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Abstract. This paper presents an autonomous agricultural mobile robot for mechanical weed control in outdoor
environments. The robot employs two vision systems: one gray-level vision system that is able to recognize the
row structure formed by the crops and to guide the robot along the rows and a second, color-based vision system
that is able to identify a single crop among weed plants. This vision system controls a weeding-tool that removes
the weed within the row of crops. The row-recognition system is based on a novel algorithm and has been tested
extensively in outdoor field tests and proven to be able to guide the robot with an accuracy of ±2 cm. It has been
shown that color vision is feasible for single plant identification, i.e., discriminating between crops and weeds. The
system as a whole has been verified, showing that the subsystems are able to work together effectively. A first trial
in a greenhouse showed that the robot is able to manage weed control within a row of crops.
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1. Introduction

The world-wide problem of environmental pollution
caused by excessive use of herbicides and the increas-
ing cost of chemicals call for alternative methods for
crop protection. A potential way to reduce chemicals
is to employ precision techniques for various types of
agricultural operations so that chemicals can be used
where they have an optimal effect at a minimum quan-
tity. It will even be possible in some operations to aban-
don the use of chemicals and apply other methods, e.g.,
mechanical weed control. There is political interest in
the European Union in increasing the amount of eco-
logically grown products. The goal is that about 5–10%
of the total field area should be processed by organic
farming methods by the year 2005. Organic farming is
not only a political goal; there is also a push from the
market. More and more customers are asking for prod-
ucts that are organically grown. This has led to a prob-
lem for companies that need to increase their supplies
of organically grown products to meet customer de-
mands. For example, it is difficult to extend the amount

of organically grown sugar beets at the present because
weed control in the seedline of sugar beets is done by
human labor, which implies high costs and difficulties
in recruiting workers. The motivation for the work re-
ported here is to reduce the amount of herbicides used
for crop protection in agriculture by replacing chemical
weed control by mechanical weed control. The elimina-
tion of chemical weed control is one of the requirements
for a crop’s being “ecologically grown”. The goal of
this paper is to present a vision-guided mobile robot,
Fig. 1, that can carry out mechanical weed control be-
tween plants in the seedline of sugar beet plants, thus
totally eliminating the need for chemical weed control.
The fulfilment of the goals will result in considerable
savings in both ecological and economic terms.

Section 2 describes the design of the mobile robot,
which employs two vision systems. One vision system
recognizes the row structure in the field and is able to
guide the robot along the rows of sugar beet plants. The
row-following system is presented in Section 3. The
other vision system, which is based on color images,
is able to recognize the sugar beet plants among weeds



22 Åstrand and Baerveldt

Figure 1. Mobile robot.

and controls the weed removing system. This vision
system is discussed in Section 4. Finally, preliminary
results of a field test are presented.

2. Design of the Mobile Robot

2.1. Approach

Sugar beet plants are cultivated in rows, which di-
vides the problem of weed control into two parts:
weed control between and weed control within rows,
i.e., in the seedline between crop plants. Weed con-
trol between rows requires only the recognition of a
row structure whereas weed control within a row re-
quires the recognition of individual sugar beet plants
among weeds, which is a more complex perception
task. As most crops are cultivated in rows, the focus
of the vision-oriented research in general for guiding
agricultural implements has been to obtain an esti-
mate of the row position. There have been a number of
publications of successful implementations of row fol-
lowing (Marchant, 1996; Marchant and Brivot, 1995;
Billingsley and Schoenfisch, 1995; Slaughter et al.,

1997; Ollis and Stentz, 1996). However, only a few
reports have been published on systems for individual
plant recognition tested in the field. Tillet et al. (1998)
developed an autonomous robot for precision spray-
ing in a transplanted cauliflower field. Their robot has
two driving wheels, with one motor for each wheel, at
the front and two passive wheels at the rear. A cam-
era is placed between the front axle, viewing an area
of 2 m2. The vision system estimates plant position
and uses this estimate for row-guidance and precision
spraying. Segmentation is achieved by several steps of
image processing, based on near-infrared images, to
be able to discriminate weeds from crops (Brivot and
Marchant, 1996). Lee et al. (1997) developed a system
based on machine vision for precision spraying in-row
weeds in tomato fields. The system is mounted on a
vision-guided row cultivator (Slaughter et al., 1997)
that is able to track the center of the seedline of the
crop. Separate cameras are used for row recognition
and for single crop recognition. The reason for this is
the often-reported problem of non-uniform illumina-
tion. By employing two cameras, the vision system for
plant recognition can be encapsulated and thus control
can be taken over illumination.
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The systems described above focused on precision
spraying and not mechanical weed control for in-row
weeds, which is the aim of this work. Another impor-
tant aspect of our work is that the organically grown
cultivation we aim at implies a relatively high number
of up to twelve weed plants per crop plant (in our case
sugar beet plants). Moreover, as sugar beet plants are
sown and not planted, the crop and weed have about
the same size, see Fig. 3. These two factors make the
recognition task of both the row structure and indi-
vidual plants much more difficult. Existing algorithms
for row recognition were not sufficient for our appli-
cation (Marchant, 1996; Marchant and Brivot, 1995;
Billingsley and Schoenfisch, 1995; Slaughter et al.,
1997; Ollis and Stentz, 1996; Lee et al., 1997). We thus
decided to develop a new row recognition algorithm
and a new plant recognition algorithm that fit the re-
quirements imposed by organic farming of sown crops.

Our approach is to separate the task of finding rows
and the task of plant identification. A forward-looking
camera with a near-infrared filter is used to find the
position of the row, see Fig. 2. A color camera sys-
tem is then used for single plant identification. This
is mounted inside the robot to be able to control the
illumination, as shown in Fig. 2. A color camera sys-
tem is especially sensitive to changes in illumination as
it causes color shifts, thus making classification more
difficult. Therefore, taking control of illumination will
most likely increase the classification rate. The robot

Figure 2. Mobile robot with weeding tool mounted at the rear.

is designed to intra-row cultivate one row at a time.
The forward-looking camera looks at two rows at the
same time and along a segment about 5 meters long.
Looking at such a relatively large area makes the row-
recognition system robust to missing plants and to a
relatively high weed pressure, typical for ecological
farming. The downward-looking camera looks perpen-
dicular to the ground in a window of 45 × 80 cm along
one row structure. This means that at least four sugar
beet plants appear in each image, as the average dis-
tance between the plants is about 17 cm. This is of
advantage if one tries to classify a plant using contex-
tual information. Instead of looking at one plant at the
time, the system will then look at a certain environment
containing several plants, as illustrated in Fig. 3. Know-
ing that the plants are sown in rows and with a certain
constant distance among them, it is possible to clas-
sify the plants also based on this information instead
of looking only at individual features of one plant as
described Section 4.

2.2. Mechanical Design

The distance between rows in sugar beet fields and
other row-cultivated crops is about 50 cm, which re-
stricts the physical width of the robot to about 70 cm.
The length of the robot is about 120 cm and the steering
mechanism is an Ackerman steering controlled with a
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Figure 3. Upper: When crops are sown, the weed and crop, encircled, have about the same size (ecologically grown). Lower: transplanted
crops shown for comparison.

DC–servo motor. A potentiometer is used for calibra-
tion and an encoder, which has an approximate res-
olution of 700 pulses/degree, determines the current
position of the steering motor. To prevent the steering
mechanism from being damaged by the motor there are
two end switches for blocking the steering motor if the
steering angle is out of range. The robot has two driv-
ing wheels at the rear, equipped with encoders with an
approximate resolution of 24000 pulses/m. For safety
reasons the driving motors are equipped with electri-
cally controlled brakes (brakes if the power goes off).
The robot is powered by batteries for indoor testing and
by a combustion engine driven generator for field tests.
The mechanical weeding tool is a rotating wheel that
is rotated perpendicular to the row line. The tool pro-
cesses only the area between crops in the seedline. If a
crop appears, the tool is quickly lifted by a pneumatic
cylinder and lowered directly after the crop has been
passed. The downward-looking camera identifies and
localizes the position of every sugar beet plant. The
position is then sent to the controller of the weeding
tool. To minimize the time delay between the time of
the position estimation and the time at which the weed-
ing tool reaches the plant, the tool should be located as
close as possible to the border of the field of view of

the camera. The weeding tool is therefore located at the
rear of the robot directly after the rear driving axle.

2.3. Hardware and Sensors

The robot has two main sensors, the vision system
for row following and the vision system for plant
identification. Each of these systems has industrial
PC-based hardware for grabbing and processing
the images. A third computer, the main computer,
runs under QNX, a real-time operation system, and
controls all the robot’s systems and actions. It is
equipped with two IO cards for digital and analog
input and output as well as an IO card for interfacing
the encoders of the motors. The robot is also equipped
with two emergency buttons for quick shut down of
the system and a joystick for manual operation. All
communication between the main computer and the
vision sub-systems is done over a serial line.

2.4. Software Architecture

The software architecture is based on the blackboard
architecture (Harmon et al., 1986). This means that all
sensor data are available through a blackboard and in
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Figure 4. Control layer and application layer receiving sensor data from blackboard.

principle accessible by all tasks, as shown in Fig. 4.
This is the main advantage of the approach, as it is
very difficult to predict what data may be needed in the
future by which task. A special kind of blackboard ar-
chitecture was designed in our case to make sensor data
public. It is common to use a blackboard architecture,
which places data in a shared memory, but a multi-client
server platform was created in our system. In this archi-
tecture, the data of each sensor or group of sensors have
their own server process. Every process that needs these
data can request them from the appropriate server. The
advantage of this is that a blackboard server for a new
sensor, for example, as in our case, GPS, which we aim
to integrate in the future, can easily be created (with-
out changing the source code of the existing part of the
blackboard, which would be the case if a centralized
blackboard that serves all data was employed). Another
advantage is that a blackboard system uncouples the
data representation from the sensor. This means that it
is possible to filter the data from the sensor before they
are made public, giving the advantage that this filtering
needs to be done only once. However, a drawback of
this type of architecture is the overhead resulting from
additional context switching. Another drawback is, as
the sensor data is not read directly from the sensor, that
the age of the data must be checked. This is solved by
adding a time stamp to all data.

Exchanging data between different tasks in the sys-
tem is a very important issue when designing the

software architecture. Since controllers should not be
suspended, waiting for a new desired value, asyn-
chronous communication is necessary. This is the sec-
ond reason for using server processes in this design.
Every task that wants to send data asynchronously to
another process writes these data into a so-called buffer
task that stores the data until they are overwritten or
consumed by the other task. A consumer always reads
the oldest data. The software architecture is divided into
two layers, see Fig. 4: a control layer and an application
layer. The motivation for the two-layer approach is to
make the control level, which contains a speed, weed-
ing and steering controller, independent of the applica-
tion layer. This means that the interface to the control
layer is fixed and that changes in the application layer
should not affect the control layer (Becker, 1999).

3. Row Following

As said in the previous section, existing algorithms for
row recognition were not sufficient for our application.
No system has been reported to work on high weed
pressure, up to twelve weeds/crop plant, with sown
crops. A new algorithm for row recognition was thus
developed to satisfy these requirements. A forward-
looking gray-scale camera with a near-infrared filter is
used to find the position of the row. A near-infrared
filter gives a high-contrast image, where living plant
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Figure 5. Hough space accumulator and distribution of s for a specific α.

material is bright and the soil is dark (Baerveldt, 1997).
To decrease the effect of different light conditions, an
opening operation is performed on the image and the
result is subtracted from the original image. This re-
sults in an intensity-independent gray-level image from
which a binary image can be derived with a fixed thresh-
old. In the resulting binary image, plant material from
both weeds and crops is white and the rest, coming
from soil, stones and residues, is black. On the basis of
the binary image the next step is to detect the row of
crops in the image. To control a mobile robot or other
tool, for example, the offset, s, and the heading an-
gle, α, of the camera relative to the row structure must
be known. The Hough transform is a well-known and
robust method for finding lines, especially if the lines
cover the whole image, as in our case (Shapiro and
Haralick, 1992, 1993). Normally the lines are found
with their equation in the image space, e.g., yi =
axi + b, where coefficients a and b are found with the
Hough transform. This could also be done on the basis
of the binary image of plant material. All pixels com-
ing from the crops contribute to the line and all pixels
from the weeds are just noise. However, as shown in
Åstrand and Baerveldt (1999a), by using perspective
transformation, there is a linear relation between offset
to row s and the angle to row α for a given pixel (xi , yi ).
(See Eq. (1), where constants A, B and C are functions
of (xi , yi )).

Aα + Bs + C = 0 (1)

This means that the Hough transform can be directly
performed for s and α. The Hough space, H (s,α), is

then an accumulator to which each pixel coordinate
(xi , yi ) in the binary image that is on makes a contri-
bution (even if it belongs to a weed plant). Every such
pixel (xi , yi ) forms a straight line in the Hough space
(Shapiro and Haralick, 1992, 1993). The recognition of
the row of crops among the weeds is achieved as a result
of the fact that weeds are uniformly distributed in the
field, whereas all the crops grow exactly in a row, thus
leading to a peak in the Hough space, as shown in Fig. 5.

The novelty of this algorithm is that we model a plant
row with a rectangular box instead of a line. The width
of the box is equal to the average width of the plants and
the length of the box is “unlimited” as it fills the whole
image. The rectangular box can be described by a set of
parallel adjacent lines. These appear in the image as a
set of lines that intersect in one virtual point outside the
image, as shown Fig. 6, due to perspective geometry.

The number of lines is the width of the box divided
by the thickness of the line, which is determined by
the pixel size of the image. In our Hough space this
means that, for one value of α, the rectangular box cor-
responds to a number of adjacent s-cells. By summing
up the contributions of the adjacent s-cells we obtain
the support for a rectangular box, i.e., for the row of
plants. The best estimate of s and α is found by search-
ing for the maximum of the sum of adjacent s-cells in
our Hough space. Adaptation to different size plants
can easily be made by reducing or increasing the num-
ber of adjacent s-cells.

Figure 5 shows an example of the Hough space and
the corresponding distribution of s for the correct value
of α. In this example the sum of three adjacent s-cells
is calculated to find the most likely values of s and α.
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Figure 6. Rectangular box corresponds to a certain number of adjacent s-cells.

If more than one row is used, each row then has its
own corresponding Hough space. Information from the
different rows can be fused together by calculating the
average of s and α derived from the individual Hough
spaces. Another possibility is to sum up the contribu-
tions from all Hough spaces for each cell (s, α), thus
forming a common Hough space, and extract the most
likely value of s and α from this one. The resolution of
the Hough space, i.e., the size of the cell (s, α), must
be chosen carefully, where the resolution of the camera
plays a major role. The size of s and α is chosen such
that this corresponds to at least one pixel difference. In
this implementation the resolution of s was set to 1 cm
and of the heading angle, α, to 0.2 degrees.

3.1. Performance of the System

A number of real images were used to evaluate the row-
recognition system (Åstrand and Baerveldt, 1999a).
Three sets of images of sugar beet plants at three differ-
ent stages of growth were included. One set of images
from a rape field was also used. A sub-set of 70 spatially
distributed images was chosen from each set of images.
For all images, the real position of the camera relative
to the rows was estimated by a human observer. The
result of this test set indicated that the row-recognition
system shows good performance ranging from a 0.6
cm standard deviation of error to 1.2 cm, depending on

plant size. Moreover, it is shown that the accuracy is sig-
nificantly improved by using two rows instead of one.
The row-recognition system was implemented on an
inter-row cultivator, see Fig. 7 (Åstrand and Baerveldt,
1999b). The system consists of a tractor that the farmer
drives along the rows where the cultivator is mounted
at the rear of the tractor. A steering unit based on a very
thin steering wheel that cuts through the soil is used to
control the position of the cultivator on the basis of the
input of the row-recognition system. Extensive field
tests have shown that the system is sufficiently accu-
rate and fast to control the cultivator in a closed-loop
fashion with a standard deviation of the position be-
tween 2.0 and 2.4 cm. The vision system is also able to
detect exceptional situations by itself, for example the
occurrence of the end of a row (Åstrand and Baerveldt,
2000).

3.2. Implementation on the Robot

The robot should be able to follow a row of plants
guided by the row-following vision system. A number
of tests were done outdoors and indoors to evaluate the
row-recognition system. For the indoor tests a num-
ber of artificial plants were placed in a corridor. The
camera for the row-recognition system was mounted
at the front of the robot, looking at two rows simul-
taneously. At the weeding position, at the rear of the
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Figure 7. Field test of the row-recognition system with a tractor and a row-cultivator removing weed between the rows.

robot, see Fig. 2, a second camera was mounted to mea-
sure the actual position offset to the row of the robot.
The robot drove at a speed of 0.2 m/s during the test.
The error of the lateral offset measured by the vision
system was ±1 cm and the error measured with the
downward-looking camera at the weeding tool posi-
tion was ±0.5 cm, as illustrated in Fig. 8. The length
of the corridor was limited, which is why robot could
not maintain ±0.5 cm at the end of the test.

The system was also tested outdoors on about 80
meters of a rape field. The typical offset error was
about ±2 cm during this test as measured by the row-
recognition vision system. Thus, at the tool position
half of this value can be expected according to the
results obtained indoors, which is sufficient for our
application.

4. Recognition of Individual Plants

The position of each sugar beet plant must be deter-
mined for intra-row weeding. This means that plants
have to be classified into two classes, i.e., sugar beet or
weed. The approach is to recognize sugar beet plants
among weeds, where the vision system analyzes one
plant at a time and decides whether this plant is a sugar
beet plant or weed. A number of color images were
collected from different fields: a total of 214 sugar beet

plants and 373 weeds. The pictures were taken with
a normal color photo camera and later digitised. For
analysis of the object in the image it is essential to dis-
tinguish between the object of interest, here plants, and
the background, here soil. We use histogram threshold-
ing to segment the image. In our case this means that
we use the gray-level distribution on the normalized
green component. The proper threshold was found by
using Otsu’s method (Otsu, 1979). To get rid of noise
in the image we performed an opening/closing oper-
ation followed by a flood-fill operation (Shapiro and
Haralick, 1992, 1993). An example of a sugar beet and
weed with corresponding threshold images is given in
Fig. 9. A number of features of the objects were de-
rived from the segmented image. A total of 19 fea-
tures were selected: six color features (standard devi-
ation and mean value for the three normalized color
components), seven shape features (area, perimeter,
compactness, elongation, solidity, form factor and con-
vexity) and six moment-based features. Please refer to
Table A1 in the appendix for a complete description of
all features. These features were then used to classify
sugar beets and weeds. We use a k-nearest neighbor
classifier and the Euclidean distance to calculate the
nearest neighbor. As the different features have typi-
cal values which differ significantly, a pre-processing
step is necessary to rescale the feature values. We used a
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Figure 8. Results of indoor test.

simple linear rescaling so that the transformed variables
have zero mean and unit standard deviation. The vali-
dation method used was leave one out (Bishop, 1997).
The results reported below are based on a 5-nearest
neighbor classifier. We also performed the same tests
for 1- and 3-nearest neighbor classifier and obtained
similar results, however with slightly less classification
success-rates (up to minus 3% relative to the results ob-
tained with k = 5).

The use of all 19 features gives a very nice clas-
sification rate of 97%, see Table 1. The results also
show that color features are very important for a good
classification rate. Using all six color features only
gives a classification rate of 92%. From two aspects
the use of color features is positive; they are not sensi-
tive to poor segmentation and are independent of plant
size. The weakness of the color features might be that
plant color may change due to different soil, fertil-
izer and the amount of sun. Excluding all color fea-
tures gives a classification rate of at most 86% (see Ta-
ble 1). The number of features must preferably be low
for real-time implementation reasons. We used forward

selection to find the three best features (Bishop, 1997).
The procedure begins by considering each of the fea-
tures individually and selecting the one which gives the
highest classification rate. At each successive stage of
the algorithm, one additional feature is added to the
set, again chosen on the basis of which of the possi-
ble candidates at that stage give rise to the largest in-
crease in the classification rate. The three best features
found in this way was one color feature, green mean,
and two shape features, compactness (area/perimeter2)
and elongation (area/thickness2). The distribution for
each feature is found in Figs. 10–12. Compactness and
elongation are both size-independent shape features,
which means that they have the advantage to be robust
against variations in plant size. The individual classi-
fication rate for green mean is 91%, compactness 68%
and elongation 67% (see Table 1). With three features, a
classification rate of 96% was obtained with a 5-nearest
neighbor classifier. So only 1% in performance is lost
when the numbers of features is reduced from 19 to
3, while gaining a significant reduction in computa-
tional costs (Bondesson et al., 1998). Table 2 shows
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Figure 9. Above: Example of sugar beet, left, and weed. Below: Corresponding threshold images.

the distribution of nearest neighbors using three fea-
tures. The numbers in Table 2 are all rounded to inte-
gers. 77% of the sugar beets can be classified with the
highest degree of confidence (all neighbors are sugar
beets) while 6% can be classified with the lowest degree
of confidence.

Table 1. Classification success rate with 5-NN classifier using
different sets of features.

Sugar beets
classified Weed classified Classification

Features used as weed as sugar beets on rate (%)

All features 5 13 97

Color excluded 43 39 86

6 color features 23 25 92

Green mean, 6 25 96
compactness,
elongation

Green mean 13 28 91

Compactness 47 94 68

Elongation 46 94 67

Employing only three features has the advantage
that the classifier can be implemented in a look-up
table, resulting in almost no computational costs for
the classification process. This is especially valuable
for a k-nearest neighbor classifier as the time consum-
ing search for the k-nearest neighbors can be avoided.
The success rate of 96% looks satisfying at first sight.
However, the process of extraction of individual plants
out of a scene has been done manually. In a final
system, this should also be done by the vision sys-
tem. This will reduce the success rate by about 10
to 15% according to preliminary results. We are cur-
rently focusing our efforts on improving the recog-
nition algorithms and consider other type of classi-
fiers as well, such as neural networks and Bayesian
classifiers based on Gaussian distributions of the fea-
tures of each class (Bishop, 1997). Moreover, we will
not only concentrate on classifying single plants, but
also on methods based on contextual information, i.e.,
examining a certain environment containing several
plants. Knowing that the plants are sown in rows
and with a certain constant distance among them, it



Vision-Based Perception for Mechanical Weed Control 31

Figure 10. Distribution of green mean feature (black bars is sugar beet and white bars weed).

Figure 11. Distribution of compactness feature (black bars is sugar beet and white bars weed).
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Figure 12. Distribution of elongation feature (black bars is sugar beet and white bars weed).

is possible to classify the plants also based on this
information.

5. Preliminary Results

An important milestone during the development of a
robotic system is the first time that all sub-systems
work together. It is not as critical that all sub-systems
are fully implemented and optimized but, when clos-
ing the loop, it is necessary that the functionality at the
system level can be verified. The robot consists of four
major systems: the robot control system, the row-recog-
nition system, the plant identification system and the
weeding system. All these systems are implemented in
the robot, while the plant identification system is imple-
mented with some simplifications, as described below.

Table 2. Distribution of nearest neighbours for all weeds and sugar
beets (3 features) with 5NN.

Number of neighbours 5 4 3 2 1 0

Sugar beet (%) 77 15 6 1 0 1

Weed (%) 87 6 3 1 2 1

5.1. Plant Identification System

The plant identification system was implemented with
only a few features and a simplified classifier. The fea-
tures that were implemented were mean green level,
area (plant size), and position offset to the row of the
plant in the image. An object that was too far from
the center of the image was rejected, i.e., too far from
the expected plant row. Finally, to be classified as a
sugar beet plant, the mean green level and the area of
the plant should be within a pre-defined range.

The plant recognition system works as follows: All
objects in the image are classified on the basis of the
features mentioned above. If an object is classified as a
sugar beet, the position of the object is calculated. Ev-
ery time a new object classified as a sugar beet enters
the shadowed area, see Fig. 13, a new index and po-
sition are sent to the weed controller. This means that
the weed controller has a table of the last known posi-
tion of the sugar beet plant. Upon receiving the index
and the position of a sugar beet plant, the controller
estimates, on the basis of the actual speed and the pro-
cessing latency, the robot position at which the tool
should be activated, which includes one position for
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Figure 13. The position of the last object classified as sugar beet is sent to the weed controller.

lifting and one position for lowering the weeding tool.
The values are stored in a table and are continuously
compared with the actual robot position as measured
by the encoders.

5.2. Test in a Greenhouse

Due to the short season during which it is possible
to do outdoor field tests, sugar beet crops were sown
in a greenhouse. As a first test there were no weeds
and the sugar beet plants were in their first true-leaf
stage at the time of testing (about 5 cm in diameter).
The distance between the plants was about 17 cm. The
tests showed that all sub-systems worked well and that
the design concept proved to have good potential. The
robot was able to recognize all the sugar beet plants
and the weeding tool worked well.

6. Conclusion and Outlook

This paper has presented a design for an agricultural
mobile robot for mechanical weed control in ecologi-
cally grown fields. The system consists of the following
parts:

• A forward-looking camera system for crop row po-
sition estimation, based on a new row-recognition
algorithm that is able to recognize crop rows at high
weed pressure (12 weeds/crop plant) even when the
crops and weeds are of about the same size.

• A downward-looking camera system for single plant
identification and position estimation.

• A four-wheeled mobile robot based on the Ackerman
steering principle.

• A sensor blackboard software architecture.
• A mechanical weeding tool for in-row weeding.

The row-recognition system has been tested exten-
sively in outdoor field tests and proven to be able to
guide the robot with an accuracy of ±2 cm.

It has been shown that single plant recognition based
on color vision is feasible with three features (green
mean, compactness, elongation) and a 5-nearest neigh-
bor classifier.

The system as a whole has been verified on a de-
sign level, which showed that the sub-systems are able
to work together effectively. A first trial in a green-
house showed that the robot is able to do weed con-
trol in the seedline between the crops in a sugar beet
row.

Future work will concentrate on the development of
robust and high-performance algorithms to distinguish
between plants and weeds. Future work will also in-
clude extensive field tests at different farms and will
also focus on other row-cultivated crops, such as rape
and different kind of vegetables.

Appendix

Definition of formfactor that is a measure of how much
“plant mass” there is in the centre in relation to how
much “plant mass” there is in periphery.

MEANdist = 1

N

∑ √
(xi − xc)2 + (yi − yc)2

there N is the total number of object pixel and xc

and yc is the geometrical center of the objects, defined
below.

xc = 1

N

N−1∑

i=0

xi yc = 1

N

N−1∑

i=0

yi
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VARdist = 1

N

∑
[
√

(xi − xc)2 + (yi − yc)2

− MEANdist]
2

formfactor = MEANdist√
VARdist

Table A1. List of features.

Number Name Description

1 Green mean The mean value, over the hole plant,
of the normalized green color, g =
G/(R + G + B).

2 Green std The standard deviation, over the hole
plant, of the normalized green color.

3 Red mean The mean value, over the hole plant,
of the normalized red color, r = R/

(R + G + B).

4 Red std The standard deviation, over the hole
plant, of the normalized red color.

5 Blue mean The mean value, over the hole plant,
of the normalized blue color, b = B/

(R + G + B).

6 Blue std The standard deviation, over the hole
plant, of the normalized blue color.

7 Area Area is defined as the number of pixels
belonging to the plant.

8 Perimeter Perimeter is defined as the number of
pixels of the plant boundary.

9 Compactness area/perimeter2

10 Elongation area/thickness2, there thickness is
defined as the number of shrinking
steps of an object until only one pixel
is left in the image.

11 Solidity area/(area of convex hull), there convex
hull is described as the area formed
if a rubber band would be tighten
around the object.

12 Formfactor See definition above in this appendix.

13 Convexity perimeter/(perimeter of convex hull).

14

15

16

17

18

19

Moment1

Moment2

Moment3

Moment4

Moment5

Moment6

These are functions of moments,
which are invariant to geometric
transformations such as translation,
scaling and rotation. Defined in Jain
(1989).
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