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ABSTRACT:  
A brief introduction to fuzzy set theory and its
application to control systems is provided.  Fuzzy
sets do not have sharp boundaries and are therefore
able to represent linguistic terms which may be
considered "gray" or vague.  Aspects of fuzzy set
theory and fuzzy logic are highlighted in order to
illustrate distinct advantages, as contrasted to
classical sets and logic, for use in control systems.
Using a mobile robot navigation problem as an
example, the synthesis of a fuzzy control system is
examined..
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1. INTRODUCTION

"The world is not black and white but only shades of
gray."  In 1965, Zadeh [1] wrote a seminal paper in
which he introduced fuzzy sets, sets with unsharp
boundaries.  These sets are considered gray areas
rather than black and white in contrast to classical
sets which form the basis of binary or Boolean logic.
Fuzzy set theory and fuzzy logic are convenient tools
for handling uncertain, imprecise, or unmodeled data
in intelligent decision-making systems.  It has also
found many applications in the areas of information
sciences and control systems.

In this paper, fundamental concepts of fuzzy sets
and logic are briefly presented.  Its utility for
synthesis of control systems is discussed in the
context of an application to mobile robot motion
control.  In mobile robotics, a fuzzy logic based
control system has the advantage that it allows the
intuitive nature of collision-free navigation to be
easily modeled using linguistic terminology.  Due to
the relative computational simplicity of fuzzy rule-
based systems, intelligent decisions can be made in
real-time, thus allowing for uninterrupted robot
motion.  Moreover, accurate (expensive) sensors and
detailed models of the environment are not absolutely
necessary for autonomous navigation [2].
                                                
.  B.S. degree in electrical engineering, University of
New Mexico. Currently pursuing M.S. degree, electrical
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2. FUZZY   SET THEORY

In classical set theory a set, C , is comprised of
elements, x ∈U, whose membership in C is described
by the characteristic, or membership function

µC x U( ) : { , }→ 0 1                        (1)

where U is the universe of discourse, a collection of
elements that can be continuous or discrete. The
membership function µC(x) implies that the element x
either belongs to the set (µC(x) = 1) or it does not
(µC(x) = 0).  In fuzzy set theory a fuzzy set, F̃ , is
described by the membership function

µ ˜ ( ) : [ , ]
F

x U → 0 1                        (2)

where elements, x ∈U, have degrees of membership in
F̃  with any value between 0 and 1 inclusive.  Note
that a fuzzy membership function is a so-called
possibility function and not a probability function.  A
membership value of zero corresponds to the case
where the element is definitely not a member of the
fuzzy set. A membership value of one corresponds to
elements with full membership in the fuzzy set.
Membership values in the open interval (0, 1)
correspond to partial membership and indicate a
measure of uncertainty or imprecision associated with
the element.

A comparative example of a crisp set and a fuzzy
set can be illustrated by using the linguistic term
ÔfarÕ in reference to relative distance between objects.
The term ÔfarÕ can take on different meanings to
different individuals, and in different contexts.  For
illustrative purposes, let ÔfarÕ be 2 meters
(approximately 2 meters in the fuzzy set case).  A
graphical representation of a crisp set and a fuzzy set
for ÔfarÕ is shown in Figure 1.

Membership functions can be defined as functions
which take on a variety of possible shapes determined
at the discretion of the fuzzy system designer.
Commonly used function shapes (fuzzy logic
terminology given in parentheses) include triangular
(Λ), trapezoidal (Π), delta (singleton), positively
sloped ramp (Γ), and negatively sloped ramp (L).
These are shown in Figure 2.  The ramp functions are
sometimes referred to as right shoulders (Γ) and left
shoulders (L).
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Figure 1  Graphical  representations  of ‘far’.
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Figure 2  Common fuzzy  membership  functions.

Fuzzy sets, like classical crisp sets, are subject to
set operations such as union, intersection, and
complement [1] which are used to express logic
statements or propositions. The union of two fuzzy
sets Ã  and B̃  with membership functions µ ˜ ( )

A
x  and

µ ˜ ( )
B

x  is a fuzzy set C̃ = ˜ ˜A B∪ , whose membership

function is related to those of Ã  and B̃  as follows:

µ µ µ µ˜ ˜ ˜ ˜ ˜( ) ( ) max[ ( ), ( )]
C A B A B

x x x x= =
∪

         (3)

The operator in this equation is referred to as the
max-operator and is represented by the logical term
OR.  The intersection of Ã  and B̃  is a fuzzy set
D̃ = ˜ ˜A B∩   whose membership function is given by:

µ µ µ µ˜ ˜ ˜ ˜ ˜( ) ( ) min[ ( ), ( )]
D A B A B

x x x x= =
∩

         (4)

The operator in this equation is referred to as the
min-operator represented by the logical term AND.
For details on complements and other fuzzy logical
operations see [1] or [3].

Consider the Cartesian product of two universes U
and V defined by

U V u v u U v V× = ∈ ∈{( , ) | ; }

which combines elements of U and V in a set of
ordered pairs.  A fuzzy relation R is a mapping:

R : [ , ]U V× → 0 1
where

 µ µ µ µR ( , ) ( , ) min[ ( ), ( )]˜ ˜ ˜ ˜u v u v u v
A B A B

= =
×

       (5)

The composition of two relations, R(u,v) and S(v,w),
is denoted by   T R S= o .  Its membership value can be
determined by the following expression

µ µ µT R S( , ) max[ ( , ) ( , )]u w u v v w= •            (6)

which is called the max-product composition.
Another common compositional rule of inference is
the max-min composition [3].

Fuzzy relations can be represented linguistically by
natural language statements in the form of fuzzy if-
then rules.  A collection of such rules is referred to as
a rule-base.  Accompanied by suitable membership
functions, the rule-base is a core ingredient of any
fuzzy rule-based expert system.

3. FUZZY LOGIC CONTROL

Fuzzy logic based controllers are expert control
systems that smoothly interpolate between rules.
Rules fire to continuous degrees and the multiple
resultant actions are combined into an interpolated
result.  Processing of uncertain information and
savings of energy using common-sense rules and
natural language statements are the bases for fuzzy
logic control.  As pointed out by Lee [4], fuzzy logic
controllers provide a means of transforming the
linguistic control strategy based on expert knowledge
into an automatic control strategy.

Fuzzy controller rule-bases typically take the
form of a set of if-then rules whose antecedents (ÔifÕ
parts) and consequents (ÔthenÕ parts) are propositions
involving fuzzy membership functions. If X and Y are
input and output universes of discourse of a fuzzy
controller with a rule-base of size n, the usual if-then
rule takes the following form

IF x is Ãi  THEN y is B̃i



where x and y represent input and output fuzzy
linguistic variables, respectively, and Ãi ∈ X and

B̃i ∈ Y (1 ≤  i ≤  n) are fuzzy sets representing
linguistic values of x and y.  Typically in robotics
applications, the input x refers to sensory data and y
to actuator control signals.  In general, the rule
antecedent consisting of the proposition "x is Ãi "
could be replaced by a conjunction of similar
propositions; the same holds for the rule consequent
"y is B̃i ".  We can formally define a fuzzy system
behavior (rule-base) as a function (B), from sensor
space (S) to actuator space (A), i.e. B S A:  → , where
the universes of discourse for S and A are such that

S ⊂ ℜ
n

 and A ⊂ ℜ
n

.  Embodied in this function is
a fuzzy relation between fuzzy sets defined over S and
fuzzy sets over A.  This fuzzy relation is the actual
rule-base of the fuzzy control system.

3.1  Mobile robot application

Mobile robots are typically equipped with several
sensor modalities which may include range sensors,
tactile/contact sensors, encoders, and vision systems.
Given such sensor modalities, the usual procedure for
fuzzy control synthesis consists of first defining
linguistic terminology for the inputs and outputs,
partitioning the sensor space and actuator space using
appropriate fuzzy sets (membership functions), and
formulating fuzzy rules that satisfactorily govern the
desired response of the robot in all practical
situations.

The subject of discussion in this paper is a mobile
robot modeled after LOBOT, a custom-built robot
driven by a 2-wheel differential configuration with
two supporting casters.  It is octagonal in shape,
stands about 75 cm tall and measures about 60 cm in
width.  Range sensing is achieved using a layout of
16 ultrasonic transducers (arranged primarily on the
front, sides, and forward-facing obliques); optical
encoders on each driven wheel provide position
information.  Assuming a constant linear speed of
5cm/sec, we synthesize a fuzzy controller that uses
four inputs and one output. The inputs are relative
obstacle ranges to the front, left and right, and the
angle in the direction of a designated goal location.
Their respective linguistic terms are: FS (front
sensor), LS (left sensor), RS (right sensor), and DIR.
The individual sensor inputs are derived from pre-
processed data from multiple sensors on the
corresponding sides of the robot.   The output is a
direction in which to turn in order to satisfy avoiding
obstacles and navigating to the goal.  Its linguistic
term is TURN-ANGLE.  The range input space was
partitioned based on a relevant maximum sensor
range measurement of  4m, i.e. the universe of

discourse for range spans the interval [0m, 4m]. The
goal direction input covers a universe spanning ±π
radians.  The actuator control, or steering direction,
covers ±π/2 radians. The corresponding fuzzy sets are
shown in Figure 3 where the labels of Figure 3b are
listed in Table I.
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Figure 3.  Membership functions

Table I.
Input Front sensor Goal Direction

I Very close Right
II Close Zero
III Far Left
A 0.0 -π
B 0.2 -π/2
C 0.3 0
D 0.75 π/2
E 1.0 π

Units meters radians

Based on the membership functions selected, a
rule-base was designed to effect  motion behavior



suitable for collision-free navigation to designated
goal locations.  A total of 36 rules were formulated.
An example of one of these is:
IF: LS is Close and RS is Close and FS is Far

and DIR is Zero
THEN: TURN-ANGLE is Straight.

4. SIMULATION

A simulation is described here to demonstrate the
behavior of the fuzzy controller described above.  It is
a two-dimensional mock simulation of a Mars rover
navigation task.  The scenario is as follows.  A
planetary rover is deployed at a scientifically
interesting landing site near Ares Tiu on Mars.
Human operators on Earth command the rover to
navigate to a designated location where experiments
are to be performed.  The roverÕs immediate task is
to autonomously navigate to the goal under sensor-
based control, i.e. no internal map of the environment
is used.
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Figure 4.  Fuzzy controlled sensor-based navigation.

The simulation result is illustrated in Figure 4
which shows a 225m2 region cluttered with an
arbitrary distribution of obstacles.  The simulated
mobile robot (rover) is displayed as an octagon with
a radial line segment indicating the robotÕs heading.
ItÕs initial location is (x y θ) = (2.0m 2.0m π rad.)
and the goal is located at (X, Y) = (14.0m, 12.0m).

Using a fuzzy controller as developed above, the
rover was able to successfully negotiate a smooth
path to the goal location.  In the figure, the robot
icon is displayed every 10 seconds as it traverses the
path.

5.  SUMMARY

A brief introduction to fuzzy sets and logic was given
with emphasis on its application to intelligent
control of mobile robots.  Insights into the synthesis
procedure of such fuzzy control systems is provided
via an exercise in developing a fuzzy controller for
autonomous navigation.  The performance of the
resulting control system was demonstrated using a
simulated navigation task described in the context of
a simplified two-dimensional Mars rover mission
scenario.

At the ACE Center, research  is ongoing in the area
of intelligent control of autonomous mobile robots.
Focal areas include hierarchical fuzzy control, genetic
programming applications to intelligent controller
design, and embedded fuzzy control at the
microprocessor and integrated circuit level.
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