
situation is improved by raising the camera; at a height of 4 m, the ditch will
be detected at a distance of 15 m. Alternatively, we can select a narrow FOV
lens. For example, a stereo vision system with FOV (15◦H × 10◦V) is able to

© 2006 by Taylor & Francis Group, LLC

It can be observed from Table 1.2 that:

We conclude from Table 1.3 that with a typical camera mounting height of
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TABLE 1.3
Influence of Camera Height on Visibility of Negative
Obstacles

Visibility of negative obstacle (pixels)
trench width w = 1 m

Distance, d (m) Camera height h = 2.5 m Camera height h = 4 m

8 21 (0.31 m) 35 (0.5 m)
15 6.8 (0.17 m) 11 (0.27 m)
25 2.5 (0.1 m) 4 (0.16 m)

cover a width of 13 m at distance 25 m and possibly detect a ditch {w = 1 m,
h = 4 m} by viewing 8 pixels of the ditch.

There are several options for improving the chances of detecting an obstacle:

Raising the camera. This is not always an option for practical and oper-
ational reasons; for example, it makes the vehicle easier to detect by the
enemy.

Increasing focal length. This has a direct effect but is offset by prob-
lems with exaggerated image motion and blurring. This becomes an important
consideration when moving over a rough terrain.

Increased resolution. Higher-resolution sensors are available but they will
not help if a sharp image cannot be formed by the optics, or if there is image blur.

The trade-off between resolution and FOV is avoided (at extra cost and

fields-of-view and ranges of the sensors on the VGS. Dickmanns [26,27], uses
a mixed focal system comprising two wide-angle cameras with divergent axes,
giving a wide FOV (100◦). A high-resolution three-chip color camera with
greater focal length is placed between the other cameras for detecting objects
at distance. The overlapping region of the cameras’ views give a region of
trinocular stereo.

1.3.4 Road and Vehicle Following

1.3.4.1 State-of-the-art

Extensive work has been carried out on road following systems in the late 1980s
and throughout the 1990s; for example, within the PROMETHEUS Programme
which ran from 1987 until 1994. Dickmanns [28] provides a comprehensive
review of the development of machine vision for road vehicles. One of the key
tasks is lane detection, in which road markings are used to monitor the position

© 2006 by Taylor & Francis Group, LLC

complexity) by having multiple sensors. Figure 1.4 illustrates the different
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2D ladar

mm Radar

3D ladar
Stereo imaging

20 m 80 m 200 m

FIGURE 1.4 Different subsystems of the VGS provide coverage over different field-
of-view and range. There is a compromise between FOV and angular resolution. The
rectangle extending to 20 m is the occupancy grid on which several sensory outputs
are fused.

of the vehicle relative to the road: either for driver assistance/warning or for
autonomous lateral control. Lane detection is therefore a relatively mature tech-
nology; a number of impressive demonstrations have taken place [29], and some
systems have achieved commercial realization such as Autovue and AssistWare.
There are, therefore, numerous sources of reference where the reader can find
details on image processing algorithms and details of practical implementation.
Good places to start are at the PATH project archives at UCLA, the final report
of Chauffeur II programme [30], or the work of Broggi on the Argo project [29].

© 2006 by Taylor & Francis Group, LLC
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The Chauffeur II demonstration features large trucks driving in convoy
on a highway. The lead vehicle is driven manually and other trucks equipped
with the system can join the convoy and enter an automatic mode. The system
incorporates lane tracking (lateral control) and maintaining a safe distance to the
vehicle in front (longitudinal control). This is known as a “virtual tow-bar” or
“platooning.” The Chauffeur II demonstration is highly structured in the sense
that it was implemented on specific truck models and featured inter-vehicle
communication. Active IR patterns are placed on the rear of the vehicles to aid
detection, and radar is also used. The PATH demonstration (UCLA, USA) used
stereo vision and ladar. The vision system tracks features on a car in front and
estimates the range of an arbitrary car from passive stereo disparity. The ladar
system provides assistance by guiding the search space for the vehicle in front
and increasing overall robustness of the vision system. This is a difficult stereo
problem because the disparity of features on the rear of car is small when viewed
from a safe driving separation. Recently much of the research work in this area
has concentrated on the problems of driving in urban or cluttered environments.
Here, there are the complex problems of dealing with road junctions, traffic
signs, and pedestrians.

1.3.4.2 A road camera model

Road- and lane-following algorithms depend on road models [29]. These mod-
els have to make assumptions such as: the surface is flat; road edges or markings
are parallel; and the like. We will examine the camera road geometry because,
with caution, it can be adapted and applied to less-structured problems. For
simplicity and without loss of generality, we assume that the road lies in the
plane Z = 0. From Equation 1.1, setting all Z coordinates of X to zero is equi-
valent to striking out the third column of the projection matrix P in Equation 1.2.
There is a homographic correspondence between the points of the road plane
and the points of the image plane which can be represented by a 3× 3 matrix
transformation. This homography is part of the general linear group GL3 and as
such inherits many useful properties of this group. The projection Equation 1.1
becomes

x = HX: H ∈ R3×3 (1.7)

As a member of the group, a transformation H must2 have an inverse,
so there will also be one-to-one mapping of image points (lines) to points
(lines) on the road plane. The elements of H are easily determined (calib-
ration) by finding at least four point correspondences in general position on

2 The exception to this is when the road plane passes through the camera center, in which case H
is singular and noninvertible (but in this case the road would project to a single image line and the
viewpoint would not be of much use).

© 2006 by Taylor & Francis Group, LLC
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FIGURE 1.5 The imaging of planar road surface is represented by a one-to-one invert-
ible mapping. A rectangular search region projects to a trapezoidal search region in
the image.

the planes.3 The homography can be expressed in any valid representation of
the projective space: that is, we can change the basis to match the camera
coordinate system. This means that the road does not have to be the plane
Z = 0 but can be an arbitrary plane in 3D; the environment can be modeled
as a set of discrete planes �i each with a homography Hi that maps it to the
image plane.

In practice we use the homography to project a search region onto the
image; a rectangular search space on the road model becomes a trapezoid on
the image (Figure 1.5). The image is segmented, within this region, into road
and nonroad areas. The results are then projected onto the occupancy grid for
fusion with other sensors. Care must be taken because 3D obstacles within the
scene may become segmented in the image as driveable surfaces and because
they are “off the plane,” their projections on the occupancy grid will be very

this  use  of vision  and  projections to  and  from  the  road  surface. Much  information
within the scene is ignored; the occupancy gird will extend to about 20 m
in front of the vehicle but perspective effects such as vanishing points can
tell us a lot about relative direction, or be used to anticipate events ahead.
The figure also illustrates that, due to the strong perspective, the uncertainty
on the occupancy grid will increase rapidly as the distance from the vehicle
increases. (This is shown in the figure as the regular spaced [2 m] lane markings
on the road rapidly converge to a single pixel in the image.) Both of these
considerations suggest that an occupancy grid is convenient for fusing data but

3 Four points give an exact solution; more than four can reduce the effects of noise using least
squares; known parameters of the projection can be incorporated in a nonlinear technique. When
estimating the coefficients of a homography, principles of calibration as discussed in Section 4.2.2.2
apply. Further details and algorithms are available in Reference 13.

© 2006 by Taylor & Francis Group, LLC

misleading. Figure 1.6 illustrates this and some other important points regarding



FRANKL: “dk6033_c001” — 2006/3/31 — 16:42 — page 23 — #23

Visual Guidance for Autonomous Vehicles 23

0 200 400 600

0

100

200

300

400

500

2D image

u (pixels)

v 
(p

ix
el

s)

0 50
0

20

40

60

80

100

120
2D projection to ground plane

D
is

ta
nc

e 
in

 fr
on

t —
 Y

(m
)

Vehicle X (m)

FIGURE 1.6 The image on the left is of a road scene and exhibits strong perspective
which in turn results in large differences in the uncertainty of reprojected measurements.
The figure on the right was created by projecting the lower 300 pixels of the image onto
a model of the ground plane. The small box (20 × 20 m2) represents the extent of a
typical occupancy grid used in sensor fusion.

transformation  to  a  metric  framework  may  not be  the  best  way  to  represent visual
information.

1.3.5 Obstacle Detection

1.3.5.1 Obstacle detection using range data

The ability to detect and avoid obstacles is a prerequisite for the success of the
UGV. The purpose of obstacle detection is to extract areas that cannot or should
not be traversed by the UGV. Rocks, fences, trees, and steep upward slopes are
some typical examples. The techniques used in the detection of obstacles may
vary according to the definition of “obstacle.” If “obstacle” means a vehicle or
a human being, then the detection can be based on a search for specific patterns,
possibly supported by feature matching. For unstructured terrain, a more general

© 2006 by Taylor & Francis Group, LLC
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definition of obstacle is any object that can obstruct the vehicle’s driving path
or, in other words, anything rising out significantly from the road surface.

Many approaches for extracting obstacles from range images have been
proposed. Most approaches use either a global or a local reference plane to
detect positive (above the reference plane) or negative (below the reference
plane) obstacles. It is also possible to use salient points detected by an elevation
differential method to identify obstacle regions [31]. The fastest of obstacle
detection algorithms, range differencing, simply subtract the range image of
an actual scene from the expected range image of a horizontal plane (global
reference plane). While rapid, this technique is not very robust, since mild
slopes will result in false indications of obstacles. So far the most frequently
used and most reliable solutions are based on comparison of 3D data with
local reference planes. Thorpe et al. [22] analyzed scanning laser range data
and constructed a surface property map represented in a Cartesian coordinate
system viewed from above, which yielded the surface type of each point and its
geometric parameters for segmentation of the scene map into traversable and
obstacle regions. The procedure includes the following.

Preprocessing. The input from a 2D ladar may contain unreliable range data
resulting from surfaces such as water or glossy pigment, as well as the mixed
points at the edge of an object. Filtering is needed to remove these undesirable
jumps in range. After that, the range data are transformed from angular to
Cartesian (x-y-z) coordinates.

Feature extraction and clustering. Surface normals are calculated from x-y-z
points. Normals are clustered into patches with similar normal orientations.
Region growth is used to expand the patches until the fitting error is larger than
a given threshold. The smoothness of a patch is evaluated by fitting a surface
(plane or quadric).

Defect detection. Flat, traversable surfaces will have vertical surface nor-
mals. Obstacles will have surface patches with normals pointed in other
directions.

Defect analysis. A simple obstacle map is not sufficient for obstacle ana-
lysis. For greater accuracy, a sequence of images corresponding to overlapping
terrain is combined in an extended obstacle map. The analysis software can
also incorporate color or curvature information into the obstacle map.

Extended obstacle map output. The obstacle map with a header (indic-
ating map size, resolution, etc.) and a square, 2D array of cells (indicating
traversability) are generated for the planner.

1.3.5.2 Stereo vision

Humans exploit various physiological and psychological depth cues. Stereo
cameras are built to mimic one of the ways in which the human visual system

© 2006 by Taylor & Francis Group, LLC
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FIGURE 1.7 Epipolar geometry is valid for general positions of two views. The figure
on the left illustrates the epipolar lines for two frames (1 and 2). However, if the optical
axes are parallel and the camera parameters are similar, stereo matching or the search for
corresponding features is much easier. The figure on the right illustrates the horizontal
and collinear epipolar lines in a left–right configuration with fixed baseline B.

(HVS) works to obtain depth information [32]. In a standard configuration,
two cameras are bound together with a certain displacement (Figure 1.7). This
distance between the two camera centers is called the baseline B. In stereo
vision, the disparity measurement is the difference in the positions of two cor-
responding points in the left and right images. In the standard configuration, the
two camera coordinate systems are related simply by the lateral displacement
B (XR = XL + B). As the cameras are usually “identical” (fL = fR = f ) and
aligned such that (ZL = ZR = Z) the epipolar geometry and projection equation
(x = f X/Z) enable depth Z to be related to disparity d:

d = xR − xL = f
XL + B

Z
− f

XL

Z
= f

B

Z
(1.8)

where f is the focal length of the cameras. Since B and F are constants, the
depth z can be calculated when d is known from stereo matching (Z = fB/d).

1.3.5.2.1 Rectification
As shown in Figure 1.7, for a pair of images, each point in the “left” image is
restricted to lie on a given line in the “right” image, the epipolar line — and
vice versa. This is called the epipolar constraint. In standard configurations the
epipolar lines are parallel to image scan lines, and this is exploited in many
algorithms for stereo analysis. If valid, it enables the search for corresponding
image features to be confined to one dimension and, hence, simplified. Stereo
rectification is a process that transforms the epipolar lines so that they are
collinear, and both parallel to the scan line. The idea behind rectification [33] is
to define two new perspective matrices which preserve the optical centers but
with image planes parallel to the baseline.
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1.3.5.2.2 Multi-baseline stereo vision
Two main challenges facing a stereo vision system are: mismatch (e.g., points
in the left image match the wrong points in the right image) and disparity
accuracy. To address these issues, multiple (more than two) cameras can be
used. Nakamura et al. [34] used an array of cameras to resolve occlusion by
introducing occlusion masks which represent occlusion patterns in a real scene.
Zitnick and Webb [35] introduced a system of four cameras that are horizontally
displaced and analyze potential 3D surfaces to resolve the feature matching
problem.

When more than two cameras or camera locations are employed, multiple
stereo pairs (e.g., cameras 1 and 2, cameras 1 and 3, cameras 2 and 3, etc.)
result in multiple, usually different baselines. In the parallel configuration,
each camera is a lateral displacement of the other. For a given depth, we then
calculate the respective expected disparities relative to a reference camera (say,
the leftmost camera) as well as the sum of match errors over all the cameras.
The depth associated with a given pixel in the reference camera is taken to be
the one with the lowest error. The multi-baseline approach has two distinctive
advantages over the classical stereo vision [36]:

• It can find a unique match even for a repeated pattern such as the
cosine function.
• It produces a statistically more accurate depth value.

1.3.5.2.3 General multiple views
During the 1990s significant research was carried out on multiple view geo-
metry and demonstrating that 3D reconstruction is possible using uncalibrated
cameras in general positions [14]. In visual guidance, we usually have the
advantage of having calibrated cameras mounted in rigid fixtures so there seems
little justification for not exploiting the simplicity and speed of the algorithms
described earlier. However, the fact that we can still implement 3D vision even
if calibration drifts or fixtures are damaged, adds robustness to the system
concept. Another advantage of more general algorithms is that they facilitate
mixing visual data from quite different camera types or from images taken from
arbitrary sequences in time.

1.3.5.3 Application examples

In this section we present some experimental results of real-time stereo-vision-
based obstacle detection for unstructured terrain. Two multi-baseline stereo
vision systems (Digiclops from Pointgrey Research, 6 mm lens) were mounted
at a height of 2.3 m in front and on top of the vehicle, spaced 20 cm apart.
The two stereo systems were calibrated so that their outputs were referred to
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(a)

(c) (d)

(b)

FIGURE 1.8 (a) Isodisparity profile lines generated from the disparity map using a
LUT method. (b) A single isodisparity line (curved line), its reference line (straight) and
detected obstacle pixels. (c) Detected obstacle points. (d) Obstacle map.

the same vehicle coordinate system. A centralized triggering signal was gener-
ated for the stereo systems and other sensors to synchronize the data capturing.
The stereo systems were able to generate disparity maps at a frequency of
10 frames/sec. To detect obstacles, an isodisparity profile-based obstacle detec-
tion method was introduced [37], which converted the 3D obstacle detection
into 1D isodisparity profile segmentation. The system output was an obstacle
map with 75 × 75 elements, each representing a 0.2 m × 0.2 m area within
15 m × 15 m in front of the vehicle. Seventy-five isodisparity profiles were
generated from the disparity map using a look-up-table method (Figure 1.8a).
The name isodisparity comes from the fact that points in each profile line have
the same disparity value. Regardless of the size of the disparity map (usu-
ally 320 × 240 pixels), the method was able to identify 75 × 75 points from
the disparity image, which exactly matched the elements of the obstacle map.
By processing these 75× 75 points using reference-line-based histogram clas-
sification, obstacle points were detected with subpixel accuracy. Figure 1.8a
shows the profiles of a typical test terrain with road and bushes. Figure 1.8b
shows the calculated reference lines. It is noteworthy that the reference lines
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form a curved surface instead of a planar surface used by other approaches.

respectively.

1.3.6 Sensor Fusion

The most important task of a VGS is to provide accurate terrain descriptions
for the path planner. The quality of terrain maps is assessed by miss rate and
false alarm. Here, the miss rate refers to the occurrence frequency of missing
a true obstacle while a false alarm is when the VGS classifies a traversable
region as an obstacle region. Imaging a stereo vision system with a frame rate
of 10 Hz will generate 3000 obstacle maps in 5 min. Even with a successful
classification rate of 99.9%, the system may produce an erroneous obstacle
map three times of which may cause an error in path planning. The objective of
sensor fusion is to combine the results from multiple sensors, either at the raw
data level or at the obstacle map level, to produce a more reliable description
of the environment than any sensor individually. Some examples of sensor
fusion are:

N-modular redundancy fusion: Fusion of three identical radar units can
tolerate the failure of one unit.

Fusion of complementary sensors: Color terrain segmentation results can
be used to verify 3D terrain analysis results.

Fusion of competitive sensors: Although both laser and stereo vision per-
form obstacle detection, their obstacle maps can be fused to reduce false
alarms.

Synchronization of sensors: Different sensors have different resolutions
and frame rates. In addition to calibrating all sensors using the same vehicle
coordinates, sensors need to be synchronized both temporally and spatially
before their results can be merged. Several solutions can be applied for sensor
synchronization.

An external trigger signal based synchronization: For sensors with external
trigger capability such as IR, color, and stereo cameras, their data capturing can
be synchronized by a hardware trigger signal from the control system of the
UGV. For laser or ladar, which do not have such capability, the data captured at
the time nearest to the trigger signal are used as outputs. In this case, no matter
how fast a laser scanner can scan (usually 20 frames/sec), the fusion frame rate
depends on the slowest sensor (usually stereo vision, around 10 frames/sec).

A centralized time stamp for each image from each sensor: In this case
sensors capture data as fast as they can. Since each sensor normally has its
own CPU for data processing, a centralized control system will send out a
standardized time stamp signal to all CPUs regularly (say, every 1 h) to minimize
the time stamp drift.

© 2006 by Taylor & Francis Group, LLC

The final obstacle detection result and map are displayed in Figure 1.8c and d,
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When sensor outputs are read asynchronously, certain assumptions such as
being Linear Time Invariant (LTI) [38] can be made to propagate asynchron-
ized data to the upcoming sample time of the control system. Robl [38] showed
examples of using first-order hold and third-order hold methods to predict sensor
values at desired times. When different resolution sensors are to be fused
at the data level (e.g., fusion of range images from ladar and stereo vision),
down-sampling of sensor data with higher spatial resolution by interpolation
is performed. For sensor fusion at the obstacle map level, spatial synchron-
ization is not necessary since a unique map representation is defined for all
sensors.

Example: Fusion of laser and stereo obstacle maps for false alarm suppression

Theoretically, pixel to pixel direct map fusion is possible if the calibra-
tion and synchronization of the geometrical constraints (e.g., rotation and
translation between laser and stereo system) remain unchanged after calib-
ration. Practically, however, this is not realistic, partially due to the fact that
sensor synchronization is not guaranteed at all times: CPU loading, terrain
differences, and network traffic for the map output all affect the synchroniza-
tion. Feature-based co-registration sensor fusion, alternatively, addresses this
issue by computing the best-fit pose of the obstacle map features relative to
multiple sensors which allows refinement of sensor-to-sensor registration. In
the following, we propose a localized correlation based approach for obstacle-
map-level sensor fusion. Assuming the laser map Lij and stereo map Sij is to be
merged to form Fij. A map element takes the value 0 for a traversable pixel, 1
for an obstacle, and anything between 0 and 1 for the certainty of the pixel to be
classified as an obstacle. We formulate the correlation-based sensor fusion as

Fij =




Lij Sij = undefined

Sij Lij = undefined

(a1Lij + a2Si+m,j+n)/(a1 + a2) max(Corr(LijSi+m,j+n)) m, n ∈ 	
undefined Sij, Lij = undefined

(1.9)

where	 represents a search area and {a1, a2} are weighting factors. Corr(L, S)
is the correlation between L and S elements with window size wc:

Corr(LijSi+m,j+n) =
wc/2∑

p=−wc/2

wc/2∑
q=−wc/2

Li+p,j+qSi+m+p,j+n+q (1.10)
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The principle behind the localized correlation sensor fusion is: instead of
directly averaging Lij and Sij to get Fij, a search is performed to find the best
match within a small neighborhood. The averaging of the center pixel at a
matched point produces the final fusion map.

In case an obstacle map only takes three values: obstacle, traversable, and
undefined; the approach above can be simplified as

Fij =




Lij Sij = undefined

Sij Lij = undefined

1 Lij = 1, Cso > T1, D < T2

1 Sij = 1, Clo > T1, D < T2

0 otherwise

(1.11)

where T1 and T2 are preset thresholds that depend on the size of the search
window. In our experiments a window of size 5 × 5 pixels was found to
work well. The choice of size is a compromise between noise problems with
small windows and excessive boundary points with large windows. Cso and
Clo are obstacle pixel counts within the comparison window wc, for Lij and Sij,
respectively, D is the minimum distance between Lij and Sij in 	:

D = min


 wc/2∑

p=−wc/2

wc/2∑
q=−wc/2

|Si+m+p,j+n+q − Li+p,j+q|

 (m, n) ∈ 	 (1.12)

Cso =
wc/2∑

p=−wc/2

wc/2∑
q=−wc/2

Si+m+p,j+n+q (1.13)

The advantage of implementing correlation-based fusion method is two-
fold: it reduces false alarm rates and compensates for the inaccuracy from
laser and stereo calibration/synchronization. The experimental results of using
above mentioned approach for laser and stereo obstacle map fusion are shown

The geometry of 2D range and image data fusion. Integration of sensory
data offers much more than a projection onto an occupancy grid. There exist
multiple view constraints between image and range data analogous to those
between multiple images. These constraints help to verify and disambiguate
data from either source, so it is useful to examine the coordinate transformations
and the physical parameters that define them. This will also provide a robust
framework for selecting what data should be fused and in which geometric
representation.
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in Figure 1.9.
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FIGURE 1.9 Sensor fusion of laser and stereo obstacle maps. False alarm in laser
obstacle map (left image, three laser scanning lines at the top of the map), is suppressed
by fusion with the stereo vision obstacle map (middle image), and a more reliable fusion
result is generated (right image).

First, consider the relationship between a data point from the ladar and a
world coordinate system. We can transform {r, θ} to a point X in a Cartesian
space. A 3D point X will be detected by an ideal ladar if it lies in the plane
�Z=0 expressed in the sensor’s coordinate system. (This is neglecting the range
limits, and the finite size and divergence of the laser beam). If the plane, in the
world coordinate system, is denoted as�L , the set of points that can be detected
satisfy

�T
LX = 0 (1.14)

Alternatively we expand the rigid transformation equation and express this as
a constraint (in sensor coordinates)

XL = GW
L X GW

L =
(

RW
L T

0 1

)
(1.15)

Only the third row of G [r3i TZ ] plays any part in the planar constraint on the
point {X = [X Y Z 1]T}. The roles of the parameters are then explicit:

r31X + r32Y + r33Z + TZ = 0 (1.16)

However, if the vehicle is moving over tough terrain there will be considerable
uncertainty in the instantaneous parameters of R and T . We therefore look at
a transformation between ladar data and image data without reference to any
world coordinate system. Assuming there are no occlusions, X will be imaged
as x on the image plane�I of the camera. As X lies in a plane�L , there exists
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a homography H (abbreviated from HL
I ladar to image) that maps X to x.

x = HX: H ∈ R3×3 (1.17)

This mapping is unambiguous and is parameterized by the geometry
between the two sensors which is less uncertain than the geometry with
reference to a world coordinate system. H can be solved from point
correspondences and if required it can be decomposed into the geometric
parameters relating the two planes.

The reverse mapping is not unambiguous: a point x is the image of the ray
passing through x and the optical center OC . We can map x (with H−1) to a
single point p {r, θ} in the laser parameter space but there is no guarantee that
the true 3D point that gave rise to x in the image came from this plane. Another
consideration is that image-ladar correspondences are rarely point-to-point but
line-to-point. (ladar data rarely comes from a distinct point in 3D; it is more
likely to have come from a set of points such as a vertical edge or the surface of
a tree.) Consider the image of the pole shown in Figure 1.10; the pre-image of
this is a plane, and so the image line could be formed from an infinite set of lines
(a pencil) in this plane. However, knowledge of the laser point p, constrains the
3D space line to the pencil of lines concurrent with X. Furthermore, assuming
that the base of the image line corresponds to the ground plane is sufficient
to define a unique space line. There are various ways to establish mappings
between the two types of sensors without reliance on a priori parameters with
their associated uncertainties.

X
ΠG

ΠL

OC

FIGURE 1.10 There is ambiguity in both ladar and imaging data. There are geometric
constraints between the sets of data that will assist in disambiguation and improving
reliability of both systems.
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One of the key problems in processing ladar data is data association.
For example, consider capturing data from a tree. The points that are detec-
ted depend on the viewpoint: that is, surface features are not pose invariant
[10]. This problem becomes easier with the use of a putative model of the tree
whose 2D position is determined by a centroid, which is invariant. Such a model
is easier to initiate if image data provides the evidence that the data points match
image features with the correct “tree-like” attributes. Once we have a model we
can anticipate where to search for features to match data points and vice-versa.
In this case we want to compare the real data with a model prediction but this
has to be very efficient given the large amount of data and hypotheses that will
occur. A typical problem is to test if a model patch will be detected by a sensor,
and how many data points to expect. Range detection is equivalent to ray inter-
section and is more easily solved after projection into a 2D space: a cylindrical
projection is sufficient and preserves the topology.

To summarize, in isolation there is much ambiguity in either sensor, and
exchanging information using image constraints can reduce this problem. The
difficulty is how to implement this practically as the concept of “being like
a tree” is more abstract than the neat formulation of raw data fusion as seen

on heuristic rules deters many researchers. However, recent advances and
increased processing speeds have made probabilistic reasoning techniques tract-
able and worthy of consideration in real-time problems such as visual guidance
and terrain assessment.

1.4 CHALLENGES AND SOLUTIONS

The earlier sections have detailed many of the practical difficulties of visually
based guidance and presented pragmatic techniques used during field demon-
strations. To be realistic, autonomous vehicles represent a highly complex set
of problems and current capability is still at the stage of the SAP/F “donkey”
engaged in A-to-B mobility. To extend this capability, researchers need to think
further along the technology road map [1] and tackle perception challenges
such as: terrain mapping, detection of cover, classification of vegetation, and
the like.

1.4.1 Terrain Classification

Obstacle detection based only on distance information is not sufficient. Long
grass or small bushes will also be detected as obstacles because of their height.
However, the vehicle could easily drive through these “soft” obstacles. Altern-
atively, soft vegetation can cover a dangerous slope but appear as a traversable
surface. To reduce unnecessary avoidance driving, detected obstacles need to
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be classified as “dangerous” or “not dangerous.” Color cameras can be used to
perform terrain classification. Color segmentation relies on having a complete
training set. As lighting changes, due to time of day or weather conditions, the
appearance of grass and obstacle change as well. Although color normalization
methods have been successfully applied to the indoor environment, they, to
our knowledge, fail to produce reasonable results in an outdoor environment.
Similarly, color segmentation can classify flat objects, such as fallen leaves, as
obstacles, since their color is different from grass.

If dense range measurements in a scene are available (e.g., using ladar), they
can be used, not only to represent the scene geometry, but also to characterize
surface types. For example, the range measured on bare soil or rocks tends to
lie on a relatively smooth surface; in contrast, in the case of bushes, the range
is spatially scattered. While it is possible — although by no means trivial — to
design algorithms for terrain classification based on the local statistics of range
data [39–41], the confidence level of a reliable classification is low. Table 1.4
lists the most frequently encountered terrain types and possible classification
methods.

1.4.2 Localization and 3D Model Building from Vision

Structure from motion (SFM) is the recovery of camera motion and scene
structures — and in certain cases camera intrinsic parameters — from image

TABLE 1.4
Terrain Types and Methods of Classification

Confidence
Terrain type Sensors Classification methods level

Vegetable IR/Color camera Segmentation Medium
Rocks IR/Color camera Segmentation Medium
Walls/fence Camera, stereo,

laser
Texture analysis, obstacle

detection
High

Road (paved, gravel,
dirt)

IR/Color camera Segmentation Medium

Slope Stereo, ladar Elevation analysis, surface fit High
Ditch, hole Stereo, ladar Low
Sand, dirt, mud,

gravel
IR/Color camera Segmentation Medium

Water Polarized camera,
laser scanner

Feature detection, sensor fusion Medium

Moving target Camera, stereo Optical flow, obstacle
detection, pattern matching

High
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sequences. It is attractive because it avoids the requirement for a priori models of
the environment. The techniques are based on the constraints that exist between
the multiple views of features. This is a mature area of computer vision that
has attracted intensive research activity in the previous decade, prompted by
the breakthroughs in multiple view geometry in the early 1990s. Much of the
original work was motivated by mobile robotics but soon found more general
application such as: the generation of special effects for cinema, scene recovery
for virtual reality, and 3D reconstruction for architecture. Here, the theoretical
drive has been inspired by the recovery of information from recorded sequences
such as camcorders where the motion is general and little can be assumed
regarding the camera parameters. These tasks can be accomplished off-line and
the features and camera parameters from long sequences solved as a large-scale
optimization in batch mode. As such, many would regard this type of SFM as a
solved problem but the conditions in vehicle navigation are specific and require
separate consideration:

• The motion is not “general,” it may be confined to a plane, or
restricted to rotations around axes normal to the plane.
• Navigation is required in real-time and parameters require continuous

updating from video streams as opposed to the batch operations of
most SFM algorithms.
• Sensory data, from sources other than the camera(s), are usually

available.
• Many of the camera parameters are known (approximately)

beforehand.
• There are often multiple moving objects in a scene.

Visual guidance demands a real-time recursive SFM algorithm. Chiuso
et al. [42] have impressive demonstrations of a recursive filter SFM system that
works at a video frame rate of 30 Hz. However, once we start using Kalman
filters to update estimates of vehicle (camera) state and feature location, some
would argue that we enter the already very active realm of simultaneous local-
ization and mapping (SLAM). The truth is that there are differences between
SLAM and SFM and both have roles in visual guidance. Davison [43] has
been very successful in using vision in a SLAM framework and Bosse [9] has
published some promising work in indoor and outdoor navigation. The key
to both of these is that they tackle a fundamental problem of using vision in
SLAM: the relatively narrow FOV and recognizing features when revisiting a
location. Davison used active vision in Reference 4 and wide-angle lenses in
Reference 43 to fixate on a sparse set of dominant features whereas Bosse used
a catadioptric camera and exploited vanishing points. SLAM often works well
with 2D ladar by collecting and maintaining estimates of a sparse set of features
with reference to world coordinate system. A problem with SFM occurs when
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features used for reference pass out of the FOV: in recursive mode, there is no
guarantee at initiation that features will persist. Errors (drift) are introduced
when the reference features are changed and the consequence is that a robot
will have difficulty in returning home or knowing that it is revisiting a location.
Chiuso has a scheme to reduce this problem but drift is still inevitable. On the
other hand, SLAM has to rely on sparse data because it needs to maintain a full
covariance matrix which will soon become computationally expensive if the
number of data points is not restricted. It can be difficult to associate outdoor
data when it is sparse.

The two techniques offer different benefits and a possible complementary
role. SLAM is able to maintain a sparse map on a large scale for navigation but
locally does not help much with terrain classification. SFM is useful for building
a dense model of the immediate surroundings, useful for obstacle avoidance,
path planning, and situation awareness. The availability of a 3D model (with
texture and color) created by SFM will be beneficial for validation of the sens-
ory data used in a SLAM framework: for example, associating an object type
with range data; providing color (hue) as an additional state; and so on.

1.5 CONCLUSION

We have presented the essentials of a practical VGS and provided details on
its sensors and capabilities such as road following, obstacle detection, and
sensor fusion. Worldwide, there have been many impressive demonstrations of
visual guidance and certain technologies are so mature that they are available
commercially.

This chapter started with a road map for UGVs and we have shown that the
research community is still struggling to achieve A-to-B mobility in tasks within
large-scale environments. This is because navigating through open terrain is a
highly complex problem with many unknowns. Information from the immediate
surroundings is required to determine traversable surfaces among the many
potential hazards. Vision has a role in the creation of terrain maps but we have
shown that practically this is still difficult due to the physical limitations of
available sensor technology. We anticipate technological advances that will
enable the acquisition of high-resolution 3D data at fast frame rates.

Acquiring large amounts of data is not a complete solution. We argue that
we do not make proper use of the information already available in 2D images,
and that there is potential for exploiting algorithms such as SFM and vision-
based SLAM. Another problem is finding alternative ways of representing the
environment that are more natural for navigation; or how to extract knowledge
from images and use this (state) information within algorithms.

We have made efforts to highlight problems and limitations. The task is
complex and practical understanding is essential. The only way to make real
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progress along the road map is through testing sensors, systems, and algorithms
in the field; and then seeing what can survive the challenges presented.
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2.1 INTRODUCTION

Current research in autonomous robot navigation [1,2] focuses on mining,
planetary-exploration, fire emergencies, battlefield operations, as well as
on agricultural applications. Millimeter wave (MMW) RADAR provides
consistent and accurate range measurements for the environmental ima-
ging required to navigate in dusty, foggy, and poorly illuminated envir-
onments [3]. MMW RADAR signals can provide information of certain
distributed targets that appear in a single line-of-sight observation. This
work is conducted with a 77-GHz frequency modulated continuous wave
(FMCW) RADAR which operates in the MMW region of the electromagnetic
spectrum [4,5].

For localization and map building, it is necessary to predict the target loc-
ations accurately given a prediction of the vehicle/RADAR location [6,7].
Therefore, the first contribution of this chapter offers a method for pre-
dicting the power–range spectra (or range bins) using the RADAR range
equation and knowledge of the noise distributions in the RADAR. The
predicted range bins are to be used ultimately as predicted observations
within a mobile robot RADAR-based navigation formulation. The actual
observations take the form of received power/range readings from the
RADAR.

The second contribution of this chapter is an algorithm which makes optimal
estimates of the range to multiple targets down-range, for each range spectra
based on received signal-to-noise power. We refer to this as feature detec-
tion based on target presence probability. Results are shown which compare
probability-based feature detection with other feature extraction techniques
such as constant threshold [9] on raw data and constant false alarm rate (CFAR)

© 2006 by Taylor & Francis Group, LLC
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techniques [24]. The results show the merit of the proposed algorithm which
can detect features in typically cluttered outdoor environments with a higher
success rate compared to other feature detection techniques. This work is a step
toward robust outdoor robot navigation with MMW-RADAR-based continuous
power spectra.

Millimeter wave RADAR can penetrate certain nonmetallic objects, mean-
ing that multiple line-of-sight objects can sometimes be detected, a property
which can be exploited in mobile robot navigation in outdoor unstructured
environments. This chapter describes a new approach in predicting RADAR
range bins which is essential for simultaneous localization and map building
(SLAM) with MMW RADAR.

The third contribution of this chapter is a SLAM formulation using an
augmented state vector which includes the normalized RADAR cross sections
(RCS) and absorption cross sections of features as well as the usual fea-
ture Cartesian coordinates. The term “normalized” is used as the actual RCS
is incorporated into a reflectivity parameter. Normalization results, as it is
assumed that the sum of this reflectivity parameter and the absorption and
transmittance parameters is unity. This is carried out to provide feature-rich rep-
resentations of the environment to significantly aid the data association process
in SLAM.

The final contribution is a predictive model of the range bins, from differ-
ing vehicle locations, for multiple line-of-sight targets. This forms a predicted
power–range observation, based on estimates of the augmented SLAM state.

and predicted RADAR range spectra are compared with real spectra, recor-
ded outdoors. This prediction of power–range spectra is a step toward a full,
RADAR-based SLAM framework.

RADAR operation and the noise affecting the range spectra, in order to under-

power–range spectra can be predicted (predicted observations). This utilizes the

lyzes a feature detector based on the CFAR detection method. The study also
shows ways to compensate for the inaccuracies of the power–range compens-
ating high-pass filter, contained in FMCW RADARs, and thereby improve the

the merits of the target presence probability-based algorithm which can detect
ground level features with greater reliability than other feature detection tech-

vehicle and feature positions, normalized RCS and absorption cross sections of

© 2006 by Taylor & Francis Group, LLC

The formulation of power returns from multiple objects down-range is derived

niques such as constant threshold on raw RADAR data and CFAR techniques.

feature detection process. A method for estimating the true range to objects from

Section 2.2 summarizes related work, while Section 2.3 describes FMCW

stand the noise distributions in both range and power. Section 2.4 describes how

RADAR range equation and an experimental noise analysis. Section 2.5 ana-

power–range spectra is given in Section 2.6 in the form of a new robust feature
detection technique based on target presence probability. Section 2.6.1 shows

An augmented state vector is introduced in Section 2.8 where, along with the
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full predicted range spectra and the results are compared with the measured
range bins in the initial stages of a simple SLAM formulation.

2.2 RELATED WORK

In recent years RADAR, for automotive purposes, has attracted a great deal
of interest in shorter range (<200 m) applications. Most of the work in
short-range RADAR has focused on millimeter waves as this allows narrow
beam shaping, which is necessary for higher angular resolution [5]. Some
of the work to date in autonomous navigation using MMW RADAR is
summarized here.

Boehmke et al. [8] succeeded in producing three-dimensional (3D) terrain
maps using a pulsed RADAR with a narrow beam of 1◦ and high sampling rate.
The 1◦ RADAR beam width has a large antenna sweep volume and its physical
size is large for robotic applications. The efforts by Boehmke et al. show the
compromise between a narrow beam and antenna size, where a narrow beam
provides better angular resolution.

Steve Clark [9] presented a method for fusing RADAR readings from
different vehicle locations into a two-dimensional (2D) representation. The
method selects one range point per RADAR observation at a particular bearing
angle based on a certain received signal power threshold level. This method
takes only one range reading per bin which is the nearest power return to
exceed that threshold to the RADAR, discarding all others. Clark [10] shows
a MMW-RADAR-based navigation system which utilizes artificial beacons
for localization and an extended Kalman filter for fusing multiple observa-
tions. The fixed threshold can be used when the environment is known with no
clutter.1 However, in a realistic environment (containing features having various
RCS) fixed thresholding on raw data will cause an exorbitant number of false
alarms if the threshold is low or missed detections if the threshold is too high.
Manual assistance is required in adjusting the threshold as the returned signal
power depends on various objects’ RCS. This method of feature detection is
environment-dependent.

Foessel [11] shows the usefulness of evidence grids for integrating uncer-
tain and noisy sensor information. Foessel et al. [12] show the development of a
RADAR sensor model for certainty grids and also demonstrate the integration
of RADAR observations for building 3D outdoor maps. Certainty grids divide
the area of interest into cells, where each cell stores a probabilistic estimate
of its state [13,14]. The proposed 3D model by Foessel et al. has shortcom-
ings such as the necessity of rigorous probabilistic formulation and difficulties

1 Clutter in this research is assumed to be the backscatter from land and is difficult to model. Land
clutter is dependent on the type of terrain, its roughness, and dielectric properties.

© 2006 by Taylor & Francis Group, LLC

features are added together with the RADAR losses. Finally, Section 2.9 shows
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in representing dependencies due to occlusion. Jose and Adams [15] show a
method of feature detection from MMW RADAR noisy data.

2.3 FMCW RADAR OPERATION AND RANGE NOISE

This section gives a brief introduction to the RADAR sensor used in this work
and the FMCW technique for obtaining target range. This is necessary for
RADAR signal interpretation and for understanding and quantifying the noise
in the range/power estimates. This is ultimately used in predicting range bin
observations given the predicted vehicle state, in a mobile robot navigation

technique  it will be  shown  which  noise  sources affect both  the  range  and  received
power estimates, and how each of these is affected.

The RADAR unit (from Navtech Electronics) is a 77-GHz FMCW system.
The transmitted power is 15 dBm and the swept bandwidth is 600 MHz [16].
The RADAR is shown in Figure 2.1, mounted on a four-wheel steerable vehicle.

In Figure 2.2, the input voltage to the voltage control oscillator (VCO) is

FIGURE 2.1 A 360◦ scanning MMW RADAR mounted on a vehicle test bed for SLAM
experiments within the NTU campus.

© 2006 by Taylor & Francis Group, LLC

Figure 2.2 shows a schematic block diagram of an FMCW RADAR transceiver.

framework — which is one of the goals of this chapter. By analyzing the FMCW
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FIGURE 2.2 Schematic block diagram of a MMW RADAR transceiver.

a ramp signal. The VCO generates a signal of linearly increasing frequency
δf in the frequency sweep period Td. This linearly increasing chirp signal is
transmitted via the antenna. An FMCW RADAR measures the distance to an
object by mixing the received signal with a portion of the transmitted signal [17].

Let the transmitted signal vT(t) as a function of time, t, be represented as

vT(t) = [AT + aT(t)] cos

[
ωct + Ab

∫ t

0
t dt + φ(t)

]

= [AT + aT(t)] cos

[
ωct + Ab

2
t2 + φ(t)

]
(2.1)

where AT is the amplitude of the carrier signal, Ab is the amplitude of the
modulating signal, ωc is the carrier frequency (i.e., 2π × 77 GHz), aT(t) is the
amplitude noise, and φ(t) is the phase noise present in the signal which occurs
inside the transmitting electronic sections.

At any instant of time, the received echo signal, vR is shifted in time from
the transmitted signal by a round trip time, τ . The received signal is

vR(t − τ) = [AR + aR(t − τ)] cos

[
ωc(t − τ)+ Ab

2
(t − τ)2 + φ(t − τ)

]

(2.2)

where AR is the received signal amplitude, aR(t−τ) is the amplitude noise, and
φ(t−τ) is the phase noise. The sources of noise affecting the signal’s amplitude
consist of external interference to the RADAR system (e.g., atmospheric noise,

© 2006 by Taylor & Francis Group, LLC
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man-made interference signals) and internally produced noise at the receiver
antenna and amplifiers in the system.

In the mixer, the received signal is mixed with a portion of the transmitted
signal with an analog multiplier.

vT(t)vR(t − τ) = [AT + aT(t)] [AR + aR(t − τ)]

×
{

cos

[
ωct + Ab

2
t2 + φ(t)

]}

×
{

cos

[
ωc(t − τ)+ Ab

2
(t − τ)2 + φ(t − τ)

]}
(2.3)

The output of the mixer, vout(t) is (using the trigonometric identity for the
product of two sine waves cos A cos B = 0.5[cos(A+ B)+ cos(A− B)])

vout(t − τ) = [AT + aT(t)] [AR + aR(t − τ)]
2

[B1 + B2] (2.4)

where B1 = cos[(2t − τ)(ωc − Abτ/2) + Abt2 + φ(t) + φ(t − τ)] and B2 =
cos[(ωc − Ab(τ/2− t))τ + φ(t)− φ(t − τ)].

The second cosine term, B2, is the signal containing the beat frequency. The
output of the low pass filter consists of the beat frequency component, B2 and
noise components with similar frequencies to the beat frequency, while other
components are filtered out. The beat frequency, fb, is directly proportional to
the delay time, τ which is directly proportional to the round trip time to the
target. The relationship between beat frequency and target distance is

R = cTs

2

1

fs
fb (2.5)

where R is the range of the object, c is the velocity of the electromagnetic wave,
Ts is the frequency sweep period, and fs is the swept frequency bandwidth [18].

2.3.1 Noise in FMCW Receivers and Its Effect on Range
Detection

As described above, the low pass filter output at the RADAR receiver can be
represented by

vbeat(t, τ) = A′

2
cos

{[
ωc − Ab

(τ

2
− t
)]

τ +�φ(t, τ)
}

(2.6)
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where A′ = [AT + aT(t)] [AR + aR(t − τ)] is the signal amplitude along with
the noise affecting the amplitude. �φ(t, τ) = φ(t) − φ(t − τ) is called the
differential phase noise which occurs due to the nonlinear frequency chirp from
imperfect VCO operation [19]. This phase noise affects the range accuracy
[20]. The amplitude and phase noise will affect the beat frequency signal in
two ways:

1. The amplitude noise will contain a signal frequency component
which is the same as the beat frequency. This noise component will
affect the amplitude of the beat frequency signal. This noise will
introduce uncertainty into the returned power.

2. The noise components with frequencies lying close to the beat fre-
quency (i.e., phase noise) distort the signal along the frequency axis.
This introduces noise into the beat frequency value and hence into the
range value. This will broaden the receiver power peaks and therefore
introduce noise into the range estimate.

2.4 RADAR RANGE SPECTRA INTERPRETATION

power vs. range at a constant RADAR bearing angle. The RADAR can provide
multiple returns in a single range bin. An entire range spectra at any particular
bearing can be obtained. The range bin, is obtained by keeping the RADAR
pointed toward a RADAR corner reflector of RCS 10 m2 kept arbitrarily at
7.8 m and the second dominant reflection occurs from a concrete wall which
is 23.7 m from the RADAR. That is, the RADAR waves are reflected from the
corner reflector as well as from the wall. This is possible due to the RADAR’s
beam width. The corner reflector is of known RCS and can give good reflec-
tions (high signal power) back to the RADAR. The spectrum has two main
features. First the signal return from the targets and second, noise. As shown
in Figure 2.3, for the particular RADAR used here, these signals are riding
over a low frequency signal which increases its amplitude up to a certain range
(∼150 m) and decreases toward the maximum range (200 m). This is due to
the effect of the signal conditioning sections (filter roll-off) in the RADAR
receiver. To compensate the reduction in received power as range increases (as

2 is usually used. The power

2 Assuming the RADAR range equation to be correct, a high pass filter with a gain of 40 dB/decade
should produce a flat power response for particular targets at various ranges. Figure 2.3 shows a
power–range spectrum recorded from the RADAR, which is fitted with a range compensating high
pass filter. It can be seen from Figure 2.3, that the power range response is not flat. For this particular
RADAR it makes sense to either determine the bias in the power–range spectra or model the high
pass filter as having a gain of 60 dB/decade, which would better approximate the power–range
relationship actually produced in Figure 2.3.

© 2006 by Taylor & Francis Group, LLC

Figure 2.3 shows a real single RADAR range spectra, which is the received

will be shown in Section 2.4.1), a high pass filter
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FIGURE 2.3 Range spectrum from a MMW RADAR. The X axis is the range (in meters)
and the Y axis is the returned power (in decibel). The first reflection is from a corner
reflector and the second one is from a concrete wall. Multiple reflections are obtained
due to the beam width of the RADAR. The gain model of the high pass filter is also
shown in the figure.

return of the RADAR spectra decreases near the maximum range (200 m) due
to the low pass filter roll-off, which occurs before the high pass filter stage

To understand the MMW RADAR range spectrum and to predict it accur-
ately, it is necessary to use the RADAR range equation and knowledge of
the noise distributions in the RADAR spectrum. A method for predicting the
RADAR range spectra is now presented. An introduction is given explaining the
relationship between RADAR signal returned power and range. Then, a method
for establishing the relationship between the RCS and the range of objects in
outdoor environments is shown. A noise analysis during signal absence and
presence is then shown. This is necessary for predicting the range bins accur-
ately during target presence and target absence. RADAR range bins are then
predicted and it will be shown that the results compare reasonably well with
actual (recorded) range bins recorded at various robot poses.

© 2006 by Taylor & Francis Group, LLC

(Figure 2.2).
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2.4.1 RADAR Range Equation

According  to  the  simple  RADAR  equation,  the  returned  power Pr is proportional
to the RCS of the object, σ and inversely proportional to the fourth power of
range, R [21]. The simple RADAR range equation is formally written as

Pr = PtG2λ2σ

(4π)3R4L 
(2.7)

where Pt is the RADAR’s transmitted power, G is the antenna gain, λ is the
wavelength (i.e., 3.89 mm in this case), and L the RADAR system losses. A high

4 drop in received
signal power. In an FMCW RADAR, closer objects produce signals with low
beat frequencies and vice-versa (Equation [2.5]). Therefore by attenuating low
frequencies and amplifying high frequencies, it is possible to correct the range-
based signal attenuation [18]. To compensate the returned power loss due to
increased range, the high pass filter is modeled in two ways:

1. The bias in the received power spectra is estimated.
2. By modeling the high pass filter with a gain of 60 dB/decade, instead

of the usual 40 dB/decade, to comply with the characteristics of the
particular RADAR used here.

The aim of this is to give a constant received signal power with range. The
actual compensation which results in our system was shown in Figure 2.2 where
it can be seen that the ideal flat response is not achieved by the internal high
pass filter.

2.4.2 Interpretation of RADAR Noise

This section analyzes the sources of noise in MMW RADARs and quantifies

navigation formulations, observations must be predicted, and for the estimation
algorithms to run correctly, the actual observations are assumed to equal the
predictions, except that they are corrupted with Gaussian noise. It is therefore
the aim of this section to determine the type of noise distributions in the actual
received power and range values to determine how the predicted power–range
spectra can be used correctly in a robot navigation formulation.

RADAR noise is the unwanted power that impedes the performance of
the RADAR. For the accurate prediction of range bins, the characterization of
noise is important. The two main components are thermal and phase noise.
Thermal noise affects the power reading while phase noise affects the range
estimate.

© 2006 by Taylor & Francis Group, LLC

pass filter (shown in Figure 2.2) is used to compensate for the  R

the noise power in the received range spectra (seen in Figure 2.3). In most robot
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2.4.2.1 Thermal noise

Thermal noise is generated in the RADAR receiver electronics. The noise power
is given by PN (in Watts), where

PN = kT0β (2.8)

where k is the Boltzmann constant, T0 is the temperature, and β is the receiver

signal (found from the FFT of this signal) is affected by the thermal noise power
aR(t−τ), which  contributes to  A′ in  Equation (2.6). It can  be shown  by  analyzing
the transition of this thermal (Gaussian) noise through the entire FMCW range
detection process that when a target is present (strong received signal) the noise
in the power–range spectrum follows a Gaussian distribution. When no target
is present (weak or no reflected signal) it will be demonstrated from the results
that the noise power follows a Weibull distribution. Therefore measurements
with target presence/absence were made to verify these distributions and to
quantify the power variance during target absence/presence.

2.4.2.2 Phase noise

Another source of noise which affects the range spectra is the phase noise. The
phase noise is generated by the frequency instability of the oscillator due to
the thermal noise. Ideally for a particular input voltage to the VCO, the output
has a single spectral component. In reality, the VCO generates a spectrum
of frequencies with finite bandwidth which constitutes phase noise. This is
shown in Equation (2.6), where a band of noise frequencies with different phase
components, �φ(t, τ) affects the desired signal frequency, which corresponds
to range. The phase noise broadens the received power peaks and reduces the

3 This introduces
noise into the range estimate itself. Experimental data provides insight into the
phase noise distribution. For predicting the RADAR range spectra, the peaks at
predicted targets are broadened by a small constant amount. This broadening
is based on real measurements, which have shown the peaks4 to have widths
ranging from 2.5 to 3.5 m. This has been observed from targets, of different
RCS, placed at different distances from the RADAR.

RADAR swash plate bearing angle. Figure 2.5a shows the entire range bins
over the full 200 m range, while Figure 2.5b shows a zoomed view of the
spectra obtained from the feature at 10.25 m. From the figures, it is evident that

3 The peaks and skirts shown in Figure 2.4 occur due to the leakage of signals from the transmitter
into the mixer through the circulator and also due to the antenna impedance mismatch [11].
4

© 2006 by Taylor & Francis Group, LLC

sensitivity of range detection [11] as shown in Figure 2.4.

Figure 2.5 shows 1000 superimposed range bins obtained for the same

At their intersections with the high pass filter gain curve shown in Figure 2.3.

bandwidth [22]. As shown in Section 2.3, the power in the beat frequency
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FIGURE 2.4 Phase noise in the FMCW transceiver occurs due to the instability of
the VCO.
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FIGURE 2.5 Thousand range bins plotted together for the same azimuth. (a) It shows
the full range bin (200 m). (b) It shows the power returns from the feature at a distance
of 10.25 m. The power noise affecting the returned power peaks is less than that during
target absence within the range bin.
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FIGURE 2.5 Continued.

the power variance of the noise at the peaks is less than that in the rest of the
signal.

2.4.3 Noise Analysis during Target Absence and
Presence

As indicated in Figure 2.5b, the power noise variance is different at the power
peaks (target presence) and nonpeaks (target absence) sections of the power
range spectra. Therefore, the noise statistics at the RADAR receiver outputs
during target absence and presence will now be derived. Knowledge of the
noise distributions is necessary for accurately predicting the RADAR spectra
for prediction of feature location in robot navigation.

2.4.3.1 Power-noise estimation in target absence

The noise in the voltage signal entering the mixer stage is assumed to be
Gaussian distributed with zero mean. A theoretical analysis to determine the
power-noise distribution, after this signal has passed through the low pass and
high pass filter stages, and the FFT process has been given in Reference 15.
However, due to the unknown nature of the exact internal components within

© 2006 by Taylor & Francis Group, LLC
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the RADAR used in this work, an experimental determination of the power
noise distributions is used here.

To determine the power bias and variance of the range bins with no targets
present, range bins were recorded at a fixed RADAR bearing angle, with no tar-
gets present. These were recorded by pointing the RADAR toward the open sky.
The mean power and standard deviation of the noisy power–range spectra across
the complete range of the RADAR is shown in Figure 2.6. The standard devi-
ation of the noise is noticeably less at shorter ranges (<45 m), as the particular
RADAR used can only output a minimum received power value of−15 dB, and
any received power value less than this, will simply be output as −15 dB. The
noise power values significantly increase above the minimum−15 dB at higher
ranges due to the higher gain of the high pass (range compensation) filter at
higher ranges.

Examination of the power distributions obtained at different ranges during
target absence, suggests that a suitable approximation to the distributions is
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FIGURE 2.6 Mean and standard deviation of the noise during target absence over the
complete range of the RADAR. The figures are obtained from noise only range bins by
pointing the RADAR toward the sky. (a) Mean power bias as a function of RADAR
range. (b) The standard deviation in power as a function of RADAR range. The standard
deviation is less at shorter distances due to the lower amplification of the high pass filter
at those ranges.
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FIGURE 2.6 Continued.

distributions at arbitrary ranges of 10 and 100 m are shown.
The Weibull probability distribution function can be written as

f (x) = ξ

ψ

(
x

ψ

)ξ−1

e−(x/ψ)ξ , ∀ x > 0 (2.9)

where x is the random variable, with scale parameterψ > 0 and shape parameter
ξ > 0. The mean of x is µ = ψ�(1 + (1/ξ)) − 15 and variance, σ 2 =
ψ2�(1+(2/ξ)−ψ2[�(1+(1/ξ))]2), where �(· · · ) is the  Gamma  function  [23].

For scaling purposes, in this case the random variable x equals the received
power Pr + 15 dB, in order to fit Equation (2.9).

For a range of 10 m (Figure 2.7a), suitable parameters for an equival-
ent Weibull distribution, ψ and ξ are 0.0662 and 0.4146, respectively.5 At
low ranges, this distribution is approximately equivalent to an exponential
distribution, with mean, µ = −14.8 dB and variance σ 2 = 0.3501 dB2.

For a range of 100 m (Figure 2.7b), suitable Weibull parameters have
been obtained as ψ = 26.706 and ξ = 5.333. The distribution has a mean,

5 These values are obtained using Matlab to fit Equation (2.9) to the experimentally obtained
distribution of Figure 2.7a.
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the Weibull distribution [23]. This can be seen in Figure 2.7, where power
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FIGURE 2.7 Experimental estimation of power noise distributions with no targets in
the environment. (a) Experimental estimation of the noise distribution obtained from a
10 m distance. The distance has been chosen arbitrarily. (b) Experimental estimation
of the noise distribution obtained from a 100 m distance. The distance has been chosen
arbitrarily.
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µ = 9.612 dB and variance, σ 2 = 28.239 dB2. These ranges have been selec-
ted arbitrarily to show the noise distributions for shorter (<45 m) and longer
ranges (45 < range < 200).

Therefore, to predict the power noise in the predicted power–range spectra,
for ranges above approximately 45 m, Equation (2.9) can be used with the con-
stant Weibull parameters determined at a range of 100 m. For ranges below this
value, an exponential distribution is assumed, which uses a standard deviation

2.4.3.2 Power-noise estimation in target presence

The receiver noise will also affect the signal when there is a target present.
The resultant distribution is the convolution of both the signal and noise and

imately normal distribution obtained experimentally for 5000 observations of
a RADAR retro-reflector at 10.25 m (the distance and the number of observa-
tions were selected arbitrarily). The experiment has been repeated for obtaining
the distribution from a wall at a distance of 150 m approximately. This is
shown in Figure 2.8b. The two histograms are approximately normally distrib-
uted and have variances of 4.07 and 5.76 dB2, respectively. It is evident from

during target presence are similar.
For an FMCW RADAR, features close to the RADAR give beat frequency

signals with lower frequency and distant features give high frequency signals.
By attenuating lower frequencies and amplifying higher frequencies, it is pos-
sible to achieve a constant returned power for an object with a particular RCS

power from two objects with RCS values of 1000 and 0.001 m2 for all range
values without the high pass filter effect. These have been calculated from the
simple RADAR equation, using the parameters of the particular RADAR used
here. The typical inverse range to the fourth power is still obtained even as
the RCS of the target reduces significantly. Hence in practice, even the small
signal reflections from atmospheric particles combined with the noise generated
inside the RADAR’s internal electronics will produce power–range relations of

give an approximately constant power noise variance for all ranges, for both
target presence and target absence [11]. From the noise variances under sig-
nal absence and presence conditions shown above, it is evident that the high
pass filter is close to its ideal state. (The power noise variance during target
absence and target presence are similar irrespective of ranges.) The estimation
of the noise statistics is helpful in accurately interpreting the range spectra as
well as predicting the RADAR spectra for feature location prediction in robot
navigation.

© 2006 by Taylor & Francis Group, LLC

value which is related to range as in Figure 2.6b.

is distributed normally [11]. The histogram in Figure 2.8a shows an approx-

Figure 2.8a, b and from Figure 2.5a that the noise variances affecting the signal

at all ranges. The graph shown in Figure 2.9 shows the calculated received

this form (such as, e.g., Figure 2.10). Therefore, an ideal high pass filter will
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FIGURE 2.8 Experimental power distributions obtained from targets at differing ranges.
(a) Experimental estimation of a noisy signal distribution. The distribution is obtained
from a target (a RADAR corner reflector of RCS 10 m2) at 10.25 m. (b) Experimental
estimation of a noisy signal distribution obtained from a wall at approximately 150 m.
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FIGURE 2.9 Expected curves of return power vs. distance for two objects with RCS
values of 1000 and 0.001 m2.
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FIGURE 2.10 Range spectra prediction without range compensation.
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2.4.4 Initial Range Spectra Prediction

an object with a known RCS (10 m2) is assumed to be at a distance of 10.25 m.
A Monte Carlo method has been used for simulating the noise in the figure.

signal presence, and during signal absence Weibull distributions with paramet-
ers explained in the previous section have been used. The values are obtained

the noise frequency with respect to range which is evident in the real spectra.
This mismatch is due to the phase noise throughout the entire range bin. The

only during the parts of the range bin which are predicted to have targets, as
explained above. During sections of the range bin with no targets (i.e., beyond
11 m in Figure 2.11a) it is not modeled, since this part of the spectra is of little
interest in target estimation.

A predicted and actual RADAR range spectra, obtained from an outdoor

chi-squared test to determine any bias or inconsistency in the power–range
bin predictions. The difference between the measured and the predicted
range bins is plotted together with 99% confidence interval. The value of
99% bound, = ±16.35 dB, has been found experimentally by recording several

[15]. Close analysis of Figure 2.13a shows that the error has a negative bias.
This is due to the approximate assumption of the high pass filter gain. For the
RADAR used here, the gain of the high pass filter used in the predicted power–
range bins was set to 60 dB/decade, as explained earlier. Figure 2.13b shows
a chi-squared test on the difference between a measured bin and its predicted

error in Figure 2.13b is less biased than Figure 2.13a, a gain of 60 dB/decade
with the small bias (Figure 2.13a) is still acceptable as most of the error values
are well within 99% confidence limit and also taking the high pass filter effect
role into consideration.

A method for predicting the RADAR range spectra has been shown here
which can be used for predicting observations, based on an estimate of a targets
range and RCS value. Clearly a restriction of this method is that as a mobile
robot moves with respect to objects within the environment, range bins can only
be predicted assuming that the RCS does not change as the RADAR to target
angle of incidence changes. In general this is clearly not a valid assumption, but

© 2006 by Taylor & Francis Group, LLC

noisy power–range bins in target absence (RADAR pointing toward open space)

The tools are now complete to simulate/predict RADAR spectra. In Figure 2.10,

presence (Figure 2.7 and Figure 2.4.3). The simulated result of applying the

(Figure 2.11a) and actual range bin (Figure 2.11b) shows a slight mismatch in

from the experimental estimation of the noise distributions in target absence and

high pass 60 dB/decade filter is shown in Figure 2.11a. Analyzing the predicted

environment, is shown in Figure 2.12. Figure 2.13a and b show the results of a

as explained previously (3 × steady state standard deviation of Figure 2.6b)

phase noise, approximately quantified in Section 2.4.2, is taken into account

bin with the mean high pass filter bias of Figure 2.6a subtracted. Although the

A Gaussian noise distribution with a variance of 26.57 dB is used when there is2
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FIGURE 2.11 Predicted and actual RADAR spectra. (a) The effect of the range com-
pensation (high pass) filter of 60 dB/decade. (b) Power vs. range of a single range bin
obtained from an actual RADAR scan. A reflection is received from a target of RCS
10 m2 at 10.25 m.
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FIGURE 2.12 Predicted and actual range bins for multiple targets down-range. (a) Pre-
dicted power vs. range of a single range bin with two features down-range. (b) Power vs.
range of a single range bin obtained from a RADAR scan with two features down-range.
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FIGURE 2.13 The difference between predicted and measured range bins, using two
different approximations for the power bias. (a) The difference between predicted (using
the 60 dB approximation for the high pass filter) and measured range bins containing
two features down-range. This error is shown with the 3σ bounds. (b) The difference
between predicted and measured range bins containing two features down-range. This
error is shown with the 3σ bounds. The average error lies close to zero, as the gain of
the high pass filter is obtained from the real measurements.
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becomes acceptable for objects that are small and cylindrical in shape, making
their RCS approximately view-point invariant, such as lamp posts, trees, etc.,
which can be used for outdoor navigation.

2.5 CONSTANT FALSE ALARM RATE PROCESSOR FOR TRUE TARGET

RANGE DETECTION

To extract the true range values, previous methods have used a power threshold
on the range bins (the closest power value to exceed some threshold gives the
closest object) [9] or constant false alarm rate (CFAR) techniques [21,24]. The
problem with thresholding is, it requires manual adjustment of the threshold as
the RCS of objects in an outdoor natural environment will vary. The function
of CFAR processors is to maintain a constant and low rate of false alarms in
detecting true range values [25].

A cell averaging (CA) detector is useful for maintaining a CFAR where the
power noise-plus-clutter observations x = x1, . . . , xi, . . . , xn follow a Weibull
random distribution shown in Equation (2.9). The structure of the applied CA-
CFAR is shown in Figure 2.14. This figure shows M/2 reference cells (where
M = 70) on each side of the cell, Y , under investigation. Guard cells are present
to account for the broadened target reflection [26]. A moving window of width
M = 70 range points is then used to sum the local noisy power values in the

Z
 t x Z

Comparator

Output
 1 or 0

M/2 M/2

G GY

Y

Input
Xi

Reference cells

Guard
cells

Threshold
t

Σ Σ

Σ

FIGURE 2.14 The structure of the applied CA-CFAR detector.
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range bin as shown in Equation (2.10) [27].

Z =
M∑

i=1

xi (2.10)

This sum is multiplied by a threshold, τ (in this case τ = 0.033), for
later comparison with a test sample power value. The value for τ is chosen
for achieving the desired value of Pfa, the design false alarm probability, in the
absence of targets [28]. The scalar τ is a function of the number of reference cells
M (here M = 70) and Pfa is (1×10−6) for the RADAR used here [10]. The test
sample Y is either a noise-plus-clutter observation or a target return. The variable
threshold τZ is compared with Y . A target is declared to be present if

Y > τZ (2.11)

ing a concrete wall at approximately 18 m. The detected features are indicated
along with the adaptive threshold. The moving average will set the threshold
above which targets are considered detected. Due to the phase noise, the power
returned from the target is widened along the range axis, resulting in more
feature detections at approximately 18 m. In Figure 2.15a and b, CFAR “picks
out” features which lie at closest range. Features at a longer range, however,
will not be detected as the noise power variance estimate by the CFAR pro-
cessor becomes incorrect due to the range bin distortion caused by the high pass
filter.

2.5.1 The Effect of the High Pass Filter on CFAR

of the noisy received power values in Equation (2.10) is inaccurate at higher
ranges, which ultimately results in the missed detection of targets at these range
values. This is evident from Figure 2.15b where CFAR detects a feature (corner
reflector) at 10.25 m while it misses a feature (building) at 138 m. The second
reflection is due to the beam-width of the RADAR, as part of the transmitted
signal passes the corner reflector. It would therefore be useful to reduce the
power–range bias before applying the CFAR method. Therefore, to correctly
implement the CA-CFAR method here, first, the average of two noise only
range bins can be obtained,6 the result of which should be subtracted from the
range bin under consideration. This is carried out to obtain a range independent,
high pass filter gain for the resultant bin.

6 The noise only range bins are obtained by pointing the RADAR toward open space.

© 2006 by Taylor & Francis Group, LLC

The range bin in Figure 2.15 was obtained from an environment contain-

The CFAR method has been applied to the range bin of Figure 2.11b, the
full 200 m bin of which is shown in Figure 2.16a, after subtracting the high

In general, since the gain of the high pass filter is not linear (Figure 2.6a) the sum
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FIGURE 2.15 CFAR  target detection. (a) The  detection  of a target (concrete  wall approx-
imately at 18 m) using a CA-CFAR detector. A series of targets around the 18 m mark
are obtained due to the phase noise in the returned peak. (b) The missed detection of a
feature (a building at 138 m) by a CA-CFAR detector. Due to the gain of the high pass
filter, the noise estimation is inaccurate at higher ranges resulting in missed detection of
features.

containing a corner reflector at 10.25 m and a building at approximately 138 m.
By reducing the high pass filter effect (range independent gain for all the ranges),
the CFAR detection technique finds features regardless of range as shown in

filter characteristics, in the form of power–range bias, before CA-CFAR can be
applied correctly.

Problems still arise however, as CFAR can misclassify targets as noise
(missed-detection) and noise as targets (false-alarm). Both of these are evident
and labeled in the CFAR results of Figure 2.16a.

2.5.1.1 Missed detections with CFAR

In a typical autonomous vehicle environment the clutter level changes. As the
RADAR beam width increases with range, the returned range bin may have
multiple peaks from features.

© 2006 by Taylor & Francis Group, LLC

pass filter bias of Figure 2.6a. This figure shows the result from an environment,

Figure 2.16a. It is clearly necessary to compensate for any nonideal high pass
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FIGURE 2.15 Continued.

by less than the window width M, the local power sum in Equation (2.10) will
become large, causing the adaptive threshold to increase, resulting in a missed

which lies within M range samples of the first feature is completely missed by
the CFAR detector.

2.5.1.2 False alarms with CFAR

Due to the filtering elements within the RADAR, the power noise in the RADAR
range bins is correlated. Therefore, if the window size is too small, all of its
power–range samples will be highly correlated. This means that the sum of
the power values, calculated in Equation (2.10), will misrepresent the true sum
which would be obtained from a set of uncorrelated values. This can ultimately
result in the adaptive threshold being set too low, meaning that even noise
only power values can exceed it. This gives false alarms. This can be overcome
by increasing the window width. However, as explained above, a larger window
width can result in the missed detection of features. The occurrence of false
alarms is shown in Figure 2.16a and b.
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From Figure 2.14, it can be seen that if two or more targets are separated

detection [29]. This is also shown in Figure 2.16b where a return from an object,
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FIGURE 2.16 Target estimation with CFAR. (a) The graph shows target detection using
a CFAR detector. The effect of the high pass filter is removed from the range bin. (b) The
figure shows a missed detection of a feature (at 38 m) by the CA-CFAR processor.
The first feature is at 22 m and the second feature is at 38 m approximately. The effect
of the high pass filter is removed from the range bin.

In general, the CFAR method tends to work well with aircraft in the air
having relatively large RCS, while surrounded by air (with extremely low RCS).
At ground level, however, the RCS of objects is comparatively low and also
there will be clutter (objects which cannot be reliably extracted). Further, as the
CFAR method is a binary detection technique, the output is either a one or a
zero (Equation [2.11]), that is, no probabilistic measures are given for target
presence or absence.

2.6 TARGET PRESENCE PROBABILITY ESTIMATION FOR TRUE

TARGET RANGE DETECTION

For typical outdoor environments, the RCS of objects may be small. The smaller
returned power from these objects can be buried in noise. For reducing the
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FIGURE 2.16 Continued.

noise and extracting smaller signal returns along with the higher power returns,
a method is now introduced which uses the probability of target presence [30]
for feature detection [15]. This method is appealing compared to CFAR and
constant threshold methods at ground level, as a threshold can be applied on
the target presence probability. By setting a threshold value to be dependent on
target presence probability and independent of the returned power in the signal,
a higher probability threshold value is more useful for target detection. The
proposed method does not require manual assistance. The merits of the proposed

problem described here can be stated formally as a binary hypothesis testing
problem [31]. Feature detection can be achieved by estimating the noise power
contained in the range spectra. The noise is estimated by averaging past spectral
power values and using a smoothing parameter. This smoothing parameter
is adjusted by the target presence probability in the range bins. The target
presence probability is obtained by taking the ratio between the local power of
range spectra containing noise and its minimum value. The noise power thus
estimated is then subtracted from the range bins to give a reduced noise range
spectra.

© 2006 by Taylor & Francis Group, LLC

algorithm will be demonstrated in the results in Section 2.6.1. The detection
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Let the power of the noisy range spectra be smoothed by a w-point window
function b(i) whose length is 2w+ 1

P̆(k, l) =
w∑

i=−w

b(i)P̆(k − i, l) (2.12)

where P̆(k, l) is the kth power value of lth range spectra.
Smoothing is then performed by a first order recursive averaging technique:

P̆(k, l) = αsP̆(k, l − 1)+ (1− αs)P̆(k, l) (2.13)

where αs is a weighting parameter (0 ≤ αs ≤ 1). First the minimum and
temporary values of the local power are initialized to Pmin(k, 0) = Ptmp(k, 0) =
P̆(k, 0). Then a range bin-wise comparison is performed with the present bin l
and the previous bin l − 1.

Pmin(k, l) = min{Pmin(k, l − 1), P̆(k, l)} (2.14)

Ptmp(k, l) = min{Ptmp(k, l − 1), P̆(k, l)} (2.15)

When a predefined number of range bins have been recorded at the same
vehicle location, and the same sensor azimuth, the temporary variable, Ptmp is
reinitialized as

Pmin(k, l) = min{Ptmp(k, l − 1), P̆(k, l)} (2.16)

Ptmp(k, l) = P̆(k, l) (2.17)

Let the signal-to-noise power (SNP), PSNP(k, l) = P̆(k, l)/Pmin(k, l) be the
ratio between the local noisy power value and its derived minimum.

In the Neyman–Pearson test [32], the optimal decision (i.e., whether target
is present or absent) is made by minimizing the probability of the type II

follows.
The test, based on the likelihood ratio, is

p(PSNP|H1)

p(PSNP|H0)

H1
≷
H0

δ (2.18)
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error (see Appendix), subject to a maximum probability of type I error as
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where δ is a threshold,7 H0 and H1 designate hypothetical target absence
and presence respectively. p(PSNP|H0) and p(PSNP|H1) are the conditional
probability density functions. The decision rule of Equation (2.18) can be
expressed as

PSNP(k, l)
H1
≷
H0

δ (2.19)

An indicator function, I(k, l) is defined where, I(k, l) = 1 for PSNP > δ and
I(k, l) = 0 otherwise.

The estimate of the conditional target presence probability,8 p̂′(k, l) is

p̂′(k, l) = αpp̂′(k, l − 1)+ (1− αp)I(k, l) (2.20)

This target presence probability can be used as a target likelihood
within mobile robot navigation formulations. αp is a smoothing parameter
(0 ≤ αp ≤ 1). The value of αp is chosen in such a way that the probability
of target presence in the previous range bin has very small correlation with the
next range bin (in this case αp = 0.1).

It is of interest to note that, as a consequence of the above analysis, the
noise power, λ̂d(k, l) in kth range bin is given by

λ̂d(k, l) = α̃d(k, l)λ̂d(k, l − 1)+ [(1− α̃d(k, l))] P̆(k, l) (2.21)

where

α̃d(k, l) = αd + (1− αd)p′(k, l) (2.22)

and αd is a smoothing parameter (0 ≤ αd ≤ 1). This can be used to obtain a
noise reduced bin, P̂NR(k, l)using the method of power spectral subtraction [34].
In the basic spectral subtraction algorithm, the average noise power, λ̂d(k, l)
is subtracted from the noisy range bin. To overcome the inaccuracies in the
noise power estimate, and also the occasional occurrence of negative power
estimates, the following method can be used [35]

P̂NR(k, l) =
{

P̆(k, l)− c× λ̂d(k, l) if P̆(k, l) > c× λ̂d(k, l)

d × λ̂d(k, l) otherwise

7 This threshold can be chosen based upon the received SNP, at which the signal can be trusted
not to be noise. Note that this does not have to be changed for differing environments, or types of
targets.
8 Conditioned on the indicator function I(k, l) [33].
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where c is an over-subtraction factor (c ≥ 1) and d is spectral floor parameter
(0 < d < 1). The values of c and d are empirically determined for
obtaining an optimal noise subtraction level at all ranges and set to be 4
and 0.001.

Although a reduced noise range bin can be useful in other detection methods,
the target presence probability estimate (Equation [2.20]), will be demon-
strated further in the results. This method shows improved performance over
CFAR methods as the threshold can be applied on the target presence probab-
ility instead of SNP. Setting an arbitrary threshold value on the probability of
target presence (≥0.8) is sufficient for target detection. Based on the results,
this is a robust method and requires no adjustments when used in different
environments.

2.6.1 Target Presence Probability Results

where a noisy RADAR range bin (Figure 2.17a), the corresponding estimated
target presence probability (Figure 2.17b) from Equation (2.20) and the reduced
noise range spectra (Figure 2.17c) have been plotted. In Figure 2.17a, the range
bin contains three distinct peaks of differing power values, whereas the target
presence probability plot shows the three peaks with a more uniform range
width and similar probabilistic values. This result shows that although the return
power values varies from different objects, the corresponding target presence
probability values will be similar.

The target presence probability-based feature detector is easier to interpret

plot is shown along with the corresponding raw RADAR data. Figure 2.18a and
Figure 2.19a show the raw RADAR data obtained in an indoor sports hall and
outdoor sports field, respectively. The corresponding target presence probab-
ilities are shown in Figure 2.18b and Figure 2.19b, respectively. Figure 2.18b
shows the target presence probability plot of an indoor stadium. The four walls
of the stadium are clearly obtained by the proposed algorithm. The other prob-
ability values at higher ranges arise due to the multipath effects in the RADAR
range spectrum. Figure 2.19b is obtained from an outdoor field. The detec-
ted features are marked in the figure. The clutter shown in Figure 2.19b is
obtained when the RADAR beam hits the ground due the unevenness of the
field surface.

obtained using different power thresholds applied to raw RADAR range spectra
are shown and compared with the threshold (0.8) applied to the probability plot.
Figure 2.20a shows the comparison of 2D plots obtained by choosing a constant
threshold of 25 dB applied to the raw RADAR data and the target presence prob-
ability plot. Figure 2.20b shows the comparison of plots obtained by constant

© 2006 by Taylor & Francis Group, LLC

The results of the proposed target detection algorithm are shown in Figure 2.17

as shown in Figure 2.18 and Figure 2.19 where the target presence probability

The merit of the proposed algorithm is shown in Figure 2.20 where plots
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FIGURE 2.17 Received range bin, noise reduced bin, and the probability of target
presence vs. range plot. (a) Received noisy RADAR range bin. (b) Target presence
probability of the corresponding range bin. (c) Noise reduced RADAR range bin.
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FIGURE 2.17 Continued.

threshold of 40 dB applied against the raw RADAR data and the target presence
probability. Further results conducted show the target presence probability of
objects will be the same and is found to be more than 0.8. Feature detection using
the target presence probability is then carried out by keeping the threshold at 0.8.

probability-based feature detection is easier to interpret and has lower false
alarms compared to constant threshold-based feature detection in the typical
indoor and outdoor environments tested [36].

2.6.2 Merits of the Proposed Algorithm over Other
Feature Extraction Techniques

The constant threshold applied to raw RADAR data requires manual inter-
vention for adjusting the threshold depending on the environment. In CA-CFAR,
the averaging of power values in the cells provides an automatic, local estimate
of the noise level. This locally estimated noise power is used to define

the threshold with the power of the signal and classifies the cell content as
signal or noise.

© 2006 by Taylor & Francis Group, LLC

The results shown in Figures 2.18 to 2.20 clearly show that the target presence

the adaptive threshold (see e.g., Figure 2.16a). The test window compares
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FIGURE 2.18 Raw RADAR data and corresponding target presence probability plots
obtained from an indoor sports hall. (a) Power vs. range of a 2D RADAR scan from
an indoor environment. (b) Target presence probability vs. range of a 2D RADAR scan
in indoor environment. The probability of the targets detected (i.e., walls) are shown in
the figure.

When the signal and noise distributions are distinctly separated in range,
CFAR works well. But when the signal and noise distributions lie close
together, which is often the case at ground level (as shown in Figure 2.21),
the method misclassifies noise as signal and vice versa. This is the reason
for the poor performance of the CFAR technique with noisy RADAR data.
Figure 2.22 shows features obtained by target presence probability and the
CA-CFAR technique. The dots are the features obtained by target presence
probability while the “+” signs are the features obtained from the CFAR-based
target detector. From the figures it can be seen that the target presence-based
feature detection has a superior performance to CA-CFAR detector in the
environment tested. Figure 2.23 shows the difference between the ground
truth and the range observation obtained from the target presence probabil-
ity. The ground truth has been obtained by manually measuring the distance
of the walls from the RADAR location. The peaks in Figure 2.23 are to some
extent due to inaccurate ground truth estimates, but mainly due to multi-path
reflections.

The proposed algorithm for feature extraction appears to outperform
the CFAR method because the CFAR method finds the noise locally, while
the target presence probability-based feature detection algorithm estimates

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.18 Continued.

the noise power by considering more than one range bin (Equation [2.16]). The
target presence probability-based feature extraction, unlike the CFAR detector,
is not a binary detection process as is shown in Figure 2.17c. This method
of feature detection is useful in data fusion as the feature representation is
probabilistic.

2.7 MULTIPLE LINE-OF-SIGHT TARGETS — RADAR PENETRATION

At 77 GHz, millimeter waves can penetrate certain nonmetallic objects, which
sometimes explains the multiple line-of-sight objects within a range bin.9 This
limited penetration property can be exploited in mobile robot navigation in
outdoor unstructured environments, and is explored further here.

For validating the target penetration capability of the RADAR, tests were
carried out with two different objects. In the section of the RADAR scan,
shown in Figure 2.24a, a RADAR reflector of RCS 177 m2 and a sheet of

9 Although it should be noted that these can be the results of specular and multiple path
reflections also.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.19 Raw RADAR data and corresponding target presence probability
obtained from an outdoor environment. (a) Power vs. range of a 2D RADAR scan from
an outdoor environment. (b) Target presence probability vs. range of a 2D RADAR scan
in outdoor environment. The probability of the targets detected (i.e., RADAR reflectors,
wall, and tree) are shown in the figure.

wood of thickness 0.8 cm were placed at ranges of 14 and 8.5 m respectively,
to visually occlude the reflector from the RADAR. This ensured that no part
of the RADAR reflector fell directly within the beam width of the RADAR,
so that if it was detected, it must be due to the radio waves penetrating the wood.
Figure 2.24a shows the detection of the two features down-range even though,
visually, one occludes the other. The experiment was also repeated for a perspex
sheet of thickness 0.5 cm (Figure 2.24b). The results of object penetration by
RADAR waves motivates further development of power spectra prediction with
multiple line-of-sight features which is one of the contributions of this chapter.
For feature-based SLAM, it is necessary to predict the target/feature locations
reliably, given a prediction of the vehicle/RADAR location. As RADAR can
penetrate certain nonmetallic objects it can give multiple range information.
A method for predicting the power–range spectra (or range bins) using the
RADAR range equation and knowledge of various noise distributions in the
RADAR has already been explained in this chapter.

For SLAM, the measurements taken from the RADAR used here are the
range, R, bearing, θ , and the received power, PR, from the target at range R.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.19 Continued.

One of the contributions of this chapter is to predict range bins from new robot
positions given an estimate of the vehicle and target states. A new augmented
state vector is introduced here which, along with the usual feature coordinates

R, and absorption RCS, ϒa,
and the RADAR losses, L.

◦ RADAR scan obtained from an
outdoor field. Objects in the environment consist of lamp-posts, trees, fences,
and concrete steps. The RADAR penetrates some of the nonmetallic objects,10

is the received power vs. range for the particular bearing of 231◦ marked in
Figure 2.25. Multiple targets down range can occur due to either the beam width
of the transmitted wave intersecting two or more objects at differing ranges or
due to penetration of the waves through certain objects. The RADAR used here

10 At 77 GHz the attenuation through paper, fiberglass, plastic, wood, glass, foliage, etc., are
relatively low while attenuation through brick and concrete is high [37].

© 2006 by Taylor & Francis Group, LLC

and can observe multiple targets down line. This is shown in Figure 2.26, which

x and y, contains that feature’s normalized RCS, ϒ

To illustrate this, Figure 2.25 shows a 360
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FIGURE 2.20 Target presence probability vs. range spectra and the corresponding
power vs. range taken from a 2D RADAR scan in an indoor environment. The figures
shows a comparison of the proposed feature detection algorithm with the constant
threshold method. (a) A constant power threshold of 25 dB is chosen and compared with
the threshold (0.8) applied on probability-range spectra. (b) A constant power threshold
of 40 dB is chosen and compared with the threshold applied to the probability–range
spectra.

is a pencil beam device, with a beam width of 1.8◦. This means that multiple
returns within the range spectra occur mostly due to penetration. Therefore a
model for predicting entire range spectra, based on target penetration is now
given.

2.8 RADAR-BASED AUGMENTED STATE VECTOR

The state vector consists of the normalized RADAR cross section, ϒR, absorp-
tion cross section, ϒa, and the RADAR loss constants, L, along with the vehicle
state and feature locations. The variables, ϒR, ϒa, and L are assumed unique to
a particular feature/RADAR. Hence, this SLAM formulation makes the (very)
simplified assumption that all features are stationary and that the changes in the
normalized values of RCS and absorption cross sections of features when sensed
from different angles, can be modeled using Gaussian random variables vϒi .

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.20 Continued.

This is a reasonable assumption only for small circular cross sectioned objects
such as trees, lamp posts, and pillars, however, as will be shown the method pro-
duces good results in semi-structured environments even for the targets which
do not conform to these assumptions. The SLAM formulation here can handle
multiple line-of-sight targets.

2.8.1 Process Model

A simple vehicle predictive state model is assumed with stationary features
surrounding it. The vehicle state, xv(k) is given by xv(k) = [x(k), y(k), θR(k)]T
where x(k), y(k), and θR(k) are the local position and orientation of the vehicle
at time k. The vehicle state, xv(k) is propagated to time (k+1) through a simple
steering process model [38].

The model, with control inputs, u(k) predicts the vehicle state at time (k+1)

together with the uncertainty in vehicle location represented in the covariance
matrix P(k + 1) [39].

xv(k + 1) = f(xv(k), u(k))+ v(k) (2.23)

© 2006 by Taylor & Francis Group, LLC
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FIGURE 2.21 Experimental estimation of signal and noise distributions. In the CFAR
method, the local noise-plus-clutter power (Equation [2.10]) in the window is used to
set the detection threshold. The method compares the signal in the test window and
the detection threshold. The method fails when there are multiple detections within a
range-bin and in cluttered environments.

u(k) = [v(k), α(k)]. v(k) is the velocity of the vehicle at time k and α(k) is the
steering angle. In full, the predicted state at time, (k + 1) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k + 1|k)

ŷ(k + 1|k)

θ̂R(k + 1|k)

xp1(k + 1|k)

yp1(k + 1|k)

ϒR1(k + 1|k)

ϒa1(k + 1|k)

...

xpN (k + 1|k)

ypN (k + 1|k)

ϒRN (k + 1|k)

ϒaN (k + 1|k)

L(k + 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k|k)

ŷ(k|k)

θ̂R(k|k)

xp1(k|k)

yp1(k|k)

ϒR1(k|k)

ϒa1(k|k)

...

xpN (k|k)
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ϒaN (k|k)

L(k|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x(k)

�y(k)

α(k)

0p1

0p1

0p1

0p1

...

0pN

0pN

0pN

0pN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.24)
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FIGURE 2.22 Comparison of CA-CFAR detector-based feature extraction and feature
detection based on target presence probability.
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FIGURE 2.23 The difference between the ground truth range values and the range
estimates from the target presence probability.
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FIGURE 2.24 Initial test results carried out to show the RADAR wave penetration with
different objects. (a) A scan of a RADAR reflector of RCS 177 m2, 14 m from the
RADAR, and a wooden sheet of thickness 0.8 cm visually occluding the reflector from
the RADAR. The wooden sheet is 8.5 m from the RADAR. (b) A RADAR reflector of
RCS 177 m2, 14 m from the RADAR, and a perspex sheet of thickness 0.5 cm, 8.5 m
from the RADAR. Again, the reflector is visually occluded from the RADAR.
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FIGURE 2.25 A 360◦ RADAR range spectra obtained from an outdoor field, contain-
ing trees, nonmetallic poles, fences, and concrete walls. The received power value
is represented in color space, as shown by the right hand color bar, with power
units in decibel.

where �x(k) = v(k)�t cos(θ̂R(k|k) + α(k)), �y(k) = v(k)�t sin(θ̂R(k|k) +
α(k)) and �t is the sampling time.

The augmented state vector is then x(k) = [xv, {F1, ϒR1 , ϒa1}, . . . , {Fi, ϒRi ,
ϒai}, . . . , {FN , ϒRN , ϒaN }, L]T where xv is the vehicle’s pose, Fi =
[xpi , ypi ]T is the ith feature’s location, where 1 ≤ i ≤ N . ϒRi is
the normalized RCS of the ith feature, ϒai is its normalized absorp-
tion cross section, L represents the RADAR loss, and v(k) = [vv(k),
0p1 , 0p1 , vϒR1

, vϒa1
, . . . , 0pi , 0pi , vϒRi

, vϒai
, . . . , 0pN , 0pN , vϒRN

, vϒaN
, 0]T.

2.8.2 Observation (Measurement) Model

Another contribution of this chapter is the formulation of the observation model.
The  RADAR  observation  is used  to  estimate  the  vehicle’s state  once  the  vehicle’s
pose is predicted. During filter update, the prediction and estimation are fused.
For each of the features in the map, the predicted range, R̂i(k + 1|k), the
RADAR bearing angle, β̂i(k + 1|k), and the power, P̂i(k + 1|k) are to be
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FIGURE 2.26 A single RADAR range bin, recorded at the bearing angle 231◦ shown

predicted from the predicted state in Equation (2.24). The predicted range and

R̂i(k + 1|k)=
√
[x̂pi(k+1|k)−x̂R(k+1|k)]2 + [ŷpi(k + 1|k)−ŷR(k + 1|k)]2

(2.25)

β̂i(k + 1|k) = θ̂R(k + 1|k)− tan−1
[ ˆypi(k + 1|k)− ŷR(k + 1|k)

ˆxpi(k + 1|k)− x̂R(k + 1|k)

]
(2.26)

The predicted power for all targets, such as those in Figure 2.26, is the
fundamental difference offered in this chapter.

2.8.2.1 Predicted power observation formulation

The assumptions made in the predicted power model are as follows:

• The environmental features of interest are assumed to have small
circular cross-sections, so that the estimated normalized RCS

© 2006 by Taylor & Francis Group, LLC

bearing observations are similar to the ordinary SLAM formulation, that is,

in Figure 2.25, obtained from the outdoor field with multiple features down-range.
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sections and absorption coefficients are approximately the same in
all directions with respect to that feature.
• The measured returned power should be independent of range (due to

the built-in range compensation filter). This filter must first be
removed or post-filtered to remove its effect, to produce range
dependent power returns from all objects [15].
• The beam-width of the RADAR wave does not increase considerably

with range.

A target is assumed to affect the incident electromagnetic radiation in three
possible ways:

1. A portion of the incident energy ϒR, 0 ≤ ϒR ≤ 1, is reflected and
scattered

2. A portion of the incident energy ϒa, 0 ≤ ϒa ≤ 1, is absorbed by the
target

3. A portion of the incident energy 1− (ϒR+ϒa) is further transmitted
through the target

ϒR

a MMW RADAR in an environment with i-features down-range at a particu-
lar bearing. The following terms are used in formulating the predicted power
observation:

• PINCi = Power incident on the ith feature
• PREFi = Power reflected from the ith feature
• PTRANi = Power transmitted through the ith feature
• PINCi1 = Power incident on the first feature which is reflected from

the ith feature
• PREFi1 = Power reflected back toward the ith feature from the first

feature. This component will not reach the RADAR receiver directly
and is not considered in this formulation
• PTRANi1 = Power transmitted through the first feature which is the

reflection from the ith feature

The power incident at the first feature is given by

PINC1 = PtGAI

4πR1
2

(2.27)

where Pt is the power transmitted by the RADAR, G is the antenna gain, and
R1 is the distance between RADAR and the first feature and AI is the area
of the object illuminated by the RADAR wave. Let ϒR1 be the normalized

© 2006 by Taylor & Francis Group, LLC

is thus referred to as the “normalized” RCS section. Figure 2.27 shows
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FIGURE 2.27 Power definitions for reflections, absorptions, and transmissions for i
multiple line-of-sight features.

RCS and ϒa1 be the normalized absorption cross section of the first feature.
The power received by the RADAR receiver from the first feature is given by
P̂′REF1 = PREF1Ae/(4πR2

1)

P̂′REF1 =
PtGϒ̂R1 AI

(4π)2R̂4
1

Ae (2.28)

where Ae is the antenna aperture. It is shown in the RADAR literature that
Ae = Gλ2/4π [21]. Substituting for Ae in Equation (2.28), the power return
from the first feature is

P̂′REF1 =
PtG2λ2ϒ̂R1 AI

(4π)3R̂4
1

(2.29)

The power PTRAN1 that passes through the first feature is given by

PTRAN1 = PtGAI(1− [ϒ̂R1 + ϒ̂a1 ])
(4π)R̂2

1

(2.30)

© 2006 by Taylor & Francis Group, LLC
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The power reflected from the second feature, PREF2 is given by

PREF2 = PtGAI
2ϒ̂R2(1− [ϒ̂R1 + ϒ̂a1 ])

(4π)2R̂2
1(R̂2 − R̂1)

2
(2.31)

The power then transmitted back to the first feature from the second feature is
given by

PINC21 = PtGAI
3ϒ̂R2(1− [ϒ̂R1 + ϒ̂a1 ])

(4π)3R̂2
1(R̂2 − R̂1)

4
(2.32)

The power, PINC21 then passes through feature 1 and is given by

PTRAN21 = PINC21(1− [ϒ̂R1 + ϒ̂a1 ]) (2.33)

The power returned from the second feature is then P̂′TRAN21 = PTRAN21Ae/

(4π R̂2
1)

P̂′TRAN21 =
PtGAI

3Aeϒ̂R2(1− [ϒ̂R1 + ϒ̂a1 ])2

(4π)4R̂4
1(R̂2 − R̂1)4

(2.34)

In general, the predicted power from the ith feature can be written as

P̂′TRANi1(k + 1|k) = KAI
(2i−1)ϒ̂Ri(k + 1|k)

(4π)2i

×
∏i−1

j=0[1−(ϒ̂Rj (k+1|k)+ϒ̂aj (k + 1|k))]2∏i−1
j=0(R̂j+1(k + 1|k)− R̂j(k + 1|k))4

(2.35)

where K = PtGAe, Ae = Gλ2/4π , ϒ̂R0 = ϒ̂a0 = R̂0 = 0 and, for the ith
feature, R̂i is related to the augmented state by Equation (2.25).

Equation (2.25), Equation (2.26), and Equation (2.35) between them com-
prise the observation. In order to generate realistic predictions of the range bins,
knowledge of the power and range noise distributions is necessary. This has been
studied extensively in previous work, and can be found in Reference 15.

The range and power noise are experimentally obtained [15]. The noise
in range is the phase noise, which is obtained by observing the range bins

© 2006 by Taylor & Francis Group, LLC
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containing reflections from objects with different RCSs at different locations.
The noise statistics in power is obtained during both target presence and
absence.

The angular standard deviation is assumed to be 1◦ as the RADAR wave is
a pencil beam. The observation model is then given by

zi(k + 1) = [Ri(k + 1), βi(k + 1), Pi(k + 1)]T + wi(k + 1)

= h(x(k + 1)) + wi(k + 1) (2.36)

where zi(k + 1) is the observation, and wi(k + 1) is the additive observation
noise given by

wi(k + 1) = [vR(k + 1)vβ(k + 1)vp(k + 1)]T (2.37)

and h is the nonlinear observation function defined by Equation (2.25),
Equation (2.26), and Equation (2.35).

2.9 MULTI-TARGET RANGE BIN PREDICTION — RESULTS

To validate the formulation for realistically predicting multiple line-of-site
target range bins, tests using a RADAR unit from Navtech Electronics were
carried out. Initially the vehicle was positioned at pose xv(k) as demonstrated

◦ RADAR scan obtained from this vehicle location

Figure 2.26 is obtained at azimuth 231◦ and is indicated by the black line in
Figure 2.25. Features in the environment are marked in the figures. The next
predicted vehicle location is calculated using the vehicle model and system
inputs (Equation [2.24]). This corresponds to the new predicted vehicle pose
x̂v(k + 1 | k) in Figure 2.28. The range spectra in all directions are then pre-
dicted from the new predicted vehicle location. For example, in the range bin
predicted at angle β̂(k + 1 | k) in Figure 2.28, the predicted values for the
range, bearing and received power of features A and D are calculated according
to Equation (2.25), Equation (2.26), and Equation (2.35).

A single range prediction obtained from the predicted vehicle location
xv(k + 1 | k) is shown in Figure 2.29b having two features down-range.
Equation (2.35) can be used to predict the received power as long as the power
bias as a function of range incorporated into the RADAR electronics is taken
into account. This simply requires knowledge of the RADAR’s high pass filter
circuitry which in an FMCW RADAR compensates for the fourth power of
range loss, expected according to the simple RADAR Equation [15, 21].

© 2006 by Taylor & Francis Group, LLC

in Figure 2.28. The full 360

at two different bearing angles are shown in Figure 2.26 and Figure 2.29a.
is shown in Figure 2.25. Range bins obtained from the initial vehicle location
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FIGURE 2.29 Observed and one step ahead predicted range spectra. (a) RADAR range
spectra (233◦ azimuth) obtained at the starting robot location. Two features observed
down-range are marked. (b) Predicted RADAR range spectra (at 234◦ bearing) obtained
from the predicted vehicle location.
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FIGURE 2.29 Continued.

The actual observation is obtained from the next vehicle location and is

dicted in Figure 2.29b. The predicted and actual received powers from the target
at A are in close agreement in both figures whereas, the predicted value for the
received power (30 dB) of the target at 58 m (feature D in Figure 2.29b) is
slightly less than the actual received power (38 dB) in Figure 2.30a. The dis-
crepancy for feature D can be due to violation of some of the assumptions made
in the formulation — in particular that the normalized reflection and absorption
cross-sections remain constant, independent of the RADAR to target angle of
incidence.

Figure 2.30b shows the results of a chi-squared test to determine any bias or
inconsistency in the power–range bin predictions. The difference between the
measured and the predicted range bins is plotted together with 99% confidence
interval. The value of 99% bound, =±16.35 dB, has been found experiment-
ally by recording several noisy power–range bins in target absence (RADAR
pointing toward open space) [15]. Close analysis of Figure 2.30b shows that
the error has a negative bias. This is due to the approximate assumption of the
high pass filter gain. For the RADAR used here, the gain of the high pass filter

© 2006 by Taylor & Francis Group, LLC

shown in Figure 2.30a which shows power peaks in close proximity to those pre-
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FIGURE 2.30 An actual range bin and the error between the predicted and observed
spectra. (a) Actual RADAR range spectra (at 234◦ bearing) obtained at the next robot
location. Features observed down-range are marked. (b) The difference between pre-
dicted and measured range bins containing two features down-range is shown. This error
is compared against 3σ noise power bounds.

used in the predicted power–range bins was set to 60 dB/decade.11 The result
shows that this approximation for the high pass filter gain is acceptable, as a
large portion of the error plot lies within the 3σ limits.

This formulation and analysis shows the initial stages necessary in imple-
menting an augmented state, feature rich SLAM formulation with MMW
RADAR. Future work will address the ease with which data association can be
carried out using the multidimensional feature state estimates, and a full SLAM
implementation in outdoor environments, will be tested.

11 Assuming the RADAR range equation to be correct, a high pass filter with a gain of 40 dB/decade

a power–range spectrum recorded from the RADAR. It can be seen from Figure 2.26, that the
power range response is not flat. For this particular RADAR it makes sense to either determ-
ine the bias in the power–range spectra or, model the high pass filter as having a gain of
60 dB/decade, which would better approximate the power–range relationship actually produced
in Figure 2.26.
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should produce a flat power response for particular targets at various ranges. Figure 2.26 shows
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2.10 CONCLUSIONS

This chapter describes a new approach in predicting RADAR range bins which
is essential for SLAM with MMW RADAR.

A noise analysis during signal absence and presence was carried out. This
is to understand the MMW RADAR range spectrum and to predict it accur-
ately as it is necessary to know the power and range noise distributions in the
RADAR power–range spectra. RADAR range bins are then simulated using
the RADAR range equation and the noise statistics, which are then compared
with real results in controlled environments. In this chapter, it is demonstrated
that it is possible to provide realistic predicted RADAR power/range spectra,
for multiple targets down-range.

Feature detection based on target presence probability was also introduced.
Results are  shown  which  compare  probability-based  feature  detection  with  other
feature extraction techniques such as constant threshold on raw data and CFAR
techniques. A difficult compromise in the CA-CFAR method is the choice of
the window size which results in a play-off between false alarms and missed
detections. Variants of the CFAR method exist, which can be tuned to overcome
the problem of missed detections, but the problem of false alarms remains
inherent to these methods.

The target presence probability algorithm presented here does not rely on
adaptive threshold techniques, but estimates the probability of target presence
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based on local signal-to-noise power estimates, found from several range
bins. The results show that the algorithm can detect features in the typically
cluttered outdoor environments tested, with a higher success rate compared to
the constant threshold and CFAR feature detection techniques.

A SLAM formulation using an augmented state vector which includes the
normalized RCS and absorption cross-sections of features, as well as the usual
feature Cartesian coordinates, was introduced. This is intended to aid the data
association process, so that features need not just be associated based on their
Cartesian coordinates, but account can be taken of their estimated normalized
reflection and absorption cross-sections also.

The final contribution is a predictive model of the form and magnitudes
of the power–range spectra from differing vehicle locations, for multiple line-
of-sight targets. This forms a predicted power–range observation, based on
estimates of the augmented SLAM state. The formulation of power returns
from multiple objects down-range is explained and predicted RADAR range
spectra are compared with real spectra, recorded outdoors.

This work is a step toward building reliable maps and localizing a vehicle
to be used in mobile robot navigation. Further methods of including the target
presence probability of feature estimates into SLAM are being investigated.

APPENDIX

The binary hypothesis testing problem is a special case of decision problems.
The decision space consists of target presence and target absence represented
by δ0 and δ1, respectively. There is a hypothesis corresponding to each decision.
H0 is called null hypothesis (hypothesis accepted by choosing decision δ0) and
H1 is called the alternative hypothesis. The binary hypothesis problem has four
possible outcomes:

• H0 was true, δ0 is chosen : correct decision.
• H1 was true, δ1 is chosen : correct decision.
• H0 was true, δ1 is chosen : False alarm, also known as a type I error.
• H1 was true, δ0 is chosen : missed detection also known as a type II

error.
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3.1 INTRODUCTION

Data fusion is the process of combining sensory information from different
sources into one representational data format. The source of information may
come from different sensors that provide information about completely different
aspects of the system and its environment; or that provide information about
the same aspect of the system and its environment, but with different signal
quality or frequency. A group of sensors may provide redundant information,
in this case, the fusion or integration of the data from different sensors enables
the system to reduce sensor noise, to infer information that is observable but
not directly sensed, and to recognize and possibly recover from sensor failure.
If a group of sensors provides complementary information, data fusion makes
it possible for the system to perform functions that none of the sensors could
accomplish independently. In some cases data fusion makes it possible for
the system to use lower cost sensors while still achieving the performance
specification.

Data fusion is a large research area with various applications and methods
[1–3]. In addition to having a thorough understanding of various data fusion
methods, it is useful to understand which methods most appropriately fit the
corresponding aspects of a particular application. In many autonomous vehicle
applications it is useful to dichotomize the overall set of application information
into (internal) vehicle information and (external) environmental information.
One portion of the vehicle information is the vehicle state vector. Accurate
estimation of the vehicle state is a small portion of the data fusion problem
that must be solved onboard an autonomous vehicle to enable complex mis-
sions; however, accurate estimation of the vehicle state is critical to successful
planning, guidance, and control. When it is possible to analytically model the
vehicle state dynamics and the relation between the vehicle state and the sensor
measurements, the Kalman filter (KF) and the extended Kalman filter (EKF)
are often useful tools for accurately fusing the sensor data into an accurate
state estimate. In fact, when certain assumptions are satisfied, the KF is the
optimal state estimation algorithm. The KF and its properties are reviewed in

This chapter has two goals. The first is to review the theory and application
of the KF as a method to solve data fusion problems. The second is to discuss
the use of the EKF for fusing information from the global positioning system
(GPS) with inertial measurements to solve navigation problems for autonomous
vehicles. Various fusion paradigms have been suggested in the literature — GPS,
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inertial navigation system (INS) only, INS with GPS resetting, INS with GPS
position aiding (i.e., loose coupling), and INS with GPS range aiding (i.e., tight
coupling). This chapter presents each approach and discusses the issues that
are expected to affect performance. Discussion of latency, asynchronous, and
nonlinear measurements are also included.

3.1.1 Data Fusion — GPS and INS

For planning, guidance, and control applications it is critical that the state of
the vehicle be accurately estimated. For these applications, the state vector of
the vehicle includes the three-dimensional (3D) position, velocity, and attitude.
Often, it is also possible to estimate the acceleration and angular rate. Various
sensor suites and data fusion methods have been considered in the literature
[4–8]. This chapter focuses on one of the most common sensor suites [9–11]
— fusion of data from an inertial measurement unit (IMU) and a GPS receiver.
The chapter considers the positive and negative aspects of various methods that
have been proposed for developing an integrated system.

An IMU provides high sample rate measurements of the vehicle acceler-
ation and angular rate. An INS integrates the IMU measurements to produce
position, velocity, and attitude estimates. INSs are self-contained and are not
sensitive to external signals. Since an INS is an integrative process, meas-
urement errors within the IMU can result in navigation errors that will grow
without bound. The rate of growth of the INS errors can be decreased through
the use of higher fidelity sensors or through sensor calibration. In addition,
the INS errors (and calibrations) can be corrected through the use of external
sensors. With a well-designed data fusion procedure, even an inexpensive INS
can provide high frequency precise navigation information [12]. The rate of
growth of the INS error will depend on the IMU characteristics and data fusion
approach.

A GPS receiver measures information that can be processed to directly
estimate the position and velocity of the receiver antenna. More advanced multi-
antenna GPS approaches can also estimate the vehicle attitude [13–15]. The
accuracy of the vehicle state estimate attained by GPS methods depends on the
receiver technology and the processing method. Civilian nondifferential GPS
users can attain position estimates accurate to tens of meters. Differential
GPS users can attain position estimates accurate to a few meters. Differen-
tial GPS users capable of resolving carrier phase integer ambiguities can attain
position estimates accurate to a few centimeters. The main disadvantage of state
estimates determined using GPS is that the estimates are dependent on reception
of at least four GPS satellite signals by the receiver. Satellite signal reception
requires direct line of sight between the receiver and the satellite. While this
line of sight is obstructed for a sufficiently large number of satellites, the GPS
solution will not be available.
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GPS and INS have complementary properties which have motivated various
researchers to study methods to fuse the data from the two systems. The object-
ive is to attain high performance for a higher percentage of the time than either
approach  could  attain  independently. This chapter uses  GPS  and  INS  to  illustrate
the use of the KF for data fusion. Section 3.2 reviews the KF, EKF, and various

to the GPS system. Of particular interest will be various assumed dynamic

brief review of INS and their error models. The main objective is to present
the model information necessary to analyze alternative methods for combining

3.2 KALMAN FILTER

Since R. E. Kalman published his idea in the early 1960s [16,17], the KF
has been the subject of extensive research. It has been applied successfully to
solve many practical problems in different fields, particularly in the area of
autonomous navigation. The KF involves two basic steps: use of the system
dynamic model to predict the evolution of the state between the times of the
measurements and use of the system measurement model and the measurements
to optimally correct the estimated state at the time of the measurements. It is
well known that the KF is recursive, computationally efficient, and optimal in
the sense of the minimum mean of the squared errors [18].

This section contains three subsections. Section 3.2.1 reviews the linear
dynamic system models that are required for the prediction and measurement

reviews the EKF algorithm which is applicable when either the dynamic or
measurement model of the system is not linear. The EKF is needed in GPS–INS

measurement model may be nonlinear.

3.2.1 Stochastic Process Models

Because the state of most physical systems evolve in continuous time,
continuous-time dynamic models are of interest. The dynamic behavior of
a linear continuous-time system driven by a random process ω(t) may be
described mathematically by a set of ordinary differential equations:

ẋ(t) = F(t)x(t)+G(t)ω(t) (3.1)

y(t) = H(t)x(t)+ v(t) (3.2)

© 2006 by Taylor & Francis Group, LLC

data fusion applications since the INS dynamic model is nonlinear and the GPS

properties and application issues. Section 3.3 reviews the various issues related

models and issues affecting state estimation accuracy. Section 3.4 provides a

GPS and INS information, which is done in Section 3.5.

update steps of the KF. Section 3.2.2 reviews the KF algorithm, a few of its
properties, and methods to address various implementation issues. Section 3.2.3
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where x(t) is the n-element state vector of the system, F(t) is the system matrix,
G(t) is the input distribution matrix, y(t) is the measurement vector, H(t) is the
measurement matrix, and v(t) is the measurement noise vector.

The vectors ω(t) and v(t) are assumed to be white and Gaussian with

E[ω(t)] = 0, E[ω(t)ωT(t + τ)] = Qw(t)δ(τ ) (3.3)

E[v(t)] = 0, E[v(t)vT(t + τ)] = R(t)δ(τ ) (3.4)

where Qw is the power spectral density (PSD) of the white noise ω(t) and R(t)
is the covariance matrix of the measurement noise process v(t). If either ω(t)
or v(t) is not white, then it may be possible to append linear dynamics to the
model of Equation (3.1) and Equation (3.2) to still utilize the model of a linear

discussions of this chapter, unless otherwise stated, assume that the system
model has been manipulated into the form of Equation (3.1) and Equation (3.2)
with white process and measurement noise.

In applications, such as those involving GPS, where the measurements
occur at discrete instants of time, it is convenient to utilize a discrete-time
formulation of the KF. If we denote the sequence of measurement times by
t1, . . . , tk , tk+1, . . . , then implementation of the discrete-time KF requires a
model for propagating the state between measurement times and a model for the
relation between the state and the measurement that is valid at the measurement
time. Using linear system theory [20,21], the state transition valid between tk
and tk+1 is

x(tk+1) = �(tk+1, tk)x(tk)+ w(tk) (3.5)

where

w(tk) =
∫ tk+1

tk
�(tk+1, τ)G(τ )ω(τ) dτ (3.6)

and �(tk+1, t) is the state transition matrix from t to tk+1. The measurement
model valid at tk is

y(tk) = H(tk)x(tk)+ v(tk) (3.7)

To simplify notation, these equations will be written as

xk+1 = �kxk + wk (3.8)

yk = Hkxk + vk (3.9)

© 2006 by Taylor & Francis Group, LLC
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The process noise wk and measurement noise vk are assumed to be zero-mean,
white noise with covariance properties as follows:

E[wkwT
j ] =

{
Qk , k = j

0, k �= j
(3.10)

E[vkvT
j ] =

{
Rk , k = j

0, k �= j
(3.11)

E[wkvT
j ] = 0, for all k and j (3.12)

3.2.1.1 Computation of � and Qk

The covariance matrix associated with w(tk) is:

Qk = Q(tk+1, tk) =
∫ tk+1

tk
�(tk+1, τ)G(τ )QwGT(τ )�T(tk+1, τ) dτ (3.13)

For systems where F(t), G(t), and Qw(t) are accurately approximated as con-
stant over the interval of integration, the transition matrix can be calculated by
the inverse Laplace transform

�(tk+1, tk) = �−1{[sI− F]−1}t=tk+1−tk (3.14)

Alternative methods to compute�k and Qk use matrix exponentials [22,23] or
Taylor series expansions. A common method for computing�k is the truncated
power series:

�(	t) = eF	t = I+ F	t + F2	t2

2! +
F3	t3

3! + · · · (3.15)

where 	t = tk+1 − tk and the choice of the order of the power series depends
on the system design requirements.

When F is time varying, it is necessary to subdivide 	t such that F can
be considered as constant on the subintervals 	τi = τi − τi−1 where τ0 = tk ,
τN = tk+1, and τi = τi−1 + 	τi for i = 1, . . . , N . Let 	t = ∑N

i=1	τi

then �k
∏N

i=1�(τi, τi−1). The matrix Qk can be found by approximation
techniques:

Qk = Q(τN , τ0) (3.16)
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where by subdividing (3.13) into subintegrals and using �(τi+1, τ0) =
�(τi+1, τi)�(τi, τ0) we obtain

Q(τi, τ0) = �(τi, τi−1)[GQwGT	τi +Q(τi−1, τ0)]�T(τi, τi−1) (3.17)

for i = 1, . . . , N with Q(τ0, τ0) = 0.

Example 3.1 Since a common GPS measurement epoch uses tk = k, this
example considers computation of�k and Qk over the unit interval t ∈ [k, k+1)
where k is an integer. First, the unit interval is subdivided into N subintervals
of length dτ = 1/N sec. Each subinterval is [τi, τi+1) where τi = k + idτ for
i = 0, . . . , N . For small dτ ,

�(τi+1, τi) = (I+ F(τi)dτ)

and

�(τi+1, τ0) = �(τi+1, τi)�(τi, τ0) (3.18)

therefore,

�(τi+1, τ0) = �(τi, τ0)+ F(τi)�(τi, τ0) dτ

Similarly, over each 1 sec interval, Qk = Qk(τN , τ0) can be integrated as
follows:

Qk(τ1, k) = �(τ1, τ0)GQwGT�T(τ1, τ0) dτ

Qk(τ2, k) = �(τ2, τ1)[GQwGT dτ +Qk(τ1, k)]�T(τ2, τ1)
...

Qk(τN , k) = �(τN , τN−1)[GQwGT dτ +Qk(τN−1, k)]�T(τN , τN−1)

(3.19)

3.2.2 Basic KF

Since there are numerous books devoted to the derivation of the KF, such as
References 19, 20, and 24, the derivation is not included herein. Instead, the
KF algorithm and its properties are reviewed.

The KF estimates the state of a stochastic system. To determine optimal
gains for the filter at time tk, the KF compares the covariance of the state estimate
at tk with the covariance of the measurement at tk . To enable this comparison,
the KF algorithm will propagate the covariance of the state estimate as well
as the state estimate. Prior to discussing the KF algorithm, it will be useful to
summarize the new notation that will be used. The KF gain valid at time tk

© 2006 by Taylor & Francis Group, LLC
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is Kk . The state estimate at time tj using all measurements up to time ti will
be denoted by x̂j|i. Therefore, x̂k|k is the estimate of the state at time tk using
all measurements up to and including yk , while x̂k|k−1 is the estimate of the
state at time tk using all measurements up to and including yk−1. Similarly,
Pk|k denotes the covariance of the state estimation error at time tk after using
all measurements available up to and including yk , and Pk|k−1 denotes the
covariance of the state estimation error at time tk after using all measurements
available up to and including yk−1.

The KF algorithm is a recursive process. As such, it requires initialization
prior to starting the recursion. Assume that the first measurement will occur at
t1 and denote the initialized state estimate and its associated error covariance
matrix as x̂0|0 and P0|0. These initial values should be

x̂0|0 = E(x0), P0|0 = cov(x0) (3.20)

and k = 0. Often, it will be the case that P0|0 is diagonal with each element
being large. The KF is implemented as follows:

1. Predict the state vector and error covariance matrix for the next
measurement time:

x̂k+1|k = �k x̂k|k (3.21)

Pk+1|k = �kPk|k�T
k +Qk (3.22)

Then, increment k = k + 1.
2. Calculate the KF gain matrix for incorporation of yk :

Kk = Pk|k−1HT
k [HkPk|k−1HT

k + Rk]−1 (3.23)

3. Use yk to correct x̂k|k−1:

x̂k|k = x̂k|k−1 +Kk[yk −Hk x̂k|k−1] (3.24)

4. Compute the error covariance of the state estimate after incorporat-
ing yk :

Pk|k = [I−KkHk]Pk|k−1 (3.25)

where I is an n-dimensional identity matrix.
Steps 1–4 are iterated for each new measurement. This iteration can con-

tinue ad infinitum. A few facts are important to point out. First, the discrete
measurements have not been assumed to be equally spaced in time. The only

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c003” — 2006/3/31 — 16:42 — page 107 — #9

Data Fusion via Kalman Filter 107

assumption is that we have a model available, of the form of Equation (3.8)
and Equation (3.9), suitable for accurate propagation of the state estimate and
state estimate error covariance matrix between measurement instants. Second,
Step 3 is the only step that requires the measurement; therefore, when the next
measurement time can be accurately predicted, then Steps 1 and 2 are often com-
puted prior to the arrival of the next measurement. The purpose of doing this is
to minimize the computational delay between the arrival of yk and availability
of x̂k|k to the other online processes that need it (e.g., planning, guidance, or
control). Third, the portions of the KF algorithm that require the majority of the
computations are Equation (3.22), Equation (3.23), and Equation (3.25), which
are related to maintaining the error covariance matrix and the Kalman gain.

3.2.2.1 Implementation issues

The performance of the KF depends on the accuracy of the process model
and the measurement model. The implementation approach also affects the
performance and computational load of the KF. This section discusses some of
the important implementation issues related to the KF.

Sequential processing of independent measurements. When the system has
m simultaneous, but independent measurements, the noise covariance matrix is
diagonal:

Rk =



r1 0 0

0
. . . 0

0 0 rm


 (3.26)

In this case, it is computationally efficient to treat the measurements as sequen-
tial measurements. This replaces an m-dimensional matrix inversion with m
scalar divisions. At time tk , we introduce an auxiliary vector x̂0 and matrix p0
which are initialized as

p0 = Pk|k−1 and x̂0 = x̂k|k−1 (3.27)

The following recursion is performed for i = 1 to m:

Ki = pi−1hT
i

ri + hipi−1hT
i

x̂i = x̂i−1 +Ki[yi − hix̂i−1]
pi = [I−Kihi]pi−1

(3.28)

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c003” — 2006/3/31 — 16:42 — page 108 — #10

108 Autonomous Mobile Robots

where hi is the ith row of the measurement matrix Hk and yi is the ith element of
the vector y. After  the  mth  step  of the recursion, the state and  error covariance are

x̂k|k = x̂m

Pk|k = pm
(3.29)

Note that the state estimate x̂k|k and error covariance Pk|k that result from this
scalar processing will exactly match (within numerical error) the results that
would have been obtained via the vector processing implementation. The gain
matrices K that result from the vector and scalar processing algorithms will be
distinct, due to the different order in which each implementation introduces the
measurements.

Rejection of bad measurements. In engineering applications, data does not
always match theoretical expectations. Therefore, it is also necessary to set up
some criteria to reject some measurements.

For example, if for a scalar measurement yi the absolute value of the meas-
urement residual resi = yi − hix̂i−1 at time k is sufficiently larger than its

standard deviation
√

hiPk|k−1hT
i + r, then the measurement could be ignored.

In this case, this kth measurement would be missed. Such situations are
discussed below.

Missed measurements. Sometimes an expected measurement may be miss-
ing. One circumstance under which this could occur was discussed earlier.
When a measurement is missing, the “measurement” contains no information;
therefore, the uncertainty of the measurement is infinite (i.e., R = αI with
α = ∞). In this case, by Equation (3.23), Kk = 0. Using this fact, in Steps 3
and 4 of the KF, yields

x̂k|k = x̂k|k−1 (3.30)

Pk|k = Pk|k−1 (3.31)

The missed measurement has no effect on the estimated state or its state error
covariance matrix.

Divergence of the KF. The KF is the optimal state estimator for the modeled
system. The KF is stable if certain technical assumptions, including observab-
ility and controllability from the process noise vector are met [19–21]. Lack
of observability, absence of controllability from the process noise vector, or
modeling error can cause the KF state estimate to diverge from the true state.
These are issues that must be studied and addressed at the design stage.
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Tuning. Ideally, the KF is applied to a well-modeled dynamic system with
stochastic process noise and measurement noise satisfying the required assump-
tions. In such cases, the Q and R matrices can be computed correctly as a portion
of the stochastic model. In some other applications, examples of which will

be truly random. In such applications, Q and R are often used as performance
tuning parameters. As Q is decreased relative to R, the KF trusts the dynamic
model of the system more than the measurements; therefore, the states of the
system converge more slowly since new information is weighted less. If Q is
increased relative to R, the measurements will be weighted more and the states
will converge faster; however, the measurement noise will have a larger effect
on the accuracy of the filtered solution. Note that in applications where Q and
R are used as performance tuning parameters, all stochastic interpretations of
Pk|k are lost. Instead, the KF is being used as an algorithm to estimate the state,
but the KF optimality properties are not applicable.

Maintaining symmetry. The equation

Pk|k = [I−KkHk]Pk|k−1 (3.32)

is a simplified version of

Pk|k = [I−KkHk]Pk|k−1[I−KkHk]T +KkRkKT
k (3.33)

Equation (3.32) is valid only when Kk is the optimal Kalman gain matrix.
When Kk is defined by an equation other than Equation (3.23) and is not the KF
optimal gain matrix, then Equation (3.33) should be used. Since Pk|k is the error
covariance matrix, it should be symmetric and positive semidefinite. Although
Equation (3.33) requires more computational operations than Equation (3.32)
does, Equation (3.33) is a symmetric equation. However, the symmetry of either
result can be guaranteed and the computational requirements are decreased by
only computing the lower diagonal half of Pk|k .

Maintaining definiteness. Neither Equation (3.32) nor Equation (3.33)
guarantees that Pk|k is symmetric or positive semidefinite in the presence of
numeric errors. One possible solution is to factorize Pk|k (e.g., P = UDUT or
P = QR) and derive algorithms that propagate the factors directly. Such fac-
torized algorithms [20,21] have better numeric stability properties, especially
in applications where computational error is an issue.

3.2.3 Extended KF

The previous sections have discussed only linear systems with zero-mean, white
Gaussian process, and measurement noise. The optimality properties of the KF
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under these assumptions were briefly discussed in the previous sections. In
many applications either the measurement model, the system dynamics, or
both are nonlinear. In these cases the KF may not be the optimal estimator.
Nonlinear estimation is a difficult problem without a general solution. Nonlinear
estimation methods are discussed, for example, in References 25 and 26. For
the navigation systems which are the main focus of this chapter, the EKF has
proved very useful because the linearized dynamic and measurement models are
accurate for the short periods of time between measurements. Due to its utility
in the applications of interest, the EKF is reviewed in this section.

Such navigation systems can be described by the nonlinear stochastic
differential equation

ẋ(t) = f(x, u, t)+ g(x, t)w′(t) (3.34)

with a measurement model of the form

y(t) = h(x, t)+ v′(t) (3.35)

where f is a known nonlinear function of the state x, the signal u, and time; g is
a known nonlinear function of the state and time; and w′ and v′ are continuous-
time white noise processes.

For its covariance propagation and measurement updates, the EKF will
use a linearization of Equation (3.34) and Equation (3.35). The linearization is
performed relative to a reference trajectory x∗(t) which is a solution of

ẋ∗(t) = f(x∗, u, t)

between the measurement time instants. The corresponding reference measure-
ment is

y∗(t) = h(x∗, t)

The error state vector is defined as

δx = x − x∗

and the measurement residual vector as

δy(t) = y(t)− y∗(t)

The linearized dynamics of the error state vector are

δẋ(t) = F(t)δx(t)+ G(t)w′(t)+ ex(t) (3.36)
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and the linearized (residual) measurement model is

δy(t) = H(t)δx(t)+ v′(t)+ ey(t) (3.37)

where

F(t) = ∂f

∂x

∣∣∣∣
x=x∗

, H(t) = ∂h
∂x

∣∣∣∣
x=x∗

, G(t) = g(x∗, t)

and ex(t), ey(t) are linearization error terms.
From Equation (3.36) and Equation (3.37), the equivalent model for discrete

measurements is

δxk+1 = �kδxk + wk

δyk = Hkδxk + vk

where the state transition matrix and process noise covariance matrix can be

only for a short period of time and only if the reference trajectory is near
the actual trajectory. For the systems that are the focus of this chapter, the
linearization will occur around the computed navigation state. Time propagation
occurs between GPS measurement epoches, which are typically separated by
only a few seconds. Measurements at a given epoch are assumed to occur
simultaneously. The purpose of the GPS corrections is to keep the navigation
state near the state of the true system.

Implementation  of the  EKF  algorithm  is very  similar to  that of the  KF, in fact,
only the state propagation and measurement prediction steps will change. In
addition, the P matrices computed in the algorithm are no longer true covariance
matrices; although, we will still use that name in the following text.

To initialize the EKF algorithm, assume that the first measurement will
occur at t1 and denote the initialized state estimate, residual state estimate,
and its associated error covariance matrix as x̂0|0, δx̂0|0, and P0|0, respectively.
These initial values should be

x̂0|0 = E(x0), δx̂0|0 = 0, P0|0 = cov(x0)

Since this is a nonlinear estimation process, it is important that x(0)− x̂0|0 be
small. The equations and procedures for the EKF are summarized as follows:

1. Propagate the state estimate to the next measurement time tk+1 by
integrating

ẋ∗(t) = f(x∗, u, t) (3.38)
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over the time interval t ∈ [tk , tk+1] with initial condition x∗(tk) =
x̂k|k . At the completion of the integration, let x̂k+1|k = x∗(tk+1).
Along the solution x∗(t), compute

F(t) = ∂f (x)

∂x

∣∣∣∣
x=x∗

and G(t) = g(x∗, t), for t ∈ [tk , tk+1]

2. Compute the state transition matrix �k and compute the process
noise covariance matrix Qk . Predict the error state vector and error
covariance matrix:

δx̂k+1|k = �kδx̂k|k = �k0 = 0 (3.39)

Pk+1|k = �kPk|k�T
k +Qk (3.40)

The reason that δx̂k|k is set to 0 in (3.39) is clarified in the discussion
following (3.43).

3. Increment k = k + 1.
4. Linearize the measurement matrix at x∗(tk) and calculate the EKF

gain matrix:

Hk = H(tk) = ∂h
∂x

∣∣∣∣
x=x̂k|k−1

Kk = Pk|k−1HT
k [HkPk|k−1HT

k + Rk]−1

(3.41)

5. Compute the error states using the residual measurements:

δx̂k|k = δx̂k|k−1 +Kk[δyk −Hkδx̂k|k−1]
= Kkδyk (3.42)

where δx̂k|k−1 is the error state vector estimated prior to the new
measurements, which by Equation (3.39) is zero.

6. Update the estimated states x̂k|k :

x̂k|k = x̂k|k−1 + δx̂k|k (3.43)

Since the error state has been included in the state estimate, the error
has been corrected; therefore, the new best estimate of the error state
is zero. Therefore, δx̂k|k must be set to zero: δx̂k|k = 0.

7. Update the posterior error covariance matrix:

Pk|k = [I−KkHk]Pk|k−1
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The  EKF  iterates Steps 1 to 7 for the  duration  of the  application. Steps 1 and 2
perform computations related to time propagation of the state and the matrix P.
Steps 4 to 7 perform computations related to the measurement update.

In the EKF algorithm, the computation, use, resetting, and time propagation
of δx̂k|k often causes confusion. The above algorithm is a total state implement-
ation. In an alternative error state implementation of the algorithm, Step 6 could
be removed. Without Step 6, Equation (3.39) of Step 2 would have to be imple-
mented to time propagate the error state and the simplification to Equation (3.42)
of Step 5 would not be possible. In this alternative implementation, it is pos-
sible that, over time, δx̂k|k could become large. In this case, x∗ is not near the
actual state. In this case, the linearized equations may not be accurate. The
EKF algorithm as presented (using Step 6) includes δx̂k|k in x∗ resulting in
a more accurate linearization. The total and error state implementations are
discussed in greater detail in References 20 and 27.

3.3 GPS NAVIGATION SYSTEM

The purpose of this section is to discuss the advantages and disadvantages
of various EKF approaches to state estimation using GPS measurements.
Section 3.3.1 presents background information about GPS that is necessary for

on GPS measurements. The EKF approaches to solving the GPS equations are

3.3.1 GPS Measurements

The GPS is designed to provide position, velocity, and time estimates to users
at all times, in all weather conditions, anywhere on the Earth. The existing
GPS signal for each satellite consists of a spectrum spreading code and data
bits modulated onto a carrier signal. By accurately measuring the transit time
of the code signal, the receiver can form a measurement of the pseudorange
between the satellite and the receiver antenna. This measurement is referred
to as a pseudorange as it is also affected by receiver and satellite clock errors.
By processing the data bits to determine the clock error model and ephemeris
data, the receiver can compute the satellite position and clock errors as a func-
tion of time. Tracking the satellite signal requires that the receiver acquire
either frequency or phase lock to the satellite carrier signal. Phase information
from the tracking loop has utility as an additional range measurement and the
change in the phase measurement over a known period of time (referred to
in the GPS literature as a Doppler measurement) can be used to estimate the
receiver velocity. The GPS satellites broadcast signals on two frequencies: L1
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and L2. Users with “two frequency” receivers can obtain pseudorange, phase,
and Doppler measurements for each of the two frequencies.

The L1 and L2 code and carrier phase measurements from a given satellite
can be modeled as

ρ̃L1 = R+ bu + c	tsv + f2
f1

Ia + Ecm +MP1 + η1

ρ̃L2 = R+ bu + c	tsv + f1
f2

Ia + Ecm +MP2 + η2

φ̃L1λ1 + N1λ1 = R+ bu + c	tsv − f2
f1

Ia + Ecm + mp1 + n1

φ̃L2λ2 + N2λ2 = R+ bu + c	tsv − f1
f2

Ia + Ecm + mp2 + n2

where R = ‖Xsv − Xu‖ is the geometric distance between the satellite position
Xsv and receiver antenna position Xu, bu is the receiver clock bias, and c	tsv is
the satellite clock bias. The satellite clock bias can be partially corrected by eph-
emeris data. Ecm represents common errors other than dispersive effects such as
ionosphere and Ia represents ionospheric error. The symbols η and n represent
receiver measurement noise. The symbols mp and MP represent errors due to
multipath. Note that the receiver clock bias is identical across satellites for all
simultaneous pseudorange and phase measurements. Since the receiver phase
lock loops can only track changes in the signal phase and the initial number of
carrier wavelengths at the time of signal lock is not known, each phase signal is
biased by an unknown constant integer number of carrier cycles represented by
N1 and N2. Use of the phase measurements as pseudorange signals for position
estimation also requires estimation of these unknown integers [28–32]. Use of
the change in the phase over a known period of time to estimate the receiver
velocity does not require estimation of these integers, since the integers are
canceled in the differencing operation [33,34]. The standard GPS texts [34,35]
include entire sections or chapters devoted to the physical aspects of the various
quantities that have been briefly defined in this section.

Note that only R and bu contain the position and receiver clock information
that we wish to estimate. The symbols c	tsv, Ia, Ecm, MP, mp, η, and n all
represent errors that decrease the accuracy of the estimated quantities. There
are many techniques to reduce these measurement errors prior to the navigation
solution. Dual frequency receivers can take advantage of the code measurements
from L1 and L2 to estimate the ionospheric delay error Ia as

Ia = f1f2
f 2
2 − f 2

1

(ρ̃L1 − ρ̃L2)
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Due to the differencing of measurements, this estimate is noisy; since Ia changes
very slowly, it can be low-pass filtered to remove the noise. For measure-
ments from single frequency receivers, it is possible to compensate part of the
ionospheric delay errors by an ionospheric delay model [36]. Alternatively,
differential operation using at least two receivers can effectively remove all
common mode errors (i.e., c	tsv, Ia, Ecm).

The methods discussed in the subsequent sections can be used for the pseu-
dorange or integer-resolved carrier phase measurements. We will not discuss
Doppler measurements. To avoid redundant text for the code and integer-
resolved carrier measurements, we will adopt the following general model for
the range measurement to the ith satellite

ρ̃i =
√
(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + bu + εi (3.44)

where ρ̃ could represent the code pseudorange measurements or integer-
resolved carrier phase measurements. The variable bu represents the receiver
clock bias. The symbol ε represents the error terms appropriate for the different
measurements. When a GPS receiver has collected range measurements from
four or more satellites, it can calculate a navigation solution.

3.3.2 Single-Point GPS Navigation Solution

This section  presents the standard GPS  position  solution  method  using  nonlinear
least squares. In the process, we will introduce notation needed for the sub-
sequent sections. In this section, the state vector is defined as x = [x, y, z, bu]T
where (x, y, z) is the receiver antenna position in earth centered earth fixed
(ECEF) coordinates and bu is the receiver clock bias.

Taylor series expansion of Equation (3.44) about the current state estimate
x̂ = [x̂, ŷ, ẑ, b̂u] yields

ρ̃i(x) = ρ̂i(x̂)+ [hi, 1]δx + h.o.t.s+ εi

where

δx = x − x̂ = [x − x̂, y − ŷ, z − ẑ, bu − b̂u]T

ρ̃i(x̂) =
√
(Xi − x̂)2 + (Yi − ŷ)2 + (Zi − ẑ)2 + b̂u (3.45)

hi =
[
∂ρi

∂x
,
∂ρi

∂y
,
∂ρi

∂z

]∣∣∣∣
(x̂,ŷ,ẑ)
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and

∂ρi

∂x
= −(Xi − x)√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

∂ρi

∂y
= −(Yi − y)√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

∂ρi

∂z
= −(Zi − z)√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

Given m simultaneous range measurements, all the measurements can be put
in the matrix form

δρ = Hδx + v (3.46)

by making the definitions

δρ =



	ρ1
	ρ2

...
	ρm


 and H =




h1, 1
h2, 1

...
hm, 1


 (3.47)

where the residual measurement is

	ρi = ρ̃i(x)− ρ̂i(x̂)

and v represents the high order terms (h.o.t.s) of the linearization plus the
measurement noise.

To determine the state vector, a minimum of four simultaneous range meas-
urements are required. The weighted least squares solution to Equation (3.46) is

δx = [HTR−1H]−1HTR−1δρ (3.48)

The corrected position estimate is then

x̂+ = x̂ + δx (3.49)

To reduce the effects of the linearization error terms, the above process can
be repeated using the same measurement data and the corrected position at
the end of the current iteration as the starting point of the next iteration (i.e.,
x̂ = x̂+). The iteration is stopped when the error state vector δx converges to
a sufficiently small value. Even after the convergence of δx has been achieved,
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there may still be significant error ηx = x− x̂+ between the actual state and the
best estimate after incorporating the measurements. The measurement noise
covariance matrix is

Rρ = cov(v) =


σ 2

1 0 · · · 0
...

...
0 · · · 0 σ 2

m


 (3.50)

The value of σ 2
i for the ith satellite could be determined based on time-series

analysis of measurement data, the S/N ratio determined in the tracking loop for
that channel, or computed based on satellite elevation. The covariance of ηx is

Rx = cov(ηx) = [HTR−1H]−1 (3.51)

It is important to note that this matrix is not diagonal. Therefore, errors in the
GPS position estimates at a given epoch are correlated.

The above solution approach can be repeated (independently) for each epoch
of measurements. This calculation of the position described so far, at each
epoch, results in a series of single-point solutions. At each epoch, at least four
simultaneous measurements are required and the solution is sensitive to the
current measurement noise. There is no information sharing between epochs.
Such information sharing between epochs could decrease noise sensitivity and
decrease the number of satellites required per epoch; however, information

cusses advantages and disadvantages of alternative models and EKF solutions

IMU data.

Example 3.2 Throughout the remainder of this chapter we will extend the
example that begins here. The example will be analyzed in�2. By this we mean
that we are analyzing a 2D world, not a 2D solution in a 3D world. We restrict
the analysis to a 2D world for a few reasons (1) the analysis will conveniently
fit within the page constraints of this chapter; (2) graphical illustrations are
convenient; and (3) several important theoretical issues can be conveniently
illustrated within the 2D example. The main conclusions from the 2D example
have exact analogs in the 3D world (discussed in Example 3.6).

In a 2D world, p(t), v(t) ∈ �2 and there is a single angular rotation angle
ψ(t) ∈ � with ω(t) = ψ̇(t) ∈ �. All positions and ranges will be in meters.
All angles are measured in degrees. The quantities ψ and ω are not used in this
example, but are defined here for completeness as they are used in Example 3.6.

© 2006 by Taylor & Francis Group, LLC
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for GPS-only solutions. Section 3.4 discusses methods for combining GPS and
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To find the position corresponding to range measurements in the 2D
example, we define the position and clock bias error vector as

δp = x − x̂ = [x − x̂, y − ŷ, bû− b̂u]T

The range is computed as

ρ̂i(x̂) =
√
(Xi − x̂)2 + (Yi − ŷ)2 + b̂u

The line-of-sight vector (from satellite to user) is

hi =
[

−(Xi − x̂)√
(Xi − x̂)2 + (Yi − ŷ)2

,
−(Yi − ŷ)√

(Xi − x̂)2 + (Yi − ŷ)2

]
(3.52)

Because there are three unknowns, measurements from at least three satel-
lites will be required. Let us assume that there are satellites at locations
Pi = 10× 106

[sin θi
cos θi

]
m for θ1 = 90◦, θ2 = 85◦, θ3 = 20◦, and θ4 = −85◦ with

corresponding range measurements of ρ1 = 9.513151e6, ρ2 = 9.469241e6,
ρ3 = 9.363915e6, and ρ4 = 10.468545e6. Then, if the initial position estimate
is x̂ = [0.00, 0.00, 0.00 ]T, the sequence of positions and position corrections
computed  by  iterating  Equation (3.48) and  Equation (3.49) with R = I, is shown
in Table 3.1. Note that if the initial estimate, possibly obtained by propagation
of the estimate from a previous epoch, was accurate to approximately 10 m, then
one or possibly two iterations would provide convergence of a new estimate
consistent with the measurements of the current epoch to better than millimeter
accuracy. Also, even after the estimate of x has converged to micrometer accur-
acy, the error in the estimated measurement is still 0.44 m. This is the least
squared error that can be achieved by adjusting the three elements of x to fit the
four measurements of ρ.

TABLE 3.1
Results of Computations for Example 3.2

Iteration δx ‖δx‖ x̂ ‖ρ − ρ̂‖
0 NA NA [0, 0, 0]
1 [5.01, 5.09, 0.14]e5 7.1e5 [5.011961, 5.090871, 1.364810]e5 23368.75

2 [−0.12,−0.91,−1.36]e4 1.6e4 [5.000000, 5.000046, 0.000062]e5 7.33

3 [0.01,−4.29,−4.21]e0 6.0e0 [5.000000, 5.000000, 0.000002]e5 0.44

4 [−0.26,−8.53,−9.29]e−7 1.3e−6 [5.000000, 5.000000, 0.000002]e5 0.44
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The error covariance matrix for the estimated position vector is

Rx =

0.377 0.040 0.133

0.040 1.492 0.376
0.133 0.376 0.384




The variance of x is smaller than the variance of y due to the geometric alignment
of the satellites. Also, the estimates of x and y are correlated. Note that receivers
do not typically provide this covariance matrix as an output.

If only the first three measurements are used to estimate x, then the meas-
urements can be perfectly fit, but the error in the estimated position and the
error covariance matrix will increase.

3.3.3 KF for Stand-Alone GPS Solutions

This section discusses methods that have been proposed in the literature to
achieve improved performance by using the EKF to share information across
measurement epochs. Higher performance can be represented by increased
position accuracy or decreased requirements on the number of required satellites
per epoch.

Sharing information across measurement epochs requires models for the
dynamics of the user receiver and the receiver clock error. The receiver

sible dynamic models for the receiver antenna position are discussed in

ear; however, since the GPS measurement model is nonlinear, the solution still
requires an EKF.

equations are integrated between measurement times to predict the receiver
antenna position at subsequent measurement times. The measurement predic-
tion equations use the predicted antenna position and the computed satellite

the GPS measurements and the predicted measurements drive the EKF which
outputs the error state estimates. The error state estimates are fed back to correct
the predicted states, which are used to initialize the prediction step for the next
epoch.

Section 3.3.3.2 to Section 3.3.3.4 discuss the advantages and disadvantages
of three possible receiver state estimation algorithms. The EKF algorithm and
Figure 3.1 are applicable to all three approaches. The main distinctions between
the approaches are the definitions of the state vector and the dynamic model for
the state vector.

© 2006 by Taylor & Francis Group, LLC

Various pos-

position to predict range measurement for each satellite. The residuals between

problem is illustrated as a block diagram in Figure 3.1. The dynamic motion

clock dynamic model is discussed briefly in Section 3.3.3.1.

Section 3.3.3.2 to Section 3.3.3.4. Each of these dynamic models will be lin-

The use of the EKF algorithm of Section 3.2.3 to solve the GPS navigation
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FIGURE 3.1 Block diagram representation for a GPS-only navigation system solved
via KF. The dynamic motion prediction by either Equation (3.21) or Equation (3.38)
extrapolates from the present state estimate using the assumed dynamic model.

3.3.3.1 Clock model

Global positioning system receivers use oscillators with very stable frequencies.
Integration of this frequency provides the basis for the receiver clock time
signal. The error between the oscillator frequency and its specified frequency
represents the receiver clock drift rate. It is common to model the clock drift
rate as a random walk process. We scale these quantities by the speed of light
to represent the clock bias bu and drift rate fu in meters and meters per second.
The dynamic model for xc = [bu, fu]T is

ẋc = Fcxc + wc (3.53)

where

Fc =
[

0 1
0 0

]
, wc =

[
ωb
ωf

]
, (3.54)

and the power spectral density Sb and Sf of the process noise ωb and ωf are
determined by the characteristics of the receiver clock [20]. The corresponding
state transition matrix and process noise covariance matrix for the discrete clock
model are:

�c
k = �c(tk , tk+1) =

[
1 	t
0 1

]
, Qc

k =

Sb	t + Sf

	t3

3 Sf
	t2

2

Sf
	t2

2 Sf	t


 (3.55)
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where 	t = tk+1 − tk . This clock model will be included as a portion of the
model in each of the following sections.

3.3.3.2 Stationary user (P model)

If it is known that the receiver antenna is stationary, then the position vector
xp = [x, y, z]T satisfies ẋp = 0. Combining the receiver position model with
the clock model, the dynamic model for a stationary user is

[
ẋp

ẋc

]
=
[

0 0
0 Fc

] [
xp

xc

]
+
[

wp

wc

]
(3.56)

where wp = [ωx ,ωy,ωz]T is the process noise for the position states. The state
transition matrix and process noise covariance matrix for the equivalent discrete
model are:

�s
k =

[
I 0
0 �c

k

]
, Qs

k =
[

Qp
k 0

0 Qc
k

]
(3.57)

where Qp
k is the process noise covariance matrix corresponding to wp in the

sense of Equation (3.6) and Equation (3.10), and I is a 3 × 3 identity matrix.
The linearized measurement model is

y = δρ =




h1 hc

h2 hc
...

hm hc



[
δxp

δxc

]
+ v (3.58)

where hc = [1, 0] characterizes the effect of the clock state δxc on the meas-
urement, δρ is defined in Equation (3.47), hi is defined in Equation (3.45),
δxp = [δx, δy, δz]T is the position error vector, Rk = Rρ denotes the covariance
of v as defined in (3.50), and δxc = [δbu, δfu]T is the clock state error
vector. With the above specifications, the parameters �s

k , Hk , Qs
k , and Rk

defined.
For a receiver that is in fact stationary, wp = [ωx ,ωy,ωz]T = 0. In this

case, Qp = 0I. If the EKF algorithm is designed using Qp = 0I, then portions
of the diagonal of the state error covariance matrix P and of the gain matrix K
will asymptotically approach zero. This is desirable when the model is accurate
and the antenna is stationary. If the receiver antenna position is not stationary
or if the model is not accurate (e.g., time correlated multipath errors have been
ignored), then this property is not desirable. An ad hoc approach is to treat
the matrices Qp and R as tuning parameters to adjust the convergence rate of

© 2006 by Taylor & Francis Group, LLC

required for the EKF implementation described in Section 3.2.3 have all been



FRANKL: “dk6033_c003” — 2006/3/31 — 16:42 — page 122 — #24

122 Autonomous Mobile Robots

the filter. However, a far better approach is to develop a more appropriate system
model.

3.3.3.3 Low dynamic user (PV Model)

For a receiver in a “low dynamic environment” it may be reasonable to assume
that the velocity vector is a random walk process. In this case, an eight
state model is appropriate with the acceleration vector modeled as white noise.
The state vector includes the position state xp, receiver clock state xc, and
velocity state xv = [vx , vy, vz]T; therefore, the dynamic model is




ẋp

ẋv

ẋc


 =




0 I 0

0 0 0

0 0 Fc






xp

xv

xc


+




0

wv

wc


 (3.59)

where wv = [ωvx ,ωvy,ωvz]T represents the process noise representation of the
unknown acceleration. The measurement model is

y = δρ =




h1 0 hc

h2 0 hc

...

hm 0 hc





δxp

δxv

δxc


+ v (3.60)

with the measurement noise covariance defined in Equation (3.50).
We will not provide an in-depth discussion of this model here, as the majority

of the comments about the model of the following section are also applicable to
the model of this section. However, it is important to note that few applications
involve white acceleration processes. In fact, the acceleration process is rarely
even stationary. Therefore, with this assumed dynamic model, the matrix Qw
is best considered as a tuning parameter and proper stochastic interpretations
of the various variables in the algorithm are no longer applicable.

3.3.3.4 High dynamic user (PVA model)

A GPS receiver may (and typically will) operate in applications where the
acceleration vector is time varying. In such “high dynamic environments,”
it is necessary to augment the three acceleration states xa = [ax , ay, az]T to
the system model. With the acceleration states modeled as first-order Markov
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processes, the process model for a high dynamic user is




ẋp

ẋv

ẋa

ẋc


 =




0 I 0 0
0 0 I 0
0 0 D 0
0 0 0 Fc






xp

xv

xa

xc


+




0
0

wa

wc


 (3.61)

where D = diag
[− 1

τh
,− 1

τh
,− 1

τv

]
is a design matrix containing the reciprocal

of the acceleration correlation times and wa = [ωax ,ωay,ωaz]T represents the
acceleration state process driving noise. The measurement model is

y = δρ =




h1 0 0 hc

h2 0 0 hc
...

hm 0 0 hc





δxp

δxv

δxa

δxc


+ v (3.62)

with the measurement noise covariance defined in Equation (3.50).
As with the P and PV models, there is no rigorous method to properly select

the D and Qw parameters of the PVA model. The above model assumes different
correlation times for the horizontal vs. vertical accelerations. This assumption
obviously depends on whether the receiver is used in an aircraft, sea surface, or
land vehicle application. Although the receiver user may specify an application
class, correct values for D and Qw may not exist or be known for this design
approach. Therefore, these quantities are used to tune the performance of the
EKF algorithm. Even though there is no direct measurement of acceleration, the
augmented states may enable the filter to improve the accuracy of the navigation
solution by fusing sensor information across measurement epochs. Compared
to single epoch solutions, improved accuracy would be obtained by the EKF
methods if the vehicle were not accelerating during a period of time when an
insufficient number of satellites were available; however, receiver acceleration
would affect the estimation accuracy.

3.3.3.5 GPS KF examples

This section presents two examples of the use of the EKF in the solution of
the GPS state estimation problem. In each example, we work in the 2D world
introduced in Example 3.2 and include sufficient details to allow duplication of
the results by interested readers.

Example 3.3 This example considers the situation where a stationary receiver
is in operation with a PVA model. The state model is defined in Equation (3.61).
Using a 1 sec measurement epoch with R = 1 m2, cov(wT

a wa) = QI2,
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Sb = 1.10× 10−10, Sf = 0.65 × 10−10, and τh = 1.0, the resulting
discrete-time state transition and process noise covariance matrices are

�k =




I2 I2 0.37I2 02
02 I2 0.63I2 02
02 02 0.37I2 02
02 02 02 �c




and

Qk =


0.1Q


0.30I2

0.68I2
0.64I2

02

0.68I2
1.68I2
2.00I2

02

0.64I2
2.00I2
4.33I2




02


02

02
02




Qc




where I2 is a 2D identity matrix, 02 is a 2D null matrix, and

�c =
[

1 1
0 1

]
and Qc = cov(wT

c wc) =
[

1.32 0.32
0.32 0.65

]
× 10−10

The scalar parameter Q, which theoretically represents the spectral density of
the “acceleration driving noise,” is used to tune the size of the Qk matrix. We
generate noisy measurements using the following procedure: compute exact
ranges between the user and each satellite, add the clock bias bu, and add
Gaussian random noise with unit variance. The clock bias in the simulation
grows at a unit rate (i.e., bu = 1.0t). The initial P matrix is defined by
the diagonal [1e6, 1e6, 1e2, 1e2, .1, .1, 1e6, 1]. At this point, we have enough
information to implement the discrete-time EKF.

The norm of the sequence of position estimation errors is shown in

shows the estimation error for the same sequence of measurements when only
the value of Q is changed in the EKF design. When the design specifies a large
acceleration driving noise (e.g., Q = 10), the estimation error is large with
significant energy at high frequencies. This is due to the fact that the large value
of Q causes the EKF computations to keep the Kalman gain relatively large,
favoring current measurements over information from past measurements that
is represented by the state estimate. When the design specifies a small accelera-
tion driving noise (e.g., Q = 0.001), the estimation error is smaller in magnitude
with significantly less energy at high frequencies. This is due to the fact that
the small value of Q causes the EKF computations to decrease the Kalman gain
over time causing the current measurements to make smaller corrections to the
information from past measurements that is represented by the state estimate.
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FIGURE 3.2 EKF-based GPS solutions for Examples 3.3 and 3.4. (a) Estimation error
for a stationary receiver using the PVA model and EKF with different settings of the
“covariance” parameter Q. (b) Actual (solid line) and estimated trajectory (dots) for a
moving receiver using the PVA model, EKF estimation, and different settings of the
“covariance” parameter Q.

This example shows the possible benefit of using the EKF to combine
measurements over time to attain improved accuracy. The performance that
is achieved will depend on the EKF parameter settings relative to the actual
dynamic situation of the receiver. If the process noise covariance matrix Qk is
too large, then the past information encapsulated in the prior estimate of the
state will be largely ignored in the computation by the EKF of the posterior state
estimate. If the matrix Qk is too small, then the estimated state may significantly
lag the actual state. This is further illustrated in the next example.

Example 3.4 In this example, the receiver is attached to a moving platform.
The platform trajectory is illustrated by the solid curve in each subgraph of
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FIGURE 3.2 Continued.

Figure 3.2b. For the majority of the simulation, the motion is parallel to the
x-axis at 20 m/sec, except for a short period of time near t = 15 sec when
the platform performs a maneuver similar to an automobile lane change that
involves a nonzero yaw rate and lateral acceleration. The discrete-time model,
estimator design, and method of computing noisy measurements are the same
as in Example 3.3.

Figure 3.2b shows the estimated positions on an x–y graph to allow straight-
forward comparison between the estimated and actual trajectory for various
settings of the design parameter Q. The estimated positions are marked by a
dot every 0.1 sec even though the GPS measurement epoch is still 1.0 sec to
clearly indicate the estimated velocity (i.e., the slope of the estimated position
curve between GPS epochs).
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When the design uses a large Q, the variance of the estimated position is
large, but the estimator rapidly adjusts the estimated state so that the estimate
does not significantly lag the actual state following the vehicle maneuver. When
the design uses a small value for Q, the variance of the estimated position is
smaller; however, the estimated state significantly lags the actual state following
the vehicle maneuver.

fact that there is no single optimal choice for the design parameter Q. The
desirable setting of Q depends on the application and maneuvering conditions.
Some receivers allow the user to effect the receiver estimation procedure (either
the model structure or the value of Q) through the user interface. It is the
responsibility of the user to understand the settings and their tradeoffs relative
to the application. This is especially true when the state estimate is being used
as the input to a control system.

Due to the structure of the �k matrix, if the GPS H matrix has a null
direction d such that Hd = 0, then position, velocity, and acceleration errors
parallel to d will not be observable from the GPS measurements. Note that
the rows of the H matrix contain the line-of-sight unit vectors between the
receiver antenna and the satellite. Therefore, to accurately and rapidly track the
platform motion during (and after) a maneuver, the receiver must be tracking at
least one satellite located in a direction such that the line-of-sight unit vector has
a significant component in the same direction as the acceleration unit vector;
otherwise, the GPS measurements will be insensitive to the acceleration. In
particular, if a receiver is operating in an urban canyon1 type of environment
and accelerates parallel to the direction in which the satellite signals are blocked
then the position, velocity, and acceleration accuracy in that direction will
deteriorate.

No amount of signal processing can help, unless additional sensors
(e.g., inertial, wheel speed, vision, precision clock) are added.

Finally, it is critical to note that estimation errors, even restricted to the
GPS measurement epochs, are correlated. They are not white discrete-time
processes. This is clearly illustrated in Figure 3.2b for small values of Q, but is
also true for larger values of Q. The fact that the position estimation errors are
not white is critical to understanding one of the drawbacks of using the GPS

3.3.3.6 Summary

The approaches discussed in the previous three sections have several aspects
that should be pointed out. First, as discussed following Equation (3.50),

1 This is a canyon created by the urban environment (e.g., a road between tall buildings) that may
block satellite signals in specific directions [37–39].

© 2006 by Taylor & Francis Group, LLC

position estimates to aid an INS (see Section 3.5.2.1).

Figure 3.2a and b are intentionally placed side-by-side to emphasize the
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at each epoch the components of the estimated state vector will be correlated.
In addition, due to the fusion of measurements across epochs, even if the meas-
urement noise v is white, the state estimation error will be a colored noise
process. Second, the three preceding sections discussed estimation algorithms
in the order of increasing complexity. The required number of computations to
implement the EKF increases as the size of the state vector increases. Third,
performance will suffer if the application conditions do not match the algorithm
assumptions. If, for example, a P or PV algorithm or too small a value of Q is
used in a “high-dynamic environment,” then the estimated position may have
significant lag relative to the actual position. Fourth, use of Doppler meas-
urements can increase convergence rates, but opens up other modeling issues
[40]. Fifth, if GPS measurements are unavailable for some period of time, the
dynamic model is available to propagate the state estimates; however, accelera-
tion of the system during this time period can have serious adverse effects on the
accuracy of such predictions. This issue can be addressed well by, for example,
properly incorporating an inertial measurement system. Sixth, a recurrent issue
in the approaches of this section is that the stochastic model parameter Q could
not be properly selected. Instead it was used as performance tuning parameter.
Proper incorporation of IMU data into the approach will also allow proper
selection and interpretation of the parameter in a stochastic sense. Addition
of an IMU will increase the cost of the system, but offers the potential for
higher performance (e.g., bandwidth, accuracy, coast time, and sample rate)
and availability.

3.4 INERTIAL NAVIGATION SYSTEM

A strapdown INS incorporates an IMU that measures the acceleration and angu-
lar rate of the system and analytic routines on a computer that integrate the
inertial measurements to provide estimates of the vehicle position, velocity,
and attitude in a desired coordinate frame. This section reviews the strapdown
INS mechanization equations and the dynamic error model of the INS system.
Various methods for fusing the GPS and INS information are reviewed and

various important issues related to GPS–INS integration.
This paragraph briefly defines the various coordinate frames that will be used

in the subsequent discussion. All coordinate frames are defined by orthogonal
axes in a right-handed sense. The body frame is attached to and moves with the
vehicle. The inertial measurements are resolved along the axes of the platform
frame. To simplify the discussion, we assume that the body and platform frames
are identical. The navigation frame is attached to the earth at a convenient point
of reference and determines the desired frame in which to resolve the vehicle
position and velocity vectors. The ECEF frame is attached to the center of and
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discussed in Section 3.5. The example in a 2D world is continued to highlight
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rotates with the Earth. A local geodetic frame has its origin fixed on the surface
of the earth and axes aligned with the directions of true north, east, and down
(along the parallel to the ellipsoid normal vector to complete the right-handed
coordinate frame).

3.4.1 Strapdown System Mechanizations

As illustrated in Figure 3.3, the accelerometers measure the specific force vector
fb in the body frame-of-reference and the gyros measure the angular rate of the
vehicle with respect to an inertial frame-of-referenceωb

ib = [p, q, r]T in the body
frame-of-reference. The gyro measurements are integrated to compute the atti-
tude of the vehicle frame with respect to the navigation frame. The attitude is
used to compute the rotation matrix Cn

b required to transform vectors between
the body and navigation frames. In particular, the specific force in the navigation
frame is

fn = Cn
bfb (3.63)

This rotation matrix can be represented as a direction cosine matrix which is
the solution of

Ċn
b = Cn

b�
b
nb (3.64)

Body mounted
accelerometers

Body mounted
gyroscopes

Specific force
resolution

Attitude
calculation

  
Navigation
calculation

Gravity
calculation

Coriolis
correction

Σ Σ

IMU

fb

 
b
ib

fn

gn

Initial attitude

Initial position and velocityCn
b

Estimated navigation frame rate

Position

Position
velocity
attitude

v n
inv

FIGURE 3.3
strapdown INS.
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Block diagram representation (similar to figure 3.12 in Reference 41) of a
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where �b
nb is the skew matrix form of ωb

bn and

ωb
bn = ωb

ib − Cb
n(ω

n
ie + ωn

en) (3.65)

The symbols ωn
ie and ωn

en represent the rotation rate of the ECEF frame relative
to an inertial frame and the rotation rate of the navigation frame relative to
the earth frame (i.e., transport rate), respectively. Both vectors are resolved
in the navigation frame. The second term on the right of (3.65) compensates
the gyro measurements for the rotation rate of the navigation frame relative to
an inertial frame.

The dynamic equations for an INS system have different forms for different
navigation frames. Detailed derivations of the navigation equations with respect
to different navigation frames can be found in various references, for example,
in References 27, 34, and 41–43. The navigation equations for a terrestrial
navigation system operating in the local geodetic frame are:

v̇n
e = fn − (2ωn

ie + ωn
en)× vn

e + gn
l (3.66)

where vn
e = [vn, ve, vd]T is the velocity with respect to the Earth expressed

in the local geodetic frame (i.e., navigation frame), fn = [fn, fe, fd]T is the
specific force resolved to this navigation frame, and gn

l is the local gravity
vector expressed in the navigation frame. The local gravity vector is

gl = g − ωi
ie × [ωi

ie × Ri] (3.67)

which accounts for the mass attraction of the earth g and the centripetal accel-
eration caused by the Earth’s rotation. Note that gl is the acceleration sensed
by a stationary accelerometer located on the surface of the earth. Note also that
gl is a function of position.

Given an initial velocity, Equation (3.66) integrates acceleration to estimate
the velocity as a function of time. Prior to integration, the measured specific
force vector is corrected for Coriolis effects (second term) and gravity (third
term). Given an initial position, integration of velocity provides an INS estimate
of position. Given high rate IMU measurements (and a sufficiently fast com-
puter), the INS can integrate the above equations to provide high rate estimates
of position, velocity, attitude, angular rate, and acceleration. Since the INS is an
integrative process, the INS attenuates the high frequency measurement noise
from the IMU, but amplifies low frequency measurement errors such as biases.
Calibration and removal of the INS state and IMU instrument errors can be
accomplished through EKF data fusion, once the designer obtains a dynamic
model for the INS and IMU error processes.

© 2006 by Taylor & Francis Group, LLC
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3.4.2 Error Model of INS System

The INS dynamics as represented in Equation (3.66) are nonlinear functions of

linearized error-state model. The dynamic model for the error state of the INS
is derived in several references, for example, in References 27 and 41–43. After
minor simplification, it can be expressed as



δṗ
δv̇
δρ̇

ẋa

ẋg


 =




0 Fpv 0 0 0
Fvp Fvv Fvρ Fvxa 0
0 0 Fρρ 0 Fρxg

0 0 0 Fxaxa 0
0 0 0 0 Fxgxg






δp
δv
δρ

xa

xg


+




ωp

ωv + va

ωρ + vg

ωa
ωg


 (3.68)

which is the required time-varying linear model in the form of Equation (3.1).
The 15 state errors are defined as: tangent plane position error δp =
[δn, δe, δd]T, tangent plane velocity error δv = [δvN , δvE , δvD]T, attitude error
δρ = [εN , εE , εD]T, platform frame accelerometer bias error xa, and plat-
form frame gyro bias error xg. Additional IMU error calibration states (e.g.,
gyro scale factors) could be considered for state augmentation. The various F

attitude, angular rate, and specific force. The F matrix contains unstable and
neutrally stable components; therefore, initial condition errors and measure-
ment errors can cause the INS error state to diverge. Fusion of the INS state
with external sensors, such as GPS, using the EKF can estimate and compensate
for these errors.

3.4.3 EKF Latency Compensation

During each INS integration step, the INS will first compensate the IMU meas-
urements for the calibration factors (e.g., biases) estimated by the EKF. Next,
the INS will integrate Equation (3.64) and Equation (3.66) (or similar equations
depending on the choice of navigation frame and attitude representation). The
equations are integrated for the duration of the application regardless of the
availability of aiding measurements. With regard to aiding, two time instants
should be distinguished. The time-of-applicability of an aiding measurement
is the time at which the measurement is accurate. The time-of-availability of a
measurement is the time at which the aiding measurement is available for use by
the computer performing the data fusion operation. While the INS integration
process is ongoing, the INS state must be saved at the time-of-applicability of
the aiding measurements.

© 2006 by Taylor & Francis Group, LLC

the INS state variables. As discussed in Section 3.2.3, the EKF will utilize a

of Reference 27. The F matrix is time-varying, since it is a function of velocity,
matrices in Equation (3.68) are derived and defined, for example, in chapter 6
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In particular, for GPS aiding, the time-of-availability of a GPS measurement
is typically delayed from its time-of-applicability due to latency within the
receiver and communication delay between the receiver and the EKF processor.
A typical latency between the times of applicability and availability is on the
order of a few hundred milliseconds (i.e., typically <0.25 sec). Fortunately,
most receivers provide a one-pulse-per-second (1PPS) output signal that can
be configured to align in time with the GPS second. In addition, assuming
a one second GPS measurement epoch, the time-of-applicability of the GPS
measurement can be aligned with the GPS second. When the EKF processor
receives the 1PPS signal, it saves the INS state. By doing this, the EKF will
have the INS state coincident with the GPS measurement even though the GPS
measurement will not arrive until a significant fraction of a second later. At the
time-of-availability of the EKF estimated correction, the EKF can use the state
transition matrix to propagate the correction from its time-of-applicability to
its time-of-availability.

Example 3.5 Let t denote an integer GPS second. At time t, the EKF pro-
cessor detects the 1PPS signal and saves the INS state x(t). In addition, the
GPS processor saves the receiver tracking data and computes the pseudoranges
ρ(t). The pseudorange measurements are sent to the EKF processor arriving
at time t1 = t + τ where 0 < τ < 1 sec. At time t1 the EKF processes the
pseudoranges to compute δx(t) which is available at some t2 > t1. At this
point in time it is not correct to simply add the correction to the current INS
state, since δx(t) �= δx(t2) (i.e., x(t2)+ δx(t) would not be correct). Note that
the time t2 is known to the EKF processor and that the processor is already
propagating the state transition matrix� by a method such as Equation (3.18),
because� is required to propagate the state estimation error covariance matrix.
With these quantities being known and available, it is straightforward for the
EKF processor to propagate the correction from its time-of-applicability to its
time-of-availability t2 as

δx(t2) = �(t2, t)δx(t)

Then, δx(t2) can be added to the INS state x(t2) to properly compensate the
system.

Alternative latency compensation methods are described in the literature,

3.5 INTEGRATION OF GPS AND INS

Due to their complementary characteristics, various methods have been sugges-
ted to implement a system to integrate GPS and INS with the goal of achieving

© 2006 by Taylor & Francis Group, LLC

see, for example, Reference 44.
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performance that is superior to which either system could attain on its own.
This section will discuss different approaches for GPS/INS integration. The
main objective is to compare the relative advantages and disadvantages between
the alternative approaches.

3.5.1 INS with GPS Resetting

In this approach, the INS is integrated to provide its state estimate between
the GPS measurement epochs. At a GPS measurement epoch, the methods

the GPS measurement data. The GPS position and velocity estimates are
used as the initial conditions for the INS state during the next period of
integration.

Often, the reason that this approach is proposed is its extreme simplicity.
For example, GPS receivers directly output user position and velocity. In this
approach, where the designer treats the position and velocity computed by the
GPS receiver as measurements for the state estimation process, the designer of
the integrated system need not solve the GPS system equations. In addition, the
design of this approach does not involve a KF (outside of the receiver). However,
the disadvantage of this simplicity is a low level of performance relative to the
level that could be achieved by a more advanced approach. Note, for example,
that the IMU errors are not estimated or compensated. Therefore, the rate of
growth of the INS error state does not decrease over time. Also, additional
sensors or multiple GPS antennae and additional processing are required to
maintain the attitude accuracy.

Various ad hoc procedures can be defined to improve performance of the
resetting approach, but performance analysis is typically not possible. The reset-
ting approach is not a recommended approach. Note that this approach does
not involve any advanced form of data fusion. The only point at which inform-
ation is exchanged is after the GPS measurement, when the INS state is reset.
Significantly better performance can be obtained by the methods described in
the following section.

3.5.2 GPS Aided INS

The following two sections discuss the EKF as a tool to use GPS measurements
to calibrate INS errors. In both approaches, the INS integrates the vehicle state

the INS state is represented by x∗ and the IMU input is represented by u. The
linearized F matrix is given by Equation (3.68). The matrix Qk represents the
covariance of the integrated accelerometer and gyro measurement noise pro-
cesses. The matrix Qk
is determined by the quality of the IMU. The only remaining quantities that

© 2006 by Taylor & Francis Group, LLC

of Section 3.3 are used to compute the position and velocity based only on

based on IMU measurements. In Step 1 of the EKF algorithm of Section 3.2.3,

can be computed accurately (see Example 3.1) and
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FIGURE 3.4 Block diagram of a loosely coupled GPS aided INS.

must be specified for implementation of the EKF are the matrices H and R.
These matrices are distinct for the two methods to be discussed and will be
specified below.

3.5.2.1 Loosely coupled system

As illustrated in Figure 3.4, in a loosely coupled system, the EKF measure-
ments are the GPS position (or velocity or both). Residual measurements are
formed with the INS estimates of position (or velocity or both). The position
measurement residual is

y = pgps − pins =

1 0 0

0 1 0
0 0 1




δnδe
δd


+ ηx (3.69)

If the INS error state is ordered as δx = [δpT, δvT, δρT, xT
a , xT

g ]T as in
Equation (3.68); then, for Step 4 of the EKF algorithm, the linearized position
measurement matrix is

Hk = [I, 0]

where I is a 3×3 identity matrix and 0 is a 3×12 matrix of zeros. In this approach,
the receiver clock model and associated error states need not be included in the
EKF model, as the receiver has already accounted for the receiver clock bias in
the estimation of the receiver antenna position.

For the implemented system to attain performance near that predicted the-
oretically, it is critical for the designer to understand at least the following
practical issues:

Correlated GPS position error vector: discussed in
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As
and demonstrated in Example 3.2, at any given epoch, the components of

Section 3.3.2
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the vector of position errors are correlated. For the EKF estimation of the
INS error, the position error correlation matrix Rx(t) must be available and
due to the cross-correlation scalar measurement processing cannot be used.
Typically, GPS receivers will not provide Rx(t) along with the estimated
position.

Nonwhite measurement error processes: As shown in Examples 3.3 and 3.4
the GPS position error processes are not white, but may have significant time
correlation. The time correlation may come from nonwhite GPS measurement
errors such as multipath or from the GPS solution method. In particular, when
the GPS receiver position solution incorporates a KF [45], then the time correl-
ation of the GPS position errors is increased. The designer of a loosely coupled
GPS aided INS approach should ensure that the GPS receiver is configured to
determine epoch-wise position and velocity solutions.

Doppler: The GPS “Doppler” measurement is typically not a true Doppler
measurement. Typically, the Doppler measurement is the change of the phase
of the carrier signal over some interval of time [40]. The interval of time is
often 1.0 sec. Because of this, the GPS velocity output computed from the
Doppler measurement is not the instantaneous velocity at some specific time-
of-applicability.

Lever arm: The INS computes the position of the IMU effective center
location. The GPS computes the position of the antenna phase center. These
two positions are not the same. The vector offset is referred to as the lever arm
and should be compensated for the EKF data fusion procedure.

The main motivation for the use of a loosely coupled approach, instead
of a tightly coupled approach, is that the former is simpler. A loosely coupled
approach can be implemented with an off-the-shelf GPS receiver and an off-the-
shelf INS. The designer need not work with clock models, GPS ephemeris data,
ephemeris calculations, or GPS basic measurements. Note that this approach
does attempt to estimate IMU calibration parameters (e.g., biases). As those
errors are calibrated, the rate of growth of the INS errors will decrease. However,
depending on the extent of the simplifications made in implementing the EKF
and the extent to which the above issues are addressed, the INS errors may not
be correctly estimated.

3.5.2.2 Tightly coupled system

are the GPS range (or phase change) measurements. Residual measurements are
formed with the INS estimates of range (or phase change). The INS estimates
the range using Equation (3.44) with εi = 0. To utilize that equation, the
satellite position is computed using ephemeris data downloaded through the
GPS receiver. Similarly, the GPS pseudorange or carrier phase measurements
are output by the GPS receiver.

© 2006 by Taylor & Francis Group, LLC

As illustrated in Figure 3.5, in a tightly coupled system, the EKF measurements
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FIGURE 3.5 Block diagram of a tightly coupled GPS aided INS.
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 (3.70)

where Ce
n is the rotation matrix for transforming the representation of vectors

in navigation frame to the ECEF frame that is valid at the measurement epoch.
When using this implementation approach, the designer is responsible for
accommodating the receiver clock bias. As an alternative to including clock
bias states in the error model, the clock bias can be addressed by subtracting
the measurement of one satellite from the measurement of all other satel-
lites, but the resulting differenced signals then have correlated measurement
errors.

If the INS error state is ordered as δx = [δpT, bu, δvT, ḃu, δρT, xT
a , xT

g ]T with
the INS error dynamics as in Equation (3.68) and the receiver clock dynamics

pseudorange measurement matrix is

Hk = [HCe
n, 0]

where H is defined in Equation (3.47), 0 is an m by 13 matrix of zeros, and m is
the number of satellites available. Note that the components of the error in this
vector of measurements are uncorrelated. Whether or not the measurement error
can be considered white depends on which GPS error correction approaches
are used and the time between measurement epochs. If significantly correl-
ated measurement errors exist, then they should be addressed through state
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From Section 3.3, the range measurement residual is

as in Section 3.3.3.1; then, for Step 4 of the EKF algorithm, the linearized
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augmentation and possibly a Schmidt–Kalman filter implementation approach
[19,20].

As opposed to a loosely coupled system, the designer of a tightly coupled
system must implement ephemeris calculations, implement a receiver clock
model, and be familiar with various receiver specific issues and peculiarit-
ies. The payoff for this increased level of understanding is potentially better
performance. The higher performance is achievable because the various meas-
urement errors and their covariance can be properly modeled and incorporated
in the design approach. As in the loosely coupled approach, the tightly
coupled approach does attempt to estimate IMU calibration parameters (e.g.,
biases). As the errors are calibrated, the rate of growth of the INS errors will
decrease.

Example 3.6 This example uses the same hypothetical 2D world as in

ory is also similar to that in the previous example. In this example, using GPS
measurement epochs that have 1 sec duration, at the (k + 1)th measurement
epoch (i.e., t = k + 1) the GPS range vector will be used as measurements in
the EKF to estimate the INS error state. The GPS measurements are computed
as the actual range plus a linearly increasing clock bias, and Gaussian ran-
dom noise with unit variance. In addition to the GPS receiver, the vehicle
is equipped with an IMU and a computer capable of integrating the INS
equations.

In two dimensions, the INS integrates the equation

˙̂x =




˙̂n
˙̂e
˙̂vn˙̂ve˙̂
ψ


 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







n̂
ê
v̂n

v̂e

ψ̂


+




0 0 0
0 0 0

cos ψ̂ − sin ψ̂ 0
sin ψ̂ cos ψ̂ 0

0 0 1




ãu

ãv

ω̃r




(3.71)

between GPS measurement epochs, that is, t ∈ [k, k+1) sec. In these equations,
for a generic variable z, ẑ denotes the computed value of z and ẑ denotes the
measured value of z. Using this notation, [δâu, δâv, δω̂r] are the estimated values
of the IMU biases [δau, δav, δωr].

Let (ãu, ãv) be the measured acceleration vector and ω̃r be the measured
yaw rate in body frame.

Considering bias errors, scale factor errors, and white measurement noise,
the  assumed  relations between  the IMU measurements (ãu, ãv, ω̃r) and the actual
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Example 3.4. Simulation results are shown in Figure 3.6. The vehicle traject-
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FIGURE 3.6 EKF based GPS solutions for Example 3.6. (a) Position estimation results
for Example 3.6. Top — Estimated position trajectory (dotted) overlaid on the actual tra-
jectory (solid). Bottom — Position estimation errors vs. time (solid and dashed curves),
and EKF estimate of the position error standard deviation (dotted). (b) Estimation res-
ults for Example 3.6. Top — Velocity estimation errors vs. time (solid curves) and EKF
estimate of the velocity error standard deviation (dotted). Middle — IMU bias estima-
tion errors vs. time. Bottom — Yaw estimation error vs. time (solid) and EKF estimate
of the yaw error standard deviation (dotted).

values (au, av,ωr) are:

ãu = (1+ δku)au − δau + nu (3.72)

ãv = (1+ δkv)av − δav + nv (3.73)

ω̃r = (1+ δkr)ωr − δωr + nr (3.74)

where δau, δav, δωr are bias errors, nu, nv, nr represent white noise processes
with variance of (5.0 × 10−4, 5.0 × 10−4, 5.0 × 10−6) respectively, and
(δku, δkv, δkr) represent sensor scale factor errors. We have included scale factor
errors at this point due to their importance, but will assume that the scale factor
errors are known to be identically zero in the following discussion.
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FIGURE 3.6 Continued.

To estimate the IMU bias vector, we append the bias error to the state vector

δx = [δn, δe, δvn, δve, δψ , δau, δav, δωr]

and specify a dynamic model for the appended states. By its design, the IMU
performance is independent of vehicle maneuvering, as long as the IMU is
used within its bandwidth and output range specifications. Therefore, specific-
ation of the IMU bias stochastic models can be based on data acquired in
the lab. It is often sufficient to consider the IMU bias errors as random walk
variables

δȧu = nb1

δȧv = nb2

δω̇r = nb3

In this simulation example, (nb1 , nb2 , nb3) have variance of (1.0× 10−8, 1.0×
10−8, 5.0 × 10−12) respectively. The augmented, linearized, dynamic model
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for the error state (used to implement the EKF) is




δṅ

δė

δv̇n

δv̇e

δψ̇

δȧu

δȧv

δω̇r




=




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −âe cosψ − sinψ 0

0 0 0 0 ân sinψ cosψ 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







δn

δe

δvn

δve

δψ

δau

δav

δωr




+




0 0 0 0 0 0

0 0 0 0 0 0

cosψ − sinψ 0 0 0 0

sinψ cosψ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







nu

nv

nr

nb1

nb2

nb3




(3.75)

where

[
ân

âe

]
=
[

cos ψ̂ − sin ψ̂
sin ψ̂ cos ψ̂

] [
ãu

ãv

]
= Ĉn

b

[
âu

âv

]
(3.76)

The clock model and clock error states must also be appended. The resulting
equation can be written as

δẋins = Finsδxins + �wins (3.77)

With the variances specified above, the matrix Q is known. Note that
in this approach the matrices Q and R are well defined based on the
physics of the problem; they are not ad hoc tuning parameters as they were

Between GPS measurement epochs that are separated by 1 sec (i.e., t ∈
[k, k + 1) sec for the (k + 1)th epoch) the INS propagates the state estimate
using the IMU data. The INS also propagates the error covariance matrix P
according to Equation (3.40). The error covariance propagation does depend
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on the IMU data because the F matrix includes an, ae, and ψ . Due to the
dependence of F on the IMU data, the matrices � and Qk must be computed

At the GPS measurement epoch, the GPS pseudorange measurements are
used in an EKF to estimate the INS error state. When the INS error state
is available from the EKF, it is used to correct the INS state according to
Equation (3.43). As time progressed the IMU errors are calibrated and the
rate of growth of the INS errors decreases.

trajectories. The lateral maneuver occurs at approximately t = 15 sec. The
bottom graph shows the position estimation error components as a function
of time. In addition to the estimation errors, the graph shows ±√P11 + P22
which represents the EKF prediction of the standard deviation of the position
estimation error. The variance of the position error decreases steadily over
the period of the simulation due to the decay of the initial position error, the
estimation of velocity, and the balancing of the acceleration biases with the yaw
estimation error.

The top graph of Figure 3.6b shows velocity estimation error components
and the EKF prediction of the standard deviation of the velocity estimation error
as functions of time. After the initial transients, the velocity estimation error
decreases steadily due to the decay of the initial velocity error and the balancing
of the acceleration biases with the yaw estimation error. The middle graph shows
the bias estimation error components as functions of time. The bottom graph
shows the yaw estimation error and the EKF prediction of the standard deviation
of the yaw estimation error as functions of time. Analysis of Equation (3.76)
shows that the yaw angle and gyro bias errors are observable only when the
acceleration vector [an(t), ae(t)] is nonzero. Therefore, the yaw error is not
adjusted by the EKF except for a brief interval following the maneuver. Close
inspection of Figure 3.6b shows that the yaw error standard deviation is slowly
increasing due to the accumulation of gyro measurement noise during the atti-
tude integration process. Note that the yaw estimation error does not approach
zero; however, its net effect on the velocity and position does approach zero
(in the absence of maneuvering). From Equation (3.71) we see that (neglecting
noise)

δv̇n = v̇n − ˙̂vn̂ = an − (ãu cos ψ̂ − ãv sin ψ̂)

δv̇n = an − ((au − δâu) cos(ψ − δψ)− (av − δâv) sin(ψ − δψ))

Even when the acceleration vector is zero, we have

δv̇n = (cos(ψ) cos(δψ)+ sin(ψ) sin(δψ))δâu

− (sin(ψ) cos(δψ)− cos(ψ) sin(δψ))δâv (3.78)
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Although the linearization of Equation (3.78) is used to formulate the third row
of Equation (3.76), for fixed ψ the equation

(cos(ψ) cos(δψ)+ sin(ψ) sin(δψ))δâu

− (sin(ψ) cos(δψ)− cos(ψ) sin(δψ))δâv = 0

defines a surface of [δâu, δâv, δψ] values such that δv̇n = 0. The δve dynamics
provide a second such null surface. As long as the EKF drives the vector
[δâu, δâv, δψ] to the intersection of these two surfaces, the net effect of these
errors are balanced. For this 2D example, the intersection of the two surfaces
is defined by

[
0
0

]
=
[

cosψ − sinψ
sinψ cosψ

] [
cos δψ sin δψ
− sin δψ cos δψ

] [
δâu

δâv

]
(3.79)

In particular, the EKF causes the accelerometer bias estimation errors δâu

and δâv to converge to zero, but δψ need not converge to zero. This is the
practical result of the fact that, without acceleration, the yaw error is not
observable.

In real 3D applications, the situation is more complex, since without
maneuvering the errors in estimating pitch and roll have similar effects as
accelerometer bias errors. Therefore, the linearized dynamics have unobserv-
able subspaces. As the vehicle maneuvers, the null surfaces change. Over time,
if the null surfaces change sufficiently, then the yaw and bias estimation errors
will converge toward zero (until the maneuvering stops).

Note that if GPS measurements are unavailable, the integration of the IMU
measurements by the INS is not interrupted. Therefore, this approach does
increase the availability of the state estimate (higher frequency and no dropouts
due to missing satellites). The bandwidth of the state estimate is also increased
since it is determined by the bandwidth of the IMU not the bandwidth of the
GPS receiver. The accuracy of the integrated solution will depend on the quality
of the IMU and the GPS receiver. The length of time that the INS can main-
tain a specified level of accuracy after losing reception of GPS signals will
predominantly depend on the quality of the IMU.

3.6 CHAPTER SUMMARY

This chapter has reviewed the use of the KF and EKF as a tool for fusing
information from various sensors that provide information about the state of
a dynamic system. Preconditions necessary for the use of these methods are
analytic models for the state dynamics and the relation between the state and
the measurement. One prominent application of these tools that satisfies these
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preconditions is the integration of GPS and INS. We have presented an analytic
overview of a few  of the existing uses of the EKF in this application. Many other
alternatives have been suggested in the literature. We have used a 2D example
to work through various design issues and to illustrate various implementation
issues.

While the theory of this chapter has reviewed GPS aided INS in standard
vector form, four of the examples have utilized a fictional 2D world. There-
fore, it is useful to briefly consider how the conclusions of those examples
generalized to the 3D world in which an actual system must function. The
objectives of Example 3.2 were to illustrate the standard method of solution
of the GPS positioning problem and to demonstrate that the components of
the position estimate error vector were correlated (i.e., Rx is not diagonal).
The objectives of Examples 3.3 and 3.4 were to illustrate the use of the Q
matrix as a tuning parameter, to reinforce the fact that such tuning removes
the optimal stochastic properties from the KF, and to illustrate the fact that
there are not optimal settings of the tuning parameters that apply in all user
situations. In addition, that example demonstrates that the position estimate
error vector is not white, but has significant time correlation. The objectives of
Example 3.6 were to illustrate the error state modeling approach which allows a
proper stochastic interpretation of KF implementations,2 to illustrate the state
augmentation process used for instrument calibration, to illustrate that in this
approach the Q and R matrices are not tuning parameters but are physically
determined, to illustrate that the observability of certain subspaces of the error
state are dependent on the vehicle motion, and to illustrate that the state estim-
ation error is uncorrelated with the vehicle motion due to the IMU and INS. All
these issues were more convenient to illustrate in a 2D example, but are equally
applicable to our 3D world.

Another implementation approach, referred to in the literature as Deep
or Ultratight integration, feeds information from the INS back into the GPS
receiver [46–48]. We have not discussed these methods in this chapter as their
implementation requires access to GPS receiver source code, which is not avail-
able to most GPS users. The objective of these techniques is to use the INS
estimates of the GPS receiver position and velocity to aid the receiver in acquir-
ing and tracking the GPS satellite signals. This would be especially beneficial
in low signal-to-noise ratio situations.
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4.1 INTRODUCTION

Landmarks are routinely used by biological systems as reference points during
navigation. Their employment in robotic navigation requires the development of
satisfactory sensor technologies for landmark selection and recognition, which
poses a big challenge. During the last two decades, landmarks and triangulation
techniques have been widely used in navigation of autonomous mobile robots
in industry [1,2]. Such a navigation strategy relies on identification and sub-
sequent recognition of distinctive environment features or objects that are either
known a priori or extracted dynamically. This process has inherent difficulties
in practice due to sensor noise and environment uncertainty [3]. This chapter
outlines a number of landmark-based navigation algorithms that are able to
locate the mobile robot and update landmarks autonomously.

Autonomous mobile robots need the capability to explore and navigate
in dynamic or unknown environments in order to be useful in a wide range
of real-world applications. Over the last few decades, many different types
of sensing and navigation techniques have been developed in the field of
mobile robots, some of which have achieved very promising results based
on different sensors such as odometry, laser scanners, inertial sensors, gyro,
sonar, and vision [4]. This trend has been mainly driven by the necessity
of deployment of mobile robots in unstructured environments or coexisting
with humans. However, since there is huge uncertainty in the real world and
no sensor is perfect, it remains a great challenge today to build robust and
intelligent navigation systems for mobile robots to operate safely in the real
world.

In general, the methods for locating mobile robots in the real world
are divided into two categories: relative positioning and absolute position-
ing. In relative positioning, odometry (or dead reckoning) [4] and inertial
navigation (gyros and accelerometers) [5] are commonly used to calculate
the robot positions from a starting reference point at a high updating rate.
Odometry is one of the most popular internal sensor for position estim-
ation because of its ease of use in real time. However the disadvantage
of odometry and inertial navigation is that it has an unbounded accumu-
lation of errors, and the mobile robot becomes lost easily. Therefore, fre-
quent correction based on information obtained from other sensors becomes
necessary.

In contrast, absolute positioning relies on detecting and recognizing dif-
ferent features in the robot environment in order for a mobile robot to reach
a destination and implement specified tasks. These environment features are
normally divided into four types [4] (i) active beacons that are fixed at known
positions and actively transmit ultrasonic [6], IR or RF signals for the calcu-
lation of the absolute robot position from the direction of receiving incidence;
(ii) artificial landmarks that are specially designed objects or markers placed at
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known locations in the environment; (iii) natural landmarks that are distinctive
features in the environment and can be abstracted by robot sensors; and (iv)
environment models that are built from prior knowledge about the environment
and can be used for matching new sensor observations. Among these envir-
onment features, natural landmark-based navigation is flexible as no explicit
artificial landmarks are needed, but may not function well when landmarks
are sparse and often the environment must be known a priori. Although the
artificial landmark and active beacon approaches are not flexible, the ability to
find landmarks is enhanced and the process of map building is simplified. They
have been widely adopted in many real-world applications, including Global
Positioning Systems (GPSs) [7] and retro-reflective barcode targets [3]. This
chapter only addresses the issues related to artificial landmarks and the associ-
ated navigation methods. More information on other landmarks can be found
in Reference 8.

To make the use of mobile robots in daily deployment feasible, it is neces-
sary to reach a trade-off between costs and benefits. Often, this calls for efficient
landmark detection and triangulation algorithms that can guarantee real-time
performance in the presence of insufficient or conflicting data from differ-
ent types of sensors. Therefore, the use of multiple sensors (laser, sonar, and
vision) and multiple landmarks (artificial and natural) for the position estima-
tion of a mobile robot becomes absolutely necessary. Unlike odometry-based
systems, landmark-based systems do not suffer from drift errors. However,
how to select and recognize good landmarks in different circumstances is a
nontrivial task since the different view angles of landmarks bring different
errors into the measurements. Therefore, it is often the case that some land-
marks are misidentified and this remains a challenging issue in many real-world
applications. Moreover, the cooperative navigation of multiple mobile robots
is a more flexible navigation method than navigation methods for a single
robot.

overview of our approach to landmark-based navigation, and proposes a multi-
sensor system that can locate the robot and update different kinds of landmarks

system based on a rotating laser scanner and artificial landmarks, in which a
triangulation method for calibrating the mobile robot position is also presented.

to recognize the digital and symbolic landmarks automatically. These landmarks
are very common in office environments (name plates) and highway systems

SICK laser scanner and two cylinder landmarks, in which cylinder landmarks
are fixed on two mobile robots and can change their relative position and distance
for localization. Finally, a brief summary and potential future extension are

© 2006 by Taylor & Francis Group, LLC

The rest of the chapter is structured as follows. Section 4.2 presents an

in the robot internal model concurrently. Section 4.3 describes a navigation

Then the visual-based navigation is addressed in Section 4.4 for the mobile robot

(road sign boards). Section 4.5 describes the localization system based on a

given in Section 4.6.
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4.2 LANDMARK-BASED NAVIGATION

In a landmark-based navigation system, the robot relies on its onboard sensors
to detect and recognize landmarks in its environment to determine its position.
This navigation system very much depends on the kind of sensors being used, the
types of landmarks, and the number of landmarks available. For instance,
Sugihara [9] used a single camera on a robot to detect the identical points in the
environment and then adopted an O(n3lg n) algorithm to find the position and
orientation of the robot such that each ray pierces at least one of the n points in
the environment. An extended version was proposed in References 10 and 11,
respectively. The localization based on distinguishable landmarks in the envir-
onment has been researched in Reference 12, in which the localization error
varies depending on the configuration of landmarks. Apart from vision systems,
other sensors have been widely used in position estimation, including laser [3],
odometry [13], ultrasonic beacons [6], GPS [7], IR [12], and sonars [14]. Since
no sensor is perfect and landmarks may change, none of these approaches
is adequate for a mobile robot to operate autonomously in the real world.
A landmark-based navigation system needs the integration of multiple sensors
to achieve robustness and cope with uncertainties in both sensors and land-
mark positions. This motivates us to pursue a hybrid approach to the problem
by integrating multiple sensors and different kinds of landmarks in a unified
framework.

In general, the accuracy of the position estimation in a landmark-based
navigation system is affected by two major problems. The first problem is that
the navigation system cannot work well when landmarks accidentally change
their positions. If natural landmarks are used in the navigation process, their
positions must be prestored into the environment map so that it is possible for
a mobile robot to localize itself during its operation. The second problem is
that sensory measurements are noisy when the robot moves on an uneven floor
surface or changes the speed frequently. The accuracy of robot positioning
degrades gradually, and sometimes becomes unacceptable during a continuous
operation. Therefore, re-calibration is needed from time to time and it becomes
a burden for real-world applications.

To effectively solve these problems, we propose a novel landmark-based
navigation system that is able to:

• Initialize its position through triangulation when necessary
• Update its internal landmark model when the position of landmarks

is changed or new landmarks become available
• Localize the robot position by integrating data from odometry, laser

scanner, sonar, and vision

to implement concurrent localization and map building automatically. It is

© 2006 by Taylor & Francis Group, LLC

Figure 4.1 shows the block diagram of our navigation system that is able
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FIGURE 4.1 Landmark-based localization.

a closed-loop navigation process for position initialization, position updating,
and map building. The system consists of three parts: an initialization part, a
Kalman filter (KF) part, and a map-updating part:

• The initialization part includes a triangulation algorithm, which is

the mobile robot is stationary, the triangulation algorithm is called to
recalibrate the robot location so that the accumulative position errors
can be corrected.

reduce individual sensor uncertainties. More details are presented in

• The map building part is to update and maintain the internal world
model of the mobile robot. A recursive least square algorithm is
adopted to optimize the landmark position during operation. The
key idea is to optimize the internal landmark model during the robot
operation and add any new landmark that is consistently detected by

The choice of the least square criteria is of course based on the
assumption that measurement errors have Gaussian distributions.

we have considered two types of laser
scanners and one vision system for landmark detection and recognition. The
proposed navigation system is especially aimed at service robots that operate
in indoor environments such as offices and hospitals where the global map of

© 2006 by Taylor & Francis Group, LLC

• The KF part aims to fuse measuring data from different sensors, and

the laser scanners and vision systems into the localization process.

based on angular measurements from the multiple sensors. Whenever

As can be seen in Figure 4.1,

Section 4.3.3.
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the environment is two-dimensional. The position of the robot with respect to
this map is unknown and needs to be determined.

There are three kinds of landmarks that are considered in our design (i) single
strip retro-reflective landmarks, (ii) digital landmarks, and (iii) geometric land-
marks. The positions of the first two kinds of landmarks are pre-input into a
global map of the robot’s environment. The positions of the geometric land-
marks are abstracted and then registered into the global map dynamically. The
next three sections describe their application in robot navigation respectively.
Note that our navigation system is not restricted to these three kinds of land-
marks, and can be easily extended into other kind of landmarks and their
combination.

4.3 LASER SCANNER AND RETRO-REFLECTIVE LANDMARKS

4.3.1 Laser Scanner and Angle Observation

The localization system based on the laser scanner and retro-reflective land-
marks is a promising absolute positioning technique in terms of performance
and cost [8]. Using this technology, the coordinates of retro-reflective land-
marks are prestored into an environment map. During its operation, the robot
uses its onboard laser sensor to scan these landmarks in its surroundings and
measure the bearing relative to each of them [1]. Then the position estimation
of the mobile robot is normally calculated by using two distinctive methods:
triangulation [12] and Kalman filtering [14].

Research here is based on a rotating laser scanner that is able to measure the
angle between the robot base line and the beam line from either the leading or

the laser scanner is situated on top of the physical center of the robot, scanned
360◦ in azimuth up to 50 m range at a constant speed of 2 Hz. Note that an
IR laser beam (870 nm) from a HeNe laser diode emits energy of 0.5 mW,
which is eye-safe. As can be seen, there are six landmarks in this environment,
namely B1, B2, . . . , B6. The landmarks are in the form of a single strip for easy
detection from a large distance, instead of traditional bar-codes. All landmarks
have an identical size of 50 cm in length and 10 cm in width. The positions of
the landmarks are surveyed in advance and prestored into the robot memory as
a look-up table, represented by the coordinates in the world frame:

� = [B1, . . . , Bi, . . . , BN ] = [(bx1, by1), . . . , (bxi, byi), . . .] (4.1)

where (bxi, byi) are the coordinates of the ith landmark and N is the total number
of landmarks in use.

These landmarks can return strong reflective signals to the scanner, that
is, the area inside dotted lines in Figure 4.2. The reflected light from these

© 2006 by Taylor & Francis Group, LLC

the falling edge of landmarks in the horizontal plane. As shown in Figure 4.2,
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FIGURE 4.2 Landmarks and an onboard laser scanner.

landmarks is measured by a photo-detector inside the scanner. The scanner
outputs the relative angles (with respect to the robot frame) measured by the
scanner encoder at the falling edge of each landmark. The measurement vari-
ance would increase when the mobile robot moves around. This is because
the vibration of the laser scanner would appear when the floor surface is not
smooth.

4.3.2 Triangulation Algorithm

In the case of a stationary robot, the laser scanner senses all six landmarks,

can be used to calculate the initial position and heading of the robot by the trian-
gulation algorithms proposed in References 8 and 15. There are two ways to do
triangulation. First, triangulation can be recursively implemented by choosing
three landmarks in Figure 4.3 in turn when the mobile robot is stationary. It is
actually identical to the “3-point problem” in land surveying. The laser scanner
detects the falling edges of three landmarks and in turn provides three angle
measurements, denoted by βi (i = 1, 2, 3):

βi = tan−1 byi − yl

bxi − xl
− θ (4.2)

where θ is the robot orientation, (bxi, byi) are the coordinates of the landmark
βi, and (xl, yl) are the coordinates of the laser scanner in a global frame.

Based on the trigonometric identity, the equations for calculating the robot
position and orientation are easy to derive from Equation (4.2). More details can

© 2006 by Taylor & Francis Group, LLC

as shown in Figure 4.3, from a single location continuously. Then these data
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FIGURE 4.3 Triangulation example.

be seen from References 12 and 16. There are two problems in this triangulation
process:

• First, the triangulation algorithm is normally sensitive to the positions
of the three landmarks being used. When three targets are in an
optimal position (about 120◦ apart), the results are very accurate.
Otherwise, the robot position and orientation have big variances with
respect to an optimal value.
• Second, it is very difficult to identify which landmark has been detec-

ted if all landmarks are identical. Mismatch is more likely to happen
in practice when obstacles obscure one or more landmarks.

Alternatively, we can use all landmarks to make a least square solution with
redundant observations so that the individual solutions do not depend on the
specific choice of the landmarks. This solution is nonlinear, however, the equa-
tions can be readily linearized and used with the standard least square algorithm.
The advantage of this approach is that the redundant observations can be used
to check and, hopefully, eliminate blunders (misidentification of the targets,
etc.) in the observation automatically. This approach can be readily automated
and is, indeed, very popular in surveying. But it needs more computation time
compared with the first approach.

Since the laser scanner can only measure the angles to the different land-
marks, and cannot distinguish one landmark from another, a key problem is
how to determine the correspondence between the measured angle and the
landmark [1]. Therefore, the initialization of the robot position is normally
done manually. Also, re-calibration is done manually when the mobile robot
gets lost. This is inconvenient for real-world applications. It is necessary to find

© 2006 by Taylor & Francis Group, LLC
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a feasible way to initialize the position of a mobile robot automatically, which
can be found in Reference 3.

4.3.3 KF-Based Navigation Algorithm

The triangulation algorithm is difficult to implement when the robot moves
around since it is necessary to compensate the time frame as each of three
landmarks is detected at different robot positions. Skewis and Lumelsky [12]
proposed a triangulation algorithm to attack this problem. However, there was
no satisfactory result being obtained after the algorithm was tested. This is
mainly due to the following reasons:

• Each of the landmarks is in a single strip and not encoded, that is,
indistinguishable from one another.
• Noisy readings come from the laser scanner as some angle measure-

ments are caused by random objects.
• In general, the robot environment is nonconvex. Therefore, not all

landmarks can be seen by the laser scanner. Moreover some land-
marks may be obscured by dynamic objects such as humans and
other robots.

The KF algorithm is a natural choice for robot localization since it provides
a convenient way to fuse the data from multiple sensors, for example, the laser
scanner and odometry. However, it normally requires a linear dynamic model
and a linear output model. However, in this research, both models are nonlinear
as follows:

x(k + 1) = f(x(k), u(k))+ w(k) (4.3)

z(k + 1) = h(Bi, x(k))+ v(k) (4.4)

where f(x(k), u(k)) is the nonlinear state transition function of the robot. w(k) ∼
N(0, Q(k)) indicates a Gaussian noise with zero mean and covariance Q(k).
h(Bi, x(k)) is the nonlinear observation model and v(k) is Gaussian noise with
zero mean and covariance R(k).

The control vector is calculated by two optical encoders at each cycle time k:

u(k) = [�d,�θ ]T (4.5)

and the state transition function of the robot is

f(x(k), u(k)) =

x(k)+�d cos θ

y(k)+�d sin θ
θ(k)+�θ


 (4.6)
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For the laser scanner, the observation model is

h(Bi, u(k)) = arctan
byi − y(k)

bxi − x(k)
− θ(k) (4.7)

Since the models (4.3) and (4.4) are nonlinear, the EKF [17] must be used here
to integrate the laser measurements and encoder readings. Note that the EKF is
recursively implemented as follows:

Step 1: Prediction — It predicts the next position of the robot using
odometry.

x(k + 1/k) = f(x(k), u(k)) (4.8)

p(k + 1/k) = ∇fP(k/k)∇fT +Q(k) (4.9)

where ∇f is the Jacobean matrix of the transition function, and is
obtained by linearization

∇f =

1 0 −�d(k) sin θ(k)

0 1 �d(k) cos θ(k)
0 0 1


 (4.10)

Step 2: Observation — It makes actual measurements.
The measurement of the laser scanner is

z(k + 1) = h(Bi, x(k)) (4.11)

The predicted angular measurement is

ẑ(k + 1) = h(Bi, x̂(k + 1/k)) (4.12)

Step 3: Matching— It compares the real measurement with the predicted
measurement.

To calculate the innovation, use

v(k + 1) = z(k + 1)− ẑ(k + 1) (4.13)

The innovation covariance is:

S(k + 1) = ∇hP(k + 1)∇hT + R(k + 1) (4.14)

© 2006 by Taylor & Francis Group, LLC
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where ∇B is the Jacobean matrix of the measurement function:

∇h =
[
∂h
∂x

,
∂h
∂y

, −1

]
(4.15)

For each measurement, a validation gate is used to decide whether it
is a match or not:

v(k + 1)S(k + 1)vT(k + 1) ≤ G (4.16)

If it is true, the current measurement is accepted. Otherwise, it is
disregarded.

Step 4: Updating — It corrects the prediction error from odometry
readings.

The filter gain is updated by:

W(k + 1) = P(k + 1/k)∇hTS−1(k + 1) (4.17)

The robot state is then calculated by:

x(k + 1/k + 1) = x̂(k + 1/k)+W(k + 1)v(k + 1) (4.18)

The covariance is updated by:

P(k + 1/k + 1) = P(k + 1/k)−W(k + 1)S(k + 1)WT(k + 1)
(4.19)

Step 5: Return to Step 1 to recursively implement the four steps earlier.

The algorithm is essentially very simple although it contains some very use-
ful features. It produces the estimate of the current robot position at each cycle
by integrating odometry data with only one angle measurement from the laser
scanner. Recursively, it combines every new measurement with measurements
made in the past to estimate the robot position, or “make a compromise.” This
can be seen as a pseudo “triangulation” technique in a dynamic sense.

4.3.4 Implementation and Results

The proposed navigation algorithm based on angle-only observations was
implemented in our robotics research laboratory. The mobile robot equipped
with a rotating laser scanner and single-stripe landmarks were fixed on the walls
within the laboratory. The mobile robot was commanded to follow a close-loop
route at a speed of 0.3 m/sec. The route is near circular with a diameter of 4 m.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.4 Navigating a close-loop route inside building.

Figure 4.4 presents the results gathered from the robot operation. There
are three sets of data, namely a planned trajectory, a trajectory calculated from
odometry, and a trajectory estimated by the EKF. As can be seen, the trajectory
produced by odometry deviated further than the one generated by the EKF.
Both odometry data and the EKF data look very close to the planned trajectory
since the trajectory plotting is scaled down too much. However, the odometry
data will deviate further away from the desired trajectory if the mobile robot
travels continuously, which is due to the accumulative error of odometry.

4.4 VISION AND DIGITAL LANDMARKS

Visual robot navigation can be roughly classified into two major approaches:
one  is the  iconic  or appearance-based  method  that directly  compares the  raw  data
with the internal map and another is the feature-based method that focuses on
the prominent features [18]. A feature-based navigation algorithm is often sim-
pler and reliable, especially in dynamic environments. For instance, Atiya and
Hager [19] used a stereo vision system to obtain vertical image edges in order to
determine robot position. The observed landmark and stored map labeling prob-
lem is solved by a set-based method. Se et al. [20] proposed a random sample
consensus (RANSAC) approach to determine the global position of the robot
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by matching the SIFT (scale invariant feature transform) features. Feature-based
methods are often very efficient, and we have adopted it in our design.

However, the presence of nonunique feature landmarks causes the serious
concern in feature-based visual navigation. Therefore, instead of undistinguish-
able landmarks addressed in the previous section, we propose a new type of
artificial landmarks, which draws inspiration from wide applications of License
Plate Recognition (LPR). These landmarks are embedded with characters and
digit numbers that are similar to the name plates in offices and the license plates
used in transport. A similar approach is presented in Reference 21, which pro-
posed a visual landmark learning and recognition system for use in mobile
robot navigation tasks that can read text inside well-defined landmarks such as
nameplates, streets, and roads. However, there is no indication of its real-time
performance.

shows a real landmark held by a person. Each landmark has the following
features:

• Five characters, the letter L followed by four digits, are printed on
the landmark.
• Each of the five characters has the same size, and the clearances

We currently select the parameters: L = 33, D = 200, H = 66,
and W = 34 (mm), which may be changed in different application
environments.
• The positions of the characters are also known (L in Figure 4.5a).

4.4.1 Landmark Recognition

The digits are the index of the landmark and the algorithm can identify the
landmark with a digits recognition method. The standard size of the charac-
ters contains enough information for robot localization. Since the proposed
landmark is similar to a license plate, many algorithms developed for license
recognition can be used here directly, including the fuzzy-map method for
locating the plate and the neural network for character recognition [22], and
the fast plate location method based on vertical edges of the images [23].

major modules: region finding, digits finding, and digits recognition.

4.4.1.1 Region finding module

This module is to find out all the probable regions that contain the landmark
digits and exclude as much background as possible. Considering the features
of the digits (sharply rising and falling edge in pairs in a horizontal scan line),

© 2006 by Taylor & Francis Group, LLC

Figure 4.5a presents the format of the proposed landmark, and Figure 4.5b

between the characters are all the same (H, W, and D in Figure 4.1a).

Figure 4.6 shows a new landmark recognition algorithm that consists of three
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FIGURE 4.5 The proposed digital landmark. (a) The format of the landmark. (b) An
example of the landmark.

we develop a simple region finding algorithm for extracting potential regions
from images being captured.

While scanning the lines, the program will count the edge pairs (a pair is
composed of a rising edge and a falling edge), and record the line sections
that contain more than four edge pairs. In a scan line, the program may record
more than one section if the pairs are further away from each other. The region
extraction module analyzes the line sections recorded and finds out the probable
regions based on the following assumptions:

• The line sections will gather closely in the digits region.
• The numbers of line sections in the digits region will not be less

than 10.
• The clearance between line sections in a digit region will be limited.

© 2006 by Taylor & Francis Group, LLC
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FIGURE 4.6 Landmark recognition algorithm.

4.4.1.2 Digits finding module

The digits finding module is mainly based on an edge following algorithm. The
steps can be described as follows:

• Do top-down line scans of a potential region until an edge pixel of a
digit is found.
• Follow the edge of the digit and record the parameters (position,

width, height, etc.).
• Repeat steps above until all the digits in the region have been found.

4.4.1.3 Digits recognition module

The digits recognition module works in several steps as follows:

• Normalization — It divides the image areas and normalizes them to
64 ∗ 64 arrays regardless of the original size of the digits. If some
noisy areas were found with the digits, this step will normalize them

of normalization of the digits detected.
• Thinning — It is to extract out the skeleton (one-pixel-wide central

line of a line). The skeleton is essential for texture analysis of a pat-
tern. The end points, bifurcate points, etc. can be extracted from
the skeleton. The program adopts an updated Hilditch algorithm
to implement the thinning operation. Figure 4.7b is the result of
thinning. There are often some noises in the thinning image, for

© 2006 by Taylor & Francis Group, LLC

as well, in order to avoid losing information. Figure 4.7a is the result
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FIGURE 4.7 Normalization, thinning, and noise removing.

example, some odd pixels which will generate fake endpoints and
bifurcate points.
• Noise removal — This step removes the noisy pixels according to

the following rules (i) The isolated pixels are removed; (ii) short
lines (the length is less then 60 pixels) are removed; and (iii) short
odd lines are removed. An odd line is composed of the pixels from
an endpoint to a bifurcate point. The bifurcate point pixel is pre-
served while processing. Figure 4.7c is an example of noise removed
images.
• Feature extraction — It extracts a grid based 9-element feature vec-

tor F = (f1, f2, . . . , f9)T for each of the normalized probable digits
(NPD). The nine elements express the ratio of the number of black
pixels in a subarea. The following figure gives the serial number
of the subareas in a NPD. The borderlines of subareas are the four
lines shown in Figure 4.7d, and the coordinate value of a NPD is
from 0 to 63 in both x and y axes. The elements are defined by the
following equation:

fi = Ni∑
i=0,8 Ni

(4.20)
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where Ni is the number of the black pixels in the ith subarea shown

Figure 4.7c is (0.2343, 0, 0, 0.246, 0, 0, 0.246, 0.168, 0.144) T.
We can find that in the NPD for “L,” no black pixel is in subarea 1,
2, 4, and 5; and the black pixels in subareas 7 and 8 are relatively
smaller than those of the subarea 0, 3, and 6. Because the features
are relative values instead of absolute ones, the feature values are
free from the different exposure level of the image, which causes the
different width of the character strokes. The features are robust to the
sloping digits, which may be due to a sloping camera. The image in

that the distribution of black pixels in each subarea of the NPD does
not change due to the slope. The feature extracted from it also proves
the same.
• Feature matching — It calculates the scalar products of the fea-

ture vector extracted in the earlier step and those from the features
library; then it will give out the result according to the minimum
scalar product. This step also contains a simple judgment of the
results if more than one probable region is found. The following
conditions are adopted to do this, if (i) five digits are found in
a region; (ii) the first character of a region is recognized as “L”;
(iii) the minimum scalar products are very small; and (iv) the region
is more probable to be the right one. Another function of this
step is to connect the characters recognized into a string accord-
ing to the right region judgment and positions of digits and then
output it.

4.4.2 Position Estimation

Assume that the robot position is expressed by the vector p = (x, y, θ)T, and
three coordinate systems are adopted for our implementation:

• {W}: the global coordinates. The localization is to find out W P, the
position vector in {W}.
• {L}: the landmark coordinates. It is fixed on the current landmark

which is being seen. The original point is fixed on the position shown
in Figure 4.5a.
• {I}: the image coordinates. It is fixed on the image plane.

If a landmark is “seen” by the robot, it is able to identify the landmark and
get the position information of the landmark in {W} from the database, and
therefore the transformation matrix CW

L is known. If the position in {L},LP, is

© 2006 by Taylor & Francis Group, LLC

in Figure 4.7d. For instance the feature vector for the letter “L” in

Figure 4.5b is an example for sloping digits. We found in the NPD
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deduced, the localization can be done by the transformation

W P = CW
L · LP (4.21)

The problem now is to calculate

LP = (xL
c , yL

c , θL
c )

T (4.22)

In this section, two methods of localization, that is, triangulation, and least
square estimation (LSE), are investigated in terms of two cases: single landmark
and double landmarks.

4.4.2.1 Triangulation method

Figure 4.8 is the sketch map of landmark imaging, using a pinhole model. P1
and P2 are two of the vertical edges of the five characters (10 edges alltogether).
The positions of P1 and P2 are known as (pL

1 , 0) and (pL
2 , 0). The parameters of

According to the pinhole model, we get:

(yI
2 − yI

1)r

f
= H

l1
and

(yI
4 − yI

3)r

f
= H

l2
(4.23)

where r is the resolution with the unit of MPD (millimeters per dot), and (xI
i , yI

i )

is the coordinate value of the ith feature point, both endpoints of the selected
vertical edges.
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FIGURE 4.8 Landmark detection.
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the landmark are shown in Figure 4.5a.
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Assume that the position of the lens center is (xL
c , yL

c ). According to
Pythagoras theory, we have:

{
(pL

1 − xL
c )

2 + (yL
c )

2 = l2
1

(pL
2 − xL

c )
2 + (yL

c )
2 = l2

2

(4.24)

Considering that yL
c is always a positive value, we have:
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(4.25)

θ = ∠1+ ∠2 = tan−1

(
pL

1 − xL
c

yL
c

)
+ tan−1

(
xI

1r

f

)
(4.26)

By combining Equation (4.25) and Equation (4.26), we have
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(4.27)

We substitute LP into Equation (4.21), and then the localization is com-
pleted. Equation (4.27) is the result of localization. The coordinates given by
the program are in {L}. The errors of this method are caused by the imprecise
extraction of each character. Differentiating Equation (4.27), we have:
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(4.28)
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In Figure 4.9, the direction may be easily obtained as:
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FIGURE 4.9 Landmark-based localization of the robot.

Equation (4.28) shows the relationship between localization errors and char-
acter extraction errors. It can be seen that the localization error is relative to l1
and l2, as well as the distances between the robot and the features, which will
be large when the observing angle is large. In the two-landmark case, the two
features p1 and p2 can be selected from different landmarks, which can provide
more accurate position results.

4.4.3 Least Square Estimator (LSE)

In a real application, the robot continuously samples data using its onboard
camera. Errors may be reduced by fusing the data of individual samples. In this
section, LSEs are used in terms of two different cases: single landmark case

© 2006 by Taylor & Francis Group, LLC
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and dual landmark case. The method proposed here is the extension of Boley’s
LSE [24].

4.4.3.1 Single-landmark LSE (SLSE)

The single-landmark LSE algorithm is based on the coordinates shown in

parallel to the robot moving trajectories. From each sampling point on a robot
trajectory, the bearings to the landmark are measured as αi (i = 0, 1, . . . , n),

the vector zi = (xi, yi)
T, the distances between each position, and z0, which

can be obtained from the readings of odometry, are noted as di = zi − z0 =
(xi − x0, y0)

T. It is easy to observe that:

tan(αi) = x0 + di

y0
(4.29)

Rewriting Equation (4.29), we have:

x0 cos(αi)− y0 sin(αi) = −di cos(αi) (4.30)

Row-by-row collecting all the equations for i = 1, . . . , n, we have over
determined equations which can be expressed as:

Az0 = b (4.31)

where

A =




cos(α1) − sin(α1)

cos(α2) − sin(α2)
...

...
cos(αn) − sin(αn)


 , z0 =

(
x0
y0

)
, b =



−d1 cos(α1)

−d2 cos(α2)
...

−dn cos(αn)




Using the Least Square method, we can estimate z as follows:

z0 = (ATA)−1ATb (4.32)

In this method, we adopt samples at the positions zi (i = 1, . . . , n) as the
reference sample (RS) to estimate the robot position z0.

4.4.3.2 Dual-landmark LSE (DLSE)

In this case, the coordinates are built on two landmarks. The original point is set
to one landmark and the x-axis point to the other one. The coordinate values of

© 2006 by Taylor & Francis Group, LLC

Figure 4.9a. The origin point is placed at the landmark, and the x-axis is set

by using the methods in Section 4.2. The position of each sample is noted in
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two landmarks are known as (0, 0) and (D, 0), where D is the distance between
two landmarks.

For each sampling point zi, both landmarks are measured as (α1i,α2i)
T, and

two equations will be generated:


tan(α1i) = x0 + dxi

y0 + dyi

tan(α2i) = x0 + dxi − D

y0 + dyi

(4.33)

where dxi and dyi are the displacement of the sampling points in two directions,
which are obtained from the readings of the odometer.

Rewriting Equation (4.33), and collecting the equations for each RS,
we have:

Az0 = b (4.34)

where

A =




cos(α11) − sin(α11)
...

...

cos(α1n) − sin(α1n)

cos(α21) − sin(α21)

...
...

cos(α2n) − sin(α2n)




, z0 =
(

x0
y0

)

b =




sin α11dy1 − dx1 cosα11
...

sin α1ndyn − dxn cosα1n

sin α21dy2 − (dx2 − D) cosα21

...

sin α2nd2− (dx2 − D) cosα2n




The position z0 can also be deduced from Equation (4.32).

4.4.4 Implementation and Results

The experiments are carried out using a “Logitech QuickCam” web camera
(1/4′′ CCD sensor, 4.9 mm lens). In our implementation, the mobile robot is
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FIGURE 4.10 Single landmark–based LSE.

moving along a straight line at different distances to the landmark that was
fixed on the wall. After landmark recognition, the robot’s position is calculated

Then LSE is implemented in two ways, namely batch processing and recurs-
ive processing. The experimental results for single landmark are presented
in Figure 4.10. In contrast, the experimental results for dual landmarks are

© 2006 by Taylor & Francis Group, LLC

presented in Figure 4.11.

through the triangulation method described in Section 4.2 [3,12,16].
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algorithm gave better localization results than the recursive filtering algorithm,
but it is not real time. Although the recursive filters have relatively large errors
(the left side of each line) at the beginning, the estimated results converge
rapidly when more data is available. The final result is therefore applicable in
a real-time system.
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FIGURE 4.11 Dual landmark–based LSE.
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As we can see from Figure 4.10a and Figure 4.11a, the batch filtering
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4.5 SICK LASER SCANNER AND GEOMETRIC LANDMARKS

Geometric landmarks are widely used for robot navigation, which are normally
static. Recently, Howard and his colleagues [25] proposed a new approach
by equipping their robots with geometric landmarks that are easily found and
movable within the environment. In their implementation, a large heterogeneous
team of robots was adopted, each of which carried a SICK scanner and two geo-
metric landmarks (cylinders). Motivated by their research, we have equipped
each of our robots with a SICK scanner and a cylinder so that colocalization
can be implemented.

Since indoor environments usually contain many straight lines, the detection
process is greatly aided if the landmark always has identical range signatures
regardless of relative position or orientation. This is the case for one shape only,
the circle. This characteristic aids detection but is not helpful when determin-
ing relative positions between two or more robots because rotational changes
cannot be perceived. Two distinguishable circles guarantee unique localization.
If the circles are indistinguishable then localization is one of the two places.
Figure 4.12 shows a typical mapping situation involving co-location. Two cyl-
inders A and B are shown; these cylinders could be individual robots or one
robot carrying two cylinders. The advantage of observing two robots is that
large separations may be used, leading to more accurate localization, however,
mounting both cylinders on one robot reduces the number of robots required,
the observer and the mobile landmark robot. Figure 4.12 presents a cooperative
localization and mapping scenario involving three robots R1, R2, and R3. R1 is
equipped with a laser scanner and the remaining robots are mobile landmarks.
The initial positions of R2 and R3 allow R1 to map the room on the left. Under
the observation of R1, at position A, R2 and R3 move across the corridor to the

B

C

A
A

R1
R1

R2

R3

R2

R3

FIGURE 4.12 Cooperative localization scenario involving three robots.
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second room where they adopt positions B and C. Now R1 can continue to D
using R2 and R3 as artificial landmarks and map the second room.

Once  the  relative  positions of the  companion  robots are  known, map  building
is possible. The main difficulty is achieving fast and reliable detection of circles
of known radius from noisy range data. The detection of shapes in images is
a large area of research within the computer vision community and contains
several relevant techniques such as the Hough Transform and least squares
fitting approaches.

4.5.1 Circular Hough Transform

The Hough Transform [25] has been highly successful in the vision community,
thanks to its tolerance of image noise and excellent straight-line detection. The
Hough Transform may be generalized to any geometric primitive. However, the
introduction of each new parameter adds another dimension to the Hough space.
The geometric increase in storage and processing required for the accumulator
grids have repercussions on performance. A typical high-resolution laser scan is

circular landmarks that are indicated with dashed lines. The standard Hough
Transform is particularly ineffective for circle extraction from laser range data
because of the uneven distribution of points in Cartesian space. The laser scanner
samples at regular intervals of θ resulting in an increased density of read-
ings from nearer objects. A nearby straight edge obstacle may be detected in
preference to the circles.

This is rectified by a Range Weighted Hough Transform (RWHT) as dis-
cussed in Reference 26. The weight function applied is a simple linear increase
from the origin of the scan. This linear increase negates the effect of the 1/r
fall in point density. The improvement is immediately apparent in Figure 4.13b
where the peaks of the circle centers can be distinguished from nearby walls.
As can be seen, the two highest peaks correspond to the circular landmarks.

Only a 2D Hough parameter space is required for the circle search because
the radii of the circles are known. The two parameters are the coordinates of the
candidate circle center. The confusion of straight lines with circles is a serious
problem that refuses to be resolved. A possible solution would be to first remove
all points corresponding to straight lines and then perform the circular Hough
Transform on the remaining points, however this is very time consuming. The

There are a number of reasons why the circular Hough Transform is not
particularly suited to this application. Range data are different from image data
for which the Hough Transform was first devised. Another problem is that it
always returns an answer even if the geometric primitive is not present in the
data. The determination of peak significance by comparison with others and
the kind of data expected requires a relatively complicated statistical analysis.

© 2006 by Taylor & Francis Group, LLC

given in Figure 4.13a which shows a relatively cluttered environment with two

process for Hough Transform circle detection is summarized in Figure 4.14.
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FIGURE 4.13 Circular Hough transform.

4.5.2 Least Squares Fitting of Circles

Poor performance of the Hough Transform approach prompted research into
least squares curve fitting approaches. It is evident from Reference 27 that fitting
circles to points is a nontrivial process, mainly because the resulting equations
are highly nonlinear and circles cannot be elegantly expressed in Cartesian
coordinate systems. No least squares algorithm suitable for range data could be
found, therefore one was devised.

One of the problems with the circular Hough Transform is that there is
much information specific to range scans that is not included in the search for
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FIGURE 4.14 Flowchart of the circular Hough transform detection process.

circles. One important property of circles is that they are highly symmetric and
so appear identical when viewed from any angle; this greatly eases the burden
of detection. Also, the range data has an inherent sequence that is not obvious in
Cartesian coordinates. Detection of a circle occurs when a sequence of adjacent
points lie close to the circumference of that circle. Relaxing the requirement
for the detection of occluded targets allows the following algorithm shown in

The algorithm assumes the center of the circular target is at the scan angle of
the current scan point being analyzed. The mean of the least squares differences
is then calculated by Equation (4.38) and Equation (4.39). Scan angles with this
quantity below a threshold (comparable to the accuracy of the laser scanner)
are likely contenders for having the center of the target circle situated along
them. Figure 4.15a illustrates the geometry involved with laser scan points
depicted by crosses. Point A is the current scan point being evaluated and the
circle represents the search target. The candidate circle for A is assumed to be
positioned with center C, as shown on the line OA where O is the origin of the
laser scan. Assuming the laser scan returns points evenly distributed over θ then
the number of nearest neighbors to be incorporated is determined. Points that
lie within an angle of AÔB from A are candidate points where

AÔB = arcsin
R

(R+ OA)
(4.35)

and R is the radius of the circular landmark.
Care has to be taken regarding scan points lying near D and B, which are

subject to glancing edge effects. The causes of these effects are specular reflec-
tion and pixel mixing which occurs when the laser spot spans an environmental

© 2006 by Taylor & Francis Group, LLC

Figure 4.15b.
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FIGURE 4.15 Least squares fitting of circles. (a) Geometric construction illustrating
the least squares method for circle location. (b) Flowchart of the least-squares circle
detection algorithm.

range discontinuity. The subset of laser range points processed is

S =
(

r1 r2 · · · rn

θ1 θ2 · · · θn

)
(4.36)

where r and θ are the polar coordinates of the scan points in the coordinate
system of the robot. The position of the hypothesis circle in polar coordinates is

(
Cr

Cθ

)
=
(

r n+1
2
+ R

θ n+1
2

)
(4.37)

The distance of the ith point from circle circumference is

di =
√

C2
r + r2

i − 2Crri cos(Cθ − θi)− R (4.38)
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FIGURE 4.16 Reciprocal root mean least squares differences of the laser scan in

Ultimately the mean least squares difference is calculated in the usual
fashion as

_2
d = 1

n

n∑
i=1

d2
i (4.39)

This indicates how far, on average, the points are from the circumference of the
hypothesis circle and the reciprocal is proportional to the likelihood of detection.
This is repeated for each point in the scan. The points that exceed a threshold
probability imply successful circle detection at that position. Figure 4.16 plots
the reciprocal root mean least square differences for the example laser scan

landmarks.
What is apparent from Figure 4.16 is the accurate detection and localiza-

tion of the two circular targets with the smaller of the two circle peaks being
nearly twice as big as the largest background peak. This ensures a super-
ior performance of 98% reliability vs. 50% for a RWHT. A comparison of
Figure 4.13b and Figure 4.16 emphasizes the effectiveness of the least squares
algorithm over the RWHT for reliable circular target extraction from laser
range data. The least squares algorithm takes advantage of range data spe-
cific characteristics like sequence and a single observation point. The more
generic RWHT does not utilize this extra information and so the least squares
method is not only 25 times more accurate but also faster and requires less
memory.
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Figure 4.13b.

in Figure 4.13b. Note that the two prominent peaks correspond to the circular
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FIGURE 4.17 Pose change calculation from two observations.

4.5.3 Cooperative Position Estimation

The two cylindrical targets are observed from two different poses and the obser-
vations superimposed. This is shown in Figure 4.17 with the second observation
cylinder positions indicated with an apostrophe, that is, A′ and B′. The pose
change consists of a rotation and translation. The rotation angle is the change in
angle of the line joining the two circles. Once the rotation of the robot between
the poses is known, the rotation effect can be reversed, that is, placing the cyl-
inders at the positions C and D, as shown in Figure 4.17. The change in position
or translation of the robot between observations is given by the difference in
position of the midpoints of CD and AB. Knowing the rotation θ and translation
T of the robot between successive scans, enables the amalgamation of scan data
to produce a global map. Scan data, L, is transformed point by point into the
coordinate frame of the global map, L′, by

L′i =
(

Tx

Ty

)
+
(

cos θ − sin θ
sin θ cos θ

)
Li (4.40)

Given that a robot can observe other stationary robots, how may it determine
changes in its pose? Changes in pose may be described as linear combinations of
two geometric transforms, translation and rotation. An important consideration
is if the observed robots are distinguishable; if they can be unambiguously iden-
tified then the determination of pose change between landmark observations is
trivial. The rotation is calculated from the change in angle of the lines joining
the landmarks, and the translation is the average displacement of each point to
its image point. If the landmarks are indistinguishable then it is not so straight-
forward because each point cannot be associated with absolute certainty to the
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same point in the subsequent sensor update. Problems also arise with symmetric
distributions of landmarks.

If the relative positional information of indistinguishable landmarks is avail-
able then three are sufficient to unambiguously determine pose. Initially two
would appear sufficient, however the ambiguity of identity means that land-
marks may be rotated 180◦. Even though only three asymmetrically distributed
indistinguishable landmarks are needed for unambiguous pose determination,
the fewer landmarks required, the better. Is it possible to have reliable pose
updates using only the relative positions of two landmarks? There are a number
of ways that this may be achieved. The simplest is to use distinguishable land-
marks, for instance circles of sufficiently different radii. If indistinguishable
landmarks have to be used then they may be placed in such a configuration
as localization is only required in one half plane. An example would be when
they are against a wall then the robot cannot be localized in the half plane
behind the wall and still be able to detect the landmarks. Use of odometry and
fast updates means that the large pose changes that would cause ambiguity
would never happen between updates or would be detected by the odometry
sensors.

4.5.4 Implementation and Results

The experimental platform is a Magellan Pro-robot equipped with a SICK LMS
200 laser range finder. The range finder has a scanning angle width of 180◦
and a resolution of 0.5◦. The laser range finder is almost an ideal sensor with
unrivalled accuracy, acquisition time, and range. The main problems are cost,
mass (4.5 kg), and power consumption (17.5 W). The characteristics of this
LMS are detailed in References 28 and 29.

Experiments were performed to test the localization accuracy delivered and
involved driving the robot along a straight line and in a square. The deviation
of the colocation positions from this straight line give an indication of the
localization error in the direction perpendicular to the line. This error depends
approximately linearly on the angular resolution of the laser scanner, the range
and separation of the geometric targets. The localization error was of the order
of 0.02 m at ranges of 0 to 8 m with the laser scanner operating at a resolution
of 0.25◦.

Error in the range to the targets introduces error into the position estimation

the range error. The origin O is the true position of the robot and O′ is its worst
case perceived position if the range to the target A is over estimated and that to
target B is underestimated. The error estimate is greatly simplified if a far field
approximation is used which implies

AB << OM (4.41)
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of the robot. Figure 4.18 illustrates the dependence of the pose uncertainty on
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FIGURE 4.18 Geometric construction used to calculate the localization error.

in this approximation the following similarities prove useful

sin θ ≈ tan θ ≈ θ (4.42)

for small angles of θ in radians. As OM = O′M then for the displacement of
O′ the angle of rotation is

OM̂O′ = arctan

(
2√
2

AA′

AB

)
≈ √2

AA′

AB
(4.43)

Note the
√

2 factor is due to the addition of the errors in quadrature. Finally the
position error can be expressed as

OO′ ≈ √2
AA′

AB
OM (4.44)

The far field approximation, expressed in Equation (4.41), falters if the targets
are near and for large target separations, however in these situations the error

position error σx on angular error σθ for the laser scanner is simply

σx ≈ OMσθ (4.45)

The angular error for the SICK LMS 200 is ca. 0.5◦ so at a range of 4 m the
position error due to angular error is around 0.03 m. Targets separated by 2 m
with radii 0.1225 m at a range of 4 m observed with a range error of 0.01 m
produced a position error of 0.03 m. This prediction is close enough to the error

© 2006 by Taylor & Francis Group, LLC

is minimal. It should also be clear from Figure 4.19 that the dependence of

observed at this range in Figure 4.20.
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FIGURE 4.20 Localization along square path (solid line indicates true path taken and
circles are the geometric targets used for localization).

A typical set of continuous localization results are displayed in Figure 4.20.
The robot was moved one loop around a 1.57 m square at 0.2 m/sec. The laser
scanner mounted on the robot has a maximum scan angle of 180◦ and so the
robot had to reverse along some edges of the square in order to maintain tracking.
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The target cylinders were located at (0, 1) and (−1, 0) because in these positions
they can always be observed by the 180◦ scanner, allowing continuous position

of the order of 0.03 m. The position accuracy is better toward the origin of the
graph because the robot is nearer to the target positions of (0, 1) and (−1, 0).

4.6 CONCLUSIONS

This chapter addresses the problem of landmarks and triangulation in naviga-
tion of mobile robots. A novel landmark-based navigation system is proposed,
which consists of three types of landmarks (retro-reflective, digital, and geo-
metric) and three types of sensors (laser, vision, and odometry), as well as sonar
sensors. Some corresponding navigation and triangulation algorithms have been
developed so that the robot is able to estimate its position and update its internal
map continuously in a dynamic environment.

To improve the localization accuracy for mobile robots in continuous opera-
tion, the EKF algorithm has been adopted in the navigation process to integrate
odometry data and angle observations from the laser scanner in order to provide
a useful solution toward real-world applications. A triangulation module is
embedded into the proposed architecture to re-calibrate the robot’s position
when the robot is stationary or gets lost. The experimental results are presented
to show its applicability.

A  digital landmark-based  localization  algorithm  for mobile  robots is demon-
strated, which uses a fast digits recognition method. The algorithm provides
an easy solution to landmark identification in complex environments, which
is robust to slope images. Some advantages of the algorithm are the flexible
extendibility of digital landmarks and the low computation cost of landmark
recognition. We are currently investigating the following four issues (i) other
information in the single landmark, for example, the edges of middle characters,
may be used; (ii) other data fusion methods to use pre-known position inform-
ation (from dead-reckoning or EKF); (iii) multiple landmarks may be seen in
some conditions, and triangulation methods may be used; and (iv) localization
algorithms based on texture landmarks.

The feasibility of cooperative localization based on one sensing robot and
two landmark robots is also investigated. It is implemented by a least squares
fitting approach optimized for the sequential natural of the range data and
the highly symmetric aspect of the circular geometric targets. This coloca-
tion scheme allows fast position and orientation determination with bounded
errors and reliability indicators in unknown indoor environments. The robust
localization algorithm lays the foundation for mapping featureless and highly
symmetric environments. Continuous localization was performed at 0.2 m/sec.
Continuous localization can be provided, however these scans should not be
incorporated into the global map, only the ones taken when stationary should

© 2006 by Taylor & Francis Group, LLC

updates. The localization error can easily be extracted from Figure 4.20 and is
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be used to improve the quality of the global map. Improvements in colocation
accuracy should be possible allowing either the extension of the range over
which cooperative localization is possible or reducing the separation of the
targets so that they may be mounted on one robot thus allowing cooperative
mapping with only two robots. These improvements in colocation accuracy
would primarily come from over-sampling the least squares fitting algorithm.

Although multiple sensors and multiple landmarks have been adopted in
the proposed navigation system, they have been independently investigated
and tested so far. A natural extension of future research is to investigate the
integration of three landmark-based navigation algorithms. Moreover, the pro-
posed navigation algorithms have potential applications for service robots in
homes, offices, and hospitals. It can also be used for outdoor beacon-based
navigation such as GPS navigation systems.
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II
Modeling and Control

For robotic systems that are embodied, situated and mobile, intelligent inter-
action with the environment and the successful operation in response to
higher-level commands is crucial before such systems can qualify as autonom-
ous and intelligent. This implies the ability of each robot to, at least, be capable
of controlling the equipped hardware so as to take the action that is required of
the robot, which ranges from moving between points, to changing the pose of
equipment like robotic grippers and manipulators. Effective control of a robot’s
hardware faculties, and making use of sensor feedback, is therefore extremely
important.

Due to Brockett’s theorem, it is well known that nonholonomic systems with
restricted mobility cannot be stabilized to a desired configuration (or posture)
via differentiable, or even continuous, pure-state feedback. Therefore, different
approaches have been proposed, which includes discontinuous, hybrid, and time
varying control laws. Many elegant control strategies have been proposed for
various nonholonomic systems. Among them, research results can generally be
classified into two classes. The first class is kinematic control, which provides
the solutions only on a pure kinematic level, where the systems are represented
by their kinematic models and velocity acts as the control input. One commonly
used approach for the controller design of nonholonomic systems is to convert,
with appropriate state and input transformations, the original systems into some

explores the use of discontinuous control laws for the kinematic control of
nonholonomic systems. The chapter also presents the design of a hybrid variable
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canonical forms for which the design can be carried out more easily. Chapter 5



FRANKL: “dk6033_c005” — 2006/3/31 — 16:42 — page 188 — #2

188 Autonomous Mobile Robots

and a switching strategy to guarantee robust stability of the closed loop system
in the presence of disturbances and measurement noise.

The second class of results on the control of nonholonomic systems is
dynamic control, where the torque and force are taken as the control inputs. Both
trajectory tracking and force control are manageable for a constrained robot if
the exact robot dynamic model is available for controller design. In real applica-
tions, however, perfect cancellation of the robot dynamics is almost impossible.
As such, adaptive control was proposed to deal with parameter uncertain-
ties. Approximator-based adaptive control approaches have been extensively
studied in the past decade using Lyapunov analysis for general nonlinear sys-
tems. Motivated by previous works on the control of nonholonomic constrained
mechanical systems and the approximation-based adaptive control of nonlinear

the control of nonholonomic constrained systems using the Lyapunov stability
analysis in a unified procedure.

In addition, we should note that actuator dynamics constitute an import-
ant component of the complete robotic dynamics, especially in the case of
high-velocity movement and highly varying loads. Many control methods have
therefore been developed to take into account the effects of actuator dynamics.
However, very few works in literature have considered the control of nonholo-

stabilization problem for general nonholonomic mechanical systems at the actu-
ator level, taking into account the uncertainties in dynamics and the actuators.
The controller design consists of two stages. In the first stage, to facilitate con-
trol system design, the nonholonomic kinematic subsystem is transformed into
a skew-symmetric form and the properties of the overall systems are discussed.
Then, a virtual adaptive controller is presented to compensate for the parametric
uncertainties of the kinematic and dynamic subsystems. In the second stage, an
adaptive controller is designed at the actuator level and the controller guarantees
that the configuration state of the system converges to the origin.

The last chapter of this part of the book considers the control of nonholo-
nomic (specifically, car-like) robots for vehicle following. This is an important
aspect of advanced autonomous mobile robot systems in which robots may
very likely outnumber human operators. The nonholonomic nature of car-
like mobile robot motion imposes intrinsic difficulties in control design. This
chapter, hence, presents a unified control design for tracking maneuvers of two
car-like mobile robots. The vehicle tracking maneuvers are formulated into an
integrated framework, with forward tracking, backward tracking, driving, and
steering, at the kinematics and dynamics levels. A nonlinear controller with a
few design parameters is designed for maneuvers with simultaneous driving and
steering for vehicle tracking — in both forward tracking and backward track-
ing maneuvers. Tracking stability is ensured by the proper design of a stable

© 2006 by Taylor & Francis Group, LLC

systems, the adaptive neuro-fuzzy (NF) control is developed in Chapter 6 for

nomic systems with actuator dynamics. To address this, Chapter 7 considers the
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performance target dynamics with a set of sufficient conditions for selecting
design parameters.

Together with the effective use of sensors, effective control of the con-
figuration of the robots’ hardware forms the basic and necessary capabilities
that bring mobile robotic systems closer to autonomy. The possession of the
sensing and control capabilities presented in the first two parts of the book is
indispensable for autonomous mobile robots, and will fuse with higher level
decision-making mechanisms, which focus on more abstract cognitive planning
abilities, to bring forth truly autonomous and intelligent systems.
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5.1 INTRODUCTION

In this chapter we study the stabilization problem for nonholonomic systems.
Nonholonomic control systems are becoming increasingly important in

research and industry as they present many interesting features and potenti-
alities. From the researchers’ point of view nonholonomic control systems are
a prototype of strongly nonlinear systems, requiring a fully nonlinear analysis,
since all first approximation methods are inadequate. Thus, the design of a good
control law for a given nonholonomic system is a challenging task. On the other
hand, from an industrial point of view, nonholonomic systems are extremely
appealing for their efficiency and flexibility. They can be used as means of
transport, inspection, and operation in free space and hostile environments.

Before moving to the technical discussion, it is worth pointing out why we
deal with nonholonomic control systems and why we focus on noncontinuous,
hybrid, or time-varying stabilizers. A possible answer to the first question can
be found in the words of D. Edelen [1]: “Real problems in the real world rarely
exhibit themselves in those pleasant forms wherein one can model them in terms
of systems with holonomic constraints. […] The second law of thermodynamics
tells us that such holonomic representations must ultimately degenerate from
the domain of the real into ethereal flights of fancy.”

A more practical answer comes from everyday life. Consider the problem
of parking a car, we can only drive forward or backward and steer to the left or
to the right. Observe a falling cat, an astronaut, a gymnast, or a diver: they can
change configuration requiring no contact with fixed objects. These examples
seem to be weakly related but, from a mathematical point of view, they are all
examples of nonholonomic control problems.

Consider now the second question. In the earlier examples an experienced
operator is able to perform the proper succession of operations in order to drive
a nonholonomic system from an initial configuration to a final one. However,
when the ability of the operator is not enough or when we desire to automatic-
ally reconfigure a nonholonomic system, it is necessary to design a regulator.
Hence the birth of the theory of nonholonomic control or nonholonomic motion
planning. Unfortunately, one of the first results of such a theory was a negative
one [2]: there exists no continuously differentiable, time invariant, control law
able to asymptotically stabilize a controllable nonholonomic system. There-
fore, many researchers have proposed and studied discontinuous, hybrid, or
time varying control laws.

We now briefly review some of the existing results on the control of non-

strategies for nonholonomic systems can be divided into two main groups:
open loop strategies and closed loop (feedback) strategies. In the latter group
we can further distinguish between continuous and discontinuous control laws.1

1 A third possible approach is the one based upon sampled-data control laws.
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holonomic systems (see References 3 and 4 for further detail). The control
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In open loop strategies (see e.g., [5–7]) the control signal is calculated
off-line starting from the knowledge of the initial and the final configurations
of the system. By their own nature, these strategies are not able to compensate
for disturbances and model errors, therefore, in practise, the reached config-
uration may differ significantly from the desired final one. Nevertheless, it is
possible to include open loop strategies in an iterative design method, which
possesses some robustness properties. This approach is known as iterative state
steering [8].

21] for discontinuous ones, [12,22,23] for middle strategies [discontinuous and
time varying], [24,25] for hybrid control laws, and [26–28] for multi-rate meth-
ods) the control signal is computed online, based on the knowledge of the actual
configuration of the system and of the final one. They can potentially com-
pensate for model errors and disturbances. However, the result of Reference 29
states that there does not exist a continuous homogeneous controller that
robustly stabilizes nonholonomic systems against modeling uncertainties. This
has motivated further research in this direction. Many researchers have been

find special instances in which a continuous feedback can yield robust stability

From the very brief discussion above it is apparent that several tools are
available for the control of nonholonomic systems. However, to date, it is not
possible to single-out a control strategy (or a set of tools) that performs better
than the other ones. This is mainly due to the following facts. A good control
law should have two basic features. First, it should drive the system from its
initial state to the final one in a simple way, second it should be robust against
model mismatches, noisy measurements, and the approximate knowledge of
initial conditions. Open loop strategies are generally able to grant the first item,
but nothing can be said on their robustness, although they can be exploited in
robust iterative designs. On the other hand, closed loop strategies are potentially
more robust, but the dynamics of the closed loop system may not be natural. In
particular the closed loop system may show oscillatory response, which is not
at all necessary or required to reach the desired final configuration. Note finally
that closed loop strategies are potentially more robust than open loop ones.
However, we will show that the robust stabilization problem for nonholonomic
systems has very special properties, and it is intrinsically hard.

5.2 PRELIMINARIES AND DEFINITIONS

In this chapter, we discuss the problem of designing stabilizing control laws for
nonholonomic systems described by equations of the form

ẋ = g(x)u (5.1)

© 2006 by Taylor & Francis Group, LLC

trying to solve this problem using discontinuous feedback (see [8,30–33]), or to

In closed loop strategies (see e.g., [9–16] for time-varying feedbacks, [17–

(see e.g., [34]).
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with x ∈ U ⊂ Rn, u ∈ Rm, and m < n. Despite its simple formulation this
problem does not possess a simple solution, as can be inferred from the Theorem
of Brockett [2]. This theorem, yielding necessary conditions for smooth sta-
bilizability for general nonlinear systems, provides necessary and sufficient
conditions for feedback stabilizability of nonholonomic systems.

Theorem 5.1 [2] Let q̇ = g(q)u be given, with q ∈ Rn, u ∈ Rm, g(q0)u0 =
0, g(·) continuously differentiable in a neighborhood of q0. Assume, moreover,
that span{g(q)} is a nonsingular distribution of dimension m in a neighborhood
of q0. Then:

1. There exists a continuously differentiable control law which makes
(q0, u0) asymptotically stable iff m ≥ n.

2. There exists a continuously differentiable and dynamic feedback law
which makes2 (q0, ξ0, u0) asymptotically stable iff m ≥ n.

The first part of Theorem 5.1 is due to Brockett [2], while the second

the framework of nonsmooth stabilizability). We will not present the proof of
the above theorem, which can be found in the literature [2,10,36]; we simply
mention that the provided obstruction to stabilizability has a topological nature.
The essence of Theorem 5.1 is that the only interesting nonholonomic systems
are those for which the distribution g(q) drops dimension precisely at q0, is
not continuously differentiable at q0, or is not defined at q0. In such cases
we cannot infer anything about the existence of C1 (smooth), time invariant,
static or dynamic, asymptotically stabilizing control laws. Motivated by the
conclusions of Brockett’s Theorem we focus on:

• State feedback control laws described by equations of the form

u = a(x) (5.2)

where α : Rn → R
m is a discontinuous function of its arguments.

• State feedback, hybrid, control laws described by equations of
the form

u = k(x, sd), sd = kd(x, s̄d) (5.3)

2 ξ denotes the state of the dynamic controller.
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one to Pomet [10] (see also the work of Ryan [35] for a more general result in
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where sd evolves in the finite set3 {1, 2}, k : Rn × {1, 2} → R
m is

continuous in x for each fixed sd ; kd : Rn × {1, 2} → {1, 2}, and s̄d
is defined as s̄d(t) = lims<t sd(s);
• Time varying, state feedback, sampled-data, control laws described

by equations of the form

u = uT (x(kT), kT) (5.4)

where T > 0 is the sampling time, and uT : Rn × R → R
m is a

continuous function of its arguments.

Remark 5.1 Whenever we deal with discontinuous control laws, functions
which are not defined at some points, for example, are unbounded at x = 0,
are allowed. In particular the term discontinuous will be used throughout this
chapter to denote functions which are unbounded, hence undefined, in a certain
set; for example, the function 1

x is discontinuous at x = 0.

The purpose of the control law is to guarantee that each initial state in a given
set converges asymptotically to the origin. However, as we use different control
laws, we will need different definitions of stability.

Definition 5.1 [20] A control law described by equations of the form (5.2)
almost stabilizes4 the system (5.1) in the region �0

5 if the following holds:

(i) For all initial states x0 ∈ �0 the closed loop system admits a unique
(forward) solution

(ii) For all initial states x0 ∈ �0 one has, along the trajectories of the
closed loop system, limt→∞ ‖x(t)‖ = 0

Moreover, the control law almost exponentially stabilizes the system (5.1)
in the region �0 if in addition

(iii) There exist positive constant c0 and λ0 such that for all initial states
x0 ∈ �0 and for all t ≥ 0 one has, along the trajectories of the
closed loop system, ‖x(t)‖ ≤ c0 exp−λ0t

Hybrid and sampled-data control laws are discussed in relation with robust
stabilization problems. To discuss the properties of hybrid control laws we need
to introduce a notion of robustness with respect to small noise. To this end,

3 For this controller to make sense we equip {1, 2} with the discrete topology, that is, every set is
an open set.
4 This terminology differs from that introduced in Reference 37. Note also that stability has to be
understood as Lagrange stability.
5 The set �0 does not need to be a neighborhood of the origin, but may be an open and dense set
with the origin at its boundary.
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consider two functions e and d satisfying the following regularity assumptions:
e and d are in L∞loc(R

n × [0,+∞); Rn), and are continuous in x for each t. We
introduce6 these functions as a measurement noise e and an external noise d
and define the perturbed system with u given by Equation (5.3), that is,

ẋ = g(x)k(x + e(x, t), sd(t))+ d(x, t)

sd = kd(x + e(x, t), s̄d)
(5.5)

In this context the definition of global exponential stability is as follows.

Definition 5.2 [32] Let e and d be two functions satisfying our standing
regularity assumptions. The origin of the system (5.5) is said to be a globally
exponentially stable equilibrium on Rn if the following two properties hold:7

(i) For every (x0, s0) ∈ Rn × {1, 2}, there exists a solution of (5.5)
starting from (x0, s0). Moreover all maximal solutions of (5.5) are
defined on [0,+∞).

(ii) There exists δ of class K∞ and C > 0 such that, for all r > 0 and
for all (x0, s0) ∈ Rn × {1, 2} with |x0| ≤ δ(r) and for all maximal
solutions (X , Sd) of (5.5) starting from (x0, s0), one has

|X(t)| ≤ re−Ct , ∀t ≥ 0 (5.6)

Finally, we characterize robustly stabilizing controllers.8

Definition 5.3 [32] The controller (k, kd) is a robustly globally exponentially
stabilizing controller if there exists a continuous function ρ : Rn → R such that
ρ(x) > 0, for all x �= 0, and such that for any two functions e and d satisfying
our standing regularity assumptions and

sup
R≥0

|e(x, ·)| ≤ ρ(x), ess supR≥0
|d(x, ·)| ≤ ρ(x) (5.7)

for all x ∈ Rn, the origin of (5.5) is a globally exponentially stable equilibrium
on Rn.

6 Using similar arguments we could also consider an actuator noise.
7 A function γ : R≥0 → R≥0 is of class K if it is continuous, strictly increasing, and zero at zero.
It is of classK∞, if it is of classK and unbounded. A continuous function β : R≥0×R≥0 → R≥0
is of classKL if β(·, τ) is of classK for each τ ≥ 0 and β(s, ·) is decreasing to zero for each s > 0:
8 Note that our notion of robust stability is closely related to the classical notion of Input-to-State
stability [38].
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To discuss generalized sampled-data control laws, consider the perturbed
model

ẋ = g(x)u(x, t)+ d(x, t) (5.8)

where d ∈ Rm is a disturbance. Assume the system is between a sampler
and zero-order hold. Then it is possible to define a parameterized family9 of
discrete-time models of (5.8) described by

x(k + 1) = FT (k, x(k), u(k), d(k)) (5.9)

where the free parameter T > 0 is the sampling period, and x(k) =
x(kT), u(k) = u(kT), and d(k) = d(kT). If we use the approximate model
(5.9) to design a discrete-time controller we obtain a discrete-time controller
uT (x(k), k) that is also parameterized by T . Consider now the resulting closed
loop system, namely

x(k + 1) = FT (k, x(k), uT (x(k), k), d(k)) (5.10)

Definition 5.4 [39] The family of systems (5.10) is semiglobally practically
input-to-state stable (SP-ISS) if there exist β ∈ KL and γ ∈ K, such that for
any strictly positive real numbers �x ,�d , δ there exists T∗ > 0 such that the
solutions of the closed loop system satisfy

|x(k, ko, xo, d)| ≤ β(|xo|, (k − ko))+ γ (‖d‖∞)+ δ (5.11)

for all k ≥ ko, T ∈ (0, T∗), |xo| ≤ �x, and ‖d‖∞ ≤ �d. Moreover, if d = 0,
and the above holds, the system is semiglobally practically asymptotically stable
(SP-AS) and uT is called a SP-AS controller.

We stress that, in practice, when designing a discrete-time controller for a
continuous-time plant the final goal is to achieve stabilization for the sampled-
data system. It is therefore important to note that, as discussed in References 40
and 42, SP-ISS (SP-AS) of the discrete time closed-loop systems implies, under
the considered assumptions, SP-ISS (SP-AS) of the sampled-data controlled
systems.

5.3 DISCONTINUOUS STABILIZATION

Discontinuous, time invariant, control laws have been dealt with in several

9 The approximate model, to be useful for control design, has to satisfy the so-called one-step
consistency property [40,41].
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starting point is completely different. First of all we show that, under some
technical assumptions, a nonholonomic system admits a smooth stabilizer only
if a subset of the differential equations describing the system are not defined
on a certain hyperplane passing through the origin of the coordinates system.
Hence, we focus on such a class of systems and we give sufficient conditions for
the existence of stabilizing control laws. Finally, we show that any smooth non-
holonomic system can be always transformed into a system which is not defined
on a certain hyperplane, say P , passing through the origin of the coordinates

procedure to design discontinuous almost asymptotically stabilizers for non-
holonomic control systems. Such a procedure yields a control law which is not
defined on P; hence the closed loop system is not defined on P . However, we
will prove that every initial condition which lies outside P yields trajectories
which converge asymptotically to the origin.

5.3.1 Stabilization of Discontinuous Nonholonomic
Systems

In this section we discuss the issue of smooth asymptotic stabilizability for
systems described by equations of the form (5.1) with x ∈ Rn and u ∈ Rm+p.
We exploit a few basic facts from geometric control theory, as presented in
Reference 44. Note however that proper care has to be taken as we deal with
discontinuous functions.

Lemma 5.1 [20] Consider the system

ẋ1 = g11(x1, x2)u1

ẋ2 = g21(x1, x2)u1 + g22(x1, x2)u2
(5.12)

with x1 ∈ R
p, x2 ∈ R

n−p, x = col(x1, x2) ∈ R
n, u1 ∈ R

p, u2 ∈ R
m,

u = col(u1, u2) ∈ Rm+p, and m + p < n (gij(x1, x2) are matrix functions of
appropriate dimensions). Assume that the matrix function g21(x1, x2) is smooth
in an open and dense set U, that the matrix functions g11(x1, x2) and g22(x1, x2)

are smooth in Ū,10 and that the distribution

G = span{g1(x1, x2), . . . , gm+p(x1, x2)}
10 Let U be an open and dense set. We denote with Ū the smallest simply connected open set
properly containing U.
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where gi(x1, x2) denotes the ith column of the matrix

g(x1, x2) =
[

g11(x1, x2) 0
g21(x1, x2) g22(x1, x2)

]

is nonsingular in Ū. Finally, assume, without lack of generality, that the set Ū
contains the origin of Rn.

Then the following holds:

1. Set u1 = u1(x1, x2) with

u1(0, x2) = 0 (5.13)

for all x2. Then, for every u2, the n− p-dimensional manifoldM =
{x ∈ Ū: x1 = 0} is invariant for the system

ẋ1 = g11(x1, x2)u1(x1, x2)

ẋ2 = g21(x1, x2)u1(x1, x2)+ g22(x1, x2)u2
(5.14)

2. If the matrix function g11(x1, x2) has constant rank equal to p in Ū
and there exists a smooth scalar function φ(x1) such that the matrix
function φ(x1)g21(x1, x2) is smooth in Ū, then the n−p-dimensional
distribution

� = span

{[
0p×(n−p)

In−p

]}

is controlled invariant.11

Remark 5.2 As discussed in Reference 17, under mild hypotheses and with
a proper choice of coordinates, it is always possible to write the kinematic
equations of a nonholonomic system with equations having the form (5.12), with

g11(x1, x2) = Ip, g21(x1, x2) =
[

0
∗(x1, x2)

]
, g22(x1, x2) =

[
Im

∗(x1, x2)

]

This form is known as normal form [17].

Lemma 5.l is instrumental to yield a necessary condition and a certain
number of sufficient conditions for asymptotic stabilizability of nonholonomic
systems described by equations of the form (5.12).

11 0p×(n−p) denotes the zero matrix of dimensions p× (n− p) and Is denotes the identity matrix
of dimension s.
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Theorem 5.2 [20] Consider a system described by equations of the form
(5.12). Let Ū be a neighborhood of the origin. Assume there exists a smooth
control law

u = u(x1, x2) =
[

u1(x1, x2)

u2(x1, x2)

]

defined on Ū, which locally asymptotically stabilizes the resulting closed loop
system. Moreover, assume that:

(i) The control u1(x1, x2) satisfies the condition (5.13)
(ii) The vector field g21(x1, x2)u1(x1, x2) is a smooth n−p-dimensional

vector field defined in Ū
(iii) The matrix functions g11(x1, x2) and g22(x1, x2) are smooth in Ū.

Then there exists a smooth matrix function ga(x1, x2), defined on Ū, such that
ga(0, x2) �= 0(n−p)×p, and a smooth scalar function gb(x1, x2), defined on Ū,
such that gb(0, x2) = 0, having the property that

g21(x1, x2) = ga(x1, x2)

gb(x1, x2)
(5.15)

that is, the matrix function g21(x1, x2) is not defined for x1 = 0.

Remark 5.3 Strictly speaking, it is not correct to discuss the asymptotic
stability of the origin for a system described by equations of the form (5.12)
with g21(x1, x2) fulfilling condition (5.15), as such a system is not defined at
the origin. Hence, the origin is not an equilibrium. However, it is possible to
overcome this problem using the following definition of asymptotic stability. We
say that a smooth control law locally (globally) asymptotically stabilizes system
(5.12) if the closed loop system is smooth in a neighborhood of the origin (inRn)
and the origin is a locally (globally) asymptotically stable equilibrium of the
closed loop system. For example, the system ẋ = 1

x u is globally asymptotically
stabilized by the smooth control u = −x2.

We now discuss sufficient conditions for asymptotic stabilizability of
systems described by equations of the form (5.12).

Theorem 5.3 [20] Consider the system (5.12) defined in an open and dense
set U, such that Ū contains the point x = 0. Consider the following hold.

(i) The matrix functions g11(x1, x2) and g22(x1, x2) are smooth in Ū.
(ii) The matrix function g21(x1, x2) is smooth in U.
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(iii) The matrix function g22(x1, x2) depends on x2 only, that is,
g22(x1, x2) = ḡ22(x2) for some function ḡ22(·).

(iv) There exists a smooth vector function u1(x1, x2), zero for x1 = 0
and for all x2, that is, u1(0, x2) = 0, such that

−∞ < x′1Xg11(x1, x2)u1(x1, x2) < 0

for some positive definite matrix X and for all nonzero x1 in Ū.
Moreover g21(x1, x2)u1(x1, x2) is smooth in Ū and it is a function
of x2 only, that is, g21(x1, x2)u1(x1, x2) = f̄2(x2), for some function
f̄2(·) such that f̄2(0) = 0.

(v) There exists a smooth function u2(x2) that renders the equilibrium
x2 = 0 of the system

ẋ2 = f̄2(x2)+ ḡ22(x2)u2(x2)

locally asymptotically stable.

Then, the smooth control law

u = u(x1, x2) =
[

u1(x1, x2)

u2(x2)

]

locally asymptotically stabilizes the system (5.12).

As should be clear from Theorem 5.3, the possibility of rendering the
manifold x1 = 0 invariant for the closed loop system, allows the asymptotic
stabilization problem to be solved in two successive steps. Hypothesis (iv)
determines the component u1 of the control law; whereas the component u2
must be chosen to fulfill hypothesis (v). Observe that the choice of u1 is crucial,
as the existence of a smooth function u2(x2) fulfilling hypothesis (v) depends
on such a choice. The hypotheses of Theorem 5.3 may be easily strengthened
to obtain a global result.

Theorem 5.4 Consider the system (5.12) defined in an open and dense set
U, such that Ū = Rn. Suppose (i), (ii), (iii), and (iv) of Theorem 5.3 hold.
Moreover, suppose that the following holds:

(v)′ There exists a smooth function u2(x2)which renders the equilibrium
x2 = 0 of the system

ẋ2 = f̄2(x2)+ ḡ22(x2)u2(x2)

globally asymptotically stable.
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Then the smooth control law

u = u(x1, x2) =
[

u1(x1, x2)

u2(x2)

]

globally asymptotically stabilizes the system (5.12).

Example 5.1 The following simple example illustrates the obtained results.
Consider the system

ẋ1 = (x2
1 + x2

2)u1

ẋ2 = −x2

x1
u1 + u2

defined on U = {x ∈ R2|x1 = 0} and fulfilling hypotheses (i), (ii), and (iii)
of Theorem 5.4. Setting u1 = −x1 we fulfill also (iv) and (v). Hence, simple
calculations show that the smooth (linear) control law

u =
[ −x1
−2x2

]

yields a globally asymptotically stable closed loop system.

Before  concluding  this section  we  discuss another extension  of Theorem 5.3.

Theorem 5.5 [20] Consider the system (5.12) defined in an open and dense
set U, such that Ū contains the point x = 0. Suppose (i), (ii), and (iii) of
Theorem 5.3 hold. Suppose, moreover, that the following holds:

(iv)′′ There exists a smooth vector function u1(x1, x2), zero for x1 = 0,
and for all x2, that is, u1(0, x2) = 0, such that

−∞ < x′1Xg11(x1, x2)u1(x1, x2) < −x′1Qx1

for some positive definite matrices X and Q and for all nonzero
x1 in Ū. Moreover g21(x1, x2)u1(x1, x2) is smooth in Ū and it is
a function of x2 only, that is, g21(x1, x2)u1(x1, x2) = f̄2(x2), for
some function f̄2(·) such that f̄2(0) = 0.

(v)′′ There exists a smooth function u2(x2) which renders the equilib-
rium x2 = 0 of the system

ẋ2 = f̄2(x2)+ ḡ22(x2)u2(x2)

locally exponentially stable.
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(v)′′ Then the smooth control law

u = u(x1, x2) =
[

u1(x1, x2)

u2(x2)

]

locally exponentially stabilizes the system (5.12).

The hypotheses of Theorems 5.3, 5.4, and 5.5 seem very restrictive.
However, it is possible to transform several smooth nonholonomic systems
in such a way that the aforementioned hypotheses are automatically fulfilled.

5.3.2 The σ Process

In this section we discuss the use of nonsmooth coordinates changes to trans-
form continuous systems into discontinuous ones. We consider a choice of
coordinates system in which, to a small displacement near a fixed point, there
corresponds a great change in coordinates. The polar coordinates system pos-
sesses such a property; however the cartesian to polar transformation requires
transcendental functions; therefore, when not needed, we avoid using the polar

where the σ process is used to resolve singularities of vector fields).
Mainly, the σ process consists of a nonsmooth rational transformation, but,

with abuse of notation, we denote with the term σ process every nonsmooth
coordinates transformation possessing the property of increasing the resolution
around a given point.

Example 5.2 Consider the two dimensional system with one control

ẋ = g1(x, y)u, ẏ = g2(x, y)u

and perform the coordinates transformation

[
z
w

]
= �(x, y) =

[
x

y/x

]

The resulting system is

ż = g1(z, zw)u, ẇ = g2(z, zw)− wg1(z, zw)

z
u (5.16)
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and it is discontinuous if one of the gi(z, zw) is such that gi(0, 0) �= 0. If the
system (5.16) is not discontinuous we can further transform it with a second σ
process.12

5.3.3 The Issue of Asymptotic Stability

Theorems 5.3, 5.4, and 5.5 yield sufficient conditions for stabilizability of
discontinuous nonholonomic systems, while the σ process allows to map a
continuously differentiable system into a discontinuous one. To have a practic-
ally useful result, we have to show that asymptotic stability of the transformed
(discontinuous) system implies almost asymptotic stability of the original
(continuously differentiable) system. Moreover, to implement a discontinuous
control we must define it on the points of singularity.

Consider a continuously differentiable nonholonomic system described
by equations of the form (5.1). Set x = col(x1, x2) with x1 ∈ R and
x2 = col(x21, . . . , x2,n−1) ∈ Rn−1 and define the σ process13

ξ =
[
ξ1
ξ2

]
=
[

x1
σ(x1, x2)

]
(5.17)

where ξ2 = col(ξ21, . . . , ξ2,n−1), σ(x1, x2) = col(σ1(x1, x2), . . . , σn−1(x1, x2)),
and σi(x1, x2) = xαi

2i /x
βi
1 with αi ≥ 1 and βi ≥ 0, for all i = 1, . . . , n − 1.

The application of the σ process (5.17) to the system (5.1) yields a new system
which is, in general, not defined for ξ1 = 0. Suppose now that the transformed
system, with state ξ , is exponentially stabilized by a control law u = u(ξ),
that is, |ξ1(t)| ≤ c1 exp(−λ1t) and |ξ2i(t)| ≤ c2i exp(−λ2it) for some positive
λ1, λ2i, c1, and c2i and for all i = 1, . . . , n − 1. Then |x1(t)| ≤ c1 exp−λ1t and
|x2i(t)| ≤ (c1c2)

1/αi exp(−λ1β1+λ2i
αi

t) for all i = 1, . . . , n − 1. We conclude
that exponential convergence to zero of the state ξ of the transformed system
implies exponential convergence to zero of the state x of the original system.

Remark 5.4 The previous conclusions also remain valid if the stabilizer is
dynamic. This fact is useful to design dynamic, output feedback, discontinuous
stabilizers for nonholonomic systems [46].

Remark 5.5 Asymptotic stability of the system with state ξ does not imply
asymptotic stability of the system with state x, as the inverse of the coordinates
transformation (5.17) does not map neighborhood of ξ = 0 into neighborhood

sense of Lyapunov) of the closed loop system with state ξ implies only almost
exponential stability of the closed loop system with state x.

12 Note that the composition of σ processes yields a σ process.
13 The coordinates transformation (5.17) defines a σ process only if �iβi ≥ 1.
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x1
ξ1

x2 ξ2

FIGURE 5.1 The anti-σ process x1 = ξ1, x2 = ξ1ξ2 does not map the ball ξ2
1 +ξ2

2 = R2

into a neighborhood of the origin in the x1x2-plane.

The continuously differentiate control law which stabilizes a given
discontinuous nonholonomic system needs to be transformed back to the ori-
ginal coordinates via inversion of the σ process (in Reference 45 such procedure
is denoted anti-σ process). Note that the anti-σ process yields a discontinuous
control law

u(ξ1, ξ21, . . . , ξ2,n−1)
anti-σ−→ u

(
x1,

xα1
21

xβ1
1

, . . . ,
xαn−1

2,n−1

xβn−1
1

)

Such a control law cannot be directly implemented, because it is not defined
at x1 = 0. Nevertheless, it is implementable provided that some conditions are
fulfilled.

Theorem 5.6 [20] Consider a smooth nonholonomic system

ẋ = g(x)u (5.18)

with x ∈ Rn, u ∈ Rm, and n > m. Assume that x1(0) �= 0. Apply the σ
process (5.17) and suppose there exists a continuously differentiable control
law u = u(ξ) globally exponentially stabilizing the transformed system, that
is, |ξ1(t)| ≤ c1 exp−λ1t and |ξ2i(t)| ≤ c2i exp−λ2i t , for some positive λ1, λ2i, c1,
and c2i and for all i = 1, . . . , n− 1. Assume moreover that there exist positive
constants c0 ≤ c1 and λ0 ≥ λ1 such that14 c0 exp−λ0t ≤ |ξt(t)|. Assume
finally that

βi ≥ 0 (5.19)

14 This implies that the state ξ1 does not converge to zero in finite time.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c005” — 2006/3/31 — 16:42 — page 206 — #20

206 Autonomous Mobile Robots

for all i = 1, . . . , n − 1. Then for every ε > 0 there exists a δ > 0 (depending
on ε) satisfying δ � c0 ≤ |x1(0)| = |ξ1(0)| ≤ c1, such that the trajectories of
the system in closed loop with the C0 control law

u =

u

(
x1,

x
α1
21

x
β1
1

, . . . ,
x
αn−1
2,n−1

x
βn−1
1

)
if |x1| > δ

0 elsewhere
(5.20)

converge to the set �ε = {x ∈ Rn|‖x‖ ≤ ε} in some finite time T∗ and remain
therein for all t ≥ T∗.

At this point the reader may argue whether it is possible or not to let δ go
to zero, that is, what we can conclude about the (discontinuous) control law

u =

u

(
x1,

x
α1
21

x
β1
1

, . . . ,
x
αn−1
2,n−1

x
βn−1
1

)
if x1 �= 0

0p×1 if x1 = 0
(5.21)

Observe that the control law (5.21) is discontinuous at x1 = 0 as a function of
x, but it is continuous as a function of t, since x1(t) = 0 only asymptotically
(if x1(0) �= 0, which is without lack of generality). Moreover, by hypothesis,
the variables ξ2i = xαi

2i /x
βi
1 tend to zero when t goes to infinity. Thus

lim
t→∞ u

(
x1(t),

xα1
21(t)

xβ1
1 (t)

, . . . ,
xαn−1

2,n−1(t)

xβn−1
1 (t)

)
= u(0, 0, . . . , 0) = 0

As a consequence, the control law (5.21) is well defined and bounded,
along the trajectories of the closed loop system, for all t ≥ 0 and, viewed
as a function of time, is even continuous (i.e., it is at least C0) as t
goes to infinity. Finally, using Theorem 5.6, with δ = 0, and assuming
that the conditions (5.19) hold, we conclude that the control law (5.21)
almost exponentially stabilizes the system (5.18) on the open and dense set
� = {x ∈ Rn|x1 �= 0}.

Remark 5.6 The assumption x1(0) �= 0 is without lack of generality,
as it is always possible to apply preventively an open loop control, for
example, a constant control, driving the system away from the hyperplane
x1 = 0 [32,33,47].

Remark 5.7 By a general property of one dimensional dynamical systems,
we conclude that the state variable x1 = ξ1 evolving from a nonzero initial
condition approaches the equilibrium x1 = 0 without ever crossing it, that is,
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there exists no finite time T such that x1(T) = 0. Thus, the singular plane
x1 = 0 is never crossed, but is just approached asymptotically. Moreover, every
trajectory starting in �+ = {x ∈ Rn|x1 > 0} (�− = {x ∈ Rn|x1 < 0})
remains in �+(�−) for every finite t and approaches the border of �+(�−)
as t goes to infinity.

5.3.4 An Algorithm to Design Almost Stabilizers

In this section we propose a procedure to design discontinuous control laws for
smooth nonholonomic systems described by equations of the form (5.12). The
procedure is composed of the following steps.

(I) Transform a given smooth nonholonomic system, by means of a
σ process, into a discontinuous system.

(II) Check if the discontinuous system admits a smooth control law
yielding asymptotic stability. In case of positive answer proceed
to step III, otherwise return to step I and use a different σ process.

(III) Build a smooth stabilizer for the transformed system.
(IV) Apply the anti-σ process to the obtained stabilizer to build a

discontinuous control law for the original system.

The crucial points of the algorithm are the selection of the σ process (step I)
and the design of the smooth asymptotically stabilizing control law for the
transformed system (step III). In particular, step III can be easily solved for
low dimensional systems; whereas there is no constructive or systematic way
to perform step I successfully; that is, to select a σ process which allows to
conclude positively the algorithm.

Finally, to obtain a discontinuous nonholonomic system described by
equations of the form (5.12), with g21(x1, x2) fulfilling condition (5.15), the
following simple result may be useful.

Proposition 5.1 [20] Consider a nonholonomic system described by equa-
tions of the form (5.12). Assume that g11(x1, x2) = Ip and that the
matrices g21(x1, x2) and g22(x1, x2) have smooth entries in Rn. Consider a
coordinates transformation (σ process) described by equations of the form

ξ1 = x1, ξ2 = �2(x1, x2)

σ (x1)

where �2(x1, x2) is a smooth mapping such that �2(0, x2) �= 0 and σ(x1)

is a smooth function which is zero at x1 = 0. Then the transformed system
is always described, in the new coordinates, by equations of the form (5.12)
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FRANKL: “dk6033_c005” — 2006/3/31 — 16:42 — page 208 — #22

208 Autonomous Mobile Robots

but, in general, the matrix g21(ξ1, ξ2) is not defined at ξ1 = 0, that is, fulfills
condition (5.15).

The presented discontinuous stabilization approach has been exploited in
the control of underactuated spacecraft in Reference 36 and has been given
an interesting geometric interpretation in Reference 48 and related references.
Finally, in Reference 49 and related works, it has been shown that the proposed
approach can be interpreted in terms of a state-dependent time-scaling.

5.4 CHAINED SYSTEMS AND POWER SYSTEMS

From this section onward, we focus on two special classes of nonholonomic
systems: chained systems and power systems. They occupy a special place in the
theory of nonholonomic control. Many nonholonomic mechanical systems can
be represented by, or are feedback equivalent to, kinematic models in chained
form or in power form. Chained systems have been introduced in Reference 7,
where sufficient conditions for (local) feedback equivalence to chained forms
have also been given. Power systems have been introduced in Reference 50.
Therein, it has also been shown that chained systems and power systems are
globally feedback equivalent. Chained systems15 are described by equations of
the form

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...

ẋn = xn−1u1.

(5.22)

Power systems are described by equations of the form

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2

...

ẋn = 1

(n− 2)!x
n−2
1 u2.

(5.23)

15 In the terminology of Reference 7, Equations (5.22) describe a one-chain single generator system.
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5.5 DISCONTINUOUS CONTROL OF CHAINED SYSTEMS

To begin with, we transform system (5.22) through the σ process

ξ1 = x1

ξ2 = x2

...

ξn−1 = xn−1

x(n−3)
1

ξn = xn

x(n−2)
1

(5.24)

yielding a discontinuous system described by equations of the form

ξ̇1 = u1

ξ̇2 = u2

...

ξ̇n−1 = ξn−2 − (n− 3)ξn−1

ξ1
u1

ξ̇n = ξn−1 − (n− 2)ξn

ξ1
u1.

(5.25)

Remark 5.8 The σ process (5.24) is a special case of (5.17) with αi = 1 for
all i = 1, . . . , n− 1 and βi = i − 1 for all i = 1, . . . , n− 1. Observe that such
βi fulfill the conditions (5.19).

Consider now the system (5.25) and apply the control u1 = −kξ1, with
k > 0. A simple computation shows that the resulting system, described by
equations of the form

ξ̇ = Aξ + b2u2 (5.26)

where ξ = [ξ1, ξ2, . . . , ξn]′,

A =




−k 0 0 0 . . . 0
0 0 0 0 . . . 0
0 −k k 0 . . . 0
0 0 −k 2k . . . 0
...

...
...

...
. . .

...
0 0 0 0 · · · (n− 2)k




(5.27)
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and

b2 = [0 1 0 · · · 0]′ (5.28)

is stabilizable with the second control input u2. Therefore, recalling the results

Proposition 5.2 [20] The discontinuous control law

u =
[

u1

u2

]
=

 −kx1

p2x2 + p3
x3
x1
+ · · · + pn−1

xn−1

xn−3
1
+ pn

xn

xn−2
1


 (5.29)

with k > 0 and p = [0, p2, p3, . . . , pn−1, pn] such that the eigenvalues of the
matrix A+ b2p have all negative real part, almost exponentially stabilizes the
system (5.22) in the open and dense set �1 = {x ∈ Rn|x1 �= 0}.

Remark 5.9 If we rewrite the control law (5.29) as

u =
[

u1

u2

]
=

 −kx1

p2x2 + p3
x1

x3 + · · · + pn−1

xn−3
1

xn−1 + pn

xn−2
1

xn




we can regard it as a linear control law with state dependent gains.

5.5.1 An Example: A Car-Like Vehicle

In this section we consider the problem of designing a discontinuous controller
for a prototypical nonholonomic system: a car-like vehicle. For simplicity we
consider an ideal system, that is, the wheels roll without slipping and all pairs
of wheels are perfectly aligned and with the same radius. A thorough analysis
of the phenomena caused by nonideal wheels can be found in Reference 51.
The problem of stabilizing a car-like vehicle has been addressed with different

and References 9, 12, and 52, for state feedback control laws. In what follows,
exploiting the results in Section 5.3, we design a discontinuous state feedback
controller. This control law, because of its singularity, is not directly implement-
able. However, as discussed in Section 5.3, and in Reference 33 and 53, and

boundedness or (robust) exponential stability.

© 2006 by Taylor & Francis Group, LLC

established in Section 5.3, we give the following statement.

in Section 5.7, it is possible to build modifications yielding uniform ultimate

techniques by several authors, see References 5 and 7 for open loop strategies
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The kinematic model of a car with rear tires aligned with the car and front
tires allowed to spin about the vertical axis [7] is

ẋ = cos θv1

ẏ = sin θv1

θ̇ = 1

l
tan θv1

φ̇ = v2

(5.30)

where (x, y) denotes the location of the center of the axle between the two rear
wheels, θ the angle of the car body with respect to the x-axis, φ the steering
angle with respect to the car body, and v1 and v2 the forward velocity of the rear
wheels and the velocity of the steering wheels, respectively (see Figure 5.2).
Applying the control transformation

[
v1

v2

] u1

cos θ
− 3

l sin2 φ tan θ sec θu1 + l cos2 φ cos3 θu2




l

O X

y

x

Y f

u

FIGURE 5.2 Model of an automobile.
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and the σ process

ξ1 = x

ξ2 = 1

l
sec3θ tan φ

ξ3 = tan θ

x

ξ4 = y

x2

we obtain a system described by equations of the form

ξ̇1 = u1

ξ̇2 = u2

ξ̇3 = ξ2 − ξ3

ξ1
u1

ξ̇4 = ξ3 − 2ξ4

ξ1
u1

that is, by equations of the form (5.25) with n = 4. Thus, using Proposition (5.2),
we design the state feedback control law

[
u1
u2

]
=
[ −kξ1

p2ξ2 + p3ξ3 + p4ξ4

]

In the original coordinates the feedback law is described by

v1 = −k
x

cos θ

v2 = k
3

l
sin2 φ tan θ sec θ

x

cos θ

+ l cos2 φ cos3 θ

[
p2

(
1

l
sec3θ tan φ

)
+ p3

(
tan θ

x

)
+ p4

( y

x2

)]
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To have almost exponential stability of the closed loop system it is necessary
to have k > 0 and to set p2, p3, and p4 such that16 σ(A4) ∈ /C−, where

A4 =

 p2 p3 p4
−k k 0
0 −k 2k




It must be noticed that the matrix A4 is a submatrix of the matrix A + b2p
considered in Proposition 5.2. This is without lack of generality as only n − 1
eigenvalues of the matrix A + b2p can be set with the vector p, whereas one

simulations carried out with the proposed controller.

5.5.2 Discussion

Discontinuous, state feedback, control laws to almost exponentially stabilize
chained systems, have been presented. In contrast to other results, the given
control laws are extremely simple and possess an intuitive interpretation in terms
of linear feedback with state dependent gain scheduling. It is worth stressing
that the design of the stabilizing control law involves mainly linear control tools,
that is, stability of the closed loop system depends on the stability of some linear
systems. A drawback of the proposed approach is the possibility for numerical
problems to appear in real time implementations. In fact, most of the features
of the closed loop system derive from the simplification in the product 1

x1
u1.

If such a simplification takes place only approximately, for example, for the
presence of measurement noise, the limit limx1→0

1
x1

u1(x∗1), where x∗1 is the
available measure on x1, may be unbounded.

5.6 ROBUST STABILIZATION — PART I

conditions (e.g., exact integration, noise free measurements) and as long as
x1(0) �= 0, the discontinuous controllers proposed therein are well defined
and yield bounded control action, along the trajectories of the closed loop
system. Moreover, as detailed in Reference 53, the analysis carried out in
References 19–21, 43, and 54–56 is correct and yields an adequate picture
of the ideal properties of this class of discontinuous controllers. However, a
substantial difference is to be expected in a nonideal situation, as the control
law blows up, that is, provides unbounded control action, whenever the discon-
tinuity surface x1 = 0 is intersected, for example, in the presence of external

16 σ(A) denotes the spectrum of the square matrix A and /C− denotes the open left-half of the
complex plane.

© 2006 by Taylor & Francis Group, LLC

eigenvalue is always equal to−k. Figure 5.3 and Figure 5.4 show the results of

The results in Section 5.4 can be interpreted as follows. For nominal and ideal
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FIGURE 5.3 (a) Time histories of x(t) (solid), y(t) (dashed), φ(t) (dash-dotted), and
θ(t) (dotted). (b) Translational (solid) and rotational (dashed) velocity controls.

disturbances. In what follows we perform a very simple robustness analysis,
with reference to an interesting situation, namely in the presence of external
disturbances and model errors, and for a prototype system.

Consider a three dimensional chained system perturbed by a constant
nonzero disturbance entering the third equation,17 that is,

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 + d (5.31)

17 The disturbance models a violation of the nonholonomic constraint, that is, x2 ẋ1 − ẋ3 �= 0.
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FIGURE 5.4 Parking maneuver. The dashed line describes the trajectory, in the xy-plane,
of the center of the axle between the two rear wheels.

with d �= 0. For such a system we point out some structural limitations, namely
the nonexistence of sufficiently regular control laws yielding a closed loop
system with converging solutions.

Proposition 5.3 [53] Consider system (5.31) with d �= 0 and a con-
trol law u(x, t) such that, for any initial condition, xi(t) and ui(x(t), t) are
absolutely continuous functions of time and limt→∞ |x1(t)| = x1,∞. Then,
limt→∞ |x3(t)| = ∞.

Proposition 5.3 points out a limitation of any regular control law applied to
system (5.31) with d �= 0. However, this limitation does not apply if we simply
ask for boundedness (and not convergence) of the trajectories of the controlled
system or if we use more general control signals.

Proposition 5.4 [53] Consider the system (5.31) with d �= 0 known. There
exist absolutely continuous controls ui(t) such that x(t) remains bounded for
all t ≥ 0. Moreover, if x2(0) = 0 there exist impulsive controls ui(t) such that
x(t) remains bounded for all t ≥ 0 and x3(t) converges to a constant value.

Several points are left open by the above discussion. These will be partly
addressed and solved in the next two sections, where we present robust hybrid
and sampled-data stabilizers for chained and power systems.
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5.7 ROBUST STABILIZATION — PART II

In this section we consider the robust stabilization problem for nonholonomic
systems in the presence of measurement errors and exogenous disturbances.
This problem has been only partly investigated, and several attempts have been
made to study the robustness properties of existing control laws or to robustify
given controllers [34,53,57]. Most of the robust stabilization results and invest-
igations focus on the problems of parametric uncertainties or model errors, see

time-varying control laws have been studied; [57], where a similar problem
has been addressed using the class of discontinuous control laws discussed in

to achieve local robustness against unknown parameters or unmodelled dynam-
ics. On the other hand, the fundamental problems of robustness in the presence
of sensor noise, external disturbances, and actuator disturbances have been

cial interest and relevance whenever discontinuous control laws are employed,
as for such control laws classical robustness results and Lyapunov theory are not

law, possessing a Lyapunov stability property, has been constructed. In what
follows we make use of the class of discontinuous control laws presented in
Section 5.4 and we show how, adding a proper modification together with a
hybrid variable, it is possible to obtain a closed loop system with global sta-
bility properties and which is globally robust against measurement noises and
exogenous disturbances. The proposed controller takes inspiration from the
results in References 33, 60, and 61.

5.7.1 The Local Controller

Consider the system (5.22) and the control law ul : Rn → R
2 defined by

u1l(x) = −x1, u2l(x) = p2x2 + p3
x3

x1
+ · · · + pn

xn

xn−2
1

(5.32)

with the pi such that the matrix

Ā =




p2 + 1 p3 · · · pn−1 pn

−1 2 · · · 0 0
0 −1 · · · 0 0
...

...
...

...
...

0 0 · · · −1 n− 1
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Section 5.4 and [8,24] where several types of hybrid control laws have been used

for example, [58] where the problem of local robust stabilization by means of

only partially addressed, see for example, [33,53]. These problems are of spe-l

directly applicable, see however Reference 59, where a discontinuous control
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is Hurwitz.18 Let P = P′ > 0 be such that Ā′P+PĀ < 0, and let z be a variable
in R ∪ {+∞} defined by

z = z(x) =
{

Y ′PY if x1 �= 0

+∞ if x1 = 0
(5.33)

with19

Y = Y(x) =
[

x2

x1
,

x3

x2
1

, . . . ,
xn

xn−1
1

]′
, ∀x ∈ Rn, x1 �= 0

Consider now the perturbed closed loop system composed of the chained
system (5.22) perturbed by an additive disturbance d and in closed loop with
u = ul(x + e), where e represents a measurement noise. For such a perturbed
system the following fact holds.

Lemma 5.2 There exists a continuous functionρl : R→ R satisfyingρl(ξ) >

0,∀ξ �= 0, such that, for all e and d satisfying the regularity assumptions in
= ρl(x1), and for all x0 satisfying

z(x0) ≤ M, there exists a Carathéodory solution X starting from x0 and all
such Carathéodory solutions are maximally defined on [0,+∞). Moreover
there exists a function δl of classK∞ and C > 0 such that, for all r and M, and
for all x0 satisfying |x0| ≤ δl(r) and z(x0) ≤ M, we have |X(t)| ≤ r

√
Me−Ct

and z(t) ≤ Me−Ct, for all t ≥ 0.

Lemma 5.2 states that, for any M > 0, the region z(x) ≤ M is robustly
forward invariant, that is, it is positively invariant in the presence of a class of
measurement noise and external additive disturbances. Moreover, any trajectory
in such a region converges exponentially to the origin.

5.7.2 The Global Controller

Let µ > 0 and consider the control law ug defined as u1g = 1 and u2g =
−µx2. Consider the perturbed closed loop system composed of the chained
system (5.22) perturbed by an additive disturbance d and in closed loop with
u = ug(x + e), where as before e represents a measurement noise. For such a
perturbed system the following fact holds.

18 The eigenvalues of the matrix Ā can be arbitrarily assigned by a proper selection of the
coefficients pi .
19

and 57. It is not difficult to show that using the σ -process therein it is possible only to prove a
weaker version of Theorem 5.7.
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Section 5.2 and Equation (5.7) with ρ

The variable Y differs from the variable used in the σ -process in Section 5.4 and in References 20
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Lemma 5.3 There exists a continuous function ρg : Rn → R satisfying
ρg(x) > 0,∀x �= 0 such that, for any initial condition, the considered perturbed

Equation (5.7) with ρ = ρg(x), admit a unique Carathéodory solution, defined
for all t ≥ 0. Moreover there exists a function δg of classK∞ such that, for any
r > 0 and for any M > 0 there exists a time Tg = Tg(M, δg(r)) such that, for
all Caratheéodory solutions X with initial condition x0 with |x0| ≤ δg(r), one
has z(X(t)) ≤ M for all t ≥ Tg, and |X(t)| ≤ r for all t ≤ Tg.

Lemma 5.3 states that, for any M > 0, the trajectories of the perturbed sys-
tem enter the region z(x) ≤ M in finite time, while remaining bounded for all t.

5.7.3 Definition of the Hybrid Controller and Main
Result

We are now ready to define the hybrid controller robustly stabilizing system
(5.22). To this end, for any strictly positive number M, we define the subset
�M of Rn as �M = {x, x1 �= 0, z < M}, where z is defined by (5.33). Let
M2 > M1 > 0. The hybrid controller (k, kd) is defined making a hysteresis
between ul and ug on �M2 and �M1 , that is,

k(x, sd) =




ul(x) if sd = 1 and x1 �= 0

0 if sd = 1 and x1 = 0

ug(x) if sd = 2

(5.34)

kd(x, sd) =




1 if x ∈ �M1 ∪ {0}
sd if x ∈ �M2\�M1

2 if x �∈ �M2 ∪ {0}
(5.35)

Theorem 5.7 d
and Section 5.7.3 robustly globally exponentially stabilizes

system (5.22).

5.7.4 Discussion

A hybrid control law globally robustly exponentially stabilizing a chained
system has been proposed. This controller retains the main features of the

(small) exogenous disturbances and measurement noise. A similar, but local,
result was developed in Proposition 3 of Reference 33. Note finally that the idea
of switching between a local and a global controller to achieve stabilization in

© 2006 by Taylor & Francis Group, LLC

system where e and d satisfies the regularity assumptions in Section 5.2 and

[32] The hybrid controller (k, k ), described in Section 5.7.1,
Section 5.7.2,

discontinuous controller proposed in Section 7.4, while allowing to counteract
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the large has been advocated in several papers, and typically in the context
of stabilization of unstable equilibria of mechanical systems. However, what
makes the present result interesting is that we aim at achieving robust asymptotic
stability rather than asymptotic stability.

5.8 ROBUST STABILITAZION — PART III

In the aforementioned discussion, we have implicitly assumed that the control
signals are continuous, that is, are generated by an analog device, and measure-
ment signals are also continuous. In real applications, however, control signals
are (in general) computed by a digital device, and measurements are obtained
by sample and hold of physical signals. This implies that, from a realistic point
of view, it is necessary to regard the system to be controlled as a sampled-data
system. Control of nonlinear sampled-data systems has recently gained a lot

ing and solving sampled-data control problems for nonlinear systems is the
definition of an adequate discrete time model, which should describe (with a
given accuracy) the behavior of the sampled-data system. This problem has been

In particular, it has been shown that approximate discrete time models obtained
using standard Euler approximation are adequate for control, provided that one
is ready to trade global properties with semi-global properties and asymptotic
properties with practical properties.

5.8.1 Robust Sampled-Data Control of Power Systems

In this section we focus on systems in power form (see Equation (5.23)) and on
their Euler approximate discrete time model given by

x1(k + 1) = x1(k)+ Tu1(k)+ d1(x(k), k)

x2(k + 1) = x2(k)+ Tu2(k)+ d2(x(k), k)

x3(k + 1) = x3(k)+ Tx1(k)u2(k)+ d3(x(k), k)

...

xn(k + 1) = xn(k)+ 1

(n− 2)!Tx(n−2)
1 u2(k)+ dn(x(k), k)

(5.36)

where we have also included the additive disturbance d(x(k), k) ∈ Rn.

Theorem 5.8 [42] Consider the Euler approximate model in Equation (5.36)
with d(x(k), k) = 0 for all k. Let ρ(s) = g0|s|b with b > 0 and g0 > 0 and

© 2006 by Taylor & Francis Group, LLC

of interest, see for example, References 40 and 62. The main issue in address-

widely addressed in the numerical analysis literature, see References 40 and 41.
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W(x) = ∑n
i=2 ci|xi|ai , with ci > 0 ai ∈ {2, 3, . . .}. Then there exists T∗ > 0

such that for all T ∈ (0, T∗) the controller uT := (u1T , u2T )
′ where20

u1T =− g1x1 − ρ(W)(cos((k + 1)T)− ε
2 sin((k + 1)T))

+ ε
2�ρ sin((k + 1)T)

u2T =− g2sign(Lf2 W)|Lf2 W |α(2ρ(W)+ 2(g1x1 + ρ(W) cos((k + 1)T))

× cos((k + 1)T)− εg1x1 sin((k + 1)T)) (5.37)

with g1 > 0, g2 > 0, a > 0 and a sufficiently small ε > 0, is a SP-AS controller
for the system (5.36) and the function

VT (k, x) = (g1x1 + ρ(W) cos(kT))2 + ρ(W)2 − εg1x1ρ(W) sin(kT)

(5.38)

is a (strict) SP-AS Lyapunov function for the closed loop system (5.36), (5.37).

The control law is similar to the one proposed in Reference 50 and the
Lyapunov function is a modification of the one proposed in Reference 10.
The proposed result provides a discrete-time counterpart and to some extent a
generalization of Theorem 2 of Reference 10. Theorem 5.8 states that VT is a
strict SP-AS Lyapunov function for the closed loop system. It is well known that
the existence of a strict SP-AS negative Lyapunov function allows to address
the stabilization problem in the presence of disturbances.

Proposition 5.5 [42] There exist T∗ > 0 such that for all T ∈ (0, T∗) the
controller (5.37) is a SP-ISS controller for system (5.36) and the function (5.38)
is a SP-ISS Lyapunov function for the closed loop system (5.36), (5.37.)

5.8.2 An Example: A Car-Like Vehicle Revisited

In this section we apply the proposed result to the model of a car-like vehicle
Consider the model (5.30) and the coordinate

transformation [50,52]

x1 = x

x2 = sec3(θ) tan(φ)

x3 = x sec3(θ) tan(φ)− l tan(θ)

x4 = ly + 1
2 x2sec3(θ) tan(φ)− lx tan(θ)

(5.39)

20 f2 denotes the vector [0, 1, x1, . . . , 1
(n−2)! x

n−2
1 ]′ and Lf2 W = ∂W

∂x f2.
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introduced in Section 5.5.1.
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yielding

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2

ẋ4 = 1
2 x2

1u2

(5.40)

where u1 = v1 cos θ and u2 = d
dt (sec3(θ) tan(φ)). Applying Theorem 5.8 we

construct the controller

u1T = −3x1 + ρ(W)(cos((k + 1)T)− ε
2 sin((k + 1)T))

u2T = u2(2ρ(W)− 3εx1 sin((k + 1)T)+ 2(3x1 + ρ(W)
× cos((k + 1)T)) cos((k + 1)T))

(5.41)

with k = 1, ρ(W) = 4
10

6
√

W(x), and u2 = − 3
100 sign(Lf2 W(x)) 5

√|Lf2 W(x)|,

simulation results when the controller (5.41) is applied to control the plant
(5.40). We have used xo = (0, 0, 0, 1)′, T = 0.2, and ε = 0.35.

5.8.3 Discussion

The problem of robust stabilization of nonholonomic systems in power form
has been addressed and solved in the framework of nonlinear sampled-data
control theory. It has been shown that, by modifying the periodic controller in
Reference 10, SP-AS and SP-ISS can be achieved. The main drawback of the
proposed controllers is the slow convergence rate, which is, however, intrinsic
to smooth time-varying controllers [12].

5.9 CONCLUSIONS

The problem of (discontinuous) stabilization and robust stabilization for non-
holonomic systems has been discussed from various perspectives. It has been
shown that, in ideal situations, a class of discontinuous controllers allow to
obtain fast convergence and efficient trajectories. This approach is, however,
inadequate in the presence of disturbances and measurement noise, hence it is
necessary to modify the proposed control by introducing a second controller,
a hybrid variable, and a switching strategy, which together guarantee robust
stability. Both these controllers have been designed in continuous time. It is
therefore difficult to quantify the loss of performance arising from a sampled-
data implementation. As a result, we have discussed the robust stabilization
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FIGURE 5.5 Response of the car model controlled using the controller (5.41): (a) vari-
ables x, y, and θ ; (b) trajectory of the center of the axel between the two rear wheels; (c)
control signals; (d) Lyapunov function.

problem in the framework of nonlinear sampled-data systems. The discussion
in the chapter has highlighted main issues:

• For the class of nonholonomic system described by Equation (5.1) it
is not possible to single out the best control strategy, that is, several
control strategies with diverse and conflicting properties exist.
• It may be difficult to provide general stabilization results for nonholo-

nomic systems described by Equation (5.1), hence it is convenient to
consider special (canonical) forms, such as chained forms or power
forms. The use of canonical forms allows the explicit construction
of (robustly) stabilizing control laws, and the in-depth study of the
asymptotic properties of closed loop systems.

Several issues have been left aside in this chapter. We mention the stabilization
problem for systems with high-order nonholonomic constraints, the stabiliz-
ation problems for systems which are not feedback equivalent to chained or
power forms (e.g., the so-called ball and plate system, and all systems arising
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in dextrous manipulation), the stabilization of dynamic models of nonholo-
nomic systems, and the adaptive stabilization of nonholonomic systems with
unknown parameters. Finally, the important problem of trajectory tracking for
nonholonomic systems has not been discussed at all. We believe that the list
of reference (although by no means complete) provides adequate pointers to
investigate and study the above issues.
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6.1 INTRODUCTION

In recent years, control and stabilization of mechanical systems with
nonholonomic constraints has been an area of active research. Due to Brockett’s
theorem [1], it is well known that nonholonomic systems with restricted mobil-
ity cannot be stabilized to a desired configuration (or posture) via differentiable,
or even continuous, pure-state feedback, although it is controllable. A number
of approaches including (i) discontinuous time-invariant stabilization [2,3],
(ii) time-varying stabilization [4], and (iii) hybrid stabilization [5] have been
proposed for the problem (see the Survey Paper 6 and the references therein for
more details).

For the controller design of nonholonomic systems, there are efforts focused
on the kinematic control problem, where the systems are represented by their
kinematic models and the velocity acts as the control input. One commonly
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used approach for the controller design of nonholonomic systems is to convert,
with appropriate state and input transformations, the original systems into
some canonical forms for which the design can be carried out more easily
[7,8]. Using the special algebraic structures of the canonical forms, various
feedback strategies have been proposed to stabilize nonholonomic systems in
the literature [9–12]. The majority of these constructive methods have been
developed based on exact system models. However, it is more practical to design
the controller against possible existence of modeling errors and external dis-
turbances. A hybrid feedback algorithm based on supervisory adaptive control
was presented to globally asymptotically stabilize a wheeled mobile robot
[13]. Output feedback tracking and regulation controllers were presented in
Reference 14 for practical wheeled mobile robots. Robustness issues with regard
to disturbances in the kinematic model have also been investigated.

In practice, however, it is more realistic to formulate the nonholonomic
system control problem at the dynamic level, where the torque and force are
taken as the control inputs. In actual applications, however, exact knowledge of
the robot dynamics is almost impossible. Adaptive control strategies were pro-
posed to stabilize dynamic nonholonomic systems [15]. Sliding mode control
was applied to guarantee the uniform ultimate boundedness of tracking error
in Reference 16. In Reference 17, stable adaptive control was investigated for
dynamic nonholonomic chained systems with uncertain constant parameters.
Using geometric phase as a basis, control of Caplygin dynamical systems was
studied in Reference 18, and the closed-loop system was proved to achieve the
desired local asymptotic stabilization of a single equilibrium solution. Thanks
to the research in References 19 and 20, the motion control part of the problem
can be reduced to a problem similar to the free-motion control of a robot with
less degrees of freedom. Robust adaptive motion controllers were proposed in
References 21 and 22 using the linear-in-the-parameter property of the system
dynamics and the bound of the robot parameters.

The difficulty in precise dynamic modeling has invoked the development
of approximator-based control approaches, using Lyapunov synthesis for the
general nonlinear system [23–28]. Neural networks (NNs) are well known for
its ability to extend adaptive control techniques to systems in nonlinear-in-the-
parameters. The universal approximation properties of NNs in the feedback
control systems successfully avoid the use of regression matrices, and assump-
tions such as certainty equivalence. It requires no persistence of excitation
conditions by using the robustifying terms. For a comprehensive study of
the subject, readers are referred to Reference 29 and the references therein.
For fuzzy logic systems, it provides natural and linguistic representation of
human’s (or expert’s) knowledge, reasoning about vague rules that describe
the imprecise and qualitative relationship between the system’s input and out-
put. The combination of NNs and fuzzy logic systems can overcome some
of the individual weaknesses and offer some appealing features. It offers an
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architecture that uses fuzzy algorithms to represent the knowledge in a natural
and interpretable manner, while preserving the learning ability of NNs as well as
the associated convergence and stability. The neuro-fuzzy (NF) system is a
NN-based fuzzy logic control and decision system, and is suitable for online
systems identification and control.

For adaptive NF control system design, the parameterized NF approx-
imators are generally expressed as a series of the commonly used radial
basis function (RBF) because of its nice approximation properties, that is,
y = ∑

j wjφ(σj, ‖x − cj‖), where wj is the connection weight, and cj and
σj are the center and width respectively that decide the shape of the function
φ. The major challenge in the RBF approximation problem lies in the selection
of the receptive center and width, that is, cj and σj as they both appear non-
linearly. In general, there are three kinds of methods to determine cj and σj.
The first is the grid-type partition method, which uses a grid partitioning of the
multidimensional space and defines a number of fuzzy sets or nodes for each
variable. This is the most intuitive approach but the problem is the exponential
growth of fuzzy rules or nodes in relation to the dimension of the input space.
The second kind is the clustering algorithm, such as fuzzy C-means (FCM) [30]
and the nearest-neighborhood cluster algorithm [31]. These methods are found
to be useful in choosing parameters, but require off-line learning. In addition, the
gradient descent method is usually employed for fine tuning the parameters cj

and σj by clustering algorithm so that the approximation accuracy is improved.
The last type consists of optimization approaches such as genetic algorithms
(GA). However, the problem with either the gradient descent method or GA is
that the learning and the adaptation speeds are slow. On the other hand, most
of the adaptive control schemes using RBF as an approximator only consider
the updating law of weights wj to simplify the design [32]. However, it is obvi-
ous that the parameters, cj and σj are important in capturing the fast-changing
system dynamics, reducing the approximation error, and improving the control
performance [33]. An adaptive scheme of tuning both the weights wj and the
center and width, cj and σj, was presented in Reference 34.

Motivated by previous works on the control of nonholonomic constrained
mechanical systems and the approximation-based adaptive control of nonlinear
systems, adaptive NF control is developed in this chapter for nonholonomic con-
strained mobile robotic systems using Lyapunov stability analysis in a unified
procedure. Despite the differences between the NNs and fuzzy logic systems,
they actually can be unified at the level of the universal function approxim-
ator, termed as the NF networks which are multilayer feedforward networks
that integrate the TSK-type fuzzy system and RBF NN into a connectionist
structure. Indeed, for simple systems, the rules are fairly easy to derive with
physical insight, however, they become unreasonably difficult for systems with
strong nonlinear couplings yet without a good physical understanding. Because
of the difficulty in deriving the rules in fuzzy systems for systems with little
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physical insights, we present the adaptive laws to design the outputs of the

the motion tracking error converges to zero, the force tracking error is uniformly
bounded, and the closed-loop stability is guaranteed without the requirement
of the PE condition.

The rest of the chapter is organized as follows. The dynamics of mobile
robot systems subject to nonholonomic constraints are briefly described

6.2 DYNAMICS OF NONHOLONOMIC MOBILE ROBOTS

In general, a nonholonomic mobile robot system having an n-dimensional con-
figuration space with generalized coordinates q = [q1, . . . , qn]T and subject to
(n− m) constraints can be described by [35]

M(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)τ + f + τd (6.1)

where M(q) ∈ Rn×n is the inertia matrix and M(q)T = M(q) > 0, C(q, q̇) ∈
R

n×n is the centripetal and coriolis matrix, G(q) ∈ Rn is the gravitation force
vector, B(q) ∈ Rn×r

to be known, as it is a function of fixed geometry of the system, τ ∈ Rr is the
input vector of forces and torques, f ∈ Rn is the constrained force vector,
and τd ∈ Rn denotes bounded unknown disturbances including unstructured
unmodeled dynamics. The dynamic system (6.1) has the following properties
[32,36]:

Property 6.1 Matrices M(q), G(q)are uniformly bounded and uniformly con-
tinuous if q is uniformly bounded and continuous, respectively. Matrix C(q, q̇)
is uniformly bounded and uniformly continuous if q̇ is uniformly bounded and
continuous.

Property 6.2 Matrix Ṁ − 2C is skew-symmetric, that is, xT(Ṁ − 2C)x = 0,
∀x �= 0.

When the system is subjected to nonholonomic constraints, the (n − m)
nonintegrable and independent velocity constraints can be expressed as

J(q)q̇ = 0 (6.2)

where J(q) ∈ R(n−m)×n is the matrix associated with the constraint.
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“rules” numerically using adaptive (NN) control techniques. It is shown that

is the full-rank input transformation matrix and is assumed

in Section 6.2. Multilayer NF systems as the key design tool are introduced
in Section 6.3. The main results of the adaptive NF control design are presented
in Section 6.4, and a simulation example is provided in Section 6.5. Concluding
remarks are given in Section 6.6.
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The constraint (6.2) is referred to as the classical nonholonomic constraint
when it is not integrable. In the chapter, constraint (6.2) is assumed to be
completely nonholonomic and exactly known. The effect of the constraints can
be viewed as restricting the dynamics on the manifold �nh as

�nh = {(q, q̇)|J(q)q̇ = 0}

It is noted that since the nonholonomic constraint (6.2) is nonintegrable, there
is no explicit restriction on the values of the configuration variables.

Based on the nonholonomic constraint (6.2), the generalized constraint
forces in the mechanical system (6.1) can be given by

f = JT(q)λ (6.3)

where λ ∈ Rn−m is known as friction force on the contact point between the
rigid body and environmental surfaces.

Since J(q) ∈ R(n−m)×n, it is always possible to find an m rank matrix
R(q) ∈ Rn×m formed by a set of smooth and linearly independent vector fields
spanning the null space of J(q), that is,

RT(q)JT(q) = 0 (6.4)

Denote R(q) = [r1(q), . . . , rm(q)] and define an auxiliary time function ż(t) =
[ż1(t), . . . , żm(t)]T ∈ Rm such that

q̇ = R(q)ż(t) = r1(q)ż1(t)+ · · · + rm(q)żm(t) (6.5)

Equation (6.5) is the so-called kinematic model of nonholonomic systems in the
literature. Usually, ż(t) has physical meaning, consisting of the linear velocity
v and the angular velocity ω, that is, ż(t) = [v ω]T. Equation (6.5) describes
the kinematic relationship between the motion vector q(t) and the velocity
vector ż(t).

Differentiating (6.5) yields

q̈ = Ṙ(q)ż + R(q)z̈ (6.6)

From (6.5), ż can be obtained from q and q̇ as

ż = [RT(q)R(q)]−1RT(q)q̇ (6.7)
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The dynamic equation (6.1), which satisfies the nonholonomic constraint (6.2),
can be rewritten in terms of the internal state variable ż as

M(q)R(q)z̈ + [M(q)Ṙ(q)+ C(q, q̇)R(q)]ż + G(q) = B(q)τ + JT(q)λ+ τd

(6.8)

Substituting (6.5) and (6.6) into (6.1), and then premultiplying (6.1) by RT(q),
the constraint matrix JT(q)λ can be eliminated by virtue of (6.4). As a
consequence, we have the transformed nonholonomic system

q̇ = R(q)ż = r1(q)ż1 + · · · + rm(q)żm (6.9)

M1(q)z̈ + C1(q, q̇)ż + G1(q) = B1(q)τ + τd1 (6.10)

where

M1(q) = RTM(q)R

C1(q, q̇) = RT[M(q)Ṙ+ C(q, q̇)R]
G1(q) = RTG(q)

B1(q) = RTB(q)

τd1 = RTτd

which is more appropriate for the controller design as the constraint λ has been
eliminated from the dynamic equation.

Exploiting the structure of the dynamic equation (6.10), some properties
are listed as follows.

Property 6.3 Matrix D1(q) is symmetric and positive-definite.

Property 6.4 Matrix Ḋ1(q)− 2C1(q, q̇) is skew-symmetric.

Property 6.5 D(q), G(q), J(q), and R(q) are bounded and continuous if
z is bounded and uniformly continuous. C(q, q̇) and Ṙ(q) are bounded if
ż is bounded. C(q, q̇) and Ṙ(q) are uniformly continuous if ż is uniformly
continuous [37].

In the following, the kinematic nonholonomic subsystem (6.5) is converted
into the chained canonical form. The nonholonomic chained system considered
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in this chapter is the m-input, (m−1)-chain, single generator chained form given
by Walsh and Bushnell [38]

ẋ1 = u1

ẋj,i = u1xj,i+1 (2 ≤ i ≤ nj − 1)(1 ≤ j ≤ m − 1)

ẋj,nj = uj+1

(6.11)

Note that in Equation (6.11), X = [x1, X2, . . . , Xm]T ∈ R
n with Xj =

[xj−1,2, . . . , xj−1,nj−1 ] (2 ≤ j ≤ m) are the states and u = [u1, u2, . . . , um]T
are the inputs of the kinematic subsystem.

The class of nonholonomic systems in chained form was first introduced
in Reference 7 and has been studied as a benchmark example in the literature.
It is the most important canonical form that is commonly used in the study
of nonholonomic control systems. The necessary and sufficient conditions for
transforming system (6.5) into the chained form are given in Reference 39.
Theoretical challenges and practical interests have provided substantial motiv-
ation for the extensive study of nonholonomic systems in chained form. The
following assumption is made.

Assumption 6.1 The kinematic model of the nonholonomic system given by
(6.5) can be converted into the chained form (6.11) by some diffeomorphic
coordinate transformation X = T1(q) and state feedback v = T2(q)u where
u is a new control input.

The existence and construction of these systems have been established in
References 38 and 40. For the notations on the differential geometry used below,
readers are referred to Reference 41.

Proposition 6.1 Consider the drift-free nonholonomic system

q̇ = r1(q)ż1 + · · · + rm(q)żm

where ri(q) are smooth, linearly independent input vector fields. There exist
state transformation X = T1(q) and feedback ż = T2(q)u on some open set
U ⊂ Rn to transform the system into an (m−1)-chain, single-generator chained
form, if and only if there exists a basis f1, . . . , fm for �0 := span{r1, . . . , rm}
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which has the form

f1 = (∂/∂q1)+
n∑

i=2

f i
1(q)∂/∂qi

fj =
n∑

i=1

f i
j (q)∂/∂qi, 2 ≤ j ≤ m

such that the distributions

Gj = span{adi
f1

f2, . . . , adi
f1

fm : 0 ≤ i ≤ j}, 0 ≤ j ≤ n− 1

have constant dimension on U and are all involutive, and Gn−1 has dimension
n− 1 on U [38,40].

For a two-input controllable system, a constructive method was reproduced
in Reference 10 and it is given here for completeness. Consider

q̇ = r1(q)ż1 + r2(q)ż2 (6.12)

where r1(q), r2(q) are linearly independent and smooth, q ∈ Rn, and ż =
[ż1, ż2]T.

Define

�0 := span{r1, r2, adr1 r2, . . . , adn−2
r1

r2}

�1 := span{r2, adr1 r2, . . . , adn−2
r1

r2}

�2 := span{r2, adr1 r2, . . . , adn−3
r1

r2}

If �0(q) = R
n, ∀q ∈ U (where U is some open set of Rn), �1 and �2

are involutive on U, and r1(q) satisfies [r1,�1] ⊂ �1, then there exist two
independent functions h1 : U→ R and h2 : U→ Rwhich satisfy the following
relationships:

dh1 ·�1 = 0, dh1 · r1 = 1

dh2 ·�2 = 0, dh2 · adn−2
r1

r2 �= 0
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Let T1(q) : q→ X as

x1 = h1

x2 = Ln−2
r1

h2

...

xn−1 = Lr1 h2

xn = h2

It may be verified that T1(q) is a valid change of coordinates by evaluating the
Jacobian of T1(q) at the origin.

Since Lr2 Ln−2
r1

h2 �= 0, let T2(q) : ż→ u as

ż1 := u1

ż2 := 1

Lr2 Ln−2
r1 h2

[u2 − (Ln−1
r1

h2)u1]

Then, the local coordinate transformation X = T1(q) and state feedback
ż = T2(q)u render system (6.12) into the chained form

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...

ẋn = xn−1u1

Remark 6.1 Under certain conditions which has been stated in
Proposition 6.1, the kinematic model (6.5) can be converted into a chained
form driven by integrators.

6.3 MULTI-LAYER NF SYSTEMS

Despite the differences between the NNs and fuzzy logic systems, they actually
can be unified at the level of the universal function approximator, which are
multilayer feedforward networks that integrate the TSK-type fuzzy system and
RBF NN into a connectionist structure.

Typically, fuzzy logic systems are rule-based systems, which consists of the
fuzzifier, the fuzzy rule base, the fuzzy inference engine, and the defuzzifier.
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The purpose of the fuzzifier is to provide scale mapping of the crisp input to
corresponding linguistic forms noted as labels of fuzzy set. The fuzzy rule base
stores knowledge base for linguistic data and is expressed as a collection of
fuzzy IF–THEN rules. The typical fuzzy rule used in the Takagi–Sugeno–Kang
(TSK) model [42] is in the following form:

Rl: IF z1 is Fl
1 AND z2 is Fl

2 · · · AND zn is Fl
n

THEN yl = kl
0 + kl

1z1 + · · · + kl
nzn

where Fl
i (i = 1, 2, . . . , n) are fuzzy sets, kl

j ( j = 0, 1, . . . , n) are real-valued

parameters, z = [z1, z2, . . . , zn]T is the system input, yl is the system output
due to rule Rl, and l = 1, 2, . . . , N . For the zero-order TSK-fuzzy system, we
have yl = kl

0. The fuzzy inference engine is the kernel of the fuzzy system and
uses the fuzzy IF–THEN rules to determine a mapping from the input universe
to the output universe based on fuzzy logic policies. The role of the defuzzifier
is the scale mapping of the linguistic value to a corresponding crisp output
value. For simple systems, the rules are fairly easy to derive with physical
insight. However, they become unreasonably difficult for systems with strong
nonlinear couplings yet without a good physical understanding.

On the other hand, the NNs can build up a very nice mapping between
system’s inputs and outputs. Due to its great learning capability, it can be
used to approximate any continuous function to any desired accuracy. Despite
the differences between the NNs and fuzzy logic systems, they can, in fact,
be unified at the level of the universal function approximator which integrates
the TSK-type fuzzy system and RBF NN into a connectionist structure. Nodes
in the first layer are called input linguistic nodes and corresponds to input
variables. These nodes only transmit input values to the next layer directly.
Nodes in the second layer play the role of membership functions specifying the
degree to which an input value belongs to a fuzzy set. The nodes in the third
layer are called rule nodes which represent fuzzy rules. The fourth layer is the
output layer. The links in the third layer act as the precondition of fuzzy rules
and the links in the fourth layer act as the consequence of fuzzy rules.

The output of the whole NF system is then given by

y(x) =
nr∑

l=1

wl

[ ∏ni
i=1 µAl

i
(xi)∑nr

k=1

∏ni
i=1 µAk

i
(xi)

]
(6.13)

where x = [x1, x2, . . . , xni ]T, µAk
i
(xi) is the membership function of linguistic

variable xi with

µAk
i
(xi) = exp

[
− (xi − cik)

2

σ 2
ik

]
(6.14)
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For clarity, let us define the weight vector and fuzzy basis function vector
respectively as

W = [w1, w2, . . . , wnr ]T

S(x, c, σ) = [s1, s2, . . . , snr ]T

where sl = ∏ni
i=1 µAl

i
(xi)/[∑nr

k=1

∏ni
i=1 µAk

i
(xi)], c = [cT

1 , cT
2 , . . . , cT

nr
]T, and

σ = [σT
1 , σT

2 , . . . , σT
nr
]T. Then, Equation (6.13) can be represented as

y = WTS(x, c, σ) (6.15)

Remark 6.2 For Equation (6.15), W and S(x, c, σ) are the weights and the
(normalized) basis functions in NN terminology, while they are the outputs of
the rules and the weighted firing strength in fuzzy logic terminology. Because
of the difficulty in deriving the rules in fuzzy systems for systems with little
physical insights, we would hereby like to present the adaptive laws to design
the outputs of the “rules” numerically using adaptive (NN) control techniques.

It has been proven that, if the number of the fuzzy rules nr is sufficiently
large, a fuzzy logic system (6.15) is capable of uniformly approximating any
given real continuous function, h(x), over a compact set �x ⊂ R

ni to any
arbitrary degree of accuracy in the form

h(x) = W∗T S(x, c∗, σ ∗)+ ε(x), ∀x ∈ �x ⊂ Rni (6.16)

where W∗, c∗, and σ ∗ are the ideal constant vectors, and ε(x) is the
approximation error. The following assumption is made for W∗, c∗, σ ∗,
and ε(x).

Assumption 6.2 
error are bounded over the compact set, that is,

‖W∗‖ ≤ wm, ‖c∗‖ ≤ cm, ‖σ ∗‖ ≤ σm, |ε(x)| ≤ ε∗

∀x ∈ �x with wm, cm, σm, and ε∗ being unknown positive constants.

Remark 6.3 The optimal weight vector W∗, c∗, and σ ∗ in (6.16) is an
“artificial” quantity required only for analytical purposes. Typically, W∗, c∗,
and σ ∗ are chosen as the value of W that minimizes ε(x) for all x ∈ �x ⊂ Rni ,
that is,

(W∗, c∗, σ ∗) := arg min
W ,c,σ

{
sup
x∈�x

|h(x)−WTS(x, c, σ)|
}
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Remark 6.4 The approximation error ε(x), is a critical quantity and can be
reduced by increasing the number of the fuzzy rules nr. According to the univer-
sal approximation theorem, it can be made as small as possible if the number
of fuzzy rules nr is sufficiently large.

From the analysis given above, we see that the system uncertainties are
converted to the estimation of unknown parameters W∗, c∗, σ ∗, and unknown
bounds ε∗.

As the ideal vectors/constants W∗, c∗, σ ∗, and ε∗ are usually unknown,
we use their estimates Ŵ , ĉ, σ̂ , and ε̂ instead. The following lemma gives the
properties of the approximation errors ŴT

0 S(x, ĉ, σ̂ ) − W∗T S(x, c∗, σ ∗). The
definition of induced norm of matrices is given here first.

Definition 6.1 For an m × n matrix A = {aij}, the induced p-norm, p = 1, 2
of A is defined as

‖A‖1 = max
j

{
m∑

i=1

|aij|
}

column sum

‖A‖2 = max
i

{√
λi(ATA)

}

Usually, ‖A‖2 is abbreviated to ‖A‖.
The Frobenius norm is defined as the root of the sum of the squares of all

elements

‖A‖2F =
∑

a2
ij = tr(ATA)

with tr(·) the matrix trace, that is, sum of diagonal elements.

Lemma 6.1 [34, 43] The approximation error can be expressed as

ŴTS(x, ĉ, σ̂ )−W∗T S(x, c∗, σ ∗)

= W̃T(Ŝ − Ŝ
′
cĉ− Ŝ

′
σ σ̂ )+ ŴT(Ŝ

′
cc̃+ Ŝ

′
σ σ̃ )+ du (6.17)

where Ŝ = S(x, ĉ, σ̂ ), W̃ = Ŵ −W∗, c̃ = ĉ− c∗, and σ̃ = σ̂ − σ ∗ are defined
as approximation error, and Ŝ

′
c = [ŝ′1c, ŝ

′
2c, . . . , ŝ

′
nrc]T ∈ Rnr×(ni×nr) with

ŝ
′
ic =

∂si

∂c

∣∣∣
c=ĉ,σ=σ̂ ∈ R

(ni×nr)×1, i = 1, . . . , nr
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and Ŝ
′
σ = [ŝ′1σ , ŝ

′
2σ , . . . , ŝ

′
nrσ
]T ∈ Rnr×(ni×nr) with

ŝ
′
iσ =

∂si

∂σ

∣∣∣
c=ĉ,σ=σ̂ ∈ R

(ni×nr)×1, i = 1, . . . , nr

and the residual term du is bounded by

|du| ≤ ‖c∗‖ · ‖Ŝ′Tc Ŵ‖ + ‖σ ∗‖ · ‖Ŝ′Tσ Ŵ‖ + ‖W∗‖ · ‖Ŝ′cĉ‖
+ ‖W∗‖ · ‖Ŝ′σ σ̂‖ + ‖W∗‖1 (6.18)

Proof The Taylor series expansion of S(x, c∗, σ ∗) with respect to (x, ĉ, σ̂ )
can be expressed as

S(x, c∗, σ ∗) = S(x, ĉ, σ̂ )− Ŝ
′
cc̃− Ŝ

′
σ σ̃ + O(x, c̃, σ̃ ) (6.19)

where O(x, c̃, σ̃ ) denotes the sum of the high order terms in the Taylor series
expansion.

Using (6.19), we obtain

ŴTS(x, ĉ, σ̂ )−W∗T S(x, c∗, σ ∗)

= (W̃ +W∗)TS(x, ĉ, σ̂ )−W∗T [S(x, ĉ, σ̂ )− Ŝ
′
cc̃− Ŝ

′
σ σ̃ + O(x, c̃, σ̃ )]

= W̃TŜ + (Ŵ − W̃)TŜ
′
cc̃+ (Ŵ − W̃)TŜ

′
σ σ̃ −W∗T O(x, c̃, σ̃ )

= W̃TŜ + ŴTŜ
′
cc̃− W̃TŜ

′
c(ĉ− c∗)+ ŴTŜ

′
σ σ̃ − W̃TŜ

′
σ (σ̂ − σ ∗)

−W∗T O(x, c̃, σ̃ )

= W̃T(Ŝ − Ŝ
′
cĉ− Ŝ

′
σ σ̂ )+ ŴT(Ŝ

′
cc̃+ Ŝ

′
σ σ̃ )+ du (6.20)

where the residual term du is given by

du = W̃T(Ŝ
′
cc∗ + Ŝ

′
σ σ
∗)−W∗T O(x, c̃, σ̃ )

Noting that W̃ = Ŵ − W∗, c̃ = ĉ − c∗, and σ̃ = σ̂ − σ ∗, Equation (6.20)
implies that

du = ŴTŜ −W∗T S∗ − (Ŵ −W∗)T(Ŝ − Ŝ
′
cĉ− Ŝ

′
σ σ̂ )

− ŴT[Ŝ′c(ĉ− c∗)+ Ŝ
′
σ (σ̂ − σ ∗)]

= ŴTŜ
′
cc∗ + ŴTŜ

′
σ σ
∗ −W∗T Ŝ

′
cĉ−W∗T Ŝ

′
σ σ̂ +W∗T(Ŝ − S∗)

with S∗ �= S(x, c∗, σ ∗).
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Since every element of the vector (Ŝ−S∗) is bounded in [−1,+1], we have

W∗T(Ŝ − S∗) ≤
nr∑

i=1

|w∗i | �= ‖W∗‖1

Considering ŴTŜ
′
cc∗ = tr{ŴTŜ

′
cc∗} ≤ ‖ŴTŜ′c‖F · ‖c∗‖F = ‖Ŝ′Tc Ŵ‖ · ‖c∗‖,

we have

|du| ≤ ‖c∗‖ · ‖Ŝ′Tc Ŵ‖ + ‖σ ∗‖ · ‖Ŝ′Tσ Ŵ‖ + ‖W∗‖ · ‖Ŝ′cĉ‖
+ ‖W∗‖ · ‖Ŝ′σ σ̂‖ + ‖W∗‖1

Thus, we have shown that (6.18) holds.

6.4 ADAPTIVE NF CONTROL DESIGN

In this section, the adaptive NF control is presented for nonholonomic mobile
robots with uncertainties and external disturbances.

The following lemmas are useful in the controller design.

Lemma 6.2 Let e = H(s)r with H(s) representing an (n × m)-dimensional
strictly proper exponentially stable transfer function, r and e denoting its input
and output, respectively. Then r ∈ Lm

2

⋂
Lm∞ implies that e, ė ∈ Ln

2

⋂
Ln∞, e is

continuous, and e → 0 as t → ∞. If, in addition, r → 0 as t → ∞, then
ė→ 0 [32].

Lemma 6.3 Given a differentiable function φ(t): R+ → R, if φ(t) ∈ L2 and
φ̇(t) ∈ L∞, then φ(t)→ 0 as t →∞, where L∞ and L2 denote bounded and
square integrable function sets, respectively.

Consider the constrained dynamic equation (6.1) together with (n−m) inde-
pendent nonholonomic constraints (6.2). For simplicity of design, the following
assumptions are made throughout this section.

Assumption 6.3 Matrix RT(q)B(q) is of full rank, which guarantees all m
degrees of freedom can be (independently) actuated.

It has been proven that the nonholonomic system (6.1) and (6.2) cannot be
stabilized to a single point using smooth state feedback [18]. It can only be
stabilized to a manifold of dimension (n− m) due to the existence of (n− m)
nonholonomic constraints. Though the nonsmooth feedback laws [44] or time-
varying feedback laws [4] can be used to stabilize these systems to a point,
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it is worth mentioning that different control objectives may also be pursued,
such as stabilization to manifolds of equilibrium points (as opposed to a single
equilibrium position) or to trajectories.

By appropriate selection, a set of vector ż(t) ∈ Rm, the control objective can
be specified as: given a desired zd(t), żd(t), and desired constraint λd , determine
a control law such that for any (q(0), q̇(0)) ∈ �, z(t) and q̇ asymptotically
converge to a manifold �nhd specified as

�nhd = {(q, q̇)|z(t) = zd , q̇ = R(q)żd(t)} (6.21)

while the constraint force error (λ − λd) is bounded in a certain region. The
variable z(t) can be thought as m “output equations” of the nonholonomic
system.

Assumption 6.4 The desired reference trajectory zd(t) is assumed to be
bounded and uniformly continuous, and has bounded and uniformly continuous
derivatives up to the second order. The desired λd(t) is bounded and uniformly
continuous.

Let us define the following notations as

ez = z − zd (6.22)

eλ = λ− λd (6.23)

żr = żd − ρ1ez (6.24)

s = ėz + ρ1ez (6.25)

where żr is the reference trajectory described in internal state space.
Apparently, we have

ż = żr + s (6.26)

For force control, define µ as

µ̇ = −ρ2µ− ρ−1
3 JTλ (6.27)

where µ ∈ Rn. For the convenience of controller design, combining s and µ to
form the following new hybrid variables

σ = Rs+ µ (6.28)

ν = Rżr − µ (6.29)
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From (6.26), (6.28), and (6.29), we have

σ + ν = Rż (6.30)

The time derivatives of ν and σ are given by

ν̇ = Ṙżr + Rz̈r − µ̇ (6.31)

σ̇ = Ṙż + Rz̈ − ν̇ (6.32)

From the dynamic equation (6.8) together with (6.30) and (6.32), we have

M(q)σ̇ + C(q, q̇)σ +M(q)ν̇ + C(q, q̇)ν + G(q) = B(q)τ + JT(q)λ+ τd

(6.33)

Consider the control law as

Bτ = M̂(q)ν̇ + Ĉ(q, q̇)ν + Ĝ(q)− Kσ σ − JTλd + kλJTeλ − Kssgn(σ )

− b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̂g

n∑
i=1

φ̄gi |σi|

(6.34)

where matrix Kσ > 0, constant kλ > 0, matrix Ks = diag{ksii} with ksii ≥ |Ei|
and Ei is the element of vector E (defined later), M̂(q), Ĉ(q, q̇), and Ĝ(q) are
the estimates of M(q), C(q, q̇), and G(q), respectively, the elements of which,
that is, mij(q), cij(q, q̇), and gi(q) can be expressed by NF networks as

mij(q) = W∗Tmij
S(q, c∗mij

, σ ∗mij
)+ εmij (q) (6.35)

cij(q, q̇) = W∗Tcij
S(q, q̇, c∗cij

, σ ∗cij
)+ εcij (q, q̇) (6.36)

gi(q) = W∗Tgi
S(q, c∗gi

, σ ∗gi
)+ εgi(q) (6.37)

where W∗mij
, W∗cij

, W∗gi
are ideal constant weight vectors, c∗mij

, c∗cij
, c∗gi

are the
ideal constant center vectors, σ ∗mij

, σ ∗cij
, σ ∗gi

are the ideal constant width vectors,
and εmij (q), εcij (q, q̇), εgi(q) are the approximation errors.
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In addition, b̂m, b̂c, and b̂g are the estimates of constants b∗m, b∗c , and b∗g,
respectively, which are defined by

b∗m
�=max

i,j
{b∗mij
} > 0, b∗mij

�=max{wmij , cmij , σmij } (6.38)

b∗c
�=max

i,j
{b∗cij
} > 0, b∗cij

�=max{wcij , ccij , σcij } (6.39)

b∗g
�=max

i
{b∗gi
} > 0, b∗gi

�=max{wgi , cgi , σgi} (6.40)

and φ̄mij , φ̄cij , and φ̄gi are known positive functions defined by

φ̄mij = ‖Ŝ′
T

cmij
Ŵmij‖ + ‖Ŝ′

T

σmij
Ŵmij‖ + ‖Ŝ′cmij

ĉmij‖ + ‖Ŝ′σmij
σ̂mij‖ + nrmij (6.41)

φ̄cij = ‖Ŝ′
T

ccij
Ŵcij‖ + ‖Ŝ′

T

σcij
Ŵcij‖ + ‖Ŝ′ccij

ĉcij‖ + ‖Ŝ′σcij
σ̂cij‖ + nrcij (6.42)

φ̄gi = ‖Ŝ′
T

cgi
Ŵgi‖ + ‖Ŝ′

T

σgi
Ŵgi‖ + ‖Ŝ′cgi

ĉgi‖ + ‖Ŝ′σgi
σ̂gi‖ + nrgi (6.43)

Using the “GL” matrix (denoted by upright and bold symbol with curly
bracket) and operator (denoted by “•”) introduced in Reference 32, the function
emulators (6.35)–(6.37) can be collectively expressed as

M(q) = [{W∗M}T • {SM}] + EM (6.44)

C(q, q̇) = [{W∗C}T • {SC}] + EC (6.45)

G(q) = [{W∗G}T • {SG}] + EG (6.46)

where [{W∗M}, {SM}], [{W∗C}, {SC}], and [{W∗G}, {SG}] are the desired weights
and basis function GL matrices pairs of the NF emulation of M(q), C(q, q̇),
and G(q), respectively; and EM , EC , EG are the collective NF reconstruction
errors, respectively.

The estimates M̂(q), Ĉ(q, q̇), Ĝ(q), can, accordingly, be expressed as

M̂(q) = [{ŴM}T • {ŜM}] (6.47)

Ĉ(q, q̇) = [{ŴC}T • {ŜC}] (6.48)

Ĝ(q) = [{ŴG}T • {ŜG}] (6.49)

Note that in real implementation, the actual control torque τ must be
provided rather than Bτ given in (6.34). There are various approaches available
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in the literature to solve τ from (6.34), either analytically or numerically. In this
chapter, the following scheme is applied to compute the control torque τ with
rigor and rationality.

Define

u = Bτ (6.50)

Premultiplying both sides of (6.50) by RT, we obtain

RTu = RTBτ

From Assumption 6.3, it is known  that  RTB is nonsingular. Thus, τ is obtained  as

τ = (RTB )−1RTu (6.51)

Substituting (6.51) and (6.47)–(6.49) into the dynamic equation (6.33) yields
the closed-loop system error equation as

Mσ̇ + Cσ = ([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])ν̇

+ ([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])ν

+ ([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])

− Kσ σ + JTλ− E − Kssgn(σ )

− b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̂g

n∑
i=1

φ̄gi |σi|

(6.52)

where E = EM ν̇ + ECν + EG − τd .
The stability of the closed-loop system will be illustrated in the following

theorem.

Theorem 6.1 Consider the nonholonomic mobile robot system described by
dynamic equation (6.1) and the (n−m) independent nonholonomic constraints
(6.2). If the control law is chosen by (6.34), and the parameter adaptation laws
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are chosen by

˙̂WMi = −�Mi • ({ŜMi} − {ŜMci} − {ŜMσ i})ν̇σi (6.53)

˙̂WCi = −�Ci • ({ŜCi} − {ŜCci} − {ŜCσ i})νσi (6.54)

˙̂WGi = −�Gi(ŜGi − ŜGci − ŜGσ i)σi (6.55)

˙̂CMi = −�Mi • {ŜWMci}ν̇σi (6.56)

˙̂CCi = −�Ci • {ŜWCci}νσi (6.57)

˙̂CGi = −�GiŜWGciσi (6.58)

˙̂
�Mi = −�Mi • {ŜWMσ i}ν̇σi (6.59)

˙̂
�Ci = −�Ci • {ŜWCσ i}νσi (6.60)

˙̂
�Gi = −�GiŜWGσ iσi (6.61)

˙̂bm = γbm

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| (6.62)

˙̂bc = γbc

n∑
i=1

n∑
j=1

φ̄cij |σiνj| (6.63)

˙̂bg = γbg

n∑
i=1

φ̄gi |σi| (6.64)

where matrices �Mi,�Ci,�Gi,�Mi,�Ci,�Gi,�Mi,�Ci,�Gi are symmetric
positive definite, and constants γbm, γbc, γbg > 0, the signals ez and ėz asymp-
totically converge to zero, and all the other closed loop signals are semiglobally
uniformly ultimately bounded.
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Proof The time derivative of 1
2σ

TMσ along (6.52) is

σTMTσ̇ = −σTKσ σ − σTE − σTKssgn(σ )+ σTJTλ− σTCσ

+ σT([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])ν̇
+ σT([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])ν
+ σT([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])

− b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̂g

n∑
i=1

φ̄gi |σi|

(6.65)

Using the properties (6.17) and (6.18) given in Lemma 6.1, we have the
following property for the NF approximation error:

σT([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])ν̇
= σT([{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })]
+ [{C̃M}T • {ŜWMc}] + [{�̃M}T • {ŜWMσ }] + DMu)ν̇ (6.66)

where GL matrices {ŜMc}, {ŜMσ }, {ŜWMc}, {ŜWMσ }, and matrix DMu are
defined respectively as:

{ŜMc} =



{ŜMc1}

...
{ŜMcn}


 , {ŜMσ } =



{ŜMσ1}

...
{ŜMσn}




{ŜWMc} =



{ŜWMc1}

...
{ŜWMcn}


 , {ŜWMσ } =



{ŜWMσ1}

...
{ŜWMσn}




with

{ŜMci} = {ŜMci1 · · · ŜMcin}, ŜMcij = Ŝ
′
cmij

ĉmij

{ŜMσ i} = {ŜMσ i1 · · · ŜMσ in}, ŜMσ ij = Ŝ
′
σmij
σ̂mij

{ŜWMci} = {ŜWMci1 · · · ŜWMcin}, ŜWMcij = Ŝ′Tcmij
Ŵmij

{ŜWMσ i} = {ŜWMσ i1 · · · ŜWMσ in}, ŜWMσ ij = Ŝ′Tσmij
Ŵmij
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and DMu = [dmuij] with

|dmuij| ≤ ‖c∗mij
‖ · ‖Ŝ′Tcmij

Ŵmij‖ + ‖σ ∗mij
‖ · ‖Ŝ′Tσmij

Ŵmij‖ + ‖W∗mij
‖ · ‖Ŝ′cmij

ĉmij‖

+ ‖W∗mij
‖ · ‖Ŝ′σmij

σ̂mij‖ + ‖W∗mij
‖1 (6.67)

Noting Assumption 6.2, the following can be obtained:

‖c∗mij
‖ · ‖Ŝ′Tcmij

Ŵmij‖ + ‖σ ∗mij
‖ · ‖Ŝ′Tσmij

Ŵmij‖ + ‖W∗mij
‖ · ‖Ŝ′cmij

ĉmij‖
+ ‖W∗mij

‖ · ‖Ŝ′σmij
σ̂mij‖ + ‖W∗mij

‖1
≤ cmij‖Ŝ′

T

cmij
Ŵmij‖ + σmij‖Ŝ′

T

σmij
Ŵmij‖ + wmij

× (‖Ŝ′cmij
ĉmij‖ + ‖Ŝ

′
σmij
σ̂mij‖ + nrmij )

≤ b∗mij
(‖Ŝ′Tcmij

Ŵmij‖ + ‖Ŝ′
T

σmij
Ŵmij‖ + ‖Ŝ′cmij

ĉmij‖ + ‖Ŝ′σmij
σ̂mij‖ + nrmij )

= b∗mij
φ̄mij (6.68)

Thus, (6.66) becomes

σT([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])ν̇
= σT([{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })] + [{C̃M}T • {ŜWMc}]

+ [{�̃M}T • {ŜWMσ }])ν̇ +
n∑

i=1

n∑
j=1

σiduij ν̇j

≤ σT([{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })] + [{C̃M}T • {ŜWMc}]

+ [{�̃M}T • {ŜWMσ }])ν̇ +
n∑

i=1

n∑
j=1

b∗mij
φ̄mij |σiν̇j|

≤ σT([{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })] + [{C̃M}T • {ŜWMc}]

+ [{�̃M}T • {ŜWMσ }])ν̇ + b∗m
n∑

i=1

n∑
j=1

φ̄mij |σiν̇j| (6.69)
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Similarly, we have the following inequalities for other approximation
errors as

σT([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])ν

≤ σT([{W̃C}T • ({ŜC} − {ŜCc} − {ŜCσ })] + [{C̃C}T • {ŜWCc}]

+ [{�̃C}T • {ŜWCσ }])ν + b∗c
n∑

i=1

n∑
j=1

φ̄cij |σiνj| (6.70)

σT([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])

≤ σT([{W̃G}T • ({ŜG} − {ŜGc} − {ŜGσ })] + [{C̃G}T • {ŜWGc}]

+ [{�̃G}T • {ŜWGσ }])+ b∗g
n∑

i=1

φ̄gi |σi| (6.71)

where definition for GL matrices {ŜCc}, {ŜCσ }, {ŜWCc}, {ŜWCσ }, {ŜGc},
{ŜGσ }, {ŜWGc}, and {ŜWGσ }, which is omitted here for conciseness, can be
similarly made.

Consider the Lyapunov function candidate

V = 1

2
σTMσ + 1

2

n∑
i=1

W̃T
Mi�
−1
Mi W̃Mi + 1

2

n∑
i=1

W̃T
Ci�
−1
Ci W̃Ci + 1

2

n∑
i=1

W̃T
Gi

× �−1
Gi W̃Gi + 1

2

n∑
i=1

C̃T
Mi�

−1
Mi C̃Mi + 1

2

n∑
i=1

C̃T
Ci�
−1
Ci C̃Ci

+ 1

2

n∑
i=1

C̃T
Gi�

−1
Gi C̃Gi + 1

2

n∑
i=1

�̃
T
Mi�

−1
Mi �̃Mi + 1

2

n∑
i=1

�̃
T
Ci�
−1
Ci �̃Ci

+ 1

2

n∑
i=1

�̃
T
Gi�
−1
Gi �̃Gi + 1

2
γ−1

bm b̃2
m +

1

2
γ−1

bc b̃2
c +

1

2
γ−1

bg b̃2
g +

1

2
ρ3µ

Tµ

(6.72)

with ˜(·) = ˆ(·)− (·)∗.
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By virtue of (6.52), (6.69) to (6.71), the time derivative of V is given by

V̇ = σTMσ̇ + 1

2
σTṀσ +

n∑
i=1

W̃T
Mi�
−1
Mi
˙̂WMi +

n∑
i=1

W̃T
Ci�
−1
Ci
˙̂WCi

+
n∑

i=1

W̃T
Gi�
−1
Gi
˙̂WGi +

n∑
i=1

C̃T
Mi�

−1
Mi
˙̂CMi +

n∑
i=1

C̃T
Ci�
−1
Ci
˙̂CCi

+
n∑

i=1

C̃T
Gi�

−1
Gi
˙̂CGi +

n∑
i=1

�̃
T
Mi�

−1
Mi
˙̂
�Mi +

n∑
i=1

�̃
T
Ci�
−1
Ci
˙̂
�Ci

+
n∑

i=1

�̃
T
Gi�
−1
Gi
˙̂
�Gi + γ−1

bm b̃m
˙̂bm + γ−1

bc b̃c
˙̂bc + γ−1

bg b̃g
˙̂bg + ρ3µ

Tµ̇

≤ 1

2
σTṀσ − σTCσ − σTKσ σ − σTE − σTKssgn(σ )+ σTJTλ

+ σT([{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })]
+ [{C̃M}T • {ŜWMc}] + [{�̃M}T • {ŜWMσ }])ν̇

+ σT([{W̃C}T • ({ŜC} − {ŜCc} − {ŜCσ })]
+ [{C̃C}T • {ŜWCc}] + [{�̃C}T • {ŜWCσ }])ν

+ σT([{W̃G}T • ({ŜG} − {ŜGc} − {ŜGσ })]
+ [{C̃G}T • {ŜWGc}] + [{�̃G}T • {ŜWGσ }])

+
n∑

i=1

W̃T
Mi�
−1
Mi
˙̂WMi +

n∑
i=1

W̃T
Ci�
−1
Ci
˙̂WCi +

n∑
i=1

W̃T
Gi�
−1
Gi
˙̂WGi

+
n∑

i=1

C̃T
Mi�

−1
Mi
˙̂CMi +

n∑
i=1

C̃T
Ci�
−1
Ci
˙̂CCi +

n∑
i=1

C̃T
Gi�

−1
Gi
˙̂CGi

+
n∑

i=1

�̃
T
Mi�

−1
Mi
˙̂
�Mi +

n∑
i=1

�̃
T
Ci�
−1
Ci
˙̂
�Ci +

n∑
i=1

�̃
T
Gi�
−1
Gi
˙̂
�Gi

− b̃m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̃c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̃g

n∑
i=1

φ̄gi |σi|

+ γ−1
bm b̃m

˙̂bm + γ−1
bc b̃c
˙̂bc + γ−1

bg b̃g
˙̂bg + ρ3µ

Tµ̇ (6.73)
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As matrix Ṁ − 2C is skew-symmetric, σT(Ṁ − 2C)σ = 0, ∀x �= 0.
Noting that

σT[{W̃M}T • {ŜM}]ν̇ =
[
σ1 σ2 · · · σn

]


{W̃M1}T • {ŜM1}ν̇

...
{W̃Mn}T • {ŜMn}ν̇




=
n∑

i=1

{W̃Mi}T • {ŜMi}ν̇σi (6.74)

and similarly

σT[{W̃M}T • ({ŜM} − {ŜMc} − {ŜMσ })]ν̇

=
n∑

i=1

{W̃Mi}T • ({ŜMi} − {ŜMci} − {ŜMσ i})ν̇σi

σT[{C̃M}T • {ŜWMc}]ν̇ =
n∑

i=1

{C̃Mi}T • {ŜWMci}ν̇σi

σT[{�̃M}T • {ŜWMσ }]ν̇ =
n∑

i=1

{�̃Mi}T • {ŜWMσ i}ν̇σi

σT[{W̃C}T • ({ŜC} − {ŜCc} − {ŜCσ })]ν

=
n∑

i=1

{W̃Ci}T • ({ŜCi} − {ŜCci} − {ŜCσ i})νσi

σT[{C̃C}T • {ŜWCc}]ν =
n∑

i=1

{C̃Ci}T • {ŜWCci}νσi

σT[{�̃C}T • {ŜWCσ }]ν =
n∑

i=1

{�̃Ci}T • {ŜWCσ i}νσi

σT[{W̃G}T • ({ŜG} − {ŜGc} − {ŜGσ })] =
n∑

i=1

W̃T
Gi(ŜGi − ŜGci − ŜGσ i)σi

σT[{C̃G}T • {ŜWGc}] =
n∑

i=1

C̃T
GiŜWGciσi

σT[{�̃G}T • {ŜWGσ }] =
n∑

i=1

�̃
T
GiŜWGσ iσi
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Equation (6.73) becomes

V̇ ≤ 1

2
σTṀσ − σTCσ − σTKσ σ − σTE − σTKssgn(σ )+ σTJTλ

+
n∑

i=1

{W̃Mi}T • ({ŜMi} − {ŜMci} − {ŜMσ i})ν̇σi

+
n∑

i=1

{C̃Mi}T • {ŜWMci}ν̇σi +
n∑

i=1

{�̃Mi}T • {ŜWMσ i}ν̇σi

+
n∑

i=1

{W̃Ci}T • ({ŜCi} − {ŜCci} − {ŜCσ i})νσi

+
n∑

i=1

{C̃Ci}T • {ŜWCci}νσi +
n∑

i=1

{�̃Ci}T • {ŜWCσ i}νσi

+
n∑

i=1

W̃T
Gi(ŜGi − ŜGci − ŜGσ i)σi +

n∑
i=1

C̃T
GiŜWGciσi +

n∑
i=1

�̃
T
GiŜWGσ iσi

+
n∑

i=1

W̃T
Mi�
−1
Mi
˙̂WMi +

n∑
i=1

W̃T
Ci�
−1
Ci
˙̂WCi +

n∑
i=1

W̃T
Gi�
−1
Gi
˙̂WGi

+
n∑

i=1

C̃T
Mi�

−1
Mi
˙̂CMi +

n∑
i=1

C̃T
Ci�
−1
Ci
˙̂CCi +

n∑
i=1

C̃T
Gi�

−1
Gi
˙̂CGi

+
n∑

i=1

�̃
T
Mi�

−1
Mi
˙̂
�Mi +

n∑
i=1

�̃
T
Ci�
−1
Ci
˙̂
�Ci +

n∑
i=1

�̃
T
Gi�
−1
Gi
˙̂
�Gi

− b̃m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̃c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̃g

n∑
i=1

φ̄gi |σi|

+ γ−1
bm b̃m

˙̂bm + γ−1
bc b̃c
˙̂bc + γ−1

bg b̃g
˙̂bg + ρ3µ

Tµ̇ (6.75)

Substituting the weight vectors updating laws (6.53)–(6.55), the center vectors
updating laws (6.56)–(6.58), the width vectors updating laws (6.59)–(6.61), and
the constant parameters updating laws (6.62)–(6.64) into (6.75) yields

V̇ ≤ −σTKσ σ − σTE − σTKssgn(σ )+ σTJTλ+ ρ3µ
Tµ̇ (6.76)

Noting that ksii ≥ |Ei| > 0, it is obvious that [−σTE − σTKssgn(σ )] ≤ 0. In
addition, from (6.27), we know that µ̇ = −ρ2µ − ρ−1

3 JTλ and from (6.28),
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σT = sTRT + µT. Thus, we have

σTJTλ+ ρ3µ
T(1+ kλ)µ̇ = −ρ2ρ3µ

Tµ+ sTRTJTλ (6.77)

Noting RTJT = 0 from (6.4), we then have

V̇ ≤ −σTKσ σ − ρ2ρ3µ
Tµ ≤ 0 (6.78)

As V ≥ 0 and V̇ ≤ 0, V ∈ L∞. From the definition of V , it follows that σ ,
µ ∈ Ln∞, ŴMi, ŴCi, ŴGi, ĈMi, ĈCi, ĈGi, �̂Mi, �̂Ci, �̂Gi ∈ Lni∞, i = 1, . . . , n
with ni denoting the compatible size of the vectors, and b̂m, b̂c, b̂g ∈ L∞.

Integrating both sides of (6.78), we have

∫ t

0
σTKσ σ ≤ V(0)− V(t) ≤ V(0) (6.79)

Hence σ ∈ Ln
2.

From (6.28), we have s = (RTR)−1RT(σ − µ), hence s ∈ Lm∞ since R is
bounded. From Lemma 6.2, it can be concluded that ez, ėz ∈ Lm∞.

From (6.27), (6.29), and (6.31), we have

M̂ν̇ + Ĉν + Ĝ = M̂(Ṙżr + Rz̈r − µ̇)+ Ĉ(Rżr − µ)+ Ĝ

= M̂(Ṙżr + Rz̈r)+ ĈRżr + Ĝ− Ĉµ+ ρ−1
3 M̂JTλ (6.80)

From (6.26), it is known that

q̇ = Rżr + Rs (6.81)

q̈ = Ṙżr + Rz̈r + Ṙs+ Rṡ (6.82)

Replacing τ by (6.51) in dynamic equation (6.1) by noting f = JT(q)λ,
Equations (6.80)–(6.82), the closed-loop system becomes

MṘs+MRṡ+ CRs− (M̂ −M)(Ṙżr + Rz̈r)− (Ĉ − C)Rżr − (Ĝ− G)

+ Ĉµ+ Kσ σ + Kssgn(σ )+ b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j|

+ b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| + b̂g

n∑
i=1

φ̄gi |σi| − τd

= (ρ−1
3 M̂ + In)J

Tλ (6.83)
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Invoking (6.44)–(6.46) and (6.47)–(6.49), Equation (6.83) then becomes

MṘs+MRṡ+ CRs− ([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])(Ṙżr + Rz̈r)

− ([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])Rżr

− ([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])+ Ĉµ

+ Kσ σ + Kssgn(σ )+ b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| + b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj|

+ b̂g

n∑
i=1

φ̄gi |σi| + EM(Ṙżr + Rz̈r)+ ECRżr + EG − τd

= (ρ−1
3 M̂ + In)J

Tλ (6.84)

Since M(q) is nonsingular, multiplying J(q)M−1(q) on both sides of (6.84)
yields

JṘs+ JM−1
[

CRs− ([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])(Ṙżr + Rz̈r)

− ([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])Rżr

− ([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])+ Ĉµ

+ Kσ σ + Kssgn(σ )+ b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| + b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj|

+ b̂g

n∑
i=1

φ̄gi |σi| + EM(Ṙżr + Rz̈r)+ ECRżr + EG − τd

]

= JM−1(ρ−1
3 M̂ + In)J

Tλ (6.85)

Since we have established that ez, ėz ∈ Lm∞, from Assumption 6.4 and
(6.24), it can be concluded that żr(t), z̈r(t) ∈ Lm∞. As r is shown to be
bounded, so is ż from (6.26). Hence, q̇(t) = Rż(t) ∈ Ln∞. It follows that
M(q), M̂(q), C(q, q̇), Ĉ(q, q̇) ∈ Ln×n∞ , and G(q), Ĝ(q) ∈ Ln∞. Thus, the left
hand side of (6.85) is bounded. In fact, ρ3 can be properly chosen to keep
(ρ−1

3 M̂ + In) on the right hand side of (6.85) from being singular. Hence, we
have λ ∈ Ln−m∞ . As λd is bounded, so are eλ and Bτ .

From (6.1), we can conclude that q̈ ∈ Ln∞.
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As λ ∈ Ln−m∞ and µ ∈ Ln∞, from Equation (6.27), it is obvious that
µ̇ ∈ Ln∞. Thus, from (6.31), we have ν̇ ∈ Ln∞. Since ż, z̈ ∈ Lm∞ have been
established before, we can conclude from (6.32) that σ̇ ∈ Ln∞. Now, with
σ ,µ ∈ Ln

2, σ̇ , µ̇ ∈ Ln∞, according to Lemma 6.3, we can conclude that σ and µ
asymptotically converge to zero. Hence, from (6.28), it can be concluded that
s → 0 as t → ∞. According to Lemma 6.3, we can also obtain ez, ėz → 0
as t→∞.

Since q̇, q̈ ∈ Ln∞, q and q̇ are uniformly continuous. Therefore, from
Property 6.1, we can conclude that matrices M(q), C(q, q̇), G(q), S(q), J(q),
D̂(q), Ĉ(q, q̇), and Ĝ(q) are uniformly continuous.

Remark 6.5 If Bτ is directly replaced by (6.34) in the dynamic equation (6.1)
without considering the real implementation issue, a wrong conclusion may be
drawn.

Substituting (6.34) and (6.47) to (6.49) into the dynamic equation (6.33)
yields the closed-loop system error equation as

Mσ̇ + Cσ = ([{ŴM}T • {ŜM}] − [{W∗M}T • {SM}])ν̇

+ ([{ŴC}T • {ŜC}] − [{W∗C}T • {SC}])ν

+ ([{ŴG}T • {ŜG}] − [{W∗G}T • {SG}])

− Kσ σ + (1+ kλ)J
Teλ − E − Kssgn(σ )

− b̂m

n∑
i=1

n∑
j=1

φ̄mij |σiν̇j| − b̂c

n∑
i=1

n∑
j=1

φ̄cij |σiνj| − b̂g

n∑
i=1

φ̄gi |σi|

(6.86)

which is misleading as it seems there is control effort applied to force error
eλ and the wrong conclusion of asymptotic convergence of eλ may be drawn.
This is due to the ignorance of the inherent property RTJT = 0. Thus, for the
proposed scheme in this chapter, one can only guarantee the boundedness of
eλ, which will be confirmed in the simulation study.

6.5 SIMULATION STUDIES

Consider a mobile robot  moving  on  a horizontal plane, driven  by  two  rear wheels
mounted on the same axis, and having one front passive wheel. The dynamic
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model can be expressed in the matrix form (6.1) with

M(q) =



m 0 mL sin θ

0 m −mL cos θ

mL sin θ −mL cos θ I




C(q, q̇) =



0 0 mLθ̇ cos θ

0 0 mLθ̇ sin θ

0 0 0


 , G(q) = 0, B(q) = 1

R1




cos θ cos θ

sin θ sin θ

R2 −R2




(6.87)

where q = [xc yc θ ]T ∈ R3 is the generalized coordinate with (xc, yc) being
the coordinates of the center of mass of the vehicle, and θ being the orientation
angle of the vehicle with respect to the X-axis, τ = [τr τl]T ∈ R2 is the input
vector with τr and τl being the torques provided by the motors mounted on the
right and left respectively, m is the mass of the vehicle, I is its inertial moment
around the vertical axis at the center of mass, L denotes the distance between
the mid-distance of the rear wheels to the center of mass, 2R1 denotes the radius
of the rear wheels, and 2R2 is the distance between the two rear wheels. The
constraint forces are f = JT(q)λ.

The nonholonomic constraints confine the vehicle to move only in the direc-
tion normal to the axis of the driving wheels, that is, the mobile bases satisfying
the conditions of pure rolling and nonslipping

ẋc sin θ − ẏc cos θ + Lθ̇ = 0 (6.88)

From (6.88), it is known that J(q) and R(q) are in the form

JT(q) =



sin θ

− cos θ

L


 , R(q) =




cos θ −L sin θ

sin θ L cos θ

0 1


 (6.89)

Thus, the constraint forces can be written as f = JT(q)λ with

λ = mẍc sin θ − mÿc cos θ + mLθ̈ (6.90)
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In addition, the kinematic model (6.5) of the nonholonomic systems in terms
of linear velocity v and angular velocity ω can be written as

ż =
[

v

ω

]
=
[

ż1

ż2

]
,




ẋc

ẏc

θ̇


 =




cos θ −L sin θ

sin θ L cos θ

0 1



[

v

ω

]
(6.91)

The desired manifold �nhd is chosen as

�nhd = {(q, q̇, λ)|z(t) = zd(t), q̇ = S(q)żd(t), λ = λd}

with zd = żd = 0, λd = 10.
The existence of sgn-function in the controller (6.34) may inevitably lead

to chattering in control torques. To avoid such a phenomenon, a sat-function is
used to replace the sgn-function. The sat-function is given by

sat(σ ) =




1 if σ > ε

−1 if σ < −ε
1

ε
σ otherwise

where ε = 0.01 and Ks = 5 are chosen in the simulation.
The simulation is carried out using NF networks which are essentially the

TSK-type fuzzy system with its membership function being chosen as the
Gaussian function. Each element of the unknown system matrices M(q) and
C(q, q̇) is modeled by the NF networks, which makes it different from con-
ventional adaptive control design, where a relatively large amount of a prior
knowledge about the system dynamics and the linear parametrization condition
are required. The proposed adaptive NF controller, on the other hand, can be
treated as an indirect adaptive scheme or partitioned NF systems [29,45], and
does not require any precise knowledge on the system dynamics. The parameters
in each NF subsystem can be separately tuned, which yield a faster updating
speed, as can be seen from the simulation results.

In the simulation, the parameters of the system are taken as: m = 10 kg,
I = 5 kgm2, R1 = 0.05 m, R2 = 0.5 m, L = 0.4 m, τd(t) =
[0.5 sin t, 0.1 sin t, 0.2 cos t]T, q(0) = [2.0, 0.5, 0.785]T, q̇(0) =
[0.2, 0.2, 0]T, and ρ1 = diag(5, 5), ρ2 = 1, ρ3 = 10. The control gain Kσ
and force control gain Kλ are selected as Kσ = diag(1, 1), Kλ = 1. The
neural weights adaptation gains are chosen as �M = 0.1IN1 , �C = 0.1IN2 , with
N1 = 100 and N2 = 200 being the number of rules of the NF system to estimate
matrices M and C, respectively.
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FIGURE 6.1 Responses of the states of the system.
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FIGURE 6.2 Control torques of the mobile robot.

Figure 6.1 shows that the system’s states response, including xc, yc, θ , ẋc,
ẏc, and θ̇ , are all bounded, and the control torques are bounded as can be
seen in Figure 6.2. The estimates of the NN weights are shown to be bounded
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FIGURE 6.5 Responses of the linear velocity v and angular velocity ω.

confirms that the stabilization of internal state z is achieved, while the linear
velocity v and angular velocity ω are shown to converge asymptotically to zero
in Figure 6.5.

In the simulations, the parameters have been selected at will to demonstrate
the effectiveness of the proposed method. Different control performance can be
achieved by adjusting parameter adaptation gains and other factors, such as
the size of the networks, and the exploration of the knowledge of the systems.
In fact, the control method has been developed as a turn-key solution without the
need for much detailed analysis of the physical systems. For the best perform-
ance, the physical properties should be explored and implemented in control
system design. By examining the exact expressions for D(q) and C(q, q̇), we
know that many of their elements are constants, such as m, I , and 0. In actual
control system design, there is no need to estimate the 0s, while adaptive laws
can be used to update the unknown m and I more elegantly.

6.6 CONCLUSION

In this chapter, adaptive NF control has been investigated for uncertain
nonholonomic mobile robots in the presence of unknown disturbances. Despite
the differences between the NNs and fuzzy logic systems, a unified adaptive NF
control has been presented for function approximation. Because of the difficulty
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in deriving the rules in fuzzy systems for systems with little physical insights,
the outputs of the “rules” are updated numerically using adaptive control tech-
niques. It is shown that the controller can drive the system motion to converge to
the desired manifold and at the same time guarantee the asymptotic convergence
of the force tracking error without the requirement of the PE condition. By using
NF approximation, the proposed controller is indeed a turned key solution for
control system design as it requires little information on the system dynam-
ics. Numerical simulation has been carried out to show the effectiveness of the
proposed method for uncertain mobile robots.
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7.1 INTRODUCTION

A number of typical mobile robots can be described by the chained form or
more general nonholonomic systems. Due to Brockett’s theorem [1], it is
well known that nonholonomic systems with restricted mobility cannot be
stabilized to a desired configuration (or posture) via differentiable, or even
continuous, pure-state feedback [2]. The design of stabilizing control laws for
these systems is a challenging problem which has attracted much attention in
the control community. A number of approaches have been proposed for the
problem, which can be classified as (i) discontinuous time-invariant stabiliza-
tion [3], (ii) time-varying stabilization [4], and (iii) hybrid stabilization [5, 6].
In References 7 and 8, an elegant approach to constructing piecewise continu-
ous controllers has been developed. A nonsmooth state transformation is used
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to overcome the obstruction to stabilizability due to Brockett’s theorem, and
a smooth time-invariant feedback is used to stabilize the transformed system.
In the original coordinates, the resulting feedback control is discontinuous.
Various time varying controllers have been proposed in the literature [4,9]. The
kinematic nonholonomic control systems can be asymptotically stabilized to
an equilibrium point by smooth time-periodic static state feedback. However,
the convergence rate for this method is comparatively slow. Hybrid controllers
combine continuous time features with either discrete event features or discrete
time features [6,10].

Among the many control strategies that have been proposed for various non-
holonomic systems, research results can generally be classified into two classes.
The first class is kinematic control, which provides the solutions only at the pure
kinematic level, where the systems are represented by their kinematic models
and velocity acts as the control input. Based on exact system kinematics, dif-
ferent control strategies have been proposed [4,5,8]. Recently, a few research
works have been carried out to design controllers against possible existence
of modeling uncertainties and external disturbances [11–13]. Robust exponen-
tial regulation is proposed in Reference 11 by assuming known bounds of the
nonlinear drifts. It is also required that the x0-subsystem is Lipschitz. To relax
this condition, adaptive state feedback control is proposed in Reference 12 for
systems with strong nonlinear drifts.

It is noted that one commonly used approach for control system design
of nonholonomic systems is to convert, with appropriate state and input trans-
formations, the original systems into some canonical forms for which controller
design can be carried out more easily [14–17]. The chained form [14] and the
power form [15] are two of the most important canonical forms of nonholo-
nomic control systems. The class of nonholonomic systems in chained form was
first introduced by Murray and Sastry [14] and has been studied as a benchmark
example in the literatures. It is well known that many mechanical systems with
nonholonomic constraints can be locally, or globally, converted to the chained
form under coordinate change and state feedback [5,14]. The typical examples
include tricycle-type mobile robots and cars towing several trailers. A new
canonical form, called extended nonholonomic integrators (ENI) was presen-
ted in Reference 17, and it was shown that nonholonomic systems in ENI form,
chained and power forms are equivalent, and can thus be dealt with in a unified
framework. Using the special algebraic structures of the canonical forms, vari-
ous feedback strategies have been proposed to stabilize nonholonomic systems
in the literature [16–21].

The second class is dynamic control, taking inertia and forces into account,
where the torque and force are taken as the control inputs. Different researchers
have investigated this problem. Sliding mode control is applied to guarantee
the uniform ultimate boundedness of tracking error in Reference 24. In Ref-
erence 23, stable adaptive control is investigated for dynamic nonholonomic
chained systems with uncertain constant parameters. In Reference 24, adaptive
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robust stabilization is considered for dynamic nonholonomic chained systems
with external disturbances. Using geometric phase as a basis, control of
Caplygin dynamical systems was studied in Reference 2, and the closed-loop
system was proved to achieve the desired local asymptotic stabilization of
a single equilibrium solution. The principal limitation associated with these
schemes is that controllers are designed at the velocity input level or torque
input level and the actuator dynamics are excluded.

As demonstrated in Reference 25, actuator dynamics constitute an important
component of the complete robot dynamics, especially in the case of high-
velocity movement and highly varying loads. Many control methods have
therefore been developed to take into account the effects of actuator dynamics

control of the nonholonomic systems including the actuator dynamics.
In this chapter, the stabilization problem is considered for general nonholo-

nomic mobile robots at the actuator level, taking into account the uncertainties
in dynamics and the actuators. The controller design consists of two stages. In
the first stage, to facilitate control system design, the nonholonomic kinematic
subsystem is transformed into a skew-symmetric form and the properties of the
overall systems are discussed. Then, a virtual adaptive controller is presented
to compensate for the parametric uncertainties of the kinematic and dynamic
subsystems. In the second stage, an adaptive controller is designed at the actu-
ator level and the controller guarantees that the configuration state of the system
converges to the origin.

This chapter is organized as follows: the model and model transformation
of the system including actuator dynamics are presented in Section 7.2. The

7.2 DYNAMIC MODELING AND PROPERTIES

In general, a nonholonomic system including actuator dynamics, having
an n-dimensional configuration space with generalized coordinates q =
[q1, . . . , qn]T and subject to n− m constraints can be described by [30]

J(q)q̇ = 0 (7.1)

M(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)KN I + JT(q)λ (7.2)

L
dI

dt
+ RI + Kaω = ν (7.3)

where M(q) ∈ Rn×n is the inertia matrix which is symmetric positive def-
inite, C(q, q̇) ∈ Rn×n is the centripetal and coriolis matrix, G(q) ∈ Rn

is the gravitation force vector, B(q) ∈ Rn×r is the input transformation

© 2006 by Taylor & Francis Group, LLC

adaptive control law and stability analysis are presented in Section 7.3. Simu-
lation studies are presented in Section 7.4 to show that the proposed method is
effective. The conclusions are given in Section 7.5.
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matrix, KN ∈ Rr×r is a positive definite diagonal matrix which character-
izes the electromechanical conversion between current and torque, I denotes
an r-element vector of armature current, J(q) ∈ R(n−m)×n is the matrix
associated with the constraint, and λ ∈ Rn−m is the vector of constraint
forces. The terms L = diag[L1, L2, L3, . . . , Lr], R = diag[R1, R2, R3, . . . , Rr],
Ka = diag[Ka1, Ka2, Ka3, . . . , Kar], ω = [ω1,ω2, . . . ,ωr]T, and ν ∈ Rr rep-
resent the equivalent armature inductances, resistances, back emf constants,
angular velocities of the driving motors, and the control input voltage vector,
respectively. Constraint 7.1 is assumed to be completely nonholonomic for all
q ∈ 
n and t ∈ 
. To completely actuate the nonholonomic system, B(q) is
assumed to be a full-rank matrix and r ≥ m.

Dynamic subsystem (7.2) has the following properties [31,32]:

Property 7.1 There exists a so-called inertial parameter p and vector θ with
components depending on the mechanical parameters (mass, moment of inertia,
etc.,) such that

M(q)v̇ + C(q, q̇)v + G(q) = �(q, q̇, v, v̇)θ (7.4)

where � is a matrix of known functions of q, q̇, v, and v̇; and θ is a vector of
inertia parameters and assumed completely unknown in this chapter.

Property 7.2 Ṁ − 2C is skew-symmetric.

If matrix N ∈ Rn×n is skew-symmetric, then N = −NT and YTNY = 0 for
all Y ∈ Rn.

Since J(q) ∈ R(n−m)×n, it is always realizable to find an m rank matrix
S(q) ∈ Rn×m formed by a set of smooth and linearly independent vector fields
spanning the null space of J(q), that is,

ST(q)JT(q) = 0 (7.5)

Since S(q) = [s1(q), . . . , sm(q)] is formed by a set of smooth and linearly
independent vector fields spanning the null space of J(q), define an auxiliary
time function v = [v1, . . . , vm]T ∈ Rm such that

q̇ = S(q)v(t) = s1(q)v1 + · · · + sm(q)vm (7.6)

Equation (7.6) is the so-called kinematic model of nonholonomic systems in
the literature.

Differentiating Equation (7.6) yields

q̈ = Ṡ(q)v + S(q)v̇ (7.7)
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FIGURE 7.1 Differential drive wheeled mobile robot.

Substituting (7.6) and (7.7) into Equation (7.2), we have the transformed
kinematic and dynamic subsystems of the whole nonholonomic system

q̇ = S(q)v = s1(q)v1 + · · · + sm(q)vm (7.8)

M(q)S(q)v̇ + C1(q, q̇)v + G(q) = B(q)KN I + JTλ (7.9)

where

C1(q, q̇) = M(q)Ṡ + C(q, q̇)S

In the actuator dynamics (7.3), the relationship between ω and v is dependent
on the type of mechanical system and can be generally expressed as

ω = µv (7.10)

The structure of µ depends on the mechanical systems to be controlled.
For instance, in the simulation example, a type (2,0) differential drive
mobile robot is used to illustrate the controller design, where µ can be
derived as

µ = 1

P

[
1 L
1 −L

]
(7.11)

where P and L are shown in Figure 7.1.
Eliminating ω from the actuator dynamics (7.3) by substituting (7.10), one

obtains

L
dI

dt
+ RI + Kaµv = ν (7.12)
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Until now we have brought the kinematics (7.1), dynamics (7.2), and actuator
dynamics (7.3) of the considered nonholonomic system from the generalized
coordinate system q ∈ 
n to feasible independent generalized velocities v ∈ 
m

without violating the nonholonomic constraint (7.1).
For ease of controller design in this chapter, the existing results for the con-

trol of nonholonomic canonical forms in the literature are exploited. In the fol-
lowing, the kinematic nonholonomic subsystem (7.8) is first converted into the
chained canonical form, and then to the skew-symmetric chained form for which
a very nice controller structure [18] exists in the literature and can be utilized.
This will be detailed later. The nonholonomic chained subsystem considered
in this chapter is m-input, (m − 1)-chain, single-generator chained form given
by [9, 24]

ẋ1 = u1

ẋj,i = u1xj,i+1 (2 ≤ i ≤ nj − 1) (1 ≤ j ≤ m − 1)

ẋj,nj = uj+1

(7.13)

Note that, in Equation (7.13), X = [x1, X2, . . . , Xm]T ∈ Rn with Xj=[xj−1,2, . . . ,
xj−1,nj−1 ] (2 ≤ j ≤ m) are the states and u = [u1, u2, . . . , um]T are the inputs of
the kinematic subsystem.

The chained form is one of the most important canonical forms of nonholo-
nomic control systems. It has been shown in References 5 and 14 and references
therein that many nonlinear mechanical systems with nonholonomic constraints
on velocities can be transformed, either locally or globally, to the chained form
system via coordinates and state feedback transformation. The necessary and
sufficient conditions for transforming system (7.8) into the chained form are
given in Reference 33. The following assumption is made in this chapter.

Assumption 7.1 The kinematic model of a nonholonomic system given by
Equation (7.8) can be converted into chained form (7.13) by some diffeomorphic
coordinate transformation X = T1(q) and state feedback v = T2(q)u where u
is a new control input.

The existence and construction of the transformation for these systems have
been established in the literature [9,34]. It is given here for completeness of the
presentation. For detailed explanations of the notations on differential geometry
used below, readers are referred to Reference 35.

Proposition 7.1 Consider the drift-free nonholonomic system

q̇ = s1(q)v1 + · · · + sm(q)vm
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where si(q) are smooth, linearly independent input vector fields. There exist
state transformation X = T1(q) and feedback v = T2(q)u on some open set
U ⊂ Rn to transform the system into an (m−1)-chain, single-generator chained
form, if and only if there exists a basis f1, . . . , fm for 
0 := span{s1, . . . , sm}
which has the form

f1 = (∂/∂q1)+
n∑

i=2

f i
1(q)∂/∂qi

fj =
n∑

i=2

f i
j (q)∂/∂qi, 2 ≤ j ≤ m

such that the distributions

Gj = span{adi
f1

f2, . . . , adi
f1

fm : 0 ≤ i ≤ j},
0 ≤ j ≤ n− 1

have constant dimension on U, are all involutive, and Gn−1 has dimension n−1
on U [9, 34].

Using the constructive method given in Reference 14, a two input
controllable system, that is,

q̇ = s1(q)v1 + s2(q)v2 (7.14)

where s1(q), s2(q) are linearly independent and smooth, q ∈ Rn, v = [v1, v2]T,
can be transformed into chained form (7.13) as

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...

ẋn = xn−1u1

(7.15)

Under Assumption 7.1, that is, the existence of transformations X =
T1(q), v = T2(q)u, dynamic subsystem (7.9) is correspondingly converted into

M2(X)S2(X)u̇+ C2(X , Ẋ)u+ G2(X) = B2(X)KN I + JT
2 (X)λ (7.16)
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where

M2(X) = M(q)|q=T−1
1 (X)

S2(X) = S(q)T2(q)|q=T−1
1 (X)

C2(X , Ẋ) = C1(q, q̇)T2 +M(q)S(q)Ṫ2(q)|q=T−1
1 (X)

G2(X) = G(q)|q=T−1
1 (X)

B2(X) = B(q)|q=T−1
1 (X)

J2(X) = J(q)|q=T−1
1 (X)

The actuator dynamics is transformed to

L
dI

dt
+ RI + KaQ(u,µ, X) = ν (7.17)

where
Q = µT2(q)u|q=T−1

1 (X)

Next, let us further transform the chained form into skew-symmetric chained
form for the convenience of controller design. This transformation is the simple
extension of the transformation of the one-generation, two-inputs, single-
chained system given by Samson [18]. As shown in References 18, 23, and
24 by introducing the skew-symmetric chained form, via Lyapunov-like ana-
lysis, it is easier to design U2 = [u2, . . . , um]T and a time-varying control u1
to globally stabilize [x1, X2, . . . , Xm]T of the kinematic subsystem, as will be
detailed later.

The kinematic model of chained form (7.13) can be equivalently written as

Ẋ = h1(X)u1 +
m∑

j=2

h2,juj = h1(X)u1 + h2U2 (7.18)

where

h1(X) = [1, x1,3, . . . , x1,n1, 0, . . . , xm−1,3, . . . , xm−1,nm−1 , 0]T

h2 = [h2,2, . . . , h2,m]T

and h2,j, j = 2, . . . , m is an n-dimensional vector with the 1+∑j
i=1(ni − 1)th

element being 1 and other elements being zero.
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Consider the following coordinates transformation

z1 = x1

zj,2 = xj,2

zj,3 = xj,3

zj,i+3 = ρj,izj,i+1 + Lh1 zj,i+2 (1 ≤ i ≤ nj − 3) (1 ≤ j ≤ m − 1)

(7.19)

where ρj,i are real positive numbers, and Lh1zj,i = (∂zj,i/∂X)h1(X) are the
Lie derivatives of zj,i along h1(X). This transformation can convert the original
chained system into the skew-symmetric chained form.

Define Z = [z1, z1,2, . . . , z1,n1 , . . . , zm−1,2, . . . , zm−1,nm−1 ]T ∈ Rn. Coordin-
ate transformation (7.19) can also be written in a matrix form as below:

Z = �X

where � = diag[1,�1, . . . ,�m−1]T with �k = [ψj,i] ∈ Rnk−1×nk−1 being

ψj,j = 1 (j = 1, 2, . . . , nk − 1)

ψj,i = 0 (j < i; i, j = 1, 2, . . . , nk − 1)

ψj,i = 0 ((i + j) mod 2 �= 0)

ψj,i = ρj,i−3ψj,i−2 + ψj−1,i−1 ( j = 3, 4, . . . , nk − 1; i = 1, 2, . . . , nk − 1)
(7.20)

It is explicit that matrix � is of full rank. Moreover, Lh2 zj,iU2 = 0 (1 ≤ i ≤
nj − 1), and Lh2 zj,nj U2 = uj+1. Taking the time derivative of zj,i+3 and using
(7.18), we have

żj,i+3 = ∂zj,i+3

∂X
Ẋ = (Lh1 zj,i+3)u1 + (Lh2 zj,i+3)U2 (7.21)

From (7.19), we know that for 0 ≤ i ≤ nj − 4, there is

Lh1 zj,i+3 = −ρj,i+1zj,i+2 + zj,i+4 (7.22)

Hence, for 0 ≤ i ≤ nj − 4, Equation (7.21) becomes

żj,i+3 = −ρj,i+1u1zj,i+2 + u1zj,i+4 (1 ≤ j ≤ m − 1) (7.23)

while for i = nj − 3

żj,i+3 = Lh1 zj,nj u1 + uj+1 (1 ≤ j ≤ m − 1) (7.24)
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Thus the original system has been converted into the following skew-
symmetric chained form with actuator dynamics:

ż1 = u1

żj,2 = u1zj,3

żj,i+3 = −ρj,i+1u1zj,i+2 + u1zj,i+4 (1 ≤ j ≤ m − 1)(0 ≤ i ≤ nj − 4)

żj,nj = Lh1zj,nj u1 + uj+1 (7.25)

M3(Z)S3(Z)u̇+ C3(Z , Ż)u+ G3(Z) = B3(Z)KN I + JT
3 (Z)λ (7.26)

L
dI

dt
+ RI + KaQ3(u,µ, Z) = ν (7.27)

where

M3(Z) = M2(X)|X=�−1(Z)

C3(Z , Ż) = C2(X, Ẋ)|X=�−1(Z)

G3(Z) = G2(X)|X=�−1(Z)

B3(Z) = B2(X)|X=�−1(Z)

J3(Z) = J2(X)|X=�−1(Z)

Q3(u,µ, Z) = Q3(u,µ, X)|X=�−1(Z)

Multiplying ST
3 to both sides of (7.26), we have

ST
3 M3S3u̇+ ST

3 C3u+ ST
3 G3 = ST

3 B3KN I (7.28)

which is more appropriate for controller design as the constraint λ has been
eliminated from the dynamic equation.

To facilitate controller design, the properties of dynamic model (7.26) are
listed below.

Property 7.3 M4 = ST
3 M3S3 is symmetric positive definite and bounded.

Property 7.4 Ṁ4 − 2ST
3 C3 is a skew-symmetric matrix. This property will be

fully exploited for control system design.

Property 7.5 The dynamics can be expressed in the linear-in-parameters
form

M3(Z)S3(Z)ξ̇ + C3(Z , Ż)ξ + G3(Z) = �1(Z , Ż , ξ , ξ̇ )θ (7.29)
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where �1(Z , ż, ξ , ξ̇ ) ∈ Rn×p is the known regressor matrix and θ ∈ Rp is the
unknown parameters vector of system. For any physical system, we know that
||θ || is always bounded.

Assumption 7.2 B3(Z) is assumed known because it is a function of fixed
geometry of the system. Accordingly, B3(Z) is assumed to be known exactly for
subsequent discussion.

7.3 CONTROL SYSTEM DESIGN

Consider the nonholonomic systems described by Equations (7.25–7.27). An
adaptive controller is designed to stabilize the system states Z to the origin.
Since Z = �X is of global diffeomorphism, the stabilization problem of X is
the same as the stabilization problem of Z .

The controller design will consist of two stages (i) a virtual adaptive control
input Id is designed so that the subsystems (7.25) and (7.26) converge to the
origin, and (ii) the actual control input ν is designed in such a way that I → Id .
In turn, this allows Z to be stabilized to the origin.

The following theorems are useful for the controller design. They are given
here for completeness.

Corollary 7.1 (Corollary of Barbalat’s theory [31]): If f (t), ḟ (t) ∈ L∞, and
f (t) ∈ Lp, for some p ∈ [1,∞), then f (t)→ 0 as t→∞.

Theorem 7.1 (The extended version of Barbalat’s theorem [18]): If a differ-
entiable function f (t) : R+ → R converges to a limit value as t tends to infinity,
and if its derivative d/dt(f (t)) is the sum of two terms, one being uniformly
continuous and another tending to zero as t tends to infinity, then d/dt(f (t))
tends to zero when t tends to infinity.

7.3.1 Kinematic and Dynamic Subsystems

Define an auxiliary vector ud ∈ Rm as

ud =




−ku1z1 + h(Z2, t)
−(ρ1,n1−2z1,n1−1 + Lh1z1,n1)ud1 − ku2z1,n1

...
−(ρm−1,nm−1−2zm−1,nm−1−1 + Lh1zm−1,nm−1)ud1 − kumzm−1,nm−1




(7.30)

where Z = [z1, ZT
2 ]T, Z2 = [z1,2, . . . , z1,n1 , z2,2, . . . , z2,n2 , . . . , zm−1,2, . . . ,

zm−1,nm−1 ]T, kuj (1 ≤ j ≤ m), and ρj,nj−2 (1 ≤ j ≤ m) are positive constants,
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and h(Z2, t) satisfies the following assumption as given in References 18
and 23.

Assumption 7.3 h(Z2, t) is a function of class Cp+1(p ≥ 1), uniformly
bounded with respect to t, with all successive partial derivatives also uniformly
bounded with respect to t, and such that:

(i) h(Z2, t) is a function of class Cj+1, j ≥ 1, and all its successive partial
derivatives are uniformly bounded with respect to t, and h(0, t) =
0,∀t

(ii) zj,i being bounded and żj,i, zj,iḣ(Z2, t), 2 ≤ j ≤ m − 1, 1 ≤ i ≤ nj

tending to zero imply that zj,i, 2 ≤ j ≤ m − 1, 1 ≤ i ≤ nj tending
to zero

Remark 7.1 Note that it is not difficult to find h(Z2, t) satisfying the required
conditions just as shown in the simulation. In fact, function h(Z2, t) is referred to
as the heat function, and its primary role is to force the system in motion as long
as the system has not reached the desired equilibrium point, thus preventing
the system’s state from converging to other equilibrium points. The conditions
imposed upon the heat function in Assumption 7.3 are not severe and can easily
be met. For example, the following three functions all satisfy the conditions
[18, 24]:

h(Z2, t) = ‖Z2‖2 sin(t)

h(Z2, t) =
n−2∑
j=0

aj sin(βjt)z2+j

h(Z2, t) =
n−2∑
j=0

aj
exp(bjz2+j)− 1

exp(bjz2+j)+ 1
sin(βjt)

with aj �= 0, bj �= 0,βj �= 0, and βi �= βj when i �= j.

Considering the parameter vector θ to be uncertain, a virtual control input
Id has to be designed in such a way that the outputs of the dynamic subsystem
(the inputs of the kinematic system) u tend to the auxiliary signals ud , and
the controller design at the dynamic level is achieved. As has been shown in
Reference 18, when u1 tends to ud1, u1Z2 and Ż2 converge to zero, the definition
of h(Z2, t) will guarantee Z goes to zero as well.

Defining ũ = u−ud the control objective at the dynamic level is to synthesis
Id to make ũ→ 0 so that u→ ud .

From Property 7.5, we have

M3(Z)S3(Z)u̇d + C3(Z , Ż)ud + G3(Z) = �1(Z , Ż , ud , u̇d)θ (7.31)
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where θ is the unknown parametric vector and �1 is the regressor matrix of
known kinematic functions.

Define

� =




m−1∑
i=1

zi,ni−1zi,ni

ρi,1 . . . ρi,ni−3
+

m−1∑
j=1

zj,nj Lh1zj,nj

ρj,1 . . . ρj,nj−2

z1,n1

ρ1,1 . . . ρ1,n1−2
...

zm−1,nm−1

ρm−1,1 . . . ρm−1,nm−1−2




(7.32)

The virtual control input Id is designed as

Id = K̂NInvτmd (7.33)

where

τmd = [ST
3 B3]−1ST

3 [�1(Z , Ż , ud , u̇d)θ̂−KeS3(u−ud)−S3(S
T
3 S3)

−1�] (7.34)

where θ̂ is the estimate of the unknown inertia parameter θ , and the adaptive
law for θ̂ is given by

˙̂
θ = −��T

1 S3ũ (7.35)

where � is a symmetric positive definite constant matrix.
In the design of the control law, KN is considered as an unknown parameter

and K̂NInv ∈ Rr×r is an estimation of the parameter K−1
N and is given as below:

˙̂KNInv = diag[ ˙̂KNInvi] = diag[−fiτmdi] (7.36)

where FT = [f1, f2, . . . , fr] = ũTST
3 B3.

7.3.2 Control Design at the Actuator Level

Until now, we have designed a virtual controller Id and embedded controller
ud for kinematic and dynamic subsystems, respectively. u tends to ud can be
guaranteed, if the actual input control signal of the dynamic system I be of
the form Id which can be realized from the actuator dynamics by the design
of the actual control input ν. On the basis of the above statements, we can
conclude that if ν is designed in such a way that I tends to Id then Z → 0 and
ũ→ 0.
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Define I = eI + Id and substituting in (7.27) one gets

LėI + RI + KaQ = −Lİd + ν
Adding KI eI on both sides in the equation given above, one gets

LėI + RI + KaQ+ KI eI = KI eI − Lİd + ν (7.37)

When the actuator parameters L, R, and Ka are available for controller
design, the control input ν can be easily given as

ν = Lİd + RI − KI eI + KaQ+ H (7.38)

where
H = −K̂N F (7.39)

with K̂N ∈ Rr×r is an estimate of the unknown parameter KN , and the adaptation
law for K̂N is given by

˙̂KN = diag[ ˙̂KNi] = diag[γN eIifi] (7.40)

where γN > 0 is a design constant, and determines the rate of adaptation.
When the actuator parameters L, R, and Ka are considered unknown for

controller design, they are estimated online adaptively. Consider the adaptive
control

ν = L̂İd + R̂I − KI eI + K̂aQ+ H (7.41)

where L̂ ∈ Rr×r , R̂ ∈ Rr×r , and K̂a ∈ Rr×r are the estimates of the unknown
parameters L, R, and Ka respectively, which are adaptively tuned as follows:

L̂ = diag[L̂i] = diag[−γLİdieIi] (7.42)

R̂ = diag[R̂i] = diag[−γRIieIi] (7.43)

K̂a = diag[K̂ai] = diag[−γaQieIi] (7.44)

where γL , γR, γa > 0 are design constants, which determine rates of the
adaptation for L̂i, R̂i, and K̂ai, respectively, and H is given by Equation (7.39).

Substituting (7.33) into (7.26) and using I = eI + Id , the error dynamics
for the dynamic subsystem can be obtained

ST
3 M3S3 ˙̃u = ST

3�1θ̃ − ST
3 C3ũ− ST

3 KeS3ũ−�
+ ST

3 B3KN K̃NInvτmd + ST
3 B3KN eI (7.45)

where K̃NInv = K̂NInv − KNInv.
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Denote L̃ = L − L̂, R̃ = R− R̂, K̃a = Ka − K̂a, and K̃N = KN − K̂N .
Substituting (7.38) into (7.27), we have the error dynamics for the actuator

dynamic subsystem

LėI = −KI eI + L̃İd + R̃I + K̃aQ+ H (7.46)

The closed-loop stability is summarized in Theorem 7.2.

Theorem 7.2 For a nonholonomic system described by (7.25)–(7.27), using
the control law (7.41) with the virtual control (7.33) and the parameter adapta-
tion laws (7.35), (7.40), (7.42)–(7.44), Z is globally asymptotically stabilizable
at the origin Z = 0.

Proof For the convenience of proof, define the following three functions:

V1 = 1

2
ũTM4(Z)ũ+ 1

2
θ̃T�−1θ̃ + 1

2

r∑
i=1

γ−1
N KNiK̃

2
NInvi (7.47)

V2 =
m−1∑
j=1

1

2

[
z2

j,2 +
1

ρj,1
z2

j,3 + · · · +
1∏nj−2

i=1 ρj,i

z2
j,nj

]
(7.48)

V3 = 1

2
eT

I LeI + 1

2

r∑
i=1

γ−1
L L̃2

i +
1

2

r∑
i=1

γ−1
R R̃2

i

+ 1

2

r∑
i=1

γ−1
a K̃2

ai +
1

2

r∑
i=1

γ−1
N K̃2

Ni (7.49)

where θ̃ = θ̂ − θ . Since θ is a constant vector, we have ˙̂θ = ˙̃θ
The derivative of V1 along Equation (7.45) is given as

V̇1 = ũTM4(Z) ˙̃u+ 1

2
ũTṀ4(Z)ũ+ θ̃T�−1 ˙̃θ

= ũT(ST
3�1θ̃ − ST

3 KeS3ũ−�+ ST
3 B3KN K̃NInvτmd)+ θ̃T�−1 ˙̃θ

+
r∑

i=1

γ−1
N KNiK̃NInvi

˙̃KNInvi + ũTST
3 B3KN eI (7.50)

where the property that Ṁ4 − 2ST
3 C3 is skew-symmetric has been used.
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The time derivative of V2 is given by

V̇2(Z2) =
m−1∑
j=1

[
zj,2żj,2 + 1

ρj,1
zj,3żj,3 + · · · + 1∏nj−2

i=1 ρj,i

zj,nj żj,nj

]
(7.51)

Substituting (7.25) into (7.51), we have

V̇2 =
m−1∑
j=1

[
zj,2u1zj,3 − 1

ρj,1
zj,3ρj,1u1zj,2 + 1

ρj,1
zj,3u1zj,4 + · · ·

− 1∏nj−3
i=1 ρj,i

zj,nj−1ρj,nj−3u1zj,nj−2 + 1∏nj−3
i=1 ρj,i

zj,nj−1u1zj,nj

+ 1∏nj−2
i=1 ρj,i

zj,nj (Lh1zj,nj u1 + uj+1)

]

=
m−1∑
j=1

[
1∏nj−2

i=1 ρj,i

zj,nj ((ρj,nj−2zj,nj−1 + Lh1zj,nj )u1 + uj+1)

]
(7.52)

The time derivative of V3 is given by

V̇3 = − eT
I KI eI + eT

I L̃İd + eT
I R̃I + eT

I K̃aQ

+ eT
I H +

r∑
i=1

γ−1
L L̃i
˙̃Li +

r∑
i=1

γ−1
R R̃i

˙̃Ri

+
r∑

i=1

γ−1
a K̃ai

˙̃Kai +
r∑

i=1

γ−1
N K̃Ni

˙̃KNi (7.53)

For stability analysis, let us consider the following Lyapunov function
candidate:

V = V1 + V2 + V3 (7.54)

Combining Equation (7.50), Equation (7.52), and Equation (7.53), and
using the adaptation laws (7.35), (7.40), (7.42) to (7.44), the derivative of V
can be obtained as

V̇ = −
m−1∑
j=1

1∏nj−2
i=1 ρj,i

kuj+1 z2
j,nj
− ũTST

3 KeS3ũ− eT
I KI eI (7.55)
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We have V̇ ≤ 0. Accordingly, ũ, θ̃ , Z2, eI , L̃, R̃, K̃a, K̃N are all bounded in the
sense of Lyapunov.

From Equation (7.55), using the Corollary of Baralart’s theory [31], ũ→ 0
as t→∞, zj,nj → 0 (1 ≤ j ≤ m − 1) as t→∞, and eI → 0 as t→∞.

Next, let us prove the asymptotic stability of Z .
The first equation of the controlled system is

ż1 = −ku1z1 + h(Z2, t)+ ũ1 (7.56)

From Assumption 7.3, we know that h(Z2, t) is uniformly bounded. In addition,
with ũ1 converging to zero, (7.56) is a stable linear system subjected to the
bounded additive perturbation h(Z2, t)+ eu1. Therefore, z1(t) is also bounded
uniformly.

Because z1 and h(Z2, t) are bounded, it is clear that ud1 is bounded from
(7.30). Together with ũ converging to zero, u1 is bounded. Since u1 and Z2
are bounded, ũ goes to zero, udj and uj (2 ≤ j ≤ m) are bounded. Under
the condition that Z2, u1, and uj (2 ≤ j ≤ m) are bounded, żj,nj and żj,i
(1 ≤ j ≤ m − 1, 2 ≤ i ≤ nj − 1), from (7.25), are bounded.

In the following, let us show that ud1Z2 tends to zero. For 1 ≤ j ≤ m − 1,
since ud1 is bounded and zj,nj tends to zero, u2

d1zj,nj tends to zero. Taking the
time derivative of u2

d1zj,nj , we have

d

dt
(u2

d1zj,nj ) = u2
d1(−kuj+1zj,nj − ρj,nj−2ud1zj,nj−1

+ ũ1Lh1zj,nj + ũ2)+ zj,nj

d

dt
(ud1)

2

= −ρj,nj−2u3
d1zj,nj−1 + (2u̇d1ud1zj,nj − kuj+1u2

d1zj,nj

+ u2
d1ũ1Lh1zj,nj + u2

d1ũ2) (7.57)

Since

d

dt
u3

d1zj,nj−1 = u3
d1żj,nj−1 + 3u2

d1u̇d1zj,nj−1

is bounded, the first term in (7.57) is uniformly continuous. Together
with the fact that all other terms in (7.57) tend to zero (since ud1zj,nj and
ũ tend to zero), from the extended version of Barbalat’s Lemma, (d/dt)(u2

d1zj,nj )

tends to zero. Therefore, u3
d1zj,nj−1 also tends to zero. So ud1zj,nj−1 also tends

to zero.
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Differentiating u2
d1zj,nj−1 yields

d

dt
(u2

d1zj,nj−1) = 2ud1u̇d1zj,nj−1 + u2
d1(−ρj,nj−3ud1zj,nj−2 + ud1zj,nj

− ρj,nj−3zj,nj−2ũ1 + ũ1zj,nj )

= −ρj,nj−3u3
d1zj,nj−2 + (2u̇d1ud1zj,nj−1 + u2

d1(−ρj,nj−3zj,nj−2ũ1

+ ũ1zj,nj )+ u3
d1zj,nj ) (7.58)

where the first term is uniformly continuous since its time derivative is bounded,
the other terms tend to zero. From the extended version of Barbalat’s Lemma,
(d/dt)(u2

d1zj,nj−1) tends to zero. Therefore, u3
d1zj,nj−2 and ud1zj,nj−2 tend

to zero.
Taking the time derivative of u2

d1zj,i, 2 ≤ i ≤ nj−2 and repeating the above
procedure iteratively, one obtains that ud1zj,i, 2 ≤ i ≤ nj tends to zero. From
(7.25) and considering Lh1zj,nj being a linear combination of zj,i, 2 ≤ i ≤ nj,
we know ud2, Ż2 tends to zero.

Differentiating ud1zj,i, 2 ≤ i ≤ nj − 1 yields

d

dt
(ud1zj,i) = u̇d1zj,i + ud1żj,i

= zj,iḣ+ (−ku1 ud1zj,i − ku1 ũ1zj,i + ud1żj,i)

where the first term is uniformly continuous, the other terms tend to zero. From
the extended version of Barbalat’s Lemma, zj,iḣ tends to zero. By condition (ii)
in Assumption 7.3 on h, it can be concluded that zj,i tends to zero, which
leads to h tending to zero. By examining (7.30), noting ũ1 tending to zero and
condition (i) in Assumption 7.3, z1 tends to zero. From (7.25) and condition (i),
ud1 tends to zero, therefore u = ud + ũ tends to zero. The theorem is
proved.

Remark 7.2 In Theorem 7.2, it has been proven that Z is globally asymp-
totically stabilizable, and all the signals in the closed-loop are bounded.
Accordingly, we can only claim the boundedness of the estimated parameters
and no conclusion can be made on its convergence. In general, to guarantee the
convergence of the parameter estimation errors, persistently exciting traject-
ories are needed [31, 36], which is hard to meet in practice. Therefore, for the
globally asymptotical stability of Z, it is an advantage to remove the stringent
requirement of persistent excitation conditions for parameter convergence in
actual implementation.
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7.4 SIMULATION

Consider a wheeled mobile robot moving on a horizontal plane, as shown in

is a caster wheel), and is characterized by the configuration q = [x, y, θ ]T.
We assume that the robot does not contain flexible parts, all steering axes are
perpendicular to the ground, the contact between wheels and the ground satisfies
the condition of pure rolling and nonslipping.

The complete nonholonomic dynamic model of the wheeled mobile robot
is given by

J(q)q̇ = 0 (7.59)

M(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)KN I + JT(q)λ (7.60)

Lİ + RI + Kaω = ν (7.61)

The constraint of the nonslipping condition can be written as

ẋ cos θ + ẏ sin θ = 0

From the constraint, we have

J(q) = [cos θ , sin θ , 0]
which leads to

S(q) =

− sin θ 0

cos θ 0
0 1




Lagrange formulation can be used to derive the dynamic equations of the
wheeled mobile robot. Because the mobile base is constrained to the horizontal
plane, its potential energy remain constant, and accordingly G(q) = 0. The
kinematic energy K is given by [37]

K = 1
2 q̇TM(q)q̇

where

M(q) =

m0 0 0

0 m0 0
0 0 I0




with m0 being the mass of the wheeled mobile robot, and I0 being its inertia
moment around the vertical axis at point Q. As a consequence, we obtain

C(q, q̇)q̇ = Ṁ(q)q̇ − ∂K

∂q
= 0

© 2006 by Taylor & Francis Group, LLC
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B(q) = 1/P



− sin θ − sin θ

cos θ cos θ

L −L




where P is the radius of the wheels and 2L is the length of the axis of the
two fixed differential drive wheels as shown in Figure 7.1. The matrices KN =
diag[KN1, KN2], L = diag[L1, L2], R = diag[R1, R2], Ka = diag[Ka1, Ka2], and
ω is given by (7.10) and (7.11).

mobile robot can be written as

ẋ = v1 cos θ

ẏ = v1 sin θ

θ̇ = v2

M(q)S(q)v̇ + C1(q)v + G = BKN I + JTλ (7.62)

L
dI

dt
+ RI + Kaµv = ν (7.63)

where

C1 =


−m0 cos θ θ̇ 0

−m0 sin θ θ̇ 0

0 0


 , v = [v1, v2]T

with v1, v2 the linear and angular velocities of the robot.
Considering the coordinates transformation X = T1(q) and state feedback

u = T−1
2 (q)v given by [38]




x1

x2

x3


 =




0 0 1

cos θ sin θ 0

− sin θ cos θ 0






x

y

θ




u1 = v2

u2 = v1 − v2x2
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From Figure 7.1, we have

Following the description in Section 7.2, the dynamics of the wheeled
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together with the transform matrix � = I in this special case, system (7.63) is
converted to

ż1 = u1 (7.64)

ż2 = z3u1 (7.65)

ż3 = u2 (7.66)

M3(Z)S3(Z)u̇+ C3(Z , Ż)u+ G3(Z) = B3(Z)KN I + JT
3 (Z)λ (7.67)

L
dI

dt
+ RI + KaQ3(u,µ, Z) = ν (7.68)

where

M3(Z) =

m0 0 0

0 m0 0
0 0 I0




S3(Z) =

−z2 sin z1 − sin z1

z2 cos z1 cos z1
1 0




C3(Z , Ż) =

−m0ż2 sin z1 − m0z2 cos z1ż1 −m0 cos z1ż1
−m0ż2 cos z1 − m0z2 sin z1ż1 −m0 sin z1ż1

0 0




B3(Z) = 1/P


− sin z1 − sin z1

cos z1 cos z1
L −L




G3 = 0

J3(Z) = [cos z1 sin z1 0]
Q3(u,µ, Z) = µT2u|q=T−1

1 (Z)

and we have the following property for the system dynamics:

ST
3 M3S3u̇d + ST

3 C3ud + ST
3 G3 = �(Z , Ż , ud , u̇d)θ

with the inertia parameters vector θ = [m0, I0]T and

�(Z , Ż , ud , u̇d) =
[

z2
2u̇d1 + z2u̇d2 + z2ż2ud1 u̇d1
z2u̇d1 + u̇d2 + ż2ud1 0

]
(7.69)
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The auxiliary signal ud is chosen as

ud =
[

ud1
ud2

]
=
[−ku1z1 + h(Z2, t)
−ρ1z2ud1 − ku2z3

]

where h(Z2, t) is chosen as

h(Z2, t) = (z2
2 + z2

3) sin t

It is easy to see that the selected h(Z2, t) satisfies Assumption 7.3.
In the simulation, the parameters of the system are assumed to be m0 =

I0 = 1.0, P = 0.1, L = 1.0, and L1 = L2 = 1, R1 = R2 = 1, KN1 = KN2 =
1, Ka1 = Ka2 = 1. The initial estimate θ̂ (0) = [0.5, 0.5]T which is different
from the true value. The design parameters are chosen as ku1 = 0.2, ku2 = 1.0,
ρ1 = 1.0, � = diag[10, 10], γR = γL = γa = γN = 1, and Ke = diag[5, 5].
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FIGURE 7.2 Responses of states x1, x2, and x3.
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FIGURE 7.3 Responses of u1 and u2.

and Figure 7.3, we can see that the responses of states x1, x2, x3, u1, and u2 of
the considered system asymptotically tend to zero. From Figure 7.4, the control
sequence ν1 and ν2 remain bounded and tend to zero as well. The results of the
simulation verify the validity of proposed algorithm.

7.5 CONCLUSION

In this chapter, stabilization of uncertain nonholonomic mobile robotic systems
has been investigated with unknown constant inertia parameters and actuator
dynamics. The controller design consists of two stages. In the first stage, for the
convenience of controller design, the nonholonomic chained subsystems were
first converted to the skew-symmetric chained form. Then a virtual adaptive
controller was proposed where parametric uncertainties were compensated for
by adaptive control techniques. In the second stage, an adaptive controller
was designed at the actuator level to incorporate the actuator dynamics. The
controller guarantees that the configuration state of the system converges to the
origin. Throughout this chapter, feedback control design and stability analysis
are performed via explicit Lyapunov techniques. Simulation studies on the

© 2006 by Taylor & Francis Group, LLC

Simulation results are shown in Figure 7.2 to Figure 7.4. From Figure 7.2
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FIGURE 7.4 Control signals ν1 and ν2.

stabilization of unicycle wheeled mobile robot have been used to show the
effectiveness of the proposed scheme.
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8.1 INTRODUCTION

Vehicle tracking has been one keen research topic on autonomous vehicles and
mobile robotics in recent years. A vehicle tracking system consists of at least
two vehicles. One vehicle leads a platoon while others autonomously track
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and follow the leader vehicle. An autonomous tracking controller is required
for each of the follower vehicles. Based on the relative distance, orientation,
velocity, and even acceleration of the leader vehicle, the controller gener-
ates corresponding control input for the follower vehicle. Many controllers
for vehicle tracking have been proposed. In a planar configuration of vehicle
tracking, the relative position between two vehicles is basically composed of
two parts: longitudinal relative distance and lateral deviation.

Longitudinal control systems [1–5] concentrate on the longitudinal relative
distance, also called intervehicular spacing, with the assumption that the vehicle
following runs on a practically straight path or a fixed path without concerns
with steering. Thus, the tracking error is the difference between the relative
position and a predetermined spacing l. To further improve the tracking per-
formance and stability, the relative velocity of the two vehicles is also taken into
account. Using this additional tracking error, different control laws have been
proposed, for example, a simple proportional integral differential (PID) control-
ler [5] or with an additional quadratic term (PIQ controller) as in Reference 3,
and an acceleration controller with a variable feedback gain as in Reference 2;
or using adaptive control as in References 3 and 4. Lateral control, on the other
hand, is used in two applications. The first one is lane following where all
vehicles follow the center of the road or a sequence of landmarks [6–8]. The
second application, which is of our interest, concerns the path traveled by the
preceding vehicle or the leader vehicle. The only information that can be dir-
ectly measured is the relative position and orientation between two consecutive
vehicles. PID controllers are used for lateral control in References 9 and 10. A
steering controller with nonlinear feedback is presented in Reference 11. This
controller is based on a sliding mode observer and a linearized model of the
truck to issue the steering command. To achieve better performance in the lane
following method, part of the recently traveled path of the preceding vehicle
is estimated and steering control can be obtained based on linearized [12] or
nonlinear [13] dynamic/kinematic vehicle models.

Most of the above-mentioned controllers guarantee good tracking perform-
ances only when the leader vehicle moves forward in front of the follower
vehicle. Backward tracking is still a challenge due to difficulties in backward
driving as pointed out in Reference 14. Reference 14 presents a controller
that imitates the human driving of a boat with the rudder. Some preliminary
results on backward tracking for trailer systems have also been presented in
References 15–17.

Lately, a tracking control method based on output feedback theory has
been introduced in Reference 18, referred as the full-state tracking control for
wheeled mobile robots. This nonlinear tracking method ensures exponential
stability and convergence, and integrates both longitudinal control and lateral
control into one controller. In this chapter, we present a unified control design
for tracking maneuvers of two car-like mobile robots. The vehicle tracking
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maneuvers are formulated into an integrated framework with forward tracking,
backward tracking, driving, and steering at kinematics and dynamics levels,
respectively. A nonlinear controller with a few design parameters is designed
for maneuvers with simultaneous driving as well as steering for vehicle tracking:
in both forward tracking and backward tracking maneuvers. Tracking stability
is ensured by the proper design of a stable performance target dynamics with a
set of sufficient conditions for selecting design parameters. Simulation results
show the effectiveness of the control scheme in both tracking cases. Tracking
performance is evaluated with respect to the selection of parameters: the desired
intervehicular spacing l and the desired steering angle multiplier p. The effects
of the parameter value selections on the tracking performance are also examined
via extensive simulations.

8.2 DYNAMICS OF TRACKING MANEUVERS

8.2.1 Vehicle Kinematics and Dynamics

Consider a car-like mobile robot with front wheels for steering and rear wheels
for driving. Its kinematic model can be described by the following equation
[18, 19]:

q̇ = G(θ , γ )µ (8.1)

where q = [x y θ γ ]T is the state configuration of the vehicle with (x, y)
being the generalized coordinates of the reference point located at the center of
the rear axle, θ the heading angle of the vehicle with respect to the x-axis, and
γ the steering angle of the front wheels; µ = [v ω]T contains the velocity v
and the steering rate ω; and

G(θ , γ ) =




cos θ 0

sin θ 0
1
a tan γ 0

0 1


 (8.2)

with a being the length of the vehicle.
A dynamic model of the vehicle is as in (8.3)

{
q̇ = G(θ , γ )µ

µ̇ = u
(8.3)

where u = [um us]T consists of the driving acceleration um and the steering
acceleration us homogenous to the driving and steering torques.
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FIGURE 8.1 Forward tracking configuration.

8.2.2 Dynamics of Tracking Maneuvers

In the vehicle tracking system considered in this chapter, two car-like vehicles
are moving in a horizontal plane. This vehicle tracking system can be executed
in one of the two modes: forward tracking and backward tracking.

Forward Tracking. The leader vehicle moves forward in front of the follower
vehicle as in Figure 8.1 and both vehicles move with positive velocities. In this
case, the tracked point is the center point Pd at the rear axle of the leader vehicle.
The relative distance between two vehicles is measured by the length d > 0
of Pf Pd and the relative orientation angle φ is formed by the longitudinal axis
PbPf and Pf Pd (−π/2 ≤ φ ≤ π/2).

Backward Tracking. The leader vehicle moves backward behind the fol-

In this case, the tracked point is the center point Pd at the front axle of the leader
vehicle. The relative distance between two vehicles is measured by the length
d > 0 of PbPd and the relative orientation angle φ formed by the longitudinal
axis Pf Pb and PbPd (−π/2 ≤ φ ≤ π/2).

For both cases, the point Pd of the leader vehicle is related to the point Pb of
the follower vehicle by the unified function, referred as the virtual intervehicular
connection as follows

Pd = zd =

x + 1+f

2 a cos θ + fd cos(θ + φ)
y + 1+f

2 a sin θ + fd sin(θ + φ)


 (8.4)
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FIGURE 8.2 Backward tracking configuration.

where

f =
{

1 for forward tracking

−1 for backward tracking

Vehicle tracking motion is defined as the collective motions of both vehicles
as well as the relative distance and orientation angle between two vehicles.
A good performance of tracking maneuvers is ensured only if the follower
vehicle can follow the leader vehicle at a specified spacing and with a tracking
error bounded or going to zero.

8.3 A UNIFIED TRACKING CONTROLLER

The objective of tracking control is to drive the follower vehicle automatically to
follow the leader vehicle and maintain a predetermined intervehicular spacing.
In this section, a nonlinear output feedback controller is developed. The idea is
motivated by what a human driver does in car following maneuvers. The driver
keeps his eye focused on the leader vehicle at a comfortable distance. He drives
the vehicle so that his eye focus point is able to follow the leader vehicle with
the same distance. With this motivation, we develop a look-ahead controller for
forward tracking maneuver and a look-behind controller for backward tracking.
In the following, these two controllers are developed as a unified nonlinear
controller.

The focus point Pr is defined l meters away from the vehicle with l being
the desired spacing between two vehicles (Pf Pr = l in forward tracking and
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PbPr = l in backward tracking). The focus point Pr has a directional angle
defined by the longitudinal axis of the vehicle (PbPf ) and the focus line Pf Pr

b d (in the backward

This focus point Pr , in both cases, can be expressed with respect to Pb as follows

Pr = z =

x + 1+f

2 a cos θ + l cos(θ + pγ )

y + 1+f
2 a sin θ + l sin(θ + pγ )


 (8.5)

where l and p are two system parameters that will affect the performance of the
vehicle tracking system. The focus point as defined in (8.5) can be viewed as a
nonlinear output function of the posture of the follower vehicle.

An output tracking error can be defined as the difference between the output
of the follower vehicle (8.5) and the virtual intervehicular connection (8.4) as
follows

z̃ = z − zd =
[

l cos(θ + pγ )− fd cos(θ + φ)
l sin(θ + pγ )− fd sin(θ + φ)

]

= RT(θ)

[
l cos pγ − fd cosφ
l sin pγ − fd sin φ

]
(8.6)

where R(θ) is a standard rotation matrix of θ as follows

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
(8.7)

Lemma 8.1 Consider a car-like vehicle with restricted steering angle, |γ | ≤
γmax
or backward tracking. If the parameter p is chosen such that |p| < π/(2γmax)

and l is chosen as a finite constant, then the following two statements are
equivalent:

1. The vehicle tracking error converges to zero, that is,

lim
t→∞‖z̃(t)‖ = 0

2. The relative orientation angle φ converges to pγ , that is,

lim
t→∞(φ − pγ ) = 0

© 2006 by Taylor & Francis Group, LLC
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and the intervehicular spacing d converges to fl, that is,

lim
t→∞(d − fl) = 0

Proof From the definition of the tracking error (8.6), we have

‖z̃‖2 = l2 + d2 − 2lfd cos( pγ − φ)
= [d − fl cos( pγ − φ)]2 + [ fl sin( pγ − φ)]2 (8.8)

Note that l is a finite constant, Statement 1 has an equivalent statement as
follows

lim
t→∞‖z̃(t)‖ = 0⇔

{
limt→∞ sin(φ − pγ ) = 0 (i)

limt→∞ [d − fl cos(φ − pγ )] = 0 (ii)
(8.9)

(a) If Statement 2 is true, it is easy to check that Statement 2 ensures
both (8.9-i) and (8.9-ii) satisfied. Hence, limt→∞ ‖z̃(t)‖ = 0, that is,
Statement 1 is true.

(b) If Statement 1 is true, we now prove that Statement 2 is true. Since
|γ | ≤ γmax and |p| < π/(2γmax), we have |pγ | < π/2. Further-
more, the relative orientation angle φ is also bounded, |φ| ≤ π/2.
Thus, we have

|pγ − φ| ≤ |pγ | + |φ| < π

As a result, (8.9-i) leads to

lim
t→∞(φ − pγ ) = 0 (8.10)

Combining (8.10) with (8.9-ii) produces

lim
t→∞(d − fl) = 0 (8.11)

Lemma 8.1 implies that a control law that ensures the convergence of the
tracking error z̃(t) can guarantee that the intervehicular spacing ultimately
converges to the desired distance |l|. In practice, sensing range is limited,
0 < d < dmax and parameter l must be chosen such that fl lies in the valid
range of the sensor

0 < fl < dmax (8.12)
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Condition (8.12) shows that l must be positive in the look-ahead tracking,
that is, f = 1, and negative in the look-behind tracking, that is, f = −1.
To ensure robust and reliable performance, fl should be chosen well away
from the boundaries, 0 � |l| � dmax, so that d can be effectively kept within
the valid range of the sensor. Equation (8.10) gives an interpretation of the
parameter p. At steady state, φ = pγ , and p is a multiplier relating the steering
angle, γ , of the following vehicle and the relative orientation angle, φ.

To obtain the dynamic relationship between the output function z(t) and the
control input µ, take time derivative of (8.5)

ż = ∂z

∂q
q̇ = ∂z

∂q
Gµ = E(θ , γ )µ (8.13)

where

E(θ , γ ) = RT(θ)Ē(γ ) (8.14)

with

Ē(γ ) =




1− l

a
tan γ sin pγ −lp sin pγ

(
1+ f

2
+ l

a
cos pγ

)
tan γ lp cos pγ


 (8.15)

To ensure the existence of a feedback control, the matrix E(θ , γ ) has to
be nonsingular and the following lemma presents such a set of sufficient
conditions.

Lemma 8.2 Consider a car-like vehicle with restricted steering angle, |γ | ≤
γmax < π/2, and a vehicle tracking problem formulated as the forward
tracking or the backward tracking. A control input µ exists for (8.13) if the
design parameters l and p are chosen so that the following two conditions are
satisfied:

1. lp �= 0

2.

∣∣∣∣p− 1+ f

2

∣∣∣∣ < π

2γmax

Proof The existence of the input µ is guaranteed iff the matrix E(θ , γ )
or, equivalently, the matrix Ē(γ ) is nonsingular. This is equivalent to the
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determinant of matrix Ē(γ ) being nonzero, that is,

det(Ē) = lp cos pγ + 1+ f

2
lp tan γ sin pγ �= 0 (8.16)

Since f only takes two values −1 or 1, we have the following equality:

1+ f

2
tan γ = tan

(
1+ f

2
γ

)
(8.17)

and (8.16) becomes

det(Ē) = lp cos pγ + lp tan

(
1+ f

2
γ

)
sin pγ

= lp
cos[(p− ((1+ f )/2))γ ]

cos((1+ f /2)γ )
�= 0 (8.18)

Condition (8.18) is satisfied if the following two conditions are satisfied:




1. lp �= 0

2.

∣∣∣∣p− 1+ f

2

∣∣∣∣ |γ | ≤
∣∣∣∣p− 1+ f

2

∣∣∣∣ γmax <
π

2

⇒
∣∣∣∣p− 1+ f

2

∣∣∣∣ < π

2γmax

(8.19)

For practical car-like wheeled mobile robots, the steering γ is restricted
by |γ | ≤ γmax < π/2. Condition 1 in Lemma 8.2 requires (1) (l �= 0),
that is, the focus point Pr cannot be fixed at the front center point Pf of the
follower vehicle in forward tracking or at the back point Pb in backward track-
ing; and (2) (p �= 0), that is, Pr cannot be fixed on the longitudinal center
axis. Condition 2 in Lemma 8.2 indicates that the selectable range of parameter
p is bounded.

Lemmas 8.1 and 8.2 provide some sufficient conditions in choosing the
design parameters l and p. It can be expected that vehicle tracking stability
require more conditions on l and p. By examining the basic maneuvers, we can
gain some insights and necessary conditions on l and p for tracking stability.
Vehicle tracking along a straight path is a basic maneuver and its requirement
on stability will offer some insight and a set of necessary conditions. In the
following Lemma 8.3, a set of such conditions are derived for this purpose.

Lemma 8.3 Consider a basic maneuver of vehicle following along a straight
path (γd = 0) at a speed (vd �= 0). Suppose there exists a feedback vehicle-
following controller that guarantees the convergence of the tracking error z̃(t)
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and its derivative ˙̃z(t) as well as the steering rate ω to zero, that is,

lim
t→∞‖z̃(t)‖ = lim

t→∞‖˙̃z(t)‖ = lim
t→∞ω = 0

In addition to the conditions in Lemmas 8.1 and 8.2, the parameters l, p, and f
are necessary to satisfy lp > 0 and fvd > 0.

Proof When the leader vehicle moves on a straight path (γd = 0) at a speed
vd �= 0, its heading angle θd will stay as constant (θ̇d = 0), we have

żd =
[

vd cos θd
vd sin θd

]
= RT(θd)

[
vd
0

]
(8.20)

We also define the following tracking errors:

η̃ = η − ηd =
[
θ̃

γ̃

]
=
[
θ − θd
γ − γd

]
(8.21)

We now prove Lemma 8.3 in two steps. First, we prove that the convergence
of the tracking error z̃(t) to zero implies that η̃ converges to zero, that is,

lim
t→∞‖η̃‖ = lim

t→∞ θ̃ = lim
t→∞ γ̃ = 0

Second, we derive the necessary conditions of parameter l, p, and f for the
tracking stability of η̃ defined in (8.21).

1. The convergence of z̃ implies the convergence of η̃.

Suppose γ = γ̃ converges to γd = 0, that is, the follower vehicle eventually
moves on a straight path. This implies θ converges to a constant and

lim
t→∞ ż = lim

t→∞RT(θ)Ē(γ )µ = lim
t→∞RT(θ)

[
1 0
0 lp

] [
v
ω

]
= RT(θ)

[
v
0

]

where we have used the assumption limt→∞ ω = 0. Furthermore

lim
t→∞
˙̃z = lim

t→∞(ż − żd) = RT(θ)

[
v
0

]
− RT(θd)

[
vd
0

]

= RT(θ)

[
v − vd cos θ̃

vd sin θ̃

]
= 0

© 2006 by Taylor & Francis Group, LLC
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implies limt→∞ θ̃ = limt→∞(θ−θd) = 0, given the constraint |θ̃ | < π/2, and
limt→∞(v − vd) = 0. This shows limt→∞ ‖η̃‖ = 0.

On the other hand, suppose that γ diverges from γd = 0. The assumption
limt→∞ ω = 0 implies limt→∞ γ = c, with c being a nonzero angle. The
instantaneous turning radius of the follower vehicle

r = a

tan γ

converges to a finite constant. The follower vehicle eventually moves on a
circular path while the leader vehicle moves on a straight path. This contra-
dicts the assumption of limt→∞ ‖z̃‖ = 0, or, equivalently, limt→∞ d = fl, by
Lemma 8.1.

These show that limt→∞ ‖z̃‖ = 0 implies limt→∞ ‖η̃‖ = 0. The reverse
may not be true because two vehicles may be moving on two separate and
parallel straight paths (η̃ = 0), whereas the tracking error z̃ is not zero.

2. Necessary conditions on l, p, and f for η̃ to converge to zero.

Since θ̇d = 0 and γ = γd + γ̃ = γ̃ , the error η̃ is computed as follows:

˙̃η = η̇ − η̇d = η̇ =
[ v

a
tan γ

ω

]
=

1

a
tan γ 0

0 1


µ

=

1

a
tan γ̃ 0

0 1


µ = Q(γ̃ )µ (8.22)

When the convergence of z̃(t) and ˙̃z(t) to zero are achieved, we have

0 ≡ ˙̃z = ż − żd = E(θ , γ )µ− żd

Since the matrix E is nonsingular (Lemma 8.2), we obtain

µ = E−1(θ , γ )żd = Ē−1(γ )R(θ)żd (8.23)

Noting żd in (8.20) and γ = γ̃ , (8.23) becomes

µ = Ē−1(γ̃ )R(θ)RT(θd)

[
vd
0

]
= Ē−1(γ̃ )R(θ̃)

[
vd
0

]
(8.24)
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Then the system (8.22) becomes

˙̃η = Q(γ̃ )µ = Q(γ̃ )Ē−1(γ̃ )R(θ̃)

[
vd
0

]
= �(η̃, vd) (8.25)

It is easy to check that the system ˙̃η = �(η̃, vd) in (8.25) has an equilibrium
at η̃ = 0 and a linear approximation as follows [18]

˙̃η =
[
∂�(η̃, vd)

∂η̃

]∣∣∣∣
η̃=0

η̃ = A(vd)η̃ (8.26)

If (8.26) is exponentially stable in the neighborhood of η̃ = 0, then (8.25)
is uniformly asymptotically stable. Furthermore, for a linear system like that
in (8.26), the condition to be exponentially stable is that all eigenvalues have
negative real part. With some calculations, it is straightforward to yield

A(vd) =




0
1

a

− 1

lp
−1

p

(
1+ f

2l
+ 1

a

)

 vd (8.27)

with eigenvalues

λ1,2 = vd

2alp

{
−
(

1+ f

2
a+ l

)
±√�

}
(8.28)

� =
(

1+ f

2
a+ l

)2

− 4alp

With these eigenvalues, we have

λ1λ2 = v2
d

alp

λ1 + λ2

2
= − vd

2alp

(
1+ f

2
a+ l

)
= − fvd

2alp

(
1+ f

2
a+ fl

)

© 2006 by Taylor & Francis Group, LLC
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If both eigenvalues λ1 and λ2 are real numbers, the conditions for them to
be negative real numbers are

� ≥ 0 and λ1λ2 > 0 and
λ1 + λ2

2
< 0

Since Lemma 8.1 implies fl > 0, which lead to (((1+ f )/2)a+ fl) > 0, the
above conditions are equivalent to

0 < lp ≤ (((1+ f )/2)a+ l)2

4a
and fvd > 0

Likewise, if both eigenvalues are a pair of complex conjugates, then the
conditions are

� < 0 and
λ1 + λ2

2
< 0

which lead to

lp >
(((1+ f )/2)a+ l)2

4a
> 0 and fvd > 0

In summary, matrix A(vd) has both eigenvalues with negative real part
iif lp > 0 and fvd > 0. Under these conditions, the system (8.22) is uni-
formly asymptotically stable. In other words, the tracking error η̃ converges
to zero.

The condition fvd > 0 in Lemma 8.3 implies that vehicle-following man-
euver is feasible and successful only if the leader vehicle moves forward
(vd > 0) in the look-ahead tracking mode ( f = 1) and moves backward
(vd < 0) in the look-behind tracking mode ( f = −1). This condition is sat-
isfied automatically based on the formulations of the forward tracking and

respectively.
In other words, look-ahead control can only be used for forward tracking
formation and look-behind control can only be used for backward tracking
control.

© 2006 by Taylor & Francis Group, LLC

that the vehicle tracking must be in the formations defined in Figure 8.1
and Figure 8.2 for forward tracking and backward tracking,

backward tracking defined earlier in Section 8.2.2. Condition lp > 0 implies
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8.3.1 Kinematics-Based Tracking Controller

The target performance of the vehicle tracking maneuvers can be specified by
a first-order system for the closed-loop output tracking error

˙̃z + λz̃ = 0 (8.29)

where the convergence rate λ > 0 can be specified for a desired target
performance.

Equation (8.29) can then be rewritten equivalently as

ż = żd − λz̃ (8.30)

Time differentiation of (8.4) leads to

żd = RT(θ)


 v + f ḋ cosφ − fd(θ̇ + φ̇) sin φ

1+ f

2
v tan γ + f ḋ sin φ + fd(θ̇ + φ̇) cosφ


 (8.31)

By substituting (8.6), (8.13), and (8.31) into (8.30), we have

E(θ , γ )µ = Fkin(θ , v, γ , d, ḋ,φ, φ̇) (8.32)

where

Fkin = żd − λz̃ = RT(θ)F̄kin(v, γ , d, ḋ,φ, φ̇) (8.33)

with

F̄kin =

 v − λl cos pγ

1+ f

2
v tan γ − λl sin pγ


+ fRT(φ)

[
ḋ + λd

d(θ̇ + φ̇)
]

(8.34)

Multiplying the orthogonal matrix R(θ) to both sides of (8.32) produces

Ē(γ )µ = F̄kin(v, γ , d, ḋ,φ, φ̇) (8.35)

With the parameters l and p chosen satisfying Lemma 8.2, the resultant
nonlinear kinematics-based controller can be obtained from (8.35) by using
(8.15) and (8.34)

µinput = Ē−1(γ )F̄kin
(
v, γ , d, ḋ,φ, φ̇

)
(8.36)

© 2006 by Taylor & Francis Group, LLC
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where µinput = [vinput ωinput]T,
with

vinput = v + {cos(((1+ f )/2)γ ){−λl + f (ḋ + λd)

× cos(pγ − φ)+ fd(θ̇ + φ̇) sin(pγ − φ)}}
× {cos[(p− (1+ f )/2)γ ]}−1 (8.37)

ωinput

=− θ̇
p
− λ

p
tan

[(
p− 1+ f

2

)
γ

]
− tan γ cos(((1+ f )/2)γ )

ap cos[(p− ((1+ f )/2))γ ]
× {−λl + f (ḋ + λd) cos(pγ − φ)+ fd(θ̇ + φ̇) sin(pγ − φ)}

+ f (ḋ+λd) sin(φ − ((1+ f )/2)γ )+fd(θ̇ + φ̇) cos(φ − ((1+ f )/2)γ )

lp cos[(p− ((1+ f )/2))γ ]
(8.38)

The above development of the kinematics-based vehicle-following control-
ler is summarized in the following theorem.

Theorem 8.1 Consider the car-like vehicle tracking maneuvers of forward

The kinematic motion of these tracking maneuvers is defined collectively as
the kinematics (8.1) of both vehicles and the virtual intervehicular connec-
tion (8.4). Define the tracking error z̃ in (8.5) as the difference between the
output of the follower vehicle (8.5) and the virtual intervehicular connec-
tion (8.4). The tracking target performance in z̃ is defined by the stable first
order system (8.29) and can be ensured if the nonlinear control laws (8.37) for
driving and (8.38) for steering are applied, and the following conditions are
satisfied:

• Forward tracking: f = 1




vd > 0

λ > 0

0 < l < dmax

0 < p < π
2γmax

(8.39)

© 2006 by Taylor & Francis Group, LLC

tracking, shown in Figure 8.1, and backward tracking, shown in Figure 8.2.



FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 310 — #16

310 Autonomous Mobile Robots

• Backward tracking: f = −1




vd < 0

λ > 0

−dmax < l < 0

− π
2γmax

< p < 0

(8.40)

Proof The conditions in Lemmas 8.1 and 8.2 guarantee the existence of the
control laws (8.37) and (8.38).

Combining the target performance specification, the conditions for tracking
convergence equivalence in Lemma 8.1, the conditions for the existence of
control input in Lemma 8.2, and the necessary conditions for the tracking
stability in Lemma 8.3, we obtain




Target dynamics ⇒ {λ > 0

Lemma 8.1 ⇒


|p| < π

2γmax

0 < fl < dmax

Lemma 8.2 ⇒



lp �= 0∣∣∣∣p− 1+ f

2

∣∣∣∣ < π

2γmax

Lemma 8.3 ⇒
{

lp > 0

fvd > 0

⇒




λ > 0

|p| < π

2γmax

0 < fl < dmax∣∣∣∣p− 1+ f

2

∣∣∣∣< π

2γmax

lp > 0

fvd > 0

(8.41)

For f = 1, conditions (8.41) will lead to (8.39)
For f = −1, conditions (8.41) will lead to (8.40)

8.3.2 Dynamics-Based Tracking Controller

If the access to the torques/forces, or their corresponding convertible accelera-
tions, of the vehicle control is available, the controller can be developed based
on the dynamic model (8.3).

In this case, the target performance of the vehicle tracking maneuvers can
be specified by a second-order system for the closed-loop output tracking error

¨̃z + 2ξλ˙̃z + λ2z̃ = 0 (8.42)

where the natural frequency λ > 0 and the damping ratio ξ > 0.

© 2006 by Taylor & Francis Group, LLC
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Equation (8.42) can then be rewritten equivalently as

z̈ = z̈d − 2ξλ˙̃z − λ2z̃ (8.43)

Taking the differentiation of (8.13) yields

z̈ = ∂(Eµ)

∂q
Gµ+ Eµ̇ = H(θ , γ )µ+ E(θ , γ )u (8.44)

where

H(θ , γ ) = RT(θ)H̄(γ ) (8.45)

and

H̄(γ ) =




− tan γ

{
1+ f

2
θ̇ − l

a

v

cos2 γ
sin pγ

+ l

a
(θ̇ + pω) cos pγ

}
−lp(θ̇ + pω) cos pγ

θ̇ − l

a
(θ̇ + pω) tan γ sin pγ

(
1+ f

2
+ l

a
cos pγ

)
v

cos2 γ
−lp(θ̇ + pω) sin pγ




(8.46)

Subsequently, differentiation of (8.31) leads to

z̈d = RT(θ)




v̇ − 1+ f

2
aθ̇2

vθ̇ + 1+ f

2
aθ̈


+ fRT(φ)

[
{d̈ − d(θ̇ + φ̇)2}

{2ḋ(θ̇ + φ̇)+ d(θ̈ + φ̈)}

]


(8.47)

where

θ̇ = v tan γ

a
(8.48)

θ̈ = v̇ tan γ

a
+ vω

a cos2 γ
(8.49)

Likewise, taking differentiation of z̃ in (8.6) yields

˙̃z = RT(θ)

[−l(θ̇ + pω) sin pγ − ḋ cosφ + d(θ̇ + φ̇) sin φ
l(θ̇ + pω) cos pγ − ḋ sin φ − d(θ̇ + φ̇) cosφ

]
(8.50)
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Having substituted z̃ in (8.6), z̈ in (8.44), z̈d in (8.47), and ˙̃z in (8.50) into
(8.43), we obtain

E(θ , γ )u = Fdyn(θ , v, v̇, γ ,ω, d, ḋ, d̈,φ, φ̇, φ̈) (8.51)

where

Fdyn = z̈d − 2ξλ˙̃z − λ2z̃ − H(θ , γ )µ

= RT(θ)F̄dyn(v, v̇, γ ,ω, d, ḋ, d̈,φ, φ̇, φ̈) (8.52)

with

F̄dyn =

 v̇

1+ f

2
v̇ tan γ


+ lRT(pγ )


 (θ̇ + pω)2 − λ2

− vω

a cos2 γ
− 2ξλ(θ̇ + pω)




+ fRT(φ)

[
d̈ + 2ξλḋ + λ2d − d(θ̇ + φ̇)2

d(θ̈ + φ̈)+ 2(ḋ + ξλd)(θ̇ + φ̇)

]
(8.53)

Multiplying the orthogonal matrix R(θ) to both sides of (8.51) produces

Ē(γ )u = F̄dyn(v, v̇, γ ,ω, d, ḋ, d̈,φ, φ̇, φ̈) (8.54)

Conditions that satisfy (8.39) for the look-ahead tracking mode or (8.40)
for the look-behind tracking mode guarantee that the decoupling matrices Ē(γ )
and E(θ , γ ) are invertible. Under those conditions, the dynamics-based vehicle-
following controller can be achieved

uinput = Ē−1(γ )F̄dyn(v, v̇, γ ,ω, d, ḋ, d̈,φ, φ̇, φ̈) (8.55)

where uinput = [um us]T, with

um = v̇ + cos(((1+ f )/2)γ )

cos[(p− ((1+ f )/2))γ ] {l[(θ̇ + pω)2 − λ2]

+ f [d̈ + 2ξλḋ + λ2d − d(θ̇ + φ̇)2] cos(pγ − φ)
+ f [d(θ̈ + φ̈)+ 2(ḋ + ξλd)(θ̇ + φ̇)] sin(pγ − φ)} (8.56)

© 2006 by Taylor & Francis Group, LLC
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us =− 1

p
(θ̈ + 2ξλ(θ̇ + pω))+ 1

p
((θ̇ + pω)2 − λ2) tan

[(
p− 1+ f

2

)
γ

]

− cos(((1+ f )/2)γ )

p cos[(p− ((1+ f )/2))γ ]
{

l

a
((θ̇ + pω)2 + λ2) tan γ

+ f

[
sin(φ − ((1+ f )/2)γ )

l cos(((1+ f )/2)γ )
− tan γ

a
cos(pγ − φ)

]

× [d̈ + 2ξλḋ + λ2d − d(θ̇ + φ̇)2]

+ f

[
cos(φ − ((1+ f )/2)γ )

l cos(((1+ f )/2)γ )
− tan γ

a
sin(pγ − φ)

]

×[d(θ̈ + φ̈)+ 2(ḋ + ξλd)(θ̇ + φ̇)]
}

(8.57)

The above development can be summarized as follows.

Theorem 8.2 Consider the car-like mobile robot performing forward track-

dynamic motion of these tracking maneuvers is defined collectively as the
dynamics (8.3) of both vehicles and the virtual intervehicular connection (8.4).

Define the tracking error z̃ in (8.5) as the difference between the output of
the follower vehicle (8.5) and the virtual intervehicular connection (8.4). The
tracking target performance in z̃ is defined by the stable second-order system
(8.42) and can be ensured if the nonlinear controls (8.56) for driving and (8.57)
for steering are applied and the following necessary conditions are satisfied.

• Forward tracking: f = 1, λ > 0, ξ > 0, l and p satisfying (8.39)
• Backward tracking: f = −1, λ > 0, ξ > 0, l and p satisfying (8.40)

Proof The target performance (8.42) also guarantees that the tracking error
z̃(t) and its derivatives ˙̃z(t) and ¨̃z(t) are all convergent to zero. Combining
all the conditions from Lemmas 8.1, 8.2, and 8.3, we can obtain the similar
conditions (8.39) for the look-ahead tracking and (8.40) for the look-behind
tracking.

8.3.3 Requirement of Measurements

As stated in the development of the kinematics- and dynamics-based control-
lers, besides the vehicular state feedbacks such as velocity/acceleration and
steering angle, some measurements are required including relative distance
between two vehicles d, velocity ḋ, acceleration d̈, and relative angle φ as well

© 2006 by Taylor & Francis Group, LLC

ing, shown in Figure 8.1, and backward tracking, shown in Figure 8.2. The
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as its derivatives φ̇ and φ̈. These requirements are vital and also implemented
in other vehicle-following systems. For example, the inclusion of relative dis-
tance, velocity, and even acceleration in the controller have been well known
and implemented in longitudinal controls in order to improve the stability of
the tracking system [4,5,10]. Likewise, for steering control, the controllers
developed based on kinematic models generally need the relative angle and/or
its first derivative [2,10] whereas those based on dynamics model [11,12,20]
may or may not require the second derivative.

In practice, the relative distance and angle can be measured by a ranging
sensor. Relative velocities and particularly relative accelerations are more diffi-
cult to obtain. In general, there are two ways of getting those measurements. The
first one is to utilize a wireless communication channel to transmit the vehicu-
lar measurements such as velocity, acceleration, and yaw rate of the leader
vehicle to the follower vehicle [5,10]. The relative velocities and/or accelera-
tions are computed based on the geometric and dynamic relationships of the
two vehicles. The second way relies on the high accuracy of the ranging sensor
to estimate the derivatives using numerical calculations or derivative filtering
[2,12]. This method is less accurate than the first one but more suitable for
low-speed applications and does not require a communication channel.

8.4 TRACKING PERFORMANCE EVALUATION

The nonlinear controller developed in the previous section needs verification
and the effects of parameter selections are to be evaluated. In this section, we
focus on the effects and evaluations of the design parameters l and p for the
dynamics-based controller. The closed-loop system’s parameters λ and ξ are set
as constants of 1 and 0.5, respectively. Different sets of design parameters (l, p)
are tested for both look-ahead and look-behind tracking control.

Some limits are chosen based on the real physical limits of our test-bed
car-like vehicle. The steering angle of the vehicle is limited as |γ | ≤ γmax =
π/9 rad (=20◦). Other limits are chosen as follows: dmax = 8 m as the reliable
range of the sensing; lmin = 1 m for safety stopping; and pmin = 0.1 for some
minimum sensitivity to steering.

The evaluation is carried out by numerical simulation using the platform
integrating ADAMS®1 and Simulink®.2 The ADAMS is a mechanical proto-
typing package and is used to construct two mobile robot vehicles. Simulink
is used to model the proposed nonlinear tracking controller. The integration
of these two powerful simulation platforms produces a simulation platform
for mobile robotics and associated advance control designs. It has the bene-
fits of doing away with the dynamic modeling of vehicles and the motions are

1 Registered trademark of MSC Software Corporation.
2 Registered trademark of The MathWorks, Inc.
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FIGURE 8.3 Vehicle trajectories (x, y) with different values of p.

closer to reality. This platform has served us well and details can be found in
Reference 21.

8.4.1 Forward Tracking Control

In this situation, the follower vehicle is initially l meters behind the leader
vehicle. The selections of l and p are based on condition (8.39)

1 = lmin � l� dmax = 8 and 0.1 = pmin ≤ p ≤ π

2γmax
= 4.5 (8.58)

8.4.1.1 Influence of parameter p

The intervehicular space parameter l is fixed at a desired space of 2.5 m, while
different values of p are tested in the range of (0.1, 4.5). Simulation results,

the leader vehicle. The tracking errors are small especially along the straight

affects the tracking performance. Though starting at the same initial position
and orientation, with smaller values of p, for example, p < 2.5, the follower
vehicle tries to cut corners to catch up with the leader vehicle. In contrast,
larger values of p result in overshooting before turning. These maneuvers are not
desirable  as the  follower vehicle  might  move  into  a  neighboring  lane. In  practice,
a suitable value of p can be obtained from fine tuning with respect to expected
performance.

© 2006 by Taylor & Francis Group, LLC

in Figure 8.3 to Figure 8.7, show that the follower vehicle successfully tracks

path as shown in Figure 8.4. During turns, the value of parameter p clearly



FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 316 — #22

316 Autonomous Mobile Robots

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Tr
ac

ki
ng

 e
rr

or
 (

cm
)

p = 0.5

p = 1 

p = 2 

p = 3 

Time (sec)

FIGURE 8.4 Tracking errors ‖z̃‖ for different values of p.
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FIGURE 8.5 Vehicle acceleration v̇ for different values of p.

follower vehicle are only slightly different from those of the leader vehicle. This
indicates that the tracking speed and acceleration are maintained successfully.
Larger values of p tend to create more oscillations because the focus point is
more sensitive to the steering angle.
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Figure 8.5 and Figure 8.6 show that the acceleration and velocity of the
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FIGURE 8.6 Vehicle velocity v for different values of p.
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FIGURE 8.7 Steering angle γ for different values of p.
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FIGURE 8.9 Tracking errors ‖z̃‖ for different values of l.

8.4.1.2 Influence of parameter l

We fix parameter p at value 2. Parameter l varies from 1 to 5.5 m. Simula-

© 2006 by Taylor & Francis Group, LLC

tion results are shown in Figure 8.8 to Figure 8.12. Figure 8.8 and Figure 8.9
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FIGURE 8.11 Vehicle velocity v for different values of l.
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FIGURE 8.12 Steering angle γ for different values of l.

show that the controller is able to drive the vehicle to follow the leader vehicle
with the chosen values of l. We note that with shorter desired intervehicular
spacing (smaller values of l), the trajectories of the follower vehicle, and that

error increases when l increases, the relative maximum error over the desired
spacing l actually decreases. It means that tracking performance is better with
larger values of l. The velocity and acceleration track the desired ones. The
delay in the steering angle tracking is natural due to the time difference of
the vehicles’ motions. This delay becomes bigger with a larger value of l.
This is because with a larger value of l the relative angle is smaller, assuming
that the lateral deviation is the same. As a result, the steering rate command
is smaller, and it would take a longer time to converge to that of the leader
vehicle.

8.4.2 Backward Tracking Control

In this situation, the leader vehicle is placed l meters behind the follower vehicle
and moves backward. Similar to the look-ahead tracking situation, the trajectory
of the leader vehicle is generated beforehand and repeated in every test to ease
the comparison and analysis.

© 2006 by Taylor & Francis Group, LLC

of the leader vehicle are closer. Figure 8.9 shows that although the maximum
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FIGURE 8.13 Vehicle trajectories (x, y) with different values of p.

Condition (8.40) becomes

−8 = −dmax � l � −lmin = −1

and (8.59)

−4.5 = − π

2γmax
≤ p ≤ −pmin = −0.1

8.4.2.1 Influence of parameter p

The parameter l is fixed at l = −2.5 m and several values of the parameter
p in the range of [−4,−0.1] are tested with results shown in Figure 8.13 to

acceleration and velocity are closely tracked. When the leader vehicle turns, the
follower vehicle’s steering turns to the opposite side for a while before it turns
back to the same direction (Figure 8.17). It is because the tracked point Pd is the
front point of the leader vehicle, not the rear point which is considered as the
reference point of the leader vehicle. Thus, when the leader vehicle is moving
backward and about to turn left, for example, its front point will tend to move
to the right side, and vice versa. Similar to the case of forward tracking, the
valid range of p can be divided into two parts. Larger values of p make the focus
point Pr more sensitive to the steering angle and result in more oscillations and
overshoots in its trajectory. The closest tracked trajectory is with p = −1.

© 2006 by Taylor & Francis Group, LLC

Figure 8.17. Along a straight path, the tracking error is very small, and both
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FIGURE 8.15 Vehicle acceleration v̇ for different values of p.
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FIGURE 8.16 Vehicle velocity v for different values of p.
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FIGURE 8.17 Steering angle γ for different values of p.
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FIGURE 8.18 Vehicle trajectories (x, y) with different values of l.

8.4.2.2 Influence of parameter l

The parameter p is fixed at p = −1 and several values of l in the range

The tracking performance in the look-behind case is also influenced by para-
meter l the same way as that in forward tracking. When l takes larger values,
the tracking vehicle takes the “corner-cutting” way to follow the leader vehicle.
With smaller absolute values of l, the tracking performance is better in terms
of smaller tracking error. However, the steering angle might rise to high values.
It is because we are tracking the front point of the leader vehicle which is sup-
posed to be less steady than the back point. Again, the selection of the desired
spacing l is subject to the requirement in an application.

8.5 CONCLUSIONS

Many applications such as in outdoor industrial settings and logistics envir-
onments require autonomous mobile robot vehicles to carry out frequent and
tight turnings, as well as forward and backward maneuvers. The unified non-
linear tracking controller, presented in this chapter, is able to work for both
forward and backward maneuvers as well as driving and steering. The design is
based on either kinematics or dynamics using an output function as the interve-
hicular connection. Design parameters of desired intervehicular spacing l and
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[−1 m,−8 m) are tested, with results shown in Figure 8.18 to Figure 8.22.



FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 325 — #31

Unified Control Design for Autonomous Vehicle 325

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Tr
ac

ki
ng

 e
rr

or
 (

cm
)

l = – 1 m

l = – 2.5 m

l = – 4 m

l = – 5.5 m

Time (sec)

FIGURE 8.19 Tracking errors ‖z̃‖ for different values of l.
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FIGURE 8.20 Vehicle acceleration v̇ for different values of l.
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FIGURE 8.22 Steering angle γ for different values of l.
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desired multiplier for steering angle p are studied analytically for stable track-
ing. The derived sufficient conditions of l, p, λ, and ξ can ensure the tracking
stability of vehicle following, are simple to choose, and take into account the
physical limitations of practical car-like vehicle designs. Extensive numerical
simulations also demonstrate the effectiveness of the developed controller and
the effects of these design parameters on the tracking performance in various
maneuvers.
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III
Map Building and
Path Planning

The previous two parts of the book had focused on the sensing and control
aspects of autonomous systems. These are fundamental capabilities that any
useful mobile robot ought to be equipped with. However, a truly intelligent and
autonomous system cannot dispense with the more abstract levels of deliber-
ation, involving planning and a larger amount of information processing and
reasoning. Part of these aspects of the autonomous system is dealt with in this
portion of the book.

Sensing involves the collection of information, and also involves some pre-
liminary treatment of the collected data, while control makes use of these data
for immediate determination of control signals to bring the system’s configura-
tion to the desired one. Both these processes lack the sophisticated deliberation
that makes a system intelligent. Such intelligent systems should be able to
plan their own paths through an unknown environment, make decisions about
their goals, and react to the decisions of other robots it senses.

Before the first levels of planning can actually take place, the informa-
tion obtained from sensors has to be organized into suitable and useful forms.
Very often, the success of planning algorithms rely heavily on the accuracy
of the robots’ estimation of their locations and their internal model (pos-
sibly built dynamically) of the world. Map building is the main focus of the
first chapter of this part and is given a thorough treatment. In this chapter,

331
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the extended Kalman filter (EKF) approach to SLAM is described. For such
feature-based approaches, the chapter outlines the essential operations that are
required for the successful use of SLAM in uncertain environments. These
operations include the ability to extract features from the raw sensor data for
inclusion into existing maps, to distinguish between new features and previ-
ously detected features which should be associated with known or previously
detected features, to be able to determine the robot’s location and correct erro-
neous map information in the presence of ever-increasing uncertainty (i.e., loop
closing and relocation techniques). The chapter also describes techniques to
handle the required operations for robust performance of SLAM on robots.
For the mapping of large environments, the method of local map joining is
described. The application of the local map joining method to multi-robot
mapping, where the relative locations between robots is not known, is also
presented.

The success of online robot localization and construction of maps paves
the way for more elaborate planning as the robot maneuvers through the
unknown environment. The area of path planning has been studied intens-
ively over the years, and is mainly concerned about the generation of a suitable
path to the goal, taking into account the obstacles present within the environ-

of internal constraints — namely kinematic, dynamic constraints, and vis-
ibility constraints — into motion planning. These additional constraints are
especially important in systems of embodied mobile robots. Following an over-
view of conventional classes of approaches to motion planning, the chapter
examines the use of randomized sampling techniques for motion planning of
robots subjected to kinematic and dynamic constraints. The effect of visibil-
ity constraints on motion planning, together with several solution techniques,
is investigated through the use of three representative visibility-based plan-
ning problems — guarding art galleries, online indoor exploration, and target
tracking.

The last chapter of the section examines cooperative motion planning and
control in multi-robot systems. This is a natural extension of single robot motion
planning, since autonomous systems are seldom made up of a single robot. The
planned motions of each robot will no longer be solely to obtain a collision
free path, but will also be shaped by the positions of other robots within the
team. The control of a robot’s path such that it maintains specific relative dis-
tances from others, relates to multi-robot formation control, and is treated in
detail within the chapter. Specifically, due to the prevalence of nonholonomic

control and stability of teams of nonholonomic robots using formation con-
trol graphs, where different formations are achieved through the creation or
deletion of edges between robots. Optimization-based control of formations
is also investigated, with the focus on an off-line optimization process based

© 2006 by Taylor & Francis Group, LLC

ment. Chapter 10, the second chapter of this part, discusses the incorporation

robots in real-world applications (Part II), the chapter examines the formation
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on the solution of a mixed integer program, and the use of model predictive
control.

The ability to perform map building and path planning operations bring us
up the cognitive chain, and sets the stage where still higher levels of planning
may take place. These shall be given detailed treatment in the remaining parts
of the book.
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9.1 INTRODUCTION

The concept of autonomy of mobile robots encompasses many areas of
knowledge, methods, and ultimately algorithms designed for trajectory control,
obstacle avoidance, localization, map building, and so forth. Practically,
the success of a path planning and navigation mission of an autonomous
vehicle depends on the availability of both a sufficiently reliable estimation
of the vehicle location and an accurate representation of the navigation area.

Schematically, the problem of map building consists of the following steps
(1) Sensing the environment of the vehicle at time k using onboard sensors
(e.g., laser scanner, vision, or sonar); (2) Representation of sensor data (e.g.,
feature- or raw-data-based approaches); (3) Integration of the recently perceived
observations at time k with the previously learned structure of the environment
estimated at time k − 1.

The simplest approach to map building relies on the vehicle location estim-
ates provided by dead-reckoning. However, as reported in the literature [1], this
approach is unreliable for long-term missions due to the time-increasing drift of

building problem and the improvement of dead-reckoning location estimates
(Figure 9.1b). Different approaches to the so-called simultaneous localization
and mapping (SLAM) problem have populated the robotics literature during
the last decade.

The most popular approach to SLAM dates back to the seminal work of
Smith et al. [2] where the idea of representing the structure of the navigation
area in a discrete-time state-space framework was originally presented. They
introduced the concept of stochastic map and developed a rigorous solution to
the SLAM problem using the extended Kalman filter (EKF) perspective. Many
successful implementations of this approach have been reported in indoor [1],
outdoor [3], underwater [4], and air-borne [5] applications.

The EKF-based approach to SLAM is characterized by the existence of a
discrete-time augmented state vector, composed of the location of the vehicle
and the location of the map elements, recursively estimated from the available
sensor observations gathered at time k, and a model of the vehicle motion,
between time steps k−1 and k. Within this framework, uncertainty is represen-
ted by probability density functions (pdfs) associated with the state vector, the
motion model, and the sensor observations. It is assumed that recursive propaga-
tion of the mean and the covariance of those pdfs conveniently approximates
the optimal solution of this estimation problem.

The time and memory requirements of the basic EKF–SLAM approach
result from the cost of maintaining the full covariance matrix, which is O(n2)

where n is the number of features in the map. Many recent efforts have
concentrated on reducing the computational complexity of SLAM in large
environments. Several current methods address the computational complex-
ity problem by working on a limited region of the map. Postponement [6]

© 2006 by Taylor & Francis Group, LLC

those estimates (Figure 9.1a). Consequently, a coupling arises between the map
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FIGURE 9.1 The need for SLAM: (a) odometric readings and segmented laser walls for
40 m of the trajectory of a vehicle at the Ada Byron building of our campus; (b) map and
trajectory resulting from the SLAM algorithm using the same data (95% error ellipses
are drawn).

and the compressed filter [3] significantly reduce the computational cost
without sacrificing precision, although they require an O(n2) step on the total
number of landmarks to obtain the full map. The split covariance intersection
method [7] limits the computational burden but sacrifices precision: it obtains a
conservative estimate. The sparse extended information filter [8] is able to obtain
an approximate map in constant time per step, except during loop closing. All
cited methods work on a single absolute map representation, and confront diver-
gence due to nonlinearities as uncertainty increases when mapping large areas
[9]. In contrast, local map joining [10] and the constrained local submap filter
[11], propose to build stochastic maps relative to a local reference, guaranteed to
be statistically independent. By limiting the size of the local map, this operation
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is constant time per step. Local maps are joined periodically into a global
absolute map, in a O(n2) step. Given that most of the updates are carried out on
a local map, these techniques also reduce the harmful effects of linearization.
To avoid the O(n2) step, the constrained relative submap filter [12] proposes
to maintain the independent local map structure. Each map contains links to
other neighboring maps, forming a tree structure (where loops cannot be rep-
resented). In Atlas [13], network coupled feature maps [14], and constant time
SLAM [15] the links between local maps form an adjacency graph. These tech-
niques do not impose loop consistency in the graph, sacrificing the optimality
of the resulting global map. Hierarchical SLAM [16] proposes a linear time
technique to impose loop consistency, obtaining a close to optimal global map.
The FastSLAM technique [17] uses particle filters to estimate the vehicle tra-
jectory and each one has an associated set of independent EKF to estimate the
location of each feature in the map. This partition of SLAM into a localization
and a mapping problem, allows to obtain a computational complexity O(log(n))
with the number of features in the map. However, its complexity is linear with
the number of particles used. The scaling of the number of particles needed
with the size and complexity of the environment remains unclear. In particular,
closing loops causes dramatic particle extinctions that map result in optimistic
(i.e., inconsistent) uncertainty estimations.

Another class of SLAM techniques is based on estimating sequences of
robot poses by minimizing the discrepancy between overlapping laser scans.
The map representation is the set of robot poses and the corresponding set
of laser scans. The work in Reference 18 uses scan matching between close
robot poses and global correlation to detect loops. The poses along the loop
are estimated using consistent pose estimation [19], whose time complexity is
O(n3) on the number of robot poses, making the method unsuitable for real
time execution in large environments. More recently, a similar approach to
build consistent maps with many cycles has been proposed in Reference 20.
This method obtains correspondences between vehicle poses using the iterative
closest point algorithm. Using a quadratic penalty function, correspondences
are incorporated into an optimization algorithm that recomputes the whole tra-
jectory. This process is iterated until convergence. Neither computing time nor
computational complexity are reported. There are two fundamental limitations
in this class of techniques, compared to EKF-based SLAM. First, there is no
explicit representation of the uncertainty in the estimated robot poses and the
resulting map. As a consequence, their convergence and consistency properties
remain unknown. Second, they largely rely on the high precision and density
of data provided by laser scanners. They seem hard to extend to sensors that
give more imprecise, sparse, or partial information such as sonar or monocular
vision.

This chapter describes the basic algorithm to deal with the SLAM problem
from the above mentioned EKF-based perspective. We describe techniques that
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successful SLAM schemes must incorporate: (1) Data association techniques,
to relate sensor measurements with features already in the map, as well as
to decide those that are spurious or correspond to environment features not
previously observed, and (2) Loop closing and relocation techniques, that allow
determination of the vehicle location and correct the map when the vehicle
uncertainty increases significantly during exploration, or when there is no prior
information on the vehicle location. Finally, we point out the main open prob-
lem of the current state-of-art SLAM approaches: mapping large-scale areas.
Relevant shortcomings of this problem are, on the one hand, the computational
burden, which limits the applicability of the EKF-based SLAM in large-scale
real time applications and, on the other hand, the use of linearized solutions
which jeopardizes the consistency of the estimation process. We point out prom-
ising directions of research using nonlinear estimation techniques, and mapping
schemes for multivehicle SLAM.

9.2 SLAM USING THE EXTENDED KALMAN FILTER

In feature-based approaches to SLAM, the environment is modeled as a set
of geometric features, such as straight line segments corresponding to doors or
window frames, planes corresponding to walls, or distinguishable points in out-
door environments. The process of segmentation of raw sensor data to obtain
feature parameters depends on the sensor and the feature type. In indoor environ-
ments, laser readings can be used to obtain straight wall segments [21,22], or in
outdoor environments to obtain two-dimensional (2D) points corresponding to
trees and street lamps [3]. Sonar measurement environments can be segmented
into corners and walls [10]. Monocular images can provide information about
vertical lines [23] or interest points [24]. Even measurements from different
sensors can be fused to obtain feature information [25].

In the standard EKF-based approach, the environment information related
to a set of elements {B, R, F1, . . . , Fn} is represented by a mapMB = (x̂B, PB),
where xB is a stochastic state vector with estimated mean x̂B and estimated error
covariance PB:

x̂B = E[xB] =



x̂B
R
...

x̂B
Fn




(9.1)

PB = E[(xB − x̂B)(xB − x̂B)T] =



PB
R . . . PB

RFn
...

. . .
...

PB
FnR . . . PB

Fn
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Vector x̂B contains the estimated location of the vehicle R and the environment
features F1 . . .Fn, all with respect to a base reference B. In the case of
the vehicle, its location vector x̂B

R = (x, y,φ)T describes the transformation
from B to R. In the case of an environment feature j, the parameters that
compose its location vector x̂B

Fj
depend on the feature type, for example,

x̂B
Fj
= (xj, yj)

T for point features. The diagonal elements of the matrix PB

represent the estimated error covariance of the different features of the state
vector and that of the vehicle location; its off-diagonal elements represent the
cross-covariance matrices between the estimated locations of the corresponding
features.

Recursive estimation of the first two moments of the probability density
function of xB is performed following Algorithm 9.1. There, the map is ini-
tialized using the current vehicle location as base reference, and thus with
perfect knowledge of the vehicle location. Sensing and feature initialization
is also performed before the first vehicle motion, to maximize the precision
of the resulting map. Prediction of the vehicle motion using odometry and
update of the map using onboard sensor measurements are then iteratively
carried out.

9.2.1 Initialization

In the creation of a new stochastic map at step 0, a base reference B must
be selected. It is common practice to build a map relative to a fixed base
reference different from the initial vehicle location. This normally requires the

ALGORITHM 9.1
EKF–SLAM

xB
0 = 0; PB

0 = 0 {Map initialization}
[z0, R0] = get_measurements
[xB

0 , PB
0] = add_new_features(xB

0 , PB
0 , z0, R0)

for k = 1 to steps do
[xRk−1

Rk
, Qk] = get_odometry

[xB
k|k−1,PB

k|k−1]= compute_motion(xB
k−1, PB

k−1,xRk−1
Rk

,Qk) {EKF predict.}
[zk , Rk] = get_measurements
Hk = data_association(xB

k|k−1, PB
k|k−1, zk , Rk)

[xB
k , PB

k ] = update_map(xB
k|k−1, PB

k|k−1, zk , Rk ,Hk) {EKF update}

[xB
k , PB

k ] = add_new_features(xB
k , PB

k , zk , Rk ,Hk)
end for
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assignment of an initial level of uncertainty to the estimated vehicle location.
In the theoretical linear case [26], the vehicle uncertainty should always remain
above this initial level. In practice, due to linearizations, when a nonzero initial
uncertainty is used, the estimated vehicle uncertainty rapidly drops below its
initial value, making the estimation inconsistent after very few EKF update
steps [9].

A good alternative is to use, as base reference, the current vehicle location,
that is, B = R0, and thus we initialize the map with perfect knowledge of the
vehicle location:

x̂B
0 = x̂B

R0
= 0; PB

0 = PB
R0
= 0 (9.2)

If at any moment there is a need to compute the location of the vehicle or
the map features with respect to any other reference, the appropriate trans-

transformed to use a feature as base reference, again using the appropriate
transformations [10].

9.2.2 Vehicle Motion: The EKF Prediction Step

When the vehicle moves from position k −1 to position k, its motion is estimated
by odometry:

xRk−1
Rk
= x̂Rk−1

Rk
+ vk (9.3)

where x̂Rk−1
Rk

is the estimated relative transformation between positions k − 1
and k, and vk (process noise [27]) is assumed to be additive, zero-mean, and
white, with covariance Qk .

Thus, given a mapMB
k−1 = (x̂B

k−1, PB
k−1) at step k − 1, the predicted map

MB
k|k−1 at step k after the vehicle motion is obtained as follows:

x̂B
k|k−1 =




x̂B
Rk−1
⊕ x̂Rk−1

Rk

x̂B
F1,k−1

...
x̂B

Fm,k−1




PB
k|k−1 � FkPB

k−1FT
k +GkQkGT

k

(9.4)

© 2006 by Taylor & Francis Group, LLC

formations can be applied (see Appendix). At any time, the map can also be
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Fk =
∂xB

k|k−1

∂xB
k−1

∣∣∣∣∣
(x̂B

k−1, x̂
Rk−1
Rk

)

=




J1⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0 · · · 0

0 I
...

...
. . .

0 · · · I




Gk =
∂xB

k|k−1

∂xRk−1
Rk

∣∣∣∣∣∣
(x̂B

k−1, x̂
Rk−1
Rk

)

=




J2⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0
...
0




where J1⊕ and J2⊕ are the Jacobians of transformation composition (see
Appendix).

9.2.3 Data Association

At step k, an onboard sensor obtains a set of measurements zk,i of  m  environment
features Ei (i = 1, . . . , m). Data association consists in determining the origin
of each measurement, in terms of the map features Fj, j = 1, . . . , n. The result
is a hypothesis:

Hk = [j1 j2 · · · jm]

associating each measurement zk,i with its corresponding map feature
Fji(ji = 0 indicates that zk,i does not come from any feature in the map). The
core tools of data association are a prediction of the measurement that each
feature would generate, and a measure of the discrepancy between a predicted
measurement and an actual sensor measurement.

The measurement of feature Fj can be predicted using a nonlinear meas-
urement function hk, j of the vehicle and feature location, both contained in the
map state vector xB

k|k−1. If observation zk,i comes from feature Fj, the following
relation must hold:

zk,i = hk, j(xB
k|k−1)+ wk,i (9.5)

where the measurement noise wk,i, with covariance Rk,i, is assumed to be addit-
ive, zero-mean, white, and independent of the process noise vk . Linearization
of Equation (9.5) around the current estimate yields:

hk, j(xB
k|k−1) � hk, j(x̂B

k|k−1)+Hk, j(xB
k − x̂B

k|k−1) (9.6)

© 2006 by Taylor & Francis Group, LLC

where ⊕ represents the composition of transformations (see Appendix), and:
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with

Hk, j = ∂hk, j

∂xB
k|k−1

∣∣∣∣∣
(x̂B

k|k−1)

(9.7)

The discrepancy between the observation i and the predicted observation of
map feature j is measured by the innovation term νk,ij, whose value and
covariance are:

νk,ij = zk,i − hk, j(x̂B
k|k−1)

Sk,ij = Hk, jPB
k HT

k, j + Rk,i

(9.8)

The measurement can be considered corresponding to the feature if the
Mahalanobis distance D2

k,ij [28] satisfies:

D2
k,ij = νT

k,ijS
−1
k,ijνk,ij < χ2

d,1−α (9.9)

where d = dim(hk, j) and 1 − α is the desired confidence level, usually 95%.
This test, denominated individual compatibility (IC), applied to the predicted
state, can be used to determine the subset of map features that are compat-
ible with a measurement, and is the basis for some of the most popular data
association algorithms discussed later in this chapter.

is that all measurements should be jointly compatible with their corres-
ponding features. In order to establish the consistency of a hypothesis Hk ,
measurements can be jointly predicted using function hHk :

hHk (x
B
k|k−1) =




hj1(x
B
k|k−1)

...
hjm(x

B
k|k−1)


 (9.10)

which can also be linearized around the current estimate to yield:

hHk (x
B
k|k−1) � hHk (x̂

B
k|k−1)+HHk (x

B
k − x̂B

k|k−1); HHk =



Hj1
...

Hjm



(9.11)

© 2006 by Taylor & Francis Group, LLC

An often overlooked fact, that will be discussed in more detail in Section 9.3,
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The joint innovation and its covariance are:

νHk = zk − hHk (x̂
B
k|k−1)

SHk = HHk PB
k HT
Hk
+ RHk

(9.12)

Measurements zk can be considered compatible with their corresponding
features according toHk if the Mahalanobis distance satisfies:

D2
Hk
= νT
Hk

S−1
Hk
νHk < χ2

d,1−α (9.13)

where now d = dim(hHk ). This consistency test is denominated joint
compatibility (JC).

9.2.4 Map Update: The EKF Estimation Step

Once correspondences for measurements zk have been decided, they are used
to improve the estimation of the stochastic state vector by using the standard
EKF update equations as follows:

x̂B
k = x̂B

k|k−1 +KHkνHk (9.14)

where the filter gain KHk is obtained from:

KHk = PB
k|k−1HT

Hk
S−1
Hk

(9.15)

Finally, the estimated error covariance of the state vector is:

PB
k = (I−KHk HHk )P

B
k|k−1

= (I−KHk HHk )P
B
k|k−1(I−KHk HHk )

T +KHk RHk KT
Hk

(9.16)

9.2.5 Adding Newly Observed Features

Measurements for which correspondences in the map cannot be found by data
association can be directly added to the current stochastic state vector as new
features by using the relative transformation between the vehicle Rk and the
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observed feature E. Therefore, updating of xB
k takes place as follows:

xB
k =




xB
Rk
...

xB
Fn,k


 ⇒ xB

k+ =




xB
Rk
...

xB
Fn,k

xB
Ek


 =




xB
Rk
...

xB
Fn,k

xB
Rk
⊕ xRk

E


 (9.17)

Additionally, the updated covariance matrix PB
k+ is computed using the

linearization of Equation (9.17).

9.2.6 Consistency of EKF–SLAM

A state estimator is called consistent if its state estimation error xB
k − x̂B

k
satisfies [29]:

E[xB
k − x̂B

k ] = 0

E[(xB
k − x̂B

k ) (x
B
k − x̂B

k )
T] ≤ PB

k

(9.18)

This means that the estimator is unbiased and that the actual mean square error
matches the filter-calculated covariances. Given that SLAM is a nonlinear prob-
lem, consistency checking is of paramount importance. When the ground truth
solution for the state variables is available, a statistical test for filter consist-
ency can be carried out on the normalized estimation error squared (NEES),
defined as:

NEES = (xB
k − x̂B

k )
T (PB

k )
−1 (xB

k − x̂B
k ) (9.19)

Consistency is checked using a chi-squared test:

NEES ≤ χ2
d,1−α (9.20)

where d = dim(xB
k ) and 1 − α is the desired confidence level. Since in

most cases ground truth is not available, the consistency of the estimation
is maintained by using only measurements that satisfy the innovation test of
Equation (9.13). Because the innovation term depends on the data association
hypothesis, this process becomes critical in maintaining a consistent estimation
[9] of the environment map.
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FIGURE 9.2 Interpretation tree of measurements E1, . . . , Em in terms of map features
F1, . . . , Fn.

9.3 DATA ASSOCIATION IN SLAM

Assume that a new set of m measurements z = {z1, . . . , zm} of the environ-
ment features {E1, . . . , Em} have been obtained by a sensor mounted on the

a hypothesis H = [j1 j2 · · · jm] associating each measurement Ei with its
corresponding map feature Fji(ji = 0 indicating that zi does not correspond
to any map feature). The space of measurement-feature correspondences can
be represented as an interpretation tree of m levels [30] (see Figure 9.2); each
node at level i, called an i-interpretation, provides an interpretation for the first
i measurements. Each node has n + 1 branches, corresponding to each of the
alternative interpretations for measurement Ei, including the possibility that
the measurement be spurious and allowing map feature repetitions in the same
hypothesis. Data association algorithms must select in some way one of the
(n+1)m m-interpretations as the correct hypothesis, carrying out validations to
determine the compatibility between sensor measurements and map features.

9.3.1 Individual Compatibility Nearest Neighbor

The simplest criterion to decide a pairing for a given measurement is the nearest
neighbor (NN), which consists in choosing among the features that satisfy IC of
Equation (9.9), the one with the smallest Mahalanobis distance. A popular data
association algorithm, the Individual Compatibility Nearest Neighbor (ICNN,
Algorithm 9.2), is based on this idea. It is frequently used given its conceptual
simplicity and computational efficiency: it performs m · n compatibility tests,
making it linear with the size of the map.

© 2006 by Taylor & Francis Group, LLC

vehicle. As mentioned in Section 9.2, the goal of data association is to generate
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ALGORITHM 9.2
ICNN

ICNN (E1···m, F1···n)
for i = 1 to m do {measurement Ei}

D2
min← mahalanobis2 (Ei, F1)

nearest← 1
for j = 2 to n do {feature Fj}

D2
ij ← mahalanobis2 (Ei, Fj)

if D2
ij < D2

min then
nearest← j
D2
min← D2

ij
end if

end for
if D2

min ≤ χ2
di ,1−α then

Hi ← nearest
else
Hi ← 0

end if
end for
returnH

The IC considers individual compatibility between a measurement and
a feature. However, individually compatible pairings are not guaranteed to be
jointly compatible to form a consistent hypothesis. Thus, with ICNN there is a
high risk of obtaining an inconsistent hypothesis and thus updating the state vec-
tor with a set of incompatible measurements, which will cause EKF to diverge.
As vehicle error grows with respect to sensor error, the discriminant power of
IC decreases: the probability that a feature may be compatible with an unre-
lated (or spurious) sensor measurement increases. ICNN is a greedy algorithm,
and thus the decision to pair a measurement with its most compatible feature
is never reconsidered. As a result, spurious pairings may be included in the
hypothesis and integrated in the state estimation. This will lead to a reduction
in the uncertainty computed by the EKF with no reduction in the actual error,
that is, inconsistency.

9.3.2 Joint Compatibility

In order to limit the possibility of accepting a spurious pairing, reconsidera-
tion of the established pairings is necessary. The probability that a spurious

© 2006 by Taylor & Francis Group, LLC
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ALGORITHM 9.3
JCBB

Continuous_JCBB (E1···m, F1···n)
Best = []
JCBB ([], 1)
return Best

procedure JCBB (H, i): {find pairings for observationEi}
if i > m then {leaf node?}

if pairings(H) > pairings(Best) then
Best←H

end if
else

for j = 1 to n do
if individual_compatibility(i, j) and then joint_compatibility(H, i, j)
then

JCBB([H j], i + 1) {pairing (Ei, Fj) accepted}
end if

end for
if pairings(H)+ m − i > pairings(Best) then {can do better?}

JCBB([H 0], i + 1) {star node, Ei not paired}
end if

end if

pairing is jointly compatible with all the other pairings of a given hypothesis
decreases as the number of pairings in the hypothesis increases. The JC test can
be used to establish the consistency of a hypothesisHm, using Equation (9.13).
The JC test is the core of the joint compatibility branch and bound data
association algorithm (JCBB, Algorithm 9.3), that traverses the interpreta-
tion tree in search for the hypothesis that includes the largest number of
jointly compatible pairings. The quality of a node at level i, corresponding
to a hypothesis Hi, is defined as the number of non-null pairings that can
be established from the node. In this way, nodes with quality lower than
the best available hypothesis are not explored, bounding the search [30]. The
NN rule using the Mahalanobis distance D2

Hi
is used as heuristic for branch-

ing, so that the nodes corresponding to hypotheses with a higher degree
of JC are explored first. The size of both hHi and SHi increase with the
size of hypothesis Hi. This makes this test potentially expensive to apply

the Mahalanobis distance).

© 2006 by Taylor & Francis Group, LLC

(see References 31 and 32 for techniques for the efficient computation of
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FIGURE 9.3 Predicted feature locations relative to vehicle (large ellipses), measure-
ments (small ellipses), and associations (bold arrows). According to the ICNN algorithm
observation B is incorrectly matched with the upper map point (a) and according to the
JCBB algorithm (b) all the matches are correct.

During continuous SLAM, data association problems may arise even in
very simple scenarios. Consider an environment constituted by 2D points. If
at a certain point the vehicle uncertainty is larger than the separation between
the features, the predicted feature locations relative to the robot are cluttered,
and the NN algorithm is prone to make an incorrect association as illustrated
in Figure 9.3a where two measurements are erroneously paired with the same
map feature. In these situations, the JCBB algorithm can determine the correct
associations (Figure 9.3b), because through correlations it considers the relative
location between the features, independent of vehicle error.
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The robustness of JCBB is especially important in loop-closing operations

ation algorithms would incorrectly match the signaled point with a point feature
previously observed in the pillar. Accepting an incorrect matching will cause
the EKF to diverge, obtaining an inconsistent map. The JC algorithm takes into
account the relative location between the point and the segment and has no
problem in finding the right associations. The result is a consistent and more
precise global map.

Joint compatibility is a highly restrictive criterion, that limits the combin-
atorial explosion of the search. The computational complexity does not suffer
with the increase in vehicle error because the JC of a certain number of measure-
ments fundamentally depends on their relative error (which depends on sensor
and map precision), more than on their absolute error (which depends on robot
error). The JC test is based on the linearization of the relation between the
measurements and the state (Equation [9.6]). JCBB will remain robust to robot
error as long as the linear approximation is reasonable. Thus, the adequacy of
using JCBB is determined by the robot orientation error (in practice, we have
found the limit to be around 30◦). Even if the vehicle motion is unknown (no
odometry is available), as long as it is bounded by within this limit, JCBB can
perform robustly. In these cases, the predicted vehicle motion can be set to
zero (x̂Rk−1

Rk k sufficiently large to include the largest
possible displacement. The algorithm will obtain the associations, and during
the estimation stage of the EKF the vehicle motion will be determined and the
environment structure can be recovered (Figure 9.5b).

9.3.3 Relocation

Consider now the data association problem known as vehicle relocation, first
location, global localization, or “kidnapped” robot problem, which can be stated
as follows: given a vehicle in an unknown location, and a map of the envir-
onment, use a set of measurements taken by onboard sensors to determine the
vehicle location within the map. In SLAM, solving this problem is essential to
be able to restart the robot in a previously learned environment, to recover from
localization errors, or to safely close big loops.

When there is no vehicle location estimation, simple location independent
geometric constraints can be used to limit the complexity of searching the cor-
respondence space [30]. Given a pairing pij = (Ei, Fj), the unary geometric
constraints that may be used to validate the pairing include length for seg-
ments, angle for corners, or radius for circular features. Given two pairings
pij = (Ei, Fj) and pkl = (Ek , Fl), a binary geometric constraint is a geometric
relation between measurements Ei and Ek that must also be satisfied between
their corresponding map features Fj and Fl (e.g., distance between two points,

© 2006 by Taylor & Francis Group, LLC

(Figure 9.4). Due to the big odometry errors accumulated, simple data associ-

= 0, Figure 9.5a), with Q
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FIGURE 9.4 A loop-closing situation. (a) Before loop closing, potential matches have
been found for measurements signaled with an arrow: measurement R is compatible only
with feature S, but measurement P is compatible with both features A and B. The NN
rule would incorrectly match P with A. (b) The JCBB algorithm has correctly matched
both observations with the corner (P with A) and the lower wall (R with B), and the map
has been updated.
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FIGURE 9.5 Data association using JCBB without odometry: (a) laser data in the abso-
lute reference with null vehicle motion; (b) map and vehicle trajectory resulting from
the SLAM algorithm.

angle between two segments). For stochastic geometric constraint validation in

Grimson [30] proposed a branch and bound algorithm for model-based
geometric object recognition that uses unary and binary geometric constraints.
A closely related technique also used in object recognition consists in building

© 2006 by Taylor & Francis Group, LLC

SLAM, see Reference 33.
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a compatibility graph whose nodes are unary compatible matchings and whose
arcs represent pairs of binary compatible matchings. Finding the largest hypo-
thesis consistent with unary and binary constraints is equivalent to finding the

and references). This idea has been applied recently by Bailey et al. [34] to the
problem of robot relocation with an a priori map.

Branch and bound algorithms are forced to traverse the whole correspond-
ence space until a good bound is found. In the SLAM relocation problem, when
the vehicle is not within the mapped area, a good bound is never found. Since the
correspondence space is exponential with the number of measurements, in this
worst case the execution times of branch and bound algorithms are very long.
To overcome this limitation, the data association process can be done using
random sampling (RS) instead of by a full traversal of the interpretation tree.
The RS algorithm that we use (Algorithm 9.4) is an adaptation of the RANSAC
algorithm [35] for the relocation problem. The fundamental idea is to ran-
domly select p out of the m measurements to try to generate vehicle localization
hypotheses using geometric constraints, and verify them with all m measure-
ments using JC. If Pg is the probability that a randomly selected measurement
corresponds to a mapped feature (not spurious) and Pfail is the acceptable prob-
ability of not finding a good solution when it exists, the required number of
tries is:

t =
⌈

log Pfail

log(1− Pg
p)

⌉
(9.21)

Hypothesis generation–verification schemes such as this one perform better
because feature location is a tighter consistency criterion than geometric con-
straints, and thus branch pruning is more effective. The potential drawback of
this approach is that hypothesis verification is location dependent, and thus the
constraints to be used for validation cannot be precomputed. To limit the amount
of location dependent constraints to apply, verification can take place when a
hypothesis contains at least three consistent pairings. Choosing Pfail = 0.05
and considering a priori that only half of the measurements are present in the
map Pg = 0.5, the maximum number of tries is t = 23. If you can con-
sider that at least 90% of the measurements correspond to a map feature, the
number of required tries is only three. The RS algorithm randomly permutes
the measurements and performs hypothesis generation considering the first
three measurements not spurious (without star branch). The number of tries is
recalculated to adapt to the current best hypothesis, so that no unnecessary tries
are carried out [36].

Notice that the maximum number of tries does not depend on the number
of measurements. Experiments show that this fact is crucial in reducing the
computational complexity of the RS algorithm.

© 2006 by Taylor & Francis Group, LLC

maximum clique in the compatibility graph (see Reference 30 for a discussion
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ALGORITHM 9.4
Relocation using RANSAC

Relocation_RS (H)
Pfail = 0.05, p = 3, Pg = 0.5
Best = []
i = 0
repeat

ẑ = random_permutation(ẑ)
RS([], 1)
Pg = max(Pg, pairings(Best) / m)
t = log Pfail/ log

(
1− Pg

p
)

i = i + 1
until i ≥ t
return Best

procedure RS (H):
{H : current hypothesis}
{i : observation to be matched}
if i > m then

if pairings(H) > pairings(Best) then
Best = H

end if
else if pairings(H) == 3 then

xB
R = estimate_location_(H)

if joint_compatibility(H) then
JCBB(H, i) { hypothesis verification}

end if
else {branch and bound without star node}

for j = 1 to n do
if unary(i, j) ∧ binary(i, j, H) then

RS([H j], i + 1)
end if

end for
end if

9.3.4 Locality

the main problem of the interpretation tree
approach is the exponential number of possible hypotheses (tree leaves):
Nh = (n+ 1)m. The use of geometric constraints and branch and bound search

© 2006 by Taylor & Francis Group, LLC

As explained in Section 9.3.3,
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dramatically reduce the number of nodes explored, by cutting down entire
branches of the tree. However, Grimson [30] has shown that in the general case
where spurious measurements can arise, the amount of search needed to find
the best interpretation is still exponential. In these conditions, the interpretation
tree approach seems impracticable except for very small maps.

To overcome this difficulty we introduce the concept of locality: given that
the set of measurements has been obtained from a unique vehicle location (or
from a set of nearby locations), it is sufficient to try to find matchings with local
sets of features in the map. Given a map feature Fj, we define its locality L(Fj)

as the set of map features that are in the vicinity to it, such that they can be seen
from the same vehicle location. For a given mapping problem, the maximum
cardinality of the locality sets will be a constant c that depends on the sensor
range and the maximum density of features in the environment.

During the interpretation tree search, once a matching has been established
with a map feature, the search can be restricted to its locality set. For the first
measurement, there are n possible feature matchings. Since there are at most c
features covisible with the first one, for the remaining m−1 measurements there
are only c possible matches, giving a maximum of n(c + 1)m−1 hypotheses.
If the first measurement is not matched, a similar analysis can be done for the
second tree level. Thus, the total number of hypotheses Nh will be:

Nh ≤ n(c+ 1)m−1 + · · · + n+ 1 = n
(c+ 1)m − 1

c
+ 1 (9.22)

This implies that, using locality, the complexity of searching the interpretation
tree will be linear with the size of the map.

There are several ways of implementing locality:

1. SLAM can be implemented by building sequences of independent
local maps [10]. If the local maps are stored, the search for matchings
can be performed in time linear with the number of local maps. In
this case, the locality of a feature is the set of features belonging
to the same local map. A drawback of this technique is that global
localization may fail around the borders between two local maps.

2. Alternatively, the locality of a feature can be computed as the set of
map features within a distance less than the maximum sensor range.
There are two drawbacks in this approach: first, this will require
O(n2) distance computations, and second, in some cases features
that are close cannot be seen simultaneously (e.g., because they are
in different rooms), and thus should not be considered local.

3. The locality of a feature can be defined as the set of features that have
been seen simultaneously with it at least once. We choose this last
alternative, because it does not suffer from the limitations of the first

© 2006 by Taylor & Francis Group, LLC
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FIGURE 9.6 Covisibility matrix (a) and normalized information matrix (b).

two, and additionally it can be done during map building without
extra cost.

Figure 9.6a shows the covisibility matrix obtained during map building
for the first 1000 steps of the dataset obtained by Guivant and Nebot [3],
gathered with a vehicle equipped with a SICK laser scanner in Victoria Park,
Sydney. Wheel encoders give an odometric measure of the vehicle location. The
laser scans are processed using Guivant’s algorithm to detect tree trunks and
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estimate their radii (Figure 9.7). As features are added incrementally during map
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FIGURE 9.7 Segmentation of scan 120, with m = 13 tree trunks detected. Radii are
magnified ×5.

building, the typical form of the covisibility matrix is band-diagonal. Elements
far from the diagonal appear when a loop is closed, because recently added
features become covisible with previously mapped features. In any case, the
number of elements per row or column only depends on the density of fea-
tures and the sensor reach. Using a sparse matrix representation, the amount of
memory needed to store the covisibility matrix (or any other locality matrix)
is O(n).

An important property of the covisibility matrix is its close relation to the
information matrix of the map (the inverse of the map covariance matrix).

column has been divided by the square root of the corresponding diagonal
element. It is clear that the information matrix allows the determination of
those features that are seen from the vehicle location during map building. The
intuitive explanation is that as the uncertainty in the absolute vehicle location
grows, the information about the features that are seen from the same location
becomes highly coupled.

This gives further insight on the structure of the SLAM problem: while the
map covariance matrix is a full matrix with O(n2) elements, the normalized
information matrix tends to be sparse, with O(n) elements. This fact can be
used to obtain more efficient SLAM Algorithms [37].

Running continuous SLAM for the first 1000 steps, we obtain a map of

by our algorithm, we obtained a reference solution running continuous SLAM
until step 2500. Figure 9.8 shows the reference vehicle location for steps 1001
to 2500. The RS relocation algorithm was executed on scans 1001 to 2500. This
guarantees that we use scans statistically independent from the stochastic map.
The radii of the trunks are used as unary constraints, and the distance between
the centers as binary constraints.

© 2006 by Taylor & Francis Group, LLC

Figure 9.6b shows the normalized information matrix, where each row and

n = 99 point features (see Figure 9.8). To verify the vehicle locations obtained
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FIGURE 9.8 Stochastic map of 2D points (tree trunks) built until step 1000. There are
n = 99 features. Reference vehicle trajectory for steps 1001 to 2500. Trunk radii are
magnified ×5.

In this experiment, when six or more measurements are paired, the algorithm
finds the solution with no false positives. Otherwise, the solution must be dis-
carded as being unreliable. In case that less than six points are segmented from
the scan, more sensor information is necessary to reliably determine the vehicle
location. When the vehicle is in the map, the RS algorithm finds the solution
with a mean execution time of less than 1 sec (in MATLAB�, and executed
on a Pentium IV, at 1.7 GHz). When the vehicle is not in the mapped area, for

details).

9.4 MAPPING LARGE ENVIRONMENTS

The EKF–SLAM techniques presented in previous sections have two important
limitations when trying to map large environments. First, the computational cost
of updating the map grows with O(n2), where n is the number of features in the
map. Second, as the map grows, the estimates obtained by the EKF equations
quickly become inconsistent due to linearization errors [9].

An alternative technique that reduces the computational cost and improves
consistency is local map joining [10]. Instead of building one global map, this
technique builds a set of independent local maps of limited size. Local maps
can be joined together into a global map that is equivalent to the map obtained
by the standard EKF–SLAM approach, except for linearization errors. As most
of the mapping process consists in updating local maps, where errors remain
small, the consistency of the global map obtained is greatly improved. In the
following sections we present the basics of local map joining.

© 2006 by Taylor & Francis Group, LLC

up to 30 measurements, RS runs in less than 2 sec (see Reference 33 for full
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Each local map can be built as follows: at a given instant tj, a new map is initial-
ized using the current vehicle location as base reference Bj. Then, the vehicle
performs a limited motion (say kj steps) acquiring sensor information about
the neighboring environment features Fj. The standard EKF-based techniques

presented in previous sections are used to obtain a local mapMBj

Fj
= (x̂Bj

Fj
, P

Bj

Fj
).

This local map is independent of any prior estimation of the vehicle location
because it is built relative to the initial vehicle location Bj. The local map
depends only on the odometry and sensor data obtained during the kj steps.
This implies that, under the common assumption that process and measure-
ment noise are white random sequences, two local maps built with the same
robot from disjoint sequences of steps are functions of independent stochastic
variables. Therefore, the two maps will be statistically independent and uncor-
related. As there is no need to compute the correlations between features in
different local maps and the size of local maps is bounded, the cost of local
map building is constant per step, independent from the size of the global map.

The decision to close map Mj and start a new local map is made once
the number of features in the current local map reaches a maximum, or the
uncertainty of the vehicle location with respect to the base reference of the cur-
rent map reaches a limit, or no matchings were found by the data association
process for the last sensor measurements (a separate region of the environment
is observed). Note that the new local mapMj+1 will have the current vehicle
position as base reference, which corresponds to the last vehicle position in
mapMj. Thus, the relative transformation between the two consecutive maps
xj+1 = x

Bj
Bj+1

is part of the state vector of mapMj.

9.4.2 Local Map Joining

Given two uncorrelated local maps:

MB
F = (x̂B

F , PB
F ); F = {B, F0, F1, . . . , Fn}

MB′
E = (x̂B′

E , PB′
E ); E = {B′, E0, E1, . . . , Em}

where a common reference has been identified Fi = Ej, the goal of map joining
is to obtain one full stochastic map:

MB
F+E = (x̂B

F+E , PB
F+E )

containing the estimates of the features from both maps, relative to a common
base reference B, and to compute the correlations appearing in the process.
Given that the features from the first map are expressed relative to reference B,
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9.4.1 Building Independent  Local Maps
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to form the joint state vector xB
F+E we only need to transform the features of

the second map to reference B using the fact that Fi = Ej:

x̂B
F+E =

[
x̂B
F

x̂B
E

]
=




x̂B
F

x̂B
Fi
⊕ x̂

Ej
E0

...

x̂B
Fi
⊕ x̂

Ej
Em


 (9.23)

The covariance PB
F+E of the joined map is obtained from the linearization of

Equation (9.23), and is given by:

PB
F+E = JFPB

FJT
F + JEP

Ej

E JT
E

=
[

PB
F PB

FJT
1

J1PB
F J1PB

FJT
1

]
+
[

0 0

0 J2P
Ej

E JT
2

]
(9.24)

where

JF =
∂xB
F+E
∂xB
F

∣∣∣∣(x̂B
F ,x̂

Ej
E )
=
[

I
J1

]

JE =
∂xB
F+E
∂x

Ej

E

∣∣∣∣(x̂B
F ,x̂

Ej
E )
=
[

0
J2

]

J1 =




0 . . . J1⊕
{

x̂B
Fi

, x̂
Ej
E0

}
. . . 0

...
...

...

0 · · · J1⊕
{

x̂B
Fi

, x̂
Ej
Em

}
. . . 0




J2 =




J2⊕
{

x̂B
Fi

, x̂
Ej
E0

}
· · · 0

...
. . .

...

0 · · · J2⊕
{

x̂B
Fi

, x̂
Ej
Em

}



Obtaining vector x̂B
F+E with Equation (9.23) is an O(m) operation. Given

that the number of nonzero elements in J1 and J2 is O(m), obtaining matrix
PB
F+E with Equation (9.24) is an O(nm + m2) operation. Thus when n � m,

map joining is linear with n.
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9.4.3 Matching and Fusion after Map Joining

The map resulting from map joining may contain features that, coming from
different local maps, correspond to the same environment feature. To eliminate
such duplications and obtain a more precise map we need a data association
algorithm to determine correspondences, and a feature fusion mechanism to
update the global map. For determining correspondences we use the JCBB

Feature fusion is performed by a modified version of the EKF update
equations, which consider a nonlinear measurement equation:

zij = hij(x) = 0 (9.25)

with null noise covariance matrix, which constraints the relative location
between the duplicates Fi and Fj of an environment feature. Once the matching
constraints have been applied, the corresponding matching features become
fully correlated, with the same estimation and covariance. Thus, one of them
can be eliminated.

The whole process of local map joining, matching, and fusion can be seen

9.4.4 Closing a Large Loop

To compare map joining with full EKF–SLAM we have performed a map
building experiment, using a robotized wheelchair equipped with a SICK laser
scanner. The vehicle was hand-driven along a loop of about 250 m in a pop-
ulated indoor/outdoor environment in the Ada Byron building of our campus.
The laser scans were segmented to obtain lines using the RANSAC technique.
The global map obtained using the classical EKF–SLAM algorithm is shown

position, closing the loop. The figure shows that the vehicle estimated location
has some 10 m error and the corresponding 95% uncertainty ellipses are ridicu-
lously small, giving an inconsistent estimation. Due to these small ellipsoids, the
JCBB data association algorithm was unable to properly detect the loop closure.
This corroborates the results obtained with simulations in Reference 9: in large
environments the map obtained by EKF–SLAM quickly becomes inconsistent,
due to linearization errors.

The same dataset was processed to obtain independent local maps at fixed
intervals of about 10 m. The local maps were joined and fused obtaining the
global map shown in Figure 9.10b. In this case the loop was correctly detec-
ted by JCBB and the map obtained seems to be consistent. Furthermore, the
computational time was about 50 times shorter that the standard EKF approach.
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in the example of Figure 9.9.

in Figure 9.10a. At this point, the vehicle was very close to the initial starting

algorithm described in Section 9.3.2.
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FIGURE 9.9 Example of local map joining. (a) Local mapMB1
F1

with four point features,
P1, P2, S3, and a segment S4, with respect to reference B1; (b) local mapMB2

F2
with

two features, S1 and S2, with respect to reference B2; (c) both maps are joined to
obtainMB1

F1+F2
; (d) mapMB1

F1:2
after updating by fusing S3 with S5, and S4 with S6.

(Reprinted with permission from Tardós, J. D. et al. International Journal of Robotics
Research, 21: 311–330, 2002.).
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FIGURE 9.9 Continued.
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FIGURE 9.10 Global maps obtained using the standard EKF–SLAM algorithm (a) and
local map joining (b).
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FIGURE 9.11 Maps build by two independent robots (a, b) and global map obtained by
joining them (c).

9.4.5 Multi-robot SLAM

The techniques explained above can be applied to obtain global maps of large
environments using several mobile robots. In Figure 9.11a and b, we can see
the maps built by two independent robots that have traversed a common area.
In this case, the relative location between the robots is unknown. The process
for obtaining a common global map is as follows:

• Choose at random one feature on the first map, pick its set of covisible
features and search for matchings in the second map using the RS
relocation algorithm. Repeat the process until a good matching is
found, for a fixed maximum number of tries.
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• When a match is found, choose a common reference in both maps. In
this case the reference is built in the intersection of two nonparallel
walls that have been matched by RS. This gives the relative location
between both maps. Change the base of the second map to be the
common reference using the technique detailed in Reference 10.

tains the location of all features and both robots, relative to the base
of the first map.

covisibility set used to match both maps. After that point, both robots can
continue exploring the environment, building new independent local maps that
can be joined and fused with the global map.

9.5 CONCLUSIONS

The EKF approach to SLAM dates back to the seminal work reported in
Reference 2 where the idea of representing the structure of the navigation area
in a discrete-time state-space framework was originally presented. Nowadays

Three important convergence properties were proven in Reference 26 (1) the
determinant of any submatrix of the map covariance matrix decreases mono-
tonically as observations are successively made, (2) in the limit, as the number
of observations increases, the landmark estimates become fully correlated, and
(3) in the limit, the covariance associated with any single landmark location
estimate reaches a lower bound determined only by the initial covariance in the
vehicle location estimate at the time of the first sighting of the first landmark.

It is important to note that these theoretical results only refer to the evolu-
tion of the covariance matrices computed by the EKF in the ideal linear case.
They overlook the fact that, given that SLAM is a nonlinear problem, there
is no guarantee that the computed covariances will match the actual estim-
ation errors, which is the true SLAM consistency issue first pointed out in
Reference 38. In a recent paper [9], we showed with simulations that lin-
earization errors lead to inconsistent estimates well before the computational

methods like map joining, based on building independent local maps, effectively
reduce linearization errors, improving the estimator consistency.

The main open challenges in SLAM include efficient mapping of large
environments, modeling complex and dynamic environments, multi-vehicle
SLAM, and full 3D SLAM. Most of these challenges will require scal-
able representations, robust data association algorithms, consistent estimation

© 2006 by Taylor & Francis Group, LLC

the basic properties and limitations of this approach are quite well understood.

The global map obtained is shown in Figure 9.11c. The bold lines are the

• Join both maps (Section 9.4.2), search for more matchings using
JCBB, and fuse both maps in a global map (Section 9.4.3) that con-

problems arise. In Section 9.4 we have presented experimental evidence that
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techniques, and different sensor modalities. In particular, solving SLAM with
monocular or stereo vision is a crucial research goal for addressing many real life
applications.

APPENDIX: TRANSFORMATIONS IN 2D

Two basic operations used in stochastic mapping are transformation inversion
and composition, which were represented by Reference 2 using operators �
and ⊕:

x̂B
A = �x̂A

B

x̂A
C = x̂A

B ⊕ x̂B
C

In this chapter, we generalize the ⊕ operator to also represent the compos-
ition of transformations with feature location vectors, which results in the
change of base reference of the feature. The Jacobians of these operations are
defined as:

J�{x̂A
B} =

∂(�xA
B)

∂xA
B

∣∣∣∣∣
(x̂A

B)

J1⊕{x̂A
B, x̂B

C} =
∂(xA

B ⊕ xB
C)

∂xA
B

∣∣∣∣∣
(x̂A

B , x̂B
C)

J2⊕{x̂A
B, x̂B

C} =
∂(xA

B ⊕ xB
C)

∂xB
C

∣∣∣∣∣
(x̂A

B , x̂B
C)

In 2D, the location of a reference B relative to a reference A (or trans-
formation from A to B) can be expressed using a vector with three d.o.f.:
xA

B = [x1, y1,φ1]T. The location of A relative to B is computed using the
inversion operation:

xB
A = �xA

B =

−x1 cosφ1 − y1 sin φ1

x1 sin φ1 − y1 cosφ1
−φ1




The Jacobian of transformation inversion is:

J�{xA
B} =


− cosφ1 − sin φ1 −x1 sin φ1 − y1 cosφ1

sin φ1 − cosφ1 x1 cosφ1 + y1 sin φ1
0 0 −1
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Let xB
C = [x2, y2,φ2]T be a second transformation. The location of

reference C relative to A is obtained by the composition of transformations
xA

B and xB
C :

xA
C = xA

B ⊕ xB
C =


x1 + x2 cosφ1 − y2 sin φ1

y1 + x2 sin φ1 + y2 cosφ1
φ1 + φ2




The Jacobians of transformation composition are:

J1⊕{xA
B, xB

C} =

1 0 −x2 sin φ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sin φ1
0 0 1




J2⊕{xA
B, xB

C} =

cosφ1 − sin φ1 0

sin φ1 cosφ1 0
0 0 1
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10.1 INTRODUCTION

A key trait of an autonomous robot is the ability to plan its own motion in
order to accomplish specified tasks. Often, the objective of motion planning
is to change the state of the world by computing a sequence of admissible
motions for the robot. For example, in the path planning problem, we compute
a collision-free path for a robot to go from an initial position to a goal position
among static obstacles. This is the simplest type of motion planning problems;
yet it is provably hard to computational problem [1]. Sometimes, instead of
changing the state of the world, our objective is to maintain a set of constraints
on the state of the world (e.g., following a target and keeping it in view), or
to achieve a certain state of knowledge about the world (e.g., exploring and
mapping an unknown environment).

Ideally, the robot achieves its objectives despite the many possible motion
constraints, internal or external to the robot. Traditionally, motion planning
emphasizes a single external constraint: physical obstacles in the environment.
This is actually the only constraint considered in path planning. However,
real robots have inherent mechanical limitations, such as the nonholonomic
constraints that prevent wheeled robots from moving sideways. Robots may
also be constrained by sensor limitations, such as obstacles blocking the views of
cameras. These internal constraints are important, but taking them into account
further complicates motion planning.

In recent years, random sampling has emerged as a powerful approach
for motion planning. It is computationally efficient and relatively simple
to implement. Its development was originally driven by the need to plan
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motions for robots with many degrees of freedom (dof), such as cooperating
manipulator arms. However, we will downplay this aspect in this chapter.
Instead, our main goal is to show how random sampling, combined with geo-
metric and physical insights, can effectively handle motion constraints resulting
from robots’ mechanical and sensor limitations.

We start with an overview of path planning and proceed to the random-
sampling approach to path planning (Section 10.2). Next, we focus on motion
planning under two types of internal constraints: kinematic, dynamic con-
straints (Section 10.3) and visibility constraints (Section 10.4). We also briefly
touch on the effect of uncertainty on motion planning (Section 10.5).

10.2 PATH PLANNING

In path planning, we are given a complete description of the geometry of a
robot and a static environment populated with obstacles. Our goal is to find a
collision-free path for the robot to move from an initial position and orientation
to a goal position and orientation.

Although path planning algorithms differ greatly in details, most of them
follow a common framework (Figure 10.1). The first step is to map a robot,
which may have complex geometric shape, to a point in a new, abstract
space, called the configuration space [2]. This mapping transforms the ori-
ginal problem to that of path planning for a moving point. Next we discretize
the continuous configuration space and construct a graph that represents the
connectivity of the space. Finally, we search this graph to find a path for the
robot to reach the goal. If no path is found, we may sometimes repeat the process
by refining the discretization and searching for the path again.

An important consideration for path planning algorithms is completeness.
A path planning algorithm is complete, if it finds a path whenever one exists

Discretization

Graph search

Problem formulation

Geometry of a robot and obstacles

Conguration space

Connectivity graph

Solution path

FIGURE 10.1 A common framework for path planning.
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and reports none exists otherwise. However, achieving completeness is often
computationally intractable. In practice, we have to trade-off some amount of
completeness for increased computational efficiency.

In this section, we first present the concept of configuration space
(Section 10.2.1). Next, we briefly describe some early approaches to path plan-
ning (Section 10.2.2), before focusing on how the random-sampling approach
works in this relatively simple setting (Section 10.2.3).

10.2.1 Configuration Space

The configuration of a robot is a set of parameters that uniquely determine
the position of every point in the robot. For example, the configuration of a
mobile robot is usually its position (x, y) and orientation θ for θ ∈ [−π , π).
The configuration of an articulated robot manipulator is usually a list of joint
angles (θ1, θ2, . . .).

Suppose that the configuration of a robot consists of d parameters. It can
then be regarded as a point in a d-dimensional space C, called the configuration
space. A configuration q is free, if the robot placed at q does not collide with
the obstacles or with itself. We define the free space F to be the subset of all
free configurations in C, and define the obstacle space B to be the complement
of F : B = C\F . See Figure 10.2b for an illustration.

For a robot that only translates in the plane, we can construct C explicitly by
computing the Minkowski difference of the robot and the obstacles. Intuitively,
we can think of the computation as “growing” the obstacles by the shape of
the robot and shrinking the robot to a point (Figure 10.2). In general, a mobile
robot not only translates, but also rotates. In this case, we compute slices of
C with the robot in various fixed orientations and then stack and stitch these

B

(x,y)

(a) (b)

FIGURE 10.2 A robot translating in the plane. (a) The triangular robot moves in an
environment with a single rectangular obstacle. (b) The configuration space of the robot.
The configuration of the robot is represented by the position (x, y) of a reference point
in the robot.
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slices together. Computing C exactly is also possible, though somewhat more
complicated [3].

For high-dimensional configuration spaces, explicitly constructing C is
difficult. Instead, we represent C implicitly by a function CLEARANCE: C �→ R,
which maps a configuration q ∈ C to the distance between a robot at q and the
obstacles. If CLEARANCE(q) returns 0, then q is in collision. An efficient imple-
mentation of this function can be achieved with hierarchical collision detection
or distance computation algorithms [4].

Whether represented explicitly or implicitly, the configuration space
encodes the key information of whether a robot at a particular configuration is
in collision with obstacles or not. We can thus state the path planning problem
formally in the configuration space as follows.

Problem 10.2.1 (path planning) Given an initial configuration qinit and a
goal configuration qgoal, find a path in the free space F between qinit and qgoal.

In essence, the robot becomes a point in C, and the path planning problem
for the robot becomes that of finding a path for a moving point in F . This
transformation does not change the problem in any way, but it is often easier to
think about the motion of a point than that of a robot with complex geometric
shape. It also makes the problem formulation cleaner mathematically, especially
when other constraints, in addition to physical obstacles, are considered (see

10.2.2 Early Approaches

Path planning is fundamentally a question about the connectivity of F : is there
a path in F that connects two given configurations qinit and qgoal? To answer
this question, a path planning algorithm usually discretizes F and computes
a graph that represents its connectivity. It then searches this graph for a suit-
able path. The first step, constructing the connectivity graph, is the key and is
where algorithms differ. The second step, graph search, is accomplished with
standard graph-search techniques, such as the Dijkstra’s algorithm or the A∗
algorithm.

There are three general approaches for path planning: roadmap, cell decom-
position, and potential field. They differ in the connectivity graphs constructed
and their representations. These differences were important a decade ago, when
computers were much slower and the differences could affect the computational
cost greatly even for path planning in simple 2D configuration spaces. With
the advances in computer hardware, these differences are much less important
today. All three approaches can solve path planning problems in 2D configur-
ation spaces in a fraction of a second on a modern PC. What is relevant today
is whether an approach scales up for configuration spaces of high dimensions
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(six or more). Unfortunately none of them really does in their original forms.
In the following sections, we give selected examples of the three approaches
in 2D configuration spaces, for the purpose of comparison with the random-

complete survey of these approaches.

10.2.2.1 Roadmap

The roadmap approach captures the connectivity of F in a network G of 1D
curves, called the roadmap. Once G is constructed, the robot is restricted to
move along the curves in G. It appears that such a restriction may affect the
robot’s ability to find a collision-free path to the goal. However, a good roadmap
has the property that there is a collision-free path in C between two configura-
tions if and only if there is a collision-free path using only the curves represented
in G. Algorithms that produce such roadmaps are clearly complete.

A classic example of the roadmap approach is the visibility graph algorithm
[6], which applies mainly to 2D configuration spaces with polygonal obstacles.
It captures the connectivity of C in a visibility graph Gvis (Figure 10.3). The
nodes of Gvis are the vertices of polygonal obstacles in C, plus qinit and qgoal.
There is an edge between two nodes in Gvis if the straight-line path between
the two nodes does not intersect the interior of the obstacles. The visibility
graph can be computed in O(n2 lg n) time using a simple rotational sweep-
line algorithm [7], where n is the total number of vertices in the polygonal
obstacles. After constructing Gvis, we can find the shortest path between qinit
and qgoal by applying the Dijkstra’s algorithm to Gvis. Furthermore, one can
prove that the shortest path in Gvis is also the shortest among all possible paths
in F between qinit and qgoal. This is the main strength of the visibility graph

qinit

qgoal

FIGURE 10.3 The visibility graph of a configuration space.

© 2006 by Taylor & Francis Group, LLC

sampling approach to be presented in Section 10.2.3. See Reference 5 for a
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algorithm. However, it produces paths that graze the obstacles and thus bring
the robot dangerously close to the obstacles, which is undesirable in practice.

An alternative is the Voronoi diagram algorithm, which captures the
connectivity of F in the Voronoi diagram of F [8]. By following the curves in
the Voronoi diagram, a robot stays as far away from the obstacles as possible,
a clear advantage over the visibility graph algorithm. The Voronoi diagram can
be computed in O(n lg n) time, which is also more efficient.

In 2D polygonal configuration spaces, both the visibility graph and the
Voronoi diagram capture the connectivity of the space exactly: there is a
collision-free path in C between two given configurations if and only if there is
such a path in the corresponding graphs. So both algorithms are complete for
2D polygonal configuration spaces.

10.2.2.2 Cell decomposition

The cell decomposition approach first divides a robot’s free space into simple,
canonical regions called cells. Cells are usually convex so that it takes constant
time to compute a path between any two configurations within a cell. We then
construct a graph Gcell to capture the connectivity of F , just as the roadmap
algorithms do. The nodes of Gcell are the cells. There is an edge between two
nodes if the corresponding cells are adjacent to each other.

The simplest cell decomposition is a grid with a fixed resolution
init and qgoal, we locate the two cells

containing qinit and qgoal, respectively, and search for a path in Gcell between
the two corresponding nodes. The result is a sequence of adjacent free cells that
form a channel of free space between qinit and qgoal. A main advantage of this
algorithm is the ease of implementation, giving rise to its great popularity in
motion planning of mobile robots. However, its guarantee of completeness is
weaker: it finds a path when one exists, only if the resolution of the grid is fine
enough. Thus we say that the algorithm is only resolution-complete.

A more severe disadvantage of this algorithm is the grid size. If each dimen-
sion of a d-dimensional configuration space is discretized into n intervals, we
end up with O(nd) cells in total. This becomes prohibitively expensive to store
and process, as d grows. To reduce the total number of cells, one possibility is
to start with a coarse grid and refine the grid locally when necessary. This leads

Another possibility is to analyze the input data carefully and use critical geomet-
ric features — such as the vertices or edges of polygonal obstacles — as a basis
for discretizing the space, in order to avoid creating unnecessarily small cells.
As an example, consider the triangulation algorithm [7], which divides the free
space into triangles using the vertices of polygonal obstacles (Figure 10.4b).
When there are a small number of simple obstacles, a triangulation contains
much fewer cells than a grid with a reasonable resolution.

© 2006 by Taylor & Francis Group, LLC

(Figure 10.4a). To find a path between q

to a data structure similar to quad- or oct-tree (see Reference 5 for more details).
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qinit

qgoal

(a)

(b)

FIGURE 10.4 Cell decomposition with (a) a fixed-resolution grid and (b) a triangulation.

10.2.2.3 Potential field

The potential field approach [9] appears to be of a somewhat different nature
from the previous two. It does not build a connectivity graph explicitly. Instead,
it constructs an artificial potential function over F to guide a robot toward
the goal. The potential function U(q), which depends on the current config-
uration q of the robot, consists of an attractive component and a repulsive
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component: U(q) = Ua(q) + Ur(q). The attractive potential Ua(q) pulls the
robot toward the goal. The repulsive potential Ur(q) pushes the robot away
from the obstacles. The robot moves toward the goal, which is usually the
global minimum of U(q), by following the negated gradient of U(q). One
important advantage of this approach is that it computes not just a single path,
but a feedback control strategy. The potential function U(q) specifies the motion
of the robot at any arbitrary configuration q ∈ C. So the approach is more robust
against control and sensing errors. It is also quite efficient. However, the poten-
tial field approach, which is based on steepest-descent optimization, suffers
from the local minima problem: the robot may be trapped in a local minimum
of U(q) without reaching the global minimum, that is, the goal. The problem
cannot be eliminated in general, but can be alleviated by constructing better
potential functions with few local minima or executing random moves to help
the robot escape from the local minima [5].

In some implementations, the potential function is represented on a grid.
Such a potential field algorithm is closely related to cell decomposition with
a fixed-resolution grid. We can think of the potential function as a heuristic
function for graph search on a grid.

10.2.3 Random Sampling

Even for a mobile robot, the dimensionality of its configuration space, dim(C),
sometimes becomes quite high. The position and orientation of a mobile robot
operating in the plane can typically be specified by three parameters (x, y, θ), but
many mobile robots are wheeled differential-drive systems subject to nonholo-
nomic or dynamic constraints. To represent these constraints, we may need to
consider the velocities (ẋ, ẏ, θ̇ ) in addition to (x, y, θ), resulting in a 6D space. If
there are multiple robots cooperating in the same environment, dim(C) becomes
even higher. As one expects, path planning becomes increasingly difficult as
dim(C) grows.

During the past decade, random sampling has emerged as a powerful
tool for path planning in high-dimensional configuration spaces. Algorithms
based on random sampling, for example, the probabilistic roadmap (PRM)
planners, are both efficient and simple to implement. They have solved path
planning problems for multiple robots with dozens of dof [10]. Although
these algorithms are originally intended for robot manipulators with many dof,
the configuration space framework allows us to use them for mobile robots
equally well.

As the name suggests, a PRM planner uses the roadmap approach. It tries
to build a network of 1D curves that captures the connectivity of F . Compared
with the classic roadmap algorithms presented in Section 10.2.2.1, the main
difference is that the nodes of a probabilistic roadmap are free configurations,
sampled randomly according to a suitable probability distribution.

© 2006 by Taylor & Francis Group, LLC
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ALGORITHM 10.1
Roadmap construction for multi-query PRM planning

1: loop
2: Pick q from C at random with probability π(q).
3: if CLEARANCE(q) > 0 then
4: Insert q into the roadmap G as a milestone.
5: for every milestone q′ ∈ G such that q′ �= q do
6: if LINK(q, q′) returns TRUE then
7: Insert an edge into G between q and q′.
8: end if
9: end for

10: end if
11: end loop

There are two main classes of random-sampling algorithms. The first class
precomputes a roadmap so that multiple planning queries in the same static
environment can then be processed quickly. The second class performs no
precomputation and builds a small roadmap on the fly in order to process
a single query as fast as possible. The latter scenario occurs if environ-
ments change frequently and precomputation is not feasible. We refer to
the first class as multi-query planning, and the second class as single-query
planning.

10.2.3.1 Multi-query planning

In multi-query planning, we proceed in two stages. The first stage is precompu-
tation, whose objective is to compute a roadmap G that captures the connectivity
of F as accurately as possible in a reasonable amount of time. We sample C at
random according to a suitable probability distribution πand retain the free con-
figurations, called milestones, as nodes in G. Let LINK(q, q′) denote a function
that returns true if two milestones q and q′ can be connected by a collision-free,
straight-line path. We insert an edge in G between two milestones q and q′
if LINK(q, q′) returns true. Algorithm 10.1 shows the main steps of this stage.
The second stage is query processing. Each query asks for a collision-free path
connecting qinit and qgoal. We first find two milestones q′init and q′goal in G such
that qinit (qgoal, respectively) and q′init (q′goal, respectively) can be connected by
a collision-free path. We then search for a path in G between q′init and q′goal.

The key issue in constructing probabilistic roadmaps is the sampling distri-
bution for generating milestones. The first PRM planner uses a straightforward
uniform distribution, followed by an enhancement step to increase sampling
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FIGURE 10.5 A probabilistic roadmap generated by the uniform sampling strategy for
multi-query planning in a 2D configuration space.

density in critical regions [11]. See Figure 10.5 for an example. The success
of the first PRM planner led to intensive research. Many different sampling

ity inside narrow passages, which are small regions critical for capturing the
connectivity of F well.

Another important issue for PRM planners is the representation of C. The
configuration space C is generally represented implicitly in PRM planning.
In Algorithm 10.1, CLEARANCE(q) determines whether q is collision-free,
and LINK(q, q′) determines whether there is a collision-free, straight-line path
between q and q′. Both can be implemented efficiently using hierarchical
bounding volume representation [4,21].

10.2.3.2 Single-query planning

In contrast to multi-query planning, there is no precomputation in the single-
query setting. Instead, we construct a small roadmap on the fly to answer a single
query. We sample only the connected components of F that contain either qinit

© 2006 by Taylor & Francis Group, LLC

Reference 78, for a survey). Most of them try to increase the sampling dens-
strategies for PRM planning have been proposed [12–20] (see Chapter 7 of
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FIGURE 10.6 A roadmap for single-query planning in a 2D configuration space. The
two circles mark qinit and qgoal.

or qgoal [22,23]. The reason is that although F may contain several connected
components at most two of them, which contain qinit or qgoal, are relevant to the
query being processed. It is clearly undesirable to construct a roadmap for the
entire space. The roadmap for the single-query setting typically consists of two
trees rooted at qinit and qgoal, respectively (Figure 10.6). We expand the two
trees by sampling new milestones at random from C and inserting them into the
trees as milestones, until the two trees “meet,” that is, a milestone in one tree is
connected to a milestone in the other.

The two trees are expanded in an identical way. To add a new milestone
to a tree T , we pick at random an existing milestone q in T with probability
πT (q) and sample a new free configuration q′ at random from the neighborhood
of q with probability πq(q′). If there is a straight-line path between q and q′,
then q′ is inserted into T as a milestone along with an edge between q and q′.
In contrast to Algorithm 10.1, a new configuration is inserted into T only if it
can be connected to some existing milestone in T . So by construction, there
is a path between the root of T and every milestone in T . The pseudocode in
Algorithm 10.2 sketches out the algorithm for building a tree rooted at a given
configuration.

© 2006 by Taylor & Francis Group, LLC
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ALGORITHM 10.2
Building a tree T rooted at configuration q0

1: Insert q0 into T .
2: loop
3: Pick an existing milestone q from T with probability πT (q).
4: Sample a new configuration q′ at random from the neighborhood of q

with probability πq(q′).
5: if CLEARANCE(q) > 0 and LINK(q, q′) returns TRUE then
6: Insert q into T along with an edge between q and q′.
7: end if
8: end loop

In Algorithm 10.2, we must avoid oversampling any region of F , espe-
cially around qinit and qgoal. Ideally we would like the milestones to eventually
distribute rather uniformly over the connected components containing qinit or
qgoal. Two common ways to achieve this are the expansive space tree (EST)
[22] and the rapidly exploring random tree (RRT) [23]. EST assigns every
milestone q in T a weight that measures how densely the neighborhood of q
has already been sampled. We then pick an existing milestone q with a suitable
distribution πT (q) (line 3) so that low-density neighborhoods are more likely to
be sampled. RRT uses a target distribution, for example, the uniform distribu-
tion, and pick q so that the final distribution of milestones are close to the target
distribution.

Another interesting idea for single-query planning is to delay executing
LINK, an expensive operation, until it becomes necessary [4,10].

10.2.3.3 Probabilistic completeness

In general, path planning algorithms based on random sampling cannot detect
whether any path exists. We must explicitly set the maximum number of mile-
stones to be sampled. We may also try to estimate how well C has been sampled
and terminate the algorithm if C has been sampled adequately and no path has
been found. Because of this, these algorithms are not complete. Instead they
can only guarantee probabilistic completeness: a path planning algorithm is
probabilistically complete if it finds a path with high probability when one
exists. Probabilistic completeness provides a guarantee of performance only if
a solution path exists. No assurance is implied, if there is no path. It can be
shown that under reasonable geometric assumptions on the configuration space,
both the multi-query and the single-query algorithms with suitable sampling
distributions are probabilistically complete with exponentially fast convergence
rate [22,25–27].
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10.2.3.4 Advantages of random sampling

The success of random sampling in path planning results from several factors:

• It can handle high-dimensional configuration spaces efficiently.
• It is easy to implement, partly due to the availability of good pro-

gramming libraries for collision checking and pseudorandom number
generation.
• It benefits from a probabilistic framework, which provides powerful

tools for designing new sampling strategies and analysis techniques.
• It is difficult for an adversary to construct worst-case input, because

of the random decisions made by the algorithm, thus improving the
robustness of the algorithm on the average.

10.3 MOTION PLANNING UNDER KINEMATIC AND DYNAMIC

CONSTRAINTS

Path planning is a purely geometric problem. It ignores some key aspects of
real robots: inherent limits on mechanical systems restrict the range of possible
motion. For example, a car cannot move sidewise. These limits cause certain
configurations to be invalid, even if a robot does not collide with obstacles
at those configurations. In this section, we consider two important classes of
constraints, kinematic constraints and dynamic constraints, together referred to
as kinodynamic constraints. Unlike the physical obstacles, kinodynamic con-
straints cannot always be represented in the configuration space. They involve
not only the configuration, but also the velocity and possibly the acceleration
of the robot.

To address this issue, we use state space, a straightforward generalization of
configuration space. Every point in the state space contains information on both
the configuration and the velocity of a robot. Our objective is to find, in the state
space, an admissible path that is both collision-free and satisfies kinodynamic
constraints. This class of problems is called kinodynamic motion planning [28].

10.3.1 Kinematic and Dynamic Constraints

Kinematic constraints impose a relationship between the configuration q of a
robot and its velocity q̇. They can be written mathematically as

F(q, q̇) = 0 (10.1)

Kinematic constraints can be further classified into holonomic and
nonholonomic ones.
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FIGURE 10.7 A simplified model for a car-like robot.

Holonomic constraints do not involve the velocity of a robot; they have
the special form F(q) = 0. A set of holonomic constraints can be used to
eliminate some of the configuration parameters and reduce the dimensionality
of C. By choosing a suitable parameterization of C, we may be able to convert
a problem with holonomic constraints into one with no constraints and apply
the algorithms from Section 10.2.

Nonholonomic constraints are fundamentally different. They are not integ-
rable, meaning that we cannot eliminate q̇ via integration and convert them
to the form F(q) = 0. A classic example is the constraints on the motion of
car-like mobile robots (Figure 10.7). Let (x, y) be the position of the midpoint R
between the rear wheels of the robot and θ be the orientation of the rear wheels
with respect to the x-axis. Assuming that the wheels do not skid, the robot
cannot move sidewise. This constraint can be written as tan θ = ẏ/ẋ, which
clearly has the form F(q, q̇) = 0. What is less obvious is that the constraint
is not integrable. We will not get into the details here. It suffices to say that
the mathematical conditions for integrability is known, but for a given set of

pp. 403–451, for details.)
Although most of the work on nonholonomic motion planning focuses on

car-like or tractor-trailer robots, many results are applicable to other problems,
including object pushing [29] and dextrous manipulation [30].

Dynamic constraints are closely related to nonholonomic constraints, but
they involve not only the configuration and the velocity of a robot, but also
the acceleration. Consider the Lagrange’s equations of motion, which have the
form G(q, q̇, q̈) = 0, where q, q̇, and q̈ are the robot’s configuration, velocity,
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constraints, checking these conditions is a nontrivial task. (See Reference 5,
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and acceleration. Defining s = (q, q̇), we can rewrite the equation as F(s, ṡ) = 0
which is the same as (10.1).

The motion of a robot may also be constrained by inequalities of the form
F(q, q̇) ≤ 0 or G(q, q̇, q̈) ≤ 0. Such constraints restrict the set of admissible
states to a subset of the state space.

The presence of kinodynamic constraints implies that not all collision-free
path are admissible, because they may violate the constraints. For some robots,
we can represent motion constraints explicitly by constructing a class � of
admissible path segments. Ideally � has the property that if there is an admiss-
ible path between two states, then one can construct another admissible path as
a sequence of segments from �. This property is necessary for algorithms using
� to be complete. Examples of such path segments include jump curves [31] or
Reeds and Shepp curves [32] for car-like robots. In general, one can prove such
a class of path segments can be constructed for any locally controllable system
using tools from nonlinear control theory [33–35]. Unfortunately, the path seg-
ments generated by the proof are often inefficient in practice, because they may
contain many unnecessary maneuvers.

An alternative representation of motion constraints is a control system

ṡ = f (s, u) (10.2)

which constitutes the robot’s equations of motion under suitable control. In
Equation (10.2), s ∈ S is the robot’s state, which encodes the robot’s config-
uration and optionally velocity as well; ṡ is the derivative of s with respect to
time; u ∈ � is the control input. The set S and � are called the state space and
control space, respectively. We assume that S and � are bounded manifolds
of dimensions n and m, with m ≤ n. By defining appropriate charts on these
manifolds, we can treat S as a subset of Rn, and � a subset of Rm.

Equation (10.2) can represent both kinematic and dynamic constraints
described earlier. Suppose that we have � kinodynamic constraints Gi(s, ṡ) = 0
for i = 1, 2, . . . , �. We can solve these � equations for ṡ. In general, if � is less
than n, the solution is not unique, but we can parameterize the set of solutions
by u ∈ Rn−� and write them down, at least formally, as ṡ = f (s, u) for some
suitable function f . More precisely, it can be shown that under suitable con-
ditions, the set of constraints Gi(s, ṡ) = 0 for i = 1, 2, . . . , � is equivalent to
(10.2), in which u is a point in Rm = Rn−� [33].

To deal with inequality constraints of the form G(s, ṡ) ≤ 0, we typically
restrict the state space S and control space � to suitable subsets of Rn and Rm,
respectively.

Let us now look at an example to illustrate the above notions.

Example 10.3.1 (simplified nonholonomic car navigation) Consider the
3
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car example in Figure 10.7. The state of the car is specified by (x, y, θ) ∈ R .
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The nonholonomic constraint tan θ = ẏ/ẋ is equivalent to the system

ẋ = v cos θ

ẏ = v sin θ

θ̇ = (v/L) tan φ

This reformulation corresponds to defining the car’s state to be its configuration
(x, y, θ) and choosing the control input to be the vector (v, φ), where v and φ

are the car’s speed and steering angle, respectively. Bounds on (x, y, θ) and
(v, φ) can be used to restrict S and � to subsets of R3 and R2, respectively. For
instance, if the maximum speed of the car is 1, we require |v| ≤ 1.

10.3.2 General Approaches

Sometimes, the path planning approaches described in Section 10.2 can be
applied to kinodynamic motion planning after some modifications. To construct
a roadmap for car-like robots, we may discretize the boundaries of polygonal
obstacles and connect pairs of points on the boundaries with jump curves com-
posed of circular and straight-line segments [31]. To apply this idea to other
robots would require a suitable class of admissible path segments to be construc-
ted. Alternatively, we may consider the cell decomposition approach by placing
a regular grid over the state space [28,33]. We represent the motion constraints
as a control system and search for an admissible path in the discretized state
space. As we have mentioned before, the cell-decomposition approach works
only for robot with few dof, because the grid size increases exponentially with
dim(C). We may also use the potential field approach by projecting the poten-
tial forces onto the surface defined by the motion constraints and applying the
projected forces on the robot.

One approach unique to kinodynamic motion planning is path transform-
ation. It proceeds in three steps [36]. First, we generate a collision-free path
γ that disregards the motion constraints. We then discretize γ into a sequence
of short path segments and replace each segment with one from a class � of
admissible path segments, thus transforming γ into an admissible path γ ′.
Finally we smooth γ ′ to remove the unnecessary maneuvers and obtain a more
efficient admissible path. This algorithm can be extended in various ways,
which are all based on the idea of successive path transformation, but differ in
what transformations to use and how to perform the transformations [37–39].
A natural question to ask about these path transformation algorithms is whether
it is always possible to transform a collision-free path into an admissible path
that obeys the motion constraints. In theory, the answer is yes, if the robot is
locally controllable [36], for example, car-like robots. However, the approach
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is only practical for robots for which a class � of efficient admissible path seg-
ments can be easily constructed. It is not applicable to robots that are not locally
controllable, for example, car-like robots that can only go forward.

10.3.3 Random Sampling

Random sampling has also been successful for kinodynamic motion planning,
including robots that are not locally controllable. In this section, we give two
representative examples.

The first one follows the multi-query approach [27], described in
Section 10.2.3. It applies to car-like robots and assumes the existence of a
class � of admissible path segments. It proceeds in almost the same way as
Algorithm 10.1, with one major difference. When connecting two milestones
in the roadmap, the algorithm uses path segments from � instead of straight-
line paths. Thus every path in the roadmap is not only collision-free, but also
admissible.

The second example follows the single-query approach. It represents the
motion constraints as a control system. The main steps of the algorithm are sim-
ilar to Algorithm 10.2. The difference occurs in lines 3 and 5. In Algorithm 10.2,
we sample a new configuration and connect it to an existing milestone with a
straight-line path. However, straight-line paths often violate the motion con-
straints. So instead, we choose a random control function and integrate the
robot’s equations of motion forward under this control function for a small
period of time. The motion constraints are enforced automatically during the
integration. If the resulting path is admissible, we then insert the endpoint of
the path into the tree being constructed as a new milestone. Intuitively, we
map a random sample in the control space � to a random sample in the state
space S by integrating the equations of motion. Of course, we must still avoid
oversampling. We can use the same methods described in Section 10.2.3, but
they work less effectively here, because the motion constraints skew the density
estimate and the target distribution.

It may appear somewhat surprising that, in the random-sampling approach,
algorithms for path planning and kinodynamic motion planning are very similar.
This is in fact one major advantage of the approach: it applies to a wide class of
problems with relatively small, local changes related to the specifics of robots.
This greatly eases implementation.

10.3.4 Case Studies on Real Robotic Systems

Having seen a number of motion planning algorithms, we now look into some
important practical issues in the context of two real robotic systems.
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FIGURE 10.8 A trailer-truck carrying aircraft components on a narrow road with many
obstacles nearby.

10.3.4.1 Motion planning of trailer-trucks for transporting
Airbus A380 components

Airbus A380 is the largest commercial aircraft that has ever been built. The main
components — wings, fuselage sections, and the tail plane — are produced in
different European cities and transported by trailer-trucks to a central location
for assembly (see Figure 10.8). The transport itinerary must go through small
towns and villages with sometimes very narrow roads. The enormous size of
the cargo, the length of the itinerary, and the narrow roads along the way pose
unique challenges. It is highly desirable to have an automated system to help
validate the itinerary in advance and guide the truck driver [40].

Trailer-trucks have been studied extensively in nonholonomic motion plan-
ning. In this case, a path transformation algorithm is used for motion planning
[41]. An initial admissible path is computed and then iteratively improved to
make it more efficient. Obstacle avoidance is achieved with a potential field
method.

The automated system is used to validate the itinerary for the trailer-trucks
and determine which parts of the itinerary must be adapted to fit the vehicle size.
The system also optimizes the trajectories to maximize the distance between the
truck and the surrounding obstacles, such as buildings and trees. The validated
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FIGURE 10.9 An air-cushioned robot among moving obstacles.

trajectory is then fed into a computer-aided driving system to help the driver
follow the trajectory.

10.3.4.2 A space robotics test-bed

A variant of the single-query random-sampling planner described in
Section 10.3.3 has been implemented on a real robot in an environment
with moving obstacles [42]. The robot system was developed in the Stanford
Aerospace Robotics Laboratory for testing space robotics technology. The air-
cushioned robot moves frictionlessly on a flat granite table (Figure 10.9). It has
eight air thrusters providing omni-directional motion capability, but the force
is small compared to the robot’s mass, resulting in tight acceleration limits.

We model the robot as a disc in the plane for planning purposes. To deal
with moving obstacles, the planner augments the state space with a time axis
and computes a trajectory for the robot in the state-time space instead of the
usual state space. An overhead vision system estimates the motion of moving
obstacles in the environment and sends the information to the planner, which
runs on an off-board computer. The planner is then allocated a short, predefined
amount of time to compute a trajectory, as required by the real-time nature of
the system,

The success of random sampling for motion planning in real-time sys-
tem indicates its effectiveness despite many adversarial conditions, including
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(i) severe dynamic constraints on the robot’s motion, (ii) moving obstacles,
and (iii) various time delays and uncertainties inherent to an integrated system
operating in a physical (as opposed to a simulated) environment.

10.4 MOTION PLANNING UNDER VISIBILITY CONSTRAINTS

Often, we picture robots as intelligent machines maneuvering autonomously
through a cluttered environment, transporting parts, or assembling products.
These tasks fall strictly within the domain of classic motion planning. However,
acquiring information about environments through sensing is another important
task: surveillance and mapping unknown environments are all examples of tasks
in which observing the world is the main objective. It may not be immediately
obvious, but motion planning plays a key role in these problems.

The goal of sensing is to extract an understanding of the world from sensor
data. The basic act of sensing is passive. It becomes active when an algorithm
directs the robot to move in order to make sensing more effective. The motion
may help the robot keep a target within the sensor range or gain new inform-
ation about an unknown environment. More generally, motion is executed to
maintain a set of constraints on the state of the world or achieve a certain state
of knowledge about the world. Here, the term “state” reflects not only the
robot’s physical configuration, as in the previous sections, but also the robot’s
observations and knowledge. The admissible paths for the robot are constrained
not only by the robot’s geometry and mechanics, but also by a set of visibility
constraints due to the robot’s sensors.

To understand the role of visibility constraints, consider the example of a
robot following a target. Suppose that at its initial location, the robot has the
target in view. As the target moves, it may get out of the robot’s sensor range.
The robot must move to a new location to keep the target in view. The path
that the robot takes must, of course, be collision-free. In addition, at every
point along the path, the robot must maintain target visibility. The visibility
constraints reduce the set of admissible paths available to the robot, just as the
kinodynamic constraints do. To deal with visibility constraints effectively, we
must now leave the realm of classic motion planning and enter the realm of
motion planning under visibility constraints.

This section presents three motion planning problems under visibility con-
straints: sensor placement (Section 10.4.1), indoor exploration (Section 10.4.2),
and target tracking (Section 10.4.3). In the first problem, we compute a set of
robot sensing locations to build a model of an environment effectively. This
is the simplest scenario, because we ignore the cost of robot motion. The
second problem, often called the next best view, is an extension of the first,
when the environment is not known in advance. Motion planning becomes
important, because the robot may inadvertently collide with unknown obstacles
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in the environment. The last problem is that of computing the motion of a
robot observer following a target. This is probably the most complex problem
of the three, because it involves both visibility and kinodynamic constraints.
Moreover, the robot is sometimes expected to track an unpredictable target in
real time.

10.4.1 Sensor Placement

Nowadays, robots equipped with laser range sensors are often used to build 3D
models of the environment [43–46]. Acquiring high-quality 3D information
is a costly operation, and it is desirable to minimize the number of sensing
operations. To do this, we use an initial 2D map of the environment and compute
a set of locations from which a range sensor (e.g., laser) scans the environment.
We call this problem sensor placement.

Sensor placement is related to the classic art gallery problem [47], which
asks for the minimum number of guards whose joint visibility region covers
the interior of an art gallery. In its simplest form, the problem considers the art
gallery to be a polygonal environment. It also assumes a simple line-of-sight
visibility model, where two points are visible to each other if the line segment
between them is unobstructed. The problem seems deceptively simple, but
finding the minimum number of guards is actually NP-hard. In robotics, the
visibility model is rarely as clean as that assumed in the art gallery problem.
So the art gallery results are usually not directly applicable.

To derive a practical sensor placement algorithm, the visibility model
must take into account the limitations of laser range sensors. The visibility
definition below lists three constraints, which, we believe, are most relevant

Definition 10.4.1 (constrained visibility) Let the bounded and open set W ⊂
R2 denote the robot’s free space, and ∂W denote the boundary of W . A point
w ∈ ∂W is visible from a point q ∈W if the following conditions hold:

• Line-of-sight constraint: The open segment S(q, w) joining q and w
does not intersect ∂W .
• Range constraint: dmin ≤ d(q, w) ≤ dmax, where d(q, w) is the

Euclidean distance between q and w, and dmin ≥ 0 and dmax > dmin
are constants.
• Incidence constraint: ∠(n,v) ≤ τ , where n is the vector perpendicu-

lar to ∂W at w, v is the vector oriented from w to q, and τ ∈ [0, π/2]
is a constant.

We are interested in finding a minimal set of sensor locations that cover ∂W .
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FIGURE 10.10 The incidence constraint of laser range sensors: wall sections are seen
reliably, only if |θ | ≤ τ .

Problem 10.4.1 (sensor placement) Given a bounded, open set W ⊂ R2,
compute the minimal set of sensor locations G in W , such that every point
w ∈ ∂W is visible from at least one point in G under the visibility model given
in Definition 10.4.1.

Like the art gallery problem, Problem 10.4.1 is NP-hard, and we have to
settle for an approximate solution, one that covers most of, but not the entire
boundary, ∂W . We use random sampling to transform the sensor placement
problem into a set cover problem [48].

10.4.1.1 Sampling

Sample at random a set of m points from W . Denote the set by Gsam. For every
edge e ∈ ∂W , compute the fraction seen by each point in Gsam. The arrangement
of all covered fractions decomposes each edge into cells such that all points
within the same cell are visible to the same subset of Gsam
for an example). Now enumerate all the cells in the decomposition of ∂W and
group them under the ground set X = {1, 2, . . . , l}, where l is the number of
cells. This ground set represents the decomposition of ∂W .

Let Ri be the subset of X that is visible to a sample point gi ∈ Gsam. The
set family R = {R1, R2, . . . , Rm} is thus a collection of subsets of X. The
set system 
 = (X , R) can be regarded as an encoding of the sampled or
discretized version of Problem 10.4.1, and the original problem is reduced to
that of computing the optimal set cover of the set system 
: find the smallest
subcollection R̂ ⊆ R, such that the union of all the Ri’s in R̂ equals X.
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FIGURE 10.11 Sensor placement seen as a set system. (a) Each boundary edge is
decomposed into cells. All points within the same cell are visible to the same subset of
Gsam. Each cell is then labeled with an integer and grouped under X. A subset Ri ⊆ X is
the set of cells visible from the sample point gi. (b) In the dual representation, candidate
sensor locations are grouped and labeled under X ′. Each set R′i ∈ R′ is the set of locations
covering cell i in the boundary decomposition.

The sampled problem is clearly not the same as the original. Finding the
optimal set cover of 
 may not lead to an optimal set of sensor locations: Gsam
may contain incorrectly distributed points, or W admits no finite solution due
to its geometry. Sampling, however, often produces a satisfactory solution at a
small cost, because the probability that Gsam contains the optimal set of guards
quickly approaches 1 in most practical scenarios. Even when no finite solution
exists, sampling produces reasonable solutions, as 
 encodes a “portion” of
the original problem that actually admits a finite solution for realistic sensor
models.
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10.4.1.2 Near-optimal set covers

After sampling, we ask the question: has the problem become easier?
Unfortunately, the set cover problem is also NP-hard. However, finding optimal
set covers is a well-studied problem, and efficient algorithms that produce near-
optimal solutions are available. More interestingly, the set cover problem has a
dual, the hitting set problem.

Every set system has a dual. Consider 
 = (X, R). Its dual 
′ = (X ′, R′)
is defined by X ′ = R and R′ = {Rx|x ∈ X}, where Rx consists of all the

sensor placement problem. Note that the set of candidate sensor locations now
becomes the ground set X ′. A hitting set for 
′ = (X ′, R′) is a subset H ′ ⊆ X ′
such that H ′ ∩ R′ �= ∅ for every set R′ in R′. In other words, the hitting set H ′
contains members from all the sets in R′. The problem of finding the smallest
set cover for 
 is equivalent to that of finding the smallest hitting set for 
′.
For a set system with finite VC-dimensions,1 an efficient algorithm exists for
finding near-optimal hitting sets [49].

Assume that W is represented as a polygon with holes caused by obstacles.
The VC-dimension of the set system for the sampled version of Prob-
lem 10.4.1 is then bounded by O(log(n+ h)), where n is the number of vertices
describing ∂W and h is the number of holes [48]. Using the algorithm in
Reference 49, we can find a set of sensor locations that is within a factor
O(log(n+ h) · log(c log(n+ h))) of the optimal size c. In other words, we can
compute a near-optimal set of sensor locations within a logarithmic factor of
the optimal.

Sensor placement is a set cover problem in nature, and the same is true for art
gallery problems in general. A key development in recent years is to transform
such problems into set systems, which may have finite VC-dimensions and
lead to efficient approximation algorithms. For example, it has been shown
that for a polygon with h holes, the VC-dimension of the set system for the
classic art gallery problem is O(h) [50] under the simple line-of-sight visibility
model. This fact is exploited to produce a polynomial-time algorithm that finds
a solution within a factor O(log(h) · log(c log(h))) of the optimal size c [51].

10.4.1.3 Extensions

A straightforward extension of the sensor placement problem is to generate
routes instead of locations for sensing tasks involving mobile robots. If the
cost of sensing is very expensive compared to that of motion, then motion costs
can be ignored. The problem remains the same as that defined in Problem 10.4.1.
If the converse is true, then the cost of sensing can be ignored, and motion

1 VC-dimension stands for the Vapnik–Červonenkis dimension. It is a measure of the complexity
of a set system.
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incurs the dominant cost. The problem becomes the watchman route problem
[47]: find the shortest closed path from which the entire environment is visible.
Developing sampling techniques to compute watchman routes is an interesting
topic for future research.

A more difficult problem requires both the cost of sensing and the cost
of motion to be considered. This topic remains largely unexplored, but some
limited work exists [52,53].

10.4.2 Indoor Exploration

Automatic map building is an important problem in robotics. Research in this
area has traditionally focused on developing techniques to extract environmental
features, such as edges and corners, from sensor data and integrating these
features into a consistent map. The former is a computer vision problem, and
the latter is the simultaneous localization and mapping (SLAM) problem [54].

The SLAM algorithms seek the best way to integrate sensor data acquired by
a robot during navigation. It, however, does not answer the following question:
Given the map known so far, where should the robot move next to observe the
unexplored regions? From the point of view of motion planning, this is the most
interesting question in automatic map building. It involves the computation of
successive sensing locations by iteratively solving the next best view (NBV)
problem. At each location, the robot must not only observe large unexplored
areas of the environment, but also a portion of the known environment to allow
for image registration [55]. NBV is complementary to SLAM [54]. A SLAM
algorithm builds a map by making the best use of the available sensor data,
whereas an NBV algorithm guides the robot through locations that provide the
best possible sensor data. In addition to robotics and computer vision, NBV
arises in computer graphics [56] and many other areas.

The NBV is an on-line version of the sensor placement problem, where the
2D  map  of the environment is unknown  initially  and  only  revealed  incrementally
as new sensor data are acquired.

10.4.2.1 Constraints on the NBV

In mobile robotics, two important constraints must be considered by NBV
algorithms. First, a mapping robot must not collide with obstacles, whether
they are known or unknown in advance. The second constraint results from
imperfect robot localization. Due to errors in inertial navigation (e.g., wheel
slippage), a mobile robot must constantly relocalize itself as the map is built.
New laser scan images must be aligned with the current map, a problem called
image registration. Image registration requires an overlap between each new
image and previously seen portions of the environment. An NBV algorithm
must take this requirement into account.
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A NBV can thus be viewed as an optimization problem where the best
sensing position is computed subject to safe-navigation and image-registration
constraints. As is often the case in optimization, the problem can be solved more
effectively if the search domain is characterized explicitly. In motion planning
terms, the NBV is a position in the free space, where the free space is collision-
free with respect to both the known and unknown obstacles. Is it possible to
characterize this free space explicitly?

It seems odd to define a free space that depends on obstacles yet to be
discovered, for if they are not discovered, how can we use them to build the
free space? The key is to view free space from the sensor’s perspective, and
not from the environment’s perspective. That is, construct the largest region
guaranteed to be free of obstacles, mapped or not, given the history of sensor
data. Such a region is called the safe region to distinguish it from the usual
notion of free space.

10.4.2.2 Safe regions

Consider a 2D range sensor that obeys the visibility model in Definition 10.4.1,
with dmin
detects the obstacle contour shown in bold black. From this reading, we want
to construct a closed region that is obstacle-free. One possibility is to join the
detected contour to the range limit of the sensor using radial line segments. This
region is shown in light color in Figure 10.12b. Unfortunately, such a region
is guaranteed to be free of obstacles only in the absence of incidence con-
straints. Consider Figure 10.12c, which shows the actual environment. Notice
how the region from Figure 10.12b overlaps with walls oriented at a graz-
ing angle (roughly 70◦) with respect to the sensor position. In contrast, the
region in Figure 10.12d, which takes into account the incidence constraint, is
indeed safe.

Assume that the sensor output is an ordered list � of piecewise continuous
curves. The local safe region sl(q) is the largest closed region guaranteed to
be free of obstacles given an observation �(q) made at location q. Such a
region is bounded by the curves in �(q), representing the visible sections of
the free space boundary ∂W , plus additional curves joining the disjoint visible
sections and calculated from the information in �(q) [57] (see Figure 10.12d
for an example). The safe region sl(q) is topologically equivalent to a classic
visibility region. In fact, when the visibility constraints in Definition 10.4.1 are
relaxed, the safe region becomes exactly the visibility region. Several properties
and algorithms that apply to visibility regions also apply to safe regions. For
example, sl(q) is a star-shaped set, a set that is entirely visible from at least one
interior point.

A global safe region is constructed iteratively from local safe regions. First,
a local safe region sl(q0) is constructed from the sensor reading �(q0) made
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(a) (b)

(c) (d)

FIGURE 10.12 The effect of incidence constraints on safe regions.

at the robot’s initial position q0. The global safe region Sg(q0) is initially equal
to sl(q0). Next, the robot moves to a position q1 and gets a new sensor reading
�(q1), yielding a new local safe region sl(q1). Now, Sg(q1) = Sg(q0) ∪ sl(q1).
The robot again moves, now to q2. A new reading �(q2) is made, yielding
sl(q2), and Sg(q2) = Sg(q1) ∪ sl(q2), and so on. The region Sg(qt) represents
both a map of the environment at time t and the search domain for computing
the next best view for t + 1.

10.4.2.3 Image registration

Robots cannot localize with perfect precision. An algorithm ALIGN is used
to compute the transform T that aligns sl(qt+1) with Sg(qt) before the union
operation. Image registration has been studied widely, and many techniques
exist [45]. The details of ALIGN are inconsequential to the NBV computation,
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but it is important to note that most image registration algorithms are based on
feature matching. It is thus essential that the NBV for t+ 1 ensures a minimum
overlap between the current Sg(qt) and the anticipated sl(qt+1).

10.4.2.4 Evaluating next views

Suppose that at time t, the robot is positioned at qt and the global safe region
is Sg(qt). The goal is to compute the future position of the robot, given Sg(qt).
The unexplored areas of the environment can only be revealed through the free
boundary of Sg(qt), that is, the portions of Sg(qt) not blocked by obstacles.
Therefore, a potential candidate q is good, if it sees large unexplored areas
outside of Sg(qt) through the free boundary of Sg(qt). We say that such q has
high potential visibility gain, measured by a function Vg(q, t).

Several definitions of Vg(q, t) are possible. One way is to first compute
the visibility region from q assuming that the free boundary is transparent,
and intersect this region with the complement of Sg(qt) [57]. The gain Vg(q, t)
is the area of the resulting intersection. This definition works well for office
environments, even in cluttered conditions. As an alternative, the next view
can be chosen to maximize entropy reduction, and the gain Vg(q, t) becomes a
measure of the expected entropy reduction at position q [58].

The computation of NBV must also factor in the cost of motion, which is
weighed against the potential visibility gain. Again, this can be done in several
ways. One way is to define the overall merit of q, factoring in both visibility
gain and motion cost, as

g(q, t) = Vg(q, t) exp(−λL(q, t)) (10.3)

where L(q, t) is the length of the collision-free path computed by a path plan-
ner between position q and the current robot position at time t. The constant
λ ≥ 0 is used to weigh the cost of motion against the visibility gain. A small λ

gives priority to the gain of information. Conversely, a large λ gives priority to
motion economy, favoring locations near qt that potentially produce marginal
information gain.

10.4.2.5 Computing the NBV

At this point, the only remaining issue is to search for the NBV. This is simple, as
the global safe region Sg(qt) completely characterizes the search domain. Fol-
lowing a random-sampling approach akin to those described in Section 10.2.3,
a set N of NBV candidate positions is generated along the free boundary of
Sg(qt). This set is processed in three steps. First, for each q ∈ N , we determine
the extent to which sl(q) and Sg(qt) overlap. The overlap ζ(q) is measured by
the length of the visible part of Sg(qt)’s boundary abutting obstacles. If ζ(q) is
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FIGURE 10.13 A partial map of a wing of the computer science building at Stanford
University. The total length of the circuit is approximately 40 m. The circled region
corresponds to the last local measurement.

smaller than a threshold imposed by align, then q is removed from  N . Second,
a path planner computes a collision-free path between qt and each remaining
candidate q in N . Those candidates that yield no feasible paths are removed
from N . Finally, the merit of each remaining candidate in N is evaluated
according to Equation (10.3), and the best candidate is selected.

Figure 10.13 shows a sample map constructed using the NBV algorithm in
Reference 57. The figure shows the partial map of a wing of the Computer Sci-
ence Building at Stanford University after 14 iterations. Note the final mismatch
after the robot completed a circuit around the lab (about 40 m). The discrepancy
appears, because every image alignment transform was computed locally. To
reduce the discrepancy, the NBV algorithm should be combined with a SLAM
algorithm.

10.4.2.6 Extensions

We have so far ignored any error-recovery capabilities in the NBV computation.
Any serious errors in sensing or image registration lead to unacceptable maps.
An experimental system must be designed conservatively to avoid this, perhaps
forcing the robot to take more measurements or travel longer paths to produce
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the final map. A better solution is to combine the NBV computation with SLAM
algorithms and exploit their complementary strengths.

Another extension is to have multiple robots building a map cooperatively.
Centralized approaches are acceptable, if the relative positions of all the robots
are known. A single map can be generated from all the sensor readings, and
a centralized NBV algorithm then computes the aggregate NBV for the entire
team. The problem becomes far more difficult, if the relative positions of the
robots are not known. In this case, the robots act independently, perhaps commu-
nicating their positions and findings only sporadically. A distributed approach
is then needed.

10.4.3 Target Tracking

Tracking in the sense of detecting targets in images is studied widely in com-
puter vision. In contrast, target tracking in motion planning is concerned with
computing the motion of a robotized camera in order to keep a target in view
[59]. Variations of this problem arise in different applications, for example,
visual servoing [60,61] and computer-assisted surgery [62]. Target tracking
is also called target following to distinguish it from the tracking problem in
computer vision.

Target tracking is a motion planning problem that combines visibility con-
straints with kinodynamic constraints. It takes into account the actions of an
external agent — the target — acting as a potential opponent. Thus target
tracking can be treated as a problem in game theory [63]. The game-theoretic
view provides a clean mathematical formulation of the problem.

10.4.3.1 State transition equations

Suppose that both the robot observer and the target are rigid bodies moving
in the plane. The free configuration space for the observer is a subset of R2

and denoted by Fo, while that for the target is denoted by F t . Define so(t) as
the observer’s state at time t. Suppose that the state transition equation for the
observer is given by ṡo = f o(so, u), where u(t) is the action selected from an
action set U at time t. The function f o models the observer’s dynamics and may
encode nonholonomic constraints or other types of kinodynamic constraints.
Similarly, the transition equation for the target is given by ṡt = f t(st , θ), with
the action θ(t) selected from a target action set �. The state of the observer–
target system is given by s = (so, st). Let X be the joint state space, which is
the Cartesian product of the individual state spaces of both the observer and the
target. A state may encode both the configuration of a robot and its velocity.
So, in general, X is not equal to Fo × F t , the Cartesian product of individual
configuration spaces.
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10.4.3.2 Visibility constraints

The distinction between state space and configuration space is important. The
state space, along with the associated transition equation, focuses on the
kinodynamic constraints. The configuration space, on the other hand, focuses
on where the robot observer can see the target. Now let us identify those
configurations where the target is visible.

Let V(qo) be the visibility region at the observer position qo, that is, the
set of all locations from which the target is visible to an observer located at
qo. Usually, the target is said to be visible if the line-of-sight to the observer is
unobstructed, but this model can be extended. For example, the field of view can
be restricted to some fixed visibility cone or limited by lower- and upper-bounds
on the distance range. Incidence constraints such as those in Definition 10.4.1
can also be added.

Tracking algorithms usually compute the visibility region from a synthetic
model or reconstruct it from sensor data. In the former case, a sweep-line
algorithm can be used [7]. In the latter case, laser range sensors or similar sensors

provide reliable measurements, thus complicating the reconstruction of the
visibility region. For example, stereo vision systems often produce unreliable
range measurements if the object’s surface is textureless.

An important concept in target tracking is that of the visibility sweeping
line �(t), defined as the line passing through the target position at time t and

must stay on the side of �(t) which allows it to see the target. The observer’s
path is influenced by the behavior of these sweeping lines, and some tracking
algorithms exploit them explicitly [64,65].

10.4.3.3 Tracking strategies

Target tracking consists of computing a function u(t), called a strategy, so that
the target remains in view for all t ∈ [0, T ], where T is the target’s stopping
time, also known as the horizon of the problem. It may also be important to
optimize secondary criteria such as the total distance traversed by the observer
and the final distance to the target. Various tracking strategies are known, and
they can be compared from different angles.

Predictable vs. unpredictable targets. The target is predictable if the target
action θ(t) ∈ � is known in advance for all t ≤ T . Thus the location of the
target is known for all t, and its state transition equation simplifies to ṡt = f t(st).
The target is unpredictable if its actions are not known in advance, though the
action set � may be known.
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are installed on the robot observer (see Figure 10.14a), but some sensors cannot

a reflex vertex of the free space (Figure 10.15). At any time t, the observer
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(a)

(b)

FIGURE 10.14 Measuring the visibility region with a laser range sensor.

Off-line vs. online. Off-line tracking strategies have access to future
states, while online strategies do not. In other words, online algorithms are
causal, whereas off-line ones are noncausal. Causality is a characteristic of
the algorithm, not a logical requirement of target predictability. Obviously,
an off-line strategy that relies on the target’s future positions implies that the
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Locations of the target

Target
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l(ti+ 2)

l(ti+ 4)

l(ti)

FIGURE 10.15 The visibility sweeping line �(t) going through the target position at
time t and the reflex vertex C. In this example, the observer must remain above �(t) to
keep the target visible.

target is predictable, but an algorithm can be noncausal for other reasons. Also
note that on-line strategies may or may not run in closed loop.

Critical vs. average tracking. Sometimes it is impossible to track the target
for all t ≤ T . Thus some strategies maximize the target’s escape time tesc, the
time when the observer first loses the target. An alternative is to maximize the
exposure, the total time that the target remains visible. The former choice, crit-
ical tracking, implies that losing the target effectively ends the task, whereas the
latter choice, average tracking, implies that the observer can possibly reacquire
the target after losing it.

Expected vs. worst-case analysis. A tracking strategy may maximize either
worst-case or expected performance. In the first case, a tracking strategy max-
imizes the minimum escape time given all the adversarial choices for θ(t) ∈ �

during the problem’s horizon. This approach is suitable for tracking antagon-
istic targets. In the second case, the expected escape time is maximized given
a probability distribution over the target’s actions. In both cases, the problem
is intractable, and we have to settle for approximate solutions. A typical one is
to solve the problem for a time horizon much smaller than the target’s stopping
time T .

Open vs. closed loop. A strategy operates in closed loop, if the strategy u
is computed as a function of the state s(t). Otherwise, the strategy runs in open
loop, and u depends explicitly on t. Closed-loop strategies are preferred over
open-loop ones even when the target is predictable, unless it is guaranteed that
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the state transition models and observations are exact, for example, the case
in Reference 66. Open-loop strategies are often used in theoretical studies, but
they rarely work well in practice.

10.4.3.4 Backchaining and dynamic programming

One way to compute an observer trajectory for a predictable target is through
preimage backchaining. Suppose that both the observer and the target are
modeled as points in the plane. Let V̄(qt) ⊂ Fo be the set of observer config-
urations from which a target at qt is visible. Let A(t) ⊂ Fo be the set of all
configurations at time t from which the observer could move into V̄(qt(t + 1))

at time t + 1. Since the observer must see the target at time t and move to a
configuration that sees the target at t + 1, its configuration at t must be con-
tained in V̄(qt(t))∩A(t), which can often be computed easily for the 2D case.
Thus, the observer’s trajectory can be obtained by backchaining from the final
stage, guaranteeing visibility at each step, until a set of possible initial states is
obtained or the problem is shown to have no solution.

Backchaining can be generalized into higher dimensions using dynamic
programming (DP) [63]. Kinodynamic constraints and secondary optimization
criteria can also be added. However, DP is computationally intensive. A brute-
force implementation of DP leads to a grid whose size grows exponentially
with the dimensionality of the state space. Random sampling may ease the
computational burden, but to achieve real-time performance, approximate local
strategies are needed.

10.4.3.5 Escape-time approximations

The time horizon is often reduced in practice to handle unpredictable targets.
In the extreme case, only one step into the future is considered. If there are no
kinodynamic constraints, maximizing the minimum escape time is equivalent
to maximizing the shortest distance to escape. The observer’s action for the
next step can be selected to maximize this distance. This is sometimes achieved
through randomized techniques [67]. The shortest distance to escape is easy to
compute, but it could be a poor approximation of the escape time for longer
time horizons or under kinodynamic constraints.

Alternatively, the escape time can be approximated with a quantity called
the escape risk [65]. The negative gradient of the escape risk is composed of
a reactive component and a look-ahead component. The reactive component
drives the observer to swing around corners as a target is about to be occluded,
while the look-ahead component drives the observer towards a corner in order
to make future tracking easier. The algorithm relies on an escape-path tree, a
data structure encoding all the locally worst-case paths that a target may use to
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escape the observer’s visibility region (Figure 10.16). This data structure can be
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Observer

Target

FIGURE 10.16 An example of the escape-path tree. The area in gray is the observer’s
visibility region, while obstacle boundaries are shown in bold. The squares indicate the
nodes of the tree.

computed in O(n) time for 2D environments, where n is the number of polygon
vertices describing the observer’s visibility region.

10.4.3.6 Robot localization

If a tracking strategy uses a global map of the environment to determine the
observer’s actions, tracking is tied to robot localization. This connection poten-
tially leads to a conflict between the goals of tracking and localization. Suppose,
for example, that the observer relocalizes whenever a ceiling landmark is visible.
The target may force an observer trajectory without any landmarks, resulting
in the localization error becoming so large that tracking fails.

A simple solution to this problem is to increase the number of landmarks, or
to use more robust localization techniques based on (hopefully) abundant natural
features. A better solution is to explicitly add the relocalization constraint into
the tracking problem. For example, the observer actions maximize the sum of
two utility functions: one based on the probability of observing the target and
the other based on localization precision [68].

An entirely different approach is to abandon the global map and avoid
the localization problem altogether. For example, the observer’s actions could
depend only on the gradient of the escape risk, which can be computed from
purely local sensor information [65].

10.4.3.7 Other results and extensions

We often ignore the kinodynamic constraints on the observer and the target
in order to simplify the tracking problem. However, it is important to assume
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bounded target velocity; otherwise, the target’s escape time may become zero.
The effect of velocity bounds on tracking has been studied [69]. Assuming
bounded target velocity, an optimal strategy can be computed efficiently for
polygonal environments and predictable targets [64].

An interesting extension of the tracking problem is that of stealth tracking:
the observer tracks the target while remaining hidden from it. The work in
Reference 70 extends the linear-time algorithm in Reference 65 to account
for the additional stealth constraint. This involves computing the subset of the
target’s visibility region contained inside the observer’s visibility region. The
computation can be done efficiently so that the total cost of the strategy remains
linear per step.

A more difficult problem is to track multiple targets with multiple observers.
If a centralized strategy is used, the problem is not fundamentally different from
tracking a single target with a single observer. However, the dimensionality of
the state space gets higher, and visibility regions may become disconnected
[67]. Distributed strategies, on the other hand, require a coordination scheme
among observers.

10.5 OTHER IMPORTANT ISSUES

Uncertainty is an important issue in motion planning, but we will only touch on it

and Section 10.4.2, we have mostly assumed that a planning algorithm knows
exactly the geometry of the robot, the shapes and locations of obstacles in the
environment, and when and how the environment changes. We have also
assumed that the robot can exactly execute the path computed by a planning
algorithm. These assumptions are satisfied to various degrees in real robotic
systems.

Depending on the degree of uncertainty present and the amount of prior
knowledge available, there are different ways to deal with uncertainty. If the
uncertainties are small, we can largely ignore them during planning and use
closed-loop control during path execution to reduce its effects (e.g., the air-
cushioned robot in Section 10.3.4). If uncertainty is bounded or modeled by
a probability distribution, we can incorporate it into planning using methods
such as preimage backchaining [71] or partially observable Markov decision
processes (POMDP) [72]. In this case, path planning and execution together
form a closed-loop process. However, the computational cost of incorporating
uncertainty into planning is often high and sometimes intractable. Also, uncer-
tainty is difficult to model effectively for lack of prior knowledge, and we must
rely on a worst-case analysis of various possible scenarios (e.g., in the target
tracking problem of Section 10.4.3). In the extreme case, no prior knowledge
of the environment is available. Planning is then of little use, and the robot must
rely on sensor-based reaction.
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very briefly here (see Chapter 13 for more details). Except for Section 10.3.4
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Another important topic is multi-robot motion planning. Conceptually, we
can take the cross product of the state spaces of all the robots involved and
plan in this composite space. This is called centralized planning, which is
computationally expensive due to the high dimensionality of the composite
space. Alternatively, we may plan the motion for each individual robot sep-
arately and then coordinate their motion afterwards. This is called distributed
planning, which is computationally more efficient, but sacrifices complete-

topic.
In recent years, bipedal humanoid robots have become more prevalent,

for example, Honda’s ASIMO and Sony’s QRIO. A bipedal robot has the
ability to navigate on uneven surfaces and step over obstacles along its path, but
efficient footstep planning algorithms that take into account the robot’s dynam-
ics are needed to realize this potential [73]. Motion planning for humanoid
robots is an important area of research, but is outside the scope of this
chapter.

10.6 CONCLUSION

Motion planning has moved far beyond its original form of computing a
collision-free path for a mobile robot to move from an initial to a final goal
position. We have seen in this chapter how kinodynamic constraints and
visibility constraints come into play. Nowadays motion planners compute foot-
steps for humanoid robots [73], paths for inserting a probe into an airplane
engine with hundred of parts [74], and motion trajectories for minimal-invasive
procedures in robot-assisted surgery [75]. Motion planning also continues
to grow into unexpected domains, for example, exploring molecular energy
landscapes [76,77]. In all these disparate problems, our objective remains
the same: find a sequence of admissible motions, to transform the world
from an initial to a final state, or to maintain a set of constraints on the
state. The notion of what constitutes a state has certainly expanded to cover
an increasing number of applications; yet, motion remains the crux of the
problem.

In recent years, we have also witnessed a trend towards the unification of
principles. In essence, motion planning is a collection of common principles for
analyzing motion combinatorially. “Motion” refers to the continuous process
of state changes, and “combinatorial” refers to the partition of the continuous
process into discrete elements. Motion planning studies those problems where
the rearrangement of these elements is the result of motion — problems that
cannot be reduced to pure instances of computational geometry or control the-
ory. As we have seen in this chapter, random sampling plays a critical role in
solving these problems and has shown great success.
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ness and optimality. Chapter 11 provides a more in-depth discussion of this
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11.1 INTRODUCTION

Cooperative multi-robot systems have recently received a great deal of attention,
motivated by recent technological advances in communication, computation,
and sensing. Another major factor behind this interest is that there are many
tasks that single robots cannot efficiently accomplish. Multi-robot applications
include environmental monitoring, search and rescue, cooperative manipula-
tion, collaborative mapping and exploration, battlefield assessment, and health
monitoring of civil infrastructure. In these applications, a system composed of
multiple cooperative robots is desirable because of its size, cost, flexibility, and
fault tolerance.

The research challenges encountered in cooperative multi-robot systems
require the integration of different disciplines including control systems, arti-
ficial intelligence (AI), biology, optimization, and robotics. Therefore, it is
not surprising that the related literature enjoys the flavor of a broad spec-
trum of approaches which have been utilized in an attempt to come up with a
solution for cooperative control problems [1]. To name just a few, in behavior-
based approaches [2,3] the main idea is to compose primitive behaviors
(i.e., controllers) in order to produce a useful emergent behavior. Closely related
methods originating from the field of distributed artificial intelligence (DAI)
consider a cooperative multi-robot system as interacting software agents [4].
Yet another perspective comes from the research in biological systems. Here,
the notions of swarm intelligence [5], and flocking and schooling [6] constitute
a basis to investigate behavior of multi-robot systems composed of large num-
ber of agents. Also, game theory provides a rigorous framework to understand
complex behaviors of multiple robots engaged in competitive or cooperative
tasks [7].

A fundamental problem in cooperative multi-robot systems is designing a
mechanism of cooperation between agents so that the overall performance of
the system improves. This design can include control, communication, compu-
tation, and sensing aspects. For example, multiple robots which are supposed
to push an object within the workspace without grasping it [8,9]. These robots
may need to map the environment and find the object of interest. Once the object
has been localized, robots approach the object maintaining some formation and
sensing constraints. Additionally, they need to communicate and perform com-
mon computations utilizing their sensing readings in order to push the object
toward a desired direction with a minimum deviation from it.

The rest of the chapter is organized as follows: Cooperative multi-robot
systems and some tools for their analysis are introduced in Section 11.2.
Section 11.3 is devoted to formation control of multi-robot systems.
Section 11.4 describes a method for incorporating optimization-based tools
into systems composed of multiple robots. Here, notions of model predictive
control are explained. Two real-world cooperative multi-robot applications
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FIGURE 11.1 Robots performing a cooperative task (Courtesy: NASA/JPL-Caltech).

are discussed in Section 11.5. Finally, Section 11.6 gives concluding remarks
and a brief discussion of open problems and future research opportunities in
multi-robot cooperation.

11.2 COOPERATIVE MULTI-ROBOT SYSTEMS

Due to recent substantial developments in electronics and computing, it is now
possible to find onboard embedded computers which have more computing
power than the super computers available a few years ago. Exchanging inform-
ation between robots distributed over an area is now possible by means of
off-the-shelf ad hoc wireless network devices. Furthermore, there are various
small size, light weight sensing devices on the market ranging from laser range
sensors to  color  CCD  cameras. As a result, by  exploiting  current technology, one
can build a group of relatively small robots each having satisfactory capabilities
within a reasonable budget. In adversary and dangerous missions, it might be
desirable to have multiple cost-effective robots because even if some of the
team members are lost due to some failure, the others can continue to operate.
This leads to fault tolerance and robustness. For tasks such as obtaining sensory
measurements over a wide area, multiple robots are desirable because they can
accomplish the task more efficiently than a single robot. Figure 11.1 depicts
NASA’s vision for cooperating robots.

A good survey of cooperative robots can be found in Reference 10. This
survey reviewed about 200 papers published before 1997. This chapter is
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not intended to be a survey of the state-of-the-art in cooperative systems.
Rather, it focuses on cooperating multi-robot systems performing tasks that
require or involve (i) concurrent, coordinated operation and execution; (ii) form-
ation of spatial patterns; (iii) mobility; and (iv) distributed sensing, com-
putation, and actuation. However, task decomposition and planning [11],
multi-robot learning, communication protocols, architectures for multi-robot
cooperation [12], and human–robot interaction are outside the scope of this
chapter.

Although a team of robots has certain benefits as stated above, if the indi-
vidual members do not cooperate with their teammates for a common task,
the whole group may perform poorly. Therefore, cooperation, in general,
is the key aspect of a multi-robot team strategy. At this point, the following
definition may be helpful to get more insight into what cooperative behavior
means.

Definition 11.2.1 [10] Given some task specified by the designer, a multiple-
robot system displays cooperative behavior if, due to some underlying
mechanism (i.e., the mechanism of cooperation), there is an increase in the
total utility of the system.

As can be inferred from the definition, the main goal of a cooperative
system design should be to build a mechanism of cooperation so that the overall
performance of the system improves for a given task.

In many cooperative control problems, robots move in a coordinated fashion
to achieve some common goal and seek to maintain some geometrical rela-
tionships among themselves. Often movement is dictated by measurement
of gradients of some actual sensor measurements, or some artificial poten-
tial field. Solutions defined with inter-robot distance relationships are explored
in Reference 13, where methods to measure and project gradient information
are discussed. The applications for these methods are in, for example, data
acquisition in large areas such as oceans where the most advantageous arrange-
ment of sensors may not be to distribute them evenly, but to have them adapt
to concentrate more sensors in areas where the measured variable has steeper
gradients.

A different application is in the control strategies of robotic games such as
RoboCup Soccer [14]. RoboCup provides an ideal platform for the development
of cooperative robotic systems. Successful control strategies are often behavior-
based, with robots operating in certain modes with heuristic rules determining
how each robot reacts to best benefit its team. Yet within this class, good control
strategies may require more than simply a set of “if–then–else” rules defining
the mode switching.

We are mainly concerned with cooperative tasks that require robots to plan
their trajectories and maintain a certain formation shape. Before discussing
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formation control in more detail, we give an outline of motion planning and
control methodologies (based on Reference 15) and graph theory. These are
fundamental tools for the formal analysis and design of cooperative multi-robot
systems.

11.2.1 Motion Planning and Control

Motion planning approaches can be grouped into two main categories as
illustrated in Figure 11.2.

Explicit approaches provide open-loop control policies to motion planning.
On the other hand, implicit or reactive approaches provide closed-loop plans by
composing low-level feedback controllers. In this chapter, we focus on implicit
system theoretic methodologies.

11.2.1.1 Explicit approaches

An explicit motion planning approach produces a path or trajectory through
the configuration space from an initial configuration to the goal configura-
tion. Explicit methods can be further classified into continuous and discrete.

control (RHC) methods are typically formulated in continuous-time. Recently
RHC methods have received considerable attention due to their ability to incor-
porate motion constraints and changes in mission objectives. The inherent
ability of RHC to handle nonlinear constrained systems makes it a natural tech-
nique for multi-robot cooperative tasks. Discrete explicit methods (e.g., road
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maps and cell decomposition) [17] use computational geometric tools to
determine a solution to the planning problem. Due to their computational
complexity, discrete methods are appropriate for off-line planning in static
environments.

11.2.1.2 Implicit approaches

Implicit approaches produce on-line solutions to the motion planning problem
by mapping the state of the robot and state of the environment (e.g., obstacles,
moving targets) to a set of inputs for controlling the robot. Implicit approaches
include (1) system theoretic methods, (2) reactive AI approaches, and

System theoretic methods. These methods use control theory to develop
closed-loop control laws for the robots. Hybrid systems (i.e., the combination
of continuous dynamics and discrete dynamics) offer a suitable framework to
represent robots performing cooperative tasks [18]. More specifically, a robot
can be modeled by a hybrid automaton whose locations or states determine
robot behaviors. Thus, complex behaviors can emerge by parallel or sequential
composition of basic behaviors [9].

Reactive AI approaches. AI techniques address the problem of combining
simple controllers (i.e., behaviors) into an aggregate system that exhibits
an emergent useful behavior. If behaviors are composed sequentially, then the
control input is due to the behavior that is currently active. In contrast, in parallel
composition the system input is computed as the weighted sum of the outputs
from all active behaviors or controllers.

Potential field approaches. The main idea behind potential field approaches
is to define a scalar field V (called potential function) over the robot’s free space.
This artificial field produces a force −∇V acting on the robot. Obstacles and
goals produce repulsive and attractive potentials, respectively. The resultant
force is mapped to contoller/actuator commands. Thus, the robot, at least in
theory, would navigate toward its goal destination while avoiding collisions.
Several researchers have extended potential field methods to make them suitable
for multi-robot systems [19].

The main drawback of potential field techniques is that the robot might get
stuck in a local minimum before reaching the goal. Several variants have been
proposed to overcome this limitation.

11.2.2 Graph Theory Preliminaries

We present a brief review of some definitions and results from algebraic graph
theory. A detailed treatment can be found in Reference 20. A directed graph
X = (V , E) consists of a vertex set V(X ) and a directed edge or arc set E(X ),
where an arc is an ordered pair of distinct vertices. An arc (vi, vj) between two
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vertices vi, vj in a directed graph is said to be incoming with respect to vj and
outcoming with respect to vi. The in(out)-degree of a vertex in a directed graph
is defined as the number of incoming (outcoming) edges at this vertex. A path
of length r in a directed graph is a sequence v0, . . . , vr of distinct vertices such
that for every i ∈ [1, r], (vi−1, vi) ∈ E. The distance between two vertices
vi and vj in a graph X is the length of the shortest path from vi to vj. The
diameter of a graph is the maximum distance between two distinct vertices.
A (directed) cycle is a connected graph where every vertex has one incoming and
one outcoming edge. An acyclic graph is a graph with no cycles. A connected
acyclic graph is also called a tree. A subgraph of a graph X is a graph Y
such that V(X ) ⊆ V(Y), E(X ) ⊆ E(Y). When V(X ) = V(Y), Y is called
a spanning subgraph. A subgraph Y of X is an induced subgraph if vertices
vi, vj ∈ V(Y) are adjacent inY if and only if they are adjacent inX . A spanning
subgraph with no cycles is called a spanning tree. If (vi, vj) is an edge, vi, vj

are said to be adjacent or vj is a neighbor of vi (vj ∼ vi). The adjacency matrix
of a directed graph X with n vertices is an n × n matrix A(X ), the ij-element
of which (denoted by Aij henceforth) is the number of arcs from vi to vj. In
most cases this is a binary matrix with Aij = 1 when arc (vi, vj) exists and 0
otherwise. It is easy to see that the adjacency matrix for an undirected graph
is symmetric. If there are no loops (cycles of length zero) the diagonal entries
are zero.

11.3 FORMATION CONTROL

Many systems in nature exhibit stable formation behaviors, for example,
swarms, schools, and flocks [21,22]. In these highly robust systems, individu-
als follow distant leaders without colliding with neighbors. Thus, a coordinated
grouping behavior emerges by composing individual control actions and sensor
information in a distributed control architecture. One possibility to realize
such a grouping behavior is using artificial potential functions as a coordin-
ation mechanism [23]. In some application domains, the group of vehicles
are to move as a rigid structure. In this case, centralized strategies are used
to control the team [24]. However, in many practical situations (e.g., cooper-
ative manipulation), a target formation needs to be established for a given
task or environment. In these cases, reconfiguration of robots in formation is
required [25]. Additionally, formation control has applications where rigorous
coverage of an area is required, such as in collaborative exploration [26] or
mine sweeping [27].Conceptually, fighter jets flying in a delta formation at an
air show are an example of manually controlled vehicles tracking a trajectory
in formation.

This section presents a methodology to coordinate a team of N robots in
formation. The problem of stabilizing a group of mobile robots in formation
has received considerable attention in the last few years [25,28–31]. We assume
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FIGURE 11.3 (a) Modular architecture for formation control. (b) Basic formation
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that formation control is required to accomplish a given cooperative task.
Furthermore, the formation shape is represented by a control graph1 that
changes over time to accommodate kinematic, sensor, and communication
constraints [32]. The desired formation shape is achieved by deleting or cre-
ating links between robot neighbors. This process implies switching between
controllers and leaders in a stable fashion [33].

Specifically, a group of robots is required to follow a prescribed traject-
ory, while achieving and maintaining a desired formation shape. We address
the development of complex formations by composing simple building blocks
in a bottom-up approach. The building blocks consist of controllers (see
Figure 11.3b) and estimators, and the framework for composition allows
for tightly coupled perception-action loops. While this philosophy is similar
in spirit to a behavior-based control paradigm [2], it differs in the more
formal, control-theoretic approach in developing the basic components and
their composition.

We are particularly interested in applications like cooperative manipulation,
where a semi-rigid formation may be necessary to transport a grasped object

1 In a control graph, vertices and edges correspond to robots and control laws/communication links,
respectively.
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to a prescribed location, and cooperative exploration, where the formation
may be defined by a set of sensor constraints. In our approach, each node
(i.e., robot) has a definite identity that can be determined by visual observations
as well as by communication. All nodes can hear each other up to a finite
distance. Nodes that cannot talk or cannot listen are left out of the group.
Also, it is assumed that a planned trajectory g(t) and a desired formation shape
vector rd are specified either by a human operator or by the task specification

formation control.
At the formation control layer, a network of N vehicles is built on three

different networks: a physical network that captures the physical constraints on
the dynamics, control, and sensing of each robot; a communication network
that describes the information flow between the robots; and a computational
network that describes the computational resources available to each robot.
Each network is modeled by a graph with N nodes. R is a finite set of nodes
{R1, R2, . . . , RN }. The physical network Gp is a directed graph representing the
flow of sensory information (i.e., relative state). The communication network
Gc is an undirected graph where edges represent communication channels.
The topology of these networks are determined by constraints of the hard-
ware, the physical distribution of the robots, and the characteristics of the
environment.

The design of the computational network involves the assignment of (kin-
ematic) control policies for each robot. The ability of a node Rj to sense another
node Ri allows Rj to use a state feedback controller that regulates relative pos-
ition and/or orientation of Rj with respect to Ri. The ability of Rj to listen to Ri

allows Ri to broadcast feed-forward information and for Rj to use feed-forward
control.

In our previous work [25,29], we developed three basic controllers depicted
in Figure 11.3b using input–output feedback linearization. By composing these
basic controllers, complex formation shapes can be built. In Section 11.3.1,
we present a controller that uses dynamic feedback linearization [34] and
implements a basic leader–follower algorithm.

11.3.1 Full-State Linearization via Dynamic Feedback

We describe a control algorithm that allows a follower robot Rj to maintain a
separation lij and relative bearing ψij with respect to a leader robot Ri. Robots
are nonholonomic platforms modeled with the unicycle model:

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

(11.1)
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where xi, yi, θi, vi, and ωi are the x-position, y-position, orientation angle,
linear velocity, and angular velocity of robot i, respectively. The leader–follower
kinematic model is given by

l̇ij = vj cos γ − vi cosψij

ψ̇ij = vi sinψij − vj sin γ − ωilij
lij

θ̇ij = ωi − ωj

γ = ψij + θi − θj

(11.2)

The output vector of interest is

z =
[

lij
ψij

]
(11.3)

Taking the derisssvative of (11.3) with respect to time, we have

ż =
[

l̇ij
ψ̇ ij

]
=



cos γ 0

− sin γ

lij
0


[vj

ωj

]
+



−vi cosψij

vi sinψij

lij
− ωi


 (11.4)

Sinceωj does not appear, the decoupling matrix is singular. In order to overcome
the singularity of decoupling matrix an integrator is added before the first input

vj = ζ1

ζ̇1 = aj

(11.5)

where aj is the new auxiliary input which is the linear acceleration of the follower
robot. By using (11.5), Equation (11.4) is rewritten as

ż =



cos γ 0

− sin γ

lij
0



[
ζ1

ωj

]
+



−vi cosψij

vi sinψij

lij
− ωi


 (11.6)

Differentiating (11.6) with respect to time results in

z̈ =

 cos γ ζ1 sin γ

− sin γ

lij

ζ1

lij
cos γ


[aj

ωj

]
+
[

s1
s2

]
(11.7)
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where

s1 = ζ 2
1

2lij
(1 − cos 2γ )− ai cosψij − 2

viζi

lij
sin γ sinψij

− viωi sinψij + v2
i

2lij
(1 − cosψij)

s2 = ai sinψij

lij
+ v2

i

l2
ij

sin 2ψij − 2
viζ1

l2
ij

sin(γ + ψij)

+ ζ 2
1

l2
ij

sin 2γ − viωi

lij
cosψij − αi

where ai and αi represent linear and angular acceleration of the leader robot,
respectively. The decoupling matrix is nonsingular if ζ1/lij �= 0. Using this
condition, the system can be written as

z̈ = Au + B (11.8)

where u = [aj ωj]T is computed as

u = A−1(P − B) (11.9)

where P = [p1 p2]T, and B = [s1 s2]T. From (11.7), we can derive

A−1 = lij
ζ1



ζ1 cos γ

lij
−ζ1 sin γ

sin γ

lij
cos γ


 (11.10)

After some algebraic manipulations, the auxiliary inputs become

aj = p1 cos γ − s1 cos γ − p2lij sin γ + s2lij sin γ

ωj = 1

ζ1
[ p1 sin γ − s1 sin γ + p2lij cos γ − s2lij cos γ ] (11.11)

Thus (11.5) and (11.11) transform the original leader–follower system into two
decoupled chains of two integrators.

z̈ =
[

p1
p2

]
(11.12)
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The closed-loop system becomes

p1 = l̈d
ij + k1(l̇

d
ij − l̇ij)+ k2(l

d
ij − lij)

p2 = ψ̈d
ij + k3(ψ̇

d
ij − ψ̇ij)+ k4(ψ

d
ij − ψij)

(11.13)

where ld
ij and ψd

ij define the desired formation geometry, and ki, i = 1, . . . , 4
are positive feedback gains whose values can be found using well-known linear

of the control algorithm. The desired initial formation variables are ld
ij = 5 m

and ψd
ij = π/2 rad. After 140 sec, ψd

ij is changed to 4π/3 rad while ld
ij remains

constant.

We would like to build formations of N robots in a modular fashion by com-
posing basic formation controllers. Formation control graphs provide the tool
to achieve this objective. In order to proceed we need to define the shape of a
formation.

Definition 11.3.1 The shape S of a formation of N robots moving in R2 with
one robot identified as the lead robot is a point in a 2(N − 1)-dimensional
submanifold of R2N with coordinates [(r2 − r1) (r3 − r1) · · · (rN − r1)]T.

In the case where the desired shape Sd can be locally parameterized as
a vector r ∈ R

2(N−1) then the shape error is simply given by the Euclidean
distance:

S̃ = ‖rd − r‖ (11.14)

The robot interconnections can then be designed to implement the desired
shape. The formation will be identified by a directed graph that represents
a parametrization of the formation shape S and the control specifications that
realize it.

Definition 11.3.2 A control graphH = (V , E) is a directed graph with:

• A finite set V = {R1, . . . , RN } of N vertices and a map assigning to
each vertex Ri a control system q̇i = f (qi, ui) where qi ∈ Rn and
ui ∈ Rm.

• An edge set E ⊂ V × V encoding leader–follower relation-
ships and controller assignments between robots. The ordered pair
(Ri, Rj) � eij belongs to E if uj depends on the state of robot i, qi.

© 2006 by Taylor & Francis Group, LLC
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According to Definition (11.3.2), each vertex represents the dynamics of a
particular robot. From the adjacency matrix H for the control graphH, column j
corresponds to robot Rj, and a 1 in row i (H(i, j) = 1) denotes an incom-

i
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ing edge originating at a neighboring leader R . In Figure 11.3a for example,
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the adjacency matrix of the first five vertices in the control graph shown
becomes

H =




0 1 1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0




Robot Rj has to control its shape rj relative to all such Ri (for our specific
controllers the number of leaders and hence the indegree at each vertex is
bounded by m = 2). Similarly, we can identify the neighboring followers of
robot j by destination of the outcoming edges. Vertices of indegree zero, rep-
resent formation leaders. We restrict our formation to have one lead robot.
For the formation leader no control specification is prescribed with respect to
other robots. Instead, the formation leader aims at achieving group object-
ives such as following a reference trajectory g(t) or navigating within an
obstacle populated environment. Also, the control graphs are restricted to be
acyclic.

The structure of the control graph will affect the stability of a multi-
robot formation system. Stability means that S̃ → 0 as t → ∞ where S̃
is given in (11.14). It is not difficult to show that for a team of fully actu-
ated planar robots, acyclicity ofH guarantees stability. The interested reader is
referred to References 30 and 32 for a detailed treatment of formation stability
issues.

The formation shape S can be specified with respect to some common
reference frames, which can be assumed to be the local frames of the formation
leaders. Formation specifications are defined in terms of a desired shape vec-
tor rd . If rd

j is the desired shape component corresponding to robot j, then the
desired state for j can be expressed as qd

j = qi + rd
j , where qi can be the state

of any formation leader. We assume each robot derives relative localization

A fundamental formation control problem can be posed as follows.

Problem 11.3.3 Given a distribution of N robots in the plane and a desired
planar shape Sd parameterized by rd, find an optimal control graph H∗ that
assigns a controller for each robot subject to the following two constraints
(a) kinematic constraints that must be satisfied by the relative position and
orientation between neighboring robots; and (b) sensor constraints based
on the limits on range and field of view of sensor and communication
device(s) that prevent a robot from obtaining complete information about its
neighbors.

© 2006 by Taylor & Francis Group, LLC

information by some sensing modality (see for instance Reference 28).
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ALGORITHM 11.1
Control graph assignment algorithm

initialize adjacency matrix H(i, j) := 0;
for all robot k ∈ {1, 2, . . . , n}, k �= leader do

H(i, k):=1 for SBikC, edges(i, k) ∈spanning tree of Gp;
dk := depth of node k in Gc;
find set Pk of robots visible to k with depths dk , dk − 1;
if Pk = ∅(disconnected) then

report failure at k, break;
end if
Sk :=Pk sorted by ascending �ti

k with k;
if numOfElements(Sk) ≥ 2 then

pick last two elements i, j ∈ Pk ;
if εijk = (lik + ljk − lij) �= 0 then

H(i, k):= 1, H(j, k):= 1 for SSijkC;
else

repeat above check for remaining j ∈ Sk in order;
end if

end if
end for

An algorithmic approach to addressing this problem is developed in
Reference 32. Algorithm 11.1 assigns control policies to different robots, based
on sensor and actuator constraints. Among the feasible control graphs that
satisfy the constraints, it selects those control graphs that globally minimize the
tracking error in formation shape.

The approach follows a two-step procedure (a) assign an initial acyclic
leader–follower graphH0 with single-leader-based control links (this is a tree);
and (b) refine (add/delete edges) control graph based on local optimality meas-
ures. Once the leader is identified,H0 is derived via communication by having
each robot identify its neighbors in the physical network. If each robot com-
municates the identities of its neighbors in a prescribed order, a breadth-first
search can be used to establish a spanning tree H0. If there are robots with no
neighbors in  the  physical network (i.e., with  no  visible  neighbors), we  have  a  dis-
connected graph. Obstacles are treated as virtual robots, in this way a group can
navigate within a dynamic environment and exhibit formation reconfiguration as

Figure 11.5b, is an area of current research.
Section 11.4 describes an optimization-based approach to address coordin-

ation and formation control of cooperative multi-robot systems.

© 2006 by Taylor & Francis Group, LLC

shown in Figure 11.5a. An algorithm that allows formation splitting/rejoining,
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Initial formation

Reconfiguration

Final formation(a)

Splitting

Rejoining(b)

Initial formation

FIGURE 11.5 Examples of formation reconfiguration.

11.4 OPTIMIZATION-BASED COOPERATIVE CONTROL

Many researchers are addressing multi-robot cooperation problems using
optimization techniques. Contributions in this area include the work in
Reference 35, where the focus is on autonomous vehicles performing distrib-
uted sensing tasks. Optimal motion planning is considered in Reference 24. In
Reference 36, the task of repositioning a formation of robots to a new shape
while minimizing either the maximum distance that any robot travels or the
total distance traveled by the formation is considered. One of the goals of
this work is to extend the mission lives of robot formations and mobile ad
hoc networks (MANETs). More recently, the use of model predictive con-
trol (MPC) is becoming popular in the multi-robot system literature [37,38].
In Reference 37, a distributed MPC algorithm for stabilizing multi-vehicle
formations is developed. This section describes the optimization-based solu-
tion of a formation control problem using receding-horizon model predictive

© 2006 by Taylor & Francis Group, LLC
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control MPC methods. Also, we discuss some difficulties in optimization, and
point out some potential drawbacks to model predictive control that we will
need to address in the development.

Generally, MPC algorithms rely on an optimization of a predicted model
response with respect to plant input to determine the best input changes for a
given state. The MPC algorithms can in general handle nonlinear models, and it
may be reconfigurable. Either hard constraints (that cannot be violated) or soft
constraints (that can be violated but with some penalty) can be incorporated into
the optimization, giving MPC a potential advantage over passive state feedback
control laws. However, MPC has some possible disadvantages when applied to
mobile robot formation control, the foremost being the computational cost.

In this section, we describe a different approach based on terminal con-
straints to ensure stability of the MPC algorithm. From the terminal constraint
region, we use a local stabilizing controller (e.g., the leader–follower controller
derived in Section 11.3.1) in the manner described in References 39 and 40,
resulting in a dual-mode MPC algorithm. This may have the advantage of con-
ceptual simplicity, but may suffer the disadvantage of infeasible optimization
problems outside a necessarily limited region of convergence for the algorithm.

Now consider a dual-mode MPC algorithm for a single leader–follower
pair. The unicycle model will represent the kinematics of the leader robot
Ri and the controlled robot Rj. For the follower robot, the state vector is
x(k) = [xj(k) yj(k) θj(k)]T, and the input vector is u(k) = [vj(k) ωj(k)]T.
The allowable inputs are limited to the set {u(k) | umin ≤ u(k) ≤ umax} so
that the kinematic inputs are limited to some reasonable magnitudes.

Let the discrete-time dynamic model of the system be x(k + 1) =
f (x(k), u(k)), so that f (·) is time-invariant and nonlinear and has an equilibrium
point at u(k) = 0. An MPC algorithm uses a model to predict the trajectory
based on the current state and some input series, and generates a control signal
that results in a trajectory that is optimum in some quantifiable way. At the
discrete time k, the state of the system x(k) is measured, and the plant model is
used to predict the system trajectory from k+1 to k+Hp, where Hp is called the
prediction horizon. The optimality of a trajectory is evaluated by calculating
some objective function having the general form

V(k) =
Hp∑

m=1

ρ(xe(k + m|k), ue(k − 1 + m|k)) (11.15)

where ρ(·) is an incremental cost, xe(k +m|k) = [x(k +m|k)−xd(k +m|k)],
and xd(k + m|k) is the desired value of x(k + m|k). The notation (k + m|k)
indicates a value at time (k+m) calculated at time k. Each xe(·) is an element of a
convex, closed setX ⊂ R

3 containing the origin. The vector ue(k−1+m|k) =
[u(k −1+m|k)−ud(k −1+m|k)], with ud(k −1+m|k) as the input necessary

© 2006 by Taylor & Francis Group, LLC
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to achieve xd(k + m|k) from xd(k − 1 + m|k). Each ue(·) is an element of a
convex, compact set U ⊂ R

2 containing the origin.
Let any control input series that stabilizes the system (to zero error) in

Hp steps or fewer while not violating any constraints be denoted ũ(k) =
(ue(k|k), ue(k + 1|k), . . . , ue(k + Hp − 1|k)), and let an optimum control input
series that stabilizes the system in the best way according to the value of the
objective function while not violating any constraints be denoted ũo(k), with
an associated objective function value Vo(k). An optimization routine varies
the control input over some control horizon Hu, where Hu ≤ Hp, to minimize
the objective function, and the inputs for (k +Hu +1, . . . , k +Hp −1) are fixed
at u(Hu) in the optimization. For simplicity, let Hu = Hp in the remainder of
this section.

The optimization will keep the input and state vectors within any existing
constraints that may apply, and generates an open-loop prediction of system
behavior. However, the MPC algorithm is fundamentally a feedback controller,
so only the first element of ũo(k) is applied in practice. At the next time interval,
the state is remeasured, providing feedback that closes the loop, and the process
is repeated.

For our discrete-time nonlinear system, we assume the following.

Assumption 11.4.1 The objective function V(k) is C2, with V ≥ 0 and
V(k) = 0 only when the system error xe(k) is zero.

Assumption 11.4.2 At every calculation interval k, the optimizing input series
ũo(k) is determined in negligible time.

Stability can be achieved if we can require the constraint that ũo(k) stabilizes
the system to zero error in Hp steps or fewer via some feasible path. However,
the optimization problem may be difficult or impossible to solve in real systems.
Instead, relax the definition of ũ(k) so that it drives the system to some terminal
constraint set Xf . Here we allow xe(k + Hp|k) ∈ Xf ⊂ X . The terminal
constraint must be closed and compact, and must contain xe = 0. The controller
that usesXf instead of the origin as a terminal constraint may certainly impose a
much smaller computational burden at each time interval, but it is not stabilizing
because it only drives the system to a region around the origin. Whenever
xe(k) ∈ Xf , control switches to a local stabilizing controller K(x) to drive the
system to zero error. Thus, this is a dual-mode model predictive controller.

Assumption 11.4.3 No collisions will occur for any xe ∈ Xf . The leader
velocity vi > 0 is required for the local controller to be asymptotically stable.

In addition to providing a region in which the local controller is asymptotic-
ally stable, the terminal constraint must be small enough to effectively prevent
collisions for any xe ∈ Xf .

© 2006 by Taylor & Francis Group, LLC
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The objective function at discrete time k is

V(k) = Vpos(k)+ Vinput(k)+ Vcol(k) (11.16)

where Vpos(k) is a position (or state) error cost term, Vinput(k) is an input power
cost term, and Vcol(k) is a collision cost term. The position error cost term is
defined by

Vpos(k) =
Hp∑

m=1

xT
e (k + m|k)Qxe(k + m|k) (11.17)

and here we will use Q = diag[q1 q2 q3] with scalar weights qi > 0. Some
cost is associated with the input effort according to the term Vinput(k), where

Vinput(k) =
Hp∑

m=1

uT
e (k − 1 + m|k)Rue(k − 1 + m|k) (11.18)

where R = diag[r1 r2] with scalar weights ri > 0.
A collision cost term will penalize trajectories which result in inter-

robot collisions. Given some minimum inter-robot separation rmin, separation
distance is defined as

ci,j(k + m|k) = ‖xi(k + m|k)− xj(k + m|k)‖2 − rmin (11.19)

where ci,j(k + m|k) ≥ 0 must be maintained to prevent a collision between
robots i and j. Ideally, the objective function should penalize any trajectory
having some ci,j(k + m|k) < 0 quite heavily, while having virtually no cost for
ci,j(k + m|k) ≥ 0. Thus, the nonlinear cost term

Vcol(k) =
Hp∑

m=1

e−ci,j(k+m|k)/τ (11.20)

is used, with 0 < τ � 1. This cost term can correspond to an undefined
(infinite in magnitude) artificial potential for ci,j
result in an objective function that is not strictly increasing with ‖xe(k)‖2 and
‖ue(k)‖2 if trajectories pass through areas where ci,j(k + m|k) < 0. However,
for trajectories that start in the feasible region and controllers that have sufficient
power available for stabilization, it effectively prevents collisions.

A constant prediction horizon is chosen to be long enough to ensure that the
trajectory can enterXf , and a local stabilizing control law is applied in a manner

© 2006 by Taylor & Francis Group, LLC

(k + m|k) < 0 (cf. [23]). It can
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similar to that of Reference 40. Let Xp ⊂ X be the closed, compact set of
states of xe that can be driven to some terminal constraint set Xf in Hp steps or
fewer. Thus, Xp is a kind of region of convergence of xe to Xf , and it is defined
so that Xp ∩ Xf = ∅. The determination of the required Hp depends on
input limits; in the kinematic sense, the motion of the robot is limited by the
available maximum absolute values of vj and ωj. More available input power
means that a shorter Hp can be used for a given Xp.

Assumption 11.4.4 For any xe(k) ∈ Xp, the prediction horizon will be long
enough so that there exists a feasible trajectory that does not cause a collision.
This is equivalent to having at least one set ũo(k) such that Vcol(k) → 0.

When the collision cost term is thus defined, the cost term Vcol(k) is not
finite for every xe ∈ Xp, and trajectories that pass through the region for which
Vcol(k) → ∞ have no feasible solution of the optimization problem which is
intended to determine ũo(k). If the only trajectories which meet the terminal
constraint Xf pass through such a region, then no feasible ũo(k) exists and the
optimization is not tractable.

Assumption 11.4.5 For each increment there is some function λ(·) such that
ρ(xe(k + m|k), ue(k + m − 1)) ≥ λ(‖[xT

e (k + m|k) uT
e (k − 1 + m)]T‖2) > 0

∀xe ∈ Xp. Furthermore, it is required thatρ(xe(k), ue(k−1)) = 0 ∀xe(k) ∈ Xf .

The MPC problem is constrained by the kinematics of the robot and any
bounds on x or u that may exist, particularly an upper bound on the magnitude
of u. With these constraints the dual-mode MPC problem is then

minimize V(k)

with respect to ũ(k)

such that

x(k + 1 + m|k) = f (x(k + m|k), u(k + m|k)) (11.21)

umin ≤ u(k + m|k) ≤ umax

for m ∈ {0, 1, . . . , (Hp − 1)}
xe(k + Hp|k) ∈ Xf

Given the above definitions and assumptions, one can show that any state
within Xp can be driven to Xf in finite time, from which the system is
stable.

For a control task with a positive-velocity leader, the proper choice of Hp

allows the controlled robot to find the proper orientation under dual-mode MPC

© 2006 by Taylor & Francis Group, LLC
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FIGURE 11.6 The dual-mode MPC algorithm with Vcol = 0 results in a collision in
(a), whereas with Vcol as in Equation (11.20), collision is avoided in (b).

while avoiding collisions, as shown in Figure 11.6. In Figure 11.6a, the collision
cost term has been disabled, whereas in Figure 11.6b it effectively prevents a
collision of the two robots (while delaying recovery). Steady-state operation is
under the local leader–follower controller. Note that from the initial condition
shown, the recovery of the system under local control would not result in a
collision with the leader robot. However, under local control collisions with
obstacles and robots other than the leader can only be prevented by redefining
pseudo-leaders as shown in Reference 33. The MPC algorithm offers a less
cumbersome method to ensure that collisions are avoided.

11.4.1 Control of a Chain of Robots

Here the general characteristics of a formation of N robots are considered, where
robot R1 moves independently and robots Ri, i ∈ 2, . . . , N each follow Ri−1.
This uses N − 1 dual-mode MPC algorithms as described earlier, assuming
the robots sense one another within some radius but do not share information
(i.e., internal calculations) explicitly. This form of architecture represents one
possible method for control of teams of robots, where global information is
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not available to a centralized controller, but onboard sensors with a reasonable
degree of precision and accuracy are presumed. This is similar to the distributed
MPC problem described by Reference 41, where the overall formation control
is formulated as a series of subproblems; in this case the subproblem for Ri

is much smaller than the overall formation control problem and coupled only
to subproblems for Ri−1 and Ri+1, for 1 < i < N . Information, in the form
of sensor readings giving the current state and kinematic input for Ri−1, is
exchanged only once per time interval, and each dual-mode MPC controller
assumes behavior (specifically, constant kinematic input for the duration of the
prediction horizon) for Ri−1. Eventually, each controller may be programmed
to react to obstacles as well as other robots within its sensing radius.

For a chain of five robots {R1, . . . , R5}, with {R2, . . . , R5} under dual-mode
MPC, the performance of this system depends in part upon how much inform-
ation is available to the controller. For example, if an infinite sensing radius for
every robot is assumed, then they could all follow R1 directly, but this scenario
is unlikely in practice. Instead, the assumption is that each robot Ri can “see”
only far enough to sense robot Ri−1; this distance is assumed to be large enough
so that any other potentially dangerous robots or obstacles that may collide with
Ri will also be sensed, allowing future implementation of some obstacle avoid-
ance. From a practical standpoint, it could be difficult for Ri to properly sense
the kinematic velocities of Ri−1. The response of Ri to information about Ri−1
does not occur until the next time segment, so there is a one time unit delay

moving in formation. In this case the entire chain is asymptotically stable, in
the sense that ‖xs(k)‖2 → 0 asymptotically as k → ∞, where xs(k) is the total
error vector. Here xs(k) = [xT

e1(k) xT
e2(k) · · · xT

eN (k)]T, xej = xj(k)− xgj(k) for
j = 1, . . . , N , and xgj(k) is the desired position of robot j if there were no error
anywhere in the formation.

Although a basic MPC formulation may seem quite intuitive, using a
seemingly commonsense formulation without analyzing stability can lead to
divergent responses. It may not be difficult to prove stability for some infinite-
horizon control laws, or for MPC algorithms that require a zero-state constraint
at the end of the horizon at each step, but these approaches often do not lead to
tractable problems. With shorter horizons that can be handled computationally,
a stabilizing solution may not exist. Much of the recent research in MPC has
centered in analyzing stability using Lyapunov analysis centered on appropriate

of recent MPC research).
Stability of an MPC algorithm may be ensured by setting requirements on

the prediction horizon, the terminal constraint set, the terminal cost, or some
combination of these factors. The first and easiest way to ensure stability is to
require some minimum prediction horizon length; in fact it is easy to prove that
if Hp → ∞ and V has the properties of a Lyapunov function then the algorithm

© 2006 by Taylor & Francis Group, LLC

for every follower robot in the chain. Figure 11.7 depicts a five-robot system

terminal costs or constraints (see, for example, Reference 42 for a good survey
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FIGURE 11.7 Stability is achieved when R1 has v1 > 0, and the local stabilizing
controller can be implemented for each controller in the chain.

is stable for an unconstrained plant. However, this approach is as unsuitable as
it is trivial for real applications. Stability of the system can be assured in some
sense if we use a prediction horizon that is long enough to drive the system to a
region small enough that from it the system can be driven to equilibrium using
some local feedback controller [39].

Some key limitations of the input–output feedback linearization controller
include limited regions of stability, lack of robustness to unmodeled kinematics
and dynamics, and the inability to incorporate higher level formation-control
heuristics. These are all problems that can be solved, or at least moderated,
by using some form of model predictive control, provided some computational
difficulties do not preclude feasible solutions. Using chains of dual-mode model
predictive controllers may show promise for larger formations of mobile robots,
provided certain assumptions can be satisfied.

The previous sections present a framework for formation control. Form-
ation control can be seen as a tool that a higher-level mission planner (see

two real-world cooperative multi-robot systems that require formation control,
inter-robot communication, decision-logic, and optimization are described.
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Figure 11.3b) might use in order to perform a complex task. In Section 11.5,
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11.5 APPLICATIONS

In this section, we present two cooperative multi-robot applications. First,
a team of robots is supposed to transport an object and cooperate through a
dynamic role assignment mechanism. Second, a network of cooperative mobile
sensors is employed to detect and track the perimeter defined by a certain
substance (e.g., chemical spill). We show that both cooperative tasks can be
modeled as hierarchical hybrid systems where robots need to switch between
different behaviors/modes/controllers in order to accomplish the task.

11.5.1 Cooperative Manipulation

ate to carry a large object in an environment containing static and dynamic
obstacles. Cooperative manipulation is a classical example of a tightly coupled
task because it cannot be performed by a single robot working alone and requires
a tight coordination to grasp and transport objects without dropping them.

Here, we describe a paradigm for coordinating multiple robots in the
execution of cooperative manipulation tasks. The basic idea is to assign to
each robot in the team a role that determines its actions during the cooper-
ation. By dynamically assuming and exchanging roles in a synchronized
manner, the robots are able to perform cooperative tasks, adapting to unex-
pected events in the environment and improving their individual performance
in benefit of the team. Basically, each role can be viewed as a behavior or
a reactive controller. However, more generally, roles may define more elab-
orate functions of the robot state and on information about the environment
and other robots including the history of these variables, and may encapsu-
late several behaviors or controllers. It not only dictates what controllers are
used and how the state of a robot changes, but also how information flows
between robots. The reader is referred to Reference 43 for a more detailed
discussion.

A hybrid system framework is used to model dynamic role assignment
between multiple robots in this application. Hybrid systems explicitly capture
the discrete and continuous dynamics in a unified framework, allowing us to
model the interaction of these two types of dynamics.

11.5.1.1 Dynamic role assignment

In general, to execute cooperative tasks a team of robots must be coordin-
ated: they have to synchronize their actions and exchange information. In this
approach, each robot performs a role that determines its actions during the
cooperative task. According to its internal state and information about the other
robots and the task received through communication, a robot can dynamically
change its role, adapting itself to changes and unexpected events in the

© 2006 by Taylor & Francis Group, LLC

In a cooperative manipulation task as depicted in Figure 11.1, robots cooper-
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environment. The mechanism for coordination is completely decentralized.
Each robot has its own controllers and takes its own decisions based on local
and global information. In general, each team member has to explicitly com-
municate with other robots to gather information but they normally need not
construct a complete global state of the system for the cooperative execution.
We consider that each team member has a specification of the possible actions
that should be performed during each phase of the cooperation in order to com-
plete the task. These actions must be specified and synchronized considering
several aspects, such as robot properties, task requirements, and characterist-
ics of the environment. The dynamic role assignment will be responsible for
allocating the correct actions to each robot and synchronizing the cooperative
execution.

Before describing in detail the role assignment mechanism, it is necessary
to define what a role in a cooperative task is. Webster’s Dictionary defines it as
follows:

Definition 11.5.1 (a) Role is a function or part performed especially in a
particular operation or process and (b) role is a socially expected behavior
pattern usually determined by an individual’s status in a particular society.

Here, a role is defined as a function that one or more robots perform during
the execution of a cooperative task. Each robot will be performing a role while
certain internal and external conditions are satisfied, and will assume another
role otherwise. The role will define the behavior of the robot in that moment,
including the set of controllers used by the robot, the information it sends and
receives, and how it will react in the presence of dynamical and unexpected
events.

The role assignment mechanism allows the robots to change their roles
dynamically during the execution of the task, adapting their actions according
to the information they have about the system and the task. Basically, there
are three ways of changing roles during the execution of a cooperative task:
the simplest way is the Allocation, in which a robot assumes a new role after
finishing the execution of another role. In the Reallocation process, a robot
interrupts the performance of one role and starts or continues the performance
of another role. Finally, robots can Exchange their roles. In this case, two
or more robots synchronize themselves and exchange their roles, each one
assuming the role of one of the others.

The role assignment mechanism depends directly on the information the
robots have about the task, the environment, and about their teammates. Part
of this information, mainly the information concerning the task, is obtained
a priori, before the start of the execution. The control software for each robot
includes programs for each role it can assume. However, the definition of the
task includes an a priori specification of the roles it can assume during the
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execution of the task and the conditions under which the role is reassigned or
exchanged. The rest of the information used by the robots is obtained dynam-
ically during the task execution and is composed by local and global parts. The
local information consists of the robot’s internal state and its perception about
the environment. Global information contains data about the other robots and
their view of the system and is normally received through explicit communic-
ation (message passing). A key issue is to determine the amount of global and
local information necessary for the role assignment. This depends on the type of
task being performed. Tightly coupled tasks require a higher level of coordina-
tion and consequently a greater amount of information exchange. On the other
hand, robots executing loosely coupled tasks normally do not need much global
information because they can act more independently from each other.

This approach allows for two types of explicit communication. In synchron-
ous communication, the messages are sent and received at a constant rate, while
in asynchronous communication an interruption is generated when a message is
received. Asynchronous communication is used to broadcast unexpected events
such as the presence of obstacles.

It is important to define when a robot should change its role. In the role
allocation process, the robot detects that it has finished its role and assumes
another available role. The possible role transitions are defined a priori and are
modeled using a hybrid automaton as will be explained later. In the reallocation
process, the robots should know when to relinquish the current role and assume
another. A possible way to do that is to use a function that measures the utility
of performing a given role. A robot performing a role r has a utility given byµr .
When a new role r′ is available, the robot computes the utility of executing the
new role µr′ . If the difference between the utilities is greater than a threshold
τ (µr′ − µr > τ ) the robot changes its role. The function µ can be computed
based on local and global information and may be different for distinct robots,
tasks, and roles. Also, the value τ must be chosen such that the possible overhead
of changing roles will be compensated by a substantial gain on the utility and
consequently a better overall performance. It is also possible for two robots
to exchange their roles. In this case, one robot assumes the role of the other.
For this, the robots must agree to exchange roles and should synchronize the
process, which is done using communication.

11.5.1.2 Modeling

The dynamic role assignment can be described and modeled in a more formal
framework. In general, a cooperative multi-robot system can be described by
its state (X), which is a concatenation of the states of the individual robots:

X = [x1, x2, . . . , xN ]T (11.22)
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Considering a simple control system, the state of each robot varies as a function
of its continuous state (xi) and the input vector (ui). Also, each robot may receive
information about the rest of the system (ẑi) that can be used in the controller.
This information consists of estimates of the state of the other robots that are
received mainly through communication. We use the hat (ˆ) notation to emphas-
ize that this information is an estimate because the communication can suffer
delays, failures, etc. Using the role assignment mechanism, in each moment
each robot will be controlled by a different continuous equation according to
its current role in the task. Therefore, we use the subscript q, q = 1, . . . , S,
to indicate the current role of the robot. Following this description, the state
equation of each robot i, i = 1, . . . , N , during the execution of the task can be
defined as:

ẋi = fi,q(xi, ui, ẑi) (11.23)

Since each robot is associated with a control policy,

ui = gi,q(xi, ẑi) (11.24)

and since ẑi is a function of the state X, we can rewrite the state equation:

ẋi = fi,q(X) (11.25)

or, for the whole team,

Ẋ = F�(X), where F� = [ f1,q1 , . . . , fN ,qN ]T, qi ∈ {1, . . . , S} (11.26)

The equations shown above model the continuous behavior of each robot
and consequently the continuous behavior of the team during the execution of
a cooperative task. These equations, together with the roles, role assignments,
variables, communication, and synchronization can be better understood and
formally modeled using a hybrid automaton.

A hybrid automaton is a finite automaton augmented with a finite number
of real-valued variables that change continuously, as specified by differential
equations and inequalities, or discretely, according to specific assignments.
It is used to describe hybrid systems, that is, systems that are composed by
discrete and continuous states. A hybrid automaton H can be defined as: H =
{Q, V , E, f , Inv, G, Init, R}. Q = {1, 2, . . . , S} is the set of discrete states, also
called control modes. The set V represents the variables of the system and
can be composed by discrete (Vd) and continuous (Vc) variables: V = Vd ∪ Vc.
Each variable v ∈ V has a value that is given by a function ν(v). This is
called valuation of the variables. Thus, the state of the system is given by a
pair (q, ν), composed by the discrete state q ∈ Q and the valuation of the
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variables. The dynamics of the continuous variables are determined by the
flows f , generally described as differential equations inside each control mode
( fq). Discrete transitions between pairs of control modes (p, q) are specified by
the control switches E (also called edges). Invariants (Inv) and guards (G) are
predicates related to the control modes and control switches respectively. The
system can stay in a certain control mode while its invariant is satisfied, and can
take a control switch when its guard (jump condition) is satisfied. The initial
states of the system are given by Init, and each control switch can also have
a reset statement R associated, to change the value of some variable during a
discrete transition.

In this model, each role is a control mode of the hybrid automaton. Internal
states and sensory information within each mode can be specified by continuous
and discrete variables of the automaton. The variables are updated according
to the equations inside each control mode (flows) and reset statements of each
discrete transition. The role assignment is represented by discrete transitions and
the invariants and guards define when each robot will assume a new role. Finally,
we can model the cooperative task execution using a parallel composition of
several automata as described in Reference 44.

Communication (e.g., message passing) among robots can also be modeled
in this framework. To model this message passing in a hybrid automaton,
we consider that there are communication channels between agents and use the
basic operations send and receive to manipulate messages. In the hybrid auto-
maton, messages are sent and received in discrete transitions. These actions
are modeled in the same way as assignments of values to variables (reset state-
ments). It is very common to use a self-transition, that is, a transition that
does not change the discrete state, to receive and send messages.

The execution of the cooperative manipulation uses a leader–follower archi-
tecture [45]. One robot is identified as a leader, while the others are designated
as followers. The assigned leader has a planner and broadcasts its estimated
position and velocity to all the followers using asynchronous messages. Each
follower has its own trajectory controller that acts in order to cooperate with the
leader. The planner and the trajectory controllers send set points to the low level
controllers that are responsible for the actuators. All robots have a coordination
module that controls the cooperative execution of the task. This module receives
information from the sensors and exchanges synchronous messages with the
other robots. It is responsible for the role assignment and for other decisions
that directly affect the planners and trajectory controllers.

In this cooperative manipulation task, the robots can be executing one of
the following roles: Dock, where they must coordinate themselves to approach
and pick up the box; and Transport, where they march in a coordinated fashion.
The Transport role is obtained by composing the roles Lead and Follow using
sequential composition. Thus, a robot transporting a box will be performing
either a leader or a follower role. The control modes of the robots’ automata
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Main

Read discrete bool start;

EndDock==True
Dock Transport

End transport==True

(a)

(b)
Transport

Read discrete bool role;

Pass/Resign==True

Lead FollowRequest/Get==True

FIGURE 11.8 Robot’s roles in the execution of a cooperative manipulation task.

are shown in Figure 11.8. The role assignment is used here mainly to exchange
the leadership responsibilities among the robots: at any moment during trans-
portation, the robot performing the leading role can become a follower, and
any follower can take over the leadership of the team. One reason for pos-
sibly exchanging leadership is when one of the followers is better suited to be
the leader during the execution of the task. For example, when the leader’s
sensors are occluded or the follower is better positioned to avoid an obstacle.
The role assignment is also used for synchronizing actions, in such a way that
the robots are able to go from the dock role to the transport role in a coordinated
manner.

Different controllers and planners are used by each robot depending on its
role in the task. In the Dock mode, robots use a proportional feedback controller
based on the distance to the object to move in order to grasp the object. In the
Transport mode, the robots have different behaviors when leading or following.
In the Lead mode, they are controlled by planners that send set-points to the
actuators. In the following mode, the controllers are designed to enable the
robots to follow a trajectory that is compatible with the leader’s in order to
follow and cooperate with the leader [45,46].
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As mentioned, the main purpose of the leadership exchange mechanism
used here is to allow the robots to react and adapt easily to unexpected events
such as obstacle detection and sensor failures. It is also important to assign
the leadership to the appropriate robot in such a way that, in each phase of
the cooperation, the robot that is best suited in terms of sensory power and
manipulation capabilities will be leading the group. A method for executing
the leadership exchange under the role assignment paradigm is as follows. One
of the follower robots sends a message requesting the leadership. This normally
happens when one of the robots is not able to follow the leader’s plan or knows
a better way to lead the group in that moment or both. For example, if one of the
followers detects an obstacle, it can request the leadership, avoid the obstacle,
and then return the leadership to the previous leader.

The above approach is illustrated in simulation using four holonomic robots
that cooperate in order to carry an object from an initial position to the goal.
In this experiment, one of the robots requests the leadership when it senses

shows snapshots of the simulator during the task execution.
Snapshot (a) in Figure 11.9 shows the robots performing the Dock role. The

robots are represented by circles and the object to be carried is the square in
the middle of them. Each robot has a sensing area represented by a dashed circle
around it. The other rectangles on the environment are obstacles and the goal
is marked with a small x on the right of the figure. When they finish docking,
they are allocated to the Transport role and there is a leadership exchange to
avoid the obstacle in the top (snapshot [b]). As it can be seen the robots are
able to transport the object to the goal position (snapshot [c]) while avoiding
collisions.

11.5.2 Multi-Robot Perimeter Detection and Tracking

Many applications of multi-robot cooperation have been studied including area
coverage, search and rescue, manipulation, exploration and mapping, and
perimeter detection [47–49]. A perimeter is an area enclosing some type of
substance. We consider two types of perimeters (1) static and (2) dynamic.
A static perimeter (e.g., a minefield) does not change over time. On the
other hand, dynamic perimeters (e.g., a radiation leak) are time-varying and
expand/contract over time. Perimeter detection has a wide range of uses in
several areas, including (1) Military (e.g., locating minefields or surrounding
a target), (2) Nuclear/Chemical industries (e.g., tracking radiation/chemical
spills), (3) Oceans (e.g., tracking oil spills), and (4) Space (e.g., planetary
exploration). In many cases, humans are used to perform these dull and/or
dangerous tasks, but if robotic swarms could replace humans, it could be
beneficial.
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(a)

(b)

(c)

FIGURE 11.9 Cooperative manipulation with four holonomic robots.
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(a)

(c)

(b)

FIGURE 11.10 (a) Example perimeter: oil spill, (b) simulation environment, and
(c) experimental testbed.

In perimeter detection tasks, a robotic swarm locates and surrounds a
substance, while dynamically reconfiguring as additional robots locate the
perimeter. Obviously, the robots must be equipped with sensors capable of
detecting whatever substance they are trying to track. Substances could be air-
borne, ground-based, or underwater. If the perimeter moves with a velocity
greater than that of the robots, then the perimeter cannot be tracked. Abrupt
perimeter changes requiring sharp turns may be difficult to track because of the
robots’ limited turning radius. See Figure 11.10a for an example of a perimeter,
an oil spill.2

In this section, a decentralized, cooperative hybrid system is presented util-
izing biologically inspired emergent behavior [50]. Each controller is composed
of finite state machines and it is assumed that the robots have a suite of sensors
and can communicate only within a certain range. A relay communication
scheme is used. Once a robot locates the perimeter, it broadcasts the location to
any robots within range. As each robot receives the perimeter location, it also
begins broadcasting, in effect, forming a relay. Other groups have used the terms
perimeter and boundary interchangeably, but in this chapter, there is a distinct
difference. The perimeter is the chemical substance being tracked, while the
boundary is the limit of the exploration area.

2 Courtesy of the NOAA Office of Response and Restoration.
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11.5.2.1 Cooperative hybrid controller

In one of our previous work reported in Reference 9, we developed an object-
oriented software architecture that supports hierarchical composition of robot
agents and behaviors or modes. Key features of the software architecture are
summarized below:

• Architectural hierarchy. The building block for describing the
system architecture is an agent that communicates with its environ-
ment via shared variables and also communication channels. In this
application, the team of mobile sensors defines the group agent. The
group agent receives information about the area, that is, boundary
where the perimeter is located.

• Behavioral hierarchy. The building block for describing a flow of
control inside an agent is a mode. A mode is basically a hierarchical
state machine, that is, a mode can have submodes and transitions
connecting them. Modes can be connected to each other through
entry and exit points. We allow the instantiation of modes so that the
same mode definition can be reused in multiple contexts.

• Discrete and continuous variable updates. Discrete updates are spe-
cified by guards labeling transitions connecting the modes. Such
updates correspond to mode-switching, and are allowed to modify
variables through assignment statements.

The cooperative hybrid systems is modeled by (11.25) and (11.26) as in
the manipulation task. Furthermore, the overall finite automaton consists of
three states (1) Random Coverage Controller (RCC), (2) Potential Field Con-
troller (PFC), and (3) Tracking Controller (TC). These three controllers are
composed such that the sensor/robot network is able to locate and track a peri-

system described herein.
In Section 11.5.2.2, details of the controller agents are presented.

11.5.2.2 Random coverage controller

The goal of the RCC is to efficiently cover as large an area as possible while
searching for the perimeter and avoiding collisions. The robots move fast in this
state to quickly locate the perimeter. The RCC consists of three states (1) spiral
search, (2) boundary avoidance, and (3) collision avoidance. The spiral search
is a random search for effectively covering the area. The boundary and collisions
are avoided by adjusting the angular velocity.

The logarithmic spiral, seen in many instances in nature, is used for the
search pattern. In Reference 51, a spiral search pattern such as that used by
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Controllers

Read discrete bool Detected Point, Perimeter detected;

Perimeter detected==false
Detected Point==true

Tracking (TC) Perimeter detected==true

Random
coverage

(RCC)

Potential
field (PFC)

Detected Point==true

Perimeter detected==true

Perimeter detected==false

(a)

(b)
Random coverage controller

Read discrete bool Boundary detected, Robot detected;

Robot detected==true

Boundary
avoidance Boundary detected==true

Spiral
searching

Collision
avoidance

Robot detected==true

Boundary detected==true

Boundary detected==false

Robot detected==false

FIGURE 11.11 Hierarchical finite automata for perimeter detection and tracking.
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(c)

(d)

Potential field controller

Read discrete bool Robot detected;

Robot detected==true

Robot detected==false
Attractive
potential

Collision
avoidance

Tracking controller

Read discrete bool Robot detected;

Robot detected==true

Robot detected==falseTracking Collision
avoidance

FIGURE 11.11 Continued.

moths is utilized for searching an area. It has been shown that the spiral search
is not optimal, but effective [52]. Some examples are hawks approaching prey,
insects moving toward a light source, sea shells, spider webs, and so forth.

vi = vs(1 − e−t) (11.27)

ωi = aebθi (11.28)

where vs is a positive constant, a is a constant, and b > 0. If a > 0 (<0), then
the robots move counterclockwise (clockwise). Collision and boundary (limit
of the exploration area here) avoidance are handled in simulation by sharply
turning, while in experiments, the robots back up and turn, then go forward.
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11.5.2.3 Potential field controller

Potential fields have been used by a number of groups for controlling a
swarm [47,49,53]. In Reference 53, a method using artificial potentials and
virtual bodies is shown in which the robot network forms regular polygons
upon uniformly surrounding a target. In Reference 49, virtual potential fields
and graph theory are used for area coverage.

The PFC uses an attractive potential which allows the robots to quickly
move to the perimeter once it has been detected. The first robot to detect the
perimeter broadcasts its location to the other robots. If a robot is within range,
then the PFC is used to quickly move to the perimeter. Otherwise, the robot will
continue to use the RCC unless it comes within range, at which point it will
switch to the PFC. As a robot moves towards the goal, if it detects the perimeter
before it reaches the goal, it will switch to the TC.

The PFC has two states (1) attractive potential and (2) collision avoidance.
The attractive potential, Pa(xi, yi), is:

Pa(xi, yi) = 1
2ε[(xi − xg)

2 + (yi − yg)
2] (11.29)

where (xi, yi) is the position of robot i, ε is a positive constant, and (xg, yg)

is the position of the attractive point (goal). The attractive force, Fa(xi, yi), is
derived below:

Fa(xi, yi) = −∇Pa(xi, yi) = −



∂Pa

∂xi

∂Pa

∂yi




Fa(xi, yi) = ε

[
xg − xi

yg − yi

]
=
[

Fa,xi

Fa,yi

]
(11.30)

Equation (11.30) is used to get the desired orientation angle, θi,d , of robot i:

θi,d = arctan 2(Fa,yi , Fa,xi) (11.31)

Depending on θi and θi,d , the robot will turn the optimal direction to quickly line
up with the goal using the following proportional angular velocity controller:

ωi = ±k (θi,d − θi) (11.32)

where k = ωmax/2π and ωmax = 0.3 rad/sec and θi is the orientation angle of
robot i. Collisions are avoided in the same manner as in the RCC.
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11.5.2.4 Tracking controller

The TC changes ω and v in order to track the perimeter and avoid collisions,
respectively. Cyclic behavior emerges as multiple robots track the perimeter.
The robots’ goal in this state is to accurately track the perimeter counterclock-
wise. The TC consists of two states (1) tracking, and (2) collision avoidance.
Tracking is accomplished by adjusting the robots’ angular velocity. On the
other hand, collisions are avoided by changing the linear velocity.

A vision sensor (blobfinder algorithm) is being used to detect the peri-
meter. Smooth tracking is accomplished with the following proportional angular
velocity controller:

ωi = kP (γo − γi) (11.33)

where kP > 0, and γo and γi are the areas outside and inside the perimeter seen
by the blobfinder, respectively. Counterclockwise tracking is assumed, which
implies that the robot will turn left (right) if the robot is too far outside (inside)
the perimeter.

and b for trajectory and state transitions plots, respectively. Collision avoid-
ance is accomplished through the use of IR sensors while position/orientation
information comes from the encoders. Notice in Figure 11.12a that the peri-

and allows the user to estimate the location of the substance.

11.6 CONCLUSIONS

Recent advances in communication, computation, and embedded technolo-
gies are enabling a growing interest in developing cooperative multi-robot
systems. In the near future, small, affordable mobile robots equipped with
embedded sensors and processors will be able to cooperatively execute tasks
within unknown, dynamic environments with limited human intervention.

In this chapter, we have presented a set of tools and methodologies that
are suitable for the analysis and design of multi-robot systems engaged in
cooperative tasks that require coordinated operation and execution, formation
of spatial patterns, mobility, and distributed sensing, computation, and actu-
ation. Specifically, these tools include graph theory, distributed optimization,
formation control, and hierarchical hybrid systems.

Additionally, two real-world cooperative examples are given (i) A role
assignment paradigm for coordinating multiple robots in the execution of
manipulation tasks, and (ii) a cooperative mobile sensor network for perimeter

© 2006 by Taylor & Francis Group, LLC

An experiment is shown in Figure 11.10c in which three robots search for,
locate, and track a perimeter while avoiding collisions. Refer to Figure 11.12a

meter is not exactly like the perimeter in Figure 11.10c, but it is fairly accurate
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FIGURE 11.12 (a) Three robots defining a perimeter and (b) discrete statetransition plot.

detection and tracking. We show that both systems can be modeled as
hierarchical hybrid systems.

We anticipate that, given the increasing interest in applications of
multi-robot systems, we will witness significant developments in this field.
Advances in distributed and hierarchical optimization-based algorithms, highly
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reconfigurable hardware for example, FPGA’s, communication protocols,
multi-robot learning, and mobile sensor networks will positively impact the
development of cooperative robotic systems.

An important topic to be addressed is the definition of suitable perform-
ance metrics to evaluate the efficiency and performance of mechanisms of
cooperation. Optimization-based approaches hold the promise to provide effi-
cient solutions to some cooperative robotic system problems. Although, some
progress has been made in constrained robust optimal control, the design
of computationally efficient online optimization algorithms for multi-robot
systems remains a challenging task.
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IV
Decision Making and
Autonomy

At one of the highest rungs of the cognitive ladder of autonomous robots is the
ability to manipulate, organize, and reason about available information, and
from there, make relevant operational plans that conform to the abstract object-
ives of complex missions demanded of the robots. This sets the present portion

where the type of planning involved is usually more explicit and of a more
immediate nature (for instance, motion planning involves deliberation over the
immediate actions of the robots and is less involved with strategizing about
long-term mission goals and objectives).

Central to the cognitive capabilities of robots, is their ability to manipulate
information (known a priori or gained during runtime) into forms amenable
to analysis and reasoning (by the robots themselves). Knowledge representa-

of this section. The chapter aims to provide readers with a broad overview
of the various techniques and paradigms in knowledge representation and
decision making, as well as the inter-relationships between the representa-
tion and decision-making systems. It begins with an introduction to the more
commonly used knowledge representation approaches, with increasing levels of
abstraction, in mobile robotics — namely, the spatial, topological and symbolic,
andontological approaches. These different forms of representation techniques
facilitate understanding, reasoning, and knowledge creation by the robots, on
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tion and decision making is discussed in detail in Chapter 12, the first chapter

of the book apart from the subject matter of the previous portion (Part III),
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different levels. With the many forms of knowledge representation, each with
its own advantages, researchers have also investigated the use of multiple rep-
resentations within systems, in order to facilitate planning within each level.
Given the knowledge it possesses, an intelligent robotic system must utilize
the knowledge efficiently for deciding its actions. Decision-making mechan-
isms are tightly coupled to knowledge representations, and the second part
of the chapter describes the commonly used techniques of computation-based
closed loop control, cost-based search strategies, finite state machines (FSM),
and rule-based systems. The chapter concludes with a detailed case study of
the knowledge representation and decision-making aspects within the 4D/RCS
architecture.

Despite the efficiency within knowledge representation systems, there is
still the presence of uncertainties within the real world that cannot be modeled
adequately and accounted in its entirety within representations. As such, any
abstract planning algorithm has to be able to cope robustly with any inaccuracies
of available knowledge to ensure good performance of the autonomous robots
within a real environment. The second chapter of this part therefore deals with
the planning capabilities of robots in the presence of uncertainties, in particular
prediction and sensing uncertainties. Prediction uncertainties occur when the
robot is unable to have an accurate prediction of the future effects of actions,
while sensing uncertainty deals with inaccuracies in the current knowledge
base (due perhaps to sensing imperfections). This chapter deals with planning
under uncertainties by explicitly accounting for and modeling uncertainties as
a “game against nature.” The chapter first discusses planning under only pre-
diction uncertainty with a discussion of both optimal (through value iteration
and policy iteration) and approximate solution methods. Techniques for plan-
ning (with methods designed in discrete spaces) in continuous spaces are also
examined. When sensing imperfections exist, the information space is intro-
duced for use in planning, in place of the usual state space. In order to reduce
the complexity of information space representations, the chapter introduces the
mapping (collapse) of the information into a smaller, collapsed, information
space for easier manipulation.

The presence of multiple interacting robots greatly complicates decision
making, and this leads to the need for effective coordination amongst robots.
Efficient coordination mechanisms can potentially bring about greater team
autonomy. Several coordination mechanisms exist, and one of the most pop-
ular framework, is that of behavior-based control, which is presented in

form of coordination is to be possible. Thus, the chapter examines the use of
different interaction mechanisms (through the environment, through sensing,
and through communications) for coordination and illustrates the effectiveness
through an analysis of various case studies. The chapter also describes the
microscopic and macroscopic models of multi-robot systems, and investigates

© 2006 by Taylor & Francis Group, LLC
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studies will greatly benefit the design of effective multi-robot systems that are
both efficient and autonomous.

This part of the book covers the abstract mechanisms behind knowledge
representation, decision making and planning, and coordination between intel-
ligent mobile robots. These mechanisms form the last general module, which,
through a cohesive integration with the other modules discussed in the earlier
parts of the book, make up an intelligent and autonomous robotic system.

© 2006 by Taylor & Francis Group, LLC

the ways in which multi-robot systems may be systematically synthesized. Such
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12.1 INTRODUCTION

Knowledge is central to a mobile robot’s ability to carry out its missions and
adapt to changes in the environment. The knowledge subsystem must support
acquisition of information from external sources, maintain prior knowledge,
infer new knowledge from the knowledge that has been captured, and provide
appropriate input to the planning subsystem. In order to carry out these respons-
ibilities, there are different categories of knowledge required, such as task (also
known as functional or procedural), and declarative, which includes spatial
(or metrical). Representation schemes for the various types of knowledge must
be chosen so as to provide the best performance and reliability. Many design
decisions must be made, taking into account the real-time requirements of the
robot control system, the resolution of the sensors, as well as the onboard
processing and memory.

Decision making must be tightly coupled with knowledge representation
because the decisions must be based on the knowledge available to the robot.
Roboticists have drawn from fields as varied as symbolic artificial intelligence,
operations research, and control theory as well as creating many ad hoc methods
such as behavior-fusion.

In this chapter, we introduce several commonly used approaches to both
knowledge representation and decision making in mobile robot systems. We
discuss the inter-relationship between the representation format and content and
the decision-making systems. The chapter delves more deeply into systems that
accommodate multiple representation types and decision algorithms. Design
considerations are presented to provide the reader a brief introduction to the
many complexities of selecting knowledge representation types and decision-
making approaches. The chapter concludes with a high-level implementation
example.

12.2 INTRODUCTION AND A BRIEF SURVEY OF REPRESENTATION

APPROACHES

12.2.1 Grounding Representation

Mobile robots have especially challenging knowledge requirements in order to
negotiate within and interact with uncertain and dynamic environments. The
internal representation of the world has many implications for the effectiveness,
reliability, efficiency, validity, and robustness of the mobile robot. The symbol
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grounding problem is one perspective of this challenge and it is defined in Ref-
erence 1 as “the problem of how to causally connect an artificial agent with its
environment such that the agent’s behaviour, as well as the mechanisms, rep-
resentations, etc. underlying it, can be intrinsic and meaningful to itself, rather
than dependent on an external designer or observer.” There are two principal
approaches as described by Ziemke, each with a focus on a different aspect of
the robot’s interaction with the world. Cognitivism takes a computational view
and divides the world into input systems (i.e., sensing) and central systems
(where the problem-solving takes place). A predefined fixed representation
resides in the central system and is populated by the input systems. Therefore
cognitivism emphasizes the sensing interaction. Contrast this with the enac-
tion paradigm, which emphasizes the actuation by the robot. In the enaction
view, cognition is considered the outcome of the interaction between the robot
and its environment. “Consequently, cognition is no longer seen as problem
solving on the basis of representations; instead, cognition in its most encom-
passing sense consists in the enactment or bringing forth of a world by a viable
history of structural coupling” [2]. A common interpretation of the enactive
paradigm is that no explicit world model is required — rather that the combin-
ation of the robot and the world itself are adequate, for they capture the “real
thing” [3].

But knowledge representation need not hew to one extreme or the other. Put-
ting aside the more philosophical considerations of knowledge representation
and focusing on requirements for enabling a mobile robot to perform its mis-
sion, we now look at the classes of knowledge and the different representation
paradigms.

12.2.2 Representation Approaches

This section describes the most common single-representation approaches used
for mobile robots, but is not meant to be exhaustive. Note that this chapter does
not address the issues of simultaneous localization and map building, which
are covered elsewhere in the book.

12.2.2.1 Spatial representations

A large number of the mobile robot systems implemented have relied on spatial
representations. Decomposing the space that the robot has to travel within into
uniform or nonuniform regions (a geometric space) is one approach. Two com-
monly used geometric spaces are world space and configuration space (Cspace).
World space is defined as the physical space that the robot, obstacles, and goals
exist in Reference 4. A particular location in world space can typically be
represented by two to four parameters, where planar worlds with static envir-
onments require two parameters (x and y location) and 3D worlds with dynamic

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c012” — 2006/3/31 — 16:43 — page 468 — #8

468 Autonomous Mobile Robots

environments require four (x, y, z, and time). An example of a robot arm with

may be defined as the independent set of parameters that completely specify
the location of every point (or the pose) of the object [4]. The set of all possible
configurations is known as the configuration space, and represents all of the
possible poses of an object. The number of parameters necessary to specify
the Cspace (or the dimensionality of the space) is also known as the degrees
of freedom of the object. For a point object, the Cspace and world space are
identical. The Cspace representation of the robot arm from Figure 12.1a may
be seen in Figure 12.1b. World space has the advantage of having objects in
the world directly integrated into the space as opposed to having to compute
potential object configuration interactions in Cspace. However, for nonholo-
nomic robots, any path found in the Cspace is guaranteed to be collision free
and realizable whereas a path found in world space may cause collisions with
parts of the robot [5]. Identical spatial structures may be used to represent both
spaces. For simplicity, the examples in this section will concentrate on world
space representations.

Grid-based structures [6,7] are a convenient means of capturing input from
the robot’s sensors, especially if multiple readings from one or more sensors are
to be fused. They have the advantage of being easy to implement and maintain,
due to their uniform, array-like structure. A probability or certainty measure
can be assigned to each grid cell indicating the degree of confidence that the cell
is really occupied as opposed to purely open space, resulting in each location
being marked as probably occupied, probably empty, and unknown. This type

an example of a grid representation.
Furthermore, it is fairly straightforward to implement path planning and

obstacle avoidance algorithms that use a regular structure, which can be readily
translated into a graph that is searched (for instance using a Dijkstra [9] or
A* [10]) to find the lowest-cost path — typically based on shortest distance.
A node is placed at the center of each grid location and it can be connected
to adjacent cells via arcs that are assigned costs. The costs may be based on
distance traveled between cells and usually reflect a penalty if the motion would
take the robot into an occupied area. In the most simplistic approach, each cell
can be connected to its nearest four or eight neighbors (see Figure 12.2b). More
efficient approaches build the graph connecting only empty cells or by using
other techniques such as visibility graphs [11] or Voronoi borders [12]. The
grid itself can be represented more compactly by using adaptive tesselation
approaches. These include quadtrees which are efficient if the environment is
not uniformly cluttered or when additional spatial information such as depth
must be captured. References 13 and 14 describes the use of quadtrees as a
two-and-a-half-dimensional (2.5D) approach to capturing the geometry of a
lake bed for underwater autonomous vehicles. Multi-resolutional approaches,

© 2006 by Taylor & Francis Group, LLC
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of representation is also referred to as an evidence grid [8]. Figure 12.2a shows
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FIGURE 12.1 Representation of a robot arm and obstacles in both world and configur-
ation space. (a) The 2D world space contains a two-jointed robot arm (represented by
the “+” signs) and obstacles (represented by filled boxes). (b) The world space is also
2D with the axis representing the joint angles of the robot arm. The clear regions in this
figure represent joint angle combinations that are collision free.

such as in Reference 15 also improve efficiency by giving the cells closer to the
robot higher resolution than those further away.

Approaches that tessellate space may need to represent more than two
(or two and a half) dimensions. For instance, in cases where a 2D spatial
representation is inadequate, the evidence grid approach has been extended
to 3D [16]. In many applications, it is insufficient to have the robot plan
a path that only avoids obstacles. Additional constraints, such as nonplanar
terrain and the robot’s own kinematics and dynamics often need to be taken
into consideration. Considering velocity and acceleration while generating the

© 2006 by Taylor & Francis Group, LLC
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FIGURE 12.2 Robot in a room with a table. The ground truth, indicating where the
walls, robot, and table are located, is shown by solid lines. (a) Evidence grid showing
grid cells where sensor has detected an obstacle. The robot’s location is indicated by R’s.
The higher the number in a cell, the higher the “confidence” that there is an object in
that space. Note the spurious detections in some cells, which often happens due to noisy
sensors and inaccurate localization. (b) Nodes, indicated by shaded circles are placed at
traversable locations in the grid space and are connected potentially to up to 8 neighbors
(8-connected). Nodes are placed everywhere except where there is an obstacle detected
or directly (4-connected) adjacent to a cell marked as an obstacle. The darker nodes
are the first level of accessible nodes from the robot’s current location. Only the arcs
connecting these nodes to the next layer of potential locations are shown.
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robot’s path significantly increases the state space for planning, so it tends
to be done in two stages. Generally, the path planning process produces a
coarse set of waypoints, which are then smoothed by another process that takes
into account the robot’s dynamic constraints. However, for systems with com-
plex dynamics (e.g., legged robots, two-wheeled vehicles [17], soccer playing
robots, or hovercraft [18]), it may be inadequate to ignore dynamics dur-
ing the obstacle-avoidance planning process, therefore explicitly modeling the
systems’ dynamics may be necessary to guarantee collision-free trajectories.

Some researchers have successfully demonstrated mobile robot systems
that use only the sensor image (“windshield view”), also known as the iconic
representation, to plan within. From Reference 19: “According to the model
being proposed here, our ability to discriminate inputs depends on our forming
‘iconic representations’ of them . . . These are internal analog transforms of
the projections of distal objects on our sensory surfaces.” This may be 2D
spatially, as is the case for Charged Coupled Device (CCD) cameras, or 3D,
in the case of range sensors, such as Laser Radars (LADARs). Some mobile
robots successfully accomplish their goals by planning based on purely the
sensor image view. This is particularly true for road-following systems, such as
those by Dickmanns [20] and Jochem [21], where road edges are extracted by
sensor processing algorithms and used to plan the vehicle’s steering command
in the image frame.

Grid-based and other spatial representations vary in choice of coordinate
systems and in the relationship to the robot itself. Some implementations use
polar coordinates because the sensor data is returned in the form of distance (to
object) and angle, reducing the number of calculations in constructing the map
and in planning motion. The robot is always at the origin of the coordinate
system in this case. However, it is more difficult to maintain a global map
as the robot traverses the environment. The majority of implementations use
a Cartesian coordinate system. In some approaches, the map is centered on
the robot’s current location and oriented with respect to the robot. Sensor
information is easily placed within the map, but the entire map must be trans-
formed when the robot changes location or orientation (assuming that previous
information is kept). Some systems maintain the maps in an absolute global
reference frame (for e.g., based on magnetic north). This facilitates localiza-
tion with respect to global positioning systems, registration with a priori maps,
and landmark-based navigation, but requires the transformation from the local
sensor frames to the global one.

Other spatial representations are based on the geometric boundaries within
the environment [22], such as planar surfaces [23]. These representations
may augment the iconic or grid-based ones and often provide efficiencies by
providing more compact descriptions of an environment, especially for indoor
applications or highly structured environments. Describing a wall as a plane or
a line is more efficient storagewise vs. a set of grid cells. However, additional
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FIGURE 12.3 Topological map capturing significant features in environment. The map
is a simple representation of the same room shown in the example in Figure 12.

computations by grouping algorithms that process adjacent occupied cells or
convert individual pixels into higher-level geometric entities are required to
achieve this reduction in memory or disk requirements.

12.2.2.2 Topological representations

Some systems represent the world via topological information (e.g., [24–27]).
This enables them to reduce the amount of data stored and relate individual local
maps together into a more global one. Topological maps provide qualitative
information, noting significant entities in the environment, such as landmarks,
and the connectivities and adjacencies amongst them but do not provide exact
coordinates or relative distances. Typically, topological information is imple-
mented via graph structures, where the features are the nodes. The resulting
maps are much more sparse and provide computational advantages in planning.
They can also provide more natural interfaces for humans by referring to places
by name, rather than coordinates. Figure 12.3 conceptually shows a topological

12.2.2.3 Symbolic representations

Symbolic representations provide ways of expressing knowledge and relation-
ships, and of manipulating knowledge, including the ability to address objects
by property. Much early work in robotics was carried out in the context of arti-
ficial intelligence (AI) research using symbolic representations [29–31]. This
had the result of uncoupling robotics from the geometry and dynamics of the
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comparison of the grid-based and topological paradigms, see Reference 28.
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real world, and focusing on purely symbolic approaches to perception, plan-
ning, and reasoning [32]. Probably the best-known symbolic representation
developed in classical AI is frame-based [33]. A frame defines a stereotypical
situation, which is instantiated when appropriate. There are slots to be filled out
for the particular instantiation, and actions to be carried out when conditions
defined by the frame are met. For example, there would be a series of frames
related to a building, essentially defining what the robot may be expected to
encounter as it travels inside the building. A frame for a room may have con-
cepts for “floor,” “ceiling,” “right wall,” “left wall,” “far wall,” and so on. The
robot would try to find entities using its vision system to fill in the slots for these
concepts. One of the difficulties is that the robot has to be able to realize when
a particular scene does not match any of the existing stereotypical situations
defined within its frame system.

After struggling for the better part of two decades, the AI community turned
away from robotics and focused on expert systems, knowledge representations,
and problem solving in the symbolic domain. Little of this early work ever
found practical application in mobile robots, although work which couples
higher-level planners or agents to real systems has found new advocates, for
example, in space applications [34,35].

Tying symbolic knowledge back into the spatial representation provides
symbol grounding, thereby solving the previously noted problem inherent to
purely symbolic knowledge representations, It also provides the valuable ability
to identify objects from partial observations and then extrapolate facts or future
behaviors from the symbolic knowledge.

A common type of symbolic representation for representing rules is onto-
logical. Ontologies are definitions and organizations of classes of facts and
formal rules for accessing and manipulating (and possibly extending) those
facts. There are two main approaches to creating ontologies, one emphasiz-
ing the organizational framework, with data entered into that framework, and
the other emphasizing large-scale data creation with relationships defined as
needed to relate and use that data. Cyc [36] is an example of the latter, an effort
to create a system capable of common sense, natural language understanding,
and machine learning.

Ontologies provide mechanisms for reasoning over information. This
includes being able to infer information that may not be explicitly represen-
ted, as well as the ability to pose questions to the knowledge base and receive
answers in return. One way of enabling this functionality is to represent the sym-
bolic information in the world model in a logic-based, computer-interpretable
format, such as in the Knowledge Interface Format (KIF) representation [37]
or description logics such as OWL (Web Ontology Language) [38]. Tools are
starting to be developed to make this information entry process easier, primarily
by hiding the intricacies of the syntax of the underlying language. Protégé is
an example of such a tool [39,40].
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12.2.2.4 No representation

Some have argued that representations such as those described earlier are too
expensive to maintain and not valid due to the uncertainty inherent in trying to
model the world [41]. This mindset paved the way for the robot architecture
known as subsumption or behavior-based [42]. Brooks argues that “When we
examine very simple level intelligence we find that explicit representations and
models of the world simply get in the way. In turns out to be better to use the
world as its own model” [43].

12.2.3 Multi-Representational Systems

Perhaps because of the overall complexity and difficulty of implementing a
mobile robot, most implementations have relied entirely on a single represent-
ation approach as discussed in the preceding sections. There are researchers
who have chosen to expand the types of knowledge representations within their
robotic systems to incorporate more than one type. For instance, the Spatial
Semantic Hierarchy (SSH) is comprised of several distinct but interacting rep-
resentations, each with its own ontology [44]. The SSH is based on properties
of the human cognitive map and incorporates both quantitative and qualitat-
ive representations organized within a hierarchy. Large-scale space, which is
defined as space whose structure is at a much larger scale than the sensory
horizon of the agent, poses additional challenges for constructing maps and
facilitating exploration by robots. As the robot traverses space, it collects sets
of information (maps) in a local frame, which must then be “stitched” together
into a global frame. Qualitative knowledge includes names of objects, control
laws, views, causal schemas, and topological information, such as places, paths,
connectivity, and order. Quantitative knowledge includes sensor values, local
and global 2D geometry, distances and angles/headings. Sensor and control
level information is based on various types of control laws leading to locally
distinctive states. Local geometric maps with their individual frames of refer-
ence are constructed at the control level. Above this is a causal level, which
derives discrete models of action from the control level. A topological level
contains an ontology of places, paths, and regions, which connects the various
local metrical maps into a patchwork, which can be merged into a single global
frame of reference.

The Polybot architecture [45] is designed to enable various modes of reason-
ing based on multiple types of data representations. Polybot is built upon a series
of specialist modules that use any algorithm or data structure in order to perform
inferences or actions. Since specialists may need to share knowledge, which
they  internally  represent in different manners, a common propositional language
for communicating information is part of the Polybot system. Examples of spe-
cialists implemented in Polybot include perception, a reactive motion planner,
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spatial location (using a cognitive map), causation (which uses production
rules), and object identifier (using neural networks).

A third example of a multi-representational architecture for mobile robots
is 4D/RCS (4D Real-Time Control System) [46]. This architecture, with its
hierarchical and heterogeneous world model, has been used in numerous
types of implementations, ranging from underwater robots to autonomous
scout vehicles. Several U.S. Department of Defense programs have selected
4D/RCS. These include the Army Research Laboratory’s Demo III eXperi-
mental Unmanned Vehicle (XUV) [47] and the Army Future Combat Systems
Autonomous Navigation Systems. The Army XUV has successfully navigated
many kilometers of off-road terrain, including fields, woods, streams, and hilly
terrain, given only a few waypoints on a low-resolution map by an Army scout.
The XUV used its onboard sensors to create high-definition multi-resolution
maps of its environment and then navigated successfully through very difficult
terrain [48]. The following sections describe the many dimensions of knowledge
in 4D/RCS.

12.2.4 Decision Making

Any intelligent system has a limited vocabulary of actions that it may take in
order to accomplish its goals. The agent must decide which of these actions to
perform, and when to perform them. The responsibility for making this decision
is shared by the process that creates the knowledge representation and the
process that constructs a plan of action based on this knowledge representation.
The choice of which representation is used and what knowledge is stored helps
to decide the division of this responsibility. As an example of one extreme,
the knowledge representation may be formulated as a grid-based structure that
contains the cost/benefit of the agent being in a particular state. Very complex
reasoning may be required to condense all of the available information into this
single measure. The planning process then becomes the optimization problem
of finding the lowest-cost path through a graph.

As an example at the other extreme, all knowledge may be stored in a
raw form. An example would be the storing of a priori map data directly in
the autonomous vehicle’s database without any further processing of the map
data in order to make it more readily usable by the decision-making system.
In this case, no decisions are made in creating the knowledge representation,
but complex reasoning or decision making must occur to determine a plan of
action.

There are many different forms of decision making that exist in the current
literature. Popular techniques include computation-based closed-loop control,
cost-based search strategies, finite state machines (FSM), and rule-based sys-
tems. Computation-based closed-loop controllers put most of the decision
burden on the planning task. They attempt to maintain stability in an operating
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system by taking corrective action anytime that there is a deviation in the
system from a desired value (the system “setpoint”). What action to take may
be determined by techniques such as fuzzy logic, neural networks, Petri nets,
and proportional-integral-derivative (PID) control strategies. PID control is the
most common control methodology in process control. In PID control, the state
of the world is observed (either directly from sensors or from the stored know-
ledge representation) and matched against the system setpoint. If an error exists,
corrective action is sent to the actuators based on a computation that takes into
account the error (proportional), the sum of all previous errors (integral), and
the rate of change of the error (derivative) [49].

In cost-based search strategies, the decision burden is mostly placed on
the knowledge representation. The knowledge representation must contain a
discrete representation of a reduced system state space (e.g., a mobile robot
state space may be represented by 2D occupancy grid that ignores time) along
with a mapping that maps a single cost/benefit value to each state transition.
In most cases, this state space is completely instantiated to the planning hori-
zon of the agent, however some systems do exist that incrementally build the
representation as the search progresses [50]. While the formulation of this
cost/benefit value may be as simple as the average or maximum value of some
attribute over the region encompassed by the discrete area of state space, more
complex assignment techniques may be applied. For example, the planning
systems described in Reference 50 implement a knowledge representation that
is composed of a combination of “knowledge layers.” In this approach, some
areas of knowledge are represented in traditional grid-based structures (e.g., the
traversability of the terrain), while others are computed by the repository on-
the-fly (e.g., whether it violates any road driving laws to transition from one
state to another). All of the information from the various layers is fed into a
value judgment process that combines the knowledge with the goals and object-
ives of the system to formulate a single cost/benefit number. These cost/benefit
numbers are then used to build a graph structure that the planning process may
search using a number of different search algorithms.

While cost-based search controllers work solely of a representation of the
system state space, FSM-based controllers enhance their knowledge by building
a representation of the system event space. These controllers operate off of a
preconfigured state-graph structure where each state represents the internal
state of the agent and decisions on state transitions are made based on periodic
event input from the knowledge representation. As such, the decision making
is shared between the sensory processing that decides that a particular event
has happened, and the a priori planning process that decides what to do in
response to that event. It should be noted that in the FSM approach, all of the
planning decisions are made by a domain expert before the first operation of the
system. To be complete, the system designer must anticipate every combination
of events that may occur during the system operation. An example of a simple
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FSM may be a system for controlling a vehicle’s right turn signal. This system
would have the two states of “turn signal on” and “turn signal off” and the
transition events would be to transition from “turn signal off” to “turn signal
on” when a “prepare for right turn” event is detected and transition from “turn
signal on” to “turn signal off” when a “right turn complete” event is detected.
In this case, it may be the responsibility of the knowledge representation to
examine the system and world knowledge and decide that a turn is imminent
or has just been completed. A comprehensive look at hierarchical FSMs may
be found in Reference 51.

Rule-based systems may be used to construct decisions for both the know-
ledge representation as well as for the planning process. As noted earlier, a
rule-based system may be used to make decisions that feed into the cost/benefit
value of a cost-based planning engine. Planning systems such as deduction sys-
tems combine the application of rules with a graph search to compute a set of
actions that will achieve the goal set. Systems such as Graphplan [52] exam-
ine preconditions that are necessary for the application of rule, and then the
postconditions that will apply after the rule has fired. A plan is formulated by
searching for a combination of rule firings that accomplishes the agent’s goals.
Systems such as this have been very successful in solving planning problems
in the domain independent planning arena [53].

There is no single correct answer as to where the decision making should
occur, or what form of decision making should take place. In fact, many robotic
systems combine multiple strategies into a single system. For example, the
lower levels of the processing in the Demo III XUV program utilize a graph
search on a cost map for formulating steering and acceleration decisions. The
arcs represent the cost of moving from one node location to another using a
specific steering angle and acceleration profile. In this case, the majority of
the decision making may be said to lie in processing that determines the cost
values associated with each arc within this cost map. In addition to using several
cost maps, the higher-level planning system also examines a priori data and a
knowledge base of constraints in order to apply a rule-based planning system.
This system takes advantage of decision making in both the process that creates
the knowledge representation and the process that decides a course of action.

12.3 CASE STUDY: KNOWLEDGE REPRESENTATION AND DECISION

MAKING WITHIN A 4D/RCS

A 4D/RCS is designed to accommodate multiple types of representation form-
alisms. It is a hierarchical control structure, composed of nodes, with different
range and resolution in time and space at each level. Each level of the hier-
archy is a control loop unto itself, but very different types of entities are
tracked and controlled. Each of the control nodes receives input commands
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from its supervisor node, performs sensory perception, behavior generation
(decision making), world modeling, and other supporting functions, to produce
a set of commands to provide its subordinate nodes. The functionality of each
level in the 4D/RCS hierarchy is defined by the functionality, characteristic
timing, bandwidth, and algorithms chosen by Behavior Generation processes
for decomposing tasks and goals at each level. Hierarchical layering enables
optimal use of memory and computational resources in the representation of
time and space. At each level, state variables, images, and maps are maintained
at the resolution in space and time that is appropriate to that level. At each
successively lower level in the hierarchy, as detail is geometrically increased,
the range of computation is geometrically decreased. Also, as temporal res-
olution is increased, the span of interest decreases. This produces a ratio that
remains relatively constant throughout the hierarchy, yet enables the overall
control system to attain sophisticated behaviors within complex environments.
Although the overall capabilities of the autonomous mobile robot are enhanced
through the implementation of a multi-level, multi-representational knowledge
base, there are design and engineering complexities that must be dealt with.
These are discussed in Section 12.3.2.

The lower levels of the hierarchy are concerned with controlling servo
motors and other actuation devices. The world models at the lowest levels
primarily contain state variables such as actuator positions, velocities, and
forces, pressure sensor readings, position of switches, gearshift settings,
and inertial sensors for detecting gravitational and locomotion acceleration and
rotary motion. Decisions at this level usually occur through the behavior gen-
eration process operating on raw data to close PID control loops for servo
control or operate finite state machines to determine the appropriate time to
change switches or gearshift settings. The time horizons are very short, the
representation is typically not multi-dimensional but rather is single-valued
parameters. Further up the hierarchy, a combination of map-based representa-
tions and object knowledge bases are used, which contain names and attributes
of environmental features such as road edges, holes, obstacles, ditches, and
targets. In order to form these higher-level knowledge bases, decision mak-
ing must be part of the knowledge representation construction process. These
maps represent the shape and location of terrain features and obstacle bound-
aries and are used to perform obstacle avoidance (reactive) and path or mission
planning (deliberative). The higher levels of the hierarchy may be concerned
with controlling the tactical behaviors of one or several vehicles. Knowledge is
primarily symbolic, although it may be tied to global locations on a map, and it
represents concepts such as targets, landmarks, and features such as buildings,
roads, woods, fences, intersections, etc. The symbolic nature of the knowledge
requires complex reasoning for the behavior generation in order to formulate
a course of action. However, it should also be noted that the creation of the
representation may have also involved several levels of reasoning and decision
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making. In this case, the spatial extents over which the system plans and func-
tions are large scale, but the resolution is low and the temporal horizons for
closing the control loops are longer.

A 4D/RCS defines an explicit knowledge database (KD), although it is not
a single monolithic structure, but rather is heterogeneous and distributed across
the hierarchy in order to most efficiently and effectively serve the processes
that populate, update, and access it. The KD consists of data structures that
contain the static and dynamic information that collectively form a model of the
world. The KD contains the information needed by the world model to support
the behavior generation, sensory processing, and value judgment processes
within each node. Knowledge in the KD includes the system’s best estimate of
the current state of the world plus parameters that define how the world state
can be expected to evolve in the future under a variety of circumstances. An
important feature of knowledge representation within 4D/RCS is the concept
of continually updating knowledge throughout the hierarchy, which supports
continual replanning, albeit at different update rates for each level. Figure 12.4
shows the many different types of knowledge representation formalisms that

FIGURE 12.4 Different knowledge structures in 4D/RCS. These various types of
knowledge representations capture different aspects of the information that the decision-
making systems must use within the control system.
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are currently being implemented within the 4D/RCS architecture as applied to
autonomous driving. These formalisms range from iconic and grid-based to
symbolic and from procedural to declarative [54].

12.3.1 Procedural vs. Declarative Knowledge in 4D/RCS

There are many different ways of classifying knowledge. In addition to the
classification shown earlier (Spatial, Topological, and Symbolic), 4D/RCS
classifies knowledge as either procedural or declarative, as described in the
following sections.

12.3.1.1 Procedural knowledge

Procedural knowledge is the knowledge of how to perform tasks. Procedural
knowledge is different from other kinds of knowledge, such as declarative know-
ledge, in that it can be directly applied to a task. Within 4D/RCS, procedural
knowledge is primarily used for decision making and control purposes.

Two primary planning approaches are implemented in 4D/RCS, each rep-
resenting procedural knowledge differently: FSM and cost-based paradigms.
In both cases, the application and domain-specific tasks and commands are first
defined through a rigorous domain analysis process. The control hierarchy is
designed by detailing the responsibilities of each control node, including inputs
from the higher-level supervisor and outputs (as commands) to its subordinate
nodes.

Within 4D/RCS, procedural knowledge may be encoded directly into the
executable FSMs or graph structures, or it may be stored in an ontology rep-
resentation. An ontology is being created, for instance, to capture military
behaviors for autonomous ground vehicles [39]. Focusing initially on a route
reconnaissance to be performed by a scout platoon, this effort details in a hier-
archical fashion the activities necessary in order to perform this activity. The
troop commander is at the top level and decides the priority items on the route,
defines the march column organization, specifies the formation and movement
technique, and dispatches a scout platoon to conduct the reconnaissance. The
scout platoon leader will do finer level decision making, organizing the pla-
toon’s sections of vehicles and assigning commands to each section leader to
do reconnaissance of different areas along the route while maintaining security.
Each section leader will evaluate the environment to provide detailed tactical
goal paths for each of his vehicles, coordinating their movement by the use of
detailed motion commands to control points along with security overwatch com-
mands. The decision-making responsibilities are thus refined and narrowed at
each subsequent level, down to that of individual vehicles and subsystems. This
ontology is based upon the OWL-S specification (Web Ontology Language-
Services) [55]. In this context, behaviors are actions that an autonomous vehicle
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is expected to perform when confronted with a predefined situation. The onto-
logy is stored within the 4D/RCS knowledge database, and the behaviors are
spawned when situations in the world are determined to be true, as judged by
sensor information and the value judgment components.

In the FSM approach, each of these command decompositions at each node
will be represented in the form of a state-table of ordered production rules.
The sequence of simpler output commands required to accomplish the input
command and the named situations (branching conditions) that transition the
state-table to the next output command are the primary knowledge represented
in this approach. Each node therefore contains labeled representations of the
states and transitions, which is beneficial in terms of making the reasoning

advantage of making the decision criteria and logic obvious to a human reading
the code. However, they require the programmers to consider and handle all
possible situations ahead of time, which is often not realistic for robots operating
in complex situations and environments.

The cost-based approach combines a graph-based search technique with a
set of knowledge modules that simulate the effects of alternative actions and
provide input to a unified cost model [50,57]. Different feature layers are discret-
ized. Examples of feature layers are elevation, road networks, and vegetation.
The planner at a given level sends candidate trajectories to simulators that
compute the cost of state transitions for each of the relevant feature layers.
For instance, a proposed path may take the vehicle from an on-road location
to off-road. The cost associated with this is dependent on the context of the
situation — if going off-road avoids a pedestrian on the road (which would be
noted by another feature layer, possibly the obstacle one) this is an acceptable
cost. Similarly, the cost/benefit of running a red light would be substantially
different for a casual driver than it would be for a police vehicle responding to
an emergency. Ontologies and other knowledge bases support the generation of
cost models during execution. Whereas this cost-based approach is more general
than the FSM, it is also more challenging in terms of defining the appropriate
costs for each action, especially since they will be combined. This is a good
candidate for the application of learning to develop the cost models. In general,
graph-based representations can result in an explosion of data (nodes and arcs
connecting the nodes) and hence can have very poor performance characterist-
ics when the graph is being searched. This is a concern especially for real-time
systems, such as mobile robots. When a robot plans its motions, it must be able
to react within an appropriate amount of time to obstacles or events. However,
there are several techniques to mitigate these concerns, some of which were
noted earlier in this chapter. Other means of mitigating performance issues
include reusing parts of the already-processed graph (e.g., Dynamic A*) [58]
and using sparse representations that include only relevant features, such as the
extrema of an obstacle instead of a uniform grid of the environment [50].
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FIGURE 12.5 Example of a FSM.
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12.3.1.2 Declarative knowledge

Unlike procedural knowledge, declarative knowledge does not describe how to
perform a given task. Instead, it provides the ability to use knowledge in ways
that the system designer did not foresee. The declarative knowledge is used by
the decision-making processes and is updated by the sensor processing subsys-
tems. The following sections describe declarative knowledge within 4D/RCS,
although several similar concepts are also found in other robot architectures.

12.3.1.2.1 Parametric level knowledge
The lowest levels of any control system, whether for an autonomous robot, a
machine tool, or a refinery, are at the servo level, where knowledge of the value
of system parameters is needed to provide position and velocity and torque
control of each degree of freedom by appropriate voltages sent to a motor or a
hydraulic servo valve. The control loops at this level can generally be analyzed
with classical techniques and the “knowledge” embedded in the world model
is the specification of the system functional blocks, the set of gains and filters
that define the servo controls for a specific actuator, and the current value of
relevant state variables. These are generally called the system parameters, so
we refer to knowledge at this level as parametric knowledge.

Learning or adaptive control systems (e.g., [59,60]) may allow changes in
the system parameters, autonomous identification of the system parameters, or
even behavioral parameters, but the topology of the control loops is basically
invariant and set by the control designer. We would not expect a robot to invent
a torque loop for itself in the field, although it could well change the gain or
phase of a position or velocity loop as it learns to optimize a task.

12.3.1.2.2 Spatial level knowledge
Above the lowest servo level are a series of control loops that coordinate the
individual servos and that require what can be generally called “geometric
knowledge,” “iconic knowledge” (in the case it represents the sensor view),
“metrical maps,” or “patterns.” This knowledge is spatial in nature and is either
in 2D or 3D grids and higher-level geometric constructs, such as edges and
surfaces. The value of each grid cell may be Boolean data (e.g., indicating
whether the cell is occupied or not) or real number data representing a physical
property such as light intensity, color, altitude, range, or density. Each cell may
also contain spatial or temporal gradients of intensity, color, range, or rate of
motion. Cells may also point to specific geometric entities (such as an edge,
vertex, surface, or object) to which its contents belong.

Digital maps are a natural way of modeling the environment for path plan-
ning and obstacle avoidance. Digital terrain maps are referenced to some
coordinate frame tied to the ground or Earth and hence also facilitate data
fusion, be it from multiple sensors or from a priori data. Although commercial
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FIGURE 12.6 Multiple feature layers in 4D/RCS.

digital terrain map often have a grid-based implementation (especially for the
elevation layer), features are typically represented as vectors. The underlying
database implementation facilitates spatial queries even for features that are
represented by polygons or polylines. In many mobile robots, as previously
discussed, a grid-based approach is easier to implement and maintain in real-
time. In this case, a map may have multiple layers that represent different
“themes” or attributes at each grid element. For instance, there may be an elev-
ation layer, a road layer, a dense tree layer, and an obstacle layer as shown in
Figure 12.6. The software can query if there is a road at grid location [x, y]
and similarly query for other attributes at the same [x, y] coordinates. If the
system being implemented is truly 3D, then the queries can be made according
to [x, y, z]. This feature is important for accurately capturing features such as
road overpasses and subterranean tunnels.

12.3.1.2.3 Symbolic knowledge
Within 4D/RCS, mainly two types of symbolic representations have been
implemented thus far: ontologies and relational databases. As noted earlier,
ontologies are also used for procedural knowledge. On the declarative side,
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an ontology for driving determines if objects in the environment are poten-
tial obstacles to the autonomous vehicle [61,62]. The system is composed of an
ontology of objects representing “things” that may be encountered in our current
environment, in conjunction with rules for estimating the damage that would
be incurred by collisions with the different objects as a function of the charac-
teristics of the autonomous vehicle, including the type of vehicle, speed, etc.
Automated reasoning is used to estimate collision damage, and this information
is fed to the route planner to help it decide whether to avoid the object.

Relational databases have also been developed to house symbolic inform-
ation. Among these is a Road Network Database [63] that includes detailed
information about the roadway, such as where the road lies, rules dictating the
traversal of intersections, lane markings, road barriers, road surface character-
istics, etc. The purpose of the Road Network Database is to provide the data
structures needed to capture all of the necessary information about road net-
works to allow a planner or control system on an autonomous vehicle to plan
routes along the roadway at any level of abstraction. At one extreme, the data-
base provides structures to represent information so that a low-level planner can
develop detailed trajectories to navigate a vehicle over the span of a few meters.
At the other extreme, the database provides structures to represent information
so that a high-level planner can plan a course across a country. Each level of
planning requires data at different levels of abstraction and, as such, the Road
Network Database accommodates these requirements.

12.3.2 Additional Considerations

Thus far, we have described several considerations when implementing the
knowledge representation for a mobile robot system. The types of knowledge
and the structures for capturing the knowledge have been discussed. Expressiv-
ity of the representation, the real-time requirements of the robot control system,
the resolution of the sensors, and the onboard processing and memory were
among the issues to be considered. Further discussion on the types of perform-
ance considerations for knowledge representation in real-time control systems
can be found in Reference 64. Additional aspects that affect the design decisions
in multi-representational systems such as 4D/RCS, are briefly presented in this
section.

12.3.2.1 Integration considerations

Representing multiple classes of knowledge within an intelligent control system
introduces the challenge of integrating fundamentally different representations
into a single, unified knowledge base. This knowledge base must behave as
a single, cohesive entity, and as such, there must be seamless information
exchange and interoperability between all knowledge sources. In the case of
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autonomous mobility, as alluded to previously, parametric knowledge may be
stored as a set of numbers in a computer program representing the values of
the state variables, the spatial knowledge may be a set of digital terrain maps
in 2D grid structures tied to feature information stored as vector fields, and the
symbolic knowledge may be a set of entities with pertinent attributes stored in
a database.

12.3.2.2 Integration within a single representation

There are integration challenges within a single representation, as well as among
disparate representations. For an autonomous vehicle, within solely the sym-
bolic level, one must integrate a priori information about the types of entities
that one expects to see in the environment with instances of the entities that
are encountered. When both types of information are represented in database
format, association of database keys is often sufficient to provide the necessary
integration.

Within solely the spatial representation, one must integrate processed sensed
data about the environment with a priori terrain maps. This is a difficult chal-
lenge due to the noise associated with sensed data as well as the varying level
of resolution between a priori maps and the sensed data. In addition, one must
integrate two or more sensed images, which may be taken by two different
sensors, or by the same sensor at different times. Often described as “data
registration,” researchers are actively addressing this challenge, for example,

resentation requires methods for integrating higher-resolution knowledge into
lower resolution. For instance, in a 4D/RCS hierarchy, the information con-
tained in the autonomous mobility level, which is typically at a 40 cm resolution,
must be abstracted into coarser 4 m cells for use at the higher, vehicle level. This
means that the “quilt” of individual cells having different attributes must be con-
solidated into a single representative large cell. A mixture of cells containing
roads and fields could be merged and classified as having both roads and fields
at the higher level, perhaps with an indication of percentage of “roadiness.”

12.3.2.3 Integration among disparate representations

Similar challenges exist when integrating knowledge captured in different rep-
resentations. Although the representations differ, there will undoubtedly be
direct correlations between the data in each representation. In the case of object
recognition [67], information that can be inferred by analyzing the data stored in
a grid structure (obtained from a sensor) must be compared to the class attributes
stored in the symbolic knowledge base to determine if there is a correspond-
ence. For example, if a cluster of occupied cells in a spatial representation can
be grouped into a single object, one can create an object frame and link all
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the pixels in the spatial representation to the object frame. This object frame
contains a list of object attributes that are measured properties of the cluster of
pixels in the spatial representation. Depending on the information that is stored
in the spatial representation, one may be able to tell the object’s dimensions,
average color, velocity, location, etc. Based on this information, one can com-
pare the attributes of an observed object to attributes of a class prototype of
objects that are expected to be seen in the environment. If a correspondence
is found (within a desired threshold), links are established between the object
frame and the class prototype in the database. This is the process of classi-
fication. Links established through the classification process are bi-directional
pointers. Thus, class names and class attributes can be linked back to the object
frame, and from there back to the cells in the spatial representation.

Figure 12.7 shows an example of integrating a spatial representation with
a symbolic representation. In Figure 12.7a, the number in the cells represent
the probability that the cell is occupied, with 10 being the greatest. Other
information that is stored in each cell that is not shown in Figure 12.7a, such as
the color and the height of the object that is occupying that cell. In Figure 12.7b,
the information in the spatial representation is processed and stored as a list of
attributes in an object frame. This involves clustering cells that appear to be part
of the same object, and determining overall characteristics of that object. The
cluster of cells have an overall X-dimension of between 9.5 and 10 m, an overall
Y -dimension of 3.5 to 4 m, an average height of 2.8 to 3.0 m, and an average
color of green. The perceived attributes are then compared to a priori attributes
stored in a list of class prototypes as shown in Figure 12.7c to determine if
there is correspondence. In this case, there appears to be a clear match between
the observed attributes measured from the sensed data and the attributes in the
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Length: 9.8 m
Width: 3.7 m
Height: 2.9 m
Average velocity: 13.4 m/sec
Maximum velocity: 18.8 m/sec
Minimum turning diameter: 13 m
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FIGURE 12.7 Integrating spatial with symbolic knowledge.
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class prototype of a M1A1 tank. Therefore, links are created between the class
prototype and the cells in the spatial representation.

Although the scenario described above is an oversimplified example, it
shows the steps that need to be accomplished to establish a link between stored
class prototypes and objects observed in the world. These links would ground
the symbolic representations in the world model to the objects in the world.

12.3.2.4 Integration of decision systems

When functioning in a hierarchical system, both the knowledge representation
and behavior generation must be integrated between levels. Two commonly
used techniques for behavior generation integration are plan refinement and
cooperative planning. In plan refinement, the highest-level planning system
creates a coarse set of decisions that will accomplish the goals of the agent.
A subset of these decisions that covers the planning horizon of the next lower
level is passed down to that level. This level then takes the decisions of the
upper level as its goals and refines the system actions to achieve these goals.
This process is repeated throughout the hierarchy until the lowest level behavior
generation system is reached. This plan refinement procedure is continuously
repeated to account for dynamics and noise in the knowledge representation.
An example of this may be a finite state machine that drives a mobile robot.
The high level may create a course of action that consists of several driving
commands. One of these commands; “turn right at next intersection” is passed
down to the next lower level. This level will then decompose this command
into a series of actions, the first of which may be “turn on right turn signal.”
This action will be passed down to the next lower level where it may be further
decomposed, and so on until an action by the platform is performed.

In cooperative planning, each planning level is responsible for creating a
course of action that covers the area from its subordinate’s planning horizon to
its own planning horizon. For a two level mobility planning system using cost-
based planning, this may be viewed as a doughnut where the lower level creates
plans for the doughnut hole and the upper level planner plans from the hole to
the edge of the doughnut. In this case, the low-level planner would compute the
cost from the vehicle location to each position along the circumference of the
doughnut hole. The high-level planner would then use these costs as the starting
point for its planning, and find a single jointly optimal path to the goal. This
jointly optimal path would then be executed. Once again, continuous replanning
is utilized to account for dynamics and noise in the knowledge representation.

12.3.2.5 Implications for system maintainability

Beyond the obvious considerations of the suitability of particular knowledge
classes and representations for a given robot’s missions/job, there are additional
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concerns when selecting the knowledge representation(s) for a system. The
4D/RCS architecture is supported by a knowledge engineering methodology,
whereby knowledge from subject matter experts is mined, analyzed, and trans-
formed into appropriate data structures within the resulting control hierarchy.
Reference 68 describes the methodology. One key aspect of this method is
the goal of maintaining correspondence between the human’s terminology and
semantics within the implemented code to facilitate validation, maintenance,
and reuse.

12.3.2.6 Implications for perception design

An additional design and engineering advantage of the task-based approach
is that it can be used to derive not only the knowledge requirements, but the
sensor and perception ones as well. Given the behavior requirements of the
robot, which in turn drive the knowledge representation requirements, one can
determine the performance necessary from the sensors and sensory processing
algorithms.

Barbera et al. [69] describe the process for defining the sensor-processing
requirements for a mobile robot that drives on roads in traffic. They discuss how
the sensing requirements of different driving tasks have significantly different
resolutions, identification, and classification requirements which suggests that
performance metrics should be defined on a task-by-task basis. For example, the
task of driving the vehicle along a highway requires the sensor system to identify
large objects moving nearby, their direction, speed, acceleration, positions in
the lanes (which means the sensory processing system must identify road lanes),
and state of the brake and turn signal indicator lights on these objects. There
is little requirement for detailed recognition of object types or the need to see
them at a distance or to read signs alongside or overhead of the road. However,
if the autonomous vehicle decides to pass a vehicle on an undivided two lane
road, then an extraordinarily detailed world representation must be sensed that
identifies additional entities (e.g., upcoming intersections, rail road crossings,
vehicles in the oncoming lane out to very large distances, lane marking types,
and roadside signs). The goal of Barbera et al. is to first develop a list of required
driving tasks, and then to identify the detailed world model entities, features,
attributes, resolutions, recognition distances, minimum data update times, and
timing for task stability for each of these decomposed subtask activities.

12.4 AN IMPLEMENTATION EXAMPLE

A reference model architecture such as 4D/RCS is essential for guiding
the design and engineering of complex real-time control systems, including
the knowledge. The previous sections have introduced general knowledge
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representation approaches within 4D/RCS. This section briefly describes an
instantiation of 4D/RCS that was created during the development and enhance-
ment of the Demo III XUV. The overall autonomous mobile robot’s control
system is assembled from a basic software component, which is referred to as

hierarchy similar to the one implemented for Demo III. Only the locomotion
portion of the overall hierarchy is discussed.

Each RCS Node contains the same functional elements, yet is tailored for
that level of the hierarchy and the node’s particular responsibilities. An RCS
Node contains Sensory Processing (SP), Behavior Generation (BG), World
Modeling (WM), and Value Judgment (VJ). At every level of the control
hierarchy there are the same basic elements:

• Deliberative planning processes receive goals and priorities from
superiors and decompose them into subgoals for subordinates at
levels below.
• Reactive loops respond quickly to feedback to modify planned

actions so that goals are accomplished despite unexpected events.
• Sensory processing filters and processes information derived from

observations by subordinate levels. Events are detected, objects
recognized, situations analyzed, and status reported to superiors at
the next higher level. The sensory processing results are stored in the
world model for that particular level.
• Sensory processing and behavior generation processes have access

to a model of the world that is resident in a knowledge database.
This world model enables the intelligent system to analyze the past,
plan for the future, and perceive sensory information in the context
of expectations.
• Cost functions enable value judgments and determine priorities that

support intelligent decision making, planning, and situation analysis.
The cost functions can be dynamic and are determined by current
commands, priorities, user preferences, past experiences, and other
sources.

Therefore, the design of the knowledge requirements at each level is driven
by the responsibilities of that level. What commands will an RCS Node be able
to execute and what decisions will it be required to make? What is its required
control loop response time? What spatial scope does it need to understand?
What types of entities does it have to deal with? These questions are addressed
below.

At the servo level, an RCS Node receives commands to adjust set points
for vehicle steering, velocity, and acceleration or for pointing sensors. It must
convert these commands to motion or torque commands for each actuator and
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FIGURE 12.8 A simplified example of the Demo III 4D/RCS control hierarchy.
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issue them at high frequencies (e.g., every 5 msec). The planning horizon
is about 50 msec. The knowledge used at the servo level is primarily single-
valued state variables: actuator positions, velocities, and forces, pressure sensor
readings, position of switches, and gear shift settings. Decisions that need to be
made include the choice of acceleration or torque profile to follow and whether
or not it is safe to change switch settings. These decisions are typically made
in the behavior generation module.

At the Primitive level, each RCS Node received commands with goal points
about 500 msec in the future. The primitive level computes dynamic trajector-
ies expressed in terms of vehicle heading, speed, and acceleration and sends
commands to the servo level about every 50 msec.

At the Subsystem level, an Autonomous Mobility node generates a schedule
of waypoints that are sent to the subordinate Primitive controller. Commands
that the Autonomous Mobility RCS Node accepts include directives to follow
a schedule of waypoints to avoid obstacles, maintain position relative to nearby
vehicles, and achieve desired vehicle heading and speed along the desired path.
Knowledge used at this level supports planning movement through 3D terrain,
hence digital terrain maps with multiple registered attribute layers are appropri-
ate. Planning for mobility at this level is concerned with obstacles (both positive
and negative, i.e., significant depressions or holes in the ground), elevation,
roads, and observability, if it is to perform stealthy movements. A cost-based
search through a graph whose nodes are derived from elements of the regu-
lar terrain grid is used to find the lowest-cost path that achieves the specified
objectives. The map-based format also provides a convenient “receptacle” for
registering and fusing information from multiple sensors with each other and
with a priori information, such as from digital terrain maps. At this level of the
hierarchy, cooperative decision making between sensor processing and beha-
vior generation begins to become apparent. The sensor processing is responsible
for interpreting the output of the sensors combined with predictions from the
world model to decide what features exist in the world. Without this processed
information, planning actions such as road following would be impossible.
Depending on the level of sophistication, behavior generation may perform a
simple feature-based graph search or sophisticated reasoning. For example, a
simple road follower may perform trajectory generation through a graph search
where cells with roads are cheap and off-road cells are expensive. A more soph-
isticated road follower may employ a reasoner that takes into account symbolic
information such as lane markings, traffic, road signs, etc. The subsystem level
of the hierarchy outputs a new plan about every 500 msec, and the planning
horizon at this level is about 5 sec into the future. The spatial scope is roughly
100 m, with a resolution of about 40 cm. The extents of the space considered
are based on the planning horizon and vehicle velocity. The grid resolution
is based on engineering considerations, like computational resources available
and what resolution the onboard sensors can provide.
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At the vehicle level, all subsystems on an individual vehicle are coordinated.
These may include mobility, communication, weapons, and reconnaissance
subsystems. Maps extend to 500 m, with resolution of about 4 m. Plans extend
to a time horizon of about 1 min into the future, and may be recomputed every
5 sec. At this level of resolution and coordination, sensor processing decisions
become critical for all aspects of behavior generation. Even simple grid-based
map structures now require complex decisions. For example, how should two
adjacent 4-m areas be represented if each is not traversable when taken alone
but traversable when taken in conjunction with its neighbor?

Higher still in the hierarchy is the section level. This is the controller for
a group (two or more) of individual vehicles. The section level is responsible
for assigning duties to the individual vehicles and coordinating their actions.
Orders coming into the section level are tactical maneuvers, including mission
goals, timing, and coordination requirements. The planning horizon is 10 min
into the future, and new plans are sent to subordinates approximately every
minute. Knowledge at the section level includes digital terrain maps, typically
covering about 2 to 5 km, at low resolution (30 m), with multiple attribute
layers, such as roads (of various types), vegetation, fences, buildings, as well
as enemy locations, and militarily significant attributes. Enemy locations may
be noted within the map, but more extensive symbolic information about the
situation is associated with the grid locations. The symbolic information could
include details about the enemy force such as number of soldiers, weapons, and
estimated travel direction. This type of information is largely symbolic in nature
and may be amenable to rule or case-based reasoning tools. At the section level,
a Value Judgment function may convert the knowledge that “a band of 23 sol-
diers and 1 tank is moving toward location x, y with 60% probability at velocity
of 16 km/day” into a set of costs that can be tied to the map grid and utilized by
the graph-based search to generate the vehicle plans. The autonomous vehicle
then plans a route toward the enemy locations while remaining concealed by
terrain features marked in its maps.

At most of the levels, there is some combination of a priori knowledge
and in situ knowledge. At lower levels concerned with mobility, the maps are
primarily sensor-generated, however, there may be precomputed, kinematically
correct steering curves that are used to prune the planning graph by eliminating
nonfeasible trajectories [70]. At higher levels, more a priori knowledge is used,
for example, as digital terrain maps and descriptions of enemy vehicles and
capabilities.

12.5 CONCLUSION

No one type of knowledge representation is adequate for all purposes. Davis [71]
argues that representation and reasoning at the symbolic level are inextricably
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intertwined, and that different reasoning mechanisms, such as rules and frames,
have different natural representations that must be integrated in a representation
architecture to achieve the advantages of multiple approaches to reasoning.

The introduction of spatial data — often grid-based — integrated with sym-
bolic data and parametric data in a multi-resolution hierarchical world model
enables the real-time control of complex systems interacting with the real world.
The knowledge representation and decision-making systems must form a cohes-
ive unit within autonomous mobile robots in order to attain intelligent behavior.
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27. Matarić, M., A distributed model for mobile robot environment-learning and
navigation. Master’s thesis, MIT, Cambridge, MA, January 1990. Also available
as MIT AI Lab Technical Report AITR-1228.

28. Thrun, S., “Learning Metric-Topological Maps for Indoor Mobile Robot
Navigation,” Artificial Intelligence, 99, pp. 21–71, 1998.

29. Laird, J. E., Newell, A., and Rosenbloom, P. S., “Soar: An Architecture for
General Intelligence,” Artificial Intelligence, 33, pp. 1–64, 1987.

© 2006 by Taylor & Francis Group, LLC

26. Kuipers, B. and Byun, Y.-T., “A Robot Exploration and Mapping Strategy Based



FRANKL: “dk6033_c012” — 2006/3/31 — 16:43 — page 496 — #36

496 Autonomous Mobile Robots

30. Newell, A. and Simon, H., GPS, A Program that Simulates Human Thought,
McGraw-Hill, New York, 1963.

31. Pearson, J. D., Huffman, S. B., Willis, M. B., Laird, J. E., and Jones, R.
M., “A Symbolic Solution to Intelligent Real-Time Control,” Robotics and
Autonomous Systems, 11, pp. 279–291, 1993.

32. Etherington, D., “What Does Knowledge Representation Have to Say to
Artificial Intelligence?” Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence, p. 762, Menlo Park, Calif., AAAI Press,
1997.

33. Minsky, M., “A Framework for Representing Knowledge,” in Winston, P. (ed.),
The Psychology of Computer Vision, pp. 211–277, McGrow Hill, New York,
1975.

34. Volpe, R., Estlin, T., Laubach, S., Olson, C., and Balaram, J., “Enhanced
Mars Rover Navigation Techniques,” Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), San Francisco, CA,
2000.

35. Wasson, G., Kortenkamp, D., and Huber, E., “Integrating Active Perception
with an Autonomous Robot Architecture,” Robotics and Automation Journal,
29, pp. 175–186, 1999.

36. Lenat, D., Guha, R., Pittman, K., Pratt, D., and Shephard, M., “CYC: Toward
Programs with Common Sense,” Communications of the ACM, 33, pp. 30–49,
1990.

37. Genesereth, M. and Fikes, R., “Knowledge Interchange Format,” Stanford Logic
Report Logic-92-1, Stanford University, 1992.

38. Harmelen, F. and McGuiness, D., "OWL Web Ontology Language Overview,"
W3C web site:
2004.

39. Schlenoff, C., Washington, R., and Barbera, T., “Experiences in Developing an
Intelligent Ground Vehicle (IGV) Ontology in Protege,” Proceedings of the 7th
International Protege Conference, Bethesda, MD, 2004.

41. Kortenkamp, D., Bonasso, P., and Murphy, R. (eds), Articial Intelligence
and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press,
Cambridge, MA, 1998.

42. Brooks, R. “A Robust Layered Control System for a Mobile Robot,” IEEE
Journal of Robotics and Automation, 2, 14–23, 1986.

43. Brooks, R., Cambrian Intelligence: The Early History of the New AI, MIT Press,
Cambridge, MA, 1999.

44. Kuipers, B., “The Spatial Semantic Hierarchy,” Artificial Intelligence, 119,
pp. 191–233, 2000.

45. Cassimatis, N., Trafton, G., Bugajska, M., and Schultz, A., “Integrating Cog-
nition, Perception and Action through Mental Simulation in Robots,” Robotics
and Autonomous Systems, 49, 13–23, 2004.

46. Albus, J. et al., “4D/RCS Version 2.0: A Reference Model Architecture for
Unmanned Vehicle Systems,” NISTIR 6910, August 2002.

© 2006 by Taylor & Francis Group, LLC

http://www.w3.org/TR/2004/REC-owl-features-20040210/,

40. Stanford Medical Informatics, “The Protege Homepage,” http://protege.
stanford.edu/, 2005.

http://www.w3.org
http://protege.stanford.edu
http://protege.stanford.edu


FRANKL: “dk6033_c012” — 2006/3/31 — 16:43 — page 497 — #37

Knowledge Representation and Decision Making 497

Proceedings of the SPIE Robotic and Semi-Robotic Ground Vehicle Technology
Conference, 3366, pp. 202–211, 1988.

48. Lacaze, A., Murphy, K., and Delgiorno, M., “Autonomous Mobility for the
Demo III Experimental Unmanned Vehicles,” Proceedings of the AUVSI 2002
Conference, Orlando, FL, July 8–12, 2002.

49. Levine, W. (ed.), The Control Handbook. CRC Press, Boca Raton, FL, 1996.
50. Balakirsky, S., A Framework for Planning with Incrementally Created Graphs

in Attributed Problem Spaces, IOS Press, Berlin, Germany, 2003.
51. Albus, J., Brain, Behavior, and Robotics, McGraw-Hill, New York, 1981.
52. Blum, A. L. and Furst, M. L., “Fast Planning Through Planning Graph

Analysis,” Artificial Intelligence, 90, pp. 281–300, 1997.
53. Bacchus, F., “The AIPS ’00 Planning Competition,” AI Magazine, 22, pp. 47–

56, 2001.
54. Schlenoff, C., Madhavan, R., Albus, J., Messina, E., Barbera, T., and

Balakirsky, S., “Fusing Disparate Information within the 4D/RCS Architec-
ture,” Proceedings of the 8th International Conference on Information Fusion,
Philadelphia, PA, July 2005.

55.

56. Barbera, A., Messina, E., Huang, H., Schlenoff, C., and Balakirsky, S., “Soft-
ware Engineering for Intelligent Control Systems,” Special issue on Software
Engineering for Knowledge-Intensive Systems of Künstliche Intelligenz, 3, pp.
22–26, 2004.

57. Hong, T., Balakirsky, S., Messina, E., Chang, T., and Shneier, M., “A Hier-
archical World Model for an Autonomous Scout Vehicle,” Proceedings of the
SPIE 16th Annual International Symposium on Aerospace/Defense Sensing,
Simulation, and Controls, Orlando, FL, April 1–5, 2002.

58. Stentz, A., “Optimal and Efficient Path Planning for Partially-Known Envir-
onments,” Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol. 4, pp. 3310–3317, 8–13 May 1994.

59. Astrom, K. and Wittenmark, B., Adaptive Control, Addison-Wesley, Reading,
MA, 1995.

60. Lee, J., Likhachev, M., and Arkin, R., “Selection of Behavioral Paramet-
ers: Integration of Discontinuous Switching via Case-Based Reasoning with
Continuous Adaptation via Learning Momentum,” Proceedings of the 2002
IEEE International Conference on Robotics and Automation (ICRA), vol. 2,
pp. 1275–1281, 2002.

61. Province, R., Uschold, M., Smith, S., Balakirsky, S., and Schlenoff, C.,
“Ontology-based Methods for Enhancing Autonomous Vehicle Path Planning,”
Robotics and Autonomous Systems Journal: Special Issue on the 2004 AAAI
knowledge Representation and Ontologies for Autonomous Systems Spring
Symposium, vol. 49, pp. 123–133, 2004.

62. Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R., and Smith, S., “Using
Ontologies to Aid in Navigation Planning in Autonomous Vehicles,” Knowledge
Engineering Review, 18, pp. 243–255, 2004.

© 2006 by Taylor & Francis Group, LLC

The OWL Services Coalition, “OWL-S 1.0 Release,” http://www.daml.org/
services/owls/ 1.0/owl-s.pdf, 2003.

47. Shoemaker, C. and Bornstein, J. A., “Overview of the Demo III UGV Program,”

http://www.daml.org
http://www.daml.org


FRANKL: “dk6033_c012” — 2006/3/31 — 16:43 — page 498 — #38

498 Autonomous Mobile Robots

63. Schlenoff, C., Balakirsky, S., Barbera, T., Scrapper, C., Ajot, J., Hui, E.,
and Paredes, M., “The NIST Road Network Database: Version 1.0,” National
Institute of Standards and Technology (NIST), NISTIR 7136, 2004.

64. Messina, E., Evans, J., and Albus, J., “Evaluating Knowledge and Represent-
ation for Intelligent Control,” Proceedings of the 2001 Performance Metrics
for Intelligent Systems (PerMIS) Workshop, in association with IEEE CCA and
ISIC, Mexico City, Mexico, 2001.

65. Madhavan, R. et al., “Issues in Autonomous Navigation of Underground
Vehicles,” Journal of Mineral Resources Engineering, 8, pp. 313–324, 1999.

66. Madhavan, R. and Messina, E., “Performance Evaluation of Temporal Range
Registration for Unmanned Vehicle Navigation,” Proceedings of the 2004 Per-
formance Metrics for Intelligent Systems Workshop, NIST Special publication,
1037, August 2004.

67. Schlenoff, C., “Linking Sensed Images to an Ontology of Obstacles to Aid in
Autonomous Driving,” Ontologies and the Semantic web. Papers from the 2002
AAAI Workshop WS-02-11, pp. 56–62, AAAI Press, Menlo Park, CA, 1998.

68. Barbera, A., Albus, J., Messina, E., Schlenoff, C., and Horst, J., “How Task
Analysis Can Be Used to Derive and Organize the Knowledge For the Control
of Autonomous Vehicles,” Robotics and Autonomous Systems, 49, 67–78, 2004.

69. Barbera, A., Horst, J., Schlenoff, C., Wallace, E., and Aha, D. W., “Devel-
oping World Model Data Specifications as Metrics for Sensory Processing for
On-Road Driving Tasks,” Proceedings of the 2003 Performance Metrics for
Intelligent Systems, NIST Special Publication 1014.

70. Lacaze, A., “Hierarchical Planning Algorithms,” Proceedings of the Sixteenth
SPIE International Symposium on Aerospace/Defense Sensing, Simulation, and
Controls, Orlando, FL, April 1–5, 2002.

71. Davis, R., Shrobe, H., and Szolovits, P.,“What is a Knowledge Representation?”
AI Magazine, 14, 17–33, Spring 1993.

BIOGRAPHIES

Elena Messina is leader of the Knowledge Systems Group in the Intelligent
Systems Division at the National Institute of Standards and Technology. She has
worked extensively on various aspects pertaining to autonomous mobile robots,
ranging from knowledge representation and software architectures to develop-
ment tools and simulation environments. She plays a leadership role in the
performance evaluation of intelligent systems. She has organized and chaired
the annual Performance Metrics for Intelligent Systems workshop series since
2000. Under her direction, several projects have been established to define
the performance requirements for mobile robots and develop test methods to
evaluate their effectiveness. These include the development and world-wide
replication of the NIST-developed reference test arenas used in theinternational
RoboCup Rescue and AAAI Mobile robot competitions. Ms. Messina has
recently begun work on performance standards for bomb-disposal robots and
for urban search and rescue robots.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c012” — 2006/3/31 — 16:43 — page 499 — #39

Knowledge Representation and Decision Making 499

Stephen Balakirsky received the Ph.D. degree from the University of Bremen,
in Bremen, Germany. He is currently a researcher in the Knowledge Systems
Group of the Intelligent Systems Division at the National Institute of Standards
and Technology. He has over 15 years of experience in multiple areas of robotic
systems that include simulation, autonomous plan and behavior generation,
human-computer interfaces, automatic target acquisition, and image stabiliz-
ation. He has been co-organizer of several workshops on knowledge repres-
entations for autonomous systems and is extensively involved in the RoboCup
Rescue virtual competition and real/virtual robotic operation. Dr. Balakrisky’s
research interests include planning systems, simulation development envir-
onments, knowledge representations, world modeling, and architectures for
autonomous systems.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 501 — #1

13 Algorithms for
Planning under
Uncertainty in
Prediction and Sensing

Jason M. O’Kane, Benjamín Tovar,
Peng Cheng, and Steven M. LaValle

CONTENTS

13.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
13.2 Planning under Prediction Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

13.2.1 Making a Single Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
13.2.1.1 Including an observation . . . . . . . . . . . . . . . . . . . . . . . 506
13.2.1.2 Criticisms of decision theory . . . . . . . . . . . . . . . . . . 507

13.2.2 Making a Sequence of Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 508
13.2.3 Methods for Finding Optimal Solutions . . . . . . . . . . . . . . . . . . . 511

13.2.3.1 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
13.2.3.2 Policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
13.2.3.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

13.2.4 Methods for Finding Approximate Solutions . . . . . . . . . . . . . 516
13.2.4.1 Certainty equivalent control . . . . . . . . . . . . . . . . . . . 516
13.2.4.2 Limited lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

13.2.5 Conquering Continuous Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
13.2.6 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

13.2.6.1 Infinite horizon models . . . . . . . . . . . . . . . . . . . . . . . . 520
13.2.6.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 521
13.2.6.3 Additional decision makers . . . . . . . . . . . . . . . . . . . . 523

13.3 Planning under Sensing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
13.3.1 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

13.3.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
13.3.1.2 Definition of the information space . . . . . . . . . . . 527

13.3.2 Deriving Information States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

501

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 502 — #2

502 Autonomous Mobile Robots

13.3.3 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
13.3.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
13.3.3.2 Discrete-stage information spaces . . . . . . . . . . . . . 533
13.3.3.3 Continuous-time information spaces . . . . . . . . . . 534

13.3.4 Examples of Planning in the Information Space . . . . . . . . . . 535
13.3.4.1 Moving in an L-shaped corridor . . . . . . . . . . . . . . . 535
13.3.4.2 The Kalman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
13.3.4.3 Sensorless manipulation . . . . . . . . . . . . . . . . . . . . . . . 539

13.4 Conclusion and Bibliographical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

13.1 INTRODUCTION AND PRELIMINARIES

For mobile robots, uncertainty is everywhere. Wheels slip. Sensors are affected
by  noise. Obstacles move unpredictably. Truly autonomous robots (and decision
makers or agents in general) must act in ways that are robust to these sorts of
failures and unexpected events which we may think of in general as uncertainty.
In this chapter, we attempt to meet uncertainty head-on by explicitly modeling
it and reasoning about it. We use the term decision theoretic planning to refer
to this broad class of planning methods characterized by explicit accounting
for uncertainty. We will consider a number of formulations for the problem
of planning under uncertainty and present algorithms for planning under these
formulations.

Uncertainty can take many forms, but for brevity and clarity we will restrict
our attention to only two important types:

• Prediction uncertainty occurs when the effects of actions are not
fully predictable. This can be thought of as an uncertainty in future
states.

• Sensing uncertainty is uncertainty in the current state. This occurs,
for example, in robots that have limited or imperfect sensing. We
also admit the case where robots have no sensing at all.

Some systems can be adequately modeled without either form of uncertainty.
Problems in this category can still be quite challenging and are the subject of
many earlier chapters in this book. Problems with only prediction uncertainty
are addressed in Section 13.2. This manner of formulation is appropriate for
robots in environments in which the effects of an action are not fully predictable,
but with sufficient sensing capability to fully determine the effects of each action
a posteriori. When a robot’s sensors are no longer adequate to fully determine
the current state, the problem moves from the familiar state space to a richer
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space called an information space. Formulations with sensing uncertainty —
with or without prediction uncertainty — are the topic of Section 13.3.

In the remainder of this section, we discuss some preliminary ideas that are
relevant no matter what sort of uncertainty is present.

Uncertainty as a game against nature A unifying theme will be the idea of
uncertainty as a “game against nature.” Imagine an external decision maker
called nature whose decisions determine the values of all uncertain parameters.
Executing a plan becomes an interaction with nature as well as with the envir-
onment. Both our robot and nature make decisions and the outcome is fully
determined given both of these decisions. In a sense, we are pushing all of the
uncertainty in a system off to nature. Then, if we can develop some model for
how nature will make its decisions, we can build plans to react accordingly. We
use the term uncertainty model for this description of how nature will make its
decisions.

The uncertainty model we select will directly influence the solution concepts
we use. That is, an uncertainty model determines the answer to the question
“What does ‘optimal’ mean?” As a result, the mechanics of each planning
algorithm will also change. In this chapter, we will consider two distinct types
of uncertainty models:

• Under nondeterministic models [1, 2], uncertainty is expressed as a
set of possible outcomes. This model is also sometimes called the
“possibilistic,” “worst case,” or “set membership” model. Domains
in which firm guarantees are required or that involve interaction
with a strong antagonist are good candidates for nondeterministic
uncertainty models.

• Under probabilistic uncertainty [3] we express uncertain events in
terms of a conditional probability distribution over possible out-
comes, given certain current conditions. This model is particularly
well-suited for cases where uncertainty arises from precision errors
in sensing or actuation, or from random exogenous events.

The reader should note that legitimate criticisms can be leveled against both
of these uncertainty models, some of which are elaborated in Section 13.2.1.2.
Consequently, selecting an uncertainty model can sometimes be more of an art
than a science. Most of the algorithms we will present are essentially independ-
ent of uncertainty model in the sense that they can be adapted to the type of
uncertainty we select. Generally, we will derive similar but distinct versions for
these two uncertainty models.

What is a plan? The concept of a solution for a planning problem in the absence
of uncertainty is well understood: We seek a sequence of actions that transforms
the system of interest from an initial state into a goal region, possibly optimizing
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some cost functional along the way. Uncertainty will force us to reconsider this
notion of what a solution is.

Certainly the idea of a solution as a sequence of actions is made inadequate
by the introduction of prediction uncertainty. Since state transitions are not
fully predictable, we must prepare our agent to act in any state it may reach,
rather than only those along a single path we have intended for it. Sensing
uncertainty complicates the matter further because the agent will no longer
even know its current state with certainty and instead must be able to react to
any sensor/action history it encounters. These ideas will be made more formal
in subsequent sections. The important idea here is that by allowing uncertainty
we are forced to revise our notion of what constitutes a plan; for each new
formulation we study, we will ask “What is a plan?”

Discrete vs. continuous spaces Many decision-theoretic planning algorithms
are easiest to understand and implement under the assumption the spaces of
states, actions, and observations are finite, or at least countable. Indeed, we will
adopt this assumption in our initial presentations of most techniques. However,
in robotics, the most natural models often involve continuous spaces. For this
reason, we must pay careful attention to how these methods can be used to deal
with continuous-space problems. Any algorithm designed for a digital computer
must have discrete versions of these spaces in some way. Such discrete spaces
will generally fall into one of the two broad categories given below:

• Critical events: For some problems, there is a natural, finite partition
of the state or action space into equivalence classes in such a way
that the planning problem can be solved by considering only these
equivalence classes, rather than individual states or actions.

• Sampling: When no critical event decomposition is available, we
can resort to techniques that approximate continuous state or action
spaces by a finite selection of samples.

13.2 PLANNING UNDER PREDICTION UNCERTAINTY

We now begin with algorithms for planning with uncertainty in prediction.
Our primary concern here is the need for feedback. Since we cannot plan an
explicit sequence of states, we must instead prepare our decision maker for
any state it may encounter. Thus we replace the usual action sequences with
functions called policies that map from state space to action space. To simplify
the presentation, we begin with a certain class of degenerate planning problems,
namely those in which only a single decision needs to be made. The appropriate
extensions to allow multi-stage decision making (i.e., planning) will be made
in Section 13.2.2.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 505 — #5

Algorithms for Planning under Uncertainty 505

13.2.1 Making a Single Decision

Let us first consider the problem of making a single decision in the face of
uncertainty in the outcome. We will model this uncertainty as decision to be
made by another decision maker called nature. To formalize, a single-stage
decision problem is defined by:

• A nonempty action set U that represents the set of choices available
to our robot.

• A nonempty parameter set� that represents set of choices available
to nature. This set should encode all of the uncertainty in the outcome
of our agent’s decision. In other words, given u and θ , the outcome is
fully determined. The value of θ is hidden from the robot.

• A cost (or loss) function L : U × � → R encoding the relative
undesirability of each possible outcome. This is the quantity we will
want to minimize. Equivalently, we may define a reward function we
attempt to maximize.

• An uncertainty model for �. Under probabilistic uncertainty, this
is the distribution P(θ). Under nondeterministic uncertainty, we
need only a set of possibilities for θ . We may assume that any
θ ∈ � is allowed, hence, no additional information needs to be
specified. (Nondeterministic uncertainty will not be so simple for
later formulations.)

The objective is to choose a u that will result in the smallest possible L(u, θ).
However, the outcome of any particular trial is unpredictable. Instead, we will
use the uncertainty model for θ to describe an anticipated outcome. Under
nondeterministic uncertainty, the best we can do is to consider worst case cost.
The worst case optimal decision u∗ is

u∗ = argmin
u∈U

max
θ∈� L(u, θ) (13.1)

With the probabilistic uncertainty model, the choice of θ is random, so the
relevant measure is the expected cost. The decision u∗ that minimizes expected
cost is

u∗ = argmin
u∈U

Eθ [L(u, θ)] (13.2)

= argmin
u∈U

∑
θ∈�

P(θ)L(u, θ) (13.3)

In either case, a plan is simply a choice of some u ∈ U and the problem can be
solved with ordinary optimization techniques.
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13.2.1.1 Including an observation

The previous formulation gave the decision maker no special information about
what selection would be made for θ on a particular trial. We may extend the
model by including an observation space Y . Each y ∈ Y will correspond to a
measurement or reading that we can think of as giving the decision maker a
“hint” about the θ that will be selected. The decision maker is given some y ∈ Y
and can use this value when selecting a u ∈ U. Thus, a plan is a decision rule
(or strategy or policy) γ : Y → U. The presence of observations will change
our uncertainty models to be conditioned on the value of y:

• Nondeterministic: We assume that y restricts the set of choices avail-
able for θ . This can be expressed as a function F : Y → 2� so that
F(y) ⊆ � represents possible choices for θ given y. Now the optimal
decision rule γ ∗ is simply the one that makes the best worst-case
decision for each y:

γ ∗(y) = argmin
u∈U

max
θ∈F(y)

L(u, θ) (13.4)

Notice that the only change from (13.1) is that the max operation is
over only F(y), rather than all of � as before.

• Probabilistic: The distribution for θ is now conditioned on y. That is,
for each y ∈ Y and θ ∈ �, we assume that the conditional probability
P(θ |y) is known.

Given y and u, we can write the expected cost (also called
conditional Bayes risk in this context) as

Eθ [L(u, θ)] =
∑
θ∈�

P(θ |y)L(u, θ) (13.5)

The decision rule to minimize this is

γ ∗(y) = argmin
u∈U

∑
θ∈�

P(θ |y)L(u, θ) (13.6)

Two prominent examples of single-stage decision-making with observations
are parameter estimation [4,5] and  classification [6–8]. In both, we have  U = �

and L (x, θ) = 0 if and only if u = θ . The observation y will give some
information about θ , perhaps as a feature vector or a noise-tainted estimate of θ .
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13.2.1.2 Criticisms of decision theory

This is an appropriate point to scrutinize the assumptions implicit in the the use
of decision-theoretic methods.

Generating cost functions. First, most decision-theoretic methods depend on a
cost function L which must be selected by hand for each problem. Choosing an
appropriate cost function may be difficult. Utility theory [5,9,10] deals with the
existence and, to a lesser degree, construction of these cost functions under the
assumption that the decision maker is, in a precisely defined way, reasonably
rational. Note also that some formulations can be reworked to eliminate the
need for quantification of costs. For example, the minimax formulation of
(13.1) really only requires a total ordering on U ×�, rather than a real-valued
cost function, to make sense. More generally, many decision-theoretic methods
can be augmented with sensitivity analysis, which is a way of quantifying the
amount of disturbance in L needed to make some change in the optimal policy.
The idea is that if the policy is fairly robust to changes in L, then a poorly crafted
cost function will not have much effect on the decisions made.

Pessimism and nondeterministic uncertainty. Nondeterministic models for
uncertainty are often criticized for being overly pessimistic. In fact, using non-
deterministic uncertainty with worst-case analysis can cause serious limitations
on the planning problems that can be solved. Section 13.2.3.1 will highlight this
problem in the context of the convergence of value iteration. Of course, the fact
that we express uncertainty as a set of possible outcomes does not constrain us
to worst case analysis. One can easily imagine an optimistic “best-case” version
of (13.4):

γ ∗(y) = argmin
u∈U

min
θ∈F(y)

L(u, θ) (13.7)

This is still unsatisfying because we have simply traded excessive pessimism
for an equal measure of optimism. A compromise approach called Hurwicz
weighting involves selecting a parameter α ∈ [0, 1] that is in some sense a
“coefficient of optimism.” We can use α to blend (13.4) with (13.7):

γ ∗(y) = argmin
u∈U

{
α

[
min
θ∈F(y)

L(u, θ)

]
+ (1 − α)

[
max
θ∈F(y)

L(u, θ)

]}
(13.8)

What is probability? There is also debate about the proper understanding of
probabilities. The Bayesian interpretation views probability as a belief about a
single trial. This is essentially the interpretation we have used so far. Given y,
a Bayesian thinks of P(θ |y) as a degree of belief that nature will select θ . In
contrast, the frequentist interpretation believes that probability is only properly
understood in the limit as the number of trials goes to infinity; a probability
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value says nothing to a frequentist about the next trial, but only about the limit
of an infinite sequence of trials. Frequentist interpretations of probability have
led to a different, more conservative form of decision theory [10].

13.2.2 Making a Sequence of Decisions

In the previous section, we considered the problem of making a single decision
in the face of some uncertainty in the outcome. We may think of planning
under prediction uncertainty as a generalization of this idea by introducing a
state space X and allowing a sequence of successive decisions to influence the
system’s transitions between states in X.

We divide time into stages and number them starting with one. Both the
robot and nature make a decision at each stage. For the moment, suppose that
the number of stages is limited to K . We will relax this restriction momentarily.
Let ũ = (u1, u2, . . . , uK ) and θ̃ = (θ1, θ2, . . . , θK ) denote the sequences of
decisions made by the robot and nature respectively. Given an initial state x1, we
can define a state sequence x̃ = (x1, x2, . . . , xK+1) according to a deterministic
transition function: xk+1 = f (xk , uk , θk). Figure 13.1 summarizes this situation
for a single stage. To state the problem more formally, we need:

• A nonempty state set X.
• A nonempty action set U. Alternatively, the set of available actions

may depend on the current state, that is, we have a set U(x) for each
x ∈ X . Since this variation only clutters the notation without making
the problem more interesting, we assume that the same actions are
available from each state. One possible realization of this action set
is that lower-level techniques like motion planning, map building,
and manipulation are implementations of the abstract actions we
consider. This sort of layered approach has been used in a number
of successful robotic systems [11–16].

• A nature action set �. As with U, nature’s available actions may
depend on x.

• A deterministic state transition function f : X × U ×� → X.

Nature

Decision
maker

f
uk

uk

xk +1xk

FIGURE 13.1 Planning with prediction uncertainty.
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• An initial state x1.
• A stage-additive cost functional

L(x̃, ũ, θ̃ ) =
K∑

k=1

l(xk , uk , θk)+ lF(xK+1) (13.9)

The cost functional L is defined in terms of single-stage cost function
l : X × U × θ → R ∪ {∞} that gives the cost for each possible
transition, and a termination cost function lF : X → R ∪ {∞} that
gives a cost for being in each state when execution ends after K
stages. Sometimes it will be convenient to discuss the special case
where the single-stage cost depends only on xk and uk . In such cases
we write simply l(xk , uk).

• A goal region XG. For each xg ∈ XG, we require lF(xg) = 0.
• An uncertainty model for �. As usual, we allow either probabilistic

or nondeterministic uncertainty. For nondeterministic uncertainty we
need for each x and u a set of possibilities�(x, u). In the probabilistic
case, we need a distribution P(θ |x, u).

Feasible planning. As an example, suppose we are not interested in optimizing
any cost measure but only in reaching XG. To accomplish this, we can set
l(x, u) = 0 for all x ∈ X and u ∈ U and set

lF(x) =
{

0 if x ∈ XG

∞ otherwise
(13.10)

With this cost functional, any plan execution that terminates in XG will have
cost 0; any execution that terminates outside XG will have infinite cost.

Allowing executions of indefinite length. Now we relax the assumption that
our decision maker will act for a predetermined number of stages. Introduce
into U a fictitious termination action uF which indicates the decision maker’s
intention to end the execution. Create a fictitious state xF , to which selecting
uF always leads. Select U(xF) = {uF} so that once the agent has terminated,
it cannot restart. Lastly, assign l(xF , uF , θ) = 0 for all θ .

Now we imagine that stages continue infinitely, so that x̃, ũ, and θ̃ become
infinite sequences and the accumulated cost for an execution is

L(x̃, ũ, θ̃ ) =
∞∑

k=1

l(xk , uk , θk) (13.11)
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Now we can define K in terms of the actions selected, instead of assuming it is
known ahead of time:

K = min{k|uk = uF} (13.12)

If the robot eventually selects uF , then K is well defined. We neglect cases in
which the robot never chooses uF because the cost of such an execution will
generally increase without bound. By defining lF(x) = l(x, uF , θ) for all x and
θ , we ensure that (13.9) still holds.

Defining an optimal policy. A solution to this type of problem is a policy γ :
X → U that produces an action for each state. In the sequel, the terms plan and
policy are interchangeable.

Consider nondeterministic uncertainty. Just as we did in the single-stage
case, we want to select a policy that minimizes the worst-case cost. For a single
decision, that maximization was over nature’s choices for θ . Now the cost of a
single execution of a plan depends on the entire sequence of choices made by
both the robot and nature, namely ũ and θ̃ , as well as x̃, which they determine.
For a policy π , let H(π , x1) denote the set of all such histories that can result
from executing π starting at x1. This is the set over which we must consider
the worst case. Let Gπ (x1) denote the worst-case cost of executing the policy
π starting from state x1:

Gπ (x1) = max
(x̃,ũ,θ̃ )∈H(π ,x1)

L(x̃, ũ, θ̃ ) (13.13)

The probabilistic case is similar, using expectation instead of worst-case
analysis:

Gπ (x1) = EH(π ,x1)[L(x̃, ũ, θ̃ )] (13.14)

For either sort of uncertainty, an optimal policy π∗ is one that minimizes G:

π∗ = argmin
π

Gπ (x1) (13.15)

where the minimum is over all possible policies. Some readers may have noticed
that this definition depends on the initial state x1. Fortunately, there will exist
a single policy that is optimal regardless of initial state. Suppose a policy π∗
achieves the minimum in (13.15) for a fixed x1 and let x denote a state reachable
from x1. If π∗ were not optimal from x, then the goal could be reached from
x1 via x with lower cost than by executing π∗, contradicting the optimality of
π∗. Consequently there will exist a single policy that is optimal regardless of
initial state.
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We have defined a general type of planning problem that includes uncertainty
in state transitions and defined a notion of a solution to such a problem. Now
we turn our attention to general-purpose solution methods for these problems.
As one might expect, we must carefully weigh the trade-offs between generality,
optimality, and tractability. Since optimality will come only at a high compu-
tational cost, we consider approximate solution methods in Section 13.2.4. In
one sense, computing an optimal plan is just an optimization problem over
the extremely large space of all policies. Fortunately, our optimality criterion G
exhibits enough structure to make several different kinds dynamic programming
possible.

13.2.3.1 Value iteration

Value iteration [17] is so named because it gradually develops a value func-
tion or cost-to-go function from which an optimal policy can be extracted.
We will derive a recursive expression for this value function; this recurrence
will lead directly to a planning algorithm. The derivation proceeds slightly
differently depending on the uncertainty model.

Nondeterministic uncertainty. Fix a stage k and let G∗
k(xk) denote the worst-

case cost that could accumulate if the robot executes π∗ starting at xk . We can
write G∗

k(xk) as an alternation of minimum (from the optimality of π∗) and
maximum (from the use of worst-case analysis) operations:

G∗
k(xk) = min

uk
max
θk

min
uk+1

max
θk+1

· · · min
uK

max
θK

{
K∑

i=k

l(xi, ui, θi)+ lF(xK+1)

}

(13.16)

Suppose we separate the first term l(xk , uk , θk) from the summation. Since this
term only affects the outermost minimum and maximum operations, we can
extract it from all of the others to get

G∗
k(xk) = min

uk
max
θk

{
l(xk , uk , θk)+ min

uk+1
max
θk+1

· · · min
uK

max
θK

 K∑
i=k+1

l(xi, ui, θi)+ lF(xK+1)




 (13.17)
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Notice that the innermost portion of (13.17) is simply Gk+1(xk+1), leaving a
simple recurrence:

G∗
k(xk) = min

uk
max
θk

{l(xk , uk , θk)+ G∗
k+1(xk+1)} (13.18)

We also have a simple base case:

G∗
K+1(xK+1) = lF(xF) (13.19)

The value iteration algorithm is a direct implementation of this recurrence. In
iteration i of the algorithm, we use the values of G∗

K−i+1 from the previous
iteration (or, when i = 0, from the base case) to compute G∗

K−i according to
(13.18). Of course, K , the number of actions taken by the robot before ter-
minating, is not known ahead of time. One way to think of this is that
the algorithm starts with the stage in which the robot terminates and move
backward in time, considering progressively longer executions that lead to
termination. The value of K never becomes relevant to the execution of the
algorithm.

An implementation might be based on two tables, each with one entry for
each state. At iteration i, one table holds the values of G∗

K−i+1 while the other
is filled in with G∗

K−i. After an iteration finishes, the roles of these tables can
be swapped in preparation for the next iteration.

We want to terminate the value iteration algorithm when we reach an itera-
tion in which no change occurs, that is, when an iteration i is reached in which
G∗

K−i = G∗
K−i+1. If this occurs, then we will have reached a stationary value

function G∗ = G∗
K−i that gives the worst-case cost that will result from execut-

ing an optimal policy starting from each state. This convergence will occur for
all states from which there exists some policy that can guarantee reaching XG.
If no policy can guarantee reaching XG, then no stationary value function exists

each case.
Finally, given a stationary value function G∗, we can extract an optimal

policy π∗ in a straightforward way. When the robot is in state xk , we want to
choose the uk that achieves the minimum in (13.18):

π∗(x) = argmin
u

max
θ

{l(x, u, θ)+ G∗(f (x, u, θ))} (13.20)

© 2006 by Taylor & Francis Group, LLC

and value iteration will not converge. Figure 13.2 shows a simple example of



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 513 — #13

Algorithms for Planning under Uncertainty 513

x1 xg

xg
x1

(a)

(b)

FIGURE 13.2 Two simple nondeterministic planning problems. In (a), nature can
always prevent the decision maker from reaching the goal. In (b), all flows lead to
the goal.

Probabilistic uncertainty. Under probabilistic uncertainty, a very similar
approach will work, because of the linearity of expectation:

G∗
k(xk) = min

uk ,...,uK
Eθk ,...,θK

[
K∑

i=k

l(xi, ui, θi)+ lF(xK+1)

]
(13.21)

= min
uk

Eθk [l(xk , uk , θk)+ G∗
k+1(xk+1)] (13.22)

The base case is the same:

G∗
K+1(xK+1) = lF(xF) (13.23)

Equation (13.19) and Equation (13.22) provide the base case and recursive case
for value iteration, which works in just the same way as in the nondeterministic
case. Convergence, however, is an even thornier question than in the non-
deterministic case, because of the possibility that the costs-to-go will converge

is the case. This phenomenon will occur any time there is nonzero probabil-
ity of being forced by nature to traverse cycles in the state space. For many
applications, the costs-to-go will converge quickly to good approximations of
the optimal values. More importantly, recall that we are not directly interested
in G∗, but in the policy π∗ we extract from it. Thus, we only need the cost-to-go
to converge to a point where we are reasonably certain of which action is the
correct choice from each state.

© 2006 by Taylor & Francis Group, LLC
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x1 xg

1

1

1

1

1/2

1/2

FIGURE 13.3 Probabilistic uncertainty can cause value iteration to converge only in the
limit. Edges are labeled with transition probabilities. In this example, nature can cause
executions of arbitrary length. However, executions that traverse the cycle in the graph
many times are unlikely. Assuming the cost of each transition is 1, the cost-to-go for x1
converges 2 + 4

∑∞
i=0 i( 1

2 )
i+1 + 1 = 7.

Finally, when the dynamic programming iterations finish, we can use the
resulting G∗ to extract an optimal policy. The probabilistic analog to (13.20) is

π∗(x) = argmin
u

Eθ [l(x, u, θ)+ G∗(f (x, u, θ))] (13.24)

13.2.3.2 Policy iteration

Value iteration was a dynamic programming technique in the space of states.
Only after the stationary cost-to-go function (or an approximation of it) is
reached can a policy be extracted. In contrast, policy iteration [17,18] performs
dynamic programming directly in the space of policies. At each iteration, a
fully-formed policy is generated.

Each step of policy iteration has two parts: policy evaluation, in which the
expected cost of executing the current policy is computed and policy improve-
ment, in which this information is used to construct a policy better than the
current one. To simplify notation, assume that the cost of each transition depends
on only x and u, so that we can write l(x, u) rather than l(x, u, θ).

Policy evaluation. First, how can we evaluate a fixed policy π? Recall that
Gπ (x) denotes the expected cost of executing π starting at x. The values of
Gπ (x) will serve as our criteria for evaluating π . We can derive an expression
for Gπ (x) in a similar manner to the derivation of (13.22), but in which we
restrict the available actions in each state to the single action suggested by π :

Gπ (x) = Eθ [l(x,π(x))+ Gπ (f (x, u, θ))] (13.25)

= l(x,π(x))+
∑
x′∈X

Gπ (x
′)P(x′|x, u) (13.26)
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The transition probability P(x′|x, u) can be obtained by marginalizing over θ :

P(x′|x, u) =
∑

{θ |f (x,u,θ)=x′}
P(θ |x, u) (13.27)

Define n = |X|. Equation (13.26) is a linear equation with n unknowns, namely
Gπ (x) for each x. If we make n copies of (13.26), one for each x ∈ X, we
get a linear system with n variables and n equations. Solving this system with
standard linear algebra methods (e.g., singular value decomposition [19]) gives
values for Gπ (x).

π ′ that is an improvement over π in the sense that Gπ ′(x) ≤ Gπ (x) for all x. We
can construct π ′ in a relatively direct way. For each x define π ′(x) according to

π ′(x) = argmin
u∈U

{
l(x, u)+

∑
x′∈X

Gπ (x
′)P(x′|x, u)

}
(13.28)

This is probably best understood in relation to (13.24). The real difference is
that during execution of policy iteration, G∗ is unknown. Instead, we use Gπ
as an estimate for G∗. Since π ′ will take the best action from x under the
assumption that Gπ (x′) is the cost-to-go after this step, we can conclude that
π ′ is at least as good as π . If π ′ = π , then the algorithm has converged to π∗
and can terminate.

One important property of policy iteration is that, unlike value iteration,
it is guaranteed to terminate in finite time. Since an improvement is made on
each iteration, no policy will occur more than once. But there are only |U||X|
different policies to consider. Therefore, this algorithm will terminate with the
optimal policy in at most |U||X| iterations, but generally much faster than this.

13.2.3.3 Other methods

We have focused on only two optimal algorithms in order to provide some
amount of depth to the subject, and because many other algorithms can be seen
as variants of either policy iteration or value iteration. The versions we describe
are a form of backward dynamic programming in the sense that they begin
with termination and progress backward in time. Forward versions are also
possible [17], but slightly more complex conceptually. We described value
iteration as a series of sweeps across the state space performing updates but
the ordering of updates allows more flexibility. In some cases this property can
be exploited to find good policies faster using so-called asynchronous methods
[20–22]. Under certain restrictions, Dijkstra’s shortest-path algorithm can be
adapted to account for uncertainty [23].

© 2006 by Taylor & Francis Group, LLC

Policy improvement. Now we will show how to use Gπ to generate a new policy



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 516 — #16

516 Autonomous Mobile Robots

13.2.4

Now let us turn our attention to algorithms for planning that is only approx-
imately optimal. Suboptimal planning is important for problems that are too
complex to solve optimally and for situations in which resources for compu-
tation are limited. For example, if an autonomous robot suddenly discovers
an error in its model of the world (say, an unexpected obstacle in its path),
it must quickly replan under its new world model. In such a circumstance,
a plan must be generated quickly and computing an optimal plan may not
be possible. We have already seen one suboptimal planning algorithm — the
prematurely terminated version of value iteration that arose for probabilistic
problems that converge only in the limit. There are also a number of more
specialized algorithms.

13.2.4.1 Certainty equivalent control

Allowing even only prediction uncertainty makes planning much more diffi-
cult. What happens if we ignore the uncertainty when generating a plan? This
is the idea behind certainty equivalent control. More precisely, we create an
uncertainty-free planning problem by assuming that uncertain parameters will
take on “typical” values. So in our formulation, we might form a determin-
istic planning problem by defining a deterministic state transition function f̄
according to the most likely successor:

f̄ (xk , uk) = f (xk , uk , arg max
θk

P(θk|xk , uk)) (13.29)

In the special case where states are numbers, a “typical” result might be the
expected one:

f̄ (xk , uk) = f (xk , uk , Eθk [xk]) (13.30)

By solving the planning problem with transition function f̄ , we get a plan for
the original problem under f . Remarkably, for a certain classes of systems (e.g.,
linear systems with quadratic cost), this method has been shown to generate
optimal plans [24].

13.2.4.2 Limited lookahead

Limited lookahead (or rolling horizon approximation) is an approximation tech-
nique that aims to reduce the computation required in value iteration. Suppose
we have some estimate of the optimal cost-to-go Ĝ ≈ G∗. We use this as the base
case for value iteration, replacing (13.19). (Some readers may recognize this
as essentially the same method that drives computer game-playing, in which Ĝ
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is called an evaluation function.) If we run i rounds of value iteration with Ĝ
as the base case, the resulting policy will be optimal for the simplified prob-
lem in which the decision maker acts for i stages before terminating with cost
Ĝ(xk). The similarity of this policy to π∗ depends directly on the similarity of
Ĝ to G∗.

One question that remains is how to select Ĝ. One possibility is to use some
heuristic method to generate a base policy π̂ and use its cost-to-go as Ĝ:

Ĝ = Gπ̂ (13.31)

One-step lookahead algorithms built on a base policy in this way are called
rollout algorithms. This rollout can be viewed as a single step of policy iteration
in the sense that the cost-to-go function of one policy, π̂ , is used to create a
new, improved policy.

Until now, we have talked about methods which handle problems with finite
state spaces and finite action sets. In many situations, especially in robotics,
continuous state spaces and action sets are more natural. By continuous, we
mean that either the state space, the action set, or both have an uncountably
infinite number of elements. In this section, we will extend the methods men-
tioned above to problems with continuous spaces. The main difficulty is that
the techniques we have presented depend on iterating over the elements of X
and U. The key idea of the extension is to find a suitable finite representation
of the original problem. Then the new problem can be solved with methods
similar to those we have already developed.

The first step of the transformation process is to approximate the continuous
state space with a finite sampling point set. These sampling points could be
obtained by any of the several methods, such as random sampling [25], quasi-
random sampling [26], grid sampling [27], or lattice point sampling [28–30].
In selecting one of these sampling methods, one must consider several issues,
including the uniformity of the points (How well are the points spread out?) and
neighborhood structure (Given a point in the underlying space, how easy it it to
locate its neighbors in the sample set?). Some example sets of sampling points

and comparison of sampling techniques appears in Section 5.2 of Reference 23.
After the continuous state space is represented by a finite set, standard

value iteration as described in Section 13.2.3.1 can be applied with the following
modification. As the algorithm proceeds, we maintain the value function G∗

k(xk)

only for states in the sampling set. Recall that the update equation (either [13.18]
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in the unit square are shown in Figure 13.4. A more thorough characterization
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(a)

(c)

(b)

FIGURE 13.4 Three ways to select samples in the unit square. Dots represent samples,
the lines show their respective Voronoi cells. Larger Voronoi cells indicate poor
uniformity. (a) Pseudorandom samples. (b) Grid samples. (c) Lattice samples.

or [13.22]) depends on knowing G∗
k+1(xk+1) for each choice of uk and θk .1

If xk+1 is not in the sample set, then G∗
k+1(xk+1) will not be available, as

To make value iteration work, the value function at xk+1 needs to be approx-
imated with values of states in the sampled set [31]. In References 32 and 33,
a neural network is used to approximate the value function. A more conven-
tional way is by interpolation. Interpolation involves designating some set of
samples as “neighbors” of xk+1 and using as the value function at xk+1 some
weighted combination of the value function at each of these neighbors. Inter-
polation has been most thoroughly studied for the case in which the sample
set is a grid. In this case, the interpolation can be performed in at least two

1 If U and � are themselves continuous, it may be necessary to sample them as well.
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x1

x2 x3

x4 x5

u, u
x

FIGURE 13.5 Dots denote sample states. Applying an action u and nature action θ on
a sampled state x1 moves the system to state x which is not in the sampled set. Some
form of interpolation is needed to estimate the value function at x.

different ways:

• Multi-linear interpolation. In the 1D case, multi-linear interpolation
is just linear interpolation between data points. In higher dimensions,
the procedure is recursive:

1. Choose any axis and project the point onto two faces that
are perpendicular to the chosen axis.

2. Use (n − 1)-dimensional multi-linear interpolation to
calculate the value function at these two points.

3. Linearly interpolate to calculate the value of the given
point according to the value of two points on the two faces.

Multi-linear interpolation will process 2n data points for one inter-
polation in n-dimensional state space. It can be very time-consuming
for high-dimensional problems.

• Simplex-based interpolation [34–37]. This method uses Kuhn tri-
angulation to decompose the n-dimensional hypercube into n! sim-
plices, each of which has n + 1 vertices. Then the simplex-based
interpolation is to calculate the value according to the n + 1 vertices
of the simplex containing the given point. Since only n+1 data points
and O(n log n) time will be needed in one interpolation, it is much
more efficient than multi-linear interpolation method.

Finally, with the finite sampled set and a chosen interpolation method, we
could run value iteration as in the discrete case, but interpolating to estimate the
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value function for states that are not in the sample set. Similarly, the optimal
policy can be extracted from either (13.20) or (13.24), again using interpolation
to estimate G∗. More details on sampling-based dynamic programming in
continuous state spaces appear in References 17 and 38–41.

13.2.6 Variations

We conclude this section with a survey of variations to the problem formulated
in Section 13.2.2.

13.2.6.1 Infinite horizon models

The model presented in Section 13.2.2 deals with planning problems with a
well-defined goal set. The decision maker interacts with the environment for
a finite period of time before selecting a termination action. What happens if
we eliminate the termination actions and allow the robot to continue execut-
ing for an infinite number of stages? Problems of this type are called infinite
horizon problems and have been studied extensively in artificial intelligence
and stochastic control theory.

Since the process is infinite, we can omit x1, XG, and lF from the model.
However, the most striking change is in the cost functional L(x̃, ũ, θ̃ ). Excluding
the case in which there are cycles with zero or negative cost in which the
robot can linger, allowing K to approach infinity in (13.9) will cause L to
diverge. As a result, (13.9) is no longer a suitable optimality criterion. We must
find a way of keeping the cost finite for an infinite sequence of actions. Two
possibilities are:

• Average cost per stage (or gain-optimal cost). One way to keep the
cost finite is to divide by the number of stages:

L(x̃, ũ, θ̃ ) = lim
K→∞

1

K

K∑
k=1

l(xk , uk , θk) (13.32)

If l is bounded by some constant, then it is clear that L must
remain less than this constant. One major problem with this model
is that costs over any initial prefix are overshadowed by long-run
performance [42].

• Discounted cost. Pick a parameter α ∈ (0, 1) called a discount factor
and use α to define L in the following way:

L(x̃, ũ, θ̃ ) =
∞∑

k=1

αk−1l(xk , uk , θk) (13.33)
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The intuition is to place less weight on costs that occur further into
the future. We may think of α as a measure of “far-sightedness.” If α
is increased, loss from later stages has greater influence on the value
of L. The average cost model can be seen as a limiting case as α
approaches 1 [43].

It is important to understand that α is a part of the definition of the
optimal policy. A change in α can result in a change in which actions
are considered optimal from each state. For this reason, the average
cost model is sometimes preferred because it does not introduce any
new parameters to tune. Regardless, discounted cost is the dominant
model because it is a simple and mathematically manageable way to
keep finite the cost of an infinite length execution.

The dynamic programming methods of Sections 13.2.3 can
be adapted to find optimal policies for discounted costs, but care
must be taken to ensure the stability and convergence properties
of these algorithms. A detailed treatment of these methods and
others for infinite horizon problems is given in Reference 43. In
Section 13.2.6.2, we discuss reinforcement learning, which gener-
ally uses a discounted cost model, but assumes that the uncertainty
model for θ is unknown.

13.2.6.2 Reinforcement learning

One of the major problems with decision-theoretic planning as we have
presented it is that there is a heavy modeling burden associated with the
assumption that an uncertainty model for � is given. In the probabilistic case,
this is the assumption that the distribution P(x′|x, u) is known. When X and
U are finite, there are still |X| |U| separate values needed to describe this
distribution. In a physical system, each of these would require many trials
to estimate accurately. For many nontrivial environments, this can be quite
impractical.

An alternative is to force the robot to learn these probabilities along the
way instead of specifying them upfront. The family of methods that takes this
approach is generally called reinforcement learning (RL), and occasionally
neuro-dynamic programming [32] (although that term has a somewhat more
specific meaning) or simulation-based methods [17]. The primary difference
from methods which assume that transition probabilities are known is that rein-
forcement learning is an online model. This means that there is no separation
between planning and execution. Rather, as the robot interacts with the envir-
onment, it gradually refines its plan. We will very briefly describe an algorithm
that, for reasons that will soon be obvious, is called Q-learning [44]. Q-learning
is quite simple, but worth understanding because nearly all other RL algorithms
can be seen as variations on the same basic themes.
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We can think of Q-learning as a type of value iteration in which, instead of
using G∗ (which gives the value of each state), use a function Q : X × U → R

that gives values for state–action pairs. More precisely, we define Q(x, u) to
be the expected cost of starting from state x, taking action u, and acting optimally
(i.e., according to π∗) thereafter.

The algorithm works by maintaining a table that lists, for each state–action
pair, an estimate Q̂(x, u) of the real Q(x, u). We initialize Q̂(x, u) arbitrarily.
After each action, the agent is informed of the new state x′ and the cost l of the
corresponding transition and an update to the table is performed:

Q̂(x, u) ← (1 − ρ)Q̂(x, u)+ ρ

(
l + min

u′∈U(x′)
Q̂(x′, u′)

)
(13.34)

If we use the discounted-cost infinite horizon model (as is the custom in the
reinforcement learning literature), we must include the discount factor:

Q̂(x, u) ← (1 − ρ)Q̂(x, u)+ ρ

(
l + α min

u′∈U(x′)
Q̂(x′, u′)

)
(13.35)

In either update rule ρ is a designer-specified convergence rate or learn-
ing rate. It has been shown (e.g., [8]) that with certain assumptions about the
sequence of actions chosen, Q̂ will converge to Q under this update rule. It may
seem conspicuous that the update rule never mentions the transition probab-
ility P(x′|x, u). In fact, Q-learning is an example of the so-called model-free
algorithms that never build an explicit model of the transition probabilities.
Instead, the probabilities are hidden by the fact that the update in (13.34) or
(13.35) is performed repeatedly, with the distribution of resulting states chosen
according to P(x′|x, u). Thus, successor states that are more likely will have
greater influence over Q̂(x, u).

Exploration vs. exploitation. To this point, we have shown how Q-learning
maintains an estimate for the value of each state-action pair without saying
anything about which actions to choose. Suppose Q(x, u) is known for all x and
u. Then the best action to choose (cf. [13.20]) is

π∗(x) = argmin
u

Q(x, u) (13.36)

Unfortunately, the decision maker must choose actions without knowledge
of the real Q. To obtain the best cost over a limited period of time, there is a
tension between exploring the space in order to make Q̂ a better estimate of
Q and exploiting actions that have been effective so far — that is, actions for
which Q̂ is currently small.
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The exploration–exploitation dilemma is an important enough problem in
reinforcement learning that many different methods have been suggested to deal
with it, including initial optimism [45], which assigns large initial values to each
Q̂(x, u), ensuring that each action is tried often enough to “drive down” its Q̂
value to near its true value, and ε-greedy policies [33] that select the current best
action with probability ε and choose randomly otherwise. An in-depth study of
this topic is given in Reference 46.

Temporal credit assignment. While the update rule (13.34) is guaranteed to
converge, in practice this can require a large number of trials to reach a good
estimate for Q. The issue is that of credit assignment: When a reward is received,
to which actions do we attribute it? In (13.34), credit is assigned only to the
action immediately preceding the reward. This is troubling because if a large
reward (say, obtaining a Ph.D.) occurs, credit for this reward will initially
only be granted to the action that immediately led to this reward (finishing
a dissertation) and not to any earlier actions that made the reward possible
(enrolling in graduate school). Only after earning many Ph.Ds (!) will the
influence of this reward propagate backward to have an influence on the decision
to enroll in graduate school.

To combat this problem, more aggressive credit-assignment schemes have
been developed that endeavor to squeeze more out of each action taken by the
decision maker. One of the most effective techniques is to maintain an eligibility
trace — a list of recent state–action pairs along with a weight for each. Eligibility
traces are so-named because they determine which Q̂(x, u) values are eligible to
be updated after the next action. Recently visited states are marked as eligible.
After receiving a new cost l, we perform an update similar to (13.34) for each
eligible state–action pair. As time passes, the weight of each eligible state
decays (reducing the amount of change in its Q̂ on subsequent iterations) until
it is finally removed from the eligible list.

13.2.6.3 Additional decision makers

Everything up to this point has focused on a single decision maker interacting
with an uncertain environment. Uncertainty is modeled as a “game against
nature.” A broad class of generalizations can be made if we allow additional
decision makers in the system, each with its own independent goals. This is the
realm of game theory [47, 48], which is concerned with the general situation
of multiple decision makers interacting in some way. The breadth and depth of
game theory literature will force us to focus on just a few issues that are vital
for planning in the presence of other decision makers.

Suppose we have n decision makers (not counting nature). At each stage,
decision maker i will select an action from an action set Ui that has some
influence on the resulting state. This means we must extend the state transition
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FIGURE 13.6 An illustration of the need for mixed strategies. The left robot attempts
to pass through a corridor while the right robot attempts to block its progress. Each must
independently decide whether to move to the left or right. If the left robot plays a pure
strategy, the right robot can take advantage and always get in the way. A mixed strategy
that chooses each direction equally often will enable the left robot to escape.

function:

f : X × U1 × · · · × Un ×� → X (13.37)

Each decision maker also has its own cost functional Li which depends on all
n actions selected at each stage. It is assumed that each decision maker has
complete knowledge of all of the Li’s. The special case where n = 2 and
L1(x̃, ũ, θ̃ ) + L2(x̃, ũ, θ̃ ) = 0 is unsurprisingly called a zero-sum game. This
corresponds to the situation where two players are in direct competition for
some limited resource.

What does a plan look like when there are multiple decision makers? The

illustrates a very simple problem that requires a mixed strategy that selects
actions at random according to some distribution. By contrast, the deterministic
strategies we studied for the single-agent case are also called pure strategies.

With a single decision maker, we defined optimality in terms of the expected
or worst-case cost. When there are multiple decision makers, optimality is
usually defined in terms of regret, which is a measure of how much a decision
maker could have improved his reward if he had known what actions the other
players would take. For a single stage game in which the actions selected are
u1, . . . , un, the regret Ri for player i is

Ri = Li(u1, . . . , un)− max
u′∈Ui

Li(u1, . . . , u′, . . . , un) (13.38)

For two-player zero-sum games, a pair of policies for which R1 = R2 = 0
is called a saddle point. A fundamental result in game theory is that if mixed
strategies are allowed, then a saddle point will always exist. For nonzero-sum
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games and those with multiple players, the idea of a saddle points can be
generalized to Nash equilibria, which are also based on the idea of eliminating
regret.

13.3 PLANNING UNDER SENSING UNCERTAINTY

In this section we address the planning problem in which the knowledge of
the robot’s current state is limited, or not available at all. This accounts for
the cases when the robot’s sensors do not uniquely determine the current state
of the robot (sensing uncertainty) and when the robot’s control is not perfect
(prediction uncertainty).

One common approach is to make an estimation of the current state, with
all the information available, and determine some bound for the state uncer-
tainty. Then the uncertainty may be ignored, and the algorithms of the previous
sections may be applied. However, the state estimation may be completely
avoided in the computation of a plan, that is, the robot may be able to
reach/achieve its goal without ever determining its current state. This gives
rise to the study of the information space, which will be the main topic of this
section.

Information spaces have appeared throughout the robotics literature in
many forms and under many different names. Information space concepts
arise in maze searching [49], preimage planning [50], error detection and
recovery [51], manipulation [52–55], bug algorithms [56, 57], gap navigation
trees [58, 59], perceptual kinematic maps [60], perceptual equivalence classes
and information invariants [61, 62], sensor-based planning [63], searching
unknown dynamic environments, D∗ [64], pursuit-evasion [65–69], prob-
abilistic navigation [70], Bayesian localization and SLAM [71, 72], and
guaranteed localization [73–75], and topological maps [76], to cite just a few
examples.

In general, the robot can gather information about the state from the
following sources:

• Initial conditions. Information the robot has about the task before the
first sensing measurement is taken or the first action is performed.
The particular initial condition for a planning problem, denoted by
η0, can have several forms:
1. Known state. The initial state x1 ∈ X is given. Uncertainty appears

when nature interferes with the state transition equation.
2. Nondeterministic. A set X1 ⊂ X is given. The initial state is

known to lie within X1.
3. Probabilistic. A probability distribution P(x1) over X is given.
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• Sensor observations. Online measurements of the state are made.
In general they do not give all the information of the state, either
because some state variable cannot be measured (a sensor for it is
not available), or due to limitations in the sensor construction, sensor
resolution, disturbances due to noise, etc.

• Previous actions. The record of the actions may provide the robot
with useful information. For example, under the assumption of per-
fect control, if the previous action was to move to the east, the current
state is more to the east as the previous state, although neither the
previous nor the current state is known.

• Available actions. The state may be inferred from knowledge of what
actions are available to the robot.

13.3.1 Discrete State Spaces

We first describe the information space when X, the state space, is finite or
countably infinite. The new element for computing a plan is that the robot does
not have a complete knowledge of the current state, but it can measure it in
some way through observations. Because of this, we begin our discussions
with modeling the robot’s sensors.

13.3.1.1 Sensors

A sensor is a device that provides some measurement of the current state. When
the robot performs a sensing in the environment, the sensor maps the state space
into the observation space Y . The observation space is the set of all possible
readings of the sensor, giving “hints” of the current state. This is different from
the case presented in Section 13.2.1.1, in which the observation only gave hints
of the possible action that nature would take. The sensor mapping, denoted by
h, takes several forms:

• State sensor mapping. Given a state x ∈ X, the observation y =
h(x) ∈ Y is completely determined.

• State-nature sensor mapping. Nature is allowed to interfere with
the sensor measurements. Let �(x) denote a finite set of nature
sensing actions, defined for each x ∈ X. The mapping produces an
observation y = h(x,ψ) for every x ∈ X and for every ψ ∈ �(x).
As with � in Section 13.2.1, the particular ψ chosen by nature is
assumed to be unknown.

• History-based sensor mapping. This case is similar to the last one,
but the observation may depend on previous states. If the plan is in
stage k, the observation is y = hk(x1, x2, . . . , xk ,ψk). In this case
ψk ∈ �k is the particular sensing action chosen by nature.
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FIGURE 13.7 Planning with sensing uncertainty. Note that the decision maker does not
have direct access to the state.

presented in Figure 13.7. The decision maker does not have direct access to the
state, which can only be measured through sensors.

13.3.1.2 Definition of the information space

Let X , U, and f follow the same definitions as in Section 13.2.2. If the plan is
at stage k, we want to determine which information is available to the robot,
either from the new observations, or the accumulation of previous information.
It is assumed that the robot keeps a record of each of the observations made.
Thus, the observation history, ỹ = (y1, y2, . . . , yk), is the ordered sequence of
observations up to state k. Similarly, the action history, ũ = (u1, u2, . . . , uk−1),
is the record of the actions taken. It runs until stage k−1, because action uk−1 is
applied in state xk−1, to yield the current state xk , where the observation yk is
made. Remember that η0 denotes the initial condition. The information state at
state k is defined as

ηk = (η0, ũk−1, ỹk) (13.39)

that is, the initial condition together with the history. Alternatively, an
information state can be expressed recursively as

ηk = (ηk−1, uk−1, yk) (13.40)

since the difference between the previous and the current information state
consists of the new observation made and the new action taken.

The set of all possible information states ηi for 1 ≤ i ≤ k, is called the
information space, I. Similar to the case of prediction uncertainty, presented in
Section 13.2.2, a plan in the information state is defined as a mapping π , but in
this case using the information space. This yields π : I → U. The components
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of a planning problem for information spaces on countable state spaces are:

• A  nonempty  state  space, X, which  is either finite  or countably  infinite.
• A finite action space, U. It is assumed that U contains the special

termination action uF .
• A finite nature action space, �(x, u) for each x ∈ X and u ∈ U.
• A state transition equation, f , that produces a state, f (x, u, θ) for

every x ∈ X , u ∈ U, and θ ∈ �(x, u).
• A finite or countably infinite observation space, Y .
• A finite nature observation action space, �(x) for each x ∈ X.
• A sensor mapping, h.
• An initial condition, η0.
• A goal set, XG ⊆ X.
• A real-valued additive cost functional L, which may be applied to

any state-action history, (x̃K+1, ũK ), to yield

L(x̃K+1, ũK ) =
K∑

k=1

l(xk , uk)+ lF(xK+1) (13.41)

If the termination action, uF , is applied at some stage k, then for
all i ≥ k, ui = uF , xi = xk , and l(xi, uF) = 0 if xi ∈ XG, or ∞
otherwise.

As before, the cost functional L(x̃, ũ) allows the evaluation of the quality
of a plan. Since there is uncertainty in the state prediction and in the sensing,
we can use either worst-case or expected-case analysis for evaluating plans.
If H(π , η0) denotes the set of all possible state–action histories given the plan
π from the initial condition, the cost of the plan with worst-case analysis is

Gπ = max
(x̃,ũ)∈H(π ,η0)

L(x̃K+1, ũK ) (13.42)

If a probabilistic model of the uncertainty is known, the expected cost of a
plan is

Gπ = EH(π ,η0)L(x̃K+1, ũK ) (13.43)

13.3.2 Deriving Information States

In its original definition, the information space seems unmanageable. In fact,
it only seems useful for planning problems where the number of states is very
small, since the history representing an information state grows linearly with
the number of stages. The main idea here is to map the original information
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space into a smaller space, ensuring that when a successful plan exists over the
original space, a plan will exist also in the smaller space. As expected, in the
general case, the smaller space will present plans that are feasible, but may not
be optimal in the original space. For most of the planning problems asking for
a feasible plan is already a challenging task.

In general, let κ : I → I◦ denote a subjective mapping from an information
space I to a derived information space, I◦. Ideally, I◦ should be as small as
possible while ensuring that solutions to the planning problem exist. While
the design of the mapping κ may take advantage of specific planning problem
characteristics, we next present two general approaches to derive information
states for I◦.

Nondeterministic-derived information states. The first method we discuss is
based on the inferences that can be done given an information state. If
the information state ηk is available, it is possible to compute the set Xk(ηk) in
which the actual xk is known to lie. The set Xk(ηk) is called a derived informa-
tion state. To compute the derived information state, we have to infer over the
observations and actions performed. For the observations, we can define

H(y) = {x|y = h(x,ψ), for ψ ∈ �(x)} (13.44)

that is, the set of all possible states the robot may be in, given an observation.
The set H(y) is called the preimage of y. Similarly, if we let the actions available
depend on the current state, the robot can determine a set of states V where it
may be, by computing

V(Uk) = {x′|Uk = U(x′) for x′ ∈ X} (13.45)

in which Uk are the actions available at stage k. The current state then lies in
the set H ∩ V . Note, however, that it can be assumed that the robot has some
kind of sensor that detects which kind of actions are available. This reduces the
computation of V and H into only the computation of H. Thus, we will discuss
only the case when U will be fixed for all x ∈ X.

From the state transition equation, it is possible to know which states may
be reached if action u is applied at state x. Let F be this set, formally defined as

F(x, u) = {x′ ∈ X|∃θ ∈ �(x, u) for which x′ = f (x, u, θ)} (13.46)

Using F and H, we next present how to compute the derived information
state, Xk(ηk), for any state k, using induction. Note that F and H eliminate the
direct appearance of nature actions. The base case (k = 1) of the induction is

X1 = η0 ∩ H(y1) (13.47)
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This first step consists only of making consistent the initial condition with
the first observation. Now assume inductively that Xk(ηk) ⊆ X is available, and
Xk+1(ηk+1) should be computed. First note that ηk+1 = (ηk , uk , yk+1), and the
new information is provided only by uk and yk+1. From (13.44), the state is
anywhere in H(yk+1). On the other hand, if xk was known, after applying uk ,
the state lies somewhere in F(xk , uk). Since xk is unknown, but it is known that
xk ∈ Xk(ηk), the new derived information state is

Xk+1(ηk , uk , yk+1) =
⋃

xk∈Xk(ηk)

F(xk , uk) ∩ H(yk+1) (13.48)

Given that the derived information state is always a subset of X, the derived
information space can be defined as I◦ = 2X . Note that if X is finite, I◦ is also
finite, which makes it preferable if the number of stages is much larger than the
size of X .

Probabilistic-derived information states. As before, we will compute derived
information states, but assuming that nature is modeled probabilistically. Nature
is also assumed to follow a Markov model, in which its actions depend only
on the current state, as opposed to actions or state histories. Thus, a derived
information state becomes a conditional probability distribution. The set func-
tions H and F become P(xk|yk) and P(xk+1|xk , uk), respectively. To compute
P(xk|yk) Bayes rule is applied as:

P(xk ∩ yk) = P(xk|yk)P(yk) = P(yk|xk)P(xk) (13.49)

Solving for P(xk|yk) yields

P(xk|yk) = P(yk|xk)P(xk)

P(yk)
= P(yk|xk)P(xk)∑

xk∈X

P(yk|xk)P(xk)
(13.50)

Bayes’ rule requires the knowledge of P(xk) and P(yk|xk). The prior P(xk)will
be replaced later by a derived information state, while the probability P(yk|xk)

is easily computed as

P(yk|xk) =
∑

ψ∈�(xk):yk=h(xk ,ψ)

P(ψ |xk) (13.51)

Since each information state is a probability distribution over X, it can be written
as P(xk|ηk), if it is derived from ηk . As before, derived information states can
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be computed inductively. For the base case (k = 1) we have η0 = P(x1) and
the first observation y1. Together they determine P(x1|y1) as

P(x1|η1) = P(x1|y1) = P(y1|x1)P(x1)∑
x1∈X P(y1|x1)P(x1)

(13.52)

Assuming inductively that P(xk|ηk) has been computed, P(xk+1|ηk+1) has to
be determined. Once again the derived information state can be written as
P(xk+1|ηk , uk , yk+1). Considering first the effect of uk , note that

P(xk+1|ηk , xk , uk) = P(xk+1|xk , uk) (13.53)

because ηk contains no additional information regarding the prediction of xk+1
when xk is given. To eliminate xk from P(xk+1|xk , uk) marginalization is used,
giving the derived information state

P(xk+1|ηk , uk) =
∑
xk∈X

P(xk+1|xk , uk , ηk)P(xk|ηk)

=
∑
xk∈X

P(xk+1|xk , uk)P(xk|ηk) (13.54)

The next step is to take into account the observation, yk+1. From (13.50),
k is replaced with k+1 and P(xk) is replaced with the information accumulated,
to give

P(xk+1| yk+1, ηk , uk) = P(yk+1|xk+1, ηk , uk)P(xk+1|ηk , uk)∑
xk+1∈X P(yk+1|xk+1, ηk , uk)P(xk+1|ηk , uk)

(13.55)

The expression for P(xk+1|ηk , uk) was given in (13.54). To calculate
P(yk+1|xk+1, ηk , uk) note that

P(yk+1|xk+1, ηk , uk) = P(yk+1|xk+1) (13.56)

because the observation depends only on the state.2 Since P(yk+1|xk+1) is
given as part of the sensor model, we are finished deriving the computation of
P(xk+1|ηk+1) from P(xk|ηk).

In this case, the derived information space is the set of all probability
distributions over X . Thus, the planningproblem can be expressed again

2 Here we are assuming that the sensor mapping does not depend on the history.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c013” — 2006/3/31 — 16:43 — page 532 — #32

532 Autonomous Mobile Robots

entirely in terms of the derived information space. A goal region can be
specified as constraints on the probabilities. For example, for some particu-
lar x ∈ X , the goal might be to reach any derived information state for which
P(x|ηk) > 0.9.

Let n = |X|. It is possible to embed I◦ in Rn with each state x ∈ X
representing a vertex of a (n − 1)-simplex. The coordinates of each vertex are
expressed using probabilities (p1, p1, . . . , pn) as barycentric coordinates. Here
pi is the probability of being in state xi. Since p1 + · · · + pn = 1, the vertices
of the simplex (i.e., (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)) correspond to
the cases when the state is completely known. A planning problem of this kind
is known as a Partial Observable Decision Process (POMDP).

Efficient solutions to POMDPs form an active area in the research com-
munity [77, 78]. The problem is clearly very difficult, since the dimension of
the space grows linearly with the number of states. However, the method of
value iteration, presented in Section 13.2.3.1 can be applied. Let �x ∈ It be
a derived information state. A worst-case analysis yields a cost functional of

�l(�xk , uk) = max
xk∈Xk(ηk)

l(xk , uk) (13.57)

and

�lF(�xF) = max
xF∈XF (ηF )

lF(xF) (13.58)

Thus, the dynamic programming recursion is similar to the one presented in
Section 13.2.3.1, but using derived information states:

G∗
k(�xk) = min

uk∈U


�l(�xk , uk)+

∑
�xk+1∈It

G∗
k+1(�xk+1)P(�xk+1|�xk , uk)


 (13.59)

Note that the set of observations and nature actions is finite, since I◦ is finite.
This implies that P(�xk+1|�xk , �uk) is only an approximation distributed over a
finite set of points of It . The space I◦ is a continuous space which usually
requires the specification of a probability density function.

A policy can be found by approximating with a grid in the (n − 1)-simplex,
and using interpolation for evaluating points not in the grid [79,80]. This method
will be described in more detail for information spaces when the state space is
continuous.
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13.3.3

Until now, we have described information spaces when the underlying state
space X is countable. Now we consider the case when X is a continuous
space.

13.3.3.1 Sensors

As expected, the catalog of sensors is richer in the continuous case. Some
models of sensors are:

• Linear sensing. It is assumed that Y = X. Thus, an identity sensor can
be defined in which y = h(x)makes the state immediately known. If
there is a bound r in the error of the measurement, the state lies in the
ball of radius r centered at y. This error is also commonly modeled
with a probability distribution (i.e., a Gaussian).

• Projection. In this model, the dimension of the observation space, ny,
is smaller than the dimension of the state space. Either the observa-
tions ignore coordinates of X (i.e., a gyroscope gives orientation, but
ignores position), or X is embedded in a smaller dimensional space
(i.e., a photograph takes X ⊂ R

3 into R2).
• Landmark sensor. A landmark sensor detects specific identifiable

features in the environment. In its more abstract form, it detects
specific points in the space (i.e., goal points or regions).

Specific sensors, such as an odometry sensor, which gives an estimation of
the distance traveled, can be defined in terms of a projection sensor modeled
together with a history-based sensor mapping. In recent years, depth sensors
have been widely used in mobile robotics. This type of sensors gives measure-
ments of the spatial distribution and shape of the obstacles in the environment.
This accounts for sensors such as the sonar, or the laser range finder. Each
sensor has an upper range. Obstacles farther from the sensor than this range
cannot be detected. As the range is decreased, the sensor becomes a prox-
imity sensor, and in the limit case it becomes a contact sensor. Note that
the physical implementation may vary widely here. While an acoustic sonar
measure time-of-flight of a high frequency sound, the contact sensor may be a
device that makes a reading when it is pushed, thus indicating that distance is
equal to 0.

13.3.3.2 Discrete-stage information spaces

The simpler case corresponds to a plan with discrete stages, and many of the con-
cepts for discrete spaces, at least at first glance, are the same as their continuous
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counterparts. Let the state space X ⊂ R
m be an n-dimensional manifold.3 The

observation space Y ⊆ R
m is now an ny-dimensional manifold, for ny ≤ m.

Also, let U ⊆ R
m be an nu-dimensional manifold for nu < m.

Given that the time is discrete, the concepts presented for discrete spaces
in Section 13.3.1.2 remain the same, but taking into account the fact that the
variables are continuous.

13.3.3.3 Continuous-time information spaces

Most of the definitions presented in Section 13.3.3.2 remain the same when we
consider a continuum of stages. Thus, X, Y , �(x), and �(x, u) are defined as
before. However, the state transition equation now takes the form

∂x

∂t
= ẋ = f (x, u, θ) (13.60)

for x ∈ X , u ∈ U, and θ ∈ �(x, u). This means that the nature actions
�(x, u) should be expressed in terms of velocities. Also, in the discrete case,
an information state was expressed in terms of history sequences, but in the
continuous case, histories become a function of time. Thus, ỹt : [0, t) → Y
ũF : [0, t) → U, and x̃F : [0, t) → X are the observation history, action
history, and state history, respectively, up to time t.

The sensor mappings are now expressed with:

1. State-sensor mapping. y(t) = h(x(t))
2. State-nature mapping. y(t) = h(x(t),ψ(t))
3. History-based sensor mapping. y(t) = h(x̃F ,ψ(t))

Note that x̃ is usually the solution of a differential equation.
The information state at time t becomes

ηt = (η0, ũt , ỹt) (13.61)

which has the same form and meaning as its discrete counterpart, but in con-
tinuous time. The set of all possible ηt is the information space at time t, It .
Since each ηt ∈ It is a function of time, It is a space of functions. Combining
all the information spaces up to time T ∈ [0, ∞), a single information space I
is obtained as

I =
⋃
t∈T

It (13.62)

3 For readers unfamiliar with the term, an n-manifold is a space that locally looks like Rn. Our
everyday notion of a surface corresponds to a 2-manifold as a subset of R3
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To evaluate the quality of a plan, a new cost functional should be defined.
Let L denote a real-valued, additive cost functional, which may be applied to
any state–action history, (x̃t , ũt), defined as

L(x̃t , ũt) =
∫ t′

0
l(x(t′), u(t′))dt′ + lF(x(t)) (13.63)

in which l(x(t′), u(t′)) is the instantaneous cost, and lF(x(t)) is a final cost.

13.3.4

13.3.4.1 Moving in an L-shaped corridor

This idealized example, which appeared originally in Reference 23, is inten-
ded to illustrate the issues that arise in selecting an appropriate map κ for
derived information states. The state space, X, for the example shown in Figure
13.8 has 19 states, each of which corresponds to a location on one of the
white tiles. For convenience, let each state be denoted by (i, j). There are 10
bottom states, denoted by (1, 1), (2, 1), . . . , (10, 1), and 10 left states, denoted
by (1, 1), (1, 2), . . . , (1, 10). Since (1, 1) is both a bottom state and a left state,
it will be called the corner state.

It is assumed for this problem that there are no sensor observations. Nature,
however, interferes with the state transitions, which leads to a form of non-
deterministic uncertainty. If we try to apply an action that takes one step, nature

1
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10

9

1 2 3 4 5 6 7 8 9 10

FIGURE 13.8 An example that involves 19 states. There are no sensor observations;
however, actions can be chosen that enable the state to be estimated. The example
provides an illustration of collapsing the information space.
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may cause two or three steps to be taken, if possible. This can be modeled
as follows. Let U = {(1, 0), (−1, 0), (0, 1), (0, −1)} and let � = {1, 2, 3}.
The state transition equation is defined as f (x, u, θ) = x + θu, unless it is
impossible to move to the required location, in which case f (x, u, θ) = x. For
example, if x = (5, 1), u = (−1, 0), and θ = 2, then the resulting next state is
(5, 1)+ 2(−1, 0) = (3, 1).

Since there are no sensor observations, the information state at stage k is

ηk = (u1, . . . , uk−1) (13.64)

Now use the derived information space, I◦ = 2X . The initial state, x1 = (10, 1)
is given, which means that the initial information state, η1, is {(10, 1)}. The
goal is to arrive at the information state, {(1, 10)}, which means that the task is
to design a plan that moves from the lower right to the upper left.

With perfect information, this would be trivial; however, without sensors
the uncertainty may grow very quickly. For example, after applying the action
u1 = (−1, 0) from the initial state, the derived information state becomes
{(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it becomes {(4, 1), . . . , (8, 1)}. A nice
feature of this problem, however, is that uncertainty can be reduced without
sensing. Suppose that for 100 stages, we continue to apply uk = (−1, 0).
What is the resulting information state? As the corner state is approached, the
uncertainty is reduced because the state cannot be further changed by nature.
It is known that each action, uk = (−1, 0), decreases the X coordinate by
at least one each time. Therefore, after nine or more stages, it is known that
ηk = {(1, 1)}. Once this is known, then the action (0, 1) can be applied. This
will again increase uncertainty as the state moves through the set of left states. If
(0, 1) is applied nine or more times, then it is known for certain that xk = (1, 10),
which is the required goal state.

A successful plan has now been obtained: apply (−1, 0) for nine stages,
then apply (0, 1) for nine stages. Recall from Section 13.3.1.2 that a strategy
is generally specified as π : I → U; however, for this example, it appears
that only a sequence of actions is needed. The actions do not depend on the
information state. Why did this happen? If no observations are obtained during
execution, then there is no way to use feedback. There is nothing to learn by
executing the plan. In general, for problems that involve no sensors and a fixed
initial information state, a path in the information space can be derived from
a plan. It is somewhat strange that this path is completely predictable, even
though the original problem may involve substantial uncertainties. We always
know precisely what will happen in terms of the information states if there are
no sensors and the initial condition is fixed.

To make the situation more interesting, assume that any subset of X could be
used as the initial condition. In this case, a plan π : I → U must be formulated
to solve the problem. From each initial information state η, a path in I can
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still be computed from π . Specifying a plan over all of I appears complicated,
which motivates the next consideration.

The ideas from Section 13.3.2 can be applied here to collapse the inform-
ation down from 219 (over half of a billion) to 19 derived information states.
The mapping κ : I → I◦ must be constructed. We first make a naive attempt
to collapse the information state down to only three states. Let I◦ = {g, l, a}, in
which g denotes “goal,” l denotes “left,” and a denotes “any.” The mapping is

κ(η) =



g if η = {(1, 10)}
l if η is a subset of the set of left states
a otherwise

(13.65)

It might seem that this derived information space will lead to a very compact
plan for solving the problem. Based on the successful plan described so far, the
plan on I◦ can be defined as π(g) = uF , π(l) = (0, 1), and π(a) = (−1, 0).
What is wrong with this? Suppose that the initial state is (10, 1). There is no
way to require that uk = (−1, 0) be applied nine times to reach the l state. If
(−1, 0) is applied to the a state, then it is not possible to determine when the
transition to l should occur.

Now consider a different derived information space. Suppose that there are
19 derived information states, which includes g as defined previously, li for
1 ≤ j ≤ 9, and ai for 2 ≤ i ≤ 10. The mapping κ is defined as κ(η) = g if η =
{(1, 10)}. Otherwise, κ(η) = li, for the smallest value of i such that η is a subset
of {(1, i), . . . , (1, 10)}. If there is no such value for i, then κ(η) = ai, for the
smallest value of i such thatη is a subset of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}.
Now the plan may be defined as π(g) = uF , π(li) = (0, 1), and π(ai) =
(−1, 0). Although it might not appear to be any better than the plan obtained
from collapsing I◦ to three states, the important difference is that the correct
information state transitions occur. For example, if uk = (−1, 0) is applied at
a5, then a4 is obtained. If u = (−1, 0) is applied at a2, then l1 is obtained.
From there, u = (0, 1) is applied to yield l2. These actions can be repeated until
eventually l9 and g are reached.

13.3.4.2 The Kalman filter

When the transition function f , and the sensor mapping h are both linear func-
tions, and nature actions, θ and ψ , can be modeled as Gaussian, the derived
information states will follow a Gaussian distribution too. These assumptions
are reasonable in many mobile robotics contexts. In this case, a mapping
κ : I → I◦, in which I◦ is the space of all Gaussians, will collapse I without
any loss of information. This is referred to as a linear-Gaussian model, which
is the basis for the most common approach for collapsing I, the Kalman filter.
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Each Gaussian is specified by an n-dimensional mean vector µ, and an n × n
symmetric covariance matrix, �.

Since the Kalman filter relies on linear models, f can be written as

xk+1 = Akxk + Bkuk + Gkθk (13.66)

in which Ak , Bk , and Gk are real-valued matrices of appropriate dimensions.
The subscript k is used because the Kalman filter works even if f is different in
every stage. Similarly, the sensor mapping becomes

yk = Ckxk + Hkψk (13.67)

Since an information state P(xk|ηk) ∈ I◦ is represented by its mean vector and
its covariance matrix, our goal here is to compute µk and �k at stage k. We
next give the update expressions, omitting their derivation, that can be found
in many textbooks on stochastic control (i.e., [82]). Given the initial conditions
µ0 and �0, we have

�′
k+1 = Ak�kAT

k + Gk�θGT
k (13.68)

�k+1 = (I − Lk+1Ck+1)�
′
k+1 (13.69)

µk+1 = Akµk + Lk+1(yk+1 − Ck+1Akµk) (13.70)

with

�k+1 = (I − Lk+1Ck+1)�
′
k+1 (13.71)

The expression for Lk (substitute k + 1 for k to obtain Lk+1) is

Lk = �′
kCT

k [Ck�
′
kCT

k + Hk�ψHk]−1 (13.72)

When nature is not Gaussian, or the transition equation is not linear, the derived
information states density can be approximated using a grid, with numer-
ical integration between the grid points. Let S ⊂ X be the set of points in the
grid. In the initial step, P(s) is computed from p(x) by numerically evaluating
the integrals of p(x1) over the Voronoi region of each sample. Now suppose that
P(sk|ηk) has been computed over Sk , and the task is to compute P(sk+1|ηk+1)

given uk and yk+1.
Considering only uk , P(sk+1|sk , uk) approximates p(xk+1|xk , uk)when com-

puted in the manner described above. At this point the densities needed have
been approximated by discrete distributions.

The resulting distribution is P(sk+1|ηk , uk), and the effect of yk+1 in
p(xk+1|yk+1) can be computed approximately by P(sk+1|yk+1) using the grid
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samples. The resulting distribution, P(sk+1|ηk+1) represents the approximate
derived information state. It turns out that the Voronoi regions over the samples
do not even need to be carefully considered. One can work directly with a col-
lection of samples randomly drawn from the initial probability density p(x1).
The general method is referred to as particle filtering, and has yielded good
performance in applications to experimental mobile robotics [83].

13.3.4.3 Sensorless manipulation

Imagine a planning problem in which the robot does not have any sensors, so
that there are no observations at all. Moreover, the initial condition is unknown.
Is it still possible to compute a plan to reach a goal state? As we will explore in
the next example, in some problems knowing only the action history is enough
to compute a successful plan.

In the context of manufacturing, a part may need to have a specific orient-
ation before being assembled with other components. In a sensorless setting,
a robot, in this case a robotic arm with a gripper, needs to orient a part without
any feedback [84, 85]. The part is modeled as a convex polygon. Its initial ori-
entation is unknown; the goal is to bring the part to a known orientation, up to
symmetry. The manipulation process is shown in Figure 13.9. The part moves
on the conveyor toward a fence, against which it comes to rest after possibly
rotating to reach a stable orientation. The robotic arm grasps the part, changes
its orientation, and drops it up again in the conveyor. This process is repeated
until the part achieves the desired orientation against the fence.

The natural state space for this problem is S1, corresponding to the orient-
ation of the part. At each step, the robotic arm rotates the part through some
angle, so the action space is likewise S1. These continuous spaces need to be
transformed into finite sets. The key of the transformation is to identify critical
events which partition the space into equivalence classes, then plan over this

ward. The robot picks up a part and rotates it through a chosen angle before placing it on
the conveyor. The part then drifts on the conveyor into contact with the fence, possibly
rotating compliantly as it comes to rest.
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u

u0 360

FIGURE 13.10 Effects of rotation actions on a rectangular part. The action space is
divided into four equivalence classes according to the resulting state. The crosses mark
a representative action from each class.

set of equivalence classes rather than the full space. These critical events are
problem specific. In the case of the part orienting, the critical events in action
space are orientation angles such that for a given information state, rotations
either greater or less than these angles will reach different information states.

Thus, the state space X is chosen as the set of all the stable orientations
of the part when it is lying statically on the fence. Since the part is polygonal,
the size of X is bounded above by the number of edges in the part. Using the
concepts presented in Section 13.3.2, the derived information space is I◦ = 2X .
The initial derived information state consists of all possible stable orientations
(i.e., η0 = X), since the part orientation is initially unknown. The action set is
the range of rotation angles available to the gripper, partitioned into intervals
of rotations that lead to identical resulting information states. The effects of a
specific rotation action on a rectangular part are shown in Figure 13.10. The
critical events in the continuous action set for an information state with two

The objective is to find a sequence of actions such that the derived inform-
ation state at the final stage corresponds to a single possible orientation of the
part. Once one orientation is uniquely identified, the robotic arm may perform
an additional rotation to achieve any desired goal orientation. With the finite
action set, a directed graph can be constructed whose nodes are information
states and whose edges are transitions resulting from the discrete action set.
Standard graph searching techniques can be used to search for a directed path
to a singleton information state. This path in the collapsed information space
graph constitutes a plan for eliminating uncertainty in the part’s orientation.

The reason that successful planning is still possible starting from total uncer-
tainty and without sensor feedback is that some actions in this information space
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FIGURE 13.11 Critical events for an information state with two states.

have a conformant property, in which the same resulting state can be reached
by the same action from many different initial states. By selecting conformant
actions, uncertainty can be reduced. The same principle is applied in the context
of mobile robot localization with extremely limited sensing in Reference 74.

13.4 CONCLUSION AND BIBLIOGRAPHICAL REMARKS

Our presentation has been tightly constrained by space limitations. There are
a number of books to which we refer the reader for elaboration. Treatments
of decision theory in general appear in References 4–6. Bertsekas [24] covers
much of the same material as the present chapter and is well-stocked with

more detailed. A general treatment of the infinite horizon case is given in
Reference 43. Sutton and Barto [46] is the definitive introduction to reinforce-
ment learning. Ghallib et al. [86] consider planning with primarily logic-based
representations. Russell and Norvig [87] cover planning under (mainly prob-
abilistic) uncertainty from an artificial intelligence perspective. Some recent
papers on decision-theoretic planning are collected in Reference 88. Game
theory is addressed in greater detail in References 47, 48, and 89.
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The successful deployment of a multi-robot system (MRS) requires an effective
method of coordination to mediate the interactions among the robots and
between the robots and the task environment in order for a given system-level
task to be performed. The design of coordination mechanisms has received
increasing attention in recent years and has included investigations into a wide
variety of coordination mechanisms. A popular and successful framework for
the control of robots in coordinated MRS is behavior-based control [1,2].
Behavior-based control is a methodology in which robots are controlled through
the principled integration of a set of interacting behaviors (e.g., wall follow-
ing, collision avoidance, landmark recognition, etc.) in order to achieve desired
system-level behavior. This chapter describes, through explanation, discussion
of demonstrated simulated and physical mobile robots, and formal design
and analysis, the range and capabilities of behavior-based control applied to
multi-robot coordination.

We begin by providing a brief overview of single-robot control philo-
sophies and architectures, including behavior-based control, in Section 14.1.
In Section 14.2 we move from single robots to MRS and discuss the addi-
tional challenges this transition entails. In Section 14.3 we use empirical case
studies to discuss and demonstrate three important ways in which robots can
interact, and thus coordinate, their behavior. In Section 14.4 we discuss formal
approaches to the design and analysis of MRS that are of fundamental import-
ance if the full potential of MRS is to be achieved. Finally, in Section 14.5 we
briefly discuss the future of coordinated behavior-based MRS and conclude the
chapter.

14.1 OVERVIEW OF ROBOT CONTROL ARCHITECTURES

In this section, we briefly discuss the most popular approaches and techniques
for the control of a single robot. In Section 14.1.1 we proceed with the
fundamental principle of this chapter, the control of multiple robots, and how
it is related to, and different from, the control of a single robot.

14.1.1 Single Robot Control

We define robot control as the process of mapping a robot’s sensory information
into actions in the real world. We do not consider entities that make no use of
sensory information in control decisions as robots, nor do we consider entities
that do not perform actions as robots, because neither category is truly interact-
ing in the real world. Any robot must, in one manner or another, use incoming
sensory information to make decisions about what actions to execute. There
are a number of control philosophies dictating how this mapping from sensory
information to actions should occur, each with its advantages and disadvantages.
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A continuum of approaches to robot control can be described as a spectrum
spanning from deliberative to reactive control.

The deliberative approach to robot control is usually computationally
intensive due to the use of explicit reasoning or planning using symbolic
representations and world models [3]. For the reasoning processes to be effect-
ive, complete and accurate models of the world are required. In domains where
such models are difficult to obtain, such as in dynamic and fast-changing
environments or situations with significant uncertainty in the robot’s sensing
and action, it may be impossible for the robot to act in an appropriate or timely
manner using deliberative control [3,4].

In contrast to deliberative control, the reactive approach to robot control is
characterized by a tight coupling of sensing to action, typically involving no
intervening reasoning [5,6]. Reactive control does not require the acquisition
or maintenance of world models, as it does not rely on the types of complex
reasoning processes utilized in deliberative control. Rather, simple rule-based
methods involving a minimal amount of computation, internal representations,
or knowledge of the world are typically used. This makes reactive control
especially well suited to dynamic and unstructured worlds where having access
to a world model is not a realistic option. Furthermore, the minimal amount of
computation involved means reactive systems are able to respond in a timely
manner to rapidly changing dynamics.

A middle ground between deliberative and reactive philosophies is found
in hybrid control, exemplified by three-layered architectures [7,8]. In this
approach, a single controller includes both reactive and deliberative com-
ponents. The reactive part of the controller handles low-level control issues
requiring fast response time, such as local obstacle avoidance. The deliberative
part of the controller handles high-level issues on a longer time-scale, such as
global path planning. A necessary third component of hybrid controllers is a
middle layer that interfaces the reactive and deliberative components. Three-
layered architectures aim to harness the best of reactive controllers in the form
of dynamic and time-responsive control and the best of deliberative control-
lers in the form of globally efficient actions over a long time-scale. However,
there are complex issues involved in interfacing these fundamentally differing
components and the manner in which their functionality should be partitioned
is not yet well understood.

Behavior-based control, described in detail in Section 14.1.2, offers
an alternative to hybrid control. It can also include both deliberative and reactive
components, but unlike hybrid control, it is composed of a set of independent
modular components that are executed in parallel [1,2].

The presented spectrum of control approaches is continuous and a precise
classification of a specific controller on the continuum may be difficult.
The distinction between deliberative and reactive control, and hybrid and
behavior-based control is often a matter of degree, based on the amount of
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computation performed and the response time of the system to relevant changes
in the world. In a specific domain, the choice of controller is dependent on many
factors, including how responsive the robot must be to changes in the world,
how accessible a world model is, and what level of efficiency or optimality is
required.

14.1.2 Behavior-Based Control

The control methodology we focus on in this chapter is behavior-based (BB)
control. The BB approach to robot control must not be classified as strictly
deliberative or reactive, as it can, and in many cases is, both. However, BB con-
trol is most closely identified (often incorrectly so) with the reactive side of the
control spectrum, because primary importance is placed on maintaining a tight,
real-time coupling between sensing and action [7,8].

Fundamentally, a BB controller is composed of a set of modular compon-
ents, called behaviors, which are executed in parallel. A behavior is a control
law that clusters a set of constraints in order to achieve and maintain a goal
[1,2]. Each behavior receives inputs from sensors or other behaviors or both
and provides outputs to the robot’s actuators or to other behaviors. For example,
an obstacle avoidance behavior might send a command to the robot’s wheels to
turn left or right if the robot’s sensors detect that the robot is moving directly
toward an obstacle. There is no centralized world representation or state in a
BB system. Instead, individual behaviors and networks of behaviors maintain
any models or state information.

Many different behaviors may independently receive input from the same
sensors and output action commands to the same actuators. The issue of
choosing a particular action given inputs from potentially multiple sensors and
behaviors is called action selection [10]. One of the well-known mechanism
for action selection is the use of a predefined behavior hierarchy, as in the Sub-
sumption Architecture [9], in which commands from the highest-ranking active
behavior are sent to the actuator and all others are ignored. (Note, however, that
the Subsumption Architecture has most commonly been used in the context of
reactive and not BB systems.) Numerous principled as well as ad hoc methods
for addressing the action selection problem have been developed and demon-
strated on robotic systems. These include varieties of command fusion [11] and
spreading of activation [12], among many others. For a comprehensive survey

Behavior-based systems are varied, but there are two fundamental tenets all
BB systems inherently adhere to (1) the robot is embodied and (2) the robot
is situated. A robot is embodied in the sense that it has a physical body and
its behavior is limited by physical realities, uncertainties, and consequences
of its actions, all of which may be hard to predict or simulate. A robot is
situated in the sense that it is immersed in the real world and acts directly on
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the sensory information received from that world, not on abstract or processed
representations of the world.

Behavior-based control makes no assumptions on the availability of a
complete world model; therefore, it is uncommon for a BB controller to per-
form extensive computation or reasoning relying on such a model. Instead,
BB controllers maintain a tight coupling of sensing and action, allowing
them to act in a timely manner in response to dynamic and fast-changing
worlds. However, BB systems have also demonstrated elegant use of distributed
representations enabling robot mapping and task learning [14–16].

This section has discussed approaches and philosophies to the control of a
single robot, with a focus on the BB approach. In Section 14.2, the scope is
expanded to consider the control of a coordinated group of multiple robots.

14.2 FROM SINGLE ROBOT CONTROL TO MULTI-ROBOT
CONTROL

In this section we discuss the advantages and additional issues involved in
the control of MRS as compared to the single-robot systems (SRS) discussed
in Section 14.1.1. An MRS is a system composed of multiple, interacting
robots. The study of MRS has received increased attention in recent years.
This is not surprising, as continually improving robustness, availability, and
cost-effectiveness of robotics technology has made the deployment of MRS
consisting of increasingly larger numbers of robots possible. With the growing
interest in MRS comes the expectation that, at least in some important respects,
multiple robots will be superior to a single robot in achieving a given task.
In this section we outline the benefits of a MRS over a SRS and introduce
issues involved in MRS control and how they are similar and different to those
of SRS control.

This chapter is focused on distributed MRS in which each robot oper-
ates independently under local sensing and control. Distributed MRS stand
in contrast to centralized MRS, in which each robot’s actions are not com-
pletely determined locally, as they may be determined by an outside entity,
such as another robot or by any type of external command. In distributed MRS,
each robot must make its own control decisions based only on limited, local,
and noisy sensor information. We limit our consideration in this chapter to dis-
tributed MRS because they are the most appropriate for study with regard to
systems that are scalable and capable of performing in uncertain and unstruc-
tured real-world environments where uncertainties are inherent in the sensing
and action of each robot. Furthermore, this chapter is centered on achieving
system-level coordination in a distributed BB MRS. Strictly speaking, the issues
in a centralized MRS are more akin to a scheduling or optimal assignment and
less of a problem of coordination in a distributed system.
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14.2.1 Advantages and Challenges of Multi-Robot
Systems

Potential advantages of MRS over SRS include a reduction in total system
cost by utilizing multiple simple and cheap robots as opposed to a single com-
plex and expensive robot. Also, multiple robots can increase system flexibility
and robustness by taking advantage of inherent parallelism and redundancy.
Furthermore, the inherent complexity of some task environments may require
the use of multiple robots, as the necessary capabilities or resource requirements
are too substantial to be met by a single robot.

However, the utilization of MRS poses potential disadvantages and addi-
tional challenges that must be addressed if MRS are to present a viable and
effective alternative to SRS. A poorly designed MRS, with individual robots
working toward opposing goals, can be less effective than a carefully designed
SRS. A paramount challenge in the design of effective MRS is managing the
complexity introduced by multiple, interacting robots. As such, in most cases
just taking a suitable SRS solution and scaling it up to multiple robots is not
adequate.

14.2.2 Necessity of Coordination in MRS

In order to maximize the effectiveness of a MRS, the robots’ actions must
be spatio-temporally coordinated and directed toward the achievement of a
given system-level task or goal. Just having robots interact is not sufficient
in itself to produce interesting or practical system-level coordinated behavior.
The design of MRS can be quite challenging because unexpected system-
level behaviors may emerge due to unanticipated ramifications of the robots’
local interactions. In order for the interacting robots to produce coherent task-
directed behavior, there must be some overarching coordination mechanism
that spatio-temporally organizes the interactions in a manner appropriate for
the task.

The design of such coordination mechanisms can be difficult; nonethe-
less, many elegant handcrafted distributed MRS have been demonstrated, both
in simulation and on physical robots [17–19]. The methods by which these
systems have achieved task-directed coordination are diverse and the possib-
ilities are seemingly limited only by the ingenuity of the designer. From a
few robots performing a manipulation task [20,21], to tens of robots exploring
a large indoor area [22,23], to potentially thousands of ecosystem monitor-
ing nanorobots [24,25], as the number of robots in the system increases, so
does the necessity and importance of coordination. Section 14.3 examines
mechanisms by which system-level coordination can be successfully achieved
in a MRS.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c014” — 2006/3/31 — 16:43 — page 555 — #7

Behavior-Based Coordination in Multi-Robot Systems 555

14.3 FROM LOCAL INTERACTIONS TO GLOBAL COORDINATION

Given the importance of coordination in a MRS, we now address the issue of
how to organize the robots’ local interactions in a coherent manner in order to
achieve system-level coordination. There are many mechanisms by which the
interactions can be organized. We classify them into three broad and often
overlapping classes: interaction through the environment, interaction through
sensing, and interaction through communication. These classes are not mutually
exclusive because MRS can, and often do, simultaneously utilize mechan-
isms from any or all of these classes to achieve system-level coordinated
behavior.

In the following sections, we describe each of these interaction classes
in detail. Through the discussion of empirical case studies we demonstrate
how each type of interaction can be used to achieve system-level coordination
in a MRS.

14.3.1 Interaction through the Environment

The first mechanism for interaction is through the robots’ shared environ-
ment. This form of interaction is indirect in that it consists of no explicit
communication or physical interaction between robots. Instead, the environ-
ment itself is used as a medium of indirect communication. This is a powerful
approach that can be utilized by very simple robots with no capability for
complex reasoning or direct communication.

An example of interaction through the environment is demonstrated in
stigmergy, a form of interaction employed by a variety of insect societies.
Originally introduced in the biological sciences to explain some aspects of
social insect nest-building behavior, stigmergy is defined as the process by
which the coordination of tasks and the regulation of construction do not depend
directly on the workers, but on the constructions themselves [26]. This concept
was first used to describe the nest-building behavior of termites and ants [27].
It was shown that coordination of building activity in a termite colony was
not inherent in the termites themselves. Instead, the coordination mechanisms
were found to be regulated by the task environment, in that case the growing
nest structure. A location on the growing nest stimulates a termite’s building
behavior, thereby transforming the local nest structure, which in turn stimulates
additional building behavior of the same or another termite.

Through the careful design of robot sensing, actuation, and control fea-
tures, it is possible to utilize the concept of stigmergy in task-directed MRS.
This powerful mechanism of coordination is attractive as it typically requires
minimal capabilities of the individual robots. The robots do not require direct
communication, unique recognition of other robots, or even distinguishing other
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robots from miscellaneous objects in the environment, or the performance of
computationally intensive reasoning or planning.

Stigmergy, and more generally interaction through the environment,
has been successfully demonstrated as a mechanism to coordinate robot actions
in a number of MRS. It has been demonstrated in an object manipulation domain
[28] in which a large box was transported to a goal location through the coordin-
ated pushing actions of a group of robots. There was no globally agreed upon
plan as to how or over what trajectory the box should be moved; however, each
robot could indirectly sense the pushing actions of other robots through the
motions of the box itself. Through simple rules, each robot decided whether to
push the box or move to another location based on the motions of the box itself.
As a large enough number of robots pushed in compatible directions, the box
moved, which in turn encouraged other robots to push in the same direction.

tion in which a given structure was built in a specified construction sequence
[29]. The individual robots were not capable of explicit communication and
executed simple rule-based controllers in which local sensory information
was directly mapped to construction actions. The construction actions of one
robot altered the environment, and therefore the subsequent sensory inform-
ation available for it and all other robots. This new sensory information then
activated future construction actions. In Section 14.3.2, we discuss in detail
how the concept of stigmergy was utilized in a MRS object clustering task
domain [26].

14.3.2 Interaction through the Environment Case Study:
Object Clustering

We now describe an empirical case study in an object clustering task domain for
which interaction through the environment was used to achieve system-level
coordination. The clustering task domain requires a group of objects, originally
uniformly positioned in an enclosed environment, to be repositioned by a group
of robots into a single dense cluster of objects. There is no a priori target location
for the cluster in the environment. Rather, the position of the cluster is to be
determined dynamically at the time of task execution.

The particular approach to the object clustering task we describe here is from
work presented in Reference 26. There, the robots performing the task were
extremely simple, capable only of picking up and transporting and dropping a
single object at a time. The robots had very limited local sensing and no explicit
communication, memory of past actions, or recognition of other robots. Even
with these highly limited capabilities, a homogeneous MRS composed of such
robots was shown to be capable of successfully and robustly performing the
object clustering task.

© 2006 by Taylor & Francis Group, LLC
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The robots in this task domain were able to coherently achieve system-level
coordination in the formation of a single cluster. The mechanism by which they
achieved coordination was an example of interaction through the environment.
The robots communicated through their individual placement of objects over
time, thus modifying the task environment, and thereby indirectly influencing
the future object-placement behaviors of other robots and themselves. The
location of the final cluster was not determined through explicit communication,
negotiation, or planning on the part of the robots. Rather, it was determined
through a symmetry break in the initially uniform distribution of objects. Once
a small cluster began to form, it was likely to grow larger. During the early
stages of task execution, several clusters were likely to be formed. However,
over time, a single large cluster resulted.

The robots in this work were designed in a manner that carefully exploited
the physical dynamics of interaction between the robots and their environment.
Their hardware and rules were tuned so as to be probabilistically more likely
to pick up an object that is not physically proximate to other objects (thus
conserving clusters), to not drop objects near boundaries (thus avoiding hard-
to-find objects), and to be probabilistically more likely to deposit an object near
other objects (thereby building up clusters). Together, their properties resulted
in a form of positive feedback in which the larger a cluster of objects became
the more likely it was to grow even larger.

Similar approaches employing stigmergy were also demonstrated in the
physical segregation and sorting of a collection of object classes. Additional
studies with physical robots have been conducted and, by making various
changes in the robots and the task environment, is has been demonstrated that
one can influence the location of the final cluster by initializing the initial
distribution of objects in a nonuniform manner [26].

Given this specific example of system-level coordination achieved through
the use of interaction through the environment, in the following section we
move on to the next method of organizing the robot’s interactions: interaction
through sensing.

14.3.3 Interaction through Sensing

The second mechanism for interaction among robots is through sensing.
As described in Reference 19, interaction through sensing “refers to local
interactions that occur between robots as a result of sensing one another, but
without explicit communication.” As with interaction through the environment,
interaction through sensing is also indirect as there is no explicit communica-
tion between robots; however, it requires each robot to be able to distinguish
other robots from miscellaneous objects in the environment. In some instances,
each robot may be required to uniquely identify all other robots, or classes of
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other robots. In other instances, it may only be necessary to simply distinguish
robots from other objects in the environment.

Interaction through sensing can be used by a robot to model the behavior
of other robots or to determine what another robot is doing in order to make
decisions and respond appropriately. For example, flocking birds use sensing
to monitor the actions of other birds in their vicinity to make local corrections
to their own motion. It has been shown that effective flocking results from quite
simple local rules followed by each bird responding to the direction and speed
of the local neighbors [30].

In the following section, we describe a case study in a formation marching
domain in which interaction through sensing is used to achieve coordinated
group behavior. Other domains in which interaction through sensing has been
utilized in MRS include flocking [31], in which each robot adjusts it motions
according to the motions of locally observed robots. Through this process, the
robots can be made to move as a coherent flock through an obstacle-laden
and dynamic environment. Interaction through sensing has also been demon-
strated in an adaptive division of labor domain [32]. In that domain, each robot
dynamically changes the task it is executing based on the observed actions of
other robots and the observed availability of tasks in the environment. Through
this process, the group of robots coherently divides the labor of the robots
appropriately across a set of available tasks.

14.3.4 Interaction through Sensing Case Study:
Formation Marching

In this section, we describe an empirical case study of a formation marching
task domain for which interaction through sensing was used to achieve system-
level coordination. The formation marching task domain requires a group of
robots to achieve and maintain relative positions to one another as the group
moves through the environment in a global formation. Each robot in the MRS
operates under local sensing and control and is not aware of global information
such as all other robot’s positions and headings. In some environments, the
formation may need to be perturbed in order for the group to move through a
constrained passage or around obstacles. In such cases, the formation needs to
correctly realign after the perturbation.

The approach to formation marching described here was presented in
Reference 35. The general idea of the approach is that every robot in the MRS
positioned itself relative to a designated neighbor robot. This neighbor robot,
in turn, positioned itself relative to its own designated neighbor robot. As all
robots are only concerned with their relative positions with respect to their
neighbor robot, no robot is aware of, or needs to be aware of, the global pos-
itions and headings of all robots in the formation. Each robot only needs to
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be capable of determining the distance and heading to its neighbor. The global
geometry of the formation was then determined through the defined chain of
neighbors.

A “leader” robot has no neighbors and independently determines the speed
and heading of the entire formation. Therefore, as the leader robot moves
forward, the robot(s) that had the leader as their neighbor also move for-
ward. This forward motion propagates down the chain of designated neighbors,
causing the entire formation to move.

The formation could be dynamically changed by altering the structure of
the local neighbor relationships. For example, if the desired formation is a line,
each robot may be designated a neighbor robot to its left or right for which it
desires to stay next to in order to maintain the line formation. If a cue is given
to all robots to change to a diamond formation, each robot may follow a new
neighbor at a different relative position and the line formation would then be
dynamically changed to a diamond.

In the following section we move to the next method of organizing the
robot’s interactions: interaction through communication.

14.3.5 Interaction through Communication

The third mechanism for interaction among robots is through explicit
communication. Unlike the first two forms of interaction, described earlier,
which were indirect, in interaction through communication robots may com-
municate with others directly. Such robot-directed communication can be used
to request information or action from other robots or to respond to received
requests.

Communication in physical robotics is not free or reliable and can be con-
strained by limited bandwidth and range, and unpredictable interference. When
utilizing it, one must consider how and toward what end it is used. In some
domains, such as the Internet, communication is reliable and of unlimited range;
however, in physical robot systems, communication range and reliability are
important factors in system design [2,34].

There are many types of communication. Communication could be direct
from one robot to another, direct from one robot to a class of other robots,
or broadcast from one robot to all others. Furthermore, the communication
protocol can range from simple protocol-less schemes to a complex negotiation-
based and communication-intensive schemes. The information encoded in a
communication may be state information contained by the communicating
robot, a command to one or more other robots, or a request for additional
information from other robots, etc.

Communications may be task-related rather than robot-directed, in
which case it is made available to all (or a subset) of the robots in
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the MRS. A common task-related communication scheme is publish/subscribe
messaging. In publish/subscribe messaging, subscribing robots request to
receive certain categories of messages, and publishing robots supply messages
to all appropriate subscribers.

In the next section, we describe a case study of the effective use of interaction
through communication.

14.3.6 Interaction through Communication Case Study:
Multiple Target Tracking

The case study on interaction through communication in this section is focused
on the use of explicit communication in a multi-target tracking task as discussed
in Reference 37. In multi-target tracking, the goal is to have a set of robots with
limited sensing ranges position and orient themselves such that they are able
to acquire and track multiple objects moving through their environment. The
locations, trajectories, and number of targets are not known a priori. These diffi-
culties are compounded in a distributed MRS, where the system must determine
which robot(s) should monitor which target(s). Robots redundantly tracking
the same target may be wasting resources and letting another target remain
untracked. In this domain, explicit communication between the robots has been
shown to be capable of effectively achieving system-level coordination.

In the implementation described in Reference 37, each robot had a limited
sensing and communication range. Communication was used by each robot to
transmit the position and velocities of all targets within its sensing range to
all other robots within its communication range. This simple communication
scheme involved no handshaking or negotiation.

Each robot was constantly evaluating the importance of its current tracking
activities and possible changes in position that could increase the importance
of its tracking activities. Communication was used to allow each robot to
keep a local map of target movements within the robot’s communication range
but outside its sensing range. As a result, the group as a whole effectively
tracked a maximum number of targets with a minimum number of available
robots.

This demonstration of the use of interaction through communication con-
cludes the discussion of MRS coordination mechanisms. As was mentioned
earlier, any given MRS is likely to use any or all of the three mechanisms in
varying degrees to achieve system-level coordination. Through an improved
understanding of each of these mechanisms of coordination, one is better

anisms for achieving a given task. In the next section we provide a discussion on

foundation upon which to base such design decisions.

© 2006 by Taylor & Francis Group, LLC
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formal methods for the design and analysis of MRS that can provide a principled
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14.4 FORMAL DESIGN AND ANALYSIS OF MRS

The design of coordination mechanisms for MRS has proven to be a difficult
problem. In the last decade, the design of a variety of such mechanisms over a
wide range of task domains has been studied [17,18]. Although the literature
highlights some elegant solutions, they are generally domain-specific and
provide only indirect insights into important questions such as how appropriate
a given coordination mechanism is for a particular domain, what performance
characteristics one should expect from it, how it is related to other coordination
mechanisms, and how one can modify it to improve system performance. These
questions must be answered in a principled manner before one can quickly and
efficiently produce an effective MRS for a new task domain. To fully utilize
the power and potential of MRS and to move the design process closer to a
science, principled design tools and methodologies are needed for establish
a solid foundation upon which to construct increasingly capable, robust, and
efficient MRS.

The design of an effective task-directed MRS is often difficult because there
is a lack of understanding of the relationship between different design options
and resulting task performance. In the common trial-and-error design process,
the designer constructs an MRS and then tries it out either in simulation or
on physical robots. Either way, the process is resource-intensive. Ideally, the
designer should be equipped with an analytical tool for the analysis of a potential
MRS design. Such a tool would allow for efficient evaluation of different design
options and thus result in more effective and optimized MRS designs.

The BB paradigm for multi-robot control is popular in MRS because it is
robust to the dynamic interactions inherent in any MRS. Any MRS represents
a highly nonlinear system in which the actions of one robot are affected by
the actions of all other robots. This makes any control approach that relies on
complex reasoning or planning ineffective because it is intractable to accur-
ately predict future states of a nontrivial MRS. For this reason, BB control is
frequently used in MRS. The simplicity of the individual robots also confers
the advantage of making the external analysis of predicted system performance
on a given task feasible.

In the remainder of this section we discuss a variety of approaches to the
analysis and synthesis of MRS.

14.4.1 Analysis of MRS Using Macroscopic Models

Macroscopic models reason about the system-level MRS behavior without
explicit consideration of each individual robot in the system. As such,
macroscopic models are generally more scalable and efficient in the calculation
of system-level behaviors even as the studied MRS consists of increasingly
larger numbers of robots.
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A macroscopic mathematical MRS model has been demonstrated in a
foraging task domain [36]. The model was used to study the effects of interfer-
ence between robots, the results of which could be used to modify individual
robot control or determine the optimal density of robots in order to maximize
task performance. A macroscopic analytical model has been applied to the study
of the dynamics of collective behavior in a collaborative stick-pulling domain
using a series of coupled differential Equations [37].

A general macroscopic model for the study of adaptive multi-agent systems
was presented in Reference 38 and was applied to the analysis of a multi-
robot adaptive task allocation domain that was also addressed experimentally
in Reference 32. In this work, the robots constituting the MRS maintain a
limited amount of persistent internal state to represent a short history of past
events but do not explicitly communicate with other robots.

14.4.2 Analysis of MRS Using Microscopic Models

In contrast, microscopic modeling approaches directly consider each robot in
the system and may model individual robot interactions with other robots and
with the task environment in arbitrary detail, including simulating the exact
behavior of each robot. However, most microscopic approaches model the
behavior of each robot as a series of stochastic events. Typically, the individual
robot controllers are abstracted to some degree and exact robot trajectories or
interactions are not directly considered.

A microscopic probabilistic modeling methodology for the study of
collective robot behavior in a clustering task domain was presented in
Reference 41. The model was validated through a largely quantitative agree-
ment in the prediction of the evolution of cluster sizes with embodied simulation
experiments and with real-robot experiments. The effectiveness and accur-
acy of microscopic and macroscopic modeling techniques compared to real
robot experiments and embodied simulations was discussed in Reference 42.
Furthermore, a time-discrete, incremental methodology for modeling the
dynamics of coordination in a distributed manipulation task domain was
presented in Reference 43.

14.4.3 Principled Synthesis of MRS Controllers

One step beyond methodologies for the formal analysis of a given MRS design
lie formal methodologies for the synthesis of MRS controllers. Synthesis is
the process of constructing an MRS controller that meets design requirements
such as achieving the desired level of task performance while meeting con-
straints imposed by limited robot capabilities. Being able to define a task domain
and then have a formal method that designs the MRS to accomplish the task
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while meeting the specified performance criteria is one of the long-term goals
of the MRS community.

An important piece of work in the formal design of coordinated MRS was
the development of information invariants, which aimed to define the informa-
tion requirements of a given task and ways in which those requirements could be
satisfied in a robot controller [42]. Information invariants put the design of SRS
and MRS on a formal footing and began to identify how various robot sensors,
actuators, and control strategies could be used to satisfy task requirements.
Furthermore, the work attempted to show how these features were related and
how one or more of these features could be formally described in terms of a
set of other features. The concept of information invariants was experiment-
ally studied in a distributed manipulation task domain [43] and was extended
through the definition of equivalence classes among task definitions and robot
capabilities to assist in the choice of appropriate controller class in a given
domain [44].

There has also been significant progress in the design of a formal design
methodology based on a MRS formalism that provides a principled framework
for formally defining and reasoning about concepts relevant to MRS: the world,
task definition, and capabilities of the robots themselves, including action selec-
tion, sensing, maintenance of local and persistent internal state, and broadcast
communication from one robot to all other robots [45]. Based on this formal-
ism, the methodology utilizes an integrated set of MRS synthesis and analysis
methods. The methodology includes a suite of systematic MRS synthesis meth-
ods, each of which takes as input the formal definitions of the world, task, and
robots sans controller and outputs a robot controller designed through a logic-
induced procedure. Each of the synthesis methods is independent and produces
a coordinated MRS through the use of a unique set of coordination mechan-
isms, including the use of internal state [46], inter-robot communication [32],
or selection of deterministic and probabilistic action. Complimentary to the
synthesis methods, this methodology incorporates both macroscopic [45] and
microscopic MRS modeling approaches. Together, the synthesis and analysis
methods provide more than just pragmatic design tools. A defining feature of
this design methodology is the integrated nature of the controller synthesis
and analysis methods. The fact that they are integrated allows for the cap-
ability to automatically and iteratively synthesize and analyze a large set of
possible designs, thereby resulting in more optimal solutions and an improved
understanding of the space of possible designs. This principled approach to
MRS controller design has been demonstrated in a sequentially constrained
multi-robot construction task domain [32,45,46].

A theoretical framework for the design of control algorithms in a multi-
robot object clustering task domain has been developed [47]. Issues addressed
in this formalism include how to design control algorithms that result in a single
final cluster, multiple clusters, and how to control the variance in cluster sizes.
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Alternative approaches to the synthesis of MRS controllers can be found
in evolutionary methods [48] and learning methods [31,49]. There also exist a
number of MRS design environments, control architectures, and programming
languages which assist in the design of coordinated MRS [50–52].

14.5 CONCLUSIONS AND THE FUTURE OF MULTI-ROBOT SYSTEMS

Behavior-based control has been a popular paradigm of choice in the control
of MRS. The BB control methodology represents a robust and effective way
to control individual as well as multiple robots. In an MRS, the task environ-
ment is inherently dynamic and nonlinear as a result of the numerous types of
interactions between the individual robots and between the robots and the task
environment. This makes complex control strategies relying on accurate world
models to perform computationally complex reasoning or planning ineffective.
BB control provides a tight coupling between sensing and action and does not
rely on the acquisition of such world models. As such it is a very effective
control methodology in the dynamic and unstructured environments in which
MRS inherently operate.

Behavior-based MRS have been empirically demonstrated in a diverse array
of task domains — from foraging, to object clustering, to distributed manipu-
lation, to construction. Each of these task domains requires some overarching
mechanism by which to coordinate the interactions of the individual robots
such that the resulting system-level behavior is appropriate for the task. We have
described and illustrated three different mechanisms to achieve this coordinated
behavior: interaction through the environment, interaction through sensing, and
interaction through communication. Each provides a coordination scheme cap-
able of organizing the individual robot’s behaviors toward system-level goals.

Another advantage of BB MRS is their amenability to formal analysis and
synthesis. Due to their rather straightforward and direct coupling of sensing to
action, formal methods of synthesis and analysis become tractable and effective
in producing and predicting the system-level behavior of a BB MRS.

The future possibilities and potentials of BB MRS are seemingly unlim-
ited. As technology continues to improve and the nature and implications of
different strategies for coordination are better understood, more task domains
will become valid candidates for the application of MRS solutions.
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V
System Integration and
Applications

Each component described in the preceding parts of the book plays an important
role in the operation of an intelligent and autonomous system. Despite their
individual importance, we should note that an intelligent autonomous system
cannot be fully realized if any one of the components is lacking, or if they are
not properly integrated.

System integration is the glue that brings the components together into a
cohesive structure, and is therefore an important part of complex systems. The
three chapters in the last part of the book examine the issues that exist in system
integration from different points of view. Each chapter also presents case stud-
ies of intelligent systems currently being implemented in various applications,
ranging from consumer products, to automotives, to military vehicles.

Chapter 15 discusses and analyzes the challenges of system integration
for complex autonomous systems, with emphasis on consumer robotics. The
system integration problem is presented as the optimization of three related but
conflicting measures — performance, complexity, and price — and how these
metrics influence the design of consumer robotic systems. The chapter focuses
on the use of software architecture for the integration of the various components
of an autonomous robot, and explores the characteristics and requirements for
the design of such a software architecture while keeping in mind the conflicting
metrics. The Evolution Robotics Software Platform (ERSP) is presented in
detail as a software architecture that is able to fulfill the requirements demanded
for system integration for commercial robots. The effectiveness of the ERSP

571
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was evaluated via two case studies involving the SONY AIBO ERS-7 and the
development of a robotic vacuum cleaner.

Automotive systems and autonomous highways are treated in detail in

and motivation for automating highways and automobiles, such as issues with
safety, congestion, and pollution. It offers an interesting insight into the future of
automobiles, reviewing the slew of current technologies in hardware and sens-
ing that will possibly make autonomous automobiles a reality in the near future.
This chapter thus focuses upon the hardware requirements of autonomous auto-
mobiles and evaluates the degree to which these requirements are met by today’s
technologies. The reader is given a comprehensive overview of technologies
in sensing (e.g., vision and GPS), actuators, and vehicular control. Interesting
examples and case studies are included to illustrate the implementation and
extent of the success of these technologies in state-of-the art systems, such as
the Intelligent Multimode Transit System (IMTS) from Toyota.

prehensive methodology for integrating the components within autonomous
robots and also on a larger scale of cooperating robots. This integrates the
numerous components contributing to autonomy into a coherent whole that
is capable of fully utilizing the functionalities of each module to realize a
truly intelligent system. The hierarchical and modular structure of the 4D/RCS
architecture facilitates decentralized decision making by lower-level nodes and
also the use of various levels of abstraction of available knowledge such that
each node only maintains knowledge at the level of abstraction that is required.
This allows the decomposition of high-level task descriptions as they propag-
ate through the hierarchy and translates into more specific actions at the lower
levels of the structure. The chapter also describes the successful implementa-
tion of the 4D/RCS architecture in the form of the AL2 architecture for teams of

This part of the book thus concludes and unifies the themes and component
modules of autonomous systems presented in the earlier parts. We hope that it
offers readers an insight into how the individual modules may be integrated and
implemented successfully in real systems at different levels — our very first
tentative steps into a world where autonomous systems coexist and participate
seamlessly in the daily operations of their human counterparts.
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Chapter 16, the second chapter of this part. The chapter describes the problems

Finally, Chapter 17 presents the 4D/RCS architecture that represents a com-

Unmanned Ground Vehicles, as well as in the U.S. Army Demo III Experimental
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15.1 INTRODUCTION

The field of robotics, as it continues to grow and diversify, will invariably be
faced with the challenge of engineering increasingly complex systems. The
complexity arises in trying to solve the multi-faceted difficulties of placing
increasing levels of autonomy in robotic systems that must navigate and inter-
act with the real world. Add to that the economic constraints placed on consumer
robotics, such as service or entertainment robots, and the scientific and engin-
eering challenges continue to multiply. Our goal in this chapter is to provide
an overview of, as well as to discuss and analyze through case studies, many
of the important issues encountered in the integration of complex, autonomous
consumer robotic systems.

The role of system integration in developing complex systems is an area that
is often underemphasized and undervalued. The reasons for this can be as varied
and complex as the systems themselves. In academic research, it is very nearly
impossible to get “credit” for the integration component of developing robotic
systems — it is considered to be a necessary evil that must be endured to verify
experimentally the underlying scientific contributions. It is thus not a goal in
itself, but simply a means to an end. Research in the field of system integration
for complex systems is often centered around best practices, since it can be dif-
ficult to mathematically formalize the underlying principles. Furthermore, by
its very nature system integration is a cross-disciplinary endeavor. The system
integrator often must strike a balancing act across engineering disciplines, hav-
ing to accommodate pulls from electrical engineering, mechanical engineering,
and computer science.

At the same time, the integration efforts that must be accomplished in order
to develop autonomous robotic systems, especially in the consumer space,
provide many unique and decidedly engaging challenges. Academic research
into systems science and engineering has provided a number of steps forward
in this area, with recent emphasis in the analysis of complex systems and the
development of modular, open architectures for robotics. In several areas, such
as the newly emerging fields of mechatronics and microelectromechanical sys-
tems (MEMS), we have seen a clear awareness of the need to bridge multiple
traditional disciplines in order to address the complexity in robotic systems.
And, in the private sector there are many examples demonstrating an appre-
ciation for the importance of system integration, as seen, for example, in the
strides made in the automotive and aerospace industries in building complex
and highly reliable electromechanical systems and their use of modular and
standardized components and interfaces.
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In this chapter, we analyze the role of system integration in building complex
autonomous systems in the area of consumer robotics. Our primary goal is
to define the main elements necessary to develop a systematic methodology
for integration. We phrase this problem loosely in terms of a multi-objective
optimization problem that tries to balance conflicting goals of performance
and system complexity, with the additional challenge in the consumer space of
having to balance these against the eventual retail price of the robot.

After providing a brief background in Section 15.2 and discussing related
work in Section 15.3, we present our approach to integration of complex
autonomous systems in Sections 15.4 and 15.5. In Sections 15.6 and 15.7,
we study these issues in more detail by analyzing the role of software archi-
tecture on system integration. Finally, we validate and discuss these premises
using two cases studies: an entertainment robot discussed in Section 15.8 and
a robotic vacuum cleaner described in Section 15.9. These case studies are
driven by our experience in the consumer robotics market; some examples of
commercial robots that employ components developed at Evolution Robotics

TM, an entertainment
robot manufactured by Sony. The second robot is the eVacTM, a robotic vacuum
cleaner built by Sharper Image. The third robot is the ER2, a companion robot
developed at Evolution Robotics. Our experience in developing and integrating
such autonomous consumer robots helps motivate the current exposition.

15.2 BACKGROUND

What does integration mean and entail? What is integration for autonomous
robots? What are the challenges of integration for complex autonomous sys-
tems? These are just a few of the many questions that one needs to consider
when studying integration for complex systems. An important goal of studying
integration is to understand and describe the principles that govern integra-
tion and which hopefully can be applied to support the design and integration
of any autonomous system. One major premise for accomplishing this goal
is that it is possible to obtain such indepth understanding of integration prin-
ciples and techniques that can be generalized across most autonomous systems.
The dilemma, however, is that (a) it is hard to enumerate every possible robot
and (b) each robot can be significantly different in hardware and software.
How do we define, then, an integration methodology or tools for robotics in
general?

Part of the answer to this question is that we need to focus on the areas of
integration that are, or that we believe will be, common across most robots. For
example, most mobile robots will require obstacle avoidance, localization, and
other navigational capabilities. Furthermore, one has to consider the variety
of implementations of each individual component and hope that it is possible
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(a)

(b)

(c)

FIGURE 15.1 Autonomous robots built using Evolution components: (a) the Sony
AIBO ERS-7M2, (b) the Sharper Image E-Vac, and (c) the ER2.

to have a common way of describing its interface and interaction with other
system modules.

Following this line of thought one may argue that describing common build-
ing blocks is a necessary and essential part of a system integration framework.
The integration framework will describe how each system component interfaces
and interacts with other system components. Thus, in a sense, the framework
defines and constrains how system components can be integrated according to
some philosophy, methodology, rules, or guidelines. In addition, the integration
framework will impose a certain definition and interpretation on the concept
of a component and types of components. It will also provide guidelines, and
where possible or practical, constraints, on the design of the system and how
these components are to be interconnected to satisfy the system-level goals.
These are issues that in the robotics community are considered as part of a
system architecture.

In trying to establish a common integration framework and system archi-
tecture for robotics, there are many practical issues that arise due to the nature
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of the problem. For example, some of the characteristics that must be addressed
include how to provide platform independence, scalability across various
hardware and applications, expandability, and so on. These characteristics will
be discussed in detail in Section 15.6.

15.3 RELATED WORK

In the 1960s, the AI (artificial intelligence) and robotics communities developed
symbolic planners, such as STRIPS used to control Shakey the SRI robot [1].
Later it was realized that pure planning approaches, also known as “sense-plan-
act” architectures, suffer when faced with the dynamics and uncertainty of the
real world.

Realizing the limitations of planning systems, a new approach was taken in
the mid-1980s which can be viewed as the deliberative approach. The delib-
erative architectures, such as NASA’s NASREM [2], were characterized by
having a hierarchical control structure where higher-level modules provided
goals for lower levels. However, these systems also relied heavily on symbolic
representations and hence suffered from similar problems as symbolic planners.

In the late 1980s, Brooks proposed a complete departure from using plan-
ners and symbolic representations. His Subsumption Architecture [3] relied on
reactive modules that implement robot competencies by reacting to sensory data
without much processing. Brooks demonstrated that subsumptive robots could
react to real time events in the environment and exhibit very robust behaviors.
The reactive approach later evolved into the behavior-based approach [4], where
robot control is distributed among goal-oriented modules known as behaviors.

The late 1980s and the 1990s saw new approaches which attempted to
combine the best of deliberative and reactive approaches into the hybrid or
three-layer architecture [5]. The hybrid, deliberative-reactive, architectures
generally consist of a reactive executive that deals with real-time responses to
dynamic events, a high-level deliberator that reasons about long-term goals, and
a mediator that coordinates the interaction between the two layers. Examples
of hybrid systems include the task control architecture [6], ATLANTIS [7], and

Even today there are several world-wide efforts trying to develop a com-
mon software control architecture. Since NASREM, NASA has initiated two
significant efforts for developing a common, software control architecture for
robotics. These efforts are mission data systems (MDS) and CLARAty [9]
(coupled-layer architecture for robot autonomy). Other examples of proposed
architectures include OROCOS [10], an international effort in Europe aiming at
developing a common architecture and PLAYER [11], a modular architecture
for distributed hardware access being developed at USC. There are also sev-
eral efforts from commercial companies working on common architectures,
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including Saphira and ARIA from ActivMedia, OPEN-R/SDE from Sony,
RoboStudio from NEC, and more.

15.4 SYSTEM INTEGRATION AS A MULTI-OBJECTIVE

OPTIMIZATION PROBLEM

In order to initiate a discussion of system integration for autonomous consumer
robotic systems, a useful place to start is to understand the implications of each
of those terms. By studying “robotic” systems, there is a built-in level of com-
plexity and integration required in dealing with a system generally possessing
electrical and mechanical hardware as well as sophisticated software. Folding in
“autonomy” implies a level of functionality and performance that goes beyond
simple, reprogrammable pick-and-place-type robots. Finally, introducing a
“consumer” aspect adds both additional requirements in terms of the expec-
ted performance of the system and in terms of the acceptable price at which the
device will be purchased.

As we seek to understand the important factors that should be considered
when building a systematic methodology for integration of complex robotic
systems, we therefore focus on the impact of three critical measurement areas:
complexity, performance, and price.

15.4.1 Complexity

Managing complexity is one of the most critical aspects of integration for robotic
systems. One avenue is towards keeping very focused, simple devices. This
trend is partially illustrated by the wave of robotic vacuum cleaners currently in
the market, which for the most part focus on a single, well-defined task. Some
of these devices have even raised debates as to whether they should be cat-
egorized as “robotic”; this debate notwithstanding, many of the current robotic
vacuum cleaners represent relatively complex electromechanical systems with
significant integration challenges. And it is also clear that the success of these
products and the growth of the consumer robotics market will lead to demands
for new products that in turn require increased complexity. The trick for the
system integrator, of course, is how to manage system complexity to make it
acceptable.

For robotic systems, unfortunately it can be difficult to provide precise
measures of complexity. For the current context, we will generally think of two
types of complexity: component level and task or system level complexity. In
both cases, we tend to focus on two types of measures, namely, quantity or
variety. For example, at the component level, we tend to measure complexity
in the number of components, such as the number of lines of code, mechanical
elements, or behavioral modules. We also measure component complexity in
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terms of the variety. For instance, the variety of electromechanical elements,
such as different sensors and actuators, can have a significant impact on the
complexity of the system integration effort. Likewise, system level complexity
can be measured in the number and variety of the tasks that the robotic system
is expected to accomplish. An underlying goal of robotics is to develop systems
that can perform a wide variety of difficult and challenging tasks. The reality of
modern robotics, and especially commercial robotics, however, is that tradeoffs
must be made to reduce the system level complexity in order to make the
integration effort tractable and the cost of the system reasonable.

15.4.2 Performance

The fundamental measure of performance for a system is the degree to which it
satisfies the requirements of the task (or tasks) for which it was designed. This
is generally laid out in the design specification for the system, and can vary
greatly from robot to robot. Because of this variety, there is very little that can
be done here to address the role of system integration in satisfying this measure
of performance. There are, however, additional measures of performance that
can be viewed more generically and used to evaluate the tradeoffs made in
system integration.

One of the main themes of this book is autonomy for robotic systems.
Autonomy is an important aspect of consumer robotic systems, and can largely
be measured by how well the system can handle itself independent of (or with
minimal) human intervention. One way to measure this is thus to analyze the
frequency of, the time between, and the magnitude of human interventions.

Our focus in this chapter on the consumer space drives additional functional
performance requirements motivated by the need to work in real-world environ-
ments and with high reliability. Performance in this context implies measuring
additional factors such as robustness over time to user and environmental per-
turbations, as well as the ability to monitor, identify, and resolve problem states
and malfunctions. These can be difficult to quantify but are important perform-
ance characteristics to balance against the complexity of the development and
integration.

15.4.3 Price

In contrast with much of the work in academic research, where the cost of
the system is a very minor part of the equation, we want to highlight here the
very significant role of, and the interesting challenges that can be introduced
by considering, the price of the robot. We have chosen to call this price instead
of cost, for a number of reasons, but mostly to emphasize that the aspect that
matters most in a consumer space is generally what the final price charged to
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the customer will be. Of course, the price is driven by many costs, such as
development costs, part costs, marketing costs, etc.

It is important to note, too, that just as with the author who receives only a
small royalty on a seemingly expensive book (many in the academic community
can relate to this!), the budget for hardware and software components represents
only a small portion of the overall price of the product. There are many other
costs associated with bringing a consumer product to market, such as manufac-
turing costs, licensing fees (external or internal to cover development costs),
marketing costs, shipping costs, and maintenance and repair costs. With these
many additional costs, it is important to keep in mind that the parts cost will
generally only represent a small portion — between one-third and one-fifth —
of the actual price charged for the product.

It is very important, therefore, to realize that tradeoffs made in parts cost
may sometimes appear in other areas of the final price of the consumer robot.
For example, choosing longer life, but more expensive parts, can reduce the
overall maintenance and support costs and reduce the rates of returns. And
of course there is the cost of system integration itself, which is often directly
impacted by the cost tradeoffs made in other areas!

15.5 TRADEOFFS AND CHALLENGES IN INTEGRATION OF A

COMPLEX AUTONOMOUS SYSTEM

15.5.1 Component Simplicity vs. System Complexity

As a general rule, system design, and hence the integration effort that is involved,
strives to strike a balance between keeping individual components simple and
well-understood, and composing many such elements in a complex system to
achieve high-levels of performance. In this section, we discuss some of the
areas in which this balance is achieved.

15.5.1.1 Hardware vs. software

A very natural process in achieving component simplicity is that the design
effort tends to compartmentalize. Most often for robotic systems, this tends to
happen across hardware and software boundaries, though in large projects the
segmentation may occur even within those domains. The end result is a “pitch
it over the fence” mentality, where each camp hands off their work to the other,
and blames the other for the problems that ensue.

The role of system integration must be to tear down the fences — when
possible, before they are even built. One way to do this, which we return to
repeatedly, is through well-defined interfaces and specifications. These can
be used to provide “contracts” between groups working on independent sub-
systems. This provides a means of resolving conflicts by having prearranged
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agreements and definitions. It also often provides a surprising mechanism for
opening dialog across groups when problems reveal flaws or gaps in the original
specifications. It is important to view the occurrences of shortfalls of interface
specifications not as a failure of the system or any particular individual, but as an
opportunity for increased understanding between two groups and for resolution
of conflicting concepts that were not fully understood when they were first
agreed upon.

This relates to another mechanism for tearing down the fences between spe-
cialized subgroups: education and communication. Trying to design hardware
without a basic understanding of how it will be utilized by software algorithms
often leads to critical losses in development time and system performance.
Similar results arise from a lack of understanding in software design of the prac-
tical limitations and failure modes of hardware components. Gaining exposure
and insight into orthogonal areas of the design process enables a quicker devel-
opment cycle. And just as importantly, it can help protect a complex system from
catastrophic failures due to incompatible design and implementation efforts or
the misuse of specialized components.

15.5.1.2 Generalization vs. specialization

Another tradeoff that must be considered in balancing this optimization prob-
lem is between generalized, modular components and dedicated, specialized
components. On one hand, modular, reusable components have the decided
advantage that they reduce the work (and thus the costs) associated with
designing new components and can generally leverage testing and exper-
ience gained through their use in previous products. On the other hand,
dedicated components can be more streamlined and thus cost-efficient, as
well as have more targeted suitability and higher performance for the given
application.

Generally the goal of reusable components is easy to justify when work-
ing within a product family, where variations are small and reuse is natural.
More challenging is balancing the tradeoffs when working across a variety of
products, where the variations in price and performance can vary significantly.
For example, can one expect a sensor or algorithm designed for indoor use to
translate to outdoors, or for a module that runs on a Pentium processor to scale
down to an embedded PIC?

One additional balance that must be struck is the issue of what we call
“paying it forward.” That is, when is it worth investing in development costs
up front that will lead to reduced product costs down the line? This issue is one
that is felt most acutely in the commercial sector, where development funding
can be a precious commodity, but also where the fate of the product very often
revolves around its cost. There are many examples in which dedicated hardware
(including embedded components, customized chips and boards, and ASIC’s)
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have been developed and leveraged to provide a key piece of functionality
at a much reduced cost. Some examples include dedicated color processing
boards for vision, low-level sensing and avoidance motor controller boards,
and speech synthesis and recognition chips. This dilemma is almost always
decided by balancing the cost of developing the specialized hardware vs. the
expected return on investment derived from the lower final cost. However, this
requires an especially good sense (or very lucky guess!) of how well the product
will do in the market.

15.5.1.3 Abstraction and aggregation

Along similar lines of balancing generalization vs. specialization, an import-
ant mechanism for increasing performance while limiting complexity growth
is through the use of abstraction and aggregation. By this, we refer to col-
lecting (aggregating) basic components that work in concert together to form
higher-level (abstract) performance modules. In doing so, one can reduce the
integration effort from dealing with many independent low-level modules to
piecing together the actions represented by only a few aggregated ones.

The underlying notion we represent pictorially in Figure 15.2. In this figure,
let us think, for example, of the performance being measured by the number and
diversity of the tasks that must be performed. The abstraction level, on the other
hand, can be thought of as representing the unit complexity of implementing
and integrating each of these tasks, for example, the number of modules needed
to complete the task. Thus, greater abstraction represents an easier integration
task. As the required performance levels increase, if the unit complexity remains
the same then the overall integration complexity grows in proportion to the
performance. On the other hand, if, as shown in Figure 15.2, we can reduce the
unit complexity by aggregating the solution into higher-level representations —
effectively “preintegrating” low-level modules into higher-level aggregates —
then the overall integration challenge can be made to remain relatively constant.

Now, the skeptic would say this is just smoke and mirrors — the integration
complexity is just hidden in the aggregates, but still remains. While this is

Performance

x

Abstraction

= Integration
complexity

FIGURE 15.2 Using increased levels of abstraction and aggregation to provide
consistent integration complexity under increasing performance requirements.
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partially true, there is a powerful tool here for the system integrator to utilize
through compartmentalizing the complexity by breaking up the integration task
into focused composition of low-level modules into higher-level aggregates and
the separate task of integrating these abstract aggregate modules. We will return
to this issue in Section 15.9 as we discuss integration for an intelligent vacuum
cleaner.

15.5.2 Testing, Testing, Testing. . .

Testing is a fundamental component of system integration that cannot be under-
emphasized, and yet a balance must be struck between deep and thorough testing
and the ability to move a product to market quickly. Good testing can be hard
to achieve [12], and this is particularly true in developing autonomous robotic
systems that must survive the unexpected nature of the real world.

At the core of any robotic system are its components, and as such they
must be tested thoroughly to ensure they live up to their stated functionality.
Component-level testing (in software, these are often referred to as “unit” tests)
ensures this, while at the same time helps to enforce the proper use of interfaces
and design specifications.

Upon integration of complete systems, there is a different level of testing
that focuses on the functionality of the system. Depending on the particular
features of the system under testing, it might be possible to run system-level
tests with zero or very little user intervention. For example, the performance of
a recognition system can be tested using a set of predefined images. However, in
the case of many robotic systems, manual testing is usually required. Reliability
and robustness of single components and entire systems need additional testing
that focuses on performance achievement over long periods of time or a variety
of conditions.

In the end, one must always understand that autonomous systems, especially
in the consumer space, will face unique settings and unintended uses that could
not have been predicted by the designer. For this reason, a final and equally
critical step in testing is building in and testing internal self-monitoring of the
autonomous robotic system. Such “health monitoring” is often not necessary
in lab settings where human intervention is convenient and expected. However,
with increasing levels of autonomy and the need to work in a consumer’s envir-
onment, the expectation must be that the robot itself be able to identify and
diagnose potential problems.

Just as with testing during development, self-monitoring can be performed
at both the component and the system level. Component testing, for example,
can involve checking a “heartbeat” signal from individual components or identi-
fying problematic states, such as power surges or unreasonable fluctuation of
sensor values. System-level testing may involve determining “stuck” states of
the robot in which the robot is not able to satisfactorily perform its actions,
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or could involve identifying potential danger areas, such as those that might
cause harm to the user or to the robot. As we discuss below, we feel that it is
important that these types of monitoring capabilities be built into the overall
system architecture, rather than being seen as add-ons to individual elements.

Before leaving this topic, we also would like to highlight an interesting
technique found in the best practices of testing component-level software. This
involves designing, and to the extent possible implementing, the tests before
implementing the given system itself. Although at first blush this can seem
counter-intuitive — how can one build a test for something that has yet to be
built? — it turns out to be a very powerful tool in understanding the assumptions
and the implications of the specifications governing the design. It provides an
additional tool for the system integrator to insert himself into the process at
an early stage, rather than becoming involved only once it is time to put the
finished pieces together.

15.6 INTEGRATION THROUGH ARCHITECTURE

Most often system integration is viewed as the glue that holds together the differ-
ent, and sometimes conflicting, aspects of the product. For example, it involves
tuning the software to work with a particular hardware platform; modifying
individual components, such as sensors, to function in a particular environ-
ment; or even shaping the user interface and documentation to accommodate a
particular target end user.

While these aspects are important, we also want to emphasize that system
integration should play a prominent role as the skeleton of the product,
providing a framework and a source of commonality of purpose in the product
development. Thus, the integration impacts the development work from the
beginning as a guiding force, rather than as a final step to patch things
together.

To further investigate this important role of system integration, we focus
now on the role of software architecture in providing a partial framework for
system integration. This choice of focus is necessary to limit the scope of this
chapter. However, we wish to stress that some of the most important aspects
of system integration for robotic systems lie in understanding and shaping the
interplay between hardware and software. Many of the aspects of the software
architecture presented begin to blur the line distinguishing hardware from soft-
ware, and in many ways we view this as a partial, foundational step toward the
more general notion of a system architecture.

In describing the way the software architecture plays a role in system integ-
ration, we highlight lessons learned from the significant research literature
on this topic, and draw motivation from the constraints and requirements of
the service robotics sector. The software architecture chosen for developing
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an autonomous robotic system must provide an appropriate abstraction of the
hardware components and a solid paradigm for decision making and action
under uncertainty and in real-world applications. By real world we mean
unstructured, usually cluttered, dynamic, and typically unknown environments.
Further, the software architecture must enable the programmer or system engin-
eer to rapidly develop and customize the control software toward a specific
target, whether it is a vacuum cleaner, an entertainment toy, or a home compan-
ion. Each target application area will in general possess different and possibly
conflicting requirements and constraints — thus tradeoffs must be made to
realize the final implementation of the architecture.

In a long-term view, the architecture used for each target would have an
implementation adapted for that particular application domain. This would
embody the “niche finding” property referred to by Arkin [13], whereby archi-
tectures must find their place in a competitive world by being adapted to their
particular domain area, or niche. For instance, robots in the entertainment sector
would require the architecture to support powerful models of personality and
emotion, which most likely is an unnecessary capability for vacuum cleaning
robots. We view this as an example of the tradeoffs made between generaliza-
tion and specialization — the overall philosophy and design of the architecture
acts as general set of principles to guide the integration, while the implementa-
tion of the architecture becomes a specialized embodiment suited to a specific
domain. This ability to tailor the architecture to satisfy a particular commercial
sector can be critically important, since the computational platform for robots
ranging from industrial robots to toys can vary significantly from Pentium CPUs
with gigahertz clock speeds and gigabytes of memory down to embedded CPUs
running at tens of megahertz with only kilobytes of RAM. This highlights the
need to balance the component cost against the required performance of the
autonomous system.

The following list outlines the main characteristics and requirements for the
design and implementation of a software architecture targeted toward system
integration for commercial robotics. It is clear that not all of the characteristics
can be satisfied simultaneously — some are even contradictory — but our goal is
to seek balances that optimize the tradeoffs, especially in relation to optimizing
the metrics of performance, complexity, and price.

Modularity. The architecture should include support and guidelines for a
modular code structure that allows only the applicable portions of the code to
be installed, executed, or updated. This includes providing the support infra-
structure for easily composing the modules to form a seamlessly integrated
system.

Code reusability. This implies that modules can be reused in a variety of
applications and should support working across different configurations, for
example, as sensor type and placement is modified.
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Portability and platform independence. In many cases, it is desirable to use
the software developed for an application across different hardware (e.g., CPUs,
robots) and software (e.g., operating systems) platforms. On the hardware side,
this means that the software should be easily configurable for different robot
configurations, such as sensor type and layout, motor type, and overall mobility.
It is desirable that the software can be easily ported to run on different CPU
architectures and different operating systems, such as Linux, WindowsTM, or
MacOSTM. In the commercial sector, an important aspect of this is to sup-
port implementations that can run on embedded microprocessors with limited
memory and processing power.

Scalability. It should be easy to expand the system by adding new software
modules and hardware components. Also, the overhead of supporting modular
components should increase reasonably with the scale of the system.

Lightweight. The modularity and flexibility provided by the architecture
should not introduce significant overhead to the system. This is clearly a
conflicting goal with many of the other characteristics; however, the archi-
tecture must provide the right balance between generality and efficiency. This
is especially important for commercial robotics, where computational overhead
directly impacts cost.

Open and flexible. The system should enable access to the implementation
of the architecture through a well-established application program interface
(API), and should provide flexibility in allowing customizations that respect
the overall architecture design.

Dynamic reconfigurability. It should allow for dynamic reconfiguration
of the system, including adding, removing, upgrading, or reconnecting
components to the system. This includes the infrastructure for maintaining
and updating the system over time.

Ease of integration with external applications. Although this can be dif-
ficult to measure, the goal should be to provide convenient and flexible
mechanisms to integrate the modules developed under this architecture with
external libraries and applications, for example, customized software developed
by third parties.

Networking support. As networking infrastructure becomes more and more
commonplace, it is important that the architecture properly support working
across Ethernet networks. Furthermore, remote process control and shared data
across networks is desirable.

Fault monitoring. The system should support component-level determin-
ation of task success or failure, along with mechanisms for handling failures
at different levels of the architecture. It should also provide self-monitoring
through online evaluation of its state, as well as satisfaction of its task objectives.

Testing infrastructure. The architecture should support the ability to test
each component, as well as provide system-level testing facilities, both at the
development and product stages.
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Reactive and deliberative. The system should provide tight perception-
action feedback loops to react promptly to unexpected situations as well as
higher-level planning for efficient use of resources over longer time frames.
Plans should guide, not control, reactive components.

In addition, we feel strongly that the tools provided to support system
integration can be just as important as the components that are provided by
the architecture. These include, for example, tools for rapidly building applica-
tions, configuring the system, debugging during development, or visualizing the
system and analyzing its performance. And of course, simulation environments
play an ever-expanding role in supporting development and testing. However,
while simulations can enable rapid debugging of new code, a hard-learned les-
son (sometimes often repeated!) in system integration for complex autonomous
robotic systems is how dramatically inadequate simulation environments can
be in replicating the real world. We suggest, without proof, that this inadequacy
is directly related to the fragile nature of complex systems. Developing in a
simulated environment allows one to respond to many of the situations envi-
sioned by the creator of the simulator. But the real world provides infinitely
more variety in seeking out the subtle failure modes of the system.

Finally, we also note that beyond support tools, it is important that an
architecture provides a framework and guidelines to support and instruct code
development. This is an example of the skeleton referred to earlier that provides
a basis upon which the development and integration can be centered.

15.7 A SOFTWARE ARCHITECTURE FOR CONSUMER

ROBOTIC SYSTEMS

In this section, we introduce an implementation of an architecture that attempts
to satisfy the above mentioned design considerations. The Evolution Robotics
Software Platform (ERSP) provides basic components and tools for rapid devel-
opment, prototyping, and integration of robotics applications. The software
architecture it provides, called the Evolution Robotics Software Architecture
(ERSA), is the underlying infrastructure and one of the main components
of ERSP.

ship among the software, operating system, and applications. There are five
main blocks in the diagram — three of them, Applications, OS and drivers,
and 3rd Party Software, correspond to components that are external to ERSP.
The other two blocks correspond to subsets of ERSP: the core libraries (left-
hand-side block) and the implementation libraries (center block). We focus on
the Architecture (ERSA) portion of the core libraries. The other core librar-
ies provide system-level infrastructure for developing robotic applications —
essentially, the “muscle” attached to the architectural skeleton.
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FIGURE 15.3 ERSP structure and relation to application development.

The Vision component includes algorithms for color segmentation and
tracking, optical flow computation, and a Visual Pattern Recognition (ViPRTM)
module [14]. The Navigation component includes exploration, mapping,
obstacle avoidance, path planning, and visual Simultaneous Localization and
Mapping (vSLAMTM) [15–17]. The Human–Robot Interaction module includes
speech recognition, speech synthesis, and tools for building GUIs.

The Evolution Robotics Software Architecture provides a set of interfaces
(APIs) for integration of the different software modules and with the robot hard-
ware. ERSA allows for building task-achieving modules that make decisions
and control the robot, for orchestrating coordination and execution of these
modules, and for controlling access to system resources. ERSA is composed of
three layers, the Hardware Abstraction Layer (HAL), the Behavior Execution
Layer (BEL), and the Task Execution Layer (TEL).

The architecture corresponds to a mixed architecture in which the two first
layers follow a behavior-based philosophy [3,4] and the third layer incorpor-
ates a deliberative stage for planning and sequencing [5]. The first layer, HAL,
provides interfaces to the hardware devices and low-level operating system
(OS) dependencies. This layer assures portability of ERSA and application
programs across robots and computing environments. It also enables rapid con-
figuration of the software to support new robot platforms or sensor layouts. The
second layer, BEL, provides infrastructure for development of modular robotic
competencies, known as behaviors, for achieving tasks with a tight feedback
loop such as following a trajectory, tracking a person, avoiding an object, etc.
Behaviors are the basic, reusable building blocks on which robotic applica-
tions are built. BEL also provides techniques for coordination of the activities
of behaviors, for conflict resolution (action-selection mechanisms), and for
resource scheduling. Finally, the third layer, TEL, provides infrastructure for
developing event-driven tasks along with mechanisms for the coordination of
task executions. Tasks can run in sequence or in parallel, and execution of tasks
can be triggered by user-defined events.

While behaviors are highly reactive, and are appropriate for creating robust
control loops, tasks are a way to express higher-level execution knowledge
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and to coordinate the actions of behaviors. Tasks can run asynchronously
using event triggers or synchronously with other tasks. Time-critical modules
such as obstacle avoidance are typically implemented in the BEL, while tasks
implement skills that are not required to run at a fixed execution rate. Behaviors
tend to be synchronous and highly data driven. TEL is more appropriate to deal
with complex control flow which depends on context and certain conditions
that can arise asynchronously.

15.7.1
Architecture?

This section evaluates the design of ERSP in relation to the fulfillment of the
requirements postulated in Section 15.6.

Modularity. ERSP was designed so that the interdependency between com-
ponents has been reduced to a minimum, with functional units grouped into
individual libraries. The infrastructure for the three layers of ERSA (HAL,
BEL, TEL) is implemented in three, separate libraries. In addition to ERSA,
two libraries are devoted to vision components (one for basic vision primitives
and the other for ViPR) and one library implements all navigation capab-
ilities (vSLAM, exploration, path planning, etc.). These libraries constitute
the “core” of ERSP as shown in A different set of librar-
ies represent the “implementation” of basic ERSP APIs for particular cases,
for example, libevoviavoice corresponds to the implementation of the
ISpeechRecognizer and ISpeechTTS interfaces for the case of the
ViaVoiceTM speech recognition and text-to-speech engines. The modularity of
ERSP allows its users to decide which functionality (and correspondingly which
subset of the libraries) to integrate in a particular application.

Portability and platform independence. The HAL is the interface between
robotic applications and the underlying hardware. HAL software controls the
robot’s interactions with the physical world and even with low-level OS depend-
encies. As such, it plays a critical role in the integration of the hardware and
software components in the system. The use of a HAL has proven to be a boon
to our integration efforts, particularly in porting modules across different robot
platforms and OSs.

The HAL does this by abstracting away the details of particular hard-
ware devices and platform-specific ways of interacting with hardware or other
resources. We define a resource to be a physical device, connection point,
or any other means through which the software interacts with the external
environment. Resources include sensors and actuators, network interfaces,
microphones and speech recognition systems, or a battery. We have also exten-
ded the notion of resources to include fundamental computational units that
operate on sensory data. For example, both vSLAM and ViPR can be accessed
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directly as resources. This level of abstraction helps to maintain a constant level
of integration complexity as discussed earlier in Section 15.5.

The software module that provides access to a resource, often through
appropriate OS or other library calls, is termed a resource or device driver.
The description of the resources and the corresponding drivers are managed
through configuration files based on the eXtensible Markup Language (XML).
The use of resource configuration files allows configuration changes to be made
on the fly, which enhances one’s ability to test the impact of design changes
without having to recompile any code.

Code reusability. To protect higher-level modules from low-level depend-
encies, HAL provides a number of well-defined interfaces for interacting with
a variety of robotic devices. These interfaces are a set of public, C++ abstract
classes. Again, we emphasize the role of abstraction in reducing the com-
plexity of the integration task. The use of abstraction found in object oriented
programming has proven to be a powerful tool in providing platform independ-
ence and portability, as the abstract classes buffer the user from the details
of a given implementation. They also facilitate the interaction with resources
using real-world concepts and units. The particular driver implementation of
these interfaces is determined at run-time, based on the set of hardware or other
resources currently being used.

For example, the HAL provides an IRangeSensor resource interface
with methods that determine the distance to an obstacle. In addition, the
IRangeSensor has knowledge about the uncertainty associated with its
measurements. An obstacle avoidance algorithm can use IRangeSensor
to determine the position of obstacles to avoid. You can implement
IRangeSensor for IR sensors and sonar sensors. At the application level, you
work only with IRangeSensor and do not have to worry about any device-
specific details such as converting the IR or sonar readings into proper distances.
The device-specific properties of the sensor are specified in an XML-based
resource schema file. For an IRangeSensor, these might include the calib-
ration curve that maps raw sensor values to distances, as well as parameters
describing the sensor measurement uncertainty. HAL selects the proper driver
to handle these details, based on the sensor type(s) that are installed on the
current robot. This way, algorithms can be developed generically to work with
a variety of robotics platforms. The use of interfaces for isolation of imple-
mentation details is also employed in the case of OS-dependent constructs like
multi-threading, synchronization, and file handling.

Scalability.
architecture was the capability of providing increased levels of abstraction that
encapsulate increasing performance requirements in order to keep a consistent
integration complexity. ERSP includes two different solutions to this problem,
one in the behavior layer and the other in the task layer. The application designer
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has the ability to choose which of the two approaches is best suited for his/her
application.

The BEL provides the infrastructure for aggregating behaviors into a single,
meta behavior. These behavior aggregates implement the original behavior
interface and can be used as any other behavior in applications. Aggregates
play a crucial part in solving the problem of scalability of behavior networks,
making the networks manageable as the number of behaviors components
grows. As discussed in Section 15.5.1.3, this aids the system integrator by
keeping the integration complexity relatively constant. We return to this issue
in Section 15.9.

The TEL incorporates the infrastructure for linking behaviors and tasks.
TEL allows the definition of task primitives, which act essentially as wrappers
around behavior networks, making them look and act like individual tasks.
Other tasks can then use the task primitive exactly in the same way that they
use any other task. At its core, then, a primitive is an XML file describing the
connections between each behavior. The task then provides connections to the
inputs of desired behaviors, and can read data from outputs of the behaviors
within the network. The task primitive can then connect incoming events to
inputs on behavior ports, and can route outgoing data from the behavior network
to trigger events. Finally, the task primitive must handle any initialization that
occurs when it is started, and any cleanup from being terminated.

Lightweight. Each layer of ERSP has been designed to add a minimum
overhead to applications. HAL, BEL, TEL have been implemented follow-
ing a similar model in which a manager (the Resource Manager for HAL, the
Behavior Manager for BEL, and the Task Manager for TEL) is responsible for
managing (instantiation, execution, shutdown, and clean-up) of the appropriate
software modules (resource or device drivers for HAL, behaviors for BEL, and
tasks for TEL). Depending on the nature of the application, the user decides
which layers of ERSP would be needed. The run-time overhead of ERSP cor-
responds to the manager(s) needed to run the desired layers. Tests of variation
in performance in terms of increase in memory consumption and decrease in
speed have shown a negligible hit by using the manager(s).

Open and flexible. ERSP is built on a set of well-defined APIs.
Resource drivers follow the IResource interface, behaviors imple-
ment the IBehavior interface, and behavior networks implement the
IBehaviorNetwork interface. ERSP provides a basic implementation of
these three interface classes for users’ convenience. However, the system
would still work properly if a different implementation of these classes is used
or even if a different implementation of the ResourceManager or of the
BehaviorManager is employed. In contrast with HAL and BEL, TEL has
not been fully completed and lacks the flexibility of handling alternative imple-
mentations of their main components. Nevertheless, TEL allows users to create
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their own tasks and primitives, and run the tasks in serial, parallel, and mixed
modes.

Dynamic reconfigurability. A resource must be located, instantiated, and
activated before it becomes available to the system. After it is no longer needed,
or the system shuts down, the resource must be released and its memory
reallocated. For this purpose, we utilize a Resource Manager that is respons-
ible for managing the system resources across their life cycle. The Resource
Manager loads the resources based on the information provided by the resource
configuration file. Resources specified in the resource configuration file are
available on a need-to-use basis. If a particular portion of an application requires
a set of resources at a certain point in time, the resources will be activated by
the Resource Manager and provided to the application. Once the resources are
not needed, the Resource Manager will deactivate them while keeping them
in the list of available resources for future use. One drawback of the current
implementation, however, is that dynamic and system-wide changes in the
resource configuration file can only be effected by a complete shutdown and
deallocation of resources, followed by a reload of the resource configuration
file. Similarly, updates to the system require that the system be restarted —
there is no infrastructure within ERSP for internally updating libraries.

BEL and TEL have extensive support for dynamic reconfiguration of beha-
vior networks and tasks. The Behavior Manager is capable of dynamically
loading and shutting down behavior networks. Multiple networks can be run
in parallel and at different rates. Each behavior library provides a “factory”
function for each behavior type, which the Behavior Manager can call to create
a new instance of that type. The Behavior Manager also reads parameters from
the XML-based behavior network, which can be used at run-time to override
default parameters for each behavior. Behaviors can also be disabled from
execution by using gating behaviors that disable data transfer to the input ports
of the behavior to be disabled. These gating behaviors are used in the case in
which portions of a behavior network should be enabled/disabled depending on
the mode of operation of the application.

Ease of integration with external applications. ERSP does not have any
particular mechanism for integration of third party software and applications
but rather allows for incorporating them in any of the three layers of the architec-
ture. One particular example is the integration of third party speech recognition
(ASR) and text-to-speech (TTS) engines to applications built with ERSP. HAL
was the layer used for the integration of these engines since it was beneficial in
many counts: the input from a single ASR (and the output to a single TTS) was
accessible to (from) a multiplicity of modules, a well-defined interface isolated
higher layers from the type of engines that were used (we had implementa-
tions for the IBM ViaVoice ASR and TTS engines, the Microsoft ASR and
TTS engines, the ATT Naturally Speaking TTS engine, and the Sphinx ASR
engine).
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Networking support. ERSP provides support for networking using sockets.
Several applications have been written in a client-server mode that uses the
networking support. For example, the application presented in Section 15.9
has been split into two portions: one runs on the robot (that has the size of a
super-sized robotic vacuum cleaner) and the other runs on a client computer.
The client application is a GUI-based application that controls the actions of the
robot and collects information on the state of the robot. The client also collects
debug information that helps developers correct problems in the behavior of the
robot.

Networking support is provided within behavior networks with the
Malleable Behavior. This type of behavior opens a socket connection on a given
port and handles data communication encapsulated in an XML text format. One
current limitation of ERSP is that it only supports the transfer of simple data
structures, for example, strings and arrays. Transfer of more complex data
structures, such as images, is handled by customized behaviors.

Networking support in ERSP is still lacking some important functionality
such as support for multi-robot coordination, distributed computation across
different robots and/or processors, and transparent data sharing across networks.

Fault monitoring. The Resource Manager is also a natural vehicle for mon-
itoring the health of the low-level hardware components, and can provide a
central source of information about these components. The Behavior Manager
collects the information on the state of the behaviors and can alert the system
upon failure. From the coding standpoint, ERSP has been implemented in C++
without C++ exceptions, but rather providing result codes that define the state
of execution of the code. Clearly defined coding rules that enforce checks for
unexpected results provide a highly reliable and robust implementation of the
components of ERSP. However, ERSP lacks internal support for a heartbeat
monitoring system that can assess the state of the robot at any time and take
appropriate measures upon failure.

Testing infrastructure. This is one of the characteristics that has the
least support in ERSP. Component-level testing infrastructure for unit-tests
is provided in ERSP. Functional testing of components can be achieved with
different applications suites like the one described in Section 15.8. However,
general, system-level testing facilities have not yet been implemented.

Reactive and deliberative. The layered design of ERSP tries to address the
need for an architecture that is both reactive and deliberative. As mentioned
earlier, the two first layers follow a behavior-based philosophy [3,4] and the
third layer incorporates a deliberative stage for planning and sequencing [5].

While behaviors are highly reactive, and are appropriate for creating robust
control loops, tasks express higher-level execution knowledge and coordinate
the actions of multiple behaviors or behavior networks. For example, an action
that is best written as a behavior would be a robot using vision to approach a
recognized object. An action that is more appropriate for a task, on the other
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hand, would be a robot navigating to the kitchen, finding a bottle of beer, and
picking it up.

In addition to enabling event-driven, task-oriented processes, TEL has
the added advantages of providing familiarity and ease of scripting. Defin-
ing tasks is similar to writing standard C++ functions, not writing finite state
machines. Also, creating an interface with most scripting languages, includ-
ing Python, is simple, allowing one to make use of the power of high-level
scripting languages, while controlling tasks in a natural way. By sequencing
and combining tasks using functional composition, you can create a flexible
plan for a robot to execute, while writing code in a traditional procedural style.
TEL support for parallel execution, task communication, and synchronization
allows for the development of plans that can be successfully executed in a
dynamic environment. TEL also provides a high level, task-oriented interface
to the BEL.

15.7.2 Development Tools

The development of robotic applications is complicated by the number of ele-
ments that compose a robot. ERSP provides a number of tools, modules, and a
framework aimed toward easing application development efforts.

The XML files are used for configuration of robots, for description of the
internals of resources and behaviors, and for detailing behavior networks. The
use of a single, XML-based resource configuration file enhances usability by
concentrating all system- and platform-dependent changes to a single file. Modi-
fications of the number, type, or location of sensors or actuators thus involve
only a single modification of the resource configuration file, not a recompil-
ation of the application. Settings for resource and behavior parameters are
also described with XML files, allowing for quick modification of parameters
while tuning applications. From the user standpoint, quick and easy access to
parameters is key for fast debugging of algorithms.

An  important development tool provided  in  ERSP  is the  Behavior Composer.
This graphical tool allows the user to create behavior networks with a drag-and-
drop procedure. A behavior is just a box that has inputs, outputs, and parameters.
The behavior composer allows one to place behaviors in a network, to select
the flow of data by drawing connections between the input/output ports of the
behaviors, and to modify parameters with a property editor. The network is
saved in XML format and ready to be executed. In addition, the Behavior
Composer enforces type safety for data flowing between behaviors, by only
allowing connections between ports of compatible semantic type.

robot drives around avoiding obstacles while responding to user commands
recognized with an ASR engine. The application switches states depend-
ing on the input command and provides a response with a TTS engine.

© 2006 by Taylor & Francis Group, LLC

Figure 15.4 shows a behavior network for an application in which the
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FIGURE 15.4 Behavior composer. ERSP includes a GUI tool for ease of development
of applications (behavior networks) at the BEL layer.

The system that drives the robot and avoids obstacles is encapsulated in
the SafeDriveSystem behavior. This behavior is a Behavior Aggregate
composed of approximately 15 sub-behaviors.

15.8 CASE STUDY 1: SONY AIBO

The first example that tests the described design methodology corresponds to
the integration of the ViPR module of ERSP into the latest software release
for the Sony AIBOTM (ERS-7TM). ViPR supports AIBO’s robust self-charging
capabilities, which enhances the autonomy of the robot, by allowing the robot to

command-and-control human-robotic interaction by using a set of cards which

AIBO represents perhaps the most complex consumer robot available on the
market, and embodies many of the tradeoffs between performance, complexity,
and price that have been described earlier.

This project presented several challenges, namely, the extraction of a single
module of ERSP, cross-compilation of the software for a completely new OS

© 2006 by Taylor & Francis Group, LLC

reliably find its charging station (see Figure 15.1). ViPR also supports reliable

the user shows to the robot in order to initiate commands (see Figure 15.5). The
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(a) (b)

(c) (d)

(e) (f)

FIGURE 15.5 Examples of cards used to command the Sony AIBO. (a) Deck of cards
and (b) AIBO looking at a card. Detailed views (c)–(f) of four of these cards: the first
one instructs the robot to “dance,” the second one to “take a picture,” the third one to
“set the alarm clock,” and the last one to “turn around”.
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and microprocessor, and the achievement of a set of computational and memory
requirements. In fact, the module was required to be compiled with two different
compilers, gcc and Green Hills, posing additional compatibility challenges due
to the differences between the implementations of the “standard” libraries.

The modular design of ERSP allowed for a simple integration of ViPR into
the Sony AIBO: just extract the ViPR libraries from ERSP and custom com-
pile them for AIBO’s proprietary OS, called AperiosTM, and for a 64-bit RISC
processor (ERSP was used only on ×86 platforms before this project).

The ERSP achieves OS and platform independence by using a set of abstrac-
tion functions that isolates the ERSP libraries from the actual implementation
and function names of the underlying standard C-library. For example, the
ViPR libraries use ersp_stat() for getting the status of a file and this func-
tion properly points to stat() in Linux, to _stat() in Windows, and to
OFS::stat() in the Green Hills version of Aperios. Another example is the
case of ersp_time() that is used to obtain the time in seconds. This function
points to time() in both Linux and Windows, but it had no implementation in
either the gcc or the Green Hills versions of AperiosTM. This is one of the few
cases in which we had to add a piece of code to ERSP in order to implement
ersp_time() using the GetSystemTime() function of Aperios. This
platform independence satisfied an important criterion of the software archi-
tecture discussed earlier, and accelerated development time by allowing us to
spend most of the development time working on the platform of our choice.

Applications developed for AIBO are based on a proprietary software
architecture developed by Sony called Open-R. The application is basically
composed of a set of modules that are loaded at run time according to a list of
modules and interconnections among them. Similar to the Behavior Manager
in ERSP, modules are executed by a software manager and data transference
between modules is achieved with an event system. This modularity plays
a significant role in maintaining a tractable level of complexity, even as the
system performance level is increased. However, it does not fully support in an
easy way the notion of complexity reduction through abstraction illustrated in

images from the camera and provided output recognition events. The public
ViPR API was used to develop this module and no modifications of ERSP
were required for integration. This helped manage the cost implication of using
ViPR, by reducing development costs, since existing, standardized components
could be used, and by limiting the cost to only a module of ERSP, rather than
the entire platform. In addition, the well-defined API made possible the integ-
ration of ViPR between two teams separated both by distance (United States
and Japan) and sometimes language.

Testing and quality assurance (QA) presented some of the most challenging
parts of the project. The project had a set of requirements stated in terms of
recognition  performance, computational performance, memory  and CPU usage,
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Figure 15.2. ViPR was integrated and linked into a module that received input
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and overall quality of the code. We had to verify that we had achieved those
requirements without knowing the environment and the conditions in which
AIBO would be deployed. This “generalization” requirement is quite difficult
to test since there are infinitely many possibilities. Therefore, Sony provided
us with a “nominal” test set of images that would be challenging enough to
cover a range of reasonable usability conditions. This test set was used to test
computational performance of ViPR in addition to recognition performance.

The overall quality of the code was tested using a set of internal tests for
detection of memory leaks and successful handling of conditions that might
create exceptions. We developed an application suite that was run for many
days (and even weeks) at a time to verify stability of the code. One of the
applications had AIBO performing recognition of the pole located in the back
of the charging station. This application was executed for long periods of time
in a location whose lighting was changing during the day. The recognition
results were captured in order to verify the stability of recognition and of the
calculation of the pose of the robot. A separate set of tests was used to evaluate
the load of the CPU when ViPR was run. This wide range of tests gave a
means by which to certify the performance of the code before it was ever
delivered. This had the effect of reducing the integration time, and hence the
cost of the project, while ensuring the software met the desired performance
levels.

15.9 CASE STUDY 2: AUTONOMOUS CAPABILITIES

FOR VACUUM CLEANING

In this section, we examine the evolution of a robotic system as it progressed
toward a consumer product. Our goal is to highlight some of the critical chal-
lenges that arose during this process. For example, this development path
followed an interesting cycle when viewed from the metrics of performance,
complexity, and price. The initial development cycle targeted increasing levels
of performance, especially in terms of autonomy and robustness, while attempt-
ing to maintain a manageable level of complexity. The resulting solution was
infeasible in the consumer space, due to its price. What followed was a gradual
shift toward squeezing down the price, while attempting to maintain as much
performance as possible.

Early on in the development of this robot, a main focus was to enable
improved autonomy through improved awareness of the robot’s location.
Simultaneous Localization and Mapping (SLAM) is one of the most funda-
mental, yet most challenging, problems in mobile robotics. To achieve full
autonomy a robot must possess the ability to explore its environment without
user intervention, build a reliable map, and localize itself in the map. In par-
ticular, if global positioning sensor (GPS) data and external beacons are
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unavailable, the robot must somehow, by itself, determine what are appropriate
reference points on which to build a map.

Unfortunately, the only existing solutions to the problem at the time required
either that the robot have access to GPS (not available in indoor consumer
environments); to markers or beacons manually placed throughout the envir-
onment; or to expensive hardware, such as laser range finders, that enabled
solving the SLAM problem. Motivated by the need for a low-cost, flex-
ible alternative, Evolution Robotics developed the first visual Simultaneous
Localization and Mapping (vSLAM) algorithm [15,16]. The algorithm is
vision- and odometry-based, and enables low-cost navigation in cluttered and
populated environments. No initial map is required, and the algorithm satis-
factorily handles dynamic changes in the environment, for example, lighting
changes, moving objects, or people. At a system level, vSLAM uses inputs to
the system of odometry data and images, and outputs the robot pose and an
abstract vSLAM map.

In contrast to previously proposed algorithms, the vSLAM system gener-
ates, detects, and estimates the relative pose to a landmark utilizing a single
camera. By using a localization scheme with a particle filter [18] and an adapt-
ive mixed proposal distribution [19,20], vSLAM enables navigation with good
accuracy in a large variety of real-world environments. The adaptive mixed
proposal distribution also enables vSLAM to recover from “kidnapping” scen-
arios; that is, situations where the robot is lifted up and moved without being
notified. Indeed, an important aspect of the system is the ability for other
modules to monitor and detect when the system has been kidnapped. This
satisfies the health monitoring characteristic of the system architecture. As an
example of its usage, mapping algorithms must use this information in order to
avoid incorrectly updating the map based on invalid position information, and
planning algorithms are invoked to recover from situations in which the robot
becomes lost.

SLAM in general, and vSLAM in particular, provides a fundamental
component of localization and mapping that is important for any complex
autonomous robotic system. After having implemented vSLAM, we decided
to focus on specific applications that could utilize such autonomous capabilit-
ies. At the same time, the appearance of robotic vacuum cleaners such as the
RoombaTM from iRobot, the TrilobiteTM from Electrolux, the RC3000TM from

market.
None of these robotic vacuum cleaners had localization capabilities, but

instead achieved spatial coverage using a series of heuristics and algorithms
that moved the robot in pseudo-random patterns. Thus, it seemed that there
was a clear fit between this newly emerging market of robotic vacuum cleaners
and the localization solution provided by vSLAM. Localization would enable
systematic floor coverage for efficiency (cleaning speed and energy utilization)
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Karcher (see Figure 15.6), and others, gave birth to the robotic vacuum cleaner
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(a) (b)

(c)

(e)

(d)

FIGURE 15.6 Robotic vacuum cleaners. (a) Roomba from iRobot, (b) Trilobite from
Electrolux, (c) RC3000 from Karcher, (d) VC-RP30W from Samsung, (e) the Friendly
Vac from Friendly Robotics.
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FIGURE 15.7 R3R robot from evolution robotics.

and completeness (maximum area covered), as well as autonomous homing and
docking for self-charging. One crucial element was missing: a suitable robotic
platform for demonstrating the capabilities of vSLAM to the target market.
For this reason, we developed our own robot for this purpose, the Evolution
Robotics R3R shown in Figure 15.7. The goal in developing the R3R was to
demonstrate, in a robot of form factor similar to actual vacuum cleaner robots,
the many advanced capabilities that would be useful for vacuum cleaning,
including vSLAM, autonomous exploration, automatic map generation, floor
coverage, self-docking, obstacle avoidance, and path planning.

since this shape allows for minimal risk of hitting and scratching furniture and
getting entangled in dangling pieces of cloth. Following the same principles, the
R3R robot was designed with a circular shape that was about 30 cm in diameter
(similar to the diameter of a Roomba). The height and weight of the robot, at
about 30 cm and 10 kg, respectively, were much greater than desired. This was
mainly driven by the design choice of the computational unit; in order to avoid
the challenges and risks of integrating into an embedded system, we chose to
use an off-the-shelf minibook PC with a 2 GHz Pentium 4 CPU. This design
choice led to the need to use a set of four high capacity, flat Li-ion batteries,
higher-power actuators, and a much larger form factor than desired. This also
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All the robotic vacuum cleaners shown in Figure 15.6 have a circular design
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led to additional hardware challenges when trying to design the suspension to
support a heavy, wheel-centered, differential drive robot with a high center of
gravity.

In retrospect, we feel the choice was still a good one, since we were able
to directly leverage many advantages of the Pentium implementation of the
software architecture, but there were clearly additional challenges introduced
by this choice. In effect, our optimization choice was to sacrifice component
cost to reduce complexity and development time and cost. Performance was
enhanced in many ways, for example, by having significant processing power to
support many modules executing parallel tasks, but was also adversely impacted
by the difficulties in form factor mentioned earlier. We return to the issue of
cost reduction in Section 15.9.2.

design; however, there were many intermediate versions of the robot during
the development of this prototype. Software was being developed along with
the hardware, so there was a need to allow for quick reconfiguration of the
hardware, minimally affecting the software development. The HAL layer of
ERSP provided such capability: changes in the hardware configuration just
needed to be reflected in the XML file that described the robot, the resource-
config.xml, allowing for applications being run without having to recompile
any code. In the case in which new sensors were added to the R3R or when
a particular sensor type was changed, there was a need for the development
of a new driver for the sensor. This resource driver needed to follow a pre-
defined software interface that was used by applications at the HAL and TEL
layers. The net result was that applications could be run just by adding the new
sensor library and modifying the resource-config.xml, without the need for
recompilation of the main application code. The hardware isolation provided
by the HAL layer had a very important impact on development productivity
since the integration of hardware modifications caused almost no disturbance
to the software development process.

also shows the various pieces of data that are interchanged between the mod-
ules. The Exploration, Sweeping, and Docking modules also represent different
mutually exclusive states of operation of the robot. The Path Planning, vSLAM,
and Obstacle Mapping are functional modules that serve each of the different
states of the robot. The functionality of the modules is the following (numbers
in parentheses represent the number of modules comprising each higher-level
module):

vSLAM (2). This module performs SLAM based on visual and odometry
inputs. It creates a map of visual landmarks, computes visual measurements,
and estimates the pose of the robot based on the odometry readings and the
visual measurements.

© 2006 by Taylor & Francis Group, LLC

The R3R robot shown in Figure 15.7 corresponds to the final prototype

Figure 15.8 presents the main software modules of the system. The figure
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FIGURE 15.8 Software modules comprising the demo system.

Path planning (5). This determines the set of motions needed to move the
robot to a given location, taking into consideration the current position on the
map and the set of obstacles that have been found. It outputs velocities that
command the Drive System.

Obstacle mapping (3). This keeps a record of the locations in which
obstacles have been detected. It outputs an occupancy grid that has been
corrected by taking into consideration the current pose of the robot.

Exploration (4). This module decides the places that the robot has to visit
based upon the robot’s pose, the location of the obstacles, and history of loc-
ations that the robot has visited. It outputs either goal locations for the Path
Planner or velocities for the Drive System.

Sweeping (systematic coverage) (4). This prepares a set of trajectories that
maximizes the coverage of the area to clean. It determines target paths to be
followed and chooses where to sweep based on a map of the area that has been
covered. In addition, the coverage algorithms have specially adapted routines
to guarantee that the robot cleaned around the boundaries of obstacles in order
to maximize coverage.

Docking (5). This module manages the return of the robot to the charging
station from its current position. The docking process has two stages: long-
range approach and short-range docking. In the first stage, the docking module
provides a goal location to the Path Planner based on the current pose of the
robot. In the second stage, a finer grained, short-range approach to the charging
station and self-docking is controlled directly by this module. ViPR is used in
this final approach in order to compute the pose of the robot with respect to
a planar landmark that has been attached to the charging station, and a set of
velocities is provided to the Drive System.
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Obstacle avoidance and drive system (15+). This module senses and reacts
to obstacles while driving the robot at the given input velocities. It includes
sensors for obstacle detection, actuators that drive the motors, and a set of action
selection  mechanisms that allow  for balancing  the  two (possibly) opposing  goals
of driving at the desired velocities while avoiding obstacles.

As can be seen from the above, each of the high-level aggregates is gen-
erally comprised of three or four lower-level modules (although some of the
complexity is hidden in powerful library calls, such as is the case with vSLAM
and Obstacle Mapping). Using this abstraction has been a valuable compon-
ent of reducing some of the integration complexity in putting together such a

It is also interesting to look in more detail at the Obstacle Avoidance
and Drive System module, which has the largest number of modules and
uses several levels of abstraction.
ents of this module. The application was developed using the BEL layer of
ERSP; therefore, all the blocks shown on the figure represent behaviors. The
center block is called SafeDriveSystem and corresponds to an aggreg-
ate behavior that delivers all the functionality of the avoidance and drive
module. This meta-behavior is comprised of two different aggregates, the
SensorAggregate and the AvoidanceAggregate. The first of these
behaviors is responsible for instantiating one behavior per sensor included in
the resource-config.xml file and collecting sensor information into a set of
data that is used by the AvoidanceAggregate. This second aggregate
is responsible for taking the desired velocities and the information collec-
ted from the sensors, evaluating the best possible way of achieving the goals
while avoiding obstacles, and then driving the motors. SensorAggregate
is itself composed of three aggregates that handle each type of sensor present
in the R3R: a SensorRing with IR sensors (or for that matter, laser or
sonar sensors) for measuring distance to obstacles, BumpSensorRing, and
StairSensorRing with IR sensors for measuring hazards such as stairs.
We have also shown an expanded view of the modules that further comprise
the SensorRing. Similarly, the AvoidanceAggregate contains many
modules to make decisions based on the sensory information, and includes
an internal aggregate, OccupancyGridAggregate, that creates a local
occupancy grid to provide memory to the avoidance system.

Figure 15.9 is also a good example of the pyramidal structure that was
described in Figure 15.2, in using aggregation and abstraction to improve per-
formance without significant increases in integration complexity. All the mod-

tools provided in ERSP to keep the complexity of the integration of the
system at reasonable levels when adding more functional modules to the overall
application.
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complex system (as shown in Figure 15.2).

Figure 15.9 shows the internal compon-

ules presented in Figure 15.8 follow a similar implementation that use the
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Having shown the complexity of the system, testing becomes a major
challenge due to the number of components and the internal complexity of each
of the algorithms. In fact, the challenge is not only testing, but also debugging
since tracing a problem to find its root cause may become an overwhelming task.
Fortunately, ERSP’s modular design makes it simple for users and developers
to focus on testing individual components well before integration and system
testing. The behavior networks that compose the aggregates could be tested
individually and independently before integration. Algorithm prototyping and
replacement can be done by just simply replacing behaviors in the corresponding
behavior network.

15.9.1 Lessons Learned

Before turning to the work performed in reducing costs via an embedded design,
we briefly capture a few lessons learned and challenges that still exist in using
ERSA and developing such a system.

One of the most significant design challenges is how to design general,
modular, reusable behavioral components that have a performance comparable
to those that are tailored for a specific robot hardware or user environment. For
example, there are different design choices, in both hardware and software,
to be made when using IR sensors vs. a laser range finder vs. sonar sensors.
Similarly, an omnidirectional robot will utilize different strategies in obstacle
avoidance, path planning, and docking than a differential drive robot. Even in
the case of two robots with the same types of sensors and drive system, the
placement of the sensors and the form factor of the robot can motivate very
different solutions that are hard to generalize into a single control behavior.
In approaching this problem, we generally attempted to develop behaviors that
could work as broadly as possible, but remained willing to develop specialized
behaviors when the performance could not be achieved otherwise. Doing the
former generally leads to an increased complexity within a given behavior, but
lowers future development costs and simplifies maintenance; doing the latter
has the potential to improve performance, but makes maintaining the code more
difficult, as the component tailored to each configuration must be maintained
separately.

Another area that posed challenges to us was the lack of shared, global
data space available within ERSA. In order to have different behaviors commu-
nicate data, they must be passed over ports; for tasks, data must be passed as
events. Having a central, “blackboard” repository for shared data would enable
developers of different modules to more readily communicate. However, there
is the trade-off of increased complexity as one must properly handle synchron-
ization of data (reading and writing), ensuring that it is not stale, and enforcing
data types.
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One final area that posed a challenge was integrating system aspects that
must operate at different execution rates. For example, low-level obstacle avoid-
ance must execute within milliseconds, while vSLAM and planning need only
operate at rates on the order of seconds. The current implementation of ERSA
allows for multiple behavior networks to run at different rates; however, there is
no easy mechanism for communicating between these networks. This is an area
for future development. Additionally, there are no real-time guarantees provided
by  Linux  or  ERSA, so CPU intensive  tasks, such  as  vSLAM, can  slow down time
critical tasks such as stair avoidance to unacceptable levels. For this reason, we
chose to use hardware acceleration (e.g., embedded microcontrollers) whenever
possible. For example, we off-loaded low-level hazard and obstacle avoidance
to the hardware controller board, which meant we could easily maintain sensing
rates without any additional costs (except for development costs). In the next
section, we describe in more detail another example of reducing hardware costs
by implementing selected, critical algorithms in embedded hardware.

15.9.2 Embedded Implementation of vSLAM

The  demonstration  of vSLAM and the algorithms for path planning, exploration,
coverage, and self-docking based on the R3R were an important first step into
prototyping the features of the robotic vacuum cleaner of the future. However,
this demonstration was not sufficient to make a compelling business case for
integrating these technologies into actual robotic vacuum cleaner products.
The main hesitation from potential manufacturers stemmed from our use of a
2 GHz Pentium 4 CPU as the computation unit. For this reason, we developed
an embedded version of the R3R to demonstrate a robot that would resemble
an actual product computational-wise.

We thus embarked on a project to develop a version of the R3R based
around a low-cost embedded CPU. The goal for this project was to maintain
roughly the same level of performance, while reducing the component price
by over an order of magnitude (roughly $1500 down to $100). This reduction
in cost was obtained at the expense of an increase in the complexity of the
design and implementation of the system; however, we utilized many techniques
described earlier to bring the complexity roughly in line with the original robot.
The embedded R3R required a hardware-software codesign that involved not
only the selection of the appropriate embedded CPU(s), but also the partition
of the functionality among the computational units and the adaptation of the
software to handle such partition. Many of the requirements for the software
architecture postulated in Section 15.6 were crucial in maintaining the com-
plexity of the embedded R3R at the same level as the original R3R from the
software point of view. Modularity of the design allowed for swappable com-
ponents that moved from a pure software implementation to a hardware or a
mixed implementation. Dynamic reconfiguration enabled using the software or
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the hardware version of a component depending on the operating conditions
and on the CPU(s) load.

The development of the embedded R3R was an iterative process that
involved choosing the embedded processor, evaluating the performance of the
system with this processor, profiling the code, and selecting which functionality
to off-load to hardware. One main criteria was used in this selection: achieve-
ment of the desired performance at the required cost. Following this criteria
we selected two modules to be implemented in DSP coprocessors. The first
module was the vSLAM frontend, where ViPR recognition is performed, that
was the major consumer of CPU cycles. The second module was the low-level
sensing/actuation module (drive system and obstacle avoidance) that required a
higher-performance rate than what was achievable with the selected embedded
processor.

Figure 15.10 presents the internals of the vSLAM frontend. The first two
modules were part of ViPR, that performed feature extraction from images and
that computed an affine match between the landmark and the images. The third
module calculated a full 3D match to the landmark and estimated the pose of
the robot in order to create a visual measurement. The affine matching module
of ViPR was composed of two steps, a lookup of features in a k–d tree and
an evaluation of match candidates and an affine matching computation. The
feature extraction module and the k–d tree lookup accounted for about 70% of
the computation of the frontend. Most of the calculations in these two modules
used integer operations; therefore, we implemented them in a low-cost DSP (as
shown in Figure 15.10).

An interesting side benefit of moving to an embedded processor was the
ability to reverse the vicious cycle of power consumption and battery weight.
Removing the need to feed a power-hungry Pentium processor allowed us
to reduce the battery load. This, in conjunction with a lighter processor
board, made the overall system lighter, which further extended the battery life.

Feature
extraction

3D matchingMatching

k–d tree
lookup

ViPR
Images Visual measurements

Affine
matching

Implemented on DSP

FIGURE 15.10 Internals of the vSLAM frontend.
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In the end, the embedded R3R could easily be run five times as long as the
original!

15.10 CONCLUSIONS

In this chapter, we have discussed and analyzed some of the key challenges and
constraints that arise when developing a complex autonomous robotic system
for the consumer market. We propose analyzing the integration challenge along
three primary system-level measures: performance, complexity, and price.
These measures drive design and integration decisions and lead one toward
a series of secondary constraints and criteria that help guide the integration
process, including modularity, scalability, interface design and abstraction,
portability, and testing capabilities. We discuss these ideas in the context of
a software architecture designed to support autonomous consumer robotic sys-
tems, and analyze the utility of these ideas using two case studies of robots
designed and built for the consumer market.
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16.1 INTRODUCTION

16.1.1 A Key Product of the 20th Century

The automobile has been one of the most important products of the 20th century.
It has generated an enormous industry and has given individuals a freedom of
movement, which has completely changed our ways of living. Indeed, the
automobile has been the key factor to a large change in the way our urban
societies are structured. If we look at the change in the population of a large city

number of inhabitants have moved from the center of the city to the periphery,
creating the concept of the suburbs. This shift of population has been driven
mostly by the availability of the mobility offered by the automobile and the
desire to live in a house with a garden. Together with this shift of population, new
structures have emerged with decentralized organizations for work, shopping,
and entertainment and as a consequence, a decrease in the interest for going to
town centers. We have now reached a situation where the access to a private
automobile is synonymous to freedom and this has led to car densities between
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TABLE 16.1
London Population
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500 and 800 cars per 1000 inhabitants in most industrialized countries and a
strong desire to reach these levels in other countries. These densities mean that
nowadays, almost anyone within the proper age limit has access to a car for
moving around and those not of age, must rely on the “soccer moms” as they
are called in America.

16.1.2 Problems with Safety

Such enormous development has obviously brought some problems to our
societies. The first problem is concerned with safety. It is estimated that
1 million people die every year in traffic-related accidents worldwide. This is a
catastrophe of bigger magnitude than all armed conflict, which has happened in
the past. The most advanced countries have been able to drastically reduce the
number of fatalities through better vehicles (better handling, better braking, and
better passive safety) and through better infrastructures (modern freeways are
ten times safer than regular roads). However, these improvements seem to reach
a limit in terms of the number of deaths per million passengers-kilometers, even
in industrialized countries. Indeed, the problem of the automobile is that it is
inherently dangerous for the driver, the passengers, and the other road users.
It goes at such speeds that very slight errors can have catastrophic results. And
human errors can happen to any type of driver. The simplest and most common
error is distraction. A few seconds of inattention are sufficient to collide with
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a pedestrian crossing the street, with a car, which has stopped ahead, or to
go off the road. Another human error which do happen is the mishandling of
an emergency situation. A large percentage of drivers will take improper action
in such situations and incur an accident, which could be avoided. The only
solution to solve these problems of human errors is to remove the driver from
the control loop. An interim step is to assist the driver to warn him/her in case of
potential danger (e.g., in the case of excessive speed before a dangerous bend or
when a car is present in the blind spot while changing lane), or to take over the
control in emergency situations (e.g., emergency braking in case of impending
collision).

16.1.3 Problems of Congestion

The success of the automobile also leads to the saturation of the infrastructures,
in particular, in cities. Each car needs a certain amount of space in order to
operate. The normal width of roads is 3.5 m in order to accommodate vari-
ous types of vehicles and steering imprecision. Spacing between vehicles has
also to be kept at a minimum to prevent collisions during decelerations (this
depends essentially on the driver’s reaction time). This spacing is obviously
very dependent on the speed and it is usually recommended that it should be
at least equal to 1.5 times the speed in meter/second. This is equivalent to a
time gap of 1.5 sec. This spacing leads to a maximum throughput of about
2,200 cars per hour per lane. This is not much if we consider that a suburban
train can carry about 60,000 passengers per hour on an infrastructure of sim-
ilar dimension. Furthermore, such high-density car traffic often leads to a flow
breakdown (stop and go traffic) and to accidents both of which drastically
decrease the capacity. The solution to these problems lies once again in the
removal of the driver from the control loop to improve the lateral guidance (and
hence reduce the width of lanes) and the longitudinal control (with possible time
gaps of around 0.3 sec) while maintaining the traffic safety. Such techniques
of automatic driving could multiply by a factor of ten the throughput of the
infrastructures.

Another problem is that of congestion for parking. Each individual vehicle
is used for a very small percentage of its life. Most of the time, it occupies
space very unproductively. Typically, a car will need about 10 m2 if parked at
the curb but this space is very limited in cities and cannot accommodate all the
cars of the residents and visitors. In parking lots, each car will need four times
this amount in order to have access to each individual slot. These spaces can
reach a high price in dense cities and the cost of parking (if paid by the owner)
can be a strong deterrent for going to or living in these places. The solution for
reducing the cost of parking lies in the automatization of the parking in order to
obtain higher-car densities, in the reduction of car size for cities, and in the

© 2006 by Taylor & Francis Group, LLC
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FIGURE 16.1 Car-sharing from Toyota.

16.1.4 Problems with Emissions and Nuisances

The large development of the car and truck population has also led to critical
problems of noise and pollution at the local level as well as greenhouse gas
emission at the global level. Although the car manufacturers have been able to
drastically reduce the local pollutants, the noise in cities is now perceived as the
major problem by the inhabitants. At the global level, the generation of CO2
through the use of fossil fuels is also considered as a major problem, which
will require drastic steps such as the limit in the use of cars which generate
CO2 above a certain level. In the long term, this will lead the industry to offer
vehicles running on different types of energy or to new forms of transportation
systems.

Already, some cities have taken such steps to allow only zero emitting
vehicles (ZEV) in some zones, either for passenger transport or for freight
transport (this latter being responsible for a major part of the nuisances). The
European project ELCIDIS has experimented with such concepts for freight
with distribution platforms located outside the cities so that freight is transferred

Another path for reducing the amount of emissions and noise generated
in cities while reducing the space needed for private vehicles is to change the
balance between individual vehicles and public transport. In general (and if
the occupation factor is high enough), public transport is much more energy
efficient (and space efficient) than individual vehicles. Furthermore, public
vehicles can use electricity and hence reduce noise and local pollution. There-
fore, if we could change the balance between private transport and public

port in cities. Several steps are now being taken in this direction in particular

© 2006 by Taylor & Francis Group, LLC

to electric van for distribution in the cities (Figure 16.2).

transport (Table 16.2), we could drastically reduce the negatives effects of trans-
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FIGURE 16.2 Electric vans for freight distribution.

TABLE 16.2
Surface Transport Modal Split
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with more space dedicated to public transport with right of ways. New vehicles
are also designed to improve the comfort and the efficiency of public transport,
in particular with electronic guidance of vehicles, which can behave as a light

© 2006 by Taylor & Francis Group, LLC

rail with regular road infrastructure (see Figure 16.3 and Figure 16.4).



FRANKL: “dk6033_c016” — 2006/3/31 — 16:43 — page 619 — #7

Automotive Systems/Robotic Vehicles 619

FIGURE 16.3 Civis.

FIGURE 16.4 Phileas.

16.1.5 Car-Sharing and Cybercars

In order to take into account the problems presented earlier while preserving the
convenience and flexibility of individual vehicles, a solution is being developed
around the concept of public individual vehicles. In this scheme, subscribers to
a mobility service can “borrow” a vehicle from a fleet at various points in the
city and either return it to the same location, or, in some systems, return it
to any other authorized location. This system, which has initially been tested
in the 1960s without much success, is now getting quite popular in countries
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like Switzerland, Germany, and Canada. The development of these car-sharing
schemes relies mostly on new communication and localization technologies
for a better management of the fleet and easier reservation by the users (mostly
through Internet and mobile phones). More than a hundred thousand of such
vehicles are already in operation in various cities.

The major interest of car-sharing is to encourage the users to take public
transport, or to walk when possible, and to take an individual vehicle only
when this is a better alternative. Another interest is to be able to select a vehicle
better adapted to the city. In several car-sharing schemes (Praxitele, Liselec,
ICVS,…), electric or hybrid vehicles are offered which solve the problems of
local pollutions and noise while improving the safety (it has been demonstrated
that electric vehicles have less accidents).

The problems of car-sharing organizations are, however, the difficulty of a
good return on investment at this time due to the lack of demand for each vehicle.
The operators must make sure that the vehicles are available where and when
needed but this is quite difficult since the number of pick-up points must be
limited for management reasons and redistribution techniques. The solution to
this problem lies with the automatic movement of the vehicle in order to make
them available where and when needed. This solution, which originated in the
Praxitele project, has been tested by Honda in Motegui in 1998 and is being

16.1.6 The Future of the Automobile

The automobile has certainly been a major step in the development of our
advanced societies and it has now become a necessity for its sustainability.
Those who do not have access to an individual vehicle (because of age, physical
abilities, or financial situation) have a hard time getting the same freedom of
movement as those who have the access and therefore have less opportunities
for work, shopping, entertainment, etc. The automobile has become a “must”
for any citizen and this need is now occurring throughout the world.

Although this need is creating an enormous industry and therefore an
improvement in the global economy, there are serious doubts concerning the
negative factors such as lack of safety and emissions. It is certainly not sus-
tainable for our planet to support billions of automobiles running in the same
way as today (the current automobile population is around 800 million at the
beginning of the 21st century with extreme growth in China and India).

One way to limit these negative impacts is to move from an industry of
products to an industry of service where anyone would have access to mobility
in the most cost-efficient way. With this service industry, each customer would
have a choice of transportation mode. For those trips occurring in high-demand
time and zone, mass transport would be more efficient and hence cheaper.

© 2006 by Taylor & Francis Group, LLC

Figure 16.5).
further developed in the European CyberCars Project (www.cybercars.org) (see

http://www.cybercars.org
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FIGURE 16.5 Cybercars in Amsterdam-Floriades.

At other times, an individual transport would be better. Sometimes, for a single
trip, two or more modes would be the best. Of course, both mass transport and
individual transport would be offered by companies in the most cost-efficient
way and in accordance with local regulations. In this context, automated driving
will be developed because of decrease in cost of operation and improvement in
safety (this is already occurring in certain transport modes such as the metros).
This approach toward automation follows the development of robotics in the
factory, basically for the same reasons (cost) but also for improved safety and
meeting regulations (in particular noise and emissions).

Obviously this move toward fully automatic vehicles will not happen
everywhere at the same time. There are two trends toward this future. One
is driving assistance which is spreading quite rapidly since the late 1990s
with numerous techniques which have appeared in recent high-end private
and commercial vehicles (buses and trucks). The other is with the arrival of
people-movers based on automated guided vehicles in specific locations and on
dedicated tracks (protected or not). It can be forecast that in the next 10 years,
these two trends will merge with individual vehicles with dual mode capab-
ilities: manual (assisted) driving on regular roads and fully automatic driving
on dedicated zones where no (or few) manual vehicles will be allowed, ensur-
ing therefore a smooth and safe operation of the automated ones. This type
of vehicle will be perfect for the implementation of mobility services with
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vehicles which can be called on demand (perhaps through mobile phone) when
and where needed. With the development of such zones, new dedicated infra-
structures will be built specifically for these vehicles to move automatically and
at high speed from one automated zone to the next. This is the most realistic
path for the “automated highways” to happen.

The rest of this chapter will describe the techniques already developed for
the sensors, for the actuators and their controllers, and for the control algorithms
in these two approaches which transform the old automobiles of the 20th century
into more or less autonomous robots. We will present the robotic techniques
already in use for applications such as drivers’ assistance and fully autonomous
vehicles already on the road. Indeed, the new automobile with its sensing capab-
ilities, acting capabilities, and control techniques are becoming robots and will
use many past and present developments from the robotics research community.

16.2 THE AUTOMOTIVE SENSORS

In order for the modern vehicles to become more independent from the driver
in their behavior and to assist or completely replace him/her, it must acquire
information from its environment as in any robotics system. This is why the new
vehicles must be equipped with sensors, which will feed the actuators through
the control algorithms. Presently, a rather large number of sensors are already
available or soon will be for the automotive market. This section reviews such
sensors.

16.2.1 Ultrasound Sensors

These sensors are the simplest and least expensive available at this time.
Ultrasound sensors operate by emitting a cone-shaped ultrasonic wave (pressure
wave) through an ultrasonic (electrostatic or piezoelectric) transducer and
receiving its echo. Within a stipulated distance range, the incoming echo is
checked and the time taken for the sound to travel the distance is determined
from which the distance to the object is calculated. If the distance between the
sensor and the objects is too small, the echo arrives before the ultrasonic trans-
ducer has reached steady state and is ready to receive. Thus, objects in this dead
band cannot be detected reliably. Usually, in order to have wide-area detection,
a set of few sensors is used for measuring their orientation [1] or position [2].
In this case, neighboring ultrasonic sensors can influence each other mutually
at an extent that is generally only determined experimentally. One solution is
to synchronize the output waves. Ultrasonic sensors are today widely spread
in the automotive industry for a few applications, the most common being the
back maneuvers and parking assist systems. These sensors are cheap, light,
small, and low-power consuming. Their main drawbacks are the short range
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(only a few meters), their poor angular precision (10 to 30◦ depending on the
sensors), and their sensitivity to wind, humidity, and object shape or orientation.
Some developments are under way to have ultrasonic sensors with high-angular
resolution through the use of an array of receivers but the range will always
remain a problem.

16.2.2 Inertial Sensors

These sensors are not truly environment sensors but proprioceptive sensors in
the sense of robotics. However, they are now widely used for stability func-
tions and for navigation in the automotive industry. Thanks to new electronic
technologies (in particular, MicroElectroMechanical Systems or MEMS), they
can be very inexpensive.

Traditionally, a full inertial measurement unit comprises six sensors allow-
ing measurement over the six degrees of freedom of a vehicle, namely three
orientations (roll, pitch, and yaw) and three accelerations. However, the vehicle
being restricted to operate on a known surface (usually the horizontal plane),
a six axis inertial navigation system is not needed and in fact, often only the
angular rotation around the vertical axis and the longitudinal acceleration are
of importance to estimate the position. The accelerations are measured using
accelerometers and permit to retrieve the vehicle displacements over time by
double integration. Unfortunately this causes the drift errors intrinsic to these
proprioceptive sensors to increase at a square rate of the distance.

16.2.2.1 Gyroscopes — gyrometers

The spinning mass gyroscope is the classical gyro that has a mass spinning
steadily with free movable axis (so called gimbal). When the gyro is tilted,
gyroscopic effect causes precession (motion orthogonal to the direction tilt
sense) on the rotating mass axis, hence letting you know the angle moved.

More precise, without the moving parts causing friction (therefore inherent
drift), the optical gyrometer (measuring the rotational speed instead of the
angle) has been developed over the past decade, based on the Sagnac effect.
When two light beams propagate in opposite directions around a common path,
they experience a relative phase-shift depending upon the rotation rate of the
plane of the path. The actual heading or direction is obtained by integrating the
output. The ring laser gyroscope (RLG) is the first type of these sensors. The
input laser beam is split into two beams that travel the same path in a prism
but in opposite directions (one clockwise and the other counter-clockwise).
The beams are recombined and sent to the output detector. In the absence of
rotation, the path lengths will be the same. If the apparatus rotates, there will
be a difference in the path lengths traveled by the two beams, resulting in
a net phase difference and destructive interference. The net signal will vary
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in amplitude depending on the phase shift providing a measurement of the
rotation rate. In the case of the fiber-optic gyroscope (FOG), the phase difference
is detected by interfering the two beams outside the path. The FOG being a
simpler device than RLG, it is currently receiving more attention due to its
potential to achieve the required performance at a lower cost. Also attractive,
thanks to a good immunity to magnetic fields, they can be found (Hitachi) in
automotive navigation system, used in conjunction with GPS (discussed later
in Section 16.2.6.1) and in several other systems (cleaning robots, unmanned
dump trucks, devices for route surveying, and mapping).

Vibrating gyroscope is the third type of gyroscope. A vibrating element
(vibrating resonator), when rotated, is subjected to the Coriolis effect that causes
secondary vibration orthogonal to the original vibrating direction. By sensing
the secondary vibration, the rate of turn can be detected. The vibration is often
exerted and detected by means of the piezoelectric effect. This type of gyro is
suitable for mass production and almost free of maintenance.

Recently, monolithic integration of MEMS with driving, controlling, and
signal processing electronics makes possible new generation of smaller, cheaper
sensors. MEMS gyros use capacitive silicon-sensing elements coupled with sta-
tionary silicon beams attached to the substrate and measure the Coriolis-induced
displacement of the resonating mass and its frame.

16.2.2.2 Accelerometers

Accelerometers detect the motion of an object by means of instrumented
spring-mass “seismic” structures. Under acceleration, a force acts on the
inertial mass causing a displacement of the (silicon) moving structure with
the fixed frame. The analog output is inferred by transduction based on
piezoelectric effect of quartz and special ceramics, piezoresistive or capacitive
measurement principles. The last two types have in recent years been pro-
duced, as gyroscopes, using the silicon micromachining technology (MEMS).
Capacitive-based MEMS accelerometers are actually preferred over piezo-
electric accelerometers in many cases because they generally offer higher
sensitivity and better resolution. The same is true for MEMS vibrating beam
accelerometers. Also MEMS accelerometers usually do not have the problem
that piezoelectric accelerometers have with low-frequency components. Com-
pared to piezo, the latter produces a higher-level output signal for increased
noise immunity.

16.2.3 Laser Detection and Ranging

Light Detection and Ranging (LIDAR) are devices consisting of a photon
source, often a laser for Laser Detection and Ranging (LADAR), a photon
detection system, a timing circuit, and optics for both the source and receiver.
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The interest of LADAR stems from the natural three-dimensional (3D) spatial
data it produces, defined by its spherical coordinates (r, θ ,ϕ) mapped to a
two-dimensional (2D) matrix [11]. The distance r from the device to targets
struck by the emitted photons is measured by the time-of-flight (TOF) divided
by the speed-of-light. A device that proceeds in a single-shot measurement is
usually referred to as laser rangefinders. LADAR, on the other hand, is generally
assumed to generate a 2D or 3D range image.

16.2.3.1 Range measurement

The simplest method is the direct TOF technique where a pulse is sent and
its echo is received. The shortest pulse source currently used in an operational
LADAR device is 250 psec. The Chirped Pulse method is less sensible to noise,
thanks to the pulse that is coded using pseudorandom techniques similarly to

A second type of method is based on continuous sinusoidal signal (CW —
Continuous Wave). An unmodulated CW source is suitable for velocity meas-
urements but is incapable of measuring range. The phase-based AM-CW, aimed
at improving accuracy over direct TOF through the use of phase detection,
is based on the source modulation with a fixed sinusoidal frequency, f . A phase
shift of�φ = 2π f (2d/c)will be observed between the transmitted and received
signal. Therefore, the object distance is given by d = (�φc /4 π f ). Another way
of getting range information using CW is by generating a chirp waveform in
the frequency domain (FMCW — Frequency modulated continuous wave).
The modulation might be linear or sinusoidal. The methods are practically dif-
ficult to implement in a stable, linear system. (One approach is to thermally
control the laser cavity; as the cavity expands and contracts under thermal
excitation the coherent wavelength of the laser changes or changes the length
of the cavity mechanically using extremely fast piezoelectric actuators.) The
major sources of error are from the precision with which the initial laser pulse
is generated (CW, pulsed, or chirped), the nature, and ambiguity of the light
detection. However, a precision of a few centimeters can usually be obtained,
which is sufficient for most applications.

16.2.3.2 Azimuth measurement

Scanning methods are the most widely used to built a LADAR data frame by
illuminating each pixel in a range image, retrieving range and angular informa-
tion (azimuth and tilt for 3D LADAR). Frequently there is a trade-off between
speed and accuracy. LADAR frames can be created by scanning high-resolution
laser rangers in which a single degree-of-freedom laser rangefinder is mech-
anically swept over the scene using either encoder-equipped pan/tilt servos
or a rotating mirror (polygonal scanners, galvanometric scanners) combined
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FIGURE 16.6 ALASCA ladar (IBEO AS).

with either a pan or tilt servo. Specific LADARs for the automotive industry
are now under development. The ALASCA sensor (IBEO AS) [12] uses a
rotating mirror and a combination of a single-illuminating laser with four
receivers, which allows for a vertical field of view of several degrees (see
Figure 16.6).

The major problem with scanning comes from the cost and reliability (over
the lifetime of a vehicle) of the mechanical components. Microfabrication may
provide the way  forward. With reduced size comes reduced inertia, which in turn
permits higher performance. Micromirror arrays could prove to be a very useful
technology for the control of the resolution of LADAR sensors. Micromirrors
also can act as a distributed scanner that generates a large number of microbeams
that can scan the workspace from different angles and positions.

Another alternative to scanning is the use of Focal Plane Array (FPA) which
is a 2D “chip” in which individually addressable photo sensitive “pixels” can be
accessed. Early FPA detectors were developed as, first, infrared imagers and
later as FLIR (Forward Looking InfraRed) detectors, largely for military pur-
poses. For measuring range, additional electronics must be added to an FPA in
the form of timing circuitry, a cost that tends to limit the size of the array. This
circuitry must fit behind each pixel in the array and usually causes the pixel size

New work in FPA design shows promise for the resolution (now at 124× 160)
as well as for the level of miniaturization needed to improve range resolution
and speed since most of the effort is being directed at acquiring the LADAR
frames in real-time (Flash LADAR).
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FIGURE 16.7 Prototype 3D camera.

16.2.4 Radar

The Radar (Radio Detection and Ranging) is based upon propagation of a signal,
a high-frequency electromagnetic wave, emitted from the sensor. This signal
reflects from any obstacle on its path and the sensor will receive in turn this echo,
a signal that will be processed and from which range, azimuth, and velocity of
the obstacle (or target) can be determined. The relative velocity of the target is
measured using the Doppler effect (a wave reflecting on a moving object of a
speed difference with the sensor of Vr , has its frequency modified by a value
of �f = 2Vrf /c), there are however different ways to measure the range and
the azimuth angle, depending mostly upon the required accuracy and therefore
resolution [4].

16.2.4.1 Range measurement

The pulse radar sends a signal and immediately listens to its echo, which
permits the sensor to have a single emitter/receiver, reducing the cost. In order
to increase the resolution, the signal has to be short and might lack in strength,
which causes difficulty to extract the echo from the noise. The signal strength
is indeed proportional to 1/d4 (with d the distance). The sensitivity is usually
improved by using pseudorandom modulation technique over the pulse length
(PseudoNoise Phase Shift Keying, PN-Frequency Hopping, PN-Pulse Position
Modulation) in order to send a specific coded signal, a chirp pulse, the reception
of which is based on the emitted signal characteristics and become much more
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reliable. The shortcomings of coding the signal is that for a few centimeters res-
olution, very short signals must be sent (state of the art of 300 psec) requiring
a high-spectral resolution (Ultra Wide Band — UWB) making the measure-
ment of the echo amplitude and phase difficult and impossible, thus making
the measurement of Doppler effect, that is, the obstacle velocity impossible.
Pulse Doppler radars exist and are based on a specific signal processing based
on the demodulation of the received signal with the source frequency. These
radars are, however, more sensitive to interferences and present a substan-
tial blind zone in front of the sensor (time for the pulse emission — a few
nanoseconds for these radars).

Continuous wave radars on the other hand, send a continuous frequency
modulated signal and simultaneous reception. The received microwave is
delayed by an amount that is retrieved by comparing the current emitted
frequency signal with the received one. In case the wave was reflected by a mov-
ing obstacle, the Doppler shift is added and inserts an ambiguity that is solved,
thanks to the modulation type. The frequency is modulated using double ramps
(Linear FM) of steps (Frequency Shift Keying — FSK) or by a combination of
it [3]. Thanks to this technique, the range and velocity estimations of the target
can be made, based on Fast-Fourier Transform (FFT) algorithms or possibly
on high-resolution spectral modeling [5]. FMCW has many advantages when
operating at the high frequencies used for automotive radar (76 to 77 GHz).
At these frequencies, achieving a well-controlled pulse transmission for a pulse
radar is difficult. FMCW offers straightforward integration gain through using a
low-detection bandwidth to compensate for the low-transmit power that can be
achieved. FMCW also offers very short-range capability as receiver recovery
time, necessary for a pulse radar, is not required.

16.2.4.2 Azimuth measurement

Usually, the angular information does not strongly depend upon the wave shape
but on the antenna. The gain of the antenna is proportional to the surface of the
antenna and inversely proportional to the square of the wavelength. Therefore,
in order to have a high-gain antenna, for applications (like automotive) where
space is an issue, high-frequency microwave would be preferred. Angular
information might be determined by triangulation in case two (high-range res-
olution) radars are used. Another way is to mechanically scan the antenna.
It allows a large detecting area, but a usually poor-velocity resolution due to
the limited available time of analysis at each angular position. Commutation
of receiving signal over different antennas is another technique but the most
common for high-angular resolution requirements is the monopulse method.
Over a specific detecting area, the reflected signals from the same target are
received on two shifted antennas as two beams having different directions and
allow to precisely retrieve the angular position of the obstacle.
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16.2.4.3 Automotive radars

The 77 GHz radar for the automotive industry is commercially available since
early 1999 [6], based on conventional RF-components. A 79 GHz band with
4 GHz bandwidth should be made available for short range radar applications
within EU member states and European conference of Postal and Telecommu-
nication Administration (CEPT) countries by 2005. However, the cost of these
systems will limit their use for long-range and high-accuracy (at least longitud-
inally) application such as ACC (adaptive cruise control) or emergency braking.
The 24 GHz radar is under development and should address the applications
for short range and low cost [7,9,10]. However, at this time, the legislation in
Europe does not allow wide use of this frequency.

16.2.5 Vision Sensor

16.2.5.1 Principles

The previous sensors provide high-spatial resolution mainly by determining
the range value to the target at the expense of a lower definition due to the
single array information (besides next generation LADAR). Vision sensors
offer a 2D array of up to a million pixels with a large field of view, the
range detection and the angular field of view depending upon the optics (lens
and focal). This rich source of information allows for much smarter, though
involved, applications, for example, classification and recognition of object.
Wide-luminance range sensors are provided by CMOS imagers with non-
linear luminance response and will certainly replace current charge coupled
device (CCD) imagers. In fact, CMOS devices can offer several advantages
over CCD-based imagers, including enhanced functionalities with individual
pixel signal processing, lower power consumption, and lower cost. Within the
several application fields in which the advanced signal processing capabilities
of CMOS imagers are useful, the automotive one is currently the object of many
research activities and offer wide market opportunities. System on chip incor-
porates major IC components on a single chip. High-temporal dynamics [14]
and a fast read out resolve fast movement. Thus, the digital image sequence
is passed to an evaluation unit that performs appropriate signal processing to
extract the desired output.

16.2.5.2 Specificities of automotive applications

The design of vision sensors for automotive vision has to take into account
specific constraints [13,15]. When most of the current vision systems use full
color, accurate image reproduction, and photographic or video aspect ratios,
operating over a visible light spectrum of 0.45 to 0.7 µm and realized with
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CCD or CMOS sensors, most automotive applications are monochrome and
may involve variable aspect ratios, pixel size, and pitch. Automotive imagers
must collect light at very low levels, and yet still resolve objects in direct
sunlight. Another constraint concerns practical resolution requirements. The
automotive vision system will be used as sensor input for computational vision
that will perform higher-level task by extracting features from the imager and its
pixels information in order to perform lane recognition, passenger occupancy
detection, forward vehicle, or pedestrian detection [21,22]. The last constraint is
generic for any automotive system: provide features with customary automotive
durability, at an affordable cost.

16.2.5.3 Stereovision systems

The ranging capability of active sensors (radars, ladars) is an extremely rich
data source. A stereo-based vision system can similarly provide a direct abso-
lute measurements of the scene [18]. Computing depth from two images is
a computationally intensive task. It involves finding for every pixel in the
left image the corresponding pixel in the right image. Correct correspond-
ing pixel is defined as the pixel representing the same physical point in the
scene. The distance between two corresponding pixels in image coordinates is
called the disparity and is inversely proportional to distance. In other words,
the nearer a point is to the sensor, the more it will appear to shift between
left and right views. Stereo depth computation, in particular, has many advant-
ages over other 3D sensing methods. First, stereo is a passive sensing method.
As we have seen, active sensors rely on the projection of some signal and
often pose high power requirements or safety issues under certain operating
conditions. They are also detectable — an issue in security or defence applic-
ations. Second, stereo sensing provides a color or monochrome image, which
is exactly (inherently) registered to the depth image. This image is valuable
in image analysis, either using traditional 2D methods, or novel methods that
combine color and depth image data. Third, the operating-range functions of
lens field-of view, lens separation, and image size are flexible. Fourth, stereo
sensors have no moving parts, an advantage for reliability. Computation relates
to the frame rate, which needs to be high with low latency and remains an
issue for many applications. In safety applications such as airbag deployment,
the 3D position of vehicle occupants must be understood to determine whether
an airbag can be safely deployed — a decision that must be made within tens
of milliseconds (Siemens VDO, Delphi). For vehicle tracking applications, by
means of 3D information, it is easy to distinguish vehicles and shadows on
the ground, vehicles and reflections on the road, or detect overlapping vehicles
(Omron Corp.). However, a key problem of these stereovision systems is a
correct calibration [16,17]. In all applications where not only recognition is
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FIGURE 16.8 Lane departure warning system.

important, but a correct localization in world coordinates is essential, a precise
mapping between image pixels and world coordinates becomes mandatory.
This correspondence may vary during system operations due to many reas-
ons; in automotive applications, vehicle movements and drifts due to sudden
vibrations may change the position and orientation of the cameras, making this
mapping less reliable as the trip proceeds.

Automotive application using cameras have started to appear on the market
by the end of the 1990s. The first commercial application has been the lane
departure warning, not a truly robotic application but a first step in this direction.
This system (see Figure 16.8), which warns the driver when the vehicle tends
to drift away from its lane, is now often used in trucks. The first application,
which put some control of the vehicle, was the introduction of lane keeping
assistant (Nissan Cima in 2002) where a single camera helps the driver to stay
in the middle of the lane by applying a corrective torque on the steering wheel.

16.2.5.4 Future vision processors

The complexity of computational vision encouraged the introduction of
dedicated ASICs aimed at developing hardware-based vision processing func-
tions [19]. As innovative approaches, an Embedded Perception Processor,
inspired by the physiological mechanisms of human vision, has been developed
based on a “Perception Paradigm” modeling the visual perception capabilities of
the human brain (BEV S.A.) [20]. Contrasting with the usual “DSP Paradigm”
using expensive image processing techniques, this processor is an electronic
modeling of a spatio-temporal neuron, which is the basic building block of the
perception processor allowing real-time analyses of successive frames of video
and the determination of the speed, direction, hue, luminance, and saturation
of each pixel. As a result, the processor (Generic Visual Perception Processor
[GVPP]) is a single-credit size chip able to detect the presence of objects in a
motion video signal, and then to locate and track those objects as they move in
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real time. Extremely fast, a single GVPP chip is capable of performing up to
20 billion operations per second.

16.2.6 Global Navigation Satellite-Based System

The Global Positioning System, global navigation the first satellite-based sys-
tem (GNSS) launched by the U.S. Department of Defense in 1980 has found
a lot of crucial civil application and is nowadays a key technology for most of
navigation and positioning solutions [23,24]. The goal of the GNSS is to build
a system that provides information on time, position, and velocity everywhere
on the planet.

16.2.6.1 Global positioning system

A constellation of 24 satellites evenly spaced, placed at 20.200 km altitude,
in circular 12 h orbits and inclined at 55◦ to the equatorial plane provide,
at a reasonable cost, an earth wide coverage. Since its start, new generation of
satellites have succeeded. The atomic clocks control all inboard signals very pre-
cisely, thanks to (for the BlockII) two rubidium and two cesium clocks, which
gives for each satellite four time standards. As we will see in the following
sections, these clocks are the heart of the global positioning system (GPS). The
satellites transmit two microwave carrier signals derived from the fundamental
L-Band frequency, the L1 frequency (1575.42 MHz) and the L2 frequency
(1227.60 MHz). On these carriers, two main binary codes are shifted. First
of all, the most used information, the C/A Code (Coarse Acquisition), is a
repeating 1 MHz Pseudo Random Noise (PRN) Code modulated upon L1 only,
which delivers an effective length of 300 m. There is a different C/A code
PRN for each satellite, which is often also used to identify the satellites. The
C/A code is also designated as the Standard Positioning Service (SPS). Second,
the P-Code (Precise) is a 10 MHz PRN code that modulates both the L1 and
L2 carrier phases. It has been reserved for U.S. military and other author-
ized users. Besides, a data message is modulated onto the L1 carrier at 50 Hz
providing status information, satellite clock bias corrections, and ephemeredes
(orbits).

In order to keep civilians from using the GPS, two techniques have been
implemented in order to add bias error to the signal. The Selective Availab-
ility (S/A) operating on the C/A Code and accounting for observed variation
of amplitude of 50 m, is obtained by dithering the fundamental frequency
of the satellite clock. The S/A has been turned off on May 2, 2000 [28].
Furthermore, with the Anti-Spoofing (AS) turned on, the P-Code is encryp-
ted into the Y-Code in order to limit the access to authorized users only (Precise
Positioning Service).
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16.2.6.2 GLONASS

The GLONASS satellite navigation system is deployed by the Russian
Federation, owned and operated by the Russian defense department from
1982. It is equivalent to GPS with a few particularities. The 24 satellites are
distributed over three orbital planes instead of six, which allows quicker reor-
ganization of constellation in case of a satellite failure and a better coverage
on the polar region. They transmit the same PRN-code at different frequen-
cies L1 = 1602 MHz + n × 0.5625 MHz, where “n” is frequency channel
number (n = 0, 1, 2, . . .) for each satellite, which provides more robust resist-
ance to interferences and jamming. The signals from the Glonass system are not
degraded. In addition to the Channel of Standard Accuracy (CSA) that provides
a horizontal accuracy of 60 m (at 0.997 probability) a Channel of High Accuracy
(CHA) will be accessible to authorized users. The current status is ten orbiting
satellites. However, outages have been observed so the usable constellation is
not always ten satellites but rather nine or eight.

16.2.6.3 GALILEO

The European Union intends for the Galileo system to provide four naviga-
tion services and one search and rescue (SAR) service. The primary signals
of Galileo are intended to provide an “Open Service” (OS) of a high qual-
ity, consisting of six different navigation signals on three carrier frequencies.
OS performance will at least equal that expected from the “follow-on” gener-
ation (Block IIF) of GPS satellites scheduled to begin launching in 2005 and
the future GPS III system architecture currently being investigated. The GPS
IIF/III satellites will offer wideband signals on three civil (open) frequencies:
one high-chipping rate signal (L5 centered at 1176.45 MHz) and two low-
chipping rate signals (L1 at 1575.42 MHz, L2 at 1227.60 MHz). Moreover,
the GPS modernization program will offer additional civil and military code
structures on L2.

16.2.6.4 GPS receiver-based localization

GPS receivers are usually small electronic devices that offer different reception
capabilities. The choice is usually based upon the absolute positioning accuracy
vs. the price of the receiver. Small civil SPS receivers can be purchased for under
$200 and some can accept differential corrections. Receivers that can store files
for post-processing with base station files cost more ($2000 to 5000). Receivers
that can act as DGPS reference receivers (computing and providing correction
data) and carrier phase tracking receivers (and two are often required) can cost
many thousands of dollars ($5,000 to 40,000). Military PPS receivers may
cost more or be difficult to obtain. Other costs include the cost of multiple
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receivers when needed, post-processing software, and the cost of specially
trained personnel.

16.2.6.5 Basic principle

The basic principle to answer the question of positioning relies on the basic
geometry tool of triangulation, which is the capability to find an intersection
point from three different spheres. Assuming that we see from a point of the
earth three satellites and that we know their exact position, by calculating the
distance from this point to each satellite, that is, the time travelled by a coded
electromagnetic wave from the satellite to our position times the speed of light,
we are able to solve for our position, that is, longitude, latitude, and altitude.
Therefore, in order to have a precise positioning information, it is mandatory to
have (1) a precise information on the satellites position within an Earth Centered
Fixed Frame (ECFF) for instance and (2) an exact measurement of the time of
travel of this specific coded signal that is emitted by the satellite. At the speed of
light, an error of 1 msec in measuring the travel time would result in an error of a
about 300 km! Kepler’s law gives precise orbits for each satellite, where they are
positioned when they are launched. The orbits information are communicated to
the receivers by means of the navigation message and their related “ephemeris”
errors resulting from deviation from the nominal orbit are calculated from the
base stations, transmitted to the satellite in order for it to send this information to
the user on earth, the GPS receiver, such that it can take this error into account.
The second condition, however, is much harder to satisfy because of two main
factors. First of all, a GPS receiver embeds a very cheap clock with respect to the
$50K to 100K satellite atomic clock. The synchronization of the satellite clock
and the GPS receiver clock then becomes mandatory though a complicated task
and will require a fourth satellite. Furthermore, the electromagnetic wave signal
sent by the satellite does not always travel at the speed of light, especially within
the atmosphere and specifically through the ionosphere (at an altitude of 50 km
to 500 km), where the speed will depend upon the chemical composition of the
environment and the thickness of the layer that is traveled.

16.2.6.6 Code range positioning

The basic position calculation can be performed by a multichannel (in order to
receive signals from different satellites at the same time) single L1 frequency
receiver. Assuming C/A PRN codes are generated precisely at the same time at
the satellite and the receiver, the code is shifted within the receiver in order to
match with the code sent. The time required to shift the signal will give the
time of traveling and will be used to estimate the distance to the satellite or its
pseudorange. The offset between the clocks will then be calculated in order to
account for this error. In order to do so, the measurement of a fourth satellite
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is made. This measurement will not coincide with the already defined point if
there is a clock offset. Since this offset modifies all calculation, it is modified
as to find the proper value for a single intersection point with the four different
measurement, which gives the clock offset. For simple receiver, the ionospheric
refraction error is modeled within the receiver software and is taken into account
for the final calculation. The typical accuracy value with S/A turned off for these
systems is about 10 m at the 95% probability level. Dual frequency receivers
(on L1 and L2) have the advantage to be able to define more precisely the iono-
spheric error. The refraction depends indeed upon the frequency, a lower fre-
quency (L2) get more refracted, that is, is more delayed than higher frequency.
This information is used by smart receivers to get exact ionospheric errors.
Unfortunately this requires a very sophisticated receiver since only the milit-
ary has access to the signals on the L2 carrier. Civilian companies have worked
around this problem with some tricky strategies where the receiver operates in a
codeless or quasi-codeless mode. Unfortunately they are very secret. Of course
P-Code receivers do not present only this advantage, since they have access to
an extra code, demodulated on L1 and L2 they can obtain a very good accuracy.

16.2.6.7 Code phase differential GPS

When the S/A was still turned on and the precision of the GPS did not meet
many application requirements, the development of a technique came up, based
on the use of (at least) two receivers, one of which, the reference, is supposed
to be located at a precisely known stationary position and the other one the
(moving) receiver for which the position is to be determined. The reference
frame calculates the errors on the measured pseudoranges since it knows its
position and transmits it to the second receiver in order to improve its position
calculation. Such a system presents, however, some shortcomings for a few
applications. In order for the error information to be valid it is supposed that
the two receivers monitor the same satellites and receive the signals in similar
conditions which means that the roving receiver cannot go far from the base
station (100 km). Furthermore, a radio link must be established between the
two receivers so that the base can send correct information to the roving one.
Aside from the basic calculation, using the available information in a smart
way, the GPS has also been designed to do new tricky calculations that have
risen during the last decade.

16.2.6.8 Augmented differential GPS

A precision of a few meters might be sufficient for many applications; how-
ever, for a global use, differential GPS using earth-based reference as seen
previously, is not practical as it would require thousands of reference bases.
The aviation community first had in mind to establish a system that could
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improve the integrity of the GPS, as this issue is crucial in avionics. When a
GPS is not working correctly, the delay between the time it is informed and, in
turn, the user is informed through its system status is too big. So the Federal
Aviation Administration (FAA) got the idea that they could set up their own
monitoring system that would respond much quicker. In fact, they figured they
could park a geosynchronous satellite somewhere over the United States that
would instantly alert the aircraft when there was a problem. Then they reasoned
that they could transmit this information right on a GPS channel, so that the air-
craft could receive it on their GPS receivers and would not need any additional
radios. The additional benefits are to have an extra satellite always on view and
to use the earth-based reference to establish a consistent continental-wide cor-
rection map that can be informed to the user via the satellite in order to correct
the pseudoranges and get a national differential GPS accuracy positioning, for
free! A satellite-based augmentation system (SBAS) has already been deployed
on the North American continent (WAAS for the United States and CWAAS
for the Canada) as well as on Japan (MSAS) and is under deployement over
Europe through the EGNOS system which has started its operation phase in
July 2005 [25].

16.2.6.9 Internet-based differential GPS

Recently introduced, the main idea of this technique is to establish a wide
area-consistent correction map to transmit it to the receiver through the Internet
[26,27]. Any system connected on the Internet via a standard connection or
wireless, using wireless LAN, or 2.5 (GPRS) or 3G (UMTS) telecommunication
compliant system might then have access to this data. This service could have the
advantage to be more request-specific instead of broadcasting all information,
it could provide the one needed by the receiver and furthermore it could bring
an earth-wide solution as information could be gathered from the entire planet
and transmitted to the entire planet.

16.2.6.10 Carrier phase differential GPS

Some applications require even more accuracy, down to the decimeter or even
centimeter. The problem with code phase receivers is that they compare and
match signals (C/A PRN Code) at a cycle width of a microsecond, which rep-
resents the speed of light 300 m. Code matching techniques have achieved very
good quality of the order of 1 to 2%, which still represents a few meters. The car-
rier frequency on the other hand has a cycle rate of over a gigahertz, which gives
a wavelength of 19 cm for L1 and 24 cm for L2. A few percent matching pre-
cision on a phase matching would result in accuracy down to the centimeter.
This technique in fact has been widely used by geographic surveyors for static
positioning resulting in accuracy down to millimeters. The main difficulty with
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this technique is to track the number of phases. It might be possible to know
exactly where in a specific phase a matching is occurring. But if the number
of phase cannot be recalled, the precision becomes completely uncertain. The
kinematic method is a technique used to solve this “integer ambiguity” by means
of a lot of sampling and by defining a relative distance, a baseline vector, to a
known base that observes simultaneously the same carrier phases. In case the
roving receiver moves, the ambiguity must be solved on the fly (OTF), which
is much more involved. Current systems that make such calculation are very
expensive. They are based on very precise DGPS receivers that have accuracy
of the order of the meter. Over this tolerance, the ambiguity is much faster
to resolve. Corrections and base carrier phase information are sent via a radio
link from the base to the roving receiver in real time and has led to the real
time kinematic technique (RTK). Precision down to a few centimeters can be
achieved after the phase has been locked. However, the tracking of the phase is
very sensible to perturbations like multipath errors, hidden base, and requires
at least five visible satellites.

16.2.6.11 Sensor fusion for improved localization

Autonomous robots rely on different sensors in order to obtain a coherent
representation of the world state. As sensors exhibit different properties and
react differently according to a specific environment, it might be interesting to
handle these sensors’ discrepancies in a consistent way and combine the differ-
ent sources of sensory information into one representational format in order to
obtain the most accurate estimate of the dynamic system states. GPS position
information is corrupted or even absent within enclosed environment whereas
proprioceptive sensors like gyros or accelerometers must account for drift. The
combination of these sources of information, however, might provide a more
consistent information mutually benefitting each other in each instance. There
are different formalisms for sensor fusion, for global localization the most
used being the Kalman filter [29], fuzzy inference, or neural networks-based
algorithms or more recently using Bayesian inference [30] or Dempster Shafer
inference [31]. Recent work is even aiming at adding vision sensor through
operators that have smart detection features in order to achieve a localization
precision of a few centimeters.

16.3 AUTOMOTIVE ACTUATORS

Until until very recently, the control of an automobile was performed exclus-
ively through mechanical impediments linking the driver to the throttle for the
engine, to the brake pads for braking, to the gearbox for changing gears, to the
clutch to disconnect the engine from the transmission, and to the front wheels
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for steering. In the first half of the 20th century, great developments took place
to reduce the efforts of the driver with power assistance for steering and for brak-
ing and with the replacement of mechanical gearbox and clutch by hydraulic
automatic transmission therefore simplifying greatly the task of controlling the
acceleration. However, until very recently, the driver was still in total control of
the three basic functions : steering, braking, and acceleration even if this means
poor efficiency and sometimes loss of control of the vehicle itself.

16.3.1 Power Train Actuators

For a very long time the control of the engine torque was performed exclusively
through a mechanical link between the pedal and a throttle, that is, a valve which
blocks more or less the entrance of air into the cylinders. In turn, the amount
of air which entered the carburetor, determined through variously complex
mechanisms (depending on the performances), the amount of gas which was
mixed with the air. Modern engines have a different approach and independently
control the amount of intake air through an electronically controlled throttle
(the valve is operated by an electric motor) and the amount of gas through
electronically controlled injectors resulting in a fine control of the torque while
minimizing the emissions.

The engine torque (and furthermore, the torque available at the wheel which
controls the vehicle acceleration) is also dependant on the rotation speed of the
engine which in turn depends on the gear ratio. This gear ratio can be changed
manually through the gear box and through the clutch operated with a pedal.
This combination of clutch and gearbox can be replaced by a hydraulic gearbox
with mechanical or nowadays electronic selection of the gear. Some vehicles
also use continuously changing gear ratios (the CVT or Continuously Variable
Transmission) through a system of two variable diameter pulleys and a belt

ratio. Another approach for a fine control of the torque available at the wheel
while minimizing the emissions is the “robotized gearbox.” In this approach,
an electronic controller (sometimes replaced by buttons or levers operated by
the driver as in Formula 1 racing) pilots an actuator which operates the clutch
and another actuator which changes the gears.

Modern electronic controllers nowadays tend to integrate the control of the
engine with the control of the gears in order to have the best control of the power
train with minimum emissions. Most of the time, the driver is still in charge
of the input to these controllers through the accelerator pedal (which sends
its signals to the controllers), but in drivers’ assistance systems such as ACC
(Adaptive Cruise Control) where the speed is dependant on information coming
from a radar sensor, or in ISA (Intelligent Speed Adaptation) where speed is
limited according to the location of the vehicle, this input can be overridden or
completely unnecessary.
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FIGURE 16.9 Active steering (BMW).

16.3.2 Brake Actuators

The first actuator which came (at least partially) under the control of electronics
was the brake. In October 1978, after 14 years of development from Teldix
GmbH and then Bosh which took over (and in close cooperation with Daimler
which deposited the brand name ABS), luxury models from Daimler and then
from BMW were equipped with an electronic control of the brake which took
over some of the control from the driver in order to limit the pressure on the
hydraulic circuit of each wheel in order to prevent wheel locking. This was the
first robotic system introduced in a vehicle with sensors (the vehicle speed and
the wheel speed), information processing, and actuation in the form of a reduc-
tion in hydraulic pressure. It is still amazing that such a complex system with
about 140 components in its first generation and the possibility of catastrophic
failure (complete loss of braking) was introduced in an industry known for its
conservativeness. However, the gains of such a system were so obvious that
25 years later, this equipment is becoming standard in all new vehicles sold in
Europe. At the same time, the weight of the hydraulic unit has decreased from
6.3 to 1.2 kg, the number of components from 140 to 16, and the memory size
of the control unit has increased from 2 to 128 kb.

In 1986, ABS  was improved  to  include the control of slip  during  acceleration
(TCS or Traction Control System, also called ASR), this time by braking the
wheel from slipping too much and at the same time controlling the engine torque
through the electric throttle and engine management unit. This was a major step

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c016” — 2006/3/31 — 16:43 — page 640 — #28

640 Autonomous Mobile Robots

since the control not only reduces the braking pressure but can also increase it
leading the way to the full control of braking.

In 1995, a new function was introduced to control the steering through
braking when the vehicle is skidding with ESP (Electronic Stability Program).
By measuring the steering wheel angle and comparing it with the rotation speed
of the vehicle measured by a solid state gyrometer, the electronics control the
braking force on each side of the vehicle to prevent a loss of control (mismatch
between steering angle and rotational speed). This function was mounted on all
Mercedes Class A vehicles from the start in 1998.

Although it is now possible to control electronically the braking of the
vehicle, the braking itself is still done through hydraulic circuits putting pres-
sure on friction pads. In the future, these hydraulic circuits are bound to
disappear with electrically actuated pads, which will greatly simplify the system
by removing all the fluid pipes and the hydraulic control unit.

16.3.3 Steering Actuators

Steering is probably the most critical driver input in the control of the vehicle.
Any failure of this component at high speed leads to a crash. This is probably
why the legislation still imposes a direct mechanical link between the driver
and the front wheels of the vehicle. This is why, for a very long time, the car
manufacturers were only considering bringing some assistance in the steering
effort through hydraulics circuits (power steering).

In the 1990s steering assistance through electric motors came into being.
This change in technology is now spreading to most of the new models because
of the flexibility of the control of this assistance which was too difficult (and
expensive) to obtain in the hydraulic systems and because of lower cost. This
electric steering assistance is based on a torque sensor which measures the
torque applied on the steering wheel by the driver and then computes an assist-
ance which can depend on the steering angle and on the vehicle speed. However,
the torque can also depend on other sensors and can therefore lead to a total
control of the vehicle with the driver not intervening on the steering. Such assist-
ance is now appearing on some Japanese models with lane-keeping assistance
(based on vision) and parking assistance (with the computation of a trajectory
to reach a spot indicated by the driver on a control screen).

However, on these assistance systems, there is still a constant relationship
between the steering wheel angle and the angle of the front wheels. Such a
constant relationship has been removed with a revolutionary system available
since 2004 on some BMW models called Active Steering. The core element
of the Active Steering system is an override function provided by a planetary
gearbox integrated into a split steering column. Acting through a self-inhibiting
gear wheel, an electric motor intervenes as required in this planetary gearbox,
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FIGURE 16.10 CVT transmission (Aisin AW).

either increasing or taking back the steering angle of the front wheels. Inter-
acting with the power steering assistance, these two components adjust the
steering angle of the front wheels and the steering forces on the steering wheel
to the respective situation on the road and the driver’s requirements. In technical
terms the various functions and benefits offered by Active Steering are based
on the principle of overlapping steering angles: an electromechanical adjuster
between the steering wheel and the steering gearbox adds an additional steering
angle to the angle predetermined by the driver (see Figure 16.10). This means
that the steering ratio can be adjusted according to road conditions but also that
a correction to the steering angle can be made without the driver noticing it.
This is what is done to improve further the ESP (Electronic Stability Program)
by acting not only on the brakes but also (and mostly) on the steering improving
therefore the stability of the vehicle in difficult situations such as in high-lateral
wind or slippery surfaces.

However, this system might just be an intermediate step before the fully
independent steering with no mechanical connection between the driver and the
front wheels (drive-by-wire). Such systems have been tested many years ago and
are actually used in modified vehicles for handicapped drivers. They have not
been generalized because of the legislation which still insists on the mechanical
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FIGURE 16.11 Side stick control of a truck (Daimler-Chrysler).

link, and because of the complexity of the system for safety reasons (need for
fail-safe  redundant elements). However, the  R&D  clearly  goes into  this direction
with several steer-by-wire systems proposed by equipment manufacturers and
tested on real vehicles such as trucks and light vehicles with either conventional
steering wheels (but decoupled mechanically from the front wheels) or various
forms of joysticks (see Figure 16.11).

16.4 VEHICLE CONTROL

Where robotics research has faced, for so many years, the tremendous difficulty
of performing intelligent tasks, perception planning, or motion that seem so
natural to human beings, the automotive industry has provided the driver, since
many years, with added functions that are aimed at supporting him, not replacing
him. This step-by-step automation process is the incremental approach. The first
smart assistance has been provided to the driver by automated controls, through
the anti-blocking system (ABS), then through electronically stability program
(ESP) and now with new systems like adaptive cruise control (ACC). Precrash
systems, ESP with steering correction, steering control at low speed, and then
at high speed, and full control for collision avoidance will certainly be the

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c016” — 2006/3/31 — 16:43 — page 643 — #31

Automotive Systems/Robotic Vehicles 643

future focus areas of the automobile industry. Furthermore, the driver’s planning
ability as well is increased (road planning thanks to navigation systems, and
parking maneuvers assistance systems) but in the future complete trajectory
planning  and  assistance might came into  being  until  we reach  the goal which was
set in the early 1990s in America with the Automated Highway System (AHS).

16.4.1 Longitudinal Control

16.4.1.1 Adaptive cruise control

The adaptive cruise control (ACC) has been the first commercial application of
intelligent technology with a perception of the environment and an action on the
throttle and/or the brakes. The principle of an ACC is to adjust automatically
the speed of the car to ensure that a constant headway is maintained between
vehicles. It operates usually between 30 and 180 km/h like a standard cruise
control by controlling the accelerator thus maintaining a preset speed, but is
also able to brake (decelerate) the vehicle in order to maintain a safe distance
from the vehicle in front. The usual upper limit is a 2 sec headway distance
starting at minimum of 1 sec.

An ACC system has to accomplish the following main tasks [32]: the object
detection performed by means of exteroceptive range sensors is in charge of the
detection and characterization of the objects (type/speed/range/azimuth). Most
of the systems that are on the market use either millimeter radar technology or

based systems suffered from poor field of view (FOV) and a near cut-off range
(5 m), which limited their use in dense or slow traffic. On curves, the beam width
necessitates some steering in order not to lose the target, which was not possible.
Object tracking processes the data and group the collective detected objects
into distinct targets, according to similar attributes (i.e., distance and relative
velocity) by mean of specific filters. Kalman filters have been used in many
applications and are essentially single object trackers due to the unimodality
of the Gaussian distribution that is assumed. Multiple object trackers require
multiple Kalman, Bayesian [33], and particle filters [34]. Some difficulties
remain, for instance, the selection and deselection of a car when changing lane
remains a difficult situation in terms of driver’s acceptance as the system will
always react slower than a human driver would, due to the different filters and
the anticipation the driver has while overtaking. Some recent work has been
presented in order to fuse the radar or lidar information with a video-based
sensor in order to improve the tracking algorithm’s robustness and reliability.

Path estimation by mean of wheel sensors (from ABS) or a yaw rate sensor
estimates the roadway curvature estimation in order to identify the target with
respect to the roadway curvature. Furthermore, sensing limitations occurring
by obstruction (weather conditions, high border roads) or on tops of hills and
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bottom of valleys seriously challenge the ACC systems. Advanced systems
have been presented using further information from GPS-based navigation
systems, providing advance information on road topology.

One of the most popular traditional control techniques is PID (pro-
portional/integral/derivative) control. In spite of its simplicity and many
advantages, this type of controllers presents some shortcomings for vehicle
control (longitudinal or lateral). When the control process is highly nonlinear,
it is required to retune the controller parameters in order to keep the desired
performance. The gain scheduling technique, which consists in embedding a
table of PID control parameters, is widely used. For problems associated with
noise and for which the process has time varying parameters, it is desirable
to tune the parameters online, obtaining a self-tuning PID controller. Adaptive
controllers popular from the 1980s for nonlinear process control often com-
bine conventional control law, self-tuning, and neural networks for nonlinear
parameter estimation. Acceleration controllers have been designed using fuzzy
controllers and successfully implemented though they might appear difficult to
tune. Sliding mode control approaches have being used as well. The controller is
designed by combining constant rate control law and various switching surface.
As is well known, the complex structure of controller will lead to the increase of
computation time in the real-time control, and there may be a problem that the
integral term of distance error employed in switching surface will attenuate the
convergence rate of sliding mode control. The regulation speed controllers usu-
ally use feedback or feedforward linearization and have to face the problem of
varying road inclination and vehicle load that have to be estimated. For comfort
reasons, limits must be set on acceleration and jerk furthering the complexity
of the control algorithm.

However, ACC is only a first step toward Stop and Go and accident
avoidance systems that will require to have solved braking control issues.

16.4.1.2 Precrash system/automatic emergency braking

Along with this ACC system, long studies have been conducted for the
development of an active safety system to prevent collisions, using intelli-
gent technologies, without any major satisfactory result up to now. Precrash
system appears as a natural evolution of the comfort ACC system to safety
aiming at avoiding or at least mitigating a collision impact. This function relies
heavily on the detection sensors that measure the distance from which time
to collision analysis is performed [8]. A commercialized system [35] (Toyota
Motor Corp.) is based on a new radar sensor using electronic steering (see

from very short to long-range detection aiming at measuring distance for the
ACC system as well as for the safety critical precrash system. For this applic-
ation, some other proprioceptive sensors provide information about the host
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FIGURE 16.12 Millimeter wave radar for precrash system (Denso).

vehicle kinetics. When the vehicle detects an oncoming vehicle, the precrash
system control unit determines whether or not this vehicle is an obstacle based
on time to collision analysis. In case the host driver or the coming vehicle
begins a steering avoidance maneuver, the safety features are not activated,
otherwise the system will be activated. When activated, that is, unavoidable
collision is detected, the system operates the seatbelt motor and retracts seat-
belts so that occupants are restrained immediately before collision (it is possible
to decrease the chest deceleration by 3 to 5 G and the chest deflection by 3 to
5 mm in the event of a 55 kph collision), and increases hydraulic pressure of
the brake system in accordance with the driver’s braking force in order to assist
and make more efficient its braking. Autonomous braking systems are under
investigation, in case of an emergency situation only. An Automatic Emergency
Braking (AEB) system is presented in Reference 36 (IBEO AS) with a single
newly developed lidar approach. This system consists in a warning phase and
a brake activation phase. AEB is an active safety application which overrules
the driver in case of an unavoidable crash by an immediate full breaking. The
crash is unavoidable, if an obstacle is in the driving path, the braking distance
is longer than the distance to the obstacle, and no escape route exists to pass the
obstacle. In Reference 37 (DaimlerChrysler) a similar system for heavy vehicles
is presented in order to prevent or mitigate rear end collision of other vehicles.
Usually, as soon as the sensor system recognizes a critical distance situation,
the system will prefill the brake system and cause the vehicle to achieve full
braking performance much earlier in the braking process. This results either
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in the complete avoidance of an accident or at least in reducing the impact
energy by up to 50% (when braking is performed 1 sec earlier). Particularly for
small vehicles with short crash zones, this additional safety function represents
a beneficial enhancement of the safety equipment. However, in order to have
a reliable system, most of the approaches use sensor fusion. In Reference 38 a
Bayesian network-based platform is presented for sensor fusion.

16.4.1.3 Stop and go

As a next step, ACC with Full Speed Range Function, namely the Stop and Go
function for low-speed area, will help the driver to keep a safe distance with the
preceding vehicle at low speed. This application will assist the driver in traffic
jams on highways and in urban areas and will react under speed of 40 kph
on moving and stopped vehicles. The requirement of this function is a robust
selection of the relevant targets in front of the vehicle from 0 to 50 m. An ACC
sensor does not satisfy the requirements due to cut-off range and blind spots.
Long-range ACC sensor in connection with a special near-range smart radar
sensor might be a solution. Short-range radar, Optical, ultrasound, or fusion of
these sensors [41] are suitable. The vehicle will be slowed down to a standstill
if needed instead of turning off at 30 km/h as is presently the case. The possible
traffic events that have to be correctly interpreted by the environment sensor
system for highest safety are extremely complex, specially the detection of fixed
obstacles without any false alarm. If the vehicle has come to a standstill, another
ACC comfort function is activated: the braking system will maintain the brake
pressure in order to reliably hold the car even on a slope without the driver having
to apply the brakes. The control scheme of this function is different than for
the ACC system, and the stopping phase is a particularly tedious issue. Fuzzy
controllers have been studied [39] as well as adaptive controllers [40]. The
first commercialized Stop and Go system has been launched in March 2004
for the Japanese market (Toyota Motor Corp.). The new system keeps track
of the preceding vehicle at speeds of 30 km/h or lower. When the preceding
vehicle stops, the system provides visual and audio warnings urging the driver
to apply the brakes. If the driver does not respond in time, the system slows the
vehicle to a complete stop. It thus assists the driver in stop-and-go traffic by
reducing pedal work. The key to the new system lies in a broader-range laser
sensor attached on the center of the front bumper for detecting vehicles ahead
and improved recognition capabilities, as well as the use of a high-performance
braking system that operates smoothly in low-speed ranges.

16.4.2 Lateral Control

Current systems operating a lateral control on a vehicle are aimed at keeping
the vehicle from inadvertently drifting out of the lane. Using a CMOS Camera
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and an image processing algorithm, the system registers the position of the lane
in relation to the vehicle. The “Lane Departure Warning” (LDW) system is
based on a system approach, which recognizes features such as marking lines
on the road with the aid of image-providing sensors. Lane recognition is one
of the first image-processing applications in vehicles. This system recognises
the position of the vehicle in relation to the lane markings and compares this
position with the driver’s intentions (which can be determined on the basis of
changes in the steering angle, activation of the flasher unit, and brake pedal),
can provide additional support for the driver and warn him in critical situations.
In order to guarantee successful image processing in a wide variety of light-
ing and weather conditions, sturdy, model-based image-processing operators
determine the position of the lane marking in advance at different distances.
Special features such as filter lanes and motorway exits are recognized as such,
in order to avoid misinterpretations. The distance between the vehicle and the
lane marking thus determined is used to issue an acoustic or haptic warning
to the driver, if necessary. One of the most frequent causes of accidents —
unintentional drifting out of lane can thus be prevented. Possible warning alerts
can be a trembling in the steering wheel, a vibrating seat, or a virtual wash-
board sound (a noise people recognize as generated by driving over a lane
marker). As a next step, the system becomes an active lane-keeping assistant
(LK), through an intervention in the steering and actively supports the driver
in keeping the vehicle to the lane. However, for commercialized systems, the
driver always retains the driving initiative, meaning that though he can feel the
recommended steering reaction as a gentle movement of the steering wheel, his
own decision takes priority at all times. One of the commonly used model for
lateral control takes into account the slipping angle of the front wheels as well
as the wind force [42]. Different controllers have been studied, conventional
PID or adaptive, Optimal (LQ), or even fuzzy controllers. Fuzzy controllers
often exhibit good properties, but the lack of theoretical foundation makes it
difficult to give robustness guarantee required for such a system as an act-
ive lane-keeping system. Optimal controllers and adaptive controllers exhibit
the best properties usually for this application, yet are sometimes difficult to
implement, depending upon the model and the assumptions.

16.4.3 Full Vehicle Control

Some systems are already moving to a higher level of automated control in
the commercial domain. Automated Bus Rapid Transit (ABRT) combines the
service quality of rail transit with the flexibility of buses. A BRT system can
include off-vehicle fare collection, rapid passenger loading, high-tech vehicles,
dedicated lanes, modern stations, extended green lights at intersections, and
more frequent service. BRT can be less expensive to develop than fixed-rail
transit systems. Besides, BRT service can be tailored to serve busy urban
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FIGURE 16.13 IMTS (Toyota).

corridors by using high-capacity vehicles, frequent service, and parallel local
and express routes. By adding the driving automation on a BRT, the system
can be made more efficient and safer, as it is already the case with automated
metros.

A recent BRT from Toyota, the Intelligent Multimode Transit System
(IMTS) [43] consists of vehicles navigated and controlled by magnetic mark-
ers imbedded in the middle of their dedicated roads (see Figure 16.13). The
markers are embedded in the center of the track in intervals ranging between
1 and 2 m. The onboard sensor is fitted under the front axle. Therefore, the
magnetic marker system contains information of both the lateral displace-
ment of the sensor center from a magnetic marker and also the accumulative
number of markers passed from the initial position. When an IMTS vehicle
passes through a special marker, whose magnetic field is different from nor-
mal ones, the passing signal resets the counter to zero. The allocation of the
markers along the track is planned in advance so that the counter number corres-
ponds to the actual position along the track. All IMTS vehicles have numerical
tables containing information on curvature, slope, speed restriction, and so on
at every point along the track they are moving on. In this way, information
on the appropriate steering angle and speed limit is available without continu-
ous vehicle-to-road communication. Model-based control algorithm ensures
easy implementation and has good control performance in general. A simple
vehicle-dynamics model is commonly available and it is easy also to include
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FIGURE 16.14 3D parking assistance.

the dynamics model as well as a kinematical model describing the geomet-
rical relation between a vehicle configuration and the track topology. However,
state variable estimation, using a Kalman filter-based estimator, is necessary to
apply the LQ control algorithm to the steering control as there are no sensor
data available on a yaw angle. The yaw angle is that of the body direction
to the tangent of the track. The platoon running function (three electronically
linked vehicles run in file formation at uniform speeds) of the IMTS consists
in precisely controlling the speed of all the vehicles in the platoon to be the
same at all times. Since distance sensors, such as millimeter-wave radars have
sensing delay, the IMTS buses use vehicle-to-vehicle communication devices
to synchronize speeds.

The ABRT technology can also be found with smaller vehicles now called
the cybercars for on demand door-to-door operation. These vehicles have been
put in operation for the first time at Schipohl airport in December 1997 and
have been the object of intense development in the last 5 years with the Cyber-

be with the development of dual mode vehicles and in particular for car-sharing
operations with an automatic mode for operation in city centers (restricted to
this type of vehicles) and a driver operated (with assistance) mode for regular
infrastructures. The automobile industry is already looking at the development
of such vehicles.

Already, some fully automated features are being introduced on production
cars. An Intelligent Parking Assist system (IPA) has been recently introduced on

© 2006 by Taylor & Francis Group, LLC
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FIGURE 16.15 Autonomous navigation for a car-like robot.

FIGURE 16.16 Arrival of the winner at the DARPA Grand Challenge.

the market (Aisin), offering the ability for the vehicle to be parked without the
driver using the steering wheel. The technology that automatically directs the
vehicle uses an electrically operated power steering system and monitoring tech-
nology to take the vehicle to a targeted parking position defined by the driver.
The latter interacts with the system by braking as needed, and by viewing images
on a dashboard screen from a rear-of-vehicle positioned camera. Installed on
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hybrid cars, it benefits the electric motor at low speed, in reverse, that moves

Future vehicles will exhibit an increasing number of drivers’ assist-
ance functions. Among them, tedious tasks will be replaced by autonomous
maneuvers. Overtaking maneuvers as well as parking maneuvers [45,46] have
already been studied and implemented on prototype platforms. However, plan-
ning a trajectory for a car while avoiding moving and static obstacles (see

robotic research community [47–49]. In 2004 and 2005, the DARPA Grand
Challenge has brought together a large number of these researchers to demon-
strate the feasibility of these techniques and in October 2005, several vehicles
have succeeded in completing a difficult course of 132 miles in the desert in

However, there remains many issues to be solved before such systems become
sufficiently robust and reliable for the public.
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Designing intelligent systems is a complex task requiring the integration of a
diverse set of hardware and software components. This task is significantly more
difficult if these systems are required to cooperate and function in a coordinated
fashion. Intelligence can be defined as “the ability of a system to behave appro-
priately in an uncertain environment” where “appropriate behavior maximizes
the likelihood of the system’s success in achieving its goals [1].” Therefore, an
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intelligent system should be able to respond to sensory feedback at every level
such that goals are achieved despite perturbations and unexpected feedback.
Since intelligence responds to sensory feedback at all levels, overall effective-
ness requires such “system intelligence” to be distributed in nature. Therefore,
special attention must be paid to the architecture and design of such systems.
Improper architecture could become a bottleneck for system performance and
severely restrict the functionality of the system.

Engineering of intelligent systems should be built on scientific fundamentals
and must provide designers with systematic methods to characterize the skills
required for problem solving, define the behaviors that contribute to the success
of the mission, represent the knowledge, and predict the future. The system must
possess sensors to sense the environment and the means to effect changes in the
surrounding environment. This must be done by the selection of appropriate
behaviors while evaluating the cost and benefit of the action.

In this chapter, the implementation of distributed intelligence for teams
of unmanned ground vehicles (UGV) is examined. The system requirements
are analyzed and the implication of these requirements on hardware and soft-
ware is discussed in Section 17.1. A brief background of existing solution
methodologies from the literature is presented in Section 17.2. The 4D/(real-
time control system) RCS architecture developed at the National Institute of
Standards and Technology (NIST) and the implementation methodology are
discussed in Section 17.3, and examples illustrating the implementation of
RCS reference model architecture at NIST, the University of Oklahoma (OU),
and Oklahoma State University (OSU) are presented in Section 17.4. Recent
trends in the hardware–software codesign and hardware reconfiguration are
presented and the direction of future research is addressed in Section 17.5. The
conclusions are summarized in Section 17.6.

17.1 ARCHITECTURAL REQUIREMENTS FOR INTELLIGENT UGVs

An intelligent system functions by sensing the environment, perceiving and
evaluating situations, modeling the world, and choosing behavior that is appro-
priate for the perceived situation. Perception involves recursive estimation to
detect, track, measure, and classify objects, events, and situations. World mod-
eling uses simulation and modeling techniques to generate expectations and
predict results of hypothesized actions. Planning consists of a combination
of case- and search-based techniques. Case-based methods may be used to
limit range and resolution in the space of potential behaviors, and search-based
methods used to optimize behavior within that limited space.

In general, an intelligent system has a hierarchical structure wherein global
percepts are used to generate long-range plans at the higher levels, while
simultaneously short-term actions are generated in response to local sensory
information at lower levels. At each level, commands, goals, constraints, and
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priorities are passed downward from higher levels, while feedback from lower
levels is filtered, generalized, classified, and used for planning and control.

Designing intelligent UGVs is substantially more complex than just the
integration of smart components [2,3]. Embedding intelligence into systems
requires a new design paradigm that takes into account the hardware and soft-
ware complexities involved in the design of these systems [1,4]. The design
must address issues such as:

• The ability of the team to negotiate obstacles, satisfy formation
constraints like size and shape, and reach a goal destination.
• The ability to demonstrate desired group behaviors.
• The ability to dynamically dilate/contract the formation and the

retasking of individual robots while in formation.
• The ability to share information between multiple robots for gener-

ation of multi-dimensional multi-resolutional maps etc.
• The efficiency of fault tolerance and learning algorithms.

The design must also address real-time and nonreal-time issues in sensor
fusion, communication between network nodes, and the automation of the
decision-making process.

17.2 BACKGROUND ON INTELLIGENT SYSTEMS

There are a number of architectures proposed for the development of intelli-
gent systems. The application of Artificial Intelligence (AI) concepts to problem
solving was examined in the development of SOAR architecture [5,6]. Swarm-
ing phenomena in nature also inspired the development of architectures that
facilitated cooperative behavior in systems [7]. The need to implement fault
tolerant systems motivated the development of behavior-based software archi-
tecture called Alliance [8]. Subsumption, another behavior-based architecture
was proposed in References 9 and 10. While the SOAR architecture deals with
the critical elements of intelligent systems like states, goals, plans, agents, beha-
viors, knowledge representation, it does not incorporate the concept of time,
thus making its use in real-time robotic systems difficult [1]. Subsumption on
the other hand, is primarily reactive in nature and does not model planning and
problem solving capabilities that are crucial to the implementation of intelligent
UGV systems.

Hybrid architectures embodying the benefits of both the real-time react-
ive and the long-term deliberative behaviors have been proposed for specific
applications. For example, the  AuRA [11,12] architecture  embodies a high-level
deliberative hierarchical planner with a low-level reactive controller based on
schema theory. Control of a fleet of mobile robots was accomplished using the
Multiple Resource Host Architecture (MRHA) where the focus was on planning
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paths and issues commands to the robots in the fleet. Atlantis, a three-level
hierarchical architecture, was developed at JPL for the Mars rover project [13].

Many recent methods for controlling multi-robot systems focus on the
software architecture of the system [14–16]. Efficient use of resources was
addressed using centralized planning in the 3T architecture [17,18]. In con-
trast, the requirement for loss tolerance has led many researchers to consider
distributed systems (e.g., [8,19–21]). More recently, attention has been given
to designing architectures that combine the advantages of both centralized and
distributed approaches (e.g., [21,22]). Distributed systems make possible the
development of sophisticated systems with complex behaviors. In such sys-
tems, time-critical behaviors of the system can be implemented locally, while
generalized system-level behaviors can be abstracted out and implemented on a
central resource that communicates with all the distributed nodes in the system.
Such implementations encourage modularity in the design and facilitate fault-
tolerant design. Crucial in the design of such systems is the selection of the
appropriate hardware and software components and the architecture for their
integration.

Currently there exist a wide variety of intelligent system components. There
are hundreds of perception algorithms, world modeling algorithms, representa-
tion schema, reasoning engines, decision theory formulae, expert systems tools,
planning algorithms, hybrid systems, and control methods. While the compon-
ent technologies have matured in the past few years, the design of intelligent
systems is not a matter of simple system integration. Often, it is necessary to
design these systems ground-up in order to meet the overall requirements [1,4].
In the next section, we will present a reference model architecture, called the
4D/RCS, and a methodology for building systems that comply with this archi-
tecture. This model architecture provides a formal method for integrating all
of these components into a coherent whole that is able to exhibit intelligent
behavior. The methodology presented provides the engineering discipline for
designing, coding, testing, and upgrading the software embedded in the system,
as well as engineering specifications for hardware configuration.

17.3 4D/RCS ARCHITECTURE AND METHODOLOGY

17.3.1 4D/RCS Architecture

Engineering of intelligent systems requires a reference model architecture,
and a methodology for building systems that comply with that architecture.
An architecture is a framework consisting of functional modules, interfaces,
and data structures. A reference model architecture defines how the func-
tional modules and data structures are integrated into subsystems and systems.
The architecture represents a framework wherein issues such as the network
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connectivity, latency, bandwidth, reliability, and communication between mod-
ules that affect the system performance can be addressed. Therefore, the
reference model architecture for intelligent systems can be viewed as provid-
ing an infrastructure for representing knowledge about the environment, the
mission, tasks, plans, schedules, intentions, priorities, beliefs, and values. It
also provides infrastructure for perception, attention, and cognition, including
methods for reasoning, modeling, planning, and learning. For the architecture
to be feasible, it should also define the required human interfaces, including
displays and controls, simulation and training environments, and programming
and debugging tools.

Real-Time Control System evolved from the bottom up as a real-time intelli-
gent control system for real machines operating on real objects in the real world.
Initially, RCS was proposed to address the real-time goal-directed control of
sensory-interactive laboratory robots [23]. Since then, the architecture has been
refined and applied to a variety of problems including intelligent manufactur-
ing systems, industrial robotics, automated general mail facilities, automated
stamp distribution systems, automated mining equipment, unmanned underwa-
ter vehicles, and unmanned ground vehicles [24,25]. The most recent version of
RCS, that is, 4D/RCS, embeds elements of Dickmanns [26,27] 4D approach to
machine vision within the RCS control architecture. 4D/RCS was designed
for the U.S. Army Research Lab AUTONAV and Demo III Experimental
Unmanned Vehicle programs [28] and has been adopted by the Army Future
Combat System program for Autonomous Navigation Systems [1,29,30].

A block diagram of a 4D/RCS reference model architecture is shown

resolutional hierarchy of computational nodes, each containing elements of
sensory processing (SP), world modeling (WM), value judgment (VJ), beha-
vior generation (BG), and a knowledge database (KD) (included in the WM in
Figure 17.1). Each node in the architecture represents an operational unit in an
organizational hierarchy.

node, a behavior generation process accepts task commands with goals and
parameters from a behavior generation process at the next higher level and issues
commanded actions with subgoals and parameters to one or more behavior
generation process at the next lower level. (Solid lines indicate normal data
pathways. Dotted lines indicate channels by which an operator can peek at data

level of detail in 4D/RCS nodes. Each node contains both a deliberative and
a reactive component. Bottom-up, each node closes a reactive control loop
driven by feedback from sensors. Top-down, each node generates and executes
plans designed to satisfy task goals, priorities, and constraints conveyed by
commands from above. Within each node, deliberative plans are merged with
reactive behaviors [30].

© 2006 by Taylor & Francis Group, LLC

in Figure 17.1. The 4D/RCS architecture consists of a multi-layered multi-

Figure 17.2 shows a first level of detail in a typical 4D/RCS node. In each

or insert control commands whenever desired.) Figure 17.3 shows a second
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FIGURE 17.1 A 4D/RCS reference model architecture for autonomous ground vehicles. Processing nodes are organized such that the BG
processes form a command tree. Information in the knowledge database is shared between WM processes in nodes above, below, and at the
same level within the same subtree. On the right, are examples of the functional characteristics of the BG processes at each level. On the left, are
examples of the scale of maps generated by the SP processes and populated by the WM in the KD at each level. Sensory data paths flowing up
the SP hierarchy typically form a graph, not a tree. VJ processes are hidden behind WM processes in the diagram. A control loop may be closed
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examples only. Actual numbers depend on parameters of specific vehicle dynamics.)
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Each BG process accepts tasks and plans and executes behavior designed to
accomplish those tasks. The internal structure of the BG process consists of a

mands from a supervisor BG process are input. A planner module decomposes
each task into a set of coordinated plans for subordinate BG processes. For
each subordinate there is an executor that issues commands, monitors progress,
and compensates for errors between desired plans and observed results. The
executors use feedback to react quickly to emergency conditions with reflexive
actions. Predictive capabilities provided by the WM may enable the executors
to generate preemptive behavior.

Plans may be generated by any of a great variety of planning algorithms, for
example, case-based reasoning, search-based optimization, or schema-based
scripting. The RCS software engineering methodology has been developed on
the strength of many different applications that have been implemented over
the past 35 years using the RCS reference model architecture.

17.3.2 4D/RCS Methodology

The fundamental premise of the RCS software engineering methodology is that
at each point in time, the task state (i.e., where the system is, where it is going,
what it is doing, what the goal is, and what the constraints are) collectively
define the requirements for all of the knowledge in the knowledge database
(both procedural and declarative), and specifies the support processing required
to acquire and maintain the knowledge database. In particular, the task state
determines what needs to be sensed, what world objects, events, and situations
need to be analyzed, what plans need to be generated, and what task knowledge
is required to do so [31,32]. An example of the RCS methodology for designing
a control system for a tactical behavior such as route reconnaissance is shown

The RCS methodology consists of the following six steps:

Step 1 consists of an intensive analysis of domain knowledge derived
from training manuals and subject matter experts. Scenarios are
developed and analyzed for each task and subtask. The result of this
step is a structuring of procedural knowledge into a task decompos-
ition tree with simpler and simpler tasks at each echelon. At each
echelon, a vocabulary of commands (i.e., action verbs with goal states,
parameters, and constraints) is defined to evoke task behavior at each
echelon.

Step 2 defines a hierarchical structure of organizational units that will
execute the commands defined in step 1. For each unit, duties and
responsibilities in response to each command are specified. This is ana-
logous to establishing a work breakdown structure for a development

© 2006 by Taylor & Francis Group, LLC

planner and a set of executors (EX). At the upper right of Figure 17.3, task com-

in Figure 17.4.
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project, or defining an organizational structure for a business or
military unit.

Step 3 specifies the processing that is triggered within each unit upon
receipt of an input command. For each input command, a state-graph
(or state-table, or extended finite state automaton) is selected that
provides a plan (or procedure for making a plan) for accomplishing
the commanded task. The input command thus selects (or causes to
be generated) an appropriate behavior (which may be encoded as a
state-table), the execution of which generates a series of output com-
mands to units at the next lower echelon. The result of step 3 is that
each organizational unit has, for each input command, a state-table
of production rules that identify all the task branching conditions
and specify the corresponding state transition and output command
parameters. Task branching conditions may include the state of the
task, the internal state of the vehicle, the state of objects of atten-
tion in the external world, and situational relationships between and
among them.

Step 4 analyzes each of the branching conditions defined in step 3 to
reveal dependencies on world states and situations. This step identifies
the detailed relationships between entities, events, and states of the
world that cause each state or situation to be true.

Step 5 identifies and names all of the world model entities and events
along with their attributes and relationships that are relevant to
detecting the world states and situations.

Step 6 uses the context of world states and situations to establish the
distances, and timing requirements of various behaviors. From these,
the resolution, speed, and stability requirements of sensors can be
determined to enable the relevant entities, events, and situations to
be measured and recognized. This then defines a set of require-
ments and/or specifications for sensor systems to support each subtask
activity.

17.3.3 Representing Knowledge in 4D/RCS

The 4D/RCS architecture is designed to accommodate multiple types of know-
ledge representation formalisms, and provide an elegant way to integrate these
formalisms into a common unifying framework. This section will describe the
types of knowledge representations that have been researched or implemented
within the 4D/RCS architecture for autonomous driving and the mechanisms
that have been deployed to integrate them.

The hierarchical structure of 4D/RCS supports knowledge representation
with different range and resolution, and different levels of abstraction, at the
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various echelons of control. It should be noted, however, that the 4D/RCS
reference model actually contains three different hierarchies:

1. A task hierarchy consisting of a chain of command with echelons of
control

2. A hierarchy of range and resolution of signals, images, and maps in
space and time

3. A hierarchy of abstraction in representation of entities and events

Echelons of control are defined by decomposition of tasks into subtasks
and the assignment of task skills and responsibilities to organizational units
in a chain of command. Range and resolution of signals, images, and maps
are defined by sampling interval and field of regard over space and time (e.g.,
pixel size and field of view in images, scale and size of maps, and sampling
frequency of signals). Levels of abstraction are defined by grouping and seg-
mentation algorithms that operate on the geometry of entities (e.g., points,
lines, vertices, surfaces, objects, groups) and the duration of events (e.g., mil-
liseconds, seconds, minutes, hours, days). These three hierarchies are related,
but not congruent. For example, the range and resolution of maps are related to
echelons of control by speed and size of the system being controlled. Resolution
of images is related to spatial dimension by magnification. Resolution of maps
is related to spatial dimension by scale. Pixels in images are related to pixels
on maps by transformation of coordinates.

The RCS methodology begins with the task decomposition hierarchy that
defines echelons of control. Task timing and system speed and size then
determine range and resolution of images and maps. Levels of abstraction
are determined by the logical requirements of task decomposition. Different
system requirements will produce different relationships between these three
hierarchical representations.

Typically, knowledge in 4D/RCS nodes at the lowest echelon of the control
hierarchy consists of signals, images, and state variables, such as vehicle posi-
tion, orientation, velocity, and acceleration; actuator positions, velocities, and
forces; pressure sensor readings; position of switches and gearshift settings.
Knowledge in nodes at the second echelon and above consists of map-based
information, with decreasing resolution and increasing spatial extent at each
higher echelon in the hierarchy. Maps are used to represent the size, shape,
location, surface orientation, and roughness of terrain features and regions of
interest. Knowledge in nodes at the third echelon and above contain both map-
based representations and abstract data structures that represent named entities
such as road edges and obstacle surfaces, along with their attributes and pointers
that represent spatial and temporal relationships and class membership. Image
and map representations are linked to abstract data structures by pointers that
represent relationships such as “is_a” and “belongs_to.” Back pointers indicate
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FIGURE 17.5 Types of knowledge representation in 4D/RCS.

where abstract entities are located in the map or image representations. Higher
echelons represent information about the location, motion, and attributes of
objects such as other vehicles, roads, intersections, traffic signals, landmarks,
and terrain features such as buildings, roads, woods, fields, streams, fences, and
ponds. The upper level echelons represent knowledge about groups of objects
such as groups of people, groups of buildings, and road networks. Group attrib-
utes such as size, shape, and density are computed over the group. At each
echelon, pointers define relationships between entities and events in situations.

Within each node, knowledge is stored within a knowledge database (KD)
consisting of data structures that contain the static and dynamic information that
collectively form a model of the world. Each node contains knowledge with
the range, resolution, and level of abstraction required to support the behavior
generation, sensory processing, and value judgment processes within that node.
This includes a best estimate of the current state of the world relevant to the
current task assigned to that node, plus world model parameters that define
how the world state can be expected to evolve in the future under a variety of
circumstances.

Figure 17.5 shows the many different types of knowledge representation
formalisms that are currently being implemented within the 4D/RCS architec-
ture to support autonomous driving. These formalisms range from iconic to
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symbolic and from procedural to declarative. Knowledge is captured in form-
alisms and at levels of abstraction that are suitable for the way in which it is
expected to be used. Different knowledge representation techniques offer dif-
ferent advantages, and 4D/RCS is designed in such a way as to combine the
strengths of all of these techniques into a common unifying architecture in order
to exploit the advantages of each.

In the following sections, we will describe how 4D/RCS accommodates
both procedural and declarative knowledge.

17.3.3.1 Procedural knowledge

Procedural knowledge is the knowledge of how to perform tasks. Procedural
knowledge can be captured in task frames. A task frame is a data structure
specifying all the knowledge necessary for accomplishing a task. A task frame
is essentially a recipe consisting of a task name, a goal, a set of parameters, a list
of materials, tools, and procedures, and set of instructions of how to accomplish
a task. For each task that an RCS node is able to perform, there exists a task
frame.

A task frame may include:

1. Task name (index into the library of tasks the RCS node can per-
form). The task name is a pointer or an address in a database where
the task frame can be found.

2. Task identifier (unique identity for each task command). The task
identifier provides a means for keeping track of tasks in a queue.

3. Task goal (a desired state to be achieved or maintained by the task).
The task goal is the desired result of executing the task.

4. Task goal time (time at which the task goal should be achieved, or
until which the goal state should be maintained).

5. Task objects (on which the task is to be performed). Examples of task
objects include parts to be machined, features to be inspected, tools
to be used, targets to be attacked, objects to be observed, sectors to
be reconnoitred, vehicles to be driven, weapons or cameras to be
pointed.

6. Task parameters (that specify, or modulate, how the task should be
performed). Examples of task parameters are speed, force, pri-
ority, constraints, tolerance on goal position, tolerance on goal
time, tolerance on path, coordination requirements, and level of
aggressiveness.

7. Agents (that are responsible for executing the task). Agents are the
subsystems and actuators that carry out the task.

8. Task requirements (tools needed, resources required, conditions that
must obtain information needed). Tools may include instruments,

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c017” — 2006/3/31 — 16:44 — page 669 — #15

Intelligent Systems 669

sensors, and actuators. Resources may include fuel and materials.
Conditions may include temperature, pressure, weather, visibil-
ity, soil conditions, daylight, or darkness. Information needed may
include the state and type of parts, tools, and equipment, or the state
of a manufacturing process, or a description of an event or situation
in the world.

9. Task constraints (upon the performance of the task). Task con-
straints may include speed limits, force limits, position limits, tim-
ing requirements, visibility requirements, tolerance, geographical
boundaries, or requirements for cooperation with others.

10. Task procedures (plans for accomplishing the task, or procedures
for generating plans). Plans may be prepared in advance and stored
in a library, or they may be computed online in real-time. Task
procedures may be simple strings of things to do, or may specify
contingencies for what to do under various kinds of circumstances.

11. Control laws and error correction procedures (defining what
action should be taken for various combinations of commands
and feedback conditions). These typically are developed dur-
ing system design, and may be refined through learning from
experience.

Some of the slots in the task frame are filled by information from the com-
mand. Others are properties of the task itself and what is known about how to
perform it. Still others are parameters that are supplied by the WM.

The task procedures (slot #10 in the task frame) consist either of plans, or
planning procedures for generating plans.

Plans. In general, plans can be represented as state-tables (or state-graphs).
State-tables and state-graphs are duals. The advantage of the state-graph rep-
resentation is that behavior can easily be visualized. The advantage of the
state-table representation is that state-tables can be directly executed by an
extended finite-state automata so as to generate a sequence of output com-
mands designed to accomplish the task goal within the constraints specified
in the task frame. A state-table (or corresponding state-graph) may contain as
many state-dependent branching conditions as necessary to cover the space of
things that the system is capable of doing in response to situations represented
in the system’s world model.

Both state-graph and state-table representations can easily be changed by
adding or modifying rules at any node in the state graph, or by adding nodes
to the graph. This means that a system can learn and eventually optimize its
performance. What is required for learning is for an expert critic to point out
where in the state-graph the system should have performed differently, what
piece of information in the system’s world model should have been used to
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trigger the different behavior, and what the different behavior should have
been. This is the type of information typically supplied to a human student by
a human instructor or teacher.

Planning. Plans are the result of planning procedures. Planning may be
performed off-line by human programmers, or in real-time by the intelli-
gent machine itself or its human operator. In 4D/RCS, planning is distributed
throughout the architecture. Each RCS node has its own autonomous plan-
ner, but is able to accept plans from an outside source such as a human
operator.

There are two methods for generating plans that are currently being
implemented in 4D/RCS.

Case-based planning. Case-based planning uses situation-action logic as
the primary method of task decomposition. Case-based planning uses a lib-
rary of plans represented as state-graphs (or state-tables) with at least one plan
for each task command. There are typically two types of case-based plan-
ning: one that decomposes a task into job assignments for multiple agents, and
a second that decomposes each agent’s job assignment into a schedule that
may or may not be coordinated with peer agents. Slots for parameters such
as priorities, constraints, tolerances, modes, and speeds may be filled in at
planning time.

Search-based planning. Search-based planning performs a search over the
space of possible actions to find the “best” course of action to achieve the
goal. Search-based planning may use a map or spatial graph with cost overlays
to evaluate various possible paths through the map or graph. Typically, this
requires an action model that predicts how each planned action will affect the
system state at the appropriate level of resolution. Alternatively, search-based
planning may use an inverse model that predicts what actions are required to
generate a sequence of desired states. In either case, the planner generates a
series of planned actions and resulting states that predict how the system is
expected to behave in the real world environment. These simulated actions and
predicted states can then be evaluated by a cost-function that takes into account
constraints and priorities that are passed down from higher levels, as well as
uncertainties and knowledge about the environment from sensors. A typical
cost-function for an autonomous ground vehicle may take into account the cost
of fuel or time, the difficulty of terrain, the estimated cost of collision with
various types of objects, the risk of detection or attack by an enemy, and the
benefit or payoff of achieving or maintaining a goal.

Search-based planning is a widely researched field. A variety of planning
techniques have been reported in the literature. One algorithm that has proven
particularly efficient is the incremental creation and evaluation of the planning
graph [33]. This incremental approach reduces the number of planning-graph
nodes that must be created and evaluated to find the cost-optimal path through
the planning graph.

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c017” — 2006/3/31 — 16:44 — page 671 — #17

Intelligent Systems 671

17.3.3.2 Declarative knowledge

Declarative knowledge is represented in a format that may be manipulated,
decomposed, and analyzed by reasoning engines. Declarative knowledge may
describe the size, shape, state (i.e., position, orientation, velocity), and class of
entities. It may describe the start-time, duration, frequency, or temporal pattern
of events. Declarative knowledge may also describe the spatial or temporal
relationships that exist between and among entities and events in places and
situations.

Declarative knowledge enables a system to know the current state of the
environment and its own situation relative to other entities in the environment.
Declarative knowledge enables a system to reason logically or mathematic-
ally to predict what will result from possible future actions and events. Two
types of declarative knowledge that are captured within 4D/RCS are symbolic
knowledge and iconic knowledge.

Symbolic Knowledge. Symbolic knowledge representations use abstract
data structures to represent things (e.g., actions, entities, or events) in the world
that can be referenced by name. Two types of symbolic representations that are
being implemented within 4D/RCS are ontologies and relational databases.

Ontologies represent key concepts, their properties, their relationships, and
their rules and constraints within a given domain. Two efforts have focused on
the development of ontologies for autonomous navigation.

The first is an ontology of objects that may be encountered during on-
road driving. This ontology will be used to estimate the damage that would
be incurred by collisions with the different objects under a variety of condi-
tions. Automated reasoning is used to estimate collision damage and compare
it with the cost and risk of evasive action. This enables the real-time path
planner to decide what is required to avoid the object, or whether it would
be better to simply collide with the object rather than slam on the brakes or
swerve violently to miss it. More information about this effort can be found in
Reference 34.

The second is an ontology of tactical behaviors that is being implemented

context, behaviors are actions that an autonomous vehicle would be expected to
perform upon being confronted with a tactical situation. This ontology is stored
within the 4D/RCS knowledge database, and the behaviors will be triggered
when situations in the world are perceived to exist. More information about this
effort can be found in Reference 36.

In addition to ontologies, relational databases have been developed to house
symbolic information. For example, our intelligent vehicle world model con-
tains a Road Network Database [37]. This database contains slots for detailed
information about the roadway, such as where the road lies, rules dictat-
ing the traversal of intersections, lane markings, road barriers, road surface
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characteristics, etc. The purpose of the Road Network Database is to provide
the data structures necessary to capture the information about road networks
needed by a planner or control system to plan routes along the roadway at each
level of abstraction.

Each echelon of planning requires knowledge at a different level of abstrac-
tion. To accommodate these requirements, the Road Network Database is
hierarchically organized with each echelon in the road network hierarchy con-
ceptually centered on the vehicle. At the lowest echelon, the Road Network
Database represents information at a range and resolution that a low-level plan-
ner can use to plan trajectories to navigate a vehicle over the next few meters.
At the highest echelon, the Road Network Database represents information at
a range and resolution that a high-level planner can use to plan a trip across the
country.

Iconic Knowledge. Iconic knowledge models objects and situations in space
and time in a manner that directly represents spatial and temporal relationships
(e.g., images, maps, and state trajectories.) Iconic representations typically
use scalars, vectors, or arrays to represent things that can be measured (e.g.,
attributes) about the world. Iconic representations are typically referenced by
location. The location of each element in an iconic representation often cor-
responds to (or projects onto) a dimension or location in physical space. For
example, the location of a pixel in an image corresponds to a geometrical pro-
jection of the world onto the image, and vice versa. The location of an axon in a
nerve bundle depends on the location of a tactile sensor on the skin. The contents
of each element of the array may contain a Boolean or real number representing
the value of a physical attribute such as light intensity, color, altitude, range, or
density at that point in the array. The contents of each element may also contain
numbers representing the values of spatial or temporal gradients of intensity,
color, and range; or of image flow direction and magnitude. The contents of an
element may also be a pointer to a symbolic data structure representing an entity
(e.g., an edge, vertex, surface, object, or group) to which the pixel belongs. If
the arrays of these various attributes and pointers are registered (as shown in

class, and worth images.
Iconic representations have scale, and are limited in range and resolution.

Both images and maps have a finite number of pixel elements. Images have
limited fields of view and maps have boundaries. Similarly, temporal events
have a beginning and an end, and can only be sampled at a finite rate. Examples
of iconic knowledge currently used within 4D/RCS include maps and images.
Maps may be expressed in a variety of formats including survey and aerial
maps, or digital terrain elevation databases (DTED) containing information
about hydrology, ground cover, roads, bridges, streams, woods, and buildings.
Images include video or LADAR images from cameras mounted on the ground
vehicle. To be useful for path planning beyond line of sight, the information
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FIGURE 17.6 Attribute, entity, class, and value images. These images are registered to
form a 3D matrix such that each pixel has an attribute vector, a pointer to an entity frame,
one or more pointers to the class(es) to which the pixel belongs, and values assigned to
the region where the pixel is located.

gathered by sensors on the ground vehicle must be registered with a priori maps
generated from external sources.

A hybrid iterative algorithm has been developed for registering 3D LADAR
range images obtained from unmanned aerial vehicles with LADAR images
obtained from unmanned ground vehicles [38]. Registration of the UGV
LADAR to the aerial survey map minimizes the dependency on GPS for
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position estimation. This is important when GPS estimates are unreliable or
unavailable.

Perception. Perception is the intelligent system’s window into the world.
Perception begins with sensing and ends with a world model that contains
information that is relevant to the task at hand and adequate for whatever
decision making and planning is required to generate successful behavior. In
biological creatures, perception is a hierarchical process that starts with arrays
of tactile sensors in the skin, arrays of photon sensors in the eyes, arrays of
acoustic sensors in the ears, arrays of inertial sensors in the vestibular apparatus,
arrays of proprioceptive sensors (that measure position, velocity, and force) in
the muscles and joints, and a variety of internal sensors that measure chemical
composition of the blood, pressure in the circulatory system, and several other
modalities. In machine vision, image understanding begins with signals from
one or more cameras and ends with a world model consisting of data structures
that include a registered set of images and maps with labeled regions, or entities,
that are linked to each other and to entity frames that contain entity attributes
(e.g., size, shape, color, texture, temperature), state (e.g., position, orientation,
velocity), class membership (e.g., road, lane marker, tree, vehicle, pedestrian,
building), plus a set of pointers that define relationships among and between
entities and events (e.g., situations).

It should be noted that, contrary to popular opinion, perception does not
reduce a large amount of sensory data to a few symbolic variables that are
then used to trigger the appropriate behavior. Instead, perception increases and
enriches the sensory data by computing attributes and combining it with a priori
information so that the world model contains much more information (not less)
than what is contained in the sensory input.

Perception is an active, goal-driven process that focuses attention on those
parts of the world that are important, and masks out (or assigns to the back-
ground) those that are irrelevant. Thus, perception does not treat all regions on
the egosphere equally. The role of attention is to focus perceptual resources on
what is important for achieving current and near future task goals.

In 4D/RCS, perception generates a hierarchy of image entities and entity
frames. These are linked to a hierarchy of maps with differing range and res-
olution. It should be noted, however, that the hierarchy of range and resolution
for maps is not parallel to the hierarchy of image entities and entity frames. The
hierarchy of entities is generated by grouping and segmentation processes at
each level of the SP hierarchy. The hierarchy of range and resolution of maps
is specified by the planning horizon of the behavior generation processes in the

objects in the image may appear only in the section echelon map, whereas close
objects in the image appear magnified in the primitive echelon map.

There are five sensory processing steps at each level in the SP hierarchy in
Figure 17.7.
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FIGURE 17.7 Five layers of the 4D/RCS architecture developed for the Demo III pro-
gram. On the far-right are planner and executor modules. In the center-right are maps
for representing terrain features, roads, bridges, vehicles, friendly/enemy positions, and
the cost and risk of traversing various regions. On the far-left are five levels of sensory
processing. At each level there are symbolic frames representing entities, segmented
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coordinate transforms that use range information to assign pixels and regions in images
on the left to regions in maps on the right. The maps have range and resolution defined
by the planning horizon of the planners at each echelon. The images have resolution and
field of view defined by the imaging optics.
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The first step is to focus attention. At the lowest level in the SP hier-
archy, focusing attention means pointing the high resolution part of
the visual field toward those regions of the world that contain inform-
ation important to the task. At higher levels, focusing attention means
that SP computing resources are committed to regions in the image
that are important to the task, while remaining regions are largely
ignored.

The second step at each level is to group portions of the visual field that
belong together into entities, and to segment each entity from the rest of
the image. At the lowest level, grouping consists of integrating all the
energy imaged on each single pixel. At higher levels, grouping pixels
or entities according to gestalt heuristics such as proximity, similarity,
contiguity, continuity, or symmetry. This step also establishes pointers
between segmented regions in the image and entity frames that contain
knowledge about the entities. Each grouping operation is a gestalt
hypothesis.

The third step is to compute attributes and state of each entity, and store
this information in the corresponding entity frame. Attributes may
include size, shape, color, texture, and temperature. State includes
position, orientation, and velocity.

The fourth step is recursive estimation on entity attributes to confirm or
deny the gestalt hypothesis that created the entity in step two. Recursive
estimation uses entity state and state prediction to track entities from
one image to the next.

The final step is to compare confirmed entity attributes with attributes of
class prototypes. When a match occurs, the entity can be assigned to
the class. Once an entity has been classified, it inherits attributes of the
class. There is a hierarchy of classes to which an entity may belong.
For example, an entity may be classified as a geometrical object, as a
tree, as an evergreen tree, as a spruce tree, and as a particular spruce
tree. More computing resources are required to achieve more specific
classifications. Thus, an intelligent system typically performs only the
least specific classifications required to achieve the task.

17.4 EXPERIMENTAL RESULTS

In this section, the experimental validation of the RCS reference model archi-
tecture to the control of autonomous ground vehicles is presented. The RCS
architecture is very flexible and can easily be adapted for control of multi-
robot teams. This architecture is also well suited for incorporating learning
algorithms at all levels of the hierarchy and to address the needs of multi-robot
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teams like dynamic sizing of the teams, retasking, etc. In the first example, the
adaptation of 4D/RCS methodology by the research team at the OU and OSU
for controlling teams of robots is addressed. In the second example, the valida-
tion is provided through the performance of the Army Demo III Experimental
Unmanned Vehicle at the NIST.

17.4.1 Implementation of Reconfigurable UGV Teams at
the OU

Conventional design solutions based on existing architectures cannot
adequately address the demands of system intelligence. These requirements
are exemplified in the control and coordination of multi-robot teams where
the system needs to exhibit higher levels of fault tolerance, adaptability, and
task and mission reconfigurability. In this example, we will demonstrate the
flexibility of the 4D/RCS architecture for the implementation of reconfigurable
UGV teams. Central to the implementation in this example is the architecture,
called Adaptation and Learning at all Levels (AL2) that is designed to exploit
the recent advances in hardware and software reconfiguration. This work is
motivated by the 4D/RCS architecture and is supported by a grant from the
Army Research Office, U.S. Department of Defense.

17.4.1.1 AL2 architecture

The implementation of intelligent UGVs at the OU and OSU is based on the
4D/RCS architecture and is influenced by the need for open architectures and
standards [2,3,39]. This architecture called AL2, is hierarchical in nature and
allows for plug-and-play and fault tolerance at the lowest level and for learn-
ing and adaptive behaviors at the highest level. At each level of the hierarchy,
each activity unit can understand and incorporate the adaptation and learn-
ing capabilities of the next lower level, which includes both those directly
found in individual subunits and those resulting from the aggregation of units
at recursively lower levels.

The AL2 architecture integrates many of the features of previous architec-
tures in the literature into a single framework that supports all of the system
requirements. The research builds completely integrated teams of UGVs in
which the teams and the network will adapt to the needs of the mission. In
order to accomplish this goal, we propose a design methodology that enables us
to design simple components whose performance can be rigorously analyzed.
Complex hierarchical systems can then be constructed using these low-level

Conventional design process require the system functionality, and thereby
the hardware and software resources to be fixed. Such design primarily
addresses the compromise between the system performance and its cost and

© 2006 by Taylor & Francis Group, LLC

building blocks. The architecture used is shown in Figure 17.8.



FRANKL: “dk6033_c017” — 2006/3/31 — 16:44 — page 678 — #24

678 Autonomous Mobile Robots

…

SA CA AA

EA WM PA

Robot_Agent 1

SA CA AA

EA WM PA

Robot_Agent 2

SA CA AA

EA WM PA

Robot_Agent n

WMEA PA

Robot Group n

…

SA CA AA

EA WM PA

Robot_Agent 1

SA CA AA

EA WM PA

Robot_Agent 2

SA CA AA

EA WM PA

Robot_Agent n

WMEA PA

Robot Group 2

EA WM PA

…

WMEA PA

Robot Group 1

L1

L2

L3

L4

SA CA AA

EA WM PA

Deliberative Robot Agent 1

Reactive Robot Agent 1

SA CA AA

EA WM PA

Deliberative Robot Agent 2

Reactive Robot Agent 2

SA CA AA

EA WM PA

Deliberative Robot Agent n

Reactive Robot Agent n

FIGURE 17.8 Architecture for adaptation and learning at all levels (AL2).

flexibility [39,40]. The requirements of system intelligence like plug-and-play
capability of sensors/actuators, fault tolerance, and retasking of robotic agents
can be achieved only by planning redundancies in the hardware and reconfigur-
ing the software during runtime. An alternate approach is to use reconfigurable
hardware components, like Field Programmable Gate Arrays (FPGAs), to allow
for both hardware and software reconfiguration [41,42]. By systematically par-
titioning the system, functionality requiring changing execution paths or those
that impact performance can be assigned resources that allow both hardware and
software reconfiguration. Successful implementation of this technique requires
the development of new system architectures for Reconfigurable Computing.
Reconfigurable Computing is the ability of the software to reach through to the
hardware and alter the data path for execution thereby optimizing the perform-
ance. Our research indicates that the 4D/RCS reference model architecture is
well suited for implementing reconfigurable designs for the control of UGV
teams.

as a group. At the lowest level (L1), each robot agent has a control agent
(CA), an actuator agent (AA), and a sensor agent (SA). The CA is responsible
for attaining the commanded system performance at the lowest level. It can
command the sensor agent to override its output values, recalibrate its signal,
as well as perform rudimentary signal processing like filtering. The AA and SA
have the lowest level of autonomy and are completely controlled by the CA. This
level (L1) is characterized by stringent real-time requirements and deterministic
behaviors. At a very fundamental level, this design is adequate for a robotic
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agent to function and perform repetitive tasks in a structured environment.
Note that, because of our distributed communication infrastructure, the sensor,
actuator, and control resources (and the corresponding subagents) for a single
robot agent need not be present on the same physical platform. For example, a
platform lacking a camera and image processing capabilities could still perform
leader-following if the leader platform had a rear-facing or omni-directional
camera (or other sensor) that could be used to sense the relative position of the
follower platform.

In order to meet the requirements of fault tolerance, uncertainty in the sys-
tem model and the environment, we use a distributed architecture wherein the
higher layer (L2) incorporates elements that instil higher-level intelligence in
the robot. In this layer, the sensory signals from layer L1 are processed by the
Estimator Agent (EA). The output of the estimator is then used to modify/update
the local representation of the WM and as input to the CA. The distributed intel-
ligence paradigm that is proposed means that EA can now include algorithms
for fault detection, dynamic sensor reconfiguration, and sensor fusion at the
level of a deliberative robot agent. The WM entity in the robot agent maintains
information about the environment that is necessary for the successful tasking
of the robot. Typically, this would include local map information, friend/foe
classification, targets and obstacles, etc. The planning agent (PA) utilizes the
information from the local model of the world (WM) and the high-level task
requirements to generate a plan that is communicated to the CA in layer L1. The
PA implements algorithms for path planning, obstacle avoidance, optimization,
etc., for an individual robot. Level L2 is characterized by increased autonomy
and less stringent real-time requirements.

A team of robots may consist of a number of individual robot agents possibly
with differing sensor/actuator suites and capabilities. The coordination between
these agents is managed by the PA entity at the level of the robot group (L3).
Information sharing between L2 entities is controlled by the entities in L3.
This increases the security of the implementation because the L2 entities can
function independently of each other, while still functioning in a coordinated
manner. The primary function of the entities in layer 3 is to coordinate the
working of the robot agents in the group. L3 handles all reassignments of
tasks between different robot agents in L2. Introduction of new robot agents or
sensor suites, etc., are the exclusive domain of L3. The outputs of all the EAs
in layer L2 provide the input to the EA module in L3. Team-level sensor fusion
amongst the different robotic agents is accomplished by the EA at L3. This
EA module is used to update the WM in layer 3. This WM also manages the
information sharing among the robot agents in L2. The PA in this layer does the
task decomposition from the mission requirements and updates the individual
PAs in L2. It is to be noted that the architecture specified is independent of
hardware and software implementations and individual elements in L2. Layer
4 (L4) manages the coordination between groups of robot agents. The highest
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level of intelligence and autonomy and the lowest level of real-time criticality
characterize L4. Dynamic reassignment of the responsibilities of each group is
handled by L4.

It can be easily seen that this architecture enables the seamless sharing of
resources across multiple robots and multiple teams. While the low-level fault
accommodation algorithms help accommodate failures in individual robots,
the ability to share resources across robots in a team, as well as across teams,
provides a second sophisticated level of fault tolerance that will improve the
overall success of the robotic mission. This architecture enables the devel-
opment of groups of autonomous ground vehicles that are “intelligent.” The
architecture is flexible and is not dependent on the type of controllers or
algorithms implemented in any given layer.

17.4.1.2 Hardware and software design methodology

In this section, the design methodology is introduced that enables the realization
of the L1 layer of the AL2 architecture. The discussion in the previous section
leads one to the conclusion that while fault identification can be accomplished
in the hardware or software, fault accommodation is done in the lowest level
of the system. This is done by dynamically recreating data execution paths in
the hardware that provide alternate paths for the control execution. Similarly,
identification of plug-and-play components is done in software but the sensor
circuitry is dynamically created in hardware. Thus by implementing the hier-
archical architecture AL2, the requirements of plug-and-play sensors and fault
accommodation can be addressed by incorporating the ability to reconfigure
the L1 layer of the system. The architecture also allows for the algorithms that
incorporate learning and deliberative behaviors to be incorporated in L2 layer
of the system and insulate those from changes at the L1 layer. Care however
has to be exercised to ensure that the communication between L1 and L2 layers
are not affected by the change.

The need to implement different hardware configurations at the lowest level
of the system to meet the operational requirements for different tasks necessit-
ates different types of hardware reconfiguration capabilities. These capabilities
are summarized below [43,44].

Full vs. partial reconfiguration. Systems typically need to execute special
tests at startup to verify proper system functioning. Once the startup tests are
complete, the system can transition to the “run-time” mode. While it is easy
to load test software to run system tests at startup, the tests that can be run
are constrained by the hardware. By incorporating the ability to change the
configuration of the FPGA device, the same hardware can be used for system
tests at startup and then “fully” reconfigured for run-time operations. The ability
to “fully” reconfigure the hardware is also essential to the retasking of the
individual robot. When the robot is retasked, sensor and actuator configurations
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can be selected that adapt the robot for the specified task. Since the embedded
hardware can be optimized for the specific task, the overall performance can be
improved without an increase in system cost. Often, it is required to reroute the
signals to accommodate for faults or add additional circuitry to handle signals
from new sensors that come online. In such circumstances, unused portions
of the FPGA can be configured to handle this requirement while the rest of
the device is unaffected. Such reconfiguration, called partial reconfiguration, is
essential to support retasking of individual robots, plug-and-play transducers,
and for fault accommodation.

Static vs. dynamic reconfiguration. Static reconfiguration requires the sys-
tem to be completely reconfigured before execution can begin. On the other
hand, dynamic reconfiguration can take place while the system is under oper-
ation. However, care has to be exercised to prevent changing portions of the
hardware during execution to prevent unforeseen outcomes. Dynamic reconfig-
uration is essential when it is not feasible to take the system off-line to implement
changes. Depending on the system requirements, partial reconfiguration can be
static or dynamic.

17.4.1.3 Design and implementation of UGV teams

The proposed AL2 architecture is tested by implementing the L1 layer on the
Xilinx’s Virtex-II Pro platform. This platform was selected based on its capabil-
ity in implementing reconfigurable architectures, and the excellent development
tools and product support. The Virtex-II Pro XC2VP4 has a PowerPC core, 6768
logic cells, 504 KBits BRAM, 4 3.125 Gbps RocketIO transceivers, and 3.01
Mbits configuration space.

The Xilinx Virtex-II Pro device is a user programmable gate array with
embedded PowerPC processor and embedded high-speed serial transceivers.
The Xilinx Virtex architecture is coarse grained and consists of a number of
basic cells called configurable logic blocks (CLBs). These logic blocks are
arranged in rows and columns, with each CLB consisting of four logic cells
arranged in two slices. Each CLB also contains logic that implements a four-
input look up tables (LUTs) [41]. Each slice contains two function generators,
two storage elements, arithmetic logic gates, large multiplexers, wide function
capability, fast carry look ahead chain, and horizontal cascade chains. The
function generators are configurable as four input look up tables (LUTs), sixteen
bit shift registers, or as sixteen bit selective RAM memory. Each CLB also has
fast interconnect and connects to a generalized routing matrix (GRM) to access
general routing resources. The Virtex-II Pro has SelectIO-Ultra blocks (IOBs)
that provide the interface between the package pins and the internal configurable
logic. Active Interconnect Technology connects all these components together.
The overall interconnection is hierarchical and is designed to support high-speed
designs [45].

© 2006 by Taylor & Francis Group, LLC



FRANKL: “dk6033_c017” — 2006/3/31 — 16:44 — page 682 — #28

682 Autonomous Mobile Robots

Reconfiguration Time:
The minimum unit of reconfiguration in Virtex 2 Pro is a “frame.” It is pro-
portional to the CLB width of the device. There are a total of 884 frames
with 424 bytes per frame. Therefore with the system clock running at
100 MHz, the time required to configure a frame is 4 µsec, and the entire
device can be reconfigured in 4 msec [46,47]. Such fast reconfiguration times
make this platform ideal for implementing low-level controllers for intelligent
systems.

(a) Creation of Reconfigurable Resources
The programmable elements in the Virtex-II Pro, including the routing
resources, are controlled by values stored in the static memory cells. The
device is configured by loading the bitstream into the internal configuration
memory. These values can be reloaded to change the functions of the program-
mable elements. The Xilinx Virtex family of FPGAs supports both partial as
well as dynamic reconfiguration. Partial reconfiguration can be achieved in
one of the two ways, namely module-based partial reconfiguration and small-
bit manipulations. In the module-based reconfiguration, the entire module can
be reconfigured. The height of the reconfigurable module is the height of the
device and the module can cover one or more columns. In small-bit manipula-
tions, the reconfiguration is done by making a small change in the design, and
then generating a bit-stream based only on the differences in the two designs.
Switching the configuration from one implementation to another is easy and
very quick. The process of implementing a general purpose IO is demonstrated

high bandwidth processor local bus (PLB) and a bridge connecting the PLB and
the on-chip peripheral bus (OPB). The required peripherals are just connected
to the OPB and any external memory (BBRAM) can be accessed using the
interface controller (IF_Controller). In the design example, a general purpose
IO is selected. If subsequent reconfiguration of the system requires commu-
nication capabilities, say serial communication, then a different module can be
generated with an UART device added to the OPB. Module-based reconfigur-
ation will then result in enhanced system capability. Since the reconfiguration
can be done in real time while the system is operational, system components
can be added in real time to address changing needs during the retasking of the
system.

(b) Dynamic Fault Tolerance

to generate the PWM signal while Timer 2 is configured in the “capture”
mode to sense the feedback signal. Fault conditions are specified during the
design process and the occurrence of a fault can be ascertained by the com-
parison of the PWM and the feedback signals. If a fault is detected during
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to control the drive motors of the robot (Figure 17.10). Timer 1 is configured

in Figure 17.9. The design includes a PowerPC processor core connected to the

In the second design example, a PWM generator is implemented in the hardware



FRANKL: “dk6033_c017” — 2006/3/31 — 16:44 — page 683 — #29

Intelligent Systems 683

PLB_v34

PLB_OPB
bridge

PLB_BRAM
IF_controller

PPC405

MY_PLB MY_OPB PORT A

System
reset

JTAG_PPC
controller

BRAM_BLOCK

GPIO

UART

FIGURE 17.9 Implementation of general purpose IO and serial communication in
Xilinx EDK.

operation, then a new timer (Timer 3) is created and the output of this timer
is switched to the output pins. The changes involved in the reconfiguration
between the two designs are relatively small and small-bit manipulation is ideal
for this type of reconfiguration. The control cycle in this example was executed
in real time with a sampling rate of 20 msec. The time for reconfiguration
was about 16 µsec showing that dynamic fault accommodation is achieved in
real time.

(c) Built-In Self Test, System Retasking, and Fault Accommodation
Built in Self Test and system retasking can be effectively implemented using
“full reconfiguration” of the FPGA device. Here, a first configuration is loaded
for self test and on successful completion a run-time configuration is loaded
onto the FPGA device. Since the system can be optimized for every task sep-
arately, the overall performance is improved. Often, a system requires only
a portion of its functionality to be changed, especially during fault recovery
where there might be a need to reconfigure only the sensor module or simply
bypass the sensor. This can be done using partial reconfiguration. Partial recon-
figuration is implemented in the FPGA device where a portion of the circuitry
is reconfigured while the rest of the device is unaffected and still in opera-
tion. Depending on the system requirements, partial reconfiguration can be
accomplished by taking the system off-line (static reconfiguration) or while the
system is under operation (dynamic reconfiguration). Dynamic reconfiguration
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FIGURE 17.10 Implementation of PWM motor control with dynamic reconfiguration
for fault accommodation.

is essential when it is not feasible to take the system off-line to implement
changes.

(d) Low Level Learning for Improving the Performance of the Controller
Often, significant improvement in the performance can be achieved by com-
pensating for nonlinearities like deadband and hysteresis in the drive mechan-
isms. These nonlinearities are dependent on the load and operating conditions.
Effective compensation of these effects requires the implementation of adaptive
algorithms. However, these algorithms are required only in those cases where
the substantial degradation of the performance results in the absence of the com-
pensation techniques. Further, since these algorithms can be implemented very
efficiently in hardware, compensation for the nonlinear effects can be achieved
dynamically on a case-by-case basis using dynamic, partial reconfiguration
capability of the proposed architecture.

In the third design example, a neural network (NN) is implemented in the

tinuously monitors the output and dynamically instantiates the NN in the FPGA

in the actuator dynamics. The NN is modeled and designed in Simulink using

successfully validated and a configuration bit stream generated. This model is
loaded onto the FPGA for dynamic creation of the NN module in the hardware.
When the control strategy is changed, it automatically results in the loading
of the NN module in the FPGA and the associated software for execution in
real time.

© 2006 by Taylor & Francis Group, LLC

when the performance degrades significantly due to load dependent deadband

FPGA to compensate for actuator deadband (Figure 17.11). The controller con-

the Xilinx toolset provided by Mathworks Inc. (Figure 17.12). This design was
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FIGURE 17.11 Neural network-based compensation of actuator nonlinearities.
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FIGURE 17.12 Implementation of a one-layer neural network in simulink using xilinx
toolset.

(e) Software Implementation for Reconfigurable Computing
The controller, sensing, and actuation functions of the system are abstracted out
and implemented as separate packages with well-defined interfaces. The con-
troller communicates with the sensing module and the actuator module through
the interface provided and is independent of the actual implementation within
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package

Sensor
interface

Controller
interface

Actuator
interface

FIGURE 17.13 UML implementation of the layer 1 entities.

these modules. Providing standardized interfaces makes possible the imple-
mentation of distributed sensors and actuators. Further, by encapsulation of the
sensing and actuation functions, system requirements such as plug-and-play
of sensors, and fault accommodation can be achieved. Exposing the interface
to these packages also aids in system diagnostics and testing of the low-level
functionality.

The modeling of the sensors, actuators, and controller was done using
Rational’s Unified Modeling Language (UML 2.0) as shown in Figure 17.13

the target platform.
The architecture developed was implemented in the development of a team

of intelligent UGVs. The implementation is not constrained by the size of the
team and the team can be dynamically created. The tasking of an individual
member and the required sensor configuration can be dynamically performed at
run-time. The implementation has been tested for scenarios that include wall-
following, leader following modes of team behaviors. The research prototype

17.4.2 Demo III Experimental Unmanned Vehicle (XUV)
Project at NIST

In this example, the experimental validation of the 4D/RCS architecture has
been provided by the performance of the Army Research Lab Demo III experi-

vehicles were put through an extended series of demonstrations and field tests
during the fall and winter of 2002 to 2003.

© 2006 by Taylor & Francis Group, LLC

and Figure 17.14. The code was generated from these models for execution on

of the reconfigurable robot is shown in Figure 17.15.

mental unmanned ground vehicle (XUV) shown in Figure 17.16. Four of these
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Sensor Agent

sensorID: int
sensorName: String
staticGain: Double
staticDCBias: Double
rawValue: Double
convValue: Double
filtValue: Double
status: Boolean

getSensor(sensorID: int): int
setSensorID(newSensorID: int): int
getSensorName(sensorName: String): String
setSensorName(newSensorName): String
getSensorStatus(): Boolean
setSensorStatus(status: Boolean)(): Boolean
getSensorValue(): Double
setSensorGain(gain: Double)(): Integer
setSensorDCBias(bias: Double)(): Integer
setFilterBandwidth(bandwidth: Double)(): Double

Filter Agent

rawValue: Double
filtValue: Double
bandwidth: Double

filter Raw Value (raw Value: Double): Double()
set Bandwidth (bandwidth: Double): Double()

<<uses>>

position Sensor velocity Sensor acc Sensortemp Sensor pres Sensor

FIGURE 17.14 Generalization of the sensor class.
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FIGURE 17.15 Prototype of a reconfigurable robot.

The XUVs were equipped with an inertial reference system, a commercial
grade GPS receiver (accurate to about±20 m), a LADAR camera with a frame
rate of 10 frames per sec, and a variety of internal sensors. The LADAR had
a field of view 90◦ wide and 20◦ high with resolution of about 1

2
◦

per pixel. It
was mounted on a pan/tilt head that enabled it to look in the direction that it
planned to drive. The LADAR was able to detect the ground out to a range of
about 20 m, and detect vertical surfaces (such as trees) out to a range of about
60 m. Routes for XUV missions were laid out on a terrain map by trained Army
scouts, and given to the XUVs in terms of GPS waypoints spaced more than
50 m apart.

The XUVs operated completely autonomously until they got into trouble
and called for help. Typical reasons for calling for help were the XUV was
unable to proceed because of some terrain condition or obstacle (such as soft
sand on a steep slope, or dense woods), and was unable to find an acceptable
path plan after several attempts at backing up and heading toward a different
direction. At such a point, an operator was called in to teleoperate the vehicle
out of difficulty. During these operations, data was collected on the cause of
the difficulty, the type of operator intervention required to extract the XUV, the
time required before the XUV could be returned to autonomous mode, and the
work load on the operator.
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FIGURE 17.16 The Army Demo III experimental unmanned vehicle. On the left-top
is the LADAR. In the center-top is a Reconnissance Camera ball. On the right-top is
a pan/tilt unit with a color stereo pair, a FLIR stereo pair, and a color high resolution
monocular camera. The white panel in the center front is for a radar. The front bumper
is instrumented to detect obstacles hidden in the weeds. (Photo courtesy of General
Dynamics Robotic Systems.)

During three major experiments designed to determine the technology read-
iness of autonomous driving, the Demo III XUVs were driven a total of 550 km,
over rough terrain (1) in the desert, (2) in the woods, (3) through rolling fields
of weeds and tall grass, (4) on dirt roads and trails, and (5) through an urban
environment with narrow streets cluttered with parked cars, dumpsters, culverts,
telephone poles, and manikins. Tests were conducted under various conditions

The unmanned vehicles operated without any operator assistance over 90%
of both time and distance. A detailed report of these experiments has been
published in Reference 48. High resolution LADAR ground truth data describ-
ing the terrain where the XUVs experienced difficulties was also gathered and
analyzed [49].

It should be noted that the Demo III tests were performed in environ-
ments devoid of moving objects such as oncoming traffic, pedestrians, or other
vehicles. The inclusion of moving objects in the world model, and the devel-
opment of perception, world modeling, and planning algorithms for operating
in the presence of moving objects is a topic of current research.

© 2006 by Taylor & Francis Group, LLC

including night, day, clear weather, rain, and falling snow (see Figure 17.17).
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FIGURE 17.17 An Army Demo III experimental unmanned vehicle driving autonom-
ously through the woods during a snow storm at Ft. Indiantown Gap, Pennsylvania, in
January 2003.

17.5 CURRENT RESEARCH AND FUTURE DIRECTIONS

In this chapter, the engineering of Intelligent Systems was addressed through
the development of a reference model architecture. The implementation of this
architecture to the control of unmanned autonomous vehicles and teams of
unmanned ground vehicles was then discussed.

Current research in our laboratories is focused on the following aspects of
autonomous vehicle control:

1. Autonomous driving on normal roads and streets, for example,
driving on country roads and city streets with oncoming traffic,
negotiating intersections with traffic signals and pedestrians, and
maneuvering in and out of parking spaces.

2. Autonomous tactical behaviors for teams of real and virtual autonom-
ous military ground and air vehicles, for example, controlling the
behavior of a platoon of scout vehicles consisting of ten unmanned
ground vehicles and three unmanned air vehicles cooperating in
the performance of a route reconnaissance mission prior to a troop
echelon road march.

We believe that autonomous driving and the control of teams of intelligent
autonomous vehicles are an excellent topic for future research for the following
reasons:

First, it is a problem domain for which there is a large potential user base,
both in the military and civilian sectors. This translates into research
funding.
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Second, it is a problem domain where physical actuators and power
systems are readily available. Wheeled and tracked vehicle technology
is mature, inexpensive, and widely available.

Third, it is a problem domain for which the technology is ready. The
invention of real-time LADAR imaging makes it possible to capture
the 3D geometry and dynamics of the world. This has broken the per-
ception barrier. The continued exponential growth rate in computing
power per dollar cost has brought the necessary computational power
within the realm of economic viability. This has broken the cost barrier.
Furthermore, reconfigurable computing, cognitive modeling, intelli-
gent control theory, and software technology have advanced to the
point where the engineering of intelligent systems is feasible. This
has broken the technology barrier.

Finally, autonomous driving is a problem domain of fundamental sci-
entific interest. Locomotion is perhaps the most basic of all behaviors
in the biological world. Locomotion is essential to finding food and
evading predators throughout the animal kingdom. The brains of all
animate creatures have evolved under the pressures of natural selec-
tion in rewarding successful locomotion behavior. It is therefore, not
unreasonable to suspect that building truly intelligent mobility sys-
tems will reveal fundamental new insights into the mysteries of how
the mechanisms of brain give rise to the phenomena of intelligence,
consciousness, and mind.

17.6 CONCLUSIONS

The current research in the engineering of intelligent systems has focused
on the development of reference model architectures and implementation of
features that instill intelligence in the overall system. These implementations
have resulted in significant advances in the technology in the areas of percep-
tion, knowledge representation, planning, adaptation, learning, and control.
Current research has also focused on utilizing recent advances in the recon-
figurable computing technology to design systems that are intelligent and can
configure themselves according to the needs of the mission. Recent imple-
mentations at the NIST and OU indicate that the 4D/RCS architecture is well
suited for the implementation of Intelligent Systems and that the Intelligent
UGVs are a good testbed for validating system autonomy, and intelligent
behaviors.

In many ways, 4D/RCS is a superset of Soar, ACT-R, Dickmanns 4D
approach, and even behaviorist architectures such as subsumption and its many
derivatives. 4D/RCS  incorporates and  integrates  many  different and  diverse  con-
cepts and approaches into a harmonious whole. It is hierarchical but distributed,
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deliberative yet reactive. It spans the space between the cognitive and reflexive,
between planning and feedback control. It bridges the gap between spatial
distances ranging from kilometers to millimeters, and between time intervals
ranging from months to milliseconds. And it does so in small regular steps,
each of which can be easily understood and readily accomplished through
well-known computational processes.

Each organizational unit in 4D/RCS refines tasks with about an order of
magnitude increase in detail, and an order of magnitude decrease in scale, both
in time and space. At the upper levels, most of the computational power is spent
on cognitive tasks, such as analyzing the past, understanding the present, and
planning for the future. At the lower levels, most of the computational power
is spent in motor control, and the early stages of perception.

However, at every level, the computational infrastructure is fundamentally
the same (except for scale in time and space). Computational modules (that
theoretically could be implemented as neural nets, or finite state automata, or
production rules) accept inputs and produce outputs. Knowledge is represented
in arrays, strings, pointers, frames, and rules. At various levels and in many
different ways, computational modules process sensory data, model the world,
and decompose high-level intentions into low-level actions. Within each mod-
ule, this process is both limited in complexity and finite in scope. Perhaps most
important, 4D/RCS makes the processes of intelligent behavior understand-
able in terms of computational theory. Thus, it can be engineered into practical
machines.

We should note in closing that there remain many features of the 4D/RCS
reference model architecture that have not yet been fully implemented in any
application. However, enough of the 4D/RCS reference model has been imple-
mented to demonstrate that the fundamental concept is valid and the more
advanced features are feasible.
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