

Access™ 2007
VBA Bible

For Data-Centric Microsoft
®

Office Applications

Helen Feddema

01_047026 ffirs.qxp 4/2/07 9:39 PM Page iii

01_047026 ffirs.qxp 4/2/07 9:39 PM Page ii

Access™ 2007 VBA Bible

01_047026 ffirs.qxp 4/2/07 9:39 PM Page i

01_047026 ffirs.qxp 4/2/07 9:39 PM Page ii

Access™ 2007
VBA Bible

For Data-Centric Microsoft
®

Office Applications

Helen Feddema

01_047026 ffirs.qxp 4/2/07 9:39 PM Page iii

Access™ 2007 VBA Bible: For Data-Centric Microsoft® Office Applications

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-04702-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data:

Feddema, Helen Bell.
Access 2007 VBA Bible: For Data-Centric Microsoft Office Applications / Helen Feddema.

p. cm.
Includes index.
ISBN 978-0-470-04702-6 (paper/website)
1. Microsoft Access. 2. Database management. 3. Microsoft Visual Basic for applications. I. Title.
QA76.9.D3F435 2007
005.75’65--dc22

2007007061

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Microsoft and Access are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_047026 ffirs.qxp 4/2/07 9:39 PM Page iv

www.wiley.com

About the Author
Helen Feddema is an independent developer specializing in Microsoft Office applications, concen-
trating on Access, Word, and (since 1996) Outlook. She has written or co-authored many books
on Access and other Office applications, including Inside Microsoft Access (New Riders, 1992),
Power Forms for Microsoft Access and Power Reports for Microsoft Access (Pinnacle, 1994), Access How-
Tos (Waite Group Press, 1995), MCSD: Access 95 Study Guide (Sybex, 1998), DAO Object Model: The
Definitive Guide (O’Reilly, January 2000), and Access 2002 Inside-Out (Microsoft Press, 2001), which
was judged #1 in the Desktop and Office Applications book category at the Waterside 2004 confer-
ence. Her most recent book is Expert One-on-One Microsoft Access Application Development
(Wiley/Wrox, 2003).

She has also contributed chapters to a number of multi-author Office books, including Special
Edition: Using Microsoft Outlook 97 (Que, 1997), Office Annoyances (O’Reilly, 1997), Outlook
Annoyances (O’Reilly, 1998), Special Edition: Using Microsoft Project 98 (Que, 1997), Teach Yourself
Project (Sams, 1998), and Special Edition: Outlook 2000 (Que, 2000). Helen has been a regular con-
tributor to Pinnacle’s Smart Access and Office Developer journals, Informant’s Microsoft Office and
VBA Programming (now Office Solutions), and Woody’s Underground Office newsletter, and she is cur-
rently the editor of the Access Watch ezine (formerly Woody’s Access Watch), for which she writes the
Access Archon column.

01_047026 ffirs.qxp 4/2/07 9:39 PM Page v

Credits
Executive Editor
Bob Elliott

Development Editor
Kelly Talbot

Technical Editor
Mary Hardy

Production Editor
Eric Charbonneau

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Adrienne Martinez

Graphics and Production Specialists
Sean Decker
Jennifer Mayberry
Heather Pope
Amanda Spagnuolo

Quality Control Technicians
Melanie Hoffman
Robert Springer
Brian Walls

Proofreading and Indexing
Aptara

Anniversary Logo Design
Richard Pacifico

To Kerry and Jean King, good neighbors and good friends

01_047026 ffirs.qxp 4/2/07 9:39 PM Page vi

About the Author . v

Acknowledgments . xiii

Introduction . xv

Part I: The Office Components and What They Do Best 1

Chapter 1: Storing and Displaying Data in Access 3
A Brief History of Office Data Exchange ..3
Storing Data in Access ..4
Displaying Data in Access Forms and Reports ..5

Creating Access Form Letters ..8
Creating Worksheet-type Reports in Access ..11

Plain Datasheet Reports ..11
PivotTables ..19
PivotCharts ..22

Summary ..25

Chapter 2: Creating Word Documents from Access 27
Filling Word Documents with Access Data Using the TypeText Method27
Using Word Templates for Creating Formatted Word Documents..30

Bookmarks ..31
Document Properties ..39

Form Field Documents..45
Summary ..48

Chapter 3: Analyzing Data with Excel . 49
Exporting Access Data to an Unformatted Worksheet..50
Using Excel Templates to Create Formatted Worksheets Filled with Access Data52
Formatting Excel Worksheets in VBA Code ..62
Summary ..69

Chapter 4: Organizing and Communicating with Outlook 71
Exporting Appointments and Tasks to Outlook ..72
Exporting Journal Information to Outlook ..79
Creating Emails from an Access Table..81
Summary ..85

vii

02_047026 ftoc.qxp 4/2/07 9:40 PM Page vii

Part II: Writing VBA Code to Exchange Data between
Office Components 87

Chapter 5: Working with Access Data . 89
Working with Older Format Databases in Access 2007 ..91

Disambiguating References to Object Model Components ..91
The DAO Object Model (Old and New) ..96

New Objects in the Access 2007 DAO Object Model97
Hidden Objects in the Access 2007 DAO Object Model98
Databases ..99
Recordsets..99
QueryDefs ..104
TableDefs and Fields ..106

The ADO Object Model ..110
Connection ..110
Command..113
Recordset ..116
Record ..129
Stream ..129

Converting DAO Code to ADO Code ..129
Summary ..131

Chapter 6: Working with Word Documents and Templates 133
Built-in Word Export in Office 2007 ..135
Exporting Access Data to Word Using Automation Code ..138

The Word Object Model ..139
Creating a New, Blank Word Document ..140
Creating a Word Document Based on a Template ..141
Using a Query to Concatenate Data for Export ..143

Choosing a Method for Merging Access Data to Word ..145
Working with Word Document Properties ..146
Word Bookmarks ..165
The TypeText Method ..170
Word Mail Merge ..175

Summary ..182

Chapter 7: Working with Excel Worksheets. 183
Simply Exporting Access Data to Excel..184
The Excel Object Model ..187
Minimally Formatted Worksheets ..191
Tabular Worksheets Formatted from Code ..195
Timesheets ..202
Summary ..218

viii

Contents

02_047026 ftoc.qxp 4/2/07 9:40 PM Page viii

Chapter 8: Working with Outlook Items 219
Exporting Access Data to Outlook Items ..220

Using the Collect Data Group ..220
Using the Import Group to Import or Link to Outlook Data....................................221
Using Sample Databases and Forms ..230

The Outlook Object Model ..234
Explorer, Inspector, and other Outlook Objects ..234
Syntax for Referencing Outlook Objects ..235
Referencing Outlook Items in VBA Code ..240

Working with Outlook Appointments ..241
Working with Outlook Tasks ..247
Working with Outlook Contacts..254
Summary ..262

Chapter 9: Working with Files and Folders 263
Working with Windows Explorer Folders ..264

The Office FileDialog Object..264
The FileSystemObject..271

Backing up Your Database ..277
Working with Text Files ..282

Writing Data to Text Files ..282
ADO ..291
FileSystemObject ..292
VB ..292

Reading Data from Text Files ..292
ADO ..296
FSO ..296
VB ..296

Working with Attachment Fields ..297
Loading Files into Attachment Fields ..299
Saving Attachments to Files ..302

Summary ..304

Chapter 10: Working with External Data 305
Working with Text Files Using the TransferText Method..306

Creating an Import or Export Specification..306
Importing and Exporting Text File Data in VBA Code..312

Importing Text Data ..312
Exporting Text Data ..320

Working with Legacy Database and Spreadsheet Files ..324
Importing Database Files ..324
Importing Spreadsheet Files ..328
Exporting Database and Spreadsheet Files ..336

ix

Contents

02_047026 ftoc.qxp 4/2/07 9:40 PM Page ix

Working with XML and HTML Files ..338
Importing HTML and XML Files ..338
Exporting HTML and XML Files..341

Emailing Exported Text Files ..348
Summary ..350

Chapter 11: Synchronizing Access and Outlook Contacts 351
Creating a Denormalized Table from a Set of Linked Tables ..352
Comparing Outlook and Access Contacts..359

Re-creating the Flat-file Tables of Access and Outlook Data361
Copying Contact Data from Access to Outlook (or Vice Versa)374

Working with Attachments..391
Summary ..396

Chapter 12: Going Beyond the Basics . 397
Creating Fancy Word Shipping Labels ..397
Creating Excel PivotCharts from Access Queries ..415
Emailing Shipping and Reordering Reports ..426
Summary ..432

Part III: Adding More Functionality to Office 427

Chapter 13: Creating COM Add-ins with Visual Basic 6 435
Creating a COM Add-in Using Visual Basic 6.0 ..436

Using the COM Add-in Template ..436
Creating the LNC Control Renaming COM Add-in..440

The SharedCode Module ..440
The AccessDesigner Module ..442
Creating the DLL ..463

Installing a COM Add-in ..463
Troubleshooting a COM Add-in ..466

Using a COM Add-in ..467
Comparing COM Add-ins with Access Add-ins ..469
Summary ..469

Chapter 14: Creating Access Add-ins . 471
The Purpose of Access Add-ins..472
Add-in Types ..472
Creating a Library Database ..473

Menu Add-ins ..478
Wizards ..479
Property Builders ..480

Things You Need to Know When Writing Add-ins ..481
Special Requirements for Add-in Code ..481
Tips on Add-in Construction ..482

x

Contents

02_047026 ftoc.qxp 4/2/07 9:40 PM Page x

The Extras Add-in Code ..483
Extras Options ..483
basExtras Module ..486
Back up Database ..489
Back up Back End Database ..491
List Query Fields ..495
List Table Fields ..497
Other Procedures ..499
Finalizing the Add-in ..502

Troubleshooting Add-ins ..503
Interpreting Add-in Error Messages ..506

Installing an Add-in ..507
Using the Extras 2007 Add-in ..510

Extras Options ..511
Back up Database ..512
Back up Database Back End ..512
List Query Fields ..513
List Table Fields ..514

Summary ..514

Chapter 15: Customizing the Ribbon with XML in Access Databases
and Add-ins . 515

Useful Tools for Creating and Editing XML Code ..517
XML Notepad 2007 ..517
VB 2005 XML Editor ..518
Office 2007 Custom UI Editor ..518

Customizing the Ribbon in an Access Database ..519
Creating the XML Code ..522

Adding a New Tab, Group, and Controls to the Ribbon527
Removing a Tab or Group from the Ribbon ..528

VBA Code..542
Form Ribbons..547

Customizing the Ribbon with an Access Add-in ..549
Summary ..558

Chapter 16: Customizing the Access Ribbon with a Visual Studio 2005
Shared Add-in. 559

Preparing to Write a Visual Studio Add-in ..559
Adding .NET Support to Office ..559

Modifying the Connect Class Module Code ..573
Adding Functionality to the Shared Add-in ..575
Debugging the Add-in ..582
Building and Installing the Add-in ..583
Using the Add-in ..588

Summary ..589

xi

Contents

02_047026 ftoc.qxp 4/2/07 9:40 PM Page xi

Chapter 17: Creating Standalone Scripts with Windows Script Host 591
Tools for Working with Windows Script Host Scripts ..591

The Microsoft Script Editor ..592
The VBScript Help File ..597

Differences between VBA and VBScript Code ..599
Useful Scripts ..603

Setup Scripts ..603
Office Scripts ..611
Miscellaneous Scripts ..616

Scheduling a Backup Script with the Windows Vista Task Scheduler619
Summary ..626

Chapter 18: Working with SQL Server Data 627
Getting SQL Server 2005 ..628
Preparing an Access Database for Upsizing to SQL Server ..629
Configuring SQL Server 2005 for Data Access ..631

Getting through the Firewall..640
Windows XP..640
Windows Vista ..643

Other Security Roadblocks ..647
Using the Upsizing Wizard..648

Converting Access Tables to SQL Server Tables ..649
Creating a Client/Server Application..657

Linking to Data in SQL Server Tables ..662
The SQL Server Migration Assistant for Access..671
Summary ..672

Index . 673

xii

Contents

02_047026 ftoc.qxp 4/2/07 9:40 PM Page xii

Many thanks to my technical editor, Mary Hardy, for catching errors and making many
valuable suggestions that improved the quality of the book (and sample databases), and
to editors Kelly Talbot and Brian Hermann for their suggestions and support.

xiii

03_047026 flast.qxp 4/2/07 9:40 PM Page xiii

03_047026 flast.qxp 4/2/07 9:40 PM Page xiv

Welcome to the Access 2007 VBA Bible. Like all books in the Bible series, you can expect
to find both hands-on tutorials and real-world practical application information, as
well as reference and background information that provides a context for what you are

learning. This book is a fairly comprehensive resource on writing VBA code to exchange data
among the main Office applications (Access, Word, Excel, and Outlook), using Access as the cen-
tral application for storing data, and using the other applications for producing attractively format-
ted documents of various types. By the time you have completed the Access 2007 VBA Bible, you
will be well-prepared to write VBA Automation code that uses your Access data to produce Word
letters, mailing labels and other documents (without the overhead of mail merge), to create Excel
worksheets and PivotCharts, and to create Outlook appointments, mail messages, contacts, and
journal items, with or without attachments. Additionally, you will be able to synchronize contact
data (both ways) between Access and Outlook.

Who Should Read This Book
The book is written for the Access/Office developer or power user who is familiar with working
with Office applications (particularly Access) in the interface, and has at least a basic familiarity with
writing VBA code, but needs more information on how to write Automation code to work with Word,
Excel, and Outlook objects, so as to be able to use each Office application for creating the documents
that are its specialty, while storing most of the data in Access databases.

How This Book Is Organized
The book starts out in Part I with a description of the Office components (Access, Word, Excel, and
Outlook) and what they do best, as a guide to selecting the appropriate Office component for a
specific task.

In Part II, more specific coverage is provided for each Office component, with sample databases
that illustrate working with Access data, Word documents and templates, Excel worksheets, and
Outlook items. This part also includes a chapter on working with files and folders using the
FileSystemObject, and another on synchronizing Access contacts with Outlook contacts. This
allows you to maintain your contacts in a set of properly normalized linked tables in Access, while
also having the ability to reference and use Outlook contacts, without having to do dual entry or
manually update contact information. Finally, the last chapter in the part deals with several
advanced topics, working with Word and Excel objects.

xv

03_047026 flast.qxp 4/2/07 9:40 PM Page xv

Part III covers topics that add more functionality to Office, including the creation of COM add-ins
with VB 6, Access add-ins, and Visual Studio 2005 Shared add-ins. It also covers customizing the
Office 2007 Ribbon with XML in Access databases and with add-ins of various types. Additionally,
there is a chapter on creating standalone scripts with Windows Script Host, and another chapter
on using Access as a front end for working with SQL Server data.

Conventions and Features
There are many different organizational and typographical features throughout this book designed
to help you get the most of the information.

Whenever the authors want to bring something important to your attention, the information will
appear in a Tip, Note, or Caution.

This information is important and is set off in a separate paragraph with a special icon.
Cautions provide information about things to watch out for, whether simply inconve-

nient or potentially hazardous to your data or systems.

Tips generally are used to provide information that can make your work easier—special
shortcuts or methods for doing something easier than the norm.

Notes provide additional, ancillary information that is helpful, but somewhat outside of
the current presentation of information.

New features introduce components or functionality that are new or improved in the
software compared to earlier versions.

What’s on the Companion Web Site
On the companion web site you will find sample code. Each chapter has its own subfolder on the
web site. You’ll in subfolders find all the sample databases and other files (such as Word and Excel
templates, or Windows Script Host scripts) that were discussed in each chapter.

Minimum Requirements
To run the sample code in this book, you need a computer capable of running at least Windows
XP, and of course you need Office 2007. Because Office 2007 runs fine on Windows XP, you don’t
need Windows Vista, but Office 2007 works even better on Vista. If you intend to run Vista, you
need a Vista-ready computer. If you buy a new computer, look for the “Windows Vista Capable”
sticker; however, an older computer may support Vista even if it doesn’t have the sticker (though
probably not the Aero Glass interface, which requires a high-powered video card).

NEW FEATURENEW FEATURE

NOTENOTE

TIPTIP

CAUTION CAUTION

xvi

Introduction

03_047026 flast.qxp 4/2/07 9:40 PM Page xvi

Where to Go from Here
You should take away from this book the ability to select the Office component that does the best
job for the task at hand. You should also take away how to write VBA Automation code to transfer
data from Access to documents created with other Office components and format the documents as
needed; this will let you create procedures that can be run from form events or toolbar buttons to
automate any Office-related tasks you need to do on a regular basis.

My web site (www.helenfeddema.com) has pages with code samples and Access Archon articles,
many of which deal with exchanging various types of data among Office applications. Check them
out—you may find that the solution you are looking for is already there, ready to download and use.

xvii

Introduction

03_047026 flast.qxp 4/2/07 9:40 PM Page xvii

03_047026 flast.qxp 4/2/07 9:40 PM Page xviii

The Office
Components and

What They Do Best
IN THIS PART

Chapter 1
Storing and Displaying Data in
Access

Chapter 2
Creating Word Documents from
Access

Chapter 3
Analyzing Data with Excel

Chapter 4
Organizing and Communicating
with Outlook

04_047026 pt01.qxp 4/2/07 9:40 PM Page 1

04_047026 pt01.qxp 4/2/07 9:40 PM Page 2

Since its earliest days — about 14 years ago — Access has been a rela-
tional database program, storing data in tables and using its own
queries, forms, and reports to sort, filter, display, and print data. With

successive Office versions, moving data among Office components (espe-
cially Word, Excel, and Outlook) has become so much easier that it is now
often more efficient to use another Office component rather than an Access
report for a task such as printing letters or analyzing numeric data.

Additionally, using other Office components to display or print data from
Access makes the data stored in Access tables more widely accessible. Many
Office users have an edition of Office that doesn’t include Access — but they
all have Word and Excel, and many also have Outlook, so they can easily
work with Word documents, Outlook messages or appointments, and Excel
worksheets, filled with data from Access tables.

Whether you plan to present your data as an Access report, PivotChart, or
PivotTable; or a Word document or Excel worksheet, the data is stored in
Access tables, and entered and edited in Access forms.

A Brief History of Office
Data Exchange
As the Windows operating system has progressed from Windows 3.0 to
Windows XP and Vista, data transfer techniques have improved, from simple
cut and paste using the Windows 3.0 clipboard, to Dynamic Data Exchange
(DDE) and Open Database Connectivity (ODBC), to Automation (originally

3

IN THIS CHAPTER
A brief history of Office data
exchange

Storing data in Access

Displaying Access data in forms
and reports

Working with rich text in
Memo fields

New report interactivity

Using Access as a control
center for working with
Office documents

Storing and Displaying
Data in Access

05_047026 ch01.qxp 4/2/07 9:41 PM Page 3

called Object Linking and Embedding [OLE], then OLE Automation) and Extensible Markup
Language (XML).

In early Windows and Office versions, DDE and ODBC were difficult to use, cranky and unreliable
in operation, and ODBC in particular often required elaborate setup. I know — I used both DDE
and ODBC, when they were the only connectivity tools available. But I gladly dropped them when
OLE became available in Windows 95/Office 95, because it offered a much simpler way to connect
Office applications, though at first only in a limited manner.

Before Office 97, there was a distinction between Office components that were OLE servers, which
could be manipulated by code running from other applications, and OLE clients, which could
work with objects in OLE server applications’ object models. Back in the days of Access 1.0 or
even 2.0, Access developers had few tools available for connecting to other Office applications
such as Word or Excel. Access, for example, was only a client, whereas Word was only a server.

In Office 95 AccessBasic was upgraded to standard Office VBA, and Access became an OLE server
(previously it was only an OLE client). By Office 2000, all the major Office applications (Access,
Word, Excel, Outlook, and PowerPoint) had been upgraded to support Automation both as clients
and servers, so the OLE server/client distinction is no longer significant.

You can write Automation code in any major Office application to connect to any other Office
application’s data and functionality (and some third-party applications as well).

Storing Data in Access
Access was designed from the start to store data, so (if you have a choice — which is not always the
case) it is the place where you should store your data. You may need to use that data to produce
Word letters, SharePoint lists, Excel worksheets, or Outlook mail messages, but the data itself
should be kept in Access tables, unless there is a very strong reason to store it elsewhere.

One valid exception is storing data in SQL Server back-end databases, using Access as
the front end. SQL Server is usually the choice for huge corporate databases, not small-

to medium-sized databases used by individuals or small companies, where Access can easily handle
the number of records. See Chapter 18 for more information on this option.

Data entry and editing, too, should be done in Access, for the most part, because you can create
Access forms that offer an attractive interface for entering and editing data. You can write VBA code
that runs from form and control events for purposes of error handling, and create functions that
automate repetitive data-processing operations.

In my earlier book, Expert One-on-One Microsoft Application Development, I discussed creating
Access applications, with details on using queries, forms, reports, and code. I won’t duplicate this
information here, but instead in this chapter I concentrate on new or improved features in Access
2007, which enhance the utility of Access forms and reports.

CROSS-REFCROSS-REF

4

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 4

Displaying Data in Access Forms and
Reports
Sometimes you don’t need to go outside of Access to present your data — if you are designing an
Access application, displaying data in forms and printing it in reports may be all you need.

Over the years, Access forms and reports have been significantly upgraded. In Access
2007, one long-requested feature has finally arrived in a workable form (I recall an

early and unreliable implementation that made a brief appearance in Access 95). Memo fields can
now store and display rich text, using the Text Align property, which takes a value of either Plain Text
or Rich Text. When you select Rich Text for this property, you can apply various fonts, colors, and
other attributes to selected portions of text in a table field or a control bound to that field.

In earlier versions of Office, if you wanted to generate a letter or other document including a block
of text with color, bolding, or other attributes applied to selected words or phrases within the
block, you had to create a Word letter and use Word’s formatting features. In Access 2007, you
can produce Access reports with varied formatting within text blocks, displaying text entered into
Access memo fields in a textbox on a form.

The sample database for this section is RichText.accdb.

To create a field that can store data in Rich Text format (behind the scenes, this is done using
HTML code, but you don’t have to worry about writing the code), start by creating a table field of
the Memo data type, and selecting Rich Text as the Text Format value (see Figure 1.1).

FIGURE 1.1

Creating a Memo field to hold Rich Text data.

NOTENOTE

NEW FEATURENEW FEATURE

5

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 5

If you select a block of text in a Rich Text–enabled Memo field, you will see a floating
toolbar that lets you apply some formatting, including indenting or outdenting, similar

to Word (this works fine; see Figure 1.2). However, if you apply bullets or numbering from this tool-
bar, you will get the bullets or numbers, but the text that runs over one line won’t be indented prop-
erly, as shown in Figure 1.3. For this reason, I recommend against using these features, unless all the
items on your lists are no more than one line in length.

FIGURE 1.2

Indenting text from the floating toolbar in a Rich Text field.

FIGURE 1.3

Incorrect indentation of an item in a numbered list in a Rich Text field.

Create a form bound to the table with the Memo field; you can now enter data into this textbox
control and format it with different fonts, color, bolding, and other attributes, as you would while
working in a Word document. When you place the cursor into a control with Rich Text enabled, a
formatting group on the Form Ribbon is enabled, with a variety of formatting selections, as shown
in Figure 1.4.

Figure 1.5 shows the form with a variety of formatting attributes applied to the text in the textbox.

WARNING WARNING

6

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 6

FIGURE 1.4

Selecting formatting for a portion of text in a Rich Text–enabled textbox on a form.

FIGURE 1.5

A Rich Text–enabled textbox with a variety of formatting applied to portions of its text.

7

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 7

Once you have applied formatting to the text on a form, you can create a report based on the table,
and the formatting will display on the report as well (see Figure 1.6).

FIGURE 1.6

A report showing Rich Text formatting applied in a textbox on a form.

Creating Access Form Letters
A more realistic example of Rich Text formatting would be a form letter report, with the body of
the letter text coming from a Rich Text–enabled field, and the name and address information from
a table of contacts or customers. I created a table called tblLetterText in the sample database, with
a Rich Text–enabled Memo field to hold the letter body text, and an ID and a LetterType text field.
The LetterBody field holds formatted text, as shown in Figure 1.7 (the Rich Text formatting can be
seen directly in the table, though you will find it easier to create and edit the rich text in a textbox
control on a form).

You can copy and paste formatted text from a Word document into a Memo field with
Rich Text enabled (or a textbox bound to such a field), and the formatting will be pre-

served. However, bullets and numbered lists won’t be aligned correctly, so it is best to turn off those
features before copying text to Access.

I also created a one-row table to hold information to use in the database; in this case, it has
two Rich Text–enabled Memo fields for the letter header and signature information. The form
fdlgSelectLetter (bound to the information table, zstblInfo) lets you edit the header and signature
(Figure 1.8) and select a letter type and a contact.

TIPTIP

8

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 8

FIGURE 1.7

A table with formatted letter body text.

FIGURE 1.8

A dialog form for editing header and signature block information and selecting a letter and contact.

9

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 9

Clicking the Create Letter button opens a filtered Access report displaying name and address data
from the selected Contact record, and the letter body from the selected letter type, as depicted in
Figure 1.9.

With Rich Text formatting now supported in Access forms and reports, you may not need to pro-
duce a Word letter to get the look you want in printed documents. However, compared with Word,
Access reports using Rich Text–enabled Memo fields have one significant limitation. In Word, you
can place merge fields or DocProperty fields within a block of text, so that merged data or data
stored in document properties will print at a certain point in the text, with the surrounding text
wrapping as needed, depending on the length of the text in the fields. This is not possible with a
Memo field on an Access report, so if you need to embed merge fields or DocProperty fields within
the letter body text, you still need to create Word documents.

See Chapter 2 for information on creating Word documents of various types filled with
Access data.

FIGURE 1.9

A report with formatted text.

CROSS-REFCROSS-REF

10

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 10

Creating Worksheet-type Reports in Access
If you need to produce a report formatted in familiar worksheet-type rows and columns, you can
do this with an Access report. Access 2007 reports have some new features, letting you sort and fil-
ter interactively — and if you want full interactivity, you can create a PivotTable or PivotChart form.
To demonstrate these features, I used a variation of the Northwind sample database, with objects
renamed according to the Leszynski Naming Convention.

Plain Datasheet Reports
The sample database for this section is Modified Northwind.accdb.

The query qryNorthwindAll links all the tables in the Modified Northwind database. To produce
a plain datasheet report, start by selecting qryNorthwindAll, and selecting Report Wizard in the
Reports group on the Create tab of the Ribbon, as shown in Figure 1.10.

NOTENOTE

11

Storing and Displaying Data in Access 1

Using a Naming Convention

Ifirst realized what a problem it is to work in a database with no naming convention when I took
over a database created by another programmer. The database had a table, a query, a form, a

report, a function, and five or six variables (of different data types) all called Sales (this was only one
of a number of sets of objects with the same name). This meant that when I encountered the word
“Sales” in VBA code, I had no idea whether it was a reference to a table, form, query, function, or
variable, unless the context made it clear. There were numerous errors because of the use of the
same name for different types of objects, because (among other possible sources of errors) you can
set the value of a field with a variable, or with a function — and if several variables and a function
are all called Sales, the code may use the wrong one.

You can also get circular reference errors when a control has the same name as the field to which it
is bound — which is still the case in Access 2007, when you create a form bound to a table using the
Form Wizard. To prevent these reference errors, it is an excellent idea to use a naming convention for
database objects, controls, and variables. Using a naming convention also makes your database self-
documenting (to some extent, at least), and prevents confusion when selecting an object from a
drop-down list.

About 10 years ago, I wrote an Access 97 add-in (LNC Rename.mda) to automate the process of giv-
ing the appropriate tags to database objects and controls on forms and reports, using the Leszynski
Naming Convention (LNC). This add-in was updated for Access 2000, and that version still works in
Access 2007; it is available as Code Sample #10 (for Access 2000 or higher databases) from the
Code Samples page of my web site, www.helenfeddema.com.

05_047026 ch01.qxp 4/2/07 9:41 PM Page 11

FIGURE 1.10

Selecting the Report Wizard to create a report.

Select the fields to include on the report (see Figure 1.11) and click Next.

FIGURE 1.11

Selecting fields for a report.

12

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 12

On the next screen of the wizard (see Figure 1.12), select the top-level grouping you want for the
report (in this case, I accepted the default selection of OrderQuarter, Customer, OrderDate).

FIGURE 1.12

Selecting a major grouping level for a report.

The next screen lets you select sub-groups, if desired; I accepted the default (no further sub-
grouping, as shown in Figure 1.13).

FIGURE 1.13

Select sub-grouping levels for a report.

13

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 13

Next, select sorting and summarizing options; I selected ProductName for sorting, as shown in
Figure 1.14.

FIGURE 1.14

Selecting sorting and summarizing options for a report.

On the report layout screen, depicted in Figure 1.15, I selected the Block option.

FIGURE 1.15

Selecting the Block report layout option.

14

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 14

Select a style on the next screen, shown in Figure 1.16 (bear in mind that some of the more artistic
styles won’t look good when printed on a black-and-white printer). I selected None for a plain report.

FIGURE 1.16

Selecting a report style.

Give the report a name on the Finish screen (Figure 1.17) — I called it rptNorthwindSales. Select
the “Modify the report’s design” option to open the report in design view, and click Finish.

FIGURE 1.17

The Finish screen of the Report Wizard.

15

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 15

You will need to make some adjustments to the report’s design in the property sheet; if
it is not open, click the Property Sheet button in the Tools group on the Design tab of

the Ribbon, as shown in Figure 1.18.

FIGURE 1.18

Opening the property sheet.

By default, in the Block report layout only the cells with values have visible borders, so to create an
overall worksheet-type layout, select all the controls in the Detail section of the report, and turn off
display of duplicate data values by setting the Hide Duplicates property to No on the Format tab of
the properties sheet, as shown in Figure 1.19.

FIGURE 1.19

Setting the Hide Duplicates property to No to eliminate duplicate data on a report.

Although it is generally not a problem for report controls to have the same names as their bound
fields (because they are rarely, if ever, referenced in code), I like to give the appropriate tags to the
bound controls at least. To do this manually, give the textboxes the prefix txt. (On a report created
by the Report Wizard, labels are named with the non-standard suffix _Label.)

TIPTIP

16

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 16

The Report Wizard generally applies the default alignment to each column label, which
may result in inconsistent alignment. That doesn’t look good, so (if necessary) adjust the

alignment of the column headings labels as desired (generally they should be either all left-aligned or
all centered); on the sample report I made them all centered.

If you need to adjust an individual column width, it may be necessary to turn off control grouping
(a new feature in Access 2007). To accomplish this, first select the controls in the Detail section
and click the yellow group anchor that should now be visible (though not very visible — Microsoft
should have selected a color with more contrast than dull mustard yellow) at the upper-left corner
of the group, then right-click any control in the group and select Remove from the Layout submenu
(see Figure 1.20).

FIGURE 1.20

Turning off control grouping.

Figure 1.21 shows the finished worksheet-type report.

You can interactively sort and filter a report in report view — for example, when you want to view
records from only one customer, as shown in Figure 1.22.

NEW FEATURENEW FEATURE

17

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 17

FIGURE 1.21

A worksheet-type Access report.

FIGURE 1.22

Filtering a report by a selected value in the Customer field.

18

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 18

After making the selection, the report shows only Gourmet Lanchonetes records (Figure 1.23).

FIGURE 1.23

A report filtered by a Customer value.

PivotTables
If you need more advanced interactivity, you can make a PivotTable based on the same
qryNorthwindAll query. In Access 2007, the process of creating a PivotTable has been simpli-
fied; just select the data source query or table, then, as depicted in Figure 1.24, select PivotTable
from the More Forms menu of the Forms group in the Create tab of the Ribbon.

19

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 19

FIGURE 1.24

Creating a PivotTable.

A new form based on the data source opens in PivotTable view (see Figure 1.25), with the Field
List open so you can drag fields to the drop zones of the PivotTable, one field each to the Row
Fields, Column Fields, and (optionally) Filter Fields drop zones, which are indicated in gray text at
the upper-left corner of the form. The data field to be displayed in the body of the table is dragged
to the drop zone in the center of the form; Access will automatically create a Count or Sum field
when appropriate.

See Chapter 5 of my book, Expert One-on-One Microsoft Application Development, for
more information on creating and using PivotTables and PivotCharts.

Figure 1.26 shows the PivotTable with Salesperson selected as the Row field and CategoryName as
the Column field, with Price as the Totals field.

CROSS-REFCROSS-REF

20

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 20

FIGURE 1.25

A newly created PivotTable, ready to select fields.

FIGURE 1.26

A completed PivotTable.

21

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 21

PivotCharts
Making a PivotChart is even easier: select the data source query or table and click the PivotChart
button in the Forms group in the Create tab of the Ribbon. Figure 1.27 shows the new, blank
PivotChart with drop zones at the top and right sides of the form.

FIGURE 1.27

A new, blank PivotChart.

As with a PivotTable, you simply drag fields from the field list to the appropriate drop zones.
I dragged the OrderQuarter field to the Category field drop zone, the Supplier field to the Series
drop zone, the CategoryName to the Filter drop zone, and the Price field to the Data drop zone,
and I selected the Dairy Products category for filtering the data. Figure 1.28 shows the PivotChart
at this point.

22

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 22

FIGURE 1.28

The PivotChart with fields assigned to its drop zones.

The next step is to give names to the chart’s vertical and horizontal axes. To name the axes, select an
Axis Title label, open the property sheet, and select its Format tab; enter the name you want to dis-
play for that axis in the Caption property, as shown in Figure 1.29. Repeat for the other axis label.

FIGURE 1.29

Naming the vertical axis of a PivotChart.

23

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 23

To make the chart’s Legend visible (generally a good idea), click the Legend button in the
Show/Hide group of the Design tab of the Ribbon, as shown in Figure 1.30.

FIGURE 1.30

Making the PivotChart’s Legend visible.

The finished Pivot Chart is shown in Figure 1.31.

FIGURE 1.31

A completed PivotChart.

Access 2007 reports have some interactivity, and PivotTables and PivotCharts have almost unlim-
ited interactivity, but both have a serious limitation: the interactivity is available only when you are
working in the Access database; when you send an Access report, PivotTable, or PivotChart to
someone else who doesn’t have Access, say as a PDF file, the recipient gets a read-only image of the
report, PivotTable, or PivotChart, with no interactivity. This may be what you want in some cases;
but if you need to deliver data in a worksheet or chart format that users can interact with, you
need to create an Excel worksheet or chart from your Access data, rather than a report, PivotTable,
or PivotChart.

24

The Office Components and What They Do BestPart I

05_047026 ch01.qxp 4/2/07 9:41 PM Page 24

See Chapter 3 for information on creating Excel worksheets and charts filled with
Access data, and Chapter 12 for information on creating Excel PivotCharts filled with

Access data.

Summary
In this chapter you have learned about some new features of Access 2007, especially those related
to producing Access reports to display data stored in Access tables. But sometimes you need to dis-
play your data in Word documents or Excel worksheets, rather than Access reports; or you may
need to create Outlook appointments, tasks, contacts, or mail messages, using Access as a control
center for working with Office documents.

When you need to produce Word documents, Excel worksheets, or Outlook items, either to make
use of the special features of these Office components or to distribute your data in formats that can
be used by everyone who has Office, you have two options: use the built-in Export selections on
the Ribbon, or write VBA code to create the Office documents and fill them with Access data. The
next three chapters describe how to create Word documents, Excel worksheets or charts, and
Outlook items, and fill them with Access data.

CROSS-REFCROSS-REF

25

Storing and Displaying Data in Access 1

05_047026 ch01.qxp 4/2/07 9:41 PM Page 25

05_047026 ch01.qxp 4/2/07 9:41 PM Page 26

If you need to produce documents with more sophisticated formatting
than is available in an Access report, your best option is to create Word
documents and fill them with data from Access. There are many ways to

export data from Access to Word; which one to use depends on the circum-
stances, the type of data to export, and user preferences. This chapter dis-
cusses the various types of Word documents you can create and the methods
you can use to fill them with data, with basic examples.

For more complex and realistic examples of exporting
Access data to Word documents, see Chapters 6 and 12.

The sample database for this chapter is Access to
Word.accdb.

Filling Word Documents with
Access Data Using the TypeText
Method
You can create a blank Word document (based on the default Word tem-
plate) with two lines of code:

Set appWord = GetObject(, “Word.Application”)
Set doc = appWord.Documents.Add

NOTENOTE

CROSS-REFCROSS-REF

27

IN THIS CHAPTER
Word documents and templates

Working with Word bookmarks

Working with the TypeText
method

Working with Word document
properties

Working with form fields

Working with tables

Creating Word Documents
from Access

06_047026 ch02.qxp 4/2/07 9:41 PM Page 27

In most of my Automation code working with other Office applications (Word, Excel,
and Outlook), I use the GetObject function in the body of a procedure, to set a refer-

ence to the running instance of the application, if there is one; the procedure’s error handler runs
CreateObject if the application is not already running (see the code samples later in this chapter
for examples). This prevents creation of multiple instances of Word, Excel, or Outlook.

If you don’t need any fancy formatting, just a plain text document, you can fill a blank Word docu-
ment with text using the TypeText method. The FillWithTypeText procedure listed next
creates a blank Word document, then enters a document heading, then reads text from fields in an
Access table and writes it directly to the Word document, and finally applies some simple format-
ting, using Word commands:

Private Sub FillWithTypeText ()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim doc As Word.Document
Dim dbs As DAO.Database
Dim rst As DAO.Recordset

Set appWord = GetObject(, “Word.Application”)
Set doc = appWord.Documents.Add

Insert and format document title:

With appWord.Selection
.TypeText “Current Contacts as of “ _

& Format(Date, “Long Date”)
.TypeParagraph
.MoveLeft Unit:=wdWord, Count:=11, _

Extend:=wdExtend
.Font.Size = 14
.Font.Bold = wdToggle
.MoveDown Unit:=wdLine, Count:=1

End With

Insert a two-column table to hold contact data (one column for contact names, the other for user
comments):

doc.Tables.Add Range:=Selection.Range, _
NumRows:=1, _
NumColumns:=2, _
DefaultTableBehavior:=wdWord9TableBehavior, _
AutoFitBehavior:=wdAutoFitFixed

With appWord.Selection.Tables(1)
If .Style <> “Table Grid” Then

.Style = “Table Grid”
End If

NOTENOTE

28

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:41 PM Page 28

.ApplyStyleHeadingRows = True

.ApplyStyleLastRow = False

.ApplyStyleFirstColumn = True

.ApplyStyleLastColumn = False

.ApplyStyleRowBands = True

.ApplyStyleColumnBands = False
End With

Insert contact data from Access table into Word table:

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblContacts”)
Do While Not rst.EOF

With appWord.Selection
.TypeText rst![LastName] & “, “ & rst![FirstName]
.MoveRight Unit:=wdCell, Count:=2

End With
rst.MoveNext

Loop

Delete the last, blank row:

appWord.Selection.Rows.Delete

Sort contact names alphabetically:

doc.Tables(1).Select
appWord.Selection.Sort ExcludeHeader:=False, _

FieldNumber:=”Column 1”, _
SortFieldType:=wdSortFieldAlphanumeric, _
SortOrder:=wdSortOrderAscending

ErrorHandlerExit:
Set appWord = Nothing
Exit Sub

ErrorHandler:
If Err = 429 Then

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(“Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

29

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:41 PM Page 29

If you don’t know the VBA syntax for an operation, you can record a Word macro to
create a procedure containing the code, though you may have to trim out the excess —

recorded macros generally set every single argument of a method, whether or not they are needed.

The finished contact list document is shown in Figure 2.1.

FIGURE 2.1

A Word document filled with Access data using the TypeText method.

Using Word Templates for Creating
Formatted Word Documents
The TypeText method used in the previous section is only suitable for creating very simple Word
documents. If you need to produce fully formatted Word documents, with headers, footers, and
sections with different margins, or if you need to place Access data at various points within blocks
of text, it’s best to prepare one or more Word templates in advance, formatting them as needed.
Then you can create new documents from the templates and fill them with Access data as needed,
using either bookmarks or (my preferred method) Word document properties.

The first step is to create the Word templates, with headers, footers, logo, and different fonts as
needed. Depending on the method you want to use, either place bookmarks in the template where
you want the Access data to appear or create document properties to accept the Access data, and
place DocProperty fields in the template where you want the Access data to appear.

TIPTIP

30

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:41 PM Page 30

Bookmarks
As an example of using bookmarks in a Word template, I created a template designed to print on a
certain type of paper (Paper Direct Milano), with a header and footer, several fonts, and two sec-
tions, the first for the letter itself and the second for a matching COM 10 envelope. I placed several
bookmarks in the letter portion of the template, where the letter date, name and address, and salu-
tation should print, and cross-reference fields in the envelope portion, to print the name and
address there, as well as a PostNet ZIP bar code.

This chapter uses the new .dotx Word 2007 template format, which creates a document
of the .docx type. Documents in this new Word format can only be used by people run-

ning Office 2007, so if you need to distribute Word documents to people running older versions of
Office, it is best to use the .dot template format, and create .doc documents, which are usable in
Office 97 through 2007.

WARNING WARNING

31

Creating Word Documents from Access 2

Working with Word User Information Fields

You can place Word UserName and UserAddress fields in the document header to print your
name and address. If you have used these fields in previous versions of Word, you may have dif-

ficulty locating them in the new Word 2007 interface, especially because Microsoft has chosen to
put them in different places (in Word 2003, they were all conveniently located on the User
Information tab of the Options dialog). In Word 2007, the user name is entered in the User Name
field on the Personalize page of the Word Options dialog, which is opened from the Word Options
button on the File menu.

Entering the user name in the Word Options dialog.

continued

06_047026 ch02.qxp 4/2/07 9:41 PM Page 31

32

The Office Components and What They Do BestPart I

continued

Curiously, the user address information is entered in a different location, as “Mailing address” at the
bottom of the Advanced page of the Word Options dialog.

Entering the mailing address (user address) in the Word Options dialog.

To place a field with the user name or user address into a template, select Field from the Quick Parts
list in the Text group of the Insert menu.

Inserting a field into a template.

06_047026 ch02.qxp 4/2/07 9:41 PM Page 32

33

Creating Word Documents from Access 2

This opens the Field dialog (similar to the one in Word 2003), where you can select the User Name
or User Address field for insertion.

Inserting the UserAddress field on a template.

The following figure shows the user name and address information in a template header.

A template header with user name and address information from Word user information fields.

06_047026 ch02.qxp 4/2/07 9:41 PM Page 33

To insert a bookmark in a document or template, select Bookmark from the Links group on the
Insert tab, as in Figure 2.2.

It is advisable to uncheck the “Preserve formatting during updates” checkbox when
inserting fields, as otherwise you can get different fonts or sizes for the text displayed in

the fields.

FIGURE 2.2

Opening the Bookmark dialog.

Type the bookmark name in the Bookmark dialog and click Add (Figure 2.3).

FIGURE 2.3

Creating a bookmark.

By default, you won’t see the I-beam markers that indicate bookmarks in a Word docu-
ment; to see them, check the “Show bookmarks” checkbox on the Advanced page of the

Word Options dialog, as depicted in Figure 2.4.

NOTENOTE

WARNING WARNING

34

The Office Components and What They Do BestPart I

he

06_047026 ch02.qxp 4/2/07 9:41 PM Page 34

FIGURE 2.4

Turning on bookmark display in the Word Options dialog.

Figure 2.5 shows the second (envelope) page of the Milano Word template, with user information
fields, bookmarks, and a BarCode field (to see these fields, press Alt+F9).

FIGURE 2.5

Fields and bookmarks on a Word template.

35

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:41 PM Page 35

In code for this chapter’s sample database, the assumption is that the Word templates
are located in the default folder, which is C:\Users\User Name\AppData\Roaming\

Microsoft\Templates for Windows Vista or C:\Documents and Settings\User Name\Application
Data\Microsoft\Templates for Windows XP. For a more flexible method of setting the Templates
folder, see Chapter 6.

The form frmContacts in the sample Access to Word database displays contacts located in the
U.S.A. The form, shown in Figure 2.6, has three buttons, each of which creates a letter to the
selected contact using a different method.

FIGURE 2.6

The Contacts form with buttons to create Word letters.

The code for creating a document using bookmarks is listed as follows:

Private Sub cmdBookmarks_Click()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim doc As Word.Document
Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strTemplatePath As String
Dim strTemplateName As String
Dim strTemplateNameAndPath As String
Dim lngContactID As Long
Dim strRecipientName As String
Dim strRecipientAddress As String

CROSS-REFCROSS-REF

36

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:41 PM Page 36

Dim strRecipientZip As String
Dim strPrompt As String
Dim strTitle As String
Dim strSalutation As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File

lngContactID = Nz(Me![ContactID])
If lngContactID = 0 Then

strPrompt = “No contact selected”
strTitle = “Problem”
MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

Else
strRecipientName = Nz(Me![FirstNameFirst])
strRecipientAddress = Nz(Me![RecipientAddress])
strSalutation = Nz(Me![FirstName])
strRecipientZip = Nz(Me![PostalCode])

End If

Set appWord = GetObject(, “Word.Application”)

Get the default User Template path from the Word Options dialog (it is still available in code,
though it has disappeared from the Word 2007 interface):

strTemplatePath = _
appWord.Options.DefaultFilePath(wdUserTemplatesPath) _
& “\”

Debug.Print “Templates folder: “ & strTemplatePath
strTemplateName = “Milano Letter (Bookmarks).dotx”
strTemplateNameAndPath = strTemplatePath & strTemplateName

On Error Resume Next

Try to locate the template in the default Templates folder, and put up a message if it is not found:

Set fil = fso.GetFile(strTemplateNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strTemplateName _
& “ in “ & strTemplatePath & “; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set doc = appWord.Documents.Add(strTemplateNameAndPath)

37

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:41 PM Page 37

Write information to Word bookmarks in the document:

With appWord.Selection
.Goto what:=wdGoToBookmark, Name:=”LetterDate”
.TypeText Text:=Format(Date, “Long Date”)

.Goto what:=wdGoToBookmark, Name:=”RecipientName”

.TypeText Text:=strRecipientName

.Goto what:=wdGoToBookmark, Name:=”RecipientAddress”

.TypeText Text:=strRecipientAddress

.Goto what:=wdGoToBookmark, Name:=”RecipientZip”

.TypeText Text:=strRecipientZip

.Goto what:=wdGoToBookmark, Name:=”Salutation”

.TypeText Text:=strSalutation

.Goto what:=wdGoToBookmark, Name:=”EnvelopeName”

.TypeText Text:=strRecipientName

.Goto what:=wdGoToBookmark, Name:=”EnvelopeAddress”

.TypeText Text:=strRecipientAddress

.Goto what:=wdGoToBookmark, Name:=”EnvelopeZip”

.TypeText Text:=strRecipientZip

Reinsert the EnvelopeZip bookmark so the zip code will be available for use by the bar code field
on the envelope:

.MoveLeft Unit:=wdWord, Count:=3, Extend:=wdExtend
doc.Bookmarks.Add Range:=Selection.Range, _

Name:=”EnvelopeZip”

.Goto what:=wdGoToBookmark, Name:=”LetterText”
strPrompt = “Ready to enter letter text”
strTitle = “Access data imported”
MsgBox strPrompt, vbOKOnly, strTitle
appWord.Visible = True
appWord.Activate

End With

ErrorHandlerExit:
Set appWord = Nothing
Exit Sub

ErrorHandler:
If Err = 429 Then

38

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:41 PM Page 38

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(“Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Document Properties
When you use Word document properties rather than bookmarks to write Access data to a Word
document, you don’t need to have two (or more) sets of bookmarks, one for each place you want
to display a piece of data (for example, displaying the recipient’s name and address on the letter
and the envelope). You can write the data to a document property once and display it in multiple
places in the Word document with DocProperty fields.

To create the properties, first select Finish from the File menu in the template, and select Properties,
as shown in Figure 2.7.

FIGURE 2.7

Opening the Document Information panel.

39

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:41 PM Page 39

This opens the Document Information panel, with a few of the more common document proper-
ties displayed (see Figure 2.8).

FIGURE 2.8

The Document Information panel.

To get to the Properties sheet, select Advanced from the Properties drop-down at the top of the
panel; this opens the Properties sheet, which looks much the same as in Word 2003. Click the
Custom tab (Figure 2.9) to start creating document properties.

FIGURE 2.9

The Custom page of the Word Properties sheet.

To create a document property, enter its name (no spaces), select the type, enter a value (a space
will do for a Text property), and then click Add. Figure 2.10 shows the doc properties for the
Milano Letter (Doc Props) template.

40

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:42 PM Page 40

FIGURE 2.10

The Doc properties for the Milano Letter (Doc Props) template.

Next, place DocProperty fields in the template where you want the values in the doc properties to
display.

One bookmark is still needed, even if you are using doc properties to display data from
Access: The BarCode field needs to reference a bookmark in order to create the PostNet

bar code. Therefore, after placing a DocProperty field for the zip into the template, select that field
and create a bookmark for it.

To insert a DocProperty field, select QuickParts from the Text group on the Insert tab of the
Ribbon, select DocProperty as the field type, and then select the doc property from the Property
list (see Figure 2.11).

Don’t give your doc properties the same names as any built-in properties, although
Word lets you do this, because this will make it difficult to select the correct property

from the list of properties, which includes both built-in and custom doc properties.

Figure 2.12 shows the first page of the template, with DocProperty fields displayed, and one book-
mark to indicate the place where the letter text is to be typed.

TIPTIP

NOTENOTE

41

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:42 PM Page 41

FIGURE 2.11

Inserting a DocProperty field.

FIGURE 2.12

The first page of the Milano Letter (DocProps) template, with User information and DocProperty fields.

42

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:42 PM Page 42

The code that creates the document with text written to doc properties is listed as follows:

Private Sub cmdDocProps_Click()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim doc As Word.Document
Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strTemplatePath As String
Dim strTemplateName As String
Dim strTemplateNameAndPath As String
Dim lngContactID As Long
Dim strRecipientName As String
Dim strRecipientAddress As String
Dim strRecipientZip As String
Dim strPrompt As String
Dim strTitle As String
Dim strSalutation As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File
Dim prps As Object

lngContactID = Nz(Me![ContactID])
If lngContactID = 0 Then

strPrompt = “No contact selected”
strTitle = “Problem”
MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

Else
strRecipientName = Nz(Me![FirstNameFirst])
strRecipientAddress = Nz(Me![RecipientAddress])
strSalutation = Nz(Me![FirstName])
strRecipientZip = Nz(Me![PostalCode])

End If

Set appWord = GetObject(, “Word.Application”)

Get the default User Templates path from the Word Options dialog:

strTemplatePath = _
appWord.Options.DefaultFilePath(wdUserTemplatesPath) _
& “\”

Debug.Print “Templates folder: “ & strTemplatePath
strTemplateName = “Milano Letter (Doc Props).dotx”
strTemplateNameAndPath = strTemplatePath & strTemplateName

On Error Resume Next

43

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:42 PM Page 43

Try to locate the template in the default Templates folder, and put up a message if it is not found:

Set fil = fso.GetFile(strTemplateNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strTemplateName _
& “ in “ & strTemplatePath & “; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set doc = appWord.Documents.Add(strTemplateNameAndPath)

Write information to Word doc properties:

Set prps = doc.CustomDocumentProperties
prps.Item(“LetterDate”).Value = Format(Date, “Long Date”)
prps.Item(“RecipientName”).Value = strRecipientName
prps.Item(“RecipientAddress”).Value = strRecipientAddress
prps.Item(“RecipientZip”).Value = strRecipientZip
prps.Item(“Salutation”).Value = strSalutation

Update fields:

With appWord
.Selection.WholeStory
.Selection.Fields.Update
.Selection.HomeKey unit:=wdStory

End With

appWord.Selection.Goto what:=wdGoToBookmark, _
Name:=”LetterText”

strPrompt = “Ready to enter letter text”
strTitle = “Access data imported”
MsgBox strPrompt, vbOKOnly, strTitle
appWord.Visible = True
appWord.Activate

ErrorHandlerExit:
Set appWord = Nothing
Exit Sub

ErrorHandler:
If Err = 429 Then

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(“Word.Application”)
Resume Next

44

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:42 PM Page 44

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Form Field Documents
Sometimes you need to create documents that display some data from Access and also allow users
to enter more data in a controlled fashion. This can be done using either bookmarks or doc prop-
erties to display the Access data, and Word content controls (called form fields in earlier versions of
Word) for the user-entered data.

The third button on frmContacts creates a letter filled with data from Access, using doc properties;
additionally, the template has two form fields, to be filled in by the user when creating the docu-
ment. Of course, users can just type text into a document, but form fields allow the developer to
limit the information to a selection of appropriate values, perhaps in a protected document section
that does not allow free-form entry.

To insert a content control into a template, select the control type from the Controls group on the
Developer tab of the Ribbon, as shown in Figure 2.13.

FIGURE 2.13

Inserting a dropdown-type content control.

If you don’t see the Developer tab, turn it on by checking the “Show Developer tab in the
Ribbon” checkbox on the Personalize page of the Word Options dialog (Figure 2.14).

To add the choices for a drop-down or combo box list, switch to Design mode by clicking the
Design button in the Controls group, select the control, and then select Properties from the
Controls group on the Developer tab, as depicted in Figure 2.15.

TIPTIP

45

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:42 PM Page 45

FIGURE 2.14

Turning on the Developer tab on the Word Ribbon.

FIGURE 2.15

Opening a control’s Properties sheet.

46

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:42 PM Page 46

Add the choices for the drop-down list in the Properties sheet (see Figure 2.16). To add a choice,
click the Add button, enter the display name and value, and click OK; repeat for each selection you
want to add to the list.

FIGURE 2.16

Adding choices for a drop-down list content control.

Don’t check the “Contents cannot be edited” checkbox; if you do, selections can’t be
made from the drop-down list.

When a new document is created from a template with content controls, when you hover the
mouse over a content control, the title appears over the control, and you can click the drop-down
arrow to open the list and select an item (Figure 2.17).

TIPTIP

47

Creating Word Documents from Access 2

06_047026 ch02.qxp 4/2/07 9:42 PM Page 47

FIGURE 2.17

Selecting an item from a drop-down content control.

Summary
This chapter covered three methods that you can use to write Access data to Word documents
(TypeText, bookmarks, and doc properties). With the aid of these techniques, and a set of prefor-
matted Word templates, you can make use of the superior data storage and editing capabilities of
Access and the superior document formatting properties of Word.

48

The Office Components and What They Do BestPart I

06_047026 ch02.qxp 4/2/07 9:42 PM Page 48

You can print Access data directly, using Access reports, as described in
Chapter 1, or you can present the data interactively in PivotTables or
PivotCharts. But, as mentioned in Chapter 1, these options have some

limitations, because you can only work interactively with PivotTables and
PivotCharts within an Access database. If you (or others) want to be able
to manipulate and analyze Access data without the need to have Access
installed, Excel worksheets are an excellent choice.

Rather than preparing Access reports, PivotTables, or PivotCharts (or in
addition to them), you can export data to Excel, and allow users to analyze
the data with Excel’s tools. This option is available to everybody who has
Office installed, because even the most basic editions of Office include Excel,
whereas Access is only included in some editions (the more expensive ones).

You can export the Access data to an unformatted worksheet and let the
users work with it as they want (this works fine if they just need the data and
don’t require fancy formatting), or you can create Excel templates and export
the data to a new worksheet made from a template; this technique allows
you to do some of the formatting in advance.

A third alternative is to export the Access data into either a default worksheet
or a worksheet created from a template, and sort the data, create totals, or
apply formatting using Excel commands in VBA code. The following sections
describe using these three methods to export Access data to Excel.

The sample database for this chapter is Access to
Excel.accdb.NOTENOTE

49

IN THIS CHAPTER
Exporting Access data to Excel
using a Ribbon command

Creating new Excel worksheets
from templates

Formatting Access data exported
to an Excel worksheet

Analyzing Data with Excel

07_047026 ch03.qxp 4/2/07 9:42 PM Page 49

Exporting Access Data to
an Unformatted Worksheet
If you just need to move a chunk of data from Access to Excel, and you don’t need fancy format-
ting, you can use the Excel command in the Export group on the External Data tab of the Ribbon
to export the Access data to a plain, unformatted worksheet. The sample database, based on the
Northwind sample database, has a query that links all the data tables, qryNorthwindAll. A
query of this type is very useful for doing data exports, because it contains all the data you might
want to export. (Figure 3.1 shows this query selected in the Object Bar.)

FIGURE 3.1

Exporting to Excel from a Ribbon command.

Clicking the Excel command with a database object selected opens the Export dialog, where you
can browse for the folder where the worksheet should be saved, and select a worksheet file format.
This dialog is shown in Figure 3.2. You can check the “Export data with formatting and layout”
selection if desired, but it doesn’t make much of a difference when exporting data from tables or
queries, and I don’t recommend exporting data from forms or reports, because the formatting you
need in Excel isn’t the same as the formatting you need in an Access form or report.

50

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 50

FIGURE 3.2

The Export dialog opened from the Excel command.

Using qryNorthwindAll as the data source, you get the plain worksheet shown in Figure 3.3.

FIGURE 3.3

An Excel worksheet created from data in the qryNorthwindAll Access query.

51

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 51

Using a query as a data source allows you to combine data from multiple tables and also
to format data as you want it to appear in the target worksheet, using data type conver-

sion functions such as CDate, CCur, or CStr.

With a few clicks, you can resize the worksheet columns as needed, edit the column headers as
needed, and make the column header row bold, and a plain but serviceable worksheet (Figure 3.4)
is ready for use.

FIGURE 3.4

The exported worksheet with a little formatting applied manually.

Using Excel Templates to Create Formatted
Worksheets Filled with Access Data
If you want to produce a more formatted worksheet, you can prepare an Excel template and format
it as needed — for example, adding a large, centered title and column headings with appropriate
text, perhaps in a larger or bolder font than the data area. Then, instead of using the Excel com-
mand on the Ribbon, use VBA code to export the Access data row by row to the data area of a new
worksheet created from the template. I created a set of queries for archiving data, again using the
sample Northwind data, and a dialog form (fdlgArchiveOrders) that allows the user to select a date
range for archiving Orders data, as shown in Figure 3.5.

Note the calendar icon next to the date controls (it appears when a control bound to a
Date field has the focus). Clicking the icon opens a calendar for selecting a valid date,

as shown in Figure 3.6. The new calendar pop-up is definitely useful, though selecting a date far in the
past can be tedious, because there is no way to move year by year.

NEW FEATURENEW FEATURE

TIPTIP

52

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 52

FIGURE 3.5

A dialog form for selecting Northwind Orders data to archive.

FIGURE 3.6

Selecting a date from the calendar pop-up.

Once the start date and end date have been entered or selected, clicking the Archive button runs
a procedure that creates a new Excel worksheet from a template (Orders Archive.xltx) in the same
folder as the database, fills it with data from tblOrders in the selected date range, and deletes the
archived records.

The ArchiveData procedure uses the Start Date and End Date values selected in the dialog as
arguments. This procedure is listed as follows, together with the CreateAndTestQuery proce-
dure it uses to create a query programmatically, and another procedure (TestFileExists) that
tests whether a file exists in a specific folder:

Public Sub ArchiveData(dteStart As Date, dteEnd As Date)

On Error GoTo ErrorHandler

Dim appExcel As Excel.Application
Dim intReturn As Integer
Dim lngCount As Long
Dim n As Long

53

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 53

Dim rng As Excel.Range
Dim rngStart As Excel.Range
Dim strDBPath As String
Dim strPrompt As String
Dim strQuery As String
Dim strSaveName As String
Dim strSheet As String
Dim strSheetTitle As String
Dim strSQL As String
Dim strTemplate As String
Dim strTemplateFile As String
Dim strTemplatePath As String
Dim strTitle As String
Dim wkb As Excel.Workbook
Dim wks As Excel.Worksheet

Create a filtered query using the dates selected in the dialog:

strQuery = “qryArchive”
Set dbs = CurrentDb
strSQL = “SELECT * FROM tblOrders WHERE “ _

& “[ShippedDate] Between #” & dteStart & “# And #” _
& dteEnd & “#;”

Debug.Print “SQL for “ & strQuery & “: “ & strSQL
lngCount = CreateAndTestQuery(strQuery, strSQL)
Debug.Print “No. of items found: “ & lngCount
If lngCount = 0 Then

Exit if no orders are found in the selected date range:

strPrompt = “No orders found for this date range; “ _
& “canceling archiving”

strTitle = “Canceling”
MsgBox strPrompt, vbOKOnly + vbCritical, strTitle
GoTo ErrorHandlerExit

Else
strPrompt = lngCount & “ orders found in this date “ _

& “range; archive them?”
strTitle = “Archiving”
intReturn = MsgBox(strPrompt, vbYesNo + vbQuestion, _

strTitle)
If intReturn = vbNo Then

GoTo ErrorHandlerExit
End If

End If

Create a new worksheet from the template and export the Access data to it:

strDBPath = Application.CurrentProject.Path & “\”
Debug.Print “Current database path: “ & strDBPath

54

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 54

strTemplate = “Orders Archive.xltx”
strTemplateFile = strDBPath & strTemplate
If TestFileExists(strTemplateFile) = False Then

Put up a message and exit if the template is not found:

strTitle = “Template not found”
strPrompt = “Excel template ‘Orders Archive.xlt’” _

& “ not found in “ & strDBPath & “;” & vbCrLf _
& “please put template in this folder and try again”

MsgBox strPrompt, vbCritical + vbOKOnly, strTitle
GoTo ErrorHandlerExit

Else
Debug.Print “Excel template used: “ & strTemplateFile

End If

Template found; create a new worksheet from it:

Set appExcel = GetObject(, “Excel.Application”)
Set rst = dbs.OpenRecordset(“qryRecordsToArchive”)
Set wkb = appExcel.Workbooks.Add(strTemplateFile)
Set wks = wkb.Sheets(1)
wks.Activate
appExcel.Visible = True

Write the date range to title cell:

Set rng = wks.Range(“A1”)
strSheetTitle = “Archived Orders for “ _

& Format(dteStart, “d-mmm-yyyy”) _
& “ to “ & Format(dteEnd, “d-mmm-yyyy”)

Debug.Print “Sheet title: “ & strSheetTitle
rng.Value = strSheetTitle

Go to the first data cell:

Set rngStart = wks.Range(“A4”)
Set rng = wks.Range(“A4”)

Reset lngCount to the number of records in the data source query:

rst.MoveLast
rst.MoveFirst
lngCount = rst.RecordCount

For n = 1 To lngCount

Write data from the recordset to the data area of the worksheet, using the columnoffset argu-
ment to move to the next cell:

55

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 55

rng.Value = Nz(rst![OrderID])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Customer])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Employee])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![OrderDate])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![RequiredDate])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShippedDate])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Shipper])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Freight])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipName])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipAddress])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipCity])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipRegion])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipPostalCode])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![ShipCountry])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Product])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![UnitPrice])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Quantity])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Discount])

Go to the next row in the worksheet, using the rowoffset argument:

rst.MoveNext
Set rng = rngStart.Offset(rowoffset:=n)

Next n

Save and close the filled-in worksheet, using a workbook save name with the date range selected in
the dialog:

strSaveName = strDBPath & strSheetTitle & “.xlsx”
Debug.Print “Time sheet save name: “ & strSaveName

56

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 56

ChDir strDBPath

On Error Resume Next

If there already is a saved worksheet with this name, delete it:

Kill strSaveName

On Error GoTo ErrorHandler
wkb.SaveAs FileName:=strSaveName, _

FileFormat:=xlWorkbookDefault
wkb.Close
rst.Close

Put up a success message, listing the name and path of the new worksheet:

strTitle = “Workbook created”
strPrompt = “Archive workbook ‘“ & strSheetTitle & “‘“ _

& vbCrLf & “created in “ & strDBPath
MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

Delete the archived records, processing the “many” table first, because you can’t delete a record in
the “one” table if there are linked records in the “many” table:

DoCmd.SetWarnings False
strSQL = “DELETE tblOrderDetails.*, “ _

& “tblOrders.ShippedDate “ _
& “FROM tblOrderDetails INNER JOIN qryArchive “ _
& “ON tblOrderDetails.OrderID = qryArchive.OrderID;”

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL
strSQL = “DELETE tblOrders.* FROM tblOrders WHERE “ _

& “[ShippedDate] Between #” & dteStart & “# And #” _
& dteEnd & “#;”

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL

Put up a message listing the cleared records:

strTitle = “Records cleared”
strPrompt = “Archived records from “ _

& Format(dteStart, “d-mmm-yyyy”) _
& “ to “ & Format(dteEnd, “d-mmm-yyyy”) _
& “ cleared from tables”

MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

ErrorHandlerExit:
Exit Sub

57

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 57

ErrorHandler:
‘Excel is not running; open Excel with CreateObject
If Err.Number = 429 Then

Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number & “; Description: “
Resume ErrorHandlerExit

End If

End Sub

Public Function CreateAndTestQuery(strTestQuery As String, _
strTestSQL As String) As Long

This function is called from other procedures to create a filtered query, using a SQL string in its
strTestSQL argument:

On Error Resume Next

Dim qdf As DAO.QueryDef

‘Delete old query
Set dbs = CurrentDb
dbs.QueryDefs.Delete strTestQuery

On Error GoTo ErrorHandler

‘Create new query
Set qdf = dbs.CreateQueryDef(strTestQuery, strTestSQL)

‘Test whether there are any records
Set rst = dbs.OpenRecordset(strTestQuery)
With rst

.MoveFirst

.MoveLast
CreateAndTestQuery = .RecordCount

End With

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err.Number = 3021 Then

CreateAndTestQuery = 0
Resume ErrorHandlerExit

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ &

Err.Description
Resume ErrorHandlerExit

End If

58

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 58

End Function

Public Function TestFileExists(strFile As String) As Boolean

On Error Resume Next

TestFileExists = Not (Dir(strFile) = “”)

End Function

The code in the sample database requires a reference to the Excel object library;
Figure 3.7 shows this reference checked in the References dialog, which is opened

from the Tools menu in the Visual Basic window.

FIGURE 3.7

Setting a reference to the Excel object model.

After the worksheet of archived records has been created and saved, you will get a message
(depicted in Figure 3.8) listing the location where the archive worksheet was saved.

FIGURE 3.8

A success message after records are archived.

NOTENOTE

59

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 59

See Chapter 7 for a more flexible way of specifying a Templates folder and a Documents
folder.

After the code deletes the archived records — first the ones in tblOrderDetails (the “many” table)
and then those in tblOrders (the “one” table) — a final message appears, as shown in Figure 3.9.

FIGURE 3.9

A final informative message stating that the archived database records have been cleared.

A worksheet filled with archived data is shown in Figure 3.10.

FIGURE 3.10

A worksheet filled with archived Access data.

Saving the newly created worksheet with the xlWorkbookDefault value for the FileFormat
argument saves it as a standard Excel worksheet. If you need to save the worksheet in another for-
mat, perhaps for use by someone running an older version of Excel, you can use one of the other
values in the XlFileFormat enum, which are shown in the Object Browser in Figure 3.11. The
xlExcel9795 named constant will create a worksheet in a format usable by people running
Excel 95 or 97. (The worksheet format choices available in VBA code are much more numerous
than those available in the interface, as shown in Figure 3.12.)

NOTENOTE

60

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 60

FIGURE 3.11

Viewing the file format choices for saving an Excel workbook.

If you create a worksheet in the new .xlsx format, only Office 2007 users will be able
to open it. To create a worksheet that can be opened and edited by users with earlier

versions of Office, select one of the other formats. The Excel 97–Excel 2003 Workbook (.xls) format
(shown being selected in Figure 3.12) is usable in Office 97 through 2007, so it is generally the most
useful worksheet format.

FIGURE 3.12

Selecting a worksheet save format.

WARNING WARNING

61

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 61

To open the Object Browser for examining components of an object model, open the
Visual Basic window and select Object Browser from the View menu, or press F2.

Formatting Excel Worksheets in VBA Code
If you need to sort, group, indent, or otherwise format exported data in an Excel worksheet, or cre-
ate a total under the last row of data, you can write VBA code to use Excel commands to do the
work in code. You can apply formatting to a worksheet created by the TransferSpreadsheet
method, or one created from the Ribbon command, or a worksheet created programmatically from
a template.

See Chapter 7 for examples of creating worksheets using the TransferSpreadsheet
method.

In this section, data from qryOrdersAndDetails is exported to a new worksheet made from a tem-
plate and is then formatted in code. For convenience, the ExportNorthwindData procedure
can be run from the macro mcrExportNorthwindData.

The procedure starts by creating a new worksheet from a template (Northwind Orders.xltx), as for
the ArchiveData procedure. Data from the query qryOrdersAndDetails is written to rows
in the worksheet, and then a set of Excel commands is used to apply hairline borders to the data
area, and a double bottom border to the column headings row.

Next, the worksheet’s data area is sorted by the first two columns (Country and Category), and the
extra values are removed (the effect is similar to turning on Hide Duplicates in an Access report).
Finally, a Grand Total is created under the last row, made large and bold, and enclosed in a box.
The procedure is listed as follows:

Public Sub ExportNorthwindData()

On Error GoTo ErrorHandler

Dim appExcel As Object
Dim i As Integer
Dim lngCount As Long
Dim lngCurrentRow As Long
Dim lngRows As Long
Dim n As Long
Dim objFind As Object
Dim rng As Excel.Range
Dim rngData As Excel.Range
Dim rngStart As Excel.Range
Dim strCategory As String
Dim strCountry As String
Dim strCurrAddress As String
Dim strDBPath As String
Dim strFormula As String

CROSS-REFCROSS-REF

NOTENOTE

62

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 62

Dim strPrompt As String
Dim strDataRange As String
Dim strRange As String
Dim strSaveName As String
Dim strSheetName As String
Dim strStartAddress As String
Dim strTemplate As String
Dim strTemplateFile As String
Dim strTitle As String
Dim wkb As Excel.Workbook
Dim wks As Excel.Worksheet

Create a new worksheet from the template and export data to it:

strDBPath = Application.CurrentProject.Path & “\”
Debug.Print “Current database path: “ & strDBPath
strTemplate = “Northwind Orders.xltx”
strTemplateFile = strDBPath & strTemplate
If TestFileExists(strTemplateFile) = False Then

Put up a message and exit if the template is not found:

strTitle = “Template not found”
strPrompt = “Excel template ‘Northwind Orders.xlt’” _

& “ not found in “ & strDBPath & “;” & vbCrLf _
& “please put template in this folder and try again”

MsgBox strPrompt, vbCritical + vbOKOnly, strTitle
GoTo ErrorHandlerExit

Else
Debug.Print “Excel template used: “ & strTemplateFile

End If

Set appExcel = GetObject(, “Excel.Application”)
Set dbs = CurrentDb

Create a recordset based on the Access query:

Set rst = dbs.OpenRecordset(“qryOrdersAndDetails”)

Create a new worksheet based on the template:

Set wkb = appExcel.Workbooks.Add(strTemplateFile)
Set wks = wkb.Sheets(1)
wks.Activate
appExcel.Visible = True

Go to the first data cell in the worksheet:

Set rngStart = wks.Range(“A4”)
Set rng = wks.Range(“A4”)

63

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 63

Reset lngCount to the number of records in the query:

rst.MoveLast
rst.MoveFirst
lngCount = rst.RecordCount

For n = 1 To lngCount

Write data from the recordset to cells in the current row of the worksheet, using the columnoff-
set argument to move to the next cell:

rng.Value = Nz(rst![ShipCountry])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Category])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Product])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Customer])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![OrderID])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![UnitPrice])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Quantity])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![Discount])
Set rng = rng.Offset(columnoffset:=1)
rng.Value = Nz(rst![TotalPrice])

Go to the next row of the worksheet, using the rowoffset argument:

rst.MoveNext
Set rng = rngStart.Offset(rowoffset:=n)

Next n

Determine the number of data rows in the worksheet with the UsedRange property:

lngRows = wks.UsedRange.Rows.Count
Debug.Print “Number of data rows in worksheet: “ & lngRows

Define the data range:

strRange = “A4:I” & CStr(lngRows)
Set rngData = wks.Range(strRange)

Apply hairline borders to the data range:

With rngData
.Borders(xlDiagonalDown).LineStyle = xlNone
.Borders(xlDiagonalUp).LineStyle = xlNone

64

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 64

.Borders(xlEdgeLeft).LineStyle = xlContinuous

.Borders(xlEdgeLeft).Weight = xlHairline

.Borders(xlEdgeLeft).ColorIndex = xlAutomatic

.Borders(xlEdgeTop).LineStyle = xlContinuous

.Borders(xlEdgeTop).Weight = xlHairline

.Borders(xlEdgeTop).ColorIndex = xlAutomatic

.Borders(xlEdgeBottom).LineStyle = xlContinuous

.Borders(xlEdgeBottom).Weight = xlHairline

.Borders(xlEdgeBottom).ColorIndex = xlAutomatic

.Borders(xlEdgeRight).LineStyle = xlContinuous

.Borders(xlEdgeRight).Weight = xlHairline

.Borders(xlEdgeRight).ColorIndex = xlAutomatic

.Borders(xlInsideVertical).LineStyle = xlContinuous

.Borders(xlInsideVertical).Weight = xlHairline

.Borders(xlInsideVertical).ColorIndex = xlAutomatic

.Borders(xlInsideHorizontal).LineStyle = xlContinuous

.Borders(xlInsideHorizontal).Weight = xlHairline

.Borders(xlInsideHorizontal).LineStyle = xlContinuous
End With

Apply a double border to the bottom of the column headings row:

wks.Rows(“3:3”).Select

With appExcel.Selection
.Borders(xlDiagonalDown).LineStyle = xlNone
.Borders(xlDiagonalUp).LineStyle = xlNone
.Borders(xlEdgeLeft).LineStyle = xlNone
.Borders(xlEdgeTop).LineStyle = xlNone

End With

With appExcel.Selection.Borders(xlEdgeBottom)
.LineStyle = xlDouble
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlThick

End With

With appExcel.Selection
.Borders(xlEdgeRight).LineStyle = xlNone
.Borders(xlInsideVertical).LineStyle = xlNone

End With

Sort the data range by country and category:

strDataRange = “A3:I” & CStr(lngRows)
strKey1Range = “A4:A” & CStr(lngRows)
strKey2Range = “B4:B” & CStr(lngRows)
Debug.Print “Data range: “ & strDataRange

65

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 65

wks.Range(strDataRange).Select
wks.Sort.SortFields.Clear
wks.Sort.SortFields.Add Key:=Range(strKey1Range), _

SortOn:=xlSortOnValues, _
Order:=xlAscending, _
DataOption:=xlSortNormal

wks.Sort.SortFields.Add Key:=Range(strKey2Range), _
SortOn:=xlSortOnValues, _
Order:=xlAscending, _
DataOption:=xlSortNormal

With wks.Sort
.SetRange Range(strDataRange)
.Header = xlYes
.MatchCase = False
.Orientation = xlTopToBottom
.SortMethod = xlPinYin
.Apply

End With

Remove the duplicate countries:

Set rng = wks.Range(“A:A”)
For i = 4 To lngRows
Debug.Print rng.Cells(i, 1).Address & “ contains “ _

& rng.Cells(i, 1).Value
If rng.Cells(i, 1) = rng.Cells(i - 1, 1) Then

rng.Cells(i, 1).Font.ColorIndex = 2
ElseIf rng.Cells(i, 1).Value <> strCountry Then

Debug.Print “Different data in “ _
& rng.Cells(i, 1).Address

strCountry = rng.Cells(i, 1).Value
End If

Next i

Remove the duplicate categories:

Set rng = wks.Range(“B:B”)
For i = 4 To lngRows
Debug.Print rng.Cells(i, 1).Address & “ contains “ _

& rng.Cells(i, 1).Value
If rng.Cells(i, 1).Value = rng.Cells(i - 1, 1) Then

rng.Cells(i, 1).Font.ColorIndex = 2
ElseIf rng.Cells(i, 1).Value <> strCategory Then

Debug.Print “Different data in “ _
& rng.Cells(i, 1).Address

strCategory = rng.Cells(i, 1).Value
End If

Next i

66

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 66

Add a Grand Total, and format its cell:

strFormula = “=SUM(R[-” & CStr(lngRows - 2) _
& “]C:R[-1]C)”

Debug.Print “Formula: “ & strFormula
strRange = “I” & CStr(lngRows + 2)
Debug.Print “Range: “ & strRange
wks.Range(strRange).FormulaR1C1 = strFormula
wks.Range(strRange).Select

With appExcel.Selection.Font
.Name = “Calibri”
.Size = 14
.Strikethrough = False
.Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ThemeColor = 2
.TintAndShade = 0
.ThemeFont = xlThemeFontMinor

End With

With appExcel.Selection
.Font.Bold = True
.Borders(xlDiagonalDown).LineStyle = xlNone
.Borders(xlDiagonalUp).LineStyle = xlNone

End With

With appExcel.Selection.Borders(xlEdgeLeft)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlMedium

End With

With appExcel.Selection.Borders(xlEdgeTop)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlMedium

End With

With appExcel.Selection.Borders(xlEdgeBottom)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlMedium

End With

67

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 67

With appExcel.Selection.Borders(xlEdgeRight)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlMedium

End With

With appExcel.Selection
.Borders(xlInsideVertical).LineStyle = xlNone
.Borders(xlInsideHorizontal).LineStyle = xlNone

End With

Save and close the filled-in worksheet, using a workbook save name with the date range:

strSheetName = “Northwind Orders as of “ _
& Format(Date, “d-mmm-yyyy”)

Debug.Print “Sheet name: “ & strSheetName

Write the title with the date range to the worksheet:

wks.Range(“A1”).Value = strSheetName
strSaveName = strDBPath & strSheetName & “.xlsx”
Debug.Print “Time sheet save name: “ & strSaveName

ChDir strDBPath

On Error Resume Next

If there already is a saved worksheet with this name, delete it:

Kill strSaveName

On Error GoTo ErrorHandler
wkb.SaveAs FileName:=strSaveName, _

FileFormat:=xlWorkbookDefault
wkb.Close
rst.Close

Put up a success message with the name and path of the new worksheet:

strTitle = “Workbook created”
strPrompt = strSheetName & vbCrLf & “created in “ _

& strDBPath
MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
‘Excel is not running; open Excel with CreateObject

68

The Office Components and What They Do BestPart I

07_047026 ch03.qxp 4/2/07 9:42 PM Page 68

If Err.Number = 429 Then
Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ _

& Err.Description
Resume ErrorHandlerExit

End If

End Sub

A finished worksheet is shown in Figure 3.13.

FIGURE 3.13

A worksheet filled with data and formatted using VBA code.

Summary
When you need to export Access data to Excel worksheets so that everyone who has Office can
work with them, you can use the techniques discussed in this chapter to export Access data in the
interface, or using VBA code, either to a plain default worksheet, or a formatted worksheet created
from an Excel template.

69

Analyzing Data with Excel 3

07_047026 ch03.qxp 4/2/07 9:42 PM Page 69

07_047026 ch03.qxp 4/2/07 9:42 PM Page 70

Outlook is the Office component that is used for communicating via
email, maintaining a calendar, and storing contact and task informa-
tion. For email and appointments (a set of appointments in a folder

is called a calendar), the Outlook interface is so superior that I recommend
not trying to replicate its functionality in Access, but instead to export Access
data to Outlook, creating email messages, appointments, or other Outlook
items as needed.

Way back in Access 2.0, I created a database to manage tasks, allowing me
to assign them priorities, start and due dates, and notes, and order them by
any of those priorities or dates. Of course, when Outlook was introduced
in Office 97, my Tasks database was no longer needed, because Outlook
includes its own Task List (or To Do List, as it is labeled in Office 2007). All
the features I wanted were built in to the Outlook Task List, so I moved all
my tasks to Outlook and managed them with Outlook’s tools. Because
Outlook does such a good job with tasks, there is no need to store task data
in Access, though in some special circumstances you might need to do this,
and then perhaps export the data to Outlook.

Outlook’s rarely used Journal component, which records the creation of
selected Outlook items, as well as user-entered items, also has little need for
connecting to Access. If you find this component useful (I have used it as part
of my Time & Expense Billing application, to store time slip data), you can
set up the Journal to record various types of Outlook items, and add manual
entries to the Journal as needed. However (as with tasks), there may occasion-
ally be circumstances in which you would need to export Access data to
Outlook journal items, and I describe one of them later in this chapter.

71

IN THIS CHAPTER
Creating Outlook appointments
and tasks from Access data

Writing Access data to the
Outlook Journal

Creating emails to contacts in an
Access table

Organizing and
Communicating with Outlook

08_047026 ch04.qxp 4/2/07 9:42 PM Page 71

If you store email addresses in a table of contacts, customers, or clients, you can use VBA code to cre-
ate emails to them from an Access form, either to a single recipient or a group of recipients, without
having to switch to Outlook.

Contacts are another matter — although Outlook has a Contacts component, with many useful fea-
tures (especially the link to email), nevertheless, Outlook contacts are deficient in one very impor-
tant feature when compared to Access: All Outlook data is stored in a flat-file MAPI table, so you
can’t set up one-to-many relationships between (for example) companies and contacts, or contacts
and phone numbers. If a company moves to another location or changes its name, you have to make
the change manually in each contact for that company; if a contact has more than three addresses,
or a phone number that doesn’t fit into one of the available categories, you are out of luck.

For contacts, you really need both the attractive interface and built-in email connectivity of
Outlook contacts, and the relational database capabilities of Access. This means you need a way to
synchronize data between Outlook and Access contacts; my Synchronizing Contacts.accdb data-
base does just this.

See Chapter 11 for a discussion of the Synchronizing Contacts database. Chapter 8
deals with exporting and importing contacts without synchronization.

This chapter concentrates on exporting tasks, appointments, and journal items from Access to
Outlook and creating emails to contacts stored in an Access table.

The sample database for this chapter is Access to Outlook.accdb.

Exporting Appointments
and Tasks to Outlook
If you have an Access table of employee, contact, or customer information, you may need to create
Outlook appointments or tasks based on information in the table records. The tblEmployees table
in the sample database has two employee review date fields: LastReviewDate and NextReviewDate.
Figure 4.1 shows the frmEmployees form, which is bound to this table.

The next employee review can be scheduled by entering a date in the Next Review Date field and then
clicking the Schedule Appointment button. Code on the BeforeUpdate event of txtNextReviewDate
(listed next) checks that the date entered (or selected using the Calendar pop-up) is a Tuesday or
Thursday (the assumption is that employee reviews are only done on those days):

Private Sub txtNextReviewDate_BeforeUpdate(Cancel As Integer)

On Error GoTo ErrorHandler

Dim strWeekday As String
Dim intWeekday As Integer

NOTENOTE

CROSS-REFCROSS-REF

72

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 72

FIGURE 4.1

An Employees form with review date fields.

Check that a date has been entered (or selected):

If IsDate(Me![NextReviewDate]) = False Then
GoTo ErrorHandlerExit

Else
dteNextReviewDate = CDate(Me![NextReviewDate])
intWeekday = Weekday(dteNextReviewDate)
Select Case intWeekday

Check whether selected date is a weekend day, and put up error message and exit if so:

Case vbSunday, vbSaturday
strTitle = “Wrong day of week”
strPrompt = _

“Reviews can’t be scheduled on a weekend”
MsgBox strPrompt, vbOKOnly + vbExclamation, _

strTitle
Cancel = True
GoTo ErrorHandlerExit

Case vbMonday, vbWednesday, vbFriday

Check whether selected date is the wrong day of the week, and put up error message and exit if so:

strTitle = “Wrong day of week”
strPrompt = “Reviews can only be scheduled on “ _

& “a Tuesday or Thursday”
MsgBox strPrompt, vbOKOnly + vbExclamation, _

73

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 73

strTitle
Cancel = True
GoTo ErrorHandlerExit

Case vbTuesday, vbThursday

Date is a Tuesday or Thursday; put up message and continue:

strTitle = “Right day of week”
strPrompt = “Review date OK”
MsgBox strPrompt, vbOKOnly + vbInformation, _

strTitle

End Select

End If

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

To work with Outlook items in code, you need to set a reference to the Outlook object
library (select Tools ➪ References in the Visual Basic window, as shown in Figure 4.2). To

avoid creating multiple instances of Outlook, I like to use an error handler that will open a new instance
of Outlook using CreateObject if the GetObject function fails because Outlook is not running.

FIGURE 4.2

Setting a reference to the Outlook object library.

NOTENOTE

74

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 74

Once a correct Tuesday or Thursday date has been selected or entered, clicking the Schedule
Appointment button creates three Outlook items: an appointment for the employee, an appoint-
ment for the supervisor (the person the employee reports to), and a task for the supervisor. The
button’s Click event procedure is listed as follows:

Private Sub cmdScheduleAppt_Click()

On Error GoTo ErrorHandler

Dim appOutlook As Outlook.Application
Dim strEmployeeName As String
Dim strSupervisorName As String
Dim appt As Outlook.AppointmentItem
Dim fldTopCalendar As Outlook.Folder
Dim fldContactCalendar As Outlook.Folder
Dim fldSupervisorCalendar As Outlook.Folder
Dim fldTasks As Outlook.Folder
Dim tsk As Outlook.TaskItem
Dim nms As Outlook.NameSpace

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)

Set variables for information to be exported to Outlook:

strTitle = “Missing Information”

If IsDate(Me![txtNextReviewDate].Value) = True Then
dteNextReviewDate = CDate(Me![txtNextReviewDate].Value)

Else
strPrompt = _

“No next review date; can’t create appointment”
MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

End If

strEmployeeName = Me![FirstNameFirst]
strSupervisorName = Nz(Me![cboReportsTo].Column(1))

If strSupervisorName = “” Then
strPrompt = “No supervisor selected; can’t schedule review”
strTitle = “No supervisor”
MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

End If

75

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 75

Set reference to (or create) contact’s calendar:

On Error Resume Next
Set fldTopCalendar = _

appOutlook.Session.GetDefaultFolder(olFolderCalendar)
Set fldContactCalendar = _

fldTopCalendar.Folders(strEmployeeName)
If fldContactCalendar Is Nothing Then

Set fldContactCalendar = _
fldTopCalendar.Folders.Add(strEmployeeName)

End If

Set reference to (or create) supervisor’s calendar:

Set fldSupervisorCalendar = _
fldTopCalendar.Folders(strSupervisorName)

If fldSupervisorCalendar Is Nothing Then
Set fldSupervisorCalendar = _

fldTopCalendar.Folders.Add(strSupervisorName)
End If

On Error GoTo ErrorHandler

Create appointment in contact’s calendar:

Set appt = fldContactCalendar.Items.Add
With appt

.Start = CStr(dteNextReviewDate) & “ 10:00 AM”

.AllDayEvent = False

.Location = “Small Conference Room”

.ReminderMinutesBeforeStart = 30

.ReminderSet = True

.ReminderPlaySound = True

.Subject = “Review with “ & strSupervisorName

.Close (olSave)
End With

Create appointment in supervisor’s calendar:

Set appt = fldSupervisorCalendar.Items.Add
With appt

.Start = CStr(dteNextReviewDate) & “ 10:00 AM”

.AllDayEvent = False

.Location = “Small Conference Room”

.ReminderMinutesBeforeStart = 30

.ReminderSet = True

.ReminderPlaySound = True

.Subject = strEmployeeName & “ review”

.Close olSave
End With

76

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 76

Create task for supervisor (day before the appointment):

Set fldTasks = _
appOutlook.Session.GetDefaultFolder(olFolderTasks)

Set tsk = fldTasks.Items.Add
With tsk

.StartDate = DateAdd(“d”, -1, dteNextReviewDate)

.DueDate = DateAdd(“d”, -1, dteNextReviewDate)

.ReminderSet = True

.ReminderPlaySound = True

.Subject = “Prepare materials for “ & strEmployeeName _
& “ review”

.Close (olSave)
End With

strTitle = “Done”
strPrompt = dteNextReviewDate _

& “ appointments scheduled for “ _
& strEmployeeName & “ (employee) and “ _
& strSupervisorName _
& “ (supervisor) and a task scheduled for “ _
& strSupervisorName

MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

End Sub

The code first attempts to set references to the supervisor’s and employee’s folders under the default
Calendar folder. If there is no folder for the employee (or supervisor), it then creates a new folder
for the employee or supervisor, using the Add method of the Calendar folder’s Folders collection.
Next, the Items collection of the supervisor’s folder is used to create a new item of the default item
type in that folder, and similarly for the employee’s folder. You can also create a new item using the
CreateItem method of the Outlook Application object, but that creates the item in the default
folder; if you want to create an item in a custom folder, you need to use the Add method instead.

You can’t use the Add method directly with an Outlook folder; this method works with
collections, such as the Items collection or the Folders collection.

Finally, you will get a “Done” message (Figure 4.3) reporting on the appointments and task that
have been scheduled.

Figure 4.4 shows several employee and manager folders under the default Calendar folder, and a
supervisor appointment in the daily calendar.

If you don’t see the employee and manager folders, you are probably in another view;
switch to Folder view to see the calendar folders.NOTENOTE

NOTENOTE

77

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 77

FIGURE 4.3

A success message with details about the Outlook items created.

FIGURE 4.4

Employee and supervisor folders and an appointment created from code.

You can double-click the appointment to open it in a separate window.

78

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 78

Exporting Journal Information to Outlook
If you link to or import mainframe transaction or batch processing data into an Access database
table, it may be convenient to export that data to Outlook journal items, for quick reference in the
Outlook interface. The table tblMainframeData in the sample database is an example of such data.
Figure 4.5 shows a portion of this table, with the fields to be exported to Outlook.

FIGURE 4.5

A table of mainframe data to export to Outlook journal items.

The function that exports the mainframe data to Outlook journal items is listed as follows (for con-
venience, this function is run from the macro mcrExportTransactions):

Public Function ExportTransactions()

On Error GoTo ErrorHandler

Dim appOutlook As Outlook.Application
Dim jnl As Outlook.JournalItem
Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strBody As String
Dim strPrompt As String
Dim strTitle As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblMainframeData”)
Do While Not rst.EOF

Set jnl = appOutlook.CreateItem(olJournalItem)

79

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 79

jnl.Subject = rst![Transaction]
jnl.Type = rst![JournalType]
jnl.Companies = rst![Dept]
jnl.Start = rst![TransactionDate]

Create a text string with data from various table fields, for writing to the journal item’s Body field:

strBody = IIf(rst![Debit] > 0, “Debit of “ _
& Format(rst![Debit], “$###,##0.00”) _
& “ for “, “”) & IIf(rst![Credit] > 0, _
“Credit of “ & Format(rst![Debit], _
“$###,##0.00”) & “ for “, “”) _
& “Account No. “ & rst![Account]

Debug.Print “Body string: “ & strBody
jnl.Body = strBody
jnl.Close (olSave)
rst.MoveNext

Loop

strTitle = “Done”
strPrompt = “All transactions exported to Outlook “ _

& “journal items”
MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

ErrorHandler:
‘Outlook is not running; open Outlook with CreateObject
If Err.Number = 429 Then

Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

When Outlook 2007 is first installed, the Journal component is turned off; activate it in
order to see the journal entries created by the preceding procedure.

This function first sets up a DAO recordset based on tblMainframeData and loops through it, creat-
ing a new journal item in the default Journal folder for each record in the table, and setting its
properties from data in the table’s fields. There is a success message when all the data has been
exported. Figure 4.6 shows a journal item created from a transaction record.

To avoid having to create a custom Journal form, the code writes the Dept data to the Companies
(Company in the interface) field of a standard Journal item. Data from several fields is concate-
nated into a String variable, which is written to the Body field (the large textbox at the bottom of
the Journal item).

NOTENOTE

80

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 80

FIGURE 4.6

A journal item created from a record in a table of mainframe transaction data.

Creating Emails from an Access Table
If you have an Access table (say, of customer, client, or contact information) with email addresses,
you can create emails to people in the table directly from an Access form, so you don’t need to
open Outlook to create an email, which can save time. tblContacts in the sample database has an
Email field with the contact’s email address, and the form frmEMail (Figure 4.7) lets you send
emails to contacts selected from a multi-select ListBox.

FIGURE 4.7

A form for selecting contacts as email recipients.

81

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 81

Two buttons let you quickly select (or deselect) all the contacts; once you have selected the email
recipients, and entered the message subject and body, you can click the Create Email Messages but-
ton to create the set of emails and open them for review before sending. A set of email messages is
shown in Figure 4.8.

FIGURE 4.8

A set of email messages created from an Access form.

The code that creates the email messages (and also the code that selects or deselects ListBox items)
is listed here:

Private Sub cmdMergetoEMailMulti_Click()

On Error GoTo ErrorHandler

Set lst = Me![lstSelectContacts]

Check that at least one contact has been selected:

If lst.ItemsSelected.Count = 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

82

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 82

Test for required fields, and exit if any are empty:

strSubject = Me![txtSubject].Value
If strSubject = “” Then

MsgBox “Please enter a subject”
Me![txtSubject].SetFocus
GoTo ErrorHandlerExit

End If

strBody = Me![txtBody].Value
If strBody = “” Then

MsgBox “Please enter a message body”
Me![txtBody].SetFocus
GoTo ErrorHandlerExit

End If

For Each varItem In lst.ItemsSelected

Check for email address:

strEMailRecipient = Nz(lst.Column(1, varItem))
Debug.Print “EMail address: “ & strEMailRecipient
If strEMailRecipient = “” Then

GoTo NextContact
End If

Create new mail message and send to the current contact:

Set appOutlook = GetObject(, “Outlook.Application”)
Set msg = appOutlook.CreateItem(olMailItem)
With msg

.To = strEMailRecipient

.Subject = strSubject

.Body = strBody

.Display
End With

NextContact:
Next varItem

ErrorHandlerExit:
Set appOutlook = Nothing
Exit Sub

ErrorHandler:

Outlook is not running; open Outlook with CreateObject:

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)

83

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 83

Resume Next
Else

MsgBox “Error No: “ & Err.Number _
& “; Description: “ & Err.Description

Resume ErrorHandlerExit
End If

End Sub

Private Sub cmdSelectAll_Click()

On Error GoTo ErrorHandler

Set lst = Me![lstSelectContacts]
lngListCount = Me![lstSelectContacts].ListCount

For lngCount = 0 To lngListCount
lst.Selected(lngCount) = True

Next lngCount

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ _

& Err.Description
Resume ErrorHandlerExit

End Sub

Private Sub cmdDeselectAll_Click()

On Error GoTo ErrorHandler

Set lst = Me![lstSelectContacts]
lngListCount = Me![lstSelectContacts].ListCount

For lngCount = 0 To lngListCount
lst.Selected(lngCount) = False

Next lngCount

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ _

& Err.Description
Resume ErrorHandlerExit

End Sub

84

The Office Components and What They Do BestPart I

08_047026 ch04.qxp 4/2/07 9:42 PM Page 84

If you prefer to send the email messages automatically (without reviewing them),
replace the .Display line in the code with .Send.

Summary
With the techniques presented in this chapter, you can create tasks, appointments, email messages,
or journal items from data in Access tables, allowing you to use Access as a control center, while
making use of Outlook items where they offer a superior interface, or are more widely accessible
for users.

NOTENOTE

85

Organizing and Communicating with Outlook 4

08_047026 ch04.qxp 4/2/07 9:42 PM Page 85

08_047026 ch04.qxp 4/2/07 9:42 PM Page 86

Writing VBA Code to
Exchange Data
between Office
Components

IN THIS PART
Chapter 5
Working with Access Data

Chapter 6
Working with Word Documents
and Templates

Chapter 7
Working with Excel Worksheets

Chapter 8
Working with Outlook Items

Chapter 9
Working with Files and Folders

Chapter 10
Working with External Data

Chapter 11
Synchronizing Access and Outlook
Contacts

Chapter 12
Going Beyond the Basics

09_047026 pt02.qxp 4/2/07 9:43 PM Page 87

09_047026 pt02.qxp 4/2/07 9:43 PM Page 88

In older versions of Microsoft Office, there were two choices for working
with data stored in Access tables. One was the Data Access Objects
(DAO) object model, which was developed specifically to work with

Access data in recordsets (including form recordsets) and to work with table
structure using the Tables (and subsidiary Fields) collections. Because of
these customized features, DAO was the best object model for working with
Access data.

The other choice for working with Access data was (and is) the ADO object
model, introduced with Visual Studio 97, and available for use in Office 2000
and up. This object model is intended for working with data in a wide variety
of sources, including Access databases. Although it lacks some of the cus-
tomized features that make DAO so well suited to Access data, ADO code
works fine for basic data manipulation, where you don’t need to work with
Access form recordsets or create tables and fields (in other words, you are just
working with data in Access tables, not with their structure).

Before the release of Office 2007, word was out that Microsoft was dropping
support for the DAO object model (and indeed you can see statements to
this effect in various online Microsoft documents). I wondered whether ADO
would be updated to work with form recordsets, and the Tables (and sub-
sidiary Fields) collection (or some alternate method for creating tables and
their fields programmatically), because there are situations when you need
these features of DAO, while working in an Access database, or creating an
Access add-in.

89

IN THIS CHAPTER
Using the old and new DAO
object models to work with
Access data

Working with Access databases
in formats from 2000 to 2007

Using the ADO object model to
work with Access data

Converting DAO code to
ADO code

Working with Access Data

10_047026 ch05.qxp 4/2/07 9:43 PM Page 89

DAO library references older than 3.6 are not supported in Access 2007. This means
that if you have references to older DAO versions in any older format databases you

want to work with in Access 2007, you will need to reset these references to DAO 3.6. Databases that
were created in Access 2000 format with a DAO 3.6 reference, when opened in Access 2007, still
have a reference set to the DAO 3.6 object model (as shown in Figure 5.1), and their DAO code com-
piles and runs. The same is true of Access 2002/2003 format databases opened in Access 2007.

FIGURE 5.1

A reference to the DAO 3.6 object model in an Access 2000 database opened in Access 2007.

As it turned out, the DAO object model is still supported, though with some changes. If you convert
an earlier format database to Access 2007 format, or create a new Access 2007 database, by default
it has a reference to the Microsoft Office 2007 Access database engine object model (file name:
ACCESS 2007 DAO.DLL). This new object model (which I will hereafter reference as Access 2007
DAO) has the same core functionality as DAO 3.6 (with a few differences, which are discussed in
the “New Objects in the Access 2007 DAO Object Model” section), and the same object model
abbreviation (DAO) for use in declarations, so Microsoft hasn’t really pulled DAO after all — instead,
they renamed it, added a new object and a few new attributes, and hid some of the components that
are not directly related to working with Access data.

This means that all your old DAO code will run the same as before, so you don’t need to convert it
to ADO (though of course you can, if you want to use the more modern ADO object model), and if
you are working with an Access 2007 database, you will have a few new object model components
that represent the new features in Access 2007.

The sample database for this chapter is DAO and ADO Sample Code.accdb. In addition,
some of the code references the sample database Northwind 2007.accdb, which

you can create by double-clicking the Northwind.accdt template in the C:\Program Files\
Microsoft Office\Templates\1033\Access folder.

NOTENOTE

NOTENOTE

90

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 90

FIGURE 5.2

The default Access 2007 DAO reference in a new Access 2007 database.

Working with Older Format Databases
in Access 2007
Even if you are currently using Access 2007, you may still be working with Access 2002/2003 for-
mat databases (or even Access 2000 format databases) for a while. Access 2007 supports working
with these older database formats in read/write mode, and you may need to do this — for example,
if you are working on a database for a client running an older version of Office. So long as you
don’t need to use any of the new features introduced in Access 2007 (such as multi-valued lookup
fields, or rich text in Memo fields and attachments), you can continue to work with databases in
2000 or 2002/2003 format in Access 2007 without converting them to the new database format.

Disambiguating References to Object Model
Components
When DAO was the only object model you could use to work with Access data, when you declared
DAO objects there was no need to indicate which object model your objects belonged to — you
could just declare a recordset variable as Recordset, or a field variable as Field (as in the following
declarations), and your code would work fine:

Dim rst as Recordset
Dim fld as Field

But since the introduction of the ADO object model, you may run into problems with such decla-
rations, because certain object names are used in both of these object models. This is true of the

91

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 91

new Access 2007 DAO object model as well as the old DAO object model. If you compare the
DAO (or Access 2007 DAO) and ADO object models, you will see Recordset, Parameter, and Field
objects in both.

When your code is compiled, if the declarations don’t include the object model, the first reference
in the list of references that contains that object name is used, and it may not be the right one. In
Access 2000 and XP (perhaps prematurely), new databases had a default reference only to the ADO
object model, which led to many problems for users and developers who were working primarily
or exclusively with DAO (see Figure 5.3). However, if you create a new database in Access 2003, in
the Access 2002/2003 database format, by default it will have references set to both the DAO and
ADO object models, in that order, as shown in Figure 5.4.

FIGURE 5.3

The default references for a new Access 2002 (XP) database.

This means that all Recordset, Field, and Parameter variables declared without an object model ref-
erence will be interpreted as belonging to the DAO object model, which may not be correct.

If your database was first created in Access 2000 or XP, and you didn’t set a reference to the DAO
object model, you will have the opposite problem — Recordset, Field, and Parameter variables will
be interpreted as belonging to the ADO object model, which could cause problems when working
with DAO object properties and methods.

92

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 92

FIGURE 5.4

The default references for a new Access 2003 database.

When using one of the Find* search methods (FindFirst, FindNext, and so forth),
save the search string to a variable, and display it in the Immediate window using a

Debug.Print statement; this will be very helpful in debugging any problems because it shows you
exactly what expression is being used for the search.

If you are working on a database originally created several Access versions ago, it might have
ambiguous declarations such as:

Dim dbs As Database
Dim rst As Recordset

As a demonstration of possible problems, the following procedure sets up a recordset and uses
FindFirst to locate the first match for “Microsoft” in the CompanyID field:

Private Sub TestFindFirst()

Dim dbs As Database
Dim rst As Recordset
Dim strSearch As String

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(Name:=”tblCompanyIDs”, _

Type:=dbOpenDynaset)
strSearch = “[CompanyID] = “ & Chr$(39) _

& “Microsoft” & Chr$(39)
Debug.Print “Search string: “ & strSearch
rst.FindFirst strSearch

End Sub

TIPTIP

93

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 93

If you have a reference set only to the ADO object model, this code won’t even compile, and you
will get a “User-defined type not defined” error. If you have references set to both object models,
and the ADO reference is first, you will get a different error, this time on the line with the
FindFirst method reference: “Method or data member not found.” If you have just a DAO refer-
ence, or the DAO reference is positioned above the ADO reference, the code will compile and run.

If you get a “User-defined type not defined” or “Method or data member not found”
error message when compiling code, this is almost always an indication of a missing or

incorrect object model version reference.

A more subtle problem could result from an ambiguous declaration of the Field object. There is a
Field object in both the ADO and DAO object models, but it has different properties and methods
in each object model (see Figures 5.5 and 5.6), so a line of code referencing a Field property could
lead to an error if that property is not supported in the object model that is being used.

Although the Access 2007 interface is very different than the interface you might be
used to, which has remained pretty much the same from Access 2000 through Access

2003, the Visual Basic (Modules) window is unchanged, except that the mouse wheel now works
(about time!).

NOTENOTE

TIPTIP

94

Writing VBA Code to Exchange Data between Office ComponentsPart II

Using the Object Browser

The Object Browser is a very useful tool for examining object models and their components. It can
be opened from a Visual Basic window in Access, Word, Excel, or Outlook from a command on

the View menu or by pressing the F2 key. The drop-down list at the top-left lists the available object
libraries (corresponding to the references you have set in the database); the lower drop-down list is
a search box where you can enter the name of an object model component or attribute to search for;
clicking the binoculars button starts the search, and the results are displayed in the Search Results
box, as in the following figure. The Classes list shows the members of the selected object library, and
the Members of ‘Field’ list shows the attributes (properties, methods, and events) of the selected
object model component.

If you click the yellow question mark button, you will usually get a Help topic for the selected object
or attribute, but you can’t depend on this — sometimes all you get is a blank Help window. In the
case of ADO, in previous versions of Access, if you set a reference to the most recent version of this
library (2.8 at that time), you would get blank Help pages; if you set a reference to ADO 2.5, how-
ever, you would get the appropriate Help topic. In Access 2007, if you set a reference to the highest
version of ADO (6.0), you will get an “Unable to display Help” error message on clicking the Help
button. If you set a reference to ADO 2.5, clicking the Help button opens the “Browse Access
Developer Help” screen, rather than the specific Help topic for the selected object model compo-
nent or attribute.

Figure 5.5 shows the attributes of the ADO Field object in the Object Browser.

10_047026 ch05.qxp 4/2/07 9:43 PM Page 94

FIGURE 5.5

The attributes of the Field object in the ADO object model.

There are many more properties for the Field object in the DAO object model (Figure 5.6), corre-
sponding to specific Access field properties; the ADO Field properties are more generic, because
ADO supports data in many different applications.

The solution to the ambiguous reference problems discussed previously is simple: include the object
model name in declarations of DAO and ADO variables, as in the following declarations for DAO
variables (either DAO 3.6 or Access 2007 DAO). This is called disambiguating the declarations:

Dim rst as DAO.Recordset
Dim fld as DAO.Field

Here is the ADO version (note that the object model name is not ADO, as you might think, but
ADODB):

Dim rst as ADODB.Recordset
Dim fld as ADODB.Field

95

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 95

FIGURE 5.6

The attributes of the Field object in the DAO object model.

I prefer to always include the object model name in declarations, even if the object in question
only appears in one object model, for consistency and in case that object name might be used in
some other object model I might need to reference in the future.

The DAO Object Model (Old and New)
The DAO 3.6 object model (shown in Figure 5.7) has been listed as deprecated by Microsoft,
which generally means that it will soon be obsolete (not supported). Yet DAO 3.6 is still supported
in Access 2007, at least for databases created in Access 2000 or Access 2002/2003 format, so it is
worth documenting, because you may need to continue working with older format databases for
compatibility with other users who have not yet upgraded to Access 2007.

The DAO object model has many components; for purposes of this book, I will examine in detail
only the main components used to reference Access data — Databases, QueryDefs, Recordsets, and
TableDefs.

The new Access 2007 DAO object model omits (actually, hides) some of the less frequently used
components of the DAO 3.6 object model, and adds a few new ones. This object model is now
specifically focused on working with data in Access tables, always its strong point.

96

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 96

FIGURE 5.7

The DAO 3.6 object model.

New Objects in the Access 2007 DAO Object Model
There are three new objects in the new object model: ComplexType, Field2, and
Recordset2. These objects are described in the following sections.

ComplexType
The ComplexType object represents a multi-valued field and has its own Fields collection to hold
the values.

Field2
This object represents a field in an Access 2007 database. It has the new attributes outlined in
Table 5.1, as compared with the Field property, representing a field in an Access 2000 or Access
2002/2003 database.

DBEngine

Errors

Workspaces

Error

Workspace

Databases Database

Containers Container

Documents Document

Recordsets Recordset

Fields Field

Relations Relation

Fields Field

Groups Group

Users User

Users User

Groups Group

TableDefs TableDef

Fields Field

Indexes Index

Fields Field

QueryDefs QueryDef

Fields Field

Parameters Parameter

97

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 97

TABLE 5.1

New Attributes of the Field2 Object

Attribute Type Name Notes

Property AppendOnly Gets or sets a Boolean value that indicates whether the specified
field is set to append new values to the existing contents of the field
as they are added (Read/Write).

Property ComplexType Represents a multi-valued field (Read-only).

Property IsComplex Returns a Boolean value that indicates whether the specified field is
a multi-valued data type (Read-only).

Method LoadFromFile Loads the specified file from disk.

Method SaveToFile Saves an attachment to disk.

Recordset2
The Recordset2 object represents a recordset based on Access 2007 data. Compared with the
old Recordset object, it has only one new property, ParentRecordset, representing the par-
ent Recordset of the specified recordset.

Hidden Objects in the Access 2007 DAO Object Model
The properties and methods listed in Table 5.2 are hidden in the new Access 2007 DAO object
model. The Container, DBEngine, and Workspace objects are visible; only the listed properties and
methods for these objects are invisible. The Group and User objects and the Groups and Users col-
lections are entirely invisible.

TABLE 5.2

Database Components Hidden in the Microsoft Office 2007
Access Database Engine Object Model

Collection or Object Properties Methods Constants

Container AllPermissions

Inherit

Owner

Permissions

UserName

DBEngine SystemDB

98

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 98

Collection or Object Properties Methods Constants

Group/Groups

User/Users

Workspace Groups CreateGroup

UserName CreateUser

Users

WorkspaceTypeEnum dbUseODBC

Databases
When working with Access data, a DAO Database object represents (no surprise!) an Access data-
base. (For working with other types of data, use the ADO object model.) To reference the current
database, you can use the CurrentDb method of the Access Application object, after declaring the
appropriate DAO Database variable, as in the following code:

Dim dbs as DAO.Database

Set dbs = CurrentDb

If you need to reference an external database, use the OpenDatabase method, with the name of
an open database as its argument, as in the following code:

Dim dbs As DAO.Database
Dim strDBName As String

strDBName = “E:\Documents\Northwind.mdb”
Set dbs = OpenDatabase(Name:=strDBName)

Once the database is open, you can proceed to work with it, using the Recordsets, QueryDefs, and
TableDefs collections.

Recordsets
Recordsets are used to manipulate data in Access databases; they represent the records in tables or
queries in a database. There are five types of DAO recordsets, with different properties, as described
in the following sections. Specify the recordset type by using the appropriate constant for the type
argument when creating a recordset, as in the following code:

Set rst = dbs.OpenRecordset(Name:=”tblOrders”, _
Type:=dbOpenDynaset)

Table 5.3 lists the named constants corresponding to the five recordset types (and their numeric
equivalents). These named constants are used in VBA code; some dialects of Visual Basic, such as

99

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 99

VBScript (VBS), don’t support named constants, so you need to use the numeric values instead, for
example when writing Outlook VBS code or Windows Script Host (WSH) code.

See Chapter 17 for examples of WSH code.

TABLE 5.3

DAO Recordset Type Named Arguments

Recordset Type Named Constant Numeric Value

Table dbOpenTable 1

Dynaset dbOpenDynaset 2

Snapshot dbOpenSnapshot 4

Forward-only dbOpenForwardOnly 8

Dynamic dbOpenDynamic 16

If you don’t specify a recordset type, DAO assumes first that you intend to create a table-type
recordset, and if that is impossible, then a dynaset, then a snapshot, then a forward-only recordset.
The table- and dynaset-type recordsets are the most commonly used types.

Table
Table-type recordsets represent base tables (that is, tables located within the database from which
the code is running, as opposed to linked tables). You can add, edit, or delete records from a table
using a table-type recordset. These recordsets don’t support the Find methods (FindFirst,
FindLast, FindNext, FindPrevious); instead they support the Seek method.

To run one of the procedures in the DAO and ADO Sample Code database, place your
cursor inside the procedure and press F5, or select Run Sub/UserForm from the Run

menu in the Visual Basic window.

If you don’t get a response when pressing a function key, function keys may be disabled;
some newer keyboards disable function keys by default. To enable function keys, press

the F Lock key.

The following code segment searches for the record with a specific value (retrieved from an
InputBox) in the CompanyID field and, if it is found, displays the value in the ID/AccountNumber
field for that record in a message box:

Private Sub ListID()

Dim dbs As DAO.Database
Dim rst As DAO.Recordset

TIPTIP

NOTENOTE

CROSS-REFCROSS-REF

100

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 100

Dim strValue As String
Dim strPrompt As String
Dim strTitle As String

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(Name:=”tblCompanyIDs”, _

Type:=dbOpenTable)
rst.Index = “CompanyID”

EnterID:
strValue = InputBox(prompt:=”Please enter a company ID”, _

Title:=”Company ID”, Default:=”TEAC”)
rst.Seek Comparison:=”=”, key1:=strValue
If rst.NoMatch = True Then

strPrompt = “Couldn’t find “ & strValue & _
“; please try again”

strTitle = “Search failed”
MsgBox prompt:=strPrompt, Buttons:=vbCritical _

+ vbOKOnly, Title:=strTitle
GoTo EnterID

Else
strPrompt = “The first ID for “ & strValue _

& “ is “ & rst![ID/AccountNumber]
strTitle = “Search succeeded”
MsgBox prompt:=strPrompt, Buttons:=vbOKOnly _

+ vbInformation, Title:=strTitle
End If

End Sub

Figure 5.8 shows the message box with the ID for the selected company.

FIGURE 5.8

A message box displaying an ID for a selected company.

Dynaset
Dynaset-type recordsets represent the results of updatable queries, possibly based on more than
one table. You can use these recordsets to add, edit, or delete records from one or more base tables.
Dynaset-type recordsets support the more flexible Find methods (FindFirst, FindLast,

101

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 101

FindNext, FindPrevious); unlike the Seek method for table-type dynasets, you don’t need to
set an index, and you can search for a value in any field in the recordset. Here is an example in
which the code searches for the last record with a matching value in the IDLabel field and displays
the Company ID for that record in a message box:

Private Sub ListCompany()

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strValue As String
Dim strPrompt As String
Dim strTitle As String
Dim strSearch As String

EnterID:
strValue = InputBox(prompt:=”Please enter an ID label”, _

Title:=”ID Label”, Default:=”E-Mail Address”)
strSearch = “[IDLabel] = “ & Chr$(39) & strValue _

& Chr$(39)
Debug.Print “Search string: “ & strSearch

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(Name:=”tblCompanyIDs”, _

Type:=dbOpenDynaset)
rst.FindLast strSearch
If rst.NoMatch = True Then

strPrompt = “Couldn’t find “ & strValue & _
“; please try again”

strTitle = “Search failed”
MsgBox prompt:=strPrompt, Buttons:=vbCritical _

+ vbOKOnly, Title:=strTitle
GoTo EnterID

Else

102

Writing VBA Code to Exchange Data between Office ComponentsPart II

Argument Styles

When writing VBA code, you have two style choices: using argument names (as I do in most of
the procedures in this book), which is more verbose, but allows you to skip arguments with-

out causing syntax errors; or omitting argument names, in which case you have to make sure you
have the right number of commas between arguments, with the spaces between commas represent-
ing the arguments you aren’t using. I prefer using argument names for clarity, even though it makes
my code a little longer.

If you use one argument name, you must use argument names for all the arguments of a function or
method you use — mix and match is not permitted.

10_047026 ch05.qxp 4/2/07 9:43 PM Page 102

strPrompt = “The last Company ID for “ & strValue _
& “ is “ & rst![CompanyID]

strTitle = “Search succeeded”
MsgBox prompt:=strPrompt, Buttons:=vbOKOnly _

+ vbInformation, Title:=strTitle
End If

End Sub

Snapshot
A snapshot-type recordset is a read-only copy of a set of records, useful only for viewing data or
generating reports. The following procedure moves through a recordset based on a table, writing
the values in several fields to the Immediate window, using the VB constants vbCrLf and vbTab
to create line breaks and indents for better readability:

Private Sub ListValues()

Dim dbs As DAO.Database
Dim rst As DAO.Recordset

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(Name:=”tblCompanyIDs”, _

Type:=dbOpenSnapshot)
Do While Not rst.EOF

Debug.Print “Company ID: “ & rst![CompanyID] _
& vbCrLf & vbTab & “ID Label: “ & rst![IDLabel] _
& vbCrLf & vbTab & “ID/Account No.: “ _
& rst![ID/AccountNumber] & vbCrLf

rst.MoveNext
Loop

End Sub

The results of running this procedure for two records are listed as follows:

Company ID: MS Office & VBA
ID Label: CIS ID
ID/Account No.: 70304,3633

Company ID: Fisher Consulting
ID Label: E-Mail Address
ID/Account No.: Rfisher@RickWorld.com

Unlike table-type and dynaset-type recordsets, you can work with a snapshot-type recordset even if
the underlying table is open, which can occasionally be useful.

103

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 103

Forward-only
Forward-only recordsets are similar to snapshot-type recordsets, except that you only move
through the records in a forward direction.

Dynamic
Dynamic recordsets represent the results of updatable queries, possibly based on more than one
table. You can use these recordsets to add, edit, or delete records from one or more base tables, and
so can other users.

QueryDefs
QueryDefs correspond to queries in the Access interface. Though you can create dynaset-type
recordsets based directly on queries, and for select queries that works fine, QueryDefs offer extra
functionality: you can create a query on the fly, in VBA code (for example, to filter by a value
entered or selected on a form), and then use that QueryDef as the data source for a recordset. You
can even create a make-table query in code, and execute it to create a table, for circumstances
where you need a table to work with. This eliminates the need for numerous filtered queries, and
also lets you work around various problems with creating recordsets based on parameter queries.

The following procedure creates a QueryDef programmatically, using a SQL string as the data
source, and returns the number of records; it is useful in determining whether there are any
records in a filtered query, before taking an action. I call this procedure frequently in code in the
sample databases for this book:

Public Function CreateAndTestQuery(strTestQuery As String, _
strTestSQL As String) As Long

On Error Resume Next

Delete old query:

Set dbs = CurrentDb
dbs.QueryDefs.Delete strTestQuery

On Error GoTo ErrorHandler

Create new query:

Set qdf = dbs.CreateQueryDef(Name:=strTestQuery, _
sqltext:=strTestSQL)

Test whether there are any records:

Set rst = dbs.OpenRecordset(Name:=strTestQuery)
With rst

104

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 104

.MoveFirst

.MoveLast
CreateAndTestQuery = .RecordCount

End With

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err.Number = 3021 Then

CreateAndTestQuery = 0
Resume ErrorHandlerExit

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Here is a typical code segment using the CreateAndTestQuery function:

strInventoryCode = Me![InventoryCode]
strQuery = “qryTemp”
Set dbs = CurrentDb
strSQL = “SELECT * FROM tblInventoryItemsComponents _

WHERE [InventoryCode] = “ & Chr$(39) _
& strInventoryCode & Chr$(39) & “;”

Debug.Print “SQL for “ & strQuery & “: “ & strSQL
lngCount = CreateAndTestQuery(strQuery, strSQL)
Debug.Print “No. of items found: “ & lngCount
If lngCount = 0 Then

strPrompt = “No records found; canceling”
strTitle = “Canceling”
MsgBox strPrompt, vbOKOnly + vbCritical, strTitle
GoTo ErrorHandlerExit

Else
‘Further code here to work with the newly created query

End If

The code creates a SQL string filtered by a value picked up from a form, and uses that string and a
query name as arguments for the CreateAndTestQuery function. That function returns the num-
ber of records; if there are no records (the function returns zero), the code exits; otherwise, it can
continue to perform some action on the query created by the CreateAndTestQuery function.

You can also create a QueryDef and use it directly to create a recordset, as in the following line
of code:

Set rst = qdf.OpenRecordset

105

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 105

Argument names are inconsistently capitalized in VBA code. Regardless of how you type
them in, when your cursor leaves the line of code, some argument names are capitalized

(such as “Name”) and some are not (such as “sqltext”). The capitalization does not match the capital-
ization of the arguments in their Help topics, where they are usually represented as all lowercase.

You can also create a QueryDef corresponding to an action query and run it directly from code, to
create a table for use elsewhere in the code instead of a parameter query, to avoid errors that will
occur if a query criterion is looking for a value on a form that is closed when the code runs:

strFilter = “[InvoiceDate] = #” & dteDue & “#”
strSQL = “SELECT [InvoiceNo], InvoiceDate, _

Customer, Employee “ _
& “INTO tmakMatchingRecords “ _
& “FROM tblInvoices “ _
& “ WHERE “ & strFilter & “;”

Debug.Print “SQL string: “ & strSQL
Set qdf = dbs.CreateQueryDef(Name:=strQuery, _

sqltext:=strSQL)
qdf.Execute

You can create a QueryDef without a name, using just double quotes, as in this line
of code:

Set qdfTemp = dbs.CreateQueryDef(Name:=””, _
sqltext:=strSQL)

However, I generally prefer to create a named query, so I can examine it in the interface for debug-
ging purposes, if necessary.

TableDefs and Fields
TableDefs correspond to tables in the interface. Although it is much more common to need to cre-
ate a query programmatically, sometimes you may need to create a table in code. When you create
a new table, you also need to create fields for it. The following code creates a new table in an exter-
nal database, with several fields of different data types. Each field is created (and its default value
set, for two of them), and is then appended to the new table. An error handler returns the user to
the input box where the new table name is entered, in case a table of that name already exists in
the database. Finally, all the TableDefs in the database are listed to the Immediate window, with the
new table as the last entry in the list:

Private Sub NewTable()

On Error Resume Next

Dim dbsNorthwind As DAO.Database
Dim tdfNew As DAO.TableDef
Dim fld As DAO.Field

TIPTIP

NOTENOTE

106

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 106

Dim strDBName As String
Dim strDBNameAndPath As String
Dim strPrompt As String
Dim strTitle As String
Dim strTable As String
Dim strCurrentPath As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File

strCurrentPath = Application.CurrentProject.Path & “\”
strDBName = “Northwind 2007.accdb”
strDBNameAndPath = strCurrentPath & strDBName

Attempt to find database, and put up a message if it is not found.

Set fil = fso.GetFile(strDBNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & “ in “ _
& strCurrentPath

& “; to create this database, double-” _
& “click the Northwind.accdt template in the “ _
& “C:\Program Files\Microsoft

Office\Templates\1033\Access folder”
MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler
Set dbsNorthwind = OpenDatabase(Name:=strDBNameAndPath)

NameNewTable:
strPrompt = “Please enter new table name”
strTitle = “Table name”
strTable = InputBox(prompt:=strPrompt, Title:=strTitle, _

Default:=”tblNew”)

With dbsNorthwind

Create new table.

Set tdfNew = _
dbsNorthwind.CreateTableDef(Name:=strTable)

Create fields and append them to new table.

With tdfNew
Set fld = .CreateField(Name:=”EmployeeID”, _

Type:=dbLong)

107

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 107

.Fields.Append fld
Set fld = .CreateField(Name:=”Department”, _

Type:=dbText, Size:=14)
.Fields.Append fld
Set fld = .CreateField(Name:=”Shift”, _

Type:=dbText, Size:=20)
.Fields.Append fld
Set fld = .CreateField(Name:=”AnnualBonus”, _

Type:=dbCurrency)
fld.DefaultValue = 500
.Fields.Append fld
Set fld = .CreateField(Name:=”ShiftSupervisor”, _

Type:=dbBoolean)
fld.DefaultValue = False
.Fields.Append fld

End With

Add the new table to the TableDefs collection.

.TableDefs.Append Object:=tdfNew
End With

List the TableDefs in the database after appending the new table.

Debug.Print “TableDefs in “ & dbsNorthwind.Name
For Each tdf In dbsNorthwind.TableDefs

Debug.Print vbTab & tdf.Name
Next tdf

dbsNorthwind.Close

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err.Number = 3010 Then

strPrompt = “Table name already used; “ _
& “please enter another name”

strTitle = “Duplicate table name”
MsgBox prompt:=strPrompt, _

Buttons:=vbExclamation + vbOKOnly, Title:=strTitle
GoTo NameNewTable

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ _

& Err.Description
Resume ErrorHandlerExit

End If
End Sub

108

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 108

Here is the list of tables as printed to the Immediate window by the NewTable procedure:

MSysAccessStorage
MSysACEs
MSysComplexColumns
MSysNavPaneGroupCategories
MSysNavPaneGroups
MSysNavPaneGroupToObjects
MSysNavPaneObjectIDs
MSysObjects
MSysQueries
MSysRelationships
Order Details
Orders
Products
Shippers
Suppliers
tblNew

If you open tblNew in datasheet view, you will see a zero in the ShiftSupervisor Boolean
field. If you prefer to see True/False or Yes/No values, you will have to select the format

of your choice manually; the CreateField method does not have an argument for setting the dis-
play format for a field.

NOTENOTE

109

Working with Access Data 5

Other Ways of Creating Tables Programmatically

In addition to the CreateTableDef method, there are three other ways to create Access tables in
VBA code:

n The CopyObject method of the DoCmd object in the Access object model creates a new
table based on an existing table.

n Executing a make-table query using the OpenQuery or RunSQL method of the DoCmd
object, or the Execute method of QueryDef object, creates a new table as the output of
the query.

n A Jet SQL CREATE TABLE statement, as in the following code, can be used to create a
table:

strSQL = “CREATE TABLE “ & “tblForms” & _
“(FormName TEXT (100), Use YESNO);”

DoCmd.RunSQL strSQL

Compared with these techniques, the CreateTableDef method gives you the maximum control
over the new table’s fields and their properties. However you create a table, it will be appended to
the TableDefs collection, and it will show up in the Tables group of the database window.

10_047026 ch05.qxp 4/2/07 9:43 PM Page 109

The ADO Object Model
The ADO object model is much simpler than the DAO object model; it is used to connect to a
wide variety of data sources, so it is not customized to Access data, as the DAO object model is.
However, with a few exceptions (working with form recordsets and creating tables programmati-
cally), you can manipulate Access data with ADO much the same as with DAO.

Connection
Although the ADO object model is not hierarchical (unlike the DAO object model), the
Connection object is the foundation object, because connections are the link to data in databases.

In DAO recordsets, the BOF property represents the beginning of the recordset
(Beginning Of File), and the EOF (End Of File) property represents the end.

The handy NoMatch property of DAO recordsets is missing from ADO; instead, you have to deter-
mine whether or not a search succeeded by examining where the cursor is. For example, in doing
a Find, starting from the beginning of the recordset (BOF) and moving forward, if the cursor ends
up at the end of the recordset (EOF), the search was unsuccessful. Here is some sample code to
illustrate this technique; if the search is successful, this means that the proposed new category
name has already been used, whereas if the cursor ends up at the end of the recordset (EOF), the
search was unsuccessful, and the new record can be created using the new category name in the
strSearch variable (the code segment is part of the TestKeysetOptimistic procedure,
which is listed later in this chapter):

rst.Find strSearch
If rst.EOF = False Then

strPrompt = Chr$(39) & strCategory _
& Chr$(39) & “ already used; “ _
& “please enter another category “ _
& “name”

strTitle = “Category used”
MsgBox prompt:=strPrompt, _

Buttons:=vbExclamation + vbOKOnly, _
Title:=strTitle

GoTo CategoryName

The Tables collection and form recordsets are not supported in ADO, so you will need to continue to
use DAO (either the old DAO 3.6 or the new Access 2007 DAO object model) to work with them.

If you don’t close and set to Nothing DAO database or recordset objects, it is extremely
unlikely that you will have any problems; however, if you leave ADO connections and

recordsets open, the next time you run the code, you may get this error message (with your logon
name and computer name), and you will have to close down and reopen the database to get the code
working again: “The database has been placed in a state by user ‘Admin’ on machine
‘DELL_DIMEN_8300’ that prevents it from being opened or locked.” The sample ADO procedures have
code to close any open connection or recordset in their error handlers.

TIPTIP

NOTENOTE

110

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 110

The syntax for creating a connection to the current database is simple:

Dim cnn As ADODB.Connection

Set cnn = CurrentProject.Connection

The ADO syntax for working with a recordset in an external database is a little different; you have
to specify the database path and file name, and specify the Microsoft Jet 4.0 provider, as in the pro-
cedure listed as follows, which uses a SQL string to create a recordset:

Private Sub OpenRecordsetSQL()

On Error Resume Next

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strDBName As String
Dim strConnectString As String
Dim strSQL As String
Dim strDBNameAndPath As String
Dim strCurrentPath As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File
Dim strPrompt As String

Create connection to an external database.

strCurrentPath = Application.CurrentProject.Path & “\”
strDBName = “Northwind.mdb”
strDBNameAndPath = strCurrentPath & strDBName

Attempt to find the database, and put up a message if it is not found.

Set fil = fso.GetFile(strDBNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & “ in “ _
& strCurrentPath & “; please copy it from the “ _
& “Office11\Samples subfolder under the main “ _
& “Microsoft Office folder “ _
& “of an earlier version of Office”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set cnn = New ADODB.Connection
Set rst = New ADODB.Recordset

111

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 111

Need to specify the Jet 4.0 provider for connecting to Access .mdb format databases.

With cnn
.Provider = “Microsoft.Jet.OLEDB.4.0”
.Open strDBNameAndPath
strConnectString = .ConnectionString

End With

Use a SQL string to create a filtered recordset.

strSQL = “SELECT CompanyName, ContactName, “ _
& “City FROM Suppliers “ _
& “WHERE Country = ‘Australia’ “ _
& “ORDER BY CompanyName;”

rst.Open Source:=strSQL, _
ActiveConnection:=strConnectString, _
CursorType:=adOpenStatic, _
LockType:=adLockReadOnly

Iterate through the recordset, and print values from fields to the Immediate window.

With rst
.MoveLast
.MoveFirst
Debug.Print .RecordCount _

& “ records in recordset” & vbCrLf
Do While Not .EOF

Debug.Print “Australian Company name: “ _
& ![CompanyName] _
& vbCrLf & vbTab & “Contact name: “ _
& ![ContactName] _
& vbCrLf & vbTab & “City: “ & ![City] _
& vbCrLf

rst.MoveNext
Loop

End With

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

112

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 112

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Command
The ADO Command object represents SQL commands, roughly equivalent to queries in Access
databases, or QueryDefs in the DAO object model. You don’t need to use this object to query or fil-
ter Access data; this can be done using a SQL statement (as in the preceding code segment) or the
name of a saved query for the Source argument when opening a recordset. However, the Command
object can be useful when you want to reuse a command later in the code, or if you need to pass
detailed parameter information with the command.

The procedure uses a Command object to create a recordset, which can be used later in the code:

Private Sub OpenRecordsetCommand()

On Error Resume Next

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim cmdSQL As ADODB.Command
Dim strDBName As String
Dim strConnectString As String
Dim strSQL As String
Dim strCursorType As String
Dim strLockType As String
Dim strDBNameAndPath As String
Dim strCurrentPath As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File
Dim strPrompt As String

Create connection to an external database.

strCurrentPath = Application.CurrentProject.Path & “\”
strDBName = “Northwind.mdb”
strDBNameAndPath = strCurrentPath & strDBName

113

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 113

Attempt to find the database, and put up a message if it is not found.

Set fil = fso.GetFile(strDBNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & “ in “ _
& strCurrentPath & “; please copy it from the “ _
& “Office11\Samples subfolder under the main “ _
& “Microsoft Office folder “ _
& “of an earlier version of Office”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set cnn = New ADODB.Connection
Set rst = New ADODB.Recordset

Need to specify the Jet 4.0 provider for connecting to Access .mdb format databases.

With cnn
.Provider = “Microsoft.Jet.OLEDB.4.0”
.Open strDBNameAndPath
strConnectString = .ConnectionString

End With

Set cmdSQL = New ADODB.Command
Set cmdSQL.ActiveConnection = cnn

Use a SQL string to create a command.

strSQL = “SELECT CompanyName, ContactName, “ _
& “City FROM Suppliers “ _
& “WHERE Country = ‘Sweden’ “ _
& “ORDER BY CompanyName;”

cmdSQL.CommandText = strSQL
Set rst = cmdSQL.Execute

Check cursor and lock type of recordset.

strCursorType = Switch(rst.CursorType = _
adOpenDynamic, _
“Dynamic (“ & adOpenDynamic & “)”, _
rst.CursorType = adOpenForwardOnly, _
“Forward-only (“ _
& adOpenForwardOnly & “)”, _
rst.CursorType = adOpenKeyset, “Keyset (“ _
& adOpenKeyset & “)”, _
rst.CursorType = adOpenStatic, “Static (“ _
& adOpenStatic & “)”)

114

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 114

strLockType = Switch(rst.LockType = _
adLockOptimistic, _
“Optimistic (“ & adLockOptimistic & “)”, _
rst.LockType = adLockReadOnly, “Read-only (“ _
& adLockReadOnly & “)”, _
rst.LockType = adLockBatchOptimistic, _
“BatchOptimistic (“ _
& adLockBatchOptimistic & “)”, _
rst.LockType = adLockPessimistic, _
“Pessimistic (“ _
& adLockPessimistic & “)”)

Debug.Print “Recordset cursor/lock type: “ _
& strCursorType & “, “ & strLockType & vbCrLf

Iterate through the recordset, and print values from fields to the Immediate window.

With rst
.MoveFirst
Do While Not .EOF

Debug.Print “Swedish Company name: “ _
& ![CompanyName] _
& vbCrLf & vbTab & “Contact name: “ _
& ![ContactName] _
& vbCrLf & vbTab & “City: “ & ![City] _
& vbCrLf

rst.MoveNext
Loop

End With

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

115

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 115

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Recordset
ADO recordsets represent sets of records in a database, much like DAO recordsets, though their
attributes are more generic. An ADO recordset can be based on a table, query, SQL statement, or
Command object. The TestForwardReadOnly procedure listed here uses a saved select query
as the recordset source:

Private Sub TestForwardReadOnly()

On Error GoTo ErrorHandler

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

Create a connection to the current database.

Set cnn = CurrentProject.Connection
Set rst = New ADODB.Recordset

Create a recordset based on a select query.

rst.Open Source:=”qryCompanyAddresses”, _
ActiveConnection:=cnn.ConnectionString, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockReadOnly

Iterate through the query, and print values from fields to the Immediate window.

Do While Not rst.EOF
Debug.Print “Company ID: “ & rst![CompanyID] _

& vbCrLf & vbTab & “Category: “ _
& rst![Category] _
& vbCrLf & vbTab & “Company Name: “ _
& rst![Company] & vbCrLf

rst.MoveNext
Loop

ErrorHandlerExit:

116

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 116

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

ADO recordsets have four types of cursors (cursors in ADO are roughly equivalent to the DAO
recordset types), as described in the following two tables. Each cursor type supports different
methods depending on the setting of the LockType argument. The two most commonly used lock
types are the read-only (named constant: adLockReadOnly) and optimistic (named constant:
adLockOptimistic) type. Table 5.4 lists the ADO cursor types, with their numeric equivalents,
and Table 5.5 lists the most commonly used cursor and lock type combinations for working with
Access data.

TABLE 5.4

ADO Recordset Cursor Type Named Arguments

Cursor Type Named Constant Numeric Value

Dynamic adOpenDynamic 2

Keyset adOpenKeyset 1

Static adOpenStatic 3

Forward-only adOpenForwardOnly 0

117

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 117

TABLE 5.5

ADO Recordset Lock Type Named Arguments

Lock Type Named Constant Numeric Value

Read-only adLockReadOnly 1

Optimistic adLockOptimistic 3

Batch Optimistic adLockBatchOptimistic 4

Pessimistic adLockPessimistic 2

Sometimes the ADO recordset that is created is not the type you specify in the
CursorType argument, depending on the lock type. In particular, if you specify the

adLockOptimistic lock type for any cursor type, you will actually get a Keyset cursor. To deter-
mine the actual recordset type, use the following statement (see Table 5.4 to convert the numeric
type to its matching named constant):

Debug.Print “Recordset cursor type: “ _
& rst.CursorType

For a more advanced determination of the actual cursor type and lock type of a newly created
recordset, run the following procedure, substituting the desired cursor and lock type in the
rst.Open line:

Private Sub TestMethodsSupported()

On Error Resume Next

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strDBName As String
Dim strConnectString As String
Dim strSQL As String
Dim strCursorType As String
Dim strLockType As String
Dim strCurrentPath As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File
Dim strDBNameAndPath As String
Dim strPrompt As String

Create a connection to an external database.

strCurrentPath = Application.CurrentProject.Path & “\”
strDBName = “Northwind.mdb”
strDBNameAndPath = strCurrentPath & strDBName

NOTENOTE

118

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 118

Attempt to find the database, and put up a message if it is not found.

Set fil = fso.GetFile(strDBNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & “ in “ _
& strCurrentPath & “; please copy it from the “ _
& “Office11\Samples subfolder under the main “ _
& “Microsoft Office folder “ _
& “of an earlier version of Office”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set cnn = New ADODB.Connection
Set rst = New ADODB.Recordset

Need to specify the Jet 4.0 provider for connecting to Access databases.

With cnn
.Provider = “Microsoft.Jet.OLEDB.4.0”
.Open strDBNameAndPath
strConnectString = .ConnectionString

End With

Use a SQL string to create a filtered recordset.

strSQL = “SELECT CompanyName, ContactName, City “ _
& “FROM Suppliers “ _
& “WHERE Country = ‘Australia’ “ _

& “ORDER BY CompanyName;”

Modify the cursortype and locktype arguments as desired to test what type of recordset is cre-
ated when the procedure is run.

rst.Open Source:=strSQL, _
ActiveConnection:=strConnectString, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockOptimistic

strCursorType = Switch(rst.CursorType = _
adOpenDynamic, _
“Dynamic (“ & adOpenDynamic & “)”, _
rst.CursorType = adOpenForwardOnly, _
“Forward-only (“ _
& adOpenForwardOnly & “)”, _
rst.CursorType = adOpenKeyset, “Keyset (“ _
& adOpenKeyset & “)”, _

119

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 119

rst.CursorType = adOpenStatic, “Static (“ _
& adOpenStatic & “)”)

strLockType = Switch(rst.LockType = _
adLockOptimistic, _
“Optimistic (“ & adLockOptimistic & “)”, _
rst.LockType = adLockReadOnly, “Read-only (“ _
& adLockReadOnly & “)”, _
rst.LockType = adLockBatchOptimistic, _
“BatchOptimistic (“ _
& adLockBatchOptimistic & “)”, _
rst.LockType = adLockPessimistic, _
“Pessimistic (“ _
& adLockPessimistic & “)”)

Debug.Print “Recordset cursor/lock type: “ _
& strCursorType & “, “ & strLockType & vbCrLf

Debug.Print “AddNew supported? “ _
& rst.Supports(adAddNew)

Debug.Print “Delete supported? “ _
& rst.Supports(adDelete)

Debug.Print “Find supported? “ _
& rst.Supports(adFind)

Debug.Print “MovePrevious supported? “ _
& rst.Supports(adMovePrevious)

Debug.Print “Update supported? “ _
& rst.Supports(adUpdate)

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

120

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 120

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Because other types of cursors are converted to keysets when you use optimistic locking for an ADO
recordset, you may as well specify the keyset cursor when you create the recordset, because that is
what you are going to get. See Table 5.6 for the details.

TABLE 5.6

ADO Recordset Cursor/Lock Type Combinations

Cursor Type Named Constant Lock Type Named Constant Available Methods

adOpenDynamic AdLockOptimistic AddNew
(converts to adOpenKeyset) Delete

Find
MoveFirst
MovePrevious
MoveNext
MoveLast
Update

adOpenDynamic adLockReadOnly Find
(converts to adOpenStatic) MoveFirst

MovePrevious
MoveNext
MoveLast

adOpenKeyset AdLockOptimistic AddNew
Delete
Find
MoveFirst
MovePrevious
MoveNext
MoveLast
Update

adOpenKeyset AdLockReadOnly Find
MoveFirst
MovePrevious
MoveNext
MoveLast

continued

121

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 121

TABLE 5.6 (continued)

Cursor Type Named Constant Lock Type Named Constant Available Methods

adOpenStatic AdLockOptimistic AddNew
(converts to adOpenKeyset) Delete

Find
MoveFirst
MovePrevious
MoveNext
MoveLast
Update

adOpenStatic AdLockReadOnly Find
MoveFirst
MovePrevious
MoveNext
MoveLast

adOpenForwardOnly AdLockOptimistic AddNew
(converts to adOpenKeyset) Delete

Find
MoveFirst
MovePrevious
MoveNext
MoveLast
Update

adOpenForwardOnly AdLockReadOnly Find
MoveFirst
MoveNext
MoveLast

Dynamic
A dynamic cursor (DAO equivalent: dbOpenDynaset) lets you view additions, changes, or
deletions made by other users. All types of movement through the recordset are allowed.

Keyset
In a recordset with a keyset cursor (there is no equivalent DAO recordset type), you can add,
change, and delete data in records, but you can’t see records that other users add or delete.
However, you can see changes made by other users. With an optimistic (adLockOptimistic)
lock type, you can modify the data; if you don’t need to modify the data, use a read-only lock type
(adLockReadOnly) for faster data access.

The following TestKeysetOptimistic procedure adds a new record to the tlkpCategories
table, and sets the value of a field from input provided by the user, after checking whether the cate-
gory name provided by the user has already been used:

122

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 122

Private Sub TestKeysetOptimistic()

On Error GoTo ErrorHandler

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strCategory As String
Dim strPrompt As String
Dim strTitle As String
Dim strSearch As String

Create a connection to the current database.

Set cnn = CurrentProject.Connection
Set rst = New ADODB.Recordset

Create a recordset based on a table.

rst.Open Source:=”tlkpCategories”, _
ActiveConnection:=cnn.ConnectionString, _
CursorType:=adOpenKeyset, _
LockType:=adLockOptimistic

CategoryName:

Add a new record, getting a field value from the user.

strPrompt = “Please enter new category name”
strTitle = “New category”
strCategory = Nz(InputBox(prompt:=strPrompt, _

Title:=strTitle))
If strCategory = “” Then

GoTo ErrorHandlerExit
Else

strSearch = “[Category] = “ & Chr$(39) _
& strCategory & Chr$(39)

Debug.Print “Search string: “; strSearch
With rst

.MoveLast

.MoveFirst
Debug.Print .RecordCount _

& “ records initially in recordset”

Check whether this category name has already been used — if the search fails, the cursor will be at
the end of the recordset.

rst.Find strSearch
If rst.EOF = False Then

strPrompt = Chr$(39) & strCategory _

123

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 123

& Chr$(39) & “ already used; “ _
& “please enter another category “ _
& “name”

strTitle = “Category used”
MsgBox prompt:=strPrompt, _

Buttons:=vbExclamation + vbOKOnly, _
Title:=strTitle

GoTo CategoryName
Else

.AddNew
![Category] = strCategory
.Update
strPrompt = Chr$(39) & strCategory _

& Chr$(39) & “ added to table”
strTitle = “Category added”
MsgBox prompt:=strPrompt, _

Buttons:=vbInformation + vbOKOnly, _
Title:=strTitle

Debug.Print .RecordCount _
& “ records in recordset after adding”

End If
End With

End If

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

124

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 124

The code prints the search string (always useful for debugging) and the number of records in the
recordset, before and after adding the new record, to the Immediate window:

Search string: [Category] = ‘Firmware’
29 records initially in recordset
30 records in recordset after adding

Static
The static cursor type (DAO equivalent: dbOpenSnapshot) provides a static copy of a set of
records, for viewing or printing data. All types of movement through the recordset are allowed.
Additions, changes, or deletions made by other users are not shown. For fast access to data that
you don’t need to modify, where you don’t need to view other users’ changes and you do need
to be able to move both forward and backward in the recordset, use a static cursor and the
adLockReadOnly lock type, as in the following TestStaticReadOnly procedure. If you do
need to modify the data, but don’t need to see other users’ changes, use the adLockOptimistic
lock type instead (the cursor type will change to keyset, as noted previously).

The TestStaticReadOnly procedure sets up a connection to the Northwind database, opens a
filtered recordset based on a table in the database, and then iterates through the recordset, printing
information from its fields to the Immediate window. Note that once an ADO recordset has been
created, many of the same methods can be used to work with it as for a DAO database (BOF, EOF,
Find*, Move*):

Private Sub TestStaticReadOnly()

On Error Resume Next

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strDBName As String
Dim strDBNameAndPath As String
Dim strConnectString As String
Dim strSQL As String
Dim strCurrentPath As String
Dim fso As New Scripting.FileSystemObject
Dim fil As Scripting.File
Dim strPrompt As String

Create a connection to an external database.

strCurrentPath = Application.CurrentProject.Path & “\”
strDBName = “Northwind.mdb”
strDBNameAndPath = strCurrentPath & strDBName

125

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 125

Attempt to find the database, and put up a message if it is not found.

Set fil = fso.GetFile(strDBNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & “ in “ _
& strCurrentPath & “; please copy it from the “ _
& “Office11\Samples subfolder under the main “ _
& “Microsoft Office folder “ _
& “of an earlier version of Office”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Set cnn = New ADODB.Connection
Set rst = New ADODB.Recordset

Need to specify the Jet 4.0 provider for connecting to Access databases.
With cnn

.Provider = “Microsoft.Jet.OLEDB.4.0”

.Open strDBNameAndPath
strConnectString = .ConnectionString

End With

Use a SQL string to create a filtered recordset.

strSQL = “SELECT CompanyName, ContactName, “ _
& “City FROM Suppliers “ _
& “WHERE Country = ‘Australia’ “ _
& “ORDER BY CompanyName;”

rst.Open Source:=strSQL, _
ActiveConnection:=strConnectString, _
CursorType:=adOpenStatic, _
LockType:=adLockReadOnly

Iterate through the recordset, and print values from fields to the Immediate window.

With rst
.MoveLast
.MoveFirst
Debug.Print .RecordCount _

& “ records in recordset” & vbCrLf
Do While Not .EOF

Debug.Print “Australian Company name: “ _
& ![CompanyName] _
& vbCrLf & vbTab & “Contact name: “ _
& ![ContactName] _

126

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 126

& vbCrLf & vbTab & “City: “ & ![City] _
& vbCrLf

rst.MoveNext
Loop

End With

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close
Set cnn = Nothing

End If
End If

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The following information is printed to the Immediate window:

2 records in recordset

Australian Company name: G’day, Mate
Contact name: Wendy Mackenzie
City: Sydney

Australian Company name: Pavlova, Ltd.
Contact name: Ian Devling
City: Melbourne

Forward-only
The forward-only cursor (DAO equivalent: dbOpenForwardOnly) allows only forward move-
ment through a recordset and doesn’t show additions, changes, or deletions made by other users.

127

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 127

It is the default cursor type. For the fastest access to data that you don’t need to modify, use a
forward-only cursor and the adLockReadOnly lock type, as in the TestForwardReadOnly
procedure that follows; if you do need to modify the data, use the adLockOptimistic lock
type instead:

Private Sub TestForwardReadOnly()

On Error GoTo ErrorHandler

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

Create a connection to the current database.

Set cnn = CurrentProject.Connection
Set rst = New ADODB.Recordset

Create a recordset based on a select query.

rst.Open Source:=”qryCompanyAddresses”, _
ActiveConnection:=cnn.ConnectionString, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockReadOnly

Iterate through the query, and print values from its fields to the Immediate window.

Do While Not rst.EOF
Debug.Print “Company ID: “ & rst![CompanyID] _

& vbCrLf & vbTab & “Category: “ _
& rst![Category] _
& vbCrLf & vbTab & “Company Name: “ _
& rst![Company] & vbCrLf

rst.MoveNext
Loop

ErrorHandlerExit:

Close the Recordset and Connection objects.

If Not rst Is Nothing Then
If rst.State = adStateOpen Then

rst.Close
Set rst = Nothing

End If
End If

If Not cnn Is Nothing Then
If cnn.State = adStateOpen Then

cnn.Close

128

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 128

Set cnn = Nothing
End If

End If

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Data from each record is printed to the Immediate window; the last two records’ data is listed here:

Company ID: Yclept Yarbro
Category: Books
Company Name: Yclept Yarbro

Company ID: ZDExpos
Category: Computer
Company Name: ZDExpos

Record
An ADO Record object represents a set of data, which may be from a recordset or a non-database
source. When working with Access data, the Record object is a single row from a recordset, or a
one-row recordset. There are many specialized uses of Record objects based on non-Access data (in
particular, for working with hierarchical data and displaying it in TreeView controls), but when
working with Access data in VBA code there is no reason to use the Record object, because you can
reference fields as needed on the current record in a recordset without creating a Record object.

Stream
A Stream object represents a stream of data from a text file, XML document, or web page. Because
this object doesn’t work with Access data, it is dealt with in the chapters on working with text files,
specifically Chapters 9 and 17.

Converting DAO Code to ADO Code
If you want to convert your old DAO code to new ADO code — perhaps for consistency with ADO
code working with other types of data, or out of concern that DAO will no longer be supported in
future versions of Access — you can use Table 5.7 as a guideline. Bear in mind that some types of
DAO code can’t be converted to ADO, because they have no equivalent in the ADO object model,
so you will still need to use DAO for Access form recordsets, or creating tables and their fields pro-
grammatically.

129

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 129

You can’t exchange data between ADO and DAO recordsets, even when working in
databases with references set to both object models.

TABLE 5.7

ADO Equivalents of DAO Objects

DAO Object ADO Object Notes

DBEngine No equivalent Not needed

Workspace No equivalent Not needed

Database Connection

Recordset Recordset

Dynaset type Keyset cursor

Snapshot type Static cursor

Table type Keyset cursor with acCmdTableDirect option

Field Field Recordset fields only

QueryDef No direct equivalent, but can use the Command object
to get the same functionality

TableDef No equivalent

When using the DAO object model to work with Access data, the following code segment opens a
recordset based on a query in an external database:

Dim dbs as DAO.Database
Dim strDBName As String
Dim rst As DAO.Recordset

strDBName = “E:\Documents\Northwind.mdb”
Set dbs = OpenDatabase(Name:=strDBName)
Set rst = dbs.OpenRecordset(Name:=”qryCurrentOrders”, _
Type:=dbOpenDynaset)

This ADO code opens an equivalent recordset:

Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim strDBName As String
Dim strConnectString As String
Dim strQuery As String

TIPTIP

130

Writing VBA Code to Exchange Data between Office ComponentsPart II

10_047026 ch05.qxp 4/2/07 9:43 PM Page 130

Create a connection to an external database.

strDBName = “D:\Documents\Northwind.mdb”
Set cnn = New ADODB.Connection
Set rst = New ADODB.Recordset
strQuery = “qryCategorySalesFor1997”

Need to specify the Jet 4.0 provider for connecting to Access databases.

With cnn
.Provider = “Microsoft.Jet.OLEDB.4.0”
.Open strDBName
strConnectString = .ConnectionString

End With

Open a recordset based on a saved query.

rst.Open Source:=strQuery, _
ActiveConnection:=cnn, _
CursorType:=adOpenStatic, _
LockType:=adLockReadOnly

Once the recordset has been created, you can work with it much like a DAO recordset, though
there are some differences — see the sections on ADO recordset cursor and lock types for details on
the differences.

For further information on converting DAO code to ADO code see Alyssa Henry’s arti-
cle “Porting DAO Code to ADO with the Microsoft Jet Provider,” which is available

online in the MSDN Library by searching its title or at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dndao/html/daotoado.asp.

Summary
The DAO object model was developed to work with Access data, and (despite rumors of its death,
which have been heard for many versions now, and heavy promotion of the alternative ADO object
model) DAO is still the best object model for working with data in Access tables. In Access 2007
instead of removing the DAO object model, Microsoft wisely chose to trim it of some rarely used
components and rename it the Microsoft Office 2007 Access database engine object model. My rec-
ommendation is to use DAO for all tasks involving Access data.

When you need to work with data in other types of databases or data sources, however, ADO is the
object model you need to use (no choice there — DAO only works with Access data). ADO can be
used to work with Access data as well, though it has some limitations compared to DAO, so in
some cases you may want (or need) to use ADO to work with Access data; I have provided infor-
mation on converting DAO code to ADO for these situations.

TIPTIP

131

Working with Access Data 5

10_047026 ch05.qxp 4/2/07 9:43 PM Page 131

10_047026 ch05.qxp 4/2/07 9:43 PM Page 132

Despite the new and improved report interactive features discussed
in the “Report Layout View” sidebar, for full control over the
appearance and content of documents filled with Access data, VBA

Automation code working with Word documents is the best choice. This
chapter discusses producing Word documents by using a Ribbon command
to create simple documents, or writing VBA Automation code to create Word
documents and fill them with data, using four different methods.

In contrast to Access reports (even in the new Layout view), Word docu-
ments have extensive formatting options, including tables, form fields, and
other specialized controls not available in Access reports, even in Layout
view. Generating Word documents from Access VBA code lets you use all of
Word’s formatting options and (if desired) to create a separate document for
each Access record, instead of a multi-page mail merge document. And the
Word documents containing merged Access data can be edited, which is not
an option even for Access 2007 reports.

133

IN THIS CHAPTER
Office 2007 built-in Word export

Components of the Word object
model used in Automation code

Creating Word documents filled
with Access data, using four
different methods

Working with Word
Documents and Templates

11_047026 ch06.qxp 4/2/07 9:44 PM Page 133

134

Writing VBA Code to Exchange Data between Office ComponentsPart II

Report Layout View

Access 2007 reports have a new view selection, Layout View. Access 2003
had Print Preview, Layout Preview (read-only, no data), and Design View,

and you could only modify the report’s layout, filtering, or sorting in Design view. In
Access 2007, the new Layout view replaces Layout Preview, and there is a new Report
view in addition to Print Preview. The following figure shows the View selector on the
Access report Ribbon.

Access 2007 report views.

The new Layout view for Access reports has much more functionality than the old Layout Preview,
letting users sort and filter from a right-click menu, as shown in the next screenshot, and even resize
report columns while looking at the data (a long-requested feature).

The new Layout view for an Access report.

NEW FEATURENEW FEATURE

11_047026 ch06.qxp 4/2/07 9:44 PM Page 134

Built-in Word Export in Office 2007
For many Office versions, it has been possible to export Access data to Word documents from the
Access toolbar. The name of the control and toolbar location have changed over Office versions; in
Access 2003 it was the OfficeLinks drop-down control on the Database toolbar, offering options to
Merge to Word (Mail Merge), Publish to Word (RTF), or Analyze with Excel (XLS). In Access 2007,
on the new Ribbon that replaces the old toolbars and menus, the External Data tab (shown in
Figure 6.1) has an Export group with a variety of export options, including Excel, SharePoint,
Word (RTF), Text File, and More. On the More drop-down menu, there are a number of export
selections, including Merge It with Microsoft Office Word.

You will see different selections on the More menu (or selections appearing as enabled
or disabled) according to the type of object selected in the Object Bar, and whether the

object is open or closed. With a form open, for example, you will see the Access Database, XML File,
and HTML Document selections (these selections are enabled) and a disabled selection, Merge It with
Microsoft Office Word; the Snapshot Viewer selection is only enabled when a report is selected.

FIGURE 6.1

The new External Data tab on the Access 2007 Ribbon, with the More menu dropped down.

NOTENOTE

135

Working with Word Documents and Templates 6

However, even an interactive report still falls far short of the functionality of a Word document, espe-
cially if you need to distribute documents containing Access data to people who don’t have Access
installed.

11_047026 ch06.qxp 4/2/07 9:44 PM Page 135

The Word (RTF) and Word Mail Merge features in Access 2007 work much the same as in earlier
Office versions. If you select an Access table, query, or other object, and then select the Word (RTF)
option, all the data from the entire selected object is automatically exported to a new Word docu-
ment, with no option for selecting records.

The RTF document created from a table, query, or form is a Word table, which is a good match for
data in an Access table or select query, but a very poor match for a form. Reports are created as text
documents, not tables (even if they are tabular reports), with footers as text in the body of the doc-
ument, and without most of their formatting; such a document is barely usable. (This is unchanged
for many Office versions now.)

The RTF export option may be useful for creating a quick-and-dirty Word document you can send
to someone who doesn’t have Access, but it is not useful for creating letters or other formatted
Word documents. Figure 6.2 shows an Access table to be exported, and Figure 6.3 shows the
Export dialog, with two options enabled and one disabled (because the object being exported is a
table, there is no formatting to export).

Figure 6.4 shows the Word table created by the RTF export. It has basically the same appearance
as the Access table, but it lacks the alternate-row shading, even though Word 2007 supports this
feature.

FIGURE 6.2

An Access table to be exported to Word.

136

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 136

FIGURE 6.3

The Word RTF Export dialog when exporting an Access table.

FIGURE 6.4

A Word document created by exporting an Access table, using the Word (RTF) option.

137

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 137

The Word Mail Merge option runs a wizard, which is generally similar to the one in the last two
Office versions. It offers you a choice of deselecting some records from the data source before per-
forming the merge, and you can create a new merge letter on the fly, so this interface choice can be
useful when you need to create a set of minimally formatted Word letters to recipients from an
Access table or query — but it may not be any easier to go through the six steps of the wizard,
compared with just creating a simple Access letter report based on a filtered query.

My conclusion, after reviewing the new data export features in Access 2007, is that (just as with
previous versions of Access) if you want to be able to select the records for an export of Access data
to Word, and to produce great looking documents that can be opened and possibly edited by all
Office users, you’re still best off writing VBA code to merge Access data to Word documents.

The Word Export.accdb sample database contains the tables, queries, forms, and code
used in this chapter.

Exporting Access Data to Word
Using Automation Code
Automation code is the tool you need to use when creating or working with Word documents in
Access VBA. Automation code is not a special programming language, just a set of functions used
in VBA code to work with the object models of other applications.

All Automation code starts with one of the two functions described as follows, either of which sets
a reference to a high-level Automation object. When working with Word, this is generally the Word
Application object.

The CreateObject function with “Word.Application” as the Class argument creates a new
Word instance; it works whether or not Word is already open. The GetObject function with
“Word.Application” as the Class argument attempts to set a reference to an existing instance
of Word. GetObject succeeds in setting a reference only if Word is already running.

To avoid creating multiple instances of Word, I use the GetObject function in the body of a pro-
cedure, which sets a reference to an existing Word Application object, if Word is running, in com-
bination with an error handler that uses CreateObject to create a new Word Application object
if GetObject fails with Error 429, “ActiveX component can’t create object”:

Set appWord = GetObject(Class:=”Word.Application”)

[body of procedure here]

ErrorHandlerExit:
Set appWord = Nothing
Exit Sub

NOTENOTE

138

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 138

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

In the error handler in the preceding code segment, the appWord Application object
variable is set to Nothing. If you want to close down Word when your code has run, this

is appropriate; but if you want to preserve the Word Application object for future use (generally a
good idea), either comment out this line or delete it, as I have done in most of the procedures in the
Word Export sample database.

To work with objects in an object model, first you need to set up a reference to the Application
object, or some other object that can be used with the CreateObject or GetObject function.
Although you use CreateObject or GetObject to set a reference directly to a Word Document
object, generally it is best to create (or set a reference to) a Word Application object, and then use
the appWord variable to get at other Word objects below the Application object, because many of
the properties and methods you need to use in Automation code belong to the Application object,
and you can access all the other objects through the Application object..

The Word Object Model
An object model is a representation of application components that are available for control by
Automation code. Typically, most (but not all) of an application’s functionality is represented by
objects in the object model, letting you do almost anything you can do in the interface, and per-
haps a few things that can’t be done in the interface. The Word object model is very extensive, but
fortunately, in order to work with Word documents and templates, and fill them with data from
Access, you need to work with only a few components of the object model — in particular the
Application object, Documents collection and Document object, the Tables collection and Table
object, and the Bookmarks collection and Bookmark object. These object model components are
the ones used in the procedures described in the following sections.

You can use the Object Browser to examine the properties and methods of the Word object
model’s components. Press F2 in the Visual Basic window to open the Object Browser, and select
Word in the Libraries drop-down list at the top-left of its window. Figure 6.5 shows the Object
Browser with the MailMerge object selected in the Classes list, so you can examine its properties
and methods.

The following sample procedures use Automation code to perform some common tasks when
working with the Word object model.

NOTENOTE

139

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 139

FIGURE 6.5

Examining the Word MailMerge object in the Object Browser.

Creating a New, Blank Word Document
The NewDoc function creates a new, blank Word document based on the default Word template:

Public Function NewDoc()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim docs As Word.Documents
Dim doc As Word.Document

Set appWord = GetObject(Class:=”Word.Application”)
Set docs = appWord.Documents
docs.Add
Set doc = appWord.ActiveDocument

ErrorHandlerExit:
Exit Function

140

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 140

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Creating a Word Document Based on a Template
The functions in this section (and later sections) pick up the Contact Templates folder path, and
the Contact Documents folder path, from the main menu. Each path has a command button and a
TextBox bound to a field in tblInfo; clicking the command button opens a FolderPicker dialog for
selecting the path. The selected path is displayed in the TextBox, as shown in Figure 6.6.

FIGURE 6.6

The main menu of the Word Export sample database.

If you click the Contact Templates Path or Contact Documents Path button, a Browse dialog opens,
where you can select the folder for storing templates or documents (see Figure 6.7).

The procedures that pop up these Browse dialogs are discussed in Chapter 9.
FIGURE 6.7CROSS-REFCROSS-REF

141

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 141

FIGURE 6.7

Selecting a folder as the Contact Documents folder.

The NewDocFromTemplate function listed next creates a new document based on a template in
the Contact Templates folder, using Word document properties to hold the data from Access. The
document properties method is the most common technique I use for creating documents to fill
with Access data. In the NewDocFromTemplate procedure, after creating the new document, the
names of its document properties are printed to the Immediate window.

As with previous versions of Word, although there is a CustomProperties collection in
the Word 2007 object model, and a CustomProperty object, this collection and

object actually belong to the Smart Tags, so if you declare variables of these data types, you will get a
compile error; therefore, they must be declared as Object.

Public Function NewDocFromTemplate()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim docs As Word.Documents
Dim strLetter As String
Dim strTemplateDir As String
Dim doc As Word.Document

NOTENOTE

142

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 142

Must declare this variable as Object because declaring it as Word.CustomProperties doesn’t work:

Dim prps As Object

Must declare this variable as Object because declaring it as Word.CustomProperty doesn’t work:

Dim prp As Object

Set appWord = GetObject(Class:=”Word.Application”)

strTemplateDir = GetContactsTemplatesPath()
Debug.Print “Templates directory: “ & strTemplateDir
strLetter = strTemplateDir & “DocProps.dot”
Debug.Print “Letter: “ & strLetter

Set docs = appWord.Documents
docs.Add strLetter
Set doc = appWord.ActiveDocument
Set prps = doc.CustomDocumentProperties
For Each prp In prps

Debug.Print “Property name: “ & prp.Name
Next prp

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Using a Query to Concatenate Data for Export
I like to create a select query to use as the data source for merging Access data to Word, concate-
nating data from various fields as needed for best results when working with Word documents.
One field concatenates name, job title, and company name information, using the IIf function to
avoid creating blank lines, and another creates a single field with address information. This tech-
nique ensures that you won’t see blank lines in the address block in a letter, or on a label, even if

143

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 143

some fields lack data. I also create a separate ZipCode field for use in creating U.S. PostNet bar
codes on envelopes or labels.

In the sample database, this query is qryContactsForMerge. The calculated field expressions I
used to concatenate data from the simple flat-file tblContacts are listed next. Depending on the
fields in your table(s), these expressions will need to be customized — for example, to deal with
multi-field addresses or name prefixes and suffixes:

ContactName:
[FirstName] & “ “ & [LastName]

NameTitleCompany:
[FirstName] & “ “ & [LastName] & Chr(13) & Chr(10) &
[JobTitleCompany]

JobTitleCompany:
IIf(Nz([JobTitle])=”” And
Nz([CompanyName])=””,””,IIf(Nz([JobTitle])<>””,[JobTitle] &
IIf(Nz([CompanyName])<>””,Chr(13) & Chr(10) &
[CompanyName]),[CompanyName]))

CityStateZip:

[City] & “, “ & [StateOrProvince] & “ “ & [PostalCode]

WholeAddress:
[StreetAddress] & Chr(13) & Chr(10) & [CityStateZip] &
IIf(Nz([Country])<>”” And Nz([Country])<>”USA”, Chr(13) & Chr(10)
& [Country],””)

ZipCode:
IIf([Country]=”USA” Or Nz([Country])=””,[PostalCode],””)

LastNameFirst
[LastName] & IIf([FirstName],”, “ & [FirstName],””)

In VBA code, you can use the VB named constant vbCrLf to indicate a CR + LF (car-
riage return plus linefeed) to start a new line in a text string, but named constants can’t

be used in query field expressions, so I use the Chr(13) & Chr(10) syntax instead, using the numeric
values of the CR and LF characters.

Using a query to do the concatenating (rather than creating expressions in VBA code) makes it
much easier to verify that the expressions are returning the correct data, and to fix any problems
before doing the merge. After creating the expressions, just switch to datasheet view to inspect the
results, and then switch back to design view to fix any problems you see.

TIPTIP

144

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 144

Choosing a Method for Merging Access
Data to Word
The NewDocFromTemplate procedure listed in the previous section lists Word document prop-
erties that can be filled with Access data. This is my preferred method for exporting Access data to
Word documents, but it is not the only method. You can also export Access data to Word book-
marks, or simply insert data into a Word document using the TypeText method. And then there is
mail merge, which is most suitable for merging data from very large numbers of records. Table 6.1
compares the advantages and disadvantages of these methods.

TABLE 6.1

Comparison of Four Ways to Merge Access Data to Word

Method Advantages Disadvantages

Bookmarks There is no need to open the properties You can’t insert the same bookmark twice
sheet; bookmarks are inserted directly in a template; to display the same infor-
into the template. mation in two or more places, you either

need to create another bookmark or use
Bookmarks are more familiar to Word a cross-reference field that references the
users than document properties. first bookmark.

Creates a separate document for each Users may inadvertently type into the
record, which allows easy customization text inside a bookmark, overwriting the
of specific documents. exported value.

There is no link to the Access database,
so documents can be opened even on
another computer.

Document Properties Data from a document property can be Requires creating document properties
displayed in multiple locations, using in the template, in the custom tab of
fields. the properties sheet.

Creates a separate document for each
record, which allows easy customization
of specific records.

There is no link to the Access database,
so documents can be opened even on
another computer.

continued

145

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 145

TABLE 6.1 (continued)

Method Advantages Disadvantages

TypeText No advance preparation of any kind Suitable only for very simple documents,
is needed; this method works with a such as mailing labels or tabular lists.
document created from the default Word
template, or a default labels document.

There is no link to the Access database,
so documents can be opened even on
another computer.

Mail Merge Suitable for merging very large numbers Customization of individual records is
of records, too large to create an difficult, because all data is merged to a
individual document for each record. single document.

Creating a mail merge labels document is
more complex than creating a labels
document for use with the TypeText method.

You can work with Word 97/2003 documents in Word 2007, as well as create new doc-
uments in the new Word 2007 format, so you don’t need to redo all your templates just

to get them to work in Office 2007. Some of the templates used for Word merge in the sample Word
Export database are in Word 2007 format, and others are in Word 97/2003 format. The extensions
differ for these two formats; new documents have the .docx extension, and new templates have the
.dotx extension, whereas older ones have the .doc or .dot extensions, as shown in Figure 6.8. When
you open a document or template in the older format, the title bar says “(Compatibility Mode)” after
the file name.

The new Type column in the Windows Vista Explorer shows the contents of a Word 2007
document’s Keywords field, so you can use this built-in Word property to display rele-

vant information in the Explorer.

Working with Word Document Properties
In previous versions of Word, document properties were accessed in a straightforward manner,
through the Properties dialog, opened from the File menu. The process is now more complicated;
in Word 2007 you click the Office button, select Prepare, and then Properties (see Figure 6.9).

TIPTIP

NOTENOTE

146

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 146

FIGURE 6.8

Word templates and documents in Word 2002/2003 and Word 2007 formats.

FIGURE 6.9

The Properties selection on the new Word Prepare menu.

147

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 147

The Properties command on the Office menu opens a new feature of Word 2007, the
Document Information Panel (see Figure 6.10), where you can modify a few of the more

common built-in document properties.

FIGURE 6.10

The Word 2007 Document Information Panel.

Next, click the drop-down Properties button in the title bar (the initial selection is Standard) and
select Advanced Properties. At last, the familiar Word properties sheet opens, to the General tab
(see Figure 6.11).

FIGURE 6.11

The General tab of the Word properties sheet.

NEW FEATURENEW FEATURE

148

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 148

Click the Custom tab to see the custom document properties; these are the ones that are most
commonly filled with data from Access fields. Figure 6.12 shows the Custom tab of a Word 2007
template properties sheet, with several custom document properties that are useful for creating let-
ters and other documents filled with data from an Access select query.

FIGURE 6.12

The Custom tab of the Word properties sheet.

You may also want to use some of the fields on the Summary tab (see Figure 6.13), in particular
the Keywords field, which is displayed in the Type column in the Windows Vista Explorer.

To create a new Word document property, enter its name in the Name field (no spaces, and you
should avoid using the same name as a built-in property, although Word allows this), select the
data type (Text, Numeric, Date, or Yes/No), enter a default value if desired, and click the Add but-
ton. Over years of working with Word document properties, I have discovered some limitations of
Word document properties and developed some workarounds to deal with them:

n If you don’t specify a default value for a Text property, Word won’t let you save it; instead,
use a space (which is permitted) as the default value.

n Date fields should generally be avoided, except for the rare cases where you actually need
a default date value, because there is no way to give them a blank default value. You can
format a Text value as a date, using Word field switches.

149

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 149

150

Writing VBA Code to Exchange Data between Office ComponentsPart II

n Numeric fields should also be avoided, both because you can’t make them blank (you
may not want a zero appearing in your document when the field has no data from
Access), and, more importantly, because all numbers are truncated to integers. A value of
49.21 in Access will be truncated to 49 in the Word document property. As with Date val-
ues, it’s best to save numeric values to a Text document property (Text values are not
truncated), and then format them with the appropriate numeric format in Word.

n Yes/No properties require you to select either Yes or No as the default value; if that is
unacceptable, use a Text field, possibly converting the True or False values in an Access
Yes/No field to “Yes,” “No,” or a zero-length string (“”).

FIGURE 6.13

The Summary tab of the Word properties sheet.

Sometimes, in Word 2007, after delving down a few levels from the new Ribbon, you
will see a familiar Word 2003 dialog box. If you see a tiny diagonal arrow in the lower-

right corner of a group on a Ribbon, click the arrow, then the image of the dialog, to open the famil-
iar Word 2003 dialog box for that feature (see Figure 6.14).

Sending a Word Letter to a Single Access Contact
You may have a Contacts or Customers form in an Access database, and it would be convenient to
have a quick way to create a letter to the current contact, using a command button on the form.
The sample Word Export database has a form for browsing contacts, frmContacts, shown in
Figure 6.15.

If you click the Word button in this form’s header, a letter to the selected contact is created, filling
Word document properties with data from that record.

TIPTIP

11_047026 ch06.qxp 4/2/07 9:44 PM Page 150

151

Working with Word Documents and Templates 6

FIGURE 6.14

Opening the old Paragraph dialog box from the new Ribbon.

FIGURE 6.15

A form for browsing contacts, with a button for creating a Word letter.

11_047026 ch06.qxp 4/2/07 9:44 PM Page 151

152

Writing VBA Code to Exchange Data between Office ComponentsPart II

Using Word Field Switches to Format Text
Data in DocProperty Fields

When you use Word document properties to merge Access data to Word documents, the values
written to the document properties are displayed on the Word document in DocProperty

fields. You can use field switches to format the data displayed in the DocProperty field in a variety of
ways, which is going to be necessary if you follow my advice and use mostly (if not exclusively) Text
document properties. The field switches needed to produce some commonly used formats are listed
in the following table.

Raw Access Data Desired Word Format Field Code Switches

11523.75 $11,523.75 DOCPROPERTY “DollarAmount” \#
$###,##0.00

2/2/2001 February 2, 2001 DOCPROPERTY “DueDate” \@
“MMMM d, yyyy”

282839898 28283-9898 DOCPROPERTY “ZipCode” \# “00000’-
’0000”

829887445 829-88-7445 DOCPROPERTY “SSN” \# “000’-’00’-
’0000”

150250.50 one hundred fifty thousand DOCPROPERTY “DollarAmount” *
two hundred fifty and 50/100 DollarText

150250.25 ONE HUNDRED FIFTY THOUSAND DOCPROPERTY “DollarAmount” *
TWO HUNDRED FIFTY AND 25/100 DollarText * Upper

150250.50 one hundred fifty thousand DOCPROPERTY “EntryAmount” *
two hundred fifty CardText

11/13/2005 Thirteenth DOCPROPERTY “StartDate” \@ “d” *
OrdText *FirstCap

11/13/2005 November DOCPROPERTY “StartDate” \@
“MMMM”

You can create PostNet bar codes for U.S. zip codes on an envelope or label by
adding a ZipCode DocProperty field to the Word template and applying a ZipCode

bookmark to it. Because the WholeAddress field includes the zip code (or postal code, depending
on the country), you should make the ZipCode DocProperty field invisible. To do this, select the
field, open the Font Dialog by clicking the tiny arrow in the lower right of the Font group on the
Word Ribbon, and check the Hidden checkbox. Next, position your cursor above the address block,
select Insert ➪ Quick Parts ➪ Field, select the BarCode field, and then the ZipCode bookmark;
leave the POSTNET bar code checkbox checked, and click OK to insert the bar code field (see the
next figure).

TIPTIP

11_047026 ch06.qxp 4/2/07 9:44 PM Page 152

153

Working with Word Documents and Templates 6

Inserting a U.S. PostNet BarCode field on a Word document.

When placing DocProperty fields in a template, make sure that the “Preserve format-
ting during updates” checkbox is not checked—if it is checked, and the text dis-

played from a doc property is longer than one word, the first word may have (probably will have, in
my experience) a different font or size than the other words.

An envelope with a U.S. PostNet bar code above the address.

See the previous table for a listing of Word field switches used to format values in
DocProperty fields.CROSS-REFCROSS-REF

TIPTIP

11_047026 ch06.qxp 4/2/07 9:44 PM Page 153

The cmdWord_Click() event procedure first saves information to variables, for use later in the
code, then checks that the template is found in the templates folder, sets a Word Application vari-
able, and creates a new Word document based on the template. Next, it sets a reference to the
Word CustomDocumentProperties collection of the newly created document and sets each docu-
ment property to either a variable or the value in a field from the current record. The segment of
code that creates a save name for the document (used in most of my export procedures) uses a
Do...Loop statement to create a save name for the document containing the merged data, pick-
ing up the contact name from a field on the form, adding today’s date, in a format that uses dashes
to create an acceptable file name:

Private Sub cmdWord_Click()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim strCompanyName As String
Dim strContactName As String
Dim strWholeAddress As String
Dim strJobTitle As String
Dim docs As Word.Documents
Dim doc As Word.Document
Dim strWordTemplate As String
Dim strDocsPath As String
Dim strTemplatePath As String
Dim prps As Object
Dim strShortDate As String
Dim strLongDate As String
Dim strTest As String
Dim strAddress As String
Dim strCountry As String
Dim strSaveName As String
Dim strTestFile As String
Dim intSaveNameFail As Boolean
Dim i As Integer
Dim strSaveNamePath As String

Check for required address information:

strTest = Nz(Me![StreetAddress])
If strTest = “” Then

MsgBox “Can’t send letter -- no address!”
GoTo ErrorHandlerExit

End If

strContactName = _
Nz(Me![ContactName])

strCompanyName = _
Nz(Me![CompanyName])

strWordTemplate = “Contact Letter Doc Props.dotx”

154

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 154

strLongDate = Format(Date, “mmmm d, yyyy”)
strShortDate = Format(Date, “m-d-yyyy”)
strSaveName = “Letter to “ & strContactName
strSaveName = strSaveName & “ on “ & strShortDate _

& “.doc”
strDocsPath = GetContactsDocsPath()
Debug.Print “Docs path: “ & strDocsPath
strTemplatePath = GetContactsTemplatesPath()
Debug.Print “Template path: “ & strTemplatePath
strWordTemplate = strTemplatePath & strWordTemplate
Debug.Print “Word template and path: “ _

& strWordTemplate

Check for the template in the selected Contact Templates folder, and exit if it is not found:

strTestFile = Nz(Dir(strWordTemplate))
Debug.Print “Test file: “ & strTestFile
If strTestFile = “” Then

MsgBox strWordTemplate _
& “ template not found; can’t create letter”

GoTo ErrorHandlerExit
End If

Set the Word Application variable; if Word is not running, the error handler defaults to
CreateObject:

Set appWord = GetObject(Class:=”Word.Application”)
Set docs = appWord.Documents
Set doc = docs.Add(strWordTemplate)
Set prps = doc.CustomDocumentProperties

Turn off error handler because some of the templates may not have all of the doc properties:

On Error Resume Next
prps.Item(“NameTitleCompany”).Value = _

Nz(Me![NameTitleCompany])
prps.Item(“WholeAddress”).Value = _

Nz(Me![WholeAddress])
prps.Item(“Salutation”).Value = _

Nz(Me![Salutation])
prps.Item(“TodayDate”).Value = strLongDate
prps.Item(“CompanyName”).Value = _

strCompanyName
prps.Item(“JobTitle”).Value = _

Nz(Me![JobTitle])
prps.Item(“ZipCode”).Value = _

Nz(Me![ZipCode])
prps.Item(“ContactName”).Value = strContactName

On Error GoTo ErrorHandler

155

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 155

Check for a previously saved letter in the documents folder, and append an incremented number
to the save name if one is found:

i = 2
intSaveNameFail = True
Do While intSaveNameFail

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “Proposed save name and path: “ _

& vbCrLf & strSaveNamePath
strTestFile = Nz(Dir(strSaveNamePath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = strSaveName Then

Debug.Print “Save name already used: “ _
& strSaveName

Create a new save name with the incremented number:

intSaveNameFail = True
strSaveName = “Letter “ & CStr(i) & “ to “ & _

Me![FirstName] & “ “ & Me![LastName]
strSaveName = strSaveName & “ on “ & strShortDate _

& “.doc”
strSaveNamePath = strDocsPath & strSaveName
Debug.Print “New save name and path: “ _

& vbCrLf & strSaveNamePath
i = i + 1

Else
Debug.Print “Save name not used: “ & strSaveName
intSaveNameFail = False

End If
Loop

With appWord
.Visible = True
.Selection.WholeStory
.Selection.Fields.Update
Debug.Print “Going to save as “ & strSaveName
.ActiveDocument.SaveAs strSaveNamePath
.Activate
.Selection.EndKey Unit:=wdStory

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

156

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 156

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Figure 6.16 shows the resulting letter.

When creating Word documents in VBA code, I save the current date to the TodayDate
document property in the export code, rather than inserting a date code into the Word

template, to ensure that the date on the letter will always be the date the letter was created; a Date
field will show the current date (the date the letter is reopened).

If the name has already been used, the code loops back and adds a number to the end of the save
name, and keeps trying until an unused number is reached. This technique means that you won’t
overwrite documents created the same day, but instead will create a series of documents with incre-
menting numbers.

FIGURE 6.16

A Word letter filled with Access data from a single contact record.

TIPTIP

157

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 157

If you don’t want to create multiple documents, you can eliminate the Do...Loop statement and
overwrite an existing file with the same name, if there is one.

Sending a Word Letter to Multiple Access Contacts
When you need to select a group of recipients for a Word letter, set of labels, or another document,
you need a different interface. The form frmMergeToWord has a combo box for selecting a Word
template, and a multi-select ListBox for selecting one or more contacts as recipients (see Figure 6.17).

FIGURE 6.17

A form for selecting a document and recipients for creating Word documents filled with Access data from
multiple contact records.

The Select Document combo box list shows the merge type in the second column (see Figure 6.18).

The procedure on the cmdMerge button’s Click event first determines that a template has been
selected, and that the template can be found in the Contact Templates folder (this folder is set on
the database’s main menu). Next, the merge method is picked up from the third column of the
combo box’s list (the first column is not displayed; it contains the file name of the selected docu-
ment, for use in code).

Because some of the merge documents are Word documents, and some are templates, and some are
in Word 2007 format and others in Word 97/2003 format, there is an If...Then statement in
the procedure that examines the original document’s extension, and creates the appropriate save
document extension for use as an argument for the called procedures.

158

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 158

FIGURE 6.18

A combo box for selecting a Word template for merging data from Access.

The procedure then calls one of four procedures with the document file name (including path) and
extension as arguments, depending on the merge type.

The cmdCreateDocuments_Click procedure is listed as follows:

Private Sub cmdCreateDocuments_Click()

On Error GoTo ErrorHandler

Dim cbo As Access.ComboBox
Dim strCompanyName As String
Dim strContactName As String
Dim strJobTitle As String
Dim strTestFile As String
Dim strWordTemplate As String
Dim strTest As String
Dim strDocType As String
Dim strMergeType As String
Dim strExtension As String

Check that a document has been selected:

Set cbo = Me![cboSelectDocument]
strWordTemplate = Nz(cbo.Value)
If strWordTemplate = “” Then

MsgBox “Please select a document”
cbo.SetFocus
cbo.Dropdown
GoTo ErrorHandlerExit

End If

strTemplatePath = GetContactsTemplatesPath()
Debug.Print “Template path: “ & strTemplatePath
strWordTemplate = strTemplatePath & strWordTemplate

159

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 159

Check for the template in the selected template folder, and exit if it is not found:

strTestFile = Nz(Dir(strWordTemplate))
Debug.Print “Test file: “ & strTestFile
If strTestFile = “” Then

MsgBox strWordTemplate & “ template not found; “ _
& “can’t create document”

GoTo ErrorHandlerExit
End If

Call the appropriate procedure depending on the selected merge type:

strMergeType = Nz(Me![cboSelectDocument].Column(2))
If Right(strWordTemplate, 1) = “x” Then

strExtension = “.docx”
Else

strExtension = “.doc”
End If

Select Case strMergeType

Case “Doc Props”
Call MergeDocProps(strWordTemplate, strExtension)

Case “Bookmarks”
Call MergeBookmarks(strWordTemplate, strExtension)

Case “TypeText”
Call MergeTypeText(strWordTemplate, strExtension)

Case “Mail Merge”
Call MailMerge(strWordTemplate, strExtension)

End Select

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

If a document of the Doc Props merge type is selected, the MergeDocProps procedure is called.
This procedure first sets a reference to the handy ItemsSelected collection of the ListBox (this col-
lection includes only the rows selected in the ListBox), then iterates through the collection, creat-
ing a new Word document for each contact record.

160

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 160

The code then sets a reference to the Word CustomDocumentProperties collection of the newly
created document, and sets each document property to the value in a column of the current row
from the ListBox. A save name is created, including the document title, contact name, company
name, and date, and the document is saved:

Private Sub MergeDocProps(strWordTemplate As String, _
strExtension As String)

On Error GoTo ErrorHandler

strLongDate = Format(Date, “mmmm d, yyyy”)
strShortDate = Format(Date, “m-d-yyyy”)
strDocsPath = GetContactsDocsPath()
Debug.Print “Docs path: “ & strDocsPath

Check that at least one contact has been selected:

Set lst = Me![lstSelectContacts]

If lst.ItemsSelected.Count = 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

intColumns = lst.ColumnCount
intRows = lst.ItemsSelected.Count

For Each varItem In lst.ItemsSelected

Check for required address information:

strTest = Nz(lst.Column(5, varItem))
Debug.Print “Street address: “ & strTest
If strTest = “” Then

Debug.Print “Skipping this record -- no address!”
GoTo ErrorHandlerExit

End If

strTest = Nz(lst.Column(1, varItem))
Debug.Print “Contact name: “ & strTest
If strTest = “” Then

Debug.Print _
“Skipping this record -- no contact name!”

GoTo ErrorHandlerExit
End If

strContactName = _
Nz(lst.Column(1, varItem))

strCompanyName = _
Nz(lst.Column(7, varItem))

161

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 161

Open a new document based on the selected template:

Set appWord = GetObject(Class:=”Word.Application”)
appWord.Documents.Add strWordTemplate

Write information to Word custom document properties:

Set prps = _
appWord.ActiveDocument.CustomDocumentProperties

Turn off error handler because some templates don’t have all of the doc properties:

On Error Resume Next
prps.Item(“NameTitleCompany”).Value = _

Nz(lst.Column(2, varItem))
prps.Item(“WholeAddress”).Value = _

Nz(lst.Column(5, varItem))
prps.Item(“Salutation”).Value = _

Nz(lst.Column(10, varItem))
prps.Item(“TodayDate”).Value = strLongDate
prps.Item(“CompanyName”).Value = _

strCompanyName
prps.Item(“JobTitle”).Value = _

Nz(lst.Column(8, varItem))
prps.Item(“ZipCode”).Value = _

Nz(lst.Column(6, varItem))
prps.Item(“ContactName”).Value = strContactName

On Error GoTo ErrorHandler

Check for a previously saved document in the documents folder, and append an incremented
number to the save name if one is found:

strDocType = _
appWord.ActiveDocument.

BuiltInDocumentProperties(wdPropertyTitle)
strSaveName = strDocType & “ to “ _

& strContactName & “ - “ & strCompanyName
strSaveName = strSaveName & “ on “ _

& strShortDate & strExtension
i = 2
intSaveNameFail = True
Do While intSaveNameFail

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “Proposed save name and path: “ _

& vbCrLf & strSaveNamePath
strTestFile = Nz(Dir(strSaveNamePath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = strSaveName Then

Debug.Print “Save name already used: “ _
& strSaveName

162

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 162

Create a new save name with the incremented number:

intSaveNameFail = True
strSaveName = strDocType & “ “ & CStr(i) _

& “ to “ & strContactName & “ - “ _
& strCompanyName

strSaveName = strSaveName & “ on “ _
& strShortDate & strExtension

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “New save name and path: “ _

& vbCrLf & strSaveNamePath
i = i + 1

Else
Debug.Print “Save name not used: “ & strSaveName
intSaveNameFail = False

End If
NextContact:

Loop

Update fields in Word document and save it:

Re-hide ZipCode field
With appWord.Selection

.GoTo What:=wdGoToBookmark, Name:=”ZipCode”

.Find.ClearFormatting

.Font.Hidden = True
End With

With appWord
.Selection.WholeStory
.Selection.Fields.Update
.Selection.HomeKey unit:=wdStory
.ActiveDocument.SaveAs strSaveNamePath

End With
Next varItem

With appWord
.ActiveWindow.WindowState = wdWindowStateNormal
.Visible = True
.Activate

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

163

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 163

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

For a list of the built-in Word named constants that can be used as arguments for func-
tions or methods, or set as the values of properties, look up the appropriate enumera-

tion (enum) in the Object Browser. Word enums start with Wd and are at the bottom of the Classes
list. For example, to see what named constants can be used for the WindowState property of the
ActiveWindow property, look up the WdWindowState enum, which is shown in Figure 6.19.

FIGURE 6.19

Examining the WdWindowState enum in the Object Browser.

The cmdDeselectAll_Click procedure, run from the Clear All Selections command button,
deselects all the rows in the listbox, even the ones you can’t see, so you can start fresh:

Private Sub cmdDeselectAll_Click()

On Error GoTo ErrorHandler

Set lst = Me![lstSelectContacts]

intRows = lst.ListCount - 1

TIPTIP

164

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 164

For intIndex = 0 To intRows
lst.Selected(intIndex) = False

Next intIndex

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The cmdSelectAll_Click procedure, run from the Select All Names command button, selects
all the rows in the listbox; its code is similar, setting the Selected value to True instead of
False.

Clicking the Clear All Selections command button clears any selections you have made in the list-
box; clicking the Create Documents command button starts the merge, calling one of four proce-
dures, depending on the merge type.

Word Bookmarks
If you select the Contact Letter with Envelope (Bookmarks) template from the Select Document
combo box on frmMergeToWord, you will get a set of individual letters, one to each selected con-
tact, with bookmarks filled with Access data. One of these letters is shown in Figure 6.20 (I made
bookmarks visible so you can see their locations; note the gray I-bars).

The MergeBookmarks procedure (listed next) is basically similar to the MergeDocProps
code listed in an earlier section; the difference is that instead of working with the
CustomDocumentProperties collection, it works with the Bookmarks collection, writing
information from either variables or the listbox to named bookmarks in the newly created
Word document:

Private Sub MergeBookmarks(strWordTemplate As String, _
strExtension As String)

On Error GoTo ErrorHandler

strLongDate = Format(Date, “mmmm d, yyyy”)
strShortDate = Format(Date, “m-d-yyyy”)
strDocsPath = GetContactsDocsPath()
Debug.Print “Docs path: “ & strDocsPath

165

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 165

FIGURE 6.20

A Word document with Access data displayed in bookmarks.

Check that at least one contact has been selected:

Set lst = Me![lstSelectContacts]

If lst.ItemsSelected.Count = 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

intColumns = lst.ColumnCount
intRows = lst.ItemsSelected.Count

For Each varItem In lst.ItemsSelected

166

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 166

Check for required address information:

strTest = Nz(lst.Column(5, varItem))
Debug.Print “Street address: “ & strTest
If strTest = “” Then

Debug.Print “Skipping this record -- no address!”
GoTo NextContact

End If

strTest = Nz(lst.Column(1, varItem))
Debug.Print “Contact name: “ & strTest
If strTest = “” Then

Debug.Print _
“Skipping this record -- no contact name!”

GoTo NextContact
End If

strContactName = _
Nz(lst.Column(1, varItem))

strCompanyName = _
Nz(lst.Column(7, varItem))

strNameTitleCompany = _
Nz(lst.Column(2, varItem))

strWholeAddress = _
Nz(lst.Column(5, varItem))

Open a new document based on the selected template:

Set appWord = GetObject(Class:=”Word.Application”)
appWord.Documents.Add strWordTemplate

Write information to Word bookmarks, first turning off the error handler because some templates
don’t have all of these bookmarks:

On Error Resume Next
With appWord.Selection

.GoTo what:=wdGoToBookmark, _
Name:=”NameTitleCompany”

.TypeText Text:=strNameTitleCompany

.GoTo what:=wdGoToBookmark, _
Name:=”WholeAddress”

.TypeText Text:=strWholeAddress

.GoTo what:=wdGoToBookmark, Name:=”Salutation”

.TypeText Text:=Nz(lst.Column(10, varItem))

.GoTo what:=wdGoToBookmark, Name:=”TodayDate”

.TypeText Text:=strLongDate

167

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 167

.GoTo what:=wdGoToBookmark, _
Name:=”EnvelopeNameTitleCompany”

.TypeText Text:=strNameTitleCompany
.GoTo what:=wdGoToBookmark, _
Name:=”EnvelopeWholeAddress”

.TypeText Text:=strWholeAddress

.GoTo what:=wdGoToBookmark, Name:=”ZipCode”

.TypeText Text:=Nz(lst.Column(6, varItem))
End With

Re-insert bookmark:

With appWord.Selection
.MoveLeft _

unit:=wdWord, Count:=3, _
Extend:=wdExtend

.Font.Hidden = True
End With

Re-hide zip code.
With ActiveDocument.Bookmarks

.Add Range:=Selection.Range, Name:=”ZipCode”

.DefaultSorting = wdSortByName

.ShowHidden = False
End With

On Error GoTo ErrorHandler

Check for a previously saved document in the documents folder, and append an incremented
number to the save name if one is found:

strDocType = _
appWord.ActiveDocument.

BuiltInDocumentProperties(wdPropertyTitle)
strSaveName = strDocType & “ to “ _

& strContactName & “ - “ & strCompanyName
strSaveName = strSaveName & “ on “ _

& strShortDate & strExtension
i = 2
intSaveNameFail = True
Do While intSaveNameFail

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “Proposed save name and path: “ _

& vbCrLf & strSaveNamePath
strTestFile = Nz(Dir(strSaveNamePath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = strSaveName Then

Debug.Print “Save name already used: “ _
& strSaveName

168

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 168

Create a new save name with the incremented number:

intSaveNameFail = True
strSaveName = strDocType & “ “ & CStr(i) _

& “ to “ & strContactName & “ - “ _
& strCompanyName

strSaveName = strSaveName & “ on “ _
& strShortDate & strExtension

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “New save name and path: “ _

& vbCrLf & strSaveNamePath
i = i + 1

Else
Debug.Print “Save name not used: “ & strSaveName
intSaveNameFail = False

End If
NextContact:

Loop

Update fields in Word document and save it:

With appWord
.Selection.WholeStory
.Selection.Fields.Update
.Selection.HomeKey unit:=wdStory
.ActiveDocument.SaveAs strSaveNamePath

End With

Next varItem

With appWord
.ActiveWindow.WindowState = wdWindowStateNormal
.Visible = True
.Activate

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

‘Word is not running; open Word with CreateObject
Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

169

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 169

The TypeText Method
For simple documents such as mailing labels, where you just need to insert a block of text from
Access, without fancy formatting, the TypeText method of the Word Selection object can be useful.
If you select the Avery 5160 (TypeText) selection from the Select Document combo box on
frmMergeToWord, you will get a Word document in the form of a table with cells of the right size
to print on the label sheets, as shown in Figure 6.21.

FIGURE 6.21

An Avery 5160 labels document filled with data from Access.

You can also create a list-type document using the TypeText method, filling a table with
data from Access records, one record per row. Figure 6.22 shows such a document,

using one of the new Word 2007 table themes and the new banded rows feature.

The MergeTypeText procedure (listed as follows) writes data from variables directly to cells in a
table, moving to the next cell using the MoveRight method:

Private Sub MergeTypeText(strWordTemplate As String, _
strExtension As String)

On Error GoTo ErrorHandler

NEW FEATURENEW FEATURE

170

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 170

Dim intMod As Integer
Dim lngCount As Long
Dim lngSkip As Long
Dim doc as Word.Document

strLongDate = Format(Date, “mmmm d, yyyy”)
strShortDate = Format(Date, “m-d-yyyy”)
strDocsPath = GetContactsDocsPath()
Debug.Print “Docs path: “ & strDocsPath

Open a new document based on the selected labels template:

Set appWord = GetObject(Class:=”Word.Application”)
Set doc = appWord.Documents.Add(strWordTemplate)

FIGURE 6.22

A Contact list filled with data from Access, showing new Word 2007 formatting features.

171

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 171

Determine whether the template is for labels or list, and move to the first data cell in table if
needed:

If Nz(InStr(strWordTemplate, “List”)) > 0 Then
appWord.Selection.GoTo what:=wdGoToTable, _

which:=wdGoToFirst, _
Count:=1

appWord.Selection.MoveDown unit:=wdLine, _
Count:=1

End If

Set the intMod value depending on the number of cells per row:

strDocType = _
doc.BuiltInDocumentProperties(wdPropertyTitle)

Select Case strDocType

Case “Avery 5160 Labels”
intMod = 3

Case “Avery 5161 Labels”
intMod = 2

Case “Avery 5162 Labels”
intMod = 2

End Select

Check that at least one contact has been selected:

Set lst = Me![lstSelectContacts]

If lst.ItemsSelected.Count = 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

intColumns = lst.ColumnCount
intRows = lst.ItemsSelected.Count

For Each varItem In lst.ItemsSelected

Check for required information:

strTest = Nz(lst.Column(1, varItem))
Debug.Print “Contact name: “ & strTest
If strTest = “” Then

Debug.Print _
“Skipping this record -- no contact name!”

GoTo NextContact

172

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 172

End If

strNameTitleCompany = _
Nz(lst.Column(2, varItem))

strWholeAddress = _
Nz(lst.Column(5, varItem))

strContactName = _
Nz(lst.Column(1, varItem))

strCompanyName = _
Nz(lst.Column(7, varItem))

strJobTitle = Nz(lst.Column(8, varItem))

Process differently depending on whether the template is for labels or a list:

If Nz(InStr(strWordTemplate, “List”)) > 0 Then

Insert data into list:

With appWord.Selection
.TypeText Text:=strContactName
.MoveRight unit:=wdCell, Count:=1
.TypeText Text:=strJobTitle
.MoveRight unit:=wdCell, Count:=1
.TypeText Text:=strCompanyName
.MoveRight unit:=wdCell, Count:=1

End With

ElseIf Nz(InStr(strWordTemplate, “Labels”)) > 0 Then
lngCount = lngCount + 1

Insert data into labels, skipping narrow spacer columns:

With appWord.Selection
.TypeText Text:=strNameTitleCompany
.TypeParagraph
.TypeText Text:=strWholeAddress
.TypeParagraph

Use the Mod operator to handle every second or third record differently, in order to write data only
to valid cells:

lngSkip = lngCount Mod intMod
If lngSkip <> 0 Then

.MoveRight unit:=wdCell, Count:=2
ElseIf lngSkip = 0 Then

.MoveRight unit:=wdCell, Count:=1
End If

End With
End If

173

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 173

NextContact:
Next varItem

If Nz(InStr(strWordTemplate, “List”)) > 0 Then

Delete redundant last (blank) row:

With appWord.Selection
.SelectRow
.Rows.Delete
.HomeKey unit:=wdStory

End With
End If

Check for the previously saved document in the documents folder, and append an incremented
number to the save name if one is found:

strDocType = _

appWord.ActiveDocument.BuiltInDocumentProperties(wdPropertyTitle)
strSaveName = strDocType & “ on “ _

& strShortDate & strExtension
i = 2
intSaveNameFail = True
Do While intSaveNameFail

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “Proposed save name and path: “ _

& vbCrLf & strSaveNamePath
strTestFile = Nz(Dir(strSaveNamePath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = strSaveName Then

Debug.Print “Save name already used: “ _
& strSaveName

Create a new save name with the incremented number:

intSaveNameFail = True
strSaveName = strDocType & “ “ & CStr(i) & “ on “ _

& strShortDate & strExtension
strSaveNamePath = strDocsPath & strSaveName
Debug.Print “New save name and path: “ _

& vbCrLf & strSaveNamePath
i = i + 1

Else
Debug.Print “Save name not used: “ & strSaveName
intSaveNameFail = False

End If
Loop

174

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 174

Save Word document:

appWord.ActiveDocument.SaveAs strSaveNamePath

With appWord
.ActiveWindow.WindowState = wdWindowStateNormal
.Visible = True
.Activate

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If
End Sub

Word Mail Merge
You can link a Word merge document directly to an Access table or query; however, there are some
drawbacks to this method. The merge document won’t open unless the Access database is available
and is in the same location as when the merge data source was selected. Because of this limitation,
when using mail merge I prefer to export the Access data to a text file, and assign the newly created
text file as the merge document’s data source. This means that the document can be opened with-
out Access being available, and without the need to establish a link to a database.

Mailing Labels
Sheets of mailing labels are very suitable for mail merge; you can select three types of Avery mailing
labels (Mail Merge type) from the Select Document combo box on frmMergeToWord. If you select
the Avery 5160 Labels (Mail Merge) document, you will get a Word document like the one shown
in Figure 6.23.

The Avery labels documents look (and work) exactly the same whether produced by mail merge or
the TypeText method, so I prefer to use the TypeText method, because it is much simpler to
set up a plain labels document than a mail merge document; all you have to do is create a labels-
type document in Word, whereas creating a mail merge document requires manually linking to a
data source and inserting merge fields.

175

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 175

FIGURE 6.23

An Avery 5161 mailing labels merge document filled with Access data.

Lists
The Word Catalog-type merge is very useful for producing lists of merged data. Selecting the
Contact List (Mail Merge) document (this is a Word 97/2003 document, used in Compatibility
mode) from the Select Document combo box on frmMergeToWord creates a list in tabular form,
shown in Figure 6.24.

Documents
You can use mail merge to create a merge document, where each page displays data from one con-
tact record. I prefer to use the document properties or bookmarks method, in order to have a sepa-
rate document for each contact, but if you have many hundreds (or thousands) of documents to
generate, this is not practical. The Contact Letters (Mail Merge) selection in the Select Document
combo box creates a mail merge document with a letter on each page; Figure 6.25 shows one page
of this merge document.

176

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 176

FIGURE 6.24

The Contact List filled with merged data from Access.

If a merge document with the Merge Data.txt data source is open, if you try to create
another merge document bound to the same data source, you will get an error message

saying that Merge Data.txt already exists, and you won’t be able to continue. To prevent this from
happening, the mail merge code closes the original merge document after merging the data to a new
document.

The MailMergeTextFile procedure is listed as follows. This procedure first fills an Access table
with data from the ItemsSelected collection of the ListBox, and then exports the data from that
table to a text file, Merge Data.txt, which is used as the data source for the mail merge docu-
ment. The merge is executed to a new document (so the document can be opened later, without
needing the data source) and saved to a name picked up from the template’s Title field and the
date, formatted with dashes to avoid file name problems:

WARNING WARNING

177

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 177

FIGURE 6.25

The third page of a mail merge form letters document.

Private Sub MailMergeTextFile(strWordTemplate As String, _
strExtension As String)

On Error GoTo ErrorHandler

Dim rst As DAO.Recordset
Dim dbs As DAO.Database
Dim strDBPath As String
Dim strTextFile As String
Dim strDocName As String
Dim strSalutation As String
Dim strZipCode As String
Dim strSQL As String
Dim strTable As String

178

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 178

strLongDate = Format(Date, “mmmm d, yyyy”)
strShortDate = Format(Date, “m-d-yyyy”)
strDocsPath = GetContactsDocsPath()
Debug.Print “Docs path: “ & strDocsPath
strTemplatePath = GetContactsTemplatesPath()

Check that at least two contacts have been selected, because there is no point of doing a mail
merge to only one contact:

Set lst = Me![lstSelectContacts]

If lst.ItemsSelected.Count < 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

Clear the merge data table of old data:

DoCmd.SetWarnings False
strTable = “tblMergeData”
strSQL = “DELETE * FROM “ & strTable
DoCmd.RunSQL strSQL

Create a recordset based on the table of merge data:

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(Name:=strTable)

intColumns = lst.ColumnCount
intRows = lst.ItemsSelected.Count

For Each varItem In lst.ItemsSelected

Check for required address information:

strTest = Nz(lst.Column(5, varItem))
Debug.Print “Street address: “ & strTest
If strTest = “” Then

Debug.Print “Skipping this record -- no address!”
GoTo NextContact

End If

strTest = Nz(lst.Column(1, varItem))
Debug.Print “Contact name: “ & strTest
If strTest = “” Then

Debug.Print _
“Skipping this record -- no contact name!”

GoTo NextContact
End If

179

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 179

strContactName = _
Nz(lst.Column(1, varItem))

strCompanyName = _
Nz(lst.Column(7, varItem))

strNameTitleCompany = _
Nz(lst.Column(2, varItem))

strWholeAddress = Nz(lst.Column(5, varItem))
strSalutation = Nz(lst.Column(10, varItem))
strJobTitle = Nz(lst.Column(8, varItem))
strZipCode = Nz(lst.Column(6, varItem))

Add records to the table from the selected items in the ListBox:

With rst
.AddNew
![NameTitleCompany] = strNameTitleCompany
![WholeAddress] = strWholeAddress
![Salutation] = strSalutation
![TodayDate] = strLongDate
![CompanyName] = strCompanyName
![JobTitle] = strJobTitle
![ZipCode] = strZipCode
![ContactName] = strContactName
.Update

End With

NextContact:
Next varItem
rst.Close

Export the merge table data to a text file, to be used as the mail merge document’s data source:

strTextFile = strTemplatePath & “Merge Data.txt”
Debug.Print “Text file for merge: “ & strTextFile
DoCmd.TransferText transfertype:=acExportDelim, _

TableName:=strTable, _
FileName:=strTextFile, _
HasFieldNames:=True

Open a new merge document based on the selected template:

Set appWord = GetObject(Class:=”Word.Application”)
appWord.Documents.Add strWordTemplate
appWord.Visible = True
strDocName = appWord.ActiveDocument.Name
Debug.Print “Initial doc name: “ & strDocName

180

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 180

Check for a previously saved document in the documents folder, and append an incremented
number to the save name if one is found:

strDocType = _
appWord.ActiveDocument.

BuiltInDocumentProperties(wdPropertyTitle)
strSaveName = strDocType & “ on “ _

& strShortDate & strExtension
i = 2
intSaveNameFail = True
Do While intSaveNameFail

strSaveNamePath = strDocsPath & strSaveName
Debug.Print “Proposed save name and path: “ _

& vbCrLf & strSaveNamePath
strTestFile = Nz(Dir(strSaveNamePath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = strSaveName Then

Debug.Print “Save name already used: “ _
& strSaveName

Create a new save name with the incremented number:

intSaveNameFail = True
strSaveName = strDocType & “ “ & CStr(i) & “ on “ _

& strShortDate & strExtension
strSaveNamePath = strDocsPath & strSaveName
Debug.Print “New save name and path: “ _

& vbCrLf & strSaveNamePath
i = i + 1

Else
Debug.Print “Save name not used: “ & strSaveName
intSaveNameFail = False

End If
Loop

Set the merge data source to the text file just created, and do the merge:

With appWord
.ActiveDocument.MailMerge.OpenDataSource _

Name:=strTextFile, _
Format:=wdOpenFormatText

.ActiveDocument.MailMerge.Destination = _
wdSendToNewDocument

.ActiveDocument.MailMerge.Execute

181

Working with Word Documents and Templates 6

11_047026 ch06.qxp 4/2/07 9:44 PM Page 181

Save the newly created merge document:

.ActiveDocument.SaveAs strSaveNamePath

Close the master merge document:

.Documents(strDocName).Close _
SaveChanges:=wdDoNotSaveChanges

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(Class:=”Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Summary
Now you know how to export Access data to various types of Word documents, both in the inter-
face and in VBA code, you can produce highly formatted Word documents filled with Access data.
Microsoft promotes mail merge, but in my opinion it is best to avoid this method (especially in
Office 2007 and Windows Vista), because of the problems it has with security features. With the
three other techniques covered in this chapter, you will know how to produce almost any type of
document using other methods, and avoid the problems with locked or unavailable databases
when using mail merge when it is needed.

182

Writing VBA Code to Exchange Data between Office ComponentsPart II

11_047026 ch06.qxp 4/2/07 9:44 PM Page 182

Just as you might want to export Access data to Word documents to
take advantage of their superior formatting and transportability, you
may also want (or need) to export Access data to Excel worksheets, so

users can review, edit, or add data, or perform various numerical calcula-
tions, in a familiar and widely used format (all Office users have Excel,
whereas only some have Access). Excel worksheets are often used for enter-
ing and analyzing numerical (and text) data, such as timesheets, applica-
tions, and other forms. Or you may want to export Access data to a simple
rows-and-columns worksheet, so that users can manipulate the data in vari-
ous ways and produce charts based on the data, using the tools in Excel.

This chapter describes how you can export data to Excel spreadsheets for a
variety of purposes. You can export Access data to Excel using a command
on the new Ribbon, or use the TransferSpreadsheet method in a single
line of code to do a basic export of all the data in a table or query to a plain
worksheet, or write more complex VBA Automation code to create a fully
formatted worksheet filled with Access data.

Strictly speaking, an .xls (or the new .xlsx) file is a
workbook; each workbook contains one or more

worksheets. However, in general parlance you will hear (and read) worksheet
used to reference an .xls file, a practice carried over from the earliest days of
Excel, before workbooks were added to the interface. I will follow that usage
except when it is necessary to distinguish between a workbook and a work-
sheet, such as in describing how a procedure works.

NOTENOTE

183

IN THIS CHAPTER
The Excel object model

Creating worksheets from
the Ribbon

Creating worksheets from
templates

Formatting worksheets in
VBA code

Filling Excel worksheets with
Access timesheet data

Working with Excel
Worksheets

12_047026 ch07.qxp 4/2/07 9:44 PM Page 183

Simply Exporting Access Data to Excel
Just as in earlier Office versions, Access offers two ways to do a quick-and-dirty export of table or
query data to an Excel worksheet. You can use the Excel button in the Export group of the External
Data tab of the Ribbon to export Access data without worrying about formatting, for an Office
2007 user who just wants the data. If you need to create worksheets that can be opened and edited
by users running older versions of Office, or using a handheld device such as a BlackBerry, you can
use the TransferSpreadsheet method to export data, selecting the desired output worksheet
format. This can be useful when you work for an organization that has upgraded its software and
you need to send a worksheet with client contact information to a sales representative who has not
updated her laptop yet.

For a quick export to the new .xlsx worksheet format, use the Excel button in the Export group of
the External Data tab of the new Access Ribbon, as shown in Figure 7.1.

FIGURE 7.1

Exporting a table to an Excel worksheet from the Ribbon.

Clicking the Excel button opens a dialog where you can browse for the location for saving the
worksheet. This dialog has an option for preserving the layout and formatting of the original
Access object, which (curiously) is only available if a table or query is selected (see Figure 7.2).

Tables and queries don’t have much in the way of formatting and layout, but if you check the
“Export data with formatting and layout” checkbox your Excel worksheet will use the same font as
the table or query (though not the alternate row shading), and it will show data from a linked table
instead of the linking ID field. Figure 7.3 shows two worksheets made from the same table; the top
one displays the customers’ company name in the CustomerID column (picking it up from the
linked table) and uses the Calibri 11 font; the second worksheet displays the CustomerID in that
column and uses the Arial 10 font.

184

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 184

FIGURE 7.2

The options when exporting a table to an Excel worksheet.

FIGURE 7.3

Excel worksheets exported with and without checking the “Export data with formatting and layout” option
on the export dialog.

185

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 185

The Excel button on the Ribbon (with or without the layout and formatting preserved) is a useful
option when you need to create a quick-and-dirty Excel worksheet in Excel 2007 format (the new
extension is .xlsx). If you need to export to an older Excel format, but you don’t need fancy format-
ting, you can do an export with a single line of VBA code, using the TransferSpreadsheet
method, which has been available since the earliest days of Access.

The TransferSpreadsheet method allows you to select the Excel version for creating your
worksheet filled with Access data, so you can create worksheets that will be usable by recipients
who have older versions of Office. The procedure listed as follows exports tblContacts to an Excel
97-2003 worksheet called Contacts.xls (the named constant for this worksheet version is
acSpreadsheetTypeExcel7):

Public Function TransferToExcel()

On Error GoTo ErrorHandler

Dim strTable As String
Dim strWorksheetPath As String

strWorksheetPath = GetWorksheetsPath
strWorksheetPath = strWorksheetPath & “Contacts.xls”
strTable = “tblContacts”
strWorksheetPath = GetWorksheetsPath()
strWorksheetPath = strWorksheetPath & “Contacts.xls”
Debug.Print “Worksheet path: “ & strWorksheetPath

Export table data to a new worksheet:

DoCmd.TransferSpreadsheet transfertype:=acExport, _
spreadsheettype:=acSpreadsheetTypeExcel7, _
TableName:=strTable, FileName:=strWorksheetPath, _
hasfieldnames:=True

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The exported worksheet looks just like the unformatted worksheet exported from the Ribbon
selection, but it is in the older format, as you can see from the “(Compatibility Mode)” after the
worksheet name in its title bar (see Figure 7.4).

186

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 186

FIGURE 7.4

An Access table exported to an Excel 97-2003 worksheet.

The Excel Object Model
The two export options described in the previous section are fine for creating a simple, minimally
formatted or unformatted worksheet filled with data from an Access table or query, but if you need
to create fully formatted worksheets, such as personnel forms, timesheets, sales reports, factory
production data reports, and so forth, you will need to work with the Excel object model to create
worksheets using Automation code, fill them with Access data, and then apply formatting, using
components of the Excel object model.

The Excel Export.accdb sample database contains the tables, queries, forms, and code
used in this chapter.

The CreateObject and GetObject functions are used to either create a new Excel object, or
set a reference to an existing instance of Excel. Using GetObject to retrieve a reference to an
existing workbook avoids creating extra instances of Excel, which uses up system resources. To
open a worksheet within a workbook, first set a reference to the Workbook object, then add a new
workbook to the Workbooks collection. By default, the new workbook will have three worksheets.
The CreateNewWorkbook procedure creates a new, blank workbook from the default Excel
template, with three worksheets:

Public Function CreateNewWorkbook ()

On Error GoTo ErrorHandler

Dim appExcel As Excel.Application
Dim bks As Excel.Workbooks

Set appExcel = GetObject(, “Excel.Application”)
Set bks = appExcel.Workbooks

NOTENOTE

187

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 187

Create and open a new, blank workbook:

bks.Add

Make the workbook visible:

appExcel.Application.Visible = True

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

Excel is not running; open Excel with CreateObject:

Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ & _

Err.Description
Resume ErrorHandlerExit

End If

End Sub

The procedures in this section can be run from macros; each procedure has a macro
whose name is mcr plus the procedure name.

The error handler in the preceding procedure is similar to the one used in the Word Automation
code in Chapter 6; sets a reference to the current Excel instance if Excel is running and otherwise
creates a new Excel Application instance using the CreateObject function from a line in the
procedure’s error handler. If you run the CreateNewWorkbook procedure repeatedly, each time it
runs a new workbook is created within the Excel window, named Book1, Book2, and so forth, as
shown in Figure 7.5.

NOTENOTE

188

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 188

FIGURE 7.5

Three workbooks in the Excel window.

To open a specific saved workbook, use a procedure like the one listed next, which opens a saved
workbook using the Worksheets collection’s Open method and the file name and path:

Public Function OpenSpecificWorkbook()

On Error GoTo ErrorHandler

Dim appExcel As Excel.Application
Dim bks As Excel.Workbooks
Dim sht As Excel.Worksheet
Dim strWorkbook As String

Set appExcel = GetObject(, “Excel.Application”)
strPrompt = “Enter path and title of workbook”
strTitle = “Workbook Name”
strDefault = “D:\Documents\tblContacts2.xls”

strWorkbook = InputBox(prompt:=strPrompt, _
Title:=strTitle, Default:=strDefault)

appExcel.Workbooks.Open (strWorkbook)
Set sht = appExcel.ActiveWorkbook.Sheets(1)

189

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 189

sht.Activate
appExcel.Application.Visible = True

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

Excel is not running; open Excel with CreateObject:

Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ &

Err.Description
Resume ErrorHandlerExit

End If

End Sub

If Excel is open, the workbook will be opened in the same window, as shown in Figure 7.6.

FIGURE 7.6

Opening a saved workbook in an existing Excel window.

190

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 190

If Excel is not running, the workbook will open in a new Excel window.

As with exporting Access data to Word, when writing Automation code to work with Excel, you
only need a few components of the Excel object model: Workbooks, Worksheets, the Range object,
Rows, and Columns. These objects are used in the more complex Excel Automation procedures in
the following sections.

Minimally Formatted Worksheets
If you need to create a simple tabular worksheet listing the contacts in qryContacts, with minimal
formatting, you can create a new workbook in VBA code, from a saved workbook template with a
title, correctly sized columns, and the font and other layout of your choice, and fill it with Access
data. The ExportContactsToExcel procedure creates a recordset based on qryContacts, and
exports selected fields from each record in that query to a workbook created from a template, with
a title, column headings, and some minimal formatting:

Public Function ExportContactsToExcel()

On Error GoTo ErrorHandler

Dim dbs As DAO.Database
Dim rst As DAO.Recordset
Dim strWorksheetPath As String
Dim appExcel As Excel.Application
Dim strTemplatePath As String
Dim bks As Excel.Workbooks
Dim rng As Excel.Range
Dim rngStart As Excel.Range
Dim strTemplateFile As String
Dim wkb As Excel.Workbook
Dim wks As Excel.Worksheet
Dim lngCount As Long
Dim strPrompt As String
Dim strTitle As String
Dim strTemplateFileAndPath As String
Dim prps As Object
Dim strSaveName As String
Dim strTestFile As String
Dim strDefault As String

Set appExcel = GetObject(, “Excel.Application”)
strTemplatePath = GetWorksheetTemplatesPath
strTemplateFile = “Access Contacts.xltx”
strTemplateFileAndPath = strTemplatePath _

& strTemplateFile

191

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 191

Check for the template in the selected template folder, and exit if not found:

strTestFile = Nz(Dir(strTemplateFileAndPath))
Debug.Print “Test file: “ & strTestFile
If strTestFile = “” Then

MsgBox strTemplateFileAndPath _
& “ template not found; “ _
& “can’t create worksheet”

GoTo ErrorHandlerExit
End If

strWorksheetPath = GetWorksheetsPath
Debug.Print “Worksheet template and path: “ _

& strTemplateFileAndPath

Set a reference to the workbook and worksheet, and activate the worksheet:

Set bks = appExcel.Workbooks
Set wkb = bks.Add(strTemplateFileAndPath)
Set wks = wkb.Sheets(1)
wks.Activate

Set a reference to the query:

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“qryContacts”, _

dbOpenDynaset)
rst.MoveLast
rst.MoveFirst
lngCount = rst.RecordCount
If lngCount = 0 Then

MsgBox “No contacts to export”
GoTo ErrorHandlerExit

Else
strPrompt = “Exporting “ & lngCount _

& “ contacts to Excel”
strTitle = “Exporting”
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

End If

Go to the first data cell:

Set rngStart = wks.Range(“A4”)
rngStart.Activate

Loop through the recordset, importing each record to a cell in the worksheet:

With rst
Do Until .EOF

192

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 192

Write Access data from a record directly to cells in the worksheet:

rngStart.Activate
rngStart.Value = Nz(![ContactID])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=1)
rng.Value = Nz(![CompanyName])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=2)
rng.Value = Nz(![FirstName])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=3)
rng.Value = Nz(![LastName])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=4)
rng.Value = Nz(![Salutation])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=5)
rng.Value = Nz(![StreetAddress])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=6)
rng.Value = Nz(![City])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=7)
rng.Value = Nz(![StateOrProvince])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=8)
rng.Value = Nz(![PostalCode])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=9)
rng.Value = Nz(![Country])
Set rng = _

appExcel.ActiveCell.Offset(columnoffset:=10)
rng.Value = Nz(![JobTitle])

Go to the first column of the next row:

rngStart.Activate
Set rngStart = _

appExcel.ActiveCell.Offset(rowoffset:=1)
.MoveNext

Loop
End With

MsgBox “All Contacts exported!”

193

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 193

Get the save name from workbook’s Title property:

Set prps = _
appExcel.ActiveWorkbook.BuiltinDocumentProperties

strSaveName = strWorksheetPath & prps(“Title”) _
& “ - “ & Format(Date, “d-mmm-yyyy”)

Debug.Print “Worksheet save name: “ & strSaveName

On Error Resume Next

If there already is a saved worksheet with this name, delete it:

Kill strSaveName

On Error GoTo ErrorHandler

strPrompt = “Enter file name and path for saving worksheet”
strTitle = “File name”
strDefault = strSaveName
strSaveName = InputBox(prompt:=strPrompt, _

Title:=strTitle, Default:=strDefault)

wkb.SaveAs FileName:=strSaveName, _
FileFormat:=xlWorkbookDefault

appExcel.Visible = True

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err = 429 Then

Excel is not running; open Excel with CreateObject:

Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

The procedure first picks up the worksheet template path from the main menu, checks that the
template is to be found in that location, and then creates a new workbook from the template. It
then sets up a recordset based on an Access query, goes to the first data cell in the worksheet, and
starts iterating through the records in the recordset, using the Offset method of the active cell to
place data from each field in the correct column.

194

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 194

When all the contacts have been exported to the worksheet, a save name is constructed from the
template’s Title property and the current date, and displayed in an InputBox so it can be edited, if
desired; finally, the worksheet is saved with the save name and made visible.

The ExportContactsToExcel procedure in this section can be run from the macro
mcrExportContactsToExcel.

The resulting worksheet is shown in Figure 7.7.

FIGURE 7.7

A minimally formatted worksheet filled with Access data.

Tabular Worksheets Formatted from Code
Many companies store data on customer or client accounts in an Access database and need to
export that data to Excel for further analysis or distribution. For example, an insurance company
might need to export data on the companies it insures, including the account number, account
type, policyholder, and account executive for use by their employees in the field. The
ExportAccountSummary procedure (listed as follows) exports this data, using a different
approach than the previous procedure. Instead of using a preformatted Excel template, all the
formatting and sizing is applied directly from VBA code, to an Excel 9 worksheet filled with Access
data by the TransferSpreadsheet method:

Public Function ExportAccountSummary()

Dim strWorksheet As String
Dim strWorksheetPath As String
Dim appExcel As Excel.Application

NOTENOTE

195

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 195

Dim sht As Excel.Worksheet
Dim wkb As Excel.Workbook
Dim rng As Excel.Range
Dim strTable As String
Dim strRange As String
Dim strSaveName As String
Dim strPrompt As String
Dim strTitle As String
Dim strDefault As String

On Error GoTo ErrorHandler

Re-create table for export:

strTable = “tmakAccountSummary”
DoCmd.SetWarnings False
DoCmd.OpenQuery “qmakAccountSummary”

Create worksheet save name:

strWorksheetPath = GetWorksheetsPath()
strWorksheet = “Account Summary”
strSaveName = strWorksheetPath & strWorksheet & “.xls”
Debug.Print “Worksheet save name” & strSaveName

On Error Resume Next

Delete existing worksheet (if there is one):

Kill strSaveName

On Error GoTo ErrorHandler

Export query data to a new worksheet in Excel 9 format:

DoCmd.TransferSpreadsheet transfertype:=acExport, _
spreadsheettype:=acSpreadsheetTypeExcel9, _
TableName:=strTable, FileName:=strSaveName, _
hasfieldnames:=True

Open the newly created worksheet and insert title material:

Set appExcel = GetObject(, “Excel.Application”)
appExcel.Workbooks.Open (strSaveName)
Set wkb = appExcel.ActiveWorkbook
Set sht = appExcel.ActiveSheet
sht.Activate

With sht

196

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 196

Apply the Calibri 9 pt font to the entire worksheet:

.Range(“A:F”).Font.Name = “Calibri”

.Range(“A:F”).Font.Size = 9

Apply hairline borders to the entire worksheet:

.Range(“A:F”).Borders(xlDiagonalDown).LineStyle = _
xlNone

.Range(“A:F”).Borders(xlDiagonalUp).LineStyle = xlNone

.Range(“A:F”).Borders(xlEdgeLeft).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlEdgeLeft).Weight = xlHairline

.Range(“A:F”).Borders(xlEdgeLeft).ColorIndex = _
xlAutomatic

.Range(“A:F”).Borders(xlEdgeTop).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlEdgeTop).Weight = xlHairline

.Range(“A:F”).Borders(xlEdgeTop).ColorIndex = _
xlAutomatic

.Range(“A:F”).Borders(xlEdgeBottom).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlEdgeBottom).Weight = _
xlHairline

.Range(“A:F”).Borders(xlEdgeBottom).ColorIndex = _
xlAutomatic

.Range(“A:F”).Borders(xlEdgeRight).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlEdgeRight).Weight = _
xlHairline

.Range(“A:F”).Borders(xlEdgeRight).ColorIndex = _
xlAutomatic

.Range(“A:F”).Borders(xlInsideVertical).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlInsideVertical).Weight = _
xlHairline

.Range(“A:F”).Borders(xlInsideVertical).ColorIndex = _
xlAutomatic

.Range(“A:F”).Borders(xlInsideHorizontal).LineStyle = _
xlContinuous

.Range(“A:F”).Borders(xlInsideHorizontal).Weight = _
xlHairline

.Range(“A:F”).Borders(xlInsideHorizontal).LineStyle = _
xlContinuous

Set the widths of the columns:

.Range(“A:A”).ColumnWidth = 25

.Range(“B:B”).ColumnWidth = 15

.Range(“C:C”).ColumnWidth = 15

197

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 197

.Range(“D:D”).ColumnWidth = 20

.Range(“E:E”).ColumnWidth = 15

.Range(“F:F”).ColumnWidth = 20

Insert blank rows at top of worksheet:

.Range(“1:1”).Insert Shift:=xlDown

.Range(“1:1”).Insert Shift:=xlDown

.Range(“1:1”).Insert Shift:=xlDown

.Range(“1:1”).Insert Shift:=xlDown

Format the column headings row:

With .Range(“5:5”)
.Font.Size = 10
.Font.Bold = True
.Borders(xlEdgeTop).Weight = xlMedium
.Borders(xlEdgeBottom).Weight = xlMedium
.Interior.ColorIndex = 15
.Interior.Pattern = xlSolid
.Interior.PatternColorIndex = xlAutomatic
.RowHeight = 15
.VerticalAlignment = xlBottom
.HorizontalAlignment = xlCenter
.WrapText = True

End With

Insert and format title text:

.Range(“A1:F1”).HorizontalAlignment = xlCenter

.Range(“A1:F1”).VerticalAlignment = xlBottom

.Range(“A1:F1”).WrapText = False

.Range(“A1:F1”).Orientation = 0

.Range(“A1:F1”).ShrinkToFit = False

.Range(“A1:F1”).MergeCells = True

.Range(“A1:F1”).Borders(xlDiagonalDown).LineStyle = _
xlNone

.Range(“A1:F1”).Borders(xlDiagonalUp).LineStyle = _
xlNone

.Range(“A1:F1”).Borders(xlEdgeLeft).LineStyle = xlNone

.Range(“A1:F1”).Borders(xlEdgeTop).LineStyle = xlNone

.Range(“A1:F1”).Borders(xlEdgeBottom).LineStyle = _
xlNone

.Range(“A1:F1”).Borders(xlEdgeRight).LineStyle = _
xlNone

.Range(“A1:F1”).Borders(xlInsideVertical).LineStyle = _
xlNone

.Range(“A2:F2”).HorizontalAlignment = xlCenter

198

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 198

.Range(“A2:F2”).VerticalAlignment = xlBottom

.Range(“A2:F2”).WrapText = False

.Range(“A2:F2”).Orientation = 0

.Range(“A2:F2”).ShrinkToFit = False

.Range(“A2:F2”).MergeCells = True

.Range(“A2:F2”).Borders(xlDiagonalDown).LineStyle = _
xlNone

.Range(“A2:F2”).Borders(xlDiagonalUp).LineStyle = _
xlNone

.Range(“A2:F2”).Borders(xlEdgeLeft).LineStyle = xlNone

.Range(“A2:F2”).Borders(xlEdgeTop).LineStyle = xlNone

.Range(“A2:F2”).Borders(xlEdgeBottom).LineStyle = _
xlNone

.Range(“A2:F2”).Borders(xlEdgeRight).LineStyle = xlNone

.Range(“A2:F2”).Borders(xlInsideVertical).LineStyle = _
xlNone

.Range(“A3:F3”).HorizontalAlignment = xlCenter

.Range(“A3:F3”).VerticalAlignment = xlBottom

.Range(“A3:F3”).WrapText = False

.Range(“A3:F3”).Orientation = 0

.Range(“A3:F3”).ShrinkToFit = False

.Range(“A3:F3”).MergeCells = True

.Range(“A3:F3”).Borders(xlDiagonalDown).LineStyle = _
xlNone

.Range(“A3:F3”).Borders(xlDiagonalUp).LineStyle = _
xlNone

.Range(“A3:F3”).Borders(xlEdgeLeft).LineStyle = xlNone

.Range(“A3:F3”).Borders(xlEdgeTop).LineStyle = xlNone

.Range(“A3:F3”).Borders(xlEdgeBottom).LineStyle = _
xlNone

.Range(“A3:F3”).Borders(xlEdgeRight).LineStyle = xlNone

.Range(“A3:F3”).Borders(xlInsideVertical).LineStyle = _
xlNone

.Range(“A4:F4”).MergeCells = True

.Range(“A4:F4”).Borders(xlDiagonalDown).LineStyle = _
xlNone

.Range(“A4:F4”).Borders(xlDiagonalUp).LineStyle = _
xlNone

.Range(“A4:F4”).Borders(xlEdgeLeft).LineStyle = xlNone

.Range(“A4:F4”).Borders(xlEdgeTop).LineStyle = xlNone

.Range(“A4:F4”).Borders(xlEdgeRight).LineStyle = xlNone

.Range(“A4:F4”).Borders(xlInsideVertical).LineStyle = _
xlNone

.Range(“A1:A4”).Font.Size = 14

.Range(“A1:A4”).Font.Bold = True

.Range(“A3”).Value = “As of “ & Date

.Range(“A2”).Value = “Account Services”

.Range(“A1”).Value = “Nation-wide Summary of”

199

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 199

Adjust worksheet print setup and margins:

.PageSetup.PrintTitleRows = “$5:$5”

.PageSetup.LeftFooter = “&F”

.PageSetup.CenterFooter = “”

.PageSetup.CenterHeader = “”

.PageSetup.RightFooter = “Page &P”

.PageSetup.Orientation = xlLandscape

.PageSetup.PrintGridlines = False

.PageSetup.Zoom = 90
End With

Make worksheet visible and save it:

appExcel.Application.Visible = True

strPrompt = _
“Enter file name and path for saving worksheet”

strTitle = “File name”
strDefault = strSaveName
strSaveName = InputBox(prompt:=strPrompt, _

Title:=strTitle, Default:=strDefault)

wkb.SaveAs FileName:=strSaveName, _
FileFormat:=xlWorkbookDefault

appExcel.Visible = True

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err = 429 Then

Excel is not running; open Excel with CreateObject:

Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

200

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 200

Because the workbook was created in an older format, you will see “(Compatibility
Mode)” in its title bar.

The procedure starts by running a make-table query to create a table for export to Excel, then cre-
ates a save name for the worksheet, and deletes the old worksheet file, if it exists. The data in the
table created by the make-table query is then exported to a new Excel worksheet, using the
TransferSpreadsheet method. The new worksheet is opened and activated, and various
ranges in the worksheet are formatted, applying the Calibri font, hairline borders, and appropriate
column widths for each column.

I like to give tables created by make-table queries the prefix tmak, with the same base
name as the query. This lets me know that a table was created by a make-table query, so

I know that if I want to change it, I need to modify the query, not the table.

Next, the procedure inserts blank rows at the top of the worksheet, and title text is inserted at the top;
these header lines are then formatted with a gray background and upper and lower lines. Several
print setup and margin settings are done next, and finally the worksheet is saved, with an InputBox
so you can modify the save name, if desired. The finished worksheet is shown in Figure 7.8.

FIGURE 7.8

An Excel worksheet formatted in VBA code.

TIPTIP

NOTENOTE

201

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 201

As a quick way to find out the syntax for various Excel commands, open an Excel work-
sheet, turn on the macro recorder, perform the actions, and then save the macro. Open

the saved macro and copy the code to your Access procedure; with a little trimming of redundant
arguments and editing to insert your variable names, it should work fine.

Timesheets
Almost any type of business (other than a one-person operation) needs a form for recording
employees’ work hours and a way to print or electronically distribute the timesheet data. Often a
company has used a paper form to record work hours for many years, and the electronic form
needs to replicate the paper form. In some cases, there are specific government or industry stan-
dard formats that must be used, or the data must be produced in a format that can be imported by
a mainframe computer. You can use a preformatted Excel worksheet template to produce
timesheets in the exact format you need and fill them with data from Access.

One example of using timesheets in such a fashion is an engineering firm whose employees work
on various projects for the company’s clients. Because the employees’ work hours (except for those
assigned to internal projects) will be billed back to the clients, in this case a separate worksheet is
needed for each employee’s work on a specific project per week, so a single employee might have
several timesheets in a week. In the case of (for example) a scientific research establishment, where
hours are not billed out to clients, one timesheet per employee, listing multiple projects in a week,
would be more appropriate.

The form frmWeeklyTimesheet (shown in Figure 7.9) is an Access front end for entering timesheet
data that will be exported to Excel timesheets. This form lets you select an employee, client, and
project, and fill in a timesheet for that employee. The assumption is that a separate timesheet is done
for each client/project combination, so an employee can have multiple timesheets for a given week.

The cboEmployeeID combo box’s row source is a union query that combines data from two
queries: qryThisWeeksTimesheets, which lists the timesheets that have been filled in so far
this week, and qryNeedTimesheets, which lists the employees who have not yet filled out a
timesheet for this week. The resulting list displays all the employees, showing the timesheets that
have been filled out so far, as illustrated in Figure 7.10.

TIPTIP

202

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 202

FIGURE 7.9

An Access form for entering timesheet data for export to Excel.

FIGURE 7.10

A combo box list showing timesheets for employees.

After selecting an employee, the CurrentWeekEnding procedure calculates the week ending
date (today, if it is Sunday, otherwise last Sunday) and fills the captions of the seven date labels on
the form with the correct day of the week; the Manager name is also displayed in the Manager field
(the light blue back color indicates that the text box is locked). (See Figure 7.11.)

I give locked controls a light blue background (as opposed to a white background for
editable controls) to give users a visual cue that they can’t enter or edit text in these

controls.

NOTENOTE

203

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 203

FIGURE 7.11

Date information automatically filled in after selecting an employee.

The CurrentWeekEnding and FillDateControls procedures are listed as follows:

Public Function CurrentWeekEnding() As Date

On Error GoTo ErrorHandler

Dim dteToday As Date

dteToday = Date
Do While Weekday(dteToday) <> vbSunday

dteToday = dteToday - 1
Debug.Print “Testing “ & dteToday

Loop

CurrentWeekEnding = dteToday

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ &

Err.Description
Resume ErrorHandlerExit

End Function

204

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 204

Private Sub FillDateControls()

On Error GoTo ErrorHandler

Dim strFormattedDate As String

Fill week ending and weekday controls with text:

Me![txtWeekEnding].Value = CurrentWeekEnding
strFormattedDate = Format(DateAdd(“d”, -6, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblMondayDate].Caption = strFormattedDate
strFormattedDate = Format(DateAdd(“d”, -5, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblTuesdayDate].Caption = strFormattedDate
strFormattedDate = Format(DateAdd(“d”, -4, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblWednesdayDate].Caption = strFormattedDate
strFormattedDate = Format(DateAdd(“d”, -3, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblThursdayDate].Caption = strFormattedDate
strFormattedDate = Format(DateAdd(“d”, -2, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblFridayDate].Caption = strFormattedDate
strFormattedDate = Format(DateAdd(“d”, -1, _

CDate(Me![WeekEnding])), “dddd, mmmm d, yyyy”)
Me![lblSaturdayDate].Caption = strFormattedDate
strFormattedDate = Format((Me![WeekEnding]), _

“dddd, mmmm d, yyyy”)
Me![lblSundayDate].Caption = strFormattedDate

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Additionally, the code runs a make-table query that creates a table for use in the query that is the
row source of cboClientProject (see Figure 7.12); initially, the combo box’s row source is blank,
because otherwise the query could not be run. The row source query is a FindUnmatched query
created with the Query Wizard that excludes client/project combinations for worksheets that have
already been filled out for the selected employee, so you can’t accidentally select the same one twice.

205

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 205

FIGURE 7.12

Selecting a client and project for a timesheet.

If you need to modify the data on an existing timesheet, you can do this later, in the review stage,
from fdlgTimesheets.

After the client and project has been selected, the hours can be entered; the totals will recalculate
automatically (see Figure 7.13).

FIGURE 7.13

Entering hours on a timesheet.

206

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 206

In the form footer there are three command buttons: the first (“Clear This Timesheet”) clears the
timesheet so you can start over; the second (“Save This Timesheet”) saves the current timesheet
and starts a new record for entering another timesheet; and the third (“Send Timesheets to Excel”)
opens a dialog form listing the timesheets that have been completed for the current week, for
review. The three command button event procedures are listed as follows:

Private Sub cmdClearTimesheet_Click()

On Error Resume Next

Delete record in temp table:

DoCmd.SetWarnings False
DoCmd.RunCommand acCmdSelectRecord
DoCmd.RunCommand acCmdDeleteRecord
Me![cboClientProject].RowSource = “”

End Sub

Private Sub cmdSendToExcel_Click()

On Error GoTo ErrorHandler

DoCmd.OpenForm FormName:=”fdlgTimesheets”
DoCmd.Close acForm, Me.Name

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The frmWeeklyTimesheet form is bound to a temp table, tblWeeklyTimesheetTemp, to ensure that
data won’t be saved to the regular table (tblWeeklyTimesheet) until the user chooses to save it, and
required fields have been filled in:

Private Sub cmdSaveTimesheet_Click()

On Error GoTo ErrorHandler

Check that required fields have values, and exit if not:

strTitle = “Value required”

If Nz(Me![cboEmployeeID].Value) = “” Then
strPrompt = “Please select an employee”

207

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:44 PM Page 207

MsgBox prompt:=strPrompt, Buttons:=vbExclamation _
+ vbOKOnly, Title:=strTitle

Me![cboEmployeeID].SetFocus
GoTo ErrorHandlerExit

End If

If Nz(Me![cboClientProject].Value) = “” Then
strPrompt = “Please select a client and project”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, Title:=strTitle
Me![cboClientProject].SetFocus
GoTo ErrorHandlerExit

End If

Save data from temp table to regular table:

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblWeeklyTimesheet”)
With rst

.AddNew
![EmployeeID] = Nz(Me![cboEmployeeID].Value)
![ClientCode] = Nz(Me![cboClientProject].Value)
![ProjectCode] = Nz(Me![txtProjectCode].Value)
![WeekEnding] = Nz(Me![txtWeekEnding].Value)
![ManagerID] = Nz(Me![cboEmployeeID].Column(2))
![MondayHours] = Nz(Me![txtMondayHours].Value)
![TuesdayHours] = Nz(Me![txtTuesdayHours].Value)
![WednesdayHours] = Nz(Me![txtWednesdayHours].Value)
![ThursdayHours] = Nz(Me![txtThursdayHours].Value)
![FridayHours] = Nz(Me![txtFridayHours].Value)
![SaturdayHours] = Nz(Me![txtSaturdayHours].Value)
![SundayHours] = Nz(Me![txtSundayHours].Value)
![MondayOTHours] = Nz(Me![txtMondayOTHours].Value)
![TuesdayOTHours] = Nz(Me![txtTuesdayOTHours].Value)
![WednesdayOTHours] = _

Nz(Me![txtWednesdayOTHours].Value)
![ThursdayOTHours] = Nz(Me![txtThursdayOTHours].Value)
![FridayOTHours] = Nz(Me![txtFridayOTHours].Value)
![SaturdayOTHours] = Nz(Me![txtSaturdayOTHours].Value)
![SundayOTHours] = Nz(Me![txtSundayOTHours].Value)
.Update
.Close

End With

Delete record in temp table:

DoCmd.SetWarnings False
DoCmd.RunCommand acCmdSelectRecord

208

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:44 PM Page 208

DoCmd.RunCommand acCmdDeleteRecord

Me![cboEmployeeID].Requery
Me![cboClientProject].RowSource = “”

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The dialog form opened from the Send Timesheets to Excel button is shown in Figure 7.14.

FIGURE 7.14

A dialog form for reviewing this week’s timesheets.

The txtEmployeeID textbox on the datasheet subform on the dialog form has a DblClick event
procedure, so you can double-click an employee name to open that timesheet for editing, if
necessary:

Private Sub txtEmployeeID_DblClick(Cancel As Integer)

On Error GoTo ErrorHandler

Dim lngID As Long
Dim strClientCode As String

209

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:45 PM Page 209

Dim strProjectCode As String
Dim strSearch As String
Dim strSQL As String
Dim frm As Access.Form
Dim strForm As String

Create a filtered query and run it to create the form’s record source:

strForm = “frmSelectedTimesheet”
lngID = Nz(Me![EmployeeID])
strClientCode = Nz(Me![ClientCode])
strProjectCode = Nz(Me![ProjectCode])
strSQL = “SELECT tblWeeklyTimesheet.*, “ _

& “qryEmployees.EmployeeName, “ _
& “qryEmployees.ManagerName, “ _
& “qryClientsAndProjects.ClientProject “ _
& “INTO tmakSelectedTimesheetTemp “ _
& “FROM qryClientsAndProjects “ _
& “INNER JOIN (tblWeeklyTimesheet “ _
& “INNER JOIN qryEmployees “ _
& “ON tblWeeklyTimesheet.EmployeeID = “ _
& “qryEmployees.EmployeeID) “ _
& “ON (qryClientsAndProjects.ProjectCode = “ _
& “tblWeeklyTimesheet.ProjectCode) “ _
& “AND (qryClientsAndProjects.ClientCode = “ _
& “tblWeeklyTimesheet.ClientCode) “ _
& “WHERE tblWeeklyTimesheet.EmployeeID=” _
& lngID & “ AND tblWeeklyTimesheet.ClientCode=” _
& Chr$(39) & strClientCode & Chr$(39) _
& “ AND tblWeeklyTimesheet.ProjectCode=” _
& Chr$(39) & strProjectCode & Chr$(39) _
& “ AND tblWeeklyTimesheet.WeekEnding = “ _
& “CurrentWeekEnding();”

Debug.Print “SQL string: “ & strSQL
DoCmd.SetWarnings False
DoCmd.RunSQL strSQL

Open form for editing selected timesheet:

DoCmd.OpenForm FormName:=strForm
Set frm = Forms![frmSelectedTimesheet]
frm.Caption = “Weekly Timesheet for “ _

& Me![EmployeeName]
DoCmd.Close acForm, Parent.Name

ErrorHandlerExit:
Exit Sub

210

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:45 PM Page 210

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The frmSelectedTimesheet form is a simplified version of the frmWeeklyTimesheet (see Figure 7.15).

FIGURE 7.15

A form for editing a selected timesheet.

The hours can be edited on this form, and when you are done you can either delete this timesheet
record by clicking the “Clear This Timesheet” button, or save the record to the regular
tblWeeklyTimesheets table. Clicking the “Send Timesheets to Excel” button reopens the
fdlgTimesheets dialog, with updated data.

Clicking the OK button on fdlgTimesheets runs the CreateExcelTimesheets procedure,
which creates one Excel worksheet for each timesheet listed in the dialog; one of these timesheets
is shown in Figure 7.16.

211

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:45 PM Page 211

FIGURE 7.16

An Excel timesheet filled with data from Access.

The CreateExcelTimesheets procedure listed as follows first sets up a DAO recordset of the
current week’s timesheets, and another recordset for that employee’s hours. The employee informa-
tion is entered on the worksheet first, then the code iterates through the Hours recordset, process-
ing the hours for each project and day, both regular hours and overtime, until all have been filled
in, and then loops to the next employee record:

Function CreateExcelTimeSheets()

On Error GoTo ErrorHandler

212

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:45 PM Page 212

Dim appExcel As Excel.Application
Dim dteWeekEnding As Date
Dim lngCount As Long
Dim lngEmployeeID As Long
Dim n As Long
Dim rngCC As Excel.Range
Dim rngDay As Excel.Range
Dim rngOT As Excel.Range
Dim rngPC As Excel.Range
Dim rngRH As Excel.Range
Dim rngTotal As Excel.Range
Dim rngTotalAbove As Excel.Range
Dim rstAll As DAO.Recordset
Dim rstOne As DAO.Recordset
Dim strDocsPath As String
Dim strEmployeeName As String
Dim strPrompt As String
Dim strQuery As String
Dim strSaveName As String
Dim strSheet As String
Dim strSQL As String
Dim strTemplate As String
Dim strTemplateFile As String
Dim strTemplatePath As String
Dim strTitle As String
Dim wkb As Excel.Workbook
Dim wks As Excel.Worksheet
Dim lbl As Access.Label

Set dbs = CurrentDb
Set rstAll = _

dbs.OpenRecordset(“qryCurrentTimesheetInfo”, _
dbOpenDynaset)

rstAll.MoveLast
rstAll.MoveFirst
lngCount = rstAll.RecordCount
If lngCount = 0 Then
MsgBox “No current time sheet records to export”
GoTo ErrorHandlerExit

Else
Set lbl = _

Forms![fdlgTimesheets]![lblCreatingWorksheets]
Debug.Print lngCount _

& “ current time sheet records to transfer to Excel”
lbl.Visible = True

End If

213

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:45 PM Page 213

Get the template path that was selected on the main menu:

strTemplate = _
“Weekly time sheet by client and project.xlt”

strTemplatePath = GetWorksheetTemplatesPath()
strTemplateFile = strTemplatePath & strTemplate
If TestFileExists(strTemplateFile) = False Then

strTitle = “Template not found”
strPrompt = “Excel template “ _

& “‘Weekly time sheet by client and project.xlt’” _
& “ not found in “ & strTemplatePath & “;” _
& vbCrLf _
& “please put template in this folder and try again”

MsgBox strPrompt, vbCritical + vbOKOnly, strTitle
GoTo ErrorHandlerExit

Else
Debug.Print “Excel template used: “ _

& strTemplateFile
End If

Get the path for saving workbooks:

strDocsPath = GetWorksheetsPath()

Set a reference to the Excel Application object for use in creating workbooks:

Set appExcel = GetObject(, “Excel.Application”)

Do While Not rstAll.EOF

Create a recordset of hours for this employee:

lngEmployeeID = rstAll![EmployeeID]
strEmployeeName = rstAll![EmployeeName]
dteWeekEnding = CDate(rstAll![WeekEnding])
strQuery = “qfltHours”
strSQL = “SELECT * FROM qryCurrentTimesheetInfo “ _

& “WHERE [EmployeeID] = “ & lngEmployeeID & “;”
Debug.Print “SQL for “ & strQuery & “: “ & strSQL
lngCount = CreateAndTestQuery(strQuery, strSQL)
Debug.Print “No. of items found: “ & lngCount
If lngCount = 0 Then

MsgBox “No items found; canceling”
GoTo ErrorHandlerExit

End If

Set rstOne = dbs.OpenRecordset(strQuery, _
dbOpenDynaset)

With rstOne

214

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:45 PM Page 214

Count the number of records for this employee:

.MoveLast

.MoveFirst
lngCount = .RecordCount

Create a new workbook from the template to enter hours:

Set wkb = appExcel.Workbooks.Add(strTemplateFile)
Set wks = wkb.Sheets(1)
wks.Activate
appExcel.Visible = True
wks.Range(“C3”) = ![EmployeeName]
wks.Range(“C4”) = ![ManagerName]
wks.Range(“F3”) = Nz(![HomePhone])
wks.Range(“F4”) = Nz(![Email])
wks.Range(“C6”) = ![WeekEnding]

For n = 1 To lngCount
Debug.Print “Record “ & n & “ for “ _

& strEmployeeName

If n = 1 Then

Process hours for first project.

Check for hours worked on Monday:

If Nz(![MondayHours]) _
+ Nz(![MondayOTHours]) > 0 Then
appExcel.GoTo _

Reference:=wks.Range(“Monday”)
Set rngCC = _

appExcel.ActiveCell.Offset(columnoffset:=2)
Set rngPC = _

appExcel.ActiveCell.Offset(columnoffset:=3)
Set rngRH = _

appExcel.ActiveCell.Offset(columnoffset:=4)
Set rngOT = _

appExcel.ActiveCell.Offset(columnoffset:=5)
rngCC.Value = ![ClientCode]
rngPC.Value = ![ProjectCode]
rngRH.Value = ![MondayHours]
rngOT.Value = ![MondayOTHours]

End If

[Similar code for processing Tuesday through Sunday hours omitted.]

ElseIf n > 1 Then

215

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:45 PM Page 215

Process different project hours for the same employee on the same worksheet.

Check for extra hours worked on Monday:

If Nz(![MondayHours]) + _

Nz(![MondayOTHours]) > 0 Then

Determine whether any hours were added for this day:

appExcel.GoTo _
Reference:=wks.Range(“Monday”)

Set rngCC = _
appExcel.ActiveCell.Offset(columnoffset:=2)

If rngCC.Value <> “” Then

Go to next day and insert a new row above:

appExcel.GoTo _
Reference:=wks.Range(“Tuesday”)

appExcel.ActiveCell.Select
appExcel.Selection.EntireRow.Insert
Set rngCC = _

appExcel.ActiveCell.Offset(columnoffset:=2)
Set rngPC = _

appExcel.ActiveCell.Offset(columnoffset:=3)
Set rngRH = _

appExcel.ActiveCell.Offset(columnoffset:=4)
Set rngOT = _

appExcel.ActiveCell.Offset(columnoffset:=5)
rngCC.Value = ![ClientCode]
rngPC.Value = ![ProjectCode]
rngRH.Value = ![MondayHours]
rngOT.Value = ![MondayOTHours]
Set rngTotalAbove = _

appExcel.ActiveCell.Offset(rowoffset:=-1, _
columnoffset:=6)

Set rngTotal = _
appExcel.ActiveCell.Offset(columnoffset:=6)

rngTotalAbove.Select

Copy Total formula from cell above:

appExcel.Selection.Copy
rngTotal.Select
wks.Paste
appExcel.CutCopyMode = False

Else

216

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:45 PM Page 216

Enter hours in regular Monday row:

Set rngPC = _
appExcel.ActiveCell.Offset(columnoffset:=3)

Set rngRH = _
appExcel.ActiveCell.Offset(columnoffset:=4)

Set rngOT = _
appExcel.ActiveCell.Offset(columnoffset:=5)

rngCC.Value = ![ClientCode]
rngPC.Value = ![ProjectCode]
rngRH.Value = ![MondayHours]
rngOT.Value = ![MondayOTHours]

End If
End If

[Similar code for processing Tuesday through Sunday hours omitted.]

.MoveNext
Next n

Save and close filled-in worksheet.

Create workbook save name from employee name and week ending date:

strSaveName = strDocsPath & strEmployeeName _
& “ time sheet for week ending “ _
& Format(dteWeekEnding, “d-mmm-yyyy”)

Debug.Print “Time sheet save name: “ _
& strSaveName

On Error Resume Next

If there already is a saved worksheet with this name, delete it:

Kill strSaveName

On Error GoTo ErrorHandler

wkb.SaveAs FileName:=strSaveName, _
FileFormat:=xlWorkbookDefault

wkb.Close

End With
rstAll.MoveNext

Loop

rstAll.Close
rstOne.Close

appExcel.Visible = False

217

Working with Excel Worksheets 7

12_047026 ch07.qxp 4/2/07 9:45 PM Page 217

Set appExcel = Nothing
MsgBox “All time sheet workbooks created in “ _

& strDocsPath

ErrorHandlerExit:
Exit Function

ErrorHandler:

Excel is not running; open Excel with CreateObject:

If Err.Number = 429 Then
Set appExcel = CreateObject(“Excel.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “
Resume ErrorHandlerExit

End If

End Function

This procedure creates a new Excel worksheet from a template for each record. This template is
pre-filled with standard text, colors, and other features; all it needs is to have the timesheet data
filled in from the Access record.

Summary
With the techniques described in this chapter, you can export data in Access tables to Excel
worksheets in a variety of formats, for compatibility with older Office versions or handheld
devices. You can use the Excel button on the Ribbon to do a quick-and-dirty export to the new
.xlsx format, or create a worksheet in an older format that can be synchronized with a PDA, using
the TransferSpreadsheet method. And finally, when you need to output your data to an
Excel worksheet in a specific format, you can use a preformatted worksheet template, or format a
plain worksheet using VBA Automation code to get the exact results you want.

218

Writing VBA Code to Exchange Data between Office ComponentsPart II

12_047026 ch07.qxp 4/2/07 9:45 PM Page 218

Outlook has a great interface for working with calendars, contacts,
and tasks, as well as for sending email messages. But Outlook is a
relative newcomer to Office (it was first introduced in Office 97),

which means that if you have been using Access for longer than that, you
probably have calendar, contact, or task data stored in Access tables in data-
bases that were created many Office versions ago. (I have some that were
originally created in Access 1.0!)

In the case of contact information, there is another reason that many users
prefer storing data in Access: Access is a relational database, allowing you to
set up one-to-many links between companies and contacts, contacts and
phones, contacts and addresses, and so forth. Outlook, in contrast, isn’t a
relational database; it stores all of its data in a flat-file MAPI database. That’s
why you will see slots for three addresses on an Outlook contact, and a large
(but finite) selection of Phone and ID slots. If you need to enter four
addresses for a contact, you are out of luck. If you need to enter a type of
phone number or ID that is not one of the available items, you can’t do it.

But if you store your contact data in Access, you can create linked tables of
addresses, phone numbers, and IDs, letting you enter as many phones and
IDs as you need per contact, and you can give them whatever identifiers you
wish. And with a one-to-many link between companies and contacts, you
can change a company’s address or main phone number once, and the
changed information will be picked up through the link for all of that com-
pany’s contacts. In Outlook, by contrast, if you have 10 contacts for a com-
pany, and the company’s address or main phone number changes, you have
to make the change separately on all 10 contacts.

219

IN THIS CHAPTER
Linking to Outlook folders

Learning about the Outlook
object model

Working with Outlook
appointments

Working with Outlook tasks

Working with Outlook mail
messages

Working with Outlook contacts

Working with
Outlook Items

13_047026 ch08.qxp 4/2/07 9:45 PM Page 219

As an example, the Microsoft record in my personal Access Contacts database has 30 phone num-
bers, many with non-standard descriptions — I couldn’t do that in Outlook!

However, despite the advantages of a relational database, Outlook is undeniably attractive and con-
venient, so much so that you may want (or need) to export your Access contact data to Outlook
contact items, so you can quickly look up a phone number or email address (or at least those that
correspond to standard Outlook slots). And if you have tasks or calendar items stored in an Access
table (perhaps created before Office 97), you may wish to permanently move them to Outlook,
which offers a superior interface for working with these types of items.

See Chapter 11 for a detailed treatment of synchronizing a set of linked Access tables
with matching Outlook contacts.

Exporting Access Data to Outlook Items
Apart from exporting whole contact, task, or appointment records to Outlook, you may need to
create new Outlook items on the fly, as the data in your Access tables changes, using code running
from event procedures or macros. For example, if you have a database of project-related informa-
tion, you can create project task reminders in the form of email messages filled with data from
an Access table, or Outlook tasks or appointments triggered by changes in data stored in the
Access tables.

You can use the legacy SendObject command to create email messages (it’s in some of the
embedded macros on the forms imported from the new Microsoft sample databases discussed later
on in the chapter), but SendObject only allows you to set a few properties of a standard Outlook
mail message, and thus won’t do the job if you need to create a mail message based on a custom
form, or you want to set built-in properties that are not arguments of the SendObject command.

Alternatively, the Export group on the External Data tab of the new Ribbon offers many choices for
exporting Access data, but curiously, as you can see in Figure 8.1, there is no selection for export-
ing to Outlook.

Using the Collect Data Group
In Access 2007, there is a new choice for interacting with Outlook: The Collect Data group on the
External Data tab of the Ribbon has two buttons, one to create emails for gathering data to import
into Access tables and the other to manage the replies (see Figure 8.2).

CROSS-REFCROSS-REF

220

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 220

FIGURE 8.1

Ribbon choices for exporting Access data.

FIGURE 8.2

The Collect Data group on the Access Ribbon.

Using the Import Group to Import or
Link to Outlook Data
There is also a familiar choice for linking Access tables to Outlook, now updated to a selection on
the More menu of the Import group on the Ribbon. You can see this selection in Figure 8.3.

221

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 221

FIGURE 8.3

The Outlook Folder selection in the Import group on the Ribbon.

Selecting the Outlook Folder selection on the More menu opens a dialog box offering you three
choices (shown in Figure 8.4): importing Outlook data into a new Access table, appending the data
to an existing table, or linking the folder to a newly created Access table.

FIGURE 8.4

The Import/Link selections for Outlook folders.

222

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 222

After selecting the “Link to the data source by creating a new table” option (shown in Figure 8.5)
and clicking OK, the Link Exchange/Outlook Wizard opens, much the same as in previous ver-
sions of Office, letting you select a folder to link to an Access table.

FIGURE 8.5

Selecting the Tasks folder for linking to an Access table.

On the next screen of the wizard, you can give the table a name; I use the “ol” prefix to indicate
that the table is linked to Outlook. I made linked tables for tasks, contacts, and appointments
(located in the calendar folder, and named as such). Figure 8.6 shows three linked Outlook tables
in the Tables list; note the arrow indicating a linked table, and the distinctive icon for Outlook.

FIGURE 8.6

Access tables linked to Outlook folders.

As with earlier versions of Office, the Link option has serious limitations. The linked olTasks table
(shown in Figure 8.7) has a great many fields, but it lacks the crucial Subject field, making it all
but useless.

223

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 223

FIGURE 8.7

A linked Outlook Tasks folder, lacking the Subject field.

The linked olCalendar table (shown in Figure 8.8) does include the Subject field, as well as many
mysterious and irrelevant fields such as MessageToMe and MessageCCToMe, but it lacks the crucial
Start and End dates and times, so it is also useless.

FIGURE 8.8

A linked Outlook calendar.

Of the three, the linked olContacts table provides the best match for Outlook contacts: it does have
most (but not all) of the standard contact item fields (though not the Customer ID field, which
could be useful in linking records). However, the promise of linking Access tables to Outlook —
specifically that changes made in Access will be saved to Outlook, and vice versa — is not com-
pletely fulfilled. For example, though I made changes to both the contact name and company
name for a contact record in Access, only the company change was reflected back to Outlook.
However, both contact and company name changes in Outlook were reflected to Access. Figure 8.9
shows the linked olContacts table.

224

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 224

FIGURE 8.9

A linked Contacts folder.

225

Working with Outlook Items 8

Creating a Database from a Template

To create a database from one of the new templates, first select New from the Access File menu,
as shown in the following figure.

The New item on the Access File menu.

continued

13_047026 ch08.qxp 4/2/07 9:45 PM Page 225

226

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued
If the template you want to use is displayed in the next screen, select it directly.

Selecting the Contacts database template.

If the template you want to use is not shown, you can browse for it (or just take a look at what is
available) by clicking the Templates link at the bottom of the screen.

13_047026 ch08.qxp 4/2/07 9:45 PM Page 226

227

Working with Outlook Items 8

Opening the Templates page on the Microsoft Office web site.

On the Databases page, you have a choice of Access 2007 or Access 2003.

A choice of Access version for database templates.

continued

13_047026 ch08.qxp 4/2/07 9:45 PM Page 227

228

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued

In the Access 2007 group, you’ll see several categories.

Categories of Access 2007 database templates.

On selecting the Business category, you’ll see the templates I used in this chapter.

Database templates in the Business category.

13_047026 ch08.qxp 4/2/07 9:45 PM Page 228

229

Working with Outlook Items 8

Click the template you want to use to open a page with a Download link.

A download link for the Tasks database template.

Click the Download Now button to proceed (you may get a message about installing an ActiveX
control for Office Online). After installing the ActiveX control (if necessary), Access will open to the
Create Database screen, with Tasks1.accdb as the proposed database name.

The new database to be created from a database template.

Click Create to create the new database from the template.

13_047026 ch08.qxp 4/2/07 9:45 PM Page 229

Using Sample Databases and Forms
I created Events and Tasks databases from the new templates and imported the relevant tables and
forms from these databases into the sample database for this chapter, Outlook Export.accdb, and
then renamed the objects and controls with appropriate prefixes.

Microsoft has created several new database templates for Access 2007; one of them cre-
ates an Events database, and another creates the Tasks database. See the “Creating a

Database from a Template” sidebar for full details on how to locate a database template and create a
database from it.

Personally I prefer to maintain my calendar and task list in Outlook, because it has the richest
interface for working with appointments and tasks. However, if you want (or need) to maintain a
simple calendar or task list in Access, you might want to use these new sample databases, or
import objects from them, into your database. You can examine the forms I imported from the
sample databases by selecting them from the Forms section on the main menu of the Outlook
Export database, as shown in Figure 8.10 (the imported forms end with “List”).

FIGURE 8.10

Selecting a form from the main menu.

Figure 8.11 shows the Task List form, and Figure 8.12 shows the Event List form.

NEW FEATURENEW FEATURE

230

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 230

FIGURE 8.11

The Task List form, imported from a database created from the new Tasks database template.

FIGURE 8.12

The Event List form, imported from a database created from the new Events database template.

The Outlook Export.accdb sample database contains the tables, queries, forms, and
code used in this chapter.

There is also a Contact List form (in the Tasks sample database), shown in Figure 8.13. This form
is only suitable for maintaining a simple flat-file contact list, and it lacks most of the special fea-
tures Outlook provides for working with contacts, but again there are circumstances where you
might want (or need) to keep contact information in a single Access table, such as when you need
to regularly export basic contact data to a text file or worksheet for distribution via email, or for
export to a mainframe flat-file database.

NOTENOTE

231

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 231

FIGURE 8.13

The Contact List form, imported from a database created from the new Tasks database template.

These forms from the new templates have buttons with embedded macros. The Add from Outlook
button, which uses a new command argument, acCmdAddFromOutlook, opens a Select Names
dialog for selecting a contact from Outlook, as shown in Figure 8.14.

FIGURE 8.14

Selecting a contact from Outlook.

232

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 232

All of these forms from the new database templates use the new embedded macros
instead of VBA code for various purposes. Using macros instead of code seems to me to

be a step back to the earliest days of Access, but embedded macros do have the advantage of avoiding
security problems that can occur if you try to run code that is not signed with a digital signature (or
even when you run signed code, in Windows Vista). For simple tasks, such as closing a form or run-
ning a command or two, embedded macros work fine, but for more complex tasks, they won’t do the
job; you still need to write VBA code to perform complex tasks such as iterating through a recordset
or creating new objects in other Office applications.

I also imported reports from the Tasks and Events databases, which you can view by selecting the
report name from the Reports section of the sample database’s main menu, shown in Figure 8.15.

FIGURE 8.15

Selecting a report from the main menu.

Depending on what type of printer you have, you may have to adjust the margins on
some of these reports to avoid error messages when opening them.NOTENOTE

NEW FEATURENEW FEATURE

233

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 233

The Outlook Object Model
Because of the limited options for exporting Access data to Outlook, I prefer to use VBA
Automation code to export Access data to Outlook objects. To export Access data to Outlook, you
need to understand the Outlook object model.

The Outlook 2007 object model has a number of new components; they are listed in the MSDN
article “What’s New for Developers in Microsoft Office Outlook 2007 (Part 1 of 2),” which you can
download from the following link: http://msdn2.microsoft.com/en-us/library/
ms772422.aspx#officeoutlook2007whatsnewdeveloperspart1_enhancements.

The Outlook object model doesn’t represent the Outlook interface as closely as the object models
of other Office components; instead of representing contacts, mail messages, tasks, appointments,
and other familiar Outlook objects directly in the object model, these components must be
accessed indirectly, via the Items collection of a Folder object, using specific named constants to
reference or create the specific item types. Folders are accessed through the curiously named
NameSpace object (representing the data stored in Outlook folders), which makes for some very
unintuitive code.

Explorer, Inspector, and other Outlook Objects
When working with Outlook objects in VBA code, you will mostly be working with folders and
items; occasionally you may also need to use an Explorer or Inspector object. The Explorer object
represents a folder, as displayed in a pane in the interface; the Inspector object represents an item,
as displayed in a window in the interface. Explorers and Inspectors are used to work with the cur-
rently open item or folder; if you just need to create and save items, you don’t need to use these
objects in your code.

In Figure 8.16, the Outlook Contacts folder is displayed in an Explorer pane, and an Outlook task
item is displayed in an Inspector window.

You can use the CreateObject or GetObject functions with the “Outlook.Application”
argument (with the quotes) to either create a new Outlook instance, or retrieve a reference to the
current Outlook instance, if Outlook is running. With Outlook, using the New keyword when
declaring an Outlook Application variable is also a useful method, especially if you want to work
with an instance of Outlook other than the one currently in use in the interface.

If your code makes use of Explorer or Inspector objects, it is generally best to use the New keyword
when declaring the Outlook Application object, and then set the variable to Nothing at the end of
the procedure, because the user may be opening and closing various folders and windows, which
could cause code errors if you are working with the currently running instance of Outlook.

234

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 234

FIGURE 8.16

Outlook Explorer and Inspector objects.

The NameSpace, Explorer, and Inspector objects, in addition to the Application object itself, are
the key to most of the Outlook components you need to work with, such as folders and items. To
work with a folder, for example, you must first set a reference to the Outlook Application object,
then the NameSpace object, and then you can retrieve one of the default local folders using the
GetDefaultFolder method, or a custom folder by referencing it as a member of the top-level
Folders collection, or some folder underneath that folder. (Note that the singular of Folders is now
Folder — apparently Microsoft realized that the previous name of MAPIFolder was causing confusion.)

Although the MAPIFolder object has been replaced with the more intuitive Folder
object in the Object Browser, you can still declare a folder object as MAPIFolder with-

out causing a compile error. This means you don’t need to go through all your old Outlook code and
change MAPIFolder declarations to Folder.

Syntax for Referencing Outlook Objects
The Items collection for a Folder represents all the separate Outlook items in that folder, which
may be of different types. There is no such thing as a singular Item object in Outlook — a pitfall
that has caught many beginning Outlook programmers. Thus when you need to work with items

NOTENOTE

235

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 235

in a folder, you also need to declare a variable as Object. This is because a variable of the Object
type may represent items of different types; each item can be inspected, and if it is of the appropri-
ate type, further action can be taken, as in my following code samples.

To create an item of a specific type, use the Add method with a folder’s Items collection (this cre-
ates a standard item of the folder’s default item type), or use the Application object’s CreateItem
method with the appropriate constant (see Table 8.1 for lists of these constants). If you want to use
custom objects, use the Application object’s CreateItemFromTemplate object, with the name
of the saved Outlook custom form. The code samples in the following sections illustrate uses of
these methods.

The following code fragments show you how to set a reference to an Outlook folder or item, with a
number of variations. You can declare the Application variable using the New keyword, in which
case you don’t need to set the variable. Or you can declare it without the New keyword, and then
set the variable later with GetObject or CreateObject, as I generally do in my complete pro-
cedures.

A procedure generally starts with declaring a number of variables of different types; the following
list of declarations covers the most commonly used high-level Outlook objects:

Dim appOutlook As New Outlook.Application
Dim nms As Outlook.NameSpace
Dim flds As Outlook.Folders
Dim fld As Outlook.Folder
Dim exp As Outlook.Explorer
Dim ins As Outlook.Inspector

Declare a variable as Object so it can be used for any type of item. This is necessary if you need
to reference the current item in a folder that may contain items of different types:

Dim itm As Object

Declare variables as specific item types, for use when you are creating or working with items of
specific types:

Dim msg As Outlook.MailItem
Dim con As Outlook.ContactItem

Set nms = appOutlook.GetNamespace(“MAPI”)

The flds variable references the folders under the top-level folder:

Set flds = nms.Folders(“Personal Folders”).Folders

Create an item using the Add method of the Items collection of a folder. The item will be of the
folder’s default item type:

Set appt = fldCalendar.Items.Add

236

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 236

Create a standard item using the CreateItem method of the Application object:

Set msg = appOutlook.CreateItem(olMailItem)

Create a custom mail message item from a saved Outlook template:

strTemplate = “D:\Templates\Outlook\Personnel.oft”
Set msg = appOutlook.CreateItemFromTemplate(strTemplate)

In previous versions of Office, you could open a saved Outlook template (.oft file) by
simply double-clicking it in an Explorer window. This no longer works, because of more

rigorous Microsoft security measures. In Office 2007 running on Windows Vista, if you try to open an
Outlook template directly, you will get the warning message shown in Figure 8.17.

FIGURE 8.17

A warning message when opening a saved Outlook template file.

After clicking OK, the file will then open as a standard item, not your custom form. To get around this
annoying security feature, select Tools ➪ Forms ➪ Choose Form in the main Outlook window, as
shown in Figure 8.18.

FIGURE 8.18

Selecting a custom form in the Outlook interface.

TIPTIP

237

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 237

In the Choose Form dialog, select “User Templates in File System” from the “Look in” drop-down list,
as shown in Figure 8.19.

FIGURE 8.19

Selecting the “User Templates in File System” option to open a saved template file.

The template path defaults to the standard Office 2007/Windows Vista template location,
C:\Users\Your Name\App Data\Roaming\Microsoft\Templates, but there is a Browse button that
lets you select a template from another location. After selecting the template, you can open it with
the Open button, and you will see your custom form at last (though its colors may have changed,
because of changes in the Windows Vista and Office 2007 color palette).

Set a reference to the default local Contacts folder:

Set fld = nms.GetDefaultFolder(olFolderContacts)

Set a reference to the Folders collection of a folder called “Custom Contacts” under the top-level
Personal Folders folder (via the previously set flds variable):

Set fld = flds(“Custom Contacts”)

Set a reference to a custom public folder:

Set flds = nms.Folders(“Public Folders”).Folders
Set fld = _

flds(“All Public Folders”).Folders(“Custom Folder”)

Set a reference to the currently open folder, via the active Explorer:

Set exp = appOutlook.ActiveExplorer
Set fld = exp.CurrentFolder

238

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 238

Test whether the current folder is a Contacts folder:

If fld.DefaultItemType <> olContactItem Then
MsgBox _
“This folder is not a Contacts folder; canceling”

GoTo ErrorHandlerExit
End If

Set a reference to the currently open item, via the active Inspector:

Set ins = appOutlook.ActiveInspector
Set itm = ins.CurrentItem

Test whether the open item is a mail message, and set a mail message variable to it if so:

If itm.Class = olMail Then
Set msg = itm

End If

Set a reference to the contact whose name is “Helen Feddema”:

Set fld = nms.GetDefaultFolder(olFolderContacts)
Set con = fld.Items(“Helen Feddema”)

Set a reference to a built-in Outlook item property:

strFullName = con.FullName

Set a reference to a custom Outlook item property of the Yes/No data type:

blnCustomer = con.UserProperties(“Customer”)

Standard GetObject line and error handler to default to CreateObject in case Outlook is not
running:

Dim appOutlook As Outlook.Application

Set appOutlook = GetObject(, “Outlook.Application”)

[Your code here]

ErrorHandlerExit:
Exit Sub

ErrorHandler:
‘Outlook is not running; open Outlook with CreateObject
If Err.Number = 429 Then

Set appOutlook = CreateObject(“Outlook.Application”)

239

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 239

Resume Next
Else

MsgBox “Error No: “ & Err.Number _
& “; Description: “ & Err.Description

Resume ErrorHandlerExit
End If

Referencing Outlook Items in VBA Code
Microsoft has chosen to use the same word (for example, Note) to reference different item types
(a mail message’s message class and a Note item in the interface), and to give items confusingly dif-
ferent names in code than they have in the user interface (for example, a Journal item has a message
class of “Activity”). Table 8.1 will help you find the right name or named constant for each situation.

TABLE 8.1

Referencing Outlook Items

Interface Object Model Message OlObjectClass OlItemType
Name Name Class Constant Constant

Contact ContactItem IPM.Contact olContact olContactItem

Task TaskItem IPM.Task olTask olTaskItem

Mail Message MailItem IPM.Note olMail olMailItem

Appointment AppointmentItem IPM.Appointment olAppointment olAppointmentItem

Journal Entry JournalItem IPM.Activity olJournal olJournalItem

Note NoteItem IPM.StickyNote olNote olNoteItem

The message class can be used to create an item of a specific type, or to determine what type of
object you are dealing with (for example, in the active Inspector). It can also be seen in the
“Publish Form As” dialog box when publishing an Outlook item to a library or folder, as shown in
Figure 8.20.

The message class of a custom form consists of the form name appended to the standard object’s
message class, with a separating period. The OlObjectClass named constants are used to deter-
mine what type of item you are dealing with, using the Class property of an object, whereas the
OlItemType named constants are used for setting or determining the default item type of a
folder, using a Folder’s DefaultItemType property. See the sample procedures in the next sec-
tions for examples that use these constants.

240

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 240

FIGURE 8.20

The Outlook “Publish Form As” dialog box, showing the message class of a custom Outlook form.

Working with Outlook Appointments
You may have calendar (appointment) data stored in an Access table, perhaps dating back to before
Outlook became a part of Office. Because Outlook has a much richer interface for working with
calendars than Access, I recommend exporting the Access calendar data to Outlook and working
with it in Outlook calendars in the future.

To export data from an Access appointments table (such as the table from the sample Events data-
base, called tblEvents) to Outlook appointments, use the function listed next (it can also be run
from the mcrExportAppointments macro):

Public Function ExportAppointmentsToOutlook()

On Error GoTo ErrorHandler

Dim fldCalendar As Outlook.Folder
Dim appt As Outlook.AppointmentItem
Dim strApptName As String
Dim dteStartTime As Date
Dim dteEndTime As Date
Dim strStatus As String
Dim lngStatus As Long

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
Set fldCalendar = nms.GetDefaultFolder(olFolderCalendar)

241

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 241

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblEvents”)

With rst
Do While Not .EOF

Check that there is an appointment subject.

strApptName = Nz(![Title])
Debug.Print “Appointment name: “ & strApptName
If strApptName = “” Then

GoTo NextAppt
End If

Check for valid dates, and convert blank dates into 1/1/4501 (that is a blank date in Outlook).

If IsNull(![Start Time]) = True Then
dteStartTime = #1/1/4501#

Else
dteStartTime = Nz(![Start Time])

End If

If IsNull(![End Time]) = True Then
dteEndTime = #1/1/4501#

Else
dteEndTime = Nz(![End Time])

End If

Create a new appointment item in the local Calendar folder.

Set appt = fldCalendar.Items.Add
appt.Subject = strApptName
appt.Start = dteStartTime
appt.End = dteEndTime
appt.Location = Nz(![Location])
appt.Body = Nz(![Description])
appt.Close (olSave)

NextAppt:
.MoveNext
Loop

End With

MsgBox “Appointments exported to Outlook”

ErrorHandlerExit:
Exit Function

ErrorHandler:

242

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 242

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.21 shows the exported appointments in the Outlook calendar.

FIGURE 8.21

Appointments in the Outlook calendar exported from Access.

To import appointments from your local Outlook calendar into an Access table (tblImportedCalendar),
use the following function (it can also be run from the mcrImportCalendar macro):

Public Function ImportApptsFromOutlook()

On Error GoTo ErrorHandler

Dim fldCalendar As Outlook.Folder
Dim appt As Outlook.AppointmentItem
Dim strApptName As String
Dim dteStartTime As Date
Dim dteEndTime As Date
Dim strLocation As String
Dim strSQL As String
Dim strDescription As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
Set fldCalendar = nms.GetDefaultFolder(olFolderCalendar)

243

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 243

Clear table of old data.

strSQL = “DELETE * FROM tblImportedCalendar”
DoCmd.SetWarnings False
DoCmd.RunSQL strSQL

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblImportedCalendar”)

Iterate through the appointments in the local Calendar folder and import them to the Access table.

For Each itm In fldCalendar.Items
If itm.Class = olAppointment Then

Set appt = itm
With appt

strApptName = Nz(.Subject)
dteStartTime = Nz(.Start)
dteEndTime = Nz(.End)
strLocation = Nz(.Location)
strDescription = Nz(.Body)

End With

With rst
rst.AddNew
![Subject] = strApptName

If dteStartTime <> #1/1/4501# Then
![Start Time] = dteStartTime

End If

If dteEndTime <> #1/1/4501# Then
![End Time] = dteEndTime

End If
![Location] = strLocation
![Description] = strDescription
.Update

End With
End If

Next itm

rst.Close
DoCmd.OpenTable “tblImportedCalendar”

ErrorHandlerExit:
Exit Function

ErrorHandler:

244

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 244

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.22 shows the table of imported appointments, which is automatically opened at the end
of the procedure.

FIGURE 8.22

A table of appointments imported from an Outlook calendar folder.

For a more realistic scenario, in which you want to create appointments based on data in an Access
table of project data, use the CreateProjectAppts function (it can also be run from the
mcrCreateProjectAppts macro). This function selects records in tblContactsWithProjects that have
a last meeting date older than a month ago, and creates an Outlook appointment for a project
meeting for the following Monday for each of those records, writing data from several fields in the
Access record to the appointment item:

Public Function CreateProjectAppts()

On Error GoTo ErrorHandler

Dim fldCalendar As Outlook.Folder
Dim appt As Outlook.AppointmentItem
Dim dteMonthAgo As Date
Dim dteLastMeeting As Date
Dim dteNextMonday As Date
Dim strProject As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)

245

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 245

Set fldCalendar = nms.GetDefaultFolder(olFolderCalendar)
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblContactsWithProjects”)
dteMonthAgo = DateAdd(“m”, -1, Date)
dteNextMonday = NextMondayTime()

With rst
Do While Not .EOF

Check whether the last meeting date is older than a month ago.

dteLastMeeting = Nz(![LastMeetingDate])
strProject = Nz(![CurrentProject])

If dteLastMeeting < dteMonthAgo Then

Create a new appointment item in the local Calendar folder.

Set appt = fldCalendar.Items.Add
appt.Subject = strProject
appt.Start = dteNextMonday
appt.Duration = “60”
appt.ReminderSet = True
appt.Body = “Monthly project meeting”
appt.Close (olSave)

End If
.MoveNext
Loop

End With

MsgBox “Outlook project meeting appointments created “

ErrorHandlerExit:
Exit Function

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

246

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 246

Figure 8.23 shows one of the appointments created by the procedure.

FIGURE 8.23

A project meeting appointment created from data in an Access table.

Working with Outlook Tasks
As with appointments, if you have an Access table of tasks created many Office versions ago, I rec-
ommend exporting the task data to Outlook, so it can be maintained in the Task List (in Outlook
2007, renamed the To Do List) for future use.

The table that I imported from the sample Tasks database (tblTasks) to Outlook tasks can be used
as an example of how to export Access task data to Outlook. The following function does the
export (it can also be run from the mcrExportTasksToOutlook macro):

Public Function ExportTasksToOutlook()

On Error GoTo ErrorHandler

Dim fldTasks As Outlook.Folder
Dim tsk As Outlook.TaskItem
Dim strTaskName As String
Dim dteStartDate As Date
Dim dteDueDate As Date
Dim strStatus As String
Dim lngStatus As Long

247

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 247

Dim strPriority As String
Dim lngPriority As Long
Dim strDescription As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
Set fldTasks = nms.GetDefaultFolder(olFolderTasks)
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblTasks”)

With rst
Do While Not .EOF

Check that there is a task subject.

strTaskName = Nz(![Title])
Debug.Print “Task: “ & strTaskName
If strTaskName = “” Then

GoTo NextTask
End If

Check for valid dates, and convert blank dates into 1/1/4501 (that is a blank date in Outlook).

If IsNull(![Start Date]) = True Then
dteStartDate = #1/1/4501#

Else
dteStartDate = Nz(![Start Date])

End If

If IsNull(![Due Date]) = True Then
dteDueDate = #1/1/4501#

Else
dteDueDate = Nz(![Due Date])

End If

Convert the text Status value to a number for Outlook.

strStatus = Nz(![Status])
lngStatus = Switch(strStatus = “Not started”, _

0, strStatus = “In progress”, 1, _
strStatus = “Completed”, 2, _
strStatus = “Waiting on someone else”, 3, _
strStatus = “Deferred”, 4, _
“”, 0)

248

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 248

Convert the text Priority value to a number for Outlook.

strPriority = Nz(![Priority])
lngPriority = Switch(strPriority = “(1) High”, _

1, strPriority = “(2) Normal”, 2, _
strPriority = “(3) Low”, 3, _
“”, 0)

strDescription = Nz(![Description])

Create a new task item in the selected Tasks folder.

Set tsk = fldTasks.Items.Add
tsk.Subject = strTaskName
tsk.StartDate = dteStartDate
tsk.DueDate = dteDueDate
tsk.Status = lngStatus
tsk.Body = strDescription
tsk.PercentComplete = Nz(![% Complete])
tsk.Close (olSave)

NextTask:
.MoveNext
Loop

End With

MsgBox “Tasks exported to Outlook”

ErrorHandlerExit:
Exit Function

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.24 shows the exported tasks in the Tasks folder (in Outlook 2007, this folder is now
called the To Do List).

249

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 249

FIGURE 8.24

Tasks in the Outlook To Do List exported from an Access table.

To import tasks from your local Outlook Tasks folder into an Access table (tblImportedTasks), use
the following function (it can also be run from the mcrImportTasksFromOutlook macro):

Public Function ImportTasksFromOutlook
On Error GoTo ErrorHandler

Dim fldTasks As Outlook.Folder
Dim tsk As Outlook.TaskItem
Dim strTaskName As String
Dim dteStartDate As Date
Dim dteDueDate As Date
Dim strStatus As String
Dim lngStatus As Long
Dim strPriority As String
Dim lngPriority As Long
Dim strDescription As String
Dim lngPercentComplete As Long
Dim itm As Object
Dim strSQL As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
Set fldTasks = nms.GetDefaultFolder(olFolderTasks)

Clear table of old data.

strSQL = “DELETE * FROM tblImportedTasks”
DoCmd.SetWarnings False
DoCmd.RunSQL strSQL

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblImportedTasks”)

Iterate through tasks in the Tasks folder and import them to the Access table.

For Each itm In fldTasks.Items
If itm.Class = olTask Then

Set tsk = itm

250

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 250

With tsk
strTaskName = Nz(.Subject)
dteStartDate = Nz(.StartDate)
dteDueDate = Nz(.DueDate)
lngStatus = Nz(.Status)
lngPriority = Nz(.Importance)
strDescription = Nz(.Body)
lngPercentComplete = Nz(.PercentComplete)

End With

With rst
rst.AddNew
![Subject] = strTaskName

If dteStartDate <> #1/1/4501# Then
![Start Date] = dteStartDate

End If

If dteDueDate <> #1/1/4501# Then
![Due Date] = dteDueDate

End If

‘Convert Priority number to text for Access
strPriority = Switch(lngPriority = 1, _

“(1) High”, _
lngPriority = 2, “(2) Normal”, _
lngPriority = 3, “(3) Low”, _
0, “”)

![Priority] = strPriority

Convert the Status numeric value to text for Access.

strStatus = Switch(lngStatus = 0, _
“Not started”, _
lngStatus = 1, “In progress”, _
lngStatus = 2, “Completed”, _
lngStatus = 3, _
“Waiting on someone else”, _
lngStatus = 4, “Deferred”, _
0, “”)

![Status] = strStatus

If lngPercentComplete > 0 Then
lngPercentComplete = _

lngPercentComplete / 100
End If

![PercentComplete] = lngPercentComplete
![Notes] = strDescription

251

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 251

.Update
End With

End If
Next itm

rst.Close
DoCmd.OpenTable “tblImportedTasks”

ErrorHandlerExit:
Exit Function

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.25 shows the table of imported tasks.

FIGURE 8.25

A table of tasks imported from Outlook.

252

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 252

For a more realistic scenario, in which you want to create tasks based on data in an Outlook table,
see the CreateProjectTasks function (it can be run from the mcrCreateProjectTasks macro).
This function creates an Outlook task for each record in tblContactsWithProjects that has not had
its supplies replenished for a month or more, and writes data from several fields in the Access
record to the task item:

Public Function CreateProjectTasks()

On Error GoTo ErrorHandler

Dim fldTasks As Outlook.Folder
Dim tsk As Outlook.TaskItem
Dim dteMonthAgo As Date
Dim dteReplenished As Date
Dim dteNextMonday As Date
Dim strProject As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
Set fldTasks = nms.GetDefaultFolder(olFolderTasks)
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblContactsWithProjects”)
dteMonthAgo = DateAdd(“m”, -1, Date)
dteNextMonday = NextMonday()

With rst
Do While Not .EOF

Check whether supplies were last replenished more than a month ago.

dteReplenished = Nz(![SuppliesReplenished])
strProject = Nz(![CurrentProject])

If dteReplenished < dteMonthAgo Then

Create a new task in the local Tasks folder.

Set tsk = fldTasks.Items.Add
tsk.Subject = “Replenish supplies for “ _

& strProject
tsk.StartDate = dteNextMonday
tsk.Status = 0
tsk.Importance = 1
tsk.Close (olSave)

End If
.MoveNext
Loop

End With

MsgBox “Outlook project tasks created”

253

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 253

ErrorHandlerExit:
Exit Function

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.26 shows one of the tasks created by this procedure.

FIGURE 8.26

A task created from data in an Access table.

Working with Outlook Contacts
Outlook offers a convenient and attractive interface for working with contacts (though, as noted
earlier in this chapter, it does not support linking companies to contacts or other one-to-many
links). Most people keep Outlook open at all times, whereas they may only open an Access data-
base as needed. Because of this, if you have a single table of Access contacts, you may wish to
export the data to Outlook, so you can quickly open a contact item without having to first open an
Access database.

254

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 254

If you have a set of linked Access tables of contact data, and you want to keep the data
in the tables synchronized with matching Outlook contact items, you need more than a

simple export. See Chapter 11 for a discussion of two-way synchronizing between Access and
Outlook contacts.

To export data from an Access flat-file contacts table (such as tblContactsToExport) to Outlook
contacts in a custom Contacts folder called Contacts from Access, use the function listed as follows
(it can also be run from the mcrExportFlatFileContactsToOutlook macro):

Public Function ExportFlatFileContactsToOutlook()

On Error GoTo ErrorHandler

Set appOutlook = GetObject(, “Outlook.Application”)

Dim lngContactID As Long
Dim lngContactCount As Long
Dim fld As Outlook.Folder
Dim fldContacts As Outlook.Folder
Dim conNew As Outlook.ContactItem
Dim conTest As Outlook.ContactItem
Dim strFullName As String
Dim strFirstName As String
Dim strLastName As String
Dim strBusinessPhone As String
Dim strMobilePhone As String
Dim strFaxNumber As String
Dim strNotes As String
Dim strJobTitle As String
Dim strStreetAddress As String
Dim strCity As String
Dim strStateProv As String
Dim strPostalCode As String
Dim strCountry As String
Dim strCompanyName As String
Dim strEMail As String
Dim strSalutation As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)

Use the following line to export to the default local Contacts folder:

‘Set fldContacts = nms.GetDefaultFolder(olFolderTasks)

On Error Resume Next

Use the following lines to export to a custom Contacts folder, creating it if necessary. If setting a
reference to the folder fails, the folder will be created.

CROSS-REFCROSS-REF

255

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 255

Set fld = nms.Folders(“Personal Folders”)
Set fldContacts = fld.Folders(“Contacts from Access”)
If fldContacts Is Nothing Then

Set fldContacts = _
fld.Folders.Add(“Contacts from Access”, _
olFolderContacts)

End If

On Error GoTo ErrorHandler

lngContactCount = 0
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblContactsToExport”)

With rst
Do While Not .EOF

Check for required name information.

strFullName = Nz(![FirstName]) & “ “ _
& Nz(![LastName])

Debug.Print “Contact name: “ & strFullName
If strFullName = “” Then

GoTo NextContact
End If

Check whether there already is an Outlook contact item for this person.

On Error Resume Next

Set conTest = fldContacts.Items(strFullName)
If conTest.FullName <> strFullName Then

No matching contact found.

Debug.Print strFullName & “ not found”
ElseIf conTest.FullName = strFullName Then

Debug.Print strFullName & “ found”
GoTo NextContact

End If

On Error GoTo ErrorHandler

lngContactID = Nz(![ContactID])
strCompanyName = Nz(![CompanyName])
strFirstName = Nz(![FirstName])
strLastName = Nz(![LastName])
strSalutation = Nz(![Salutation])
strEMail = Nz(![EmailName])
strJobTitle = Nz(![JobTitle])
strBusinessPhone = Nz(![WorkPhone]) _

256

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 256

& IIf(Nz(![WorkExtension]) <> “”, “ x “ _
& ![WorkExtension], “”)

strMobilePhone = Nz(![MobilePhone])
strFaxNumber = Nz(![FaxNumber])
strNotes = Nz(![Notes])
strStreetAddress = Nz(![StreetAddress])
strCity = Nz(![City])
strStateProv = Nz(![StateOrProvince])
strPostalCode = Nz(![PostalCode])
strCountry = Nz(![Country])

Create a new contact item in the selected Contacts folder.

Set conNew = fldContacts.Items.Add
With conNew

.CustomerID = lngContactID

.FirstName = strFirstName

.LastName = strLastName

.JobTitle = strJobTitle

.BusinessAddressStreet = strStreetAddress

.BusinessAddressCity = strCity

.BusinessAddressState = strStateProv

.BusinessAddressPostalCode = strPostalCode

.BusinessAddressCountry = strCountry

.CompanyName = strCompanyName

.Email1Address = strEMail

.BusinessTelephoneNumber = strBusinessPhone

.BusinessFaxNumber = strFaxNumber

.MobileTelephoneNumber = strMobilePhone

.NickName = strSalutation

.Body = strNotes

.Close (olSave)
End With
lngContactCount = lngContactCount + 1

NextContact:
.MoveNext
Loop

End With

rst.Close

If lngContactCount = 0 Then
MsgBox “No unique contacts to export to Outlook”

Else
MsgBox lngContactCount & “ contact(s) exported to Outlook”

End If

ErrorHandlerExit:
Exit Function

ErrorHandler:

257

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 257

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

Figure 8.27 shows some of the contacts exported to the custom Contacts from Access folder.

FIGURE 8.27

Contacts in a custom Outlook folder exported from Access, in the new Business Card view.

258

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 258

To import contacts from your local Outlook Contacts folder into an Access table
(tblImportedContacts), use the following function (it can also be run from the
mcrImportContactsFromOutlook macro):

Public Function ImportContactsFromOutlook()

On Error GoTo ErrorHandler

Dim lngContactCount As Long
Dim fld As Outlook.Folder
Dim fldContacts As Outlook.Folder
Dim con As Outlook.ContactItem
Dim strFullName As String
Dim strFirstName As String
Dim strLastName As String
Dim strBusinessPhone As String
Dim strHomePhone As String
Dim strMobilePhone As String
Dim strFaxNumber As String
Dim strNotes As String
Dim strJobTitle As String
Dim strWorkAddress As String
Dim strWorkCity As String
Dim strWorkStateProv As String
Dim strWorkPostalCode As String
Dim strWorkCountry As String
Dim strHomeAddress As String
Dim strHomeCity As String
Dim strHomeStateProv As String
Dim strHomePostalCode As String
Dim strHomeCountry As String
Dim strCompanyName As String
Dim strEMail As String
Dim strSalutation As String
Dim itm As Object
Dim strSQL As String
Dim strWebSite As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)

Use the following line to import from the default local Contacts folder:

‘Set fldContacts = nms.GetDefaultFolder(olFolderTasks)

On Error Resume Next

259

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 259

Use the following lines to set a reference to a custom Contacts folder, creating it if necessary. If set-
ting a reference to the folder fails, the folder will be created.

Set fld = nms.Folders(“Personal Folders”)
Set fldContacts = fld.Folders(“Contacts to Export”)
If fldContacts Is Nothing Then

Set fldContacts = _
fld.Folders.Add(“Contacts to Export”, _
olFolderContacts)

End If

On Error GoTo ErrorHandler

Clear the table of old data.

strSQL = “DELETE * FROM tblImportedContacts”
DoCmd.SetWarnings False
DoCmd.RunSQL strSQL

lngContactCount = 0
Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblImportedContacts”)

Iterate through contacts in selected Contacts folder and import them to the Access table.

For Each itm In fldContacts.Items
If itm.Class = olContact Then

Set con = itm
With con

strFirstName = Nz(.FirstName)
strLastName = Nz(.LastName)
strJobTitle = Nz(.JobTitle)
strWorkAddress = Nz(.BusinessAddressStreet)
strWorkCity = Nz(.BusinessAddressCity)
strWorkStateProv = Nz(.BusinessAddressState)
strWorkPostalCode = _

Nz(.BusinessAddressPostalCode)
strWorkCountry = Nz(.BusinessAddressCountry)
strHomeAddress = Nz(.HomeAddress)
strHomeCity = Nz(.HomeAddressCity)
strHomeStateProv = Nz(.HomeAddressState)
strHomePostalCode = Nz(.HomeAddressPostalCode)
strHomeCountry = Nz(.HomeAddressCountry)
strCompanyName = Nz(.CompanyName)
strEMail = Nz(.Email1Address)
strBusinessPhone = _

Nz(.BusinessTelephoneNumber)
strFaxNumber = Nz(.BusinessFaxNumber)
strMobilePhone = Nz(.MobileTelephoneNumber)
strSalutation = Nz(.NickName)

260

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 260

strWebSite = Nz(.WebPage)
strNotes = Nz(.Body)
.Close (olSave)

End With

With rst
rst.AddNew
![CompanyName] = strCompanyName
![FirstName] = strFirstName
![LastName] = strLastName
![Salutation] = strSalutation
![EmailName] = strEMail
![JobTitle] = strJobTitle
![WorkPhone] = strBusinessPhone
![MobilePhone] = strMobilePhone
![FaxNumber] = strFaxNumber
![Notes] = strNotes
![WorkAddress] = strWorkAddress
![WorkCity] = strWorkCity
![WorkStateOrProvince] = strWorkStateProv
![WorkPostalCode] = strWorkPostalCode
![WorkCountry] = strWorkCountry
![HomeAddress] = strHomeAddress
![HomeCity] = strHomeCity
![HomeStateOrProvince] = strHomeStateProv
![HomePostalCode] = strHomePostalCode
![HomeCountry] = strHomeCountry
![WorkPhone] = strHomePhone
![WebSite] = strWebSite
.Update

End With
lngContactCount = lngContactCount + 1

End If
Next itm

rst.Close

If lngContactCount = 0 Then
MsgBox “No contacts to import from Outlook”

Else
MsgBox lngContactCount _

& “ contact(s) imported from Outlook”
End If

ErrorHandlerExit:
Exit Function

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

261

Working with Outlook Items 8

13_047026 ch08.qxp 4/2/07 9:45 PM Page 261

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

FIGURE 8.28

A table of contact data imported from an Outlook folder.

When working with contacts, the ideal situation would be to maintain your most com-
plete information in a set of linked Access tables, and synchronize them with Outlook

contacts that would display most of the information in an easy-to-use interface. Chapter 11 covers
synchronizing linked Access contact tables with a folder of Outlook contacts.

Summary
This chapter has described the components of the Outlook object model you need to understand
in order to work with Outlook objects and has given you examples of exporting Access data to
Outlook and importing Outlook data into Access (or linking to it), as well as creating new Outlook
items based on data changes in Access tables. While there are both advantages and disadvantages
to storing contacts in Access and Outlook, I recommend exporting tasks and appointments from
Access tables to Outlook, so they can be managed in its superior interface. For contacts, the deci-
sion depends on which is more important to you: the convenience and attractive interface of
Outlook contacts, or the more sophisticated Access relational database interface, allowing you to
set up one-to-many links between companies and contacts, or contacts and phones or IDs.

CROSS-REFCROSS-REF

262

Writing VBA Code to Exchange Data between Office ComponentsPart II

13_047026 ch08.qxp 4/2/07 9:45 PM Page 262

In the previous chapters I discussed creating Word documents, Excel
worksheets, and various types of Outlook items using VBA Automation
code. But these aren’t the only types of documents you need to work

with — sometimes you need to create a plain text document, or import data
from one into an Access table. But, before you can work with these docu-
ments, you need to work with folders. This chapter covers writing code
that works with Windows Explorer folders and text files, using several
different methods.

As Access versions have progressed, the available tools for working with files
or folders have advanced. In Access 1.0, the notoriously cryptic callback
function was the only way to get a list of files to display in a combo box or
listbox. By Windows 95, the CommonDialog control was a possibility, at
least if you had the Developer edition of Office. But the CommonDialog
control was plagued with version problems — if you put one version of it on
a form, and sent the database to another person who had a different version
of the control, the other person would just get the mysterious message
“There is no object in this control” on opening the form with the
CommonDialog control.

See Chapter 8 for information on working with Outlook
folders.

Another advance came with the Scripting Runtime library, which provided a
FileSystemObject object (yes, that’s two objects!) that is very useful for
finding, working with, or creating files and folders in code. However, it
doesn’t offer a dialog-type interface for selecting files or folders.

The next advance came with Office XP, which introduced a new tool for
working with files and folders. The FileDialog object (part of the Office

CROSS-REFCROSS-REF

263

IN THIS CHAPTER
Creating Windows folders

Creating FolderPicker and
FilePicker dialogs using the
Office FileDialog object

Writing data to text files using
the FileSystemObject, legacy VB
statements, and ADO

Reading data from text files
using the FileSystemObject,
legacy VB statements, and ADO

Loading files into Attachment
fields and saving attachments
to files

Working with Files
and Folders

14_047026 ch09.qxp 4/2/07 9:50 PM Page 263

object model) lets you pop up a dialog for selecting a file or a folder, with several dialog type
options. This dialog lets users easily select a file or folder, whose name can then be used in code for
further operations.

There is no longer any reason to use a Callback function or the CommonDialog control for
working with files and folders, so this chapter covers using the FileSystemObject and the
FileDialog object for working with files and folders, and components of the ADO object model
and legacy VB statements for working with text files.

Working with Windows Explorer Folders
When you save documents (of any sort) to your computer’s hard drive, you need to specify the
folder (otherwise everything will end up either in your root Documents folder or the current
folder, making it very hard to find specific documents). If you work with Word, Excel, or Outlook
templates, you also need to specify a templates folder, so your code will look in the right place for
your templates. You can get the default user templates folder from the Word File Options dialog,
but again, you probably don’t want to keep all your templates in the root Templates folder.

See the Word Export.accdb sample database’s main menu for command buttons with
code for selecting the Documents and Templates paths.

To work with Windows folders, you have two options: the Office FileDialog object, or the
FileSystemObject. These two methods are discussed in the following sections.

The sample database for this chapter is Files and Folders.accdb.

The Office FileDialog Object
To allow the maximum amount of user choice, combined with convenience, I like to put one or
two folder selection command buttons on a database’s main menu, for selecting folders that will be
used throughout the database. In the sample database for this chapter, Files and Folders.accdb, for
example, the main menu has a section with two sets of controls for selecting a folder; one has a
command button that pops up a Folder Picker dialog for selecting the Input Documents folder
(used for storing documents to be loaded into Attachment fields or textboxes on forms), and the
other opens an Output Documents Folder Picker for selecting the folder where files saved from
attachments are to be stored. After a folder is selected, its name is displayed in the textbox under
the command button. Figure 9.1 shows a main menu with these options.

NOTENOTE

CROSS-REFCROSS-REF

264

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 264

FIGURE 9.1

A main menu with a Backup button and button/textbox controls for selecting an Input Documents path
and an Output Documents path for use in the database.

The Input Documents Path and Output Documents Path buttons run procedures that create a
FileDialog object. FileDialog objects can be created as a File Picker, or a Folder Picker dia-
log; in this case the msoFileDialogFolderPicker named constant is used when creating the
dialog, to make it a Folder Picker dialog:

Private Sub cmdInputDocsPath_Click()

On Error GoTo ErrorHandler

Create a FileDialog object as a Folder Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFolderPicker)
Set txt = Me![txtInputDocsPath]
strPath = GetInputDocsPath()

With fd
.title = “Browse for folder where input documents “ _

& “are stored”
.ButtonName = “Select”
.InitialView = msoFileDialogViewDetails
.InitialFileName = strPath
If .Show = -1 Then

txt.Value = CStr(fd.SelectedItems.Item(1))

265

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 265

Else
Debug.Print “User pressed Cancel”

End If
End With

On Error Resume Next

DoCmd.RunCommand acCmdSaveRecord

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Private Sub cmdOutputDocsPath_Click()

On Error GoTo ErrorHandler

Create a FileDialog object as a Folder Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFolderPicker)
Set txt = Me![txtOutputDocsPath]
strPath = GetOutputDocsPath()

With fd
.title = “Browse for folder where saved documents “ _

& “should be stored”
.ButtonName = “Select”
.InitialView = msoFileDialogViewDetails
.InitialFileName = strPath
If .Show = -1 Then

txt.Value = CStr(fd.SelectedItems.Item(1))
Else

Debug.Print “User pressed Cancel”
End If

End With

On Error Resume Next

DoCmd.RunCommand acCmdSaveRecord

ErrorHandlerExit:
Exit Sub

266

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 266

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

In the cmdInputDocsPath_Click event procedure, the GetInputDocsPath() function is
used to get the saved Input Documents path value from tblInfo (if there is one); otherwise the
default Documents folder is opened. The user can select another path, or accept the default path;
the value selected from the dialog is saved to the txtInputDocsPath textbox on the form, which is
bound to the InputDocsPath field in tblInfo. The cmdOutputDocsPath_Click event procedure
stores the selected template path to txtOutputDocsPath, which is stored in the OutputDocsPath
field in tblInfo.

I use a tblInfo table in most of my databases to store data that is needed throughout the
database, such as path information. Although you can use global variables for this pur-

pose, they won’t persist from one session to another, and it isn’t easy to examine their values, so I
prefer to store these values in a table.

The custom Input and Output Documents paths stored in tblInfo are picked up wherever needed
in the database, using the GetInputDocsPath() and GetOutputDocsPath() functions,
listed next:

Public Function GetInputDocsPath() As String

On Error GoTo ErrorHandler

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblInfo”)
rst.MoveFirst
strPath = Nz(rst![InputDocsPath])

Add a terminating backslash, if the path doesn’t have one.

If Len(strPath) > 1 And Right(strPath, 1) <> “\” Then
GetInputDocsPath = strPath & “\”

Else
GetInputDocsPath = strPath

End If
rst.Close

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ & _

Err.Description
Resume ErrorHandlerExit

NOTENOTE

267

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 267

End Function

Public Function GetOutputDocsPath() As String

On Error GoTo ErrorHandler

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblInfo”)
rst.MoveFirst
strPath = Nz(rst![OutputDocsPath])

Add a terminating backslash, if the path doesn’t have one.

If Len(strPath) > 1 And Right(strPath, 1) <> “\” Then
GetOutputDocsPath = strPath & “\”

Else
GetOutputDocsPath = strPath

End If
rst.Close

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ & _

Err.Description
Resume ErrorHandlerExit

End Function

Figure 9.2 shows the Folder Picker dialog for selecting a custom Output Documents path.

To use the FileDialog object in your code, you need to set a reference to the Office object
library; that reference is not set by default in a newly created Access 2007 database. Figure 9.3
shows the Office 12.0 reference being checked in the References dialog for the Files and Folders
database.

268

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 268

FIGURE 9.2

Selecting a custom folder for storing documents in a database.

FIGURE 9.3

Setting a reference to the Office 12.0 object library.

269

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 269

The FileDialog object has several useful methods and properties:

n Filters.Add— Lets you specify the filter(s) for displaying files, such as

fd.Filters.Add “Word documents”, “*.doc”

n InitialFileName— The default file name, for a File Picker dialog; the default path
for a Folder Picker dialog

n ButtonName— The button caption (in case you want something other than “Select”).

n DialogType— A selection of File Picker, Folder Picker, Open, or Save As dialog type
(from the MsoFileDialogType enum, which can be viewed in the Object Browser).

n InitialView— Lets you set the view for the dialog (Details, Large Icons, Preview, and so
on). Look at the MsoFileDialogView enum in the Object Browser for the full selection.

n AllowMultiSelect— If set to True, lets users select multiple files in the dialog (for
File Picker dialogs only).

Figure 9.4 shows the MsoFileDialogView enum, with all the options for setting the view for
the dialog.

FIGURE 9.4

Viewing the MsoFileDialogView enum in the Object Browser.

270

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 270

The FileSystemObject
The FileSystemObject library provides another way to work with Windows folders (and files).
To use the components of the object library in a database, you need to set a reference, in this case
to the Scripting Runtime library, as shown in Figure 9.5.

If you don’t see the Microsoft Scripting Runtime selection in the References dialog, you can get this
library by downloading Microsoft Windows Script 5.6 (or whatever is the current version), plus
the Microsoft Windows Script 5.6 Documentation files from the Microsoft Windows Scripting
Downloads page at http://www.microsoft.com/downloads/details.aspx?
familyid=01592C48-207D-4BE1-8A76-1C4099D7BBB9&displaylang=en.

FIGURE 9.5

Setting a reference to the Scripting Runtime library.

The Help file shown in Figure 9.6 (script56.chm) is a compiled HTML Help file. You’ll find it
very helpful, because it includes a Help book with full information on the components of the
FileSystemObject, plus useful code samples.

271

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 271

272

Writing VBA Code to Exchange Data between Office ComponentsPart II

A Digression on Access Help

In my opinion, Access Help reached its highest point in Access 3.1, when it was provided in the
form of a Windows Help file, every bit of which was written specifically for the current version of

Access, and was available without an Internet connection. In successive versions of Access, Help
moved to the HTML format, which introduced the possibility of retrieving Help topics that were not
relevant to Access (say from the MSDN Library that came with VB 6.0), because properties, methods,
controls, and other objects may occur in many different Microsoft applications, although they may
not (usually don’t) work exactly the same. If you are trying to determine which properties of a Tab
control will work on an Access form, it isn’t much help if the Help topic you find is for a Tab control
on an Office UserForm or a VB form.

Access 2007 Help is even less useful; it searches all of Office online (at least, if you are connected to
the Internet; otherwise, you won’t get any help at all), using a shamefully ineffective search engine. I
entered “Tab control” into the search box in the Access Help window and got the list of topics
shown in the following figure. Not a single one of them is relevant. One might think that Access
doesn’t support Tab controls, but of course that is not the case.

FIGURE 9.6

The FileSystemObject Help file.

14_047026 ch09.qxp 4/2/07 9:50 PM Page 272

273

Working with Files and Folders 9

A list of inappropriate Help topics on searching for “Tab control.”

There is a Table of Contents option in Access Help, but it is very sparse compared to the table of con-
tents for Help in previous Access versions, and (curiously) it is quite different depending on whether
or not you are connected to the Internet. Rather than giving full coverage of all the controls you can
put on an Access form, the Controls heading (in the online version of the Table of Contents, and as
shown in the following figure) has only four topics, covering only the most commonly used controls.

continued

14_047026 ch09.qxp 4/2/07 9:50 PM Page 273

274

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued

The Controls book in the Access Help Table of Contents.

The offline version of the Table of Contents has a VBA Reference section, with a section on controls,
and it does point to a Help topic for the Tab control — but the topic is not available offline! And in
any case, Search won’t find it.

Does that mean there is no help available for the Tab control? Not at all. I entered “Tab control on
Access forms” into Google and got a page of relevant topics, starting with a very useful tutorial on
using the Access Tab control. It isn’t specific to Access 2007, but that doesn’t matter because Tab
controls weren’t changed in this version. Note that some of the hits are from the Microsoft web site,
so Access Help can’t even find appropriate help topics in Microsoft’s own Support files! My conclu-
sion: if you need help for Access 2007, try Google.

14_047026 ch09.qxp 4/2/07 9:50 PM Page 274

275

Working with Files and Folders 9

Using Google to get help for Access.

There is another option for help, at least when you are writing VBA code: As shown in the following
figure, you can use the Object Browser (opened by the F2 key in the Visual Basic window) to view
components of the Access object model and their attributes. In previous versions of Access, clicking
the yellow question mark button would usually open an appropriate Help topic. However, this is no
longer the case in Access 2007. Selecting the TabControl object in the Access library and clicking
the Help button just opens the main Help window, where you can search ineffectually for help on
the Tab control, just as I described previously.

continued

14_047026 ch09.qxp 4/2/07 9:50 PM Page 275

276

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued

Selecting an Access object in the Object Browser.

In Access 2003, clicking the Help button for the Tab control in the Object Browser opened an appro-
priate Help topic.

14_047026 ch09.qxp 4/2/07 9:50 PM Page 276

Backing up Your Database
Everybody knows that data should be backed up frequently, and I like to make it as convenient as
possible to back up a database. My standard database main menu features a Backup button, which
calls the BackupDB procedure listed next. I created the Backup code and menu button in an ear-
lier version of Access, when there was no way of backing up a database without closing it down.

Since that time, Microsoft has added a backup command that doesn’t require closing down the
database, though it’s still not as convenient as my one-click backup. The Access 2007 backup com-
mand is available through the Manage button on the File menu (shown in Figure 9.7). Selecting
the “Back Up Database” option opens the Save As dialog shown in Figure 9.8.

277

Working with Files and Folders 9

An Access 2003 Help topic for the Tab control.

14_047026 ch09.qxp 4/2/07 9:50 PM Page 277

FIGURE 9.7

The Access 2007 Back Up Database selection.

FIGURE 9.8

The built-in database save dialog.

If you are running the backup code in Windows Vista, you may be unable to back up
databases in certain folders, because of Vista security restrictions. This is a Vista issue,

not a problem with the database, as you can backup the database after moving it to another folder
with lower security.

NOTENOTE

278

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 278

Though it is much easier to back up an Access database in Access 2007 than in previous versions,
the new “Back Up Database” selection on the Manage menu defaults to saving the database copy in
the same folder as the database itself. If you want to save your backups to another folder (which I
prefer, to avoid confusion between databases and their backups), you have to browse for that
folder. The BackupDB function in the following basBackup module saves backups to a folder
called Backups under the database folder; you can modify the hard-coded path for saving backups
as desired if you want to save your backups to another location. If you want to save backups to a
Daily Backups folder on drive E, for example, you would replace the lines of code

strBackupPath = Application.CurrentProject.Path _
& “\Backups\”

with

strBackupPath = “E:\Daily Backups\”

See Chapter 14 for a discussion of an add-in with user-selectable backup options,
including selection of the backup folder from a Folder Picker dialog.

The Access 2007 Backup.accdb database contains the table, module, and macros that are used to
do the database backups. These database objects can be imported into any Access 2007 database,
and the BackupDB function can be run from the mcrBackup macro, or from a button on the main
menu. The basBackup module is listed as follows:

Option Explicit
Option Compare Database

Private dbs As DAO.Database
Private fld As Scripting.Folder
Private fso As Scripting.FileSystemObject
Private intReturn As Integer
Private rst As DAO.Recordset
Private strBackupPath As String
Private strCurrentDB As String
Private strDayPrefix As String
Private strDBName As String
Private strDefault As String
Private strFinalSaveName As String
Private strPrompt As String
Private strSaveName As String
Private strTitle As String

Public Function BackupDB()

CROSS-REFCROSS-REF

279

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 279

Requires a reference to the Microsoft Scripting Runtime library.

On Error GoTo ErrorHandler

Set fso = CreateObject(“Scripting.FileSystemObject”)
strCurrentDB = Application.CurrentProject.FullName
Debug.Print “Current db: “ & strCurrentDB
strBackupPath = Application.CurrentProject.Path _

& “\Backups\”

Attempt to set a reference to the backup folder.

Set fld = fso.GetFolder(strBackupPath)
strDayPrefix = Format(Date, “mm-dd-yyyy”)
strSaveName = Left(Application.CurrentProject.Name, _

Len(Application.CurrentProject.Name) - 6) _
& “ “ & SaveNo & “, “ & strDayPrefix & “.accdb”

strSaveName = strBackupPath & strSaveName
Debug.Print “Backup save name: “ & strSaveName
strTitle = “Database backup”
strPrompt = “Accept or edit name of database copy”
strDefault = strSaveName
strFinalSaveName = InputBox(prompt:=strPrompt, _

title:=strTitle, Default:=strDefault)

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblBackupInfo”)
With rst

.AddNew
![SaveDate] = Format(Date, “d-mmm-yyyy”)
![SaveNumber] = SaveNo
.Update
.Close

End With
fso.CopyFile strCurrentDB, strFinalSaveName

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err.Number = 76 Then

If the backup folder was not found, create it.

fso.CreateFolder strBackupPath
Resume Next

Else

280

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 280

MsgBox “Error No: “ & Err.Number _
& “; Description: “ & Err.Description

Resume ErrorHandlerExit
End If

End Function

Public Function SaveNo() As String

On Error GoTo ErrorHandler

Dim intDayNo As Integer
Dim strNextNo As String

Create a unique save number for today.

intDayNo = Nz(DMax(“[SaveNumber]”, “tblBackupInfo”, _
“[SaveDate] = Date()”))

Debug.Print “Day no. “ & intDayNo
strNextNo = CStr(intDayNo + 1)
Debug.Print “Next No. “ & strNextNo
SaveNo = strNextNo

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Function

The SaveNo() function creates an incrementing number for the current backup by picking up
the latest number stored for today’s date from tblBackupInfo and adding 1 to it.

The BackupDB procedure backs up the current database, creating a save name from the database’s
name (picked up from the Name property of the CurrentProject property of the Application
object), plus the SaveNo() value and today’s date, formatted with dashes. (You can change the date
format as desired, so long as you don’t use slashes or other characters that are not permitted in file
names.) The proposed save name is presented in an InputBox, where it can be edited as desired, such
as adding info on specific changes made to the database; it is then saved to a folder called Backups
under the current database folder.

The GetFolder method of the FileSystemObject is used to reference the Backups folder; if
the folder is not found, the function’s error handler creates the folder using the CreateFolder
method. A record is added to tblBackupInfo with the date and the save number, and finally the

281

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 281

CopyFile method of the FileSystemObject is used to copy the current database to a backup
with the final save name in the Backups folder.

The tblBackupInfo table stores dates and incrementing numbers for the backup names. The back-
ups you make on a given day will have a number (starting with 1) and the date, so they don’t over-
write each other, and you will know the order in which the backups were created. Figure 9.9
shows the InputBox presented by the BackupDB function; you can accept the proposed save name
or edit it as desired.

FIGURE 9.9

Saving a database copy using the BackupDB function.

Working with Text Files
For purposes of working with text files in VBA code, there are three types of text files: comma-
delimited, fixed-width (columnar), or free-form. Data from the first two types of text files can be
imported or exported using the TransferText method in Access, and comma-delimited files can
be processed with the TransferSpreadsheet method. If you just need to read data from (or
write data to) a text file, but not import into a table, you can work with text files using the
FileSystemObject, the legacy VB methods, or ADO.

Exporting to (and importing from) comma-delimited and fixed-width text files is covered
in Chapter 10.

Writing Data to Text Files
If your code iterates through a recordset, doing (or not doing) some action for each record, a text
file is a handy way to document which records have been processed, or perhaps just to document
records that were skipped because of missing information. You can write informational data to a
text file using three methods: the legacy VB statements (Open FileName For Input/Output As #n);
components of the FileSystemObject object model (the TextStream object in particular); or
components of the ADO object model (the Stream object in particular).

The sample Select Contacts for Email form (frmEMailMerge), shown in Figure 9.10, has a multi-
select listbox for selecting contacts to receive an email, textboxes for entering the message subject
and body, and an option group for selecting the method of creating a text file containing informa-
tion about the skipped records.

CROSS-REFCROSS-REF

282

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 282

FIGURE 9.10

A form with options to create a text file with information about skipped records using three different methods.

The complete cmdCreateEMails_Click event procedure is listed next; the code first checks
that the message subject and body text have been entered on the form and sets a reference to the
Outlook Application object, deletes the old text file, if it exists, then sets up a Select Case state-
ment to work with text files differently, according to which option was selected in the Text Type
option group:

Private Sub cmdCreateEMails_Click()

On Error GoTo ErrorHandler

Dim appOutlook As Outlook.Application
Dim fso As Scripting.FileSystemObject
Dim msg As Outlook.MailItem
Dim strBody As String
Dim strEMailRecipient
Dim strSubject As String
Dim strTo As String
Dim varItem As Variant
Dim strTest As String
Dim lngContactID As Long
Dim strFullName As String
Dim strText As String
Dim strCompanyName As String
Dim strDocsPath As String
Dim strFile As String

283

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 283

Dim blnSomeSkipped As Boolean
Dim intTextType As Integer
Dim strTitle As String
Dim strPrompt As String
Dim txt As Scripting.TextStream
Dim tstr As ADODB.Stream

Set lst = Me![lstSelectContacts]
intTextType = Nz(Me![fraTextType].Value, 2)
strDocsPath = GetCustomDocsPath()

Check that at least one contact has been selected.

If lst.ItemsSelected.Count = 0 Then
strTitle = “No contact selected”
strPrompt = “Please select at least one contact”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
lst.SetFocus
GoTo ErrorHandlerExit

End If

Test for required message fields.

strSubject = Nz(Me![txtMessageSubject].Value)
If strSubject = “” Then

strTitle = “No subject entered”
strPrompt = “Please enter a subject”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
Me![txtMessageSubject].SetFocus
GoTo ErrorHandlerExit

End If

strBody = Nz(Me![txtMessageBody].Value)
If strBody = “” Then

strTitle = “No message body entered”
strPrompt = “Please enter the message body”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
Me![txtMessageBody].SetFocus
GoTo ErrorHandlerExit

End If

Checks passed; proceed to create a message using the selected text output method.

Set appOutlook = GetObject(, “Outlook.Application”)
strFile = strDocsPath & “Skipped Records.txt”
Debug.Print “Text file: “ & strFile

On Error Resume Next

284

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 284

Delete existing file, if there is one.

Kill strFile

On Error GoTo ErrorHandler

Select Case intTextType

Case 1

ADO

Set tstr = New ADODB.Stream
tstr.Open
strText = “Information on progress creating “ _

& “Outlook mail messages”
tstr.WriteText Data:=strText, Options:=adWriteLine
tstr.WriteText Data:=vbCrLf & vbCrLf

blnSomeSkipped = False

For Each varItem In lst.ItemsSelected

Get the Contact ID and name for reference.

lngContactID = Nz(lst.Column(0, varItem))
Debug.Print “Contact ID: “ & lngContactID
strFullName = Nz(lst.Column(1, varItem))

Check for email address.

strEMailRecipient = Nz(lst.Column(2, varItem))
strTest = strEMailRecipient
Debug.Print “Email address: “ & strTest
If strTest = “” Then

blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no email address”

tstr.WriteText Data:=vbCrLf
tstr.WriteText Data:=strText, _

Options:=adWriteLine
GoTo NextContactADO

End If

Check for company name.

strCompanyName = Nz(lst.Column(3, varItem))
strTest = strCompanyName
Debug.Print “Company name: “ & strTest

285

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 285

If strTest = “” Then
blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no company name”

tstr.WriteText Data:=vbCrLf
tstr.WriteText Data:=strText, _

Options:=adWriteLine
GoTo NextContactADO

End If

Has required info; create new mail message and send to contact.

Set msg = appOutlook.CreateItem(olMailItem)
With msg

.To = strEMailRecipient

.Subject = strSubject

.Body = strBody

.Send
End With

NextContactADO:
Next varItem

If blnSomeSkipped = True Then

Write final line and save text file.

strText = “End of File”
tstr.WriteText Data:=vbCrLf
tstr.WriteText Data:=strText
tstr.SaveToFile FileName:=strFile, _

Options:=adSaveCreateNotExist
End If

Case 2

FSO

Set fso = CreateObject(“Scripting.FileSystemObject”)
Set txt = fso.CreateTextFile(FileName:=strFile, _

overwrite:=True)
strText = “Information on progress creating “ _

& “Outlook mail messages”
txt.WriteLine Text:=strText
txt.WriteBlankLines Lines:=2

blnSomeSkipped = False

For Each varItem In lst.ItemsSelected

286

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 286

Get Contact ID and name for reference.

lngContactID = Nz(lst.Column(0, varItem))
Debug.Print “Contact ID: “ & lngContactID
strFullName = Nz(lst.Column(1, varItem))

Check for email address.

strEMailRecipient = Nz(lst.Column(2, varItem))
strTest = strEMailRecipient
Debug.Print “Email address: “ & strTest
If strTest = “” Then

blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no email address”

txt.WriteBlankLines Lines:=1
txt.WriteLine Text:=strText
GoTo NextContactFSO

End If

Check for company name.

strCompanyName = Nz(lst.Column(3, varItem))
strTest = strCompanyName
Debug.Print “Company name: “ & strTest
If strTest = “” Then

blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no company name”

txt.WriteBlankLines Lines:=1
txt.WriteLine Text:=strText
GoTo NextContactFSO

End If

Has required info; create new mail message and send to contact.

Set msg = appOutlook.CreateItem(olMailItem)
With msg

.To = strEMailRecipient

.Subject = strSubject

.Body = strBody

.Send
End With

NextContactFSO:
Next varItem

287

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 287

Write final line.

strText = “End of File”
txt.WriteBlankLines Lines:=1
txt.WriteLine Text:=strText

Case 3

VB

Open text file for writing information about export progress.

Open strFile For Output As #1
strText = “Information on progress creating “ _

& “Outlook mail messages”
Print #1, strText
Print #1,
Print #1,

blnSomeSkipped = False

For Each varItem In lst.ItemsSelected

Get Contact ID and name for reference.

lngContactID = Nz(lst.Column(0, varItem))
Debug.Print “Contact ID: “ & lngContactID
strFullName = Nz(lst.Column(1, varItem))

Check for email address.

strEMailRecipient = Nz(lst.Column(2, varItem))
strTest = strEMailRecipient
Debug.Print “Email address: “ & strTest
If strTest = “” Then

blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no email address”

Print #1,
Print #1, strText
GoTo NextContactVB

End If

Check for company name.

strCompanyName = Nz(lst.Column(3, varItem))
strTest = strCompanyName
Debug.Print “Company name: “ & strTest

288

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 288

If strTest = “” Then
blnSomeSkipped = True
strText = “Contact No. “ & lngContactID _

& “ (“ & strFullName _
& “) skipped; no company name”

Print #1,
Print #1, strText
GoTo NextContactVB

End If

Has required info; create new mail message and send to contact.

Set msg = appOutlook.CreateItem(olMailItem)
With msg

.To = strEMailRecipient

.Subject = strSubject

.Body = strBody

.Send
End With

NextContactVB:
Next varItem

If blnSomeSkipped = True Then

Write final line and close text file.

strText = “End of file”
Print #1,
Print #1, strText
Close #1

End If

End Select

Open text file in Notepad.

Shell “Notepad “ & strFile

ErrorHandlerExit:
Exit Sub

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

ElseIf Err.Number = 55 Then

289

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 289

File is already open; close it.

Close #1
Resume

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Figure 9.11 shows a typical text file created by the cmdCreateEMails_Click event procedure
code (the text file is the same regardless of the method used to create it).

FIGURE 9.11

A text file with information on skipped records.

Figure 9.12 shows one of the email messages created by the previous code.

As is so often the case with Access, you have a choice of several techniques to use when working
with text files in VBA code. Any of the three methods discussed in the next sections can create a
text file and write to it; which method you use depends on such factors as your familiarity with the
technique, or the need for extra references in the database to support the code. I generally use the
FileSystemObject method, partly because I usually have a reference set to the Scripting
Runtime library for other purposes and partly because its syntax is the most intuitive. If your data-
base has a reference to the ADO library, but not the Scripting Runtime library, you can use the
ADO method to avoid the need for setting an extra reference; if you don’t have a reference set to
either the ADO or Scripting Runtime libraries, you can use the VB method to avoid setting an
extra reference.

290

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 290

FIGURE 9.12

An email message created from code.

ADO
The ActiveX Data Objects (ADO) model isn’t the best method for working with Access data, but it
does offer some extra features that are very handy for working with text files, in particular the
Stream object. The ADO case in the cmdCreateEMails_Click event procedure starts by set-
ting a variable to a Stream object in the ADO object model (note that the object model prefix is
ADODB), using the New keyword. The next line opens the new Stream object (you can’t write to
it unless it is open). A string of introductory text to be written to the file is saved to the strText
variable and then written to a line in the stream using the WriteText method. To create two
blank lines in the text file, WriteText is then used with two vbCrLf constants (representing a
CR + LF, meaning carriage return plus linefeed — antique terminology dating back to the days of
manual typewriters).

You need a reference to the ActiveX Data Objects object library to support this code.

The code iterates through the ItemsSelected collection of the lstSelectContacts listbox, checking
each record for required fields (Email and CompanyName). For each record that lacks data in one
or both of the required fields (and thus won’t get an email message), an If . . . Then statement
writes a line containing information on which record has been skipped, and why, plus another
blank line. At the end of the Case, a final line is written, and the stream is saved to a text file using
the SaveToFile method with the adSaveCreateNotExist option, which creates the file if it
does not exist.

NOTENOTE

291

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 291

FileSystemObject
The FileSystemObject object library provides an alternate approach to working with text files,
using the TextStream object. The FSO case in the cmdCreateEMails_Click event procedure
starts by creating a FileSystemObject variable and then creating a TextStream variable
using the CreateTextFile method. A string of introductory text to be written to the file is
saved to the strText variable and then written to a line in the text file using the WriteLine
method. To create two blank lines in the text file, the WriteBlankLines method is then used
with the Lines argument set to 2.

You need a reference to the Microsoft Scripting Runtime object library to support
this code.

The code iterates through the ItemsSelected collection of the lstSelectContacts listbox, checking
each record for required fields (Email and CompanyName). For each record that lacks data in one
or both of the required fields (and thus won’t get an email message), an If . . . Then statement
writes a line containing information on which record has been skipped, and why, plus another
blank line. When all the items have been processed, a final line is written to the text file.

VB
The third case uses legacy VB statements from the earliest days of Access; no object model refer-
ence is needed. The Open strFile For Output As #1 statement creates and opens the text file
for output. A string of introductory text to be written to the file is saved to the strText variable
and then written to a line in the text file using the rather unintuitive Print #1 method. To create
two blank lines in the text file, two Print #1 lines with no argument are used.

The code iterates through the ItemsSelected collection of the lstSelectContacts listbox, checking
each record for required fields (Email and CompanyName). For each record that lacks data in one
or both of the required fields (and thus won’t get an email message), an If . . . Then statement
writes another blank line and a line containing information on which record has been skipped.

At the end of the case, a final line is written, and the file is closed using the Close #1 statement.
This does not delete the text file, just closes it.

Reading Data from Text Files
Just as you can write data to text files, you can use legacy VB statements, FileSystemObject code,
or ADO code to read data from text files. The Import Data from Text File form (frmTextImport) has a
command button for selecting a text file to import (Figure 9.13 shows the form, and Figure 9.14
shows the File Picker dialog opened by this button), and an option group with a choice of ADO, FSO
(FileSystemObject), and VB-type text imports; the imported data is written to the large Imported Text
textbox when you click the “Load Data From File” button. A “Clear Imported Data” button clears the
Imported Text textbox so you can start over.

NOTENOTE

292

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 292

FIGURE 9.13

A form with a choice of loading data from a text file using three different methods.

FIGURE 9.14

Selecting a text file for importing data.

293

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 293

The cmdLoadData_Click event procedure that reads data from a text file is simpler than the
code that writes data, because two of the three methods (in their own way) can import all the data
from a text file without needing to process each line separately. The cmdLoadData_Click proce-
dure starts by setting a reference to the textbox that holds the name of the selected text file, and
checks that there is a file name in the box. If there is a file name, it is saved to a variable, and then
a Select Case statement is set up to process the import separately depending on whether the
user selects ADO, FSO, or VB in an option group:

Private Sub cmdLoadData_Click()

On Error GoTo ErrorHandler

Dim fso As Scripting.FileSystemObject
Dim strText As String
Dim strFile As String
Dim intTextType As Integer
Dim strTitle As String
Dim strPrompt As String
Dim txt As Scripting.TextStream
Dim stm As ADODB.Stream
Dim txtData As Access.TextBox
Dim strTextFile As String
Dim strData As String
Dim strLine As String

Set txtData = Me![txtSelectedTextFile]
strTextFile = Nz(txtData.Value)
If strTextFile = “” Then

strTitle = “No text file selected”
strPrompt = “Please select a text file”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
GoTo ErrorHandlerExit

Else
Debug.Print “Text file: “ & strTextFile

End If

intTextType = Nz(Me![fraTextType].Value, 2)

Select Case intTextType

Case 1

ADO

Set stm = New ADODB.Stream

With stm
.Charset = “ASCII”

294

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 294

.Open

.LoadFromFile strTextFile

.Position = 0
strData = .ReadText(adReadAll)

End With

Close Stream object.

stm.Close

Case 2

FSO

Set fso = CreateObject(“Scripting.FileSystemObject”)
Set txt = fso.OpenTextFile(FileName:=strTextFile, _

IOMode:=ForReading)

Read all data from file.

strData = txt.ReadAll

Close file.

txt.Close

Case 3

VB

Open text file for reading data.

Open strTextFile For Input As #2
Do While Not EOF(2)

Save data from a line in the text file to a variable.

Input #2, strLine
strData = strData & IIf(strData <> “”, _

vbCrLf, “”) & strLine
Loop

Close file.

Close #2

End Select

295

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 295

Write data to text box on form.

Me![txtImportedText].Value = strData

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The next sections describe the specific techniques used in the code for the ADO, FSO, and VB
methods for loading data from a selected text file.

ADO
For the ADO option, a Stream variable is set, using the New keyword, the Stream object is
opened, and the selected text file is loaded, using the LoadFromFile method. The ReadText
method is used with the adReadAll named constant as its argument to read in all the text from
the text file, and that data is then written to the strData variable. Finally, the Stream object
is closed.

FSO
For the FSO (FileSystemObject) option, first a variable is set to the FileSystemObject,
and then the text file is opened with the OpenTextFile method of the FileSystemObject,
with the ForReading value for the IOMode argument. All of the data from the text file is
read using the ReadAll method, and it is saved to the strData variable. Finally, the text file
is closed.

VB
The last method, VB, uses the Open strTextFileForInput As #2 statement to open the file,
and sets up a Do While . . . Loop structure to process all of the lines in the text file, saving data
from each line to the strData variable, incrementing it line by line with a vbCrLf constant in
between lines. When all the lines have been processed, the text file is closed.

Finally, however the data has been accumulated, the strData variable is written to the
txtImportedText textbox, as shown in Figure 9.15.

296

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 296

FIGURE 9.15

A form with data loaded from a text file, using the FileSystemObject method.

Working with Attachment Fields
The Attachment data type discussed in this section is new to Access 2007.

Previous versions of Access had an OLE Object field data type, which only supported certain types
of objects and was quite cumbersome to use (not to mention causing terrible database bloat). By
contrast, in Access 2007, it is quite easy to store files of any type in a field of the new Attachment
data type, and the attachments are automatically compressed to save database space. The Contacts
form, frmContactsWithAttachments (opened from the Browse Contacts button on the main menu)
has such a field. If an attachment has already been added to the field, it shows as an icon (at least,
if it is of a type recognized by Office); Figure 9.16 shows a record with a Word 2007 document
attachment.

The attachment icons differ according to the Office version of the stored attachment
file. A Word document’s icon has a Word document with a W image over the upper-left

corner; the style of the W differs for Word 97-2003 (.doc) or Word 2007 (.docx) documents. For a
Word 2007 document, the W is similar to the one displayed in a Word 2007 document’s taskbar icon;
for Word 97-2003 documents, the W is the older style W that was used as the Word icon in Office 97.
Other Office documents also have different icons depending on their version.

NOTENOTE

NEW FEATURENEW FEATURE

297

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 297

I discussed using the FileSystemObject (Scripting Runtime library) for working with folders
in an earlier section of this chapter; you can also use the FileSystemObject to work with files
in a folder, or create files. One possible use is to select a file from a folder to store in a new
Attachment data type field in an Access table.

FIGURE 9.16

A form with an attachment field, showing a stored Word 2007 document.

To add an attachment, just double-click the field; this opens the Attachments dialog (shown in
Figure 9.17), where you can view existing attachments (multiple attachments can be stored in one
Attachment field), or add a new one by clicking the Add button.

FIGURE 9.17

The Attachment dialog, showing a stored Word 2007 document.

The Add button in the Attachments dialog (shown in Figure 9.17) opens a Choose File dialog
(shown in Figure 9.18) where you can select a file to store in the Attachment field.

298

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 298

FIGURE 9.18

Selecting a TIF file in the Choose File dialog.

If you store multiple files in an Attachment field, only the first file’s icon will be displayed
in the form control.

Though it is easy enough to store an attachment or two manually, if you have a folder full of attach-
ments that need to be stored in hundreds of records, it is easier to use VBA code to store the
attachments, or to extract attachments and save them to a folder. As an example, suppose you have
a folder containing numerous Word documents and Excel worksheets (both in Office 2007 and
earlier formats) related to contacts. Each document name starts with “Contact ID” and a number,
which corresponds to the ContactID field in tblContacts in the sample database.

Loading Files into Attachment Fields
The Recordset2 object (new to Access 2007) is used to work with fields of the
Attachment type.

The LoadAttachments procedure listed next iterates through the documents in the folder
selected by the Input Documents Path button on the main menu, and for any document that starts
with “Contact ID” saves the document to the corresponding contact record’s File field (this field is of
the Attachment data type). An Attachment field can contain multiple attachments, and the collection
of attachments is represented in VBA code as a separate recordset of attachments belonging to a
record in a table. Using a Recordset2 object (new to Access 2007) to work with the attachments
lets you use the new LoadFromFile and SaveToFile methods to work with the attachments.

Figure 9.19 shows a folder with Contact ID documents of various types for loading as attachments.

NEW FEATURENEW FEATURE

NOTENOTE

299

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 299

FIGURE 9.19

A folder with some Contact ID documents, for creating attachments.

In the LoadAttachments function listed as follows, declaring the rstAttachments variable as
a Recordset2 object (instead of a Recordset object) allows use of the new LoadFromFile and
SaveToFile methods, which I use to load files into Attachment fields, or save files from
Attachment fields:

Public Function LoadAttachments()

On Error GoTo ErrorHandler

Dim intSpace As Integer
Dim strTest As String
Dim strSearch As String

strDocsPath = GetInputDocsPath()
Set fso = CreateObject(“Scripting.FileSystemObject”)
Set fld = fso.GetFolder(strDocsPath)
Set dbs = CurrentDb
Set rstTable = dbs.OpenRecordset(“tblContacts”, dbOpenDynaset)

For Each fil In fld.Files
strFile = fil.Name
Debug.Print “File name: “ & strFile
Debug.Print “File type: “ & fil.Type

Check whether file name starts with ‘Contact ID’

If Left(strFile, 10) = “Contact ID” Then

300

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 300

Extract Contact ID from file name, using Mid and InStr functions to start at the beginning of the
number and end before the space following the number, if there is one.

strTest = Mid(String:=strFile, Start:=12, Length:=3)
intSpace = InStr(strTest, “ “)

If intSpace > 0 Then
lngContactID = CLng(Mid(String:=strTest, _

Start:=1, Length:=intSpace - 1))
Else

lngContactID = CLng(strTest)
End If

strSearch = “[ContactID] = “ & lngContactID
Debug.Print “Search string: “ & strSearch
strFileAndPath = strDocsPath & strFile

Search for matching Contact ID in table.

rstTable.MoveFirst
rstTable.FindFirst strSearch
If rstTable.NoMatch = True Then

strTitle = “Can’t find contact”
strPrompt = “Contact ID “ & lngContactID _

& “ not found in table; can’t add attachment”
GoTo NextDoc

Else
rstTable.Edit

Create recordset of attachments for this record, using the new Recordset2 type recordset.

Set rstAttachments = _
rstTable.Fields(“File”).Value

Turn off the error handler to prevent errors if the code attempts to add the same file twice; in this
case the Attachments recordset won’t be updated.

On Error Resume Next

With rstAttachments
.AddNew
.Fields(“FileData”).LoadFromFile _

(strFileAndPath)
.Update
.Close

End With
rstTable.Update
Debug.Print “Added “ & strFileAndPath _

& “ as attachment to Contact ID “ _
& lngContactID; “‘s record”

End If

301

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 301

End If

NextDoc:
Next fil

Open the Contacts form to see the attachments that have been loaded.

DoCmd.OpenForm FormName:=”frmContacts”

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description

End Function

Figure 9.20 shows the main menu of the sample database, Files and Folders.accdb, with the Load
Attachments option selected; this selection calls the LoadAttachments function.

FIGURE 9.20

The main menu, with an Attachments button with two options, for loading or saving attachments.

Saving Attachments to Files
The SaveAttachments procedure performs the opposite function: working with a recordset
based on tblContacts, it uses a Recordset2 type recordset to iterate through the attachments

302

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 302

collection of a record and saves each one to a file in the Output Documents folder selected on the
main menu:

Public Function SaveAttachments()

On Error GoTo ErrorHandler

Dim intSpace As Integer
Dim strTest As String
Dim strSearch As String

strDocsPath = GetOutputDocsPath()
Debug.Print “Output docs path: “ & strDocsPath
Set fso = CreateObject(“Scripting.FileSystemObject”)
Set fld = fso.GetFolder(strDocsPath)
Set dbs = CurrentDb
Set rstTable = dbs.OpenRecordset(“tblContacts”)

Do While Not rstTable.EOF

Create recordset of attachments for this record.

Set rstAttachments = _
rstTable.Fields(“File”).Value

With rstAttachments
Do While Not .EOF

strFileAndPath = strDocsPath _
& .Fields(“FileName”)

Save this attachment to a file in the Output Docs folder.

Debug.Print “Saving “ & strFileAndPath _
& “ to “ & strDocsPath & “ folder”

Turn off error handler to prevent errors if the file already exists in the folder.

On Error Resume Next

.Fields(“FileData”).SaveToFile strFileAndPath

.MoveNext
Loop
.Close

End With
rstTable.MoveNext

Loop

rstTable.Close
strPrompt = “All new attachments saved to “ _

& strDocsPath & “ folder”
strTitle = “Done!”
MsgBox strPrompt, vbOKOnly + vbInformation, strTitle

303

Working with Files and Folders 9

14_047026 ch09.qxp 4/2/07 9:50 PM Page 303

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Function

In Access 2007, it is much easier to save a database to an older format, as well as saving
a copy of the database in the current format (the long awaited “Database Save As”); the

three choices are right on the Save As submenu of the Office menu, as shown in Figure 9-21.

FIGURE 9.21

Saving a database in Access 2002-2003 format.

Summary
In this chapter you learned how to use the Office FileDialog object to allow easy selection of a
folder for loading or saving documents. In addition, you learned how to use a variety of techniques
for creating text files, saving data to them, and loading data from them to Access tables, using
ADO, the FileSystemObject, and legacy VB statements, and also how to save attachments
from files to the new Attachment field (or extract attachments from such fields and save them as
files), using VBA code. These techniques will allow you to work with text files in a variety of ways,
to add extra functionality to your databases, over and above working with Office documents.

NEW FEATURENEW FEATURE

304

Writing VBA Code to Exchange Data between Office ComponentsPart II

14_047026 ch09.qxp 4/2/07 9:50 PM Page 304

In the previous chapter, you learned how to work with text files, using one
old method and two new ones. For some types of text files, you can also
use methods of the Access Application object for importing and exporting

text files when working with data in VBA code. The TransferText method
has been used to import data from (or export data to) comma-delimited or
fixed-width files since the early days of Access, and it is still useful in Access
2007, when you are working with files in these formats. In Office XP, the
TransferText method was updated to also export to and import from
HTML files.

Typically, comma-delimited or fixed-width files are produced by mainframe
computers, and you may need to import these files into your Access tables or
export data from Access tables to comma-delimited or fixed-width files for
import into mainframe applications. Additionally, you can use these formats
to export data to or import data from other applications whose formats aren’t
directly supported by Access.

If you have data in Excel or Lotus spreadsheets, you can use the
TransferSpreadsheet method to import data from them or export data
to spreadsheets. And the TransferDatabase method can be used to
transfer data between Access tables and legacy databases or spreadsheets.

These three methods don’t have the power or flexibility of Automation code,
which can iterate through the records in a table, perhaps using a filtered
recordset, and write data from specific fields to a worksheet. But if you need
to import all the data from a Lotus worksheet or a dBASE database, so you
can work with it in Access, these methods come in handy.

305

IN THIS CHAPTER
Importing and exporting
comma-delimited and fixed-
width text files

Importing and exporting dBASE,
Paradox, and Lotus 1-2-3 files

Importing and exporting XML
and HTML files

Emailing exported text files

Working with
External Data

15_047026 ch10.qxp 4/2/07 9:52 PM Page 305

These days, it is not likely that you would want to export Access data to a Lotus spreadsheet or a
dBASE database, but there is still a need to export comma-delimited or fixed-width text files, so the
TransferText method is also useful for exporting data from Access to text files.

Working with Text Files Using the
TransferText Method
When you use the TransferText method in VBA code, you can supply a specification name. A
specification for an import or export is created when you run the export or import manually. The
process of creating a specification (and reusing it in the interface) has been streamlined in Access
2007; I cover the creation of an export specification in the next section. Specifications are handy
when you need to set a number of custom options for an export or import, especially if you plan to
re-run the export or import in the interface; however, they are not required.

Creating an Import or Export Specification
The process of creating an import specification for importing a fixed-width text file is described next;
you create specifications for importing a comma-delimited text file, or exporting either of those file
types, in a similar manner, with different options depending on the file type. You might want to use
an import specification, for example, if you receive a text file of comma-delimited data downloaded
from a mainframe every week, and you need to import the weekly data into an Access table.

1. First, click the Text File button on the External Data menu, as shown in Figure 10.1.

FIGURE 10.1

Starting an import of a text file.

2. Next, in the Get External Data - Text File dialog box (shown in Figure 10.2), use the
Browse button to select the text file to import (Jobs 02-Jul-2006.txt in the example).

306

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 306

FIGURE 10.2

Selecting a text file to import.

3. After selecting the file, clicking OK on the Get External Data - Text File dialog box opens
the Import Text Wizard (Figure 10.3), with a selection of Delimited or Fixed Width; gen-
erally Access pre-selects the correct option.

FIGURE 10.3

The Import Text Wizard dialog box.

307

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 307

4. Clicking Next brings up a screen where you can adjust the column widths, as shown in
Figure 10.4.

FIGURE 10.4

Adjusting columns in a fixed-width file.

5. The next screen, shown in Figure 10.5, lets you specify field names if they are lacking
in the text file (this is often the case with files exported from mainframes). The figure
shows the first field (originally named ProductNumber, and given a default field name of
Field1 by the wizard) being renamed with its original name. You can also change the data
type of the field, if necessary; for example, making a Text field containing numeric data a
Long Integer or Currency field, or a Text field containing date/time data a Date/Time
field.

6. The screen in Figure 10.6 lets you add, select, or not specify a primary key; in this case,
because the data will be appended to a table that has an AutoNumber field, the “No pri-
mary key” option is correct.

7. You will next see a screen that lets you enter the name of the target Access table.

308

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 308

FIGURE 10.5

Specifying field names for an imported text file.

FIGURE 10.6

Primary key choices for an imported text file.

309

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 309

You have now supplied all the information needed to set up the specification; the next steps, where
you save the specification, are new to Access 2007.

Clicking the Finish button opens a new Save Import Steps screen (shown in Figure 10.7).
If you check the “Save import steps” checkbox, more controls appear on the dialog,

where you can enter the name and description of the saved import specification, and even create an
Outlook task to run it automatically at a specified interval.

FIGURE 10.7

Saving an import specification.

Clicking the Save Import button saves the import specification. This allows you to select the saved
specification and run it in the future from the Saved Imports button on the External Data tab of the
Ribbon (shown in Figure 10.1), which saves a lot of time compared with going through all the
steps of the wizard each time you want to do the import.

Unfortunately, Access 2007 VBA code doesn’t recognize saved specifications. This fea-
ture worked for several previous versions, but at present it is broken, so we must wait

for a patch or service pack to fix it. For now, only code that avoids using specifications will work.
(You can import from, or export to, a comma-delimited file without a specification, but not a fixed-
width file.)

The Manage Data Tasks screen is shown in Figure 10.8. It has two tabs, one for saved imports and
the other for saved exports. On each tab, you can select a saved specification to run.

CAUTION CAUTION

NEW FEATURENEW FEATURE

310

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 310

FIGURE 10.8

The Manage Data Tasks dialog, where you can select a saved import or export specification.

Sometimes the wizard doesn’t recognize that the first line of a text file contains the field
names. In that case, you need to give the fields appropriate names, and then delete the

first row, with the field names as data, after the import is finished (you will probably get some Type
Conversion errors in the Import Errors table for that line). Figure 10.9 shows the table of imported
jobs data, and the Import Errors table with errors on the first row containing the field names.

FIGURE 10.9

A table of imported text data, with field names in the first data row, and an Import Errors table.

NOTENOTE

311

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 311

Importing and Exporting Text File Data in VBA Code
The main menu of the sample application, External Data.accdb (shown in Figure 10.10), has but-
tons for opening various forms that import and export data in a variety of file formats. Writing VBA
code to do the imports and exports gives you one-click convenience, particularly useful if you have
to do an import or export task frequently, for example importing weekly Jobs data downloaded
from a mainframe computer or emailed as a fixed-width or comma-delimited text file.

FIGURE 10.10

The main menu of the External Data sample database.

Importing Text Data
The following steps illustrate how to import data from a text file into an Access table, using VBA
code running from controls on an Access form (frmImportTextData, illustrated in Figure 10.11):

1. Selecting the “Import Data from Text Files” option and clicking the button to its left opens
the Import Job Data from Text File (frmImportTextData) form, as shown in Figure 10.11.

If a text file was previously selected, its name is displayed in the textbox to the right of
the “Source Text File” button.

2. You can use the selected file (if one is listed), or you can select another by clicking the
“Source Text File” button, which opens a File Picker dialog box. The File Picker dialog
box is filtered to display either comma-delimited (.csv) or fixed-width (.txt) files, accord-
ing to the option selected in the Import Text Type option group. In Figure 10.12, I’ve
selected a comma-delimited text file for import.

312

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 312

FIGURE 10.11

The Import Job Data from Text File form, as initially opened.

FIGURE 10.12

Selecting a comma-delimited text file for import.

313

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 313

3. After selecting a text file, click the “Inspect New Jobs from Text File” button to import
data from the text file to a temporary table, tblNewJobs.

The code running from this button sets the table as the source object of the Jobs to
Inspect subform, so you can see the new records before actually appending them to the
tblJobs table, as shown in Figure 10.13.

FIGURE 10.13

The new jobs imported from a comma-delimited text file.

4. After inspecting the new data, you can either discard the data or import it into the
tblJobs table.

n Clicking the “Clear Imported Jobs Data” button discards the data (it is not added to
tblJobs).

n Clicking the “Save New Jobs to Table” button runs an append query that adds the new
Jobs data to tblJobs. The code does some data type conversion (as shown in Figure
10.14), because all the fields in the text file are text fields.

314

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 314

FIGURE 10.14

An append query that does some data type conversion before appending the newly
imported jobs to the main tblJobs table.

If you clicked the “Save New Jobs to Table” button, the new records that were displayed on the
form were added to tblJobs.

The relevant procedures from the form code module are listed next. The “Clear Imported Jobs”
command button’s event procedure clears the datasheet, calls the SaveTextFile Sub procedure,
and clears the previously selected file name from the textbox:

Private Sub cmdClearData_Click()

On Error Resume Next

Me![subNewJobs].SourceObject = “”
Call SaveTextFile(“”)
Me![txtSelectedTextFile].Value = “”

End Sub

Importing data from fixed-width text files has become much more difficult in Access
2007 than in previous versions of Access. Specifications now store the file name inter-

nally, and thus you must create a separate specification for each text file you want to create. This
means that the flexible method I use, where you can select the file to import, will not work. I recom-
mend sticking to comma-delimited file imports, if possible.

NOTENOTE

315

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 315

The “Inspect New Jobs from Text File” command button’s event procedure first checks that a text
file has been selected and then sets variables with the name of the target table for importing and the
import type. Next, a Select Case statement handles the two types of import (comma-delimited
and fixed-width) separately, using the TransferText statement with different arguments:

Private Sub cmdInspectJobs_Click()

On Error GoTo ErrorHandler

Dim strText As String
Dim strTitle As String
Dim strPrompt As String
Dim txtData As Access.TextBox
Dim strTextFile As String
Dim strTable As String
Dim strSpec As String

Set txtData = Me![txtSelectedTextFile]
strTextFile = Nz(txtData.Value)
If strTextFile = “” Then

strTitle = “No text file selected”
strPrompt = “Please select a text file”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
GoTo ErrorHandlerExit

Else
Debug.Print “Text file: “ & strTextFile

End If

strTable = “tblNewJobs”
intTextType = Nz(Me![fraTextType].Value, 1)

Select Case intTextType

Case 1

Comma-delimited:

DoCmd.TransferText transfertype:=acImportDelim, _
TableName:=strTable, _
FileName:=strTextFile, _
hasfieldnames:=True

Case 2

Fixed-width

strSpec = “Import-Jobs 13-Aug-2006”
‘New style syntax

316

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 316

Application.CurrentProject.ImportExportSpecifications(strSpec).
Execute

‘Old style syntax causes error
‘DoCmd.TransferText transfertype:=acImportFixed, _

specificationname:=strSpec, _
TableName:=strTable, _
FileName:=strTextFile, _
hasfieldnames:=True

End Select

Assign table as the subform’s source object.

Me![subNewJobs].SourceObject = “fsubNewJobs”

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The “Save New Jobs to Table” command button’s event procedure runs an append query that adds
the selected jobs to tblNewJobs:

Private Sub cmdSaveJobs_Click()

On Error GoTo ErrorHandler

DoCmd.SetWarnings False
DoCmd.OpenQuery “qappNewJobs”
strTitle = “Jobs imported”
strPrompt = “New jobs imported into tblJobs from “ _

& GetTextFile()
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

317

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 317

The “Source Text File” command button’s event procedure opens a File Picker dialog for selecting a
text file for importing, filtering for either text or comma-delimited files depending on the option
selected on the form:

Private Sub cmdSourceTextFile_Click()

On Error GoTo ErrorHandler

Dim fd As Office.FileDialog
Dim txt As Access.TextBox
Dim strPath As String
Dim strFilter As String

Create a FileDialog object as a File Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFilePicker)
Set txt = Me![txtSelectedTextFile]

Set the initial path to the custom Input Documents path.

strPath = GetInputDocsPath()
intTextType = Nz(Me![fraTextType].Value, 1)

With fd
.title = “Select text file with job data to import”
.ButtonName = “Select”
.Filters.Clear
If intTextType = 1 Then

.Filters.Add “Comma-delimited files”, “*.csv”
ElseIf intTextType = 2 Then

.Filters.Add “Fixed-width files”, “*.txt”
End If
.InitialView = msoFileDialogViewDetails
.InitialFileName = strPath
If .Show = -1 Then

strTextFile = CStr(fd.SelectedItems.Item(1))
Else

Debug.Print “User pressed Cancel”
End If

End With

txt.Value = strTextFile

Save the value to tblInfo; the form can’t be bound to that table because the main menu is bound to
it, and thus it is locked.

SaveTextFile (strTextFile)
Me![txtSelectedTextFile].Value = strTextFile

ErrorHandlerExit:
Exit Sub

318

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 318

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The “Import Text Type” option group’s event procedure first checks that the selected text file is the
right type, and clears it if not, then sets up a Select Case statement to process comma-delimited
and text files differently, calling the SaveTextFile Sub:

Private Sub fraTextType_AfterUpdate()

On Error GoTo ErrorHandler

Dim strExt As String

Check that the selected text file is the right type, and clear the file selection if not.

intTextType = Nz(Me![fraTextType].Value, 1)
strTextFile = GetTextFile()

If Len(strTextFile) > 4 Then
strExt = Right(strTextFile, 3)

End If

Select Case intTextType

Case 1

Comma-delimited

If strExt = “txt” Then
SaveTextFile (“”)
Me![txtSelectedTextFile].Value = “”

End If

Case 2

Fixed-width

If strExt = “csv” Then
SaveTextFile (“”)
Me![txtSelectedTextFile].Value = “”

End If

Case 3
If strExt <> “csv” And strExt <> “txt” Then

SaveTextFile (“”)
Me![txtSelectedTextFile].Value = “”

End If

319

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 319

End Select

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Exporting Text Data
When exporting data to text files (say, for import into a mainframe computer program, or another
application that can import data from comma-delimited or fixed-width text files), often you need
to filter the data, usually by date. The Export Job Data to Text File (frmExportTextData) form has
two textboxes bound to Date fields that you can use to select dates for a date range used to filter
the records to be exported to a text file.

Controls bound to Date fields on an Access 2007 form have a long-awaited feature
shown in Figure 10.15: a pop-up calendar to make it easy to select a date.

FIGURE 10.15

The Export Job Data to Text File form, with a pop-up date selector.

NEW FEATURENEW FEATURE

320

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 320

1. To open the “Export Job Data to Text File form (frmExportTextData), select the “Export
Data to Text Files” option on the main menu and click the button to its left. This form lets
you export a range of records filtered by date to either a comma-delimited or fixed-width
text file.

2. After you select the From Date and To Date, either by typing them in or using the date
selector pop-up, click the “Inspect New Jobs to Export” button to show the jobs in
the selected date range in the Jobs to Inspect (fsubNewJobs) subform, as shown in
Figure 10.16.

3. If you don’t want to go ahead with the export, use the “Clear Jobs to Export” button to
clear the selected jobs.

4. To proceed with the export, use the “Export Jobs to Text File” button to run code using
the TransferText method to export the selected date range of jobs to a text file of the
type selected in the “Export Text Type” option group. Figure 10.17 shows an exported
comma-delimited file opened in Excel (which is the default application for .csv files).

FIGURE 10.16

Inspecting jobs in a given date range to export to a text file.

321

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 321

FIGURE 10.17

An exported comma-delimited text file opened in Excel.

The new method of dealing with specs works well with fixed-width exports, at least so
long as you always want to export to the save file name, as I do in the sample code.

The relevant procedures from the form module are listed next. The “Clear Jobs to Export” button’s
event procedure clears the datasheet subform of jobs:

Private Sub cmdClearData_Click()

On Error Resume Next

Me![subFilteredJobs].SourceObject = “”

End Sub

NOTENOTE

322

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 322

The “Export Jobs to Text File” button’s event procedure sets up a Select Case statement to
export the selected jobs, using the TransferText statement with different arguments:

Private Sub cmdExportJobs_Click()

On Error GoTo ErrorHandler

Dim intTextType As Integer
Dim strQuery As String
Dim strTextFile As String
Dim strTitle As String
Dim strPrompt As String

intTextType = Nz(Me![fraTextType].Value, 1)
strQuery = “qryFilteredJobs”

Select Case intTextType

Case 1

Comma-delimited

strTextFile = GetOutputDocsPath() _
&”Filtered Jobs.csv”

DoCmd.TransferText transfertype:=acExportDelim, _
TableName:=strQuery, _
FileName:=strTextFile, _
hasfieldnames:=True

Case 2

Fixed-width

strTextFile = GetOutputDocsPath() _
&”Filtered Jobs.txt”

strSpec = “Export@@hyFilteredJobs”
strTextFile = GetOutputDocsPath() & “Filtered Jobs.txt”
‘New style syntax

Application.CurrentProject.ImportExportSpecifications(strSpec).Ex
ecute

‘Old style syntax causes error
‘DoCmd.TransferText transfertype:=acExportFixed, _

TableName:=strQuery, _
FileName:=strTextFile, _
hasfieldnames:=True

End Select

323

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 323

strTitle = “Exported jobs”
strPrompt = “Exported filtered jobs to “ & strTextFile
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The “Inspect New Jobs to Export” button’s event procedure sets the form datasheet’s source object
to the subform bound to qryFilteredJobs, to display the selected jobs:

Private Sub cmdInspectNewJobs_Click()

On Error Resume Next

Me![subFilteredJobs].SourceObject = “fsubFilteredJobs”

End Sub

Working with Legacy Database
and Spreadsheet Files
Since the earliest days of Access (when dBASE and Paradox were major forces in the database
world, and Lotus 1-2-3 was the leading spreadsheet application) Access could import from or
export to these formats. Some people are still using these programs, or at least have old files cre-
ated by them in past years, so you still might need to import data from a dBASE, Paradox, or Lotus
file or (though it’s much less likely) export to one of those formats. Access still supports importing
from these legacy formats, and you can also export to them, both in the interface and in VBA code.

Importing Database Files
The form for importing data from legacy application files is similar to the form for importing from
text files; it differs in offering a selection of three legacy application types: dBASE, Paradox, and
Lotus. The following steps describe importing Jobs data from a dBASE file:

324

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 324

1. To open the Import Job Data from Application File (frmImportAppData) form, select the
“Import Data from App Files” option on the main menu and click the button to its left
(see Figure 10.10). The Job Data from Application File form is shown in its initial state in
Figure 10.18.

FIGURE 10.18

A form for importing data from legacy database and spreadsheet application files.

2. Click the Source File button to select a file of the type selected in the “Import File Type”
option group from a File Picker dialog, as shown in Figure 10.19.

3. As with text files, click the “Inspect New Jobs from App File” button to import data from
the selected file to a temporary table. The code sets that table as the source object of the
Jobs to Inspect subform, so you can see the new records before appending them to the
tblJobs table, as shown in Figure 10.20.

325

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 325

FIGURE 10.19

Selecting a dBASE file to import.

FIGURE 10.20

Inspecting new job data imported from a dBASE IV database file.

326

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 326

When importing from (or exporting to) dBASE or Paradox formats using the
TransferDatabase method, the DatabaseName argument takes the path, not the

database name; the database name is set with the Source argument. The path must be set without a
final backslash, or else it will cause an error.

4. Use the “Clear Imported Jobs Data” button to clear the imported data without adding it
to tblJobs.

5. Use the “Save New Jobs to Table” button to append the imported jobs data to tblJobs.
Importing a Paradox file is quite similar; only the database type argument is different.
Figure 10.21 shows new jobs data imported from a Paradox 4 database.

FIGURE 10.21

Inspecting data imported from a Paradox database.

Curiously, there isn’t an enum of named constants for the values used to set the DatabaseType
argument of the TransferDatabase method; you have to type in the values. Table 10.1 lists the
values you need to use for different versions of dBASE and Paradox.

NOTENOTE

327

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 327

TABLE 10.1

DatabaseType Argument Values for dBASE and Paradox

Database Version DatabaseType Value

dBASE III dBASE III

dBASE IV dBASE IV

dBASE 5 dBASE 5.0

Paradox 3.x Paradox 3.X

Paradox 4.x Paradox 4.X

Paradox 5.x Paradox 5.X

Paradox 7.x Paradox 7.X

Now that the data is in an Access table, you can proceed to work with it as needed.

Importing Spreadsheet Files
If you have old Lotus 1-2-3 spreadsheet files, you can import data from them into Access tables
using the TransferSpreadsheet method, which works much like the TransferText
method, importing all the data from a worksheet. Unlike database files, you can use named
argument values from the AcSpreadSheetType enum for spreadsheets of various versions;
these values are listed in Table 10.2.

TABLE 10.2

SpreadsheetType Named Constants for Lotus 1-2-3

Lotus Version SpreadsheetType Named Constants

Lotus WK1 acSpreadsheetTypeLotusWK1

Lotus WK3 acSpreadsheetTypeLotusWK3

Lotus WK4 acSpreadsheetTypeLotusWK4

Lotus WJ2 acSpreadsheetTypeLotusWJ2

328

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 328

When you inspect new job data imported from a Lotus spreadsheet (as shown in Figure 10.22),
the Job Date/Time field looks strange, because the field is created as a Number field. However,
when you click the Save Jobs to Table button, the CDate() function in the qappNewJobs
append query converts the numeric date value into the correct format before appending the data to
tblJobs. This type of tweaking of imported data is often required, to ensure that the data arriving in
the target Access table is the correct data type.

FIGURE 10.22

Numeric values in the Job Date/Time field for data imported from a Lotus 1-2-3 spreadsheet.

The relevant procedures from the Import Job Data from Application File form module are listed
next. The “Clear Imported Jobs Data” button’s event procedure clears the datasheet of records, calls
the SaveAppFile Sub, clears the textbox of the file name, and deletes the temporary tables of
new jobs:

Private Sub cmdClearData_Click()

On Error Resume Next

Me![subNewJobs].SourceObject = “”
Call SaveAppFile(“”)
Me![txtSelectedAppFile].Value = “”

329

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 329

Delete new jobs tables

DoCmd.DeleteObject acTable, “tblNewJobs”
DoCmd.DeleteObject acTable, “tblNewJobsDB”

End Sub

The “Inspect New Jobs from App File” button’s event procedure first checks that an application file
has been selected, parses out the file path and file name for use in different arguments of the
TransferDatabase statement, then sets up a Select Case statement to do the import
differently for the three application types:

Private Sub cmdInspectJobs_Click()

On Error GoTo ErrorHandler

Dim strText As String
Dim strTitle As String
Dim strPrompt As String
Dim txtData As Access.TextBox
Dim strAppFile As String
Dim strTable As String
Dim strSpec As String
Dim strDBPath As String
Dim strDBName As String
Dim strAppFileAndPath As String

Set txtData = Me![txtSelectedAppFile]

strAppFileAndPath = Nz(txtData.Value)
If strAppFileAndPath = “” Then

strTitle = “No application file selected”
strPrompt = “Please select an application file”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, title:=strTitle
GoTo ErrorHandlerExit

Else

Parse out file path and file name.

strDBPath = SplitDBPath(strAppFileAndPath)

Trim off last backslash.

Debug.Print “DB path length: “ & Len(strDBPath)
strDBPath = Left(strDBPath, Len(strDBPath) - 1)
strDBName = SplitDBName(strAppFileAndPath)

End If

330

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 330

intFileType = Nz(Me![fraFileType].Value, 1)

Select Case intFileType

Case 1

dBASE

strTable = “tblNewJobsDB”
Debug.Print “DB Path: “ & strDBPath
Debug.Print “DB Name: “ & strDBName
DoCmd.TransferDatabase transfertype:=acImport, _

databasetype:=”dBASE IV”, _
databasename:=strDBPath, _
objecttype:=acTable, _
Source:=strDBName, _
Destination:=strTable, _
structureonly:=False

Assign the appropriate form as the subform’s source object.

Me![subNewJobs].SourceObject = “fsubNewJobsDB”

Case 2

Paradox

strTable = “tblNewJobs”
DoCmd.TransferDatabase transfertype:=acImport, _

databasetype:=”Paradox 4.X”, _
databasename:=strDBPath, _
objecttype:=acTable, _
Source:=strDBName, _
Destination:=strTable, _
structureonly:=False

Assign the appropriate form as the subform’s source object.

Me![subNewJobs].SourceObject = “fsubNewJobs”

Case 3

Lotus 1-2-3

strTable = “tblNewJobs”
DoCmd.TransferSpreadsheet transfertype:=acImport, _

spreadsheettype:=acSpreadsheetTypeLotusWK3, _
TableName:=strTable, _
FileName:=strAppFileAndPath, _
hasfieldnames:=True

331

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 331

Assign the appropriate form as the subform’s source object.

Me![subNewJobs].SourceObject = “fsubNewJobs”

End Select

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The “Save New Jobs to Table” button’s event procedure sets up a Select Case statement to run
one of three append queries to append the new Jobs data to the tblJobs table:

Private Sub cmdSaveJobs_Click()

On Error GoTo ErrorHandler

DoCmd.SetWarnings False

intFileType = Nz(Me![fraFileType].Value, 1)

Select Case intFileType

Case 1

dBASE

DoCmd.OpenQuery “qappNewJobsDB”

Case 2

Paradox

DoCmd.OpenQuery “qappNewJobsPdox”

Case 3

Lotus 1-2-3

DoCmd.OpenQuery “qappNewJobsLotus”

End Select

332

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 332

strTitle = “Jobs imported”
strPrompt = “New jobs imported into tblJobs from “ _

& GetAppFile()
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The Source File button’s event procedure opens a File Picker dialog for selecting an application file for
importing, filtering for dBASE, Paradox, or Lotus files depending on the option selected on the form:

Private Sub cmdSourceFile_Click()

On Error GoTo ErrorHandler

Dim fd As Office.FileDialog
Dim txt As Access.TextBox
Dim strPath As String
Dim strFilter As String

Create a FileDialog object as a File Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFilePicker)
Set txt = Me![txtSelectedAppFile]

Set the initial path to the custom Input Documents path

strPath = GetInputDocsPath()
intFileType = Nz(Me![fraFileType].Value, 1)

With fd
.title = “Select database or spreadsheet file with “ _

& “job data to import”
.ButtonName = “Select”
.Filters.Clear

Select Case intFileType

Case 1
.Filters.Add “dBASE files”, “*.dbf”

333

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 333

Case 2
.Filters.Add “Paradox files”, “*.db”

Case 3
.Filters.Add “Lotus 1-2-3 files”, “*.wk3”

End Select

.InitialView = msoFileDialogViewDetails

.InitialFileName = strPath
If .Show = -1 Then

strAppFile = CStr(fd.SelectedItems.Item(1))
Else

Debug.Print “User pressed Cancel”
End If

End With

txt.Value = strAppFile

Save the value to tblInfo.

SaveAppFile (strAppFile)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

The “Import File Type” option group’s After_Update procedure first checks that the selected
application file is the right type, and clears it if not, then sets up a Select Case statement to
process the three types of application files differently, calling the SaveTextFile Sub:

Private Sub fraFileType_AfterUpdate()

On Error GoTo ErrorHandler

Dim strExt As String

Check that selected application file is the right type, and clear the file selection if not.

intFileType = Nz(Me![fraFileType].Value, 1)

If Len(GetTextFile()) > 4 Then
strExt = Right(strAppFile, 3)

End If

334

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 334

Select Case intFileType

Case 1

dBASE

If strExt <> “dbf” Then
SaveAppFile (“”)
Me![txtSelectedAppFile].Value = “”

End If

Case 2

Paradox

If strExt <> “.db” Then
SaveAppFile (“”)
Me![txtSelectedAppFile].Value = “”

End If

Case 3

Lotus 1-2-3

If strExt <> “wk3” Then
SaveAppFile (“”)
Me![txtSelectedAppFile].Value = “”

End If

End Select

Me![subNewJobs].SourceObject = “”

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

After importing data from the legacy application file, it is now in an Access table, where you can
work with it in the future.

335

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 335

Exporting Database and Spreadsheet Files
These days, it isn’t very likely that you would need to export data from Access to a dBASE, Paradox,
or Lotus file (and in any case, as discussed in the “Exporting Text Files” section, you can export to a
comma-delimited text file that can be imported into those applications). However, Access still offers
the option of doing exports to these legacy applications, as discussed in this section.

If you select the “Export Data to App Files” option on the main menu and click the button to its left,
the Export Job Data to Application File form (frmExportAppData) opens. This form (much like the
Export Job Data to Text File form) lets you export a range of records filtered by date to a dBASE,
Paradox, or Lotus 1-2-3 file. Figure 10.23 shows filtered data ready to export to a dBASE file.

FIGURE 10.23

Filtered records for export to a dBASE file.

The “Clear Jobs to Export” button clears the selected records, and the “Export Jobs to Application
File” button does the export to a file of the selected format; this procedure is listed next. Similar to
the other export procedures, this procedure sets up a Select Case statement to do the export
differently according to the selected application type; the TransferDatabase statement with
various arguments:

Private Sub cmdExportJobs_Click()

On Error GoTo ErrorHandler

Dim intFileType As Integer
Dim strQuery As String

336

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 336

Dim strAppFile As String
Dim strTitle As String
Dim strPrompt As String
Dim strOutputPath As String
Dim strDBName As String

intFileType = Nz(Me![fraFileType].Value, 1)
strQuery = “qryFilteredJobs”
strOutputPath = GetOutputDocsPath()

Trim off last backslash.

strOutputPath = Left(strOutputPath, _
Len(strOutputPath) - 1)

Select Case intFileType

Case 1

dBASE

strDBName = “Jobs.dbf”
strAppFile = strOutputPath & “\” & strDBName
DoCmd.TransferDatabase transfertype:=acExport, _

databasetype:=”dBASE IV”, _
databasename:=strOutputPath, _
objecttype:=acTable, _
Source:=strQuery, _
Destination:=strDBName, _
structureonly:=False

Case 2

Paradox

strDBName = “Jobs.db”
strAppFile = strOutputPath & “\” & strDBName
DoCmd.TransferDatabase transfertype:=acExport, _

databasetype:=”Paradox 5.X”, _
databasename:=strOutputPath, _
objecttype:=acTable, _
Source:=strQuery, _
Destination:=strDBName, _
structureonly:=False

Case 3

337

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 337

Lotus 1-2-3

strAppFile = strOutputPath & “\Jobs.wk1”
DoCmd.TransferSpreadsheet transfertype:=acExport, _

spreadsheettype:=acSpreadsheetTypeLotusWK1, _
TableName:=strQuery, _
FileName:=strAppFile, _
hasfieldnames:=True

End Select

strTitle = “Exported jobs”
strPrompt = “Exported filtered jobs to “ & strAppFile
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Working with XML and HTML Files
Sometimes Microsoft introduces a new technology long before it has any real-world use. The XML
and HTML file formats, though very useful for developing web sites, to date lack utility as vehicles
for exporting or importing Access data. XML in particular appears to be a new technology (not that
new; it was introduced in Office XP) that as of yet doesn’t have much use for Access data import
and export, though perhaps it will in the future. As far as I can see, any Access-related data
exchange tasks that you can do with XML or HTML can be done better by other methods, such as
the comma-delimited or worksheet formats.

That said, you may need to export an Access table or query to HTML format for posting on a web
site; XML files, though perhaps promising for future use, are at present minimally useful for
importing or exporting Access data.

Importing HTML and XML Files
If you do need to import data into Access from an HTML or XML file (or just want to experiment with
these options) you can use the Import HTML or XML Job Data form (frmImportHTMLXMLData),
which opens if you select the Import HTML or XML Data option on the main menu and click the
button to its left (see Figure 10.11).

Clicking the “Inspect New Jobs from HTML File” button displays the imported records in the sub-
form, as shown in Figure 10.24.

338

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 338

FIGURE 10.24

Inspecting data imported from an HTML file.

If you select the XML option, data from the XML file is displayed in the subform, as shown in
Figure 10.25.

FIGURE 10.25

Inspecting data imported from an XML file.

339

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 339

When you import data from an XML file, there is no option for specifying the name of
the Access table; it will have the same name as the original data source, possibly with an

appended number.

The code for the “Inspect New Jobs From HTML File” button is listed below:

Private Sub cmdInspectJobs_Click()

On Error GoTo ErrorHandler

Dim strText As String
Dim strTitle As String
Dim strPrompt As String
Dim txtData As Access.TextBox
Dim strAppFile As String
Dim strTable As String
Dim strSpec As String
Dim strHTMLXMLFileAndPath As String
Dim strHTMLXMLFile As String
Dim strHTMLXMLPath As String

Set txtData = Me![txtSelectedAppFile]

strTable = “tblNewJobs”
strHTMLXMLFileAndPath = Nz(txtData.Value)
If strHTMLXMLFileAndPath = “” Then

strTitle = “No application file selected”
strPrompt = “Please select an application file”
MsgBox prompt:=strPrompt, Buttons:=vbExclamation _

+ vbOKOnly, Title:=strTitle
GoTo ErrorHandlerExit

Else
Parse out the file name; it is needed later in the procedure.

strHTMLXMLFile = SplitDBName(strHTMLXMLFileAndPath)

Trim off the file extension.
strHTMLXMLFile = Mid(strHTMLXMLFile, 1, InStr(1,

strHTMLXMLFile, “.”) @@hy 1)
Debug.Print “Trimmed file name: “ & strHTMLXMLFile

End If

intFileType = Nz(Me![fraFileType].Value, 1)

Select Case intFileType

NOTENOTE

340

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 340

Case 1
HTML

DoCmd.TransferText transfertype:=acImportHTML, _
TableName:=strTable, _
FileName:=strHTMLXMLFileAndPath, _
hasfieldnames:=True

Assign the appropriate form as the subform’s source object.
Me![subNewJobs].SourceObject = “fsubNewJobs”

Case 2
XML

ImportXML DataSource:=strHTMLXMLFileAndPath, _
importoptions:=acStructureAndData

DoCmd.SetWarnings False

There is no argument for specifying the name of the table that is
created when an XML file is imported; it comes in as the name
stored in the XML file (usually the XML file name), possibly with
a number added on.

DoCmd.Rename newname:=strTable, objecttype:=acTable, _
oldname:=strHTMLXMLFile

Assign the appropriate form as the subform’s source object.
Me![subNewJobs].SourceObject = “fsubNewJobs”

End Select

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Exporting HTML and XML Files
If you want to experiment with exporting Access data to HTML or XML files, try the Export Job
Data to HTML or XML File form. If you select the “Export HTML or XML Data” option on the
main menu (see Figure 10.10) and click the button to its left, the Export Job Data to HTML or

341

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 341

XML File (frmExportHTMLXMLData) form will open (as shown in Figure 10.26). The form has
From Date and To Date textboxes for specifying a date range; clicking the “Inspect New Jobs to
Export” button loads the subform with the records from the selected date range.

FIGURE 10.26

Inspecting the filtered job records to export to an HTML or XML file.

Clicking the “Export Jobs to HTML File” button (or “Export Jobs to XML File”; the caption changes
with the selection in the “Export File Type” option group) starts the export. The HTML export is done
with the TransferText method with the acExportHTML value for the TransferType argu-
ment; the XML export is done with the ExportXML method of the Access Application object.

Figure 10.27 shows an exported HTML file opened in Internet Explorer 7. Unfortunately, it is com-
pletely unformatted and thus probably won’t be very useful.

342

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 342

FIGURE 10.27

An exported HTML file opened in Internet Explorer.

The code for clearing old data and inspecting the jobs to export is similar to the code for other
export types; only the event procedure for the “Export Jobs to HTML/XML File” button is listed as
follows; it uses a Select Case statement to export the data to either an HTML file (using the
TransferText method) or an XML file, using the ExportXML method of the Access
Application object:

Private Sub cmdExportJobs_Click()

On Error GoTo ErrorHandler

Dim intFileType As Integer
Dim strQuery As String
Dim strTitle As String
Dim strPrompt As String
Dim strOutputPath As String
Dim strFileName As String
Dim strFileNameAndPath As String

intFileType = Nz(Me![fraFileType].Value, 1)
strQuery = “qryFilteredJobs”

343

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 343

strOutputPath = GetOutputDocsPath()

Select Case intFileType

Case 1

HTML

strFileName = “Jobs.htm”
strFileNameAndPath = strOutputPath & strFileName
DoCmd.TransferText transfertype:=acExportHTML, _

TableName:=strQuery, _
FileName:=strFileNameAndPath, _
hasfieldnames:=True

Case 2

XML

strFileName = “Jobs.xml”
strFileNameAndPath = strOutputPath & strFileName
ExportXML objecttype:=acExportQuery, _

DataSource:=strQuery, _
datatarget:=strFileNameAndPath

End Select

strTitle = “Exported jobs”
strPrompt = “Exported filtered jobs to “ & strFileNameAndPath
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

If you open an XML file in IE 7, running on Windows Vista, you’ll see a yellow bar with a security
warning. If you click the bar you can select to allow blocked content, as shown in Figure 10.28.

344

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 344

FIGURE 10.28

A security warning when opening an XML file in Windows Vista.

If you select to allow blocked content, you’ll get another security warning, shown in Figure 10.29.

Finally, the XML file displays (see Figure 10.30), but as source code, not a properly formatted doc-
ument, so it (like the HTML file) is not very useful.

FIGURE 10.29

Another Vista security warning.

345

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 345

FIGURE 10.30

An XML file opened in Internet Explorer.

You can also open an XML file in Excel. After selecting it, you get an Open XML dialog with three
options, as shown in Figure 10.31. To see what the formatted XML data looks like, select the “As
an XML table” option.

FIGURE 10.31

Three options for opening an XML file in Excel.

346

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 346

If you accept the default option of “As an XML table,” you’ll get the message shown in Figure 10.32.

FIGURE 10.32

Creating an XML schema when opening an XML file in Excel.

After accepting this message, the XML file finally opens in Excel, as shown in 10.33, with an extra
column called “generated” indicating the time the file was created.

FIGURE 10.33

An XML file opened in Excel.

If you want to export data from Access to Excel, I recommend using the worksheet or
comma-delimited format instead of XML; they are much easier to work with, and

support older versions of Excel that can’t open XML files.

You can also use the Save method of an ADO recordset with the adPersistXML
named constant as the value of its PersistFormat argument, to produce an XML file,

but a file produced using this method also opens as source code.

NOTENOTE

NOTENOTE

347

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 347

Emailing Exported Text Files
Once you have created text files from your Access data, you might want to email them to others
who need to review the data. Clicking the “Send Job Lists to Contacts” button opens a form
(shown in Figure 10-34) where you can select multiple contacts, and a job file (either .csv or .txt)
to send as an attachment to the selected contacts. The figure also shows three email messages with
the selected job file attachment.

FIGURE 10.34

A form for selecting contacts and a job file to email to them, with three email messages created from
the form.

The cmdMergetoEMailMulti_Click event procedure is listed below:

Private Sub cmdMergetoEMailMulti_Click()

On Error GoTo ErrorHandler

Dim strJobFile As String

Set lst = Me![lstSelectContacts]

348

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 348

Check that at least one contact has been selected.

If lst.ItemsSelected.Count = 0 Then
MsgBox “Please select at least one contact”
lst.SetFocus
GoTo ErrorHandlerExit

End If

Test for required fields.

strSubject = Me![txtSubject].Value
If strSubject = “” Then

MsgBox “Please enter a subject”
Me![txtSubject].SetFocus
GoTo ErrorHandlerExit

End If

strBody = Me![txtBody].Value
If strBody = “” Then

MsgBox “Please enter a message body”
Me![txtBody].SetFocus
GoTo ErrorHandlerExit

End If

For Each varItem In lst.ItemsSelected

Check for email address.

strEMailRecipient = Nz(lst.Column(1, varItem))
Debug.Print “EMail address: “ & strEMailRecipient
If strEMailRecipient = “” Then

GoTo NextContact
End If

strJobFile = Nz(Me![txtJobFile])

Create a new mail message with the job file attachment and send to contact.

Set appOutlook = GetObject(, “Outlook.Application”)
Set msg = appOutlook.CreateItem(olMailItem)
With msg

.To = strEMailRecipient

.Subject = strSubject

.Body = strBody
If strJobFile <> “” Then

.Attachments.Add strJobFile
End If
.Display

End With

349

Working with External Data 10

15_047026 ch10.qxp 4/2/07 9:52 PM Page 349

NextContact:
Next varItem

ErrorHandlerExit:
Set appOutlook = Nothing
Exit Sub

ErrorHandler:

Outlook is not running; open Outlook with CreateObject.

If Err.Number = 429 Then
Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

You may have contacts that have only an email address, or a phrase like “Tech. Support”
entered as the last name, or contacts with just a first name, or a whole name entered

into the LastName field, or sets of contacts who work for the same company, where the company
name is entered differently on different contact records. Importing from such contacts can cause
problems, such as creating multiple Company records with variations of a company name.

I am planning to upgrade the Synchronizing Contacts database to deal with various types of problem
data, and to add some new features; look for an updated version of the database on my Web site,
http://www.helenfeddema.com.

Summary
This chapter dealt with exporting to, and importing from, a variety of file formats, ranging from the
oldest formats to those so new that they are scarcely useful yet. Text files, both comma-delimited
and fixed-width (columnar), have been used for data export and import since the earliest days of
computers, and they are still very useful, especially the comma-delimited file format. Files
exported to this format can be imported by a great many applications, which makes it very useful
for exporting data that is to be imported by an application not directly supported as an Access
export type. The reverse is also true: many applications can export their data to a fixed-width or
comma-delimited file, from which they can be imported into Access tables.

If you have data in ancient dBASE, Paradox, or Lotus files, Access offers options for importing from
these files, so you can get your old data into Access tables. Although it isn’t likely to be required
these days, you can also export data from Access tables to these legacy formats.

And finally, the new HTML and XML formats are supported — but not very well. These import and
export types still have little utility for importing data into Access tables, either because they simply
don’t work or because they aren’t really relevant. Hopefully, these file formats will be better sup-
ported for Access import and export in future versions of Office.

NOTENOTE

350

Writing VBA Code to Exchange Data between Office ComponentsPart II

15_047026 ch10.qxp 4/2/07 9:52 PM Page 350

For a long time — really, since Office 97, when Outlook was introduced
— I have wanted to write VBA code to synchronize Access contacts
with Outlook contacts. My Access contacts are stored in a set of linked

tables, with companies linked to contacts and contacts linked to addresses,
phone numbers, and IDs of various sorts, which allows maximum flexibility
for entering data and at the same time avoids having to enter the same data
in multiple records. Outlook, on the other hand, has a very attractive and
convenient interface for entering contact data, but unfortunately stores all
contact data in a flat-file MAPI database, with a limited number of fields for
addresses, phone numbers, and IDs.

Though it isn’t difficult to write code to simply import data from Outlook to
an Access table, or export data from an Access table to Outlook contacts, if
the Access contacts are a set of linked tables, as they should be, the task is
much more difficult — but not impossible. Live linking is out of the ques-
tion, because of the difference in structure between a folder of Outlook con-
tacts and a set of linked Access tables, but the contacts can be compared, and
data copied from an Outlook contact to an Access contact (or vice versa),
using an intermediary flat-file table filled with data from the linked Access
tables. This chapter describes the technique I use to first denormalize Access
data for comparison with Outlook contacts and then renormalize the
updated data in order to write it back to the linked Access tables.

See the “Working with Outlook Contacts” section in
Chapter 8 for information on exchanging data between a

single Access contacts table and Outlook contacts.

CROSS-REFCROSS-REF

351

IN THIS CHAPTER
Updating Outlook contacts from
Access, and vice versa

Copying attachments from
Outlook to Access, and
vice versa

Synchronizing Access and
Outlook Contacts

16_047026 ch11.qxp 4/2/07 9:52 PM Page 351

Creating a Denormalized Table from
a Set of Linked Tables
There are situations where you need to create a single table filled with data from a set of linked
Access tables (denormalize the tables). One such situation is the preparation of a data file for
import by a mainframe, or a legacy database or spreadsheet application; another is for use in
Access VBA code or by a query.

The process of creating a single flat-file table from data in a set of linked tables is called
denormalizing; the reverse process — writing data from a flat-file table back to a set of

linked tables — is called renormalizing.

If you encounter a “Query too complex” message when trying to run a deeply nested query based
on multiple tables (this is less of a problem now than with previous versions of Access, but still
might happen with extremely complex queries), you can run a make-table query to create a flat-file
table based on some of the linked queries and use that table as part of the final query, to reduce its
complexity. The techniques I use in this chapter to prepare a single table of Access data for com-
parison with Outlook contacts can be modified for use anywhere you need to produce a single flat-
file table of data from linked Access tables.

The sample database for this chapter is Synchronizing Contacts.accdb.

In Access, my contact-related data is stored in a set of linked tables, as shown in the Relationships
diagram (Figure 11.1).

The tables are normalized, which means that they are designed so that data of a particular type is
stored in only one table, and only the linking ID fields have matching values. The tblCompanyInfo
table is linked one-to-many with two tables: tblCompanyIDsPhones and tblContactInfo, because a
company can have multiple phone numbers and IDs, and also multiple contacts. tblContactInfo is
also linked one-to-many with two tables: tblContactIDsPhones, containing phone numbers and
IDs for contacts, and tblContactAddresses, containing addresses.

NOTENOTE

NOTENOTE

352

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 352

FIGURE 11.1

The Relationships diagram for the Synchronizing Contacts database.

Because Outlook only supports a fixed number of addresses and emails (three of each), and a
larger (17) but still fixed number of phone numbers, for purposes of synchronizing contact data
between Outlook and Access, only the matching addresses, emails, and phone numbers will be
synchronized. Practically, this is not likely to leave much data unsynchronized, except in the case
of phone numbers.

For best results when synchronizing data, when entering a phone number or ID in one
of the subforms on frmContactInfo, select one of the default selections for addresses,

emails, and phone numbers from the drop-down list; they are the only selections that will be synchro-
nized with Outlook contact items.

Figure 11.2 shows a phone number being selected on the Contact Information (frmContactInfo) form.

TIPTIP

353

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 353

FIGURE 11.2

Selecting a default phone number type on the Contact Information form.

Of course, you will sometimes need to enter phone numbers that aren’t on this list of default
phone number choices (such as the Coffee Harvest Line number shown in Figure 11.4); you can
enter a custom phone or ID description manually as needed, but these phone numbers and IDs
won’t be synchronized with Outlook.

354

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 354

Figure 11.3 shows the Contact Addresses tab of the Contact Information form; unless you need to
enter data for very wealthy people who have more than three addresses, the standard three choices
should be enough.

FIGURE 11.3

Selecting an address type for a new contact address.

The Company and Contact Information (frmCompanyInfo) form displays company and contact
information so you can easily match up contacts with their companies. Figure 11.4 shows the
Company Info tab of this form, with a Company IDs and Phones subform.

355

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 355

FIGURE 11.4

The Company Info tab of the Company and Contact Information form.

Figure 11.5 shows the Contact Info tab, with a Contact IDs and Phones subform.

356

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 356

FIGURE 11.5

The Contact Info tab of the Company and Contact Information form.

The sample database’s main menu (shown in Figure 11.6) has a command button for selecting the
Attachments folder path; its event procedure uses the same technique as for similar command but-
tons in earlier chapters, opening an Office Folder Picker dialog to let you select a folder. In this
chapter the selected folder is used to temporarily store files for use as attachments when copying
attachments from an Access table record to an Outlook contact or vice versa.

357

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 357

FIGURE 11.6

The main menu of the Synchronizing Contacts database.

The code for the Attachments Folder Path button (listed next) starts by popping up a Folder Picker
dialog for selecting the folder where files to be used as attachments are stored. The selected path is
saved to the textbox under the command button:

Private Sub cmdAttachmentsFolderPath_Click()

On Error GoTo ErrorHandler

Create a FileDialog object as a Folder Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFolderPicker)
Set txt = Me![txtOutputDocsPath]
strPath = GetOutputDocsPath()

With fd
.Title = “Browse for folder where attachments “ _

& “should be stored”
.ButtonName = “Select”
.InitialView = msoFileDialogViewDetails
.InitialFileName = strPath

358

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 358

If .Show = -1 Then
txt.Value = CStr(fd.SelectedItems.Item(1))

Else
Debug.Print “User pressed Cancel”

End If
End With

On Error Resume Next

DoCmd.RunCommand acCmdSaveRecord

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Comparing Outlook and Access Contacts
The Select Form combo box on the main menu (Figure 11.7) lets you select three forms, two of
which compare Access and Outlook data. One of the data comparison forms is sorted by Contact
ID and the other by contact name (sorting by name is useful for matching Access and Outlook
contacts when the Outlook contact lacks a value in the CustomerID property).

Outlook contact items have a number of very useful built-in ID fields, which for some
inexplicable reason are not displayed on the standard Contact item. The CustomerID

field is the one I use to link Outlook contacts to Access records in tblContactInfo (using the key field
ContactID). The GovernmentIDNumber field (corresponding to GovernmentID in tblContactInfo) can
be used to store a Social Security Number (for the United States) or the equivalent government ID
number for other countries. There is also another field useful for storing a company ID:
OrganizationalIDNumber, corresponding to CompanyID in tblCompanyInfo.

To test synchronizing Contacts data, make a new Contacts folder and copy some (or all)
of your contacts to it from your regular Contacts folder; that way, you can experiment

with making various changes without messing up your real contact data.

TIPTIP

NOTENOTE

359

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 359

FIGURE 11.7

Selecting a form for comparing Access and Outlook contacts.

When you select one of these forms to open, a message box, shown in Figure 11.8, pops up.

FIGURE 11.8

A question on opening a comparison form.

You will get several other messages as the tables of Access and Outlook data are created, including
an Outlook Select Folder dialog for selecting the Outlook Contacts folder to use when synchroniz-
ing the Access and Outlook contacts. This dialog is shown in Figure 11.9.

360

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 360

FIGURE 11.9

An Outlook Select Folder dialog for selecting the Contacts folder for synchronizing.

Re-creating the Flat-file Tables of Access
and Outlook Data
If you have recently entered new contact data or modified existing contact records, either in Access
or Outlook, click Yes to refresh the data in the tables that will be compared. Clicking Yes calls two
procedures that clear tblOutlookContacts and tblAccessContacts and fill them with up-to-date
data. The ImportOutlookContacts procedure (listed next) is simpler: it copies data from all
the contact items in the selected folder to records in tblOutlookContacts:

Public Function ImportOutlookContacts()
‘Called from cmdForms_Click on fmnuMain

On Error GoTo ErrorHandler

Set appOutlook = GetObject(, “Outlook.Application”)

Dim fldContacts As Outlook.Folder
Dim con As Outlook.ContactItem
Dim strSQL As String
Dim strTable As String

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)

Set a variable to the Contacts folder to use when synchronizing:

Use the following lines to import from the default local Contacts folder.

‘Set fldContacts = nms.GetDefaultFolder(olFolderContacts)
‘GoTo ImportData

361

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 361

Use the following section of code to allow selection of a custom Contacts folder from the Folder
Picker dialog.

SelectContactFolder:
Set fldContacts = nms.PickFolder
If fldContacts Is Nothing Then

strTitle = “Select Folder”
strPrompt = “Please select a Contacts folder”
MsgBox strPrompt, vbExclamation + vbOKOnly, strTitle
GoTo SelectContactFolder

End If

Debug.Print “Default item type: “ & _
fldContacts.DefaultItemType

If fldContacts.DefaultItemType <> olContactItem Then
MsgBox strPrompt, vbExclamation + vbOKOnly, strTitle
GoTo SelectContactFolder

End If

Debug.Print fldContacts.Items.Count & “ items in “ _
& fldContacts.Name & “ folder”

Clear the table of Outlook contact data of old records:

ImportData:
strTable = “tblOutlookContacts”
strSQL = “DELETE * FROM “ & strTable
DoCmd.SetWarnings False
DoCmd.RunSQL strSQL

Set dbs = CurrentDb
Set rstTarget = dbs.OpenRecordset(strTable)

Iterate through contacts in the selected Contacts folder and import them to the Access table, setting
each field in the target table with the value of a field in the current contact item:

For Each itm In fldContacts.Items
If itm.Class = olContact Then

Set con = itm
rstTarget.AddNew
With con

rstTarget![CustomerID] = Nz(.CustomerID)
rstTarget![Title] = Nz(.Title)
rstTarget![FirstName] = Nz(.FirstName)
rstTarget![MiddleName] = Nz(.MiddleName)
rstTarget![LastName] = Nz(.LastName)
rstTarget![Suffix] = Nz(.Suffix)
rstTarget![Nickname] = Nz(.Nickname)
rstTarget![CompanyName] = Nz(.CompanyName)
rstTarget![Department] = Nz(.Department)
rstTarget![JobTitle] = Nz(.JobTitle)

362

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 362

rstTarget![BusinessAddressStreet] = _
Nz(.BusinessAddressStreet)

rstTarget![BusinessAddressPostOfficeBox] = _
Nz(.BusinessAddressPostOfficeBox)

rstTarget![BusinessAddressCity] = _
Nz(.BusinessAddressCity)

rstTarget![BusinessAddressState] = _
Nz(.BusinessAddressState)

rstTarget![BusinessAddressPostalCode] = _
Nz(.BusinessAddressPostalCode)

rstTarget![BusinessAddressCountry] = _
Nz(.BusinessAddressCountry)

rstTarget![BusinessHomePage] = _
Nz(.BusinessHomePage)

rstTarget![FTPSite] = Nz(.FTPSite)
rstTarget![HomeAddressStreet] = _

Nz(.HomeAddressStreet)
rstTarget![HomeAddressPostOfficeBox] = _

Nz(.HomeAddressPostOfficeBox)
rstTarget![HomeAddressCity] = _

Nz(.HomeAddressCity)
rstTarget![HomeAddressState] = _

Nz(.HomeAddressState)
rstTarget![HomeAddressPostalCode] = _

Nz(.HomeAddressPostalCode)
rstTarget![HomeAddressCountry] = _

Nz(.HomeAddressCountry)
rstTarget![OtherAddressStreet] = _

Nz(.OtherAddressStreet)
rstTarget![OtherAddressPostOfficeBox] = _

Nz(.OtherAddressPostOfficeBox)
rstTarget![OtherAddressCity] = _

Nz(.OtherAddressCity)
rstTarget![OtherAddressState] = _

Nz(.OtherAddressState)
rstTarget![OtherAddressPostalCode] = _

Nz(.OtherAddressPostalCode)
rstTarget![OtherAddressCountry] = _

Nz(.OtherAddressCountry)
rstTarget![AssistantTelephoneNumber] = _

Nz(.AssistantTelephoneNumber)
rstTarget![BusinessFaxNumber] = _

Nz(.BusinessFaxNumber)
rstTarget![BusinessTelephoneNumber] = _

Nz(.BusinessTelephoneNumber)
rstTarget![Business2TelephoneNumber] = _

Nz(.Business2TelephoneNumber)
rstTarget![CallbackTelephoneNumber] = _

Nz(.CallbackTelephoneNumber)
rstTarget![CarTelephoneNumber] = _

Nz(.CarTelephoneNumber)

363

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 363

rstTarget![CompanyMainTelephoneNumber] = _
Nz(.CompanyMainTelephoneNumber)

rstTarget![HomeFaxNumber] = _
Nz(.HomeFaxNumber)

rstTarget![HomeTelephoneNumber] = _
Nz(.HomeTelephoneNumber)

rstTarget![Home2TelephoneNumber] = _
Nz(.Home2TelephoneNumber)

rstTarget![ISDNNumber] = Nz(.ISDNNumber)
rstTarget![MobileTelephoneNumber] = _

Nz(.MobileTelephoneNumber)
rstTarget![OtherFaxNumber] = _

Nz(.OtherFaxNumber)
rstTarget![OtherTelephoneNumber] = _

Nz(.OtherTelephoneNumber)
rstTarget![PagerNumber] = Nz(.PagerNumber)
rstTarget![PrimaryTelephoneNumber] = _

Nz(.PrimaryTelephoneNumber)
rstTarget![RadioTelephoneNumber] = _

Nz(.RadioTelephoneNumber)
rstTarget![TTYTDDTelephoneNumber] = _

Nz(.TTYTDDTelephoneNumber)
rstTarget![TelexNumber] = Nz(.TelexNumber)
rstTarget![Account] = Nz(.Account)
rstTarget![AssistantName] = Nz(.AssistantName)

Use special handling for a date field (a blank date in Outlook is actually a date of 1/1/4501):

If .Birthday <> #1/1/4501# Then
rstTarget![Birthday] = .Birthday

End If
If .Anniversary <> #1/1/4501# Then

rstTarget![Anniversary] = .Anniversary
End If
If .LastModificationTime <> #1/1/4501# Then

rstTarget![LastUpdated] = _
.LastModificationTime

End If

rstTarget![Categories] = Nz(.Categories)
rstTarget![Children] = Nz(.Children)
rstTarget![PersonalHomePage] = _

Nz(.PersonalHomePage)
rstTarget![Email1Address] = Nz(.Email1Address)
rstTarget![Email1DisplayName] = _

Nz(.Email1DisplayName)
rstTarget![Email2Address] = Nz(.Email2Address)
rstTarget![Email2DisplayName] = _

Nz(.Email2DisplayName)
rstTarget![Email3Address] = Nz(.Email3Address)
rstTarget![Email3DisplayName] = _

364

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 364

Nz(.Email3DisplayName)
rstTarget![GovernmentIDNumber] = _

Nz(.GovernmentIDNumber)
rstTarget![Hobby] = Nz(.Hobby)
rstTarget![ManagerName] = Nz(.ManagerName)
rstTarget![OrganizationalIDNumber] = _

Nz(.OrganizationalIDNumber)
rstTarget![Profession] = Nz(.Profession)
rstTarget![Spouse] = Nz(.Spouse)
rstTarget![WebPage] = Nz(.WebPage)
rstTarget![IMAddress] = Nz(.IMAddress)

Use special handling for attachments, calling another procedure:

If .Attachments.Count > 0 Then
Set rstTargetAttachments = _

rstTarget![Attachments].Value
Call CopyOutlookAttsToAccess(con, _

rstTargetAttachments)
End If

rstTarget.Update
.Close (olSave)

End With
End If

Next itm

rstTarget.Close

strTitle = “Outlook table created”
strPrompt = “Table of Outlook contact data (“ _

& strTable _
& “) created and filled with data from the “ _
& fldContacts.Name & “ folder”

MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
Exit Function

ErrorHandler:
‘Outlook is not running; open Outlook with CreateObject
If Err.Number = 429 Then

Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Function

365

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 365

If you always synchronize your Access contacts to the same Outlook folder, you can
comment out the SelectContactFolder code segment and insert a hard-coded

folder path instead; if you want to use the default local Contacts folder, just remove the apostrophe
on the line ‘Set fldContacts = nms.GetDefaultFolder(olFolderContacts), and either
comment out or delete the SelectContactFolder code segment.

The other procedure, CreateDenormalizedContactsTable, is considerably more complex,
because it has to take data from five linked tables, creating one record per contact and updating its
fields from different tables:

Public Function CreateDenormalizedContactsTable()
‘Called from cmdForms_Click on fmnuMain

On Error GoTo ErrorHandler

Dim lngTargetID As Long
Dim strQueryContacts As String
Dim strQueryContactIDs As String
Dim strQueryCompanyIDs As String
Dim strQueryContactAddresses As String
Dim strTargetCustomerID As String

Set dbs = CurrentDb
strQueryContacts = “qryAccessContacts”
strQueryContactIDs = “qryContactIDsPhones”
strQueryCompanyIDs = “qryCompanyIDsPhones”
strQueryContactAddresses = “qryContactAddresses”

Clear tables of old data.

DoCmd.SetWarnings False
strTable = “tblAccessContacts”
strSQL = “DELETE * FROM “ & strTable
DoCmd.RunSQL strSQL

The rstTarget recordset is based on tblAccessContacts; this is the table to be filled with denormal-
ized data. rstSource represents the first table of linked Access data, tblContactInfo. Information
from this table is written to matching fields in the target table, with special handling for attach-
ments (see the section on attachments for more information on this topic):

Set rstSource = dbs.OpenRecordset(strQueryContacts, _
dbOpenDynaset)

Set rstTarget = dbs.OpenRecordset(strTable, _
dbOpenDynaset)

Do While Not rstSource.EOF

Create one record in the target table per contact, and write company and contact data to it; also
create one record in the match table per contact, for use in comparing contacts:

TIPTIP

366

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 366

rstTarget.AddNew
rstTarget![CustomerID] = Nz(rstSource!CustomerID)
strTargetCustomerID = rstTarget![CustomerID]
rstTarget![CompanyName] = _

Nz(rstSource!CompanyName)
rstTarget![Account] = Nz(rstSource!Account)
rstTarget![Categories] = Nz(rstSource!Categories)
rstTarget![OrganizationalIDNumber] = _

Nz(rstSource!OrganizationalIDNumber)
rstTarget![WebPage] = Nz(rstSource!WebPage)
rstTarget![FTPSite] = Nz(rstSource!FTPSite)
rstTarget![Title] = Nz(rstSource!Title)
rstTarget![FirstName] = Nz(rstSource!FirstName)
rstTarget![MiddleName] = Nz(rstSource!MiddleName)
rstTarget![LastName] = Nz(rstSource!LastName)
rstTarget![Suffix] = Nz(rstSource!Suffix)
rstTarget![Nickname] = Nz(rstSource!Nickname)
rstTarget![Department] = Nz(rstSource!Department)
rstTarget![JobTitle] = Nz(rstSource!JobTitle)
rstTarget![AssistantName] = Nz(rstSource!AssistantName)
rstTarget![Birthday] = Nz(rstSource!Birthday)
rstTarget![Anniversary] = Nz(rstSource!Anniversary)
rstTarget![Children] = Nz(rstSource!Children)
rstTarget![GovernmentIDNumber] = _

Nz(rstSource!GovernmentIDNumber)
rstTarget![Hobby] = Nz(rstSource!Hobby)
rstTarget![ManagerName] = Nz(rstSource!ManagerName)
rstTarget![Profession] = Nz(rstSource!Profession)
rstTarget![Spouse] = Nz(rstSource!Spouse)

Use special handling for attachments, calling another procedure:

Set rstSourceAttachments = _
rstSource![Attachments].Value

If rstSourceAttachments.RecordCount > 0 Then
Set rstTargetAttachments = _

rstTarget![Attachments].Value
Call CopyAccessAttsToAccess(rstSourceAttachments, _

rstTargetAttachments)
Else

rstSourceAttachments.Close
End If

rstTarget![LastUpdated] = Nz(rstSource!LastUpdated)
rstTarget.Update
rstSource.MoveNext

Loop

rstSource.Close

367

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 367

The next source object is qryContactIDsPhones (see Figure 11.10). It has only two fields, so
to match the many phone and ID fields in the target table I created a query with many calculated
fields, one for each phone or ID field in tblAccessContacts.

FIGURE 11.10

A calculated field that converts a phone number in tblContactIDsPhones into a value to be written to
tblAccessContacts.

Each calculated field returns a value for a phone number or ID matching one of the standard
Outlook Phone and ID selections; a portion of the code that works with this query is listed below:

Set rstSource = dbs.OpenRecordset(strQueryContactIDs, _
dbOpenDynaset)

Do While Not rstSource.EOF

Search for target record and update Contact ID and phone fields:

strTargetCustomerID = rstSource![CustomerID]
strSearch = “[CustomerID] = “ & Chr$(39) _

& strTargetCustomerID & Chr$(39)

Uncomment the following line to inspect the search string in the Immediate window.

‘Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = False Then

GoTo NextSourceRecord1
End If
rstTarget.Edit
rstTarget![AssistantTelephoneNumber] = _

Nz(rstSource!AssistantTelephoneNumber)

368

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 368

rstTarget![BusinessFaxNumber] = _
Nz(rstSource!BusinessFaxNumber)

rstTarget![BusinessTelephoneNumber] = _
Nz(rstSource!BusinessTelephoneNumber)

rstTarget![Business2TelephoneNumber] = _
Nz(rstSource!Business2TelephoneNumber)

rstTarget![CallbackTelephoneNumber] = _
Nz(rstSource!CallbackTelephoneNumber)

rstTarget![CarTelephoneNumber] = _
Nz(rstSource!CarTelephoneNumber)

rstTarget![HomeFaxNumber] = _
Nz(rstSource!HomeFaxNumber)

rstTarget![HomeTelephoneNumber] = _
Nz(rstSource!HomeTelephoneNumber)

rstTarget![Home2TelephoneNumber] = _
Nz(rstSource!Home2TelephoneNumber)

rstTarget![ISDNNumber] = Nz(rstSource!ISDNNumber)
rstTarget![MobileTelephoneNumber] = _

Nz(rstSource!MobileTelephoneNumber)
rstTarget![OtherFaxNumber] = _

Nz(rstSource!OtherFaxNumber)
rstTarget![OtherTelephoneNumber] = _

Nz(rstSource!OtherTelephoneNumber)
rstTarget![PagerNumber] = Nz(rstSource!PagerNumber)
rstTarget![PrimaryTelephoneNumber] = _

Nz(rstSource!PrimaryTelephoneNumber)
rstTarget![RadioTelephoneNumber] = _

Nz(rstSource!RadioTelephoneNumber)
rstTarget![TTYTDDTelephoneNumber] = _

Nz(rstSource!TTYTDDTelephoneNumber)
rstTarget![TelexNumber] = Nz(rstSource!TelexNumber)
rstTarget![Email1Address] = _

Nz(rstSource!Email1Address)
rstTarget![Email1DisplayName] = _

Nz(rstSource!Email1DisplayName)
rstTarget![Email2Address] = _

Nz(rstSource!Email2Address)
rstTarget![Email2DisplayName] = _

Nz(rstSource!Email2DisplayName)
rstTarget![Email3Address] = _

Nz(rstSource!Email3Address)
rstTarget![Email3DisplayName] = _

Nz(rstSource!Email3DisplayName)
rstTarget![IMAddress] = Nz(rstSource!IMAddress)
rstTarget![PersonalHomePage] = _

Nz(rstSource!PersonalHomePage)
rstTarget.Update

369

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 369

NextSourceRecord1:
rstSource.MoveNext

Loop

rstSource.Close

Company phones and IDs are handled similarly; only one possible value (Company Phone) is syn-
chronized, because that is the only one that matches a field in Outlook:

Set rstSource = dbs.OpenRecordset(strQueryCompanyIDs, _
dbOpenDynaset)

Do While Not rstSource.EOF

Search for target record and update Company Phone field.

strTargetCustomerID = rstSource![CustomerID]
strSearch = “[CustomerID] = “ & Chr$(39) _

& strTargetCustomerID & Chr$(39)
‘Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
rstTarget.Edit
rstTarget![CompanyMainTelephoneNumber] = _

Nz(rstSource!CompanyMainTelephoneNumber)
rstTarget.Update

NextSourceRecord2:
rstSource.MoveNext

Loop

rstSource.Close

Finally, contact addresses are processed, using a query that converts each address field to the
appropriate Business, Home, or Other address field in the target table. Figure 11.11 shows one of
the calculated fields in this query.

370

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 370

FIGURE 11.11

A calculated query field that converts StreetAddress to BusinessAddressStreet.

The rstSource recordset is then selected, based on a query that selects contact addresses; the code looks
for a matching target record, and if it is found, it is updated with information from the recordset:

Set rstSource = _
dbs.OpenRecordset(strQueryContactAddresses, _

dbOpenDynaset)

Do While Not rstSource.EOF
strTargetCustomerID = rstSource![CustomerID]
strSearch = “[CustomerID] = “ & Chr$(39) _

& strTargetCustomerID & Chr$(39)
‘Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
rstTarget.Edit
rstTarget![BusinessAddressStreet] = _

Nz(rstSource!BusinessAddressStreet)
rstTarget![BusinessAddressPostOfficeBox] = _

Nz(rstSource!BusinessAddressPostOfficeBox)
rstTarget![BusinessAddressCity] = _

Nz(rstSource!BusinessAddressCity)
rstTarget![BusinessAddressState] = _

Nz(rstSource!BusinessAddressState)
rstTarget![BusinessAddressPostalCode] = _

Nz(rstSource!BusinessAddressPostalCode)
rstTarget![BusinessAddressCountry] = _

Nz(rstSource!BusinessAddressCountry)

371

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 371

rstTarget![HomeAddressStreet] = _
Nz(rstSource!HomeAddressStreet)

rstTarget![HomeAddressPostOfficeBox] = _
Nz(rstSource!HomeAddressPostOfficeBox)

rstTarget![HomeAddressCity] = _
Nz(rstSource!HomeAddressCity)

rstTarget![HomeAddressState] = _
Nz(rstSource!HomeAddressState)

rstTarget![HomeAddressPostalCode] = _
Nz(rstSource!HomeAddressPostalCode)

rstTarget![HomeAddressCountry] = _
Nz(rstSource!HomeAddressCountry)

rstTarget![OtherAddressStreet] = _
Nz(rstSource!OtherAddressStreet)

rstTarget![OtherAddressPostOfficeBox] = _
Nz(rstSource!OtherAddressPostOfficeBox)

rstTarget![OtherAddressCity] = _
Nz(rstSource!OtherAddressCity)

rstTarget![OtherAddressState] = _
Nz(rstSource!OtherAddressState)

rstTarget![OtherAddressPostalCode] = _
Nz(rstSource!OtherAddressPostalCode)

rstTarget![OtherAddressCountry] = _
Nz(rstSource!OtherAddressCountry)

rstTarget.Update

NextSourceRecord3:
rstSource.MoveNext

Loop

strTitle = “Access table created”
strPrompt = “Denormalized table of Access data (“ _

& strTable & “) created”
MsgBox strPrompt, vbInformation + vbOKOnly, _

strTitle

ErrorHandlerExit:
rstSource.Close
rstTarget.Close

Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Function

372

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 372

The two tables (tblOutlookContacts and tblAccessContacts) have matching fields; they are displayed
in subforms on the two forms used for comparing Access and Outlook contact data. Figure 11.12
shows the form that compares contacts by Contact ID (frmCompareContactsByID), with data from
an Access contact on the left and the matching Outlook contact (if there is one) on the right.

FIGURE 11.12

A form that compares Outlook and Access contacts by ContactID.

Figure 11.13 shows the form that compares contacts by name.

373

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 373

FIGURE 11.13

A form that compares Outlook and Access contacts by name.

Copying Contact Data from Access to Outlook
(or Vice Versa)
The Select Contact combo box at the top left lets you select a contact, sorted by Contact ID.
Figure 11.14 shows the combo box with its list dropped down.

The Select Action combo box on the right side of the header of the form shown in Figure 11.11
offers a different set of choices, depending on whether the Outlook and Access contacts are identi-
cal, different, or one is missing, as shown in Table 11.1.

374

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 374

FIGURE 11.14

Selecting a contact by Contact ID.

TABLE 11.1

Contact Match Status and Actions to Select

Contact Status Available Actions

Outlook and Access contacts are identical Go to next contact record
Mark contact for deletion
Copy all Access contacts to Outlook
Copy all Outlook contacts to Access

Outlook and Access contacts are different Modify Access contact to match Outlook contact
Modify Outlook contact to match Access contact
Go to next contact record
Mark contact for deletion
Copy all Access contacts to Outlook
Copy all Outlook contacts to Access

No Outlook contact Create new Outlook contact to match Access contact
Go to next contact record
Mark contact for deletion
Copy all Access contacts to Outlook
Copy all Outlook contacts to Access

No Access contact Create new Access contact to match Outlook contact
Go to next contact record
Mark contact for deletion
Copy all Access contacts to Outlook
Copy all Outlook contacts to Access

375

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 375

To copy data in one field, rather than updating an entire contact record, select either “Access to
Outlook” or “Outlook to Access” in the combo box in the center Copy Field Data section of the
form, as shown in Figure 11.15, where the value “Vice President” in the Access contact record is
being replaced by “Senior Vice President” from the Outlook record. You can also type in new data,
or edit existing data, as needed, before copying the record.

FIGURE 11.15

Copying a single field’s data from Outlook to Access.

If you want to completely remove a contact, select “Mark Record for Deletion” and it will be deleted
when the contacts are updated. When you have finished copying, editing, and marking records for
deletion, the “Update Contact Information” button on the main menu offers you a choice of updat-
ing the Access contacts first, and then the Outlook contacts. All data (including attachments, if any)
from tblOutlookContacts will be copied back to the contacts in the selected Contacts folder, creating
new contacts as needed. The procedure that updates the Outlook contacts is listed here:

Public Sub UpdateAllOutlookContacts()
‘Called from cmdUpdateContactInfo_Click() on fmnuMain

On Error GoTo ErrorHandler

Set appOutlook = GetObject(, “Outlook.Application”)
Set nms = appOutlook.GetNamespace(“MAPI”)
strTable = “tblOutlookContacts”
Set dbs = CurrentDb
Set rstSource = _

dbs.OpenRecordset(strTable, dbOpenDynaset)

376

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 376

You can use the following lines to export to the default local Contacts folder, or a hard-coded
folder of your choice. To use the default Contacts folder, just remove the apostrophe at the begin-
ning of the next line (this is called uncommenting a line of code, because the apostrophe in front of
the line turns it into a comment); to use a hard-coded custom folder, enter its name.

‘Set fldContacts = nms.GetDefaultFolder(olFolderContacts)
‘GoTo UpdateContacts

Use the following section of code to allow selection of a custom Contacts folder from the Folder
Picker dialog:

SelectContactFolder:
On Error Resume Next

Set fldContacts = nms.PickFolder
If fldContacts Is Nothing Then

strTitle = “Select Folder”
strPrompt = “Please select a Contacts folder”
MsgBox strPrompt, vbExclamation + vbOKOnly, strTitle
GoTo SelectContactFolder

End If

Debug.Print “Default item type: “ _
& fldContacts.DefaultItemType

If fldContacts.DefaultItemType <> olContactItem Then
MsgBox strPrompt, vbExclamation + vbOKOnly, _

strTitle
GoTo SelectContactFolder

End If

UpdateContacts:
Do While Not rstSource.EOF

Search for each contact in selected Contacts folder in case it already exists, and set a reference to it,
searching first by CustomerID and then by first name and last name (Outlook contacts may lack a
value in the CustomerID property):

strCustomerID = Nz(rstSource![CustomerID])
strSearch = “[CustomerID] = “ & Chr$(39) _

& strCustomerID & Chr$(39)
Debug.Print “Search string: “ & strSearch
blnDelete = rstSource![Delete]

Search by CustomerID.

Set con = fldContacts.Items.Find(strSearch)
If TypeName(con) = “Nothing” Then

Debug.Print “Customer ID “ & strCustomerID _
& “ not found in “ & fldContacts.Name & “ folder”

strFirstName = Nz(rstSource![FirstName])
strLastName = Nz(rstSource![LastName])
strSearch = “[FirstName] = “ & Chr$(39) _

377

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 377

& strFirstName & Chr$(39) _
& “ And [LastName] = “ & Chr$(39) _

& strLastName & Chr$(39)
‘Debug.Print “Search string: “ & strSearch

Search by name.

Set con = fldContacts.Items.Find(strSearch)
If TypeName(con) = “Nothing” Then

Debug.Print “Contact name “ & strFirstName _
& “ “ & strLastName & “ not found in “ _
& fldContacts.Name & “ folder”

Create new contact item.

Debug.Print “Creating new contact item with “ _
& “CustomerID “ & strCustomerID
If blnDelete = False Then

Set con = fldContacts.Items.Add
Else

GoTo NextSourceRecord
End If

Else
Debug.Print “Found contact name “ _

& strFirstName _
& “ “ & strLastName

If blnDelete = True Then
con.Delete
GoTo NextSourceRecord

End If
End If

Else
Debug.Print “Found Customer ID “ _

& strCustomerID
If blnDelete = True Then

con.Delete
GoTo NextSourceRecord

End If
End If

Update contact item with values from controls on the Outlook subform:

On Error GoTo ErrorHandler

con.CustomerID = Nz(rstSource![CustomerID])
con.Title = Nz(rstSource![Title])
con.FirstName = Nz(rstSource![FirstName])
con.MiddleName = Nz(rstSource![MiddleName])
con.LastName = Nz(rstSource![LastName])
con.Suffix = Nz(rstSource![Suffix])
con.Nickname = Nz(rstSource![Nickname])

378

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 378

con.CompanyName = Nz(rstSource![CompanyName])
con.Department = Nz(rstSource![Department])
con.JobTitle = Nz(rstSource![JobTitle])
con.BusinessAddressStreet = _

Nz(rstSource![BusinessAddressStreet])
con.BusinessAddressPostOfficeBox = _

Nz(rstSource![BusinessAddressPostOfficeBox])
con.BusinessAddressCity = _

Nz(rstSource![BusinessAddressCity])
con.BusinessAddressState = _

Nz(rstSource![BusinessAddressState])
con.BusinessAddressPostalCode = _

Nz(rstSource![BusinessAddressPostalCode])
con.BusinessAddressCountry = _

Nz(rstSource![BusinessAddressCountry])
con.BusinessHomePage = _

Nz(rstSource![BusinessHomePage])
con.FTPSite = Nz(rstSource![FTPSite])
con.HomeAddressStreet = _

Nz(rstSource![HomeAddressStreet])
con.HomeAddressPostOfficeBox = _

Nz(rstSource![HomeAddressPostOfficeBox])
con.HomeAddressCity = _

Nz(rstSource![HomeAddressCity])
con.HomeAddressState = _

Nz(rstSource![HomeAddressState])
con.HomeAddressPostalCode = _

Nz(rstSource![HomeAddressPostalCode])
con.HomeAddressCountry = _

Nz(rstSource![HomeAddressCountry])
con.OtherAddressStreet = _

Nz(rstSource![OtherAddressStreet])
con.OtherAddressPostOfficeBox = _

Nz(rstSource![OtherAddressPostOfficeBox])
con.OtherAddressCity = _

Nz(rstSource![OtherAddressCity])
con.OtherAddressState = _

Nz(rstSource![OtherAddressState])
con.OtherAddressPostalCode = _

Nz(rstSource![OtherAddressPostalCode])
con.OtherAddressCountry = _

Nz(rstSource![OtherAddressCountry])
con.AssistantTelephoneNumber = _

Nz(rstSource![AssistantTelephoneNumber])
con.BusinessFaxNumber = _

Nz(rstSource![BusinessFaxNumber])
con.BusinessTelephoneNumber = _

Nz(rstSource![BusinessTelephoneNumber])
con.Business2TelephoneNumber = _

Nz(rstSource![Business2TelephoneNumber])

379

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 379

con.CallbackTelephoneNumber = _
Nz(rstSource![CallbackTelephoneNumber])

con.CarTelephoneNumber = _
Nz(rstSource![CarTelephoneNumber])

con.CompanyMainTelephoneNumber = _
Nz(rstSource![CompanyMainTelephoneNumber])

con.HomeFaxNumber = Nz(rstSource![HomeFaxNumber])
con.HomeTelephoneNumber = _

Nz(rstSource![HomeTelephoneNumber])
con.Home2TelephoneNumber = _

Nz(rstSource![Home2TelephoneNumber])
con.ISDNNumber = Nz(rstSource![ISDNNumber])
con.MobileTelephoneNumber = _

Nz(rstSource![MobileTelephoneNumber])
con.OtherFaxNumber = Nz(rstSource![OtherFaxNumber])
con.OtherTelephoneNumber = _

Nz(rstSource![OtherTelephoneNumber])
con.PagerNumber = Nz(rstSource![PagerNumber])
con.PrimaryTelephoneNumber = _

Nz(rstSource![PrimaryTelephoneNumber])
con.RadioTelephoneNumber = _

Nz(rstSource![RadioTelephoneNumber])
con.TTYTDDTelephoneNumber = _

Nz(rstSource![TTYTDDTelephoneNumber])
con.TelexNumber = Nz(rstSource![TelexNumber])
con.Account = Nz(rstSource![Account])
con.AssistantName = Nz(rstSource![AssistantName])
con.Categories = Nz(rstSource![Categories])
con.Children = Nz(rstSource![Children])
con.PersonalHomePage = _

Nz(rstSource![PersonalHomePage])
con.Email1Address = Nz(rstSource![Email1Address])
con.Email1DisplayName = _

Nz(rstSource![Email1DisplayName])
con.Email2Address = Nz(rstSource![Email2Address])
con.Email2DisplayName = _

Nz(rstSource![Email2DisplayName])
con.Email3Address = Nz(rstSource![Email3Address])
con.Email3DisplayName = _

Nz(rstSource![Email3DisplayName])
con.GovernmentIDNumber = _

Nz(rstSource![GovernmentIDNumber])
con.Hobby = Nz(rstSource![Hobby])
con.ManagerName = Nz(rstSource![ManagerName])
con.OrganizationalIDNumber = _

Nz(rstSource![OrganizationalIDNumber])
con.Profession = Nz(rstSource![Profession])
con.Spouse = Nz(rstSource![Spouse])
con.WebPage = Nz(rstSource![WebPage])
con.IMAddress = Nz(rstSource![IMAddress])

380

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 380

Use special date handling (a blank date in Outlook is actually a date of 1/1/4501):

If Nz(rstSource![Birthday]) <> “” Then
con.Birthday = Nz(rstSource![Birthday])

Else
con.Birthday = #1/1/4501#

End If
If Nz(rstSource![Anniversary]) <> “” Then

con.Anniversary = Nz(rstSource![Anniversary])
Else

con.Anniversary = #1/1/4501#
End If

Use special handling for attachments, calling another procedure:

Set rstSourceAttachments = _
rstSource![Attachments].Value

If rstSourceAttachments.RecordCount > 0 Then
Call CopyAccessAttsToOutlook(con, _

rstSourceAttachments)
Else

rstSourceAttachments.Close
End If

con.Close (olSave)

strFirstName = “”
strLastName = “”
strCustomerID = “”

NextSourceRecord:
rstSource.MoveNext
Loop

strTitle = “Outlook contacts updated”
strPrompt = “All Outlook contacts in the “ _

& fldContacts.Name & “ folder updated”
MsgBox strPrompt, vbInformation + vbOKOnly, _

strTitle

ErrorHandlerExit:
Exit Sub

ErrorHandler:
‘Outlook is not running; open Outlook with CreateObject
If Err.Number = 429 Then

Set appOutlook = CreateObject(“Outlook.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number _

381

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 381

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

The UpdateAllAccessContacts procedure has the more complex task of copying updated con-
tact data from tblAccessContacts back to the linked contact tables. This procedure does the reverse of
the CreateDenormalizedContactsTable procedure; using tblAccessContacts as a data source,
it updates the linked contact data in tblCompanyInfo, tblContactInfo, tblCompanyIDsPhones,
tblContactAddresses, and tblContactIDsAndPhones, creating new records as needed:

Public Sub UpdateAllAccessContacts()
‘Called from cmdUpdateContactInfo_Click() on fmnuMain

On Error GoTo ErrorHandler

Dim lngContactID As Long
Dim lngCompanyID As Long
Dim strSourceTable As String
Dim strTarget As String
Dim strAddressType As String
Dim strDescription As String

Set dbs = CurrentDb
strSourceTable = “tblAccessContacts”

Set rstSource = dbs.OpenRecordset(strSourceTable, _
dbOpenDynaset)

UpdateCompanyInfo:
Do While Not rstSource.EOF

Debug.Print “Processing Target ID: “ _
& rstSource![TargetID]

Search for matching Company record in target table, and update it if found; otherwise, create new
company record, and write company data to it.

strTarget = “tblCompanyInfo”
Set rstTarget = dbs.OpenRecordset(strTarget, _

dbOpenDynaset)
blnDelete = rstSource![Delete]
If blnDelete = True Then

To avoid problems with deleting records in a table on the “one” side of a one-to-many relationship,
before updating the tables, the procedure runs three delete queries to delete records linked to con-
tacts marked for deletion:

382

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 382

On Error Resume Next
DoCmd.SetWarnings False
DoCmd.OpenQuery “qdelContactIDs”
DoCmd.OpenQuery “qdelContactAddresses”
DoCmd.OpenQuery “qdelContacts”
GoTo NextSourceRecord

End If

Next, records in tblCompanyInfo are updated as needed:

On Error GoTo ErrorHandler
lngCompanyID = Nz(rstSource![OrganizationalIDNumber])
strSearch = “[CompanyID] = “ & lngCompanyID
Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create new company record in target table.

rstTarget.AddNew
Else

rstTarget.Edit
End If
rstTarget![CompanyName] = _

Nz(rstSource!CompanyName)
rstTarget![Account] = Nz(rstSource!Account)
rstTarget![Category] = Nz(rstSource!Categories)
rstTarget![WebSite] = Nz(rstSource!WebPage)
rstTarget![FTPSite] = Nz(rstSource!FTPSite)
rstTarget![LastUpdated] = Now
rstTarget.Update
rstTarget.Close

Next, records in tblContactInfo are updated as needed:

UpdateContactInfo:

Search for matching contact record in target table, and update it if found; otherwise, create a new
contact record, and write contact data to it:

strTarget = “tblContactInfo”
Set rstTarget = dbs.OpenRecordset(strTarget, _

dbOpenDynaset)
strCustomerID = rstSource![CustomerID]
lngContactID = CLng(strCustomerID)
strSearch = “[ContactID] = “ & lngContactID
Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

383

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 383

Create a new contact record in the target table.

rstTarget.AddNew
rstTarget![CustomerID] = strCustomerID
rstTarget![ContactID] = CLng(strCustomerID)

Else
rstTarget.Edit

End If

rstTarget![Prefix] = Nz(rstSource!Title)
rstTarget![FirstName] = Nz(rstSource!FirstName)
rstTarget![MiddleName] = Nz(rstSource!MiddleName)
rstTarget![LastName] = Nz(rstSource!LastName)
rstTarget![Suffix] = Nz(rstSource!Suffix)
rstTarget![Nickname] = Nz(rstSource!Nickname)
rstTarget![Department] = Nz(rstSource!Department)
rstTarget![JobTitle] = Nz(rstSource!JobTitle)
rstTarget![AssistantName] = _

Nz(rstSource!AssistantName)
rstTarget![Birthday] = Nz(rstSource!Birthday)
rstTarget![Anniversary] = Nz(rstSource!Anniversary)
rstTarget![Children] = Nz(rstSource!Children)
rstTarget![GovernmentID] = _

Nz(rstSource!GovernmentIDNumber)
rstTarget![Hobby] = Nz(rstSource!Hobby)
rstTarget![ManagerName] = _

Nz(rstSource!ManagerName)
rstTarget![Profession] = Nz(rstSource!Profession)
rstTarget![Spouse] = Nz(rstSource!Spouse)
rstTarget![LastUpdated] = Now

Special handling for attachments.

Set rstSourceAttachments = _
rstSource![Attachments].Value

If rstSourceAttachments.RecordCount > 0 Then
Set rstTargetAttachments = _

rstTarget![Attachments].Value
Call CopyAccessAttsToAccess(rstSourceAttachments, _

rstTargetAttachments)
Else

rstSourceAttachments.Close
End If

rstTarget.Update
rstTarget.Close

UpdateContactAddresses:

384

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 384

To update data in tblContactAddresses, if there is data in any of the Business address fields, the
strAddressType variable is set to Business, and the code searches for matching records in
tblContactAddresses. If none are found, a new address record is created; if a record is found, its
fields are updated from the appropriate fields in tblAccessContacts. The Home and Other address
fields are handled similarly:

strTarget = “tblContactAddresses”
Set rstTarget = dbs.OpenRecordset(strTarget, _

dbOpenDynaset)

Update Business address info.

If Nz(rstSource!BusinessAddressStreet) <> “” Or _
Nz(rstSource!BusinessAddressPostOfficeBox) <> “” _
Or Nz(rstSource!BusinessAddressCity) <> “” _
Or Nz(rstSource!BusinessAddressState) <> “” _
Or Nz(rstSource!BusinessAddressPostalCode) <> “” _
Or Nz(rstSource!BusinessAddressCountry) <> “” Then
strAddressType = “Business”
strSearch = “[ContactID] = “ & lngContactID _

& “ And [AddressType] = “ & Chr$(39) _
& strAddressType & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact address record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![AddressType] = strAddressType

Else
rstTarget.Edit

End If

rstTarget![StreetAddress] = _
Nz(rstSource!BusinessAddressStreet)

rstTarget![POBox] = _
Nz(rstSource!BusinessAddressPostOfficeBox)

rstTarget![City] = _
Nz(rstSource!BusinessAddressCity)

rstTarget![StateOrProvince] = _
Nz(rstSource!BusinessAddressState)

rstTarget![PostalCode] = _
Nz(rstSource!BusinessAddressPostalCode)

rstTarget![Country] = _
Nz(rstSource!BusinessAddressCountry)

rstTarget.Update
End If

385

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 385

Update Home address info.

If Nz(rstSource!HomeAddressStreet) <> “” _
Or Nz(rstSource!HomeAddressPostOfficeBox) <> “” _
Or Nz(rstSource!HomeAddressCity) <> “” _
Or Nz(rstSource!HomeAddressState) <> “” _
Or Nz(rstSource!HomeAddressPostalCode) <> “” _
Or Nz(rstSource!HomeAddressCountry) <> “” Then
strAddressType = “Home”

strSearch = “[ContactID] = “ & lngContactID _
& “ And [AddressType] = “ & Chr$(39) _
& strAddressType & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact address record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![AddressType] = strAddressType

Else
rstTarget.Edit

End If

rstTarget![StreetAddress] = _
Nz(rstSource!HomeAddressStreet)

rstTarget![POBox] = _
Nz(rstSource!HomeAddressPostOfficeBox)

rstTarget![City] = _
Nz(rstSource!HomeAddressCity)

rstTarget![StateOrProvince] = _
Nz(rstSource!HomeAddressState)

rstTarget![PostalCode] = _
Nz(rstSource!HomeAddressPostalCode)

rstTarget![Country] = _
Nz(rstSource!HomeAddressCountry)

rstTarget.Update
End If

Update Other address info.

If Nz(rstSource!OtherAddressStreet) <> “” _
Or Nz(rstSource!OtherAddressPostOfficeBox) <> “” _
Or Nz(rstSource!OtherAddressCity) <> “” _
Or Nz(rstSource!OtherAddressState) <> “” _
Or Nz(rstSource!OtherAddressPostalCode) <> “” _
Or Nz(rstSource!OtherAddressCountry) <> “” Then
strAddressType = “Other”

386

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 386

strSearch = “[ContactID] = “ & lngContactID _
& “ And [AddressType] = “ & Chr$(39) _
& strAddressType & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact address record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![AddressType] = strAddressType

Else
rstTarget.Edit

End If

rstTarget![StreetAddress] = _
Nz(rstSource!OtherAddressStreet)

rstTarget![POBox] = _
Nz(rstSource!OtherAddressPostOfficeBox)

rstTarget![City] = _
Nz(rstSource!OtherAddressCity)

rstTarget![StateOrProvince] = _
Nz(rstSource!OtherAddressState)

rstTarget![PostalCode] = _
Nz(rstSource!OtherAddressPostalCode)

rstTarget![Country] = _
Nz(rstSource!OtherAddressCountry)

rstTarget.Update
End If

rstTarget.Close

UpdateCompanyPhone:

If there is a value in the Company Phone record in the source database, it is written to a record in
the target table (this is the only company phone number or ID that can be matched with Outlook,
so it is the only one that is synchronized). If none is found, a new record is created and updated
with the Company Phone number:

strTarget = “tblCompanyIDsPhones”
Set rstTarget = dbs.OpenRecordset(strTarget, _

dbOpenDynaset)
strDescription = “Company Phone”
strSearch = “[CompanyID] = “ & lngCompanyID _

& “ And [Description] = “ & Chr$(39) _
& strDescription & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

387

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 387

Create a new company phone record in the target table.

rstTarget.AddNew
rstTarget![CompanyID] = lngCompanyID
rstTarget![Description] = “Company Phone”

Else
rstTarget.Edit

End If

rstTarget![IDOrPhone] = _
Nz(rstSource!CompanyMainTelephoneNumber)

rstTarget.Update
rstTarget.Close

The Contact IDs and Phones in tblContactIDsPhones are updated in a similar manner: First the
code searches for a value in one of these fields, and if it is found, the strDescription variable
is set with the phone or ID description, and a record is sought using ContactID and strDescription.
If a record is found, it is updated; otherwise a new record is created in tblContactIDsAndPhones
and the phone number or ID is written to it:

UpdateContactIDs:

Search for a matching Contact ID record in the target table, and update it if found; otherwise, cre-
ate a new record, and write Contact ID data to it.

strTarget = “tblContactIDsPhones”
Set rstTarget = dbs.OpenRecordset(strTarget, _

dbOpenDynaset)

If Nz(rstSource![AssistantTelephoneNumber]) <> “” Then
strDescription = “Assistant Phone”
strSearch = “[ContactID] = “ & lngContactID _

& “ And [Description] = “ & Chr$(39) & _
strDescription & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact ID record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![Description] = strDescription

Else
rstTarget.Edit

End If
rstTarget![IDOrPhone] = _

Nz(rstSource![AssistantTelephoneNumber])
rstTarget.Update

End If

388

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 388

If Nz(rstSource![BusinessFaxNumber]) <> “” Then
strDescription = “Business Fax”
strSearch = “[ContactID] = “ & lngContactID _

& “ And [Description] = “ & Chr$(39) _
& strDescription & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact ID record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![Description] = strDescription

Else
rstTarget.Edit

End If

rstTarget![IDOrPhone] = _
Nz(rstSource![BusinessFaxNumber])

rstTarget.Update
End If

[I am not listing a great number of similar code segments, each of which updates a different phone
number or ID.]

If Nz(rstSource![PersonalHomePage]) <> “” Then
strDescription = “Web Page”
strSearch = “[ContactID] = “ & lngContactID _

& “ And [Description] = “ & Chr$(39) _
& strDescription & Chr$(39)

Debug.Print “Search string: “ & strSearch
rstTarget.FindFirst strSearch
If rstTarget.NoMatch = True Then

Create a new contact ID record in the target table.

rstTarget.AddNew
rstTarget![ContactID] = lngContactID
rstTarget![Description] = strDescription

Else
rstTarget.Edit

End If

rstTarget![IDOrPhone] = _
Nz(rstSource![PersonalHomePage])

rstTarget.Update
End If

NextSourceRecord:
rstSource.MoveNext

389

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 389

Loop

rstTarget.Close

strTitle = “Access tables updated”
strPrompt = “Linked Access tables of contact data “ _
& “updated from form”
MsgBox strPrompt, vbInformation + vbOKOnly, strTitle

ErrorHandlerExit:
On Error Resume Next

rstSource.Close
rstTarget.Close

Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

In case you want to copy all the Access contacts to Outlook, or vice versa, there are two selections
on the Select Action combo box’s list that will let you do this. The “Copy All Access Contacts to
Outlook” selection runs the CopyAccessContactsToOutlook procedure, which first puts up a
confirmation message to ensure that the user wants to wipe out the existing Outlook contacts, and
replace them with contacts copied from Access. If the user clicks Yes, the procedure first calls the
CreateDenormalizedContactsTable procedure to write data to tblAccessContacts, and
then runs code that is similar to the code in the UpdateAllOutlookContacts procedure,
except that it skips the searching and just creates all new Outlook contact items.

Similarly, the “Copy All Outlook Contacts to Access” selection runs the CopyAllOutlook
ContactsToAccess procedure, which asks for confirmation, then runs the ImportOutlook
Contacts procedure to write data from Outlook contacts to tblOutlookContacts, then runs code
that is similar to the code in the UpdateAllAccessContacts procedure, except that it doesn’t
search for matching records, just creates new Access records for all the Outlook contact records.

When copying all Outlook contacts to Access, you will end up with Access and Outlook
contacts whose CustomerID values don’t match. This is because the ContactID field in

tblContactInfo is an AutoNumber field, so it can’t be set to a specific value. There are two ways to
deal with this discrepancy: Use the Compare by Name form if you don’t care whether the Customer
ID is the same in Access and Outlook; or select the “Copy All Access Contacts to Outlook” selection
to save the Access ContactID AutoNumber value back to the matching Outlook records.

NOTENOTE

390

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 390

Working with Attachments
Outlook has had attachments for many versions now; Access 2007 introduced the Attachment data
type for Access tables. In Outlook, attachments are a collection belonging to various item types,
primarily mail messages; Access 2007 attachments are a recordset belonging to a field of the
Attachment data type. Because both an Outlook contact item and an Access table may have attach-
ments, I needed to be able to handle copying attachments from an Outlook contact item to an
Access table and vice versa.

The Attachment field data type is new to Access 2007.

When you add a field of the Attachment data type to an Access 2007 table, it has three subfields,
which you can see in the Relationships diagram (see Figure 11.1). The attachment itself is stored in
the FileData subfield; its file name and path in the FileName subfield, and the file type in the
FileType subfield. Generally, you only need to work with the FileData and FileName subfields
when copying Access attachments.

The situation with Outlook attachments is simpler: you just save the attachment file name and
path to the Attachments collection of an item, using the Add method of that collection.

Most likely, you will have some attachments, either in your Outlook contacts, or in Access contact
records, so my synchronizing code needs to handle attachments. To copy attachments from one
place to another, you need to save them to files in a folder; the folder used for this purpose is
selected using the Attachments Folder Path button on the main menu, which runs an event proce-
dure that pops up a Folder Picker dialog. The procedures listed next are called from the longer
procedures that do the copying of data between the two Access compare tables, as seen on the two
contact comparison forms, or between Access and Outlook:

Public Sub CopyAccessAttsToOutlook(con As _
Outlook.ContactItem, rstSourceAttachments As _
DAO.Recordset2)

‘Called from UpdateAllOutlookContacts

On Error GoTo ErrorHandler

Set fso = CreateObject(“Scripting.FileSystemObject”)

With rstSourceAttachments
Do While Not .EOF

strDocsPath = GetOutputDocsPath

Need to extract the file name from the FileName field, using the SplitFileName function, because it
sometimes contains the path (sometimes multiple times) as well as the file name.

NEW FEATURENEW FEATURE

391

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 391

strFile = _

SplitFileName(rstSourceAttachments.Fields(“FileName”))
Debug.Print “File name: “ & strFile
strFileAndPath = strDocsPath & strFile
Debug.Print “File and path: “ & strFileAndPath

On Error Resume Next

Check whether this file already exists in the folder, and save it to the folder if not.

Set fil = fso.GetFile(strFileAndPath)
If fil Is Nothing Then

Save this attachment to a file in the Output Docs folder.

.Fields(“FileData”).SaveToFile strFileAndPath
Debug.Print “Saving “ & strFileAndPath _

& “ to “ & strDocsPath & “ folder”
End If

Add this attachment to the Attachments collection of the Outlook contact item.

Debug.Print “Adding attachment “ & strFileAndPath _
& “ to “ & con.FullName & “ contact”

con.Save
con.Attachments.Add Source:=strFileAndPath, _

Type:=olByValue
con.Close (olSave)
Kill strFileAndPath
.MoveNext

Loop

rstSourceAttachments.Close
End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Public Sub CopyOutlookAttsToAccess(con _
As Outlook.ContactItem, rstTargetAttachments As _
DAO.Recordset2)

392

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 392

‘Called from NewAccessContactAndID and
‘ImportOutlookContacts

On Error GoTo ErrorHandler

Set fso = CreateObject(“Scripting.FileSystemObject”)

For Each att In con.Attachments

Extract the file name from the Attachment FileName property.
strFile = att.FileName
strDocsPath = GetOutputDocsPath
strFileAndPath = strDocsPath & strFile
Debug.Print “File and path: “ & strFileAndPath

On Error Resume Next

Check whether this file already exists in the folder, and save it to the folder if not

Set fil = fso.GetFile(strFileAndPath)
If fil Is Nothing Then

Save this attachment to a file in the Output Docs folder.

att.SaveAsFile strFileAndPath
End If

On Error GoTo ErrorHandler

Load this attachment to the Attachments field of the target table.

With rstTargetAttachments
.AddNew
.Fields(“FileData”).LoadFromFile _

(strFileAndPath)
.Update

End With
Kill strFileAndPath

Next att

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

393

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 393

Public Sub CopyAccessAttsToAccess(rstSourceAttachments _
As DAO.Recordset2, rstTargetAttachments _
As DAO.Recordset2)

‘Called from CreateDenormalizedContactsTable,
‘UpdateAllAccessContacts, UpdateOutlookContactID,
‘UpdateAccessContactID, UpdateOutlookContactName,
‘UpdateAccessContactName, UpdateAllAccessContacts,
‘UpdateOutlookContactID, cboAttachments_Click on
‘fsubCopyFieldData

On Error GoTo ErrorHandler

Set fso = CreateObject(“Scripting.FileSystemObject”)

Do While Not rstSourceAttachments.EOF

Need to extract the file name from the FileName field, using the SplitFileName function, because it
sometimes contains the path (sometimes multiple times) as well as the file name.

strFile = _

SplitFileName(rstSourceAttachments.Fields(“FileName”))
Debug.Print “File name: “ & strFile
strFileAndPath = strDocsPath & strFile
Debug.Print “File and path: “ & strFileAndPath

On Error Resume Next

Check whether this file already exists in the folder, and save it to the folder if not.

Set fil = fso.GetFile(strFileAndPath)
If fil Is Nothing Then

Save this attachment to a file in the Output Docs folder.

rstSourceAttachments.Fields(“FileData”).SaveToFile _
strFileAndPath

Debug.Print “Saving “ & strFileAndPath
End If

Load this attachment to the Attachments field of the target table.

rstTargetAttachments.AddNew
rstTargetAttachments.Fields(“FileData”).LoadFromFile _

(strFileAndPath)
rstTargetAttachments.Update
Kill strFileAndPath
rstSourceAttachments.MoveNext

394

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 394

Loop

rstSourceAttachments.Close
rstTargetAttachments.Close

ErrorHandlerExit:
Exit Sub

ErrorHandler:
If Err.Number = 3839 Then

‘File already exists; delete it
Kill strFileAndPath
Resume

Else
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End If

End Sub

Function SplitFileName(strFileAndPath) As String

On Error GoTo ErrorHandler

Dim strFullPath() As String
Dim intUBound As Integer

Extract the file name from the variable with the file and path.

strFullPath = Split(strFileAndPath, “\”, -1, vbTextCompare)
intUBound = UBound(strFullPath)
strFile = strFullPath(intUBound)
SplitFileName = strFile

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ &

Err.Description
Resume ErrorHandlerExit

End Function

Figure 11.16 shows an Outlook contact with an attachment created from an Access contact record.

395

Synchronizing Access and Outlook Contacts 11

16_047026 ch11.qxp 4/2/07 9:52 PM Page 395

FIGURE 11.16

An Outlook contact with an attachment created from an Access contact record.

Summary
The synchronizing techniques in this chapter will allow you to maintain your contact data in a set
of linked Access tables, adding any number of custom phone numbers and IDs as needed, and syn-
chronize your Access data to Outlook contacts, so you can work with the standard properties of
contacts in the convenient Outlook contact interface, and work with any additional custom fields
you need in Access, without having to manually enter (and update) the same contact data in
Access and Outlook.

In addition, you can use the denormalizing and renormalizing techniques used to work with con-
tacts for any situation that requires converting a set of linked Access tables to a single flat-file table,
or the reverse — something that is likely to arise when exchanging data with legacy programs or
mainframe databases.

396

Writing VBA Code to Exchange Data between Office ComponentsPart II

16_047026 ch11.qxp 4/2/07 9:52 PM Page 396

Earlier chapters in this book described how to work with Word, Excel,
and Outlook, using VBA code to create Word documents, Excel work-
sheets, and Outlook items and fill them with data from Access. This

chapter describes some more advanced techniques for working with other
Office components, such as those you might need in a database with ship-
ping and ordering information.

Creating Fancy Word
Shipping Labels
In Chapter 6 you learned how to create basic mailing labels, with name and
address information pulled from a table or query, using either the TypeText
method or mail merge. A name and address is all you need to print a set of
labels for a monthly mailing to a list of club members, or to a list of people
who receive a regularly scheduled product shipment. But in the real world,
often there are much more complex requirements for printing labels. Before
shipping a product, you might also need to check the inventory for a prod-
uct, the date the product is required, and the availability of shipping sup-
plies, vehicles, and personnel to do the shipping.

The sample database for this chapter is Northwind
Plus.accdb.

You might also need to print more information on your shipping labels in
addition to the address, such as the Order No., Product No., Product Name,
Category, the case number in a sequence of cases, or other such data. To
print labels with extra information, or to make decisions on whether a set of
labels should be printed, you need more elaborate VBA code.

NOTENOTE

397

IN THIS CHAPTER
Creating Word shipping labels
with information about
shipments

Creating Excel PivotCharts filled
with Access data

Emailing Access reports of
shipping and reordering
information

Going Beyond
the Basics

17_047026 ch12.qxp 4/2/07 9:53 PM Page 397

The sample Northwind Plus database contains tables from the Northwind.mdb database, with sev-
eral extra fields in some tables, queries (used in the next section), and three new forms — two main
forms (one for selecting records for shipping and one for reordering depleted inventory) plus a
supplementary form for editing product amounts.

When opening Northwind Plus in Vista, you may get the security alert shown in Figure 12.1.
To temporarily enable the database’s code, click the “Enable Content” button and select the

“Enable this content” option in the dialog. To prevent this security alert from appearing every time you
open the database, sign the VBA code with a digital signature, as described in the sidebar.

FIGURE 12.1

A Vista security alert when opening a database with unsigned VBA code.

NOTENOTE

398

Writing VBA Code to Exchange Data between Office ComponentsPart II

Creating a Digital Signature for
Signing Your Access VBA Code

1. On the Windows Vista Start menu, select All Programs.

2. Select the Microsoft Office folder.

3. Select the Microsoft Office Tools folder.

17_047026 ch12.qxp 4/2/07 9:53 PM Page 398

399

Going Beyond the Basics 12

4. Select the Digital Certificate for VBA projects item:

Selecting the Digital Certificate for VBA Project tool.

5. Enter your name and click OK:

Entering a name for the digital certificate.

continued

17_047026 ch12.qxp 4/2/07 9:53 PM Page 399

400

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued
6. You should get a success message:

Success message after creating a digital certificate.

7. Click the Office button, select the Publish command, and then the Package and
Sign command.

8. Select the certificate to use on the Select Certificate dialog:

17_047026 ch12.qxp 4/2/07 9:53 PM Page 400

401

Going Beyond the Basics 12

9. Click Create to save the package file to a location of your choice:

10. If this is the first time you have used this certificate, the Microsoft Office Access Security
Notice dialog opens:

continued

17_047026 ch12.qxp 4/2/07 9:53 PM Page 401

402

Writing VBA Code to Exchange Data between Office ComponentsPart II

continued
11. You can click the Show Signature Details to view the available information about the

selected certificate:

12. After clicking the “Trust all from publisher” button on the Microsoft Office Access Security
Notice dialog, you can work on the database.

13. In future, if you open the package file, you will get a dialog offering to extract the database:

14. On clicking OK, the extracted database opens as a normal Access 2007 database.

17_047026 ch12.qxp 4/2/07 9:53 PM Page 402

403

Going Beyond the Basics 12

Figure 12.2 shows the main menu of the Northwind Plus sample database, with buttons for open-
ing the two main forms, and buttons to select the Documents and Templates folders. The folder
selection buttons function like the similar controls in several other chapters, using a Folder Picker
dialog created by the Office FileDialog object.

FIGURE 12.2

The main menu of the Northwind Plus sample database.

I could have determined which orders were ready to ship just by examining the avail-
able inventory and the date the order is required, but in the real world these are not the

only factors to consider — if there aren’t enough people to do the shipping, or all the trucks are out
on the road, you can’t ship the product, even if there is enough inventory.

Figure 12.3 shows the order selection form.

NOTENOTE

17_047026 ch12.qxp 4/2/07 9:53 PM Page 403

FIGURE 12.3

The form used for inspecting orders and marking them for shipment.

The Select Orders for Shipping form (frmSelectOrdersForShipping) is a main form with a datasheet
subform. It is used to inspect orders that are in the correct time range for shipping and mark them
for shipping now. The main form displays fields from the orders, and the datasheet subform lists
the products on the selected order. On the main form, the “Ship Partial” checkbox is checked if a
partial order can be shipped, in case there is enough inventory to ship at least one product on the
order. The “Ready to Ship” checkbox indicates that the order is ready to ship, taking into account
factors over and above the available inventory.

To print shipping labels with extra information, I made a query
(qryNorthwindShippingLabels), based on qryNorthwindAll (a query that includes all
the linked Northwind data tables), containing all the information to print on the labels. Apart from
the shipping name and address, the query also includes the following fields:

n OrderDate

n RequiredDate (with a criterion of >Date()) And <DateAdd(“d”,30,Date()) to
just include orders required from tomorrow to less than 30 days in the future

n DateShipped

n Supplier (an alias for CompanyName in tblSuppliers)

n ProductID

n ProductName

n OrderID

n NoCases (an alias for Quantity)

404

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 404

n CategoryName

n ReadyToShip, a Boolean field with a criterion of True to select orders that are ready to ship

The cmdCreateLabels event procedure is listed here, with explanation of how it processes the
sets of labels to print:

Private Sub cmdCreateLabels_Click()

On Error GoTo ErrorHandler

Dim appWord As Word.Application
Dim blnShipPartial As Boolean
Dim dbs As DAO.Database
Dim doc As Word.Document
Dim fil As Scripting.File
Dim fso As New Scripting.FileSystemObject
Dim lngCaseNo As Long
Dim lngNoCases As Long
Dim lngCasesInStock As Long
Dim lngCount As Long
Dim lngSet As Long
Dim lngNoSets As Long
Dim lngOrderID As Long
Dim lngSetNo As Long
Dim lngSubtract As Long
Dim rstOrder As DAO.Recordset
Dim rstShip As DAO.Recordset
Dim strCategory As String
Dim strDocsPath As String
Dim strOrderDate As String
Dim lngProductID As Long
Dim strProductName As String
Dim strPrompt As String
Dim strQueryShip As String
Dim strQueryOrder As String
Dim strSaveName As String
Dim strSaveNameAndPath As String
Dim strShipAddress As String
Dim strShipCityStatePC As String
Dim strShipCountry As String
Dim strShipDate As String
Dim strShipName As String
Dim strSQL As String
Dim strSupplier As String
Dim strTemplate As String
Dim strTemplateNameAndPath As String
Dim strTemplatePath As String
Dim strTitle As String
Dim varValue As Variant

405

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 405

Set the Word Application variable:

Set appWord = GetObject(, “Word.Application”)
appWord.Visible = True

Get User Templates and Documents paths from the user’s selections on the main menu, using two
functions that pick up the saved paths from tblInfo:

strTemplatePath = GetTemplatesPath
Debug.Print “Template path: “ & strTemplatePath
strDocsPath = GetDocumentsPath
Debug.Print “Documents folder: “ & strDocsPath
strTemplate = “Avery 5164 Shipping Labels.dotx”
strTemplateNameAndPath = strTemplatePath & strTemplate
Debug.Print “Template name and path: “ _

& strTemplateNameAndPath

On Error Resume Next

Look for the template in the templates folder, by attempting to set a FileSystemObject File variable
to it:

Set fil = fso.GetFile(strTemplateNameAndPath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strTemplate & “ in “ _
& strTemplatePath & “; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
GoTo ErrorHandlerExit

End If

On Error GoTo ErrorHandler

Calculate the number of sets of labels to print:

lngSelected = Nz(DCount(“*”, _
“qrySelectedNorthwindShippingLabels”))
Me![lblSetsToPrint].Caption = lngSelected _

& “ sets of shipping labels to print”

Exit with a message if no orders have been selected:

If lngSelected = 0 Then
strTitle = “Can’t print labels”
strPrompt = “No orders selected; please mark some “ _

& “orders for shipping”
MsgBox strPrompt, vbExclamation + vbOKOnly, strTitle
GoTo ErrorHandlerExit

End If

406

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 406

Set up a recordset (rstShip) based on the qrySelectedNorthwindShippingLabels query,
which has one record for each product on a selected order:

Set dbs = CurrentDb
strQueryShip = “qrySelectedNorthwindShippingLabels”
Set rstShip = dbs.OpenRecordset(strQueryShip)

Get the number of records for use in updating the progress meter:

rstShip.MoveLast
rstShip.MoveFirst
lngNoSets = rstShip.RecordCount

Start the progress meter in the status bar, using the SysCmd object:

strPrompt = “Creating “ & lngNoSets _
& “ sets of shipping labels”

Application.SysCmd acSysCmdInitMeter, strPrompt, _
lngNoSets

Set up a loop for processing the sets of labels for the orders:

For lngSet = 1 To lngNoSets
lngOrderID = rstShip![OrderID]
blnShipPartial = rstShip![ShipPartial]

Create a filtered recordset (rstOrder) for this order only, with records corresponding to the prod-
ucts on the order:

strQueryOrder = “qryOrder”
Set dbs = CurrentDb
strSQL = “SELECT * FROM “ & strQueryShip & “ WHERE “ _

& “[OrderID] = “ & lngOrderID & “;”
Debug.Print “SQL for “ & strQueryOrder & “: “ & strSQL
lngCount = CreateAndTestQuery(strQueryOrder, strSQL)
Debug.Print “No. of records found: “ & lngCount

Set rstOrder = dbs.OpenRecordset(strQueryOrder)

Set up a loop to process each product on this order, checking whether there is enough inventory to
ship the product on this order:

Do While Not rstOrder.EOF
lngProductID = rstOrder![ProductID]
strProductName = rstOrder![ProductName]
lngNoCases = rstOrder![NoCases]
lngCasesInStock = rstOrder![CasesInStock]
If lngNoCases > lngCasesInStock Then

If blnShipPartial = False Then

407

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 407

For orders with ShipPartial unchecked, can’t ship the order because one product has inadequate
inventory:

strTitle = “Inadequate inventory”
strPrompt = “Only “ & lngCasesInStock _

& “ cases in inventory; can’t fill Order ID “ _
& lngOrderID & “ for “ & strProductName

MsgBox strPrompt, vbExclamation, strTitle
GoTo NextOrder

ElseIf blnShipPartial = True Then

For orders with ShipPartial checked, can’t ship this product on the order:

strTitle = “Inadequate inventory”
strPrompt = “Only “ & lngCasesInStock _

& “ cases in inventory; can’t fill “ _
& strProductName & “ item on “ _
& “Order ID “ & lngOrderID

MsgBox strPrompt, vbExclamation, strTitle

Figure 12.4 shows a typical “Inadequate inventory” message when there isn’t enough inventory to
fill a product line item on an order with ShipPartial checked.

FIGURE 12.4

A message indicating that there is inadequate inventory to ship a product item on an order.

Check the next product on the order:

GoTo NextProduct
End If

Else

There is enough inventory to ship this product; create a new labels document for this set of labels
from the template:

Set doc = _
appWord.Documents.Add(Template:= _

strTemplateNameAndPath, _
documenttype:=wdNewBlankDocument, _
Visible:=True)

doc.Activate

408

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 408

Set variables with information to print on all the labels for this order:

strCategory = rstOrder![CategoryName]
strOrderDate = CStr(rstOrder![OrderDate])
strShipName = rstOrder![ShipName]
strShipAddress = rstOrder![ShipAddress]
strShipCityStatePC = rstOrder![ShipCityStatePC]
strShipCountry = rstOrder![ShipCountry]
strSupplier = rstOrder![Supplier]
strShipDate = Format(Date, “dd-mmm-yyyy”)

Set up a loop to print a set of labels for this order, one label per case shipped:

For lngCaseNo = 1 To lngNoCases
With appWord.Selection

Put data into one label (one cell in the Word document):

.TypeText Text:=”FROM:” & vbTab

.MoveLeft Unit:=wdCharacter, Count:=1

.MoveLeft Unit:=wdWord, Count:=2, _
Extend:=wdExtend

.Font.Bold = True

.EndKey Unit:=wdLine

.Font.Bold = False

.TypeText Text:=”Northwind Traders”

.TypeParagraph

Indent the left margin to match the tab setting, so the address will line up with the name.

Instead of looking up Word methods, properties, and other object model components in
the Object Browser, you can capture the syntax for a Word action by recording a macro

in Word, then copying and pasting the VBA code into your Access VBA procedure. Just insert your
Word application variable where needed and trim the arguments you don’t need to prepare the code
for use in Access.

.ParagraphFormat.TabIndent (1)

.TypeText Text:=”2839 El Presidio St.”

.TypeParagraph

.TypeText Text:=”Nowhere, WA 92838”

.TypeParagraph

Return to the normal left margin before printing “TO:”:

.ParagraphFormat.LeftIndent = 8

.TypeParagraph

.Font.Bold = True

.TypeText Text:=”TO:” & vbTab

.MoveLeft Unit:=wdCharacter, Count:=1

.MoveLeft Unit:=wdCharacter, Count:=3, _
Extend:=wdExtend

NOTENOTE

409

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 409

.EndKey Unit:=wdLine

.Font.Bold = False

.TypeText strShipName

.TypeParagraph

Indent the left margin to match the tab setting, so the address will line up with the name:

.ParagraphFormat.TabIndent (1)

.TypeText strShipAddress

.TypeParagraph

.TypeText strShipCityStatePC

.TypeParagraph

.TypeText strShipCountry

.TypeParagraph

Return to the normal left margin before printing the extra information:

.ParagraphFormat.LeftIndent = 8

.TypeParagraph

.Font.Size = 10

.Font.Bold = True

.TypeText “Order ID:” & vbTab _
& CStr(lngOrderID)

.TypeParagraph

.TypeText “Category:” & vbTab _
& strCategory

.TypeParagraph

.TypeText “Product: “ & vbTab & “ID “ _
& lngProductID & “ (“ _
& strProductName & “)”

.TypeParagraph

.TypeText “Supplier:” & vbTab _
& strSupplier

.TypeParagraph

.TypeText “Ship date:” & vbTab _
& strShipDate

.TypeParagraph

.Font.Size = 12

.Font.Bold = False

.TypeParagraph

.TypeText vbTab & “Case “ _
& lngCaseNo & “ of “ & lngNoCases

.MoveRight Unit:=wdCell
End With

Next lngCaseNo

Save the Word labels document for this set of labels:

strSaveName = “Shipping Labels for Order ID “ _
& lngOrderID & “ (“ & strProductName _
& “) shipped on “ & strShipDate & “.doc”

410

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 410

strSaveNameAndPath = strDocsPath & strSaveName
Debug.Print “Save name: “ & strSaveName

On Error Resume Next

Check for the existence of a file with this name, and delete it if found:

Set fil = fso.GetFile(strSaveNameAndPath)
If Not fil Is Nothing Then

Kill strSaveNameAndPath
End If

On Error GoTo ErrorHandler
doc.SaveAs FileName:=strSaveNameAndPath

Update the progress meter:

Application.SysCmd acSysCmdUpdateMeter, lngSet

Update the ReadyToShip field in tblOrders to False:

DoCmd.SetWarnings False
strSQL = “UPDATE tblOrders SET “ _

& “tblOrders.ReadyToShip = False “ _
& “WHERE OrderID = “ & lngOrderID

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL

Subtract the amount of product shipped from the in stock amount in tblProducts:

lngSubtract = lngCasesInStock - lngNoCases
strSQL = “UPDATE tblProducts SET “ _

& “tblProducts.UnitsInStock = “ _
& lngSubtract & “ WHERE ProductID = “ _
& lngProductID

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL

In tblOrderDetails, set QuantityShipped to QuantityOrdered, and DateShipped to today’s date:

strSQL = “UPDATE tblOrderDetails SET “ _
& “tblOrderDetails.QuantityShipped = “ _
& “[QuantityOrdered], “ _
& “tblOrderDetails.DateShipped = Date() “ _
& “WHERE tblOrderDetails.OrderID = “ _
& lngOrderID _
& “ And tblOrderDetails.ProductID = “ _
& lngProductID & “;”

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL

411

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 411

strTitle = “Set of labels created”
strPrompt = _

“A set of shipping labels created “ _
& “for Order ID “ & lngOrderID _
& “, Product ID “ & lngProductID _
& “ (“ & strProductName & “)”

MsgBox strPrompt, vbInformation, strTitle

Figure 12.5 shows the success message for the last set of labels, with the progress meter at full in
the Access window status bar.

FIGURE 12.5

A message indicating that a set of labels has been created for an order.

End If

NextProduct:
rstOrder.MoveNext
Loop

NextOrder:
rstShip.MoveNext

Recalculate the number of sets of labels to print:

lngSelected = Nz(DCount(“*”, _
“qrySelectedNorthwindShippingLabels”))

Me![lblSetsToPrint].Caption = lngSelected _
& “ sets of shipping labels to print”

Next lngSet

DoCmd.Close acForm, Me.Name

Finished:
strTitle = “Finished!”
strPrompt = _

“One set of shipping labels created for each “ _

412

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 412

& “order shipped on “ _
& Format(Date, “dd-mmm-yyyy”)

MsgBox strPrompt, vbInformation, strTitle

ErrorHandlerExit:

Figure 12.6 shows the “Finished!” message after all the sets of labels have been created.

FIGURE 12.6

The success message after all labels have been printed.

Clear the progress meter:

Application.SysCmd acSysCmdClearStatus

Exit Sub

ErrorHandler:
If Err = 429 Then

Word is not running; open Word with CreateObject:

Set appWord = CreateObject(“Word.Application”)
Resume Next

Else
MsgBox “Error No: “ & Err.Number & “; Description: “ _

& Err.Description
Resume ErrorHandlerExit

End If

End Sub

The GetDocumentsPath function that retrieves the Documents path from tblInfo is listed next;
the GetTemplatesPath function is similar:

Public Function GetDocumentsPath() As String

On Error GoTo ErrorHandler

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(“tblInfo”)

413

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 413

rst.MoveFirst
GetDocumentsPath = rst![DocumentsPath] & “\”
rst.Close

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number & “; Description: “ & _

Err.Description
Resume ErrorHandlerExit

End Function

Figure 12.7 shows a page of shipping labels.

FIGURE 12.7

A set of Word shipping labels filled with data from Access.

414

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 414

Every development project has unique requirements; when using Access to create mailing labels
(or any other type of Word documents), you have the freedom to create tables and forms that
exactly meet your needs, storing all (and only) the information you need to select and print the
data you need on Word documents. The code used to create the shipping labels described in this
section includes several techniques that are useful for producing Word documents of various types,
such as creating filtered recordsets for working with detail records, calculating “x of y” numbers
when working with sets of records, displaying a progress meter in the status bar, and updating
tables from code.

Creating Excel PivotCharts from
Access Queries
You can create great interactive charts and tables using Access’s own tools (PivotCharts and
PivotTables), as noted in Chapter 1. However, there is a drawback to using Access PivotCharts
and PivotTables — they are only interactive while working in Access. If you save a PivotChart
or PivotTable as a PDF (if you have installed the Save as PDF utility) or Snapshot file, and send it
to someone else, it is just an image, not an interactive chart or table. If you need to put Access data
into an interactive chart or table for others to work with (even if they don’t have Access installed),
you can use a different approach: Export the Access data to an Excel worksheet, and then create an
Excel PivotChart or PivotTable that users can manipulate as they wish.

When you create an Excel PivotChart, it is automatically created with a linked
PivotTable.

The first step in creating an Excel PivotChart is to create an Access query with the data to be
charted. Excel PivotCharts are not exactly the same as Access PivotCharts; in particular, they lack
the date grouping feature that automatically creates a variety of date sorts from a Date field (Year,
Month, Quarter, Week). If you want to analyze data in an Excel PivotChart by month, quarter, or
year, you need to do the breakdown in an Access query, before exporting the data to Excel, or cre-
ate the date groups manually in Excel by using the Group command.

In Office 2007, you can create an Excel PivotChart manually, following these steps:

1. Create an Access query with the data to be charted;
qryQuarterlySalesByCategory has only three fields: OrderQuarter, Category, and
Price. The OrderQuarter field extracts the year and quarter from the OrderDate field,
using this expression:

OrderQuarter: Year([OrderDate]) & “ Q” &
DatePart(“q”,[OrderDate])

2. Export this query to Excel using the Excel command in the Export group of the External
Data tab of the Ribbon, as shown in Figure 12.8.

NOTENOTE

415

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 415

FIGURE 12.8

Exporting a query to Excel using a Ribbon command.

3. On the Export dialog, edit the worksheet name as desired, and browse for an alternate
location if you don’t want to store the worksheet in the default Documents folder (in
Figure 12.9, I edited the worksheet name and left the folder at the default setting).

FIGURE 12.9

Editing the worksheet save name in the Export dialog.

416

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 416

4. Open the newly created worksheet in Excel.

5. Click anywhere in the data range, select the Insert tab of the Ribbon, and select
PivotChart from the drop-down in the Tables group, as shown in Figure 12.10.

FIGURE 12.10

Creating a PivotChart from data in an Excel worksheet.

6. The Create PivotTable with PivotChart dialog opens, as shown in Figure 12.11, with the
range preselected; just click OK to create the PivotChart in another worksheet in the
same workbook.

417

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 417

FIGURE 12.11

The Create PivotTable with PivotChart dialog.

7. The new, blank PivotChart appears, as shown in Figure 12.12.

FIGURE 12.12

A newly created Excel PivotChart.

418

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 418

8. The layout of a PivotChart is different in Excel than in Access (a discrepancy Microsoft
should clear up, but that is another matter). The fields from the query are listed in the
PivotTable Field List in the panel on the right of the worksheet; I dragged OrderQuarter
to the Axis Fields drop zone, CategoryName to the Legend Fields drop zone, and Price to
the Values drop zone (Excel automatically makes it a Sum of Price). Figure 12.13 shows
the plainly formatted PivotChart at this point.

FIGURE 12.13

An Excel PivotChart with fields assigned to drop zones.

9. To format the left axis number, right-click any category value in the PivotChart and select
“Format Axis” from the context menu, as shown in Figure 12.14.

419

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 419

FIGURE 12.14

Formatting axis number.

10. The Format Axis dialog opens; I formatted the left axis number for U.S. Currency by
selecting Number for the Axis Option, Currency for the Category, 0 decimal places,
and $ English (U.S.) for the Symbol, as shown in Figure 12.15.

FIGURE 12.15

Formatting the left axis for U.S. Currency.

420

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 420

When the PivotChart (or one of its components) is selected, you should see special
PivotChart commands in the Design and Layout groups of the Ribbon; if you don’t see

them, click the PivotChart to give it the focus.

11. To give the chart a title (generally a good idea), I selected Layout 1 in the Chart
Layouts group on the Design tab of the Ribbon (in PivotChart Tools mode), as shown in
Figure 12.16.

FIGURE 12.16

The PivotChart Tools.

12. This selection adds a Chart Title control to the chart; right-click it and select Edit Text to
edit the chart name as desired; I made it “Quarterly Sales by Category.”

13. The final step is to select a chart style. The default style (contrasting color bars) is gener-
ally fine, but there are lots more choices available. To select a different chart style, drop
down the More button at the lower-right corner of the Chart Styles group, as shown in
Figure 12.17.

FIGURE 12.17

Opening the palette of chart styles.

14. A palette of 54 styles opens as shown in Figure 12.18.

15. The formatted PivotChart is shown in Figure 12.19.

NOTENOTE

421

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 421

FIGURE 12.18

Selecting a chart style from the palette.

FIGURE 12.19

A PivotChart with contrasting color bars and a light background.

422

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 422

16. For a computer presentation, a dark background may be preferable; Figure 12.20 shows
the PivotChart with a dark background style selected.

FIGURE 12.20

A PivotChart with contrasting color bars and a dark background.

The four styles you most recently selected appear in the top row of the Chart Styles
group, so they are always available for one-click selection.

Excel 2007 has a new feature: Chart templates. However, these templates only work
with standard charts, not PivotCharts, so unfortunately they are no use when

creating PivotCharts.

The bar charts produced in this section are only a small selection of the PivotChart types you can
produce in Excel, based on Access data. The six most popular chart types are shown in the Charts
group of the Insert tab on the Ribbon, shown in Figure 12.21.

FIGURE 12.21

The six most popular Excel chart types.

NEW FEATURENEW FEATURE

NOTENOTE

423

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 423

To see all the available chart types, click the Other Charts command, then the All Chart Types com-
mand at the bottom of the drop-down chart palette, as shown in Figure 12.22.

FIGURE 12.22

Selecting the All Charts command to see all the Excel chart types.

The Create Chart dialog opened by the All Charts command is shown in Figure 12.23.

424

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 424

FIGURE 12.23

The Create Chart dialog.

Though most chart types are available in both Access and Excel, there are some differences: The
Polar chart type is only available in Access, and the Surface chart type is only available in Excel.
Figure 12.24 shows the Access chart types on the left, and the Excel chart types on the right, to
make it easier to identify the chart type you want to use.

425

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 425

FIGURE 12.24

Access and Excel chart types.

Emailing Shipping and Reordering Reports
After you ship out orders, using the shipping labels described in an earlier section, you might need
to produce reports detailing the amounts of different products that were shipped and the amounts
that need to be ordered to replenish stock, and then email these reports to various persons. The
Shipping Reports and Reordering form, shown in Figure 12.25, lets you see the inventory for all
products where the amount in stock plus the amount on order is at or under the reorder level for
that product. The ReorderAmount field (initially set to zero for all products) indicates the number
of cases you want to reorder.

Since this form only has data if at least one product is below the inventory reorder level, when you
click the “Email Shipping and Reordering Reports” button on the main menu, if there is enough
inventory for all products, you will get the message shown in Figure 12.26.

426

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 426

FIGURE 12.25

A form for replenishing inventory.

FIGURE 12.26

A message when all products have enough inventory.

If you click the Yes button on this dialog, the Edit Amounts form will open, as shown in Figure 12.27,
where you can edit product amounts as needed.

427

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 427

FIGURE 12.27

A form for editing product amounts.

On the Shipping Reports and Reordering form, the “2x Reorder” button sets the Reorder Amount
to twice the Reorder Level for all records; the “Zero Reorder” button sets the Reorder Amount to
zero for all records. You can also manually edit the Reorder Amount for any product as desired.
After setting the Reorder Amount as desired for all records, click the “Send Shipping Reports” but-
ton to save the Shipping report (rptShipping) as a PDF file, update field values in tblProducts as
needed, and create a new email message with the report file attached to it, ready to email to the
appropriate address (if the report is always sent to the same person or department, the email
address could be hard-coded). Figure 12.28 shows the shipping report.

Although saving to the PDF format didn’t make it to the release version of Access 2007,
Microsoft has provided a downloadable utility that adds PDF support to Access. This

utility can be downloaded from http://www.microsoft.com/downloads/details.aspx?familyid=
F1FC413C-6D89-4F15-991B-63B07BA5F2E5&displaylang=en (or search the Microsoft Downloads
page for “Save to PDF”). Once you have downloaded and installed it, you will see a new “Save to
PDF” selection on the Save As submenu of the File menu, as shown in Figure 12.29, and you can use
the acFormatPDF named constant as the value of the outputfile argument of the OutputTo
method to create a PDF file, as in the code sample below.

NEW FEATURENEW FEATURE

428

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 428

FIGURE 12.28

A shipping report listing the products shipped today.

FIGURE 12.29

The new PDF selection for saving a database object.

429

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 429

FIGURE 12.30

An email message with an attached PDF file created from an Access report.

Clicking the “Send Reorder Requests” button works similarly; it creates a PDF file from the Products
to Reorder report and emails it as an attachment. Figure 12.31 shows the Products to Reorder report.

FIGURE 12.31

The Products to Reorder report.

430

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 430

The cmdReorderInventory event procedure is listed here:

Private Sub cmdReorderInventory_Click()

This error handler skips to the CreateSnapshot section if there is an error on the line that outputs
the file to the PDF format.

On Error GoTo CreateSnapshot

strCurrentPath = Application.CurrentProject.Path
strReport = “rptProductsToReorder”

First try to export the Products to Reorder report to PDF (this will only work if you have installed
the Save to PDF utility)

strReportFile = strCurrentPath & “\Products To Reorder.pdf”
Debug.Print “Report and path: “ & strReportFile
DoCmd.OutputTo objecttype:=acOutputReport, _

objectname:=strReport, _
outputformat:=acFormatPDF, _
outputfile:=strReportFile

If the PDF file was created successfully, go to the CreateEmail section, skipping the CreateSnapshot
section of code.

GoTo CreateEmail

On Error GoTo ErrorHandler

CreateSnapshot:

Export the report to snapshot format.

strReportFile = strCurrentPath & “\Products To Reorder.snp”
Debug.Print “Report and path: “ & strReportFile
DoCmd.OutputTo objecttype:=acOutputReport, _

objectname:=strReport, _
outputformat:=acFormatSNP, _
outputfile:=strReportFile

CreateEmail:

Create an Outlook email message, fill in its subject, and attach the PDF or snapshot file to the message:

Set appOutlook = GetObject(, “Outlook.Application”)
Set msg = appOutlook.CreateItem(olMailItem)
msg.Attachments.Add strReportFile
msg.Subject = “Products to reorder for “ _

& Format(Date, “dd-mmm-yyyy”)
msg.Save

431

Going Beyond the Basics 12

17_047026 ch12.qxp 4/2/07 9:53 PM Page 431

Ask for confirmation to set all ReorderAmount values to zero, and add the amount ordered to
UnitsOnOrder:

strTitle = “Confirmation”
strPrompt = “Clear reorder and on order amounts?”
intReturn = MsgBox(strPrompt, vbQuestion + vbYesNo, _

strTitle)
If intReturn = vbYes Then

DoCmd.SetWarnings False
strSQL = “UPDATE qryProductsToReorder SET “ _

& “qryProductsToReorder.UnitsOnOrder = “ _
& “[UnitsOnOrder]+[ReorderAmount], “ _
& “qryProductsToReorder.ReorderAmount = 0;”

Debug.Print “SQL string: “ & strSQL
DoCmd.RunSQL strSQL

End If

Display the Outlook email message with the PDF or snapshot attachment:

msg.Display
DoCmd.Close acForm, Me.Name

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Sub

Summary
The techniques described in this chapter should give you more ideas about how you can use Word,
Excel, and Outlook to expand the functionality of Access databases, using VBA code to examine
data and make decisions about what data should be exported, and to format the Office documents
filled with Access data.

432

Writing VBA Code to Exchange Data between Office ComponentsPart II

17_047026 ch12.qxp 4/2/07 9:53 PM Page 432

Adding More
Functionality to

Office
IN THIS PART

Chapter 13
Creating COM Add-ins with
Visual Basic 6

Chapter 14
Creating Access Add-ins

Chapter 15
Customizing the Ribbon with XML
in Access Databases and Add-ins

Chapter 16
Customizing the Access Ribbon
with a Visual Studio 2005 Shared
Add-in

Chapter 17
Creating Standalone Scripts with
Windows Script Host

Chapter 18
Working with SQL Server Data

18_047026 pt03.qxp 4/2/07 9:53 PM Page 433

18_047026 pt03.qxp 4/2/07 9:53 PM Page 434

Office 2000 introduced COM add-ins as a new development tool, an
alternative to creating VBA add-ins for Access, Excel, Outlook, and
Word. A COM add-in is created as a Dynamic Link Library (DLL)

that is registered to work with Office applications. COM add-ins (at least the-
oretically) can be written to work with multiple Office programs, though
realistically, because of the differences in functionality between Access, Word,
Outlook, and Excel, only very simple COM add-ins of the “Hello, World!”
type can actually be designed to work across multiple Office applications.

If you bought the Developer Edition of Office 2000 (or later, Office XP) you
could create COM add-ins in the Access Visual Basic window, using its sup-
port for opening and editing VBA projects, although it wasn’t easy because of
the lack of debugging support. There was no Developer Edition of Office
2003, and there is none for Office 2007, so that option is no longer viable,
unless you still have the Developer Edition of Office 2000 or Office XP
installed.

Visual Studio Tools for Office lets you create Visual Studio
add-ins for some Office components, but unfortunately,

even the latest edition, the one that supports Office 2007, still lacks support
for creating Access add-ins. See Chapter 16 for a discussion of creating Visual
Studio add-ins for working with the Access 2007 Ribbon.

However, that doesn’t mean you can’t create COM add-ins for Office 2007.
Visual Basic was last updated in 1998 (v. 6.0), but it is still quite useful, and
is fully supported by Microsoft, unlike most other Microsoft applications of
that vintage. If you have been working with VB 6 for years, you don’t have to
put aside your hard-won expertise and start learning Visual Studio 2005;
you can create COM add-ins that will work in Office 2007 using VB 6.
(If you do want to learn how to create add-ins with Visual Studio 2005,
see Chapter 16.)

CROSS-REFCROSS-REF

435

IN THIS CHAPTER
Creating COM add-ins with
Visual Basic 6

Installing and troubleshooting
COM add-ins

Comparing COM add-ins and
Access add-ins

Creating COM Add-ins
with Visual Basic 6

19_047026 ch13.qxp 4/2/07 9:54 PM Page 435

In earlier versions of Access, COM add-ins placed buttons on the menu or toolbar you specified,
using the CommandBars collection. In Access 2007, COM add-ins place buttons in the Toolbar
Commands group of the Add-Ins tab of the Ribbon, for backwards compatibility with the old
CommandBars collection.

In addition to COM add-ins and Access add-ins, Access 2007 also offers a brand-new option: using
the XML programming language to add controls to the Ribbon, powered by code written in VBA.
This technique is covered in Chapter 15.

Creating a COM Add-in Using
Visual Basic 6.0
When you create a COM add-in, instead of creating a library database with a USysRegInfo table (as
you would for an Access add-in), you create a VB project, with a special Designer module, a stan-
dard module, and (optionally) a form. When creating a COM add-in using VB 6, you can save time
by using a COM add-in project template. The one I use was created for use in the Developer
Edition of Office 2000, but with some minor modifications, it works fine in VB as well.

Using the COM Add-in Template
To make the COM add-in template available as one of the selections when creating a new VB proj-
ect, copy the COM Add-in template files to the Projects folder under the VB Templates folder (usu-
ally C:\Program Files\Microsoft Visual Studio\VB98\Template\Projects), as shown in Figure 13.1.

When you next open VB, you will see a COM Add-In selection as one of the available project tem-
plate choices, as shown in Figure 13.2.

Once you’ve selected the COM Add-In template and have clicked OK, a new project is created
based on the template, including a form, a module, and a designer. These objects are located in the
Project Explorer (on the right side of the VB window), as shown in Figure 13.3.

436

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 436

FIGURE 13.1

Copying the COM Add-In project files into the VB Projects folder.

FIGURE 13.2

The COM Add-In project template selection in VB 6.

437

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 437

FIGURE 13.3

A new VB project created from the COM Add-in project template.

To set a reference in a VB 6 project, drop-down the Project menu and select References, as shown
in Figure 13.4.

FIGURE 13.4

Opening the VB 6 References dialog.

For best functioning, a COM add-in designed to run in Access should have a reference
set to the Access and (if needed) DAO object libraries, as shown in Figure 13.5. If you

create your own COM add-in from scratch, you will probably need to set one or both of these refer-
ences; I have set them in the sample VB template project, so they are already checked in projects
made from this template.

NOTENOTE

438

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 438

FIGURE 13.5

References set to the Access and DAO object libraries in the VB References dialog.

You can now modify the form (if you need a form in your add-in), and the code in the standard
module and designer, to create a custom COM add-in for use in Access:

1. First open the designer and fill in the basic information about the add-in on its General
tab (the Advanced tab rarely needs to be modified from its default settings).

2. Enter the add-in’s display name and description in the “Addin Display Name” and “Addin
Description” boxes, then select the Office application (Access in this case) from the
Application drop-down list (see Figure 13.6). The currently running Office version is
automatically selected in the Application Version box.

3. Finally, select the add-in’s load behavior from the “Initial Load Behavior” drop-down —
Startup is the appropriate choice if you want the add-in to always be available in any
Access database (which is the usual case).

The SharedCode module (as its name suggests) contains code that applies to the entire add-in,
such as an error handler and the standard code that creates and removes the add-in’s toolbar but-
tons or menu items (for the rare case where a multi-application COM add-in puts a command on
the same menu or toolbar in each Office application).

The code in the Designer (which I named AccessDesigner to indicate that it is an Access Designer)
contains code specific to Access. (If you are creating a multi-application add-in, you need to create
one Designer for each Office application that your add-in supports). Some of the standard code in
the Designer works with the frmCOMAddIn form; if your add-in doesn’t need to display a form,
you can delete or comment out any code that references this form, but it is a good idea to leave all
the procedures in the module, in case you might need them later on.

439

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 439

Figure 13.6

Entering the COM add-in’s identifying information and other options in the Designer dialog.

The Designer code includes the procedures that implement the add-in’s functionality; they require
little (if any) modification from those that would run in an Access add-in.

Creating the LNC Control Renaming COM Add-in
The procedures that do the renaming of form and report controls in the LNC Control Renaming
COM add-in are basically the same as the LNC Rename Access add-in, which was covered in detail
in my earlier book Expert One-on-One Microsoft Access Application Development; this chapter concen-
trates on the differences needed to make the code work in a COM add-in.

For more details on the LNC Rename add-in, see my book Expert One-on-One Microsoft
Access Application Development (ISBN: 0764559044).

The SharedCode Module
Starting with a project created from the COM add-in project template, in the SharedCode module,
I removed the standard declarations (the only declarations I need are the ones in the
AccessDesigner module), and I also removed the standard AddToCommandBar and
DeleteFromCommandBar functions. Because I needed to create (and remove) two command bar
buttons, intended specifically for the Access Form Design and Report Design toolbars, I placed
those procedures in the Access Designer.

CROSS-REFCROSS-REF

440

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 440

I added the StripChars function to this module; it is called throughout the add-in to remove
various characters and spaces from control names during renaming, so as prevent problems when
the controls are referenced in code. I modified the standard template AddInErr procedure
slightly; it creates a message box string that is called from error handlers in the add-in. The
SharedCode module that contains these procedures is listed next:

Option Explicit

Public Function StripChars(strText _
As String) As String

Strips a variety of non-alphanumeric characters from a text string.

On Error GoTo ErrorHandler

Dim strTestString As String
Dim strTestChar As String
Dim lngFound As Long
Dim i As Integer
Dim strStripChars As String

strStripChars = “ `~!@#$%^&*()-_=+[{]};:’,<.>/?” _
& Chr$(34) & Chr$(13) & Chr$(10)

strTestString = strText

i = 1
Do While i <= Len(strTestString)

Find a strippable character.

strTestChar = Mid$(strTestString, i, 1)
lngFound = InStr(strStripChars, strTestChar)
If lngFound > 0 Then
strTestString = Left(strTestString, i - 1) _
& Mid(strTestString, i + 1)

Else
i = i + 1

End If
Loop

StripChars = strTestString

ErrorHandlerExit:
Exit Function

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Function

441

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 441

Public Sub AddInErr(errX As ErrObject)

Displays message box with error information

Dim strMsg As String

strMsg = _
“An error occurred in the “ & App.Title _
& vbCrLf & “Error #:” & errX.Number _
& vbCrLf & “Description: “ & errX.Description

MsgBox strMsg, , “Error!”

End Sub

The AccessDesigner Module
The COM add-in needs several entries in the Declarations section of the AccessDesigner module.
To open the designer module, open the Designers folder in the project tree, right-click the
AccessDesigner item, and select View Code from the context menu, as shown in Figure 13.7.

FIGURE 13.7

Opening the AccessDesigner code module.

The standard designer code needs some modifications to enable it to work with add-in events that
fire when the add-in is loaded or unloaded, or when the host application (Access in this case) starts
or shuts down. These events are implemented via the IDTExtensibility2 library, using the
Implements line at the beginning of the module.

442

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 442

The procedures starting with Private Sub IDTExtensibility2 are the events supported by
this library. You need to have all five event procedures in the Designer module, even though your
add-in may not use all of them. The ones I don’t need have only a comment line:

‘No code needed, but must have the event stub

COM add-ins generally put one or more buttons or commands on a toolbar or menu in the host
application; each one requires a WithEvents statement in the Declarations section of the
Designer module, to support code on the Click event of the button or command. My LNC Control
Renaming code has two such events, to support two toolbar buttons.

The remainder of the Declarations section contains groups of public and private variables for use in
various add-in procedures. The procedures in this module have the functionality described next:

n The OnConnection event procedure sets the command bar button variables, and uses
the CreateFormCommandBarButton and CreateReportCommandBarButton
functions to create the buttons on the Form Design (or Report Design) Access toolbars
(in older versions of Access), or in the Toolbar Commands group on the backward
compatibility Add-Ins tab of the Ribbon (in Access 2007 running on Windows XP).

n The OnDisconnection event procedure runs a function that removes the two com-
mand bar buttons when the add-in is disconnected by unloading the add-in from the
COM Add-Ins dialog (they are not removed when Access is closed).

n The two Click event procedures run the LNCRenameFormControls and
LNCRenameReportControls functions, which respectively rename form and
report controls.

An Access 2000–2003 command bar button has its OnAction property set to the name
of a macro (a Sub procedure with no arguments) that is run when the button is clicked;

the syntax is different for buttons placed on command bars from a COM add-in. Instead, the OnAction
property is set to the ProgId of the COM add-in, and the button’s Click event is handled by the Click
event procedure in the Designer module.

n The CreateFormCommandBarButton creates the Access toolbar button that renames
controls on open forms. The function first sets the pappAccess variable to the
Access.Application object, then sets a reference to the Form Design toolbar (where the
button will be placed), looking for an existing button on this toolbar, using its Tag prop-
erty, and creating it if it does not already exist.

n The CreateReportCommandBarButton procedure does a similar job for the Report
Design toolbar button that renames report controls.

n The RemoveAddInCommandBarButton function (called by the OnDisconnection
event procedure) removes the add-in’s command buttons.

n The LNCRenameFormControls and LNCRenameReportControls functions are
basically similar to the code in the Access LNC Rename add-in, so I will not discuss them
in detail. The main difference is that the COM add-in functions rename controls on the
open forms (or reports) only; the Rename Form Controls and Rename Report Controls
menu add-ins rename controls on all forms or reports, whether or not they are open.

NOTENOTE

443

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 443

The AccessDesigner code is listed next, with the specific modifications needed to implement the
add-in’s functionality, using the event procedures supported by the IDTExtensibility2 library to cre-
ate command bar buttons, and assign procedures to them. The module also contains the proce-
dures used to do control renaming:

Implements IDTExtensibility2

Private WithEvents frmcbb As Office.CommandBarButton
Private WithEvents rptcbb As Office.CommandBarButton

Global variable to store reference to host application (Access)

Public pappAccess As Access.Application

Regular variables for creating toolbar buttons

Private cbrMenu As Office.CommandBar
Private cbbAddIn As Office.CommandBarButton

Public variables for handling renaming

Public pctl As Access.Control
Public pdbs As DAO.Database
Public pfrm As Access.Form
Public pintRenameFail As Integer
Public pintReturn As Integer
Public plngControlType As Long
Public prpt As Access.Report
Public prst As DAO.Recordset
Public pstrMessage As String
Public pstrNewCtlName As String
Public pstrOldCtlName As String
Public pstrSQL As String
Public pstrSourceObject As String

Private variables for handling renaming

Private i As Integer
Private blnTag As Boolean
Private intTag As Integer
Private strPrefix As String
Private blnUnbound As Boolean
Private strControlSource As String
Private strCaption As String
Private strObjectName As String
Private strCtlName As String

444

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 444

Constants for characters surrounding ProgID

Const PROG_ID_START As String = “!<”
Const PROG_ID_END As String = “>”

Private Sub IDTExtensibility2_OnAddInsUpdate(custom() _
As Variant)

On Error GoTo ErrorHandler

‘No code needed, but must have the event stub

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Sub

Private Sub IDTExtensibility2_OnBeginShutdown(custom() _
As Variant)

On Error GoTo ErrorHandler

‘No code needed, but must have the event stub

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Sub

Private Sub IDTExtensibility2_OnConnection(ByVal _
Application As Object, ByVal ConnectMode _
As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

445

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 445

Calls shared code to create a new command bar button to rename controls on a form or report.

On Error GoTo ErrorHandler

Set frmcbb = CreateFormCommandBarButton(Application, _
ConnectMode, AddInInst)

Set rptcbb = CreateReportCommandBarButton(Application, _
ConnectMode, AddInInst)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Sub

Private Sub IDTExtensibility2_OnDisconnection(ByVal _
RemoveMode As AddInDesignerObjects.ext_DisconnectMode, _
custom() As Variant)

On Error GoTo ErrorHandler

Call common procedure to disconnect add-in.

RemoveAddInCommandBarButton RemoveMode

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Sub

Private Sub IDTExtensibility2_OnStartupComplete(custom() _
As Variant)

On Error GoTo ErrorHandler

‘No code needed, but must have the event stub

ErrorHandlerExit:
Exit Sub

446

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 446

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Sub

Private Sub frmcbb_Click(ByVal ctl As _
Office.CommandBarButton, CancelDefault As Boolean)

On Error Resume Next

Call LNCRenameFormControls

End Sub

Private Sub rptcbb_Click(ByVal ctl As _
Office.CommandBarButton, CancelDefault As Boolean)

On Error Resume Next

Call LNCRenameReportControls

End Sub

Public Function CreateFormCommandBarButton(ByVal _
Application As Object, ByVal ConnectMode _
As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object) As Office.CommandBarButton

On Error GoTo ErrorHandler

Store a reference to the Application object in a public variable so other procedures in the add-in
can use it.

Set pappAccess = Application

Return a reference to the command bar..

Set cbrMenu = pappAccess.CommandBars(“Form Design”)

Add a button to call the add-in from the command bar, if it doesn’t already exist.

Look for the button on the command bar.

Set cbbAddIn = _
cbrMenu.FindControl(Tag:=”Rename Form Controls”)

On Error Resume Next
If cbbAddIn Is Nothing Then

447

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 447

Add the new button.

Set cbbAddIn = _
cbrMenu.Controls.Add(Type:=msoControlButton, _

Parameter:=”Rename Form Controls”)

Set the button’s Caption, Tag, Style, and OnAction properties.

With cbbAddIn
.Caption = “Rename &Form Controls”
.Tag = “Rename Form Controls”
.Style = msoButtonCaption

Run the main add-in function.

.OnAction = PROG_ID_START & AddInInst.ProgId _
& PROG_ID_END

End With
End If

On Error GoTo ErrorHandler

Return a reference to the new command bar button.

Set CreateFormCommandBarButton = cbbAddIn

ErrorHandlerExit:
Exit Function

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Function

Public Function CreateReportCommandBarButton(ByVal _
Application As Object, ByVal ConnectMode As _
AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object) As Office.CommandBarButton

On Error GoTo ErrorHandler

Store a reference to the Application object in a public variable so other procedures in the add-in
can use it.

Set pappAccess = Application

448

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 448

Return a reference to the command bar..

Set cbrMenu = pappAccess.CommandBars(“Report Design”)

Add a button to call the add-in from the command bar, if it doesn’t already exist.

Look for the button on the command bar.

Set cbbAddIn = _
cbrMenu.FindControl(Tag:=”Rename Report Controls”)

If cbbAddIn Is Nothing Then

Add the new button.

Set cbbAddIn = _
cbrMenu.Controls.Add(Type:=msoControlButton, _

Parameter:=”Rename Report Controls”)

Set the button’s Caption, Tag, Style, and OnAction properties.

With cbbAddIn
.Caption = “Rename &Report Controls”
.Tag = “Rename Report Controls”
.Style = msoButtonCaption

Run the main add-in function.

.OnAction = PROG_ID_START & AddInInst.ProgId _
& PROG_ID_END

End With
End If

Return a reference to the new commandbar button.

Set CreateReportCommandBarButton = cbbAddIn

ErrorHandlerExit:
Exit Function

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Function

Function RemoveAddInCommandBarButton(ByVal _
RemoveMode As AddInDesignerObjects.ext_DisconnectMode)

449

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 449

This procedure removes the command bar buttons for the add-in if the user disconnected it.

On Error Resume Next

If the user unloaded the add-in, remove the button. Otherwise, the add-in is being unloaded
because the application is closing; in that case, leave button as is.

If RemoveMode = ext_dm_UserClosed Then

Delete the custom command bar buttons.

With pappAccess.CommandBars(“Form Design”)
.Controls(“Rename Form Controls”).Delete

End With

With pappAccess.CommandBars(“Report Design”)
.Controls(“Rename Report Controls”).Delete

End With
End If

ErrorHandlerExit:
Exit Function

ErrorHandler:
AddInErr Err
Resume ErrorHandlerExit

End Function

Public Function LNCRenameFormControls() As Variant

Renames all the controls on open forms.

On Error Resume Next

Generate table of control types to use in renaming controls (if it does not already exist).

CreateCTTable

On Error GoTo ErrorHandler

Determine whether any forms are open, and exit if not.

If pappAccess.Forms.Count = 0 Then
MsgBox “No forms are open; exiting”
GoTo ErrorHandlerExit

End If

450

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 450

Determine whether original the control names should be stored in the Tag property.

pstrMessage = _
“When processing form controls, should the original “ _
& “control name be saved to the control’s Tag “ _
& “property?”

intTag = MsgBox(pstrMessage, vbYesNo + vbQuestion + _
vbDefaultButton2, “Control Name Backup”)

If intTag = vbYes Then
blnTag = True

Else
blnTag = False

End If

Process the open forms.

For Each pfrm In pappAccess.Forms

For Each pctl In pfrm.Controls
strCtlName = pctl.Name
plngControlType = pctl.ControlType
blnUnbound = False

Select Case plngControlType

Controls with control source

Case acTextBox
strPrefix = “txt”
i = ControlCS(pctl, strPrefix, blnTag)

Case acComboBox
strPrefix = “cbo”
i = ControlCS(pctl, strPrefix, blnTag)

Case acCheckBox
strPrefix = “chk”
strControlSource = pctl.ControlSource
If blnUnbound = False Then

i = ControlCS(pctl, strPrefix, blnTag)
Else

i = ControlNA(pctl, strPrefix, blnTag)
End If

Case acBoundObjectFrame
strPrefix = “frb”
i = ControlCS(pctl, strPrefix, blnTag)

451

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 451

Case acListBox
strPrefix = “lst”
i = ControlCS(pctl, strPrefix, blnTag)

Case acOptionGroup
strPrefix = “fra”
i = ControlCS(pctl, strPrefix, blnTag)

Case acOptionButton
strPrefix = “opt”
strControlSource = pctl.ControlSource
If blnUnbound = False Then

i = ControlCS(pctl, strPrefix, blnTag)
Else

i = ControlNA(pctl, strPrefix, blnTag)
End If

Controls with caption only

Case acToggleButton
strPrefix = “tgl”
i = ControlCA(pctl, strPrefix, blnTag)

Case acLabel
strPrefix = “lbl”
i = ControlCA(pctl, strPrefix, blnTag)

Case acCommandButton
strPrefix = “cmd”
i = ControlCA(pctl, strPrefix, blnTag)

Controls with source object only

Case acSubform
strPrefix = “sub”
i = ControlSO(pctl, strPrefix, blnTag)

Controls with none of the above

Case acObjectFrame
strPrefix = “fru”
i = ControlNA(pctl, strPrefix, blnTag)

Case acImage
strPrefix = “img”
i = ControlNA(pctl, strPrefix, blnTag)

Case acTabCtl
strPrefix = “tab”
i = ControlNA(pctl, strPrefix, blnTag)

452

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 452

Case acLine
strPrefix = “lin”
i = ControlNA(pctl, strPrefix, blnTag)

Case acPage
strPrefix = “pge”
i = ControlNA(pctl, strPrefix, blnTag)

Case acPageBreak
strPrefix = “brk”
i = ControlNA(pctl, strPrefix, blnTag)

Case acRectangle
strPrefix = “shp”
i = ControlNA(pctl, strPrefix, blnTag)

End Select
Next pctl

Next pfrm

Call MsgBox(“All form controls renamed!”, _
vbOKOnly, “Done”)

ErrorHandlerExit:
Exit Function

ErrorHandler:

If an option button or checkbox is unbound, set blnUnbound to True so the code uses the NA
function instead of CS.

If Err.Number = 2455 Then
blnUnbound = True
Resume Next

Else
AddInErr Err
Resume ErrorHandlerExit

End If

End Function

[I am omitting the LNCRenameReportControls function from this listing, because it is sub-
stantially similar to the LNCRenameFormControls function.]

The following procedures rename form and report controls of various types. Controls are grouped
depending on whether or not they are bound, and other relevant properties. Each group of con-
trols (ControlCS, ControlCA, and so forth) needs different code to create an appropriate name for

453

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 453

the control. The bound controls, for example, create a name using the name of the bound field;
labels create a name using caption text, and so forth:

Public Function ControlCS(ctl As Access.Control, _
strPrefix As String, blnTag As Boolean) As Integer

Does group renaming of all controls with control sources on a form or report.

On Error GoTo ErrorHandler

Dim strControlSource As String

strControlSource = Nz(ctl.ControlSource)
pstrOldCtlName = ctl.ControlName

Check whether control already is correctly named and also special case for controls whose original
name starts with “Option” or “Frame” (same first three letters as prefix).

If Left(pstrOldCtlName, 3) = strPrefix And _
Left(pstrOldCtlName, 6) <> “Option” And _
Left(pstrOldCtlName, 3) = strPrefix And _
Left(pstrOldCtlName, 5) <> “Frame” Then
GoTo ErrorHandlerExit

If the control source is not empty, use it.

ElseIf strControlSource <> “” Then
pstrNewCtlName = strPrefix & _
StripChars(strControlSource)

Else

Otherwise, use the original control name.

pstrNewCtlName = strPrefix & _
StripChars(pstrOldCtlName)

End If

Fix name of “Page x of y” textbox controls on Database Wizard reports.

If pstrNewCtlName = “txtPagePageofPages” Then
pstrNewCtlName = “txtPages”

End If

Show the user

n the original control name

n the control type

n control source

n proposed new name

454

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 454

and ask if the new name is acceptable.

pintRenameFail = True
Do While pintRenameFail

pintRenameFail = False
pintReturn = MsgBox(_
“Rename “ & _
DLookup(“[ControlTypeName]”, _
“zLNCtblControlType”, _
“[ControlType] = “ & ctl.ControlType) _
& “ control currently named “ _
& pstrOldCtlName & vbCrLf & _
“(control source: “ & strControlSource & “) “ _
& “to” & vbCrLf & pstrNewCtlName & “?”, _

vbYesNo + vbQuestion + vbDefaultButton1, _
“Rename control”)

If the user clicks the Yes button, rename the control.

If pintReturn = vbYes Then
If blnTag = True Then

ctl.Tag = ctl.ControlName
End If
ctl.ControlName = pstrNewCtlName

Otherwise, pop up an input box to edit the name.

ElseIf pintReturn = vbNo Then
pstrNewCtlName = _

InputBox(“Modify new control name”, _
“Rename control”, pstrNewCtlName)
ctl.ControlName = pstrNewCtlName

End If
Loop

ErrorHandlerExit:
Exit Function

ErrorHandler:

If the proposed control name is already in use, return to the renaming dialog.

pintRenameFail = True
If Err.Number = 2104 Then

MsgBox “There is another control named “ & _
pstrNewCtlName & “; please try again”, , _
“Control Name Used”

pstrNewCtlName = pstrNewCtlName & “1”

455

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 455

Else
AddInErr Err
Resume ErrorHandlerExit

End If

Resume Next

End Function

Public Function ControlCA(ctl As Access.Control, _
strPrefix As String, blnTag As Boolean) As Integer

Does group renaming of all controls with captions on a form or report.

On Error GoTo ErrorHandler

Dim strCaption As String

pstrOldCtlName = ctl.ControlName
strCaption = ctl.Caption

If Left(pstrOldCtlName, 3) = strPrefix Then
Exit Function

ElseIf strCaption <> “” Then
If Left(strCaption, 3) = “frm” Then

pstrNewCtlName = strPrefix & _
Mid(StripChars(strCaption), 4)

ElseIf Left(strCaption, 4) = “fsub” Then
pstrNewCtlName = strPrefix & _

Mid(StripChars(strCaption), 5)
Else

pstrNewCtlName = strPrefix & _
StripChars(strCaption)

End If
ElseIf strCaption = “” Then

If Left(pstrOldCtlName, 3) = “frm” Then
pstrNewCtlName = strPrefix & _

Mid(StripChars(pstrOldCtlName), 4)
ElseIf Left(pstrOldCtlName, 4) = “fsub” Then

pstrNewCtlName = strPrefix & _
Mid(StripChars(pstrOldCtlName), 5)

Else
pstrNewCtlName = strPrefix & _

StripChars(pstrOldCtlName)
End If

End If

If Right(pstrNewCtlName, 12) = “SubformLabel” Then
pstrNewCtlName = Left(pstrNewCtlName, _

Len(pstrNewCtlName) - 12)

456

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 456

ElseIf Right(pstrNewCtlName, 5) = “Label” Then
pstrNewCtlName = Left(pstrNewCtlName, _

Len(pstrNewCtlName) - 5)
End If

pintRenameFail = True
Do While pintRenameFail

pintRenameFail = False
pintReturn = MsgBox(“Rename “ _

& DLookup(“[ControlTypeName]”, _
“zLNCtblControlType”, “[ControlType] = “ _
& ctl.ControlType) _
& “ control currently named “ & pstrOldCtlName _
& vbCrLf & “(caption: “ & strCaption & “) to” _
& vbCrLf & pstrNewCtlName & “?”, vbYesNo + _
vbQuestion + vbDefaultButton1, “Rename control”)

If pintReturn = vbYes Then
If blnTag = True Then ctl.Tag = ctl.ControlName
ctl.ControlName = pstrNewCtlName

ElseIf pintReturn = vbNo Then
pstrNewCtlName = _

InputBox(“Modify new control name”, _
“Rename control”, pstrNewCtlName)

ctl.ControlName = pstrNewCtlName
End If

Loop

ErrorHandlerExit:
Exit Function

ErrorHandler:

If the proposed control name is already in use, return to the renaming dialog.

pintRenameFail = True
If Err.Number = 2104 Then

MsgBox “There is another control named “ & _
pstrNewCtlName & “; please try again”, , _
“Control Name Used”

pstrNewCtlName = pstrNewCtlName & “1”
Else

AddInErr Err
Resume ErrorHandlerExit

End If

Resume Next

End Function

Public Function ControlSO(ctl As Access.Control, _
strPrefix As String, blnTag As Boolean) As Integer

457

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 457

Does group renaming of all controls with source objects on a form or report.

‘Called from RenameFormControls and RenameReportControls
‘in this module

On Error GoTo ErrorHandler

pstrOldCtlName = ctl.ControlName
pstrSourceObject = Nz(ctl.SourceObject)

If Left(pstrOldCtlName, 3) = strPrefix Then
Exit Function

ElseIf pstrSourceObject <> “” Then
If Left(pstrSourceObject, 3) = “frm” Then

pstrNewCtlName = strPrefix & _
Mid(StripChars(pstrSourceObject), 4)

ElseIf Left(pstrSourceObject, 4) = “fsub” Then
pstrNewCtlName = strPrefix & _

Mid(StripChars(pstrSourceObject), 5)
Else

pstrNewCtlName = strPrefix & _
StripChars(pstrSourceObject)

End If
ElseIf pstrSourceObject = “” Then

If Left(pstrOldCtlName, 3) = “frm” Then
pstrNewCtlName = strPrefix & _

Mid(StripChars(pstrOldCtlName), 4)
ElseIf Left(pstrOldCtlName, 4) = “fsub” Then

pstrNewCtlName = strPrefix & _
Mid(StripChars(pstrOldCtlName), 5)

Else
pstrNewCtlName = strPrefix & _

StripChars(pstrOldCtlName)
End If

Else
pstrNewCtlName = strPrefix & _

StripChars(pstrOldCtlName)
End If

If Right(pstrNewCtlName, 7) = “Subform” Then
pstrNewCtlName = Left(pstrNewCtlName, _

Len(pstrNewCtlName) - 7)
End If

pintRenameFail = True
Do While pintRenameFail

pintRenameFail = False
pintReturn = MsgBox(“Rename “ _

& DLookup(“[ControlTypeName]”, _
“zLNCtblControlType”, “[ControlType] = “ _

458

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 458

& ctl.ControlType) _
& “ control currently named “ & pstrOldCtlName _
& vbCrLf & “(source object: “ & pstrSourceObject _
& “) to” & vbCrLf & pstrNewCtlName & “?”, vbYesNo _
+ vbQuestion + vbDefaultButton1, “Rename control”)

If pintReturn = vbYes Then
If blnTag = True Then ctl.Tag = ctl.ControlName
ctl.ControlName = pstrNewCtlName

ElseIf pintReturn = vbNo Then
pstrNewCtlName = _

InputBox(“Modify new control name”, _
“Rename control”, pstrNewCtlName)

ctl.ControlName = pstrNewCtlName
End If

Loop

ErrorHandlerExit:
Exit Function

ErrorHandler:

If the proposed control name is already in use, return to the renaming dialog.

pintRenameFail = True
If Err.Number = 2104 Then

MsgBox “There is another control named “ & _
pstrNewCtlName & “; please try again”, , _
“Control Name Used”

pstrNewCtlName = pstrNewCtlName & “1”
Else

AddInErr Err
Resume ErrorHandlerExit

End If
Resume ErrorHandlerExit

End Function

Public Function ControlNA(ctl As Access.Control, _
strPrefix As String, blnTag As Boolean) As Integer

Does group renaming of all controls not fitting the other categories on a form or report.

‘Called from RenameFormControls and RenameReportControls
‘in this module

On Error GoTo ErrorHandler

pstrOldCtlName = ctl.ControlName

459

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 459

Special case for lines whose default name is “Line” or “Option” (same first three letters as the stan-
dard prefix).

If Left(pstrOldCtlName, 3) = strPrefix And _
Left(pstrOldCtlName, 6) <> “Option” And _
Left(pstrOldCtlName, 4) <> “Line” Then
Exit Function

Else
pstrNewCtlName = strPrefix _

& StripChars(pstrOldCtlName)
End If

pintRenameFail = True
Do While pintRenameFail

pintRenameFail = False
pintReturn = MsgBox(“Rename “ & _

DLookup(“[ControlTypeName]”, _
“zLNCtblControlType”, “[ControlType] = “ _
& ctl.ControlType) & “ control currently named “ _
& pstrOldCtlName & “ to” & vbCrLf _
& pstrNewCtlName & “?”, vbYesNo + vbQuestion _
+ vbDefaultButton1, _
“Rename control”)

If pintReturn = vbYes Then
If blnTag = True Then ctl.Tag = ctl.ControlName
ctl.ControlName = pstrNewCtlName

ElseIf pintReturn = vbNo Then
pstrNewCtlName = _

InputBox(“Modify new control name”, _
“Rename control”, pstrNewCtlName)

ctl.ControlName = pstrNewCtlName
End If

Loop

ErrorHandlerExit:
Exit Function

ErrorHandler:

If the proposed control name is already in use, return to the renaming dialog.

pintRenameFail = True
If Err.Number = 2104 Then

MsgBox “There is another control named “ & _
pstrNewCtlName & “; please try again”, , _
“Control Name Used”

pstrNewCtlName = pstrNewCtlName & “1”
Else

AddInErr Err

460

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 460

End If
Resume ErrorHandlerExit

End Function

Public Function CreateCTTable()
‘Called from LNCRenameFormControls and
‘LNCRenameReportControls function
‘in this module

Dim strCTTable As String

strCTTable = “zLNCtblControlType”

Delete the old table, if there is one.

Set pdbs = CurrentDb
strCTTable = “zLNCtblControlType”
On Error Resume Next
pdbs.TableDefs.Delete strCTTable

On Error GoTo ErrorHandler

Generate the table of control types to use in renaming controls. If there is a “table not found” error,
exit function.

pstrSQL = “CREATE TABLE “ & strCTTable & _
“(ControlType LONG, ControlTypeName TEXT (50));”

DoCmd.RunSQL pstrSQL

Append data to the table of control types.

Set pdbs = CurrentDb
Set prst = pdbs.OpenRecordset(strCTTable, dbOpenTable)
With prst

.AddNew
!ControlType = 100
!ControlTypeName = “Label”
.Update
.AddNew
!ControlType = 101
!ControlTypeName = “Rectangle”
.Update
.AddNew
!ControlType = 102
!ControlTypeName = “Line”
.Update
.AddNew

461

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 461

!ControlType = 103
!ControlTypeName = “Image”
.Update
.AddNew
!ControlType = 104
!ControlTypeName = “Command Button”
.Update
.AddNew
!ControlType = 105
!ControlTypeName = “Option Button”
.Update
.AddNew
!ControlType = 106
!ControlTypeName = “Check Box”
.Update
.AddNew
!ControlType = 107
!ControlTypeName = “Option Group”
.Update
.AddNew
!ControlType = 108
!ControlTypeName = “Bound Object Frame”
.Update
.AddNew
!ControlType = 109
!ControlTypeName = “Text Box”
.Update
.AddNew
!ControlType = 110
!ControlTypeName = “List Box”
.Update
.AddNew
!ControlType = 111
!ControlTypeName = “Combo Box”
.Update
.AddNew
!ControlType = 112
!ControlTypeName = “Subform/Subreport”
.Update
.AddNew
!ControlType = 114
!ControlTypeName = “Object Frame”
.Update
.AddNew
!ControlType = 118
!ControlTypeName = “Page Break”
.Update
.AddNew

462

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 462

!ControlType = 122
!ControlTypeName = “Toggle Button”
.Update
.AddNew
!ControlType = 123
!ControlTypeName = “Tab Control”
.Update
.AddNew
!ControlType = 124
!ControlTypeName = “Page”
.Update
.Close

End With

ErrorHandlerExit:
Exit Function

ErrorHandler:
If Err.Number = 3010 Then

Control types table already exists.

Exit Function
Else

AddInErr Err
Resume ErrorHandlerExit

End If

End Function

Creating the DLL
After modifying the code in the SharedCode and AccessDesigner modules as needed, save the project
with a meaningful name (I named the sample COM add-in “LNC Control Renaming”). The project
name will also be used as the name of the DLL file when you make that file. The final step is creating
the add-in’s DLL by selecting File, Make Project Name.dll (with the actual project name replacing the
“Project Name”). If there are any syntax errors in the project, you will get an error message at this
point, and you can correct the errors and try again, until the DLL is successfully created.

To rename a VB project, select the project (the top line in the Project Explorer) and
modify its name property in the properties sheet. To modify a Designer’s name, open it,

then select it and modify its name in the properties sheet. The name you give a VB project is the one
that will be used by default when creating a DLL.

Installing a COM Add-in
If you copy the DLL file created by a COM add-in to the default Add-ins folder (usually C:\Documents
and Settings\User Name\Application Data\Microsoft\AddIns), its button(s) should automatically appear
in the Toolbar Commands group of the Add-Ins tab of the Ribbon (as shown in Figure 13.8); at least
if you are running Windows XP.

TIPTIP

463

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 463

FIGURE 13.8

A COM add-in button on the Add-Ins tab of the Ribbon in Access 2007.

If you don’t see your COM add-in’s button(s) in an Access database after copying the DLL file
to the Add-ins folder, you can install the add-in from the COM Add-Ins dialog, which can be
opened from the Add-ins page of the Access Options dialog. To install a COM add-in manually,
do the following:

1. For Windows Vista only, run Access as an administrator by right-clicking the
MSACCESS.EXE file in the Office 12 subfolder under the Microsoft Office folder,
and selecting “Run as administrator” from its right-click context menu.

2. In an Access database, click the Office button, then click the Access Options button at the
lower right, as shown in Figure 13.9.

FIGURE 13.9

Opening the Access Options dialog.

3. Select the Add-ins page on the Access Options dialog to see your installed add-ins (you’ll
see both Access and COM add-ins listed there, plus one or more add-ins that are installed
with Office). If your add-in is listed in the “Inactive Application Add-Ins” group, you will
need to install it in the COM Add-ins dialog.

464

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 464

4. To install or uninstall COM add-ins, select COM Add-ins in the drop-down list at the
bottom of the screen, as shown in Figure 13.10.

FIGURE 13.10

The Add-ins page of the Access Options dialog.

5. On clicking OK, you will see the old COM Add-Ins dialog, the same as in Access 2003, as
shown in Figure 13.11.

FIGURE 13.11

The COM Add-Ins dialog box.

465

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 465

6. The name displayed in the “Add-Ins available” list is the one entered as the add-in’s name
in the Designer, but curiously, the description entered into the Designer’s Description
field does not appear on this dialog.

7. If your COM add-in doesn’t appear in the list of available add-ins, click the Add button to
browse for it; after locating it, click OK in the Add Add-In dialog, as shown in Figure 13.12.

FIGURE 13.12

Browsing for a COM Add-in DLL file.

8. The COM add-in should now appear in the COM Add-Ins dialog. You can check its
checkbox (if needed) and close the dialog; its button(s) should then appear on the Add-
Ins tab of the Ribbon, in the appropriate context; for example, a button intended to dis-
play on the Form Design toolbar (like the one shown in Figure 13.6) will appear when
you have a form open in design view.

In Access 2000 through 2003, COM add-in buttons appeared on the designated toolbar
or menu; in the case of this add-in, that would be the form or report design toolbar. In

Access 2007, all the buttons appear directly on the Toolbar Commands group on the Add-Ins tab. If you
are running Windows Vista, you won’t see the Add-Ins tab unless you run Access as an administrator, as
described in Step 1 above.

You can clear the add-in’s checkbox to temporarily unload it, or you can select it and click Remove
to uninstall it completely.

Troubleshooting a COM Add-in
If you copy the LNC Renaming.dll file to another computer, install the add-in, and find that you
get an error message when running it from its button, open the LNC Renaming.vpb file in VB 6
and make the DLL again; this should fix the problem.

NOTENOTE

466

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 466

To reopen a COM add-in for editing, double-click the .vbp (VB project) file. You need to have any
supporting files (.bas, .dsr, and .frm) in the same folder as the .vpb file, because they are all part of
the project.

If your COM add-in isn’t behaving as you expect, first unload it (from the COM Add-ins menu),
then close Access and reopen a database to see if it now works. This can fix problems that may
occur when an old version of the COM add-in code is being run instead of the current version.

If you have a database open with the COM add-in loaded, you will get a “Permission
denied” message when trying to make the DLL, because the DLL is being used. Close

any open databases and try again, and you should be able to save the modified DLL.

Next, check for duplicates of the DLL file (perhaps backup copies) that might be running instead
of the current version of the DLL. In my experience, even DLLs not located in the AddIns folder
may be run, so it’s best to have only one DLL on your computer for any given add-in (the latest
version). Backup copies can be transferred to another computer, to a disc, or zipped, to prevent
confusion.

If you find that code referencing Access objects isn’t running (with no error message, or an inap-
propriate error message, such as “No Forms Open” when you have forms open), you may need to
add a specific Access application reference to your code. Specifically, whereas COM add-in code in
an Access Designer using just Forms to reference the Access Forms collection, or Reports to ref-
erence the Reports collection of a database, ran fine in earlier versions of Office, in Office 2007 the
Access application variable pappAccess must be used, so the current syntax needs to be
pappAccess.Forms instead of just Forms.

If you change the name of a toolbar button created by a COM add-in, you may see the old button
on the toolbar, instead of (or in addition to) the new one. To remove the old button, add a line of
code to the RemoveAddInCommandBarButton function to remove the button, using the but-
ton’s old name instead of “Old Control Name”:

.Controls(“Old Control Name”).Delete

Create a new DLL, open an Access database to load the add-in, then unload the add-in from the
COM Add-Ins dialog to run the code with the extra line once. Close Access, reopen the VB project,
delete the line, and re-create the DLL. That should get rid of the old button.

Using a COM Add-in
Using a COM add-in is easy: just click the button it placed on the Add-Ins tab of the Ribbon, as
shown in Figure 13.8. To rename controls on any open Access forms, for example, open a form in
design view, and click the Rename Form Controls button on the Add-Ins tab. You will first get a
message asking if you want to save the original control names to their Tag property, as shown in
Figure 13.13.

WARNING WARNING

467

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 467

FIGURE 13.13

A COM add-in question.

Saving the original control name to the Tag property can occasionally be useful, especially when
you are renaming controls in a database created by someone else, and you may need to know the
original control name in order to fix a reference later on. However, the default choice is No,
because mostly there is no need to save the original control name.

After selecting a choice, the code then proceeds to cycle through the open forms and, for each
form, cycle through its controls. For any control that doesn’t have the appropriate control prefix, a
new name is created, and presented for approval in a message box, as shown in Figure 13.14.

FIGURE 13.14

A proposed new control name.

Generally, the new name can be accepted as is; occasionally (for example, for labels with very
lengthy captions, or controls with expressions), the new name needs to be edited, which is done by
clicking No and then editing the control name in an InputBox.

Even in Access 2007, when you create a new bound form using the Form button in the Create tab
of the Ribbon, all bound controls will have the same names as their fields, which can lead to circu-
lar reference errors when running code. Thus, it is a good idea to run the Rename Form Controls
(or Rename Report Controls) command immediately after creating a bound form or report, before
writing any code that references its fields or controls.

468

Adding More Functionality to OfficePart III

19_047026 ch13.qxp 4/2/07 9:54 PM Page 468

Comparing COM Add-ins with
Access Add-ins
In previous versions of Office, COM add-ins had an advantage compared to Access add-ins: you
could place a button on any menu or toolbar, whereas Access menu add-ins only appeared on the
Add-ins menu. Although VB 6 COM add-ins do work in Access 2007, they have lost this advan-
tage over Access add-ins, because all commands created by a COM add-in now appear in the
Toolbar Commands group of the Add-Ins tab of the Ribbon, not in the appropriate group or tab of
the Ribbon.

You can add groups, buttons, and menu selections to the Ribbon using XML; this tech-
nique is discussed in Chapter 15.

Compared to COM add-ins, Access add-ins have several extra features: you can create not only
menu add-ins, but also wizards of various types, and builders; this lets you add functionality to dif-
ferent locations in an Access database. In Access 2000 through 2003, you could create wizards that
would appear as extra choices on the New Form dialog, though in Access 2007 this must now be
done using XML to modify the Ribbon. However, property builders that run from various proper-
ties still work fine in Access 2007 (at least if you are running Windows XP), so my LNC Rename
add-in can be run from the Name property of a control to rename an individual control; this func-
tionality can’t be duplicated in a COM add-in.

Summary
In this chapter you learned how to create a VB 6 COM add-in that works with Access 2007, placing
buttons in the Toolbar Commands group of the Add-Ins tab of the Ribbon. If you have a VB 6
add-in created in a previous version of Office, you can modify it slightly so that it will work in
Access 2007, reusing your code. If, on the other hand, you want to learn a new programming lan-
guage so you can put groups and buttons on specific tabs of the Ribbon, see the next two chapters
for working with Ribbon XML and Visual Studio 2005 add-ins.

CROSS-REFCROSS-REF

469

Creating COM Add-ins with Visual Basic 6 13

19_047026 ch13.qxp 4/2/07 9:54 PM Page 469

19_047026 ch13.qxp 4/2/07 9:54 PM Page 470

Most of the sample databases for earlier chapters included objects
from the Access 2007 Backup database, used to make incremen-
tally numbered database backups. In order to use this feature in a

database, you need to import several objects from Access 2007 Backup.accdb
into the current database, and set a reference to the Microsoft Scripting
Runtime library, which is a nuisance. It would be much more convenient to
just have backup available in all your Access databases, say from a menu
command.

An Access add-in will do just that, encapsulating a set of database objects and
code into a single package that is available to all Access databases. In this
chapter I use as an example an Access add-in (Extras 2007.accda, that includes
an enhanced version of the Backup code (from basBackup in Access 2007
Backup.accdb), with some enhancements: a setup form for specifying the
backup folder; and a set of objects and code that let you print out lists of
tables or queries, and their fields, excluding those with user-specified
prefixes — very handy for when you need to know which fields are in which
tables during database development, or for documenting the database structure.

The sample database for this chapter is Extras 2007.accda.

If you are attempting to install an add-in in Access 2007
running on Windows Vista, you may get the security warning

shown in Figure 14-1. This is probably because you are not running Access
as an administrator. To run Access as an administrator, right-click the
MSACCESS.EXE file in the Office 12 subfolder under the Microsoft Office
folder, and select “Run as administrator,” then open an Access database and
install the add-in. This is not a problem when installing add-ins for Access 2007
running on Windows XP.

CAUTION CAUTION

NOTENOTE

471

IN THIS CHAPTER
Creating Access menu add-ins

Creating Access wizards

Creating Access property
builders

Special considerations and
troubleshooting for Access
add-ins

Creating Access Add-ins

20_047026 ch14.qxp 4/2/07 9:54 PM Page 471

FIGURE 14.1

A security warning when attempting to install an Access add-in for Access 2007 running on Windows
Vista.

The Purpose of Access Add-ins
An Access add-in is a library database (an Access database with the extension .mda for Access
97–2003, or .accda for Access 2007) containing the objects and modules needed to support the
add-in’s functionality, and a special system table called UsysRegInfo with the Registry key informa-
tion needed to install the add-in. Add-ins are typically stored in the default Microsoft AddIns folder
(C:\Documents and Settings\User Name\Application Data\Microsoft\AddIns), which was also the
default Access add-ins folder for Access 2003). In Access 2007 the default folder for Microsoft’s
own add-ins is the ACCWIZ folder under the Office folder (on my system, this is E:\Microsoft
Office 2007 Beta\Office12\ACCWIZ). However, it is a good idea to keep your own add-ins in the
main AddIns folder (C:\Documents and Settings\User Name\Application Data\Microsoft\AddIns for
Windows XP or C:\Users\ User Name \AppData\Roaming\Microsoft\AddIns for Windows Vista)
rather than mixed in with the ones installed by Office.

An add-in is installed using the Access Add-ins Manager (opened from the Add-Ins menu on the
Database Tools tab of the Ribbon), and once an add-in has been installed, it can be used in any
Access database.

Access add-ins created in earlier versions of Access (as .mda library databases) will gen-
erally run in Access 2007 running on Windows XP, at least if they don’t have conflicts

with the new interface. For example, my LNC Rename.mda add-in, which renames database objects
and controls according to the Leszynski Naming Convention, works fine in Access 2007, although it
doesn’t process controls bound to fields of the new Attachment data type. An older add-in that cre-
ates custom menu bars, however, will definitely have problems, because the new Ribbon replaces the
old command bars interface. In Windows Vista, security features currently prevent add-ins that create
Wizards or Property Builders from running (this problem is scheduled to be fixed in an upcoming
Service Patch).

Add-in Types
There are three types of Access add-ins, with several subtypes, as listed in Table 14.1.

All these types of add-ins are stored as wizards in the Registry. Sometimes you will see a Builder or
Menu add-in referred to as a wizard, but I will reserve the term wizard for the add-ins that are
invoked when a new object is created, as listed in the Wizard column of Table 14.1.

NOTENOTE

472

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 472

TABLE 14.1

Types of Access Add-ins

Wizard Builder Menu Add-in

Called when a new table, Lets you set properties in Not context-specific, called from
query, form, report, or design view the Add-ins menu
control is created

Subtypes

Table Wizards Property Builders

Query Wizards Expression Builders

Form Wizards

Report Wizards

Control Wizards

Creating a Library Database
This section walks you through creating a library database. To do this, start by creating a new
Access database in the database format of your choice. You can create and save a database directly
in the older .mda library database format, but for the new .accda format, you need to first create
the database as an .accdb database, then change its extension to .accda later, in an Explorer pane,
ignoring the dire warning that the file might become unusable.

Next, you need to create the USysRegInfo table to hold the crucial Registry information. As a short-
cut, you can import this table from another library database (either .mda or .accda format), if you
have one available; you may have to first make system tables visible, as described in this section. I
recommend importing this table, because it will save you time in entering some very cryptic infor-
mation, though of course you have to add (or modify) rows in the table with specific data for your
add-in.

The USysRegInfo table is a system table, so you won’t see it (or be able to edit its contents) unless
you check the “Show System Objects” checkbox. In previous versions of Access, this checkbox was
located on the View page of the Options dialog; in Access 2007 it is on the Navigation Options dia-
log, which can be opened in the following manner:

1. Click the Office button in the upper-left corner of the Access window.

2. Next, click the Access Options button on the Office menu, as shown in Figure 14.2.

473

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 473

FIGURE 14.2

The Access 2007 Office menu.

3. On the Access Options dialog, select the Current Database section, as shown in
Figure 14.3.

FIGURE 14.3

The Current Database section of the Access Options dialog box.

474

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 474

4. Click the Navigation Options button to open the Navigation Options dialog, where
finally you can check the “Show System Objects” checkbox, as shown in Figure 14.4.

FIGURE 14.4

Checking the “Show System Objects” checkbox on the Navigation Options dialog.

5. Click OK to close the Navigation Options dialog, and again to close the Access Options
dialog.

In the Tables section of the Navigation Pane, you will now see a number of system tables, starting
with the prefix MSys, and displayed in a dimmed font (Figure 14.5). If you imported the
USysRegInfo table from another database, you will see it there too, although curiously, it is not
dimmed.

You don’t have to do anything special to make the USysRegInfo table a system table; a table with
this name is automatically categorized as a system table. If you are creating the table from scratch,
refer to Table 14.2 for a listing of the necessary fields and their data types.

475

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 475

FIGURE 14.5

System tables in the Navigation Pane.

TABLE 14.2

The USysRegInfo Table Fields

Field Data Type Usage

Subkey Text The name of the Registry subkey where a specific Registry setting is stored; can
be either HKEY_CURRENT_ACCESS_PROFILE or HKEY_LOCAL_MACHINE.
For Access add-ins, the HKEY_CURRENT_ACCESS_PROFILE is preferable,
because it automatically uses the Registry section for the running version of
Access, allowing the same add-in to work in multiple Access versions.

Type Number The type of entry to create; can be key (0), string (1), or DWORD (4)

ValName Text The name of the Registry value

Value Text The value of the Registry value

If you create the USysRegInfo table from scratch, you will get an error when entering
the name “Value” for the last field (as shown in Figure 14.6). This is because Microsoft

has violated its own rules by giving a field a name that is a reserved word (in this case, a property
name). However, you can save the field, and it does work. Don’t change the field name, because each
field in this table must have a specific name to work correctly.

NOTENOTE

476

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 476

FIGURE 14.6

An error when creating the Value field in the UsysRegInfo table.

If you copy the USysRegInfo table from another add-in, it has a default value of GenUniqueID()
for the Type field, and also has some useful information in the Description column telling you the
value needed for each field data type, as shown in Figure 14.7.

FIGURE 14.7

An imported USysRegInfo table with Description information.

Each type of add-in requires a set of records in the USysRegInfo table, as described in the following
sections. The Extras 2007 add-in that is the sample add-in for this chapter is a set of menu add-ins,
which will be described in detail; for the other add-in types I will reference two add-ins that I cre-
ated in earlier versions of Access.

You might think that add-ins would be found on the Add-Ins tab of the Ribbon in Access
2007 (this tab may not be visible if you are running Windows Vista). But this is not the

case. Your Access add-ins are located on the Add-ins menu of the Database Tools tab. The Add-Ins tab
has a set of menus like those in previous versions of Access, except that they don’t work. The purpose
of these non-functional menus is to display commands placed on the Access 2003 (or earlier) menus
by add-ins working with the CommandBars collection. This is a very awkward method of implement-
ing backwards compatibility; if you have such an add-in, you will probably want to redo it to place
commands on various tabs of the Ribbon, as described in Chapter 15.

NOTENOTE

477

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 477

Menu Add-ins
A menu add-in needs three rows in the USysRegInfo table, each with an appropriate value in the
Type field, and some with values in the ValName or Value field as well, as described in detail next:

n In the first row of the add-in, the Subkey field (which is the same for all the add-in’s
rows) has the Registry key information, referencing the Menu Add-Ins section under the
HKEY_CURRENT_ACCESS_PROFILE key (which references the currently running ver-
sion of Access), and ending with the command name to display on the Add-Ins menu,
with an ampersand if desired to make a hot key. The Type field has a value of 0, indicat-
ing the start of a new add-in. The ValName and Value fields are blank.

n In the second row of the add-in, the Type field has a value of 1, the ValName field has the
value “Library,” and the Value field has the location and name of the library database,
using the |ACCDIR\ placeholder to point to the AddIns folder (in earlier versions of
Access, this was the Access folder itself, which explains the name).

n In the add-in’s third row, the Type field has a value of 1, the ValName field has the value
“Expression,” and the Value field has the name of function to run (preceded by an equals
sign, and followed by a pair of parentheses).

In Table 14.3, which lists the three rows for the “Back up Database” command on the AddIns
menu, the italicized text is the information specific to this add-in; the other information is com-
mon to all menu add-ins.

When creating a UsysRegInfo table for an Access 2007 add-in that is to be run in
Windows Vista, you need to change the capitalization of “Menu Add-ins” to Menu Add-

Ins” (capitalizing the I); if you leave it lowercased as for previous versions of Office and Windows,
you will not be able to install the add-in.

TABLE 14.3

USysRegInfo Rows Needed for a Menu Add-in

Subkey Type ValName Value

HKEY_CURRENT_ACCESS_PROFILE\Menu Add-Ins\ 0
&Back up Database

HKEY_CURRENT_ACCESS_PROFILE\Menu Add-Ins\ 1 Library |ACCDIR\Extras 2007.accda
&Back up Database

HKEY_CURRENT_ACCESS_PROFILE\Menu Add-Ins\ 1 Expression =BackupFrontEnd()
&Back up Database

If you make copies of your add-in library database from time to time while working on it
(always a good idea), don’t save the copies in the AddIns folder, because otherwise they

will show up as extra selections in the Add-In Manager dialog, and it may not be clear which is the lat-
est version of the add-in when installing it, or which version is running when you use the add-in.

TIPTIP

TIPTIP

478

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 478

Wizards
My Design Schemes add-in (which finally can be retired because of the superior formatting features
of Access 2007) contains several Form Wizard add-ins.

Form Wizard add-ins need four rows in the USysRegInfo table, as described in the following list
(the syntax is similar for Report wizards):

n In the first row of the add-in, the Subkey field (which is the same for all the add-in’s
rows) has the Registry key information, referencing the Form Wizards section under the
HKEY_CURRENT_ACCESS_PROFILE key (which references the currently running ver-
sion of Access), and ending with the command name to display on the Add-Ins menu,
with an ampersand if desired to make a hot key. The Type field has a value of 0, indicat-
ing the start of a new add-in. The ValName and Value fields are blank.

n In the add-in’s second row, the Type field has a value of 1, the ValName field has the value
“Description”, and the Value field has text to display on the initial wizard screen — in the
case of the Custom Form Wizard, that is the New Form dialog.

n In the add-in’s third row, the Type field has a value of 1, the ValName field has the value
“Library”, and the Value field has the location and name of the library database, using the
|ACCDIR\ placeholder to point to the AddIns folder.

n In the add-in’s fourth row, the Type field has a value of 1, the ValName field has the value
“Function”, and the Value field has the name of the function to run (without an equals sign).

Table 14.4 lists the USysRegInfo rows for the Custom Form Wizard command on the AddIns menu
from the Design Schemes add-in.

TABLE 14.4

USysRegInfo Rows Needed for a Form Wizard Add-in

Subkey Type ValName Value

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 0
Form Wizards\Custom Form Wizard

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Description Select a form type and color
Form Wizards\Custom Form Wizard scheme for form background

colors and control properties

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Library |ACCDIR\Design Schemes.mda
Form Wizards\Custom Form Wizard

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Function StartDSWizard
Form Wizards\Custom Form Wizard

479

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 479

In a menu add-in, the function called from the add-in is preceded by an equals sign; in a
wizard add-in, there is no equals sign.

Property Builders
My LNC Rename add-in (originally created in Access 97 and updated for Access 2000) is still use-
ful in Access 2007 running on Windows XP, because Microsoft has not yet implemented automatic
object and control naming according to a naming convention. This add-in lets you automatically
rename database objects and form and report controls according to the Leszynski Naming
Convention. It includes several menu add-ins and two property builders, which run from the
Name property of a control (for renaming a single control) or the Detail section of a form or report
(for renaming all controls in a form or report).

For more details on the LNC Rename add-in, see my book Expert One-on-One Microsoft
Access Application Development (ISBN: 0764559044).

Property builders require five rows in the USysRegInfo table, as described in the following list:

n In the first row of the add-in, the Subkey field (which is the same for all the add-in’s
rows) has the Registry key information, referencing the Property Wizards section under
the HKEY_CURRENT_ACCESS_PROFILE key (which references the currently running
version of Access), and ending with the command name to display on the Add-Ins menu,
with an ampersand if desired to make a hot key. The Type field has a value of 0, indicat-
ing the start of a new add-in. The ValName and Value fields are blank.

n In the add-in’s second row, the Type field has a value of 1, the ValName field has the value
“Description”, and the Value field has text to display on the Builder dialog — in the case
of the LNCBuilder property wizard, that is the Choose Builder dialog opened from the
Name property of a control’s properties sheet.

n In the add-in’s third row, the Type field has a value of 4, the ValName field has the value
“Can Edit”, and the Value field has a value of 1, indicating that the wizard can be called
for an existing object.

n In the add-in’s fourth row, the Type field has a value of 1, the ValName field has the value
“Library”, and the Value field has the location and name of the library database, using the
|ACCDIR\ placeholder to point to the AddIns folder.

n In the add-in’s fifth row, the Type field has a value of 1, the ValName field has the value
“Function”, and the Value field has the name of the function to run (without an equals
sign).

Table 14.5 lists the USysRegInfo rows for the property wizard for renaming a single control from
the LNC Rename add-in.

CROSS-REFCROSS-REF

NOTENOTE

480

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 480

TABLE 14.5

USysRegInfo Rows Needed for a Property Builder

Subkey Type ValName Value

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 0
Property Wizards\Name\LNC Builder

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Description LNC Rename Current Control
Property Wizards\Name\LNC Builder

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 4 Can Edit 1
Property Wizards\Name\LNC Builder

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Library |ACCDIR\LNC Rename.mda
Property Wizards\Name\LNC Builder

HKEY_CURRENT_ACCESS_PROFILE\Wizards\ 1 Function LNCBuilder
Property Wizards\Name\LNC Builder

Strictly speaking, a library database contains add-ins (usually several), but usually the
entire library database is referred to as an add-in.

Things You Need to Know When
Writing Add-ins
There are several things to keep in mind when you attempt to write your own add-ins. Some are
pitfalls that can prevent the add-in from functioning, and others are recommendations for good
add-in design.

Special Requirements for Add-in Code
n When you run an add-in, the code is running from another database (the add-in library

database), and you need to take this into account when referencing database objects in
your code. If you want to use an object in the library database, use CodeDb to set a refer-
ence to that database; if you want to reference an object in the calling database, use
CurrentDb (both CodeDb and CurrentDb are used in the Extras 2007 add-in code).

n Only functions can be run from the Registry; all the procedures referenced in the
USysRegInfo table must be functions, even a procedure that would normally be a Sub
(because it doesn’t return a value). However, other procedures used in the add-in library
database (the ones that are not run directly from the Registry, and are not referenced in
the USysRegInto table) can be subs.

NOTENOTE

481

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 481

n An add-in can display forms, usually as unbound dialogs. Typically, all add-ins except
menu add-ins use one or more forms (and menu add-ins can use forms too). The Extras
2007 add-in has a setup form where users can enter information that will be used by var-
ious procedures in the add-in.

n You can reference tables in the add-in library database using the CodeDb syntax, which
lets you store add-in data in tables if needed. This is useful when you want to store infor-
mation that will be used for all databases running the add-in, for example the lists of table
and query prefixes for excluding tables and queries from listing, in the Extras 2007 add-in.

n Replace macros and queries with code run from public functions, so they can be run
directly from the library’s module(s).

n Bound forms run from an add-in have as their record source tables in the code database,
not the calling database. If the form needs to display data from the calling database, it
must be copied to a table in the code database after being filled with data from the calling
database, as I do in the Extras 2007 add-in for backup options, and table and query
fields.

n The DDL CreateTable statement creates a table in the current database; if you need to
create a table in the code database, you have to use the more complex TableDef
method in DAO, specifying CodeDb as the database in which to create the table.

n An add-in intended to work in both Access 2007 and earlier versions of Access may need
to process both .mdb and .accdb extensions, or deal with the new Attachment data type.

n When the CopyObject method is run from an add-in, the code looks for the source
object (the SourceObjectName argument) first in the library database, and then in the
current database. This may require you to create a copy of a table, say with “Blank” at the
end of its name, in order to copy a fresh, blank table to the calling database, overwriting a
filled table, as I do in the Extras 2007 add-in code. Otherwise, you will end up copying
the filled table from the calling database back to itself.

n When run from a library database, the RunSQL method of the DoCmd object works on
tables in the calling database, and the OpenQuery method works on tables in the code
database.

Tips on Add-in Construction
When creating Wizard-type add-ins, you can make then more user-friendly by modeling their
appearance after the built-in Access add-ins. Access 2007 has many new interface features, but the
wizards look much the same as in earlier versions (Access 97–2003), though there may be some
cosmetic differences if you are running Office 2007 over Windows Vista. To make your Wizard
forms look like the familiar Access wizards and builders, use the settings listed here:

n Set forms’ AutoCenter property to Yes.

n Turn record selectors off.

n Set scroll bars to Neither.

482

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 482

n Turn navigation buttons off.

n If your wizard has several forms, make sure that controls used on more than one form in
a series of wizard screens appear in the same place on each form.

n Make all the wizard forms dialog boxes by setting their Modal property to Yes, PopUp to
Yes, and BorderStyle to Dialog, so the user can’t move to the next box until the current
one has been filled in.

n Copy wizard images from the Access wizards, save them as image files, and place them on
your wizard forms.

The Extras Add-in Code
The code that implements the add-in’s functionality for creating backup copies of the database or
its back end, and for listing table and query fields, is listed in the next section.

Extras Options
The fdlgExtrasOptions form module contains the code behind the Extras Options dialog, where
you can set up your preferences for the backup save folder, or the prefixes to exclude when listing
fields:

Option Compare Database
Option Explicit

Private dbsCalling As DAO.Database
Private fd As Office.FileDialog
Private intChoice As Integer
Private prps As DAO.Properties
Private prp As DAO.Property
Private strBackupChoice As Integer
Private strBackupPath As String
Private strCallingDb As String
Private strPropName As String
Private strTable As String
Private tdfs As DAO.TableDefs
Private tdf As DAO.TableDef
Private txt As Access.TextBox
Private varPropValue As Variant

Private Sub cmdCancel_Click()

On Error Resume Next

DoCmd.Close acForm, Me.Name, acSaveNo

End Sub

483

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 483

Private Sub cmdCustomBackupPath_Click()

On Error GoTo ErrorHandler

Dim strSelectedPath As String

Create a FileDialog object as a Folder Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFolderPicker)
Set txt = Me![txtBackupPath]

With fd
.title = _

“Browse for folder where backups should be stored”
.ButtonName = “Select”
.InitialView = msoFileDialogViewDetails
.InitialFileName = strBackupPath
If .Show = -1 Then

strSelectedPath = CStr(fd.SelectedItems.Item(1))
txt.Value = strSelectedPath
Set dbsCalling = CurrentDb
strPropName = “BackupPath”
Call SetProperty(strName:=strPropName, _

lngType:=dbText, varValue:=strSelectedPath)
Else

Debug.Print “User pressed Cancel”
End If

End With

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Sub

Private Sub cmdSave_Click()

On Error Resume Next

DoCmd.Close acForm, Me.Name

End Sub

Private Sub Form_Load()

484

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 484

On Error Resume Next

DoCmd.RunCommand acCmdSizeToFitForm

On Error GoTo ErrorHandler

intChoice = Nz(Me![BackupChoice], 2)

Select Case intChoice

Case 1
Me![cmdCustomBackupPath].Enabled = False

Case 2
Me![cmdCustomBackupPath].Enabled = False

Case 3
Me![cmdCustomBackupPath].Enabled = True

End Select

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Sub

Private Sub fraBackupOptions_AfterUpdate()

On Error GoTo ErrorHandler

intChoice = Nz(Me![fraBackupOptions].Value, 2)
strBackupChoice = CStr(intChoice)
strBackupPath = Nz(Me![BackupPath])

Select Case intChoice

Case 1
Me![cmdCustomBackupPath].Enabled = False

Case 2
Me![cmdCustomBackupPath].Enabled = False

Case 3
Me![cmdCustomBackupPath].Enabled = True

End Select

485

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 485

Save the user’s choice to a database property in the calling database.

Set dbsCalling = CurrentDb
strPropName = “BackupChoice”
Call SetProperty(strName:=strPropName, _

lngType:=dbText, varValue:=strBackupChoice)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Sub

basExtras Module
The basExtras standard module contains functions that are called from the USysRegInfo table:

Public Function ExtrasOptions()
‘Called from USysRegInfo (menu add-in)

On Error GoTo ErrorHandler

Dim strBackEndSyntaxChoice As String
Dim strBackEndSyntax As String
Dim strBackEndPathChoice As String
Dim strBackEndPath As String
Dim strDefault As String

Get info from database properties in the calling database, and write them to zstblBackupChoices in
the code database for use as form’s record source:

Set dbsCalling = CurrentDb
strPropName = “BackupChoice”
strDefault = “2”
strBackupChoice = GetProperty(strPropName, strDefault)
Debug.Print “Backup choice: “ & strBackupChoice

strPropName = “BackupPath”
strDefault = “”
strBackupPath = GetProperty(strPropName, strDefault)
Debug.Print “Backup path: “ & strBackupPath

strTable = “zstblBackupChoice”
Set dbsCode = CodeDb
Set rst = dbsCode.OpenRecordset(strTable)

486

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 486

rst.MoveFirst
rst.Edit
rst![BackupChoice] = strBackupChoice
rst![BackupPath] = strBackupPath
rst.Update
rst.Close

On Error Resume Next

Copy the zstblBackupInfo table to the calling database, if needed:

strCallingDb = CurrentDb.Name
strTable = “zstblBackupInfo”
Set tdfsCalling = dbsCalling.TableDefs
Set tdfCalling = tdfsCalling(strTable)
If tdfCalling Is Nothing Then

Debug.Print strTable & “ not found; about to copy it”
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

Debug.Print “Copied “ & strTable
End If

Open the dialog form for selecting options:

strForm = “fdlgSetExtrasOptions”
DoCmd.OpenForm FormName:=strForm, _

view:=acNormal, _
windowmode:=acDialog

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Function

Public Function CopyListObjects()
‘Called from listTableFields() and ListQueryFields()

On Error Resume Next

Dim ctr As DAO.Container
Dim doc As DAO.Document

487

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 487

Copy various objects to the calling database, if they don’t already exist. These objects are needed to
support the add-in’s functionality:

Set dbsCalling = CurrentDb
strCallingDb = CurrentDb.Name
Set tdfsCalling = dbsCalling.TableDefs
strTable = “zstblAccessDataTypes”
Set tdfCalling = tdfsCalling(strTable)
DoCmd.SetWarnings False
If tdfCalling Is Nothing Then

Debug.Print strTable & “ not found; about to copy it”
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

End If

Set ctr = dbsCalling.Containers(“Reports”)
strReport = “zsrptTableAndFieldNames”
Set doc = ctr.Documents(strReport)
If doc Is Nothing Then

DoCmd.CopyObject destinationdatabase:=strCallingDb, _
newname:=strReport, _
sourceobjectType:=acReport, _
sourceobjectname:=strReport

End If

strReport = “zsrptQueryAndFieldNames”
Set doc = ctr.Documents(strReport)
If doc Is Nothing Then

DoCmd.CopyObject destinationdatabase:=strCallingDb, _
newname:=strReport, _
sourceobjectType:=acReport, _
sourceobjectname:=strReport

End If

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Function

488

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 488

Back up Database
The BackupFrontEnd function is called from the USysRegInfo table to back up the current data-
base to the path selected in the Extra Options dialog:

Public Function BackupFrontEnd()
‘Called from USysRegInfo

On Error GoTo ErrorHandler

Set dbsCalling = CurrentDb
Set tdfsCalling = dbsCalling.TableDefs
Set fso = CreateObject(“Scripting.FileSystemObject”)
strCurrentDB = Application.CurrentProject.Name
Debug.Print “Current db: “ & strCurrentDB
intExtPosition = InStr(strCurrentDB, “.”)
strExtension = Mid(strCurrentDB, intExtPosition)
intExtLength = Len(strExtension)

Create the backup path string depending on the user’s choice, with a default of 2 (“Backups folder
under the database folder”) in case the user has not made a choice:

strPropName = “BackupChoice”
strBackupChoice = GetProperty(strPropName, “2”)
Debug.Print “Backup choice: “ & strBackupChoice
strPropName = “BackupPath”
strPath = GetProperty(strPropName, “”)
Debug.Print “Custom backup path: “ & strPath

Select Case strBackupChoice

Case “1”

Same folder as database

strBackupPath = _
Application.CurrentProject.Path & “\”

Case “2”

Backups folder under database folder

strBackupPath = _
Application.CurrentProject.Path & “\Backups\”

Case “3”

489

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 489

Custom folder

strBackupPath = strPath & “\”

End Select

Debug.Print “Backup path: “ & strBackupPath

Check whether the path is valid.

On Error Resume Next

Set sfld = fso.GetFolder(strBackupPath)
If sfld Is Nothing Then

If strBackupChoice = “3” Then
strTitle = “Invalid path”
strPrompt = strBackupPath _

& “ is an invalid path; please select “ _
& “another custom path”

MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

ElseIf strBackupChoice = “2” Then

Create folder.

Set sfld = fso.CreateFolder(strBackupPath)
End If

End If

If setup has not been done, copy zstblBackupInfo to the calling database:

strCallingDb = CurrentDb.Name
strTable = “zstblBackupInfo”
Set tdfCalling = dbsCalling.TableDefs(strTable)

If tdfCalling Is Nothing Then
Debug.Print strTable & “ not found; about to copy it”
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

Debug.Print “Copied “ & strTable
End If

Create a proposed save name for the backup database file:

strDayPrefix = Format(Date, “mm-dd-yyyy”)
strSaveName = Left(strCurrentDB, _

Len(strCurrentDB) - intExtLength) & “ Copy “ & SaveNo _
& “, “ & strDayPrefix & strExtension

490

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 490

strProposedSaveName = strBackupPath & strSaveName
Debug.Print “Backup save name: “ & strProposedSaveName
strTitle = “Database backup”
strPrompt = “Save database to “ & strProposedSaveName _

& “?”
strSaveName = Nz(InputBox(prompt:=strPrompt, _

title:=strTitle, Default:=strProposedSaveName))

Deal with user canceling out of the InputBox.

If strSaveName = “” Then
GoTo ErrorHandlerExit

End If

Set rst = dbsCalling.OpenRecordset(“zstblBackupInfo”)
With rst

.AddNew
![SaveDate] = Format(Date, “d-mmm-yyyy”)
![SaveNumber] = SaveNo
.Update
.Close

End With

fso.CopyFile Source:=CurrentDb.Name, _
destination:=strSaveName

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number & “; Description: “ & _

err.Description
Resume ErrorHandlerExit

End Function

Back up Back End Database
The BackupBackEnd function is called from the USysRegInfo table to back up the current data-
base’s back end (if there is one) to the path selected in the Extra Options dialog:

Public Function BackupBackEnd()
‘Called from USysRegInfo

On Error GoTo ErrorHandler

Dim strBackEndDBNameAndPath As String
Dim strBackEndDBName As String
Dim strBackEndDBPath As String
Dim strFilePath As String

491

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 491

Dim strFullDBName As String
Dim strFileName As String
Dim strFullPath() As String
Dim strDBName As String
Dim intUBound As Integer
Dim strConnect As String

Set dbsCalling = CurrentDb
Set tdfsCalling = dbsCalling.TableDefs
Set fso = CreateObject(“Scripting.FileSystemObject”)
strCurrentDB = Application.CurrentProject.Name
Debug.Print “Current db: “ & strCurrentDB
strDayPrefix = Format(Date, “mm-dd-yyyy”)
intExtPosition = InStr(strCurrentDB, “.”)
strExtension = Mid(strCurrentDB, intExtPosition)
intExtLength = Len(strExtension)
strExcludeTable = “zstblTablePrefixes”

Create backup path string depending on user choice.

strPropName = “BackupChoice”
strBackupChoice = GetProperty(strPropName, “2”)
Debug.Print “Backup choice: “ & strBackupChoice
strPropName = “BackupPath”
strPath = GetProperty(strPropName, “”)
Debug.Print “Custom backup path: “ & strPath

Check whether there are any linked tables, and exit if not.

strBackEndDBNameAndPath = “”

On Error Resume Next

Get back end database name from Connect property of a table.

For Each tdfCalling In tdfsCalling
strTable = tdfCalling.Name
Debug.Print “Table name: “ & strTable
strConnect = Nz(tdfCalling.Connect)
Debug.Print “Connect property: “ & strConnect
If strConnect <> “” Then

strBackEndDBNameAndPath = Mid(strConnect, _
InStr(strConnect, “=”) + 1)

Debug.Print “Back end db name and path: “ _
& strBackEndDBNameAndPath

GoTo ContinueBackup
End If

Next tdfCalling

On Error GoTo ErrorHandler

492

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 492

No linked tables found.

strTitle = “No back end”
strPrompt = “There are no linked tables in this database; “ _

& “please use the Back up Database command instead”
MsgBox strPrompt, vbExclamation + vbOKOnly, strTitle
GoTo ErrorHandlerExit

ContinueBackup:

Extract back end name and path from Connect property string.

strFullPath = Split(strBackEndDBNameAndPath, “\”, -1, _
vbTextCompare)

intUBound = UBound(strFullPath)
strBackEndDBName = strFullPath(intUBound)
strBackEndDBPath = Mid(strBackEndDBNameAndPath, 1, _

Len(strBackEndDBNameAndPath) - Len(strBackEndDBName))
Debug.Print “Database name: “ & strBackEndDBName
Debug.Print “Database path: “ & strBackEndDBPath

On Error Resume Next

Check whether back end path is valid.

Set sfld = fso.GetFolder(strBackEndDBPath)
If sfld Is Nothing Then

strTitle = “Invalid path”
strPrompt = strBackEndDBPath _

& “ is an invalid path; please re-link tables and try
again”

MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

End If

If setup has not been done, copy zstblBackupInfo to calling database.

strCallingDb = CurrentDb.Name
strTable = “zstblBackupInfo”
Set tdfCalling = dbsCalling.TableDefs(strTable)

If tdfCalling Is Nothing Then
Debug.Print strTable & “ not found; about to copy it”
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

Debug.Print “Copied “ & strTable
End If

493

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 493

Select Case strBackupChoice

Case “1”

Same folder as back end database

strBackupPath = strBackEndDBPath

Case “2”

Backups folder under back end database folder

strBackupPath = strBackEndDBPath & “Backups\”

Case “3”

Custom folder

strBackupPath = strPath

End Select

Debug.Print “Backup path: “ & strBackupPath

On Error Resume Next

Recheck whether selected path is valid.

Set sfld = fso.GetFolder(strBackupPath)
If sfld Is Nothing Then

If strBackupChoice = “3” Then
strTitle = “Invalid path”
strPrompt = strBackupPath _
& “ is an invalid path; please select another custom

path”
MsgBox strPrompt, vbOKOnly + vbExclamation, strTitle
GoTo ErrorHandlerExit

ElseIf strBackupChoice = “2” Then

Create folder.

Set sfld = fso.CreateFolder(strBackupPath)
End If

End If

On Error GoTo ErrorHandler

Create proposed save name for backup.

strDayPrefix = Format(Date, “mm-dd-yyyy”)
strSaveName = Left(strBackEndDBName, _

494

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 494

Len(strBackEndDBName) - intExtLength) _
& “ Copy “ & BackEndSaveNo _
& “, “ & strDayPrefix & strExtension

strProposedSaveName = strBackupPath & strSaveName
Debug.Print “Backup save name: “ & strProposedSaveName
strTitle = “Database backup”
strPrompt = “Save back end database to “ _

& strProposedSaveName & “?”
strSaveName = Nz(InputBox(prompt:=strPrompt, _

title:=strTitle, Default:=strProposedSaveName))

Deal with user canceling out of the InputBox.

If strSaveName = “” Then
GoTo ErrorHandlerExit

End If

Set rst = dbsCalling.OpenRecordset(“zstblBackupInfo”)
With rst

.AddNew
![BackEndSaveDate] = Format(Date, “d-mmm-yyyy”)
![BackEndSaveNumber] = BackEndSaveNo
.Update
.Close

End With

fso.CopyFile Source:=strBackEndDBNameAndPath, _
destination:=strSaveName

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Function

List Query Fields
The ListQueryFields function (called from the USysRegInfo table) lists the fields in all the
select queries in the database, using the QueryDefs collection of the DAO object model:

Public Function ListQueryFields()
‘Called from USysRegInfo

On Error Resume Next

Call CopyListObjects

495

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 495

Set dbsCode = CodeDb
Set dbsCalling = CurrentDb

Delete old table in code database (if there is one).

strTable = “zstblQueryAndFieldNames”
Set tdfsCode = dbsCode.TableDefs
Set tdfCode = tdfsCode(strTable)
If Not tdfCode Is Nothing Then

tdfsCode.Delete (strTable)
End If

Delete old table in calling database (if there is one).

Set tdfsCalling = dbsCalling.TableDefs
Set tdfCalling = tdfsCalling(strTable)
If Not tdfCalling Is Nothing Then

tdfsCalling.Delete (strTable)
End If

Create a new, blank table in the code database to fill with data:

DoCmd.CopyObject destinationdatabase:=strCodeDB, _
newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable & “Blank”

Fill the table in the code database with table and field names from the calling database:

Set rst = dbsCode.OpenRecordset(strTable, dbOpenTable)
strExcludeTable = “zstblQueryPrefixes”

For Each qdf In dbsCalling.QueryDefs
strQuery = qdf.Name
Debug.Print “Query name: “ & strQuery
If ExcludePrefix(strQuery, strExcludeTable) = _

False Then
Set flds = qdf.Fields
For Each fld In flds

strFieldName = fld.Name
With rst

.AddNew
!QueryName = strQuery
!FieldName = strFieldName
!DataType = fld.Type
!Required = fld.Required
.Update

End With
Next fld

End If

496

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 496

Next qdf

rst.Close

Copy the filled table to the calling database so it will be available for printing in the calling
database:

strTable = “zstblQueryAndFieldNames”
Set tdfCode = dbsCode.TableDefs(strTable)
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

DoCmd.OpenTable strTable

strTitle = “Table filled”
strPrompt = “Print report now?”
intReturn = MsgBox(strPrompt, vbQuestion + vbYesNo, _

strTitle)
If intReturn = vbYes Then

strReport = “zsrptQueryAndFieldNames”
DoCmd.OpenReport strReport

End If

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Function

List Table Fields
The ListTableFields function (called from the USysRegInfo table) lists the fields in all the
tables in the database, using the TableDefs collection of the DAO object model:

Public Function ListTableFields()
‘Called from USysRegInfo

On Error Resume Next

Call CopyListObjects
Set dbsCode = CodeDb
Set dbsCalling = CurrentDb

497

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 497

Delete the old table in code database (if there is one):

strTable = “zstblTableAndFieldNames”
Set tdfsCode = dbsCode.TableDefs
Set tdfCode = tdfsCode(strTable)
If Not tdfCode Is Nothing Then

tdfsCode.Delete (strTable)
End If

Delete the old table in the calling database (if there is one):

Set tdfsCalling = dbsCalling.TableDefs
Set tdfCalling = tdfsCalling(strTable)
If Not tdfCalling Is Nothing Then

tdfsCalling.Delete (strTable)
End If

Create a new, blank table in the code database to fill with data:

DoCmd.CopyObject destinationdatabase:=strCodeDB, _
newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable & “Blank”

Fill the table in the code database with table and field names from the calling database:

Set rst = dbsCode.OpenRecordset(strTable, dbOpenTable)
strExcludeTable = “zstblTablePrefixes”

For Each tdfCalling In dbsCalling.TableDefs
strTable = tdfCalling.Name
If ExcludePrefix(strTable, strExcludeTable) = _

False Then
Set flds = tdfCalling.Fields
For Each fld In flds

strFieldName = fld.Name
With rst

.AddNew
!TableName = strTable
!FieldName = strFieldName
!DataType = fld.Type
!ValidationRule = fld.ValidationRule
!Required = fld.Required
.Update

End With
Next fld

End If
Next tdfCalling

rst.Close

498

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 498

Copy the filled table to the calling database so it will be available for printing in the calling database:

strTable = “zstblTableAndFieldNames”
Set tdfCode = dbsCode.TableDefs(strTable)
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

DoCmd.OpenTable strTable

strTitle = “Table filled”
strPrompt = “Print report now?”
intReturn = MsgBox(strPrompt, vbQuestion + vbYesNo, _

strTitle)
If intReturn = vbYes Then

strReport = “zsrptTableAndFieldNames”
DoCmd.OpenReport strReport

End If

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Function

Other Procedures
The SetProperty and GetProperty functions are called from various procedures in the add-
in to save values to custom database properties, or retrieve values from them:

Public Sub SetProperty(strName As String, lngType As Long, _
varValue As Variant)

‘Called from various procedures

On Error GoTo ErrorHandler

Attempt to set the specified property:

Set dbsCalling = CurrentDb
Set prps = dbsCalling.Properties
prps(strName) = varValue

ErrorHandlerExit:
Exit Sub

499

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 499

ErrorHandler:
If err.Number = 3270 Then

The property was not found; create it:

Set prp = dbsCalling.CreateProperty(Name:=strName, _
Type:=lngType, Value:=varValue)

dbsCalling.Properties.Append prp
Resume Next

Else
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End If

End Sub

Public Function GetProperty(strName As String, _
strDefault As String) As Variant

‘Called from various procedures

On Error GoTo ErrorHandler

Attempt to get the value of the specified property:

Set dbsCalling = CurrentDb
GetProperty = dbsCalling.Properties(strName).Value

ErrorHandlerExit:
Exit Function

ErrorHandler:
If err.Number = 3270 Then

The property was not found; use default value:

GetProperty = strDefault
Resume Next

Else
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End If

End Function

500

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 500

The SaveNo and BackEndSaveNo functions create an incremented number for the database (or
back-end database) copies:

Public Function SaveNo() As String
‘Called from BackupFrontEnd()

On Error GoTo ErrorHandler

Create a unique incrementing save number for today:

intDayNo = Nz(DMax(“[SaveNumber]”, “zstblBackupInfo”, _
“[SaveDate] = Date()”))

Debug.Print “Day no. “ & intDayNo
strNextNo = CStr(intDayNo + 1)
Debug.Print “Next No. “ & strNextNo
SaveNo = strNextNo

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number & “; Description: “ & _

err.Description
Resume ErrorHandlerExit

End Function

Public Function BackEndSaveNo() As String
‘Called from BackupBackEnd()

On Error GoTo ErrorHandler

Create a unique save number for today:

intDayNo = Nz(DMax(“[BackEndSaveNumber]”, _
“zstblBackupInfo”, _
“[BackEndSaveDate] = Date()”))

Debug.Print “Back end Day no. “ & intDayNo
strNextNo = CStr(intDayNo + 1)
Debug.Print “Back end Next No. “ & strNextNo
BackEndSaveNo = strNextNo

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & err.Number & “; Description: “ & _

err.Description
Resume ErrorHandlerExit

End Function

501

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 501

Finalizing the Add-in
After getting your functions, forms, and other objects to work correctly, the final step is to enter
identifying information into specific properties of the library database’s properties sheet, to give
users information about the add-in when it is listed in the Add-In Manager dialog. The information
about an add-in that appears in the Add-In Manager dialog comes from the Summary page of the
add-in database’s properties sheet. To open the properties sheet for the add-in, select File, Manage,
Database Properties, as shown in Figure 14.8.

FIGURE 14.8

Opening the database properties sheet.

Once opened, the properties sheet looks like the one in Access 2003 (shown in Figure 14.9).

The text you enter in the library database’s properties sheet is used as follows:

n The Title field’s value is displayed as the add-in’s name in the list of available add-ins.

n The value of the Company field (not the Author field, as you might expect) appears as the
add-in author’s name under the list of available add-ins.

n The Comments field’s value appears as the add-in’s description at the bottom of the Add-
In Manager dialog.

502

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 502

FIGURE 14.9

Entering the add-in’s identification information in the properties sheet.

Troubleshooting Add-ins
If you need to step through add-in code to determine what is causing a problem, you have two
options. One is to place a Stop statement in the add-in code, which will stop the code at that point
when it is executing, so you can step through the code from that point. To do this, you must first
close any open database, then open the add-in library database and add the Stop statement, save
and close the add-in, then open a database and run the add-in that has the Stop statement in its
code. Later, you will need to remove the Stop statement from the add-in code in a similar fashion.

The other (and quicker) alternative is to set a reference to the library database, so you can open its
code modules and place breakpoints, and even modify the code temporarily, to test various alterna-
tives. To set a reference to an Access add-in library database, complete the following steps:

If you plan to set a reference to a library database so you can step through its code eas-
ily (as described next), give its Visual Basic project a meaningful name, so it will say

“Extras” (or whatever) instead of “Project1” in the References dialog. To name the VB project, open
the Visual Basic window, select the project row (the top row) in the Project Explorer, and rename it in
the Name property of the properties sheet, as shown in Figure 14.10.

TIPTIP

503

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 503

FIGURE 14.10

Renaming an add-in’s project.

1. Open a module in any Access database, and select Tools, References to open the
References dialog, as shown in Figure 14.11.

FIGURE 14.11

The References dialog in Access 2007.

504

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 504

2. Click the Browse button to browse for the add-in library database, and select Add-ins
(*.mda) in the Files of Type drop-down list, if you are setting a reference to an Access
2003 or earlier (.mda) library database, or All Files (*.*) to set a reference to an Access
2007 (.accda) library database (see Figure 14.12).

FIGURE 14.12

Setting a reference to an Access 2002-2003 library database.

3. Click Open to set the reference; the project name of the add-in now appears checked in
the References dialog, as shown in Figure 14.13.

FIGURE 14.13

A reference to an add-in library database.

505

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 505

4. Now you can see the add-in project in the Project Explorer, and open its module(s) and
work with them much like modules in the current database, as shown in Figure 14.14.

FIGURE 14.14

Opening an add-in module in the Visual Basic window of a database.

Though you can edit code in a library database after setting a reference to it, and run
the code to test whether the modifications fix a problem, the changes aren’t saved to

the library database, so save any modified code to a text file, which you can then copy and paste into
the library database when you next open it directly.

Interpreting Add-in Error Messages
You may get this error message (Figure 14.15) when running (or attempting to run) an add-in in
Access 2007.

FIGURE 14.15

An error message when running an add-in.

CAUTION CAUTION

506

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 506

Sometimes this error occurs when you have made changes to the add-in, but Access is still running
the old code. In case this is the cause of the problem, try uninstalling the add-in from the Add-In
Manager dialog, then reinstall it. In some cases, this will fix the problem. If you still get the error
message after reinstalling the add-in, it may be because you created a sub instead of a function for
use in the USysRegInfo table (only functions can be called from the Registry), or you changed the
name of the function to be called, so the one in the Registry can’t be found. Check that the func-
tion entries in the USysRegInfo table match the function names in the library database (and that
the called procedures are functions, not subs).

If a form in your add-in doesn’t appear when the function that should open it is run, without any
error message, this may be because the form’s record source is missing. You won’t get an error; the
form just doesn’t open. Check that the form’s record source exists, and is located in the code data-
base, not the calling database. In some cases it may be necessary to fill a table in the calling data-
base, and then copy it back to the code database to use as a form’s record source, as I do in the
Extras add-in.

If you get a “This feature is not installed” error message when trying to run the add-in, it might
result from any number of errors in the add-in’s code. First, check for problems in the following
areas:

n Incorrect syntax in an add-in function (for example, the wrong number or type of argu-
ments).

n Mismatch between the function name in the USysRegInfo table and the code module.

n The add-in’s name was changed, but the reference to it in the USysRegInfo table still has
the old name.

n General syntax errors in the add-in code.

n The add-in code has not been compiled.

Then, complete the following steps:

1. First uninstall the database and close Access.

2. Open the library database, fix any errors, and compile the add-in database.

3. Repeat as needed until the add-in runs without errors.

Installing an Add-in
An add-in only needs to be installed once in any Access database; after it is installed, it is available
to all Access databases. To install the Extras 2007 add-in, first copy the library database to your
AddIns folder. In Access 2007 running on Windows XP, the AddIns folder is in the same place as
in Office 2003, C:\Documents and Settings\User Name\Application Data\Microsoft\AddIns; if you
are running Windows Vista, the Addins folder is in J:\Users\Helen Feddema\AppData\Roaming\
Microsoft\AddIns.

507

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 507

If you are attempting to install an add-in in Access 2007 running on Windows Vista, you may
get a security warning. In that case, try running Access as an administrator, by right-clicking the
MSACCESS.EXE file in the Office 12 subfolder under the Microsoft Office folder, and selecting
the “Run as administrator” selection. Now, you should be able to install the add-in.

Another Vista requirement: In the USysRegInfo table, change the capitalization of “Menu Add-ins”
(to “Menu Add-Ins”, with a capital I). According to Microsoft, this case sensitivity will be addressed
in an upcoming service patch, but you need to make the change to enable menu add-ins to work in
Vista right now.

If you prefer to keep your own add-ins in a custom folder, you can add another folder to the list of
trusted locations by selecting File, Access Options, and then selecting the Trust Center page of the
Access Options dialog, as shown in Figure 14.16.

See the “Getting Your Add-ins to Work in Vista” sidebar in Chapter 15 for more informa-
tion about the specific requirements for installing add-ins in Windows Vista.

FIGURE 14.16

The Trust Center page of the Access Options dialog box.

Click the Trust Center Settings button and select the Trusted Locations page. Next, use the “Add new
location” button to add the folder where you want to store your add-ins, as shown in Figure 14.17.

CROSS-REFCROSS-REF

508

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 508

Next, open any Access database, and select the Database Tools tab of the Ribbon, click the Add-Ins
drop-down in the Database Tools group, and select Add-In Manager (see Figure 14.18).

FIGURE 14.17

Adding a folder to the Trusted Locations group.

FIGURE 14.18

Opening the Add-In Manager in Access 2007.

Once you have opened the Add-In Manager, it looks just like the familiar dialog from earlier ver-
sions of Access, listing the add-ins that are found in the AddIns folder, and letting you install or
uninstall them. To install the Extras 2007 add-in, select it and click the Install button, as shown in
Figure 14.19.

509

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 509

FIGURE 14.19

Installing the Extras 2007 add-in.

After clicking Install, an x appears to the left of the installed add-in, and when you close the Add-
In Manager, several new selections appear on the Add-Ins menu, as shown in Figure 14.20.

FIGURE 14.20

Add-ins from the Extras 2007.accda library database on the Add-Ins menu.

The three menu add-ins starting with “Rename” at the bottom of the list are from my
LNC Rename add-in.

Using the Extras 2007 Add-in
After installing the Extras 2007.accda add-in, you can run its three menu add-ins from the Add-Ins
menu, which is found in the Database Tools group on the Database Tools Ribbon.

If you are creating an add-in that can be used in several versions of Access (it doesn’t
need any special new features of Access 2007, and doesn’t create menus or toolbars

that will only work in older versions), create the add-in in an older format, so it can run in both the
older version(s) and Access 2007. The LNC Rename.mda add-in will run in any version of Access from
Access 2000 through Access 2007, at least if you are running on Windows XP.

TIPTIP

NOTENOTE

510

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 510

Extras Options
This selection opens a setup dialog (shown in Figure 14.21) with an option group for selecting the
folder for storing database backups, and two subforms listing the table and query prefixes for
tables and queries you would like to omit when using the List Query Fields or List Table Fields
add-ins. These tables are pre-filled with system prefixes, dashes and underscores, and “Copy Of”
(the latter is the prefix used in Access 2007 object copies).

If you select the Custom Path option, a command button is enabled that opens a Folder Picker dia-
log where you can select a custom backup folder. The backup choice is stored separately for each
database, using database properties; the prefixes, however, are stored in the code database, so they
are the same for all databases.

You don’t need to open the Extras setup dialog to use the other menu add-ins; if you haven’t made
any selections, the code uses the default backup choice of option 2 (Backups folder under database
folder), and the standard prefixes.

511

Creating Access Add-ins 14

Signing Add-in Code with a Digital Signature — Not!

You may be used to signing code in Access 2003 (or earlier) databases with a digital signature (see
the "Creating a Digital Signature for Signing Your Access VBA Code" Sidebar in Chapter 12 for

details on how to create your personal digital signature). It might seem like a good idea to sign an
Access 2007 add-in's code with a digital signature—but if you try it, you will run into roadblocks.
After creating a personal digital signature, if you try to select the signature from Tools, Digital
Signature in the add-in's module window, you will get a lengthy and puzzling message (see the fig-
ure below). Note that the .accda format is not mentioned.

You can follow the instructions for an .accdb database, and select File, Publish, Package and Sign
from the library database, select the digital signature, and create a signed package (it will have the
.accdc extension). But if you attempt to install the .accdc file as an add-in, you will get an
"Unrecognized database format" error message, and you can't install the signed package file. Thus
(at the present time, at least) there is no way to digitally sign an Access 2007 add-in library database.

20_047026 ch14.qxp 4/2/07 9:54 PM Page 511

FIGURE 14.21

The Extras 2007 add-ins Setup dialog.

Back up Database
This option makes a backup of the current database (either a standalone database or a front-end
database), presenting the proposed name of the database copy in an InputBox, so you can edit it if
desired, for example to add specific information about a milestone achieved. The InputBox is
shown in Figure 14.22.

Back up Back End Database
This option makes a backup of the current database’s back end database, if there is one, and puts
up an informative message if the database doesn’t contain any linked tables. The InputBox is simi-
lar to that for the Back up Database menu add-in.

FIGURE 14.22

A proposed name for a backup copy of the Northwind sample database.

512

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 512

List Query Fields
This command fills a table with the names of select queries (omitting those whose prefixes are on
the Exclude list), and their field names, and offers to print a report based on that table. The table is
shown in Figure 14.23.

Only select queries will be listed. Although queries of other types (action queries) are
listed by name in the QueryDefs collection, they have no fields to list.

FIGURE 14.23

A table filled with query names and fields.

Note the Expr1008 field name, indicating that the same field is included in the query twice. The
fields in the table are listed in the order that they occur in the query in design view; the report
based on this table gives an alphabetical listing, as shown in Figure 14.24.

The table and report are stored in the calling database, and thus they can be opened later without
re-running the menu add-in.

NOTENOTE

513

Creating Access Add-ins 14

20_047026 ch14.qxp 4/2/07 9:54 PM Page 513

FIGURE 14.24

The Query and Field Names report.

List Table Fields
This add-in works the same as the List Query Fields add-in, except that it lists tables and their
fields instead of queries and their fields.

Access add-ins, once you have learned the special techniques needed to create them, are a great
way of enhancing your Access databases with extra functionality, even supporting multiple versions
of Access.

Summary
This chapter dealt with creating Access add-ins in the Access 2007 (.accda) library database format
(you can use the same techniques to create add-ins in the older .mda format for use with databases
created in previous Access database formats as well as Access 2007). Access add-ins let you encap-
sulate a set of database objects (primarily code and forms), for use in any Access database, as a way
of adding extra functionality to a database without the need to manually import objects into any
database where you need the functionality.

The next chapter covers using Ribbon XML to work with the Access ribbon, in Access add-ins as
well as other types of add-ins.

514

Adding More Functionality to OfficePart III

20_047026 ch14.qxp 4/2/07 9:54 PM Page 514

As a power user or developer, you may be used to manually customiz-
ing the Access toolbars and menus, removing controls you don’t
need, moving others to more convenient locations, and in general

reorganizing the toolbars and menus just as you prefer, and you may have
written functions to run from custom toolbar buttons or menu commands. If
you expect to continue these practices in Access 2007, you’re in for a shock.

The new Office 2007 Ribbon is a major interface change for Access (as well
as the other Office applications), and it requires a major change in program-
ming techniques for customizing the Access interface. Instead of working
with the CommandBars collection to create menus and toolbars, or add com-
mands to the standard ones, you customize the Ribbon with XML code
stored in a table, working with tabs and groups instead of menus and tool-
bars (although the Ribbon does include one menu — the Office menu — and
one toolbar — the Quick Access Toolbar).

For other Office applications, such as Word and Excel, Ribbon customization
requires creating and loading a separate XML document, but in Access, you
have a much more convenient option: just create a table containing the XML
code for creating the Ribbon, load it automatically by closing and reopening
the database, and then select the Ribbon you want to use from the Access
Options screen. After one more closing and reopening of the database, your
Ribbon customizations will appear.

515

IN THIS CHAPTER
Customizing the Ribbon in an
Access database

Customizing the Ribbon with an
Access add-in

Tools for working with XML
code

Customizing the Ribbon
with XML in Access

Databases and Add-ins

21_047026 ch15.qxp 4/2/07 10:06 PM Page 515

516

Adding More Functionality to OfficePart III

Sources of Information on Customizing the Ribbon

The MSDN document “Customizing the Office (2007) Ribbon User Interface for Developers”
(Parts 1 through 3) is a very useful reference when creating Ribbon XML for Access (and other

Office applications).

The list of Control IDs (Access Ribbon Controls.xls) is invaluable for working with the Ribbon; it
lists the control, group, and tab names you need to use when creating Ribbon XML code. You can down-
load this worksheet from http://www.microsoft.com/downloads/details.aspx?family
id=4329d9e9-4d11-46a5-898d-23e4f331e9ae&displaylang=en on the Microsoft web site.

Several blogs are also valuable resources for information on working with the Ribbon in VBA or VB
code: In Erik Rucker’s blog, see the July 13, 2006 posting on Customizing the New Access UI for
information on customizing the Access Ribbon. The blogs maintained by Jensen Harris and Patrick
Schmid have lots of valuable information on Ribbon customization (Jensen Harris is the program
manager in charge of the Office UI team, and Patrick Schmid is an MVP). The Third of Five blog is
also useful. See the Office Developer Center web site for the latest list of Office-related blogs.
However, note that this worksheet was last updated in November 2006, and some of the names have
changed since then, so it is not entirely accurate, especially for group and tab names.

Here are links to the resources mentioned in the previous paragraph:

n Customizing the Office (2007) Ribbon User Interface for Developers, Parts 1 through 3:

n http://msdn2.microsoft.com/en-us/library/ms406046.
aspx#OfficeCustomizingRibbonUIforDevelopers_AppLevel

n http://msdn2.microsoft.com/en-us/library/aa338199.aspx

n http://msdn2.microsoft.com/en-us/library/aa722523.aspx

n Office 2007 Developer Center: http://msdn2.microsoft.com/en-us/office/
aa905358.aspx

n Ribbon Extensibility in Access 2007: http://msdn2.microsoft.com/en-us/
library/bb187398.aspx

n Transitioning Your Existing Access Applications to Access 2007: http://msdn2.
microsoft.com/en-us/library/bb203849.aspx

n Erik Rucker’s blog: http://blogs.msdn.com/access

n Jensen Harris’ blog: http://blogs.msdn.com/jensenh/default.aspx

n Patrick Schmid’s blog: http://pschmid.net/blog/2006/10/09/58

n Third of Five Blog: http://blogs.msdn.com/thirdoffive/

21_047026 ch15.qxp 4/2/07 10:06 PM Page 516

Useful Tools for Creating and Editing
XML Code
Though you can create XML code in any text editor — even Notepad — it is a lot easier to create
and edit XML code in a specialized editor. Several XML editors are available free of charge, or as
part of another application; they are described in the following sections.

XML Notepad 2007
One such tool is XML Notepad 2007, available as a free download from the Downloads page of the
Microsoft web site, at the following link.

http://www.microsoft.com/downloads/details.aspx?FamilyID=72d6aa49
-787d-4118-ba5f-4f30fe913628&DisplayLang=en

Figure 15.1 shows the TreeView tab of the XML Notepad editor, with the List Fields XML code.
This view shows each attribute on a separate line of the tree in the left pane, with its value dis-
played in the right pane.

The XML Notepad 2007 utility was updated towards the end of the beta of Office
2007/Windows Vista, and it worked well at that time. Unfortunately, in the release version

of Vista, it has a curious problem: it will only run minimized or maximized, not restored. Hopefully this
glitch will clear up with a patch some time soon. Until that time, when you run this utility, it will appear
minimized; right-click its taskbar icon and select Maximize to open it full-screen.

FIGURE 15.1

The Tree View tab of the XML Notepad 2007 editor.

CAUTION CAUTION

517

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 517

The XSL Output tab of this editor shows the code in an indented layout, as shown in Figure 15.2.

VB 2005 XML Editor
If you have a recent edition of VB .NET, Visual Basic, or Visual Studio (2005 and up), you can use
the XML editor that is a component of these programs. If you have the Express Edition of Visual
Basic 2005, SQL Server 2005, or Visual Web Developer 2005 (free downloads from the Visual
Studio page of the Microsoft web site found here: http://msdn.microsoft.com/vstudio/
express/vb/download/), these editions of VB and SQL Server also contain XML editors. See
Figure 15.4 later in this chapter for a view of XML code in this editor.

FIGURE 15.2

The XSL Output tab of the XML Notepad 2007 editor.

Office 2007 Custom UI Editor
From http://openxmldeveloper.org/archive/2006/05/26/CustomUIeditor.aspx
you can download the Custom UI Editor Tool, for use in writing XML code to customize the Office
2007 Ribbon.

I installed this utility, attempted to open a saved XML file in it (one that opened fine in the VB
2005 Express XML editor and XML Notepad 2007), and got a message that the file contains cor-
rupted data. However, I was able to copy XML code to the clipboard and paste it into the editor
window. The Custom UI Editor (see Figure 15.3) is not as useful for editing XML Ribbon code as
either the VB 2005 XML Editor or XML Notepad 2007, so I would recommend using one of those
editors instead.

518

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 518

If you have Visual Studio 2005 (any edition), use its built-in XML editor; otherwise, I recommend
the XML Notepad 2007 editor for working with XML code.

FIGURE 15.3

XML code in the Office 2007 Custom UI Editor.

Customizing the Ribbon in an Access
Database
If you want to add tabs, groups, or controls to the Ribbon in an Access database, you have to write
XML and (optionally) VBA code — unlike customizing toolbars and menus, you can’t just drag a
command to a location on any toolbar or menu, as in previous versions of Access. The only man-
ual customization available in Access 2007 is adding commands to the Quick Access Toolbar. In a
major change from previous versions of Office, you can’t programmatically add commands to stan-
dard Ribbon groups, or remove standard commands from groups, although you can hide tabs com-
pletely, and add new groups containing custom commands.

519

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 519

520

Adding More Functionality to OfficePart III

Patrick Schmid on Access 2007 Ribbon Customizability

The best discussion of Access 2007 Ribbon customizability (or the lack thereof) is from the
October 18, 2006 entry on MVP Patrick Schmid’s blog:

If you ask me about the customizability of the new Ribbon UI in Office 2007, my answer would be:
too little, too difficult. Compared to previous Office versions, especially Office 2003, 2007 simply
has a serious customization deficiency. In fact, most users will probably conclude that the Ribbon
cannot be customized at all.

In contrast, Office 2003 is the most customizable Office ever. You can locate your menus and tool-
bars anywhere you want on the screen, create your own menus and toolbars, change icons and
labels, modify toolbars and menus, and so on. There is almost no limit as to what components of the
UI a user can alter. Customizing Office 2003 is also easy to do, as alteration can be achieved with a
few mouse clicks.

The Ribbon UI of Office 2007 though is a completely different story. Static with very limited cus-
tomizability is probably the description most users would give this new UI. Most users probably only
discover the Quick Access Toolbar (QAT) and then conclude that this must be it. Is that really all
there is? How did we end up with such a lack of customization?

Why Office 2007 has a customization deficiency
Microsoft had to create the Ribbon UI completely from scratch. If you have read through some of the
Office UI Bible, you can get an idea of the huge amount of resources that went into creating this new
UI. However, even at Microsoft resources are limited. Therefore, the need for every feature of the
new UI had to be justified. Real customizability was unfortunately a feature that didn’t make the cut.

As the Office UI Bible explains, the UI team could not make the case for customizability, if only
~1.9% of the Office 2003 sessions of roughly one hundred million users were with customization.
The case is even weaker, as 85% of those customizations involve four or fewer buttons. Therefore,
Microsoft decided to support the case encountered by 99.7% of all users: no customization or four
or fewer buttons. That left the remaining 0.3% in the rain. Those 0.3% represent around 1.35 million
people, as there are 450 million paid Office customers, and are also the ones who are most likely to
participate in the Office development process, e.g., through participation in the beta. My opinion
about this approach can be found in my designing with statistics post.

In addition to this argument, a highly customizable UI unfortunately presents a massive support
issue. You can see this, if you try to remember how many times you accidentally moved a menu or
toolbar in Office 2003, or customized it otherwise by accident. You probably know how to undo
your accident, but many, many users do not.

21_047026 ch15.qxp 4/2/07 10:06 PM Page 520

Although you can’t customize the standard Ribbon tabs and groups, you can add new tabs and
groups to the Ribbon, though the technique is completely different than writing VBA code to work
with CommandBars, as in past versions of Access. There are several steps to customizing the
Ribbon in an Access database:

1. Write XML code to define the Ribbon customizations.

2. Create a table in the Access database to store the Ribbon names and their XML code.

3. (Optional) Write VBA callback procedures to run from custom Ribbon command but-
tons.

4. Close the database, then reopen it, to load the Ribbon(s) from the table.

5. Select the Ribbon to load into the database.

6. Close and reopen the database to load the Ribbon.

In addition to creating the XML code, VBA code (if needed), and table, you also have to close and
reopen the database twice to get the Ribbon customizations to appear — once to load the Ribbon,
and again after selecting the Ribbon to use in the database. The next few sections guide you
through customizing the Ribbon in an Access database.

The sample database for this section is Test Ribbon.accdb.NOTENOTE

521

Customizing the Ribbon with XML in Access Databases and Add-ins 15

Why do I keep calling it a customization deficiency?
Microsoft decided that in order to make those 99.7% of all users happy, one toolbar was enough. In
order to prevent accidental customization and make sure users always have that toolbar accessible,
it became non-floatable. Born therefore was the Quick Access Toolbar. That is not the end of the
customization story though. There is also one Ribbon tab that you can hide or show, namely the
Developer tab. You can also customize the status bar fully. Toolbars and menus created in a previous
Office version and by legacy (meaning non-Office 2007) add-ins can also be used, but not created,
in 2007. Last, but not least, galleries can be customized. Some “customize” themselves automati-
cally, e.g. the recent document list or the shapes gallery. Others can be manually customized, espe-
cially in Word. For example, the galleries for page numbers, headers and footers can be customized
by the user.

But that’s it. Seriously, that is it. Everything else, especially the vast majority of the Ribbon, is static
and cannot be customized. Therefore, describing Office 2007 as having a “customization defi-
ciency” or complaining about the lack of customization in it, reflects appropriately the state of affairs
in 2007.

21_047026 ch15.qxp 4/2/07 10:06 PM Page 521

Creating the XML Code
Table 15.1 lists some of the most commonly used XML elements for customizing an Access 2007
Ribbon.

TABLE 15.1

XML Elements for Use in Customizing the Ribbon

Element Name Usage Comments

customUI The top-level element for a custom Ribbon

ribbon The Ribbon definition Set the startFromScratch attribute to
“true” to create a new, blank Ribbon.
(The quotes are needed, a difference
from VBA code with its True and
False keywords.) If set to “false” or
omitted, the customizations are applied
to the standard Ribbon.

tab Creates or references a Ribbon tab

group Creates or references a group on a tab

id Unique name of a custom control

idMso Name of a standard control

label Text displayed on a control

button A command button on a Ribbon The onAction attribute specifies the
name of a function to run when the
button is clicked.

dropDown A drop-down list Automatically limited to list selections.

comboBox A drop-down list that allows manual entries Users can enter selections or select from
the list.

imageMso The image to use for the control Set with the name of a built-in Ribbon
control (or a custom image you have
created).

size The size of the control The choices are “normal” and “large”.

supertip The text to display in the pop-up that appears
when your mouse hovers over a control

visible Whether the control is visible or not The choices are “true” or “false”.

enabled Whether the control is enabled or not The choices are “true” or “false”.

Element names in XML use camel-casing notation; the first letter of the element name is
lowercase, and other components have their first letter capitalized (giving the appear-

ance of a camel’s hump). Example: dropDown.

NOTENOTE

522

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 522

You can start by creating a table to hold the Ribbon XML code, or create the XML code first, as you
prefer. If you have just one table of Ribbon code, the convention is to call it USysRibbons, with the
USys prefix indicating that it is a user-created system table. The table has three fields, as described
in Table 15.2.

TABLE 15.2

The USysRibbons Table

Field Name Data Type Usage

ID AutoNumber Unique ID field

RibbonName Text, 255 Name of the custom Ribbon

RibbonXML Memo The XML code with Ribbon settings

523

Customizing the Ribbon with XML in Access Databases and Add-ins 15

Viewing the USysRibbons Table

The USysRibbons table is a system table, so you won’t see it unless you turn on display of system
tables by opening the Access Options screen from the Office menu:

Opening the Access Options screen.

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 523

524

Adding More Functionality to OfficePart III

continued
And then select the Current Database page and click the Navigation Options button:

Opening the Navigation Options dialog.

On the Navigation Options dialog, check the “Show System Objects” checkbox:

Turning on display of system objects in the Navigation Options dialog.

21_047026 ch15.qxp 4/2/07 10:06 PM Page 524

525

Customizing the Ribbon with XML in Access Databases and Add-ins 15

The following screen shot shows the USysRibbons table in datasheet view, with the record for the
ListFields Ribbon visible:

The USysDBRibbons table in datasheet view.

For more exhaustive coverage of XML, see Wrox’s Beginning XML.CROSS-REFCROSS-REF

Although you can edit the XML code directly in the Access USysRibbons table (use Ctrl+Enter to
go to a new line), it’s a lot easier working with it in an XML editor, such as the one in VB 2005
(standard or Express), or the XML Notepad 2007 utility. Figure 15.4 shows what the same code
looks like in the XML Notepad 2007 editor, after opening the code saved as Ribbon.xml.

IntelliSense doesn’t work for Access Ribbon XML code in Visual Basic 2005 Express, but
it does work in Visual Studio 2005.

It is much easier to work with XML code in the XML Notepad 2007 or the Visual Studio 2005 edi-
tor. In the XML Notepad 2007 editor, you have a TreeView pane on the left, and each attribute is
shown with its matching value in the right pane; in the Visual Studio 2005 editor, the components
are color-coded and you have IntelliSense to aid in creating code. Bracket matching (see the
shaded <tabs> and </tabs> names in the figure) also helps, in case you started a bracketed
code segment and forgot to end it. For XML code in the Visual Studio 2005 editor, the colors have
the meanings listed in Table 15.3.

NOTENOTE

21_047026 ch15.qxp 4/2/07 10:06 PM Page 525

FIGURE 15.4

XML code in the XML Notepad 2007 editor.

TABLE 15.3

Color-Coding for XML Code in the VB 2005 XML Editor

Color Code Component(s)

Red Attribute Name

Blue Attribute Value
Delimiter
Keyword

Green Comment

Brown Name

Grey Doc Tag
Processing Instruction

Black Text

Aqua XSLT Keyword

526

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 526

In order for XML documents to be able to use elements and attributes that have the
same name but come from different sources, there must be a way to differentiate

between different sources of markup elements. In XML, a namespace is a collection of names, identi-
fied by a URL reference, that are used as element types and attribute names in XML documents.

The XML code starts with specifying the namespace as http://schemas.microsoft.com/
office/2006/01/customui. This is the only XML namespace used for Office 2007 Ribbons.

Next, the Ribbon’s startFromScratch attribute is set to “false” (for VBA programmers, note that
in XML code, the syntax is “false”, with the quotes, not just False, as in VBA code). This setting
means that you are modifying the standard toolbar, as opposed to creating a Ribbon from scratch.

The next sections show how to customize the Ribbon in various ways.

Adding a New Tab, Group, and Controls to the Ribbon
To create a custom tab for the Ribbon, under the <tabs> section of the XML code, add a tab line
and set its id and label attributes as desired. The id attribute is a unique identifier for a custom
Ribbon control that can be used elsewhere in XML code to reference the tab, and the label attrib-
ute is set with the caption text to display on the tab. Set the tab’s visible attribute to “true” to dis-
play it. Next, create one or more groups for the custom tab, setting their id and label attributes
with the names and captions of the groups. Finally, add one or more controls to a group (or several
groups) on the tab; for the sample XML code I created two buttons, each of which runs a callback
function.

See Table 15.1 for a list of the most commonly used elements for creating tabs, groups,
and controls on the Ribbon.

Controls have (minimally) id and label attributes, and also an enabled attribute (usually set to
“true”). They typically display an image, which is usually set with imageMso argument, using a
value corresponding to the standard Ribbon button that has the image you want to display.

You can’t remove a control from a standard Ribbon group, or add a control to a stan-
dard group; see the sidebar earlier in this chapter for Patrick Schmid’s illuminating com-

mentary on this issue. For Microsoft’s justification of this policy, see the Developer Overview of the
User Interface for the 2007 Microsoft Office System article (http://msdn2.microsoft.com/
en-us/library/aa338198.aspx). It boils down to something like “We made the Ribbon perfect,
so users don’t need to customize it.” Needless to say, I (and many other developers and power users)
disagree. The Ribbon is indeed a great improvement over command bars and menus, but I would really
like to be able to drag a button I need to a standard group, or remove one that I never use.

To use the Form image on a custom control, use “CreateForm” as the imageMso argument value
when defining the button in XML code.

The control’s size attribute has only two selections: “large” and “normal”. Lastly, for a command
button, set the onAction attribute with the name of a function to run when the button is clicked.

NOTENOTE

CROSS-REFCROSS-REF

NOTENOTE

527

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 527

Removing a Tab or Group from the Ribbon
To remove one of the standard tabs or groups from the Ribbon (in reality, you are hiding it, not
deleting it), set its visible attribute to “false”, using idMso instead of id to indicate that you are ref-
erencing a built-in Ribbon tab or group. The following line of XML code turns off the standard
Create tab:

<tab idMso=”TabCreate” visible=”false”/>

528

Adding More Functionality to OfficePart III

Finding Control Names for Use in XML Code

If you want to assign a familiar Access image to a button on the Ribbon, you need to know the
name of the standard Access control that uses this image, so you can set the imageMso argument

for the button with that name. You can download an Excel worksheet (AccessRibbonControls.xls) with
this information from http://www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae&displaylang=en on the Microsoft web site.

Even though Office 2007 has been released, the latest worksheets of control names
were prepared during the beta (November 2006), and they are not entirely accurate

for the release version of Access, especially for tab names. Hopefully an updated set of worksheets
will be posted soon.

However, there is another, more convenient method that works fine for many controls: Open the
Access Options screen from the Office menu, and click the Customization page. This page is
intended for customizing the Quick Access Toolbar, but it is also very useful for finding out control
names for use in XML code. To find a control name, first select the Ribbon tab from the “Choose
command from” drop-down list, then select the control in the list. As you hover the mouse over the
control, its name appears in parentheses after the friendly name:

Getting the control name for use in assigning an image to a control on the Ribbon.

CAUTION CAUTION

21_047026 ch15.qxp 4/2/07 10:06 PM Page 528

To remove a built-in tab or group from the Ribbon, you need to know its name. The
AccessRibbonControls.xls worksheet is useful for finding the names of tabs or groups: just sort the
worksheet by Control Type, and look at the tab or group rows. To save time, the names of the stan-
dard tabs are listed in Table 15.4.

TABLE 15.4

Built-in Access Ribbon Tab Names
TabAddIns TabPivotChartDesign

TabAdpDiagramDesign TabPivotTableDesign

TabAdpFunctionAndViewToolsDesign TabPrintPreviewAccess

TabAdpSqlStatementDesign TabQueryToolsDesign

TabAdpStoredProcedureToolsDesign TabRelationshipToolsDesign

TabControlLayout TabReportToolsAlignment

TabCreate TabReportToolsDesign

TabDatabaseTools TabReportToolsFormatting

TabExternalData TabReportToolsLayout

TabFormToolsDesign TabReportToolsPageSetupDesign

TabFormToolsFormatting TabReportToolsPageSetupLayout

TabFormToolsLayout TabSourceControl

TabHomeAccess TabTableToolsDatasheet

TabMacroToolsDesign TabTableToolsDesignAccess

Table 15.5 lists the standard group names.

TABLE 15.5

Built-in Access Ribbon Group Names
FileManageMenu GroupAdpOutputOperations

FilePrintMenu GroupAdpQueryTools

FileSaveAsMenuAccess GroupAdpQueryType

FileServerMenu GroupAdpSqlStatementDesignTools

GroupAdminister GroupAnalyze

GroupAdpDiagramLayout GroupAutoFormatAccess

GroupAdpDiagramShowHide GroupClipboard

continued

529

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 529

TABLE 15.5 (continued)

GroupCollectData GroupMacro

GroupControlAlignment GroupMacroClose

GroupControlAlignmentLayout GroupMacroRows

GroupControlPositionLayout GroupMacroShowHide

GroupControlsAccess GroupMacroTools

GroupControlSize GroupMarginsAndPadding

GroupCreateForms GroupMarginsAndPaddingControlLayout

GroupCreateOther GroupMoveData

GroupCreateReports GroupPageLayoutAccess

GroupCreateTables GroupPivotChartActiveFieldAccess

GroupDatabaseSourceControl GroupPivotChartDataAccess

GroupDatabaseTools GroupPivotChartFilterAndSort

GroupDatasheetRelationships GroupPivotChartShowHide

GroupDataTypeAndFormatting GroupPivotChartTools

GroupDesignGridlines GroupPivotTableActiveFieldAccess

GroupExport GroupPivotTableDataAccess

GroupFieldsAndColumns GroupPivotTableFilterAndSort

GroupFieldsTools GroupPivotTableSelections

GroupFindAccess GroupPivotTableShowHideAccess

GroupFontAccess GroupPivotTableToolsAccess

GroupFormatting GroupPosition

GroupFormattingControls GroupPositionLayout

GroupFormattingGridlines GroupPrintPreviewClosePreview

GroupGroupingAndTotals GroupPrintPreviewData

GroupImport GroupPrintPreviewPrintAccess

GroupLayoutShowHide

530

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 530

Table 15.6 lists the standard control names.

TABLE 15.6

Built-in Access Ribbon Control Names

531

Customizing the Ribbon with XML in Access Databases and Add-ins 15

AccessRelinkLists

AddInsMenu

AdpConstraints

AdpDiagramAddRelatedTables

AdpDiagramAddTable

AdpDiagramArrangeSelection

AdpDiagramArrangeTables

AdpDiagramAutosizeSelectedTables

AdpDiagramColumnNames

AdpDiagramColumnProperties

AdpDiagramCustomView

AdpDiagramDeleteTable

AdpDiagramHideTable

AdpDiagramIndexesKeys

AdpDiagramKeys

AdpDiagramModifyCustomView

AdpDiagramNameOnly

AdpDiagramNewLabel

AdpDiagramNewTable

AdpDiagramRecalculatePageBreaks

AdpDiagramRelationships

AdpDiagramShowRelationshipLabels

AdpDiagramTableModesMenu

AdpDiagramViewPageBreaks

AdpManageIndexes

AdpOutputOperationsAddToOutput

AdpOutputOperationsGroupBy

AdpOutputOperationsSortAscending

AdpOutputOperationsSortDescending

AdpOutputOperationsTableRemove

AdpPrimaryKey

AdpStoredProcedureEditSql

AdpStoredProcedureQueryAppend

AdpStoredProcedureQueryAppendValues

AdpStoredProcedureQueryDelete

AdpStoredProcedureQueryMakeTable

AdpStoredProcedureQuerySelect

AdpStoredProcedureQueryUpdate

AdpVerifySqlSyntax

AdpViewDiagramPane

AdpViewGridPane

AdpViewSqlPane

AdvertisePublishAs

AlignCenter

AlignLeft

AlignLeftToRightMenu

AlignRight

ApplyCommaFormat

ApplyCurrencyFormat

ApplyFilter

ApplyPercentageFormat

AutoFormatGallery

AutoFormatWizard

AutoSumAverage

AutoSumCount

AutoSumMax

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 531

AutoSumMin

Bold

Bullets

BusinessFormWizard

CacheListData

ClearGrid

ClearMenuAccess

CloseDocument

ColumnWidth

ComAddInsDialog

ControlActiveX

ControlAlignToGrid

ControlAttachment

ControlBoundObjectFrame

ControlChart

ControlImage

ControlLayoutRemove

ControlLayoutStacked

ControlLayoutTabular

ControlLine

ControlLineColorPicker

ControlLineThicknessGallery

ControlLineTypeGallery

ControlLogo

ControlMarginsGallery

ControlPaddingGallery

ControlPage

ControlRectangle

ControlSetControlDefaults

ControlSnapToGrid

ControlSpecialEffectChiseled

ControlSpecialEffectEtched

ControlSpecialEffectFlat

532

Adding More Functionality to OfficePart III

ControlSpecialEffectMenu

ControlSpecialEffectRaised

ControlSpecialEffectShadowed

ControlSpecialEffectSunken

ControlSubFormReport

ControlTabControl

ControlTitle

ControlToggleButton

ControlUnboundObjectFrame

ControlWizards

ConvertDatabaseFormat

Copy

CreateClassModule

CreateDiagram

CreateEmail

CreateForm

CreateFormBlankForm

CreateFormInDesignView

CreateFormMoreFormsGallery

CreateFormPivotChart

CreateFormSplitForm

CreateFormWithMultipleItems

CreateLabels

CreateMacro

CreateModule

CreateOtherObjectsMenu

CreateQueryFromWizard

CreateQueryInDesignView

CreateReport

CreateReportBlankReport

CreateReportFromWizard

CreateReportInDesignView

CreateShortcutMenuFromMacro

TABLE 15.6 (continued)

21_047026 ch15.qxp 4/2/07 10:06 PM Page 532

533

Customizing the Ribbon with XML in Access Databases and Add-ins 15

CreateStoredProcedure

CreateTable

CreateTableInDesignView

CreateTableTemplatesGallery

CreateTableUsingSharePointListsGallery

CustomizeHide

Cut

DatabaseAccessBackEnd

DatabaseAnalyzePerformance

DatabaseAnalyzeTable

DatabaseCopyDatabaseFile

DatabaseDocumenter

DatabaseEncodeDecode

DatabaseLinedTableManager

DatabaseMakeMdeFile

DatabaseMoveToSharePoint

DatabaseObjectDependencies

DatabasePartialReplica

DatabasePermissions

DatabasePermissionsMenu

DatabaseRelationships

DatabaseSetLogonSecurity

DatabaseSqlServer

DatabaseSwitchboardManager

DatabaseUserAndGroupAccounts

DatabaseUserLevelSecurityWizard

DataRefreshAll

DatasheetColumnDelete

DatasheetColumnLookup

DatasheetColumnRename

DatasheetNewField

DateAndTimeInsert

DefaultView

Delete

DeleteTab

DrillInto

DrillOut

ExportAccess

ExportDBase

ExportExcel

ExportHtmlDocument

ExportLotus

ExportMoreMenu

ExportOdbcDatabase

ExportParadox

ExportSavedExports

ExportSharePointList

ExportSnapshot

ExportTextFile

ExportWord

ExportXmlFile

FieldList

FileBackupDatabase

FileBackUpSqlDatabase

FileCloseDatabase

FileCompactAndRepairDatabase

FileDatabaseProperties

FileDropSqlDatabase

FileManageMenu

FileNewDatabase

FileOpenDatabase

FilePackageAndSign

FilePrintMenu

FilePrintPreview

FilePrintQuick

FilePublishToSharePoint

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 533

534

Adding More Functionality to OfficePart III

FileSave

FileSaveAs

FileSaveAsAccess2000

FileSaveAsAccess2002_2003

FileSaveAsAccess2007

FileSaveAsMenuAccess

FileSaveAsPdfOrXps

FileSendAsAttachment

FileServerLinkTables

FileServerMenu

FileServerTransferDatabase

FilterAdvancedByForm

FilterAdvancedMenu

FilterAfterSelection

FilterBeforeSelection

FilterBeginsWithSelection

FilterBetween

FilterBySelection

FilterClearAllFilters

FilterContainsSelection

FilterDoesNotBeginsWithSelection

FilterDoesNotContainSelection

FilterDoesNotEndWithSelection

FilterEndsWithSelection

FilterEqualsSelection

FilterExcludingSelection

FilterIsNotSelected

FilterIsSelected

FilterLargerThanSelection

FilterNotEqualsSelection

FilterSmallerThanSelection

FiltersMenu

FilterToggleFilter

FindDialog

FindNext

First10RecordsPreview

Font

FontAlternateFillBackColorPicker

FontColorPicker

FontConditionalFormatting

FontFillBackColorPicker

FontSize

FormatCellsDialog

FormatPainter

FormattingDataType

FormattingDecreaseDecimals

FormattingFormat

FormattingIncreaseDecimals

FormattingRequiredField

FormattingUnique

FormControlButton

FormControlCheckBox

FormControlComboBox

FormControlEditBox

FormControlGroupBox

FormControlLabel

FormControlListBox

FormControlRadioButton

FormHeaderOrFooterShowHide

GoToMenuAccess

GoToNewRecord

GridlinesColorPicker

GridlinesGallery

GridlinesStyleGallery

GridlinesWidthGallery

GridShowHide

TABLE 15.6 (continued)

21_047026 ch15.qxp 4/2/07 10:06 PM Page 534

535

Customizing the Ribbon with XML in Access Databases and Add-ins 15

GroupAddInsCustomToolbars

GroupAddInsMenuCommands

GroupAddInsToolbarCommands

GroupAdminister

GroupAdpDiagramLayout

GroupAdpDiagramShowHide

GroupAdpOutputOperations

GroupAdpQueryTools

GroupAdpQueryType

GroupAdpSqlStatementDesignTools

GroupAnalyze

GroupAutoFormatAccess

GroupClipboard

GroupCollectData

GroupControlAlignment

GroupControlAlignmentLayout

GroupControlPositionLayout

GroupControlsAccess

GroupControlSize

GroupCreateForms

GroupCreateOther

GroupCreateReports

GroupCreateTables

GroupDatabaseSourceControl

GroupDatabaseTools

GroupDatasheetRelationships

GroupDataTypeAndFormatting

GroupDesignGridlines

GroupExport

GroupFieldsAndColumns

GroupFieldsTools

GroupFontAccess

GroupFormatting

GroupFormattingControls

GroupFormattingGridlines

GroupGroupingAndTotals

GroupImport

Grouping

GroupLayoutShowHide

GroupMacro

GroupMacroClose

GroupMacroRows

GroupMacroShowHide

GroupMacroTools

GroupMarginsAndPadding

GroupMarginsAndPaddingControlLayout

GroupMoveData

GroupPageLayoutAccess

GroupPivotChartActiveFieldAccess

GroupPivotChartDataAccess

GroupPivotChartFilterAndSort

GroupPivotChartShowHide

GroupPivotChartTools

GroupPivotChartType

GroupPivotTableActiveFieldAccess

GroupPivotTableDataAccess

GroupPivotTableFilterAndSort

GroupPivotTableSelections

GroupPivotTableShowHideAccess

GroupPivotTableToolsAccess

GroupPosition

GroupPositionLayout

GroupPrintPreviewClosePreview

GroupPrintPreviewData

GroupPrintPreviewPrintAccess

GroupQueryClose

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 535

536

Adding More Functionality to OfficePart III

GroupQueryResults

GroupQuerySetup

GroupQueryShowHide

GroupQueryType

GroupRecords

GroupRelationships

GroupRelationshipsTools

GroupRichText

GroupSchemaTools

GroupSharePointList

GroupSharepointLists

GroupSizeAndPosition

GroupSortAndFilter

GroupSourceControlManage

GroupSourceControlShow

GroupTableDesignShowHide

GroupTableDesignTools

GroupTextFormatting

GroupToolsAccess

GroupViews

GroupViewsShowHide

GroupWindowAccess

GroupZoom

HeaderFooterPageNumberInsert

HideDetails

HorizontalSpacingDecrease

HorizontalSpacingIncrease

HorizontalSpacingMakeEqual

HyperlinkInsert

ImportAccess

ImportDBase

ImportExcel

ImportHtmlDocument

ImportLotus

ImportMoreMenu

ImportOdbcDatabase

ImportOutlook

ImportParadox

ImportSavedImports

ImportSharePointList

ImportTextFile

ImportXmlFile

IndentDecrease

IndentIncrease

Italic

LabelFontDialog

LoadFromQuery

MacroArguments

MacroConditions

MacroConvertMacrosToVisualBasic

MacroNames

MacroRun

MacroShowAllActions

MacroSingleStep

MailMergeGoToFirstRecord

MailMergeGoToNextRecord

MailMergeGoToPreviousRecord

MailMergeGotToLastRecord

ManageReplies

MasterViewClose

MenuPublish

MergeToWord

Numbering

ObjectBringToFront

ObjectGallery

ObjectsAlignBottom

TABLE 15.6 (continued)

21_047026 ch15.qxp 4/2/07 10:06 PM Page 536

537

Customizing the Ribbon with XML in Access Databases and Add-ins 15

ObjectsAlignLeft

ObjectsAlignRight

ObjectsAlignTop

ObjectSendToBack

ObjectsGroup

ObjectsSelect

ObjectsUngroup

OleDdeLinks

PageBreakInsertOrRemove

PageHeaderOrFooterShowHide

PageMarginsGallery

PageOrientationLandscape

PageOrientationPortrait

PageSetupDialog

PageSizeGallery

Paste

PasteAppend

PasteDuplicate

PasteSpecial

PasteSpecialDialog

PivotAutoCalcAverage

PivotAutoCalcCount

PivotAutoCalcMax

PivotAutoCalcMenu

PivotAutoCalcMin

PivotAutoCalcStandardDeviation

PivotAutoCalcStandardDeviationPopulation

PivotAutoCalcSum

PivotAutoCalcVariance

PivotAutoCalcVariancePopulation

PivotAutoFilter

PivotChartLegendShowHide

PivotChartMultiplePlots

PivotChartMultipleUnified

PivotChartSortByTotalAscending

PivotChartSortByTotalDescending

PivotChartSortByTotalMenu

PivotChartType

PivotClearCustomOrdering

PivotCollapseFieldAccess

PivotCollapseFieldAccess

PivotCreateCalculatedTotal

PivotCreateCalulatedField

PivotDropAreas

PivotExpandField

PivotExpandIndicators

PivotExportToExcel

PivotFieldList

PivotFilterBySelection

PivotFormulasMenu

PivotGroupItems

PivotHideDetails

PivotMoveField

PivotMoveToColumnArea

PivotMoveToDetailArea

PivotMoveToFieldArea

PivotMoveToFilterArea

PivotRefresh

PivotRemoveField

PivotShowAll

PivotShowAsMenu

PivotShowAsNormal

PivotShowAsPercentOfColumnTotal

PivotShowAsPercentOfGrandTotal

PivotShowAsPercentOfParentColumnItem

PivotShowAsPercentOfParentRowItem

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 537

538

Adding More Functionality to OfficePart III

PivotShowAsPercentOfRowTotal

PivotShowDetails

PivotShowOnlyTheBottomMenu

PivotShowOnlyTheTopMenu

PivotShowTopAndBottomItemsMenu

PivotSubtotal

PivotSwitchRowColumn

PivotUngroupItems

PositionAnchoringGallery

PositionFitToWindow

PostcardWizard

PrintColumns

PrintDataOnly

PrintDialogAccess

PrintPreviewClose

PrintPreviewEightPages

PrintPreviewFourPages

PrintPreviewMultiplePagesMenu

PrintPreviewTwelvePages

PrintPreviewZoom10

PrintPreviewZoom1000

PrintPreviewZoom150

PrintPreviewZoom200

PrintPreviewZoom25

PrintPreviewZoom50

PrintPreviewZoom500

PrintPreviewZoom75

PrintPreviewZoomMenu

PrintPreviewZoomTwoPages

PropertySheet

PublishToPdfOrEdoc

QueryAppend

QueryBuilder

QueryCrosstab

QueryDataDefinition

QueryDelete

QueryInsertColumn

QueryInsertColumns

QueryMakeTable

QueryParameters

QueryReturnGallery

QueryRunQuery

QuerySelectQueryType

QueryShowTable

QuerySqlPassThroughQuery

QueryTableNamesShowHide

QueryTotalsShowHide

QueryUnionQuery

QueryUpdate

QuickAccessToolbarCustomization

RecordsAddFromOutlook

RecordsCollapseAllSubdatasheets

RecordsDeleteColumn

RecordsDeleteRecord

RecordsExpandAllSubdatasheets

RecordsFreezeColumns

RecordsHideColumns

RecordsInsertSubdatasheet

RecordsMoreRecordsMenu

RecordsRefreshMenu

RecordsRefreshRecords

RecordsRemoveSubdatasheet

RecordsSaveAsOutlookContact

RecordsSaveRecord

RecordsSubdatasheetMenu

RecordsTotals

TABLE 15.6 (continued)

21_047026 ch15.qxp 4/2/07 10:06 PM Page 538

539

Customizing the Ribbon with XML in Access Databases and Add-ins 15

RecordsUnfreeze

RecordsUnhideColumns

Redo

RelationshipDesignAllRelationships

RelationshipsClearLayout

RelationshipsDirectRelationships

RelationshipsEditRelationships

RelationshipsHideTable

RelationshipsReport

ReplaceDialog

ReplicationCreateReplica

ReplicationOptionsMenu

ReplicationRecoverDesignMaster

ReplicationResolveConflicts

ReplicationSynchronizeNow

Revert

RowHeight

RulerShowHide

SaveAsQuery

SaveObjectAs

SelectAllAccess

SelectAllRecords

SelectMenuAccess

SelectRecord

ServerConnection

ServerFilterApply

ServerFilterByForm

ServerProperties

ServerRestoreSqlDatabase

SetDatabasePassword

SharePointListsDiscardAllChanges

SharePointListsDiscardAllChangesAndRefresh

SharePointListsDiscardChangesMenu

SharePointListsWorkOffline

ShowClipboard

ShowMargins

SizeToFit

SizeToFitAccess

SizeToGridAccess

SizeToNarrowest

SizeToShortest

SizeToTallest

SizeToWidest

SortAndFilterAdvanced

SortDown

SortRemoveAllSorts

SortSelectionMenu

SortUp

SourceControlAddDatabase

SourceControlAddObjects

SourceControlCheckIn

SourceControlCheckOut

SourceControlCreateDatabaseFromProject

SourceControlGetLatestVersion

SourceControlOptions

SourceControlProperties

SourceControlRefreshStatus

SourceControlRun

SourceControlShareObjects

SourceControlShowDifferences

SourceControlShowHistory

SourceControlUndoCheckOut

SpellingAccess

SubformInNewWindow

SubformMenu

SynchronizeData

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 539

540

Adding More Functionality to OfficePart III

TabAddIns

TabAdpDiagramDesign

TabAdpFunctionAndViewToolsDesign

TabAdpSqlStatementDesign

TabAdpStoredProcedureToolsDesign

TabControlLayout

TabCreate

TabDatabaseTools

TabExternalData

TabFormToolsDesign

TabFormToolsFormatting

TabFormToolsLayout

TabHomeAccess

TableColumnsDelete

TableDesign

TableIndexes

TableListAlertMe

TableListPermissions

TableRowsDelete

TableRowsInsertWord

TableSharePointListsModifyColumnsAndSettings

TableSharePointListsModifyWorkflow

TableSharePointListsRefreshList

TableTestValidationRules

TabMacroToolsDesign

TabOrder

TabPivotChartDesign

TabPivotTableDesign

TabPrintPreviewAccess

TabQueryToolsDesign

TabRelationshipToolsDesign

TabReportToolsAlignment

TabReportToolsDesign

TabReportToolsFormatting

TabReportToolsLayout

TabReportToolsPageSetupDesign

TabReportToolsPageSetupLayout

TabSetAdpDiagram

TabSetAdpFunctionAndViewTools

TabSetAdpSqlStatement

TabSetAdpStoredProcedure

TabSetFormReportExtensibility

TabSetFormTools

TabSetFormToolsLayout

TabSetMacroTools

TabSetPivotChartAccess

TabSetPivotTableAccess

TabSetQueryTools

TabSetRelationshipTools

TabSetReportTools

TabSetReportToolsLayout

TabSetTableToolsDatasheet

TabSetTableToolsDesign

TabSourceControl

TabTableToolsDatasheet

TabTableToolsDesignAccess

TextDirectionLeftToRight

TextDirectionRightToLeft

TextHighlightColorPicker

TotalsCountRecords

TotalsMenu

TotalsStandardDeviation

TotalsSum

TotalsVariance

Underline

Undo

TABLE 15.6 (continued)

21_047026 ch15.qxp 4/2/07 10:06 PM Page 540

541

Customizing the Ribbon with XML in Access Databases and Add-ins 15

VerticalSpacingDecrease

VerticalSpacingIncrease

VerticalSpacingMakeEqual

ViewMessageBar

ViewsAdpDiagramPrintPreview

ViewsAdpDiagramSqlView

ViewsDatasheetView

ViewsDesignView

ViewsFormView

ViewsLayoutView

ViewsModeMenu

ViewsModeMenu

ViewsPivotChartView

ViewsPivotChartView

ViewsPivotTableView

ViewsReportView

ViewsSwitchToDefaultView

ViewVisualBasicCodeAccess

VisualBasic

WindowMoreWindowsDialog

WindowNameGoesHere

WindowsArrangeIcons

WindowsCascade

WindowsDataEntry

WindowSplit

WindowsSwitch

WindowsTileHorizontally

WindowsTileVertically

WindowUnhide

Zoom100

ZoomFitToWindow

ZoomOnePage

ZoomPrintPreviewExcel

The XML code listed next (the Ribbon name is TurnOff) turns off the standard Home tab, and
removes the Export group from the External Data tab:

<customUI xmlns=
“http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>
<tabs>
<tab idMso=”TabHomeAccess”

visible=”false”>
</tab>
<tab idMso=”TabExternalData”

visible=”true”>
<group idMso=”GroupExport”

visible=”false”>
</group>

</tab>
</tabs>

</ribbon>
</customUI>

In order to see this (or any) custom Ribbon in an Access database, you need to select it in
the “Ribbon Name” drop-down list in the Access Options dialog, as shown in Figure 15.8.NOTENOTE

21_047026 ch15.qxp 4/2/07 10:06 PM Page 541

Figure 15.5 shows the External Data tab, without the Export group.

FIGURE 15.5

The External Data tab without the Export group.

VBA Code
To open the References dialog, select References from the Tools menu in the Visual Basic
window.

To run commands from controls on your customized Ribbon, you need to write a callback procedure
for each Ribbon command button. First, set a reference to the Office 12.0 object library in the
References dialog (see Figure 15.6); it is needed to support various Ribbon-related objects in the code.

FIGURE 15.6

Setting a reference to the Office 12.0 object library.

The sample Test Ribbon database contains two procedures to be run from Ribbon buttons on the
List Fields custom Ribbon; note the ByVal control As IRibbonControl argument, which
links the procedure to the control:

Public Sub ListTableFields(ByVal control As IRibbonControl)

On Error Resume Next

TIPTIP

542

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 542

First, clear data from the old table of table and field names:

strTable = “zstblTableAndFieldNames”
strReport = “zsrptTableAndFieldNames”
DoCmd.SetWarnings False
strSQL = “DELETE * FROM “ & strTable
DoCmd.RunSQL strSQL

Fill the table with table and field names, iterating through the database’s TableDefs collection:

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(strTable, dbOpenTable)

For Each tdf In dbs.TableDefs
strTable = tdf.Name
If Left(strTable, 4) <> “MSys” Then

Set flds = tdf.Fields
For Each fld In flds

strFieldName = fld.Name
With rst

.AddNew
!TableName = strTable
!FieldName = strFieldName
!DataType = fld.Type
!ValidationRule = fld.ValidationRule
!Required = fld.Required
.Update

End With
Next fld

End If
Next tdf

rst.Close

DoCmd.OpenTable strTable

strTitle = “Table filled”
strPrompt = “Print report now?”
intReturn = MsgBox(strPrompt, vbQuestion + vbYesNo, _

strTitle)
If intReturn = vbYes Then

strReport = “zsrptTableAndFieldNames”
DoCmd.OpenReport strReport

End If

ErrorHandlerExit:
Exit Sub

543

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 543

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Sub

Public Sub ListQueryFields(ByVal control As IRibbonControl)

On Error Resume Next

Dim strQueryName As String
Dim qdf As DAO.QueryDef

First, clear data from the old table of query and field names:

strTable = “zstblQueryAndFieldNames”
strReport = “zsrptQueryAndFieldNames”
DoCmd.SetWarnings False
strSQL = “DELETE * FROM “ & strTable
DoCmd.RunSQL strSQL

Fill the table with query and field names, iterating through the database’s QueryDefs collection
(only select queries will have their fields listed):

Set dbs = CurrentDb
Set rst = dbs.OpenRecordset(strTable, dbOpenTable)

For Each qdf In dbs.QueryDefs
strQueryName = qdf.Name
Debug.Print “Query name: “ & strQueryName
If Left(strQueryName, 4) <> “MSys” Then

Set flds = qdf.Fields
For Each fld In flds

strFieldName = fld.Name
With rst

.AddNew
!QueryName = strQueryName
!FieldName = strFieldName
!DataType = fld.Type
!Required = fld.Required
.Update

End With
Next fld

End If
Next qdf

rst.Close

DoCmd.OpenTable strTable

544

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 544

strTitle = “Table filled”
strPrompt = “Print report now?”
intReturn = MsgBox(strPrompt, vbQuestion + vbYesNo, _

strTitle)
If intReturn = vbYes Then

strReport = “zsrptTableAndFieldNames”
DoCmd.OpenReport strReport

End If

ErrorHandlerExit:
Exit Sub

ErrorHandler:
MsgBox “Error No: “ & err.Number _

& “; Description: “ & err.Description
Resume ErrorHandlerExit

End Sub

Once you have created the XML code and stored it in the USysRibbons table, and written any
needed callback procedures to run from command buttons on the Ribbon, you need to close the
database and reopen it, to load the customized Ribbon(s). Then you have to select the Ribbon you
want to use in the database, as described here:

1. Close the database, then reopen it.

2. Click the Office button, then the Access Options button (Figure 15.7).

FIGURE 15.7

Opening the Access Options screen.

545

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 545

3. Select the Current Database page and select the Ribbon you want to load from the Ribbon
Name drop-down list, as shown in Figure 15.8.

FIGURE 15.8

Selecting the Ribbon to load into a database.

4. Close the database and reopen it, and, as in Figure 15.9, now you should see the Ribbon
customization.

FIGURE 15.9

The Listing Options tab created by the ListFields custom Ribbon.

546

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 546

5. To load another Ribbon, select it from the Ribbon Name drop-down list, and close and
reopen the database.

You may get an error message like the one shown in Figure 15.10 when reopening a
database after creating or editing XML code. Note the line and column reference, which

should help in figuring out what the problem is, even if the error description isn’t much help.
Sometimes it is as simple as a missing bracket.

FIGURE 15.10

An informative error message when loading Ribbon customization XML code.

Form Ribbons
You can also make form Ribbons, to replace or customize the built-in Ribbons. The Test Ribbon
database has a sample form Ribbon, AddButtons. This Ribbon displays for a specific form, after
selecting it in the Current Database page of the Access Options screen, and in the form’s property
sheet. The XML for the AddButtons Ribbon is shown in Figure 15.11.

FIGURE 15.11

The XML code for the custom AddButtons form Ribbon.

NOTENOTE

547

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 547

This code adds a custom tab called Custom Form Tab, with a single group and two command but-
tons. The Built-in Paste button runs the default Paste command (if there is something in the
Clipboard to paste); the Click Me button pops up a simple message box. To display a custom
Ribbon on a form, you need to select the Ribbon name in the form’s RibbonName property, as
shown in Figure 15.12.

FIGURE 15.12

Selecting a Ribbon for a form.

The custom tab is shown in Figure 15.13.

548

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 548

FIGURE 15.13

A form custom Ribbon with two buttons, and the message box popped up by the Click Me button.

Customizing the Ribbon with an
Access Add-in
Because Access add-ins (in previous versions of Access) didn’t add buttons to command bars
(menus or toolbars), you can’t replace old code referencing CommandBars with new code referenc-
ing the Ribbon. However, you can replace a set of menu add-ins with a single menu add-in to load
a custom Ribbon, and place the rest of your add-in’s commands on the Ribbon. As an example, I
made a version of my Extras 2007.accda add-in (the sample database for Chapter 14) and modified
it to load a custom Ribbon.

The sample library database for this section is Extras (Ribbon).accda,

If you are attempting to install an add-in in Access 2007 running on Windows Vista, you
may get the security warning shown in Figure 15.14. Some special techniques are needed

to get Access Ribbon add-ins to work in Vista; see the “Getting Your Add-ins to Work in Vista” sidebar
for details. This is not a problem when installing add-ins for Access 2007 running on Windows XP.

CAUTION CAUTION

NOTENOTE

549

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 549

FIGURE 15.14

A security warning when attempting to install an Access add-in for Access 2007 running on Windows
Vista.

See PC Magazine Windows Vista Security Solutions (Wiley, 2007) for more information
on dealing with Vista security issues.

In Windows Vista, callback functions won’t run from Ribbon buttons unless you include
the name of the add-in database project before the function name, as I have done in the

XML code listed below.

The technique for creating the Ribbon XML and storing it in a table is the same as for a regular
Access 2007 database, as described in the previous section. The Extras (Ribbon) library database
has only one add-in with three records in its USysRegInfo table, to load the ExtrasRibbon from the
USysRibbons table. Its XML code is listed next:

<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>
<tabs>

<tab id=”dbCustomTab”
label=”Extras”
visible=”true”>

<group id=”dbListingGroup”
label=”Listing Fields”>
<button id=”btnListTableFields”

label=”List Table Fields”
enabled=”true”
imageMso=”CreateTable”
size=”normal”
onAction=”Extras(Ribbon).ListTableFields”/>

<button id=”btnListQueryFields”
label=”List Query Fields”
enabled=”true”
imageMso=”CreateQueryInDesignView”
size=”normal”
onAction=”Extras(Ribbon).ListQueryFields”/>

<button id=”btnOpenOptionsDialog”
label=”Select Options”
enabled=”true”
imageMso=”CreateFormBlankForm”
size=”normal”
onAction=”Extras(Ribbon).ExtrasOptions”/>

NOTENOTE

CROSS-REFCROSS-REF

550

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 550

</group>
<group id=”dbBackupGroup”

label=”Database Backup”>
<button id=”btnBackupFrontEnd”

label=”Back up current database”
enabled=”true”
imageMso=”Copy”
size=”normal”
onAction=”Extras(Ribbon).BackupFrontEndDB”/>

<button id=”btnBackupBackEnd”
label=”Back up back-end database”
enabled=”true”
imageMso=”Copy” size=”normal”
onAction=”Extras(Ribbon).BackupBackEndDB”/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

The USysRegInfo table with the Enable Extras Tab menu add-in records is shown in Figure 15.15.

FIGURE 15.15

The USysRegInfo table with a set of records for a single menu add-in.

551

Customizing the Ribbon with XML in Access Databases and Add-ins 15

Getting Your Add-ins to Work in Vista

Because of Vista’s new security features, you need to take a few more steps when creating and
installing an Access 2007 add-in to get it to install and work in Vista. The first step is to run

Access as an administrator. Right-click the MSACCESS.EXE file in the Office 12 subfolder under the
Microsoft Office folder, and select “Run as administrator”:

continued

21_047026 ch15.qxp 4/2/07 10:06 PM Page 551

The Extras (Ribbon) add-in has only a single menu add-in: Enable Extras Tab, which runs a proce-
dure (listed next) that copies the USysRibbons table into the calling database, and attempts to load
the table.

552

Adding More Functionality to OfficePart III

continued

Figure SB-6. Running Access as an administrator

Open the add-in from the Access window, open the UsysRegInfo table and (if necessary) change the
capitalization of “Menu Add-ins” to “Menu Add-Ins” (capitalizing the I). This is only necessary for
running add-ins in Vista; “Menu Add-ins” works fine for Access 97 through 2003.

One extra step may also be needed: If your Access 2007 add-in creates a Ribbon, and its buttons
have callback functions, you also need to include the VBA project’s name before the callback func-
tion name in each onaction argument in the USysRibbons table. Instead of just

onAction=”ListQueryFields”

you need

onAction=”Extras (Ribbon).ListQueryFields”/>

After making the above changes to the add-in’s system tables, compile the add-in’s code, and save
and close it. Now you should be able to install the add-in and run its menu add-in(s), and its Ribbon
buttons should work.

21_047026 ch15.qxp 4/2/07 10:06 PM Page 552

Loading a table programmatically with the LoadCustumUI function doesn’t always
work; if the table is not automatically loaded, you can load it manually, as described

earlier in this chapter (see Figure 15.8).

The basExtrasRibbon module also contains several callback procedures, which are the same as
those in the standard Extras 2007.accda add-in, except for the ByVal control As
IRibbonControl argument (plus one new procedure, for backing up a back end database).

How did I find the GUID for Office 12’s object library? I found the path from the
References dialog, then searched for it in the Registry, using the RegEdit utility; the

GUID is on the line above the one listing the path.

Public Function LoadRibbons()
‘Must be a function so it can be run from USysRegInfo table.

On Error Resume Next

Dim i As Integer
Dim strRibbonName As String
Dim strRibbonXML As String

Set dbsCode = CodeDb
Set dbsCalling = CurrentDb

Add a reference to the Office 12 object library (if there isn’t one already).

Application.References.AddFromGuid _
“{000C0126-0000-0000-C000-000000000046}”, 1, 0

Copy the USysRibbons table to the calling database, after deleting any existing table of that name,
if there is one.

Set dbsCalling = CurrentDb
strCallingDb = CurrentDb.Name
Set tdfsCalling = dbsCalling.TableDefs
strTable = “USysRibbons”
Set tdfCalling = tdfsCalling(strTable)
DoCmd.SetWarnings False
If tdfCalling Is Nothing Then

Debug.Print strTable & “ not found; about to copy it”
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

Else

TIPTIP

CAUTION CAUTION

553

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 553

Table found; delete it and then copy current version.

tdfsCalling.Delete (strTable)
DoCmd.CopyObject destinationdatabase:=strCallingDb, _

newname:=strTable, _
sourceobjectType:=acTable, _
sourceobjectname:=strTable

Debug.Print “ Old “; strTable _
& “deleted; about to copy current version”

End If

Set rst = dbsCalling.OpenRecordset(strTable)
rst.MoveFirst
Do While Not rst.EOF

strRibbonName = rst![RibbonName]
strRibbonXML = rst![RibbonXML]

Load the Ribbon from the table record (if it has not already been loaded).

Application.LoadCustomUI _
customuiname:=strRibbonName, _
customuixml:=strRibbonXML

rst.MoveNext
Loop

dbsCalling.Close
Set dbsCalling = Nothing

ErrorHandlerExit:
Exit Function

ErrorHandler:
MsgBox “Error No: “ & Err.Number _

& “; Description: “ & Err.Description
Resume ErrorHandlerExit

End Function

Once the add-in has been loaded, you can select Enable Extras Tab from the Add-ins menu on the
Database Tools tab of the Ribbon, as shown in Figure 15.16.

554

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 554

FIGURE 15.16

Selecting a menu add-in to load a custom Ribbon from an Access add-in.

See Chapter 14 for information on installing an Access add-in.

Close and reopen the database. If the ExtrasRibbon was not automatically loaded, select it manu-
ally, then close and reopen the database again; you should now see the Extras tab, as shown in
Figure 15.17.

FIGURE 15.17

The Extras tab loaded from an Access add-in.

The “Select Options” button opens the dialog where various options can be selected; the other but-
tons run functions to list table or query fields, or back up the current database or its back end.

CROSS-REFCROSS-REF

555

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 555

Figure 15.18 shows the Select Options dialog:

FIGURE 15.18

The Select Options dialog for selecting a backup folder and entering prefixes to exclude.

The Ribbon is a new feature for Office, and (not surprisingly) even in the release version
of Access 2007 it is not entirely stable, especially when the buttons run procedures from

an add-in. You may find that you have to repeatedly uninstall and reinstall an add-in, unload and
reload a Ribbon, and (most of all!) repeatedly close and reopen a database to get a Ribbon that calls
add-in procedures to work. Hopefully this instability will clear up in an upcoming patch or service
release of Office 2007.

If you select the List Table Fields command, a table is filled with the names of tables and their
fields, and a message box asks if you want to print the report bound to the table now, as shown in
Figure 15.19:

CAUTION CAUTION

556

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 556

FIGURE 15.19

A table filled with names of tables and their fields.

Selecting the “Back up back end database” command extracts the name of the back end database
from the Connect string of a linked table, and presents an InputBox with a proposed save name,
which can be edited as desired. The InputBox is shown in Figure 15.20

FIGURE 15.20

An InputBox with a proposed save name for a back-end database.

557

Customizing the Ribbon with XML in Access Databases and Add-ins 15

21_047026 ch15.qxp 4/2/07 10:06 PM Page 557

If you run this command in a database that has no linked tables, you will instead get the message
shown in Figure 15.21:

FIGURE 15.21

A message when attempting to back up the back end for a database that has no linked tables.

The procedures for the “List Table Fields”, “List Query Fields”, “Select Options”, “Back up current
database”, and “Back up back end database” buttons are similar to those in the Extras 2007.accda
add-in, except that they use the ByVal control As IRibbonControl argument that is needed to run
them from Ribbon buttons; their code is not listed here.

Summary
Although at first it may appear that the new Ribbon is not customizable, you can in fact customize
it, at least by adding new tabs and groups, with controls to run your code. This chapter covered
writing XML code to load a custom Ribbon, and VBA code for procedures to run from the custom
Ribbon buttons, both in regular Access 2007 databases and in library databases for Access 2007
add-ins. The next chapter describes how to write Shared add-ins working with the Access Ribbon
in Visual Basic 2005.

558

Adding More Functionality to OfficePart III

21_047026 ch15.qxp 4/2/07 10:06 PM Page 558

In Chapter 13, I described creating a VB 6 COM add-in to add extra
functionality to Access. VB 6 (though still supported by Microsoft) is not
the latest version of Visual Basic; if you want to use the latest version,

that is VB 2005, included in Visual Studio 2005, available in several editions.
There are significant differences between these versions of VB and some com-
patibility problems with Office 2007, but you can create Visual Studio 2005
add-ins that work with Access, though at present the job is much harder than
it should be, and their functionality is limited, because the Visual Studio Tools
for Office add-in does not yet include an Access add-in template.

This chapter describes creating a simple Visual Studio Shared add-in for
Access that will run in both Windows XP and Windows Vista.

Preparing to Write a Visual
Studio Add-in
Before you start writing a Visual Studio add-in, there are several preliminary
steps you need to take. The first is to check that.NET support is enabled for
Office, to support the Access interoperability component needed to work
with Access.

Adding .NET Support to Office
Since your installation of Office 2007 may not have .NET support enabled,
you need to check that this feature has been selected; it is required in order
to create Shared add-ins. To check whether.NET support is enabled, you

559

IN THIS CHAPTER
Customizing the Ribbon with a
Visual Studio 2005 Shared add-in

A comparison of Access and
Visual Studio add-ins

Customizing the Access
Ribbon with a Visual Studio

2005 Shared Add-in

22_047026 ch16.qxp 4/2/07 10:07 PM Page 559

need to run Office install. In Windows Vista, first select Programs in the Control Panel, then
Programs and Features, then select the Microsoft Office item, as shown in Figure 16.1. If you are
running Windows XP, start by selecting the Add or Remove Programs applet in the Control Panel,
then the Microsoft Office 2007 item.

FIGURE 16.1

Changing the Office 2007 installation in Windows Vista.

On the next screen, shown in Figure 16.2, select the Change option, then “Add or Remove Features”
for Vista, or the “Add or Remove Features” option for Windows XP.

In the Installation Options dialog, drop down the Microsoft Office Access list; if the .NET
Programmability Support item has a big red X, that means that it is not installed. To install it, drop
down its list and select the “Run from My Computer” item (see Figure 16.3).

560

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 560

FIGURE 16.2

Selecting the “Add or Remove Features” option for changing Office in Windows XP.

FIGURE 16.3

Selecting the “Run from My Computer” option for .NET programmability support.

561

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 561

If you want to create add-ins for any other Office components, select “Run from My Computer” for
their .NET Programmability Support components as well. After clicking Continue, Office installs
the new features, and when it is done, you will get a success screen, depicted in Figure 16.4; click
Close on this screen, and then close the Add/Remove Program applet.

FIGURE 16.4

The success screen after changing the Office configuration.

Although VB 2005 Express has an Upgrade Wizard, it isn’t helpful in upgrading a VB 6 COM add-
in to VB 2005 because the Express edition of VB 2005 doesn’t support creating add-ins. If you
attempt to upgrade a VB 6 COM add-in with this wizard (or the similar wizard in Visual Studio
2005), all the project components will be upgraded except the critical Access Designer, and you
will get a message “Activex Designer AccessDesigner.Dsr was not upgraded” in the Upgrade Report,
as shown in Figure 16.5.

562

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 562

FIGURE 16.5

The Upgrade Report for a VB 6 COM add-in, showing that the Access Designer was not upgraded.

The VB 6 COM add-in was the topic of Chapter 13.

You might think that Visual Studio Tools for Office 2005 (VSTO) would be an appropriate tool for
creating Access add-ins, when supplemented with the downloadable upgrade that supports Office
2007 — after all, Access is part of Office. But this is not so. Though you can create add-ins for all
the other major Office 2007 components, and some minor ones as well (see Figure 16.6), you can’t
create an Access add-in with VSTO, and therefore in this section I use Visual Studio 2005 for creat-
ing a Shared add-in (this is the new name for what was previously called a COM add-in).

To create a Shared add-in that adds capability to Access, start by running Visual Studio 2005 and
selecting File ➪ New Project. In the New Project dialog, select the Extensibility selection under the
Other Project Types category, then select the Shared Add-in template. Enter the add-in’s name and
solution name; you can either accept the default location for the add-in’s files or browse for a cus-
tom location, as I did in Figure 16.7.

CROSS-REFCROSS-REF

563

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 563

FIGURE 16.6

The VSTO New Project Office screen, showing that Access add-in creation is not supported.

FIGURE 16.7

Creating a Shared add-in in Visual Studio 2005.

The add-in’s name can’t contain spaces or punctuation marks — just letters and numbers.
However, the solution name can contain spaces or punctuation marks.

After clicking OK, you will get a “Welcome to the Add-in Wizard” screen, as seen in Figure 16.8.

CAUTION CAUTION

564

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 564

565

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

Running Visual Studio 2005 in Windows Vista

In order to run Visual Studio 2005 on Windows Vista, you need to install a Service Pack and then a hot-
fix. The first download to install is the Visual Studio 2005 Service Pack 1, which can be downloaded

from http://msdn2.microsoft.com/en-us/vstudio/bb265237.aspx (in various versions
depending on the edition of Visual Studio). The hotfix is called the Visual Studio 2005 Service Pack 1
Update for Windows Vista Beta; it can be downloaded at http://www.microsoft.com/down-
loads/details
.aspx?familyid=fb6bb56a-10b7-4c05-b81c-5863284503cf&displaylang=en.

After installing the service pack and hotfix, when you run Visual Studio 2005, you will probably get
this message:

continued

FIGURE 16.8

The first screen of the Shared Add-in Wizard.

22_047026 ch16.qxp 4/2/07 10:07 PM Page 565

566

Adding More Functionality to OfficePart III

continued
If you click on the link, you will get a Web page with more links to pages with information about
running Visual Studio 2005 on Vista:

For running Visual Studio 2005 on Vista, the link you need is the third one, “Running with elevated
administrator permissions.” There is a lot of information on this page, but basically you only need
one thing: when running Visual Studio in Vista, right-click its icon and select “Run as administrator”
from its context menu:

22_047026 ch16.qxp 4/2/07 10:07 PM Page 566

567

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

Now you can create new projects or open existing projects, and work with them as in Windows XP,
and your Visual Studio add-in Ribbons (and other customizations) will work in Access 2007
databases.

22_047026 ch16.qxp 4/2/07 10:07 PM Page 567

On the screen depicted in Figure 16.9, select Visual Basic as the programming language to use (it
may be the only choice, depending on the language support you selected when installing Visual
Studio).

FIGURE 16.9

Selecting a programming language for the add-in.

On the next screen, shown in Figure 16.10, select Microsoft Access as the application host.

FIGURE 16.10

Selecting an application host for the add-in.

568

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 568

On screen 3 of the wizard (see Figure 16.11), enter the add-in’s name and description (not the
same as the project name and solution name entered on the first screen).

FIGURE 16.11

Giving the add-in a name and description.

Next, as depicted in Figure 16.12, select add-in options — during development, it’s best to check
only the first checkbox, so only you (the developer) can work with the add-in.

FIGURE 16.12

Selecting add-in options.

569

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 569

The final page of the Shared Add-in Wizard (see Figure 16.13) gives a summary of the selected
options.

FIGURE 16.13

The Summary page of the Shared Add-in Wizard.

On clicking Finish, the new add-in project is created, with all the necessary components, and the
Connect class (the Connect.vb module) is displayed, as shown in Figure 16.14 (note the similarity
to the Access Designer in the VB 6 COM add-in). To work with the references more easily, select
Project ➪ Show All Files, and expand the References folder in the Solution Explorer at the right of
the screen.

If you don’t see the References folder in the Solution Explorer, select Show All Files from
the Project menu to make the folder visible.TIPTIP

570

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 570

FIGURE 16.14

The new Shared add-in project.

Next, add a reference to the Access Interoperability item. To add references, right-click the References
folder and select Add Reference, then select the .NET tab, select “Microsoft.Office.Interop.Access” (as
in Figure 16.15), and click OK.

Figure 16.16 shows the solution’s references in the Solution Explorer.

571

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 571

FIGURE 16.15

Adding a reference to the Interop.Access item.

FIGURE 16.16

The Access Interoperability reference, and standard references.

572

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 572

The next step is to add some Imports statements under the two default statements in the
Declarations section of the class module, using IntelliSense (see Figure 16.17):

Imports Extensibility
Imports System.Runtime.InteropServices
Imports Microsoft.Office.Core
Imports Access = Microsoft.Office.Interop.Access

FIGURE 16.17

Using IntelliSense to add an Imports statement to the Connect class module.

Next, replace the class-level variables (applicationObject and addInInstance), both
declared as Object, with typed references, replacing Dim with Private (I also gave the
applicationObject variable a more application-specific name, appAccess):

Private appAccess As Microsoft.Office.Interop.Access.Application
Private addInInstance As Microsoft.Office.Core.COMAddIn

After adding statements and modifying the variables, there are some more modifications to be
made to the code in the Connect class module. These changes are described in the next section.

Modifying the Connect Class Module Code
If you were (for example) creating an Excel 2007 add-in using VSTO 2005 with the 2007 upgrade,
you could add Ribbon support to your add-in by simply adding a Ribbon Support item to your
project. Visual Studio 2005 lacks a Ribbon Support item, and VSTO doesn’t support creating
Access add-ins, so this step requires extensive manual modification of the Connect class module,
to support working with Access and the Ribbon.

573

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 573

In the OnConnection method, modify the rows that set the application (Access) and add-in vari-
ables as follows:

appAccess = DirectCast(application, _
Microsoft.Office.Interop.Access.Application)

addInInstance = DirectCast(addInInst, _
Microsoft.Office.Core.COMAddIn)

Next, modify the two lines that set the Access and add-in variables as follows:

appAccess = DirectCast(application, Access.Application)
addInInstance = DirectCast(application, Core.COMAddIn)

Add another Implements statement to the Connect class as follows:

Implements Extensibility.IDTExtensibility2
Implements IRibbonExtensibility

If all this manual modification of the Shared add-in code is getting tedious, hopefully
the next version (v. 3) of VSTO will include an Access template that will eliminate most

of the hand-coding for support of Access Shared add-ins and the Ribbon.

After adding the Implements IRibbonExtensibility line, a new function stub should
appear in the Connect class module, GetCustomUI.

If you don’t see the function stub, try doing a Save All. If it still doesn’t appear, just type
in the whole function.

Add a line of code to this function, as listed next:

Public Function GetCustomUI(ByVal RibbonID As String) As String _
Implements Microsoft.Office.Core.IRibbonExtensibility.GetCustomUI
Return My.Resources.Ribbon

End Function

Finally, open the Assembly.vb class from the Solution Explorer and add information about the add-
in (you don’t have to fill in all the information), as shown in Figure 16.18.

This completes the general changes to the Connect class module; now you need to add code for
your add-in’s specific functionality.

NOTENOTE

NOTENOTE

574

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 574

FIGURE 16.18

Adding Assembly information to the add-in.

Adding Functionality to the Shared Add-in
For the Visual Studio add-in I used components of the Access object model to create a table, form,
or report programmatically, adding fields to the table and controls to the form or report. To imple-
ment this functionality, I needed to write the custom Ribbon’s XML code, three button functions,
and some supporting code.

To create the Ribbon XML and embed it within the project, first create an XML File item by select-
ing Project ➪ Add New Item, and then the XML File item in the Add New Item dialog (give the file
the name Ribbon.xml), as shown in Figure 16.19.

575

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 575

FIGURE 16.19

Creating an XML File item for Ribbon support.

The XML code for the Ribbon in this add-in is listed here (see Chapter 15 for more detailed infor-
mation on creating Ribbon XML code):

<?xml version=”1.0” encoding=”utf-8” ?>
<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon startFromScratch=”false”>
<tabs>
<tab id=”dbDemoTab”

label=”Visual Studio Add-in”
visible=”true”>
<group id=”dbAccessObjectsGroup”

label=”Create Access Objects”>
<button id=”btnCreateTable”

label=”Create New Table”
enabled=”true”
imageMso=”Table”
size=”normal”
onAction=”CreateTableInDesignView”/>

<button id=”btnCreateForm”
label=”Create New Form”
enabled=”true”
imageMso=”CreateFormInDesignView”
size=”normal”
onAction=”CreateNewForm”/>

<button id=”btnCreateReport”
label=”Create New Report”
enabled=”true”

576

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 576

imageMso=”CreateReportInDesignView”
size=”normal”
onAction=”CreateNewReport”/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

Next, the XML file needs to be treated as a resource within the project, so you don’t have to deal with
a separate text file. To do this, select Ribbon.xml in the Solution Explorer, and select Embedded
Resource as the value for the Build Action property in its properties sheet (see Figure 16.20).

FIGURE 16.20

Selecting Embedded Resource as the Build Action property of the Ribbon.xml file.

Next, select “CreateObjects Properties” from the bottom of the Project menu (if you are working
with a different project, its name appears instead of CreateObjects). Click the Resources tab; if you
have not already created a resources file, all you will see is the link shown in Figure 16.21.

FIGURE 16.21

A link to add a resource to a project.

Click the link to create a resources file; a datasheet appears, with columns for Name, Value, and
Comment. Drag the Ribbon.xml file from the Solution Explorer to the Resources pane; now, as in
Figure 16.22, you will see an icon for the Ribbon.xml file.

577

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 577

FIGURE 16.22

The Ribbon.xml file added to the project’s resources file.

Each of the buttons in the Ribbon XML code needs its own procedure; the three button proce-
dures, plus a standard add-in error handler (same as in the VB 6 COM add-in) are listed next:

Public Sub CreateNewTable(ByVal control As _
Microsoft.Office.Core.IRibbonControl)

On Error GoTo ErrorHandler

Dim strSQL As String
Dim strTable As String
Dim obj As AccessObject

strTable = “tblTest”
strSQL = “CREATE TABLE “ & strTable & “ (FileDate DATE, “ _
& “FileNumber LONG, FileName TEXT (100), “ _
& “Current YESNO);”

Debug.Print(“SQL Statement: “ & strSQL)

Create table if it doesn’t already exist.

For Each obj In appAccess.CurrentData.AllTables
If obj.Name = strTable Then
‘Table already exists
GoTo ErrorHandlerExit

End If
Next

578

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 578

Create the table.

appAccess.DoCmd.RunSQL(strSQL)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr(Err)
Resume ErrorHandlerExit

End Sub

Public Sub CreateNewForm(ByVal control As _
Microsoft.Office.Core.IRibbonControl)

On Error GoTo ErrorHandler

Dim frm As Microsoft.Office.Interop.Access.Form
Dim txt As Microsoft.Office.Interop.Access.TextBox
Dim lbl As Microsoft.Office.Interop.Access.Label
Dim cbo As Microsoft.Office.Interop.Access.ComboBox
Dim lst As Microsoft.Office.Interop.Access.ListBox
Dim chk As Microsoft.Office.Interop.Access.CheckBox

Create a new form.

frm = appAccess.CreateForm()
frm.RecordSource = “tblTest”
txt = appAccess.CreateControl(FormName:=frm.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acTextBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=0, Width:=2500, Height:=400)

lbl = appAccess.CreateControl(FormName:=frm.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acLabel, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=1000, Width:=2500, Height:=400)

cbo = appAccess.CreateControl(FormName:=frm.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acComboBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=2000, Width:=2500, Height:=400)

lst = appAccess.CreateControl(FormName:=frm.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acListBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=3000, Width:=2500, Height:=400)

579

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 579

chk = appAccess.CreateControl(FormName:=frm.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acCheckBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=4000, Width:=2500, Height:=400)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr(Err)
Resume ErrorHandlerExit

End Sub

Public Sub CreateNewReport(ByVal control As _
Microsoft.Office.Core.IRibbonControl)

On Error GoTo ErrorHandler

Dim rpt As Microsoft.Office.Interop.Access.Report
Dim txt As Microsoft.Office.Interop.Access.TextBox
Dim lbl As Microsoft.Office.Interop.Access.Label
Dim cbo As Microsoft.Office.Interop.Access.ComboBox
Dim lst As Microsoft.Office.Interop.Access.ListBox
Dim chk As Microsoft.Office.Interop.Access.CheckBox

Create a new report.

rpt = appAccess.CreateReport()
rpt.RecordSource = “tblTest”
txt = appAccess.CreateReportControl(ReportName:=rpt.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acTextBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=0, Width:=2500, Height:=400)

lbl = appAccess.CreateReportControl(ReportName:=rpt.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acLabel, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=1000, Width:=2500, Height:=400)

cbo = appAccess.CreateReportControl(ReportName:=rpt.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acComboBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=2000, Width:=2500, Height:=400)

lst = appAccess.CreateReportControl(ReportName:=rpt.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acListBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=3000, Width:=2500, Height:=400)

580

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 580

chk = appAccess.CreateReportControl(ReportName:=rpt.Name, _
ControlType:=Microsoft.Office.Interop.Access.AcControlType.acCheckBox, _
Section:=Microsoft.Office.Interop.Access.AcSection.acDetail, _
Left:=0, Top:=4000, Width:=2500, Height:=400)

ErrorHandlerExit:
Exit Sub

ErrorHandler:
AddInErr(Err)
Resume ErrorHandlerExit

End Sub

Public Sub AddInErr(ByVal errX As ErrObject)

Displays a message box with error information.

Dim strMsg As String

strMsg = _
“An error occurred in the Extras add-in” _
& Microsoft.VisualBasic.Constants.vbCrLf _
& “Error #:” & errX.Number _
& Microsoft.VisualBasic.Constants.vbCrLf _
& “Description: “ & errX.Description

MsgBox(strMsg, MsgBoxStyle.Critical, “Error!”)

End Sub

The syntax for named constants is much more verbose in Visual Studio 2005 than in
Access VBA or VB 6: Instead of (for example) acControlType, you need the full enum

reference, Microsoft.Office.Interop.Access.acControlType.

If you turn on the Error List pane (View ➪ Error List), you will see a number of warnings
about implicit conversion of a variable from Access control to a specific Access control type (see
Figure 16.23).

In general, you can clear up conversion warnings by using a conversion function in the code, but
Visual Studio 2005 doesn’t have any conversion functions for Access controls, so you just have to
live with the warnings (the code will run fine).

NOTENOTE

581

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 581

FIGURE 16.23

Implicit conversion warnings in the Error List.

If you are very skilled at writing code, and very lucky, at this point you could install and test the
code, and everything would work perfectly. But it’s more realistic to expect that there will be some
bugs in the code that will prevent the add-in from working, so it’s a good idea to do some debug-
ging at this point, to save the time you would spend going through the installation and then find-
ing that the add-in doesn’t work as expected.

Debugging the Add-in
The Error List pane (mentioned in the previous section) helps you to locate any errors in your
code; you can double-click an item to go to the line of code that caused the error. When working
with an add-in, you can use the “Start Debugging” selection on the Debug menu to step through
the code — but first you have to select Access as the application to start when debugging. To do
this, select “CreateObjects Properties” from the bottom of the Project menu (if you are working
with a different project, its name appears instead of CreateObjects). Click the Debug tab and select
Access as the “Start external program” option selection. (Figure 16.24 shows the Select File dialog
that appears when you click the Browse button to the right of the “Start external program” option.)

Now you can set breakpoints in your code (using the F9 function key), as with Access VBA, and
when you select Start Debugging on the Debug menu, Access will open automatically. Select (or
create) a new database, and then click the add-in’s buttons to run and debug the code; it will stop
at the breakpoints you have set so you can step through the code with the F8 function key.

582

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 582

FIGURE 16.24

Selecting Access as the program to start when debugging.

Building and Installing the Add-in
After finding and correcting any errors in the add-in’s code, you are ready to build the add-in; to
do this, click the Save All button, and then select Build from the context menu of the “Create
ObjectsSetup” item in the Solution Explorer (the name is your add-in’s name plus “Setup”), as
shown in Figure 16.25.

When “Build succeeded” appears in the lower-left corner of the status bar, you can then install the
solution by selecting Install from the same context menu.

If the Install selection is disabled after a successful first build, select Rebuild; after that,
Install should be enabled.TIPTIP

583

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 583

FIGURE 16.25

Building the solution.

Selecting Install starts the awkwardly named Create ObjectsSetup Setup Wizard (see Figure 16.26).

FIGURE 16.26

The first screen of the Setup Wizard.

584

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 584

Clicking Next gets you the Select Installation Folder screen (see Figure 16.27), where you can
either accept the default location or browse for another location, and select whether the add-in is
available to all users or just you.

FIGURE 16.27

Selecting the installation folder for the solution.

On the Confirm Installation screen of the Setup Wizard shown in Figure 16.28, click Next to start
the installation.

FIGURE 16.28

The Confirm Installation screen of the Setup Wizard.

585

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 585

The next screen, omitted here, shows a progress bar while the solution is being installed.

When the installation is complete, you will get the Installation Complete screen, depicted in
Figure 16.29.

FIGURE 16.29

The final screen of the Setup Wizard.

Generally speaking, after clicking Close on the last wizard screen, the add-in is installed automati-
cally; however, if you don’t see the custom Ribbon that the add-in should create in an Access 2007
database, you can install it manually. Open the Access Options dialog from the Office menu, and
select the Add-ins page. At the bottom of the page click the Go button to the right of the COM
Add-ins drop-down, as shown in Figure 16.30.

The COM Add-ins dialog (shown in Figure 16.31) looks the same as in older versions of Access. If
you see the add-in listed, just check it; otherwise, you can browse for it.

586

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 586

FIGURE 16.30

Opening the COM Add-ins dialog from the Add-ins page of the Access Options dialog.

FIGURE 16.31

Installing a COM add-in in the COM Add-ins dialog.

587

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 587

Using the Add-in
To test the add-in, open any Access 2007 database (or create a new database). As in Figure 16.32,
you should see a new Visual Studio Add-in tab on the Ribbon with a group called “Create Access
Objects” containing three buttons. There is no need to manually add the Ribbon, or even to close
and reopen the database; the Ribbon appears immediately (a refreshing change from the struggle
you have to go through in order to get a custom Ribbon to appear from an Access add-in).

FIGURE 16.32

A new tab and group created by the add-in.

Clicking the “Create New Table” button creates a new table with several fields of different data
types, the “Create New Form” button creates a new form with the new table as its record source
and several controls of different types, and the “Create New Report” button creates a new report,
also with the new table as its record source and several controls of different types. Figure 16.33
shows the new table in design view.

FIGURE 16.33

A new table created by the add-in.

588

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 588

Figure 16.34 shows the new form; the new report is similar.

FIGURE 16.34

A form created by the add-in.

The form is called Form1 (or another number); it can’t be renamed in code, either in the
Visual Studio add-in or directly in Access VBA, because the Name property of the Form

object is read-only when the form is created using the CreateForm method (and similarly for the
CreateReport method).

Summary
After working with all three add-in types (Access, VB 6, and Visual Studio 2005), my conclusion is
that Access add-ins have advantages over both VB 6 and Visual Studio 2005 add-ins, at least if you
are running Windows XP. One of the most significant advantages of Access add-ins is that they are
themselves Access databases, and this allows you to copy database objects from the code database
to the calling database. If you need forms in a VB or Visual Studio add-in, you have to create them
from scratch as VB or Windows forms; reports (in some versions of VB), can only be created using
Crystal Reports. Another advantage of Access add-ins is that only an Access add-in can create a
wizard or builder. And finally, Access add-ins use VBA code, so you don’t need to learn a new pro-
gramming dialect, just a few special techniques.

However, if you want your Access add-ins to create custom Ribbons, there are some roadblocks at
present. Getting the custom Ribbon to display, and to run add-in code, may require so much time
spent in uninstalling and reinstalling the add-in, unloading and reloading the table, and closing

NOTENOTE

589

Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in 16

22_047026 ch16.qxp 4/2/07 10:07 PM Page 589

and reopening the database numerous times, that you get totally frustrated in trying to get the add-
in’s custom Ribbon to display (and its buttons to work). By contrast, Access add-ins that create
menu add-ins and property builders work just fine once they are installed, and so do Ribbons and
buttons created by VB 6 and Visual Studio add-ins.

When you need to put a button somewhere other than on the Add-Ins tab, and you don’t want to
fiddle with getting Ribbon buttons to work from Access add-ins, you can create a VB or Visual
Studio add-in — both work very well with Ribbons.

Another special consideration is running add-ins on Windows Vista — at present, Access add-ins
have problems with Vista security, while (at least if you have installed the hotfix mentioned in the
“Running Visual Studio 2005 in Windows Vista” sidebar — Visual Studio add-ins run fine in Vista.
Hopefully, v. 3 of VSTO should (at long last!) include an Access template, which should greatly
simplify the process of creating Shared add-ins for Access.

590

Adding More Functionality to OfficePart III

22_047026 ch16.qxp 4/2/07 10:07 PM Page 590

For many versions now, Windows has had its own scripting language,
Windows Script Host, a dialect of Visual Basic Script (VBS). Windows
Script Host (WSH) scripts can be run from the command line (for

those versions of Windows that have a command line, click Start ➪ Run), by
double-clicking the script file in an Explorer window, and also from the
Windows Vista Task Scheduler, which is handy if you want to run a script
automatically, on a regular schedule.

One use for a WSH script is to create a database backup at regular intervals;
another is to copy Word or Excel templates, or other supporting files, to the
appropriate folder, as part of an Office application setup, when you don’t
want (or need) to create a full Install package. WSH scripts are also useful
for working with files in a folder, doing tasks such as deleting or renaming
files containing a certain prefix, suffix, or extension. This chapter describes
how to create and modify WSH scripts, including sample scripts for some
common uses.

Tools for Working with Windows
Script Host Scripts
Though you can create and edit WSH scripts with Notepad, it is a lot easier to
work with them in the Microsoft Script Editor (MSE), using the VBScript
downloadable Help file for reference. Curiously, neither the MSE nor the
VBScript Help file appears as part of the interface when you work with a WSH
script; you have to locate (and possibly download) these files and set them up
manually to provide a more functional working environment. The next sec-
tions tell you how to obtain and use these tools for working with WSH scripts.

591

IN THIS CHAPTER
Writing Windows Script Host
scripts

Using the Microsoft Script Editor
and the VBS Help file

Differences between VBS and
VBA code

Scripts for working with Office
documents

Scripts for working with files

Using the Windows Vista Task
Scheduler to run a backup script

Creating Standalone Scripts
with Windows Script Host

23_047026 ch17.qxp 4/2/07 10:07 PM Page 591

The Microsoft Script Editor
The Microsoft Script Editor (MSE) has been part of Office for several versions now, but you might
not be aware of its existence. It doesn’t appear in either the Microsoft Office or Microsoft Office
Tools program group, nor is it one of the Open With selections on the right-click menu of a VBS file.

The MSE executable is located in the following path for Office 2007: C:\Program Files\Common
Files\Microsoft Shared\OFFICE12\MSE7.EXE, as shown in Figure 17.1.

FIGURE 17.1

The Microsoft Script Editor executable (MSE7.EXE).

You can open the MSE directly by double-clicking the MSE7.EXE file, and then open a script to
edit from its File ➪ Open menu, but for convenience you may wish to pin the executable file to
the Start menu, as shown in Figure 17.2.

For even greater convenience, you can select the MSE as the program to use when opening VBS
files. To do this, right-click a file with the .vbs extension in an Explorer pane, and select the
Choose Default Program command (see Figure 17.3).

592

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 592

FIGURE 17.2

Pinning the MSE executable to the Windows Vista Start menu.

FIGURE 17.3

Choosing the MSE as the default program to use with VBS files.

593

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 593

The “Microsoft (r) Windows Based Script Host” entry in the Recommended Programs
group on the Open With dialog runs the script, rather than opening it for editing.

Curiously, the MSE is not shown in either the Recommended Programs or Other Programs group
in the Open With dialog (shown in Figure 17.4), so you need to browse for it in the C:\Program
Files\Common Files\Microsoft Shared\OFFICE12\ folder.

FIGURE 17.4

The Open With dialog for selecting the program to use when opening a VBS file.

Figure 17.5 shows the MSE executable being selected in the Open With . . . Browse dialog.

Back on the main Open With dialog, Microsoft Script Editor is now visible in the Other Programs
group, and you can select it and click OK to open the script in the MSE. After selecting MSE7.EXE
as the file to use when opening a VBS file, you will see the MSE as a selection on the Open With
menu (Figure 17.6).

NOTENOTE

594

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 594

FIGURE 17.5

Selecting the MSE executable as the file to use when opening VBS files.

FIGURE 17.6

Selecting the MSE for use in opening VBS files.

595

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 595

If you leave the “Always use the selected program to open this kind of file” checkbox checked
when opening the script file, then double-clicking a VBS file will open MSE, and you will need to
select “Microsoft (r) Windows Based Script Host” from the Open With menu to run the script; leav-
ing this checkbox unchecked means that double-clicking the VBS script file will run the script, and
you can select the MSE to edit the script from the Open With menu. I generally leave it unchecked,
to make it easier to run scripts.

If you want to run scripts by double-clicking them, select “Microsoft (r) Windows Based
Script Host” as the program to use when opening VBS files, and check the “Always use

the selected program to open this kind of file” checkbox.

Figure 17.7 shows the new MSE entry on the Open With menu of a VBS file.

FIGURE 17.7

The Microsoft Script Editor selection on a VBS file’s Open With menu.

If you have Visual Studio 2005 installed, you will see that program on the Open With
menu, and you can open a script in Visual Studio; however, the Visual Studio editor (for

VBScripts) is basically just a text editor with some color-coding, so I recommend using the MSE instead.

The MSE window (shown in Figure 17.8) has some similarities to the Visual Basic module window
for an Access (or another Office program), and to the VB 6 editor.

NOTENOTE

TIPTIP

596

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 596

FIGURE 17.8

A WSH file open in the Microsoft Script Editor.

For full details on using the MSE, open Help from the MSE menu, and select Microsoft Script
Editor Help. There are several Help topics related to using the MSE, as shown in Figure 17.9.

The MSE’s Help file is web-based, so it is only available if you are connected to the
Internet.

The VBScript Help File
As mentioned in Chapter 9, Microsoft has provided a Help file for VBScript that is a model of good
design and usefulness (unlike the Help files for Office 2007); to get this Help file, download the
Microsoft Windows Script 5.6 Documentation file from the Microsoft Web site at http://www
.microsoft.com/downloads/details.aspx?familyid=01592C48-207D-4BE1-
8A76-1C4099D7BBB9&displaylang=en.

The Help file (script56.chm) is a compiled HTML Help file, which can be opened in both
Windows XP and Windows Vista. Unlike the MSE’s own Help file, the script56.chm file is
available whether or not you are connected to the Internet, although you do have to have a con-
nection to download the file.

WARNING WARNING

597

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 597

For working with WSH scripts, the VBScript Language Reference and Windows Script Host Help
books are of the most use; they are shown opened in the Help file in Figure 17.9, with the
Windows Script Host Object Model Help topic selected.

FIGURE 17.9

The Windows Scripting Technologies Help file.

For help on using the MSE itself, open its Help file from the Help button on the editor’s menu,
then select “Microsoft Script Editor Help” to open a page of MSE-related Help topic selections,
as shown in Figure 17.10.

There is a good deal of overlap between the Help file available from the MSE and the one down-
loaded from the Scripting web page, but in my opinion the downloaded Help file is much easier to
use, because of the hierarchical tree-type topic list, so if you have the option of opening this Help
file in Windows XP, I recommend you use it; otherwise, if you are connected to the Internet, you
can use the MSE Help file.

598

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 598

FIGURE 17.10

The Microsoft Script Editor Help topics.

Differences between VBA
and VBScript Code
If you are used to writing VBA (or VB) code, you will find that VBScript (VBS) lacks some of the
features you are used to. Table 17.1 (taken from the “Visual Basic for Applications Features not in
VBScript” topic in the VBS Help file) lists all the VBA features not supported in VBS code.

599

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 599

TABLE 17.1

Syntax Differences between VBA and VBS Code

Category Omitted Feature/Keyword

Array Handling Option Base Declaring arrays with lower bound <> 0

Collection Add, Count, Item, Remove Access to collections using ! character

Conditional Compilation #Const #If...Then...#Else

Control Flow DoEvents GoSub...Return, GoTo On Error GoTo On...GoSub, On...GoTo Line
numbers, Line labels

Conversion CVar, CVDate Str, Val

Data Types All intrinsic data types except Variant Type...End Type

Date/Time Date statement, Time statement

DDE LinkExecute, LinkPoke, LinkRequest, LinkSend

Debugging Debug.Print End, Stop

Declaration Declare (for declaring DLLs) Optional ParamArray Static

Error Handling Erl Error Resume, Resume Next

File Input/Output All traditional Basic file I/O

Financial All financial functions

Object Manipulation TypeOf

Objects Clipboard Collection

Operators Like

Options Deftype Option Base Option Compare Option Private Module

Select Case Expressions containing Is keyword or any comparison operators Expressions
containing a range of values using the To keyword.

Strings Fixed-length strings LSet, RSet Mid Statement StrConv

Using Objects Collection access using !

Though this table is useful, it doesn’t cover all the differences between VBA and VBS code, nor
does it identify the ones that are most likely to cause trouble when converting VBA code to VBS.
When working with both Outlook VBS and WSH scripts I have found a number of differences
between the two dialects of VB that need to be taken into account when writing VBS code (espe-
cially when converting VBA code to VBS). These differences are listed in Table 17.2.

600

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 600

TABLE 17.2

Programming Technique Differences between VBA and VBS Code

VBA Feature VBS Feature

All named constants can be used Only a very limited number of basic named constants are
as arguments, or for setting values. supported. Use the Object Browser opened from a VBA module

window to locate the numeric equivalent of a named constant (in
Figure 17.11 you can see that 40 is the numeric equivalent of the
olContact named constant).

Variables can (and should) be Data typing of variables is not supported. Remove all data typing of
declared as specific data types, declarations when converting code from VBA to VBS — for example,
for example Dim appOutlook As instead of Dim appOutlook As Outlook.Application, in
Outlook.Application. VBS the declaration is just Dim appOutlook.

Full error handling is supported, Only very limited error handling is supported, using On Error
typically using On Error GoTo Resume Next. However, you can use various methods of the
ErrorHandler with a section FileSystemObject to determine whether files exist before performing
specifying the error handling to operations on them, as an alternative to VBA-type error handling for
be done. file operations. You can also determine whether or not an object has

been set by checking whether it is equal to Nothing (for example,
fil Is Nothing).

You can use Debug.Print Debug.Print is not supported; you must use MsgBox statements
statements to write data from instead, which hold up code execution until you click OK (after the
variables to the Immediate window script is running correctly, comment out the MsgBox statements).
as the code is executing, for
debugging purposes.

In a For Each . . . Next statement, In a For Each . . . Next statement, omit the variable in the
use the variable in the Next line Next line (for example, Next).
(for example, Next fil).

The Nz function is supported (in The Nz function is not supported, use the IsNull function,
Access VBA code, or other VBA code or check that a value is equal to “”, as substitutes.
if there is a reference to the Access
object library).

To comment out a multi-line code To comment out a set of lines using the line continuation character,
statement using the underscore line you must put an apostrophe at the beginning of each line.
continuation character, you only
need to put an apostrophe at the
beginning of the first line.

601

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 601

602

Adding More Functionality to OfficePart III

Using GetObject and CreateObject in VBS

In VBA code, you can use GetObject to set a reference to an existing instance of an application,
such as Word or Excel, to avoid creating numerous instances running in the background (you can

see several WINWORD.EXE processes in the Task Manager in the following figure). Typically, an
error handler detects whether GetObject set the reference, and if not, CreateObject is used
instead. Although the GetObject function worked correctly in earlier versions of Windows, unfor-
tunately, this technique doesn’t work when you run VBS scripts in Windows Vista. Whether you use
GetObject (with a slightly different syntax), or CreateObject, and whether or not there is a run-
ning instance of an application, a new instance is created every time the script is run.

Multiple instances of Word in the Task Manager.

23_047026 ch17.qxp 4/2/07 10:07 PM Page 602

FIGURE 17.11

Viewing the numeric equivalents of named constants in the OlObjectClass Outlook enum in the
Object Browser.

Useful Scripts
You can use WSH scripts for a number of different purposes, which are described in the following
sections.

Setup Scripts
The CopyTemplateUser.vbs script copies a template called Test.dot from the current folder (the
folder where the script file is located) to the default User Templates folder; the
CopyTemplateWorkgroup.vbs script copies Test.dot from the current folder to the Workgroup
Templates folder (if one has been selected). Each one puts up informative message boxes as the code
runs. (The MsgBox lines can be commented out after verifying that the script works correctly.)

603

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 603

604

Adding More Functionality to OfficePart III

Setting the User Templates and
Workgroup Templates Paths

To view (or set) the User Templates and Workgroup Templates path, click the Office button in any
Word document and click the Word Options button:

Opening the Word Options dialog.

On the Word Options dialog, select the Advanced page, scroll down to the bottom of the page, and
click the File Locations button:

23_047026 ch17.qxp 4/2/07 10:07 PM Page 604

605

Creating Standalone Scripts with Windows Script Host 17

The Advanced page of the Word Options dialog.

The File Locations dialog opens, where you can view and set the User Templates and/or Workgroup
Templates folder paths. To set a folder path, simply select the appropriate selection (User templates
or Workgroup templates) in the File types list, click the Modify button, and browse to the desired
folder location:

The File Locations dialog, where you can set the template paths.

23_047026 ch17.qxp 4/2/07 10:07 PM Page 605

To test one of these scripts, copy the Test.dot template to the same folder as the script (you can also
copy any Word template, and rename it “Test.dot.”) Right-click the CopyTemplateUser.vbs file in
an Explorer window and select “Microsoft (r) Windows Based Script Host” from the Open With
menu, as shown in Figure 17.12.

FIGURE 17.12

Running a WSH script.

If you have not commented out this message box, you will first see a message listing the template
name and current path (Figure 17.13).

FIGURE 17.13

A message box listing the template name and path for copying a Word template.

Next, if the copy is successful, you will get the message (the path may be different on your system)
shown in Figure 17.14.

606

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 606

FIGURE 17.14

A success message after copying the template to the User Templates path.

If the copy could not be done, because Test.dot could not be located in the current folder, you will
instead get the message shown in Figure 17.15.

FIGURE 17.15

A message indicating that the template to be copied could not be found.

When you open the MSE, you may see a script open in the code pane, and other scripts
listed in the Project Explorer; these are the scripts that were recently opened. If you see

the script you want to edit in the Project Explorer, just select it.

The text of CopyTemplateUser.vbs is listed next. There are several commented-out MsgBox state-
ments in this script; if you want to display these message boxes, uncomment these lines by remov-
ing the apostrophe at the beginning of the line:

Dim strTemplate
Dim strUserTemplatePath
Dim appWord
Dim fso
Dim strScriptPath
Dim strScriptName
Dim strScriptNameAndPath
Dim fil
Dim strPrompt
Dim strTemplatePath

strScriptName = WScript.ScriptName

NOTENOTE

607

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 607

Get the path of the current script, extracting it from the ScriptFullName property:

strScriptNameAndPath = WScript.ScriptFullName
strScriptPath = Mid(strScriptNameAndPath, 1, _

Len(strScriptNameAndPath) - Len(strScriptName))
strTemplate = “Test.dot”

Get the User Templates path from the Word Options dialog, using the DefaultFilePath prop-
erty with the argument 2 (most named constants can’t be used in VBS):

Set appWord = WScript.CreateObject(“Word.Application”)
strUserTemplatePath = appWord.Options.DefaultFilePath(2) _

& “\”
‘MsgBox “User templates path: “ & strUserTemplatePath
If strUserTemplatePath <> “\” Then

Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

strTemplatePath = strScriptPath & strTemplate
‘MsgBox “Source template and path: “ & strTemplatePath

Try to locate the template file, using the FileSystemObject’s GetFile method; quit if it is not
found:

Set fil = fso.GetFile(strTemplatePath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strTemplate & _
“ in “ & strScriptPath & “ folder; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
Quit

Else

Copy the template to the User Templates folder, using the Copy method of the File object:

fil.Copy strUserTemplatePath, True
MsgBox strTemplate & “ copied to “ _

& strUserTemplatePath
End If

Else
strPrompt = _

“User template path not selected; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly

End If

The CopyTemplateWorkgroup.vbs is similar, but it has some more error handling, to deal with the
situation where the Workgroup Templates path has not been selected in Word:

Dim strTemplate
Dim strWorkgroupTemplatePath
Dim appWord
Dim fso

608

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 608

Dim strScriptPath
Dim strScriptName
Dim strScriptNameAndPath
Dim fil
Dim strPrompt
Dim strTemplatePath
Dim strCurrentPath

strScriptName = WScript.ScriptName

Get the path of the current script, extracting it from the ScriptFullName property:

strScriptNameAndPath = WScript.ScriptFullName
strScriptPath = Mid(strScriptNameAndPath, 1, _

Len(strScriptNameAndPath) - Len(strScriptName))
strTemplate = “Test.dot”
strCurrentPath = strScriptPath & strTemplate

Get the User Templates path from the Word Options dialog, using the DefaultFilePath prop-
erty with the argument 2 (most named constants can’t be used in VBS):

Set appWord = WScript.CreateObject(“Word.Application”)
strWorkgroupTemplatePath = _

appWord.Options.DefaultFilePath(3) & “\”
If strWorkgroupTemplatePath <> “\” Then
Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

strTemplatePath = strScriptPath & strTemplate
‘MsgBox “Source template and path: “ & strTemplatePath

Try to locate the template file, using the FileSystemObject’s GetFile method; quit if it is not
found:

Set fil = fso.GetFile(strTemplatePath)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strTemplate & _
“ in “ & strScriptPath & “ folder; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
Quit

Else

Copy the template to the Workgroup Templates folder, using the Copy method of the File object:

fso.CopyFile strCurrentPath, _
strWorkgroupTemplatePath, True

MsgBox strTemplate & “ copied from “ & _
strCurrentPath & “ to “ _

& strWorkgroupTemplatePath
End If

609

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 609

Else
strPrompt = _

“Workgroup template path not selected; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly

End If

One or the other of these files (with the appropriate template name replacing “Test.dot”) would be
useful as part of an Office application that includes one or more Word templates; all the user needs
to do to install the template(s) in the right location is to run the script.

If you need to copy a set of templates to the User Templates or Workgroup Templates folder, you
don’t need to hard-code the template names, so long as the templates you want to copy are the
only templates in the current folder. The CopyAllTemplates.vbs script listed next copies all the
Word 2007 (*.dotx) templates in the current folder to the User Templates folder:

Dim strTemplate
Dim strUserTemplatePath
Dim appWord
Dim fso
Dim strScriptPath
Dim strScriptName
Dim strScriptNameAndPath
Dim fil
Dim filTemplate
Dim strPrompt
Dim strTemplatePath

strScriptName = WScript.ScriptName
strScriptNameAndPath = WScript.ScriptFullName

Get the path of the current script:

strScriptPath = Mid(strScriptNameAndPath, 1, _
Len(strScriptNameAndPath) - Len(strScriptName))

Get the User Templates path from the Word Options dialog, using the DefaultFilePath prop-
erty with the 2 argument:

Set appWord = WScript.CreateObject(“Word.Application”)
strUserTemplatePath = appWord.Options.DefaultFilePath(2) _

& “\”
‘MsgBox “User templates path: “ & strUserTemplatePath
If strUserTemplatePath <> “\” Then

Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

Set fld = fso.GetFolder(strScriptPath)

610

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 610

Copy all Word 2007 (*.dotx) templates from the current folder to User Templates folder, with a
message box for each one (comment out the MsgBox line to suppress these messages):

lngCount = 0
For Each fil In fld.Files

If Right(fil.Name, 4) = “dotx” Then
strTemplate = fil.Name
fil.Copy strUserTemplatePath, True
MsgBox strTemplate & “ copied to “ _

& strUserTemplatePath
lngCount = lngCount + 1

End If
Next

Else
strPrompt = _

“User template path not selected; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly

End If

The sample database for this chapter is Northwind.accdb. This is a version of the
sample Northwind database, with its tables renamed according to the Leszynski

Naming Convention.

Office Scripts
PrintReport.vbs demonstrates another use of scripts; it prints a report from Northwind.accdb,
without the need to open the database. This could be handy if you need to print out labels on a
regular basis. The code for this script is listed as follows:

Dim appAccess
Dim strDBName

Set appAccess = _
WScript.CreateObject(“Access.Application”)

Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

Modify the hard-coded file path as needed for your system:

strDBName = “D:\Documents\Northwind.accdb”

On Error Resume Next
appAccess.OpenCurrentDatabase strDBName

Set fil = fso.GetFile(strDBName)
If fil Is Nothing Then

strPrompt = “Can’t find “ & strDBName & _
“; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
Quit

NOTENOTE

611

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 611

Else
‘Print report
appAccess.DoCmd.OpenReport “rptCustomerLabels”

End If

Set appAccess = Nothing

If the MSE is already open, you can open a new script for editing by dragging the script
file from an Explorer pane into the MSE window.

Northwind.accdb has a form for selecting an invoice to print by order number. But you might want
to be able to quickly print an invoice without opening the database; the PrintInvoice.vbs script
listed next does just this:

Dim appAccess
Dim strDBName
Dim lngInvoiceNo
Dim strTitle
Dim strPrompt

Set appAccess = _
WScript.CreateObject(“Access.Application”)

Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

strDBName = “D:\Documents\Northwind.accdb”

On Error Resume Next
appAccess.OpenCurrentDatabase strDBName

Set fil = fso.GetFile(strDBName)
If fil Is Nothing Then
strPrompt = “Can’t find “ & strDBName & _
“; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
Quit

Else
strTitle = “Select invoice”
strPrompt = “Select an invoice to print (10248 - 11077)”
lngInvoiceNo = CLng(InputBox(strPrompt, strTitle))
‘MsgBox “Invoice No.: “ & lngInvoiceNo

Run a lengthy SQL statement to create a table for use as a report record source:

strSQL = “SELECT DISTINCT qryInvoices.OrderID, “ _
& “qryInvoices.ShipName, qryInvoices.ShipAddress, “ _
& “qryInvoices.ShipCityStateZip, “ _

TIPTIP

612

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 612

& “qryInvoices.ShipCountry, “ _
& “qryInvoices.CustomerID, qryInvoices.CompanyName, “ _
& “qryInvoices.BillToAddress, “ _
& “qryInvoices.BillToCityStateZip, “ _
& “qryInvoices.BillToCountry, “ _
& “qryInvoices.Salesperson, “ _
& “qryInvoices.OrderDate, qryInvoices.RequiredDate, “ _
& “qryInvoices.ShippedDate, qryInvoices.Shipper, “ _
& “qtotInvoiceDetails.SumOfExtendedPrice “ _
& “AS Subtotal, “ _
& “qryInvoices.Freight, [SumOfExtendedPrice] “ _
& “+ [Freight] “ _
& “AS Total INTO tmakInvoice “ _
& “FROM qryInvoices “ _
& “INNER JOIN qtotInvoiceDetails “ _
& “ON qryInvoices.OrderID = “ _
& “qtotInvoiceDetails.OrderID “ _
& “WHERE qryInvoices.OrderID = “ & lngInvoiceNo

appAccess.DoCmd.SetWarnings False
appAccess.DoCmd.RunSQL strSQL
appAccess.DoCmd.OpenReport “rptSingleInvoice”

End If

Set appAccess = Nothing

When this script is run, an input box pops up where you can enter an invoice number, as shown
in Figure 17.16.

FIGURE 17.16

An input box popped up from a WSH script.

After you enter the invoice number and click OK, a SQL statement is run to create a make-table
query that is part of the record source of rptSingleInvoice, and that report is printed. The report is
shown in Figure 17.17.

613

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 613

FIGURE 17.17

An Access report printed from a WSH script.

As a quick alternative to opening Word or Excel and selecting the correct template, you can also
use a WSH script to create a new Word document or Excel worksheet based on a template. This
technique can be useful when users have problems selecting the correct template to use when cre-
ating a new Word document or Excel worksheet. The New Document from Template.vbs script
listed next opens a new Word document based on a Word 97-2003 template located in the main
User Templates folder:

Dim appWord
Dim strTemplatePath
Dim strUserTemplatePath
Dim strTemplate
Dim docs

614

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 614

strTemplate = “Test Letter.dot”
Set appWord = WScript.CreateObject(“Word.Application”)

Get the User Templates path from the Word Options dialog, using the DefaultFilePath prop-
erty with the argument:

strUserTemplatePath = appWord.Options.DefaultFilePath(2) _
& “\”

‘MsgBox “User templates path: “ & strUserTemplatePath
If strUserTemplatePath <> “\” Then
Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)
strTemplatePath = strUserTemplatePath & strTemplate
MsgBox “Source template and path: “ & strTemplatePath

On Error Resume Next
Set fil = fso.GetFile(strTemplatePath)

If fil Is Nothing Then
strPrompt = “Can’t find “ & strTemplate & _

“ in “ & strTemplatePath & “ folder; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly

Quit
Else
Set appWord = WScript.CreateObject(“Word.Application”)
appWord.Visible = true
Set docs = appWord.Documents
docs.Add(strTemplate)
End If

Else
strPrompt = _

“User template path not selected; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly

End If

The New Worksheet from Template.vbs script listed next opens a new Excel worksheet based on
an Excel 2007 template located in the main User Templates folder:

Dim appExcel
Dim strTemplatePath
Dim strTemplate
Dim bks
Dim wkb
Dim wks

strTemplate = “Access Contacts.xltx”

615

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 615

Get the User Templates path from the Word Options dialog.

Set appWord = WScript.CreateObject(“Word.Application”)
strUserTemplatePath = appWord.Options.DefaultFilePath(2) _
& “\”

Set fso = _
WScript.CreateObject(“Scripting.FileSystemObject”)

strTemplatePath = strUserTemplatePath & strTemplate
MsgBox “Source template and path: “ & strTemplatePath

On Error Resume Next

Set fil = fso.GetFile(strTemplatePath)
If fil Is Nothing Then
strPrompt = “Can’t find “ & strTemplate & _
“ in “ & strScriptPath & “ folder; canceling”

MsgBox strPrompt, vbCritical + vbOKOnly
Quit

Else
Set appExcel = WScript.CreateObject(“Excel.Application”)
appExcel.Visible = True
Set bks = appExcel.Workbooks
Set wkb = bks.Add(strTemplatePath)
Set wks = wkb.Sheets(1)
wks.Activate

End If

Miscellaneous Scripts
The next script is one I made to automate the process of deleting temporary files from Audible.com
downloads. These files are sometimes not automatically deleted and have to be deleted manually,
which is a nuisance; the Delete Audible Files.vbs script is listed as follows:

Dim fso
Dim strPath
Dim strFile
Dim strFilePath
Dim blnFound

Set fso = CreateObject(“Scripting.FileSystemObject”)
blnFound = False

strPath = “E:\Audible\Bin\”
strFile = “Debug.log”
strFilePath = strPath & strFile
If fso.FileExists(strFilePath) Then

fso.DeleteFile strFilePath
blnFound = True

End If

616

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 616

strFile = “aadownload.log”
strFilePath = strPath & strFile
If fso.FileExists(strFilePath) Then

fso.DeleteFile strFilePath
blnFound = True

End If

strFile = “aaschedule.log”
strFilePath = strPath & strFile
If fso.FileExists(strFilePath) Then

fso.DeleteFile strFilePath
blnFound = True

End If

strFile = “aasubsschedule.log”
strFilePath = strPath & strFile
If fso.FileExists(strFilePath) Then

fso.DeleteFile strFilePath
blnFound = True

End If

If blnFound = True Then
MsgBox “Deleted Audible temp files”
Else

MsgBox “No Audible temp files found”
End If

The script first sets a blnFound variable to False (it would be a Boolean variable, if variables
could be declared with data types in VBS). Then the script uses the FileExists method of the
FileSystemObject to determine whether a file exists, and delete it if so, setting blnFound to
True. At the end of the code, depending on whether the blnFound variable is True or False, a
message box appears saying either “Deleted Audible temp files” or “No Audible temp files found.”

You probably don’t need the Delete Audible Files.vbs script, but you may find the Delete Temp
Files.vbs script useful. This script uses the GetSpecialFolder method of the
FileSystemObject, with the 2 argument, to set a fldTemp variable to the Temp file folder,
and puts up a message box that asks if you want to delete all files in it; if you click the Yes button,
the script attempts to delete all the files in that folder (the On Error Resume Next statement
goes to the next file if a file can’t be deleted, because it is in use):

Dim fso
Dim fldTemp
Dim fil
Dim n
Dim intResult
Dim strPrompt

617

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 617

Set fso = CreateObject(“Scripting.FileSystemObject”)
Set fldTemp = fso.GetSpecialFolder(2)
strPrompt = “Delete all files in “ & fldTemp & “?”
intResult = MsgBox (strPrompt, vbQuestion + vbYesNo)
If intResult = 6 Then

On Error Resume Next
n = 0

For Each fil in fld.Files
fil.Delete
n = n + 1

Next

MsgBox “Approximately “ & n _
& “ temp files deleted from “ & fldTemp

End If

The next script, Rename Files.vbs, renames figure files in a folder in a specific manner; the
strNewFileName = Mid(fil.Name, 9) line of the script can be modified to rename files as
needed:

Dim fld
Dim lngCount
Dim fso
Dim strScriptPath
Dim strScriptName
Dim strScriptNameAndPath
Dim fil
Dim strPrompt

strScriptName = WScript.ScriptName

Get the path of the current script, using the ScriptFullName property:

strScriptNameAndPath = WScript.ScriptFullName
strScriptPath = Mid(strScriptNameAndPath, 1, _

Len(strScriptNameAndPath) - Len(strScriptName))

On Error Resume Next
lngCount = 0
Set fso = CreateObject(“Scripting.FileSystemObject”)
Set fld = fso.GetFolder(strScriptPath)

For Each fil In fld.Files

Check the first character and extension (modify as needed for your requirements):

If Left(fil.Name, 1) = “-” And _
Right(fil.Name, 3) = “tif” Then

618

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 618

Modify the following line as needed for your requirements:

strNewFileName = Mid(fil.Name, 9)
fil.Name = strNewFileName
lngCount = lngCount + 1

End If
Next

strTitle = “Files renamed”
strPrompt = lngCount & “ files in “ _

& strScriptPath & “ renamed”
MsgBox strPrompt, vbInformation, strTitle

Scheduling a Backup Script with the
Windows Vista Task Scheduler
If you want to run a script automatically at a regular interval, you can schedule it as a task in the
Windows Vista Task Scheduler. One such use is to make a backup copy of a database every day at
a specific time. The DailyDatabaseBackup.vbs script makes a dated backup copy of the sample
Northwind.mdb database every day at the specified time.

A VBS script run from the Windows Explorer can have spaces in its name, but if you
intend to run a script from the Task Scheduler, its name can’t contain spaces. You won’t

get an error when selecting the script, but when the Task Scheduler attempts to run it, you will get an
error and it won’t run.

Dim fso
Dim fil
Dim strPrompt
Dim strDBPath
Dim strDBName
Dim strDBNameAndPath
Dim strDBNameBackup
Dim strScriptName
Dim strScriptNameAndPath
Dim strBackupNameAndPath

strScriptName = WScript.ScriptName
strScriptNameAndPath = WScript.ScriptFullName

Modify the hard-coded path as needed for your system:

strDBPath = “E:\Documents\”
strDBName = “Northwind.mdb”
strDBNameAndPath = strDBPath & strDBName
MsgBox “Database name and path: “ & strDBNameAndPath

WARNING WARNING

619

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 619

strDBNameBackup = Left(strDBName, Len(strDBName) - 4) _
& “ Backup for “ & FormatDateTime(Date(), 1) _
& “.mdb”

MsgBox “Backup name: “ & strDBNameBackup
strBackupNameAndPath = strDBPath & strDBNameBackup

Check that the database is in the specified folder, and quit if it is not found:

On Error Resume Next
Set fso = _

WScript.CreateObject(“Scripting.FileSystemObject”)
Set fil = fso.GetFile(strDBNameAndPath)
‘MsgBox “Error #: “ & Err

If fil Is Nothing Then
strPrompt = “Can’t find “ & strDBName & _

“ in “ & strDBPath & “ folder; canceling”
MsgBox strPrompt, vbCritical + vbOKOnly
Quit

Else

Copy the database to a backup:

fso.CopyFile strDBNameAndPath, strBackupNameAndPath, _
True

MsgBox strDBName & “ copied to “ _
& strDBPath & “ as “ & strDBNameBackup

End If

You can run this script manually, but for assurance that a backup will be made every day, you can
schedule the script to run from the Windows Task Scheduler. To open the Task Scheduler, first
open the Control Panel, and select the Administrative Tools program group (Figure 17.18).

In the Administrative Tools program group, select the Task Scheduler, as shown in Figure 17.19. If
you get a UAC message, click Continue.

620

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 620

FIGURE 17.18

Opening the Administrative Tools program group in the Control Panel.

FIGURE 17.19

Selecting the Task Scheduler in the Administrative Tools program group.

621

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 621

In the Task Scheduler window, select Create Basic Task (Figure 17.20).

FIGURE 17.20

Creating a Basic Task in the Task Scheduler.

Next, as displayed in Figure 17.21, enter the name and description of the task.

FIGURE 17.21

Entering the task’s name and description.

622

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 622

On the next screen (Figure 17.22), make a selection for when the task should be run (choose Daily
to run it every day).

FIGURE 17.22

Specifying that the task should be run daily.

On the screen shown in Figure 17.23, enter the time to run the script.

FIGURE 17.23

Specifying the time to run the script.

623

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 623

Next, specify an action to run at the specified time. Selecting “Start a program” runs a script (see
Figure 17.24).

FIGURE 17.24

Selecting the “Start a program” option to run a script.

On the Start a Program screen, depicted in Figure 17.25, browse for the script to run.

FIGURE 17.25

Selecting a script for the Task Scheduler to run.

624

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 624

The final screen of the Task Scheduler Wizard displays a success message, shown in Figure 17.26.

FIGURE 17.26

The final success message indicating that a task has been scheduled.

Now the Daily Database Backup.vbs script will be run at 9 PM every day without user intervention.
When it is run, you will get several messages showing the name of the database to be copied, the
name of the copy of the database (shown in Figure 17.27), and a final message showing where the
copy was made. You will probably want to comment out these message boxes after verifying that
the script runs.

FIGURE 17.27

A message from a VBS script run from the Task Scheduler.

625

Creating Standalone Scripts with Windows Script Host 17

23_047026 ch17.qxp 4/2/07 10:07 PM Page 625

Summary
Although not part of Office, WSH scripts are a useful addition to VBA code running from within
Office applications, for tasks such as running daily backups, ensuring that users make documents
and worksheets from the right templates, and copying setup files to the right folder. Because these
scripts use a dialect of VBScript that will run in the last few versions of Windows as well as Vista,
they are very useful when you need to perform an action, or a series of actions, in different boot
partitions or on different computers, running different versions of Windows.

626

Adding More Functionality to OfficePart III

23_047026 ch17.qxp 4/2/07 10:07 PM Page 626

You can store data directly in an Access database, but Access also has
the capability of storing and retrieving data using other database
engines, including Microsoft SQL Server. Storing data directly in an

Access database works fine for most database applications that would be
used by individuals or small businesses. However, an organization that needs
to store gigabytes of data (say, data on the entire population of the U.S. for
marketing purposes or scientific data from thousands of studies) needs to
use a SQL Server back end, rather than storing data in an Access database.
Additionally, any organization concerned about keeping its data secure can
benefit from the extra security features that SQL Server provides. But storing
your data in SQL Server doesn’t mean that you have to abandon the familiar
Access interface: even when you use SQL Server for data storage, you can
still use Access to develop the application’s interface.

The sample databases for this chapter are:

• AdventureWorks SQL.accdb (Access front end to SQL Server tables)

• Basic Northwind v 1 (linked SQL Server tables).accdb (Access front end
to SQL Server tables)

• Basic Northwind.accdb (Access database for upsizing)

• Basic Northwind CS.adp (Access project front end for SQL Server
tables)

In Windows Vista and Office 2007, it isn’t easy to connect an Access front-
end database to a SQL Server back end. In Office 2003 running on Windows
XP, using the Upsizing Wizard to convert an Access database to a SQL Server
back end was easy — even trivial. This task is now a major chore because
you need to work through a long list of SQL Server settings and then

NOTENOTE

627

IN THIS CHAPTER
SQL Server 2005 versus SQL
Server 2005 Express

Configuring SQL Server 2005

Preparing an Access database for
upsizing

Using the Upsizing Wizard to
upsize an Access database to
SQL Server 2005

Linking an Access front end to
data in a SQL Server database

Working with
SQL Server Data

24_047026 ch18.qxp 4/2/07 9:57 PM Page 627

Windows security settings just to be able to connect to SQL Server before you even attempt to con-
nect Access to SQL Server or upsize an Access database.

This chapter helps you navigate through the SQL Server and Windows settings you need to do sev-
eral SQL Server-related tasks:

n Convert an Access database to SQL Server for use as a back end (this is known as upsiz-
ing the database)

n Create a client/server application with a SQL Server back end and an Access project front
end

n Link an Access database to tables in a SQL Server database

Getting SQL Server 2005
If you have installed Visual Studio 2005, you should already have SQL Server 2005, as it is installed
by default as part of the Visual Studio installation. To check this, open the Control Panel and select
the Programs and Features applet; note that the Installed On date is the same for Microsoft SQL
Server 2005 and Microsoft Visual Studio 2005 Professional Edition (see Figure 18.1).

FIGURE 18.1

Microsoft SQL Server 2005 listed in Programs and Features.

628

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 628

If you don’t have SQL Server 2005 installed, you can download the Express version free, from
http://msdn.microsoft.com/vstudio/express/sql/.

Compared to the full version, SQL Server 2005 Express (SSE) has a number of limitations, but it is
fine for experimenting with SQL Server as a back end, or developing small applications. SSE
includes all the core database features of SQL Server 2005, but it lacks support for enterprise fea-
tures. If you need to create an enterprise application, you will need one of the other editions of
SQL Server 2005, but for individual or small business use, SSE is very suitable.

For a full comparison of the features of the five editions of SQL Server 2005, see the
tables here: www.microsoft.com/sql/prodinfo/features/compare-

features.mspx.

SSE is an upgrade to the Microsoft Database Engine (MSDE), which was included in the higher-
end editions of previous Office versions. Compared to MSDE, SSE has several enhancements:

n The maximum database size has doubled, from 2GB to 4GB.

n MSDE’s limitation on the number of concurrent users to five (with performance degrad-
ing significantly if there were more users) has been removed.

n The SQL Server Management Studio (included with SSE) gives you a user-friendly inter-
face for working with saved queries and stored procedures, as well as various administra-
tive tasks.

n The new XCopy deployment feature allows you to copy a database file to another com-
puter, even if the database is not open. Other users can then connect to the database copy
using the AttachDBFileName connection string argument.

SQL Server 2005 must be upgraded to Service Pack 2 to work with Access 2007. If you
have an earlier version, when you first run SQL Server 2005, or attempt to connect to it,

you will get a message advising you of the need to upgrade, with a reference to a web page with the
SP2 upgrade links for both SQL Server 2005 and SSE.

Preparing an Access Database for Upsizing
to SQL Server
To convert an Access database (or just its tables) to SQL Server (this is known as upsizing), you
need to run the Upsizing Wizard, as described in the “Using the Upsizing Wizard” section later in
this chapter. However, before you run the Upsizing Wizard to upsize an Access database to SQL
Server 2005 or SSE, you need to make some preparations in your database:

n Make sure that each table has a unique index, because a SQL Server can’t update a table
that lacks a unique index.

n Make any hidden tables visible (see sidebar that follows), because the Upsizing Wizard
can’t upsize hidden tables.

n Compile all the code, and correct any errors.

NOTENOTE

NOTENOTE

629

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 629

630

Adding More Functionality to OfficePart III

Making Hidden Tables Visible

To make hidden tables visible, click File ➪ Access Options, select the Current Database page,
and click the Navigation Options button:

The Navigation Options button on the Current Database page of the Access Options dialog.

On the Navigation Options dialog, check the “Show Hidden Options” checkbox:

Making hidden objects visible in the Navigation Options dialog.

24_047026 ch18.qxp 4/2/07 9:57 PM Page 630

You may have code in an Access database that was originally created many versions ago, but you
haven’t upgraded it because it still runs. Before upsizing to SQL Server, you should make sure that
all your code is up to date, because SQL Server is much less forgiving than Access.

I made a sample database for this chapter, Basic Northwind.accdb, based on the old Northwind
sample database that came with several previous versions of Access. Because Northwind was origi-
nally created many versions ago, and has only been minimally upgraded over Access versions,
there is a good deal of old code in this database — some of it very old code indeed: Access 95 or
earlier. Before upsizing, I took the opportunity to update all the code to the current syntax.

For example, the old Northwind code uses the IsLoaded function, provided in a module. Many
versions of Access ago, this function was needed, but since Access 2000, you don’t need a special
function to check whether a form is loaded — just use the IsLoaded property of the form, as an
item in the AllForms collection. Here is some typical code for returning to the main menu, as used
in a standard Form_Close event procedure:

Dim prj As Object

Set prj = Application.CurrentProject

If prj.AllForms(“fmnuMain”).IsLoaded = True Then
Forms![fmnuMain].Visible = True

Else
DoCmd.OpenForm “fmnuMain”

End If

Some features that are supported in Access applications won’t survive upsizing, unfortunately.
Functions called from calculated expressions in queries are not supported in SQL Server, so when
you upsize a query that uses functions in calculated field expressions, you will get an error. I rec-
ommend removing the functions from query calculated expressions before upsizing; after the data-
base is upsized, you can modify the corresponding stored procedure or user-defined function as
needed in a way that will work in SQL Server.

Configuring SQL Server 2005 for Data
Access
In Access 2003, you didn’t need to do any special SQL Server setup before upsizing an Access
database to SQL Server using the Microsoft Database Engine (MSDE), the predecessor to SQL
Server 2005 Express. But the situation in Office 2007 is very different. In addition to preparing
your Access database, you also have a considerable number of setup chores to do to make SQL

631

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 631

632

Adding More Functionality to OfficePart III

SQL Server Books Online

You can download a set of books on SQL Server 2005 from www.microsoft.com/technet/
prodtechnol/sql/2005/downloads/books.mspx.

Once downloaded and installed, you can open the SQL Server Books Online from the newly created
Documentation and Tutorials group under the Microsoft SQL Server 2005 program group:

Opening SQL Server Books Online Help.

24_047026 ch18.qxp 4/2/07 9:57 PM Page 632

Server (or SSE) available as a back end for Access. By default, when SQL Server (or SSE) is
installed, it may not be set to run on startup. To ensure that SQL Server is running and available,
follow these steps:

1. Open the SQL Server Configuration Manager from the SQL Server (or SSE) group on the
Start menu, as shown in Figure 18.2.

2. Select SQL Server 2005 Services in the left pane of the SQL Server Configuration
Manager (Figure 18.3). In Vista, you may get a User Account Control (UAC) message. If
so, just click Continue.

633

Working with SQL Server Data 18

The books include documentation for both the regular version of SQL Server 2005 and SSE:

The Contents page of SQL Server Books Online.

If you have upgraded SQL Server 2005 to Service Pack 2, make sure to also download the equivalent
upgrade for SQL Server Books Online (available from the same web page as the SP2 patch for SQL
Server, www.microsoft.com/sql/ctp.mspx), so the documentation will reflect the SP2
changes.

24_047026 ch18.qxp 4/2/07 9:57 PM Page 633

FIGURE 18.2

Selecting the SQL Server Configuration Manager item on the Start menu.

FIGURE 18.3

Selecting the SQL Server 2005 Services page in the SQL Server Configuration Manager.

634

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 634

3. As depicted in Figure 18.4, right-click the SQL Server (SQLEXPRESS) row and select
Properties.

The selection is “SQL Server (SQLEXPRESS)” even if you are running the regular edition
of SQL Server 2005.

FIGURE 18.4

Opening the SQL Server (SQLEXPRESS) properties sheet.

4. Select the Service tab in the properties sheet.

5. If the start mode is not automatic, drop down the Start Mode list and select Automatic, as
in Figure 18.5.

FIGURE 18.5

Selecting the Automatic start mode for SQL Server.

NOTENOTE

635

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 635

6. Click OK. Next, right-click the SQL Server Browser row and select Properties.

7. Click the Service tab and set the Start Mode attribute to Automatic if needed, similar to
step 5.

8. If you had to set the start mode to Automatic, and the state of the Browser was stopped,
start it manually by right-clicking the SQL Server Browser row and selecting Start (Figure
18.6).

FIGURE 18.6

Manually starting the SQL Server Browser.

9. You will get a progress bar (see Figure 18.7) as the SQL Server service is started.

FIGURE 18.7

Starting the SQL Server service.

636

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 636

Next, you must enable network access — this is required even if you are connecting to SQL Server
on the same computer.

1. Start by expanding the SQL Server 2005 Network Configuration folder in the left pane of
the SQL Server Configuration Manager, and select the Protocols for SQLEXPRESS folder
under it.

2. Enable the TCP/IP protocol from its right-click menu (Figure 18.8).

FIGURE 18.8

Enabling the TCP/IP protocol.

3. You will get a message, shown in Figure 18.9, that you have to stop and restart the serv-
ice. You can do this by right-clicking SQL Server (SQLEXPRESS) in the SQL Server 2005
Services folder and selecting Restart, or by shutting down and restarting Windows.

FIGURE 18.9

A warning after enabling a protocol.

4. If your connection makes use of the Named Pipes protocol, you can enable it in a sim-
ilar fashion.

637

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 637

Next, you have to configure SQL Server to allow remote connections (for some reason, this is nec-
essary even if you have installed SQL Server on the same computer as Access):

1. Select SQL Server Surface Area Configuration (see Figure 18.10) from the Configuration
Tools group in the Microsoft SQL Server 2005 program group. If you are running Vista,
you may get a message that the program has known compatibility issues. If so, you need
to install the SP2 service pack for SQL Server 2005.

FIGURE 18.10

The SQL Server 2005 Surface Area Configuration dialog.

2. Click the Surface Area Configuration for Services and Connections item (see Figure
18.10).

3. Expand the Database Engine item (if necessary) and click Remote Connections.

4. Select Local and Remote connections, and select the appropriate protocol, usually “Using
TCP/IP only” (Figure 18.11).

638

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 638

FIGURE 18.11

Surface area configuration for SQL Server.

5. When you close this dialog, you will be back on the SQL Server 2005 Surface Area
Configuration dialog. If needed, click the other link (“Surface Area Configuration for
Features”) and enable any features you plan to use (Figure 18.12).

FIGURE 18.12

Enabling SQL Server features.

6. Restart SQL Server by selecting Restart from the right-click menu for “SQL Server (SQL-
EXPRESS)” in the SQL Server 2005 Services folder.

639

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 639

Getting through the Firewall
After working your way through the SQL Server settings, SQL Server should be started and run-
ning. At this point, if you open an Access database and start the Upsizing Wizard in an attempt to
upsize the database, you will see the SQL Server instance in the Upsizing Wizard’s second screen —
but that doesn’t mean you can connect to it. Most likely access will be blocked by the Windows
firewall. To prevent this problem, you will need to first set up the Windows firewall to allow con-
nections to SQL Server and the SQL Server Browser. The following sections explain how to get
through the Windows XP and Windows Vista firewalls, respectively.

Windows XP
Follow these steps to allow access to SQL Server through the Windows XP firewall:

If you are using another firewall, the steps needed to allow access to SQL Server will be
somewhat different.

1. Open the Security Center from the Control Panel, and click the Windows Firewall item
(see Figure 18.13).

FIGURE 18.13

The Windows XP Security Center.

2. Click the Exceptions tab.

3. Click the Add Programs button.

4. SQL Server will probably not appear on the list of programs available for selection on the
Add a Program screen, so click the Browse button, as shown in Figure 18.14.

NOTENOTE

640

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 640

FIGURE 18.14

The Add a Program dialog for selecting an exception to the Windows XP firewall.

5. First, browse for the SQL Server file sqlservr.exe, which is probably located in C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn (Figure 18.15).

FIGURE 18.15

Selecting the SQL Server executable for exclusion from the Windows XP firewall.

6. After clicking Open, sqlserver.exe will be listed in the Add a Program dialog, as seen in
Figure 18.16.

641

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 641

FIGURE 18.16

The SQL Server executable in the Add a Program dialog.

7. Click OK, and you should see sqlserver.exe in the List of Exceptions.

8. Next, browse for the SQL Server Browser service, file name sqlbrowser.exe, probably
located in C:\Program Files\Microsoft SQL Server\90\Shared, and click OK to add it to
the List of Exceptions (Figure 18.17).

FIGURE 18.17

The SQL Server executable and browser in the list of firewall exceptions.

642

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 642

Windows Vista
For the Windows Vista firewall, the steps are somewhat different:

1. Start by opening the Control Panel and clicking the “Allow a program through Windows
Firewall” link under the main Security link (Figure 18.18).

FIGURE 18.18

Opening the Windows Vista “Allow a program through Windows Firewall” Security
window.

2. Alternately, you can click the Security link, and then click the “Allow a program through
Windows Firewall” link in the Security window (Figure 18.19).

3. If you get a User Account Control warning, click Continue to proceed.

4. The Windows Firewall Settings dialog opens (Figure 18.20); it is substantially similar to
the Windows Firewall dialog in Windows XP.

643

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 643

FIGURE 18.19

Clicking the “Allow a program through Windows Firewall” link in the Security window.

FIGURE 18.20

The Windows Firewall Settings dialog.

644

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 644

5. Click the “Add program” button to open the Add a Program dialog (Figure 18.21). Some
SQL Server utilities are listed in the Programs list, but not SQL Server itself, or the SQL
Server Browser, so you will need to browse for them.

6. First browse for the SQL Server file sqlservr.exe, which is probably located in C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn (see Figure 18.22).

FIGURE 18.21

The Add a Program dialog.

FIGURE 18.22

Selecting the SQL Server executable for exclusion from the Windows Vista firewall.

645

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 645

7. After clicking Open, sqlserver.exe will be listed in the Add a Program dialog, as shown in
Figure 18.23.

FIGURE 18.23

The SQL Server executable in the Add a Program dialog.

8. Click OK, and you should see sqlserver.exe in the list of Exceptions.

9. Next, browse for the SQL Server Browser service, file name sqlbrowser.exe, probably
located in C:\Program Files\Microsoft SQL Server\90\Shared, and click OK to add it to
the list of exceptions (Figure 18.24).

646

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 646

FIGURE 18.24

The SQL Server executable and browser in the list of firewall exceptions.

Other Security Roadblocks
Depending on what security software you have installed, you may have to deal with one or more
other security warnings when attempting to connect to SQL Server. On my system, when attempt-
ing to connect to SQL Server in my Windows XP partition I get a message (Figure 18.25) from the
Symantec Internet Worm Protection component of Norton Antivirus (even when connecting to
SQL Server on the same computer!), and I have to click OK to proceed with the connection.

If your front-end database needs to connect to SQL Server running on another computer on the
same network (a common scenario), this warning pops up on the server machine — this may be a
show-stopper, unless the client and server machines are side by side on your desktop. Otherwise,
you may not be able to rush over to the server computer in time to click OK on the security alert
before the connection attempt times out, and thus you won’t be able to connect to SQL Server on
the client machine.

647

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 647

FIGURE 18.25

The Norton Internet Worm Protection warning.

Using the Upsizing Wizard
Access 2007 includes a handy tool for converting Access tables to SQL Server tables and (if
desired) some Access queries to SQL Server stored procedures: the Upsizing Wizard. You can take
a minimalist approach, and just convert your Access tables to SQL Server tables linked to the
Access database, using the familiar Access interface as a front end; or you can convert the interface
portion of the database to a project with a SQL Server back end. Converting just the tables is fine if
you intend to use your Access forms, queries, and reports in an Access front end, and you just
want to store your data in a SQL Server back end.

If you want to convert your Access database to an Access project front end with a SQL Server back
end so that you can make design changes to SQL Server tables and views and work with SQL
Server objects such as database diagrams, stored procedures, and user-defined functions, then you
should convert the interface objects as well as the data tables, selecting the Client/Server option
when upsizing the database.

The following sections illustrate both upsizing approaches.

The sample database to be upgraded is Basic Northwind.accdb, a version of Northwind
with a naming convention applied to all objects, and a limited number of queries,

forms, and reports.

NOTENOTE

648

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 648

Converting Access Tables to SQL Server Tables
To start the Upsizing Wizard, from the Ribbon’s Database Tools tab, click the SQL Server command
from the Move Data group, as shown in Figure 18.26.

FIGURE 18.26

Starting the SQL Server Upsizing Wizard.

The first screen of the Wizard (Figure 18.27; just like the one in Access 2003) offers a choice to use
the existing database or create a new one. Generally, it is a good idea to create a new database.

The Help button on the wizard screen shown in Figure 18.27 doesn’t open context-spe-
cific Help, as you might expect. Instead of getting a topic with information that would

help with the decision to use the existing database or create a new one, you get the main Access Help
screen, with a Table of Contents and a Search box. This is not an improvement over previous versions
of Access, where context-specific Help was generally available in wizards. In Access 2003, for exam-
ple, if you run the Upsizing Wizard and click the Help button on the first screen, you will get a “Use
the Upsizing Wizard” Help topic, with pertinent information for each screen of the wizard.

FIGURE 18.27

The first screen of the Upsizing Wizard.

CAUTION CAUTION

649

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 649

After clicking Next, you may be required to provide the name of your computer. To find
the name of your computer, follow the steps below, depending on your Windows version:

n For Windows Vista, first select the System and Maintenance link in the Control Panel.

n On the System and Maintenance page, click the “See the name of this computer” link
under the main System link. The full computer name is located in the “Computer name,
domain, and workgroup settings” group, as shown in Figure 18.28.

FIGURE 18.28

Finding out the full computer name in Windows Vista for use in the SQL Server connec-
tion syntax.

n For Windows XP, open the properties sheet for the My Computer icon on your desktop
(or the System shortcut in the Control Panel), and click the Computer Name tab (Figure
18.29); the full computer name (with an extra terminating period) is listed in the middle
of the page.

NOTENOTE

650

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 650

FIGURE 18.29

Finding out the full computer name in Windows XP for use in the SQL Server connec-
tion syntax.

On the second screen of the wizard, shown in Figure 18.30, select the running instance of SQL
Server, using a name composed of the name of your computer followed by a backslash and
SQLEXPRESS, check the Use Trusted Connection checkbox, and edit the proposed database
name as desired.

If you are running Windows XP, most likely the default selection in the SQL Server box
will be “(local)”. Help for the Upsizing Wizard (and various documents in SQL Server

Books Online) recommends using this selection, but I have found that it doesn’t work; the only syntax
that works on my system is DELL_DIMEN_8300\SQLEXPRESS, where the portion before the back-
slash is my computer name (this is the default syntax if you are running Windows Vista). I found this
syntax using Google; as usual, Google has proved to be of more help in finding information on using
Access 2007 than Microsoft’s own Help resources. However, you may find that the “(local)” selection
works, or perhaps some other syntax, such as the name you gave SQL Server when you installed it.

CAUTION CAUTION

651

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 651

FIGURE 18.30

Selecting the SQL Server instance to use for upsizing.

If you get the rather formidable error message shown in Figure 18.31 when clicking Next on the
second screen of the Upsizing Wizard, review your SQL Server settings; you may have missed one
or more of the setup steps required for Access to connect to SQL Server.

FIGURE 18.31

An error message when trying to connect to SQL Server.

If you get the Norton Internet Worm Protection warning (shown in Figure 18.25), click
OK on it before clicking Next on the second screen of the Upsizing Wizard.

If you don’t run into one or another roadblock, you will get the third screen of the Upsizing
Wizard, shown in Figure 18.32, listing the tables in the Access database for selection.

NOTENOTE

652

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 652

FIGURE 18.32

Selecting Access tables for upsizing to SQL Server.

I selected all the tables with data (leaving out tblBackupInfo and some lookup tables). After select-
ing the data tables to upsize, on the next screen (Figure 18.33) you can select various attributes to
export.

FIGURE 18.33

Table attributes to export.

653

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 653

Next, you can select to create a new Access client/server application, or link the new SQL Server
tables to the existing Access front end. For this section, to convert just the tables, I chose the link
option (see Figure 18.34).

FIGURE 18.34

Selecting the Link option for connecting to SQL Server.

Finally, the Upsizing Wizard success screen appears (Figure 18.35); click Finish to proceed to do
the upsizing using the selected choices.

FIGURE 18.35

The last screen of the Upsizing Wizard.

654

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 654

You will get a dialog, shown in Figure 18.36, with a progress bar listing each table in turn.

FIGURE 18.36

A progress bar as tables are upsized.

Finally, an Upsizing Wizard report is created and opened in Print Preview; you can print this report
to get detailed information about the upsizing process, with lists of table fields for the tables that
were successfully upsized, and a report on the error that prevented upsizing for any tables that
could not be upsized. Figure 18.37 shows the page for the tblCategories table, listing the Access
and SQL Server fields in two columns for comparison.

FIGURE 18.37

The Upsizing Wizard report.

655

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 655

The new SQL Server database is created in the SQL Server data folder, typically C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data. The database has the .mdf extension, and there
is also a matching transaction log file with the .ldf extension. The Access front end now has two
sets of tables: the original (pre-upsizing) Access tables, renamed with the suffix _local, and the
linked SQL server tables, as shown in Figure 18.38. The SQL Server tables are indicated by the
arrow and globe icon.

FIGURE 18.38

Linked SQL Server tables in the upsized Access database.

In the Access front-end database, forms and reports should work as with local Access tables. The
Orders form is shown in Figure 18.39, displaying data from the linked SQL Server tblOrders.

Two of my original reports, however, wouldn’t open, with Error 3219: Invalid operation. This
turned out to be because the reports (or their data source queries) used the FromDate() and
ToDate() functions. I made copies of the queries and reports without these functions; you can
compare rptInvoices and rptInvoicesDateRange, and rptEmployeeSalesByCountry and
rptEmployeeSalesByCountryDateRange, in the Basic Northwind.accdb database.

656

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 656

FIGURE 18.39

An Access form displaying data from a linked SQL Server table.

Creating a Client/Server Application
Compared with just converting the tables to SQL Server tables, and linking the Access database to
them as a front end, creating an Access Project as a front end has several advantages: You can make
design changes to SQL Server tables and views, some of which can’t be edited from an Access front
end. You can also create, edit, and use other SQL Server objects, such as database diagrams, stored
procedures, and user-defined functions. In a linked Access front end, by contrast, you can’t make
design changes to any SQL Server objects, and you can only link to SQL Server tables and views.

To create a client/server application from an Access database, with an Access Project (.adp) as the
front end to the SQL Server back end, proceed as in the previous section until you reach the screen
offering a choice between creating a client/server application or linking to the SQL Server back end
(this screen is shown in Figure 18.40); in this case, select the client/server application option, and
edit the name of the new project as desired.

657

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 657

FIGURE 18.40

Selecting the client/server option for upsizing an Access database.

On the next screen, shown in Figure 18.41, you can choose whether to open the new ADP file, or
keep the old Access database open.

FIGURE 18.41

Choosing to open the project or database.

658

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 658

Next, you will get a dialog with a progress bar while the database objects are upsized (Figure 18.42).

FIGURE 18.42

The Upsizing Wizard progress bar dialog.

The Upsizing Wizard report opens in Print Preview; with the client/server option selected, queries
and forms (and other database objects, if present) will be upsized as well as tables. The report
shows which queries were upsized, and which were not, with the reasons (see Figure 18.43).

FIGURE 18.43

The Upsizing Wizard report.

659

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 659

Forms based on tables, or queries that were successfully upsized, will look the same in the project
as in the original database (see Figure 18.44).

FIGURE 18.44

A form in an Access project displaying data from a SQL Server table.

If you attempt to upsize queries as well as tables, you will find that some query types don’t upsize
at all, because they don’t match up with views or stored procedures in SQL Server. Crosstab
queries, for example, can’t be upsized at all, nor can any query that uses a function in a calculated
field expression. If a query isn’t upsized, you need to re-create it as a SQL Server object of the
appropriate type (view or stored procedure).

See the SQL Server 2005 Bible (Wiley, 2006) for more information about working with
SQL Server features such as stored procedures and user-defined functions.

Figure 18.45 shows the four queries in the original Basic Northwind.mdb database that were suc-
cessfully upgraded to SQL Server.

The first two queries were converted to views and the third and fourth to user-defined functions, as
indicated by their distinctive icons. Figure 18.46 shows the qryOrderSubtotals view in design view,
and Figure 18.47 shows the qryCurrentProductList user-defined function in SQL view.

You now have a client/server application consisting of an Access project front end and a SQL Server
back end; from this point on you will need to use SQL Server techniques to work with the project
and the back-end tables.

CROSS-REFCROSS-REF

660

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 660

FIGURE 18.45

Four upsized queries in an Access project.

FIGURE 18.46

A SQL Server view created from an Access query.

661

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 661

FIGURE 18.47

A user-defined function created from an Access query.

Linking to Data in SQL Server Tables
You may need to connect to SQL Server databases for a company, university, or other organization
that stores its data in SQL Server. If you need to link an Access database to data in existing SQL
Server tables, or create a new Access front end for SQL Server tables, the process is different.

The SQL Server database I connect to in this section is AdventureWorks, one of the
sample databases you can download from the SQL Server 2005 Samples and Sample

Databases (February 2007) page on the Microsoft web site, at this link: www.microsoft.com/
downloads/details.aspx?FamilyID=e719ecf7-9f46-4312-af89-6ad8702e4e6e&
DisplayLang=en#filelist (or possibly a page with a later date). Make sure that any sample
databases you download are compatible with Access 2007. Those on the December 2006 page are
compatible with Access 2007; other sample databases posted earlier are not.

Download the AdventureWorksDB.msi file, and install it by double-clicking it. This will create the
SQL Server database AdventureWorks_Data.mdf in your SQL Server data folder, usually
C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data.

Next, create a new, blank Access 2007 database by selecting New from the File menu. On the dia-
log that opens next (Figure 18.48), select the Blank Database selection, and enter the name for the
new front-end database.

Close the default table (Table1) that is automatically created.

To link to the SQL Server database, follow these steps:

1. Drop down the More list on the Import group on the External Data tab, and select the
ODBC Database item, as shown in Figure 18.49.

NOTENOTE

662

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 662

FIGURE 18.48

Creating the new blank database.

FIGURE 18.49

Starting the process of linking to a SQL Server database.

663

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:57 PM Page 663

2. On the Get External Data screen (Figure 18.50), select the Link option.

FIGURE 18.50

Choosing to link to the data source.

3. On the Select Data Source screen (Figure 18.51), type a name for the data source and
click New to create a new DSN name.

FIGURE 18.51

Adding a new DSN name.

664

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:57 PM Page 664

4. Select the SQL Server driver on the Create New Data Source screen (Figure 18.52) and
click Next.

FIGURE 18.52

Selecting the SQL Server driver.

5. Type a name for the DSN file on the next screen, shown in Figure 18.53, and click Next.

FIGURE 18.53

Naming the DSN file.

665

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:58 PM Page 665

6. The Finish screen (Figure 18.54) lists the DSN name and driver you selected. (This is
only the end of the DSN portion of this wizard.)

FIGURE 18.54

The Finish screen of the DSN Wizard.

7. The next phase of the wizard starts with a screen (Figure 18.55) where you enter the
description of the data source, and select a SQL Server to connect to.

FIGURE 18.55

Selecting a SQL Server to connect to.

666

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:58 PM Page 666

8. On the Authentication screen (Figure 18.56), generally you can accept the default selec-
tion of Windows NT authentication.

FIGURE 18.56

Selecting the authentication type.

9. On the next screen, depicted in Figure 18.57, check the “Change the default database to”
checkbox, and select the SQL Server database you want to connect to.

FIGURE 18.57

Selecting the SQL Server database.

667

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:58 PM Page 667

If the database you want to connect to doesn’t appear in the “Change the default data-
base to” drop-down list, type in the database name, check the “Attach database file-

name” checkbox, and type in the full file path and name for the database .mdf file in the “Attach
database filename” textbox.

10. The settings on the screen shown in Figure 18.58 can generally be left at their defaults.

FIGURE 18.58

Various SQL Server settings.

11. Click Finish to get a screen listing the ODBC data source configuration; click Test Data
Source to test the connection to the database (see Figure 18.59).

FIGURE 18.59

The final screen of the ODBC SQL Server Setup Wizard.

TIPTIP

668

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:58 PM Page 668

12. You should get the success screen depicted in Figure 18.60.

FIGURE 18.60

A success message on getting a connection to a SQL Server database.

13. Click OK on the test message and then on the ODBC Microsoft SQL Server Setup screen,
then click OK on the Select Data Source screen (Figure 18.61) with the newly created
DSN selected.

FIGURE 18.61

Selecting the newly created DSN.

669

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:58 PM Page 669

14. On clicking OK, you will get the Link Tables screen, shown in Figure 18.62, where you
can select the tables to link to the Access front end.

FIGURE 18.62

Selecting SQL Server tables to link.

15. If one or more of the tables lacks a unique index, you will get the Select Unique Record
Identifier message (Figure 18.63). Select one or more fields to create a unique index and
click OK to proceed.

FIGURE 18.63

Selecting fields for a unique record identifier index.

670

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:58 PM Page 670

16. Now, as in Figure 18.64, you can see the linked SQL Server tables in the Access database
window.

FIGURE 18.64

Linked SQL Server tables in an Access front-end database.

With the tables linked, you can proceed to create the Access front end for working with the SQL
Server data.

The SQL Server Migration Assistant for
Access
There is an alternative to using the Upsizing Wizard: the SQL Server Migration Assistant for Access
(SSMA), a free Microsoft download, at www.microsoft.com/sql/solutions/migration/
access/default.mspx.

Compared with the Upsizing Wizard, SSMA has a more modern look and includes a number of
extra features, but as far as the basics are concerned, it should accomplish the same task: convert-
ing Access tables to SQL Server tables. However, at this time the SSMA does not support the new
Access 2007 .accdb database format, so if you attempt to use this utility to upsize an Access data-
base to SQL Server, you will just get a message saying “Unrecognized database format.”

671

Working with SQL Server Data 18

24_047026 ch18.qxp 4/2/07 9:58 PM Page 671

Using Access as a front end to SQL Server is a topic worthy of a complete book on its own, but the
Upsizing Wizard will at least help with the first steps toward creating a client-server application:
moving your data from Access tables to SQL Server tables.

Summary
Because of new security features in Office and Windows, it is much more difficult to connect an
Access database to a back-end SQL Server database. With the information in this chapter, you
should be able to negotiate the security settings that allow you to connect an Access database to a
back-end SQL Server database, allowing you to use an Access database (or project) front end to
data stored in SQL Server tables.

672

Adding More Functionality to OfficePart III

24_047026 ch18.qxp 4/2/07 9:58 PM Page 672

SYMBOLS
' (apostrophe), 366
\ (backslash), 267, 268

A
.accda file format, 472, 473, 505, 511. See also add-

ins, Access
.accdb file format, 471, 473, 482, 511, 671
Access

backing up databases, 277–282
calendar pop-up, 52, 53, 320
comparing add-ins with COM add-ins, 469
comparing contact data with Outlook contact

data, 359–390
concatenating data for export, 143–144
CopyAccessAttsToAccess procedure,

394–395
CopyAccessAttsToOutlook procedure,

391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390
CopyOutlookAttsToAccess procedure,

392–393
CreateProjectAppts procedure, 245–247
CreateProjectTasks procedure, 253–254
creating client/server applications, 657–662
creating databases from templates, 225–229
creating denormalized tables from linked tables,

352–359
creating e-mails from tables, 81–85
creating form letter reports, 8–10
creating worksheet-type reports, 11–25
DAO support, 90, 91–96

ExportAccountSummary function, 195–200
ExportAppointmentsToOutlook function,

241–243
ExportContactsToExcel function, 191–195
ExportFlatFileContactsToOutlook

procedure, 255–258
exporting appointment data to Outlook, 72–78,

241–243
exporting contact data to Outlook, 255–258
exporting data to Excel, 184–187
exporting data to Outlook items, 220–233
exporting data to unformatted Excel worksheets,

50–52
exporting data to Word documents, 135–138
exporting data to Word using Automation code,

138–182
exporting mainframe data as Outlook Journal

items, 79–81
exporting queries to Excel, 184–187
exporting task data to Outlook, 72–78, 247–249
ExportTasksToOutlook function, 247–249
filling Word documents with Access data by

using TypeText method, 27–30
Help overview, 272–277
history of data transfer techniques, 4
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262
importing Outlook appointment data from,

243–245
importing Outlook contacts to, 259–262
ImportTasksFromOutlook function, 250–251
Layout view, 134–135
methods for merging data to Word, 145–182
new templates in Access 2007, 230–233
Object Browser, 94

673

25_047026 bindex.qxp 4/2/07 9:58 PM Page 673

Access (continued)
placing indicators in Word templates where data

should appear, 30–45
preparing databases for upsizing to SQL Server,

629–631
SQL Server Migration Assistant, 671–672
storing data, 4
transferring timesheet data to Excel, 211–218
using to enter and edit data, 4
Word Mail Merge feature, 136, 138
Word (RTF) feature, 136, 137
working with attachments, 391–396
working with older format databases in Access

2007, 91–96
Access Interoperability reference, 571–573
Access Options dialog

Add-ins page, 465, 587
Current Database page, 474, 524, 546, 630
Customize page, 518
Navigation Options button, 475, 524, 630
opening, 513–514
Trust Center Page, 508

Access Projects, 657–662
Access to Excel.accdb sample database, 49
Access to Outlook.accdb sample database, 72
Access to Word.accdb sample database, 27
AccessDesigner module

opening, 442
Visual Basic code, 443
working with add-in events, 442–443

action queries, 106
ActiveX controls, 229. See also ADO object model
Add a Program dialog, 641–642, 645, 646
Add Add-ins dialog, 466
Add method, 236–237
AddButtons custom form Ribbon, 547–549
Add-In Manager dialog, 478, 502, 509
AddInErr procedure, 441, 442, 581
add-ins, Access

building, 583–587
code requirements, 481–482
comparing with COM add-ins, 469
construction tips, 482–483

creating, 471–514
customizing Ribbon with, 549–560
debugging, 582–583
Extras add-in code, 483–499
Extras (Ribbon).accda, 549, 552
Extras 2007.accda, 471, 510–514, 549
finalizing, 502–503
installing, 507–510, 549, 550, 551–552, 583–587
interpreting error messages, 506–507
library database properties sheet information,

502–503
location, 477
menu, 478, 549–560
property builders, 480–481
purpose, 472
and Registry, 472
shared, 563–565
signing code, 511
storing, 472
testing, 588–589
troubleshooting, 503–507
types, 472–473
version issues, 472, 510
and VSTO, 563–565
as wizards, 472–473, 479
writing code, 481–483

add-ins, COM
comparing with Access add-ins, 469
creating by using Visual Basic 6.0, 436–467
creating LNC Control Renaming add-in,

440–463
customizing, 438–440
installing, 463–466
selecting template, 436–440
troubleshooting, 466–467
using, 467–468

Add-Ins menu, 510
addresses

code for updating in Access, 385–387
creating shipping labels in Word, 397–415
labels for Mail Merge, 175–176
synchronizing, 353–354
as user information field, 31–33

674

IndexA

25_047026 bindex.qxp 4/2/07 9:58 PM Page 674

AddToCommandBar function, 440
ADO object model

code limitations, 129
Command object, 113–116
Connection object, 110–113
converting DAO code to, 129–131
versus DAO object model, 89, 91–96, 110, 130
defined, 90
equivalents of DAO objects, 130
method for working with text files, 291, 296
role of Object Browser, 94

.adp file format, 657–662
AdventureWorks SQL.accdb sample database, 627
AllowMultiSelect property, 270
apostrophe ('), 366
append queries, 314, 315, 317
Application object, 139, 234–235, 236
appointments, Outlook

CreateProjectAppts procedure, 245–247
creating based on Access table data, 245–247
ExportAppointmentsToOutlook function,

241–243
exporting Access table data to, 241–243
exporting to Access tables, 243–245
importing from Access, 72–78

ArchiveData procedure, 53–58
arguments, 102
attachment fields

adding to Access tables, 391
data type, 297, 391
illustration, 298
loading files, 299–302
overview, 297

attachment icons, 297
attachments

adding by using Attachments dialog, 298–299
adding by using LoadAttachments procedure,

299–302
CopyAccessAttsToAccess procedure,

394–395
CopyAccessAttsToOutlook procedure,

391–392

CopyOutlookAttsToAccess procedure,
392–393

handling in Access, 391–396
handling in Outlook, 391–396
PDF Products to Reorder report, 432
PDF shipping report, 428, 430
SaveAttachments procedure, 302–304
saving, 302–304
selecting Attachments folder path, 357–359

Automation. See also Visual Basic for Applications
(VBA)

code for creating blank Word documents, 27–28
code for creating Word documents by using

bookmarks, 36–39
FillWithTypeText procedure, 28–30
history, 3–4

axes, PivotChart
formatting, 419–420
naming, 23

B
backing up databases

to Access database folder, 277–279
Extras Setup dialog options, 511–512
scheduling script with Windows Vista Task

Scheduler, 619–625
by using BackupBackEndDB procedure,

557–558
by using BackupDB function, 279–282
by using BackupFrontEnd function, 489–491

backslash (\), 267, 268
Backup.accdb sample database, 279, 471
BackupDB function, 279–281, 282
BackupFrontEnd function, 489–491
bar charts, formatting, 419–423
bar codes, 152–153
basExtras module, 486–488
basExtrasRibbon module, 553
Basic Northwind CS.adp sample database, 627
Basic Northwind v 1 (linked SQL Server

tables).accdb sample database, 627

675

Index B

25_047026 bindex.qxp 4/2/07 9:58 PM Page 675

Basic Northwind.accdb sample database, 627, 631,
648, 656

batch optimistic lock type, 118
Beginning XML (Wiley Publishing), 525
Block reports, 14, 16
blocked content, 344–345
bookmarks

advantages and disadvantages, 145
inserting in Word documents and templates, 34
MergeBookmarks procedure, 165–169
as method for merging Access data to Word,

145, 165–169
placing in Word templates where Access data

should appear, 31–39
showing/hiding, 34–35

bound controls
and Date field, 52, 320
naming issues, 11, 16, 453–454, 468, 472, 482

button XML element, 522
ButtonName property, 270

C
calculated fields, in queries, 370–371
calendar, Outlook

importing appointments from Access, 72–78
linking folder to Access tables, 224
working with appointment data, 241–247

calendar pop-up, 52, 53, 320
Callback function, 263, 264
certificates, digital

creating for signing VBA code, 398–402
why not to create for Access add-ins, 511

Chart templates, 423
charts. See PivotCharts, Access; PivotCharts, Excel
circular references, 11
Class property, 240
client/server applications, 657–662
Clipboard, 3
cmdAttachmentsFolderPath_Click procedure,

358–359
cmdCancel_Click event procedure, 483–484
cmdClearData_Click procedure, 315, 322,

329–330

cmdClearTimesheet_Click procedure, 207
cmdClick procedure, 154–157
cmdCreateDocuments_Click procedure,

159–160
cmdCreateEMails_Click procedure, 283–290
cmdCreateLabels_Click procedure, 405–413
cmdDeselectAll_Click procedure, 164–165
cmdDocProps_Click procedure, 43–45
cmdExportJobs_Click procedure

role in exporting database and spreadsheet files,
336–338

role in exporting HTML and XML data,
343–344

role in exporting text data, 323–324
cmdInputDocsPath_Click procedure, 265–266
cmdInspectJobs_Click procedure

role in exporting text data, 330–332
role in importing text data, 316–317

cmdInspectNewJobs_Click procedure, 324
cmdLoadData_Click procedure, 294–296
cmdMergetoEmailMulti_Click procedure,

348–350
cmdOutputDocsPath_Click procedure, 266–267
cmdReorderInventory_Click event procedure,

431–432
cmdSaveJobs_Click procedure, 317, 332–333
cmdSaveTimesheet_Click procedure, 207–208
cmdSourceFile_Click procedure, 333–334
cmdSourceTextFile_Click procedure, 318–319
cmdSQL (SQL commands), 113
cmdWord_Click procedure, 154–157
code. See Automation; Visual Basic for Applications

(VBA)
CodeDB syntax, 481, 482
Collect Data group, 220–221
columns, report

adjusting width, 17
default alignment, 17

COM add-in template, 436–440
COM Add-ins dialog, 465–466, 587
COM (Component Object Model)

comparing add-ins with Access add-ins, 469
creating add-ins using Visual Basic 6.0, 436–467

676

IndexB

25_047026 bindex.qxp 4/2/07 9:58 PM Page 676

creating LNC Control Renaming add-in, 440–463
customizing add-ins, 438–440
installing add-ins, 463–466
selecting add-in template, 436–440
troubleshooting add-ins, 466–467
using add-ins, 467–468

comboBox XML element, 522
comma-delimited text files

in cmdExportJobs_Click procedure, 323
creating import specifications by using

TransferText method, 306, 316
versus fixed-width text files, 315
importing, 312–320
and TransferSpreadsheet method, 282
and TransferText method, 282

Command object, 113–116, 130
command-bar buttons

adding in code, 447–448
AddToCommandBar function, 440
CreateFormCommandBarButton function,

443
CreateReportCommandBarButton function,

443
DeleteFromCommandBar function, 440
deleting, 450
RemoveAddInCommandBarButton function,

443
returning references to, 448–449
role of OnConnection event procedure, 443

comments, VBA versus VBScript, 601, 603
CommonDialog control, 263, 264
Company and Contact Information form, 355–357
ComplexType object, 97
Component Object Model (COM)

comparing add-ins with Access add-ins, 469
creating add-ins using Visual Basic 6.0, 436–467
creating LNC Control Renaming add-in,

440–463
customizing add-ins, 438–440
installing add-ins, 463–466
selecting add-in template, 436–440
troubleshooting add-ins, 466–467
using add-ins, 467–468

concatenation, for exporting Access data, 143–144
Connect class module, modifying, 573–575
Connection object, 110–113, 130
Contact Documents folder, 141, 142
contact IDs, code for updating in Access, 388–390
contact information

comparing Outlook and Access contacts,
359–390

synchronizing, 353–354
Contact Information form, 353–355
Contact Letter with Envelope (Bookmarks)

template, 165
Contact Letters (Mail Merge) document, 176
Contact List form, 231–232
Contact List (Mail Merge) document, 176
contacts, Access

code for updating, 382–391
copying data to Outlook, 374–391
ExportContactsToExcel procedure,

191–195
multiple, sending Word letters to, 158–165
qryContacts query, 191
removing completely, 376
single, sending Word letters to, 150–158

contacts, Outlook
code for updating, 376–382
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390
copying data to Access, 374–391
ExportFlatFileContactsToOutlook

function, 255–258
exporting Access table data to, 255–258
exporting to Access tables, 259–262
ImportContactsFromOutlook function,

259–262
ImportOutlookContacts function, 361–365,

390
linking to Access tables, 224–225
removing completely, 376

Container object, DAO, 98

677

Index C

25_047026 bindex.qxp 4/2/07 9:58 PM Page 677

content controls, inserting into Word templates,
45–48

ControlCA function, 456–457
ControlCS function, 454–456
ControlNA function, 459–461
controls

adding to Ribbon, 517
bound, 11, 16, 52, 320, 453–454, 468, 472,

482
built-in Access Ribbon names, 521–531
finding names for use in XML code, 518
grouping, 17
LNC Control Renaming COM add-in, 440–463
LNCRenameFormControls function, 443,

450–453
LNCRenameFormControls_Click event

procedure, 443
LNCRenameReportControls function, 443,

453
LNCRenameReportControls_Click event

procedure, 443
naming convention, 11, 16
renaming, 440–463, 467
saving old names, 467–468

ControlSO function, 457–459
CopyAccessAttsToAccess procedure, 394–395
CopyAccessAttsToOutlook procedure, 391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess procedure,

390
CopyAllTemplates.vbs script, 610–611
CopyFile method, 282
CopyObject method, 109, 482
CopyOutlookAttsToAccess procedure, 392–393
CopyTemplateUser.vbs script, 603, 607–608
CopyTemplateWorkgroup.vbs script, 603, 608–610
Create Chart dialog, 424–425
Create New Data Source dialog, 665
Create ObjectsSetup Setup Wizard, 584–587
Create PivotTable with PivotChart dialog, 417–418
CREATE TABLE statement, 109

CreateAndTestQuery function, 58–59, 104–106
CreateCTT function, 461–463
CreateDenormalizedContactsTable function,

366–374, 382, 390
CreateExcelTimesheets function, 211,

212–218
CreateField method, 109
CreateFormCommandBarButton function, 443
CreateItem method, 236
CreateItemFromTemplate object, 236
CreateNewForm procedure, 579–580
CreateNewReport procedure, 580–581
CreateNewTable procedure, 578–579
CreateNewWorkbook function, 187–188
CreateObject function

in Excel object model, 187, 188
in Outlook object model, 234, 236
when to use, 28, 39, 74, 602
in Word object model, 138, 139

CreateProjectApps function, 245–247
CreateProjectTasks function, 253–254
CreateReportCommandBarButton function, 443
CreateTable statement, 482
CreateTableDef method, 107, 109
CreateTextFile method, 292
CurrentDb method, 99, 481
CurrentWeekEnding function, 203, 204
cursors, ADO recordset, 117, 118, 119–120
customUI XML element, 522

D
DailyDatabaseBackup.vbs script, 619–625
DAO and ADO Sample Code.accdb sample

database, 90
DAO object model

ADO object equivalents, 130
versus ADO object model, 89, 91–96, 110, 130
converting code to ADO, 129–131
databases, 99
defined, 90
fields, 106–109
hidden objects, 98–99

678

IndexC

25_047026 bindex.qxp 4/2/07 9:58 PM Page 678

illustrated, 97
new objects, 97–98
old versus new, 90, 96–109
overview, 96
QueryDefs, 104–106
recordsets, 99–104
support in Access 2007, 90, 91–96
TableDefs, 106–107
when to use, 110

data sources
qryOrdersAndDetails query, 62, 63
queries as, 50, 51, 52

data transfer, history of techniques, 3–4
Database object, 99, 130
databases. See also Access

backing up by using BackupDB function,
279–282

backing up by using BackupFrontEnd
function, 489–491

backing up to Access database folder, 277–279
creating client/server applications, 657–662
creating connections, 111
creating from templates, 225–229
importing legacy files, 324–328
naming conventions, 11
preparing for upsizing to SQL Server, 629–631
sample, 230–233

datasheet reports, 11–19
Date field, 157
dates

calendar pop-up icon, 52, 53, 320
code for creating filtered queries, 54
saving in Word documents, 157

dBASE. See legacy files
DBEngine object, DAO, 98, 130
DDE (Dynamic Data Exchange), 3, 4
debugging

Access add-ins, 582–583
and Debug.Print statement, 601

DefaultItemType property, 240
Delete Audible Files.vbs script, 616–619
DeleteFromCommandBar function, 440
denormalizing, defined, 352

Designer dialog, 439–440
DialogType property, 270
digital signature

creating for signing VBA code, 398–402
why not to create for Access add-ins, 511

DLL files
copying to default Add-ins folder, 463
creating, 463
troubleshooting COM add-ins, 466

.doc file format, 31, 146
DoCmd object

CopyObject method, 109
OpenQuery method, 109
RunSQL method, 109

DocProperty field, Word
versus Access Memo field, 10
placing in Word templates where Access data

should appear, 39–45
using field switches to format data, 152–153

Document Information Panel, 148
Document object, Word, 139
document properties

accessing, 146–149
advantages and disadvantages, 145
creating, 149–150
MergeDocProps procedure, 160, 161–164
as method for merging Access data to Word,

145, 146–165
overview, 39–45
working around limitations, 149–150
writing values to, 152

Documents collection, 139
documents, Word

code for creating using bookmarks, 36–37
code for creating using DocProperties field, 43
creating by using cmdWord_Click event

procedure, 154–157
creating by using templates, 30–45
exporting Access data to, 135–138
file formats, 31, 146
mail merge, creating, 176–182
saving date, 157

.docx file format, 31, 146

679

Index D

25_047026 bindex.qxp 4/2/07 9:58 PM Page 679

.dot template format, 31, 146

.dotx template format, 31, 146
drop zones, 20, 22, 23
drop-down content controls, inserting into Word

templates, 45–48
dropDown XML element, 522
DSN Wizard, 665–669
dynamic cursors, 117, 121, 122
Dynamic Data Exchange (DDE), 3, 4
dynamic recordsets, 104
dynaset-type recordsets, 100, 101–103, 130

E
emails

cmdCreateEMails_Click procedure,
283–290

creating from Access tables, 81–85
sample output, 290
Select Contacts for Email sample form, 282–283
sending Access Products to Reorder report as

email attachment, 432
sending Access shipping report as email

attachment, 428, 430
sending text files exported from Access,

348–350
synchronizing addresses, 353–354

embedded macros, 232, 233
enabled XML element, 522
EOF property, 110
error handling, VBA versus VBScript, 601
error messages, add-in, 506–507
Event List form, 230–231
event procedures

cmdAttachmentsFolderPath_Click

procedure, 358–359
cmdCancel_Click procedure, 483–484
cmdClearData_Click procedure, 315, 322,

329–330
cmdClearTimesheet_Click procedure, 207
cmdClick procedure, 154–157
cmdCreateDocuments_Click procedure,

159–160

cmdCreateEMails_Click procedure,
283–290

cmdCreateLabels_Click procedure,
405–413

cmdDeselectAll_Click procedure, 164–165
cmdDocProps_Click procedure, 43–45
cmdExportJobs_Click procedure, 323–324,

336–338, 343–344
cmdInputDocsPath_Click procedure,

265–266
cmdInspectJobs_Click procedure, 316–317,

330–332
cmdInspectNewJobs_Click procedure, 324
cmdLoadData_Click procedure, 294–296
cmdMergetoEmailMulti_Click procedure,

348–350
cmdOutputDocsPath_Click procedure,

266–267
cmdReorderInventory_Click event

procedure, 431–432
cmdSaveJobs_Click procedure, 317,

332–333
cmdSaveTimesheet_Click procedure,

207–209
cmdSourceFile_Click procedure, 333–334
cmdSourceTextFile_Click procedure,

318–319
Form_Load procedure, 484–485
txtEmployeeID_DblClick procedure,

209–211
Excel

CreateExcelTimesheets function, 211,
212–218

creating new documents based on WSH scripts,
614, 615–616

creating PivotCharts from Access queries,
415–426

ExportContactsToExcel function, 191–195
exporting Access data to, 184–187
exporting Access data to unformatted

worksheets, 50–52
importing queries from Access, 415–416
Object Browser, 94

680

IndexD

25_047026 bindex.qxp 4/2/07 9:58 PM Page 680

opening XML files, 346–347
transferring Access timesheet date to, 211–218
TransferToExcel function, 186
using templates to create formatted worksheets

filled with data, 52–62
workbooks versus worksheets, 183

Excel button, 184
Excel Export.accdb sample database, 187
Excel object model, 59, 187–191
Excel.accdb sample database, 49
Execute method, 109
Expert One-on-One Microsoft Access Application

Development (Wiley Publishing), 4, 20,
440, 480

Explorer object, 234–235
Export dialog, 50, 51, 416
Export Job Data to Application File form, 336
Export Job Data to HTML or XML File form, 341,

342
Export Job Data to Text File form, 320, 321
export specifications, creating by using

TransferText method, 306
ExportAccountSummary function, 195–200
ExportAppointmentsToOutlook function,

241–243
ExportContactsToExcel function, 191–195
ExportFlatFileContactsToOutlook function,

255–258
exporting

Access data to Excel, 184–187
Access data to legacy database files, 336–338
Access data to minimally formatted Excel

worksheets, 191–195
Access data to Outlook items, 220–233
Access data to unformatted Excel worksheets,

50–52
Access table data to Outlook appointments,

241–243
Access table data to Outlook contacts, 255–258
Access table data to Outlook tasks, 247–249
HTML files, 341–347

Outlook appointment data to Access tables,
243–245

Outlook contact data to Access tables, 259–262
Outlook task data to Access tables, 250–251
XML files, 341–347

ExportNorthwindData procedure, 62–69
ExportTasksToOutlook function, 247–249
ExportTransactions function, 79–81
ExportXML method, 342
extensions, file. See file formats
External Data tab, Access 2007 Ribbon

Collect Data group, 220–221
customizing, 541–542
for exporting Access data to Excel, 50, 184, 415
for exporting Access data to Word, 135–138
for interacting with Outlook, 220–221
Saved Imports button, 310

External Data.accdb sample database, 312
Extras (Ribbon).accda add-in, 549, 552
Extras 2007.accda add-in

Back up Database Back End selection, 512
Back up Database selection, 512
defined, 471
Extras Options selection, 511–512
List Query Fields selection, 513–514
List Table Fields selection, 514
modified, 549
running menu add-ins, 510

ExtrasOptions function, 486–488
ExtrasRibbon, 549, 555

F
Field object, 94–96
fields

in ADO object model, 94, 95–96, 130
creating to store RTF data, 5–6
creating via NewTable procedure, 106–109
in DAO object model, 92, 94–98, 130
ListQueryFields add-in, 495–497, 511,

513–514
ListTableFields add-in, 497–499, 511, 514

681

Index F

25_047026 bindex.qxp 4/2/07 9:58 PM Page 681

fields (continued)
ListTableFields procedure, 542–545
selecting for PivotCharts, 22–23
selecting for PivotTables, 20–21
for user information, 31–33
in Word documents, 45–48

file formats
Access add-ins, 472, 473, 505, 511
Access Project files, 657–662
Excel files, 61, 183
HTML files, 338–347
Outlook files, 237
Visual Basic Script, 592
Word documents, 31, 146
Word templates, 31, 146
XML files, 338–347

File Location dialog, 605
FileDialog object

AllowMultiSelect property, 270
ButtonName property, 270
creating, 265–267
DialogType property, 270
Filters.Add method, 270
InitialFilename property, 270
InitialView property, 270
methods, 270
overview, 263–264
properties, 270
setting reference to object library, 268, 269
viewing MsoFileDialogView in Object

Browser, 270
FileExists method, 617
Files and Folders.accdb sample database, 264, 302
FileSystemObject object

CopyFile method, 282
FileExists method, 617
GetFile method, 608, 609
GetFolder method, 281
GetSpecialFolder method, 617
Help file, 271–272
method for working with text files, 282, 290,

292, 296, 297, 298

overview, 263, 264, 271
setting reference to Scripting Runtime Library,

271
Stream object, 282
TextStream object, 282, 292
as VBS error handling alternative, 601

FillDatecontrols procedure, 204, 205
FillWithTypeText procedure, 28–30
filtering reports, 17–19
Filters.Add method, 270
Find* methods, 93, 101
FindFirst search method, 93–94, 101
FindLast search method, 101
FindNext search method, 102
FindPrevious search method, 102
firewalls

accessing SQL Server 2005 through Windows
Vista, 642–647

accessing SQL Server 2005 through Windows
XP, 640–642

fixed-width text files
in cmdExportJobs_Click procedure, 323
versus comma-delimited text files, 315
creating import specifications by using

TransferText method, 306–311, 317
importation problems, 315
and TransferSpreadsheet method, 282
and TransferText method, 282

flat-file tables, 352–359
Folder object, 235
FolderPicker dialog, 141, 268–269
Folders.accdb sample database, 264
For Each...Next statement, 601
form fields, 45–48
form letters, Access, creating, 8–10
form Ribbons, 547–549
Form Wizard add-ins, 479
Format Axis dialog, 420
formatting files

Access add-ins, 472, 473, 505, 511
Access Project files, 657–662
Excel files, 61, 183

682

IndexF

25_047026 bindex.qxp 4/2/07 9:58 PM Page 682

HTML files, 338–347
Outlook files, 237
Visual Basic Script, 592
Word documents, 31, 146
Word templates, 31, 146
XML files, 338–347

Form_Load procedure, 484–485
forms, Access

creating emails from, 81–85
Event List form, 230–231
frmWeeklyTimesheet form, 202, 203–211
Rich Text-enabled text blocks on, 6–8
sample, 230–233
selecting for comparing Access and Outlook

contacts, 359–360
selecting from templates, 230–231
Task List form, 230–231

forward-only cursors, 117, 122, 127–129
forward-only recordsets, 100, 103
free-form text files, 282
frmCompanyInfo form, 355–357
frmContactInfo form, 353–355
frmSelectOrdersForShipping form, 403, 404
frmTextImport form, 292, 293, 297
frmWeeklyTimesheet form, 202, 203–211

G
Get External Data–Text file dialog, 306–307
GetCustomUI function, 574
GetDefaultFolder method, 235
GetDocumentsPath function, 413–414
GetFolder method, 281
GetInputDocsPath function, 267–268
GetObject function

in Excel object model, 187
in Outlook object model, 234, 236
when to use, 28, 74, 602
in Word object model, 138, 139

GetOutputDocsPath function, 268
GetProperty function, 500
GetSpecialFolder method, 617
Google, using to obtain Access help, 274–275

group XML element
adding to Ribbon, 517
built-in Access Ribbon names, 519–520
defined, 522
removing from Ribbon, 518–519

Groups object, DAO, 99

H
Help

for Access 2003, 272, 276–277
for Access 2007, 272–274
searching, 272–273
table of contents, 273–274
using Google to obtain, 274–275
using Object Browser, 275, 276

hidden tables, Access, making visible, 630
HideDuplicates property, 16
HTML files

exporting, 341–347
importing, 338–341

I
ID field name, 523
id XML element, 522
idMso XML element, 522
imageMso XML element, 522
Import group, 221–222
Import HTML or XML Job Data, 338, 339
Import Job Data from Application File form, 325,

329
Import Job Data from Text File form, 312, 313
import specifications

creating by using TransferText method,
306–311

defined, 306
on Manage Data Tasks screen, 310–311
saving, 310

Import Text Wizard, 307–310
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262

683

Index I

25_047026 bindex.qxp 4/2/07 9:58 PM Page 683

importing
Access queries to Excel, 415–416
Access table data from Outlook appointment

data, 243–245
Access table data from Outlook contact data,

259–262
Access table data from Outlook tasks, 250–251
HTML files, 338–341
legacy database files, 324–328
legacy spreadsheet files, 328–335
Outlook appointment data from Access tables,

241–243
Outlook contact data from Access tables,

255–258
Outlook task data from Access tables, 247–249
text file data, 312–320
XML files, 338–341

ImportOutlookContacts function, 361–365,
390

ImportTasksFromOutlook function, 250–251
InitialFilename property, 270
InitialView property, 270
Input Documents folder, 264, 265
Inspector object, 234–235
IntelliSense, 573
Internet Explorer

allowing blocked content, 344–345
opening XML files, 345–346

inventory, replenishing, 426–432
IsLoaded function, 631
IsLoaded property, 631
Items collection, 235, 236

J
Journal component, Outlook

activating, 80
exporting Access mainframe data to, 79–81

K
keyset cursors, 117, 121, 122–125, 130

L
label XML element, 522
labels, naming in Report Wizard, 16
Layout view, Access, 134–135
.ldf file format, 656
legacy files

in cmdExportJobs_Click procedure,
337–338

in cmdInspectJobs_Click procedure,
331–332

in cmdSaveJobs_Click procedure, 332
DatabaseType argument values for dBASE and

Paradox, 327–328
importing database files, 324–328
importing spreadsheet files, 328–335
overview, 324
SpreadsheetType named constants for Lotus

1-2-3, 328
legends, PivotChart, 24, 419
Leszynski Naming Convention (LNC), 11, 611
letters, Access, 8–10
letters, Word

sending to multiple Access contacts, 158–165
sending to single Access contacts, 150–158

library databases
creating, 473–481
information on properties sheet, 502–503
saving changes, 506
setting reference, 503–506

Link Exchange/Outlook Wizard, 223
linking Access tables to Outlook, 221–229
List Table Fields command, 556, 558
ListCompany procedure, 102
ListQueryFields add-in, 495–497, 511, 513–514
lists, for Mail Merge, 176
ListTableFields add-in, 497–499, 511, 514
ListTableFields procedure, 542–545
ListValues procedure, 103
LNC Control Renaming COM add-in, 440–463
LNC (Leszynski Naming Convention), 11, 611
LNC Rename Access add-in, 480
LNC Rename COM add-in, 440

684

IndexI

25_047026 bindex.qxp 4/2/07 9:58 PM Page 684

LNCRenameFormControls function, 443,
450–453

LNCRenameFormControls_Click event
procedure, 443

LNCRenameReportControls function, 443, 453
LNCRenameReportControls_Click event

procedure, 443
LoadAttachments function, 299–302
LoadCustomUI function, 553
LoadRibbons function, 553–554
lock types, ADO recordset, 118, 119–120
Lotus 1-2-3. See legacy files

M
macro recorder, 202
Mail Merge method

advantages and disadvantages, 146
for documents, 176–182
for lists, 176
for mailing labels, 175–176
MailMergeTextFile procedure, 177,

178–182
as method for merging Access data to Word,

146, 175–182
mailing addresses

code for updating in Access, 385–387
creating shipping labels in Word, 397–415
labels for Mail Merge, 175–176
synchronizing, 353–354
as user information field, 31, 32, 33

MailMerge object, 139, 140
MailMergeTextFile procedure, 177, 178–182
make-table queries, 109, 201, 205, 352
Manage Data Tasks screen, 310–311
MAPIFolder object, 235
.mda file format, 472, 473
.mdf file format, 656
Memo data type, 5
Memo field, Access

creating, 5–6
storing data in, 5–6
versus Word DocProperty field, 10

menu add-ins, 478, 549–560
merge fields, 10
Merge It With Microsoft Office Word option, 135
MergeBookmarks procedure, 165–169
MergeData.txt file, 177, 180
MergeDocProps procedure, 160, 161–164
MergeTypeText procedure, 170–175
merging Access data to Word

bookmarks method, 145, 165–169
comparison of methods, 145–146
document properties method, 145, 146–165
Mail Merge, 146, 175–182
TypeText method, 146, 170–175

message class, 240–241
Microsoft Access

backing up databases, 277–282
calendar pop-up, 52, 53, 320
comparing add-ins with COM add-ins, 469
comparing contact data with Outlook contact

data, 359–390
concatenating data for export, 143–144
CopyAccessAttsToAccess procedure,

394–395
CopyAccessAttsToOutlook procedure,

391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390
CopyOutlookAttsToAccess procedure,

392–393
CreateProjectAppts procedure, 245–247
CreateProjectTasks procedure, 253–254
creating client/server applications, 657–662
creating databases from templates, 225–229
creating denormalized tables from linked tables,

352–359
creating e-mails from tables, 81–85
creating form letter reports, 8–10
creating worksheet-type reports, 11–25
DAO support, 90, 91–96
ExportAccountSummary function, 195–200

685

Index M

25_047026 bindex.qxp 4/2/07 9:58 PM Page 685

Microsoft Access (continued)
ExportAppointmentsToOutlook function,

241–243
ExportContactsToExcel function, 191–195
ExportFlatFileContactsToOutlook

procedure, 255–258
exporting appointment data to Outlook,

241–243
exporting contact data to Outlook, 255–258
exporting data to Excel, 184–187
exporting data to Outlook items, 220–233
exporting data to unformatted Excel worksheets,

50–52
exporting data to Word documents, 135–138
exporting data to Word using Automation code,

138–182
exporting mainframe data as Outlook Journal

items, 79–81
exporting queries to Excel, 184–187
exporting task data to Outlook, 247–249
exporting tasks and appointments to Outlook,

72–78
ExportTasksToOutlook function, 247–249
filling Word documents with Access data by

using TypeText method, 27–30
Help overview, 272–277
history of data transfer techniques, 4
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262
importing Outlook appointment data from,

243–245
importing Outlook contacts to, 259–262
ImportTasksFromOutlook function, 250–251
Layout view, 134–135
methods for merging data to Word, 145–182
new templates in Access 2007, 230–233
Object Browser, 94
placing indicators in Word templates where data

should appear, 30–45
preparing databases for upsizing to SQL Server,

629–631

SQL Server Migration Assistant, 671–672
storing data, 4
transferring timesheet data to Excel, 211–218
using to enter and edit data, 4
Word Mail Merge feature, 136, 138
Word (RTF) feature, 136, 137
working with attachments, 391–396
working with older format databases in Access

2007, 91–96
Microsoft Database Engine (MSDE), 629, 631
Microsoft Excel

CreateExcelTimesheets function, 211,
212–218

creating new documents based on WSH scripts,
614, 615–616

creating PivotCharts from Access queries,
415–426

ExportContactsToExcel function, 191–195
exporting Access data to, 184–187
exporting Access data to unformatted

worksheets, 50–52
importing queries from Access, 415–416
Object Browser, 94
opening XML files, 346–347
transferring Access timesheet date to, 211–218
TransferToExcel function, 186
using templates to create formatted worksheets

filled with data, 52–62
workbooks versus worksheets, 183

Microsoft Office
Access version issues, 263–264
adding .NET support to, 559–573
changing installation in Windows Vista,

560–562
Custom UI Editor, 518–519
customization deficiency, 520–521
customizing user interface, 520
FileDialog object, 263, 264–270
history of data transfer techniques, 3–4
installing based on Windows version, 560–562
version issues, 627

686

IndexM

25_047026 bindex.qxp 4/2/07 9:58 PM Page 686

Microsoft Outlook
activating Journal component, 80
Application object, 234–235, 236
built-in contact ID fields, 359
comparing contact data with Access contact

data, 359–390
CopyAccessAttsToOutlook procedure,

391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390
CopyOutlookAttsToAccess procedure,

392–393
CreateProjectAppts function, 245–247
CreateProjectTasks function, 253–254
ExportAppointmentsToOutlook function,

241–243
ExportFlatFileContactsToOutlook

function, 255–258
exporting Access task and appointment data to,

72–78
exporting appointment data to Access, 243–245
exporting changing Access data to, 220–233
exporting task data to Access, 250–251
ExportTasksToOutlook function, 247–249
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262
importing appointment data from Access,

241–243
importing mainframe data as Journal items,

79–81
import/link folder selections, 222–223
ImportOutlookContacts function, 361–365,

390
ImportTasksFromOutlook function, 250–251
linking Access tables to, 221–229
linking Calendar folder to Access tables, 224
linking Contacts folder to Access tables,

224–225

linking Tasks folder to Access tables, 223–224
Object Browser, 94
referencing items in VBA code, 240–241
refreshing contact data, 361–374
syntax for referencing objects, 235–240
working with appointments, 241–247
working with attachments, 391–396
working with contacts, 254–262
working with tasks, 247–254

Microsoft Script Editor (MSE), 592–597
Microsoft Scripting Runtime Library, 263, 271
Microsoft Windows Script, 271. See also Windows

Script Host (WSH)
Microsoft Word

creating blank documents by using Automation
code, 27–28

creating fancy shipping labels, 397–415
creating new, blank documents based on default

template, 140–141
creating new, blank documents based on

selected template, 141–143
creating new, blank documents by using

NewDoc function, 140–141
creating new, blank documents by using

NewDocFromTemplate function,
142–143

creating new documents based on WSH scripts,
614–615

Document Information Panel, 148
file format differences, 31, 146
filling documents with Access data by using

TypeText method, 27–30
importing Access data, 135–138
importing Access data using Automation code,

138–182
methods for merging Access data to, 145–182
Object Browser, 94, 139
opening by using CreateObject function, 39,

44–45
sending letters to multiple Access contacts,

158–165

687

Index M

25_047026 bindex.qxp 4/2/07 9:58 PM Page 687

Microsoft Word (continued)
sending letters to single Access contacts,

150–158
setting User Templates folder path, 604–605
setting Workgroup Templates folder path,

604–605
user information fields, 31–33
using templates for creating formatted

documents, 30–45
version issues, 146

Modified Northwind.accdb sample database, 11
MSDE (Microsoft Database Engine), 629, 631
MSE (Microsoft Script Editor), 592–597

N
named constants

finding numeric equivalents, 601, 603
VBA versus VBScript, 601, 603
viewing in Object Browser, 164

NameSpace object, 234, 235
naming conventions, 11, 16
Navigation Options dialog, 475, 524, 630
.NET Framework, adding support to Office,

559–573
.NET Programmability Support components,

561–562
New Document from Template.vbs script, 614–616
New keyword, 234, 236
NewDoc function, 140–141
NewDocFromTemplate function, 142–143
NewTable procedure, 106–109
NoMatch property, 110
normalizing, defined, 348
Northwind databases, 631
Northwind Plus.accdb sample database, 397, 398,

403
Northwind 2007.accdb sample database, 90
Northwind.accdb sample database, 611, 612
Norton Internet Worm Protection warning, 648
Nz function, 601

O
Object Browser

finding numeric equivalents of named constants,
601, 603

Folder object, 235
opening, 139
overview, 94
viewing Access object model components,

275–276
object linking and embedding (OLE), 4. See also

Automation
object models

defined, 139
Excel, 187–191
Outlook, 234–241
referencing VB projects to, 438–439
role of Object Browser, 94
Word, 139–144

Object type variables, 236
ODBC (Open Database Connectivity), 3, 4
ODBC SQL Server Setup Wizard, 666–669
Office

Access version issues, 263–264
adding .NET support to, 559–573
changing installation in Windows Vista,

560–562
Custom UI Editor, 518–519
customization deficiency, 520–521
customizing user interface, 520
FileDialog object, 263, 264–270
history of data transfer techniques, 3–4
installing based on Windows version, 560–562
version issues, 627

Office menu. See also Access Options dialog
Access Options dialog, 517, 523–524, 586
opening, 523–524
Properties command, 148
on Ribbon, 515
Save As submenu, 304

.oft file format, 237

688

IndexM

25_047026 bindex.qxp 4/2/07 9:58 PM Page 688

OLE (object linking and embedding), 4. See also
Automation

On Error Resume Next statement, 601,
617–619

OnAction property, 443
OnConnection event procedure, 443
OnConnection method, 574
OnDisconnection event procedure, 443
OnErrorGoTo error handler, 601
Open Database Connectivity (ODBC), 3, 4
OpenDatabase method, 99
OpenQuery method, 109, 482
OpenRecordsetCommand procedure, 113–116
OpenRecordsetSQL procedure, 111–113
OpenSpecificWorkbook function, 189–190
optimistic lock type, 118, 121
Outlook

activating Journal component, 80
Application object, 234–235, 236
built-in contact ID fields, 359
comparing contact data with Access contact

data, 359–390
CopyAccessAttsToOutlook procedure,

391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390
CopyOutlookAttsToAccess procedure,

392–393
CreateProjectAppts function, 245–247
CreateProjectTasks function, 253–254
ExportAppointmentsToOutlook function,

241–243
ExportFlatFileContactsToOutlook

function, 255–258
exporting Access task and appointment data to,

72–78
exporting appointment data to Access, 243–245
exporting changing Access data to, 220–233
exporting task data to Access, 250–251

ExportTasksToOutlook function, 247–249
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262
importing appointment data from Access,

241–243
importing mainframe data as Journal items,

79–81
import/link folder selections, 222–223
ImportOutlookContacts function, 361–365,

390
ImportTasksFromOutlook function, 250–251
linking Access tables to, 221–229
linking Calendar folder to Access tables, 224
linking Contacts folder to Access tables,

224–225
linking Tasks folder to Access tables, 223–224
Object Browser, 94
referencing items in VBA code, 240–241
refreshing contact data, 361–374
syntax for referencing objects, 235–240
working with appointments, 241–247
working with attachments, 391–396
working with contacts, 254–262
working with tasks, 247–254

Outlook Export.accdb sample database, 230, 231
Outlook object model

Explorer object, 234–235
Inspector object, 234–235
NameSpace object, 235
overview, 234
setting reference to, 74

Outlook Select Folder dialog, 360–361
Outlook.accdb sample database, 72
Output Documents folder, 264, 265–267

P
Paradox. See legacy files
Parameter object, 92
PDF files, saving to, 415, 428, 429
pessimistic lock type, 118

689

Index P

25_047026 bindex.qxp 4/2/07 9:58 PM Page 689

phone numbers
code for updating in Access, 387–388
synchronizing, 353–354

PivotCharts, Access
assigning fields, 22–23
creating, 22–25
displaying legend, 24
versus Excel PivotCharts, 415, 419, 425
interactivity, 24
naming axes, 23

PivotCharts, Excel
versus Access PivotCharts, 415, 419, 425
assigning titles, 421
creating from Access queries, 415–426
creating from Excel worksheets, 417–418
creating manually, 415–423
formatting axes, 419–420
layout, 419–423
most popular types, 423
selecting style, 421–426
viewing all types, 423

PivotTables, Access
creating, 19–21
interactivity, 24

PivotTables, Excel, 415, 417–418
Polar chart type, 425
PostNet bar codes, 152–153
PrintInvoice.vbs script, 612–614
PrintReport.vbs script, 611–612
procedures

versus functions, 481
starting by declaring variables of different types,

236
Products to Reorder report, 430, 431–432
Project Explorer, 436, 463, 503, 506, 607
Properties command, Office menu, 148
property builders, 480–481

Q
qryContactIDsPhones query, 368
qryContacts query, 191
qryContactsForMerge query, 144
qryNeedTimesheets query, 202

qryNorthwindAll query
creating PivotCharts from, 22–25
creating PivotTables from, 19–21
creating plain datasheet report from, 11–19
as data source, 50, 51, 52

qryOrdersAndDetails query, 62, 63
qryThisWeeksTimesheets query, 202
queries, Access

calculated fields, 370–371
complex, 352
creating Excel PivotCharts from, 415–426
creating PivotCharts from, 22–25
creating PivotTables from, 19–21
creating plain datasheet report from, 11–19
as data sources, 50, 51, 52
exporting to Excel, 415–416
formatting data in Excel worksheets, 62–69
ListQueryFields function, 495–497, 511,

513–514
make-table, 109, 201, 205, 348
qryContacts query, 191
qryNeedTimesheets query, 202
qryOrdersAndDetails query, 63
qrythisWeeksTimesheets query, 202
upsizing, 660–662
using as basis for exporting Access data to Excel,

191, 192
using to concatenate Access data for export,

143–144
QueryDef object, 104–106, 109, 113, 130
QueryDefs collection, 495, 522, 544

R
read-only lock type, 118
recordsets

in ADO object model, 116–129, 130
ADO versus DAO, 92, 116, 130
creating by using Command object, 113–116
creating connections to external databases,

111–112
cursor types, 117
cursor/lock type combinations, 121–122
in DAO object model, 99–103, 130

690

IndexP

25_047026 bindex.qxp 4/2/07 9:58 PM Page 690

dynamic, 104
dynaset-type, 100, 101–103
forward-only, 103
lock types, 118
overview, 116
searching, 110
snapshot-type, 103
specifying type, 99–100
table-type, 100–101
TestForwardReadOnly procedure, 116–117

Recordset2 object, 98
references

in Automation code, 138
setting for Word, 139
setting to Excel object model, 59
setting to library databases, 503–506
setting to Outlook object model, 74
setting to Word Application object, 138, 139
viewing in Visual Studio Solution Explorer,

570–572
refreshing contact information, 361–374
Registry

key information for installing Access add-ins,
472

procedures versus functions, 481
subkeys for Form Wizard add-ins, 479
subkeys for menu add-ins, 478
subkeys for property builders add-ins, 480–481

Relationships diagrams, for Synchronizing Contacts
database, 352–353

RemoveAddInCommandBarButton function, 443
Rename Files.vbs script, 618
renaming. See also titles

controls, 440–463, 467
Visual Basic projects, 463, 503–504

replenishing inventory, 426–432
Report Wizard, creating plain worksheet reports,

11–15
reports, Access

cmdReorderInventory_Click event
procedure, 431–432

creating form letters, 8–10
creating Products to Reorder report, 431–432

creating shipping reports, 426–428, 429
creating worksheet-type, 11–25
filtering, 17–19
interactivity, 24
Layout view, 134–135
PivotChart-type, 22–25
PivotTable-type, 19–21
plain worksheet-type, 11–19
printing from PrintReport WSH script, 612–613
Products to Reorder report, 430, 431–432
selecting from templates, 233
sending Access Products to Reorder report as

email attachment, 432
sending shipping report as email attachment,

428, 430
Shipping Reports and Reordering form,

426–427
Upsizing Wizard report, 655–657, 659

Ribbon, Access 2007
adding new control, 517
adding new group, 517
adding new tab, 517
Add-ins tab, 436, 443, 463–464, 467, 469, 477
built-in control names, 521–531
built-in group names, 519–520
built-in tab names, 519
customizing in Access database, 519–549
customizing with Access add-ins, 549–560
customizing with Visual Studio 2005 shared

add-in, 559–589
Database Tools tab, 472, 479, 509, 554, 649
Enable Extras Tab, 552, 554
External Data tab, 50, 135–138, 184, 220–221,

310, 415, 541–542
Extras tab, 555
form Ribbons, 547–549
loading customization XML code, 547
locating add-ins, 477
new feature troubleshooting, 556
removing groups, 518–519
removing tabs, 518–519, 541
sources of information, 516
steps to customizing, 521

691

Index R

25_047026 bindex.qxp 4/2/07 9:58 PM Page 691

Ribbon, Access 2007 (continued)
Test Ribbon.accdb sample database, 521
USysRibbons table, 523–525
writing callback procedures for command

buttons, 542–547
XML code for Extras (Ribbon) add-in, 550–551

ribbon XML element, defined, 522
Ribbon XML file, 523, 575–582
RibbonName field name, 523
RibbonXML field name, 523
RichText.accdb sample database, 5
RTF format, 5, 6, 8, 10, 136, 137
RunSQL method, 109, 482

S
Sample Code.accdb sample database, 90
sample databases

Access to Outlook.accdb, 72
Access to Word.accdb, 27, 49
AdventureWorks SQL.accdb, 627
Backup.accdb, 279, 471
Basic Northwind CS.adp sample database, 627
Basic Northwind v 1 (linked SQL Server

tables).accdb, 627
Basic Northwind.accdb, 627, 631, 648, 656
DAO and ADO Sample Code.accdb, 90
Excel Export.accdb, 187
Excel.accdb, 49
External Data.accdb, 312
Files and Folders.accdb, 264, 302
Folders.accdb, 264
Modified Northwind.accdb, 11
Northwind Plus.accdb, 397, 398, 403
Northwind 2007.accdb, 90
Northwind.accdb, 611, 612
Outlook Export.accdb, 230, 231
Outlook.accdb, 72
RichText.accdb, 5
Sample Code.accdb, 90
Synchronizing Contacts.accdb, 72, 352–353,

357–358
Tasks1.accdb, 229

Test Ribbon.accdb, 521, 542, 547
Word Export.accdb, 138, 264
Word.accdb, 27

Save to PDF utility, 415, 428, 429, 430
SaveAttachments function, 302–304
SaveNo function, 501
SaveToFile method, 291
saving

attachments to files, 302–304
import specifications, 310

Schmid, Patrick, on Access 2007 Ribbon
customizability, 520

Scripting Runtime Library, 263, 271
scripts, tools for working with. See also Visual Basic

Script (VBS); Windows Script Host
(WSH)

Microsoft Script Editor, 592–597
overview, 591
VBScript Help File, 597–599

security
getting around Windows Firewall to connect to

SQL Server, 640–647
warnings when connecting to SQL Server,

647–648
warnings when installing add-ins in Access 2007

running on Windows Vista, 471–472,
549, 550, 551–552

Seek method, 100
Select Case statement, 316, 319, 330, 343
Select Contacts for Email sample form, 282–283
Select Data Source dialog, 664, 669
Select Options dialog, 556
Select Orders for Shipping form, 403, 404
SendObject command, 220
SetProperty function, 499–500
Shared Add-in template, 563
Shared Add-in Wizard, 564–565, 568–570
SharedCode module, 439, 440–442
shipping labels

adding extra information, 404
creating in Word, 397–415
examples, 414

692

IndexR

25_047026 bindex.qxp 4/2/07 9:58 PM Page 692

shipping reports
creating in Access, 426–429
editing product amounts, 428
illustrated, 429
saving as PDF files, 415, 428, 429
sending as email attachments, 428, 430

Shipping Reports and Reordering form
defined, 426
editing product amounts, 428
final shipping report, 428, 429
illustrated, 42
saving as PDF, 415, 428, 429

signature, digital
creating for Access VBA code, 398–402
why not to create for Access add-ins, 511

size XML element, 522
Snapshot Viewer, 135
snapshot-type recordsets, 100, 103, 130
SplitFileName function, 395
spreadsheets, importing legacy files, 324–328. See

also worksheets, Excel
SQL commands (cmdSQL), 113
SQL Server Browser, 636, 642, 645, 646
SQL Server Configuration Manager, 633–634, 637
SQL Server Express (SSE), 629
SQL Server Management Studio, 629
SQL Server Migration Assistant for Access (SSMA),

671–672
SQL Server 2005

accessing through Windows XP firewall,
640–642

as back-end database, 4, 483, 557–558,
627–628, 648, 657

books online, 632–633
checking for installation, 628–629
configuring for data access, 631–648
configuring for remote connections, 638
connecting Office 2003 versus 2007, 627
connecting Windows XP versus Windows Vista,

627
converting Access tables to, 649–657
Express version, 629

getting, 628–629
linked tables, 656–657
linking to table data, 662–671
versus Microsoft Access, 627
Migration Assistant for Access, 671–672
Network Configuration folder, 637
preparing Access databases for upsizing,

629–631
restarting, 637, 639
Service Pack 2, 629
Services folder, 636
Surface Area Configuration dialog, 638–639
version comparison, 629

SQL statements (strSQL), 612–613
SQLEXPRESS (SQL Server) properties sheet, 635
SSE (SQL Server Express), 629
SSMA (SQL Server Migration Assistant for Access),

671–672
startFromScratch attribute, 517, 522
static cursors, 117, 122, 125–127, 130
Stop statement, 503
Stream object, 129, 282, 291
StripCharm function, 441
strSQL (SQL statements), 612–613
styles, PivotChart, 421–426
supertip XML element, 522
Surface chart type, 425
Synchronizing Contacts.accdb sample database

defined, 72, 352
main menu, 357–358
Relationships diagram, 352–353

synchronizing data, 352–353, 359

T
tab XML element

adding to Ribbon, 517
built-in Access Ribbon names, 519
defined, 522
removing from Ribbon, 518–519

Table object, Word, 139
TableDef object, 130, 482
TableDefs collection, 106–109

693

Index T

25_047026 bindex.qxp 4/2/07 9:58 PM Page 693

tables, Access
adding attachment fields, 391
converting to SQL Server tables, 649–657
creating programmatically, 107, 109
denormalized, 352–359
exporting as Word RTF file, 136–137
hidden, making visible, 630
linked, denormalizing, 352–359
linking to Outlook data, 221–229
ListTableFields function, 497–499
ListTableFields procedure, 542–545
loading manually, 545–547
loading programmatically, 553
refreshing contact data, 361–374

tables, SQL Server, linking to data, 662–671
tables, Word, creating by importing from Access,

136–137
Tables collection, 139
table-type recordsets, 100–101, 130
Tag property, 467, 468
Task List form, 230–231
Task Scheduler, Windows Vista

creating tasks, 622–625
Daily Database Backup.vbs script, 619–620
opening, 620–621
overview, 619

tasks, Outlook
CreateProjectTasks function, 253–254
exporting Access table data to, 247–249
exporting to Access tables, 250–251
ExportTasksToOutlook function, 247–249
importing from Access, 72–78
ImportTasksFromOutlook function, 250–251
linking folder to Access tables, 223–224

Tasks1.accdb sample database, 229
TCP/IP, 637
templates, Access

categories of, 228
COM add-in, 436–440
CopyAllTemplates.vbs script, 610–611
CopyTemplateUser.vbs script, 603, 607–608
CopyTemplateWorkgroup.vbs script, 603,

608–610

creating databases from, 225–229
New Document from Template.vbs script,

614–616
new in Access 2007, 230–233
User Templates folder, 603, 604–605
Workgroup Templates folder, 603, 604–605

templates, Excel
for charts, 423
creating new worksheets from, 62–63
using to create formatted worksheets filled with

data, 52–62
templates, Outlook

CreateItemFromTemplate object, 236
saved, opening, 237–238

templates, Word
Contact Letter with Envelope (Bookmarks)

template, 165
creating by placing bookmarks where Access

data should appear, 31–39
creating by placing DocProperty fields where

Access data should appear, 39–45
default folder, 36, 37, 43–44
.dot template format, 31, 146
.dotx template format, 31, 146
file formats, 31, 146
inserting content controls into, 45–48
NewDocFromTemplate function, 142–143
using for creating formatted documents, 30–45

Test Ribbon.accdb sample database
defined, 521
form Ribbons, 547–549
ListTableFields procedure, 542–545

TestFileExists function, 59
TestForwardReadOnly procedure, 116–117,

128–129
TestKeysetOptimistic procedure, 110,

122–125
TestMethodSupported procedure, 118–121
TestStaticReadOnly procedure, 125–127
text files

ADO method, 291
comma-delimited, 282
exporting data in VBA code, 320–324

694

IndexT

25_047026 bindex.qxp 4/2/07 9:58 PM Page 694

FileSystemObject method, 292, 296
fixed-width, 282, 315
free-form, 282
importing data in VBA code, 312–320
methods for working with VBA code, 290,

291–292, 296
reading data from, 292–297
sending as email attachments, 348–350
types, 282
using TransferText method, 306–323
writing data to, 282–292

TextStream object, 282, 292
timesheets

cmdClearTimesheet_Click procedure, 207
cmdSaveTimesheet_Click procedure,

207–208
CreateExcelTimesheets function, 211,

212–218
engineering firm example, 202–218
filling in Access forms, 202, 203–211
frmWeeklyTimesheet form, 202, 203–211
overview, 202
qryNeedTimesheets query, 202
qryThisWeeksTimesheets query, 202
transferring Access data to Excel, 211–218
txtEmployeeID_DblClick procedure,

209–211
titles. See also renaming

for add-ins, 502
assigning to PivotCharts, 421
save names for worksheets, 195

TodayDate document property, 157
TransferDatabase method, 327, 330
TransferSpreadsheet method

and comma-delimited text files, 282
defined, 184, 305
in ExportAccountSummary procedure, 195,

196, 201
exporting Access data to Excel, 62, 184, 186
importing Lotus 1-2-3 data to Access, 328

TransferText method, 282, 306–311, 316,
317, 342

TransferToExcel function, 186

troubleshooting
Access add-ins, 503–507
add-ins, 506–507
COM add-ins, 466–467

Trust Center, 508–509
trusted locations, 508–509
txtEmployeeID_DblClick procedure, 209–211
TypeText method

advantages and disadvantages, 146
defined, 28
FillWithTypeText procedure, 28–30
MergeTypeText procedure, 170–175
as method for filling Word documents with

Access data, 27–30
as method for merging Access data to Word,

146, 170–175

U
UpdateAllAccessContacts procedure,

382–391, 390
UpdateAllOutlookContacts procedure,

376–382, 390
Upgrade Report, 562–563
Upgrade Wizard, 562
Upsizing Wizard

Access 2003 versus Access 2007, 627
converting Access tables to SQL Server tables,

649–655
creating client/server applications, 658–659
preparing Access databases for upsizing to SQL

Server, 629–631
versus SQL Server Migration Assistant for

Access, 671–672
user addresses, 31, 32, 33
user information fields, 31–33
user names, 31, 33
User Templates folder

copying templates to, 603
setting path, 604–605
viewing path, 604–605

Users object, DAO, 99

695

Index U

25_047026 bindex.qxp 4/2/07 9:58 PM Page 695

USysRegInfo system table
creating, 473–481
defined, 472
fields, 476–477
subkeys for Form Wizard add-ins, 479
subkeys for menu add-ins, 478
subkeys for property builder add-ins, 480–481

USysRibbons table, 523–525

V
variables

data typing, 601
naming convention, 11
Object type, 236
VBA versus VBScript, 601

VB 2005 Express, 562
VB 2005 XML Editor, 518–519, 525, 526
VBA. See Visual Basic for Applications
.vbs file format, 592
VBS (Visual Basic Script)

CopyAllTemplates.vbs script, 610–611
CopyTemplateUser.vbs script, 603, 607–608
CopyTemplateWorkgroup.vbs script, 603,

608–610
DailyDatabaseBackup.vbs script, 619–625
Delete Audible Files.vbs script, 616–619
Help file, 597–599
and Microsoft Script Editor, 592–596
New Document from Template.vbs script,

614–616
PrintInvoice.vbs script, 612–614
PrintReport.vbs script, 611–612
Rename Files.vbs script, 618
scheduling backup script, 619–625
versus Visual Basic for Applications, 599–603

visible XML element, 522
Visual Basic. See also Visual Basic for Applications

(VBA)
AccessDesigner module, 444–463
AddInErr procedure, 441, 442
AddToCommandBar function, 440
command-bar buttons, 447–450

ControlCA function, 456–457
ControlCS function, 454–456
ControlNA function, 459–461
ControlSO function, 457–459
CreateCTT function, 461–463
CreateFormCommandBarButton function,

443
CreateReportCommandBarButton function,

443
creating COM add-ins by using VB 6.0,

436–467
DeleteFromCommandBar function, 440
LNCRenameFormControls function, 443,

450–453
LNCRenameFormControls_Click event

procedure, 443
LNCRenameReportControls function, 443,

453
LNCRenameReportControls_Click event

procedure, 443
naming projects, 463, 503–504
OnConnection event procedure, 443
OnDisconnection event procedure, 443
referencing projects to object libraries by using

VB 6.0, 438–439
RemoveAddInCommandBarButton function,

443
SharedCode module, 439, 440–442
StripCharm function, 441
using legacy code for working with text files,

292, 296
Visual Basic for Applications (VBA)

Access add-in code requirements, 481–482
AddInErr procedure, 581
ADO object model versus DAO object model,

89, 91–96, 110, 130
ArchiveData procedure, 53–58
argument styles, 102
BackupDB function, 279–281, 282
BackupFrontEnd function, 489–491
Callback function, 263, 264
callback procedures for Ribbon command

buttons, 542–547

696

IndexU

25_047026 bindex.qxp 4/2/07 9:58 PM Page 696

cmdAttachmentsFolderPath_Click

procedure, 358–359
cmdCancel_Click event procedure, 483–484
cmdClearData_Click procedure, 315, 322,

329–330
cmdClearTimesheet_Click procedure, 207
cmdCreateDocuments_Click procedure,

159–160
cmdCreateEMails_Click procedure,

283–290
cmdCreateLabels_Click procedure,

405–413
cmdDeselectAll_Click procedure, 164–165
cmdDocProps_Click procedure, 43–45
cmdExportJobs_Click procedure, 323–324,

336–338, 343–344
cmdInputDocsPath_Click procedure,

265–266
cmdInspectJobs_Click procedure, 316–317,

330–332
cmdInspectNewJobs_Click procedure, 324
cmdLoadData_Click procedure, 294–296
cmdMergetoEmailMulti_Click procedure,

348–350
cmdOutputDocsPath_Click procedure,

266–267
cmdSaveJobs_Click procedure, 317,

332–333
cmdSaveTimesheet_Click procedure,

207–208
cmdSourceFile_Click procedure, 333–334
cmdSourceTextFile_Click procedure,

318–319
cmdWord_Click procedure, 154–157
CopyAccessAttsToAccess procedure,

394–395
CopyAccessAttsToOutlook procedure,

391–392
CopyAccessContactsToOutlook procedure,

390
CopyAllOutlookContactsToAccess

procedure, 390

CopyOutlookAttsToAccess procedure,
392–393

CreateAndTestQuery function, 58–59,
104–106

CreateDenormalizedContactsTable

function, 362–369, 382, 390
CreateExcelTimesheets function, 211,

212–218
CreateNewForm procedure, 579–580
CreateNewReport procedure, 580–581
CreateNewTable procedure, 578–579
CreateNewWorkbook function, 187–188
CreateObject function, 28, 39, 74, 138, 139,

187, 188, 234, 236, 602
CreateProjectApps function, 245–247
CreateProjectTasks function, 253–254
creating digital signature for signing code,

398–402
CurrentWeekEnding function, 203, 204
ExportAccountSummary function, 195–200
ExportAppointmentsToOutlook function,

241–243
ExportContactsToExcel function, 191–195
ExportFlatFileContactsToOutlook

function, 255–258
ExportNorthwindData procedure, 62–69
ExportTasksToOutlook function, 247–249
ExportTransactions function, 79–81
Extras add-in code, 483–499
ExtrasOptions function, 486–488
FillDatecontrols procedure, 204, 205
FillWithTypeText procedure, 28–30
formatting Excel worksheets, 62–69
Form_Load procedure, 484–485
GetCustomUI function, 574
GetDocumentsPath function, 413–414
GetInputDocsPath function, 267–268
GetObject function, 28, 74, 138, 139, 187,

234, 236, 602
GetOutputDocsPath function, 268
GetProperty function, 500
history, 4

697

Index V

25_047026 bindex.qxp 4/2/07 9:58 PM Page 697

Visual Basic for Applications (VBA) (continued)
ImportApptsFromOutlook function, 243–245
ImportContactsFromOutlook function,

259–262
ImportOutlookContacts function, 361–365,

390
ImportTasksFromOutlook function, 250–251
IsLoaded function, 631
ListCompany procedure, 102
ListTableFields procedure, 542–545
ListValues procedure, 103
LoadAttachments function, 299–302
LoadCustomUI function, 553
LoadRibbons function, 553–554
MailMergeTextFile procedure, 177,

178–182
MergeBookmarks procedure, 165–169
MergeDocProps procedure, 160, 161–164
MergeTypeText procedure, 170–175
naming projects, 463, 503–504
NewDoc function, 140–141
NewDocFromTemplate function, 142–143
NewTable procedure, 106–109
Nz function, 601
OpenRecordsetCommand procedure, 113–116
OpenRecordsetSQL procedure, 111–113
OpenSpecificWorkbook function, 189–190
SaveAttachments function, 302–304
SaveNo function, 501
SetProperty function, 499–500
SplitFileName function, 395
TestFileExists function, 59
TestForwardReadOnly procedure, 116–117,

128–129
TestKeysetOptimistic procedure, 110,

122–125
TestMethodSupported procedure, 118–121
TestStaticReadOnly procedure, 125–127
TransferToExcel function, 186
txtEmployeeID_DblClick procedure,

209–211
UpdateAllAccessContacts procedure,

382–391, 390

UpdateAllOutlookContacts procedure,
376–382, 390

versus VBScript code, 599–603
Visual Basic Script (VBS)

CopyAllTemplates.vbs script, 610–611
CopyTemplateUser.vbs script, 603, 607–608
CopyTemplateWorkgroup.vbs script, 603,

608–610
DailyDatabaseBackup.vbs script, 619–625
Delete Audible Files.vbs script, 616–619
Help file, 597–599
and Microsoft Script Editor, 592–596
New Document from Template.vbs script,

614–616
PrintInvoice.vbs script, 612–614
PrintReport.vbs script, 611–612
Rename Files.vbs script, 618
scheduling backup script, 619–625
versus Visual Basic for Applications, 599–603

Visual Studio
customizing Access Ribbon with shared add-in,

559–589
running in Windows Vista, 565–567
Shared Add-in template, 563
viewing references in Solution Explorer,

570–572
XML Editor, 525, 526

Visual Studio Tools for Office 2005 (VSTO),
563–565

W
Windows Firewall Settings dialog, 643–644, 647
Windows operating system

accessing SQL Server 2005 through firewall,
640–647

history of data transfer techniques, 3–4
version issues, 627–628

Windows Script Host (WSH)
Microsoft Script Editor, 592–606
office scripts, 611–616
overview, 591
setup scripts, 603–611

698

IndexV

25_047026 bindex.qxp 4/2/07 9:58 PM Page 698

tools for scripts, 591–599
useful scripts, 603–619
VBScript Help File, 597–599

Windows Vista
Access add-in installation issues, 471–472, 508,

549, 550, 551–552
accessing SQL Server through firewall, 643–647
adjusting security settings, 471–472, 549–550
Explorer, 146, 149
running Visual Studio 2005 in, 565–567
Task Scheduler, 619–625

Windows XP, accessing SQL Server 2005 through
firewall, 640–642

WithEvents statement, 443
wizards

Access add-ins as, 472–473, 479
construction tips, 482–483
Create ObjectsSetup Setup Wizard, 584–587
DSN Wizard, 665–669
Form Wizard add-ins, 479
Import Text Wizard, 307–310
Link Exchange/Outlook Wizard, 223
ODBC SQL Server Setup Wizard, 666–669
Report Wizard, 11–15
Shared Add-in Wizard, 564–565, 568–570
Task Scheduler, 622–625
Upgrade Wizard, 562

Word
creating blank documents by using Automation

code, 27–28
creating fancy shipping labels, 397–415
creating new, blank documents based on default

template, 140–141
creating new, blank documents based on

selected template, 141–143
creating new, blank documents by using

NewDoc function, 140–141
creating new, blank documents by using

NewDocFromTemplate function,
142–143

creating new documents based on WSH scripts,
614–615

Document Information Panel, 148

file format differences, 31, 146
filling documents with Access data by using

TypeText method, 27–30
importing Access data, 135–138
importing Access data using Automation code,

138–182
methods for merging Access data to, 145–182
Object Browser, 94, 139
opening by using CreateObject function, 39,

44–45
sending letters to multiple Access contacts,

158–165
sending letters to single Access contacts,

150–158
setting User Templates folder path, 604–605
setting Workgroup Templates folder path,

604–605
user information fields, 31–33
using templates for creating formatted

documents, 30–45
version issues, 146

Word Catalog-type merge, 176
Word Export.accdb sample database, 138, 264
Word Mail Merge feature, Access, 136, 138
Word object model, 139–144
Word Options dialog, 604–605
Word properties sheet

Custom tab, 149
General tab, 148
Summary tab, 149, 150

Word (RTF) feature, Access, 136, 137
Word.accdb sample database, 27
workbooks versus worksheets, 183
Workgroup Templates folder

copying templates to, 603
setting path, 604–605
viewing path, 604–605

worksheets, Excel
code for creating from template, 54–55
code for saving and closing, 56–57
code for writing data, 55–56
creating from template in VBA code, 62–69
creating PivotCharts from, 417–418

699

Index W

25_047026 bindex.qxp 4/2/07 9:58 PM Page 699

worksheets, Excel (continued)
formatted, using templates to create, 52–62
formatting in VBA code, 62–69
minimally formatted, creating, 191–195
simple, tabular, creating, 191–195
unformatted, exporting Access data to, 50–52
ways of creating, 62
versus workbooks, 183

worksheets, legacy, importing, 324–328
worksheet-type reports, Access, 11–19
Workspace object, 99, 130
WriteText method, 291
WSH (Windows Script Host)

Microsoft Script Editor, 592–606
office scripts, 611–616
overview, 591
setup scripts, 603–611
tools for scripts, 591–599
useful scripts, 603–619
VBScript Help File, 597–599

X
XCopy feature, 629
.xls file format, 61, 183
.xlsx file format, 61, 183
XML files. See also HTML files

and Access, 338
code for AddButtons Ribbon, 547–548
code for ExtrasRibbon, 550–551
color-coding for code, 516, 525, 526
creating and editing code, 517–519
creating code, 522–542
exporting, 341–347
importing, 338–341
opening in Excel, 346–347
opening in Internet Explorer, 345–346

XML Notepad 2007, 517, 525

Z
ZipCode DocProperty field, 152–153

700

IndexW

25_047026 bindex.qxp 4/2/07 9:58 PM Page 700

Office heaven.
Get the first and last word on Microsoft® Office 2007 with our comprehensive

Bibles and expert authors. These are the books you need to succeed!

978-0-470-04691-3 978-0-470-04403-2 978-0-470-04689-0 978-0-470-04368-4

978-0-470-04702-6 978-0-470-04645-6 978-0-470-04673-9 978-0-470-00861-4

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates. All other trademarks are the property of their respective owners.

Available wherever books are sold

26_047026 bob.qxp 4/2/07 9:58 PM Page 701

	Access 2007 VBA Bible
	About the Author
	Credits
	Contents
	Acknowledgments
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	What's on the Companion Web Site
	Minimum Requirements
	Where to Go from Here
	A Brief History of Office Data Exchange

	Part I: The Office Components and What They Do Best
	Chapter 1: Storing and Displaying Data in Access
	Storing Data in Access
	Displaying Data in Access Forms and Reports
	Summary

	Chapter 2: Creating Word Documents from Access
	Filling Word Documents with Access Data Using the TypeText Method
	Using Word Templates for Creating Formatted Word Documents
	Form Field Documents
	Summary

	Chapter 3: Analyzing Data with Excel
	Exporting Access Data to an Unformatted Worksheet
	Using Excel Templates to Create Formatted Worksheets Filled with Access Data
	Formatting Excel Worksheets in VBA Code
	Summary

	Chapter 4: Organizing and Communicating with Outlook
	Exporting Appointments and Tasks to Outlook
	Exporting Journal Information to Outlook
	Creating Emails from an Access Table
	Summary

	Part II: Writing VBA Code to Exchange Data between Office Components
	Chapter 5: Working with Access Data
	Working with Older Format Databases in Access 2007
	Converting DAO Code to ADO Code
	Summary

	Chapter 6: Working with Word Documents and Templates
	Built-in Word Export in Office 2007
	Exporting Access Data to Word Using Automation Code
	Summary

	Chapter 7: Working with Excel Worksheets
	Simply Exporting Access Data to Excel
	The Excel Object Model
	Minimally Formatted Worksheets
	Tabular Worksheets Formatted from Code
	Timesheets
	Summary

	Chapter 8: Working with Outlook Items
	Exporting Access Data to Outlook Items
	The Outlook Object Model
	Working with Outlook Appointments
	Working with Outlook Tasks
	Working with Outlook Contacts
	Summary

	Chapter 9: Working with Files and Folders
	Working with Windows Explorer Folders
	Backing up Your Database
	Working with Text Files
	Working with Attachment Fields
	Summary

	Chapter 10: Working with External Data
	Working with Text Files Using the TransferText Method
	Working with Legacy Database and Spreadsheet Files
	Working with XML and HTML Files
	Emailing Exported Text Files
	Summary

	Chapter 11: Synchronizing Access and Outlook Contacts
	Creating a Denormalized Table from a Set of Linked Tables
	Comparing Outlook and Access Contacts
	Working with Attachments
	Summary

	Chapter 12: Going Beyond the Basics
	Creating Fancy Word Shipping Labels
	Creating Excel PivotCharts from Access Queries
	Emailing Shipping and Reordering Reports
	Summary

	Part III: Adding More Functionality to Office
	Chapter 13: Creating COM Add-ins with Visual Basic 6
	Creating a COM Add-in Using Visual Basic 6.0
	Using a COM Add-in
	Comparing COM Add-ins with Access Add-ins
	Summary

	Chapter 14: Creating Access Add-ins
	The Purpose of Access Add-ins
	Add-in Types
	Creating a Library Database
	Things You Need to Know When Writing Add-ins
	The Extras Add-in Code
	Troubleshooting Add-ins
	Installing an Add-in
	Using the Extras 2007 Add-in
	Summary

	Chapter 15: Customizing the Ribbon with XML in Access Databases and Add-ins
	Useful Tools for Creating and Editing XML Code
	Customizing the Ribbon in an Access Database
	Customizing the Ribbon with an Access Add-in
	Summary

	Chapter 16: Customizing the Access Ribbon with a Visual Studio 2005 Shared Add-in
	Preparing to Write a Visual Studio Add-in
	Summary

	Chapter 17: Creating Standalone Scripts with Windows Script Host
	Tools for Working with Windows Script Host Scripts
	Differences between VBA and VBScript Code
	Useful Scripts
	Scheduling a Backup Script with the Windows Vista Task Scheduler
	Summary

	Chapter 18: Working with SQL Server Data
	Getting SQL Server 2005
	Preparing an Access Database for Upsizing to SQL Server
	Configuring SQL Server 2005 for Data Access
	Using the Upsizing Wizard
	Linking to Data in SQL Server Tables
	The SQL Server Migration Assistant for Access
	Summary

	Index

