

Smartphone Operating System
Concepts with Symbian OS

A Tutorial Guide

Smartphone Operating
System Concepts with
Symbian OS
A Tutorial Guide

Michael J. Jipping

Reviewed by

Attila Vamos, Chris Notton, Freddie Gjertsen,
Gema Gomez-Solano, Ian McDowall, Jason Parker,
Jonathan Yu, Kostyantyn Lutsenko, Matthew O’Donnell,
Phil Spencer, Rahul Singh, Ricky Junday, Roy Ben Hayun

Head of Symbian Press

Freddie Gjertsen

Managing Editor

Satu McNabb

Copyright  2007
Published by

Symbian Software, Ltd.
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Jipping, Michael J.
Smartphone operating system concepts with Symbian OS : a tutorial guide / Mike Jipping ; reviewed
by Attila Vamos … [et al] ; head of Symbian Press, Freddie Gjertsen ; managing editor, Satu McNabb.

p. cm.
Includes index.
ISBN 978-0-470-03449-1 (pbk. : alk. paper)
1. Cellular telephones – Computer programs. 2. Symbian OS (Computer file)
3. Pocket computers – Computer programs. I. Title.
TK6570.M6J56 2007
621.3845′6 – dc22

2006102031

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-03449-1 (PB)

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by TJ International, Padstow, Cornwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Author’s Acknowledgements ix

Symbian Press Acknowledgements xi

Introduction xiii

1 Introduction to Mobile Phone Systems 1
1.1 What Is an Operating System? 2
1.2 History of Operating Systems 7
1.3 Computer Systems and their Operating Systems 11
1.4 Summary 16

2 The Character of Operating Systems 17
2.1 The Evolution of Operating Systems 17
2.2 Computer Structures 19
2.3 Different Platforms 39
2.4 Summary 43
Exercises 44

vi CONTENTS

3 Kernel Structure 47
3.1 How a Kernel Is Put Together 47
3.2 System Calls and the Kernel 53
3.3 Interrupt Implementation 54
3.4 Completing the Kernel Design in Symbian OS 56
3.5 Summary 58
Exercises 58

4 Processes and Threads 61
4.1 An Overview of the Process Model 62
4.2 Programming with Processes 79
4.3 Summary 87
Exercises 87

5 Process Scheduling 89
5.1 Basic Concepts 90
5.2 Scheduling Strategies 94
5.3 Scheduling in Linux 103
5.4 Scheduling in a Microkernel Architecture 104
5.5 Scheduling in Symbian OS 105
5.6 Summary 106
Exercises 107

6 Process Concurrency and Synchronization 109
6.1 Concepts and Models for Concurrency 110
6.2 Semaphores 116
6.3 Locks, Monitors and Other Abstractions 118
6.4 The Dining Philosophers: A Classic Problem 120
6.5 An Example in Unix 123
6.6 Concurrency in Symbian OS 126
6.7 Interprocess Communication 128
6.8 Managing Deadlocks 133
6.9 Summary 134
Exercises 135

7 Memory Management 137
7.1 Introduction and Background 138
7.2 Swapping and Paging 145
7.3 Systems Without Virtual Memory 154
7.4 Segmentation 156
7.5 Memory in Symbian OS 159

CONTENTS vii

7.6 Memory Use in Linux 162
7.7 Summary 163
Exercises 164

8 File Systems and Storage 167
8.1 Files and Directories 167
8.2 Implementation of a File System 175
8.3 File Systems on Mobile Phones 188
8.4 Security 189
8.5 Summary 194
Exercises 194

9 Input and Output 197
9.1 I/O Components 198
9.2 I/O Hardware Issues 201
9.3 I/O Software Issues 204
9.4 I/O in Symbian OS 209
9.5 Summary 213
Exercises 214

10 Networks 215
10.1 Opening a Closed Environment 215
10.2 Extending Computers in a Connected Environment 217
10.3 Connectivity in Symbian OS 226
10.4 Summary 227
Exercises 227

11 Modeling Communications 229
11.1 Communications Models 230
11.2 Communications on Symbian OS 237
11.3 Communications on Other Operating Systems 242
11.4 Summary 245
Exercises 245

12 Telephony 247
12.1 Modeling Telephony Services 248
12.2 A Structural Overview 250
12.3 Voice over IP Telephony 260
12.4 Summary 262
Exercises 262

viii CONTENTS

13 Messaging 263
13.1 The Character of Messaging 264
13.2 The Symbian OS Messaging Model 275
13.3 Message Handling in Linux 281
13.4 Summary 283
Exercises 284

14 Security 285
14.1 Understanding Security Issues 286
14.2 Authorization 287
14.3 Authentication 288
14.4 System Threats 291
14.5 Security on Smartphones 293
14.6 Summary 296
Exercises 297

15 Virtual Machines 299
15.1 Basic Concepts 299
15.2 The Java Virtual Machine and Symbian OS 305
15.3 Summary 307
Exercises 307

Appendix A Web Resources 309

References 311

Index 313

Author’s Acknowledgements

There are many people whose patience and forbearance meant that this
book could be written. My family – my wife and three children – put up
with me long enough to enable me to complete it.

There are many folks at Symbian who were instrumental in getting this
book out. In particular, Satu McNabb and Freddie Gjertsen were key to
this book’s publication. I especially laud Satu’s patience with me.

This book needed software to make it work. Kathleen Ludewig’s Infor-
mant software was key to parts of the laboratory section. In addition, the
creators of TaskSpy and SMan software contributed to Informant.

Symbian Press Acknowledgements

Symbian Press wishes to thank the author, Mike Jipping, for all his hard
work, dedication and enthusiasm with this book and also all technical
reviewers within Symbian who contributed by sharing their expertise and
dedicating their time – many thanks.

Introduction

It is amazing to realize how important operating systems are to computers.
So it is that the study of operating systems is of great importance as part of
studying computers. Operating systems support access and innovation;
they allow the complicated inner workings of hardware to be used with
ease. As computers are developing rapidly, so are operating systems.

It is interesting to note that despite the change and evolution which
operating systems undergo, they also remain constant. The underlying
concepts of operating systems change much more slowly than the ways
to adapt those concepts to new computer systems. As an example, the
idea of a file has been implemented on computers for many years and
will continue to be used for many years to come.

This book is written as an introduction to operating systems, with
a focus on mobile phones and, specifically, Symbian OS. There are
many textbooks that describe most aspects of operating systems, but
most bypass mobile phone operating systems. Symbian OS is a unique
and comprehensive mobile phone operating system and any complete
examination of operating systems should include it.

This book is targeted at junior or senior undergraduate students. In
addition to simply presenting and discussing operating system concepts,
this book is accompanied by exercises that can be performed in the
context of laboratory or experimental assignments. These assignments

xiv INTRODUCTION

can be assigned and worked on in the classroom or a student’s own
time. Hands-on experience can be very important in cementing various
concepts.

The Contents of this Book

• Chapters 1 to 3 provide an introduction to operating systems. They
explain the history of operating systems and how operating systems
came to be. They describe what an operating system is, how operating
systems are designed and what their structure is. The explanation is
replete with examples and sets the context for the more detailed
information contained in later chapters.

• Chapters 4 to 6 describe the concepts of processes and threads and
define the ways that these constructs organize a computer system.
In addition to definitions, these chapters describe how processes and
threads interact, providing a look at system concurrency. They cover
issues involved in scheduling, communication, synchronization and
handling of deadlocks.

• Chapter 7 describes how operating systems manage a computer’s
memory. The focus here is on how main memory is managed during
process execution. It is here that differences between mainframes,
desktops and mobile computers are evident. This chapter describes
and discusses these differences.

• Chapter 8 discusses files and the ways operating systems have been
invented for presenting files to users. There are several different
systems for managing files, but the file concept itself is the same
across platforms. This chapter describes the classic file-management
algorithms as well as the ways files are handled on different platforms.

• Chapters 9 and 10 discuss computer input and output (I/O) and how
important the management of I/O is to the running of a computer
system. I/O management is probably the most crucial to a computer
system because it deals with the slowest components of a com-
puter system. Chapter 9 describes I/O in depth, considering design,
interfaces and internal structure. Chapter 10 extends the ideas from
Chapter 9 to apply to a communications network.

• Chapters 11 to 13 describe and exemplify how operating systems deal
with communication. It is in these chapters that Symbian OS begins

INTRODUCTION xv

to shine, because it is designed expressly for device communication.
Chapter 11 deals with communication models in general, describing
and discussing ways that operating systems build models for com-
munications. Chapter 12 applies the concepts from Chapter 11 to
telephony; Chapter 13 applies these concepts to messaging facilities.

• Chapter 14 deals with system security. Security extends to all major
areas of a computer system and this chapter discusses the application
of security ideas to processes through files and into communications.

• Chapter 15 provides a case study of how the operating system con-
cepts of the previous chapters can be applied to an interesting new
area of development. Virtual machines provide an area that needs
management – through an operating system – but in special ways that
adapt to its unique implementation. This chapter describes virtual
machines and how operating systems address them.

The Laboratory Exercises

The laboratory exercises (which can be found at www.wiley.com/
go/jipping) is designed to get students to experiment in the design
and implementation of operating systems. We focus on Symbian OS, but
to do this we compare and contrast Symbian OS with other operating
systems. In many cases, we compare Unix/Linux, Microsoft Windows
and Symbian OS.

To follow the laboratory experiments, you need an implementation
of Unix. This is for two reasons: Unix provides many comparisons to
Symbian OS and other operating systems and there are concepts that
Symbian OS does not address that are neatly exemplified in Unix.

Almost any implementation of Unix will do for this: Linux is the most
widely used and works well. There are many ‘live CD’ implementations
that do not require you to spend money (they are free) or to dedicate
computing resources. You can boot a live-CD implementation directly
from a CD-ROM and it runs completely in memory. It does not affect the
PC hard drive and any installed software is not affected.

The implementation we use in this manual is Knoppix version 4.0. You
can download a CD image of Knoppix from www.knoppix.org. You can
also use Ubuntu Linux, which can be found at www.ubuntu.org.

1
Introduction to Mobile Phone Systems

The phrase ‘viewing the world through rose-tinted glasses’ finds its
origins in literature at least as far back as 1861. The phrase implies that
‘viewers’ have a different – usually optimistic – view of the world from
the ‘standard’ view, as if they are seeing it through a set of nicely tinted
lenses. Computer operating systems are like tinted glasses, allowing the
viewer to see a collection of hardware and software – memory, disk
drives, CPU chips, Bluetooth transmitters, email programs and telephony
applications in an ordered and controllable way: as a set of resources
that can be harnessed to accomplish various tasks. An operating system is
the model through which a computer’s hardware and software can work
together and the structure that provides controlled access between them.

Consider the many different sets of ‘tinted glasses’ that are in use
today for manipulating computing resources. Many of today’s hardware
platforms are used by multiple operating systems. For example, Intel-
based hardware, such as the Pentium family of CPUs, can support several
different operating systems. The Microsoft Windows family of operating
systems represents a set of many different operating systems – from Win-
dows 95 to Windows XP – that run on the same hardware platform. The
Linux operating system and BeOS provide other examples. These different
systems form a set of different models of resource allocation and usage
that operate on the same hardware. These operating systems are very
different in how they view a computer system, but they are very much
the same in many respects.

This book takes a close look at the variety of operating systems
with a focus on a specific type of operating system: that of mobile

2 INTRODUCTION TO MOBILE PHONE SYSTEMS

phones. Mobile phone operating systems must embrace conventional
system components as well as additional components crucial to mobile
phones: communications and interface design. We look at each of these
additional components. To be more specific, this book looks at mobile
phone operating systems by examining Symbian OS. Symbian OS is an
operating system that was designed from its beginnings to be implemented
on mobile phones. Its design comprises conventional operating system
modeling, employs a strong communications model and has a very
flexible user interface model. Its origins are found in handheld computing
and its usage on mobile platforms is growing dramatically. (It is predicted
that, by 2008, half of all mobile phones will have a full-featured operating
system, such as Symbian OS, running them.)

It is difficult to study mobile phone operating systems, even given
the plethora of mobile phones, without also looking at conventional
operating systems. We examine operating systems that power servers
and desktop systems. We compare Symbian OS to these conventional
systems, especially by comparing it to Linux.

In order to study operating systems, we must first define what an
operating system is and understand the divide between an operating
system and a hardware device. This chapter defines operating systems
and the components that make them up. It then looks at the history
of operating systems, including a history of Symbian OS. It finishes by
looking at how operating systems fit onto various computing platforms.

1.1 What Is an Operating System?

There are many definitions of an operating system. All definitions agree
on several points. First, an operating system is a software program. No
matter where it is stored – on a hard drive, in ROM, on compact flash
storage – an operating system is eventually loaded into a computer’s
memory and its instructions are executed just like any other software
program.

Secondly, an operating system is a resource model. Operating systems
are designed to present the various hardware resources of a computer to
software and to a user. An operating system builds a model, a system, of
how to deal with the resources of a computer. Software must work with
this model to access and use those resources. The model provides a lens
through which users view resources such as the communications system
and the user interface.

WHAT IS AN OPERATING SYSTEM? 3

Thirdly, an operating system binds the hardware and the software
together. Because it presents the hardware to the software, an operating
system is the glue that holds the two sides together. The software sees
and accesses the hardware as it is presented through the operating system
model. The hardware deals with the software through the same operating
system model. A good operating system is based on an intuitive model that
allows effective communication between the software and the hardware.

Finally, an operating system is essential. Without an operating system,
a computer would not function. Its software could not be executed; its
hardware would not be utilized. Any general-purpose computer has an
operating system in some form. Thus, learning about operating systems
means learning about an essential part of the computer.

The Operating Environment

To understand operating systems as the glue between hardware and
software, let us examine these two elements and how they relate through
the operating system.

Hardware is the physical part of the computer. It is the set of all
the tangible components that provide the operational foundation for the
software. Software is the set of programs and applications that execute
their instructions on the hardware. A software program must use hardware
in some way – for input, for output or to operate the hardware somehow.

Consider the example of a message manager application running on
a mobile phone (see Figure 1.1). It collects text messages as they arrive,
analyzes each message and responds to certain ones as the application’s
user has specified. The hardware receives radio signals and notifies the
operating system that data is arriving. The operating system engages
the sending source by working with the radio hardware to receive a
text message using the appropriate data protocol. Once the complete
message has arrived correctly, the operating system stores the message
and notifies the message manager. The message manager application
uses the operating system to access the stored message – which requires
the operating system to interact with the hardware. The manager reviews
the message and takes some kind of action, perhaps deleting the message
or making an automatic reply. The automatic reply again requires the
operating system to create a new message and to access the hardware for
storage and transmission of the new message.

It is important to realize here that neither the hardware nor the software
sees an operating system. The hardware is following a prescribed set of

4 INTRODUCTION TO MOBILE PHONE SYSTEMS

Radio Notify

EngageEngage

Notify

Access

New Msg

EngageEngage

Sent

S
o
f
t
w
a
r
e

H
a
r
d
w
a
r
e

O
p
e
r
a
t
i
n
g

s
y
s
t
e
m

Figure 1.1 The relationship between hardware, operating system and software

instructions built into its memory. The software is using an application
programming interface (API) to manipulate text from storage and to
compose and send a message. Both sides see a different picture, yet
both sides are drawn together and work to accomplish a joint goal. The
operating system acts as the go-between and provides an operational
picture to both sides.

The focus of a mobile phone is in the software that enables a user to
use it. It is software that enables a user to make a phone call, send a
message, set an alarm, or write on the display with electronic ‘ink’. The
user of the phone realizes that the hardware exists – it is in his hand,
after all – but is most likely not aware of the operating system. A good
operating system is transparent, allowing the user to use the software to
interact with the hardware without showing its own face.

A Resource Model

The focus of an operating system is on providing ways for the software to
use the hardware to do what the user wants. It is the goal of an operating
system to make this happen seamlessly and transparently. Essentially, the

WHAT IS AN OPERATING SYSTEM? 5

operating system must provide the software with an accessible model
of the hardware. The hardware must become a set of resources to be
operated by the software. Management of that hardware resource is the
job of the operating system.

Software manipulates hardware resources through an application pro-
gramming interface. APIs can be provided by the operating system
designer or by a third party. Software does not usually work with hard-
ware directly, but manipulates resources by communicating with the
operating system through a function call interface. The operating system
builds a model of the hardware and provides system function calls that
access that hardware model in specific ways (see Figure 1.2).

Consider the previous message manager example. The operating sys-
tem has many choices to make as it works with messages. It could, for
example, store the message text in a file and give an application a way
to find the file name and to work with that file directly. The application
would have to open the file (again, through the operating system resource
model) and process the raw message data. Another way to present the
message would be to store the message in a file, but present an application
with an abstract object called a ‘text message’ that the application could
work with. The application would make function calls that the operating
system would intercept, deriving information about the message and
returning that information. The application would not be aware of where
the object was stored. These are two models of message handling: one

Operating System

APIs

System
Calls

User Application

Figure 1.2 Structure of access to an operating system

6 INTRODUCTION TO MOBILE PHONE SYSTEMS

more raw and direct, the other more abstract and object-oriented. The
choice that the operating system makes about which one to use builds
the character of the operating system.

A good system model is one that effectively and transparently provides
software with an intuitive way to access system resources. System models
are often based on abstraction. Abstraction involves the hiding of irrele-
vant data and the presentation of only useful, relevant information. We
often label abstractions as ‘objects’. For example, system resources are
the abstract objects that the operating system presents to the software.
They might represent a resource as a hardware object, with the detail
abstracted away, or as a set of functions that can use the hardware. A file
is an abstract object that represents a way to use hardware storage. A text
message is an abstract object that represents a way to use both software
and hardware resources to access that message. These are concepts built
and supported by the operating system and provided to applications.

A good operating system has more goals than simply providing a useful
model to software applications.

• Robustness : a good operating system is reliable and tolerates prob-
lems well. The system does not stop working due to isolated hardware
or software errors and fails gracefully if it must deal with several
errors at the same time. Robust operating systems provide services to
software unless the hardware fails.

• Scalability : a good operating system incorporates resources as they
are added to the system. This can be transparent to the user – the best
way – or can involve some kind of user interaction. The plug-and-play
concepts of Microsoft Windows – where devices are discovered and
installed automatically – is an example of good scalability. On the
other hand, old versions of Linux used to require recompilation of the
operating system when new devices were added. This is an example
of bad scalability.

• Extensibility : the operating system should be designed to adapt to
new technologies that extend the operating system beyond the point
at which it was implemented. For example, it should be able to
adapt to new forms of file storage without a complete redesign of the
operating system.

• Throughput (the work that a processor can complete in a specific
time period) : an operating system must perform well and achieve

HISTORY OF OPERATING SYSTEMS 7

high throughput. A good operating system minimizes the time spent
providing services while maximizing throughput.

• Portability : a good operating system should be portable, that is, able
to be run on many different hardware platforms.

• Security: an operating system must be secure. It must prevent unau-
thorized users and processes from accessing stored data and system
services.

Many Operating Systems Fit the Bill

Even though the list of criteria for a good operating system looks a bit
daunting, many operating systems have been created over the years
that meet these criteria. In addition, many operating systems did some
of these very well and steered the industry in one particular area. A list
of operating systems can be found at http://en.wikipedia.org/wiki/
List of operating systems.

Many operating systems are not very portable. They are specifically
designed to run on a single platform. In addition, you will note that
‘popularity’ is not an item on the criteria list. Most operating systems
were not popular, yet were designed to address a specific system
model.

1.2 History of Operating Systems
Operating systems are the heart of every general-purpose computer. Since
1957, operating systems have been an essential component of computers.
This section outlines a brief history of operating systems, highlighting the
history of Symbian OS.

General-Purpose Operating Systems
The earliest computers did not have operating systems. They were dedi-
cated computing devices that performed a single task, thereby needing
only one ‘program’ to execute. From the ancient Incas in Central America
to the Difference Engine constructed by Charles Babbage in 1847 to
the early days of modern computing (the ENIAC in 1946, the Mark I in
1948), early computers focused on single tasks that had direct access to
hardware and no operating system.

8 INTRODUCTION TO MOBILE PHONE SYSTEMS

Operating systems were invented when it became clear that access
to ‘the system’ needed to be standardized. Until the mid-1950s, pro-
grammers wrote their own routines for accessing resources, particularly
system input and output. Patterns of programming were beginning to
emerge, such as repeated use of certain mathematical functions. The
need for basic, standardized operating system functionality, including
device drivers and execution libraries, was becoming apparent. Critical
mass was reached as computer systems were designed to allow queuing
of jobs, or programs, to run one after the other.

The first operating system was released in 1957. Called BESYS, this
operating system was implemented by Bell Labs to handle the execution
of many short programs, queued up so that the operators did not have
to load each program just prior to its execution. BESYS shared CPU
time between several jobs at once, thus making it the first multitasking
operating system.

Operating system research and implementation moved very fast in the
1960s. Two influential examples were OS/360, released by IBM in 1964,
and MULTICS, released by Bell Labs, MIT and General Electric in 1965.

OS/360 was influential because it combined a powerful command
language with the ability to run many jobs at once. The command
language controlled job execution and specified how each job was
to access resources. In addition, OS/360 worked on various computer
models; it became the standard among batch processors.

MULTICS was influential because it took a very different approach from
OS/360: it allowed users to use the operating system directly. It had a
unique structure – using a central core of software called a ‘kernel’ – and
allowed users to extend the operating system through software based
on the kernel. Based on the foundational ideas introduced in MULTICS,
Unix was invented at Bell Labs by a man named Ken Thompson in 1972.
Thompson teamed with Dennis Ritchie, the author of a programming
language called ‘C’, to produce the source code of the Unix operating
system in that language. Unix was distributed almost free of charge and,
in the 1970s, it spread to many platforms.

Since the spread of Unix, there have been many developments in oper-
ating systems. One of the biggest was brought about by a development in
computers: the personal computer. The ideas invented by MULTICS and
honed by Unix were streamlined to fit into a personal computer with the
introduction of MS-DOS in 1981. MS-DOS ran on an IBM PC using the
Intel 8088 chipset. Its first version was indeed primitive, but as hardware
resources were improved upon and faster processors with more memory

HISTORY OF OPERATING SYSTEMS 9

were packaged as desktop computers, MS-DOS evolved into Microsoft
Windows and has taken on many of the foundational concepts embedded
in Unix.

As we look at the evolution of operating systems, it is interesting to see
the progression of computer resources that also evolved:

• computers started by running one task at a time and have progressed
to running many tasks at the same time

• storage hardware has evolved from needing a large physical size for
only 100 KB of data to packing 100 GB into a matchbox-sized disk

• electronic storage has made access much faster

• memory has progressed from only a few kilobytes to many gigabytes;
even handheld and mobile phone platforms sport 128 MB (and larger)
memories

• communication has gone from none to a large collection of possibili-
ties: wired and wireless, serial and parallel, radio and infrared.

Operating systems have developed to take advantage of all of these
aspects of computer hardware.

Symbian OS

Handheld devices were developed in the late 1980s as a way to capture
the usefulness of a desktop device in a smaller, more mobile package.
Although the first attempts at a handheld computer (for example, the Apple
Newton) were not met with much excitement, the handheld computers
developed in the mid-1990s were better tailored to the user and the way
that they used computers ‘on the go’. By the turn of the 21st century,
handheld computers had evolved into smartphones – a combination of
computer technology and mobile phone technology. Symbian OS was
developed specifically to run on the smartphone platform.

The heritage of Symbian OS begins with some of the first handheld
devices. The operating system began its existence in 1988 as SIBO (an
acronym for ‘16-bit organizer’). SIBO ran on computers developed by
Psion Computers, which developed the operating system to run on small-
footprint devices. The first computer to use SIBO, the MC laptop machine,
died when it was barely out of the gate, but several successful computer
models followed the MC. In 1991, Psion produced the Series 3: a small

10 INTRODUCTION TO MOBILE PHONE SYSTEMS

computer with a half-VGA-sized screen that could fit into a pocket. The
Series 3 was followed by the Series 3c in 1996, with additional infrared
capability; the Sienna in 1996, which used a smaller screen and had
more of an ‘organizer’ feel; and the Series 3mx in 1998, with a faster
processor. Each of these SIBO machines was a great success, primarily
for three reasons: SIBO had good power management, included light and
effective applications, and interoperated easily with other computers,
including PCs and other handheld devices. SIBO was also accessible
to developers: programming was based in C, had an object-oriented
design and employed application engines, a signature part of Symbian
OS development. This engine approach was a powerful feature of SIBO;
it made it possible to standardize an API and to use object abstraction
to remove the need for the application programmer to worry about data
formats.

In the mid-1990s, Psion started work on a new operating system.
This was to be a 32-bit system that supported pointing devices on
a touch screen, used multimedia, was more communication-rich, was
more object-oriented, and was portable to different architectures and
device designs. The result of Psion’s effort was the introduction of EPOC
Release 1. Psion built on its experience with SIBO and produced a
completely new operating system. It started with many of the foundational
features that set SIBO apart and built up from there.

EPOC was programmed in C++ and was designed to be object-
oriented from the beginning. It used the engine approach pioneered
by SIBO and expanded this design idea into a series of servers that
coordinated access to system services and peripheral devices. EPOC
expanded the communication possibilities, opened up the operating
system to multimedia, introduced new platforms for interface items such
as touch screens, and generalized the hardware interface. EPOC was
further developed into two more releases: EPOC Release 3 (ER3) and
EPOC Release 5 (ER5). These ran on new platforms such as the Psion
Series 5 and Series 7 computers.

As EPOC was being developed, Psion was also looking to emphasize
the ways that its operating system could be adapted to other hardware
platforms. From mobile phones to Internet appliances, many devices
could work well with EPOC. The most exciting opportunities were in
the mobile phone business, where manufacturers were already searching
for a new, advanced, extensible and standard operating system for its
next generation of devices. To take advantage of these opportunities,
Psion and the leaders in the mobile phone industry – for example, Nokia,

COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 11

Ericsson, Motorola and Matsushita (Panasonic) – formed a joint venture,
called Symbian, which was to take ownership of and further develop the
EPOC operating system core, now called Symbian OS.

Symbian OS was explicitly targeted at several generalized platforms.
It was flexible enough to meet the industry’s requirements for develop-
ing a variety of advanced mobile devices and phones, while allowing
manufacturers the opportunity to differentiate their products. It was also
decided that Symbian OS would actively adopt current, state-of-the-art
key technologies as they became available. This decision reinforced the
design choices of object orientation and a client–server architecture.

1.3 Computer Systems and their Operating Systems

In addition to following computers and their history, a different way to
appreciate the relationship between operating systems and hardware is
to look at them from a system perspective. Each type of computer system
has an operating system that was designed for it – to take advantage of its
unique features.

Mainframe Systems

Mainframe systems are characterized by a large central computer with
a large number and wide variety of possible peripherals. These types
of computers were the first to be used to run scientific and commercial
applications.

Initially, mainframe systems needed to run only a single program at
a time. The operating system would accept jobs – packages consisting
of control commands, program code and data. The control commands
dictated how to compile the program, how much memory it would take,
what other resources would be used, etc. Operating systems for these
types of computers could be quite simple. An operating system needed to
read in the job, use the control commands to configure how the program
would be loaded up and executed, and manage the program’s access
to resources and data. When a program executed, the operating system
would remain in memory, tucked away in its own section. The BESYS
operating system was created in this environment.

Mainframe systems became more complex for two reasons. First,
running multiple jobs in sequence became desirable. A sequence of
jobs – called a batch – would be sorted into groups based on what

12 INTRODUCTION TO MOBILE PHONE SYSTEMS

resources would be used. Often, using a resource required that the
resource be on and configured in a certain way. Secondly, disk technology
developed to the point where jobs could be placed on a disk drive
rather than recorded on punched cards. This was a great step forward,
because mistakes were easier to correct, and jobs could be submitted and
processed more rapidly. Once disk access was available, an operating
system could sort the jobs and choose which was most appropriate to run
at a given time. This type of job scheduling allowed more efficient use
of computer resources in addition to faster turnaround time for program
execution.

In this kind of environment, idle time becomes an issue. There was
a large difference between the speed of the CPU processor and the
I/O speed of each device connected to the computer. Therefore, as the
CPU accesses a device, much waiting is involved. This problem was
exacerbated by the fact that older mainframes would run a single job at
a time.

Eventually, mainframes and their operating systems came to embrace
two more concepts: multiprogramming and time-sharing. To take advan-
tage of the waiting time of a CPU, operating systems were designed to
schedule multiple jobs at once. These several jobs would share the CPU:
when one job caused the CPU to wait, another job took its place and
executed on the CPU. This type of multiprogramming – where multiple
programs ran on a single CPU – extended the idea of job schedul-
ing to include CPU scheduling. This multiuse environment has several
implications for memory and for I/O.

Time-sharing is an extension of CPU scheduling. If you consider a
user interacting with a computer as just another job, then multiple users
can interact with the computer at the same time. Time-sharing refers to
the way that users share the CPU with other tasks, both other users and
other jobs. OS/360 was implemented to support this kind of environment:
a time-sharing, job-scheduling computing environment. Users would
interact with the computer by creating jobs through terminals, saving
them, then submitting them online to the computer. Output from these
jobs was eventually generated and delivered to the user for consideration.

Mainframe systems shrank in size and eventually became small enough
to put into a room with very little cooling equipment. The user interaction
software evolved as well. The job-control program eventually became a
command shell, a program that accepted commands interactively from
a user, executed those commands and placed the output back on the
screen. MULTICS was created in this environment and Unix perfected

COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 13

the use of this kind of interaction. Multiprogramming was the norm
in these operating systems and all ‘jobs’ – including the user-command
shell – competed for system resources, especially the CPU. Issues that
affected performance – such as which job got priority and algorithms to
effectively schedule all usage of the CPU – became very important and
widely discussed.

Desktop Systems

Computers continued to shrink until it was feasible to combine a monitor,
a CPU and a keyboard into a single package that could occupy a desktop.
These systems distributed computing power to users, rather than having
users access the computing power of a single machine.

IBM constructed the first personal computer; MS-DOS was the oper-
ating system that was used for this first PC. Initially, MS-DOS was a
single-job operating system. Like the old mainframes, it ran a single
job (now called a process) at a time and the operating system made
choices about which job to run and how to manage resources. Hardware
systems grew faster and supported more peripherals; operating systems,
like those supporting mainframes, grew and added features to support
these hardware systems. MS-DOS eventually incorporated multiprogram-
ming and could support multiple processes using the CPU. As graphical
user interfaces became more widely used to interact with the computer
(in the place of a command shell), MS-DOS was upgraded to become
Microsoft Windows and other operating systems, such as MacOS from
Apple, emerged.

Desktop systems now support multiprogramming, time-sharing, net-
working and many types of peripherals. These systems assume that they
exist in an environment that is shared by multiple PCs and multiple users.
The operating systems embrace many users at once and encourage users
to venture out over networks to share resources from other computers.

Distributed Systems

A distributed system is an extension of multiple connected stand-alone
systems. These systems depend on each other to varying degrees. Some
distributed systems simply share a few resources – such as printers and
disk drives – while others share many resources – such as CPU time and
input devices. Distributed systems assume that they are connected by
some sort of communication network.

14 INTRODUCTION TO MOBILE PHONE SYSTEMS

There are several models of distributed systems that operating systems
have taken advantage of. The client–server model views some computers
as servers, that is, providing a service of some sort, and some computers
as clients that ask for and receive a service. Web browsing is a distributed
activity that is based on the client–server model. Browsers are clients
that ask servers for pages. Peer-to-peer distribution is a model in which
computers are both servers and clients, using some and being used by
others. The interdependent model is a peer-to-peer model where peers
are tightly interconnected, such that they cannot operate if other peers
are not also functioning. In the interdependent model, each peer has
functions that are crucial to the entire network’s operations.

There are several examples of operating systems for distributed com-
puting systems. Good examples of the client–server model are the many
distributions of Linux. The appeal of Gentoo Linux is that it is solely based
on the Internet for its distribution. It uses the Internet for upgrading itself,
for installing itself and for updating its applications. For these uses, the
operating system is a client, communicating with one of many Gentoo
servers.

For an example of an interconnected distributed operating system we
have to go back to the 1980s. During those years, an operating system
called Domain/OS was implemented that ran on computers made by the
Apollo company. Domain/OS was a version of Unix that was truly dis-
tributed between computers on a network. The execution of a command
or program might occur on the local computer a user was connected to or
it might occur on another computer in the network. No matter where the
command was executed, the results – text or graphics – appeared on the
local screen. The decision about which specific computer executed any
given command was based on an algorithm, which made the location
decision based on factors such as load and network performance.

Handheld Systems

As computers inexorably shrank in size, handheld devices became
feasible. These computers – usually fully fledged systems with all the
peripherals and issues of desktop systems – fit into and can be used with
one hand. At first glance, these systems look as if they could simply take
on the operating systems of their bigger siblings, but they pose some
unique challenges.

First, the internal environment is more restrictive. Less memory, less
storage space and slower processors all dictate that the operating system

COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 15

must be tailored for a handheld environment, not just shrunk. Often,
memory becomes ‘disk’ space: memory space is shared between a
storage system and memory used by the system to run programs. The
early Palm handhelds had 2 MB of memory for operating system space
and file storage. In the face of these restrictions, the conventional models
of operating systems change to accommodate the different environment.

Secondly, resources must be handled with more care. The resources
on a handheld platform are more fragile – in the sense that a restricted
environment puts more of a load on a resource. A restricted environment
leaves less room for software to protect a resource. This means that an
operating system must have a good model in place for dealing with
resource access from multiple sources.

Thirdly, power restraints are crucial. While desktop systems are always
connected to AC power, handheld systems are almost always run on
batteries. Extensive running of hardware resources drain battery life
dramatically. And power loss must be handled gracefully.

These considerations mean that an operating system must be written
specifically for a handheld device. It faces many pressures; it must support
the multiprogramming of a desktop system in a (sometimes severely)
restricted environment that must sip battery power while coordinating
access to many resources. This is a considerable task, but operating
systems have risen to handle it. Linux has been scaled to fit on several
handheld devices. Microsoft Windows has also been fitted for handheld
platforms. The early versions of Symbian OS were designed for a handheld
environment.

Mobile Phone Systems

As even handheld devices got smaller, it became possible to fuse a hand-
held device with a mobile phone. All the considerations of a handheld
platform are multiplied when a handheld device becomes a communi-
cations tool. All the restrictions and issues are present while the system
requirements take on communication issues as well. The resource model
of the handheld platform is now augmented with communications and
the functionality that comes with those communications.

On a mobile phone, the environment restrictions can be even more
severe than on a handheld device. The data requirements of multimedia
communication – text messages, phone calls, photographs, video clips
and MP3s – are tremendous, yet must fit onto a restricted storage space.
A mobile phone now has even more resources that must be carefully dealt

16 INTRODUCTION TO MOBILE PHONE SYSTEMS

with. And power is even tighter than normal, as the power requirements
of a mobile phone are much higher than that of a handheld device.

In the face of even tighter constraints, operating systems have risen
to the challenge. Several operating systems, such as Symbian OS, have
been tailored for mobile phones.

Real-time Systems
A real-time system is a special-purpose computer system where rigid time
requirements have been placed on either the processor or input/output
operations. These time constraints are well-defined and system failure
occurs when they are not met.

Real-time systems come in two varieties. Hard real-time systems guar-
antee that time constraints are met. Soft real-time systems place a priority
on time-critical processes. In both cases, real-time systems have a spe-
cific structure. Any time-consuming task or device is eliminated and
real-time service often comes from a dedicated computer. Disk drives or
slow memory cannot be tolerated. All system services – hardware or soft-
ware – must be bounded; that is, they must have specific response-time
boundaries or they cannot be used.

In a sense, some mobile phone functions are real-time functions. The
service of a phone call, for example, is a real-time service. But most
functions of a mobile phone can be carried out by a non-dedicated,
general-purpose operating system designed for the mobile phone plat-
form.

Symbian OS was not initially a real-time operating system but the latest
versions (Symbian OS v9 onwards) are powered by a real-time kernel.

1.4 Summary

This chapter has introduced the idea of an operating system and its rela-
tionships to both hardware and software. We defined what an operating
system is and discussed the modeling that an operating system does for
both hardware and software. We examined the operating systems from a
historical perspective and an operational perspective.

The next chapter considers the character of operating systems. It
discusses some of the common features of operating systems as they exist
today and makes some working definitions that we use throughout the
book. We also take a much closer look at the central operating system of
this book: Symbian OS.

2
The Character of Operating Systems

Like humans, operating systems have a character. The character of an
operating system is the collection of design ideas, software components
and usage policies that you find in its implementation. This collec-
tion gives an operating system identifying marks and is the reason that
people can celebrate certain facets or commiserate about features they
struggle with.

The character of an operating system can be found in how it is
implemented on various types of hardware. That character evolves over
time, especially as the operating system takes various shapes through
versions of its implementation.

This chapter looks at the various aspects of an operating system’s
character by introducing operating system concepts. We begin by looking
at how operating systems evolve over time and see how operating systems
view certain concepts – from ideas of disk storage to software protection.
We then take a look at several examples: specific operating systems and
their character.

2.1 The Evolution of Operating Systems

As we saw in Chapter 1, the first operating system was released in 1957.
This operating system, BESYS, was closely matched to the hardware it ran
on. Since this first introduction, operating systems have evolved as the
hardware they run on has evolved. New concepts have been designed
and implemented; some have caught on and some have died out.

18 THE CHARACTER OF OPERATING SYSTEMS

Operating system design begins with a conceptual model of computer
structures. Each operating system embodies a model of the hardware on
which it is running. Good operating systems weave this model throughout
their design. They set up and implement abstract concepts and let various
implementations put those concepts to use on the hardware platform on
which the implementations run.

A good example here is the concept of a server. The idea of a server
was initially developed as a provider of service to other computers.
Operating system designers needed a way to protect a system resource
while providing easy access to it. In addition, this access needed to
be provided abstractly, that is, in a modular way that hid the server’s
implementation. So the idea of a server was an application that would
protect resources while providing access to those resources by answering
message-based requests. This is an interesting implementation. Certainly,
this could have been done using different concepts and in different ways,
but the server has proven to be an effective conceptual model of resource
management. Servers are used in many operating systems to work with
all kinds of resources.

As another example, consider two different approaches to communi-
cations. The Unix operating system uses a file-oriented model to provide
access to communication resources. In a Unix system, if a user needs
access to a serial port, for example, she might ‘open’ a ‘file’ called
/dev/ttya. A Unix operating system builds device software (called
drivers) into its model of files; the ‘open’ system call executes a device
driver if the user is opening a device for access. Microsoft Windows
creates an API for each device – usually layers of APIs for each device.
Windows has some of the ideas of Unix; it uses the nomenclature of
files to address device ports. But it also designs the access to devices
through unique APIs, not file I/O mechanisms. By contrast, consider the
approach that Symbian OS takes to communication. In Symbian OS,
servers are used to allow access to communication resources. While a
Symbian OS user would still use an ‘open’ call (again using the Unix
file nomenclature) to gain access to a serial port, she would first have to
connect to the server that provides access to that port before she could
open the port.

In all models, concepts of abstraction and modularity are preserved.
Actual implementations are not specified; the abstraction of the concep-
tual model is the important part at this stage. Much research and opinion
has been dedicated to the question of which model is best; both models
have held up well under such scrutiny.

COMPUTER STRUCTURES 19

The evolution of operating systems is usually spurred by changes in
hardware and models that address these changes. The roots of Symbian
OS give a good example of this evolution. As we discussed in Chapter 1,
Symbian OS finds its roots in EPOC, an operating system developed
for handheld computers.1 Mobile phones were a burgeoning technol-
ogy and EPOC’s designers wanted to address that technology. EPOC,
however, had no models to address telephony and therefore did not
extend well to phone-based devices. EPOC evolved into Symbian OS to
address mobile phones. As evidence of this evolution, one can spot much
code in Symbian OS that has been derived from EPOC. New models
addressing new technology had to be developed, naturally, and one can
see how new hardware and new technology drove operating system
development.

All Operating Systems Evolve

All operating systems evolve. Some go extinct; some survive. There are
many references for operating system evolution. Check out
www.levenez.com/unix for a ‘genealogical’ look at the Unix oper-
ating system. The evolution of Microsoft Windows is documented by
Microsoft at www.microsoft.com/windows/WinHistoryIntro.mspx.
The evolution of operating systems that run on Apple computers
can be found at www.kernelthread.com/mac/oshistory. Evolution of
MS-DOS, the Microsoft operating system built for early PCs, contin-
ued until Microsoft Windows arrived. MS-DOS formed a foundation
for Microsoft Windows until Microsoft Windows 2000, but was then
relegated to extinction.

2.2 Computer Structures

As we consider how operating systems address computer systems, we
should first outline what structures those systems are built from and how

1 Of course, you can think of the mobile phones on which Symbian OS runs as handheld
computers. By definition, mobile phones are indeed handheld computers. However, we
distinguish handheld computers from mobile phones by defining handheld computers as
a generic term describing computers that do not use telephony. Mobile phones are, then,
handheld computers that use telephony.

20 THE CHARACTER OF OPERATING SYSTEMS

they are used. The character of an operating system is determined, in
part, by the structures it has to address.

System Structure and Operation

Kernel Structures

The core programs and data of an operating system together comprise
the kernel. The kernel consists of the code that runs the operating system
on a CPU and the data – typically organized in tables – that are used to
keep track of how things are running on an operating system. The kernel
is where the access to hardware is done and the kernel implements the
operating system’s design model.

There are several types of kernel. Monolithic kernels are found on
some general-purpose computers; they implement all operating system
functions and hardware abstractions within the kernel itself. This type of
kernel (see Figure 2.1) usually comprises large amounts of code and large
amounts of memory for system tables.

Microkernels provide only a small set of system function and hardware
models. Much of the remaining functionality that might be found in a
monolithic kernel is provided by server applications that run outside a
microkernel (see Figure 2.2). Servers in Symbian OS provide this type of
functionality.

User software

Hardware

Kernel

Figure 2.1 Monolithic kernel structure

COMPUTER STRUCTURES 21

Hardware

Kernel

ServersUser
software

Figure 2.2 Structure of a microkernel

Hybrid kernels are like microkernels, except that some of the external
application function is implemented in the kernel for performance reasons
(see Figure 2.3).

Hardware

Kernel

Servers
User

software

Servers

Figure 2.3 Hybrid kernel structure

Linux is typically considered a monolithic-kernel operating system.
Most system functions are implemented in ‘kernel space’ (by the code

22 THE CHARACTER OF OPERATING SYSTEMS

and within the memory of the kernel). Symbian OS is implemented via
a microkernel. The example in Section 2.1 of defining and opening a
communication device serves well here. The implementation of devices
and how they are accessed in Linux is built into the kernel. To change the
implementation, one would have to change kernel code and recompile
the entire kernel. In Symbian OS, devices are implemented by server – not
kernel – functionality. To change the way communication devices are
implemented in Symbian OS, one would have to change the code to
the server and recompile it. No changes would have to be made to the
microkernel itself.

Most modern systems are based on hybrid kernels. The most effective
arguments against monolithic kernels are that small changes to the system
require changes to the entire kernel and that errors in the kernel can cause
an entire system to crash. Monolithic kernels are also larger and may not
be suitable for devices with limited memory or systems that make good
use of virtual memory. Hybrid systems work around these problems by
pushing many kernel functions to servers and by taking extreme care to
make the functions in the kernel modular and abstract.

Monolithic systems have implemented several features to help them be
more flexible. For example, Linux implements the use of modules, which
are code libraries loaded at run time that implement support features of
the operating system. If the system Linux is running on has a USB port,
Linux can load the USB module to drive the port. Note however, that
while this allows flexibility and implementation outside the kernel core,
once a module has been loaded, its operation and data become part of
the kernel, adding to its monolithic character.

Interrupts

Modern computer systems are typically built from components which
communicate with each other over a bus structure (see Figure 2.4).

Notice that each device in Figure 2.4 is connected to the system bus
through a controller. These controllers are specific to each device and
communicate with each other, sharing and competing for bus access.
Controllers act as a liaison between devices and a communication
medium.

In this system, the CPU must be the primary controlling device.
Hence, across the bus, there is a hierarchy of device priorities and a
way for devices to work with this priority system. Device controllers can
communicate with any device sharing the bus and their communication
can be pre-empted by other devices with higher priority.

COMPUTER STRUCTURES 23

CPU

System bus

Memory
controller

Disk
controller

Display
controller

Keypad
controller

Memory

Figure 2.4 Structure of a generic computer system

In a bus-based system, it would be a waste of time to continuously
check or listen to the bus to see if any device is communicating. Imagine
stopping to pick up and listen to the telephone every several seconds to
see if someone wants to talk to you. Instead, the bus system is driven
by interrupts. An interrupt is like the ringing of a telephone: it is an
event that is designed to get the attention of hardware, software or both.
Normally, a device is intent on doing a specific task and does that task
until its attention is drawn away elsewhere – for example, it finishes its
task or has a problem. The device can raise an interrupt to alert the CPU.
When interrupted, the CPU records what it was doing and services the
interrupt, returning to its previous task when the interrupt service has
been completed.

Device communication is thus designed around this interrupt mech-
anism. In fact, such communication is typically based on a system of
interrupts. Interrupts are serviced by interrupt service routines (ISRs) via
a table of vectors. These vectors are addresses of ISR-handling functions
that a device is directed to execute upon the receipt of an interrupt. Since
there are many different devices with many different ways to commu-
nicate, there are many interrupt vectors built into a system, with many
different interrupts to go with them. As with devices, interrupts have
priorities to organize them; during the handling of one interrupt, the ISR
may ignore lower-priority interrupts to prevent them from running during
the handling of an interrupt.

24 THE CHARACTER OF OPERATING SYSTEMS

Operating systems embrace this interrupt system. Operating systems
are interrupt-driven. They typically do very little on their own, but instead
wait for interrupts to drive them to do their varied tasks. Operating
systems have many services that can be used and many ways to use
these services, but only offer them in response to requests. So operating
systems have their own system of ‘interrupt vectors’ and these ‘vectors’
are implemented using system calls into software implementations. Upon
receipt of an interrupt, an operating system stops what it was doing,
saving the spot for its return, and finds a software implementation to
service that interrupt. When the interrupt service routine has completed,
the operating system returns to where it left off.

Interrupts make a great notification system, but sometimes notifications
need to be turned off or ignored. This is facilitated in operating systems
by masking. This terminology comes from the idea of using a bitstring to
represent all possible interrupts. By constructing a second bitstring with
1s representing the interrupts to be enabled, this second bitstring can be
ANDed with the bitstring of interrupts to produce only those interrupts
which are enabled and functioning. This operation of masking is used to
turn interrupts on and off. (In other situations, where a mask of bits is not
used, the operation is still called masking.) Turning interrupts off allows
the operating system to handle higher-priority interrupts without being
distracted by other – probably lower-priority – interrupts.

This model of interrupt-driven operation is so useful that software
interrupts have been worked into operating systems just like hardware
interrupts. Software interrupts take several forms. There are interrupts that
are triggered when errors occur (for example, reading beyond the end
of a file), interrupts that cause the operating system to do certain things
(for example, when a system timer goes off), and interrupts that have no
established service routines (these are usually set up and driven by specific
software applications). Interrupts can be sent explicitly (for example, Unix
allows ‘signals’ to be sent to the operating system through special system
calls) or they can be generated transparently by making function calls
(many Symbian OS system calls generate software interrupts).

Since operating systems are passive software systems, there must be
a way to get them started listening for and servicing interrupts. This
is typically done by a bootstrap program in a fixed storage location.
The computer’s hardware is designed to find this program and start its
execution. The bootstrap program is usually quite small and is designed
to locate and start a much larger program. This second program is the
operating system implementation. The bootstrap program is usually stored

COMPUTER STRUCTURES 25

in read-only memory (ROM) supplied with the computer system. The
second program, or the kernel, is the system that sets up the computing
environment and waits for interrupts to occur.

Processes

The programs that run on a computer also work with the interrupt system.
In modern operating systems, several programs execute at once, sharing
the computing resources. These concurrent programs are called processes
once they begin running on the CPU. Obviously, if a single process ran
to completion before another began to operate, a computer would run
extremely slowly. Instead, processes run at the same time and rely on
interrupts to stop their execution, returning control to the operating
system. The scheduler is the part of the operating system responsible for
deciding which process should next execute on the CPU.

An operating system that allows multiple processes to run in this
manner is said to support multitasking. Multitasking shares the CPU
according to policies developed by the operating system designers and
perhaps the operating system users. One such policy is the time period
for which a program uses the CPU, called a time slice. Note that it almost
certainly takes more than a single time slice for a program to execute
to completion, since the period of time is in the order of milliseconds.
This means that there are several programs, each using the processor for
a time slice and each suspended while the operating system allows other
programs to share the processor. This procedure of moving processes into
and out of execution on the CPU is called a context switch; there is much
housekeeping to be done during each switch that provides each program
a context in which to run.

Operating systems may also support multithreading. Multithreading
is different from multitasking in that multiple threads of control execute
within the memory space of a single process. Multitasking refers to
switching between processes; multithreading occurs within a specific
process. Threads provide for code execution in a lighter form than with
processes. For example, context-switching between threads uses a similar
concept to that of switching between processes but is quicker since
context information about the memory space does not need to change.

Device I/O
A computer system without devices is not very useful. How an operating
system implements communication with a device is important for many

26 THE CHARACTER OF OPERATING SYSTEMS

reasons – including the performance of the computer and the ease with
which it is programmed. From the previous section, we already know that
device I/O is driven by interrupts, but exactly how those interrupts are
generated and serviced determine how efficient the operating system is.
The general sequence of servicing I/O requests is depicted in Figure 2.5.

The request made by an application is fielded by the operating system
through one of its APIs. The operating system uses the device driver
specific to the device being accessed and passes the request on to the
hardware device (note that operating system interrupts are not needed
to pass this data on). The hardware receives the request and services
it, passing the results back up through the system. The device interrupts
the operating system through the device driver and the operating system
delivers the results to the application.

Notice that the scenario depicted in Figure 2.5 requires a lot of
waiting. While the operating system is working with the application’s
request, the application is waiting for it to be completed. This is not
unusual; application programs typically wait for devices. However, if the
operating system were to wait for the results from the device, no other
operating system duties would be performed. All other activities in the
computer would therefore wait as well.

Consider an example in which an application tries to send a text
message. After setting up the message data, the application initiates the

Application request

Hardware data transfer

Interrupt vector

Device driver

Operating system

Time

Figure 2.5 The control pathway for synchronous device I/O

COMPUTER STRUCTURES 27

transfer by signaling the mobile phone device to transfer the message.
This request goes through an operating system API, which communicates
through this level to the device driver and on to the hardware to send
the message. It might be acceptable for the application to wait until the
message is sent. However, if the operating system was forced to wait for
the message, it would have to suspend all other services. That would
mean that alarms would not be displayed and incoming phone calls
would be ignored. If the message took a lengthy period of time to send,
the phone would just freeze up until the message was finally on its way.
Obviously, this is not a good situation.

The method of device communication that waits through the com-
munication cycle is called synchronous communication. Synchronous
communication causes all stages in the process to wait. This type of
communication is good for real-time systems, where the system is ded-
icated to I/O and processing of received data, but not very useful for
general-purpose systems.

Most general-purpose I/O is asynchronous. That is, other operations
can continue while waiting for I/O to complete. An I/O sequence like
that in Figure 2.6 must occur.

The hardware should signal that the transfer has begun and signal
again when the results of the I/O request are in. Using this method, the
operating system is free to process other requests and the application

Application request

Hardware
data transfer

Interrupt vector

Device driver

Operating system

Time

Figure 2.6 The control pathway for asynchronous device I/O

28 THE CHARACTER OF OPERATING SYSTEMS

can even go on to do other things. (Often this method of I/O is best for
applications that must work with a graphical user interface, which must
usually be updated as the data request is being processed.)

The use of asynchronous device I/O means that an operating system
must keep track of the state of devices. If the operating system is going to
‘get back’ to handling a device after it has serviced an I/O request, it has
to keep track of what was happening with that device and where it was
when it last worked with it. This record-keeping function of an operating
system is a very important one, one that keeps an operating system busy
much of the time and one that potentially takes up a lot of the memory
needed to run an operating system.

In the quest to minimize the involvement of the operating system in
device I/O, more I/O functionality can be placed on the device with
the addition of more interrupts to enable communication. Taken to an
extreme, a device could do all I/O by itself, filling a specific area in
shared memory with data and signaling the operating system only when
data transfer is complete. This method of I/O is called direct memory
access (DMA) and is extremely useful in freeing up operating system
and application time. DMA is a form of asynchronous I/O, but differs
from the generic form. Asynchronous I/O is fine-grained: it signals the
CPU whenever there is even a small amount of data to transfer. DMA
is very coarse-grained and assigns all data operations to the device. The
operating system starts the I/O operation and is only notified when it is
complete.

There are, then, three modes of device communication: synchronous,
asynchronous and DMA.

• A handheld Linux device that plays video is likely to use synchronous
communication between the video driver and the operating sys-
tem. Display of video is a real-time application and most real-time
applications require synchronous I/O.

• Computers with windowing systems use asynchronous I/O to monitor
GUI devices such as a mouse. When a mouse moves, it generates
interrupts that cause the operating system to read the mouse events.
When the mouse does not move, the operating system can safely
ignore it and move on to other duties.

• Computers use DMA for larger I/O tasks. Consider reading from a
disk drive. It is enough that an operating system would send a disk
drive a command to read a block of data, along with the parameters

COMPUTER STRUCTURES 29

needed to complete the transfer. Reading program code from a disk
to execute, for example, is usually a task that is executed using DMA.

Each I/O method carries with it implications for system performance.
With synchronous I/O, the operating system spends all its time monitoring
and servicing devices. This means that performance and response to users
and other services is slower than with other methods. Asynchronous I/O
relieves the operating system from constant monitoring and, therefore,
performance and system response increases. DMA frees the operating
system from almost all device I/O responsibilities and therefore produces
the fastest system service and response time. Most operating systems use
a combination of methods to gain an efficient design.

Storage Structures

Along with central computer operation and device I/O, storage makes
a third essential component of a computer system. The ability to record
information and refer to it again is foundational to the way modern
computer systems work. A system without storage would not even be
able to run a program, since modern systems are based on stored
programs.2 Even if it was able to run instructions (perhaps asking the user
for each instruction), input could not be stored and output could only be
generated one byte at a time.

The core computing cycle is very dependent on storage. This core
computing cycle, often referred to as the ‘fetch–execute’ cycle, fetches an
instruction from memory (storage), puts the instruction in a register (more
storage), executes that instruction by possibly fetching more information
(more storage), and storing the results of the execution in memory
(even more storage). This basic computing cycle is part of a design first
developed by John von Neumann, who built it into a larger computing
system based on sequential computer memory and external storage
devices.

The many storage mechanisms of a computer system can be viewed
as a hierarchy, as shown in Figure 2.7. Viewing these systems together
allows us to consider their relationships with one another.

2 Certainly, computers without disk storage are used every day. But note that even these
computers have memory for storage – sometimes large amounts of it. Any computer system
has storage at least in the form of memory or registers accessible by the CPU. Most systems
build their storage requirements from there.

30 THE CHARACTER OF OPERATING SYSTEMS

Registers

Cache

Main memory

Disk space

Optical storage

Archival storage

Figure 2.7 Storage hierarchy

• Registers are at the top of the hierarchy. This collection represents
the fastest memory available to a computer system and the most
expensive. Depending on how a processor is constructed, there may
be a small or large set of these memory cells. They are typically used
by the hardware only, although an operating system must have access
to (and therefore knowledge of) a certain set of them. Registers are
volatile and therefore represent temporary storage.

• Storage caches represent a buffer of sorts between fast register storage
and slower main memory. As such, caches are faster and more
expensive than main memory, but slower and cheaper than register
memory. On a typical computer system, the caching subsystem is
usually broken into sublevels, labeled ‘L1’, ‘L2’ and so forth. The
hierarchy continues to apply to these sublevels; for example, L1 caches

COMPUTER STRUCTURES 31

are faster and more expensive than L2 caches. Caches represent a
method to free up the hardware from waiting for reads or writes to
main memory. If an item being read exists in cache, then the cached
version is used. If data needs to be written, then the cache controller
takes care of the writing and frees up the CPU for more program
execution. Caches are volatile and therefore also represent temporary
storage.

• Main memory represents the general-purpose temporary storage struc-
ture for a computer system. Program code is stored there while the
program is executing on the CPU. Data is stored in the main mem-
ory temporarily while a program is executing. The I/O structures,
discussed in the previous section, use main memory as temporary
storage for data. This type of memory is usually external to the CPU
and is sometimes physically accessible by the user (for example, on
desktop systems, users can add to main memory or replace it).

• Secondary storage is a slower extension of main memory that holds
large quantities of data permanently. Secondary storage is used to store
both programs and data. The first – and still most common – form of
secondary storage is magnetic disks. These store bits as small chunks
of a magnetic medium, using the polarity of magnetic fields to indicate
a 1 or a 0. Faster storage has evolved more recently in the form of
electronic disks, large collections of memory cells that act as a disk.
Formats such as compact-flash cards, secure-digital cards and mini-
SD cards all provide permanent storage that can be accessed in a
random fashion. These are used in the same way as magnetic media
to manipulate file systems.

• Tertiary, or archival, storage is meant to be written once for archival
purposes and stored for a long period of time. It is not intended to
be accessed often, if ever. Therefore, it can have slow access times
and slow data-retrieval rates. Examples here are magnetic tape and
optical storage such as compact discs (CD-ROMs). CD-ROMs can be
thought of as lying between secondary and tertiary storage, because
access time on CDs is quite good.

There are several concepts built into this storage hierarchy that affect
how an operating system treats each storage medium. The first, and most
basic, is the model used to access storage. The idea of a file as a group

32 THE CHARACTER OF OPERATING SYSTEMS

of data having a specific purpose has been the model of access used
since almost the invention of permanent storage. If many files can be
stored on a medium, there is also the need for organization of those
files. Ideas such as directories and folders have been developed for this
organization. The way that these concepts have been implemented is
called a file system. The design and appearance of file systems differs
across operating systems while the concepts of files and the structure of
directories remain constant.

The concept of access rights has proven useful in implementing secure
storage. In some systems, access to storage is granted to any process
requesting that access. In other systems, processes requesting access to
storage must present identification along with the request and are only
granted the access that the identification gives them. In these types of
systems, there is typically an owner of a unit of storage and the owner
sets up how others may access that unit. Note that this requires that the
system using these access rights establish a method of user- or process-
identification. For example, Symbian OS establishes identification based
on a process’s function within the operating system. There are system
processes and non-system (user) processes; in addition, there are other
processes that have more privileges than users but not the complete
privileges of the system. Access to storage on Symbian OS is granted
based on these classifications of processes.

Another concept that has evolved from the hierarchy of storage is
caching. As shown in Figure 2.7, speed of storage access decreases as
you work down the hierarchy. Caches were developed as a way to
shield devices from slower storage. Cache management has become an
important issue. For example, if a cache is full and the CPU needs to write
more data to it, some data already in the cache is overwritten. If the cache
is managed carefully, the ‘relevant’ data is kept in the cache and the rest is
written to the next level. However, the meaning of ‘careful management’
is different depending on the design of the operating system.

The idea of virtual storage is a concept that works across the storage
hierarchy. Storage is virtual when it is larger or has more attributes than
it physically has. Virtual storage is implemented as an extension of one
layer in the hierarchy on lower layers. Main memory can be thought of as
virtual cache storage. When cache fills up, it extends into main memory.
Likewise, virtual main memory is implemented on disk space. When
space in main memory runs out, it overflows onto secondary storage. As
with caching, virtual storage involves management: it must be organized
so that portions of it can be moved back and forth to the next storage layer.

COMPUTER STRUCTURES 33

Hardware Access and Protection

In the early days of computing, before operating systems were used on
computer systems, a single program ran to completion on a computer,
using its resources as it saw fit. As computer usage evolved, operating
systems were used to provide a consistent and standard interface to com-
puting resources. This meant that access to a single resource – the system
clock or the graphics display – had to be coordinated by the operating
system and shared with other applications vying for those resources.

As all children learn, sharing is good. Sharing resources means that
they can be used more efficiently and more completely. If resources are
shared, all applications can appear to execute at the same time and are
presented with the illusion that they are the only application running
on the computer system. Consider, for example, sharing a network
connection between two browsers, as shown in Figure 2.8.

N

get page 1

get page 2

get page 3

Computer
#1

Computer
#2

get page 1

get page 2

e
t
w
o
r
k

U
s
a
g
e

Figure 2.8 Sharing a network serially

34 THE CHARACTER OF OPERATING SYSTEMS

N
e
t
w
o
r
k

U
s
a
g
e

get page 1

get page 2

get page 3

Computer
#1

Computer
#2

get page 1

get page 2

Figure 2.9 Sharing a network concurrently

In Figure 2.8, Computer 1 is served three pages from the web and
Computer 2, which needs two pages, is forced to wait until Computer 1
is done using the network. Time is depicted from top to bottom. This
kind of ‘one at a time’ serial usage is certainly the safest way to share a
resource, but not the fastest. Consider the sharing scenario in Figure 2.9,
where Computer 2 can use the network while Computer 1 is waiting
between page fetches. The time is shorter but the information gathered
from the network is the same. As long as care is taken to make sure that
one computer’s actions does not change the other’s, then sharing can be
done in a safe manner.

However, sharing can also be bad. If done poorly, the mechanism
used for sharing can ruin the illusion – each concurrent program would
feel the effects of other programs. If it is not done correctly, data might be
manipulated by the wrong program. A browser might receive data that
another browser had requested.

As we consider how to protect system resources from concurrent
access, we also need to remember that the operating system is a com-
petitor in this area. We have said that the operating system is simply
another program running on the computer. In this sense, the operating
system competes for resources just like other programs that run. How-
ever, the operating system is a bit different – a bit more privileged – than

COMPUTER STRUCTURES 35

‘normal’ programs because it must manage the other programs (as well
as itself).

Let’s consider how protection is addressed in operating system design.
To do this, we must consider how to protect programs from each other
and how to protect resources such as memory and the CPU. This not
only applies to organized access to resources, but it also keeps errant or
malicious code from accessing resources in ways that could jeopardize
the operations of other programs.

Protection modes

We must protect programs from each other; this includes protecting the
operating system from other programs. We need at least two separate
ways of operating: the operating system needs a privileged mode and
other programs need a user mode of operation. User-mode operation is
restricted to tasks that all programs may perform. This includes mundane
tasks such as arithmetical computation or executing statements in program
code. Privileged-mode operation allows a program to do tasks only the
operating system should do. These tasks include working with system
devices or managing which program should be run.

Managing these modes efficiently and rapidly requires hardware sup-
port. Most hardware architectures include at least the two modes we have
defined and they sometimes support multiple user modes. The hardware
may implement this by adding a bit, or a set of bits, to indicate the current
mode of operation. By setting the mode bit, the mode of the instruction
being executed can be determined easily. In addition to mode bits, there
are certain instructions that are considered privileged instructions. It is
assumed that only processes with privileged access execute privileged
instructions and the hardware enforces this by checking the mode bits
before executing these instructions.

Consider some situations where modes are important. When a com-
puter starts up at system-boot time, the hardware starts out in privileged
mode. This makes sense because the operating system is initializing itself
and the system resources. Once the operating system is running and
starts applications, each application executes in user mode. When an
interrupt occurs and the operating system must service a need from a
device or resource, the operating system is running and the hardware is
placed in privileged mode. Since the interrupts drive when the operating
system takes over the management of the computer, the operating system
is always in privileged mode when it controls the processor. Whenever
control is given to another program, the mode is switched to user mode.

36 THE CHARACTER OF OPERATING SYSTEMS

As we have seen, there are many times when a user-mode program
needs to access a system resource that only the operating system can
manage. Since a user-mode program cannot change to privileged mode
by itself, it must ask the operating system to perform the privileged-mode
operation. User-mode programs do this by making a system call into
operating system code. Control is passed to the operating system and
the operating system handles the privileged-mode action as it sees fit.
When it is done with the operation, the operating system passes control
back to the user-mode program, changing the protection mode in the
process. This method of using system calls means that all privileged-mode
operations are still handled by the operating system.

What if There Is no Hardware Support for Protection
Modes?

Early architectures such as the Intel 8088 architecture (on which MS-
DOS was implemented) did not have mode bits built into the hardware,
which meant that there were no privileged instructions. No privileged
instructions meant that any process could manipulate any system
resource. In early versions of MS-DOS, for example, user programs
could manipulate operating system tables and change operating system
code!

Protecting memory

Programs must be protected from each other, as we saw in the previous
section. This includes restricting memory-space usage to only those
programs that should use it. Since there are many ways to use memory,
this kind of protection must guard against several types of usage.

We must protect user programs from changing the memory of other
programs. This means that, while multiple users have data in memory
at the same time, users’ memory spaces must be protected from each
other. In addition, programs might be able to corrupt operating system
memory or even change interrupt vectors. User code needs to be hemmed
in – cordoned off from the rest of the memory.

While we can build memory protection into APIs or into operating
system code, this is not enough because there are multiple ways to corrupt
memory. To properly protect memory, we need to determine the range
of addresses that a process or interrupt vector can use, protect memory

COMPUTER STRUCTURES 37

outside the address range and ensure that nothing can run outside the
control of the operating system. Instead of setting up protection to keep
other usages out, we set up protection to keep each process usage in.

This is typically done in conjunction with hardware. When a particular
piece of code is executing, the operating system sets two registers: a base
register holds the lowest address that can be used by the executing code
and a limit register holds the number of memory addresses that can be
addressed. Setting these registers is reserved only for the operating system;
it does this through the use of privileged instructions. Working with these
registers is part of the work of the operating system as it manipulates
processes to share the CPU.

Protecting the CPU

The many programs that run at the same time on a computer share the
CPU; this sharing includes the operating system. As we structure the
way that this sharing is done, we must make sure that the operating
system always gets control of the CPU back from a program – even if that
program has bugs or goes into an infinite loop.

Consider what happens if we do not protect the CPU in this way.
A program that gets into an infinite loop may never relinquish control
of execution and the computer would be frozen. If this happened on a
mobile phone while a conversation was going on, the phone would simply
freeze and the conversation could not continue. Even worse, consider if
system code had a bug that caused a user program in privileged mode to
start writing to protected memory, corrupting operating system tables.

To prevent this from happening, operating systems often use two
concepts. First, we can use a timer to cause an interrupt that transfers
control back to the operating system. That timer is set when the program
begins using the CPU and interrupts the program’s execution after a
specific period has elapsed. While timers can be fixed, they are usually
capable of using a variable time period. If an operating system uses a
variable program timer then certain programs can run for longer than
others. Note that timer interrupts can happen at any time and that
sometimes they happen at inconvenient times. For example, these timer
interrupts can be made during system calls, interrupting the kernel during
a system call service.

A second way of protecting the operating system from freezing up is
to combine the use of variable timers with a control concept of processor
sharing. This combination enables operating systems to implement con-
cepts of process management, including time slices and context switches.

38 THE CHARACTER OF OPERATING SYSTEMS

There are many housekeeping details that must be done with timers. For
example, consider the manipulation of the program timer. At each context
switch, this timer must be reset for the next execution. If the timer is a
variable timer, then a new value must be derived for the next program’s
time slice. This is quite probably in a table and should be looked up, but
it provides a good example of the complex duties of the operating system.
In addition, processes can voluntarily give up their time on the processor
by yielding the processor to other processes.

Keeping the Current Time

Using timers to protect the CPU also provides operating systems with a
mechanism to keep the current time. If timer interrupts occur at regular
intervals, we can compute the time of day based on the last accurate
time.

However, this method is actually quite inaccurate. We must depend
on the fact that there are no interrupts during a timer interrupt and
that servicing the timer interrupt itself is instantaneous. Since these
assumptions are usually not correct, the system time starts to drift if
we implement it this way. Operating systems typically use hardware
time-of-day clocks to implement system time.

Communication Structures
A fourth essential component of modern computers is communication.
The structures that have been developed to handle communication issues
parallel very closely those that address I/O. Communication is a special
case of I/O and special attention – resulting in specialized APIs and
operating system structures – has been given to this area by operating
system designers. In some cases, for example Symbian OS, an operating
system has been developed around communication issues.

At the lowest level, communication is raw binary data moving through
physical I/O devices connected to a computer. As discussed above,
operating systems take a variety of approaches to implementing device
I/O and presenting the I/O interface to the other APIs. In the various
implementations of communication structures, operating systems treat
the physical communication devices as they would other I/O devices.

On top of the physical I/O device, operating systems implement an
interface between software and hardware through the use of device
drivers.

DIFFERENT PLATFORMS 39

On top of the hardware–software interface, operating systems place
a layer that allows users to use the hardware through the privileged
instructions of the kernel. As we have seen earlier, there are many ways
to manipulate communication hardware, from file-like interfaces in Linux
to file-server applications in Symbian OS. The implementation of this
access layer incorporates the design model of the operating system.

Most communication requires protocols to be run through specific
device interfaces. A protocol is an exchange of data that follows a
specific prearranged format. There are many different ways of communi-
cating through computer devices and these different ways follow different
protocols. For example, one could pass a file between computers using
a TCP/IP local area network or using Bluetooth technology. While the
end result is the same – a file gets from one computer to another – the
protocols that are used to exchange that file’s data are very different
between the two media.

With the advent of the Internet and the overwhelming use of TCP/IP,
operating systems typically abstract away the details of communication
protocols by implementing communication through an abstraction called
a socket. A socket is a connection with two endpoints – two sides of the
communication channel – with an implementation of a communication
protocol in between. The abstraction of a socket works well because the
protocol implementation is hidden and the methods of data exchange
are kept the same, regardless of the protocol being implemented. So a
program can use the write() system call to send data over a socket and
not be concerned about whether the socket is connected over TCP/IP or
Bluetooth.

The idea of abstraction can play out further in a fashion similar to the
model of memory. In this extended abstraction, each protocol is built on
the underlying services of the layer below. This ‘stack’ of communication
protocols is nicely implemented as a stack of implementations, where
each implementation represents a certain functionality and each one
passes its data to layers above or below. We discuss these issues further
in Chapter 10.

2.3 Different Platforms

We have given an overview of the concepts and structures that character-
ize modern operating systems. This section gives some examples of how
these concepts and structures are used in different implementations.

40 THE CHARACTER OF OPERATING SYSTEMS

OS/360 and MVS
The IBM OS/360 line of mainframe computers was developed ahead
of the operating systems that were to run on them. Thus, the hardware
existed while software developers were scrambling to get an operating
system that made that hardware useful to run. As operating systems
developed for the 360 line, operating concepts were also evolving. The
operating system grew over time as concepts of multiprogramming and
multitasking were developed.

• The first version of OS/360 was the simplest: a sequential scheduler
called the primary control program (PCP). PCP performed only one
task at a time. Control returned to the operating system only when the
task was completed. I/O was processed synchronously and caused
programs to stop while they waited for I/O to complete.

• The next version of OS/360 introduced multiprogramming with a fixed
number of tasks (MFT). MFT could (eventually) run up to 15 tasks at
once and could reschedule tasks while they waited for (synchronous)
I/O to complete.

• The last version of OS/360 allowed a variable number of tasks to
be run concurrently – theoretically, any number could be concurrent.
Multitasking with a variable number of tasks (MVT) also supported
rescheduling of synchronous I/O-bound tasks.

• A new version of the operating system, the single virtual storage (SVS)
version, was developed. SVS implemented multitasking, but forced all
processes to occupy the same memory space. Context-switching was
expensive but memory protection was simple. The only memory that
could be violated was the operating system memory, as all programs
shared that space.

• The most popular version of the operating system was called multiple
virtual storage (MVS). MVS put each process in its own address space
in memory, allowing memory to grow as needed by adding virtual
memory on the disk. Memory protection was now more complicated,
because process memory moved in and out of physical memory and
multiple applications could be resident in memory at the same time.

MVS saw implementations in OS/370 and OS/390 for various incarna-
tions of IBM mainframes. Notice how the concepts of multiprogramming
and multitasking evolved, carrying with them ideas of virtual memory

DIFFERENT PLATFORMS 41

and device I/O. Memory-protection issues also evolved: protection was
a lot easier in PCP, where only one process ran at a time, than in MVS,
where multiple processes were concurrent.

Unix and Linux
As we discussed in Chapter 1, Unix evolved from MULTICS and used
many of its ideas. The character of Unix has a very loosely connected
feel: all of its components build on each other through the use of fixed
APIs and its approach to software design is to build the operating system
by interconnecting simpler tools. In Unix, simpler is better.

There are many examples of this design philosophy. Commands on
Unix are quite simple and can be combined to build more complex
commands. Files on Unix are not structures in any way but are considered
only as a sequence of bytes, to be interpreted by individual applications.

• The kernel is a monolithic kernel. Any changes to kernel opera-
tions – such as the change in serial-port implementation – requires a
change in kernel source code and a recompilation and reinstallation
of the entire kernel.

• Unix is multitasking and supports multithreading. It supports config-
urable policies regarding scheduling of processes. Unix is a multi-user
system, where multiple users can be accessing the same computer
and sharing the resources.

• Devices are implemented as files and access to devices is achieved by
opening the file representation of a device. Devices can be ‘opened’
by multiple users for reading and by only one user for writing.

• Unix uses virtual memory and uses memory mapping to avoid user
applications from accessing memory from other applications. Memory
mapping automatically translates any memory reference into the area
reserved for the process.

• Unix supports many kinds of file systems and communication meth-
ods through implementations of dynamically loaded implementation
modules and device drivers.

Linux is an open-source version of Unix. The fact that Linux is open
source has been both a blessing and a curse: allowing the source code to
the operating system to be shared has fostered much innovation but has
also allowed people to exploit weaknesses.

42 THE CHARACTER OF OPERATING SYSTEMS

Symbian OS

Symbian OS is unique among operating systems in the sense that it was
designed from its inception3 with smartphones as the target platform. It
is not a generic operating system shoehorned into a smartphone nor is
it an adaptation of a larger operating system for a smaller platform. As
we saw in Chapter 1, Symbian OS has a history of evolving design (from
SIBO to EPOC to Symbian OS) specifically targeted at smartphones for its
implementation.

The precursors to Symbian OS have given their best features. The
operating system is object-oriented, inherited from EPOC. This means
that systems calls involve system, or kernel-side, objects and that the
idea of abstraction permeates system design. Where an operating system
such as Unix might create a file descriptor and use that descriptor as a
parameter in an open call, Symbian OS would create an object of the
RFile class and call the open() method tied to the object. In Unix, it
is widely known that file descriptors are integers that index a table in the
operating system’s memory. In Symbian OS, one really has no idea how
the file object is implemented; one simply creates an RFile object and
uses its methods.

Symbian OS has other inherited features. It is a multitasking and
multithreaded operating system. Many processes can run concurrently,
they can communicate with each other and utilize multiple threads that
run internal to each process. The operating system has a file system
compatible with Microsoft Windows (technically, a FAT32 file system); it
supports other file-system implementations through a plug-in interface. It
uses TCP/IP networking as well as several other communication interfaces,
such as serial, infrared and Bluetooth.

Symbian OS has some unique features that come from its focus on
the smartphone platform. Because of limited (or, in most cases, no) disk
storage, no virtual memory is implemented. Symbian OS has a pluggable
messaging architecture – one where new message types can be invented
and implemented by developing modules that are dynamically loaded by
the messaging server.

Consider the way system calls work in Symbian OS. There are two types
of system call. An executive call makes a request for the kernel to execute

3 Note that the origins of Symbian OS can be found in EPOC (as stated in Chapter 1) and
EPOC was not designed for smartphones. However, when Symbian OS was designed as a
replacement for EPOC, it was indeed intended for smartphones and was designed with this
target platform in mind.

SUMMARY 43

an operation in privileged mode on behalf of the user-space requestor. An
executive call causes a software interrupt, which is serviced by branching
the operation into kernel code. The interrupt is serviced and control is
passed back to the user. Executive calls can modify kernel-space objects
but cannot create or delete them. Operations such as memory allocation
or thread creation need to be done by kernel-server requests. There is
a server that protects kernel resources and requests to manipulate those
resources need to go through that server. Server requests are themselves
executive calls.

• The kernel structure of Symbian OS has a microkernel design. Minimal
system functions and data are in the kernel with many system functions
spread out into user-space servers. The servers get their jobs done by
making executive calls into the kernel when necessary.

• Symbian OS supports the use of virtual machines: the implementation
of a ‘computer within a computer’. The implementation of the Java
programming language and the run-time environment needed to run
Java is done through this mechanism.

• Communication structures in Symbian OS are easily extended. Mod-
ules can be written to implement anything from user-level interfaces
to new protocol implementations to new device drivers. Because of
the microkernel design, these new modules can be introduced and
loaded into the operation of the system dynamically.

• Symbian OS has been designed at its core with APIs specialized for
multimedia. Multimedia devices and content are handled by special
servers and by a framework that lets the user implement modules that
describe new and existing content and what to do with it.

2.4 Summary

This chapter has been about the concepts and structures that make up the
character of an operating system. Operating systems evolve over time as
the hardware they run on and the needs of users evolve.

We discussed several concepts that are implemented in operating
systems. We looked at system structures, including kernels, the interrupt
system and how applications become processes running on a CPU. We
looked at the different kinds of device I/O and how interrupts are used to

44 THE CHARACTER OF OPERATING SYSTEMS

implement them. We had an overview of storage structures, including the
storage hierarchy and the ideas involved in caching and file systems. We
looked at system protection strategies, from protection modes to ways
of protecting memory and CPU usage. We reviewed communication
structures, implemented by sockets.

The chapter concluded by taking examples of operating system char-
acter: we looked at IBM OS/360, Unix and Symbian OS.

The next chapter begins our closer look at these operating system
components by looking at processes and scheduling.

Exercises

1. Consider the following services and classify them as taking place in
the kernel or outside the kernel. Do this for both microkernel and
hybrid kernel systems.

a. Opening and closing files

b. Writing to a register

c. Reading a memory cell

d. Receiving a text message

e. Playing a sound bite.

2. Software interrupts are useful for many things. We discussed timers
as an example of software interrupts. Think of other examples in
a computer system of software interrupts. (Hint: Think of software
interrupts as events.)

3. With software interrupts, what form does the interrupt vector take?
Where is it stored?

4. Context-switching is expensive because of the ‘context’ that is
switched. Try to identify as many parts of this context as you can.

5. Often people think of ‘protection’ as ‘security’. We discussed ways
to protect user programs and the operating system from each other.
In what ways could the protection mechanisms we discussed be a
form of security?

6. We gave a few examples of device I/O types. Can you develop
more examples for each I/O type? Explain your answers.

EXERCISES 45

7. Which of the following operations should be done in the kernel as
privileged mode?

a. Reading and writing files

b. Sending a text message

c. Taking a picture with the camera

d. Notifying a program about data received

e. Switching processes on the CPU

f. Reading from a memory cell.

8. What would a system look like without a privileged mode? Could
such an operating system be useful? How would it be possible to
implement protection?

9. Systems typically have multiple caches built into the hardware; we
called them L1 and L2. Why is multilevel caching useful?

10. Survey the concepts and structures we discussed in this chapter.
In what ways would hardware be useful to help implement a
specific structure? For example, how could hardware help with
context-switching or memory protection?

11. How would you classify a kernel that implemented the various
forms of the OS/360 operating systems?

12. As we discussed, Symbian OS uses two levels of kernel space
operations: the executive call and the kernel-server request. Why
would this be necessary? Why should executive calls be barred
from creating objects in the kernel? (Hint: think about the usefulness
of the servers in a microkernel.)

13. Symbian OS has an object-oriented design. Survey our discussion
of Symbian OS and flag places where object orientation would
complement the design strategies.

14. Symbian OS is designed for use on smartphones. Consider a smart-
phone platform and identify the forms of communication that it
would use. For each of these forms of communication, identify the
type of device I/O that could be used to implement that form.

15. Consider your answer to the previous question. Must Symbian OS be
a real-time operating system? Are there portions of system operation
that do not have to operate in real time? How does the microkernel
design of Symbian OS help reduce the need for real-time operation?

3
Kernel Structure

A computer network is functioning at its best when no one notices it.
When it is working properly, computers communicate with each other
with ease and users pay no attention to how their web browser works or
that email must travel long distances to get to their computers. In reality,
there are many subsystems that co-operate to make a working network
function properly. When a web browser requests a web page and it
simply appears, it is easy to ignore the complicated layered structure that
underlies the ease of a network’s function.

The same can be said of the kernel structure of an operating system.
When it works well, it is easy to ignore that it is even there. However, the
structure of an operating system’s kernel is at center of its character and
essential to its proper function. It is useful to examine what a kernel is
comprised of and how a kernel works. This chapter examines a kernel in
several ways. We discuss how a kernel is put together, that is, what parts
make up a kernel. We then discuss how system calls interact with kernel
code and what paths a system call might make through the kernel. We
follow with a similar discussion about interrupts. We wrap up the chapter
by taking a hard look at an example: the Symbian OS kernel.

3.1 How a Kernel Is Put Together

The design of a kernel is very important to the performance of the
computer it runs on. We discussed kernel design – especially monolithic
kernels and microkernels – and we noted how certain kernel designs work

48 KERNEL STRUCTURE

better on specific types of computer platform. For example, we saw how
kernels with a microkernel design work better on smartphone devices.
Symbian OS is an operating system that has a microkernel architecture. It
is great example of a kernel that has a layered structure. We provide an
overview of that structure in this section.

It is interesting to look at kernel design as a set of pieces. Only
some of those pieces are actually running at any given time. From this
perspective, there are two types of component that a kernel is built from:
active components and passive components. We examine them in this
section.

Kernel Structure

A kernel is built in layers. The layers of a kernel structure reflect the
functionality of that part of the kernel. Inner layers implement basic,
primitive functions in such a way that these basics execute very quickly.
Innermost layers are also the most privileged layers, able to access all
components of the operating system whenever they need to. As you
look from inner to outer layers, the functions of the layers get less
primitive and privileges are taken away; you move out toward user-mode
applications requiring fewer kernel-mode privileges and functionality.
Figure 3.1 shows the general Symbian OS kernel structure.

• The nanokernel provides some of the most basic functions in Symbian
OS. Simple threads operating in privileged mode implement services

Nanokernel

Symbian OS kernel

Microkernel Servers

Wserv

etel

esock

MMF

User-mode Applications

Figure 3.1 Layers in the Symbian OS kernel

HOW A KERNEL IS PUT TOGETHER 49

that are very primitive. Included among the implementations at this
level are scheduling and synchronization operations, interrupt han-
dling and synchronization objects called mutexes and semaphores
(we discuss these later). Most of the functions implemented at this
level can be pre-empted. Functions at this level are so primitive (so
that they are fast) that the nanokernel must not implement any kind of
complicated operation, such as dynamic memory allocation.

• The Symbian OS kernel layer provides kernel functions needed by the
rest of the operating system. Each operation at this level is a privileged
operation and combines the primitive operations of the nanokernel to
implement more complex tasks. Complex object services, user-mode
threads, process scheduling and context switching, dynamic memory,
dynamically loaded libraries, complex synchronization objects and
interprocess communication are just some of the operations imple-
mented by this layer. This layer is fully pre-emptible and interrupts
can cause this layer to reschedule any part of its execution – even in
the middle of context-switching!

• The server layer is typical of microkernel architectures. Operations
that do not require complete privileged operations or that have a
complex implementation are pushed out to servers. Server-based
functions typically govern specific areas of functionality, such as
handling the display or working with sockets, and usually run as
user-mode services. These areas of functionality require kernel-based
operations only sporadically and therefore can sit outside the Symbian
OS kernel layer.

• The user-mode applications run almost completely in user mode and
perform kernel-based operations either by interacting with servers or
by making system calls that activate kernel-mode activity.

It is instructive to look at the kernel structure from another perspective. It
is easy to think of the kernel as an always-on, executing set of code that
runs alongside application programs. This is not the case. Only part of
the kernel runs constantly; much of the kernel is implemented passively,
set into operation by system calls and interrupt handlers.

Active Kernel Components
Active kernel components are those parts of the kernel that execute along
with other processes in the operating system. These kernel processes

50 KERNEL STRUCTURE

typically have higher priorities and high levels of protection. They are
usually multithreaded to allow for multiple threads of access from threads
of execution in various processes.

Active kernel components are active so that they can monitor the
system in real time. They field requests for kernel services, service
those requests, load and unload system modules (the passive kernel
components), and perform all the bookkeeping that needs to be done.
Active components assist with the working of passive components as they
field requests and implement the requests in kernel mode. Consider some
examples.

• Two processes want to communicate. One of their implementation
choices is to pass data through global memory from one process
to another. This global memory is maintained by the kernel and
access is gained through kernel requests. Each process makes a
system call that sends a request to the kernel process. As we see in
Chapter 6, this request requires a mechanism called a semaphore that
coordinates how each process accesses the global data. All of this
access, from semaphores to global memory reading and writing, must
be maintained by active kernel components.

• An application begins execution by building a context, then switching
into and out of contexts as the CPU is multiplexed between pro-
cesses. Context-switching is managed by active kernel components
in response to a voluntary relinquishing of the CPU, some kind of
I/O blocking or a timer event. Again, bookkeeping must be done and
memory must be managed to make sure processes switch contexts
properly. In between process switches, other system duties must take
place and the active components implement these as well.

• An application wishes to manipulate an I/O device, for example,
sending data to an IR port. Active kernel components are built with
varying degrees of peripheral support. Monolithic kernel structures
typically have a built-in set of device implementations. Microkernel
architectures, by contrast, are typically independent of peripheral
implementations. In all cases, it is highly likely that code is loaded
dynamically to implement various portions of device I/O. The active
components of the kernel are involved in module loading and unload-
ing and do these tasks as required by service requests. In Symbian OS,
for example, sending data through an IR port results in the loading of
several I/O drivers in sequence, in response to several kernel requests.

HOW A KERNEL IS PUT TOGETHER 51

Let’s consider this last example a little more closely. In a freshly booted
system, the active components of a microkernel-based operating system
have a very small memory footprint. For example, the executing kernel in
Symbian OS v8 uses about 200 KB of memory when it starts up. A request
to use the IR port on a device causes a series of events, orchestrated and
implemented by the executing kernel code. The executing kernel needs
to add layers of code to implement the data exchange over IR. None of
these layers are initially in memory and all of these layers represent an
initial performance hit as the kernel code initializes device drivers and
starts communication.

The size of the executing kernel components have a direct impact on
system performance through the use of memory and the time it takes to
load additional modules that implement various features. A monolithic
kernel structure minimizes the loading of implementation layers. Much
of the functionality of device I/O, for example, is built into a monolithic
kernel. Response time is initially quicker because modules do not need to
be loaded. However, because many modules are loaded that are perhaps
unneeded, memory requirements go up dramatically. Unix operating
systems typically boot an active kernel that requires 10 MB to 60 MB
at boot time. Microsoft Windows has a smaller requirement, but it is
typically at least 8 MB of memory.

Monolithic structures come preloaded with many of the implemen-
tations required to run an operating system. The structure is very static,
because support for various hardware is built in. On the other side of the
size spectrum, microkernel structures take up much less memory upon
boot and their structure is more dynamic. Microkernels usually support
a ‘pluggable’ architecture with support for hardware that can be loaded
as needed and ‘plugged into’ the kernel. Thus, microkernels are more
flexible – code to support new hardware can be loaded and plugged in
any time – but monolithic structures are faster – they avoid the overhead
of the pluggable interface).

One way to enhance the performance of all types of active kernel
components is to give multithreaded implementations. Remember that
the active part of the kernel is an executing process like the other
processes in the system. Therefore, it can have multiple threads of
execution running inside a single context. The benefit of multithreading
to kernel implementation is that each thread can execute a request for
kernel service, resulting in multiple requests being serviced at the same
time. This is especially helpful when multithreading is implemented for

52 KERNEL STRUCTURE

system modules – such as microkernel servers – and for user code. When
all of these threads of control are capable of requesting kernel services,
the kernel must be multithreaded to support them.

Consider a user-mode application that requests a kernel-mode opera-
tion, for example, to load a set of data from a flash memory card. As
the kernel is doing this, a phone call comes in and must be serviced. A
kernel with a single thread would have to select one of these requests
to work on and queue the other request for later service. The system
could prioritize the requests by making the phone call (a real-time
operation) more important and thereby making the user-mode request
wait. However, a multithreaded kernel could service both operations at
the same time, handling device interrupts with a thread separate from
user-mode requests. While the CPU must still be shared between these
two requests, the end result is that service is faster because both operations
are in memory at the same time.

Passive Kernel Components

Passive kernel components are those parts of the kernel that are not
continually executing but are available for execution on behalf of service
requests. These components are present in the form of libraries and
dynamically loaded modules that contain code that implements system
calls and interrupt service routines. It is through these components that
user-level code can get kernel-level tasks done on their behalf.

These elements of the kernel are called passive because they do not
execute on their own. They are spurred into execution when a system
call is made or an interrupt is generated. They contain code that either
operates on its own in kernel mode or communicates with the active
components of the kernel. There are several examples of this type of
kernel component.

• Device drivers are loaded dynamically by some kernel implementa-
tions when devices are used. In some operating systems – for example,
Symbian OS – device drivers themselves are broken down into com-
ponents that are loaded individually. Symbian OS, for example, uses
logical drivers that implement more abstract properties of a device
(for example, operations such as read and write, on and off) and
physical drivers that handle the specific implementation of the logical
operations with specific devices.

SYSTEM CALLS AND THE KERNEL 53

• Microkernel servers are usually run only when needed and terminate
when their services are no longer required. Consider, for example,
a smartphone whose user was exercising many applications that use
many different servers. As use continued, more servers would be
started to service needs. These servers might only be required for a
short time – to coordinate the use of Bluetooth, for example – and can
afterwards be terminated. This keeps the tables of the kernel cleaner
and emptier.

• Passive behavior can sometimes be used to enhance performance.
For some microkernel implementations, servers are started at boot
time and run without shutting down. Because they only react to
requests, they do not poll and are not actively executing at other
times. Therefore, there is no cost to the CPU in leaving these servers
running (although there is a memory cost because they consume
memory resources permanently). Symbian OS implements servers in
this manner.

• Situations where the type of information can change dramatically
often require dynamic modules. For example, wireless messages for
a smartphone are of very different types. Diverse message types are
handled by dynamically loaded libraries. In Symbian OS, these are
known as message type modules, or MTMs. There are special MTMs
for email messages and SMS messages. There are many abstractions
that are implemented as passive kernel components.

3.2 System Calls and the Kernel

We have seen processes that run in user mode and how processes and
libraries can cause execution in kernel mode. The interface between
these two modes is provided by system calls. These are function calls
that cause requests to be made to the kernel and the kernel to execute on
behalf of those requests.

System calls constitute an extra layer between applications and inner
layers of the kernel structure. This extra layer has several advantages: it
provides a layer of abstraction that makes programming easier, freeing
users from knowing low-level details about the system and hardware;
it increases efficiency and security, because the kernel can coordinate
access to hardware and protect processes from each other; it makes

54 KERNEL STRUCTURE

programming code more portable, since the code works on any system
that supports the same set of interfaces.

System calls are implemented as software interrupts. A system call is
typically implemented with a type of hardware instruction that causes a
special interrupt handler to be invoked. The implementation either identi-
fies the system call with an index into a table maintained by the operating
system or causes a jump to specific handler code. In either case, the imple-
mentation causes the system to go into privileged-mode operation and
implement a preprogrammed system function. Obviously, there needs to
be many of these specially-handled operations; for example, the ARM
processor reserves 24 bits to identify which system handler to invoke.

It is important to point out that the use of kernel mode and user mode
is enforced by the operating system as a way to protect resources. It
is easy to think that you can perhaps manipulate a device better than
the kernel can and that anyone could summon up operations in kernel
mode. However, the kernel’s role is to coordinate access and it only has a
certain number of operations that are done in kernel mode. Most systems
do not allow application code to perform kernel-mode actions, that is,
to execute the instruction necessary to turn on kernel mode. However,
various systems enforce this in very different ways.

That last point is especially true in Symbian OS. Since Symbian OS
v9.1, Platform Security has implemented capabilities: any request to the
kernel must be accompanied by the capability to make that request.
This type of security makes sure that, while a user-mode program cannot
simply make the kernel do anything, even the fixed number of tasks in
the kernel are protected. Security issues and operating system protection
are discussed in Chapter 14.

3.3 Interrupt Implementation

As we have mentioned before, an interrupt is a signal of some sort,
typically generated by hardware, that is used to inform the kernel of some
condition that needs attention. Typical interrupts are asynchronous device
I/O notifications and initiation of device changes (such as allocation of
memory or user-initiated read or write). Because interrupt service involves
a change in system resources, servicing an interrupt is a kernel-mode
operation.

The servicing of an interrupt is much like a kernel request from user-
side code. The interrupt itself – the signal – can be seen as a request for

INTERRUPT IMPLEMENTATION 55

service. There are two important differences, however, between interrupts
and user requests. Interrupts must have a high priority and the servicing
of interrupts is defined by a routine in the kernel’s memory supplied by
the device doing the interrupting.

Interrupts are typically designed to have some indication of priority.
This is a recognition that some interrupts are more important that others.
For example, an interrupt from a timer to force a context switch is probably
more important than an interrupt from a keyboard that a character has
been typed. A device’s interrupt priority is typically selected based on
two criteria: its latency requirements and its interrupt execution time. The
latency requirement is the maximum time within which an interrupt must
be serviced. (Usually, if it is not serviced in this time, some event is lost
or performance is degraded seriously.) The interrupt execution time is
the time required to service the interrupt. Interrupts with a short interrupt
latency time must have a short interrupt service time.

Interrupts are serviced in a kernel by an interrupt service routine (ISR).
There are many ISRs (because there are many types of interrupt) and only
a few need to be recognized by the kernel at any given time. Therefore,
most kernel designs maintain a vector table that contains the interrupt and
a pointer to its ISR. This table is finite and is coordinated with the number
of possible interrupt sources. When an interrupt occurs, the address of
the ISR is looked up in the vector table and that ISR is called.

It is important to note that, while an ISR runs on the kernel side of
an operating system, the context – or state – of the system cannot be
assumed. An interrupt can occur at any time and the system could be in
any state when the kernel is interrupted. This inability to access any kind
of context information restricts what can be done in an ISR.

Interrupts are typically implemented by an operating in several phases:

1. The preamble phase saves the context of the executing process and
prepares to execute the ISR.

2. The second phase determines which code to execute on behalf of the
interrupt request (it dispatches the interrupt). This is either a built-in
routine (in the case of a system class) or an external piece of code.

3. The third phase is the execution of the system call or ISR code,
handled by privileged-mode code. Typically, this phase is itself
interruptible.

4. The last phase implements the closure of the process (the ‘postamble’
phase). This typically amounts to a reversal of the preparatory phase:

56 KERNEL STRUCTURE

the context is switched back to the interrupted process or storage is
restored and execution resumes where it left off.

3.4 Completing the Kernel Design in Symbian OS

The smartphone platform is a unique one. It requires many real-time
services, but also must provide an environment that is similar to a desktop
system in its richness. In order to respond to both of these requirements,
the Symbian OS kernel has a more complicated structure than the one
outlined earlier in this chapter. In this section, we expand our look at
the structure of the Symbian OS kernel by fleshing out a complete kernel
structure.

The kernel structure is shown in Figure 3.2. It is organized in relation-
ship to how system calls are made, that is, the path a user-mode program
must travel to execute privileged code in the kernel.

The Symbian OS model starts by working with the peripheral hard-
ware. Several kernel components communicate directly with a smart-
phone’s hardware.

• Device drivers, the interface for program code to work with devices
(see Chapter 2), are split into two pieces in Symbian OS: the phys-
ical device driver (PDD) interfaces directly with the hardware and

Peripheral hardware

ASSP
LDD
PDD

Extension
Memory model

Symbian OS kernel
Nanokernel

Microkernel servers

Personality layer
RTOS

File server EFSRV

User thread

User library EUSERHAL

Privileged

User mode

Figure 3.2 Structure of the Symbian OS kernel

COMPLETING THE KERNEL DESIGN IN SYMBIAN OS 57

the logical device driver (LDD) presents an interface to upper layers
of software. In addition, the kernel can interact directly with hard-
ware through the application-specific standard product (ASSP), which
implements a number of components through a standard interface (so
a specific driver is not needed). Finally, real-time components of the
operating system – those specifically involved in phone calls – can
also interact directly with the phone hardware when they run in a
special mode (called the ‘personality layer’).

• The memory model used by the operating system is a model of how
memory is organized on a device and how the operating system works
with it. We deal with memory management and memory models in
Chapter 7. Several memory models are possible in Symbian OS and
these are implemented by the Symbian OS kernel.

• The Symbian OS kernel relies on the nanokernel, but is separate
from the real-time portions of the operating system. It implements the
various memory models that platforms require.

• The nanokernel implements the most basic and primitive parts of
Symbian OS and is used by the phone part of the operating system as
well as the larger kernel layer.

• The real-time OS and personality layers are specifically designed
to implement phone functionality. The RTOS implements the GSM
functions of a smartphone in direct connection with the hardware.
The personality layer allows a smartphone manufacturer to use a
different implementation of phone function (say, analog functionality)
by using the implementation from another operating system or device
and using a personality layer to connect that implementation to the
GSM functionality of the smartphone. The personality layer then acts
as an interpreter, translating the non-GSM implementation into an
implementation the smartphone can understand.

• User-mode layers include microkernel servers as well as user appli-
cations. As we have discussed before, these interact with the Symbian
OS kernel to request and initiate kernel-mode operations.

There are many paths through the Symbian OS kernel structure. A
user-mode application might go through the file server, which would
make a Symbian OS kernel request, which would require device I/O,
which would make use of the nanokernel. A phone call might initiate
functions in the RTOS, which would interact directly with the hardware.

58 KERNEL STRUCTURE

An application might simply cause arithmetic instructions to execute and
might not use any kernel functions at all.

Note that we did not mention the extension portion of the kernel
structure. Extensions are device drivers that are loaded and executed
when a phone boots up. They interact with the kernel and can cause
kernel-mode operation. However, they represent layers in the kernel
that extend functionality, but do not directly interact with user-mode
applications. For example, the ASSP layer is an extension.

3.5 Summary

This chapter has been about how kernels are structured and how the
various parts of a kernel interact with each other and with user-mode
code. We began with a general look at kernel components from a layered
perspective and the perspective of active and passive components. We
then defined system calls and interrupts in relation to the kernel. We
completed the chapter by taking a fresh and complete look at the
Symbian OS kernel structure, from the hardware to user-mode threads.

In the next chapter, we begin to look at memory models and how
memory must be organized to use it effectively.

Exercises

1. Consider the following services (seen in Chapter 2) and classify them
as to where their implementation would take place in the kernel
structure.

a. Opening and closing files

b. Writing to a register

c. Reading a memory cell

d. Receiving a text message

e. Playing a sound bite.

2. Reconsider the following question from Chapter 2 and pinpoint the
place these operations should happen in the kernel structure. Which
of the following operations should be done in the kernel as privileged
mode?

EXERCISES 59

a. Reading and writing files

b. Sending a text message

c. Taking a picture with the camera

d. Notifying a program about data received

e. Switching processes on the CPU

f. Reading from a memory cell.

3. Consider a software timer that would be used by software as a ‘wake-
up device’ or an alarm that would send a software interrupt when
the timer goes off. Place a priority on the timer interrupt. Name some
events that are more important than a timer event. Name some events
that are not as important.

4. Should a timer be a real-time or a system-time object? In other words,
should it be implemented by the RTOS or by the system kernel?
Explain your answer.

5. Consider the phases of interrupt implementation (Section 3.3). We
mentioned that ISR execution is pre-emptible. Should the other steps
be pre-emptible? Give reasons for your answer.

6. Consider again the diagram in Figure 3.2. Why is the nanokernel on
top of the Symbian OS kernel, which is on top of the memory model?
According to Figure 3.1, the nanokernel is the innermost layer. Can
you describe why the diagram in Figure 3.2 is accurate?

7. Symbian OS is an extensible operating system. If someone wanted to,
they could write code that would run completely in kernel mode for
each of its operations. Explain how this could happen – especially
when we described system calls as built into the operating system.

8. Describe why you might want to replace passive components of an
operating system with components that you could write. What could
happen if this were done maliciously?

9. Consider how platform security in Symbian OS might be effective.
Describe how forcing a system call to present capabilities before it is
serviced might protect a smartphone from harmful effects of software.

4
Processes and Threads

Many people enjoy the circus. One act that I remember seeing as a child
is a man who kept plates spinning on sticks. He would start one plate
spinning, then add more and more until he had an incredible number
of plates going at the same time. He would spend his time running from
plate to plate, making sure all were spinning and none were rotating too
slowly. While he was running himself ragged, all the plates amazingly
stayed in the air. In a sense, this circus performer is a shared resource,
powering all the plates in the operating environment. If he spent his time
getting a single plate to spin perfectly, none of the other plates would get
their turn. But if we accept the fact that plates do not spin perfectly and
we allow plates to slow down a bit, we can get an environment where
all plates are spinning.

Computer operating systems are like the plate spinner. They have a
limited set of CPUs (usually only one) that are to be used by many
processes at once. If an operating system were to let one process run to
completion before others were allowed to use the CPU, the result would
be a slow system where very little would get done. If all programs that
wanted the CPU were allowed to try to grab it, there would be chaos
and very little would get done. Therefore, we must force all programs to
cooperate and share the CPU in an orchestrated, organized fashion. In
doing so, we realize that a single program might take longer, but overall,
all programs can use the processing power, in what looks like a parallel
fashion.

The concept of a process is part of this orchestrated system. A process
is a program that is in a state of execution. It forms the center point

62 PROCESSES AND THREADS

of a system that shares the CPU and grants access to all programs that
need it. This chapter examines this system of sharing the CPU and the
components that make it up. We start by looking at the big picture
and giving an overview of the components of the process model. We
then focus on processes and how they can be manipulated – both by
the operating system and by users. We conclude the chapter by looking
specifically at how the process model works on mobile phones based on
Symbian OS.

4.1 An Overview of the Process Model

Before we discuss how the process model applies to various architectures,
we should first define the components of the model. The discussion of
processes sometimes suffers from what to call these components. If we
consider all processes, we can define several different types that could run
on a system. Batch systems run jobs that complete without interruption.
In Chapter 2, we defined user programs or applications as programs that
interact with users and run on time-sharing systems. We will refer to every
executing program on a system as a process; a process may execute on
behalf of a user or the operating system. Thus, any executing code (a job,
a program or an application) is characterized as a process.

Processes

As we stated previously, a process is an executing program. A process is
different from the program that defines it in several ways. First, a process
is in a state of execution. This means that its code is being executed (or
is waiting to be executed) by the CPU. Second, a process is obviously
made up of more than just program code. A process is defined by code
that executes, called the text section, but it is also characterized by a
set of data (usually program variables), called the data section of the
process, and the state of other hardware components it needs to run.
These hardware components include the program counter (which holds
the address of the instruction being executed in the process), temporary
registers used to execute the process’s instructions, and the program stack
(containing data required to run the program from a language point of
view: parameters, return addresses and local variables).

The difference between a program and a process demonstrates itself
in many ways. For example, a program is a passive entity; a process

AN OVERVIEW OF THE PROCESS MODEL 63

is an active entity. A program can be thought of as the definition of
a process; several processes that derive their definitions from the same
program may be running on a computer. Each of those running processes,
although associated with the same program, is different and unique. These
processes would have the same text section, but their data sections would
be different.

Process state

As it executes, a process is said to be in one of several states (see
Figure 4.1). The state of a process is defined by what the process is doing
at any given moment. We define process states as follows:

• new: a process being created is in the new state – its text section is
constructed from the code in a program; its data section and stack are
allocated in memory; and hardware components are initialized

• ready: a process in the ready state is available for running on a
processor but waiting for execution

• running: a process in the running state is executing on a processor – it
is manipulating the hardware allocated to it and the system is being
altered according to its instructions

• waiting: a process in the waiting state is suspended and waiting for
some external event to occur; the external event could be anything
from receipt of an interrupt to the completion of an I/O request

• terminated: a process in the terminated state has completed its exe-
cution on a processor; when a terminated process is removed from
system tables and data storage, it ceases to be a process.

Notice that the arcs in Figure 4.1 are labeled with the operation that
is performed to move a process between the states at either end. For
example, a process moves from ‘new’ to ‘ready’ through the process of
creation. Notice, too, that the diagram describes the path taken between
states. A process cannot move from the ‘new’ state immediately to a
‘running’ state. Likewise, a process cannot be waiting for an external
event and move directly to the ‘terminated’ state. Finally, it is important
to realize that, while only one process can be running on a single
processor at any given moment, many processes can be in the ‘waiting’
and ‘ready’ states.

64 PROCESSES AND THREADS

created

exit

scheduled

interrupted

I/O or event
wait

event
completed

Ready

TerminatedRunning

Waiting

New

Figure 4.1 Process states

Process control block

There are several system components associated with a running process.
These components are recorded by the operating system in a process
control block (PCB), as shown in Figure 4.2. The PCB contains and
records the various pieces of information that represent a process to the
operating system.

The components of a PCB can be described as follows:

• process state: the current state of the process as it is manipulated by
the operating system

• process ID: an identifier – usually an integer – that uniquely identifies
the process in the system

• program counter: the program instruction being executed

• CPU registers : other registers used by the executing program

• parent ID: the identifier of the process’s parent process

• children IDs: the identifiers of the process’s child processes

• scheduling information: information pertinent to how often the pro-
cess can use the processor

• memory management information: this information is important for
the protection of memory areas; it includes the values of the base and
limit registers, page table identifiers, etc.

• accounting information: timing information used by the operating
system, including the amount of time used by the process and the
limits on execution

• I/O status : the status of I/O devices that are being used by the process.

AN OVERVIEW OF THE PROCESS MODEL 65

process state

process ID

program counter

CPU registers

parent ID

children IDs

scheduling info

memory management info

accounting info

I/O status

Figure 4.2 A process control block

The PCB represents all facets of a process to the operating system. As
information about processes is stored by the operating system, the PCB
serves as the unit of storage. Each process, therefore, has its own PCB
and, implied by looking at a PCB, its own set of registers, memory space,
accounting entries, I/O interactions, and so forth.

Process scheduling

A process moves through all the states in Figure 4.1 while executing
on a system. However, as we stated before, a process shares the CPU
with all other processes that are in the ready state. The operating system
scheduler is the element in an operating system that takes a process from
the ready queue and allows it to execute for a while. The act of moving a
process from state to state and eventually to termination is called process
scheduling.

66 PROCESSES AND THREADS

As processes are created and enter the ready state, they enter a queue
called the ready queue. The job of the scheduler is to take processes
from this queue and allow them to execute for a time. This queue is
represented in the operating system as a linked list of PCBs (we can think
of each PCB as being augmented to include pointers to implement this
linked list). All processes in the list that represent the ready queue are
ready to execute.

The act of scheduling is represented by the removal of the head of
the ready queue. Once a process is finished executing on the CPU, it
is removed from execution. There are several ways to be removed from
execution: a process could have exhausted the time slot it has been given
or it could be blocked while waiting for an I/O event. The process’s
PCB is placed in the appropriate queue to await more processing. There
is, therefore, more than one queue in a system. Processes waiting for
external events are placed in a device queue. Each device has its own
queue. Processes could be waiting for a system event not tied to a device,
since there is an event queue for these processes.

So moving between states in an operating system amounts to moving
PCBs between queues. A scheduler, then, moves processes from the
ready queue to execution and from execution to one of the queues
on the system. Scheduling requires working with many aspects of the
operating system many times over. Chapter 5 deals with the intricacies of
scheduling in more detail.

Implementation concepts

Figure 4.1 shows that processes must be created to enter the system.
When it is created, a process is given a unique identifier, a process ID.
The process ID, usually an integer, makes this process accessible in the
table of processes running on the system.

A process must be created by the operating system – operating in
kernel mode – or by another process. This relationship between processes
is often characterized as a parent–child relationship. Parents create child
processes, which go on to create other child processes, and so on. The
entire collection forms a kind of family tree.

This hierarchical relationship is exploited in a number of ways. For
example, it is typical that if a process receives an interrupt, then its
children also receive that interrupt. It is also typical that a parent process
cannot terminate until its children have terminated (while this behavior
can be changed by system calls, it is the default behavior).

AN OVERVIEW OF THE PROCESS MODEL 67

A zombie process is ready to terminate but for some reason cannot
inform its parent of its termination. This could happen if the parent process
was aborted for some reason. The child process tries to inform the parent
of its termination and waits for the parent to respond. Since no response is
forthcoming, the child process stays forever in the waiting state. It cannot
terminate, but it cannot move to the ready state to be executed. Such
processes are not unusual on large systems with much activity.

Threads
As an executing program, a process has a rather large ‘footprint’ on a
computer system. It commands a system’s resources and acts like it is the
only program being run on a computer. Its PCB might take up quite a bit
of process-table space and it might take a lot of time to move the process
into and out of the running state. One of the components of a process
is the thread of control – the set of instructions being executed on behalf
of the program. This thread is orchestrated by the program counter and
represents an executing program.

Consider the situation where a process has multiple threads of control.
The other parts of the process remain the same: one PCB governing
the process’s information, one memory space, one set of accounting
information, and so forth. Now, within a single structure, a process could
run multiple tasks at one time with these multiple threads of execution.
These tasks share the resources represented in a process’s structure
and would have to do so carefully. Such multithreaded processes have
potential for executing faster than processes with a single thread.

Not all components of a process are shared. Threads do have some
components they keep private (see Figure 4.3). For multiple threads to
have their own execution space, each thread must command its own
program counter and its own set of registers. Each thread becomes an
entity that can be scheduled and has a set of interrupts that it responds to.

Multithreading communications

Let’s say that you are using the Internet and begin to browse some
web pages. Your browser program executes on your behalf by starting a
process and moving that process through process states until it begins to
share the CPU with the other processes on the system. You type a URL
into the ‘Address’ field in the browser and click the ‘Go’ button. You now
expect your browser to go and fetch a web page from the Internet and
display it.

68 PROCESSES AND THREADS

Code Segment Data Segment

Input/Output File Space

Registers Program Stack

S
in

gl
e

T
hr

ea
d

Code Segment Data Segment

Input/Output File Space

Registers

T
hr

ea
d

#1

Registers

T
hr

ea
d

#2

Registers

T
hr

ea
d

#3

Registers

Program
Stack

Program
Stack

Program
Stack

Program
Stack

T
hr

ea
d

#4

Figure 4.3 Singlethreaded and multithreaded processes

Consider what would happen at this point if your browser used a single
thread of control. The browser interface would freeze while the process
fetched and displayed the web page you requested. In fact, because web
pages often result in many files to be fetched (for example, image and text
files), the page would render quite slowly, because only one file would
be fetched, then rendered, at a time.

Most web browser implementations are multithreaded. You can
demonstrate this for yourself. Try viewing a complex website – one
with many graphics – and use the menu system on your browser. Try
downloading a web page then download it again when the first time is
only halfway through. Even simple things show multithreading: roll your
mouse over a link in a web page while it is downloading and you will
usually see the cursor change. All of these activities would not be possible
without a multithreaded implementation.

Consider the web server that answers the requests that web browsers
make for web pages. If a web server used only a single thread, only one
web page request would be serviced at a time. Requestors would have
to wait a long time while the components of a single web page were
delivered.

After considering these illustrations, you might think that multiple
threads are the best way to program in applications. This is usually true.

AN OVERVIEW OF THE PROCESS MODEL 69

However, there are times when a single thread is more beneficial. This is
usually the case when a resource, such as a device or special sections of
memory, is shared but must be accessed carefully – usually by one thread
at a time. To do otherwise would corrupt the resource or the data derived
from it. We discuss concurrency in operating systems more in Chapter 6.

Benefits of multithreading

Processes benefit from multithreading in a number of ways:

• Sharing of resources: threads share the memory space, the operating
system resources and even the code of the process to which they
belong.

• Saving resources: because threads share resources amongst them-
selves and with the process that spawned them, expensive and
time-consuming allocation of new resources is not required for each
thread; threads often require the same kind of attention that processes
do but they require fewer resources which makes operations such as
creating and scheduling a thread much faster.

• Interacting with users : multithreaded applications can interact with
users while doing other things; if there are operations that require
waiting or computing for a long period of time, multiple threads allow
an application to attend to these long operations while still making
the user feel as if she is in control. Because multiple operations can
be going on at the same time, applications feel quicker and more
responsive.

• Accessing multiple processors : if a computing system has multiple
processors, multithreaded application can take advantage of this;
multiple threads, like multiple processes, can each be scheduled to
run on a separate processor. True parallelism can be achieved when
separate threads of a single application run on separate processors.

User and kernel threads

When an application is multithreaded, it is composed of user threads.
These threads run on behalf of an application, which is itself running
at the user level. Threads that run on behalf of users at the user level
consume user resources and interact with the system at the user level.
The kernel is not needed until system calls are made.

70 PROCESSES AND THREADS

If an operating system supports user-level multithreading, the threading
of the kernel affects how multithreaded applications execute. As an
analogy, consider a multilane highway that merges to a single lane as it
goes through a small town. When the highway is busy, merging all those
lanes of traffic onto the single road causes huge backups as cars in each
lane wait their turn to enter the single road.

In a similar manner, some kernels that support multithreading at the
user level support only a single thread at the kernel level. This is called
a many-to-one model of kernel threading (see Figure 4.4a). Many user
threads compete for a single thread of kernel control. As with the highway
example, the result is a backlog of kernel requests and much waiting on
behalf of user threads.

In a many-to-one system, applications still get some user-level benefit
from multithreading but when they interact with the kernel there is no

ke
rn

el
 th

re
ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

us
er

 th
re

ad

(a) (c)(b)

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

Figure 4.4 Kernel thread models

AN OVERVIEW OF THE PROCESS MODEL 71

additional benefit. In fact, many systems that use singlethreaded kernels
(for example, Microsoft Windows NT) restrict the number of user threads
that can be used at any one time. Note that, in this model, a single thread
can block an application. If multiple threads need the kernel, only one
gets through and the rest block.

An alternative to a many-to-one model is a model where the kernel
spawns a new thread for each user thread that makes a kernel-level request
(see Figure 4.4b). This is called a one-to-one model of kernel threading.
Each kernel thread services the requests from a single user thread. This
increases concurrency and eliminates the backlog of requests. In the one-
to-one model, each thread in an application could be serviced, which
means an application does not block when a single thread needs kernel
services. In this model, threads are created and destroyed based on the
requests that come in. The overhead of creating kernel threads can start
to affect the performance of applications. If an application requires many
kernel services, it also bears the burden of creation and destruction of
kernel threads. For this reason, operating systems that support this model
(e.g., Windows 2000) restrict the number of threads supported by the
system.

To get around constant kernel creation, most operating systems use a
many-to-many model of kernel threading, shown in Figure 4.4c. In the
many-to-many model, threads are created once and remain active. Many
threads are created on system startup, but not the number needed for
a one-to-one match with user threads that make kernel requests. These
threads are kept around in a thread pool to service many requests. The
result is some backlogging of requests as with the many-to-one model,
but more efficient and concurrent processing of those requests as with
the one-to-one model. The many-to-many model is better adapted for
multiprocessor systems, as the number of kernel threads can be tuned
for the number of processors. Many Unix implementations support the
many-to-many model.

Issues with multithreading

There are many issues that surface when we expand our concept of
processes and scheduling to include threads.

• Thread management: threads must be managed and scheduled; they
go through states similar to processes (see Figure 4.1). Applications
control the creation of threads but the actual creation and movement

72 PROCESSES AND THREADS

through states is done by the kernel. Note that this adds more com-
plexity to the idea of scheduling a process and complicates decisions
about scheduling. If a scheduler gives equal time to all processes, it
must choose one thread to run on behalf of a process or give a tiny
amount of time to each thread in a process, so that the total time on
the threads equals the time spent on a process.

• Process creation: should a thread be allowed to create a new process
or just other threads within a process? If we consider an application
that does not create threads to be an application with a single
thread, then we cannot deny any thread the ability to create a
process (since such an application has no real ‘main’ thread). If
any thread can create a process, then what does the new process
look like? As we see later in this chapter, processes typically create
other processes by cloning themselves. Do we clone a process,
including created threads? The answer to this is usually yes and no.
Systems that support process forking (the act of cloning a process)
typically give that support in two versions: with and without all
the created threads. This complicates programming with process
creation.

• Thread cancellation: terminating a thread is referred to as thread
cancellation. Because threads operate inside the larger context of a
process, cancellation is not as traumatic to the system as process
termination. In asynchronous cancellation, a thread may immedi-
ately cancel another thread. However, concurrency issues arise when
threads are cancelled. For example, if a thread is updating data shared
by other threads in a process, what happens to the data when a thread
is cancelled? Often data is corrupted when such an event occurs.
This is usually remedied by using deferred cancellation. In this situ-
ation, a thread cancels itself when the system tells it to terminate but
waits for the appropriate time, for example, when no data is being
manipulated.

We referred to interrupts that operate between processes as signals.
One process can signal another to indicate a particular condition. When
an application has multiple threads, it raises the question about which
thread receives a signal when one arrives. All threads could receive the
signal, or one or more threads could indicate they are waiting to receive
a signal. Usually, all threads receive a signal sent to a process, although
only certain threads deal with it.

AN OVERVIEW OF THE PROCESS MODEL 73

Active Objects in Symbian OS
Threads in an operating system can be viewed as lightweight processes.
As a lightweight process, a thread has many properties that a process
does: it has an execution path, it can be scheduled, it uses resources, etc.
Also, like a process, it requires bookkeeping: recording of where a thread
is in its execution must occur so that the thread may be restarted when it
gets a chance to execute on the CPU. So, while a thread is lightweight, it
still has an effect on a running system.

On a system with restricted resources, such as a smartphone, the weight
of threads has an effect. Much care is taken in restricted environments
to be as light as possible. In these environments, processes are kept to a
minimum and even threads are scrutinized as to their necessity. There is
typically one main thread that controls most aspects of an application.
When there are multiple threads in an application, they are usually
spawned from the main thread and meant to deal with situations that
cause waiting, for example, network communication or device I/O, so as
to free up the main thread for other functionality.

It is possible to make a process – a kind of lightweight thread – that
has less of an effect; it follows a fixed kind of behavior and is lighter
on a restricted system. In Symbian OS, this lightweight thread is called
an active object. Active objects are specialized threads that have some
unique characteristics.

• Each active object is specifically focused on an event that causes a
thread or process to block: communication, device I/O, and so on.

• Each active object works with a single active scheduler that listens
for events for which the object is waiting. All active objects within
a process use the same scheduler; different schedulers can be used
between processes.

• An active object defines a specific entry point in its code that is used
by the active scheduler when an event is generated. The entry point is
represented by a standard function call that is defined for each active
object.

• While waiting for an event, all active objects within a single process,
because they are maintained by the same scheduler, act as a single
thread to the system.

Active objects in a single process, therefore, can be coordinated by a
single scheduler implemented in a single thread. By combining code into

74 PROCESSES AND THREADS

one thread that would otherwise be implemented as multiple threads,
by building fixed entry points into the code, and by using a single
scheduler to coordinate their execution, active objects form an efficient
and lightweight version of standard threads. See Section 4.2 for some
coding examples using active objects.

Contexts and Context-switching

A process has a context, that is, the collection of system resources that
it is using represented by the process’s PCB. These resources include the
register set the process is using, the program counter, memory contents
that implement data in its code, open files, identifying information such
as a process identifier, and so on.

When a process moves to or from the running state to execute on
a processor, several things must happen to the context. The context of
the process that preceded the current process must be extracted from
the processor and the context of the process to be executed must be
installed on the processor. This act of moving contexts is called a context
switch.

When switching contexts, the old context must be written to that
process’s PCB and the PCB must be stored. Then the PCB from the new
process is read and restored. This procedure takes time and its efficiency
is dependent on the amount of data in the PCB and how much the
hardware assists. For example, some hardware architectures provide for
multiple sets of registers and switching contexts simply switches a reg-
ister set without copying (this is the case, for example, on UltraSPARC
architectures). Context-switching incurs enough overhead that research
into how to minimize it is worth the effort.

Processes on Linux

Execution on Linux systems is organized around processes. An executing
program on Linux is a process, characterized by a PCB and given some
memory area in which to store data. In Linux, PCBs are called process
descriptors and these descriptors can be very complex.

A process in Linux can be in one of the states shown in Figure 4.1. In
addition to these states, Linux defines two other process states: an uninter-
ruptible state, where a process cannot be interrupted by other processes
or operating system calls, and a zombie state, where a process is waiting
for a parent process to receive notification of the child’s termination. The

AN OVERVIEW OF THE PROCESS MODEL 75

uninterruptible state is rarely used, but is useful when a process initiates
an action that must run to completion. For example, if a device driver
takes a long time to initialize a device, it might need to run to completion
and ignore any interruption (which would cause it to lose contact with
the device it is initializing).

Processes in Linux are identified by a 32-bit integer. Even though
process IDs (PIDs) are stored as 32 bits, Linux maintains backwards
compatibility with older versions and only uses PIDs up to 32 767 (i.e.,
the largest 16-bit integer). When PIDs reach 32 768, the system starts the
numbering process over and finds an unused PID starting at 0.

In Linux, processes not only record parents and children, but also
siblings. Relationships much like those shown in Figure 4.5 exist. Sibling
relationships make it much easier to pass around notification of events,
such as interrupts and termination events.

Processes in various states in Linux are grouped together in queues.
The ready queue holds the processes in the ready state that are waiting
to be executed. There are also wait queues that hold the processes in
the waiting and uninterruptible states. Processes in the zombie state do
not need a queue, since there is no order to their movement out of the
zombie state. Wait queues are split into subclasses of processes based
on the event for which they are waiting. Those waiting for disk I/O, for
example, are put together in their own queue separate from processes
waiting for keyboard I/O.

Par
en

t

Chil
d

Parent
ChildP

ar
en

t
C

hi
ld

P
arent

C
hild

Sibling Sibling

P0

P4

P3P2P1

Figure 4.5 Process relationships in Linux

76 PROCESSES AND THREADS

Context-switching in Linux often uses hardware to make the switching
faster. Since Linux has been focused on the Intel hardware architec-
ture, it takes advantage of hardware context-switching to automati-
cally save contexts. However, using hardware to do this means that
the operating system cannot ensure the validity of the process data.
In addition, Linux has branched out from its Intel beginnings into
other hardware. For these reasons, software context-switching using
kernel-mode procedures is implemented in the most recent versions of
Linux.

One final note should be made about the process hierarchy. Every
family tree has a root and the Linux process hierarchy has a process
with ID 0. This process is a process started by the boot sequence
and it has the duty of initializing all operating system tables and
of starting process 1, or the ‘init’ process. The init process has the
job of starting all other processes that are needed to run a Linux
system.

Threads in Linux follow a standard called Pthreads. Support for
Pthreads follows the portable operating system interface (POSIX) standard
and defines an API for thread creation and synchronization. This standard
accompanies an older standard also supported by Linux. POSIX is a
set of standard APIs for system calls and was invented as a way
to smooth out the differences between Unix implementations. Most
versions of Unix and Linux adhere to the POSIX standards, as do
many other operating systems. Since support is voluntary, many operat-
ing systems – including Microsoft Windows and Symbian OS – provide
support for POSIX in selected areas of API definition. POSIX is sup-
ported by the Open Group (for more information, see their web site at
www.opengroup.org).

Processes, Threads and Active Objects in Symbian OS

Symbian OS favors threads and is built around the thread concept. A
process is seen by the operating system as a collection of threads with a
PCB and memory space. Thread support in Symbian OS is based in the
nanokernel with nanothreads.

Recall that the nanokernel is the basic, lowest level of the kernel.
It provides very simple thread support in the form of nanothreads. The
nanokernel provides for nanothread-scheduling, synchronization (com-
munication between threads) and timing services. Nanothreads run in
privileged mode and need a stack to store their run-time-environment

AN OVERVIEW OF THE PROCESS MODEL 77

data. Nanothreads do not run in user mode; this fact means that the
operating system can keep tight control over each thread. Each thread
needs a very minimal set of data to run, basically the location of its
stack and how big that stack is. The operating system keeps control of
everything else, for example, the code each thread uses, and stores a
thread’s context on its run-time stack.

Nanothreads have thread states in the same way as processes have
states. The model used by the Symbian OS nanokernel adds a few states to
the basic model in Figure 4.1. In addition to the basic states, nanothreads
can be in the following states:

• suspended: different from the waiting state – a thread is blocked by
some upper layer object (e.g., a Symbian OS thread)

• fast Semaphore Wait : waiting for a fast semaphore – a type of sentinel
variable – to be signaled (see Chapter 6)

• DFC Wait : waiting for a delayed function call (DFC) to be added to
the DFC queue; DFCs implement an interrupt service in Symbian OS,
allowing a function call to be processed after the interrupt is serviced

• sleeping: waiting for a specific amount of time to elapse

• other: a generic state that is used when developers implement extra
states for nanothreads, to extend the nanokernel functionality for
new platforms (called personality layers); the developer must also
implement how states are transitioned to and from their extended
implementations.

Compare the nanothread idea with the conventional idea of a pro-
cess. A nanothread is essentially an ultra-lightweight process. It has
a mini-context that gets switched as nanothreads get moved into and
out of the processor. Each nanothread has a state, as do processes.
The keys to nanothreads are the tight control that the nanokernel
has over them and the minimal data that make up the context of
each one.

Symbian OS threads build upon nanothreads; the kernel adds sup-
port beyond what the nanokernel provides. User-mode threads that
feature in standard applications are implemented by Symbian OS threads.
Each Symbian OS thread contains a nanothread and adds its own run-
time stack to the stack the nanothread uses. Symbian OS threads can

78 PROCESSES AND THREADS

operate in kernel mode via system calls. Symbian OS also adds excep-
tion handling and exit signaling to the implementation of Symbian OS
threads.

Symbian OS threads implement their own set of states on top of the
nanothread implementation to reflect the new ideas built into Symbian
OS threads. Symbian OS adds seven new states for threads, focused on
special blocking conditions that can happen to a Symbian OS thread.
These special states include waiting and suspending on semaphores,
mutex variables and condition variables (see Chapter 6). Remember
that, because of the implementation of Symbian OS threads on top of
nanothreads, these states are implemented in terms of nanothread states,
mostly by using the suspended state in various ways.

Processes, then, are Symbian OS threads grouped together under a
single PCB structure with a single memory space. There may be only
a single thread of execution or there may be many threads under one
PCB. Concepts of process state and process scheduling have already been
defined by Symbian OS threads and nanothreads. Scheduling a process,
then, is really implemented by scheduling a thread and choosing the right
PCB to use for its data needs.

Symbian OS threads organized under a single process are connected
in several ways:

• a main thread is marked as the starting point for the process

• threads share scheduling parameters; changing parameters for the
process changes the parameters for all threads

• threads share memory-space objects, including device and other
object descriptors

• when a process is terminated, the kernel terminates all threads in the
process.

Active objects are specialized forms of threads and are implemented
in a special way to lighten their burden on the operating environment.
Remember that active objects are organized so that when they are
brought back from a blocked state, they have a specific entry point into
their code that is called. Since they run in user space, active objects are
Symbian OS threads. As Symbian OS threads, active objects have their
own nanothreads and can join with other Symbian OS threads to form a
process to the operating system.

PROGRAMMING WITH PROCESSES 79

As active objects are Symbian OS threads, one can ask what the
advantage is of using them. The key to active objects is in scheduling,
which we cover in Chapter 5. It is important to realize, however, where
active objects fit into the Symbian OS process structure. When a thread
makes a system call that blocks its execution while in the waiting state,
the operating system still needs to check the thread. The operating system
spends time between context switches checking waiting processes to
determine if they need to move to the ready state. Active objects wait for
a specific event. The operating system does not need to check them but
moves them when their specific event occurs. The result is less thread
checking and faster performance.

4.2 Programming with Processes

How we think about processes affects how we program those processes. A
key element, then, to understanding how processes work is to understand
how they are programmed. This means studying the system calls and
the programming patterns that are used when processes and threads are
manipulated.

There are several types of programming methods for processes. An
older, more traditional way focuses on processes. Another method incor-
porates threads into this conventional programming model. A third way
of programming uses specialized thread objects such as Symbian OS
active objects. These are all illustrated in this section.

The Conventional Model
The conventional model works at the process level. Processes are created
by an operation called a fork, which creates a new process by building
a new PCB and placing the new process in the ready queue. The fork
operation is complemented by a ‘join’ or ‘wait’ operation. As shown
in Figure 4.6, the fork operation splits the execution of one process
into several and the join operation joins the process executions back
into one. In Figure 4.6, at the dotted line labeled ‘A’, there are four
processes executing. Join operations cause the subprocesses to terminate
and combine their executions. By the end of Figure 4.6, there is a single
process executing again.

In Linux, for example, a process creates a new process by calling the
fork() system call. This system call creates a new process by cloning
the current process’s PCB. The result is two processes that look identical;

80 PROCESSES AND THREADS

fork

fork

fork

join

join

join

AA

Figure 4.6 The interaction between fork and join operations

the new one is an exact copy of the old one. Both processes continue
execution at the point of the fork() system call. The child knows it is a
child because the fork() call returns a zero; the parent knows it is the
parent because the fork() call returns a non-zero result, which is the
process ID of the child process.

As an example, consider the following simple code:

#include <stdio.h>

void main()
{

PROGRAMMING WITH PROCESSES 81

int pid, status;

pid = fork();
if (pid == 0)
{
printf("This is the child!\n");
sleep(60);
}

else
{
printf("This is the parent! Child’s PID = %d\n", pid);
wait(&status);
printf("Child terminated...status = %d\n", status);
}

}

The first executable code line is:

pid = fork();

Before this line, there is a single process. After this line executes, there
are two processes. For one process, the child, pid has the value 0. For
the other process, the parent, pid has a non-zero value that is the process
ID of its child. In the example, the child simply prints a message, sleeps
for 60 seconds, and terminates. The parent executes the line:

wait(&status);

which implements a join operation in Linux. A wait() call moves the
caller process to the ready queue until the process for which it is waiting
terminates. In this case, the call is waiting for the termination of any
process the parent created.

Processes terminate in many ways. The normal way for a program to
end is to simply run out of code. Most programming languages provide
for some kind of call to exit(). In addition to allowing programs and
processes to use the exit() system call, processes can also terminate
their children. Signals that tell a process to terminate can be sent arbitrarily
between processes, but ones sent from a parent to a child process are
especially hard to ignore.

In this conventional process model, processes share very few resources.
Each newly created process works in its own environment with its own
PCB. This means each process has its own variables, its own access to

82 PROCESSES AND THREADS

resources and its own access to the kernel. What is shared are system
resources such as input/output devices and memory. As we have discussed
before, operating systems are designed to protect resource access and to
share system resources in a very orchestrated manner, so that multiple
accesses do not corrupt resources. This means that even though a child is
created by a parent, they are peers from the point of view of the resource.

This conventional approach to multiprogramming is very resource
intensive. The operating system must keep track of each process by
recording and manipulating its PCB. Switching context between processes
is expensive, because PCB data must be recorded and moved into and out
of memory. Creating processes is also expensive because of PCB creation
and the cloning of the parent context.

Sharing data between processes is quite difficult. The operating system
puts up a barrier between processes and protects each process from
others. Data can be shared in Linux by creating global, shared memory
through system calls or by creating data channels called pipes that a
process can share with children that it creates. However, these methods
are special cases and are themselves expensive to the operating system.

Consider a sorting algorithm. In a quicksort implementation, an array
of data elements is split up into pieces and a recursive call is made to
the quicksort algorithm to work on each piece. The quicksort algorithm
can be implemented in a parallel manner, where each recursive call is
replaced by a new process. If we use the conventional model, we can get
many processes involved. These processes can easily get started on the
sorting process, because each has a copy of the data array (as the PCB
is cloned). However, when it comes time to put the sorted pieces back
together, the conventional model makes implementation very difficult.
Somehow, only pieces of the data array must be communicated to a single
process, which must put everything back together. Parallel versions of
quicksort are rarely implemented with processes.

Programming with Threads
Threads solve many of the difficulties with processes. Threads are easily
created: the creation process is lightweight because it is not resource-
intensive, no PCBs are cloned. Ideas of forking execution and joining
threads together still exist for threads, because they are truly parallel
entities. However, working with threads is much easier.

Again consider Linux, so that we can compare it to the examples
above. The following code contains a simple program to create and join
threads of execution in a program.

PROGRAMMING WITH PROCESSES 83

#include <synch.h>
#include <thread.h>
#include <unistd.h>

void *child (void* args)
{
printf("This is the child!\n");
sleep(60);
}

void main()
{
thread_t yarn;

thr_setconcurrency(2);
thr_create(NULL, NULL, child, NULL, 0, &yarn);

printf("This is the parent!\n");

thr_join(yarn, &yarn, NULL);
}

Notice that each thread of execution is implemented by its own
function and concurrent threads are defined by function definitions. The
code produces a child that prints a message and terminates, because
its definition terminates. The parent creates the thread through a call to
thr_create(). The parent waits to join its execution thread with the
child’s by calling thr_join(). This call blocks until the child specified
by the yarn descriptor terminates.

Threads help to mitigate the difficulties found in the conventional
process model. Thread creation is easy and lightweight; thread context-
switching happens within a PCB. The operating system still has to keep
track of threads, but bookkeeping requires less data. In addition, threads
allow sharing of all resources of the parent.

The quicksort algorithm lends itself easily to a thread-based imple-
mentation, because recursive function calls can be replaced by thread
creation. Like functions, threads share memory and the quicksort algo-
rithm marks off portions of the same data array for each function or thread
to work on. Joining the pieces back together is irrelevant, because each
thread worked on a portion of the same array.

Programming in Symbian OS
Symbian OS supports processes, threads and active objects, the special
case of threads focused on external events. Symbian OS supports standard

84 PROCESSES AND THREADS

and conventional interfaces, which allow processes and threads to be
used in much the same way as on other systems such as Linux. Symbian
OS supports the concepts of forking and joining processes, but does not
clone a PCB when forking (it implements a ‘fresh’ executable image, not
duplicated from the parent). There are a few other differences, but they
do not affect the global concepts of process creation. Symbian OS also
supports the POSIX thread manipulation APIs.

Active objects are unique to Symbian OS. Recall that active objects
are Symbian OS threads that multitask cooperatively, that is, they are
designed to facilitate asynchronous requests that wait for external events,
usually tied to device I/O. The keys to using an active object are that
each active object must release control to the operating system when it is
ready to wait for an external event and that each active object must keep
track of its internal state, because execution is restarted at the same place
every time it restarts.

In Symbian OS programming, active objects are derived from the
CActive class, which provides access to a CActiveScheduler object.
An active object must implement at least two functions:

void RunL()
void DoCancel()

The RunL() function is the heart of an active-object implementation.
Upon construction, the active object creates and initializes anything it
needs. To inform the operating system that an asynchronous request has
been submitted (that the active object must wait for), the active object
calls the function SetActive(). This suspends the active object thread,
turning control of the asynchronous operation over to a scheduler. When
this operation completes and generates an event the active object has
registered for, the scheduler calls the RunL() function for the active
object.

The DoCancel() function must be implemented to cancel the actions
implemented by the active object. On receiving a request to cancel the
operations for an active object, the system first checks whether there is
an outstanding request for this object, then calls DoCancel().

There must be a way to start the active object. This should be a function
that initializes the active object and executes the first asynchronous
request. This function then passes control to the scheduler by calling
SetActive().

PROGRAMMING WITH PROCESSES 85

Consider an example that sends an object over the serial port of a
Symbian OS device. We could start this sending process by calling the
following function:

void TodoXferSerialAO::SendItem(CAgnEntry *aEntry)
{
iEntry = aEntry;

CParaFormatLayer *iParaFormatLayer = CParaFormatLayer::NewL();
CCharFormatLayer *iCharFormatLayer = CCharFormatLayer::NewL();

// Set up to-do item data
iTodoItem = CAgnTodo::NewL(iParaFormatLayer, iCharFormatLayer);
iTodoItem = (CAgnTodo *)(aEntry->CastToTodo());
priority = iTodoItem->Priority();
duedate = iTodoItem->DueDate();

// Start the protocol
iAppUi->SetProgress(_L("Starting the protocol"));
buffer.Copy(KReady);
Send(buffer);

iSendingState = ESendingState1;
}

The SendItem() function receives a to-do list entry (the parameter
from the CAgnEntry class), prepares it for sending, then calls a Send()
function to send the object through the serial port.

The Send() function is defined as follows:

void TodoXferSerialAO::Send(const TDes8& aText)
{
TInt len;
TBuf8<100> buffer;

len = aText.Length();

// Send the length
buffer.SetLength(0);
buffer.Append((TChar)(48+len));
buffer.Append(aText);
commPort.Write(status, buffer, len+1);

SetActive();
}

There are some interesting parts of this implementation. First, note the
structure of the code: it sets up some parameters for serial communication

86 PROCESSES AND THREADS

and then calls Write(). This is an asynchronous call that returns
immediately, beginning the communication process in parallel. Secondly,
we use a variable – status – to remember the state we are in. Finally,
notice the use of SetActive() at the end of the code. When this system
call is performed, the active object’s execution is terminated and the
thread is placed on a waiting queue.

Once we have started an active object and turned over control to
the scheduler, we need a way to continue its execution whenever
I/O operations complete. This is found in the implementation of the
RunL() function. The most common pattern embraced by this function
is essentially to use one big switch statement, based on the value of the
state variable. Each case in the switch statement looks something like
this:

case ESEr1:
if (status == KErrNone)
{
if (buffer.equals(KOk))
{
iSendingState = ESError; // indicate an error
}

else
{
iAppUi->SetProgress(_L("Sending the priority"));
buffer.Format(KPriorityFormat, priority);
Send(buffer);
iSendingState = EStateXfer1;
}

}
else
{
iSendingState = ESError; // indicate an error
iAppUi->SetProgress(KRcvErrMessage);
}

break;

At the beginning of each case, we can assume that the previous I/O
operation has completed with a value stored in a status variable. We check
the status variable to determine if the operation completed successfully.
If it was successful, we process the results, engage another I/O operation,
and change the state variable for the next invocation of RunL(). If it
has not completed successfully, we must deal with it somehow – perhaps
aborting the active object or resetting the communication stream. At the
end of the case, if we want to continue, we must call SetActive()
again.

EXERCISES 87

4.3 Summary

This chapter discussed the concepts of working with processes and
threads in an operating system. We began the chapter by examining the
process concept and how much of a process’s conceptual and actual
implementations are derived from the process control block. We defined
how the operating system handles processes and how that handling has
some difficulties in implementation. We then defined threads and showed
how threads relate to and improve upon processes. User-level threads
have implications about kernel threads and we defined how these relate
to each other. We also discussed the Symbian OS concept of active
objects as special versions of threads.

We discussed concepts of implementation and programming of pro-
cesses, threads and active objects. Processes use concepts of forking and
joining and we discussed how to program this type of activity in Linux.
We also showed how threads can be programmed. We concluded the
chapter by discussing some programming issues with active objects in
Symbian OS.

We have left the topic of how processes and threads are scheduled to
Chapter 5.

Exercises

1. Give examples of multithreading from the applications that you use
every day. Describe how you think each example would work if a
single thread of control were to be used.

2. Consider situations where multithreaded applications would not be
more useful than singlethreaded applications. Describe two examples
of this and give your explanation as to why there is no performance
improvement.

3. Give two situations where kernel multithreading would definitely be
an improvement over singlethreading.

4. Give two situations where kernel multithreading would not be an
improvement over singlethreading.

5. Compare context-switching between user-level threads with context-
switching between kernel-level threads. Where are they the same?
Where are they different?

88 PROCESSES AND THREADS

6. Consider how a process is created. Compare the procedure with how
a thread is created. How are resources used differently?

7. Compare the creation of active objects with the creation of threads.
How do you think these procedures are different?

8. Give two situations where active objects would not be better than
threading. Explain your thinking.

5
Process Scheduling

We introduced the last chapter with a circus performer: a man that I
remember from childhood who kept plates spinning on sticks. He could
spin many plates at the same time. While his performance seemed to be
focused on the spinning plates, I suspect that his real skill lay in the choice
he made after he paid attention to a single plate. In the split second where
he ran from one plate to another, keeping each spinning on those long
sticks, he had to make a choice as to the plate that needed his attention
most. If he chose poorly, at least one plate would begin to wobble and
eventually fall off its stick and break. If he chose wisely, he kept all the
plates spinning.

We can think of this circus performer as a scheduler. He needs to
make important choices that schedule plates for ‘spin maintenance’.
Some plates probably need his attention more than others and he needs
to make his choices wisely, according to the needs of the plates.

Computer operating systems are like that. They have a limited set of
CPUs (usually only one) that are to be used by many processes at once.
As the operating system shares the computing resources, choices must
be made. How long should a process operate on a CPU? Which process
should run next? How often do we check the system?

The concept of scheduling a CPU is very important to keeping a
computer running quickly and efficiently. This chapter introduces the
basic ideas of CPU scheduling and presents several scheduling algorithms.
We also examine how these concepts and algorithms apply to various
types of operating system architectures.

90 PROCESS SCHEDULING

5.1 Basic Concepts

The concepts involved with scheduling a CPU seem simple on the
outside but are really quite difficult upon closer inspection. The idea
of multiprogramming is essentially a simple one: several processes share
processing time on a CPU. The idea of sharing is an easy concept to grasp.
However, it is the mechanics of this sharing that is difficult. Processes
must be started appropriately and stopped at the right time, allowing
another process to take over the CPU. What is appropriate? How long
does the process have the CPU? What is the next process to take over?
These questions make sharing a difficult concept indeed.

Concepts of Sharing

We need to be clear on how the CPU is shared. The act of scheduling
is the act of moving processes from the ready state to the running state
and back again. Recall that processes in the ready state are waiting in the
ready queue. This ready queue is not necessarily a FIFO queue: processes
do not necessarily enter and leave in a fixed order. In fact the choice of
which process to move from the ready queue to running is at the heart of
process scheduling.

The way CPU sharing is controlled is important. Methods of shar-
ing should accommodate the way that a process works. For example,
we could allow processes to share a processor at their own discre-
tion. This would mean that sharing would be dependent on each
process – dependent on when each process decided to give up the
processor. This makes it easy for a process to hog the CPU and not
give it up. Obviously, this makes the operating system a bit simpler,
but would not be a great way to equitably share things on a general-
purpose computer. We could also move scheduling decisions away from
each process and give them to a third party – perhaps the operating
system. This would make scheduling less dependent on the whim of
each process and more dependent on policies implemented by a central
controller.

When a process moves from the running state to the ready state
without outside intervention, we call the scheduling mechanism a non-
pre-emptive mechanism. Many movements from the running state are
non-pre-emptive. When a process moves to the waiting state or a process
terminates, it does so by its own choice. In non-pre-emptive scheduling,
a process may hang on to the CPU for as long as it wants (or needs) to.

BASIC CONCEPTS 91

By contrast, pre-emptive scheduling allows the operating system to
interrupt a process and move it between states. Pre-emptive schedul-
ing is usually used for general-purpose operating systems because the
mechanism used can be fairer and processes can be simpler. However,
pre-emptive scheduling can have costs associated with it. It requires more
hardware support: timers must be implemented to support the timing cri-
teria for processes and ways of switching between processes must be
supported by registers and memory. The operating system must also pro-
vide secure ways of sharing information between processes. Consider two
processes sharing data between them. If one is pre-empted as it is writing
data and the second process is then run on the CPU, it might begin
to read corrupted data that the first process did not completely write.
Mechanisms must be in place that allow the processes to communicate
with each other to indicate that such conditions exist.

Pre-emptive scheduling affects how the operating system is designed.
The kernel must be designed to handle interrupts for a context switch at
any time – even the most inopportune times. For example, if a process
makes a system call that causes the kernel to make system changes but
it is pre-empted, what happens to the changes made by the kernel? This
is complicated by the chance that the next process might depend on
the changes made by the previous process’s system call. Corruption of
system data is likely if this is not handled correctly. In a case like this, a
Linux system would force the context switch to wait until the kernel mode
changes were completed or an I/O call is made. This method ensures that
processes sharing one CPU serialize access to system resources. Even this
way of coordinating access to system resources is not sufficient when there
are multiple CPUs or the operating system supports real-time processing.

Most modern operating systems use pre-emptive schedulers but there
are several examples of non-pre-emptive kernels. Microsoft Windows 3.1
used a non-pre-emptive scheduler. Applications could give up control in
several ways. They could give it up knowingly or they could give it up
through certain system calls or I/O functions.

Early Apple Macintosh operating systems were also non-pre-emptively
scheduled. Early systems were based on the Mach kernel, an open source
design developed at Carnegie Mellon University to support operating
system research, primarily distributed and parallel computation. In version
10, MacOS was based on FreeBSD (technically the XNU kernel), which
is pre-emptively scheduled.

The part of the operating system that actually performs the pre-emptive
context switch is called the dispatcher. The dispatcher is comprised of

92 PROCESS SCHEDULING

the set of functions that moves control of the CPU from one process to
another. The dispatcher must enter kernel mode, interrupt the process
that is currently running on the processor, move that process to the ready
queue, choose the next process to use, activate that process’s code,
switch to user mode, and cause the processor to begin execution at the
appropriate point in the new process. This is a tall order; there are many
procedures to be performed. While the dispatcher must run as fast as
possible, there is overhead involved with doing its job and therefore there
is a certain latency that is experienced when the dispatcher is called in to
do a context switch. This dispatch latency is inherent in the system.

Scheduling Criteria
The dispatcher is supposed to make decisions about when to remove
a process from the CPU and which process to assign the CPU to next.
The dispatcher makes its decisions using several criteria. There has been
much research devoted to the best way to schedule a CPU.

The CPU must be kept as busy as possible. CPU utilization is a
criterion that measures the percentage of time the CPU is busy; we want
this percentage as high as possible. Because of the reality of executing
programs, CPU utilization is rarely at 100 percent, but a well-managed
system can achieve high CPU utilizations of 75 to 90 percent.

Another measure of CPU activity is the amount of work done over a
period of time. Called CPU throughput, this measure can be calculated
in several different ways. For example, the number of jobs per day is a
coarse measure. A finer measure is the number of processes completed in
a time unit. Short database transactions could be measured in processes
per second while longer computations might be measured in processes
per hour or per day.

Another issue in scheduling is fairness, i.e., a measure of how much
time each process spends on the CPU. We want to make an effort to make
the times fair. Note here that ‘fair’ does not mean ‘equal’ in all situations.
Sometimes, certain processes need to spend more time on the CPU than
others.

Turnaround time is yet another criterion upon which we can base
scheduling decisions. Turnaround time refers to the amount of time a
process takes to execute. This is measured from the time of definition
to the operating system (i.e., the time it left the create state) to the time
of termination (the time it entered the terminate state). Turnaround time
looks at all the activities of a process – including all time spent running
on the CPU, all time waiting for I/O, all time in the ready queue, etc.

BASIC CONCEPTS 93

Another criterion is the amount of waiting time a process does. Waiting
time is the total amount of time waiting in the ready queue. Waiting time
does not include the amount of time waiting for the system – such as I/O
time – because these times are not affected by CPU scheduling.

Finally, response time is a criterion often used in making scheduling
decisions. Response time is most often used in scheduling for interactive
systems. In interactive systems, measures such as turnaround time are
not as important as how a process responds to requests. The time from
submitting a request to receiving a response is how response time is
defined.

In general, the goal of any scheduling strategy is to maximize CPU
usage and throughput while minimizing turnaround time, waiting time,
and response time. Over the running of an operating system, it is often
necessary to consider averages of these measures or the minimum or
maximum of them.

Scheduling strategies often use different criteria for different types of
systems. Batch-mode systems concentrate on receiving tasks and getting
them done with little or no human interaction. For these systems, response
time is of little interest, but minimizing turnaround time is very important.
Similarly, a server-based system would want to maximize response time
as it is based on request and response pairings. A desktop system would
want to maximize response time and minimize waiting time.

Microkernels use an interesting set of criteria. Microkernels are used
for both general-purpose operating systems and for specialized systems
such as mobile phones. Because of this, different criteria are applied for
different situations. A microkernel usually moves scheduling from servers
and makes it a kernel-mode activity, thus acting like a general-purpose
operating system. However, a microkernel must pay close attention to
fairness, because many of the processes in user space implement system
functions. In addition, there is a fair amount of overhead in a microkernel
system, because system processes communicate with each other by
passing messages (rather than through kernel memory). Keeping CPU
utilization high, the communication overhead low and scheduling fair is
a difficult thing for microkernels.

A mobile phone system is a microkernel with a mixture of system types.
It has elements of real-time systems and elements of interactive systems.
A phone-based operating system would want to minimize response time
and waiting time, but turnaround time is not very important as there are
few applications that are started to do short, specific tasks. Throughput
is hard to measure on a phone-based system, because processes are

94 PROCESS SCHEDULING

designed to service requests in the long-term and they stay running for
relatively long periods of time.

5.2 Scheduling Strategies

We have just discussed the concepts involved in scheduling processes to
share a CPU and the criteria used to make decisions about CPU usage.
There are several strategies that use scheduling concepts and criteria to
implement CPU sharing. As we discuss these strategies, note that we
focus on the problems of deciding which process should use the CPU
and when a process should be removed from using the CPU.

First-Come-First-Served Strategy
Perhaps the easiest way to schedule a CPU is on a first-come-first-served
(FCFS) basis. This scheduling strategy allows the first process that requests
a CPU to use the CPU until the process is completed. When one process
is using the CPU, other processes that need the CPU simply queue up
in the ready queue. This allows the head of the ready queue to be used
as the next process to be scheduled. This scheduling strategy is non-
pre-emptive. Processes are removed from the CPU only when they are in
the waiting state or they have terminated.

Consider the following set of processes that arrive to use a CPU in the
order stated:

Process Time Needed

P1 29
P2 5
P3 15
P4 4

An FCFS scheduler would schedule them as shown in Figure 5.1.

P1

10 20 30 40 50

P2 P3 P4

Figure 5.1 Processes scheduled using a first-come-first-served strategy

SCHEDULING STRATEGIES 95

We can state the turnaround time and the waiting time for the processes
in the following table:

Process Turnaround Time Waiting Time

P1 29 0
P2 34 29
P3 49 34
P4 53 49

The throughput of our imaginary system is 4 processes in 53 time units,
or 0.075 processes per time unit.

It is also useful to consider average measures, such as the average
waiting time. In our example, the average waiting time is 28 time units.

The order in which the processes are granted requests makes a large
difference to the measurements we take. Consider a different ordering of
processes, shown by the time bar in Figure 5.2.

In this situation, we can measure time in the following way:

Process Turnaround Time Waiting Time

P2 5 0
P4 9 5
P3 24 9
P1 53 24

In this scenario, the throughput of our system is the same: 4 processes
in 53 time units. But the waiting time is much better: the average waiting
time for this example is 9.5 time units.

It is easy to see how a FCFS strategy does not guarantee minimal criteria
and measures may vary substantially depending on process execution

P1

10 20 30 40 50

P2 P3P4

Figure 5.2 Processes scheduled using a FCFS strategy in a different order

96 PROCESS SCHEDULING

times and the order of execution. Fairness issues hurt the consideration of
this scheduling strategy. FCFS is inherently unpredictable and may very
likely produce unfair schedules.

Shortest-Job-First Strategy
Another non-pre-emptive strategy can be invented from the examples
above. The first example ran the longest process first (because it requested
first) and, in doing so, worsened the measurements that we took (an
average wait time of 28 time units rather than the 9.5 time units when
we scheduled the shorter processes first). If we always chose the process
with the shortest running time first, it would seem that we could improve
the measurements we are watching.

As an example, consider a new set of processes:

Process Time Needed

P1 20
P2 3
P3 26
P4 7

The shortest-job-first (SJF) scheduling strategy is illustrated in Figure
5.3.

This ordering produces the following measurements:

Process Turnaround Time Waiting Time

P2 3 0
P4 10 3
P1 30 10
P3 56 30

P3

10 20 30 40 50

P2 P1P4

Figure 5.3 Processes scheduled using a shortest-job-first strategy

SCHEDULING STRATEGIES 97

This order of processing has an average wait time of 10.75 time units.
If we had used the FCFS strategy, the average waiting time would be
12.25 time units.

While it is possible to prove that an SJF strategy is optimal for average
times, the strategy has several issues. First, it penalizes long processes
simply for being long. Secondly, it becomes possible to starve a process.
Starvation occurs when a process is waiting in the ready queue but never
makes it to the running state. As long as processes enter the queue with
running times shorter than it, that process is never run on the CPU.

Finally, the hardest thing about an SFJ strategy is very basic: knowing
how long a process will take to run. Processes typically do not enter
the ready state having determined in advance their running time. In fact,
an interactive process – say, a user application with a GUI – may never
terminate (‘never’ is, of course, a relative term; read that as ‘not until the
CPU stops functioning’). We can make estimates based on past behavior
or estimate running time based on the process type. Typically, if some
kind of prediction is to be made of running time, it is a weighted average,
using, for example, a binomial distribution:

Tn +1 = aTn + (1 − a)Tn −1

In this calculation, a represents the weight we want to place on more
recent timing measures. This type of estimate might take into consideration
a long history of timing. This technique is called aging and is applicable
to many situations where we must estimate some property in the system.

Round-Robin Strategy

Both FCFS and SJF are usually used as non-pre-emptive strategies. How-
ever, we still have the criterion of fairness to consider. If we schedule
processes to run to completion or we depend on processes to give up
the CPU when they can, we can make measurements but we can make
no statement about fairness. Fairness can only be assured when we use a
pre-emptive strategy.

One of the oldest and simplest pre-emptive strategies is the round-robin
scheduling strategy. In a round-robin strategy, all processes are given the
same time slice and are pre-empted and placed on the ready queue in
the order they ran on the CPU. The ready queue becomes a simple list of
processes that are ready to run and each process is placed on the end of
that list when pre-empted from the CPU.

98 PROCESS SCHEDULING

P1 P3 P4 P1 P1

10 20 30 40 50 60

P2P1 P1 P2 P3 P4P4P3

Figure 5.4 Processes scheduled using a round-robin strategy

For example, consider the processes below:

Process Time Needed

P1 25
P2 9
P3 13
P4 15

Let’s say the time slice in this system is 5 time units. A round-
robin scheduling strategy would produce a timeline like that shown in
Figure 5.4.

There is very little to manage about a round-robin strategy. The only
variable in the scheme is the length of the time slice – the amount of
time spent on the processor. Setting this time to be too short – say close
to the time it takes to perform a context switch – is counterproductive. It
lets the context-switching time dominate performance and lowers CPU
efficiency. However, making a time slice too long gets away from the
benefits of a round-robin strategy. Response time decreases for short
requests.

In addition, the round-robin strategy (in common with the FCFS and
SJF strategies) ignores a very important concept: some processes are more
important than others and should be run more often. Kernel processes
are usually more important than user processes to the maintenance of an
operating system. Even within kernel processes, some are more important
to efficient use of operating system resources and some are less important.
A round-robin strategy puts all processes on an equal footing.

Priority Strategy

A priority-scheduling strategy takes into account that processes have
different importance placed upon them. In priority scheduling, the process

SCHEDULING STRATEGIES 99

in the ready queue with the highest priority is chosen to run. This type
of scheduling can be either pre-emptive or non-pre-emptive, as it is the
choice of the next process that defines a priority-scheduling strategy.

Priority scheduling makes certain requirements of the operating system.
First, and most obviously, the operating system must employ the concept
of process priority. The priority is an attribute of a process that measures
the importance of the process in relationship to others and allows the
operating system to make decisions about scheduling and the amount
of time to keep a process on a processor. In a pre-emptive scheduling
environment, process priority is a very useful attribute to assign to a
process. The priority of the process is usually given by a number, which
is kept in the process’s PCB.

It is usually required that the operating system be allowed to manipulate
priorities somehow. Priorities are set by the user or the process creator but
the operating system is usually allowed to change priorities dynamically.
This is done to reflect the properties of the processes. For example, if
a process spends most of its time waiting for I/O (is I/O-bound) then
when it returns from I/O requests, it is usually considered fair play to
give it the processor when it wants it. The operating system requires the
ability to adjust the priority of such a process as it moves through its
execution.

Priorities themselves usually take the form of numbers, quantities
that can be easily compared by the operating system. Microsoft Windows
assigns values from 0 to 31; various Unix implementations assign negative
as well as positive values to reflect user (negative) and system (positive)
priority assignment. As that shows, there is no general agreement on
assigning priority values.

Consider an example of priority scheduling. Let’s say that requests for
the processor are made in the following order:

Process Time Needed Priority

P1 11 5
P2 4 4
P3 26 11
P4 7 5
P5 10 20

For the purposes of this example, higher numbers mean higher priority.

100 PROCESS SCHEDULING

P1

10 20 30 40 50

P2P3P5 P4

Figure 5.5 Processes scheduled using a priority strategy

If a priority scheduler is used, then the scheduling of processes in a non-
pre-emptive scheduling environment could look similar to Figure 5.5.

At each stage, the process with the highest priority is chosen to replace
the process leaving the CPU. The average waiting time is 36.6 time units,
which is not better than the other strategies, but the more important
processes do get executed sooner.

Priority scheduling seems to address the reality of scheduling processes
in an appropriate manner. However, there are a few issues that we must
attend to in order to implement priority scheduling correctly. The first is
process starvation, an issue we have addressed with other strategies. It is
possible to construct a sequence of process-scheduling requests where
there is a process that is never scheduled, because each new request has
a higher priority. In this scenario, the process at the lowest priority level
is starved and never gets the CPU. This is an issue especially for heavily
loaded systems, where there are many processes and the likelihood of a
high-priority process is great.

The solution to starvation is to include the concept of aging into priority
scheduling. The idea is to change the priority of a process as time goes
by. This can be done by reducing the priority of higher-priority processes
or by raising the priority of starved processes. Usually, higher-priority
processes are reduced in priority because that has a more rapid effect.

Consider the big picture of processes: which process should have the
lowest priority? On most operating systems, the process with the lowest
priority is the process that does the most menial of tasks. It is the process
that, should it never get scheduled, no harm is done.

On Microsoft Windows, this process is called the ‘System Idle Process’
and is exactly what its name implies: an idle process. When the system
is idle, this process is eventually run. It does nothing – just takes up CPU
cycles until something else needs the processor.

In a Unix system such as Solaris, this idle process is the scheduler itself.
When the system boots, it starts all processes by starting the scheduler.
This scheduler starts the system initializer, called ‘init’, that spawns all

SCHEDULING STRATEGIES 101

other processes. When all processes are idle, the scheduler schedules
itself and runs code that burns up CPU time without doing anything.

Multiple-Queuing Strategy

We have described priority scheduling as a matter of choice: choosing
the process with the highest priority to schedule on the processor. In
many operating systems, processes do not have unique priorities. There
may be many processes with the same priority. Many system processes
have the same high priority. This means that the scheduler is eventually
going to have to choose between processes with the same priority.

Priority scheduling is often implemented with priority queues. A prior-
ity queue holds processes of a certain priority value or range of values.
The idea is that, if returning a process to the ready queue places that
process in one of several priority queues, scheduling is simply a matter
of taking the head of the next nonempty queue and placing that process
on the processor. The result is a faster scheduling choice when looking
for a process to run on the CPU, but a slower return of that process to the
ready queue (or queues).

We can generalize on this idea. If we think about grouping processes
into various classes, each class can have its own scheduling queue. This
multiple-queuing scheduling strategy could even use multiple strategies:
different scheduling strategies for different queues. Processes are either
permanently assigned to a specific queue, based on their characteristics
upon entering the system, or they can move between queues, based on
their changing characteristics as they are executed in the system. Note
that this assumes that certain characteristics are either derivable from a
process or that the process states its characteristics as it enters the system.
In turn, allowing a process to change queues implies that a process can
communicate with the operating system about its changing requirements
(know as multilevel feedback) or that the operating system can somehow
derive that a process’s needs have changed.

Real-time Strategy

As we briefly mentioned in Chapter 1, real-time systems can be classified
as one of two different system types, each with different scheduling
needs. Hard real-time systems guarantee that time constraints are met.
In hard real-time systems, there is usually a specific amount of time

102 PROCESS SCHEDULING

that is specified along with the process-scheduling request. The system
guarantees that the process is run in the specified amount of time or that
the process is not run at all. The system first responds by either accepting
the process for scheduling or rejecting the request as not possible. If
the system accepts a hard real-time process-scheduling request, it must
base this decision on its knowledge of the request and its characteristics
matched against its knowledge of the system upon which it is running
and its resource characteristics. In order for a system to know itself this
well, specialized software and hardware are typically needed.

Soft real-time systems place a priority on time-critical processes and
are less restrictive. Soft real-time systems do not guarantee performance;
they give real-time processes favorable treatment and keep certain latency
times to a minimum. A real-time operating system must be able to assume
that scheduling overhead is restricted to a certain time. Specifically,
two benchmarks must be bounded for the operating system to able to
schedule in real time: the time from an interrupt to a user thread and the
time from an interrupt to a kernel thread. If these times are accurately
predictable, even a general-purpose operating system can support soft
real-time scheduling.

Soft real-time systems are usually scheduled using one of two methods.
A process has a fixed amount of time in which it can execute, called
its deadline. If an operating system can manipulate process priority such
that real-time processes are scheduled in increasing deadline order, and
before non-real-time processes, then it can be shown that this abides
by the rules of real-time scheduling. This method is known as static,
monotonic scheduling. It does not produce optimal scheduling, but it is
‘good enough’ for many real-time needs. It is simple and efficient, suitable
for memory-limited systems.

When it is not sufficient to be ‘good enough’, an operating system
must make scheduling choices by paying closer attention to deadlines.
In deadline-driven scheduling schemes, choices are made based on the
priority of the process in addition to some consideration of deadlines.
For example, in an earliest-deadline-first scheduling strategy, choices are
made by computing how close a process is to its deadline. The choice of
the next process to schedule is the process closest to its completion.

Real-time scheduling is a complex issue. Much research work has
been done on this topic that proves complicated scheduling can be
accomplished by adopting some simpler policies. [Leung and Whitehead
1982] and [Liu and Layland 1973] are well worth reading for some more
information on this topic.

SCHEDULING IN LINUX 103

5.3 Scheduling in Linux

Process scheduling in Linux tries to accommodate all kinds of needs. It
is a time-sharing system, giving general-purpose processes a time slice
and multiplexing the CPU based on those time slices. This means that the
Linux process scheduler is a pre-emptive scheduler. Understanding the
importance of certain processes over others, Linux also uses a dynamic
process-priority strategy. In addition, Linux uses a real-time scheduling
strategy with deadline scheduling for real-time processes. Thus, Linux
handles all types of processes, from interactive processes through batch
processing, even real-time processes.

The Linux scheduling algorithm divides CPU time into epochs. At the
beginning of each epoch, the time slice of every process waiting to be
scheduled is recomputed. This means that different processes generally
have different sizes of time slice. If a process does not exhaust its time slice
(for example, it goes into the wait state before its time slice is complete),
it can be rescheduled on the CPU for the remainder of the time slice. An
epoch is complete when all processes have run for their time slice.

Priority values affect which process with remaining time in its time slice
is chosen next for the CPU. As stated previously, Linux uses dynamic pri-
orities for conventional process scheduling. Linux computes the dynamic
priority as the sum of the time slice quantity and the amount of time left
until the end of the time slice.

Real-time scheduling in Linux is performed by raising the priority of
real-time processes and by tuning the operating system to make bounds
on system overhead. If a real-time process is running, pre-emption should
not allow a lower-priority process to take over the CPU ahead of any
other real-time process.

Process scheduling in Linux is relatively straightforward. The epoch
method ensures that all processes are run in a certain time period, but
that more important processes are executed first.

• This algorithm is good for a variety of uses – interactive, batch
mode – that do not stretch a system to the limit. In this environ-
ment, the Linux algorithm can run all the processes, avoid process
starvation and even service real-time processes.

• If the number of processes is large, recalculating the process time
slices before each epoch is quite inefficient. System responsiveness
depends on the average time-slice duration of processes in the ready
state. For systems under high loads, choosing this time-slice quantity

104 PROCESS SCHEDULING

can be tricky and the time slice chosen by the Linux scheduling
algorithm is often too large.

• Linux has a strategy of dynamically raising the priority for I/O-bound
processes. This ensures a short response time for interactive processes
and provides an aging strategy to avoid starvation. However, processes
that wait for I/O but do not require user interaction also have their
priority artificially boosted. Thus, if a system has many I/O-bound
processes, all processes – even those with user interaction and little
I/O – suffer.

• Real-time support is based on the fact that real-time processes are
scheduled often and that all system latencies are predictable. These
criteria are supported in Linux (providing the operating system is
pre-emptively scheduled) but there are other issues. It is possible, for
example, for a lower-priority process to block a real-time process.
This can occur when the lower-priority process is running when the
real-time process enters the ready state. This phenomenon is known
as priority inversion. In addition, a real-time process could need a
system service that is servicing the request of a lower-priority process.
This problem is known as hidden scheduling. Linux allows both
priority inversion and hidden scheduling and thus has weak support
for real-time processes.

5.4 Scheduling in a Microkernel Architecture

Recall that a microkernel architecture is an attempt to minimize the size
of kernel-level structures and to push as much functionality as possible
to the user level. The question with regard to scheduling in microkernels
is where to place the scheduler. Is process scheduling a kernel-level or a
user-level function?

Placing scheduling at the user-level has a certain appeal. Scheduling
policies can change more easily – even at a user’s discretion. Systems
can be customizable – users can set their own scheduling strategies and
applications can alter how scheduling is done.

Placing scheduling functionality at the kernel level has a few advan-
tages. Essentially, scheduling relies on kernel information. A scheduler
must know, for instance, how long a process has been using the CPU
and what the priorities of processes are. A scheduler must also access
kernel-level structures, including process queues and PCBs, and handle

SCHEDULING IN SYMBIAN OS 105

kernel-level events, such as interrupts. Because a scheduler must access
so many kernel-level objects, scheduling is typically a kernel-level func-
tion, even in a microkernel. Because the overhead of making lots of
kernel requests is high, placing scheduling at the user level would hurt
an implementation. Allowing a scheduler access to information is much
faster than making many requests for the same information.

This means that scheduling is one of the basic functions of an operating
system that is kept at the kernel level by a microkernel. Whatever
the structure of an operating system – monolithic to microkernel – the
scheduler is built into the kernel.

5.5 Scheduling in Symbian OS

Symbian OS is a mobile phone operating system that is intended to
have the functionality of a general-purpose operating system. It can
load arbitrary code and execute it at run time; it can interact with
users through applications. At the same time, the operating system must
support real-time functionality, especially where communication func-
tions are concerned. This combination of requirements makes scheduling
interesting.

Because of the real-time requirements, Symbian OS is implemented as
a real-time operating system. It is built to run on multiple phone platforms,
without specialized hardware, so the operating system is considered to
be a soft real-time system. It needs enough real-time capabilities to run
the protocols for mobile protocol stacks, such as GSM and 3G (not to
mention future protocols). In fact, Symbian OS considers scheduling to
be such a basic service that the nanokernel provides it.

The combination of general-purpose functionality with real-time sys-
tem requirements means that the best choice for implementation is a
system that uses a static, monotonic scheduling strategy, augmented by
time slices. Static, monotonic scheduling is a simple strategy to use – it
organizes processes with the shortest deadline first – and the introduction
of time slices means that processes with the same deadline (or no deadline)
can be assigned time slices and scheduling using a priority-scheduling
scheme. There are 64 levels of priority in Symbian OS.

As we discussed before, a key to soft real-time performance is pre-
dictable execution time. If an operating system can predict how long a
process will run, then a static, monotonic scheduling strategy will work,
since it makes some big assumptions about run time. Predicting execution

106 PROCESS SCHEDULING

time is based on the process and several system characteristics. There are
several important characteristics that must be predictable, including:

• latency times: an important benchmark is the latency of handling
interrupts: the time from an interrupt to a user thread and from an
interrupt to a kernel thread

• the time to get information about processes: for example, the time it
takes to find the highest priority thread in the ready state

• the time to move threads between queues and the CPU: manipulating
scheduling queues – for example, moving processes to and from the
ready queue – must be bounded. This functionality is used all the
time and it must have a bound on it or the system cannot predict
performance.

Predicting these quantities is important and is reflected in the design
of the scheduler. For example, in order for Symbian OS to predict the
time for finding the highest-priority thread, the operating system uses 64
separate queues, one for each priority level. In addition, there is a 64-bit
mask, where a bit being on in the mask indicates that there are processes
in the corresponding queue. This means that to choose a process from a
queue the operating system scans the mask and chooses the first process
in the first available queue, instead of searching over a single queue with
an unknown number of processes in it.

5.6 Summary

In this chapter, we have looked at the requirements of sharing a com-
puter’s CPU between processes. We began the chapter by outlining what
we mean by ‘sharing’ and what criteria can be used to assess how good
a sharing strategy is. We then examined several different strategies that
are used to schedule a CPU to be used by multiple processes. Finally, we
described three scheduling implementations, for Linux, general micro-
kernels and Symbian OS.

In this chapter, we have examined how to build the ‘illusion’ of
supporting multiple processes executing at the same time on a single
processor. The next chapter examines how to continue this illusion by
discussing how concurrently running processes can communicate with
each other.

EXERCISES 107

Exercises

1. We discussed pre-emptive and non-pre-emptive scheduling. List
computing environments and state whether pre-emptive or non-pre-
emptive scheduling would be best used. Give environments that
cannot use either pre-emptive or non-pre-emptive scheduling.

2. Describe why non-pre-emptive scheduling should not be used in a
soft real-time environment.

3. How should an I/O call be used by a non-pre-emptive scheduler?

4. Consider the following set of processes, listed with the time needed
and scheduling priority requested. Assume that 1 is the highest
priority and that the requests arrive in the order P1 to P5. Assume that
a time slice is 2 time units.

Process Time Needed Priority

P1 21 2
P2 19 4
P3 3 3
P4 10 6
P5 13 5

a. Draw time bars to indicate the scheduling sequence for these
processes under an FCFS, an SJF, a round-robin and a pre-emptive
priority scheduling scheme.

b. Compute the turnaround time for each process for each of the
scheduling strategies.

c. Compute the average waiting time for each process for each of
the scheduling strategies.

d. Which of the scheduling scenarios has the best turnaround time?

e. Which of the scheduling scenarios has the least waiting time?

5. Suppose a new scheduling strategy, called least processor time first
(LPTF), is invented. In an LPTF strategy, the next process chosen
for the CPU is the one that has used the least processor time. Why

108 PROCESS SCHEDULING

does this favor I/O-bound processes? Is it effective in eliminating
starvation?

6. How would you tune the Linux scheduling strategy to better support
real-time computing? Give at least three suggestions.

7. Suppose a new Linux strategy is invented that looks for higher-priority
processes between the scheduling of each process. If one is waiting, it
is scheduled for an extra time slice. Why does this method encourage
starvation?

8. Should interrupts be disabled during a context switch? Describe how
disabling and enabling affects a scheduling algorithm.

9. How does queue maintenance affect a scheduling algorithm? In other
words, explain how careful placing of a process’s PCB in a queue after
removing the process from the CPU affects a scheduling algorithm.

6
Process Concurrency
and Synchronization

As children, most people are taught to take turns. Taking turns is a way to
share something between two or more people in an organized fashion so
that everyone has time to use the object, but no one can exclusively take
it as their own. Taking turns is a great way to share, but it is often not done
correctly, especially with children. If turns are unfair or someone is seen
as taking more than her turn, several bad things can happen. Usually, the
result is a fight among the children sharing the object or damage to the
object being shared. Often an adult must step in to monitor the situation.

When processes must share objects in a computer system, the same
careful attention must be given to proper sharing. If an object – say
a device or a portion of memory – is not shared correctly, several bad
things can happen. The shared object could be corrupted or the processes
involved could deadlock as they fight for access. In all cases, things are
best handled when the operating system steps in and provides some kind
of supervision.

This chapter deals with how to share objects in an operating system
between processes. We have established in previous chapters that pro-
cesses can be seen as executing concurrently, even when they share
a single processor. We examine what it takes to get those concurrent
processes to coordinate with respect to shared objects and communicate
between processes within an operating environment. We also examine
how to avoid pitfalls of sharing, specifically deadlocks.

110 PROCESS CONCURRENCY AND SYNCHRONIZATION

6.1 Concepts and Models for Concurrency

In an operating system, multiple processes run virtually at the same time
and share all the resources of a computer system. It is the nature of modern
operating systems to support applications that work this way. Modern
operating systems are built assuming that processes share memory space,
devices and other resources with each other. Much of the time, dwelling
in this shared world is easy and requires no special action. However, there
are times when processes must cooperate to properly share something
between them. This section introduces the concepts and ideas necessary
to discuss sharing and cooperation.

Understanding the Environment
Let’s begin by looking at the environment in which cooperating processes
execute. A usual execution environment contains any number of cooper-
ating sequential processes, which are running in parallel with each other.
Each process is running sequential code within its process space. Even
though other processes are also executing concurrently, each process is
unaware of other actions taken by other processes.

For example, consider a process that reads data from a memory buffer
that is generated by a second process. This could occur, for example, if
one process is producing timing data and the other process is reading that
data and displaying it. Consider, for example, the code below:

while (true)
{
while (timing_count == 0) ; // do nothing
timing_data = time_buffer[time_out];
time_out = (time_out + 1) % buffer_size;
timing_count --;
display(timing_data);
}

The consumer is waiting – doing nothing – until a variable named
timing_count is greater than zero, which indicates how much timing
data there is in the buffer to be read. This timing data is produced by a
data producer that executes code similar to that below:

while (true)
{

CONCEPTS AND MODELS FOR CONCURRENCY 111

while (timing_count == buffer_size) ; // do nothing
timing_data = timer();
time_buffer[time_in] = timing_data;
time_in = (time_in + 1) % buffer_size;
timing_count ++;
}

These two code fragments run in parallel. Note that each process
shares the time_buffer, which is filled and emptied of time data. Each
process keeps its own idea of how much is in each buffer. Finally, note
that the count timing_count is also shared between processes. The
variables time_out and time_in are private variables and are meant
to keep track on a circular basis. The shared timing_count variable is
meant to indicate how much data is in the buffer that should be displayed.

It is easy to demonstrate how these code sections would work together
well. For example, if a producer section is run before a consumer section,
all objects are shared correctly, as in the sequence of code below (the
time-data producer is in italics and indented):

timing_data = timer();
time_buffer[time_in] = timing_data;
time_in = (time_in + 1) % buffer_size;
timing_count ++;

timing_data = time_buffer[time_out];
time_out = (time_out + 1) % buffer_size;
timing_count --;
display(timing_data);

Even certain interleavings of the code work correctly:

timing_data = time_buffer[time_out];
time_out = (time_out + 1) % buffer_size;

timing_data = timer();
time_buffer[time_in] = timing_data;
time_in = (time_in + 1) % buffer_size;

timing_count --;
timing_count ++;

display(timing_data);

These are ‘macro-style’ interleavings. That is, they interleave entire
statements, which themselves are comprised of instructions. Interleaving
process execution ultimately happens at the instruction level. Consider
what happens if we interleave the instructions that these statements

112 PROCESS CONCURRENCY AND SYNCHRONIZATION

comprise a bit differently. Let’s assume that the execution of tim-
ing_count ++ and timing_count -- are implemented like this:

load register from timing_count location
add (or subtract) 1 to (or from) register
store register into timing_count location

Now consider the following interleaving of instructions:

load register from timing_count location
add 1 to register

load register from timing_count location
subtract 1 from register

store register into timing_count location
store register into timing_count location

If the value of timing_count is 10 at the beginning of this sequence,
then the producer sets timing_count to 11 and the consumer sets it to
9. In this case, both values are wrong; the correct result of this interleaving
should leave timing_count at 10.

We can see, therefore, that certain interleavings of statements are
correct and others leave corrupted data. Our goal is to derive ideas about
parallel execution that allow us to ensure correct manipulation of data
all the time.

The Goal: Serializability
It is clear that, without proper precautions, data manipulation can only
be guaranteed to be correct when processes are not concurrent. That
is, resource corruption cannot occur when only one process at a time
is using the resource. This is a dilemma, however, because, as we saw
in Chapter 5, running processes one at a time does not make sense for
the performance of a system. The goal, then, is to make shared access
to resources look as if it is done sequentially. This property is called
serializability.

We must invent ways for processes to cooperate and be coordinated
that allows concurrency, yet makes access to shared resources look like
serial access. We start to do this by identifying the code sections that
access shared resources. We call these code sections critical sections.
We must coordinate the access these critical sections have to shared
resources so as to adhere to these criteria:

CONCEPTS AND MODELS FOR CONCURRENCY 113

• mutual exclusion: this is a guarantee that, when a process is executing
inside a critical section, it is the only one in the critical section
accessing the shared resource

• no starvation: if a process wants to enter its critical section and no
other processes are in their critical sections, then it is eventually
allowed to do so

• bounded waiting: there must be a limit to the number of times other
processes can enter their critical sections between the time a process
requests to enter its critical section and the time that request is granted.

In other words, we must ensure that our serialization mechanism is
effective, with no starvation and no indefinite postponement.

While we consider ways to guarantee these criteria, we must continue
to remind ourselves that statements in a program that make up a process’s
critical section are actually instructions. At some point, as we drill down
to the machine language making up a program, we have to assume
that something executes without interruption. (If any process can be
interrupted at any time, we can say very little about guaranteeing the
criteria above.) We assume that machine language instructions execute
without interruption – atomically. This means that the execution of one
instruction completes before the execution of another instruction from
another process begins.

Synchronization of Two Processes

Let us start our consideration of process synchronization by considering
the case of only two processes executing concurrently. We branch out
from this view in the next section, but restricting ourselves to two
processes allows us to examine the issues more closely.

If we are only looking at two processes, a first solution to sharing a
resource might be to take turns by using a turn variable that indicates
whose turn it is. When the turn variable has a process’s ID, then it is
that process’s turn. The following code shows how this might work:

while (true)
{
while (turn != myID) ;

// critical section

114 PROCESS CONCURRENCY AND SYNCHRONIZATION

turn = nextID;

// whatever else needs to be done
}

The process IDs of the two processes involved are stored in myID and
nextID. This method ensures some of our criteria but not all of them. For
only two processes, this method does indeed ensure mutual exclusion:
the turn variable can only have one value at a time and changes only
when the critical section is complete. There is also a bound on waiting:
when a process is ready to enter its critical section, the other process can
enter only once. However, the rule against no starvation is violated: if a
process is ready to enter its critical section, and the other process is not,
the current process can only enter if it is its turn. A process can starve
another process simply by not taking its turn.

The method failed because we did not know enough information about
processes. If we knew whether a process was ready to enter its critical
section, we might be able to fix this. The following code shows a way
around this:

while (true)
{
ready[myID] = true;
while (ready[nextID]) ;

// critical section

ready[myID] = false;

// whatever else needs to be done
}

In this method, we establish two flags – an array of Booleans – that
indicate whether a process is ready to enter its critical section. By setting
a flag and checking the other process’s flag, a process can implement the
idea of taking turns while avoiding starvation.

This still does not satisfy all our criteria. It does indeed satisfy mutual
exclusion and goes some way towards meeting the starvation require-
ment. However, it does not completely work: since the ready flags are
set in separate statements, a second process could set its ready flag
between the two statements before entering the critical section. That is,
we could have:

CONCEPTS AND MODELS FOR CONCURRENCY 115

ready[myID] = true;
ready[nextID] = true;

while (ready[nextID]) ;
while (ready[myID]) ;

Now both processes are stuck in their waiting loops and each process
starves.

The correct solution lies in combining the ideas of both of the previous
methods: take turns, but only if the other process is not ready. For this
solution, we need both turn variables and ready arrays:

while (true)
{
ready[myID] = true;
turn = nextID;
while (ready[nextID] && turn == nextID) ;

// critical section

ready[myID] = false;

// whatever else needs to be done
}

Synchronization of Multiple Processes
We have seen a two-process solution; now we need to generalize to a
method that works in a multiple-process environment. There are many
methods of multiple-process synchronization; this topic remains fodder
for many research projects and doctoral dissertations. Examples include
the colored ticket algorithm, clock algorithms, and many unnamed mutual
exclusion algorithms. For further reading, [Lamport 1987] is an excellent
paper that surveys synchronization methods.

We outline the bakery method – sometimes called the grocery store
or shop method. The bakery method is based on an algorithm used in
bakeries and shops. In these situations, customers organize themselves by
taking a number and waiting their turn until their number is called. The
customer with the lowest number is the next to be served. We simulate
this type of behavior:

do
{

116 PROCESS CONCURRENCY AND SYNCHRONIZATION

choosing[pid] = true;
number[pid] = max(number[0], ..., number[n-1]) + 1;
choosing[pid] = false;

for (i=0; i<num_processes; i++)
{
while (choosing[i]) ; // do nothing
while ((number[i] != 0) &&

((number[pid], pid) < (number[i], i))) ;
}

// critical section

number[pid] = 0;

// whatever
} while (true);

We start by picking a number – which we assume is more than all
the other numbers chosen. However, we cannot guarantee that multiple
processes do not choose the same number. Then we check all processes,
waiting for each to finish choosing and for each to return their number if
it is less. The notation (number[i],i) is meant to convey that either
the number chosen is less or the process ID is less (if the number is the
same). To understand that this works, consider that if a process Pi is in
its critical section and Pj (where i is not the same as j) is waiting with
an already-selected number then it must be true that (number[i],i) <
(number[j],j).

In this algorithm, we can see that mutual exclusion is adhered to
by observing that when Pi is in its critical section, number[i] !=
0. When a second process Pj wants to enter its critical section, then
(number[i],i) < (number[j],j). So the algorithm makes Pj wait
until Pi is done and the statement number[pid] = 0 is executed.

Notice that processes enter critical sections when they need to, on a
first-come-first-served basis. This is enough to show that no starvation can
occur and waiting is bounded.

6.2 Semaphores

As we saw in the previous sections, using algorithms to guarantee our
three criteria – mutual exclusion, no starvation and bounded waiting – is
complicated and clumsy. They also require a bit of overhead to use.
The complexity of the algorithms has developed because the atomicity

SEMAPHORES 117

of operations cannot be ensured. For example, interleaving of statements
can cause problems with the implementation. If the statements from one
process could be executed atomically – without interleaving – we would
be in much better shape.

We can get around these methods by the use of a tool called a
semaphore. A semaphore is a data object – often a simple integer – that
is supplied by the operating system and guaranteed to be manipulated
atomically. Using a semaphore to make processes cooperate takes the
place of using the methods from Section 6.1 for critical sections.

Semaphores are accessed through two operations: wait() and sig-
nal(). These two operations can be thought of in the following generic
fashion:

wait(S)
{
while (S <= 0) ;
S--;
}

signal(S)
{
S++;
}

These methods require an initial value for the semaphore S, which
is usually considered to be the number of processes that can access a
particular resource. These methods also assume that operations on S are
atomic and cannot be interrupted. This includes arithmetic operations as
well as testing.

To see how we can use semaphores, consider this code sequence:

while (true)
{
wait(CS);

// critical section

signal(CS);

// whatever else needs to be done
}

In this example, processes share a semaphore, CS, initialized to 1
(there can only be one process in a critical section at a time). As a process

118 PROCESS CONCURRENCY AND SYNCHRONIZATION

wants to enter its critical section, it waits for CS to be equal to 1, then
decrements it, all in one uninterruptible action. When it is finished with
its critical section, the process increments the semaphore in an atomic
manner, thereby signaling to other processes that they may enter the
critical section.

Consider the implementation of semaphores. The methods we outlined
in Section 6.1 were all based on busy waiting. Busy waiting occurs when
a process is waiting for something that it needs to check constantly.
This type of waiting is extremely inefficient because it requires CPU
time. This wastes CPU time that another process might be using. Instead,
semaphores are implemented more like devices: waiting for a semaphore
causes movement of the process from the running queue to the waiting
queue. This means that a process is blocked while it waits for a semaphore
to be available, but it does not consume CPU cycles. It is the use of the
signal() operation by some other process that unblocks the waiting
process and moves it to the ready queue again. The result is an efficient
method of coordination that uses no CPU time and abides by our
synchronization criteria.

Binary semaphores are a special case of semaphore. They have one of
two values: 0, indicating no availability, or 1, indicating availability. This
gives the user a means of indicating ‘taken’ and ‘available’ – or ‘lock’ and
‘unlock’ as we see in Section 6.3.

6.3 Locks, Monitors and Other Abstractions

For some people, using a semaphore is too ‘close’ to system operations.
That is to say, semaphores are not a sufficiently abstract idea. Other, more
abstract, concepts have been invented to hide the use of semaphores.

A lock is an abstraction that masks a semaphore. Locks are usually
associated with data items, not sections of code. The operation of binary
locking is usually done on a data item and guarantees that all manipu-
lations on that data item by the owner of the lock are done atomically,
without interruption. Trying to lock a locked data item usually causes the
lock operation to block until the data item is unlocked. Locks can be of
other types than binary and can sometimes allow certain operations to
happen concurrently. For example, read locks are usually distinct from
write locks. If a read lock is held on a data object, then only read opera-
tions – from any process – can proceed in parallel. Write locks guarantee
mutual exclusion: the owner of a write is guaranteed atomicity with
respect to the locked data item.

LOCKS, MONITORS AND OTHER ABSTRACTIONS 119

Locks can be implemented by semaphores. Binary semaphores are
used, with the lock operation implemented by wait() and the unlock
operation implemented with signal().

A critical region is a programming language construct designed to
ensure access to critical sections by focusing on shared variables. Critical
regions require two types of special syntax, for variables and for critical
sections of code. For example, if we were to design a concurrent queue,
we might declare that queue as a concurrent C++ struct as follows:1

struct concurrentQueue
{
int queue[];
int head, tail;
}

time_buffer: shared struct concurrentQueue;

Notice the last line that declares the time_buffer variable to be
a shared concurrent queue. We can specify a consumer that uses this
shared queue as in the following code:

region time_buffer when (timing_count > 0)
{
timing_data = time_buffer[time_out];
time_out = (time_out + 1) % buffer_size;
timing_count --;
display(timing_data);
}

The code’s syntax incorporates a guard condition – in our case this
is timing_count > 0 – and focuses the critical section of code on
the shared resource. The intent of this kind of syntax is to guard
against programmer errors associated with manipulating semaphores.
This abstraction takes away the semaphore manipulation and focuses on
syntax.

Another form of abstraction that hides semaphores is a monitor. A
monitor is a programming language construct similar to a class or other
object-oriented abstraction. In object-oriented languages, classes are an

1 This and other examples of code are written in a fictitious enhancement to C++. There
is no ‘shared’ keyword, for example, but I explain the syntax and it should be clear what
the code is used for.

120 PROCESS CONCURRENCY AND SYNCHRONIZATION

encapsulation of data definitions and the procedures that operate on
those definitions. A monitor is an extended definition of a class where
any use of a monitor’s operation guarantees atomicity with respect to the
data items defined in the monitor. Consider the following specification of
a monitor:

public monitor concurrentQueue
{
int queue[];
int head, tail;

concurrentQueue() { // constructor code }

void enqueue(int aQueueItem) { ... }
int dequeue() { ... }

int length() { ... }
}

This example is certainly not that mysterious; you could replace the
keyword ‘monitor’ with the keyword ‘class’ and have a class specification
written in Java.

A monitor is implemented with semaphores and critical sections. Use
of a monitor’s methods implies locking the data items defined in the
monitor’s declaration first, then making the method call. The data items
need to be unlocked just before the method returns. And locking, as we
stated previously, can be implemented with semaphores. So again we
have semaphores as the basis for higher-level abstractions.

The concepts we have just discussed – such as critical regions and
monitors – were developed as experimental concepts by researchers try-
ing to understand how best to program with concurrent processes in
an operating system. Some of the first researchers in this field were Per
Brinch Hansen and C.A.R. Hoare. These scientists invented new lan-
guages or augmented existing ones so that they could experiment with
how these new constructs worked. Languages such as Concurrent Pascal
represented existing languages (Pascal) that were augmented and Mesa
and CSP (and later, Occam) were new languages influenced by their
work.

6.4 The Dining Philosophers: A Classic Problem

A classic problem in concurrency has to do with five philosophers sitting
around a table. These five philosophers have nothing to do except eat

THE DINING PHILOSOPHERS: A CLASSIC PROBLEM 121

RICE

Figure 6.1 The philosophers’ dining table

and think. They can think on their own, but to eat, they need a shared
bowl of rice and two chopsticks. The table is built so that each of the five
philosophers has a single chopstick to her left and right, shared by the
philosophers to the left and right (see Figure 6.1).

The problem is that a philosopher cannot eat unless she has two
chopsticks. This has several implications. If a philosopher is eating, then
her neighbors cannot eat. If a philosopher picks up one chopstick, but
her neighbor has also picked up one, then she cannot eat. The goal in
this problem is to allow every philosopher to go through eat–think cycles
without starvation.

The obvious solution is shown in the following code:

while (true)
{
think();
take_chopstick(i);
take_chopstick(i+1 % 5);
eat();
drop_chopstick(i);
drop_chopstick(i+1 % 5);
}

The call to take_chopstick(i)waits until the specified chopstick is
available and then takes it. This is obvious … but wrong. There are several
reasons why this obvious solution does not solve the problem. First, con-
sider the example we just mentioned. If the first several statements were
interleaved with each other, it is possible that take_chopstick(i) is
interleaved with all the others before the next statement is executed. The

122 PROCESS CONCURRENCY AND SYNCHRONIZATION

result is deadlock, as all the philosophers wait for each other to give up
a chopstick. Secondly, consider a scenario where philosophers are able
to eat and take chopsticks during the time their neighbors are thinking.
Then, while their neighbors wait, they put down the chopsticks, think
and try to eat again. The result is that several philosophers starve. This is
definitively not a desirable situation.

We can see starvation in another solution. Let’s say that each philoso-
pher, after thinking and taking her left chopstick, checks to see if the right
chopstick is available. If it is, she takes the chopstick and eats. If it is not,
she puts down the left chopstick, waits for a time and repeats the process.
This repeats until a chopstick is available. Unfortunately, starvation is
even more probable in this scenario. If the neighbors can eat and think
faster than the philosopher’s checking time, then the philosopher never
gets to eat and starves.

The proper solution to this problem uses semaphores to define a critical
section. To start with, we can define a semaphore – call it ‘utensils’ – that
is used to enter a critical section. Before a philosopher can start acquiring
chopsticks, she performs wait(utensils) and when she is done with
the chopsticks, she performs signal(utensils). This protects the
critical section comprised of taking chopsticks, eating and replacing the
chopsticks and ensures that no philosopher starves and that everyone
eats. The act of eating is now serializable.

Unfortunately, this is a bad solution with regard to performance.
With this solution, only one philosopher eats at a time, even though
others are ready and could eat without bothering each other. The proper
solution adds a semaphore for each chopstick. The chopsticks must still
be checked and taken in a critical section, however. This ensures that
starvation does not occur. A proper specification for this last version is
given in Section 6.5.

There are several classic problems that have developed around process
concurrency. The Dining Philosophers’ problem is one of the most
famous. However, there are others worth thinking about.

The reader–writer problem is a problem where a data object is shared
among several processes. Some processes read from the data object and
some write to the data object. The object of the system is to allow arbitrary
reads and writes without corrupting the data.

The producer–consumer problem (otherwise known as the bounded-
buffer problem) is a problem where a process fills a buffer with data and
another process empties that same buffer. The buffer is bounded, that
is, it can only contain a specific number of data items. We must guard

AN EXAMPLE IN UNIX 123

the buffer so that consumers cannot read an empty buffer and producers
cannot write to a full buffer.

6.5 An Example in Unix

Standard Unix supports semaphores among other concurrency constructs.
Let’s consider what a solution to the Dining Philosophers might look like
on a Unix platform, Solaris. We start with the following main program:

#include <stdio.h>
#include <synch.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>

#define N 5
#define LEFT (i-1)%N
#define RIGHT (i+1)%N
#define THINKING 0
#define HUNGRY 1
#define EATING 2

/* NOTE the redefinitions of wait and signal -- with the same semantics.
* And "sema_t" will serve as a semaphore.
*/

#define wait(S) sema_wait(S)
#define signal(S) sema_post(S)
#define semaphore sema_t

semaphore mutex, s[N];
int state[N];

main ()
{
int phil[N], status;
int i;
struct timeval tp;

// Set things up by seeding the random number generator

gettimeofday(&tp,&tp);
srand(tp.tv_sec);

// Next we initialize the semaphore.

status = sema_init(&mutex, 1, USYNC_PROCESS, NULL);
for (i=0; i<5; i++) sema_init(&s[i], 1, USYNC_PROCESS, NULL);

124 PROCESS CONCURRENCY AND SYNCHRONIZATION

// Now, we create N forks by using a for loop.

for (i=0; i<=N-1; i++)
{
if ((phil[i] = fork()) == 0)
{
philosopher(i);
break;
}

}

// Finally, we pause to wait for termination of all forks.

if (i == 5)
{
for (i=0; i<5; i++) wait(&status);
}

}

Semaphores are defined by the data type of sema_t. The wait and
signal functions are implemented by sema_wait() and sema_post().
We use two types of semaphores (as outlined in Section 6.4): one to guard
a critical section and a set to govern the taking of the chopsticks. The
function sema_init() is used to give each semaphore an initial value.
Each one is a binary semaphore.

Unix implements the creation of processes through the fork() system
call. The fork() call clones the current process’s PCB into two PCBs
that are virtually identical. The only difference between them is that the
call to fork() in the parent returns the process ID for the child process;
in the child, it returns 0. So the code above creates five processes with
the following fragment.

The call to the philosopher() function occurs only if the process
is a child, when the fork() call returns 0. The following code defines
philosopher(). The definition follows what we outlined in the pre-
vious section: a philosopher thinks, picks up chopsticks, eats, and puts
the chopsticks back down. Eating and thinking amount to sleeping for
random periods of time.

/* THINK and EAT -- and sleep random amounts of time (thinking and
* eating is hard business).
*/

AN EXAMPLE IN UNIX 125

void think(int i)
{
printf("Philosopher #%d is thinking...\n", i);
sleep(rand() / 6553);
}

void eat(int i)
{
printf("Philosopher #%d is eating...\n", i);
sleep(rand() / 6553);
}

// The REAL philosophy business. Think and eat forever.

void philosopher (int i)
{
int times=0;

while (1)
{
think(i);
take_chopsticks(i);
eat(i);
put_chopsticks(i);
}

}

The real meat of the solution is the implementation of take_
chopsticks() and put_chopsticks():

// Test to see if neighbors are NOT eating.

void test (int i)
{
if ((state[i] == HUNGRY) &&

(state[i-1%N] != EATING) &&
(state[i+1%N] != EATING))

{
state[i] = EATING;
signal(&s[i]);
}

}

/* Take the forks correctly -- if neighbors are NOT eating. Note the
* "down" call as the last line.
*/

void take_forks (int i)
{
wait(&mutex);

126 PROCESS CONCURRENCY AND SYNCHRONIZATION

state[i] = HUNGRY;
test(i);
signal(&mutex);
wait(&s[i]);
}

/* Put forks down correctly. Change the state to thinking. And enable
* the neighbors if, by replacing forks, they can now eat.
*/

void put_forks (int i)
{
wait(&mutex);
state[i] = THINKING;
test(i-1%N);
test(i+1%N);
signal(&mutex);
}

We implement a ‘state’ of a philosopher as a way to indicate a philoso-
pher’s desire. A philosopher can be EATING, HUNGRY or THINKING.
HUNGRY is a desire to be EATING (naturally). The procedure test() is
very important. If the philosopher to the right is not EATING, the current
philosopher is HUNGRY, and if the philosopher to the left is not EATING,
then the current philosopher may eat. The semaphores make the entire
solution work.

6.6 Concurrency in Symbian OS

As we have stated in previous chapters, Symbian OS supports concurrency
between processes. We have also seen how the Symbian OS kernel is
supported by the Symbian OS nanokernel. In addition, the Symbian OS
architecture is essentially that of a microkernel. Therefore, we can expect
synchronization primitives to be implemented in the kernel.

For Symbian OS, however, this is not as simple as it may seem.
Because of nanokernel support, there are multiple kinds of semaphores,
implemented at both levels in the kernel.

The most primitive objects are in the nanokernel. The nanokernel’s
support for synchronization takes the form of two types of objects:
mutexes and semaphores. A mutex is essentially a binary semaphore:
it has only two states and is designed to implement mutual exclu-
sion between two processes. A semaphore is a more general form of
a mutex; it can hold values greater than 1, allowing mutual exclusion

CONCURRENCY IN SYMBIAN OS 127

between multiple processes. Both blocking and nonblocking mutexes and
semaphores are supported. The recommended way of using nanothread
synchronization is through the NKern class, which allows blocking calls.
The FMWait() and FMSignal() methods implement blocking syn-
chronization for mutexes; FSWait() and FSSignal() implement such
functionality for semaphores. Nonblocking use of these synchronization
objects is provided through other classes; nanokernel mutexes are imple-
mented in the NFastMutex class and semaphores are implemented in
the NFastSemaphore class. When access is nonblocking, only one
process may acquire access through a mutex and all others requesting
access (say, through a wait() call) are rejected, but not forced to wait.

Waiting is expensive to implement and the nanokernel is designed
to be as fast as possible. However, using nonblocking synchronization
means that the kernel needs to be locked as the synchronization object is
checked. It also means that if a process wants to implement waiting with
nanokernel primitives, it must implement its own wait cycle. This means
that nonblocking calls are expensive as well. The safest route is to let the
kernel handle waiting.

Kernel objects in Symbian OS are built on top of nanokernel objects.
Thus, the kernel has analogous synchronization primitives: mutexes and
semaphores. Kernel mutexes are binary semaphores and implement some
of the semaphore properties that nanokernel mutexes do not. For example,
the versions of wait() and signal() that are implemented for kernel
mutexes allow for blocking and queuing: multiple processes may call
wait() on a mutex and they block while they wait their turn. It is possible
to hold several kernel mutexes simultaneously. Counting semaphores are
also implemented by the Symbian OS kernel. As with mutexes, these
semaphores are blocking and processes may hold multiple semaphores
at once. Mutexes in the kernel are implemented by the RMutex class and
semaphores by the RSemaphore class.

There is an interesting issue that applies to synchronization primitives
in Symbian OS: process priority. Process priority and mutexes provide
an interesting dilemma. Symbian OS has the property that if processes
with different priorities are waiting for a mutex, then the process with
the highest priority should be next to acquire the mutex when it is
released. However, if a lower-priority process holds the mutex, then it
can delay a higher-priority process. This is quite undesirable and the
designers of Symbian OS have installed some mechanisms to keep it
from happening. First, mutexes are not obtained until the last possible
moment, to give other processes as much time to get in the waiting

128 PROCESS CONCURRENCY AND SYNCHRONIZATION

queue as possible. Secondly, Symbian OS uses priority inheritance. In the
case of the low-priority process holding a mutex, the operating system
raises the priority of the low-priority process to that of the highest process
waiting for the mutex. This is to ensure that no other process, whose
priority is higher than the low-priority process, would be running before it
and postpone its releasing of the mutex sooner. Finally, there are special
queues for processes that are suspended while waiting for a mutex. The
operating system does not give mutexes to suspended processes because
the mutex might be acquired for some undetermined time.

6.7 Interprocess Communication

One can certainly consider the use of synchronization primitives as a form
of communication between processes. Processes that are synchronized
over semaphores do indeed communicate the need for mutual exclusion.
Often, however, more information needs to be exchanged between
processes and therefore a more complicated set of semantics is required.
Interprocess communication (IPC) builds on the ideas developed for
process synchronization but adds concepts of data transfer and more
complex exchange semantics.

Concepts

Cooperating processes can share information between them in several
ways. One of the more obvious ways is by expanding the ideas of
semaphores into full-blown shared-memory environments. If a kernel
can implement shared objects such as semaphores, then it surely can
expand to accommodate other kinds of shared-memory models. The idea
of a shared-memory environment requires the kernel to provide memory
resources, implemented as variables or buffers inside applications, to
processes upon request. Multiple processes can request the same memory
area and any changes to that memory affects all processes.

Using shared memory, however, is a lot like using global variables
in a program. Shared memory must be used carefully; effects are imme-
diate and parallel usage must be synchronized. There are other, more
abstract, ways to communicate between processes. These other ways
have synchronization built-in and do not require sharing memory.

Interprocess communication is best provided through the use of mes-
sage passing. As with all ways of exchanging information, message

INTERPROCESS COMMUNICATION 129

passing requires a sender and a receiver. The way that they work together
to exchange a message results in two models for passing information
between concurrent units: the mail model and the phone model. The
difference between these two models lies in whether or not the receiving
unit needs to attend to the message before the sending unit may proceed.

The mail model

Information is sent by process P1 to process P2 and placed in a mailbox.
Process P1 may then proceed with its execution and process P2 may
come and retrieve the message at a later time. If more than one message
is sent to the same mailbox, the messages are usually queued up within
the mailbox so that process P2 may successively retrieve messages until
the mailbox is empty.

There are several ways that the mailbox might be identified, providing
different versions of the mail model. These are distinguished by the way in
which communication takes place. The many-to-one version is analogous
to the way a typical post office mailbox operates, with messages arriving
from any of a number of processes, but only destined for one specific
process. Therefore, the sender specifies the receiver of the message, but
the receiver retrieves messages without needing to specify the sender.

The one-to-one version accepts messages from one sender. Here
the sender must not only specify the receiver, but when the receiver
retrieves the message, it must specify the identity of the sender as well. A
given mailbox is then identified with both the sending and the receiving
processes. This is similar to a mailbox used to pass information from a
boss to a secretary where all messages come from the same sender and
all go to the same receiver.

The many-to-many version accepts messages from many processes and
these messages may be retrieved by many processes. A sending process
therefore places the message in the mailbox without specifying who the
receiver is to be. The next process to retrieve from that mailbox is the
receiving process. This is similar to a mailbox in an office with many
bosses and many secretaries where a boss puts a job to be done in a
mailbox and the next available secretary retrieves the message from the
box and does the job specified.

The phone model

Under the mail model, the sender simply sends the message and does
not wait for message receipt. The second model for passing information,

130 PROCESS CONCURRENCY AND SYNCHRONIZATION

the phone model, requires that the sending unit wait for the receiving
unit to accept the message before proceeding. This is analogous to
placing a phone call where the caller must wait for the person called
to respond before the message can be sent. The phone model is also
known as the rendezvous model, where two people meet together at a
prearranged location to pass information. By its nature, the phone model
also synchronizes the two processes since they must wait to make a
simultaneous contact for the message to be sent.

There are two forms of the phone model, each with different views of
waiting. In the first form, the sender waits only for notification from the
receiver that the message has been received and, upon this notification,
both processes continue with their execution. In the second form, the
sender waits for both message receipt and message processing. This
second version of the phone model is similar to a procedure call;
the caller calls the procedure, sending parameters, and waits until this
procedure returns, possibly with modified parameters. The analogy is so
strong, in fact, that this second form of the phone model is typically
referred to as a remote procedure call.

As with the mail model, the phone model might be one-to-many,
one-to-one, or many-to-many.

Sockets

Sockets were invented by the designers of Berkeley Unix and were first
used as a way to access network protocols. In the Berkeley terminology,
a socket is an ‘endpoint for communication’. By itself, as an endpoint,
a socket is not very useful. But when connected to another socket on
another computer, the pair become a communication channel that uses
a protocol to transfer data. You can think of sockets as two ends of a
conversation and the protocol as the translator.

Sockets require both a client and a server. The client connects to its
end of the socket and makes a request to the server for connection. The
server either replies with no connection or connects to its end and replies
positively. Then data is exchanged across the socket.

The beauty of the socket model is in its abstractness and its translation
abilities. The abstractness of the model can be seen in how it is used: each
side simply writes data to and reads data from a socket as if it was any
other local I/O device. Each side really does not know (or care) how the
other side reads or processes the data. In fact, the socket may implement

INTERPROCESS COMMUNICATION 131

translation of data, again without each side knowing (or caring). The
translation is implemented by the operating system and occurs as the data
is transferred between the endpoints. These translations may be as simple
as little-endian to big-endian or as complicated as using the Bluetooth
protocol.

Sockets have certain properties, chosen based on how they are used.
A socket is either connected or connectionless. A connected socket
maintains a virtual connection between the two endpoints. This means
that address information for the remote endpoint needs to be given only
once, and that each access to the connection can be done without
specifying this information again. A connectionless socket forces the
application to specify the remote endpoint information each time it is
used and has no virtual connection. A connected socket is easier to use
and is more reliable yet requires higher overhead in its implementation.
Connected sockets use mechanisms to ensure that data arrives at the
remote endpoint in the exact order they were sent and that they arrive
error-free or do not arrive at all. Connectionless sockets make no such
guarantees about data arrival or reliability.

Connected sockets are implemented with streams. A stream is a
logical connection between two endpoints that implements the following
properties:

• reliability : with a stream, data is delivered accurately (as they were
sent) without error or it is not delivered at all; if there is no data
delivery, this is detected and the socket owner is notified

• error control : errors are detected automatically and the remote end-
point is usually asked to retransmit the data packet that had the error;
maintaining error control usually involves using checksums on data
packets and forcing remote endpoints to acknowledge when they
receive packets

• ordered delivery: data that flows between two endpoints can be
broken up and sent as fragments; a stream makes sure those fragments
arrive at their destination in the order in which they were sent and
that the larger data packets are reassembled correctly.

The reliability of connected sockets comes at a price. There are more
protocol layers involved and hence more protocol overhead. There is
more communication between endpoints and hence more data traffic.

132 PROCESS CONCURRENCY AND SYNCHRONIZATION

Remote Procedure Calls

Remote procedure calls (RPCs) describe a very commonly used set of
IPC semantics. Using the phone model of IPC, if we force the sender
to identify the receiver, and block the sender until the receiver is done
processing the message that was sent, we then have semantics that mirror
those of procedures in a programming language. The act of sending is
much like the act of calling a procedure, except that the procedure is on
a remote process.

To complete the analogy, we need a few more concepts. When a
procedure call is made, data is transferred to the called procedure in
the form of parameters and passed back to the caller in the form of a
return value. We can use these ideas for RPC: the RPC call transfers data
from sender to receiver and the receiver can send data back through
a return value abstraction. These facilities need the same ‘translation’
abstraction as sockets: the movement of data between sender and receiver
assumes that the receiver can read what the sender has written. Issues of
endianness of the architecture or error control are to be worked into the
implementation of RPC. All the sender has to worry about is calling and
returning.

RPC mechanisms are common in networked environments. The
abstraction is similar to the socket abstraction, except that data does
not flow back and forth arbitrarily. Data is sent in a single message
and received when the remote procedure is done. RPC mechanisms are
useful in situations where short messages must be exchanged but control
is required. RPC is analogous to the stream mechanism.

IPC in Symbian OS

IPC is central to the implementation of Symbian OS. Since it has a micro-
kernel design, much of the operating system’s functionality is pushed
into servers running at the user level. These servers communicate with
each other, with the kernel and with user applications on a socket-based,
client–server-oriented basis.

User-level objects in Symbian OS use a socket-based system to com-
municate. A user-level server is an active object (remember active objects
from Chapter 4?) that waits for connections with requests and services
them. Data is exchanged through the sockets via objects from the RMes-
sage2 class. Remote procedure calls are not used in Symbian OS.

MANAGING DEADLOCKS 133

6.8 Managing Deadlocks

When processes wait for each other, either directly or in some circular
manner, we call the situation a deadlock. Consider a simple situation
of a bank transfer. Let’s say that two processes – say, two people at two
automated teller machines – desire to transfer funds between the same
two accounts. The processes that they go through are shown in Figure 6.2.

In the simple scenario where Process A executes its first statement,
followed by Process B executing its first statement, deadlock ensues when
Process A executes its second statement and Process B executes its second
statement. This is because Process A is waiting for Process B, which is
waiting for Process A.

For a deadlock situation to occur, four conditions must be present:

• at least one resource must be acquired for exclusive use by a process

• that process must be waiting to acquire another resource in the system

• a circular waiting set must exist, where each process is dependent on
resources held by another process

• pre-emption cannot be allowed to free resources.

Deadlock situations require that the operating system detects and
recovers from deadlocks. Deadlock detection is a matter of analyzing
the relationships between processes. The operating system should main-
tain a table of structure resource requests. When a process requests
access to a resource that is allocated to another process, an entry in the
structure should indicate the waiting relationship. The result is a graph

Process A

lock (account A)

lock (account B)

decrement $100 from account A

increment account B by $100

unlock (account B)

unlock (account A)

Process B

lock (account B)

lock (account A)

decrement $100 from account B

increment account A by $100

unlock (account A)

unlock (account B)

Figure 6.2 Process definition for transferring money

134 PROCESS CONCURRENCY AND SYNCHRONIZATION

of relationships between processes. This graph needs to be checked
periodically for cycles. When a cycle exists, a deadlock situation has
occurred.

Recovering from a deadlock situation can be a difficult operation. There
are two ways to break a deadlock: process termination and resource pre-
emption. To break a deadlock by process termination, the operating
system needs to terminate one or more processes that are involved in the
cycle detected in the resource allocation graph. Terminating all processes
is a simple solution; finding and terminating only one crucial process can
be difficult. The single-process approach is a decision based on many
factors, including the priority of the process, the length of time the process
has been executing, how many other resources are used by the process,
and how many resources are still needed by the process.

To break a deadlock by resource pre-emption, the operating system
must choose the resource and the process to pre-empt. Sometimes this
choice is simple: a single resource may be the logjam and it may
be obvious which process has that resource. However, there must be
computable ways to make this choice. In addition, once the deadlock is
broken, it may occur again and we must somehow ensure that the same
process accessing the critical resource is not always chosen again (that
would cause a starvation situation). Another, more gentle, approach is to
rollback a process to a safe state. The process under examination is not
terminated but reset to a state where the critical resource can be allocated
to another process. Most of the time this actually means restarting the
process, because determining a safe state usually is not possible.

6.9 Summary

This chapter has been devoted to issues surrounding the concurrency of
processes in an operating system. We first introduced what happens when
process interleave their statements and instructions. We then described
the goal of serializability and ways that we could algorithmically synchro-
nize processes to share resources properly. We introduced semaphores as
a way to make synchronization easier. We developed other abstractions
that built on and expanded semaphores. We then worked through the
Dining Philosophers’ Problem and demonstrated semaphores in Linux.
We then discussed concurrency in Symbian OS. We introduced interpro-
cess communication via message passing, sockets, and remote procedure
calls. We finished the chapter by discussing ways to manage deadlocks.

EXERCISES 135

Exercises

1. We discussed busy waiting as a special case of waiting in an
operating system. What other kinds of waiting can go on in an
operating system?

2. How is it possible to execute only half of a statement before a
context switch is made?

3. We stated that making processes be truly serial – executing one
after the other – would have a bad effect on performance. Does
serializable access have the same performance hit? Explain your
answer.

4. Prove that the following algorithm (the final solution to synchro-
nizing two processes shown in Section 6.1) does indeed adhere to
the three criteria of mutual exclusion, no starvation and bounded
waiting.

while (true)
{
ready[myID] = true;
turn = nextID;
while (ready[nextID] && turn == nextID) ;

// critical section

ready[myID] = false;

// whatever else needs to be done
}

5. Show that if the manipulation of semaphores through wait() and
signal()were not atomic, that mutual exclusion may be violated.

6. Should interrupts be disabled during the manipulation of sema-
phores? Explain.

7. The following code shows the critical region from the discussion
about locks in Section 6.3. Rewrite it using semaphores.

region time_buffer when (timing_count > 0)
{

136 PROCESS CONCURRENCY AND SYNCHRONIZATION

timing_data = time_buffer[time_out];
time_out = (time_out + 1) % buffer_size;
timing_count --;
display(timing_data);
}

8. Implementation of monitors can restrict the way semaphores are
obtained and released. Explain why a signal() call must be the
last call for a monitor implementation.

9. Explain why a mutex is necessary in Symbian OS. Would a
semaphore with a value of 1 also work?

10. Explain why the two-tier implementations of mutexes and sema-
phores (in the nanokernel and the kernel) is necessary in Symbian
OS.

11. Are sockets based on the mail model or the phone model of IPC?
Explain your answer.

12. Symbian OS does not implement remote procedure calls. Can RPC
behavior be implemented with sockets? Explain.

13. Why does an operating system need multiple types of locks?

7
Memory Management

In the last several chapters, we have discussed how the CPU can be
shared as a resource among processes. By proper scheduling and using
concurrency, we can use the CPU more efficiently and increase the
performance of the operating system. There are other resources in a
computer system that also require sharing; after the CPU, a computer’s
memory is one of the most crucial. Proper sharing of memory also affects
an operating system’s efficiency and performance.

In this chapter, we discuss memory management. We develop the
background and concepts necessary for this discussion and discuss man-
agement techniques. Many of these management concepts apply to
desktop computers and servers, but some do not work with handheld
units and smartphones. So we spend some time discussing systems that
do not use all memory-management schemes. We use Symbian OS as an
example of smartphone memory management.

Before we get started, the type of memory we are concerned with
should be made clear. We are not concerned with what would normally
be called secondary storage, such as hard disk space. Neither are we
concerned with fast, on-chip storage, such as registers or caches. We
are concerned with memory used for execution of programs – which
could be main memory connected by bus to the CPU or RAM storage.
The main qualifier is that the memory be used for program execu-
tion.

138 MEMORY MANAGEMENT

7.1 Introduction and Background

Like the CPU in a computer, memory is a resource that every process in
a system must use. Like context switching on a CPU, proper sharing of
memory by processes affects the entire computer system’s performance.

Consider a scenario where a context switch means clearing mem-
ory and initializing it with the incoming process’s data. This scenario
would have much overhead built into it: in addition to a context switch
(already a costly procedure), this scenario would have an operating sys-
tem taking the time to save the execution environment for the process,
wipe out memory, and pull in the memory image for the new pro-
cess. The memory images – from the previous process and the incoming
process – would have to be either saved or restored from a backing
store – probably a hard disk. Hard disks are slow and I/O time would
become a bottleneck.

Clearly, memory cannot be used exclusively by one process at a
time. It must be shared. Sharing memory – without constant movement
of memory blocks – means that multiple programs (we referred to these
as processes in Chapter 4) occupy memory at the same time. Further, this
implies that programs might be in arbitrary locations in memory – and
probably not the same locations each time a process is brought onto the
CPU to execute. This presents a tricky situation. Each program cannot
know where it will be placed in memory and therefore is written believing
it alone is using that memory. On top of all this, we must also be able to
structure the environment so processes cannot trespass on each other’s
memory areas.

So our situation is complex: processes must share memory, but cannot
know ahead of time what memory they will be using. Processes must
believe they have all memory to use, but in reality are cordoned off into
memory sections that cannot stray into each other. Processes must read
or write data using locations they cannot know ahead of time. This is
indeed a situation in need of some simplifying.

From Source Code to Memory

A process takes many forms as it moves from textual source code to a
binary, executing memory image. Consider the steps toward execution
as they are pictured in Figure 7.1. There are several stages in this process
where data and instructions can be bound to memory addresses.

INTRODUCTION AND BACKGROUND 139

Source program

Compiler

Other files of
object code

Dynamically
loaded system

libraries
Loader

Executable
file

Link editor

Statically
loaded

system libraries

Memory image
of executing

program

Object code

Figure 7.1 From source code to executing program

Life for a process begins as a source program written in a program-
ming language. The source code usually goes through a compiler to
be translated into machine language for execution. Sometimes programs
are translated directly into the form that is executed, but it is most
likely that executing programs are built from several different modules.

140 MEMORY MANAGEMENT

Program modules represent pieces of programs that are built individu-
ally and then combined to form the final executing unit. These other
object modules are built by the programmer or contributed from other
sources.

This compiler stage is one place where components of a process can be
bound to memory addresses. Absolute binding is the only type of address
binding possible at compile time. Address references in the machine
code can only be bound to actual addresses if the programmer knows the
addresses at compile time. This is a situation that almost never happens
now, but could happen for older operating systems. In early version
of MS-DOS, for example, when single programs ran to completion
without context switching, the beginning address for memory references
was known and could be part of the compilation process – no memory
sharing was going on. Note that if the starting address of a program in
memory changes, then absolutely bound code must be recompiled.

Whether there is one module or many, everything must be combined
for loading. This is done by the link editor. The link editor combines all
the modules together into a single image. This image is composed of
program modules only; no system libraries have been loaded at this time.
System libraries are combined as needed by the loader.

While absolute binding is possible at load time, relocatable binding
is most often used. When the programmer does not know at compile
time where the program will start in memory, code is generated in such
a way that it can be relocated easily. This can affect how programs are
written as well as how the code is generated. Assembly code written for
relocatable execution cannot reference absolute addresses. For example,
the assembler for the SPARC architecture abides by this rule by forcing
programs to use only labels (not even relative offsets) when referring to
program code addresses or data locations.

Code is relocated and bound at execution time. At this stage, sys-
tem libraries can be loaded into memory and their addresses correctly
assigned. Note that there are two types of assignments going on here. Pro-
gram code is relocatable and bound when a binary image is loaded into
memory. In addition, libraries are loaded (if needed: they may already be
in memory) and their address references are correctly bound within the
program code. These two bindings represent execution-time binding.

Execution-time binding is the most flexible type of address binding.
As processes are context-switched, the program code moves in and
out of memory and may change locations often. In addition, library code
becomes unused as processes are context-switched and may be removed,

INTRODUCTION AND BACKGROUND 141

only to be loaded into different memory locations as they are needed. All
this chaotic activity requires flexible execution-time binding.

Determining Module Dependencies
It is not obvious from running software what modules it depends on. You
can determine this using an analysis program. On Solaris and Linux, the
ldd command helps with this.

ldd /usr/bin/ls

For example, running the command above on a Solaris system gives
the following output, showing three library dependencies:

libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
/usr/platform/SUNW,Ultra-4/lib/libc_psr.so.1

On Microsoft Windows, you need third-party software, but you can
list dependencies. For example, the screenshot in Figure 7.2 shows the
dependencies for a program called depends.exe.

Logical and Physical Addressing
Issues of address binding lead us to the difference between logical and
physical addresses. In a fully shared memory, where programs may

Figure 7.2 Dependencies for a program

142 MEMORY MANAGEMENT

be executing from several different locations in memory during their
execution, there are two types of memory addresses. Logical addresses
are used by programmers in code and issued by the executing program
during execution. Physical addresses are the actual addresses of real
memory words. Logical addresses represent the program’s concept of
code and data. Physical addresses represent the actual address – more
than likely relocated from where the program thinks it is – of that program
code and data.

The translation between logical and physical addresses is something
the operating system does, assisted by computer hardware. Only the
operating system knows, at any specific moment in time, where code and
data are located in memory. This means that executing code must make
memory requests (for reading or writing) using logical addresses and the
operating system translates them into physical addresses.

Memory-Management Units

The operating system’s job is made a lot easier by a memory-management
unit (MMU), a special hardware processor whose job it is to help the
operating system manage memory. One of its functions is to translate
between logical and physical addresses. This is done by the operating
system setting a relocation register in the MMU and funneling all address
references through MMU translation using this relocation register. The
relocation register contains the first address in memory where the pro-
cess’s memory space is placed. The MMU uses this scheme by adding
the value of the relocation register to memory references that go through
it. Figure 7.3 depicts this process.

It is important to realize that the process that is executing knows only
logical addresses and therefore uses only logical addresses. All references
by the process are made to logical addresses. It is the operating system
working with the MMU that translates the references correctly. We call
the address space that the executing program references logical address
space. The address space of real memory is called physical address space.

The truth is that memory management is a complicated process. Here
we have just started to dig into what memory management is; we will
add to it in the rest of this chapter. In the midst of all this complexity,
MMUs are essential components.

MMUs are basic processors with memory for operating system tables
and circuitry for fast searching and address computation. They do exten-
sive bit-manipulation on addresses and lots of offset computation. They

INTRODUCTION AND BACKGROUND 143

CPU
Relocation

register

MMU Memory

109500

+Logical address Physical address

110034534

Figure 7.3 Translating a logical address to a physical address

do not have to be very powerful with respect to computation but they do
have to be fast. Some of their memory is very fast (for example, translation
look-aside buffers).

MMUs are so essential to some operating systems that these operating
systems are not implemented on systems without an MMU. Microsoft
Windows CE and Linux, for example, assume the presence of an MMU.

Dynamic Loading and Linking

It is tempting to see the amount of memory that modern desktop computers
use and not worry about how much memory is used by an application.
However, reducing the memory required for programs is still a rewarded
endeavor, especially on smaller devices. Dynamic loading and linking
are techniques that can be used to reduce memory requirements.

Dynamic loading can be used to distribute load costs and to eliminate
memory waste. When using dynamic loading, a process only loads the
portions of a program that it needs into memory. Often a program is broken
up by function definitions, but it can also be in larger units – such as
classes or groups of code. When the operating system starts a program that
uses dynamic loading, only the main program is loaded and executed.
The main program loads classes or functions before using them. The
advantages here are that code that is never called is not loaded into
memory. In addition, the operating system does not have to go into kernel

144 MEMORY MANAGEMENT

mode. Dynamic loading is almost always a technique that user programs
implement.

Using overlays is also a technique to save memory or to work in
memory-restricted environments. As with dynamic loading, a program
that uses an overlay method is broken up into pieces. These pieces
are loaded into memory by the program itself in such a way that they
overlay the memory of the currently executing program. The overlaid
code occupies the same memory space as the program code that loaded.
This, in effect, rewrites the program’s code. The newly overlaid code is
then executed.

As with dynamic loading, overlaying code requires no help from the
operating system. No translation of addressing is required. The space
taken up by the executing code is constant – the overlaid code takes
the same space as the code it replaces. However, this method suffers
from the performance delays of I/O. It was used often for older operating
systems, in the days when 640 KB of memory was the norm for personal
computers. It was not uncommon to be using an application, only to have
the application freeze up while the overlay was read and installed.

A variation of dynamic loading is called dynamic linking. Linking is the
action of joining modules of compiled code – including those supplied
as libraries by the operating system – together with user object modules
so that a complete executable can be run. Some systems employ static
linking, which combines the libraries with user code before execution
time. Dynamic linking links system libraries with user code when they are
needed during execution and allows the system libraries to be linked from
memory where they are loaded. If a library is already in memory from
linking with another application, then it stays in memory where it is and
is linked from that location. When dynamic linking is used, something
has to alert the operating system to perform the dynamic library link.
A small bit of code – called a stub – is statically linked in place of the
actual library implementation of the system call. This code stub performs
the dynamic link and replaces itself with the address of the dynamically
loaded implementation.

There are several advantages to this scheme. First, libraries are not
loaded until they are needed. Secondly, loading cost is distributed
throughout the life of the executing application. Thirdly, libraries are
loaded only once and it is possible that there is no load cost for many
applications (especially for a commonly used library). Finally, all these
advantages mean that program size will be smaller. Since libraries are
not statically linked, programs carry fewer bytes of code when they are

SWAPPING AND PAGING 145

loaded for execution. When Sun Microsystems went from using statically
linked code in its operating system to dynamically linked code, the size
of its executable programs dropped by 60%.

Modern operating systems use dynamic linking as a way to mini-
mize memory space used by applications. With the copious amounts
of memory that come with computers, overlays and dynamic loading
mechanisms are not needed.

7.2 Swapping and Paging

As shown at the end of Figure 7.1, a process’s code must be in memory
for the computer to execute it. However, every process that has been in
the running state also needs code in memory. This means that processes
must share memory in the same way as they share the CPU.

Swapping Memory Areas

One obvious way to do this that we have already discussed would be
to store the image currently in memory, erase memory, and move the
memory image of the new process into memory before execution. This
sequence is called swapping and is at the heart of how processes actually
share memory. Swapping requires some kind of storage in which to store
the memory images between context switches. Typically, this is done
using fast hard disk space.

A process that is swapped out to a storage area (such as a hard disk)
by this method can sometimes be swapped back from that storage area
to the same spot in memory. This can be advantageous, especially for
certain methods of address binding. If absolute binding is used, set up at
compile time, then a process’s memory image is required to go in exactly
the same memory location – dictated by the compilation process – each
time. However, if relocatable binding is used, then a process can go
anywhere in memory, because physical addresses are always calculated
from logical addresses for each memory reference.

Notice that with swapping time added, context switching becomes a
very expensive activity. Switching time is composed of process switch-
ing – the movement of PCBs through queue data structures – and the
movement of memory areas.

Let’s say that a process requires 2 MB of memory and that the disk
drive used for storage has a transfer rate of 10 MB per second. The transfer

146 MEMORY MANAGEMENT

rate of this memory swap is equal to

2 MB/10 MB per second = 1/5 second = 200 milliseconds

If we assume a generic disk drive with an average latency of 9
milliseconds, our swap time is 208 milliseconds for one swap. Since there
are two swaps – one out and one in – the swap time is 416 milliseconds.
This is in addition to other costs of process switching.

Obviously, we want to reduce swap time as much as possible. One
way to do this is to focus on the storage medium. If we could increase the
transfer rate of memory data, we could lower the cost, as measured by
the amount of time needed to perform a context switch. Using solid-state
memory is an option: compact flash memory can transfer as fast as 66 MB
per second and Secure Digital cards can transfer data up to 133 MB per
second. While this is an option, using flash memory is an expensive way
to reduce swap time on a general-purpose machine.

Another way to reduce swap time is to reduce swapping itself. If
we could reduce the amount of swapping that was required – perhaps
eliminate the need to swap altogether – this would obviously be a great
reduction in context switching overhead. This is something that operating
systems try very hard to do. To understand this, we must develop ideas of
memory paging.

Memory Paging
The idea of paging has its roots in the availability of physical memory.
When the physical memory available on a computer is many times the
requirements of a process’s memory space, most of the large memory is
wasted. If, however, we allow several memory images to occupy physical
memory at once, not only can we use more memory but we might also
be able to avoid swapping altogether (if all our memory images can fit
into physical memory).

To implement this idea, we need some definitions. Physical memory
is usually divided into blocks of fixed size called frames. Logical memory
is analogously divided by the operating system into pages, which are
also blocks of fixed size. To facilitate fast swapping, the storage medium
is usually also divided into blocks, with each block the same size as a
physical-memory frame. Similarly, it is best that the page size be at least
some multiple of the frame size.

Now, when a process needs memory space, its code and data
are brought from storage into memory in pages that are placed in

SWAPPING AND PAGING 147

physical-memory frames. When other processes need their pages to be
brought into memory, these pages are loaded into physical-memory
frames that are unoccupied. When a process terminates, its memory
pages are removed from physical memory.

Now let’s free up our ideas of swapping. If the operating system can
translate addresses and can keep track of where pages are in memory,
then there really is no need for process pages to be contiguous. By
breaking up logical memory into pages, we can scatter those pages all
over memory as needed. The operating system needs a way to keep track
of all this; a page table is used to keep of track where pages are (both
in memory and on page storage) and which process they belong to. By
doing this, we can utilize as much memory as is available.

We should note here that some operating systems do not actually keep
a specific table called a ‘page table’. For some, the page data is stored
with the PCB data in the process table. The information gleaned from all
PCBs forms the ‘page table’ we speak of here. In other cases, page tables
are kept, but they are kept on a per-process basis. Again, these process
page tables together form the system page table we are discussing here.

The page table is used in address calculation. Each logical address
used by programs on the CPU is composed of two parts: the page number
of the memory block being addressed and the offset within the page of
the memory location. The page table, then, is a mapping between logical-
memory pages and physical-memory frames. Let’s take an example as
shown in Figure 7.4. In this example, logical-memory pages are 1 KB, as
are physical-memory frames. In logical memory, addresses are (obviously)
in sequence. The page table holds the physical-memory frame for each
logical page, when that page exists in physical memory.

The memory-page table is not the whole story here. There is also a
page table for pages stored in secondary storage. As with the memory-
page table, this is usually kept in one place, but it could be distributed to
process-page tables. It is usually managed by either the operating system
or a memory-management unit on the hardware.

Memory Allocation Patterns
When we implement the carving up of process memory into logical
pages and mapping those pages to physical-memory frames, we have a
coarse-grained allocation of physical memory to the total memory needs
of a process. Within memory pages, actual memory use takes place as
memory is allocated and de-allocated by processes. There are patterns of
memory allocation that emerge from fine-grained use of memory.

148 MEMORY MANAGEMENT

Page 0

Page 3

Page 1

Page 2

Page 0

Page 4

Page 3

Page 2

Page 1

Page 4

100

108

106

102

103

Physical
memory

Page
table

Logical
memory

0

4000

3000

2000

1000

4

3

2

1

0

108

107

106

105

104

103

102

101

100
100000

108000

107000

106000

105000

104000

103000

102000

101000

Figure 7.4 Using a page table to support memory paging

Memory is a chaotic place. In addition to referring to memory locations
as data storage, processes cause the structures that the operating system
has forced onto memory to change rapidly. When a process is moved
from the ready queue to the running queue, it requires its memory pages
to be in memory. If some pages are in memory and some are not, those
that are resident are used as needed. Eventually, there is probably a need
for pages to be swapped in, but that work is postponed as long as possible.

Within memory pages, memory is allocated in both static and dynamic
ways. Static allocations result from fixed or predictable memory needs.
These needs include space for the object code that defines a program and
space for the fixed data requirements in a program. Declared variables
are good examples of fixed data requirements: their space needs can be
determined from parsing the source code. Dynamic memory needs are
those that arise during program execution. Examples of dynamic-memory
allocation are the creation of data objects using the new operator in
C++ or using the malloc() call in C to create memory areas. Dynamic
memory allocations are usually granted as continuous memory spaces
(this reduces the need for swapping).

Even dynamic memory requirements are usually serviced from a
memory area that is allocated in a static manner. Dynamic memory

SWAPPING AND PAGING 149

allocations come from a structure called a heap; heaps are located in
allocated memory space like any other memory requirement. Heaps
are typically allocated in pieces of a fixed size, which allows dynamic
memory to fit into a memory-paging scheme.

Configuring pages can be a challenge because of the variety of ways
that allocations take place. A big challenge in page configuration is the
determination of proper memory page size. There are several problems
that can result from inaccurate choice of page size.

Consider the inside of a memory page. If the memory area being used
inside a page does not utilize the entire page, there is a certain amount
of memory wasted. For example, if the program code or use of the heap
does not completely fill a page, there is free memory inside a page
that cannot be reused for other pages. This gets worse with heaps. As
memory is allocated as a contiguous unit and deallocated in a program,
dynamic memory areas develop ‘holes’: areas of unallocated memory are
dispersed among areas of allocated memory. As time goes on and memory
is allocated and deallocated, these holes get spread out around the heap.
This creation of free but unusable memory is called fragmentation. The
type of fragmentation that occurs inside a memory page is called internal
fragmentation.

The way dynamic storage is allocated can aggravate fragmentation.
Dynamic memory needs are typically serviced in one of three ways:

• first fit : a search is conducted through memory and the first area of
free memory is allocated for the memory request; searching usually
starts at the beginning of memory each time

• best fit : a search is conducted through memory and the area of free
memory that is closest in size to the request is allocated (this type of
allocation is best done if a table of free space – location and size – is
kept; then the table is searched, not memory)

• worst fit : a search is conducted and the largest block of memory
is allocated to the request; this approach allows a large amount of
memory to be left behind as free space.

If space is wasted between blocks of allocated space, we call that
external fragmentation. Internal fragmentation wastes memory that cannot
be recovered, since the memory has already been allocated, but external
fragmentation can be recovered if memory allocation breaks down.
Consider a memory allocation pattern like that in Figure 7.5.

150 MEMORY MANAGEMENT

400 KB allocation

600 KB allocation

100 KB allocation

200 KB free

200 KB free

Figure 7.5 Example of external fragmentation

All memory has been allocated except the fragments in the figure.
Together, the two free blocks amount to 400 KB of space, but they are
not contiguous. The largest request that can be serviced is 200 KB – even
when the total free space is 400 KB. When memory is contiguous, more
allocation requests can be serviced.

Sometimes fragmentation can be avoided; other times it cannot. Frag-
mentation is caused by blocks of memory which cannot fit requests by
themselves. Joining fragments that are next to each other might alleviate
some of the problem; checking to see if fragments can be joined is usually
done on memory deallocation. Another way of relieving the problems is
to move fragments around so that they are next to each other and can be
joined. These methods can be quite costly but can result in more memory
being used.

On-demand Paging and Replacement

In previous sections, we have discussed how memory is manipulated by
a program that is continually moved in and out of the running state. We
have not, however, discussed the big picture: the execution environment
has many processes, all of which are being moved in and out of the

SWAPPING AND PAGING 151

running state, each of which requires memory pages. What happens
when the number of pages required by all processes exceeds the number
of pages available in memory?

We can partially alleviate this problem by using on-demand paging.
This method brings pages into memory only when they are required, much
like dynamic loading of program code. For example, an application’s
program code might require three pages of memory, but only one page is
required to start the program. For this situation, on-demand paging would
only bring in the first page as the program starts execution and bring the
rest of the pages as the code or data in them is needed. The operating
system watches for page faults, which are events that are triggered when
memory is referenced from a page that is not in memory, as determined
by referencing its address through the page table.

Bringing one page into memory at a time might be too time-consuming.
Therefore, an operating system might group certain pages into a working
set of pages that are brought in together. For example, the first page
of an application’s code could be included in a working set with the
memory pages for its statically declared variables and the first page
for the application’s heap. Bringing in a working set cuts down on the
number of page faults and the amount of time to service the faults. The
working set is determined by the operating system; a standard working
set is typically used and adjusted as an application runs.

One other method that is used to save memory is page replacement.
Memory fills up with pages rather quickly as a computer boots up and
starts initial processes running. When memory is full of pages and an
operating system brings in a page from the disk that needs to be placed
(as indicated by a page fault), it chooses an existing page to replace.
These pages are then swapped – the old page is removed and placed
on the disk and the new page takes its place. There is often special
space, called virtual memory, on the backing store allocated for this kind
of page replacement. Virtual memory extends actual memory onto the
chosen backing store. Because of the number of executing processes on
a computer system, the size of virtual memory is often several times that
of actual memory.1

As pages are replaced in memory, the criteria that are used to
select which pages get replaced often affect a computer’s performance.

1 It is interesting to note here that even virtual memory is limited by a computer’s memory
word size. Virtual memory is referenced through addresses stored in memory words, so the
size of memory words determine the amount of addressable virtual memory. For a 32-bit
memory work, that number is approximately 4 GB.

152 MEMORY MANAGEMENT

Excessive page swapping – a condition called thrashing – is very bad for
performance: the entire time slice devoted to a process can be taken up
with disk I/O. The choice of page to be replaced can be done many ways,
including the few examples below:

• oldest first : the page that has been in memory the longest is chosen
for replacement; while this may make some intuitive sense, this is
often a poor choice because it ignores how often memory in the page
used; often the oldest pages in memory are those of shared libraries
that are used by all processes

• least frequently used (LFU): a page that has not had much use is
chosen for replacement; the assumption is that the page will continue
not to get much use; the operating system must also keep track of the
length of time that a page has been in memory and be careful not to
select pages that have just been added

• least recently used (LRU): the page that was used longest ago is
chosen for replacement; this assumes that a page that has not been
used for a long time will continue not to be used.

Hardware can be relied on in many ways to assist with paging and
virtual memory. First, while the page table is usually kept in memory, the
MMU usually keeps a pointer to the page table in a special register called
the page-table base register. Maintaining this register allows the operating
system to place the page table anywhere in memory (in keeping with
paging) and the MMU to track the page table. With paging hardware,
memory is accessed as shown in Figure 7.6. The logical-page portion is
replaced by the physical-page portion from the page table. Even with
hardware assistance, the sequence shown in Figure 7.6 requires two
physical-memory accesses for every one logical-memory reference. This
doubles the memory access time.

Translation look-aside buffer

As a solution to this problem, MMUs often employ the use of a translation
look-aside buffer (TLB). The TLB is a piece of very fast, associative
memory, capable of searching many areas of memory simultaneously.
This means that many table entries can be searched at the same time for
a logical-page entry. This type of memory is very expensive which means
that not much of it is used; MMUs usually use TLBs with between 64 and

SWAPPING AND PAGING 153

CPU Page Offset Page Offset

Physical
page

Page table

Memory

Figure 7.6 Paging hardware assembling a physical address

1024 entries. The TLB fills up with recent searches; when a search is not
successful, the entries are added. Note that TLBs store only part of a page
table’s entries, because the memory is expensive and limited.

A new page table causes all the entries stored in the TLB to become
useless. When a new page table is used – for example, on a context
switch – the TLB entries must be erased to make sure the new pro-
cess’s logical-address space maps to the old process’s physical-address
space.

Swap-space configuration

The configuration of swap space and how big it should be are challenging
issues. In Unix systems, it is typical to set up an entire partition of the disk
for virtual memory. In addition, should the initial partition not be enough,
Unix allows files to be added as swap space. Microsoft Windows sets up
an area (like a file) on a disk drive and constantly monitors the space for
the user. If that space needs to be increased, Microsoft Windows does it
automatically – up to a certain boundary.

While it is hard to set rules for swap-space size, system administrators
typically use a rule of thumb that swap space should be at least three
times the size of memory.

Protection

With all the paging and replacing that goes on, it might be easy to forget
that there needs to be protective barriers thrown up around memory

154 MEMORY MANAGEMENT

pages. We need to prevent code from straying beyond the boundaries of
its pages. Our scheme must embrace the swapping and paging ideas we
have developed.

Protection in a paged environment must focus on physical-memory
frames. Since every memory reference goes through the page table to
reference frames, we can add protection bits for frames and store them
in the page table. These bits can give certain properties for frames: read-
only or read–write. For further protection, we can add an execute bit.
To support paging, we can add a valid–invalid bit, which indicates if the
page being accessed is actually in memory.

Note that these protection schemes are focused on the page table.
Property bits are the easiest way to provide protection. When logical-to-
physical translation is taking place, the nature and owner of the request
is also analyzed. If the process that issues the address is not the process
that owns the page or if the requested operation is something that is not
permitted by the access bits, the attempt is ruled illegal and the operating
system is notified.

The valid–invalid bit is set when paging occurs. If the bit is set to
invalid, this means the page has been swapped to virtual memory and a
page fault should be triggered.

7.3 Systems Without Virtual Memory

Many computer systems do not have the facilities to provide virtual
memory. Consider a smartphone. The only storage available to the
operating system is memory; most phones do not come with a disk drive.
Because of this, most smaller systems – from PDAs to smartphones to
higher-level handheld devices – do not utilize virtual memory in their
memory-management strategy.

Consider the memory space used in most small-platform devices.
Typically, these systems have two types of storage: RAM and flash
memory. RAM stores the operating system code (to be used when the
system boots); flash memory is used for both operating memory and
permanent storage. Often, it is permissible to add extra flash memory to
a device – such as a Secure Digital card, for example – and this memory
is used exclusively for permanent storage.

In most cases, the absence of virtual memory does not mean the
absence of memory management. In fact, most smaller platforms are
built on hardware that includes many of the management features of

SYSTEMS WITHOUT VIRTUAL MEMORY 155

larger systems. This includes features such as paging, address translation,
and logical–physical address abstraction. The absence of virtual memory
simply means that pages cannot be swapped. The abstraction of memory
pages is still used; pages are replaced, but the page being replaced is
discarded and not recorded.

Because of this, the absence of virtual memory does mean that care
must be taken to preserve memory and to optimize its use. There are steps
that smaller systems take to ensure that memory is efficiently managed.

• Management of application size: memory management begins with
applications. The size of an application – from the code that the
application needs to the memory areas that must be allocated for their
use – have a strong effect on how memory is used. It requires skill
and discipline to create small software and the attitude of developers
is an obstacle. The push to use object-oriented design can also be an
obstacle here (more objects means more dynamic-memory allocation
which means larger heap sizes). Most operating systems for smaller
platforms heavily discourage static linking of modules.

• Heap management: the heap – the space for dynamic memory allo-
cation – must be managed very tightly on a smaller platform. Heap
space is typically bounded on smaller platforms to force programmers
to reclaim and reuse heap space as much as possible. Venturing
beyond the boundaries results in errors in memory allocation.

• Execution in-place: platforms with no disk drives usually support
execution in-place. Applications execute in memory without being
moved from storage to operating memory. Since permanent storage is
memory, this can be accomplished easily. Performance benefits from
zero loading time, but also from the contiguousness of memory pages.
In addition, there is no need to swap or replace memory pages.

• Loading of DLLs: the choice of when to load DLLs can affect the per-
ception of system performance. Loading all DLLs when an application
is first loaded into memory, for example, is more acceptable than
loading them at sporadic times during execution. Users better accept
lag time in loading an application than delays in execution. Note that
DLLs may not necessarily need to be loaded. This might be the case
if they are already in memory or they are contained on external flash
storage (in which case, they can be executed in place). If they are in
internal memory, they may be executed in-place.

156 MEMORY MANAGEMENT

• Offloading of memory management to hardware: if there is an avail-
able MMU, it is used to its fullest extent. In fact, the more functionality
that can be put into an MMU, the better the system performance.

Even with the execution in-place rule, small platforms still need mem-
ory that is reserved for operation. This memory is shared with permanent
storage and is typically managed in one of two ways. First, a very simple
approach is taken by some operating systems and memory is not paged
at all. In these types of systems, context switching means allocating oper-
ating space – heap space, for instance – and sharing this operating space
between all processes. This method uses little or no protection between
process memory areas and trusts processes to function well together.
Palm OS takes this simple approach to memory management.

The second method takes a more disciplined approach. In this method,
memory is sectioned into pages and these pages are allocated to operating
needs. Pages are kept in a ‘free list’ managed by the operating system
and are allocated as needed to both the operating system and user
processes. In this approach, because there is no virtual memory, when
the free list of pages is exhausted, the system is out of memory and
no more allocation can take place. Symbian OS is an example of this
second method and Section 7.5 gives a more detailed examination of its
memory-management policies.

7.4 Segmentation

We have discussed two views of memory: a logical view and a physical
view. The logical view can be described as the view the program has
while the physical view is the way memory is really used. One of the
duties of the operating system is to connect the two: to map the logical
view onto the physical view.

Programmers and users typically view an application or program as
having several parts or segments. A program contains code – a main
program and user-defined functions. The system provides libraries of
callable code. Data must be stored somewhere in memory. Operating
space – heap and stack – is also needed. Each of these conceptual objects
is usually viewed as a segment. Individual components of a segment are
usually seen as accessible from the beginning of that segment as an
offset.

SEGMENTATION 157

This separation into segments is an idea reinforced by compilation
and assembly tools. In addition, the execution format of an executable
file also supports segments. Consider the format of executable files that
have the ELF format (e.g., from the Solaris operating system), shown in
Figure 7.7. The format supports a large number of segments as dictated
by compilers and assemblers. The assembler for the SPARC architecture
forces programmers to use at least two sections: code and data. This is
typical and compilation tools are free to expand on this.

From previous discussions, we know that this logical view of segments
of an application is not actually the way things are done. Memory is
divided by pages and program memory is placed into these pages, which
may be arbitrarily scattered throughout physical memory. Segmentation,
then, is a way to keep the user view of memory segments intact even
when the implementation in physical memory is quite different.

As with virtual memory, we must deal with logical-segment addresses
and physical-segment addresses – and with the translation between them.
Segments are typically numbered and this number can be used as part of
the logical address. For example, we might use an address format such
as <segment number, offset>, where the segment number is given as the
leftmost part of the address and the offset within the segment is given as
the rightmost part of the address.

Access to segments is typically assisted by hardware. As with virtual
memory and paging tables, MMUs keep a segment table to help access
segments. This table aids physical-address calculation through the process

ELF header

Program header
table

Segment 1

Optional section
header table

Segment n

...

Segment 2

Figure 7.7 ELF executable file format

158 MEMORY MANAGEMENT

outlined in Figure 7.8. Like page tables, segment tables change with every
context switch.

Figure 7.9 shows four segments: the main program, the static data
area, the heap and library functions. Each of these segments is numbered.
The segment table shown in Figure 7.9 maps each segment to a memory
page.

CPU Segment Offset

Segment
base

Segment table

Memory

+

Figure 7.8 Segmentation hardware-address calculation

Segment 0

Segment 1
Segment 3

Segment 2

15000

16200
16000

15400

Main program
segment 0

Library
segment 3

Heap
segment 2

Static data area
segment 1

Seg Addr
15000
16000
15400
16200

0
1
2
3

Figure 7.9 Example of segment tables

MEMORY IN SYMBIAN OS 159

It is possible to combine segmentation and virtual paging. This amounts
to a double table calculation: the segmentation table points to a virtual
address, which is translated through a page table to a physical address.
This is quite a bit of overhead in address calculation, so many machine
architectures provide special registers to hold portions of the segment
table. For example, the Intel 80386 had six segment registers, supporting
programs with up to six segments. The advantage to using both segmen-
tation and paging is in using a fully functional set of memory models.
Paging can be used for system performance and segmentation can be
used to support programmer modeling.

7.5 Memory in Symbian OS

Symbian OS provides a great example of a system that does not use a
virtual-memory–swap-space model for its memory management. It does,
however, use most other mechanisms we have discussed for managing
its memory, including hardware MMUs.

Symbian OS is a 32-bit operating system, which means addresses can
range up to 4 GB. However, it employs the same abstractions as larger
systems: programs must use logical addresses, which are mapped by
the operating system to physical addresses. Programs may be placed at
arbitrary locations in memory. At any given time, a program does not
know where exactly it is in memory, so the use of logical addresses is
important.

As with most systems, Symbian OS divides memory into logical pages
and physical frames. Frame size is usually 4 KB, but is variable. Since
there can be 4 GB of memory, a frame size of 4 KB means a page table
with over a million entries. With limited sizes of memory, Symbian OS
cannot dedicate 1 MB to the page table. In addition, the search and access
times for such a large table would be a burden on the system.

To solve this, Symbian OS adopts a two-level page-table strategy, as
shown in Figure 7.10. The first level, the page directory, provides a link
to the second level and is indexed by a portion of the logical address
(the first 12 bits). This directory is kept in memory and is pointed to by
the translation table-base register (TTBR). A page-directory entry points
into the second level, which is a collection of page tables. These tables
provide a link to a specific page in memory and are indexed by a portion
of the logical address (the middle 8 bits). Finally, the page in memory is
indexed by the last portion of the logical address (the last 12 bits).

160 MEMORY MANAGEMENT

Memory page

Physical memoryPage directory Page tables

1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1

Virtual address

Page directory index Page table index Page directory index

Figure 7.10 Paging and virtual addresses in Symbian OS

Hardware assists in this logical-to-physical address-mapping calcu-
lation. While Symbian OS cannot assume the existence of any kind of
hardware assistance, most of the architectures on which it is implemented
have MMUs. The ARM processor, for example, has an extensive MMU,
complete with a TLB to assist in address computation.

What happens when a page is not in memory? In Symbian OS, this
represents an error condition, because all application-memory pages
should be loaded when the application is started. Remember that DLLs
are pulled into memory by small stubs of code linked into the application
executable, not by a page fault on a missing memory page. Since Symbian
OS can address 4 GB of memory and it is unlikely that a smartphone
would have such a large amount of physical memory, there might be
situations when a page is referenced that is not in memory. Such a
reference would cause an ‘unhandled exception’ error, terminating the
user’s application. Users of Symbian OS who have experienced a KERN-3
EXEC error when running an application have seen this happen.

Despite the lack of swapping, memory is very dynamic in Symbian OS.
Applications are context-switched through memory and, as we stated,

MEMORY IN SYMBIAN OS 161

are loaded into memory when they start execution. The memory pages
each application requires can be statically requested from the operating
system upon loading into memory. Dynamic space – e.g., for the heap – is
bounded, so static requests can be made for dynamic space as well.
Memory frames are allocated to pages from a list of free frames; if no free
frames are available, then an error condition is raised. We cannot replace
memory frames that are used with pages from an incoming application,
even if the frames are for an application that is not executing currently.
This is because there is no swapping in Symbian OS and there is no place
to which it can copy the displaced pages.

There are four different versions of the memory implementation model
that Symbian OS uses. Each model was designed for certain types of
hardware configuration.

• The moving model was designed for early ARM architectures (ARM
version 5 and before). The page directory in the moving model is 4 KB
long and each entry holds 4 bytes, giving the directory a size of 16 KB.
Memory pages are protected by access bits associated with memory
frames and by labeling memory access with a ‘domain’. Domains
are recorded in the page directory and the MMU enforces access
permissions for each domain. While segmentation is not explicitly
used, there is an organization to the layout of memory: there is a data
section for user-allocated data and a kernel section for kernel-allocated
data.

• The multiple model was developed for versions 6 and later of the
ARM architecture. The MMU in these versions differs from that used
in earlier versions. For example, the page directory requires different
handling, since it can be sectioned into two pieces, each referencing
two different sets of page tables: user-page tables and kernel-page
tables. The new version of the ARM architecture revised and enhanced
the access bits on each page frame and deprecated the domain
concept.

• The direct model assumes that there is no MMU at all. This model is
rarely used and is not allowed on real smartphones. The lack of an
MMU would cause severe performance issues. This model is useful
for development environments where the MMU must be disabled for
some reason.

• The emulator model was developed to support the Symbian OS
emulator on Microsoft Windows. As one might expect, the emulator

162 MEMORY MANAGEMENT

has a few restrictions in comparison to a real target CPU. The emulator
runs as a single Microsoft Windows process, therefore the address
space is restricted to 2 GB, not 4 GB. All memory provided to the
emulator is accessible to any Symbian OS process and therefore no
memory protection is available. Symbian OS libraries are provided as
Microsoft Windows DLLs and, therefore, Microsoft Windows handles
the allocation and management of memory.

7.6 Memory Use in Linux

Linux is designed to run on the Intel architecture and, therefore, it supports
the memory models designed into the Intel 80x86 line of processors.

Linux is a 32-bit operating system and therefore can access up to 4 GB
of memory. The processor MMU supports segmentation and memory
frames; Linux supports frame sizes of 4 KB.

Linux implements a free list of pages and supports placement of appli-
cation pages anywhere in memory. It uses a ‘buddy system’ algorithm to
allocate page frames. The goal of this system is to allocate contiguous page
frames as often as possible and it does this by maintaining as many adja-
cent free page frames as possible. The buddy system keeps multiple lists of
free blocks of various sizes, joining blocks, and thus moving them between
lists, whenever blocks are freed up next to other free blocks. The intent is
that blocks are allocated faster because the right blocks at the right size
are found by checking the correct list (instead of searching the entire list).

Like Symbian OS, Linux uses a page-directory–page-table structure for
translating logical addresses into physical ones. As we have discussed,
this two-level approach to address translation saves memory but doubles
the time for address calculation. Hardware helps with this situation; the
Intel architecture provides address computation in its MMU as well as a
TLB to find pages quickly.

Linux implements the idea of reserved-page frames. These frames
represent an area of memory reserved for the Linux kernel and its
data structures. This area can never be relinquished or allocated to a
user process. Linux tries as much as possible to keep its page frames
contiguous; it even chooses an area of memory that is unlikely to be used
to load itself into at boot time. The kernel typically starts at the 2 MB mark
and reserves as many frames as it needs. Because it cannot predict how
many dynamically assigned pages it needs, these are used where they
can be found.

SUMMARY 163

Linux implements a swapping strategy for memory pages and most
often uses disk space for virtual memory. Swap space is implemented
as either a partition on a disk drive or as a large file. Within this space,
Linux keeps pages for each process as close to each other as possible.
This minimizes disk I/O time. Pages are moved to swap space when the
number of free memory pages drops below a predefined threshold (Linux
does not wait for the number to become zero).

The selection of pages to remove from memory is interesting. The
general rule for Linux is to choose one of the pages held by the process
with the most pages in memory. Within this collection of pages, LRU
is used. A counter is added to the page table that stores the amount of
time that has elapsed since the last access to the page. The page with the
largest amount of elapsed time is chosen.

Linux uses several types of segmented memory. It supports code
and data segments for the kernel, code and data segments for user
processes, and global and local segment tables. Segments are shared by
all processes. The segment tables contain entries that direct the operating
system to segments for individual processes. Any hardware properties
that support segmentation are exploited.

Protections are designated inside page or segment tables. Each page
or segment is coded with a specific access value and the type of access
is always compared to the access value of the page or segment on which
the operating is done.

Linux has been adapted to run on 64-bit machines, which affects
several parts of memory management. The address space expands from
4 GB to 16 EB,2 making much more memory possible. Larger memory
means larger swap space allocation. More memory means larger paging
and segment tables. Rather than take up huge amounts of reserved oper-
ating system memory for larger page tables, 64-bit Linux implementations
typically use a three-level paging scheme, which extends the two-level
scheme used in 32-bit systems.

7.7 Summary

This chapter has discussed how operating systems manage memory.
Like a computer’s CPU, memory must be shared between the processes

2 That is, 16 exabytes. An exabyte is slightly more than one billion gigabytes. The new
address space is 4 billion times the size of the former 4 GB address space.

164 MEMORY MANAGEMENT

that execute on a computer. We began by introducing the terminology
and background of memory management, including how a program
progresses from source code to an in-memory executing image, the
difference between logical and physical addressing, and the mechanisms
used for dynamic loading and linking. We then discussed paging and how
paging is used to manage memory. Issues surrounding paging include
the use of virtual memory, how to keep track of pages and how memory
and page allocation affect fragmentation. We then discussed how the
lack of support for virtual memory on smaller computer platforms affects
operating system design. We introduced segmentation and saw how the
concept affected design. We concluded the chapter with discussions of
memory management in Symbian OS and Linux.

Exercises

1. Can a logical address also be a physical address? If not, why not? If
so, what type of address binding would be used for this?

2. When physical memory is allocated as frames, can external frag-
mentation exist? Explain.

3. Let’s say that a program makes many requests for dynamic memory,
but they are all small (10 bytes). Which memory allocation scheme
is best for this pattern of memory allocation?

4. How are relocatable binding and execution-time binding different?

5. Consider a configuration with a logical address space that has
4096 words, mapped onto a physical memory with 64 pages.

a. How many bits should the logical address have?

b. How many bits should the physical address have?

6. Consider a new page-replacement algorithm, Not Recently Used
(NRU), that favors keeping pages which have been recently used.
This algorithm works on the following principle: when a page is
referenced, a bit is set for that page, marking it as referenced.
Similarly, when a page is modified (written to), a modified bit is set.
By using a mix of these bits, the system can guess about recent usage
(e.g. referenced but not modified or modified but not referenced).
How is this strategy different from Least Recently Used?

EXERCISES 165

7. Give at least three situations in which memory space needs to be
protected from programs.

8. Smartphones are being designed with hard disks (e.g., the Nokia
N91). What would the effect be if these devices started using virtual
memory?

9. Why is loading all application pages and dependent modules right
away important for a smartphone device?

10. How many page tables are possible in Symbian OS?

11. How many memory frames are possible in Symbian OS?

12. What is the alternative to the reserved page frames that Linux uses?
What effect does the alternative have on an operating system?

8
File Systems and Storage

We introduced operating systems in Chapter 1 saying that using one was
like viewing hardware through ‘rose-tinted glasses’. Operating systems
present a view of the system resources to users and enable applications
to use those resources in a constrained and organized way.

File systems are perhaps the greatest example of this abstracted view
of system resources. A file system takes a collection of bits and bytes from
a storage medium and creates an organized hierarchy of files and direc-
tories, enabling complete use of this abstract concept. All storage media
has the idea of files and directories and it is an incredibly useful concept.

This chapter explores how this abstraction is built and used by
operating systems. We start with the basic building blocks of file sys-
tems – names, attributes and operations – and move on to file system
implementation, giving examples in several forms. We then look at file
systems on mobile devices, using Symbian OS as an example. Finally,
we examine security issues involved in file system implementation.

8.1 Files and Directories

Computers store information in many ways on many different media.
There are magnetic tapes, CD-ROMs, disk drives, flash memory and
others. One of an operating system’s jobs is to provide a consistent,
convenient interface to all these storage media. The idea of a file was
invented as a structural unit to help provide this interface. A file is a logical
concept that is translated onto a physical device. This section introduces
files and other organizational concepts, along with their properties.

168 FILE SYSTEMS AND STORAGE

Basic Concepts
A file is a collection of information formed by bits of data on a storage
medium. It is the foundation unit of storage in a computer system. As
users work with storage, files are the units of manipulation they use.

The information held in a file is at the discretion of the file’s owner. Files
can contain any kind of information; they are simply a collection of bytes.
The same file may be interpreted in several different ways, depending on
the application that reads the information it contains. In fact, files can
have many different kinds of information kept inside, organized however
the creator wishes. Again, the interpretation of the bits contained within
a file depends on the application that reads the information.

Files can have a specific type of information with certain properties.
Files of a specific type are said to have a specific structure. Some file
structures are quite common and recognizable. Text files have characters
in them that are organized in a line-by-line format. A file is typically
called a binary file if the contents are not readable by humans (i.e., not a
text file). There are many structured binary files, for which the structure
is documented by some standard body. Image files contain picture data
in many different formats: Jpeg, Gif and PNG, to name a few. Files can
contain execution data of a compiled program that can be transferred
bit-for-bit to memory and executed. A binary file could be a database,
with its contents readable by a database server application.

A directory is an organizational tool that groups files together in a
hierarchy. A directory is analogous to a folder: a directory can hold files
or other directories and folders. Because they hold other directories, a
directory structure forms a tree of directories, with a specific directory at
the top of the tree called the root. The navigation through the directory
tree from root to file is called a path; paths through a directory tree have
unique names – path names – that reflect the unique path through the
directory structure.

Another way to look at a directory is as a table of contents. It is a table,
whose contents are files and directories, kept on the storage medium.
It is through this table that access to files is allowed. The directory is
the only way to find the files it holds; no data on those files is kept
elsewhere. In fact, all searches for files begin at the root of a file system,
and proceed through the file system by looking up directories in the path
to a file, opening those directories, and finding the next file or directory
in the path.

Disk drives are also organized by partitions. A partition – often called a
volume or a minidisk – is a subsection of a disk drive that is regarded as its

FILES AND DIRECTORIES 169

own contained space. A disk drive may be a host to a number of different
file systems, each of which is usually created within an individual disk
partition. Files and directories cannot span partition boundaries. When a
partition is full, other partitions cannot contribute file space. In essence,
each partition is its own storage device. Partitions are often enforced by
being implemented by the storage medium hardware. There is at least
one partition per medium; if not otherwise split up, all storage is kept on
one partition.

What if There Were no Directories?
The concept of files has been around almost as long as the concept of
external storage. One of the first uses of a file was in 1956, when IBM
introduced the IBM 350 disk file. At the time, the entire disk was a file.

Soon, the idea began to catch on that multiple files could exist on a
storage medium. However, the idea of files preceded the invention of
directories. Files started to proliferate and their organization started to get
confusing. Short names were used, but names were also used to reflect
organization.

Directories were invented to aid organization. But imagine how all
the files on a computer were grouped without the benefit of directories.
Without directories, there would only be one flat file space, with all files
organized by the names they were given. When you consider the number
of files on a typical modern computer, be grateful for directories.

Attributes
Files and directories have many properties – often called attributes – that
help identify and organize them. Certain attributes also help with man-
aging various aspects of file systems, such as security.

Files are identified by their names. Names are mostly a convenience
for humans, but they are used by operating systems as well. A name is
composed of alphanumeric characters; the case of letters is sometimes
significant, depending on the operating system. The length of a name is
sometimes bound; for example, early versions of MS-DOS had the 8.3
limitation: eight characters in the name of the file and three characters in
the extension, separated by a period. The file extension is the suffix on a
file and is often used to categorize the type of file it is: .doc files might
be document files while .txt files might be text files.

The file extension often classifies the file type. A file’s type determines
the kind of data contained within it. Various operating systems support

170 FILE SYSTEMS AND STORAGE

file types in various ways. Microsoft Windows, for example, associates an
application with a file type (.doc files are usually opened with Microsoft
Word). Linux, on the other hand, almost always completely ignores file
extensions, depending instead on the contents of the file to determine
how it is supported.

A file has a size, i.e., the number of bytes it contains. A file’s size
is usually determined by its contents, but sometimes a file may take up
space on a storage medium but be empty. An empty file is usually a
zero-length file, but a file could be filled with meaningless data, thereby
having a size but still being considered ‘empty’. This is a good example
of the difference between physical size and logical size, where a file’s
physical size is marked by bytes occupied on a storage medium and its
logical size is marked by usable content.

A file often has an owner and also has a group identification. These
two attributes are used by operating system security features to regulate
which processes and users may have access to the contents of a file.
These attributes are given by the operating system upon a file’s creation
and can be changed throughout a file’s lifetime. The owner of a file is the
user ID of the user on whose behalf the file was created. The group ID
identifies a group of users that may access this file.

In addition to owner and group IDs, a file may also have additional
protection attributes. These attributes inform the access control mecha-
nisms of an operating system about how a file may be used. This access
control information often specifies one of three access methods – reading,
writing or executing – in one of several categories, for example, owner,
group and ‘other’ (users who are not the owner or in a file’s group).

The date and time of access is usually an attribute of a file. The access
type is usually recorded with the date and time. It is common to record
time of creation, time of reading and time of modification.

The information about a file is kept in a directory structure on the stor-
age medium (see Figure 8.1). The directory – the table of contents – holds
the name of the file and the location where the file starts on the disk. A
file’s starting point is usually not the start of its contents, but rather a data
structure holding the rest of the file’s information. Part of this information
is the starting location of the file’s contents.

Much of this same information is stored for directories themselves.
Directory information includes name, owner, group, size, access infor-
mation and access times. In addition, as indicated above, they contain a
table of contents that point to locations on the storage medium where file
information is held.

FILES AND DIRECTORIES 171

Directory information

.

.

.

.

.

.

readme.txt

readme.txt

Date/time of read
Date/time information

Size information

Date/time of modification

Access permissions
Contents

Date/time of read

Group information
Owner information

File information node

Directory

File contents

Figure 8.1 Storage of directory and file information

Names
The naming of files and file paths is an interesting issue. Obviously,
file names need enough characters so that the name can be descriptive.
However, directory information space is limited, so names cannot have
infinite length.

File names typically consist of letters and numbers, with some punctu-
ation. File names are typically restricted to some limit, say 256 characters,
with a suffix of some sort. While the historical convention is to have a
suffix of three characters, suffices can be of any length.

The pathname of a file is constructed as follows:

<root> <directory list> <filename>

The root of a file-system tree is designated in many ways. In Linux,
the root is always the same, designated simply as ‘/’. In Microsoft
Windows and Symbian OS, the root is dependent on the storage
medium, which is designated by a letter followed by a colon, and a
‘\’ character to designate the root. The listing of the directory path
differs between operating systems. So the path to ‘readme.txt’ might
be designated /software/graphics/readme.txt on Linux and
C:\software\graphics\readme.txt on Symbian OS.

Structure
The internal structure of a file must match the structure expected by the
application that uses it. In addition, the file structure must match what

172 FILE SYSTEMS AND STORAGE

the operating system expects, if the operating system is to understand that
structure.

Some operating systems put very little emphasis on file structure.
Linux has very few expectations of a file: it treats all files as a set of
bytes without any particular structure. Microsoft Windows has a similar
philosophy. Operating systems like these associate applications with
certain files, but that association is not determined by how the data inside
a file is structured.

Other operating systems, on the other hand, do indeed pay attention to
file structure. If a file structure is recognized, these operating systems have
special operations that can be performed on the file. For example, DEC’s
VMS operating system recognized special file structures. This support was
woven throughout the operating system, even into the APIs that supported
programming languages. Note that if an operating system is to support
structured files, it must implement recognition of structured files through
the system.

The association of applications with certain files is sometimes imple-
mented through file structure. Linux has the notion of ‘magic cookies’ for
this association: the first bytes of a file are matched against a database of
applications. If a match is found, that file is associated with the application
from the database.

Automatically deriving the meaning of a file can be problematic.
The problem is that all such systems – including extensions and magic
cookies – assume that the identified file characteristics uniquely specify
a file type. But this system is very easy to fool. In Microsoft Windows,
for example, simply changing a file’s extension is enough to make the
operating system change the association. Changing a file’s suffix from
.txt to .pdf, for example, causes Microsoft Windows to open the file
with a PDF reader instead of a file editor. Unfortunately, there is no
foolproof way to judge the type of a file.

Operations
Operating systems define eight basic operations that can be done on
files. These operations are the ones that can be accessed through user
interfaces and programming APIs.

• Creation: it takes two steps to create a file. First, there must be space
allocation. Even when an empty file is created, a portion of disk space
is allocated to it, if only for file information. The second step that
must take place is that the file must be entered into the directory. The

FILES AND DIRECTORIES 173

information in the directory records the file’s name and the location
of the space allocated for that file on the disk.

• Opening: to access a file’s contents, that file must be opened. The file
name is the main input parameter to this operation. When requested
to open a file, the operating system does several things. It checks to
see if the file exists. If it does not exist, the system may create it (or
give an error, depending on the system call used). Information about
the file is then recorded in internal tables. This information includes
the location of the file on the storage medium and the position of the
next byte to be read. This system information is used by the operating
system for other operations. As a result of an open operation, a file
handle is created by the operating system within system memory and
that handle is passed back to the client. The file handle is then used to
identify the file during subsequent operations (instead of passing the
file name again and again).

• Reading: information in a file would be useless if we did not read
it. Reading a file causes the operating system to attempt to retrieve
bytes from an open file at that file’s current position. If the file still has
data at its current position, those data bytes are retrieved and supplied
to the system caller, and the position pointer is moved to reflect the
amount of data that was read. Otherwise, an error is returned to the
caller.

• Writing: a write operation adds data to a file. Data is typically written
into a file’s space at the currently recorded position within the file.
That data might overwrite existing data or it could be inserted into
the file. The current-position pointer for the file is then advanced to
reflect the data that was written to the file. Note that writing data to a
file usually makes the file grow in size and the operating system might
be forced to allocate new disk space to accommodate that growth.

• Repositioning: the current-position pointer can be reset. Reposition-
ing this pointer will affect where the next data byte is read from or
written to.

• Closing: closing a file does the reverse of opening. It updates the file’s
information in the system directory and removes the file’s entry from
the system’s open-file table. Any subsequent read or write operations
are likely to fail because the file handle in question is not in the
system table.

174 FILE SYSTEMS AND STORAGE

• Truncating: truncating a file means removing data that exists after the
current-position pointer for the file. Often, this operation is used to
empty a file’s contents without deleting the file.

• Deleting: to delete a file, the two steps for file creation need to be
reversed. First, the file is removed from the directory with which it
is associated. Secondly, the file’s space is reclaimed from the storage
medium. Most file-system implementations permit a client to delete a
file without a need to open it first.

There are other common operations for a file that might combine some
of the basic operations above. A file can be appended to, for example, by
repositioning the current-position pointer for the file to the end of the file
and performing a write operation. Files can be renamed or cut from one
directory and pasted into another. A file can be copied by creating a new
file, opening the source file, and reading and writing between the two.

Sometimes multiple position pointers are kept for a file in the file
table. It is sometimes advantageous to maintain a position pointer for
reading and one for writing. This has several implications for working
with a file; for example, a read operation does not change where a write
operation takes place. In fact, it is possible that these operations may
happen simultaneously because one does not affect the other.

The system’s open-file table is obviously central to manipulating files.
The file table holds several pieces of information for each file that is
opened. We have pointed out several of these: name, current-position
pointer (or pointers) and location on the storage medium. In addition, the
access rights for the file are usually stored in the table.

Types of Access
While the operations of reading and writing seem straightforward, there
are actually several different methods for accessing files. Much of the
difference between these methods focuses on how the operating system
I/O implementation moves the current-position pointer in a file.

Sequential access is probably the simplest method for file access. The
data in a file is accessed in a linear order from beginning to end. The
current-position pointer moves forward in a file after every read or write
operation. Sequential access is usually the default access method for file
operations.

Direct or random access is a method where any part of a file is acces-
sible. Using direct access, a system call can place the current-position

IMPLEMENTATION OF A FILE SYSTEM 175

pointer anywhere in the file before reading or writing. There are two
types of direct access: arbitrary access and fixed-length access. Arbitrary
direct access of files views a file only as a set of bytes and allows the
current-position pointer to point to any byte in the file. Fixed-length direct
access views a file as a set of blocks of fixed-length. System calls that use
fixed-length direct access move the current file pointer to specific blocks.

Direct access is useful when access to information needs to be imme-
diate. This is the case for implementations of database systems, where
fixed-length direct access is used to read records in the database. This is
also the case when reading a file means skipping to arbitrary positions
within that file, such as reading digital music data or processing video.

Another way of accessing files is by indexed access. The index of a file
is analogous to the index of a book: data within the file is recorded along
with its position. This means that there are typically two files used for
indexed access: an index file and a data file. Once pertinent data is found
in the index file – say a keyword or product ID – the position within
the data file is obtained and used directly to retrieve the information.
Indexed access thus builds on top of direct access methods. Modern
operating systems have moved away from implementing indexed access;
it is offered as an add-on method through special libraries rather than a
core operating system service.

8.2 Implementation of a File System

The implementation of a file system is a lesson in abstraction. A file system
must support the concepts of files and hierarchical directory structures.
Operating systems typically provide the same interface – file creation,
opening a file, reading, writing, etc. – no matter where a file is located.
However, a file system on a CD-ROM is implemented in a very different
manner from a file system in the memory of a smartphone. But to a
program, both file systems look the same.

We explore how this abstraction is implemented in this section. We
first explore the concepts an implementation must use. Then we cover
several different file-system implementations.

A Generic View
It is useful to review the components of a file system and the ways that
we use those components to build the file-system abstraction. There are
some assumptions we make about file systems and some file and directory

176 FILE SYSTEMS AND STORAGE

Applications

Logical-to-physical translator

File system

Device drivers

Hardware storage device

Logical file system

Figure 8.2 Generic file-system implementation layers

components that we can describe so that we can better discuss specific
implementations later.

The file-system abstraction is built up in layers. Each layer adds some
functionality and represents an area for implementation. Consider the
diagram in Figure 8.2 as a depiction of the layers of a file system.

Storage devices

At the lowest layer lies the storage device. Physical storage can be viewed
as a linear sequence of bits or bytes, usually organized into larger units
called blocks. Blocks are typically the unit of transfer between a storage
device and the operating system. There are many different types of storage
device that are supported by operating systems and each communicates
in a different way. The I/O-interface controller communicates effectively
with the bus to which it is connected, but it also has its own command
interface.

IMPLEMENTATION OF A FILE SYSTEM 177

Storage devices, like memory, give addresses to their data space.
For some devices, addresses can be as simple as block number. For
these devices, a read request must be accompanied by a single number,
indicating the block to read. Other devices can have a more complicated
addressing method. Hard disk drives, for example, are usually organized
in three dimensions. Disks are made of concentric rings of magnetic
media; one of these rings is called a track. Tracks are usually divided into
smaller storage portions called sectors. Cylinders are formed by mapping
the same track of each disk platter vertically. A read request for a hard disk
drive, then, must be accompanied by three numbers: cylinder, track and
sector. Some file-system implementations group several sectors into one
single logical unit called a cluster, so a request to read data from a disk
can address only a cluster, but not an individual sector. This technique
allows manipulation of the size of the smallest addressable storage block
on big storage devices.

By virtue of their size and their functionality, smartphones have some
specific requirements when it comes to storage media. These devices all
come with onboard flash memory, which is used by the operating system
as operating memory and by users to store files. Other storage is either
built-in or removable; built-in secondary storage usually takes the form of
a hard disk drive and removable storage is usually a form of flash memory
in a small form factor. Flash memory can be accessed faster, but wears
out more quickly; hard-disk space can be greater.

Device drivers

The level above physical hardware is the device-driver level. Device
drivers act as translators. They communicate with both the operating
system and the storage device, translating operating system requests into
the command interface of the storage device. In addition, device drivers
include interrupt handlers that implement various methods of reading
from the device – from real-time, byte-level access to direct-memory
access. Device drivers can access the hardware of both the storage
medium and the computer’s CPU to transfer data and commands.

File systems

The next level is the file-system layer. This layer implements the basics
of a file system. It knows hardware information such as block sizes on
storage media but it also knows the logical addressing system used by
upper layers. This layer receives logical addresses and translates into the

178 FILE SYSTEMS AND STORAGE

physical addresses of the storage medium. This layer usually tracks the
free-space on a storage medium and runs space management algorithms.
This layer will implement file system management methods that are
generic enough to be used by any higher-level implementation.

Logical file systems

The logical file-system layer implements specific types of file systems.
Concepts such as security, access control, and file typing are different from
file system to file system and these implementations would be built on top
of a generic file system. Implementations from this layer provide the APIs
for operations common to files: opening, reading, writing, closing, etc.
This layer keeps track of files via a file table that uses file control blocks
(FCBs) as entries. Like process control blocks, FCBs record information
about files in use. The information recorded in an FCB is dependent on
the file-system implementation.

Applications

Applications interface with the logical file system either through the
APIs provided by it or by communicating with file servers. Even when
applications need raw, byte-level access to storage, they must work
through these methods, which pass system calls through the hierarchy. It
is important to remember that system calls are the way that applications
get kernel-level access to system resources and file systems are a resource
that must be coordinated by the kernel.

Storage Medium Structure
There is a generic structure to the space on a storage medium. In general,
there are four components that organize the bits on a storage medium to
produce a file system.

The first area on a storage medium is typically the master boot record
(MBR). This is an area that contains information necessary to boot the
operating system and get the computer up and running. Early on, operating
system kernel code used to occupy the MBR, but as operating systems
grew in size and the need to change operating systems became more
obvious, this code was kept somewhere on the storage medium and the
address of this location was stored in the MBR. On most computing
systems, the MBR is the first set of bytes on the storage medium; this
assumption is made by many operating systems.

IMPLEMENTATION OF A FILE SYSTEM 179

The next area of the storage medium is called the partition-label control
block (PLCB). This area contains information about storage medium
partitions. Such information can include the size of each partition, the
position at which each partition starts and ends on the storage medium,
and the number and location of free blocks of storage. Most partitions are
defined here; there can be special partitions (areas of the disk) that are
defined elsewhere.

The next area on a storage medium is the directory structure. This area
contains information to organize and find files; we detail this structure in
the next section.

The next area is used for file storage. Both FCBs and actual file contents
are stored in this area. We detail the structure of this space in a later
section.

In addition to the structure of the storage media, the operating system
also keeps track of information for each file system. The structures
maintained in this way reflect and augment the storage structures on
the storage medium. The operating system usually maintains a partition
table, a table defining the directory structure, and open-file tables. This
last structure records where open files are in the operating system by
placing FCBs in a table, kept in memory. Tables of open files are usually
also kept on a per-process basis.

Directory structure

In general, a directory must maintain several pieces of information. A
directory is the central point of file-system information and is the only
way to find where a file begins on a storage medium. Therefore, it must
maintain information on all files and where to find them. Sometimes this
information is resident in the directory and sometimes directories simply
point to this information on a storage medium.

Directories are really just files of data stored in a file system. A directory
usually holds the following information:

• directory name: directories have names, just like files, and these
names need to be stored with the directory

• directory size: the number of files and directories must be stored

• FCB information: each file and directory has a control block and
these control blocks are accessible through the directory. Either the
complete FCB is stored with the directory structure or the address of
where the FCB resides is stored.

180 FILE SYSTEMS AND STORAGE

As we stated previously, each directory is accessed by other directories.
The chain of directories forms a tree. There is, therefore, a root to the
directory tree, a single directory at which paths to all others start. This
root directory is not accessible from other directories, because it is at the
top. The root directory location is either stored directly in the MBR (as a
storage medium address in a specific location) or it is stored on a specific
place on the storage medium. The former method is the most flexible and
allows root directory information to be stored and duplicated for backup
purposes.

Since all storage in Unix is a set of bytes and all storage can be
referenced as a file, it should not be surprising that Unix treats directories
as file space that can be opened by applications and manipulated.
Obviously, directory storage in Unix has a specific structure but, as
with all data, Unix does not organize the structure, but leaves that job
to the parts of the kernel that implement a file system. It is possible to
read the data from a directory and look at it in any way. You can even
look at the contents of a directory by using the ‘cat’ command.

File structure

Files are generally stored in pieces on the storage medium. As we
discussed previously, each piece is the size of a block on the storage
medium and these pieces are strung together to make a complete file.
Depending on the method of storage, performance may be adversely
affected by how a file is stored.

The structure of a file’s FCB is an important start to efficient storage.
How much or how little information is stored makes a difference to how
fast file information is accessed. A generic structure of an FCB is shown
in Figure 8.3.

How space is allocated for files plays a large part in the performance of
file I/O. Contiguous allocation of all the pieces of a file is the best way to
store them for performance reasons. Performance is directly affected by
how hard the mechanical aspects of the storage medium must work. Stor-
ing file blocks contiguously minimizes the movement of the read head on
disk drives and thus renders the best performance. Fragmenting a file into
many pieces flung widely across a hard disk make the hard disk’s reading
mechanism move more over the disk surface and slows I/O performance.

However, contiguous allocation of file blocks is rarely possible. Since,
in most cases, it is impossible to accurately predict how much space a
file needs, it is also impossible to allocate enough contiguous space for a

IMPLEMENTATION OF A FILE SYSTEM 181

file name

ownership information

size information

creation date/time

modification date/time

last read date/time

access permissions

location of first file block

Figure 8.3 A typical file-control-block format

file to grow into the space allocated for it. It is, rather, more prudent to
place pieces of a file wherever they may fit and link the pieces together
somehow so the file-system implementation can put them together while
reading data from the pieces.

Working with linked file space requires having access to the linkage
information. In some systems, the linkage information can be kept with
the file table. Other systems store link information with each piece of a
file on a storage medium. In these cases, the file looks like a linked list,
and working through the contents of a file means traversing a linked list
from front to back.

Sometimes a compromise is made between contiguous allocation and
linked allocation. File blocks can be put contiguously together in clusters
and the clusters can be strung together to allow flexibility in file growth
and allocation. A cluster is usually a group of disk sectors, which contain
the file blocks. The size of a cluster is determined when the file system is
created and remains constant over that file system.

A slight variation on the method of keeping link information in a file
is the indexed approach. In the indexed approach, the address of the
first pieces of a file is stored in the file table. The address on the storage
medium of each piece of a file is stored in the file table as an index, an
address relative to the base address of the file. Sometimes, if the file is
large, the index entries are stored as the first file block on the storage
medium and the entry in the FCB points to this block.

We must deal with fragmentation issues when we split the stor-
age into fixed-size blocks. All the above schemes suffer from internal

182 FILE SYSTEMS AND STORAGE

fragmentation: files are seldom exactly the size that fits into a specific
number of fixed blocks. There is usually space within a block that is
wasted. External fragmentation is the space wasted outside the collec-
tion of blocks. If a fixed-block scheme is used, external fragmentation is
eliminated as the storage medium is carved up into blocks that fit exactly.

From time to time, it is a good idea to defragment storage media.
Defragmenting has nothing to do with internal or external fragmentation;
it is focused on the wide dispersion of the blocks belonging to file
content across a storage medium. The closer a file’s blocks are, the less
mechanical wear occurs from trying to move all over a medium to read
the blocks. Defragmentation moves the blocks of all files so that they are
as close to each other as possible, hopefully adjacent to one another.

Free space and bad blocks

In addition to file content, there are two other types of blocks on a
storage medium. Free space is space available for allocation to files and
is made available when files are deleted. Because of block-allocation
patterns, free space comes available in blocks that are scattered all over
the medium. These blocks must be accessible when space is needed and
therefore are usually linked together using the same methods used to link
file blocks together. Contiguous or linked methods apply to free blocks
as well.

Occasionally, a block ‘goes bad’ – becomes damaged in some way
so that it is unusable. A bad block can simply be avoided on a storage
medium. As with file blocks and free space, bad blocks are usually linked
together so they can be found and avoided.

FAT and VFAT File Systems
When Microsoft developed the first operating system to run on IBM
hardware, it needed to invent a file system for the computer’s hard drives.
In 1977, the FAT file system debuted on IBM PCs using the Microsoft
Disk Basic system. This first file system – called the FAT file system for
its use of a file-allocation table – is still in use, in more evolved forms, in
modern versions of Microsoft Windows. The FAT file system is also use
for most mobile media storage (for example, compact flash or multimedia
cards).

The initial version of the FAT file system is called FAT12. This first
version was very simple and restricted: no support for hierarchical direc-
tories, disk addresses were 12 bits long and the disk size was stored as

IMPLEMENTATION OF A FILE SYSTEM 183

a 16-bit count of disk sectors, which limited the size to 32 MB. The
maximum size of a partition was 32 MB.

The release of MS-DOS 2.0 occurred at the beginning of 1983.
This version of FAT12 introduced hierarchical directories. The use of
directories allowed FAT12 to store many more files on the hard disk,
as the maximum number of files was no longer constrained by the root
directory size. This number could now be equal to the number of clusters
(or even greater, using zero-sized files). The format of the FAT itself did
not change. The 10 MB hard disk on the PC XT had 4 KB clusters. If a
20 MB hard disk was later installed and formatted with MS-DOS 2.0, the
resultant cluster size would be 8 KB, the boundary at 15.9 MB.

In 1988, with the release of MS-DOS 4.0, the FAT16 file system was
finalized. In this file system, the disk address was now 16 bits and the
maximum partition size jumped to 2 GB. The maximum cluster size in a
FAT16 file system is 32 KB.

FAT12 and FAT16 file systems had what is known as the 8.3 limitation.
Filenames on the system were limited to eight characters with a three-
character suffix. A variant of the FAT16 file system allowed longer
filenames to be used. This variant was known as the VFAT file system
after the Microsoft Windows 95 VxD device driver.

The FAT32 file system was introduced in 1996 and is still in use
today. The FAT32 file system uses 32 bits for disk addressing and for
clusters. Only 28 of the 32 bits are used to address clusters, but even this
allows for 228 clusters, which allows FAT32 to support media sizes up to
2 TB. Unfortunately, limitations in other Microsoft utilities mean that the
file-allocation table is not allowed to grow beyond 222 clusters, which
supports media sizes up to 124 GB. Because of the 32-bit disk address,
files can grow to a maximum size of 4 GB. Also the long filenames from
VFAT were implemented.

Each of the FAT file-system variants shares common characteristics.
They are implemented using a file-allocation table with file pieces put
together using a linked list of clusters. There is one file-allocation
table per disk volume. The FAT has a common structure, illustrated
by Figure 8.4.

Boot sector
File block
storage

Root file
directory

Duplicate
file

allocation
table

File
allocation

table

Optional extra
boot sector

space

Figure 8.4 The generic format of a FAT file system

184 FILE SYSTEMS AND STORAGE

The first section of the FAT is known as the boot sector. This section of
the file system contains the operating system’s boot-loader implementa-
tion. This is the place that the computer goes to retrieve code that boots
the operating system. In some implementations, this is code that initializes
the system for operating system execution. In others, the operating system
code is stored elsewhere on the disk and the boot sector only contains an
address where this code can be found.

There is a section of this format that is made up of optional reserved
sectors. This section of the file system is usually used by extensions
of the basic boot-sector format. Other versions of the operating system
that expand upon Microsoft Windows but are compatible with it use
this optional section for an expanded boot sector. The boot sector for
Microsoft Windows NT is bigger than that for FAT16, for instance, but
since it uses this optional section, the rest of the format can be the same.

The next two areas are identical copies of the file-allocation table for
the partition. These tables are maps of the file-block storage areas of the
storage medium. They contain one table entry per disk block and each
entry holds the address of the next disk block of the file. This chain is
started by a directory entry, which indexes filenames and the blocks they
start at. The chain is terminated with a special end-of-file value. Free
blocks have a 0 value in the table. File-allocation tables also use special
values to indicate bad or reserved clusters.

The next area was used by FAT12 and FAT16 file systems and contained
the root directory, used as starting point for all traversals through the file
system. In FAT32, this directory was located on the disk and an address
to it was stored in the FAT.

Finally, the rest of the storage medium is used for file block storage.
Blocks are simply laid next to each other and adjacent blocks could
easily be from different files. The only way to connect blocks is through
the FAT.

Let’s take an example. A user wants to open a file and read the first
1000 bytes from a file called \book\readme.txt. If we were using a
FAT16 file system, we would start our journey by accessing the root
directory, which is stored in the boot sector, and we would look up
the directory name book. This entry would have the block number in
the block-storage region of the disk. We would read that block and
assume it contained directory information. We would look up the name
readme.txt (see Figure 8.5) and get the block number of the first file
block. Assuming a standard cluster size of 512 bytes, we would need
two blocks. We would read the first block from the disk and display its

IMPLEMENTATION OF A FILE SYSTEM 185

Readme.txt 1045. . .

Directory entry

Name First block

2067

End of file

321

File allocation
table

Figure 8.5 Files stored with the file-allocation table

contents. We then need the table entry for the first block to get the second
block. We would read the second block and display the remaining bytes.

Many storage media support some version of the FAT file system.
FAT12 is used for floppy disks; FAT16 is used on most removable media
(USB flash drives, for example). FAT32 is compatible with storage media
used by Microsoft Windows 2000 and XP.

NTFS

The New Technology File System – otherwise known as NTFS – debuted
with Microsoft Windows NT. It supports many innovations over the FAT16
system used by previous Microsoft Windows versions: compression, file-
level security, larger partitions and RAID. In addition, NTFS supports
encryption of file-system data. One of the main features of NTFS is
exceptional fault tolerance, because it is a transactional file system.

NTFS does away with the file-allocation table and completely changes
the way partitions are formatted. A master file table (analogous to the FAT)

186 FILE SYSTEMS AND STORAGE

is stored on disk and an address to it is stored in the boot sector. The boot
sector contains code that starts the boot-up process. Most interestingly,
the boot sector has as its first bytes a jump instruction that enables a jump
to where the bootstrap code is located in the boot sector. This means that
data can be large or small and the operating system can always find boot
code.

NTFS is the favored file system on Microsoft Windows installations.

Unix File Systems: VFS and UFS
Unix generally uses two different kinds of file system. A virtual file system
(VFS) is an abstract file system, with abstract interfaces to commonly used
system calls. Programmers and applications make VFS calls to access file
system facilities. The VFS calls are then implemented by real file-system
implementations. Two examples of real Unix file systems are the Unix File
system (UFS) and the Network File system (NFS). VFS is effective because
Unix is designed to use many different file-system implementations.
Implementations of abstract VFS calls are loaded dynamically, and calls
are made using a specific type of implemented file system.

The UFS, also known as the Berkeley Fast File system, is used by many
Unix implementations. Each partition starts with space reserved for boot
blocks, addresses that point to operating system code that resides on
the storage medium. The next space is called a superblock; it contains
numbers that identify the partition and parameters that can be altered to
tune the behavior of the partition. The remainder of the storage space
is organized into groups of fixed size. Each group contains a duplicate
copy of the superblock; a group header, containing statistics, pointers
to free blocks and tunable parameters; a number of inodes that contain
information about files; and blocks of data that contain file content.

Inodes are the heart of a UFS implementation. Inodes are a combination
of file information – name, ownership, times of access, etc. – and pointers
to blocks of file content. In fact, inodes are directly analogous to FCBs.
Inodes implement file data pointers in an interesting way. They store 12
direct blocks, which point directly to blocks that hold file content. The
13th entry is an indirect block, which points to a file block on the storage
medium that holds the addresses of other file blocks. The 14th entry is a
double indirect block, which points to a file block whose addresses point
to indirect blocks. The last entry is a triple indirect block, which has three
levels of indirection built into it.

The indirection built into the design of an inode needs a bit of explain-
ing. If we assume each file block holds 15 pointers, then each inode can

IMPLEMENTATION OF A FILE SYSTEM 187

access 3 627 file blocks.1 Consider the space required if each inode held
3 627 file block addresses: 14.5 KB of space to access each file. If the
file system were to be filled with predominantly small files, then many
of the addresses would go unused. In the inode scheme, with a standard
4 096-byte block, files up to 48 KB in size can be accessed directly from
the inode. Files that are between 48 KB and 108 KB take only one more
block in the inode, but require an extra file access to read the file block
with the actual disk addresses. This scheme favors smaller files, allowing
access to large files – up to 4 GB – to have a slight penalty.

Remote File Systems
Servers usually have file systems that they set up for other computers to
use over a network. This type of file service allows client computers to
use the file systems of servers as if they were local.

A server file system is (obviously) local to the server it is hosted
on. It is exported via network protocols to other computers. Two of
the most widely used protocols are the Network File Service (NFS) and
Server Message Block (SMB) file systems. The former originated on Sun
Microsystems SunOS operating system and has been implemented for
most other operating systems. The latter originated with Microsoft for
its operating systems and has also been implemented for many other
operating systems.

The goal of using remote file systems is to allow the user or application
not to see the difference between a locally implemented file system and a
remote file system. This is where the abstraction of using file APIs is most
important. Consider VFS from Unix. Under VFS, the same API is used no
matter if the underlying file system is UFS or NFS. The open() function
is called no matter what. The underlying file system provides a specific
implementation of the open() function.

Other Interesting File System Implementations
There are many file systems that have been developed over the years
that operating systems have used. There have been several recent inno-
vations that are in use. Log-structured file systems write every file-system

1 This is computed as follows: 12 direct blocks; one indirect block, which adds 15 more;
one doubly indirect block, which adds 15 indirect blocks, each of which adds 15 more;
and finally one triply indirect block, adding 15 x15 x15 blocks. The result is 12 + 15 + 225
+ 3 375 = 3 627.

188 FILE SYSTEMS AND STORAGE

modification to a file, allowing them to be replayed and analyzed. A
variant of this type of file system – the journaling file system – is in use
in Linux devices (the ext3 file system). Other file systems in use today
are the Universal Disk Format system for DVDs and CD-R/RWs and the
Hierarchical File System used by MacOS.

8.3 File Systems on Mobile Phones

In terms of file systems, mobile phone operating systems have many of
the requirements of desktop operating systems. Most are implemented in
32-bit environments; most allow users to give arbitrary names to files;
most store many files that require some kind of organized structure. This
means that a hierarchical directory-based file system is desirable. And
while designers of mobile operating systems have many choices for file
systems, one more characteristic influences their choice: most mobile
phones have storage media that can be shared with a Microsoft Windows
environment.

If mobile phone systems did not have removable media, then any
file system would be usable. In systems that use flash memory, there are
special circumstances to consider. Block sizes are typically from 512 bytes
to 2 048 bytes. Flash memory cannot simply overwrite memory; it must
erase first, then write. In addition, the unit of erasure is rather coarse:
individual bytes cannot be erased; entire blocks must be erased at a time.
Erase times for flash memory is relatively long.

To accommodate these characteristics, flash memory works best when
there are specifically designed file systems that spread writes over the
media and deal with the long erase times. The basic concept is that when
the flash store is to be updated, the file system writes a new copy of the
changed data over to a fresh block, remaps the file pointers, then erases
the old block later when it has time.

One of the earliest flash file systems was Microsoft’s FFS2 for use
with MS-DOS in the early 1990s. When the PCMCIA industry group
approved the Flash Translation Layer specification for flash memory in
1994, flash devices could look like a FAT file system. Linux also has
specially designed file systems, from the Journaling Flash File System
(JFFS) to the Yet Another Flash Filing System (YAFFS).

However, mobile phone platforms must share their media with other
computers, which demands that some form of compatibility be in place.

SECURITY 189

Most often, FAT file systems are used. Specifically, FAT16 is used for its
shorter allocation table (than FAT32) and for its reduced need for long
files.

Being a mobile smartphone operating system, Symbian OS needs to
implement at least the FAT16 file system. Indeed, it provides support for
FAT16 and uses that file system for most of its storage media. However,
the Symbian OS file-server implementation is built on an abstraction
much like Unix’s VFS. Object orientation allows objects that implement
various operating systems to be plugged into the Symbian OS file server,
thus allowing many different file-system implementations to be used.
Different implementations may even co-exist in the same file server.

Implementations of NFS and SMB file systems have been created for
Symbian OS.

8.4 Security

Security is very important for file systems. Since files are the basic units of
storage, it is extremely important that they remain secure and protected
from malicious access. The remainder of the file system structure is also
vulnerable.

Chapter 14 is dedicated to security. However, security issues are so
important that we discuss them here as well – as they pertain to file
systems. In this section, we look at the issues with security and outline
the attacks and protections that file systems can have.

General Security Issues

Access to a file system and the files it contains needs to be controlled.
Allowing any and all access would be a mistake, because it invites
malicious activity. However, too many restrictions make file systems
cumbersome to use. In addition to the proper security, we also need to
decide what elements need security restrictions imposed on them.

When an access is made to a file system, the fundamental assumption
is that the access is authorized or permissible. A fine-grained security
system would request authorization before each access. A coarse-grained
security system would make a single validation that would verify all
access. Somewhere between the two extremes lies a system with enough
security and a tolerable amount of overhead.

190 FILE SYSTEMS AND STORAGE

Authorization implies identification. File-system access cannot be
authorized for users if those users are not identified. Identifying users
is usually done by allowing them to log into a system or otherwise giving
a user name or ID. Files are usually tagged with this user ID and specific
permissions are given to authorized user IDs.

There are certain users that have all permissions to all files. Most
often, these are termed superusers or root users. These users have all
permissions by design (note the assumption that the user has been
identified and authorized).

Using remote file systems can be a security issue. Consider the follow-
ing scenario: user X is authorized to access a collection of files. When
that collection of files is shared remotely to another computer system,
what happens when user X does not exist on the remote system? Or
worse, what happens when user X does exist on the remote system, but
is a different user with the same user name?

Typically, identification is verified on the system that the file system
comes from before access is granted. This means that identical user
names on two different systems would not result in an infraction of
security, because verification of the user name (called ‘authorization’ in
Chapter 14) is done on the computer the file system comes from. That
verification is unique and done in one place. When there are multiple
servers serving up file systems, a centralized server for authentication is
often preferred. This can happen through a designated computer on the
network; this computer often runs an identity server to verify users.

Security Failures: Flaws and Attacks

Security advances often come from learning by mistakes or finding lapses
in security. There have been many security failures since file systems
were implemented. An overview of some of these is appropriate before
we discuss mechanisms used to protect files.

Operating systems have long allowed access without user identifi-
cation. In this type of system, there is no specific owner of a file and
all access to all files is implicitly granted. With no user identification,
there is essentially a single user of the computer. That user controls all
system resources, including all files and file access. Most early oper-
ating systems – including early versions of Microsoft Windows – were
implemented with this type of access.

It is this environment that enabled the creation of viruses. Viruses are
fragments of data that are typically added to programs in such a way

SECURITY 191

that they can be executed when the program is executed. This ‘infection’
is passed from program to program by the executing virus code. Such
infection is easy and permitted when no user identification is required to
access files.

Sometimes operating systems verify user identification but do not use
that identification to regulate access to files. These types of systems are
‘gatekeepers’: once a user is validated – or passed through the gate – that
user may do anything to the system and its data. In these systems, user vali-
dation usually serves to personalize the environment for users but is often
diluted for security. Recent versions of Microsoft Windows – through
to Microsoft Windows 2000 – would set up access to files in such a way
that the default access rights would grant all permissions to all users. The
result was that, no matter what user you were, you could still access all
files and have all privileges.

Most operating systems in use today verify user identification and
use that identification for file access. These systems identify the type of
access allowed for various classes of users by identifying the user. These
systems are as vulnerable as their verification process. If a user can enter
a computer system with another user name, for example, then security
on files is meaningless. Access assumes authorization; if authorization is
compromised, so is file access.

Unix has long had this type of security implementation. As the next
section describes, Unix file systems have the notion of user classes,
which include ‘owner’, and users are classified by their user ID when
they validate themselves to the system. This allows Unix to classify users
further, in groups or as ‘other’. Each of these classes has security settings
that allow for file read, write and execute operations, with a file owner
being able to grant access to its file to particular user classes.

Establishing and enforcing ownership on files is a great way to thwart
virus infection. When only an owner can modify a file, then a virus
can only infect a file if its executing process is identified as the owner.
Sometimes, the owner can grant others ‘write’ permission by using ACLs
or by giving groups of users access. Viruses can infect files in these cases
if the executing process is identified as a user having permission to write
to a file. Because owners are usually carefully controlled, Unix systems
are rarely infected with viruses.

It is useful to note that some computer systems cannot establish user
identification and therefore must work to provide other forms of security

192 FILE SYSTEMS AND STORAGE

systems. Smartphones are a great example of this situation. It would be
terribly inconvenient for the smartphone user to identify herself before
each use (imagine ‘logging in’ to a smartphone to answer a call).

Protection Mechanisms
Protection of files starts with something outside of a file system: authen-
tication. Authentication is the verification of user identity. As Chapter 14
points out, verification of identity can happen in a number of ways;
appropriate verification uniquely and correctly identifies users to the
operating system.

Most protection mechanisms verify that file access is permissible by
recording several pieces of information with each file. These pieces
usually include:

• ownership: the user ID associated with the process that created the
file; this assumes that the operating system identifies users and can
relay that information to files

• permission specification: if the owner of a file is recorded, then
ownership permission is also recorded; other types of access can be
recorded: access for non-owners or for members of the group that the
owner belongs to

• access control : when permissions are too broad to properly secure
a file, access control lists (ACLs) can be used to specify users (rather
than groups) and specific permissions can be associated with certain
users

• capabilities : when access control lists are too broad or require too
much detail, users and applications are assigned a specific type of
capability (for example, ‘file read’ and ‘file write’). The capability is
always matched against the type of access requested. Capabilities
are usually more detailed than permissions or access control. For
example, ‘file delete’ might be a capability that is usually not assigned
as a permission.

There are many variations on these security mechanisms. Linux uses
permissions for file security. In a Linux system, there are three types
of user: owners, members of the owner’s groups, and others. There are
several types of file access in Linux. The most useful access types are
‘read’, ‘write’ and ‘execute’. The permissions can be used like bits in a

SECURITY 193

number and are assigned to each of the three types of user. For example,
a file may have the following listing:

-rwx-----x 1 jipping 11001344 Jul 18 15:49 Presentation.ppt

The first entry shows the permissions: owners (the rwx part) have all
access rights, group members (the --- part) have no access rights and
‘others’ (the --x part) have only execute permissions.

Security on Symbian OS

Smartphone security is an interesting variation on general computer
security. There are several aspects of smartphones that make security a
challenge. Symbian OS has made several design choices that differentiate
it from general-purpose desktop systems and other smartphone platforms.

Consider the environment for smartphones. They are single-user
devices and require no user identification. A phone user can execute
applications, dial the phone and access networks all without identifica-
tion. In this environment, using permissions-based security is challenging,
because the lack of identification means only one set of permissions is
possible – the same set for everyone.2

Instead of user permissions, security often takes advantage of other
types of information. In Symbian OS v9 and later, applications are
given a set of capabilities when they are installed. (The process that
grants capabilities to an application is covered in Chapter 14.) The
capability set for an application is matched against the access that the
application requests. If the access is in the capability set, then access
is granted; otherwise, it is refused. Capability matching requires some
overhead – matching occurs at every system call that involves access to
a resource – but the overhead of matching file ownership with a file’s
owner is gone. The tradeoff works well for Symbian OS.

There are some other forms of file security on Symbian OS. There are
areas of the Symbian OS storage medium that applications cannot access
without special capability. This special capability is only provided to the
application that installs software onto the system. The effect of this is that
installed applications are protected from non-system access (meaning that

2 This does not mean that applications are barred from requesting user identification.
This discussion only addresses system identification.

194 FILE SYSTEMS AND STORAGE

non-system malicious programs, such as viruses, cannot infect installed
applications).

For Symbian OS, the use of capabilities has worked as well as file
ownership for protecting access to files.

8.5 Summary
This chapter has examined how operating systems implement file systems
and files to store data. We began by examining the basic concepts of files,
directories and partitioning. We looked at attributes of files, the name and
structure of files and directories, and the operations that can be performed
on them. We then looked at how file systems are implemented and gave
several examples – from FAT file systems used in Microsoft Windows to
the file system used in Unix. We gave an overview of some issues with
using file systems on mobile phones and finished the chapter by looking
at file-system security.

Exercises

1. Explain the difference between a text file and a binary file on a
Symbian OS device.

2. Consider a file that is 2000 bytes long stored on a medium with
512-byte blocks. Assuming that the FCB is in memory, how many
storage I/O operations are required to read the entire file in each of
the following systems?

a. a contiguous storage scheme

b. a linked storage scheme

c. a FAT implementation scheme

d. a UFS implementation scheme.

3. Consider a UFS design where there are 12 direct pointers, an
indirect pointer, a double-indirect point and a triple-indirect pointer
as described in Section 8.2. What is the largest possible file that can
be supported with this design?

4. Why is it better to store items from the boot sector – root directory
FCB, operating system boot code, etc – on a storage medium rather
than in the boot sector?

EXERCISES 195

5. Consider a file system that uses linked allocation for file blocks.
What benefits are gained by making these blocks adjacent when
the allocation scheme remains as linked allocation?

6. Is it beneficial to locate free space blocks next to each other?

7. When defragmentation is attempted on a storage medium, there
are often areas of the medium that cannot be moved. Characterize
these areas and describe why they cannot be moved.

8. Consider the situation when a smartphone shares RAM between
operating system memory and a file system.

a. What file-system implementation is likely to be used? Explain.

b. How can a file system adapt to dynamically changing storage
sizes (as operating system needs change, the file space grows
and shrinks)?

9. Why could Microsoft Windows 98, which used a FAT16 file system,
only support partitions with a maximum size of 2 GB?

10. If VFS and UFS were to be implemented for Symbian OS, would
a flash memory card that uses this combination have more or less
space than a card formatted with a FAT16 file system?

11. If a new file system were to be invented for the next version of
Symbian OS, what improvements could be made over the FAT16
file system?

12. Is fragmentation a problem on the storage medium used by Symbian
OS? Why or why not?

9
Input and Output

A computer can do all the computing in the world, but it would be a
useless device without input and output. I think there are many people
like this. Sometimes people are thinkers; others like to talk (output) a
lot without listening (input); still others hear you (input) but do not
talk (output) to you. The most pleasant people to be with are typically
those who listen, consider what you are saying and reply. Thus it is
with computers. While there are few computers that take input while
producing absolutely no output and there are no computers that produce
only output (even computer-driven clocks need to be set with input),
the most useful computers are those with general input and output
capabilities.

Operating systems must balance the needs for general computing with
the needs to process input and generate output. It is very easy to get these
tasks out of balance; proper techniques are required to do all of them at
the same time. Management and control of input and output can be a
difficult thing.

This chapter discusses what is required to bring a balance to input and
output. We have discussed related topics in other chapters, but here we
bring the pieces together. We first give an overview of I/O components.
We then review I/O hardware and give examples of the concepts needed
to manage I/O. Then we look at software issues connected to I/O.
We discuss I/O in Symbian OS and conclude with some Symbian OS
examples.

198 INPUT AND OUTPUT

9.1 I/O Components

An operating system must manage input and output just like it manages
the other resources in a computer system. Input and output are harder
resources to manage, however, because of their variety in function and
speed. While the CPU of a computer remains the same, any number of
I/O devices can be connected and disconnected. Consider a mouse, a
CD-ROM drive and a printer. These devices are all different in speed
and in the way they are used, yet they must all be managed by the same
operating system.

We typically manage complexity by using abstraction. Throughout this
book, we have emphasized how operating systems try to deal with the
relevant details of something through a standard interface, while ignoring
much of the complexity that is not relevant to management. That is the
method used here: standard interfaces handled in a standard manner
allow I/O technology to expand and differentiate without forcing the
operating system to change at the same rapid pace. However, innovation
around I/O advances rapidly and standard interfaces are often outpaced
by the needs of new devices – thus resulting in new ‘standard’ interfaces.
This, too, must be managed and allowed to happen in a controlled setting.

There are three components that are important to an operating system’s
management of I/O. Device controllers on the hardware side are linked
to device drivers on the software side by buses (see Figure 9.1).

Hardware Interface: Device Controllers

A device controller is a hardware component that represents the hardware
interface to the operating system. A controller has the ability to operate
the device to which it is attached. A controller provides an interface
that translates between the complex working of an I/O device and the
operating system.

A controller is really a device in its own right. It is typically made up of
a processor, some memory and some microcode that enables it to process
interactions with an operating system. It is programmed to interact with
the operating system using standard interfaces and to translate the abstract
interaction it receives through its interfaces into specific operations that
accomplish on a device what the operating system is asking. A controller
can operate a simple device, such as a serial device, or it can be in charge
of a complex system, such as storage media. The controller is responsible

I/O COMPONENTS 199

Bus

Operating system

Device driver

Device controller

I/O device

Figure 9.1 Relationship between device drivers and device controllers

for performing tasks that the operating system requires, such as reading,
writing, formatting or mapping bad sectors.

Sometimes a controller is not directly connected to its device using
an I/O bus system such as USB or Firewire. A controller must sometimes
communicate with many devices at once across an I/O bus connec-
tion. In all cases, a controller represents the hardware side of the I/O
abstraction.

Software Interface: Device Drivers

The software side of the I/O abstraction is a collection of device drivers. A
device driver is a piece of software that interacts with the operating system
using a standard interface and then interacts with device controllers,
providing the software side of the translation between the operating-
system and the device.

Since devices are invented and evolve rapidly, supplying device drivers
that work in each operating system is typically the responsibility of a

200 INPUT AND OUTPUT

hardware manufacturer.1 When a user attaches a device, that device
usually comes with a driver that can be (or sometimes has already been)
installed and can handle the new addition. When the operating system
needs something done, it communicates with the device driver, which
communicates with the device controller, which, in turn, operates the
device itself.

Bus Connections

The glue that holds device controllers to device drivers is an I/O bus. At
the hardware level, a bus is a set of wires that communicates data – both
usable data and control data – between connections. These physical
connections tie the device driver to the device controller. At the software
level, a bus is seen as a connector that allows messages, requests, and
transfer of data between the operating system and an I/O device.

The communication between a driver and a controller happens accord-
ing to a protocol. Protocols are the language of request and service,
providing methods to communicate that provide for accurate and error-
controlled delivery of data. A protocol can be seen as an agreement
between two parties: when one side does something, the other side
knows how to respond because both are abiding by a set of rules.

The Small Computer Systems Interface (SCSI) bus in a computer system
is a good example here. The SCSI bus is connected to several SCSI devices
at the same time. Each device has a SCSI controller that knows how to
use the SCSI protocol to communicate with the SCSI device driver for
the operating system. This SCSI protocol is very complicated. The SCSI
bus has a certain type of design that accommodates this complexity. This
design differentiates it from the other buses in a computer system.

It is interesting to note that, as with the SCSI example, some device
drivers are tuned to the bus protocol rather than the device they are
controlling. In the SCSI example, all devices that connect to the SCSI bus
work with the SCSI protocol. This means that device drivers can work
with that protocol too, rather than with each individual device. This can
be called a physical-device abstraction to logical device.

1 Sometimes the operating system provides the driver. This happens when standards
are clear and devices adhere to these standards. The USB mass storage driver of Microsoft
Windows is an example of this.

I/O HARDWARE ISSUES 201

9.2 I/O Hardware Issues

A computer works with a large number of devices. These generally fit into
several categories: storage devices, communication devices, interface
devices and display devices. Devices that do not fit into these categories
tend to be specialized, such as data-gathering equipment or automobile-
monitoring devices. It is typical of a computer to control these devices
using a standard interface and a set of generalized commands. Even with
all this variety in hardware, just a few hardware concepts are needed to
understand how hardware interacts with an operating system.

General Device Communication

As discussed in Section 9.1, operating systems communicate with devices
through buses that connect components from device driver to device
controller. A general bus structure is shown in Figure 9.2.

A device is connected to a computer system through a bus, but can
be connected to that bus in several ways. A device could be connected

Screen display

Graphics
controller

CPU

Bridge/memory
controller

Memory

Cache

IDE controller

Disk

Disk

CD-ROM

Expansion bus
interface

USB controller

U
S

B
 b

us

Device

Device

Device

Parallel port Serial port Keyboard

PCI Bus

expansion bus

Figure 9.2 Generic I/O bus structure

202 INPUT AND OUTPUT

directly by being plugged into the bus through a slot on the computer’s
motherboard. This is typical of desktop and server systems. Other devices
are connected through a cable, plugged into a port, or open receiver,
on the computer. Others are connected wirelessly, for example, through
Bluetooth technology. Sometimes devices can even be daisy-chained
together, when one device is connected to another, which is connected
to a third and so forth. Eventually one device in the chain must be
connected to a computer.

Communication is initiated by a controller and destined for the oper-
ating system or by the operating system and destined for a device through
a controller. A simple way that these communications are passed on is
through registers. Communication bits and bytes are passed through a
variety of registers:

• the status register contains a set of bits that are read by both the
computer and the bus controller; the bits indicate states such as
whether a data transfer is completed or whether there has been a
device error

• the control register is used to control the data exchange process; when
it contains data, that data is in the form of a command which usually
amounts to ‘read’ or ‘status’, but bits can also be set to indicate how
data is to be transferred

• the data-in register is read by the operating system to get input data
from devices

• the data-out register is written to by the operating system to pass data
to a device.

Data registers are typically between one and four bytes long. Some
device controllers can hold buffers full of data waiting to be sent through
these registers to the operating system. The registers are situated either
in dedicated I/O space in the CPU or in the main memory. This latter
situation is called memory-mapped I/O. In this implementation, the CPU
writes or reads data to or from the dedicated address or range of addresses
of the main memory space.

Device controllers also send data to operating systems through
memory-mapped I/O. Memory-mapped I/O uses the register idea but,
instead of registers, memory on the processor is used. When the CPU
sends an I/O request, it uses standard registers to issue the request but the
data ends up in main memory.

I/O HARDWARE ISSUES 203

These two methods are adequate for small amounts of data but, for
larger amounts of data, they require too much movement of data once
the data has left the bus. The direct-memory access (DMA) approach
allows the bus controller to access memory directly and to signal to the
operating system when the I/O operation is complete. All I/O functions
happen through memory: from initiation of an I/O operation to the arrival
of data and the signaling of operation completion. DMA allows the
operating system to service other needs and only attend to data when it
is signaled.

DMA works with system resources and shares them with the CPU. It
accesses main memory just as the processor does. Occasionally, DMA
data transfer takes over a resource – for data transfer over the bus, for
example, or for depositing data in memory. In these cases, the CPU cannot
use the resource while it is in use for DMA. This artifact of DMA is called
cycle stealing and it can slow down access to computer resources. In the
first, conventional DMA cycle, the data transfer uses the bus to transfer
all data from or to memory without CPU attention. Since the system bus
is in use, the CPU does no external operations. In the cycle-stealing DMA
transfer, the system can use those CPU cycles where the CPU does not
transfer any data to or from the memory on the system bus. The bus cycles
are stolen from the CPU and used by the DMA controller to transfer data.

Polling
To facilitate the transfer of data, the operating system must pay attention
to the transfer system. For systems using registers and memory access, this
attention amounts to a constant monitoring, a checking that continually
watches components in the system and reacts to changes in system states.
This constant monitoring is called polling.

Polling happens with the register method of data transfer by monitoring
the bits in the status register. There is usually a bit, called the busy bit,
that indicates that data is in the process of being transferred. When that
bit clears, the data is completely transferred. Note that, because the
processor operates at a speed faster than the data transfer, it is likely that
the operating system does a lot of checking before the data transfer is
complete. Polling happens on both sides with the register method. The
bus controller polls the status register and reacts to various settings. For
example, there is typically a command-ready bit that indicates that a
command is waiting in the control register for the bus controller to use.

In the memory-mapped I/O method, polling still takes place. One
might think that the use of memory would mean that registers are not

204 INPUT AND OUTPUT

used. However, only the data itself is placed in memory, not the command
and status registers. Therefore, the operating system must continually poll
the register set.

Polling is usually detrimental to system performance. The constant
checking of the operating system must be woven into cycles that the oper-
ating system goes through to switch the context of processes. Checking is
done regardless of the state of the registers and regardless of whether a data
transfer is actually taking place. This constant checking, including useless
checking of empty registers, drags down the performance of a system.

Direct-memory access avoids the polling penalty. An operating system
using DMA does not have to poll but instead waits on devices to inform it
when data is ready. This frees up the operating system to attend to other
things and operations such as context switching get more attention and,
hence, run faster. Data transfer is attended to when the bus controller
signals that data is ready.

Interrupts

Several of the operations mentioned above rely on some sort of signaling
between devices and the operating system. This interrupt mechanism is
an important part of operating system implementation.

Interrupts usually work through a dedicated hardware wire called
the interrupt-request line. The CPU checks this line at the end of the
fetch–execute cycle, after it has completed an instruction execution.
When an interrupt is signaled, the interrupt-request line has voltage
on it. When this condition is detected, the CPU diverts execution to
an interrupt-service routine (or routines). We discussed the handling of
interrupts in Section 3.3.

As they pertain to I/O, interrupts save the CPU from polling. Using
interrupts as a way to alert the operating system to when to process data
is a major contribution to performance.

9.3 I/O Software Issues

It is the job of system software to shape the view of the hardware for
the user and programmer. As usual, this shape is derived by the use
of abstraction: the interfaces to hardware are defined so that access is
standardized and the implementation of standard access is left to system
designers and device-driver writers.

I/O SOFTWARE ISSUES 205

Unfortunately, there is a large variety of ‘standard’ interfaces, depend-
ing on the operating system being used. Device manufacturers must
supply a number of device drivers that adapt to the various systems in
use. Devices can be characterized in a number of ways, depending on
the system:

• character-stream or block: character-stream devices deliver data as
characters, byte by byte; block devices deliver data in blocks of bytes

• sequential or random-access : sequential devices deliver data in a
fixed order as specified by the device; random-access devices can
deliver data in any order requested by the operating system

• synchronous or asynchronous: synchronous devices transfer data in
predictable time periods, often coordinated by the system clock;
asynchronous devices are more unpredictable, delivering data when
it is ready rather than in fixed intervals

• sharable or dedicated: sharable devices can be accessed and used
concurrently by several processes; dedicated devices communicate
with one process at a time

• speed of operation: device speeds vary widely, from mere bytes per
second to gigabytes per second.

• read-only, write-only and read–write: some devices perform both
reading and writing operations, while others implement only one of
these.

Many times, operating systems hide these differences and present
only a few general types to the user. In addition, some operating systems
provide a kind of backdoor way to access all devices. So while abstraction
is in wide use, there are ways to skirt the abstraction and directly address
each device. In Linux, for example, the ioctl() system call is a way to
pass command data directly to a device, rather than using the standard
interfaces.

Kernel I/O Structure

Kernels provide many types of service related to I/O, usually devoting an
entire subsystem to handling I/O.

I/O scheduling is important to efficient I/O handling. The order in
which applications issue requests for I/O is not usually the best order for

206 INPUT AND OUTPUT

the most efficient operations. If we allow an operating system to rearrange
the ordering of I/O requests, better performance and better sharing can
take place. The kernel usually maintains a queue of requests for each
device. When an application issues an I/O system call, that request is
queued. The kernel chooses to issue the requests in an order that, for
example, minimizes the movement of the hard-disk read arm or can be
serviced by a single block read rather than several smaller reads.

Kernels often use buffers to transfer data and smooth the differences
between device speeds. Buffering allows the operating system to com-
pensate for the speed difference between the CPU and devices. Data from
slower devices accumulates in a buffer until the buffer is full, at which
time the faster receiver is notified. Kernels often use double buffering by
processing the first buffer and allowing the device to fill up a second one.
(Displays benefit from double buffering because they can display images
without the flickering caused by new buffer retrieval.) Buffers allow data
from devices with different transfer sizes to be exchanged. Multiple blocks
of data can fill a buffer and then be transferred using different block sizes
and the data is removed from the buffer. Buffers also support differences in
the concepts that applications have toward data models. One application
may model its data one way and that influences how data is copied, read
and written. Another application may have a different model and different
ways to move data. When these applications exchange data though the
kernel, buffering helps to allow each application to use its model without
trauma. Finally, buffering also helps with simple data storage. Rings or
circle buffers allow producers and consumers of data to go about their
functions at different speeds without stopping to ensure the other side is
keeping up.

Operating system kernels usually maintain a cache with copies of data
used. As we have discussed before, caches are fast memories that are
positioned between the kernel and external devices. They act as buffers to
make access to data faster than actually retrieving it from the device. Disk
caches are a good example: reads from a disk drive look for the data first
in a disk cache. If the data is in the cache, the read operation can happen
much more rapidly. Write operations happen this way too. Writes to a
cache are buffered, with the cache performing the slower write operation
and the kernel going on to do other things. The combination of buffering
and caching is a powerful way to remedy the disparity of speeds and
performance between devices and the CPU.

Sometimes, buffering happens so often that it gets a special name. A
spool is a buffer that holds the output for a device – usually a printer – that

I/O SOFTWARE ISSUES 207

cannot work with interleaving data streams. Printers can only serve one
job at a time, but several applications may want to print at the same time.
This issue is solved by buffering the jobs waiting to print in the printer
spool. The operating system moves every print request to the spool and
the printing system polls the spool. This type of system is used for every
device that cannot multiplex between concurrent requests. Tape drives
also use spooling.

Sometimes operating systems set up other ways of dealing with multiple
requests for the same device. Device reservation is a technique that is
used, where an application asks the kernel for a device and waits until
it can have exclusive access. In this method, polling is used to wait for
the device (just the condition spooling was designed to avoid). However,
there are times when an application must have more direct control over
a device and reservation ensures that the application can get this kind of
access.

Errors happen often in the handling of devices. Devices are not always
connected in the tight, controlled fashion that other components of a
computer are connected. This means that data errors can creep into
communication. Other factors, including bus overloading and controller
failure, also cause errors. Errors in device communication are usually
handled by the kernel and signaled to applications making system calls.
Errors usually result in system-call failure, indicated, in same way, to
the caller by the return value of the system call. Some systems return a
value of ‘0’ if a system call succeeds and ‘1’ if it fails; other systems set
external variables (e.g., errno in Unix) to reflect the error status of a
communication operation. Devices often maintain detailed logs of errors
and the reasons for them; kernels can access these logs by using further
system calls.

The kernel often keeps a lot of data on the state of devices. Data
structures used in the kernel often form a set of tables that maintain state
and access information. These tables require a large amount of memory
to maintain and much of the memory consumed by the kernel as it is
running is filled with data tables keeping track of devices.

Timers

There are many types of devices used with operating systems. Clocks
and timers are devices – although they are not considered as such. Most
computers have hardware clocks and timers available for applications
to use and they are typically used and manipulated in the same way as

208 INPUT AND OUTPUT

external devices. These devices are very useful and provide three basic
functions:

• the current time of day

• elapsed time

• triggers or alarms that cause interrupts to fire when they expire.

The operating system and applications use these capabilities exten-
sively.

Kernels and applications depend on interval timers for their operations.
Interval timers can be set and interrupts are triggered when time runs
out. Timers can be programmed to automatically reset themselves once
they expire and this capability is used to generate periodic interrupts.
The system scheduler uses mechanisms such as these to do context-
switching. Timers are used to signal periodic flushing of data caches.
Device time-outs are managed by the kernel using interval timers.

Usually a computer system has only one hardware clock, but software
virtual clocks allow an operating system to use many different timers and
provide them to applications. To implement virtual clocks, the kernel
maintains a sorted list of requested timer events and continually resets the
timer for the next queued event requested. When a timer event occurs,
the kernel resets the timer for the next earliest time.

Sometimes, applications – or the kernel – need to keep track of time
in very fine units. Microseconds are very important in the maintenance of
some applications. Computer clocks do not usually keep time in very fine
increments, often providing only coarse-grained resolution. It is typical
for hardware clocks to provide only up to 60 ticks per second. Sometimes
higher-resolution hardware clocks are provided, but they are available
only for sampling; they are not integrated into the timer/interrupt system
as the standard system clock.

Blocking and Nonblocking I/O
Kernels deal with the speed disparity between CPUs and devices in many
ways (we have already discussed several). One way is to provide a choice
to the user: should access to a device block while data is transferred or
remain unblocked and asynchronous?

A blocking system call suspends the process making the call until the
system call can complete. Completing the system call means retrieving
or writing the appropriate amount of data from or to the device being

I/O IN SYMBIAN OS 209

used. Blocking system calls remove a process from the running or ready
queues and place it into the waiting queue: the process is blocked while
waiting for a device to complete an operation. Once the system call
has completed, the process is returned to the running or ready queue
(depending on the semantics of the operating system) and execution
resumes. Most operating systems use blocking I/O calls for applications;
it is easier to understand and deal with blocking application code.

A nonblocking system call is implemented by checking the status of
the devices referenced in the call. If the device is ready to perform the
operation, the call executes that operation and returns. If the device is
not ready, the call returns immediately with an error code.

Another version of a nonblocking system call is an asynchronous call.
The call results in a request made to the device being used, but returns
immediately. When the requested operation is complete, the process is
somehow notified. This notification could take the form of a software
interrupt or event or could result in the operating system calling a specific
function defined within the process.

Blocking calls are typical when dealing with reading and writing
from files. The delays are not burdensome and the semantics of reading
and writing make more sense if blocking I/O is used. On the other
hand, working with user interface devices – such as a touch screen or a
mouse – is most effective with nonblocking I/O calls. Notifying a process
when the screen is touched means the system can work on other things
and deal with user input only when that input is ready.

Multithreaded applications are most effective with I/O calls. While
the system waits for I/O to happen, other parts of the application can
continue executing.

9.4 I/O in Symbian OS

As an example of I/O architecture, let’s consider the way Symbian OS
handles input and output. The goal here is not to give you a complete
tour through the I/O structure of Symbian OS, but rather to give examples
of the discussion above.

Device Drivers
In Symbian OS, device drivers execute as kernel-privileged code and give
user code access to system-protected resources. As we discussed, device
drivers represent software access to hardware.

210 INPUT AND OUTPUT

A device driver in Symbian is split into two levels of drivers: a logical
device driver (LDD) and a physical device driver (PDD). The LDD
presents an interface to the upper layers of software while the PDD
interacts directly with the hardware. In this model, the LDD can remain
consistent over a specific class of devices, while the PDD changes for
each device. Sometimes, if the hardware is fairly standard or common,
Symbian OS also supplies a PDD.

Consider an example of a serial device. Symbian OS defines a generic
serial LDD (ECOMM.LDD) that defines the user side API for accessing the
serial device. The LDD represents an interface to the PDD, which provides
the interface to serial devices. The PDD implements buffering and the
flow control mechanisms necessary to help regulate the differences in
speed between the CPU and serial devices. A single LDD – the user
interface – can connect to any of the PDDs that might be used to run
serial devices.

LDDs and PDDs can be dynamically loaded by user programs if they
are not already existing in memory. Programming facilities are provided
to check to see if loading is necessary.

Kernel Extensions
Kernel extensions are device drivers that are loaded by Symbian OS at
boot time. Because they are loaded at boot time, they are special cases
that need to be treated differently from normal device drivers.

Kernel extensions are built into the boot procedure. These special
device drivers are loaded and started after the scheduler starts. They
implement functions that are crucial to operating systems: DMA services,
LCD management, bus control to peripheral devices (e.g., the USB bus).
These are provided for two reasons. First, it matches the object-oriented
design abstractions we have come to see as characteristic of microkernel
design. Secondly, it allows the separate platforms that Symbian OS runs
on to run specialized device drivers that enable the hardware for each
platform without recompiling the kernel.

Hardware Abstraction Layer
Symbian OS uses abstraction in many ways; the hardware-abstraction
layer (HAL) is a great example of this. The HAL is a set of variables and
functions that access system configuration and attributes.

The API consists of a series of C++ enumerations and handler functions
that manage the group attributes. Some HAL groups correspond to specific

I/O IN SYMBIAN OS 211

hardware devices, such as displays or keyboards, while other groups
access general platform parameters, such as media-driver information
and timers.

Direct-Memory Access

Device drivers frequently make use of DMA and Symbian OS supports
the use of DMA hardware. DMA hardware consists of a controller
that controls a set of DMA channels. Each channel provides a single
direction of communication between memory and a device. Using the
DMA hardware, bidirectional transmission of data requires two DMA
channels. At least one pair of DMA channels is dedicated to the screen
LCD controller. In addition, most platforms provide a certain number
of general DMA channels. Once data has been transferred, a system
interrupt is triggered.

The DMA service provided by DMA hardware is used by the PDD – the
part of the device driver that interfaces with the hardware. Between the
PDD and the DMA controller, Symbian OS implements two layers of
software. There is the software DMA layer and a kernel extension that
interfaces with the DMA hardware. The DMA layer is itself split into a
platform-independent layer and a platform-dependent layer. As a kernel
extension, the DMA layer is one of the first device drivers to be started
by the kernel during the boot procedure.

Support for DMA is complicated for a special reason. Symbian OS
supports many different hardware configurations and no single DMA
configuration can be assumed. The interface to the DMA hardware is stan-
dardized across platforms, and is supplied in the platform-independent
layer. The platform-dependent layer and the kernel extension are supplied
by the manufacturer, thus treating the DMA hardware in the same way
that Symbian OS treats any other device: with a device driver in LDD
and PDD components. Since the DMA hardware is viewed as a device
in its own right, this way of implementing support makes sense because
it parallels the way Symbian OS supports all devices.

Storage Media

Media drivers are a special form of PDD that are used exclusively by
the file server to implement access to storage media devices. Because
smartphones can contain both fixed and removable media, the media
drivers must recognize and support a variety of storage. Symbian OS

212 INPUT AND OUTPUT

support for storage media includes a standard LDD and an interface API
for users. The file server in Symbian OS can support up to 26 different
drives at the same time. Local drives are distinguished by their drive
letter.

Some Last Notes

Symbian OS deals with blocking I/O in an interesting way. The designers
realized that the weight of all threads waiting on I/O events affects the
other threads in the system. To alleviate this, and to enable other things to
be done, Symbian OS provides active objects. These specialized threads,
covered in detail in Chapter 4, allow blocking I/O calls to be handled
by the operating system, rather than the process itself. Active objects can
be coordinated by a single scheduler implemented in a single thread.
By combining code, which would otherwise be implemented as multiple
threads, into one thread, by building fixed entry points into the code, and
by using a single scheduler to coordinate their execution, active objects
form an efficient and lightweight version of standard threads.

When the active object uses a blocking I/O call, it signals the operating
system and suspends itself. When the blocking call completes, the operat-
ing system ‘wakes up’ the suspended process and that process continues
execution as if a function had returned with data. The difference is one
of perspective for the active object. It cannot call a function and expect
a return value. It must call a special function and let that function set
up the blocking I/O, but return immediately. The operating system takes
over the waiting.

Removable media poses an interesting dilemma for operating system
designers. When a Secure Digital card is inserted in its reader slot, it is a
device just like all others. It needs a controller, a driver, a bus structure,
and probably communicates with the CPU through DMA. However, the
fact that the user can remove the card is a serious problem to this device
model: how does the operating system detect insertion and removal and
how should the model accommodate the absence of a media card? To
get even more complicated, some device slots can accommodate more
than one kind of device (e.g., an SD card, a miniSD card (with an adapter)
and a MultiMediaCard all use the same kind of slot).

Symbian OS starts its implementation of removable media with their
similarities:

• all removable media can be inserted and removed

SUMMARY 213

• all removable media can be removed ‘hot’, that is, while it is being
used

• each medium can report its capabilities

• incompatible cards must be rejected

• each card needs power.

To support removable media, Symbian OS provides software con-
trollers that control each supported card. The controllers talk to device
drivers for each card, also in software. A socket object is created when a
card is inserted and this object forms the channel over which data flows.
To accommodate the changes in the card’s state, Symbian OS provides
a series of events that occur when state changes happen. Figure 9.3
shows the states that are possible with media cards. Device drivers are
configured like active objects to listen for and respond to these events.

9.5 Summary

This chapter has provided an overview of issues for operating systems
regarding input and output. We started by looking at three basic units:
controllers, device drivers and buses. We took a hard look at hardware
issues, then software issues. We wrapped up the chapter by looking at
how Symbian OS deals with devices.

Card is inserted

Power-up happens
when computer

is in standby

Computer leaves
standby mode

Power-up
occurs

Power-off event
(standby, low battery

turned off)

Power-off event
(standby, low battery

turned off)

Power-up
successful

Excessive or
incompatible

power consumption

No card
present

Card is off
(no power)

Power is
pending

Card is
powering up

Card is on
(powered)

Fault

Figure 9.3 Possible power states of removable media on Symbian OS

214 INPUT AND OUTPUT

Exercises

1. Evaluate the advantages of using the three-part structure we dis-
cussed: device driver, controller and bus. Give at least two advan-
tages and two disadvantages.

2. Consider the following I/O scenarios and describe the role of
buffering, caching and spooling in each of them:

• mouse with a graphical user interface

• keyboard

• hard disk drive with user files

• USB flash drive

• graphics card directly plugged into a bus.

3. Describe the sequence that takes place when an operating system
wants to write one 1024-byte block to a disk drive. Use the three
methods we discussed: direct, memory-mapped and direct-memory
access.

4. Give three specific scenarios when blocking I/O should be used.

5. Give three specific scenarios when blocking I/O should not be used.

6. Why would you not want to use polling to manage a keyboard?

7. We mentioned in the chapter that interrupts are polled in the
fetch–execute cycle of the processor. Is this the only place for
them? Could you poll for interrupts after context switching?

8. What would be the advantage of ignoring interrupts from devices?
Would we ever want to do this?

9. Does DMA increase or decrease system concurrency? Why?

10. In Symbian OS, kernel extensions are special device drivers. What
is special about them? Why must they be treated specially?

10
Networks

Communication is a powerful tool. People who seem very productive
alone are empowered when they communicate with others. Communi-
cation enhances and expands the ways people work. The ability to talk
and interact with others is a very effective tool.

It is like this with computers and networks. By themselves, computers
are powerful and can do many effective tasks. When they communicate
with other computers over a network, however, the potential of computers
grows and communication enhances and extends their effectiveness.
Operating systems that embrace networking extend their reach and
enable users to use more resources to their advantage.

In this chapter, we examine how networks extend the effectiveness of
operating systems with respect to CPU processing, memory, file systems,
and I/O. We conclude the chapter by taking a specific example from
Symbian OS.

10.1 Opening a Closed Environment

In a closed environment, with no network, computers depend only on
their own components and have no opportunities to use or cooperate
with other computers.

The components that a computer uses are the ones we have discussed
in this book as needing management by an operating system. The CPU
and execution capability, memory, data storage media, and I/O all need
management if they are to be shared between users and processes that

216 NETWORKS

each want exclusive access. We have spent much time so far in this book
on describing ways to adequately share these resources.

Let’s review the needs that we have seen for these components.
Managing the CPU has required us to invent the concept of a process
and to build the idea of movement through process states. We have
discussed various features of processes, including the ability to commu-
nicate between processes and the need for processes to share the CPU
through the use of a scheduler.

The use of memory has brought us ideas of how to share that memory
with processes. Concepts of logical and physical memory, memory pages,
and demand-driven virtual-memory paging are all attempts to share mem-
ory appropriately and fairly. We have discussed the protection of memory
areas as necessary when more than one process leaves its data in memory.

The need for and use of data storage has caused designers to invent
concepts for its management. Files were invented as the basic unit
of storage; directories were invented to organize files on a storage
medium. File systems have evolved as ways to organize and maintain the
information about files and directories and to manage access to those files
and directories. File systems are implemented by enabling direct access
to the storage medium.

Input/output concepts have developed to address the need for comput-
ers to accept, produce and display data. The sheer number of I/O devices
and the speed differential between these devices and the CPU has made
abstraction a necessary tool in the handling of I/O. Device drivers and
device controllers allow us to isolate the important workings of a device
into a standardized interface while implementing that interface in ways
tailored to each device.

As we have developed ways for operating systems to address these
components, there are several common threads that have stood out.
Abstraction is a concept used on many levels in an operating system.
The presentation of only those details that are needed, coupled with the
hiding of implementations that do not address the user’s needs has been
a hallmark of operating system design. Enabling the various components
to be shared is another aspect of computer systems that is common for all
components. Finally, communication has been prevalent among all the
components involved in running a computer system.

Communication networks have extended the CPU processing, mem-
ory, data storage, and I/O capabilities of computers. As operating systems
have been developed to address such extensions, they have used abstrac-
tion, sharing and communication to facilitate design.

EXTENDING COMPUTERS IN A CONNECTED ENVIRONMENT 217

10.2 Extending Computers in a Connected Environment

Networks have allowed the extensions of computers in many ways. The
nature of these extensions is heavily influenced by the interconnections
that are possible over the network. We consider the way that communica-
tion networks operate first, then apply those networks to the components
discussed in Section 10.1.

The Nature of Interconnection

There are many ways to communicate electronically and many types of
network that can facilitate communication between computers. Despite
this variety, interconnections have many things in common.

Networks start with a communications medium. This medium is the
method used to connect the computers within the network. Many pos-
sibilities exist today. Local area networks (LANs) are networks contained
in small geographic areas, such as a single building or a neighbor-
hood. LANs usually are connected with wires through twisted-pair or
fiber-optic cables. Wireless LANs have grown in popularity, connecting
computers through a central transmitter-access point. Bluetooth has also
recently emerged as a radio-based, wireless communication medium.
Bluetooth is a protocol that enables communication between radio trans-
mitters.

Networks have a topology, which is the set of characteristics that
describe how computers in the network are physically connected.
These topologies (see Figure 10.1) are influenced by the communication
medium and can be characterized by the following criteria:

• connections: the number of physical connections and the number
of computers connected; connections contribute to issues such as
routing of messages and the way that storage is managed

• installation: topologies can be vastly different in the ways they are
physically connected and the initial effort required to make those
connections

• cost of communication: the time and money it takes to communicate
over the network influences and characterizes the topology

• availability : topologies can make data more susceptible to failures or
can make access more resilient.

218 NETWORKS

Networks are characterized by the connection strength between
computers. Loosely coupled connections offer networks where not all
computers are required for the network to function and the connectivity
of computers on the network and between themselves can come and go
at will. Examples of loosely coupled connections include mobile devices
that share data across mobile networks and web browsers using web
services. Tightly coupled networks are those with computers who are
closely dependent on each other and the operating system on each is
dependent on the presence of others. Examples of tightly coupled systems
include mobile phone networks and the Internet itself. Loosely coupled
networks tolerate failure and reconfiguration much better than tightly
coupled networks.

A B

CF

E D

A

B C

FED

Fully connected network

Tree-structured network

A B

CF

E D

A

B

CF

E D

Ring network

Star network

A

B

C

D

E

F

G

Bus-structured network

Figure 10.1 Network topologies

EXTENDING COMPUTERS IN A CONNECTED ENVIRONMENT 219

The protocols that run over network connections are part of what
makes networks unique. A protocol is the exchange of meta-information
over a network that makes it possible to send real content. Protocols are
as varied as the types of network. The token-ring protocol is designed
for circular networks, such as the ring network shown in Figure 10.1.
TCP/IP is a network protocol for LANs, which was originally designed
to run over a bus topology as shown in Figure 10.1, but has been run
over other topologies as well. The Bluetooth protocol is designed to
allow Bluetooth peer-to-peer communication. The topology of a network
deeply influences the choice of protocol.

Protocols can co-exist on many types of network. Where networks are
passive – that is, they transfer any and all data sent over them – multiple
protocols can co-exist because the medium tolerates any kind of data.
Where networks are active or highly specialized, the base protocol can
run other protocols by treating those protocols as applications that are
simply sending data. This protocol encapsulation approach has sev-
eral applications.

The choice of protocol for a network also dictates how computers are
addressed across a network. Addresses are required on a network so that
computers can specifically address other computers. Addressing differs
from network to network, depending on the needs of the protocol. TCP/IP
networks have IP addresses in the form 192.168.1.250 while Bluetooth
addresses are of the form 01:33:FA:72:45:1B. The protocols can decipher
the meaningful parts of the address and use those parts to make sure
information arrives at its destination.

The combination of addressing and unique protocols provides net-
works with ways to route data. Token rings pass data between computers
by sending the data around the ring, allowing it to pass through
intermediate computers before arriving at the destination. TCP/IP routing
is a combination of local area broadcasting and ‘next-hop’ routing, where
data not destined for the local network is channeled through a special
computer – called a router – that sends the data on to either the next
network or the next router.

Distributed Processing

Networks extend a computer’s CPU power by enabling distributed pro-
cessing. Processing can be distributed across a network by distributing
the operating system, distributing the computing power, or both.

220 NETWORKS

Distributing the operating system can be as simple as having multiple
computers with their own operating system on a network or as compli-
cated as having a single operating system that governs many different
computers. While these approaches sound the same, their implementa-
tions are quite different. Cooperating network-based computers are quite
common and usually share their resources in loosely coupled ways. It is
not uncommon for a computer on a network to share its file or printer
resources. In this type of loose distributed environment, the operating sys-
tems must extend the implementation of resources while the abstraction
of resources remains the same.

One way multiple computers share CPU resources is through cluster-
ing. A computing cluster is a collection of computers which have their
own operating systems but implement message passing between network
nodes. This message passing includes the allocation of workloads to each
computer. In this scenario, each computer is independent but works with
the others. Each accepts commands from a central computer in addition
to accepting workload allocation from other nodes in the network. In
order for clusters to work well, the interconnection mechanisms must be
fast and reliable. Each computer on the network is independent and relies
on the communication medium to make cooperation work.

One popular way to cluster computers for distributed processing is
a Beowulf1 cluster, a group of desktop computers (usually) running a
Unix operating system. They are networked into a LAN and have libraries
and programs installed which allow processing to be shared among
them. Beowulf clusters originated in technology created by the United
States National Aeronautics and Space Administration (NASA). There is no
particular piece of software that defines a cluster as a Beowulf. Commonly
used parallel processing libraries include the message-passing interface
(MPI) and parallel virtual machine (PVM) APIs. Both of these permit the
programmer to divide a task between networked computers and collect
the results of processing.

In some configurations, computers are governed by a single operating
system. This type of implementation involves tight interdependence on
each other. In these environments, copies of the operating system run
on all computers and these copies are coordinated by messages sent
between them. This cooperation orchestrates the sharing of workload
and manipulates the computers in such a way that computation is
divided amongst all of them. A good example here is a now-defunct

1 The name comes from the main character in the Old English epic Beowulf.

EXTENDING COMPUTERS IN A CONNECTED ENVIRONMENT 221

operating system called DomainOS. DomainOS was implemented across
a collection of computers, each of which ran the entire operating system.
Each computer, by itself, could act independently when alone, but
shared workload when it sensed others on a network with it. Even a
simple command might run on another computer in the network.

Computers on a network interact as servers and clients. The most
typical way for computers to cooperate on a network is via a client–server
relationship, where the client makes requests that the server receives and
services. Most distributed computing is done via message-passing, where
each computer acts as a peer – that is, as both client and server. Each
sends requests and each can receive requests.

Distributed systems can work together in several ways:

• single instruction, multiple data (SIMD) occurs when multiple com-
puters run the same instructions in the same sequence and in
synchronization with each other; each computer works on a dif-
ferent data set or data stream; this is a tightly coupled, very dependent
environment

• multiple instructions, single data (MISD) environments are usually
called vector processors; each processor works on data and passes
the stream to the next processor, which does its work and passes the
stream to the next processor, and so forth; MISD processors each run a
minimal operating system and accept their multiple instructions from
a central source

• multiple instructions, multiple data (MIMD) environments are loosely
coupled environments where the processors cooperate yet work quite
independently; networks and clusters represent this type of environ-
ment.

There is, of course, the SISD environment: the single instruction, single
data set environment. From a distributed processor point of view, this is
a single computer without any distribution at all.

Sharing Memory
Communication can also expand an operating system’s view of memory.
Shared memory can take several forms, each expanding operating systems
in different ways.

One way to share memory is to have a large area of RAM accessible
by multiple processors. In this situation, the processors probably also

222 NETWORKS

use caches to speed up access to recently manipulated data, but now
this cached data needs to be flushed much more often, as it needs to be
accessible to all computers in the environment. Unless caches are flushed
rapidly, coherence problems spring up: processors might not be working
on the same instance of information. Additional hardware is required to
resolve this race condition.

Another way to distribute memory is to allow each computer in
the network to have its own memory, but all processors can access
a large, conceptually shared memory. This shared memory can be a
physical-storage medium or can be distributed amongst all the pro-
cessors. In the former case, cache flushing and synchronized access
become very important. In the latter case, the abstraction of having a
large memory is implemented by passing requests for memory between
processors.

In all cases of shared memory, memory coherence is an important
issue. Memory coherence has the same issues that multiple processes
have when updating memory: computers that access shared, distributed
memory must be properly synchronized. In the distributed case, however,
proper synchronization involves a lot of message passing to ensure
memory updates.

Networked File Systems

Networks extend file systems by implementing distributed file systems
(DFS). A distributed file system adds a new implementation under the
typical abstraction of a file system. A DFS is certainly implemented
differently from a local file system but it looks the same to the user of the
file system.

In order to be shared, a file system must be implemented and housed
on a computer. This file server would be the source of the files and would
provide the interface through which other operating systems would
access them. Other operating systems that need to access such shared file
systems are the clients in this arrangement. As we have discussed before,
abstraction is heavily used here, which enables the file server to make file
service available from a number of different sources. Any number of file
systems – with any number of local implementations – could be shared
through a file-service interface.

To maximize the abstract qualities of distributed file systems, naming
is an important issue to consider. There are two properties of name
mappings for a DFS that we need to pay attention to:

EXTENDING COMPUTERS IN A CONNECTED ENVIRONMENT 223

• location transparency: the name of a file does not reveal the location
of the file’s physical storage

• location independence: the name of the file does not need to be
changed when a file’s physical location changes.

Most DFS implementations provide for location transparency but not
for location independence. Consider, for example, the way that Microsoft
Windows maps a file. Windows associates a drive letter with a file
system from a local storage medium or a DFS, providing location trans-
parency. It is impossible to tell from the name whether E:\Program
Files\Warrant\playit.exe comes from a local drive or a file server
over the network. However, for a file to change its location – that is, its
drive letter – a user must disconnect the drive letter from the file system,
then remap the drive letter to a new file system. It is not possible for a
file to migrate between storage locations in Windows and not notice that
migration in the DFS implementation.

Storage-free computers

Distributed file systems make it possible to get files from servers housed
remotely on a network. What would happen if a system were to get all its
files remotely from file servers?

Such diskless computers are in wide use today. They have no disk-
based storage of their own; they get all their storage from servers on a
network. This configuration has ramifications for operating systems. For
example, where is the operating system stored if there is no local storage?
Usually there is a small amount of boot code stored locally in the device’s
ROM that directs the system to find the remainder of the operating system
code on a file server. Security also becomes a very important issue here.
Not only is user security important but machine security is important. If a
computer can masquerade as another on the network, it can boot as the
other computer and access its files.

As with memory, caching is a way to speed up the relatively slow-
paced storage I/O. And, as with memory, caching poses a problem with
shared storage: caching must be flushed rapidly to provide consistency
between all the computers that are sharing data. This flushing is controlled
by the operating system, which can adopt any of a number of different
policies. Write-through caching is the simplest approach, where data is
written to the storage medium immediately it is placed in the cache. This
is a reliable approach but has poor writing performance, as cache writes

224 NETWORKS

must endure the latency of writing to a remote file server. Delayed-write
caching delays writing to the remote file server until multiple writes
can happen or latency can otherwise be minimized. Delayed writes are
better in that writes can happen more quickly (on average), but these
schemes can have reliability problems, since unwritten data can be
lost if the local computer crashes. Write-on-close caching writes data
when the file is closed. This speeds up access even more, allowing for
recent writes to overwrite old data in a cache and saving all slower
access for times after a file is not being accessed. However, files that
are open for longer periods of time suffer coherency problems from this
scheme.

File replication is a way for remote file servers to increase performance.
When file servers replicate files between many locations, multiple clients
can choose where to get files from (presumably the closest server for fastest
access). Again, abstraction of replication details away from the user means
that the user has no idea where a file comes from. Allowing the operating
system to make the choice adds overhead to the implementation as well.
The operating system must keep track of performance measures, such as
‘distance’ of a file (measured in time taken to obtain it) and response time
of the file server. In addition, updating a file in this environment is even
more of a problem than with caching. Replicating a file means that the
version of a file written to a file server must immediately be replicated
and sent to all file servers holding duplicate copies. This action takes
time, yet the abstraction used means that file updating is immediate. This
situation is often remedied by influencing clients to get updated copies of
a file from the file server on which it was last updated until all the copies
have propagated.

A stateful file service is one where the file server traces each file being
accessed by a client, keeping track of file positioning and how much
data has been read from that file. A stateless file service is one where
any block on a storage medium can be requested and sent without any
further semantic understanding as to the organization of the block in
a file. There are two big differences between these two services. First,
this determination affects which side keeps track of the file position for
operations. If the file server maintains all the information about a file and
which data in the file has been read or written, the client does not have
to and the protocol used can be minimized. In a stateless environment,
the client is responsible for maintaining an understanding of files and
how much data has been read. The other difference is in reliability. If a
stateful server crashes, all information about the file and its updates are

EXTENDING COMPUTERS IN A CONNECTED ENVIRONMENT 225

lost.2 If a stateless server crashes, minimal information is lost and service
can simply pick up where it left off when the server comes back online.

While stateless service might seem to be more robust, stateful service
might be warranted under certain situations. For example, some imple-
mentations of file replication implement cache writes and validation upon
the server’s request. In this case, stateless service cannot be used, since
the server would maintain knowledge of the files being updated and
would have to determine when to request cache writing.

Implementations of DFS

There are several DFS implementations available for modern operating
systems. By far, the two most widely used are Server Message Block (SMB)
and Network File Services (NFS).

SMB is a protocol for sharing files, printers, serial ports and com-
munications abstractions such as named pipes and mail slots between
computers. It debuted in 1985 as a sharing protocol from IBM and was
further developed by Microsoft as the Microsoft Networks/OpenNET-File
Sharing Protocol from 1987. SMB has seen several different implemen-
tations: Samba is an open-source implementation and CIFS is the most
recent implementation of the protocol by Microsoft.

NFS is a protocol originally developed by Sun Microsystems, debuting
around 1984. NFS is one of many protocols built on the Open Network
Computing Remote Procedure Call system (ONC RPC).

Other DFS implementations include the Andrew File System (AFS),
designed for the Andrew distributed-computing system at Carnegie Mel-
lon University and AppleTalk, a sharing protocol designed for MacOS.

Communicating with Networked Devices

Networks have extended input/output mechanisms by allowing remote
devices to communicate in abstract ways and to share any kind of
information. There have been several extensions to generalize I/O using
networks.

General communication has been enhanced by the use of the socket
network abstraction. As we described in Chapter 6, sockets were invented
by the designers of Berkeley Unix as ‘endpoints for communication’. As an

2 There are systems that can prevent a stateful crash from losing data. Fault-tolerant
systems implement continuous update and refreshing of file systems.

226 NETWORKS

endpoint, a socket is not very useful. When connected to another socket
on another computer, the pair becomes a communication channel that
uses a protocol to transfer data. Sockets are two ends of a conversation
and the socket protocol is the translator.

The beauty of the socket model is in its abstractness and its translation
abilities. The abstractness of the model can be seen in how it is used:
each side simply writes data to and reads data from a socket as if it
were any other local I/O device. The socket may implement translation
of data, without each side knowing. The translation is implemented by
the operating system and occurs as the data is transferred between the
endpoints.

The socket, then, provides an abstract extension to I/O by imple-
menting a generic I/O device. Specific implementations demonstrate
this. A network socket, for example, is used for many different pro-
tocols. One can open a TCP layer socket that exchanges data with a
web server or a UDP socket that communicates with an NTP server.
Both TCP and UDP layers are handled automatically and the net-
work properties are preserved in the implementation. Bluetooth sockets
work in the same way; Bluetooth sockets can implement connections
that look like serial cable connections or some generic data transfer
connection.

10.3 Connectivity in Symbian OS

Like many other general-purpose operating systems, Symbian OS em-
braces networks and allows implementations that use networking to
expand its core functionality. Symbian OS supports many kinds of
communication. Since it is a smartphone operating system, it naturally
supports telephony. It also supports many other communication tech-
nologies, including Bluetooth, wireless networking, Ethernet, infrared,
and messaging protocols. In addition, it allows for the implementation of
new technologies that might be added in the future.

Distributed computing is supported by Symbian OS in the sense that
the operating system supports general user applications. There is no real
distributed computing built into Symbian OS, but the operating system can
execute any type of general application, including those that implement
clustering or other forms of distribution. In fact, Beowulf clusters have
been implemented using Symbian OS phones using Ethernet protocols
over GPRS networks.

EXERCISES 227

Symbian OS does not specifically support shared memory models and
is unlikely to do so any time soon. Symbian OS is targeted to smartphones
which are designed to work in isolation.

When it comes to file systems, Symbian OS has some unique features
that allow the expansion of file-system implementation. The file server
that Symbian OS implements to protect file resources utilizes a plug-
in architecture to recognize file systems. Since Symbian OS has a wide
variety of communications choices, implementing a distributed file system
is a matter of writing the proper plug-in for the file server and allowing
Symbian OS to recognize it. Many experiments have been performed on
file systems for Symbian OS; NFS is among the implementations that have
been used for the operating system.

Symbian OS has a rich set of implementations for network-based I/O.
One of its basic communication structures is the socket, which is imple-
mented for each of the communication possibilities it supports. Through
the use of sockets, Symbian OS supports many protocols, including
TCP/IP, Bluetooth, WAP, HTTP and many others.

10.4 Summary

This chapter has discussed the ways that network communication can
be used to extend the functionality of operating systems. We introduced
the facilities important to a closed computer system and discussed how
networking could extend a closed system. Specifically, we discussed four
areas of extension: CPU processing, memory sharing, file service, and
I/O. We concluded the chapter by briefly looking at the extensions that
networks can provide to Symbian OS.

Exercises

1. List at least five different aspects of operating systems that access
networks. Include the functionality of the operating system feature
that is extended by network access.

2. Consider the network topologies in Figure 10.1. Which topologies
would you judge to be the most reliable? Justify your statements.

3. List at least three different communication media that computers
around you use. For each one, consider how it fulfils the criteria

228 NETWORKS

from Section 10.2 (connections, installation, communication cost
and availability).

4. For each communication medium listed in exercise 3, characterize
the connection strength between the nodes on the network.

5. Give examples of each of the distributed-system models.

6. Can handheld computers or smartphones be considered ‘storage-
free’? While most do not have hard disk drives, most use storage. Do
they use network storage as well? Find examples of some that do.

7. Why is caching such an important aspect of distributed file systems?

11
Modeling Communications

The game of ‘telephone’ (sometimes called ‘Chinese Whispers’) is an
interesting children’s game. This game is played by telling a child a
sentence and allowing that child to tell the sentence to another child,
who tells it to another child, and so forth. After a number of message
transfers, the final message is revealed. This final message is almost always
an unrecognizable version of the first message.

In Chapter 9, we took a generic look at I/O modeling and implemen-
tations in operating systems. In this book, we are considering smartphone
operating systems and therefore we should focus the generic discussion of
I/O on communications. This chapter considers generic communications
models and specific implementations in various operating systems.

The model of communications resembles the ‘telephone’ game. A
popular, effective way to model communications streams is to break the
communications implementation into stages where each stage imple-
ments a specific kind of functionality. As a message passes through these
stages, various levels of functionality are added until the final message
bears only a small resemblance to the original. However, in this case,
this is a good thing. It allows the message to be passed correctly from
computer to computer. We examine how this happens in this chapter.

We should point out that communications are not solely the prop-
erty of smartphones and operating systems such as Symbian OS. Linux
has been used to implement communications facilities; wired network
communications saw its beginning on Unix and Linux platforms. All
modern operating systems today implement some kind of model for the

230 MODELING COMMUNICATIONS

communications they support – from serial communications to Bluetooth
to wireless networking.

We begin with an overview of general communications models – from
the general-purpose operating systems model to more focused models
used in handheld platforms. Then we look specifically at the communi-
cations model used in Symbian OS. We expand on this and finish the
chapter by showing how the Symbian OS model works on other computer
platforms.

11.1 Communications Models

In order to discuss how operating systems approach communications, we
need to apply the I/O concepts from Chapter 9 to communications. Once
we understand how general I/O fits with communications, we can then
examine how communications is tailored to various needs.

It is important to keep in mind the obvious point that communica-
tions involves more than one computer. While we can look at the process
model of running programs on a computer as a contained environment on
a single computer, developing a communications model means address-
ing how multiple computers interact. This complicates things because
we cannot accurately predict how all components of communications
work together. This is especially true when dealing with computers in
a heterogeneous environment. For example, Symbian OS might have a
precise model for getting web pages, but it will fail if a Windows-based
server sends pages in a way that Symbian OS is not expecting. This means
that models must expect errors and prepare for flexibility. It also means
that models must embrace standards; adhering to standards is the best
way to work with other devices.

General Communications Concepts
A general communications model, one that addresses all facets of com-
munications, is an expression of design goals and criteria.

• A communications model must support all communications appli-
cations of which the computer is capable. This criterion is perhaps
obvious, but it should be stated. Users of communications devices
expect a level of functionality from their devices. The communica-
tions model must support this functionality and be able to address the
future gracefully.

COMMUNICATIONS MODELS 231

• Communications model components must be exceptionally flexible
to cope with the variety of devices that are possible for each platform.
Users of computers demand a mix of connectivity methods and
communications platforms. The communications architecture must
easily adapt itself to the changing requirements of configuration and
connectivity. Even on-the-fly reconfiguration, for example, from a dial-
up connection to a wireless network, must be easy and straightforward.

• Communications components must be organized to accommodate
the constant restructuring and rebuilding of communications technol-
ogy. The communications architecture must be built in a modular
fashion so that pieces can be replaced as technology evolves without
upsetting the entire structure. In fact, the structure should be able to
accommodate the coexistence of old and new pieces.

• The communications components must adapt to the RAM and CPU
constraints of their intended target platforms. While they must do
a great amount of work, the components of the communications
architecture must not consume a burdensome amount of resources.
The resources of a communications device are to be targeted at an
application, not consumed by communications methods.

This is a difficult job: support all functionality possible in a flexible,
modular fashion in what can be a limited computing environment!

Clients and Servers

The way computers interact – especially in a network environment – is
often characterized as a client–server type of relationship. The client is
the computer taking advantage of a service; the server is the computer
providing that service. The client typically utilizes the service by send-
ing requests to the server; the server provides the service, typically by
responding to those requests. The requests and responses take the form
of messages sent back and forth between client and server.

We have seen this relationship in many places already. The client–
server model describes a relationship like that on which a system call
depends, where the ‘client’ is a user-level application and the ‘server’ is
the kernel, providing a set of services for the kernel-level request. The
client–server model adequately describes the server approach taken by
the design of microkernels, where taking advantage of a service means
connecting to a server and making a request.

232 MODELING COMMUNICATIONS

HTTP Server

HTML pages
CGI scripts,

etc.

Gateway Server

Encoding and
decoding service

Client

WAP
Microbrowser

Encoded Request

Encoded Response

Request

Response

Figure 11.1 A client–server relationship

A good communications example is a micro-browser in a WAP-
enabled mobile phone. Figure 11.1 shows how this works. The phone
calls up a WML page for viewing by sending an encoded request to a
computer at the company that provides the service. This computer is
called a gateway server, because it provides a gateway to the Internet
for the mobile phone. This server, in turn, becomes a client by passing
the request from the mobile phone on to the actual Internet server that
houses the WAP page in question. This server happens to be providing
a HTTP service and answers the request by sending a web page to the
gateway server. The gateway server then translates the HTML page into
WML and encodes the response using the encryption scheme the mobile
phone expects. Finally, the gateway server sends the response to the
mobile phone and the micro-browser displays the WML page on the
phone’s display.

Note that in the example, there were two clients and two servers. The
gateway server was a server to the mobile phone and a client to the HTTP
server. This is an example of a proxy server, a server that represents its
client on another network by becoming a client itself.

Communications Stacks

Another way to characterize communications in an operating system is
through a stack-based model. A stack-based approach to communications
recognizes that there are many different levels that analyze and use
communications data. Each level has its own functionality and adds its
own unique properties to the communications stream.

Let’s use as an example the ISO networking model. This model is
shown in Figure 11.2. Each layer in the model has a specific duty and

COMMUNICATIONS MODELS 233

Physical Hardware Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer
High-level
Protocols

Internetworking
Protocols

Network Interface
Protocols

Provides access for user-oriented
applications to the networking
environment

Provides data representation
translation for applications

Establishes and manages virtual
‘connections’ between
co-operating applications

Provides reliable, transparent
transfer of data between
endpoints

Provides network connection
establishment and maintenance

Provides reliable transfer of data
across the physical hardware

Transfers an unstructured stream
of bits over a physical medium

Figure 11.2 The ISO protocol stack model

adds data to the communications stream to carry out that duty. A packet
of information at the application level is sent to the presentation layer.
The presentation layer augments the data in some way, usually by
adding information to the packet, and sends it on to the session layer.
This continues until the packet reaches the bottom layer, the physical
hardware. At this point, the data stream is sent to its destination and the
physical hardware of the destination computer receives the stream. Now
the process begins in reverse. As the data packet is received by each
layer, that layer strips off the data it needs, using the data to perform
some function. Then what is left is sent up the stack to the next layer.
By the time the packet reaches the application layer, it is comprised of
application data only. The effect of this type of data transfer is that each
layer has the illusion that it is talking directly to its counterpart layer on
the destination computer.

There are many examples of this way to characterize system communi-
cations. The Wireless Access Protocol (WAP) stack, shown in Figure 11.3,
has a stack-based depiction. The Bluetooth protocol stack, shown in
Figure 11.4, has this type of specification as well. In all cases, regardless
of how complicated the protocol stack, the idea of moving through the
stack and adding functionality to communications data applies.

234 MODELING COMMUNICATIONS

Bearer Layer: GSM, CDMA, CDPD, iDEN, etc.

WDP: Wireless Datagram Protocol

WTLS: Wireless Transport Layer Security

WTP: Wireless Transaction Protocol

WSP: Wireless Session Protocol

WAE: Wireless Application Environment

Figure 11.3 The WAP protocol stack

There are several advantages to this stack-based approach. The first is
something we have just mentioned: each layer can maintain an illusion
that it is communicating solely with the same layer on another computer.

Another advantage is modularity. Each layer in the communications
model can be implemented by a module of some sort. That module can
be built to serve only a specific function, implementing a specific layer in
the stack. As with all modular software components, this type of design

Bluetooth Radio

Baseband

LMP L2CAP

RFCOMM

Other transport
protocols

SDP

Audio

TCS
BIN

Figure 11.4 The Bluetooth protocol stack

COMMUNICATIONS MODELS 235

enhances the ability to modify only certain parts of the communications
stack without affecting other parts. If, for example, an operating system
were to start using IPv6 instead of IPv4 in the implementation of Ethernet
networking, the network layer could be removed and reworked, leaving
the other layers alone.

Communications Abstractions

Another way to look at communications is to consider the abstractions
that operating systems employ to address it. Abstractions are often used
by operating systems to allow users to encapsulate many details into a
concise model. This concise model, while hiding many details, helps to
understand operating system functions better.

Sockets

We looked at sockets in Chapter 6 as a means of interprocess communi-
cations. Sockets are often used in general to depict the communications
between computers.

By way of review, sockets were invented by the designers of Berkeley
Unix and were first used as an ‘endpoint for communications’ to access
network protocols. As an endpoint, a socket is not very useful. But
when connected to a socket on another computer, the pair becomes a
communications channel that uses a protocol to transfer data. You can
think of sockets as two ends of a conversation and the protocol as the
translator.

Sockets assume a client–server model. The client connects its end
of the socket and makes a request to the server for connection. The
server either connects up its end and replies positively or replies that
no connection can be made. Then, if the socket has been successfully
connected, data is exchanged across the socket.

The socket model is useful as a communications model because of its
abstractness and its depiction of translation abilities. The abstractness of
the model can be seen in how it is used: each side simply writes data to and
reads data from a socket as if it were a local I/O device. Each side really
does not know (or care) how the other side reads or processes the data.
In fact, the socket may implement translation of data, again without each
side knowing (or caring). The translation is implemented by the operating
system and occurs as the data is transferred between the endpoints.

236 MODELING COMMUNICATIONS

Event-driven Communications

Waiting is something built into the use of communications. Whether
communications is with a device, another process, or another computer,
the act of exchanging communications data means that some waiting must
occur on the other side’s response. As we discussed in Chapter 9, waiting
for device I/O is dealt with by means of interrupts. Asynchronous events
serve as software interrupts for communications to other computers.

The idea behind communications events is the same as with device I/O.
We use the idea of an ‘event’ to represent the occurrence of something
that an application might be waiting for in a communications exchange.
There are many events that are specified to represent communications.
A process registers an interest in certain communications events and
the operating system takes care of receiving the communications and
notifying the process when communications data is ready. This means
that, like with device I/O, the process involved can do other tasks
concurrently with the waiting for communications.

This asynchronous event model is useful in several ways. It keeps
applications from freezing while they wait for an event. It allows the sys-
tem to interleave instructions more efficiently from concurrent processes
or threads. It also allows the system to put the entire device to sleep in
certain cases (e.g., when all processes are waiting for events) to conserve
battery power.

The Symbian OS concept of active objects is an excellent example of
communications events. As we have discussed in previous chapters, an
active object is a specialized object that allows requests to be made that
would otherwise force waiting, going to sleep to avoid a polling loop and
handling the event that is generated when the request gets a response by
waking up and continuing execution. By building into Symbian OS the
concept of an active object as a thread, the designers of Symbian OS built
an object that can handle waiting for responses from communications
and not prevent other code from running.

Consider an email application as an example of an active object.
Email can be collected by sending a request to a server. A response is
rarely immediate, especially if there are many messages to pick up. If
an application were not to use active objects, the application would be
likely to freeze up while waiting for all the messages to download. This
situation would occur because the application would be concentrating
on the data exchange with the email server and not on listening for stylus
taps or updating the screen. However, if the application used an active
object to communicate with the server, then it could respond to the user

COMMUNICATIONS ON SYMBIAN OS 237

at the same time it was waiting for messages. Active objects enable more
interaction with applications and a clean interface for handling situations
that might arise during communications.

For many operating systems, it is possible not to use an event-driven
method for communications. Waiting for communications data is also
available for processes. If a process has no other tasks to attend to or has a
need to react immediately when communications data arrives, then it can
make the standard system calls that block until data arrives on a socket.

11.2 Communications on Symbian OS

Symbian OS provides a great example of our general communications
model discussion. It was designed with specific criteria in mind and can
be characterized by event-driven communications using client–server
relationships and stack-based configurations.

Basic Infrastructure
A good way to start looking at the Symbian OS communications infras-
tructure is by examining its basic components. Let’s start by considering
the generic form of this infrastructure shown in Figure 11.5.

Physical device

Device driver

Protocol implementation

Application

S
O
F
T
W
A
R
E

HARDWARE

Figure 11.5 Basic depiction of Symbian OS communications infrastructure

238 MODELING COMMUNICATIONS

Consider Figure 11.5 as a starting point for an organizational model.
At the bottom of the stack is a physical device, connected in some way
to the computer. This device could be a mobile phone modem or a
Bluetooth radio-transmitter embedded in a communicator. Since we are
not concerned with the details of hardware here, we treat this physical
device as an abstract unit that responds to commands from software in
the appropriate manner.

The next level up – the first level we are concerned with – is the
device-driver level. The software at this level is concerned with working
directly with the hardware via a fixed, standardized interface to the upper
software layers. The software at this level is hardware-specific and every
new piece of hardware requires a new software device driver to interface
with it. Symbian OS comes with a set of device drivers for commonly
used pieces of hardware (e.g., wireless Ethernet clients or Bluetooth
transmitters). Different drivers are needed for different hardware units,
but they must all implement the same interface to the upper layers. The
protocol implementation layer expects the same interface no matter what
hardware unit is used.

Standards play a major role with Symbian OS device drivers. Hard-
ware is becoming increasingly standardized and sometimes one device
driver can manage several pieces of hardware because they all abide
by the same standard. For example, many serial devices – modems
or IR ports – can be controlled by a single device driver. In addi-
tion, protocol implementations are increasingly assuming device-driver
standards. Standards such as Bluetooth or wireless Ethernet, for instance,
are becoming widely supported and therefore must be incorporated in
the device-driver layer.

The next layer up is the protocol-implementation layer. This layer
contains implementations of the protocols supported by Symbian OS.
These implementations assume a device-driver interface with the layer
beneath and supply a single, unified interface to the application layer
above. This is the layer that implements the Bluetooth and TCP/IP protocol
suites, for example, along with other protocols.

Finally, the application layer contains the application that must utilize
the communications infrastructure. The application does not know much
about how communications are implemented – however, it does do the
work necessary to inform the operating system of which devices it use.
Once the drivers are in place, the application does not access them
directly, but depends on the protocol-implementation-layer APIs to drive
the real devices.

COMMUNICATIONS ON SYMBIAN OS 239

A Closer Look at the Infrastructure

Now let’s take a closer look at the layers in Symbian OS communications
infrastructure. Figure 11.6 contains a new diagram based on the generic
model in Figure 11.5. The blocks from Figure 11.5 have been subdivided
into operational units that depict those used by Symbian OS.

The physical device

First, notice that the device has not been changed. As we stated before,
Symbian OS has no control over hardware. Therefore, it accommodates
hardware through this layered API design, but does not specify how
the hardware itself is designed and constructed. This is an advantage
to Symbian OS and its developers. By viewing hardware as an abstract
unit and designing communications around this abstraction, the designers

Physical device

S
O
F
T
W
A
R
E

HARDWARE

Device Driver
Logical device driver

Physical device driver

Protocol Implementation

PRT protocol module

CSY communication module

Application

CSY communication module (application)

User-side code

TSY communication module

MTM module

Figure 11.6 Detailed look at the Symbian OS communications infrastructure

240 MODELING COMMUNICATIONS

have ensured that Symbian OS handles the wide variety of devices that
are available now and that it can accommodate the hardware of the
future.

The device-driver layer

The device-driver layer of Figure 11.5 has been divided into two layers
in Figure 11.6. The physical device-driver (PDD) layer interfaces directly
with the physical device, through a specific hardware port. The logical
device-driver (LDD) layer interfaces with the protocol-implementation
layer and implements Symbian OS policies as they relate to the device.
These policies include input and output buffering, interrupt mechanisms
and flow control. The division of these layers represents a division in
implementation, where the PDD implementers can focus on an efficient
and correct hardware interface and the LDD implementers can work to
perfect the interface with the upper layers to maximize performance.

User code interfaces with the LDD through the RBusLogicalChan-
nel class. This is a simple interface that all user code interactions go
through. Note that this class is used no matter if the device is the display,
a Bluetooth transmitter, or an infrared port. This provides a layer of
abstraction that results in a consistent interface to the physical device.
The PDD provides the connection to the physical device. It interfaces
with the LDD using an interface designed by the LDD.

As an example of this division of responsibilities, consider the serial
interface. There are several serial-device types that can be connected to
a Symbian OS device. The IR port and the RS232 port are both serial
devices and can use the same generic serial LDD, called ECOMM.LDD.
These ports are serial ports and use the same policies with respect to
issues such as flow control. However, their PDD modules are different:
one services the RS232 port and one services the IR port. Other examples
include the Ethernet driver (ENET.LDD and ETHERNET.PDD) and the
sound driver (ESOUND.LDD and ESDRV.PDD).

Chapter 9 contains more information about device drivers and kernel
extensions. There are many more details about these items that are not
relevant here.

The protocol-implementation layer

Several sublayers have been added to the protocol-implementation layer.
Four types of module are used for protocol implementation.

COMMUNICATIONS ON SYMBIAN OS 241

• CSY modules: the lowest level in the protocol implementation layer
is the communications server. A CSY module communicates directly
with the hardware through the PDD portion of the device driver,
implementing the various low-level aspects of protocols. For instance,
a protocol may require raw data transfer to the hardware device or
it may specify 7-bit or 8-bit buffer transfer. These ‘modes’ would be
handled by the CSY module. Note that CSY modules may use other
CSY modules. For example, the IrDA CSY module that implements
the IrCOMM interface to the IR PDD also uses the serial device driver,
ECUART CSY module.

• TSY modules: telephony comprises a large part of the communica-
tions infrastructure and special modules are used to implement it.
The telephony server (TSY) modules implement the telephony func-
tionality. Basic TSYs may support standard telephony functions, e.g.,
making and terminating calls, on a wide range of hardware. More
advanced TSYs may support advanced phone hardware, e.g., those
supporting GSM functionality.

• PRT modules: the central modules used for protocol implementation,
protocol (PRT) modules, are used by servers to implement protocols. A
server creates an instance of a PRT module when it attempts to use the
protocol. The TCP/IP suite of protocols, for instance, is implemented
by the TCPIP.PRT module. Bluetooth protocols are implemented by
the BT.PRT module.

• MTMs: as Symbian OS has been designed specifically for messaging,
its architects built a mechanism to handle messages of all types. These
message handlers are called message type modules (MTMs). Message
handling has many different aspects and MTMs must implement
each of these aspects. User-interface MTMs must implement the
various ways users view and manipulate messages, from how a
user reads a message to how a user is notified of the progress of
sending a message. Client-side MTMs handle addressing, creating and
responding to messages. Server-side MTMs must implement server-
oriented manipulation of messages, including folder manipulation
and message-specific manipulation.

These modules build on each other in various ways, depending on the
type of communications that is being used. Implementations of protocols
using Bluetooth, for example, use only PRT modules on top of device
drivers. Certain IrDA protocols do this as well. TCP/IP implementations

242 MODELING COMMUNICATIONS

that use PPP use PRT modules, a TSY module and a CSY module. TCP/IP
implementations without PPP typically do not use either a TSY module or
a CSY module but link a PRT module directly to a network device driver.
The WAP protocol stack uses a WAP PRT on top of an SMS PRT, which
in turn is built on a GSM TSY and some kind of CSY (ECUART, IrCOMM,
or RFCOMM).

Infrastructure modularity

We should take a moment to appreciate the modularity of the stack-
based model used by the communications infrastructure design. The
‘mix and match’ quality of the layered design should be evident from
the examples just given. Consider the TCP/IP stack implementation. A
PPP connection can go directly to a CSY module or choose a GSM or
regular modem TSY implementation, which in turn goes through a CSY
module. When the future brings a new telephony technology, the existing
structure works and we only need to add a TSY module for the new
telephony implementation. In addition, fine-tuning the TCP/IP protocol
stack does not require altering any of the modules it depends on; we
simply tune up the TCP/IP PRT module and leave the rest alone. This
extensive modularity means new code plugs into the infrastructure easily,
old code is easily discarded and existing code can be modified without
shaking the whole system or requiring any extensive reinstallations.

Finally, Figure 11.6 has added sublayers to the application layer. There
are CSY modules that applications use to interface with protocol modules
in the protocol implementations. While we can consider these as parts of
protocol implementations, it is a bit cleaner to think of them as assisting
applications. An example here might be an application that uses IR to
send SMS messages through a mobile phone. This application would use
an IRCOMM CSY module on the application side that uses an SMS imple-
mentation wrapped in a protocol-implementation layer. Again, the mod-
ularity of this entire process is a big advantage for applications that need
to focus on what they do best and not on the communications process.

11.3 Communications on Other Operating Systems

Symbian OS is a great example of the way that most other operating
systems model communications. Figure 11.6 is a good way to depict
the application of I/O concepts to communications in other operating
systems.

COMMUNICATIONS ON OTHER OPERATING SYSTEMS 243

Device drivers are the way operating systems tie physical communi-
cations-hardware devices into the system. Every device is different, but
every device must eventually be presented in a standard way. This
means that devices must speak to the operating system via some kind
of ‘translator’, and that translator is the device driver. Device drivers
are typically loaded dynamically when their intermediary services are
needed, much like the drivers for other types of device I/O (discussed in
Chapter 9).

The protocol implementation for an operating system is a good example
of the stack model of communications. Most implementations of com-
munications form a stack, as we demonstrated with Symbian OS. As
discussed in Chapter 9, abstraction plays a big role here. While the
same API is in often place, the implementation functions are dynamically
loaded when they are needed.

Consider, for example, the code below, which is for a generic Linux
server that accepts a socket connection from a client and reads and
processes the client’s request across the socket.

void main(int argc, char **argv)
{
/* Declarations for sockets */
int sockfd;
int result, select;
int readfds[32];
struct sockaddr_in sin;
int msgsock;
char recv_buffer[256];

/* Step 1: Create the socket. */
sockfd = socket (AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
{
(void) perror ("socket creation");
exit(-1);
}

/* Step 2: Data setup */
sin = (struct sockaddr_in *) & salocal;
memset ((char *) sin, "\0", sizeof (salocal));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port = 1100;

/* Step 3: Bind the socket to the network */
result = bind (sockfd, & salocal, sizeof (*sin));

244 MODELING COMMUNICATIONS

if (result < 0)
{
(void) perror ("socket binding");
exit(-1);
}

/* Step 4: Set up listening on the socket */
listen(sockfd,5);

for(;;) {
FD_ZERO(&readfds);
if(sockfd >= 0) FD_SET(sockfd, &readfds);

/* Step 5: Wait for input on the socket */
status = select(32, &readfds, NULL, NULL, NULL);
if(status == -1)
{
if (errno == EINTR) continue;
exit(101);
}

if((sockfd >= 0) && FD_ISSET(sockfd, &readfds))
{
DEBUG("Setting up the MSG SOCKET\n");

/* Step 6: GOT input, accept it, creating a file descriptor. */
msgsock = accept(sockfd, 0, 0);

/* At this point, we have a file descriptor (msgsock) that we
can read and write to. NOW we process the data that comes
over the socket.
Step 7: Process input. */

result = read(msgsock, recv_buffer, (int) sizeof(recv_buffer));
if(result > 0)

{
result = process_cmd(recv_buffer,msgsock);
close(msgsock);
}

}
}

}

Each system call addresses some part in the stack. Step 1 creates a
socket, unbound but with a definition (it is a TCP/IP network socket,
AF_INET, to be opened over TCP, SOCK_STREAM). Step 3 pushes a bit
deeper into the stack, using the data set up in Step 2 to bind the file
descriptor to an entry in a system table connected with networks. This
bind() call implies that a read or write takes place and loads the code
necessary to connect the read or write with the data on a network. Before
bind(), a socket is just a file descriptor; after bind(), it is a descriptor

EXERCISES 245

tied to a specific implementation of read and write system calls. Step 4
activates network listening for requests, using read() and write()
calls to engage in socket protocols with the other side of the network
connection. At the end of this call, the device driver has been loaded and
is actively working with the network port to process network data. Step 5
is a blocking call that waits until some file descriptor has data on it. Again,
notice the abstraction in this call. The select() call takes a collection
of file descriptors of all kinds and returns when at least one has data. That
implies that all the descriptors must have the same interface (read/write).
When the call returns, we assume that the socket we have set up as a file
descriptor has data waiting. Step 6 accepts that data, deriving a regular
two-way socket from the server socket. Step 7 begins receiving data.

This example illustrates the abstraction and modularity built into the
stack model of communications. It combines a client–server approach
with stack-oriented implementations and sockets to give us an effective
way of describing network service. These models have proved so useful
that they are built into most modern operating systems in use today.

11.4 Summary

This chapter has discussed the types of models that operating systems
use to characterize communications. Abstraction is the key to using these
models. We discussed how client–server relationships are built and how
implementation stacks use abstraction to connect system calls together.
We described how the ideas of sockets and event-driven communications
provided mechanisms to understand implementation details. We then
gave examples of these models from both Symbian OS and Linux.

Exercises

1. We stressed many different uses for abstraction in this chapter. Find
them and describe why each one is useful.

2. Client–server relationships can be found in many places in an oper-
ating system. Find at least three such relationships in the operating
system of your choice and report them.

3. In a mobile phone call, there are a series of client–server relationships
that are established. Identify these and report them.

246 MODELING COMMUNICATIONS

4. Describe how a web page is requested and delivered between a web
browser and a website. Identify the client–server relationships in the
sequence of events.

5. Invent a communications stack for a person who speaks French to
get a message (spoken by him in French) to a colleague in Germany.
The message must be received the same day and must be in German
when it reaches the colleague.

6. In Symbian OS, Bluetooth communications is done primarily through
sockets. Explain why this is preferred to just opening the Bluetooth
device and reading from and writing to it.

7. An application needs to open a socket to a web server, send a request
and read a web page. Describe the events that would be generated
by that sequence of operations.

12
Telephony

The convergence of telephony and handheld computing devices has had
a long history. Modems have been available commercially since the
1960s and, from that time, telephony services and computers have been
linked. As integrated devices were developed, control over telephony
functions became a more crucial issue for operating system designers.
The support of telephony had to adhere to the communications models
that have governed all computer communications. Telephony function-
ality became an important component of Symbian OS even before
the first true Symbian OS phones (the Ericsson R380 and Nokia 9210
Communicator) shipped, with core functionality to support a ‘two-box’
connection (PDA to phone) appearing for the original Psion Series 5
range. These devices demonstrated how telephony communications and
computing capability – integrating data and voice capability – can be
mutually beneficial.

This chapter examines how operating systems can support telephony.
Symbian OS obviously stands out as a great example of telephony
support. A wide variety of telephony functions and uses are provided
by the Symbian OS ETel telephony subsystem. This chapter gives an
overview of telephony services and the operating systems components
that implement them. We then take a look at the ETel model and its
interfaces by examining the different situations it was designed to address
and looking at the structure of the APIs. We dig into the details of ETel by
looking at the main aspects in its design.

248 TELEPHONY

12.1 Modeling Telephony Services

Communication using a conventional analog telephone is usually split
into two forms: data and voice communication. Data communication over
a telephone is handled by a modem, a digital-to-analog converter. Digital
communication in the form of binary data is converted to analog audio
representation that can be sent between telephones over conventional
phone systems. At the other end, the reverse process takes place.

The computer controls the modem by using a set of commands. The
Hayes command set, for example, is by far the most widely used set
of commands for modems. Hayes-format commands take the form of
‘AT’ commands: the character sequence ‘AT’ followed by characters to
command the modem to do certain tasks. To initialize a modem and
cause it to dial a number, for example, we might give it the following
command string:

ATQ0E1DT555-3454

This string tells the modem to send result codes back to the computer
in response to commands, echo back the commands sent to the modem
and tone-dial the number 555-3454.

Voice communication via both the public-switched-telephone network
(PSTN) and the mobile phone network (for example, GSM) is effectively a
peer-to-peer connection, where the ‘address’ of the remote device is the
telephone number being dialed. The telephone number is accepted by
the telephone-network-switching infrastructure and a connection is made
between the local and remote devices, until one or both terminate the
connection by ‘hanging up’. A telephone may be able to handle several
telephone lines; each line can typically multiplex several phone calls at
once, by working appropriately with the telephone system.

Telephone networks can be wired (‘landline’ PSTN networks) or wire-
less (mobile phone networks). Of the possible equipment and switching
network combinations, digital choices have emerged as the most promis-
ing for the future. Digital switching has replaced more antiquated step and
cross-bar exchanges within the PSTN. A GSM phone is a good example
of digital phone equipment using a digital connection network; GSM is
a frame-based protocol that sends data frames of a fixed size for a fixed
time interval, mixing these frames with others. The phone must also be
a digital device to use the digital network, and may offer the capability
of being controlled by an external computer to turn it into an advanced

MODELING TELEPHONY SERVICES 249

modem capable of using the digital network on behalf of another device.
A Nokia E61, for example, has an infrared port that allows it to accept
commands from an external device.

The communications model of an operating system can be extended
to include telephony as a core feature. How well telephony works with
an operating system depends on the operating system architecture and its
history.

In a conventional operating system, working with telephony services
means using system calls to interact with a telephony device. The oper-
ating system usually works with a telephony device in either of two
extremes: a very abstract way or methods that are low-level and concrete.
For example, Linux treats a telephony device as any other device and
allows ioctl() calls – low-level system calls that can manipulate any
device – to interact with device drivers and control the telephony device.
On the other hand, Microsoft Windows Mobile treats the phone portion
of handheld computer as an object and provides a way to work with it
through the object interface. For example, in a Windows Mobile applica-
tion that implements dialing a phone number, you might find code like
this (written in C#):

Phone myPhone = new Microsoft.WindowsMobile.Telephony.Phone();
myPhone.Talk("555-7341\0");

Whether an interface uses high- or low-level manipulation, the control
of the phone device is direct via a kernel-mode driver.

In microkernel architectures, devices are controlled by servers that
provide a high level of abstraction to multiple clients, forcing manip-
ulation of devices to take place through this abstraction. Thus, micro-
kernels use telephony servers to provide telephony services through
standard client–server relationships with other processes. Symbian OS,
for example, implements an ETel server that provides access to telephony
devices. Applications interested in making a phone call must connect
with this server and send it requests.

By way of understanding telephony communication, we examine the
Symbian OS telephony subsystem in more detail. This study serves as
an example of a microkernel implementation of telephony as well as of
Symbian OS design.

Telephony implementations demonstrate what we have been illustrat-
ing all through this book: various operating systems do things at various
levels of abstraction. Linux is perhaps the least abstract while Symbian

250 TELEPHONY

OS is perhaps the most abstract. Because these abstraction levels are by
design, we cannot simply ask which one is best. We have to ask which
one is the best in its area of application and its audience of developers.

12.2 A Structural Overview

The communications model Symbian OS uses to implement telephony is
abstract enough to provide the application programmer with a consistent,
standard interface, no matter what kind of telephony device is being used.

The Symbian OS telephony subsystem closely models the real-world
user experience of using telephones (Figure 12.1).

The model characterizes telephony as a collection of phones. Each
phone is an abstraction of a telephony device (e.g., a modem or a
GSM phone; usually only one exists per phone, which corresponds to
that particular device’s radio hardware setup such as GSM, UMTS or

phone phone phone phone

. . .

. . .
lines

. . .
lines

. . .
lines

. . .
lines

calls

calls

calls
calls

Telephony
server

Figure 12.1 The ETel phone model

A STRUCTURAL OVERVIEW 251

CDMA). Through this abstraction, we can access a device’s status and
capabilities and be notified if changes occur to a device’s properties. A
phone can have one or more lines. An application can access the status
and capabilities of a line, as it can for a phone, and can be notified of any
changes in these features. Lines usually correspond to specific telephony
services (e.g. voice, fax, circuit-switched data, etc.).

The actual connection of a local endpoint through a circuit-switched
network to the phone is designated as a call. A line can have zero
or more active calls. A call can dial a number, wait on a line for an
incoming call and be terminated. As with lines, an application can get
status and capabilities information for a call and be notified of changes
to a call’s state.

These abstractions are central to the use of the Symbian OS telephony
subsystem through the ETel APIs.

TSY Modules in Symbian OS
The heart of this model’s implementation is in the TSY module. By
integrating the specific implementation of this model for a particular
phone type into a module, Symbian OS designers ensured that the API for
this functionality would remain the same across different phones, and the
application programmer is free from worrying about the implementation
specifics for a particular phone. When Symbian OS is used with new
phone hardware for the first time, a new TSY must be developed.

TSY modules are designed to plug into the telephony server and provide
access to telephony functionality. Search your Symbian phone or emula-
tor and look for TSY modules provided with the device. In Symbian OS
v9, you should find several TSYs that are provided with the distribution,
including generic phone TSYs and ones that implement CDMA.

The ETel Subsystem
The ETel subsystem has four key constituents (see Figure 12.1): the ETel
server, the Phone abstraction, the Line abstraction, and the Call object.

ETel server

The ETel server manages access to the telephony system. It is accessed
using functions from the RTelServer class. Before telephony can be
used by an application, it must connect to the telephony server. This is
done with the Connect() function. Using this function, applications

252 TELEPHONY

Client application

Telephony
hardware

Telephony
hardware

TSY module TSY module

Client application

ETel server

Core API Extension API

TSY API

Figure 12.2 ETel structural diagram

connect to the telephony server, specifying how many message slots
are needed. A single message slot is a communication channel in one
direction. The default number of slots assigned is 32. The RTelServer
class is a subclass of the RSessionBase class, and therefore inherits
the Close() function, which is used to shut down an active telephony
server session.

Once a connection is established, the TSY module that is needed
should be loaded. TSY modules can be manipulated through the Load-
PhoneModule() and UnloadPhoneModule() functions. The first
function loads a TSY module, and the second function removes a TSY
module. These modules are analogous to device drivers (especially in
that they relate to a specific device – in this case, the particular baseband
hardware in the phone) and are implemented with logical and physical
components particular to the specific baseband. Recall from Chapter 11

A STRUCTURAL OVERVIEW 253

that device drivers need to be loaded and unloaded; TSYs require the
same handling.

Once the appropriate TSY module has been loaded, applications can
make queries about its properties. These queries take the form of tele-
phony server functions, such as the Version() or GetPhoneInfo()
functions, and result in requests being sent to, and responses returning
from, the ETel server. It is possible to obtain version information, the
phone’s name, the type of telephone network it uses, and other informa-
tion. Information about the TSY itself is also available from the telephony
server. All TSY modules are assumed to support a minimal set of telephony
functionality, but by calling IsSupportedByModule() it is possible to
determine exactly what ETel functions are supported.

Let’s take an example: we have a CPhoneCall class that initializes a
phone and makes a voice phone call. The definition for this class might
look like this:

class CPhoneCall : public CActive
{
enum TCallState {EDialing, EDone, EError};

public:
∼CPhoneCall();

public:
// Static construction
static CPhoneCall* NewLC();
static CPhoneCall* NewL();

public:
void MakeCall(TDesC& aTelephoneNumber);

private:
CPhoneCall();
void ConstructL();
void InitL();
void DoCancel();
void RunL();

RTelServer iTelServer;
RPhone iGsmPhone;
RLine iPhoneLine;
RCall iPhoneCall;

TRequestStatus iCallStatus;
TCallState iCallState;
};

Notice that this class is an active object that uses the iCallState
variable to track its communication state and the iCallStatus variable
to monitor its I/O progress.

254 TELEPHONY

Now, consider the definition of the InitL() function as it applies
to the telephony server. Here, we want to deal with a voice call over a
GSM phone:

void CPhoneCall::InitL()
{
RTelServer::TPhoneInfo phoneInfo;
RPhone::TLineInfo lineInfo;
RPhone::TCaps capabilities;
RLine::TCaps lCapabilities;

TInt result;
TInt phones, lines, calls;
TFullName name;

// Connect to the telephony server
result = iTelServer.Connect();
User::LeaveIfError(result);

// Load the right TSY
_LIT(KTsyToLoad,"gsmbsc.tsy")
result = iTelServer.LoadPhoneModule(KTsyToLoad);
User::LeaveIfError(result);

// Get information about phones from the server
result = iTelServer.EnumeratePhones(phones);
User::LeaveIfError(result);
if (phones == 0) User::LeaveIfError(KErrNotSupported);

// other code to init phones, lines and calls
}

We connect to the telephony server and load the GSM TSY module. If
no phones are supported (for example, if no GSM TSYs could be found),
this code leaves with an error code.

The phone abstraction

After connecting to the ETel server, a phone supported by the telephony
server should be selected. Phones are characterized by the RPhone class
and are accessed through a subsession established by an RPhone object.
As when establishing connections and sessions, we use Open() and
Close() functions for this. After opening a phone subsession, notifi-
cations can be set up and the phone must be initialized. Changes to
the phone’s state and capabilities are reported to the client applica-
tion using functions known as notifications. Generally, the client makes

A STRUCTURAL OVERVIEW 255

all the notification requests prior to calling any functions which may
change the state of the telephony device. Initializing is allowed to be
asynchronous, because it may take some time to set up the telephony
device.

When a phone subsession is open and the device has been initialized,
applications can use the other functions of the phone device or make
queries of it thorough the RPhone class interface.

Let’s continue the CPhoneCall class example. We need to expand
the implementation of the InitL() function to encompass initializing
phones. The result is below:

void CPhoneCall::InitL()
{
RTelServer::TPhoneInfo phoneInfo;
RPhone::TLineInfo lineInfo;
RPhone::TCaps capabilities;
RLine::TCaps lCapabilities;

TInt result;
TInt phones,lines,calls;
TFullName name;

// code to initialize the telephony server connection

// Get the information on the phone we need
result = iTelServer.GetPhoneInfo(0, phoneInfo);
User::LeaveIfError(result);
name.Copy(phoneInfo.iName);

// Open the phone and get its capabilities
result = iGsmPhone.Open(iTelServer, name);
User::LeaveIfError(result);
result = iGsmPhone.GetCaps(capabilities);
User::LeaveIfError(result);
if ((capabilities.iFlags & RPhone::KCapsVoice) == 0)
User::LeaveIfError(KErrNotSupported);

// other code to init lines and calls
}

Note that the phone is initialized when the first asynchronous request
is sent. So we do not need to call Initialize() from this initialization
code. In the code above, we retrieve the name of the first phone from the
telephony server and open it up. On a Nokia 8290 phone (a GSM phone
used in the United States), the name of this first phone is ‘GsmPhone1’.
We conclude this code by making sure that the phone we obtained can
indeed support voice capability.

256 TELEPHONY

The line abstraction

Once a subsession with a phone has been established, we may establish a
subsession for a particular line. The line implementation is implemented
by the RLine class. As with RPhone objects, RLine object subsessions
are opened and closed with Open() and Close() functions.

As with RPhone objects, RLine objects can be notified when proper-
ties of a line change. There are many different properties that can change
and this is reflected in the number of notification functions that are defined
for the RLine class. There are four notification functions, each with its
own cancellation function. Each is also asynchronous and requires a
status variable for monitoring; notification functions are useful here.

Let’s continue to flesh out the CPhoneCall class example. Initializing
a line for a phone means getting its name and opening a subsession, as
below:

void CPhoneCall::InitL()
{
RTelServer::TPhoneInfo phoneInfo;
RPhone::TLineInfo lineInfo;
RPhone::TCaps capabilities;
RLine::TCaps lCapabilities;

TInt result;
TInt phones,lines,calls;
TFullName name;

// code to initialize the telephony server and phone

// Get the info on the line we need – we have hard-coded 2 to open
// the 3rd line. In reality, one should use EnumerateLines() to
// determine the required line on any particular phone
result = iGsmPhone.GetLineInfo(2, lineInfo);
User::LeaveIfError(result);
name.Copy(lineInfo.iName);

// Open the line and get its capabilities
result = iPhoneLine.Open(iGsmPhone, name);
User::LeaveIfError(result);
result = iPhoneLine.GetCaps(lCapabilities);
User::LeaveIfError(result);
if ((lCapabilities.iFlags & RLine::KCapsVoice) == 0)
User::LeaveIfError(KErrNotSupported);

// code to initialize call
}

A STRUCTURAL OVERVIEW 257

This example chooses the third line available on the phone and checks
its capabilities. On a Nokia 8290 phone, the third line is the voice line
(the first two are fax and data lines) and the name of this line is Voice.

The call object

With a session established to the telephony server and phone and line
subsessions now open, we can finally open and manage a call. Calls
are implemented by the RCall class. Before we discuss how to use this
class, we should point out a few things about calls.

• Calls have names, as with other telephony-server objects. The name
of a call is generated by the operating system through the TSY and
returned when a call subsession is opened. A ‘fully qualified name’ is
one that includes call, line and phone information in the format:

PhoneName::LineName::CallName

• Opening a call subsession does not connect a call. As with phones
and lines, a call subsession must be opened before we can use a
call. Opening a subsession allows the telephony server to allocate
memory and resources for a call but does not manipulate the call in
any way.

• Calls can be incoming as well as outgoing. In addition to instructing
the telephony server to make a call, we can instruct the server to
answer a call. Unlike the other layers in the model, a new subsession
is opened with calls other than Open() and Close(). The Open-
NewCall() function in its several forms creates a new call in an idle
state. OpenExistingCall() is more usually used to open a call in
an ‘alerting’ state. A new call can be opened by referencing an open
telephony server session, a phone subsession or a line subsession.
Subsessions can be opened with existing calls, i.e., calls in progress.
This is done by applications that want to work with calls already
received or started by other applications. For example, if one applica-
tion placed a voice call, a second application could implement a call
timer. To hang up after a certain time period, the timer application
would have to open the existing call with the OpenExistingCall()
function.

258 TELEPHONY

As an example, we can complete the CPhoneCall::InitL() func-
tion. Here, we simply open a new call subsession by referencing the line
subsession:

void CPhoneCall::InitL()
{
RTelServer::TPhoneInfo phoneInfo;
RPhone::TLineInfo lineInfo;
RPhone::TCaps capabilities;
RLine::TCaps lCapabilities;

TInt result;
TInt phones,lines,calls;
TFullName name;

// code to initialize server, phone and line

// Open a new call
result = iPhoneCall.OpenNewCall(iPhoneLine, name);
User::LeaveIfError(result);
}

On our Nokia phone, this call is assigned the name VoiceCall1.
Although it may seem like a long journey, eventually all sessions and

subsessions are opened and initialized. At this point, we still have not
made a call, but the system is ready for this next step.

Calls are made by instructing the Symbian phone to dial with a directory
number or by connecting to an already dialed call. To dial a call, we use
the Dial() function from the RCall class. Dialing functions come in
synchronous or asynchronous varieties and can include call parameters.

To illustrate this, let’s define the MakeCall() function from our
CPhoneCall example. We have decided to make the CPhoneCall
class an active object and we can use an asynchronous version of the
Dial() function:

void CPhoneCall::MakeCall(TDesC& aNumber)
{
iPhoneCall.Dial(iCallStatus, aNumber);
iCallState = EDialing;
SetActive();
}

Since we have already set up the telephony system, this is a simple
implementation. The number is a string, and we return from this function
right away while the system dials the call. When the call is dialed, the

A STRUCTURAL OVERVIEW 259

status variable changes state and the active object’s RunL() function is
called. We can implement this change by including the following code
in the RunL() function:

switch (iCallState)
{
case EDialing:
if (iCallStatus == KErrNone)

{
// handle the successful call
}

else
{
// handle the call error
}

break;
...

This is just like the active object code we have seen before.
If we have successfully created all the sessions and subsessions we

need, answering an incoming call is straightforward. The Answer-
IncomingCall() function – in synchronous and asynchronous ver-
sions – allows the phone to answer the call. Once a call has been
answered, the application can monitor the call’s state and perform
various operations on it.

If it is a data call, the application might want to access the data port
directly for a time. For example, if it is making a call with a modem to
transfer some data, the application might want the telephony server to take
care of dialing the phone number and connecting to the opposite side, but
it will then want to take control to pass the data. This is done by ‘loaning’
the data port to the application using the RCall::LoanDataPort()
function. Once the data port has been used for the transmission of data, it
can be returned to the telephony server using the RecoverDataPort()
function. While the port is loaned to the client it is possible that some
ETel operations are not available.

For a call, there are a few notifications that the system can give an
application. The hook status (a phone is ‘on hook’ when it is idle and ‘off
hook’ when it is being used), the call phase state, and the call duration
can be registered for notification. Remember that remote devices or the
switching network can terminate a call at any time without asking for
permission or giving prior warning. The call state status is a representation
of the state of a call as it passes through its lifecycle: idle, dialing, ringing,
answering, connecting, connected, or hanging up. The call duration is

260 TELEPHONY

the time, in seconds, that the call has been active. Notification is sent
every second (useful for making an indication to the user based on the
duration of the call).

To avoid problems with multiple clients accessing the same call,
Symbian OS designates a specific client as the owner of a call. This
ownership is initially passed to the client that connected to a phone call
first, but it can be transferred to another client. For example, one contact
manager client may be responsible for setting up a data call while another
client is responsible for data transfer.

Call termination, that is, ‘hanging up’ the phone, is accomplished
through the HangUp() function. This function initiates termination of
the call. Depending on the network, hang-up functions may behave
differently. For example, for GSM networks, it takes time for the call to
become idle (hence the hanging-up state) but it is not possible to re-
connect a call once this request has been made. On some wired networks
it is possible to hang up and then, if the remote party has not terminated
the call, retrieve the call again.

12.3 Voice over IP Telephony

To fully appreciate the telephony model that Symbian OS implements, it
is useful to consider a new form of telephony: voice over IP (VoIP). Unlike
GSM (which is circuit-switched), VoIP calls are packet-based transfers of
digital data, but the medium of transfer is a computer network. First, let’s
take a brief look at how VoIP works, as shown in Figure 12.3.

TCP

Public-switched
telephone network

Figure 12.3 Simplified diagram of VoIP connections

VOICE OVER IP TELEPHONY 261

Several different phone types can be used with VoIP. Conventional,
analog phones need to have an analog telephone adapter (ATA) that
connects to a network; mobile phones with network capability can
connect through wireless networks; digital phones connect directly to
a network.

In all cases, the phone unit connected to a network may begin the call
by using Session Initiation Protocol (SIP). SIP is a protocol that creates
sessions and handles many of the logistics of finding the endpoint (mobile
phone or digital phone) to which the phone call will eventually connect.
Usually, calls are initiated by engaging in SIP with a VoIP provider. This
provider provides mapping services to map the locator information (e.g.,
a telephone number) to an IP address on the network or a destination
on a public-switched telephone network (PSTN). If the service finds the
destination on the network, it informs the caller where the destination
is and the caller forms a peer-to-peer relationship with the destination,
exchanging data packets that represent the voice conversation. If the
destination is on a PSTN, the server becomes the destination and a proxy,
relaying voice traffic from the network over the PSTN.

For our purposes, VoIP provides an illustration of how telephony
models work. In a conventional operating system such as Linux, a com-
pletely different model must be used to implement VoIP. The old model
was a low-level one: phone equipment was controlled by interacting
with it over a wired connection with control functions. VoIP would be
implemented as part of the networking communications stack, not with
control functions. SIP is an application protocol that uses TCP to trans-
port its packets. So a VoIP application interacts with sockets and TCP
connections, sending SIP packets and receiving responses. While the
concept of send-and-receive is the same, different media means different
implementations.

Modular models, such as the one in Symbian OS, also require new
coding to implement new technologies such as VoIP, but the changes
happen in a modular fashion supplied by the system. In Symbian OS, VoIP
can be implemented by a new TSY module. In fact, in our CPhoneCall
example, the only change to our code would be to change which TSY
module was loaded in CPhoneCall::InitL(). The remainder of the
code can remain intact because of the structure of the Symbian OS
telephony model.

Smartphones that have access to any packet-based network can provide
VoIP implementations. Devices that support Symbian OS v9 and above
have the capability of supporting wireless network access as well, which

262 TELEPHONY

can be used to implement VoIP in addition to (or even instead of) access
over a more traditional cellular network.

As an example, consider Nokia S60 3rd Edition phones, which run
Symbian OS v9. The Nokia E61 implements VoIP in two parts: the SIP
component that engages a VoIP provider’s server and the network calling
settings that determine which SIP settings to use. After these are config-
ured, the phone can make calls over GSM or over a network medium.

Look for these types of implementation in Symbian OS phones with
TCP/IP network access built-in.

12.4 Summary
In this chapter, we have taken a look at how operating systems support
telephony. We summarized how conventional systems allow telephony
to be manipulated as low-level devices and protocols. We then spent
considerable time looking at how Symbian OS views telephony in terms
of four key constituents: an ETel telephony server, a phone abstraction,
phone line abstractions defined for a specific phone, and finally a call
made over one such phone line. We reviewed how to set up the structure
so that we can use phone calls and we looked at making and answering
calls. We defined how applications can be notified when changes in
the phone system and settings are made. We concluded the chapter by
looking at voice over IP and how it fits into telephony models.

Exercises

1. If a phone is used as a modem, is that considered telephony? Does it
fit into the telephony model?

2. Why does Linux force programmers to use such primitive methods to
access system services?

3. Why does Symbian OS force programmers to use such high-level
methods to access telephony services?

4. How might a Linux application address VoIP?

5. In Symbian OS, does a phone call take up a lot of memory? Does it
take up a lot of CPU time?

6. Consider making a phone call in Symbian OS while using other parts
of the operating system (such as making a calendar entry). Make a
guess as to how much of the system resources the phone call would
take up in comparison to other tasks.

13
Messaging

In addition to telephony, which we covered in Chapter 12, messaging
is an area that smartphones do well. It is their basic functionality to
allow communication: both voice and data. As we did with telephony,
discussing messaging provides us with a way to compare and contrast
operating system approaches while showing off areas in which certain
operating systems shine.

Through experience, most people understand that messages can take
many forms. There are verbal and non-verbal messages; messages are
written on paper and heard via audio devices; messages can be notes
passed in secret or signs on a billboard. Delivery of messages is an
important but sometimes chancy thing (if you have ever had to rely on
another person to deliver a message, you know what I mean). Even with
this wide assortment of message types and delivery functions, humans
are able to send and receive messages fairly easily. We have, in fact,
developed a system that processes different message types using the same
methods implemented by tools specialized to each message.

Electronic messaging is a very diverse area. There are many electronic
message types and delivery takes many different forms. For example,
email messages can be delivered over a wireless network connection and
SMS messages can come through a GSM connection to a mobile phone.
So it should come as no surprise that designing a single model that charac-
terizes and works with all message forms is quite a challenge. Operating
systems approach this area in different – yet predictable – ways.

This chapter gives an overview of the message framework implemented
by operating systems, with a special emphasis on Symbian OS. We start

264 MESSAGING

with a survey of messaging components and requirements. We then look
at Symbian OS and its messaging framework. We wrap up the chapter by
comparing the approach of Symbian OS to that of Linux.

13.1 The Character of Messaging

Let’s start by stepping back for a moment and taking an overview of
messaging. Messaging systems need to put together a generic framework
that can handle the components of many different message types. This
framework is likely to view all messages as composed of generic com-
ponents. Through the use of abstraction, each different message type can
be handled by a separate implementation of those generic components.
Then this abstract message-handling system needs to be built on top of
existing models and systems.

As we look at messages and their components, it is important to note
where these messages originate on the computer system. All devices have
a central message store. This store contains the messages received by and
created on the device on which it resides. In some operating systems (e.g.,
Symbian OS), this message file has a specialized, hierarchical format. In
other systems (e.g., Linux), it is simply a text file that can be parsed
in several different ways. This store can usually reside on any storage
accessible to a device; message applications can usually change where
this store resides.

Let’s look at the messaging framework by pulling apart a message, so
we can build a framework from its component parts.

Dissecting a Message

Messages are self-contained data objects sent between two devices. They
are self-contained in the sense that they do not depend on the sender’s or
the receiver’s environment. They are data objects because they may take
one of a number of forms, and their definition is open-ended. Messages are
typically used to relay specific pieces of information between machines,
as well as humans.

Messages have several common characteristics.

• A sender: each message originates from somewhere, either from a
person or a computing device. The identity of the sender is usually
included with the message, although that identity can rarely be trusted.

THE CHARACTER OF MESSAGING 265

The sender can be one of many entities. Messages can be original
person-to-person communication or generated by a computer.

• An intended destination: messages can be sent to a single destination
or to a group. At some layer in the transport system, messages are
always sent device-to-device. The final destination can be a human
reader or an application.

• Timestamps: a message is typically given information about the time
and date when an operation is performed on it. A message can receive
many timestamps and can have many operations performed on it. An
email message, for example, may travel through several relay points
before arriving at its final destination and bear timestamps from each
relay point.

• Content : a message usually carries content information to its intended
destination. While the content could be empty, it is still considered to
be part of the message’s definition.

• Format: different types of messages take different forms. However,
messages tend to have a common organizational format: a header and
a body. The message header contains information about the message
itself, such as sender, destination, delivery options and timestamps.
The body of a message contains its content, that is, the information
the message was meant to convey to its recipient. Beyond this general
structure, messages vary widely in how they represent or format each
message section.

Consider the email in Figure 13.1. This email message is in the form
that is exchanged between two devices (not necessarily in the final form
a person might read).

This message has a typical format. The header is separated from the
body by a blank line (about two-thirds of the way down the message). You
can easily spot the sender and destination by the ‘From:’ and ‘To:’ lines.
The header contains several timestamps. The ‘Received:’ fields display
information about the relays the message went through. Note that there
is a lot of information in the header, more than is typically useful. In this
case, the body of the message is an ASCII-based textual message.

Message sending and receiving typically involves both servers and
clients. A typical scenario is depicted in Figure 13.2. The sender composes
the message on his or her local device. The message is then ‘sent’ – which
means it is uploaded to a server, either over a conventional, wired network

266 MESSAGING

Received: from mail.brainshareproject.com (mail.brainshareproject.com)
by smaug.cs.hope.edu (8.9.3+Sun/8.9.1) with ESMTP id AAA09235
for <jipping@cs.hope.edu>; Wed, 27 Jun 2006 00:33:11 -0400 (EDT)

Received: from debian (dialup-209.Dial1.Level10.net [192.245.239.242])
by mail.brainshareproject.com (EL-8_9_3_3/8.9.3) with ESMTP id VAA14057
for <jipping@cs.hope.edu>; Tue, 26 Jun 2006 21:32:46 -0700 (PDT)

Received: from jjones by debian with local (Exim 3.22 #1 (Debian))
id 15F70M-0000UR-00
for <jipping@cs.hope.edu>; Tue, 26 Jun 2006 23:32:42 -0500

Date: Tue, 26 Jun 2006 23:32:42 -0500
From: John Jones <jjones@brainshareproject.com>
To: jipping@cs.hope.edu
Subject: Infomercials.org
Message-ID: <20060626233241.A1876@brainshareproject.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline
User-Agent: Mutt/1.3.18i
X-StarTrek-Quote: Make it so.
Sender: John Jones <jjones@brainshareproject.com>
Content-Length: 701

I want to bounce this site off you:
http://www.infomercials.org/

and hear any opinions you have on the material it presents. They seem to
have a very well-thought-out approach to managing large (or small) numbers
of customers.

John J.

Figure 13.1 Example email message

or a wireless network. This server, known as a message center or relay
server, must now deliver the message.

There are also delivery methods that work on a peer-to-peer basis.
These methods allow local message composition and delivery of the

Figure 13.2 A typical message-delivery scenario

THE CHARACTER OF MESSAGING 267

message directly to the recipient. The message-relay server is removed
from the loop.

In general, there are two models for message delivery:

• push model: if it can, the server delivers the message directly; it con-
tacts the destination device and pushes the message to it; this requires
that the destination is ready to receive messages; SMS messages are
examples of this type of delivery

• pull model: when a device is not usually connected to a wired or
mobile network, the server stores the message for the recipient; the
receiving device must contact the server and pull its messages from
the server; often, in this model, the message-relay point is not the
message-storage point; the storage server receives the message from
the message relay and keeps it for the recipient; email messages are
examples of this type of delivery system.

Note that the pull model may involve the push model. A device might
pull its messages by notifying a server that it is online and ready. The server
then uses push-model mechanisms to deliver content to that device.

Electronic mail

Electronic mail is one of the most common and widely used forms of
messaging. It was originally developed as an electronic means of sending
text-based messages – textual ‘mail’ for human consumption – between
computers. As the value of sending messages was realized, people began
to send other things as well. Email has evolved to encompass all types
of objects, for example, programs, spreadsheets and word-processing
documents.

The format of an email message is shown in Figure 13.1.1 As we have
stated, it has a header and a body. The header is comprised of a sequence
of lines or fields, each of which is composed of a key and a value. Each
field relays information about the message to the receiver. The sender is
required to insert a ‘From’ field, a ‘To’ field, and a ‘Posted-Date’ field into
the message header and is free to insert other fields. In addition, any field
whose key value begins with the string ‘X-’ may be inserted by the user
(note the X-StarTrek-Quote field in Figure 13.1).

1 The most widely used format for email messages is specified by the Internet Engineering
Task Force in a document called RFC 821.

268 MESSAGING

The body of an email message contains the message content. This
content is typically composed of a message in ASCII or Unicode text.
However, the message body can also have attachments, which are data
objects that accompany the message. These objects are included using
a standard called Multipurpose Internet Mail Extensions (MIME). Objects
included using MIME are each included in a message type format, with
a header to identify the type of the data object and a body that contains
the data object itself. Many objects can be included in a message.

Even when it includes MIME objects, an email message has a text-
based representation. All email is sent using readable (ASCII/Unicode)
characters. If a message contains attachments that are not comprised of
text, then those attachments are encoded in a special way to derive text
from them. The encoding method used, e.g., base 64, is included in the
header for the data object, so the receiving software can decode the
object. The delivery of email messages to the end user follows the pull
model of message delivery.

There are several protocols that are used to send and receive email.
By far, the most widely used sending protocol is Simple Mail Transfer
Protocol (SMTP). There are two protocols used to receive or read email:
Post Office Protocol (POP) and Internet Message Access Protocol (IMAP).
These are TCP/IP-based protocols.

Look at Your Email

Look at your own email messages to verify the format we specify here.
Save your email to a file and examine the file’s contents. If you can,
find a mail message with attachments and look at the contents. You
may have to specify a ‘save headers’ or ‘save all headers’ property to
your mail reader; often a mail reader saves only those header fields
that it deems interesting. Use the headers to track the path your email
message has gone through to reach you.

SMS messaging

Email messages are meant to be in a general form that adapts to most
computer systems. They are text-based, so most devices can read and
relay them. They are flexible enough to accommodate many different
types of data objects. By contrast, SMS messages are very specific and
targeted by their nature to a specific carrier technology.

THE CHARACTER OF MESSAGING 269

SMS messages are short messages, 160 characters or less, and are
specifically targeted for mobile phones, usable on a wide range of
networks. They are data messages which are not intended to be viewed
until they are decoded and displayed. The sending of SMS messages
adheres to the push model of message delivery. Messages are sent to a
service center that relays the message and delivers it to its destination.
The service center contacts the receiving device and keeps trying until it
finds the device powered on and receiving messages.

An SMS message follows the standard message format in that there is
a message header and a message body. The header contains information
about the message and the body contains the message itself. The SMS
message below contains the message ‘hello’:

07917283010010F5040BC87238880900F10000993092516195800AE83229BFD46

Note that the data is actually a stream of bits and written above in
hexadecimal. If this message were to be received on a GSM phone,
chances are that phone would display ‘hello’. It is fairly obvious that we
are dealing with a different type of message than we dealt with for email.

Let’s examine this message and by this example examine the SMS
standards for messaging. The table below analyzes the pieces of the
example SMS message above.

Data Field Description

07 The length of the service center information.
In this case, the number is 7 octets.

91 The type of service center address. In this
case, 91 means the phone number has an
international format.

72 83 01 00 10 F5 The service center address in ‘decimal
semi-octets’. Although formatted like octets,
the number reads in decimal digits. Because
the service center address has an odd
number of digits, it is padded with F (all
ones) to pad out the octet. Here, the number
is +27381000015.

270 MESSAGING

Data Field Description

04 Type of message. This is an SMS-DELIVER
message.

0B Sender address length. Here, 0B means the
sender address is 11 digits.

C8 The type of the sender’s address.

72 38 88 09 00 F1 The sender’s address, in decimal
semi-octets. Note the padding. Here the
address is +27838890001.

00 A protocol identifier, establishing the way
we send the rest of the messages.

00 The data coding scheme. SMS messages can
be sent in many types of encoding; the most
popular, used here, is 7-bit data.

99 30 92 51 61 95
80

This is the sending time stamp in
semi-octets. The first 6 octets represent the
date, the next 6 represent the time and the
last two represent the time zone.

0A Length of the message, in this case 5 octets.

E83229BFD46 The actual message, where 8-bit octets are
used for 7-bit data.

Let’s take note of a couple of things about this message. First, the semi-
octet format of the addresses and the timestamp is odd, but readable.
Note that the octets are swapped in this representation (shown in a
little-endian manner). Second, this message is in 7-bit ‘default alphabet’
format. This is an alphabet of 127 characters that contains many of the
most often used international characters. This is a GSM standard. Finally,
to compress as much as possible, the 7-bit representation is encoded in
the 8-bit quantities in a special way.

THE CHARACTER OF MESSAGING 271

SMS messages can have many forms. In the GSM standard, the mes-
sages can, for example, be faxes or pages. The standard also allows
email messages to be sent to GSM phones by way of SMS. In this latter
case, the mobile device is able to treat the message as an email message
and perform email operations on it (like replying to the message, for
example). Adapting SMS messages to these other forms requires both a
service provider that can perform such conversions and software on both
the sender’s and receiver’s devices that can handle these adaptations. For
example, the service provider probably has to provide mapping between
an email address and a phone number and software must be used to cut
large messages into smaller messages that can be sent over SMS.

BIO messaging

Bearer Information Object (BIO) messages are messages meant for the
receiving device, not the user. These messages contain structured data
objects of a known, predetermined format. They can be delivered using
various transports, for example, email, SMS and IR.

Various data objects can be sent as BIO messages, including SMS
configuration messages, configuration settings for various applications
and application data objects.

A good example of a BIO message is one that contains ringtones. A
ringtone is a tune that a mobile phone plays to alert its user of some
condition – say, a call coming in. While mobile phones have many
unique tones to use, many phone manufacturers also provide the ability
to program ringtones and send them to the phone. You can have your
favorite movie theme song play when you get a phone call. Ringtones
are programmed using a textual ‘language’ that can be encapsulated in
an SMS message and sent to a mobile device. Because of directives in
the message header, the phone processes the message rather than display
the message on its screen. Processing a ringtone means decoding the
specification, storing the resulting tone and incorporating the tone in its
list of tones.

Another good example of BIO messaging is the exchange of vCards.
They are electronic versions of business cards, containing names and
contact information. The specification of a vCard is textual and can be
included as an object, for instance, in email. By sending a vCard to a
device, by IR, for example, your contact information can be automatically
inserted into the device’s directory. By indicating in the message header
that the vCard message is a special message, the device intercepts the
vCard and records it, rather than displaying it.

272 MESSAGING

vCard and vCalendar Objects

Virtual business cards and virtual calendar objects are a standard-
ized way to exchange information about contacts and agenda items
between devices. These can be attached to email or sent to another
device via methods such as IR or Bluetooth. They are textual spec-
ifications and, as such, are flexible and adaptable to many different
transports and devices.

The Internet Mail Consortium (IMC) governs the maintenance of the
standards on these objects. The IMC is a group of computer companies
that includes Symbian. Their website is at www.imc.org.

Fax messaging

As a messaging technology, facsimile transmission – that is, the elec-
tronic transmission of images over phone lines – developed in parallel
with computer communication. As standards were developed regarding
digital messages and their transmission, fax standards were developed
independently. In order to integrate a fax standard with the messaging
standards we have discussed, some adaptation has been required.

A fax message is actually an image. Before computers were used
to send faxes, fax machines were developed to scan a piece of paper
into an image in the machine’s memory, to transfer this image to other
machines via a modem and to print the image from memory back to
paper. As computers got involved in this process, they eliminated the
need for paper, and the fax image could be converted from its native
format to one of the more standard image formats that computers use
(e.g., Gif or Jpeg formats). Modems have been adapted to include fax
capability.

The faxing model is compatible with the messaging models we have
discussed. Sending a fax follows the push model of messaging, where
the sender keeps trying to send the fax until the intended recipient fax
machine can receive it. As a message, a fax transmission has a body: the
image that is transmitted. We have to stretch the model a bit to find a
message header, however. For a fax message, implementations typically
consider the cover page of the fax transmission to be its header. It contains

THE CHARACTER OF MESSAGING 273

information typically found in a message header – source and destination
information, for example – and it precedes the message body.

The data format of a fax transmission is specified by the Comité Consul-
tatif International Téléphonique et Télégraphique (CCITT), now known by
the name of its parent organization, the International Telecommunication
Union (ITU). The format of the graphics image is specified but is outside
the scope of this book. It is the job of the sending machine to convert any
text or images to that graphics format, to use the fax mode of an attached
communications device and to push the graphics data stream through to
the recipient.

Sending a fax is typically done through a modem with fax capability.
There is also faxing capability built into the GSM standard. Mobile devices
that use GSM therefore have the capability of sending fax messages
through the GSM service.

The Fax Image Format

You can find more information about the fax image format on the web.
However, CCITT Group 4 standards are a bit hard to find, because fax
images are specified as TIFF class F images. More information on TIFF
class F can be found in [Campbell 1990].

Message Modeling

Messages have several common characteristics. Figure 13.3 depicts these
characteristics and adds a few more. Messages are composed of delivery
information and content and are generally characterized by message
types.

Delivery information is composed of sender information, destination
information and timestamp information. Email messages, for example,
contain all this information textually in the header of a message. Sender
information is contained in the ‘Received:’ and ‘From:’ fields; destination
information is kept in the ‘To:’ field; and timestamp information is found
in the ‘Date:’ field.

Content has three parts: properties, message content and possibly a
set of data objects or attachments. An email message can again serve
as a straightforward example. There are pieces of message header that
specify certain properties of the message; the Content-Type: and

274 MESSAGING

Delivery
information

Type

Message

Content

Sender

Destination

Timestamp

Attachments

Text

Properties

Transport

Interface data
Viewing
methods

Editing
methods

Figure 13.3 The relationships between component parts of a message

Content-Length: fields, for example, indicate the MIME properties
and the length of the body. The message itself is contained in the body
of an email message as text. In email, data objects can also appear in the
message body as MIME attachments.

Each message also has a message type. The type of a message is the
definition of a larger class of messages that describes general character-
istics of that class. A message type cannot describe the specific contents
of a message, but it can describe properties of the message class. These
properties include:

• the editing function: this property is a description of how to edit a
message of a particular message type; on a smartphone device, this
‘description’ takes the form of an implementation of a message-editor
application

• the viewing function: this property describes how to view a message
of a particular message type; on a smartphone, this ‘description’ can
be an implementation of a message-viewer application

• user-interface data: there can be certain data associated with user
interfaces that deal with a certain message type, including items such
as icons and progress-dialog interfaces to display for the message type

• the transport function: messages of a certain type are transported
in the same way to and from their destinations or repositories; the
implementation of this transport is associated with the message type
and not each individual message.

THE SYMBIAN OS MESSAGING MODEL 275

Let’s look at email messages again. All messages that are of the ‘email’
class of messages might be viewed the same way – through an email
viewer that can present the textual message with tools to view header
information as well as any attachments to the email. There is a com-
mon composition (editing) interface that you can use to compose new
messages or edit draft messages. There is a set of user-interface defini-
tions – some icons for email applications to display, for example – that
can be accessed. Finally, email is transported to a server via SMTP and
received from a server via POP3 or IMAP4. (Since there are three transport
functions, one could argue that there are actually three message types for
email. Symbian OS views it this way as well.)

If we expand our view to other types of messages, we can see that the
framework established for Symbian OS works for any type of message
we have encountered. Fax, SMS and BIO messages all have this format,
albeit with different implementations for each component.

13.2 The Symbian OS Messaging Model

We examine Symbian OS as an example of an operating system built to
handle messaging in its basic design.

When building the messaging system, Symbian OS designers were
guided by the need to put together a generic framework that could handle
the components of many different message types. They built a framework
that viewed all messages as composed of generic components. Through
the use of object orientation, each message type is handled by a separate
implementation of those generic components. Symbian OS message
architecture brings these implementations together under a common
messaging application and a common API.

Symbian OS uses message type modules (MTMs) to define message
types. An MTM is composed of four classes that are used as base classes
for specific message-handling implementations:

• the user-interface MTM is defined as the CBaseMtmUi class and
defines user-interface capabilities, such as viewing and editing mes-
sages

• the client-side MTM defined as the CBaseMtm class handles the
interface between the internal representation of a message’s data and
the user-interface MTM

276 MESSAGING

• the user-interface-data MTM is represented by the CBaseMtmUiData
class and provides access to user-interface-data properties (e.g., icons)

• the server-side MTM is defined in the CBaseServerMtm class and
provides message-transport capability.

Each message type, then, has an implementation of each of these
MTMs, subclassing their definitions from the classes above. Some message
types can share MTMs; IMAP email and POP email, for example, can
share the same user interface MTM while having different server-side and
client-side MTMs.

Some Perspective on this Architecture
This way of modeling messages is powerful and very effective. Through
various MTM implementations, Symbian OS supports its four main mes-
sage formats (email, SMS, fax and BIO formats) as well as several formats
that work behind the scenes to implement other protocols.

It is interesting to examine the disparity between the various forms
of messaging under the MTM framework. Fax messaging, for instance,
is vastly different from SMS messaging, yet both fit comfortably in this
model. Although a fax has different delivery requirements from an SMS
message and must be viewed as an image, where SMS can be viewed as
text, both can still be integrated with the same messaging application on
a Symbian OS device.

The large number of different forms of messaging results in a large
number of MTM implementations. Any messaging application must be
able to sift through these implementations to find the necessary MTMs
as quickly as possible. Symbian OS helps in this endeavor by providing
a registry of installed MTMs that are accessible to an application. This
registry allows MTM components to be identified and instantiated quickly
and easily.

Now consider this structure from a programmer’s perspective. Imagine
you are a programmer who wants to implement the sending of an SMS
message as a small part of a larger application. It would be quite daunting
for you to use the MTM framework in all its glory to send a ‘simple’ SMS
message. In fact, you might just reject the idea as not worth the time and
effort. The designers of the MTM model understood that a complicated
structure might frustrate programmers who want to do simpler tasks,
so they added something to the architecture called send-as messaging.
Send-as messaging provides a simple interface that allows applications

THE SYMBIAN OS MESSAGING MODEL 277

to create outgoing messages by using a single API. By using send-as
messaging, a programmer uses one interface for any message and simply
informs the OS what type of message to send; the OS implementation
figures out which MTMs to use and how to send the message. This is
a powerful idea and it reinforces the modularity of the MTM structure.
It has proven to be an easy and effective interface. It is so effective, in
fact, that many applications use it to transport data other than traditional
messages. The Agenda engine, for example, uses send-as messaging to
send vCalendar objects over the IR interface.

Message Server Functions

Symbian OS considers the data repository for messages as a resource that
can be shared between processes. Therefore, following Symbian OS and
microkernel standards, there is a server that protects this repository and
manages access to it. Any application that wants to handle messages in
some way must become a client and make requests to the message server.
The message server implements two valuable functions.

• Access to the message-data repository: as clients request message
access, the message server delegates temporary, exclusive access
to message data. The message server must keep the message data
repository correctly ordered and must cope with anomalous message
events correctly. For example, access failures or incomplete sessions
must not corrupt the message data.

• Access to MTMs: the message server must enable applications to
identify requests, such as the sending of a message, that require
protocol-specific functionality and load the appropriate MTM.

The message server accepts requests from client applications that
require access to messages and MTMs. These requests are handled
asynchronously, as they might require a large amount of time to perform
(fax messages, for example, typically take much more time to process than
email messages). Requests can include changing the structure or contents
of the local folders, sending and receiving messages through different
services, changing the structure or contents of remote mailboxes, and
MTM-specific requests. Note that actions such as delivery and storage
concepts such as local folders and remote mailboxes are all managed by
the message server.

278 MESSAGING

The Root

Service Service Service...

folders folders folders

more folders

Figure 13.4 The Symbian OS message model structure

Storage and Message Structure

The Symbian OS message store has a specific structure. The diagram in
Figure 13.4 shows an overview of this structure.

Messages are stored in folders, which are accessed as children of
services. A service can be viewed as a message source: an ISP is a service,
as is local, on-device storage. Folders can be user-defined or system-
defined; for example, in and out boxes are defined by the system and are
applicable under the local storage service. Folders can have subfolders,
which can have subfolders, etc. This hierarchical organization of the
storage structure means that access to messages requires a walk through
the storage tree before access is granted to a message.

Messages themselves also have a structure, shown in the table below:

Message Component Type of data

Generic message header Message-index-entry data

MTM-specific information MTM-stream data

Message body Rich text data in message store

Attachments Attachment files stored in the
message’s store

THE SYMBIAN OS MESSAGING MODEL 279

Message-index entries have a specific format. That format is quite large
and we will not reproduce it here. Suffice to say that both delivery and
content-header information is stored here and that this information varies
by MTM. The MTM-stream data is specifically formatted for the type of
MTM that is used for the message. Obviously, this information also varies
by MTM. The message body is a formatted object that contains text as
well as formatting information. Details about attachments are found in
the message header – the index portion – but the data files themselves are
stored in their own format in the message store after the message body.

Manipulating Messages
To appreciate the Symbian OS message architecture in motion, let’s take
an overview look at what it takes to send and receive messages.

To access messages, we must create and manipulate several Symbian
OS objects. First, we must create a session with the message server. Next,
we must initialize contact with the message-system registry in such a way
that we can create MTMs later to handle messages. Finally, we access the
message system by walking through the message structure tree: we access
the system root, then find the message’s service, then the message’s folder
(and possibly subfolders), and then we access the message.

A session with the message server is initiated by system calls from the
client. Sessions can be opened synchronously or asynchronously.

After establishing a server session, the next step is to open the registry
so that we can access MTM objects when we need them. There are three
kinds of access into the registry: one to access client-side MTMs, one to
access user-interface MTMs, and one to access user-interface-data MTMs.
Each access is implemented by its own class and their own system calls.
They are derived from the same base classes and have similar definitions.

Once we have a valid message-server session established and we have
access to the registry, we can access the message-tree structure. Let’s look
at the characteristics of an entry in the message tree. An entry includes
the following properties:

• an entry ID

• the header information

• an ‘owning service’, i.e., the parent of an entry

• a certain number of children (for the root and inner-tree nodes)

• file storage

• an MTM list.

280 MESSAGING

Behind the Scenes

Stop for a moment and consider what is going on behind the scenes
of remote-message transfer. The implementation of this is different for
different message types.

Consider a session with a remote email server. The local device’s copy
and move operations access the server through the existing socket and
pass commands to the server through this socket. These operations do
not need additional connections as one already exists.

Finally there are implementations of different MTMs, which include
functions that are specific to each MTM and do not generalize to all
MTMs. For example, an email-message MTM that uses POP3 would
need functions to connect to and disconnect from the POP3 server. A
BIO-message MTM would not need a function to connect to a server
because there is no server for BIO messages (they are pushed to a device).
On the other hand, a BIO-message MTM needs a function to process the
BIO-message content. This applies to SMS and fax messages as well. Each
MTM implementation requires its own system calls.

The messaging architecture provides a way for MTM components to
offer protocol-specific functionality not provided by base-class-interface
functions. These MTM-specific functions are implemented in the MTM
and assigned IDs that correspond to each protocol-specific operation
offered.

Easy Sending of Messages: Send-As Messaging

By now you might be a little taken aback by the complexity of message
handling and the message architecture of Symbian OS. While it is true that
the architecture is big and complex – after all, it must handle messages as
different as faxes and SMS messages – the designers of Symbian OS have
streamlined the process we use to send messages. The sending process is
relatively short and very straightforward. Let’s review that process in this
section.

The sending procedure is called send-as messaging. It is a generic
process – i.e., one process for all message types – that uses a message
type’s MTM to guide the sending process. It is a powerful model that can
be used to send messages of all types and even to transfer data in unique
ways. The procedure follows the sequence we outlined in the last section.

Send-as messaging centers on the CSendAs class and is accomplished
by the following steps:

MESSAGE HANDLING IN LINUX 281

1. Choose the MTM that the CSendAs object uses to send the message.
This can be done in two ways: we can set the MTM directly or we
can use a CSendAs object to search for the MTM we need.

2. Choose the service to use for the outgoing message.

3. Create the message (and all its parts) as a CSendAs object. Once the
message for the CSendAs object has been created, we can create
and modify its components: the recipients, the subject, contents of
the body, and so forth.

4. Save and send the message means saving it into the appropriate
service’s message store.

Receiving Messages
Applications can work with the messaging system and message arrival.
While the message server itself handles the listening and message-
transport functions, applications can register themselves to be notified
upon message arrival.

Registration occurs when a connection with the message server is
established. Recall that connecting with the message server requires a
parameter that is an object of the MMsvSessionObserver class.

The message server calls a specific function from the class object
passed during the server connection whenever a ‘message event’ occurs.
A code that signifies which event occurred is passed in the first parameter
and up to three pointers to data areas that apply to the message event
make up the rest of the function call’s parameter list.

13.3 Message Handling in Linux

Where messaging may seem quite complex on Symbian OS, it is positively
simple on Linux. As an illustration and contrast, let’s overview how
messages are handled by the Linux operating system.

Message Models in Linux
As we have seen before, Linux designers usually take the simplest route
they can when dealing with complex situations. Messaging is no excep-
tion. There is little built-in support for messages or message types in the
Linux kernel. Any message modeling or message structure must be built

282 MESSAGING

and configured by applications or by third-party developers designing
modules for Linux. Email messages represent an exception: there is some
small support for email in Linux.

Linux message structure is quite straightforward. Text files represent
email messages; any other kind of messages are built and used by the
applications that implement them. Even attachments to email require
message-processing programs supplied outside of the operating system.
Linux supplies the mechanism to receive messages and place them in a
file. Any reading of messages must access the message file and process
that file in a way appropriate to the message type.

In a sense, this approach to messages utilizes abstraction – except that
it is not built into the operating system. Linux supplies the base operation
and assumes that any further processing is provided by an outside source.
In like manner, Symbian OS provides the base processing and assumes
that further processing of a message is supplied by outside MTMs. The
major difference between these two is the lack of a model in Linux. Linux
simply assumes that applications are provided to process the text file
message that has just been received.

Sending Messages

The communications medium over which messages travel is a shared
resource in Linux. Whether it is a network or a Bluetooth connection,
Linux usually provides a server that shares the resource between the
processes that require it.

The reasoning for these Linux servers, however, is a bit different than
the reasoning behind servers in a microkernel operating system like
Symbian OS. For Linux, servers implement protocols. These protocols
are complicated enough that a server is designed to handle the complex
nature of the communication. The server implementation is an assistant
to developers that want to use the resource, but that is all. The server
does not protect the resource; in fact, if an application were to want to
use the resource, the system would gladly allow the access. This means
that, while sending messages in Linux is aided by opening a connection
to a server, that connection is not technically necessary.

However, sending messages in Linux is helped by various message
servers. Consider email. There are several email servers that run under
Linux; a popular application for this service is the ‘sendmail’ server.
A sendmail server receives an email message from a client, processes
that message by reviewing the textual message contents and opens a

SUMMARY 283

connection to a remote server by way of delivering the message. There is
no special format other than the format of an email message itself (which
is public-domain specification).

There is nothing special about an email server. In fact, if an email
client wanted to send its email directly to the receiver’s email server,
it could certainly do so. The network connection would be shared by
the operating system through the abstraction of sockets. The ‘sendmail’
process could easily be bypassed.

Receiving and Delivering Messages

As you might expect from a Linux system, receipt and delivery of messages
is very simple as well. The computers that are configured to receive
messages run a server that listens for incoming messages, receives those
messages and stores them. Again, a server is used because it is convenient
not because it is managing the shared communication medium.

Email again makes a great example. The ‘sendmail’ server processes
incoming messages as well as outgoing messages. It listens for con-
nections – as it always does – and delivers messages to local as well as
remote computers. Notice that this action is the same action we discussed
in the last section. The server’s actions are very straightforward – receive
a message, determine the destination, and either send it on or store it
locally. Local storage is as a text file.

Sometimes the simplicity of Linux is a liability. The simplicity of
‘receive a message’ and ‘deliver a message’ has degraded system security
in the past. A practice called relaying is used to send an email from an
outside party to an outside party. This would not be such a bad practice
were it not for spam email or unsolicited email. Often, a relayed message
comes into an email server with 100s of email addresses as destinations.
The resulting delivery is not only a burden on the delivery server, but
it also shields the sender’s address. Relaying is a practice that is on the
decline, mostly because of new verification mechanisms built into Linux
email servers.

13.4 Summary

In this chapter, we have discussed the messaging frameworks of operating
systems. Since messages vary widely in content but can be roughly
categorized by form, frameworks have been designed to be generic

284 MESSAGING

enough to handle all forms of messages and to allow specialization of
message handling.

We reviewed the components of a message and outlined the structure
of message implementations for each message type. We then discussed
the way that Symbian OS addresses messages, from the message server,
the process that manages messaging stores and facilities, to the detailed
ways that we interact with the message server to read and send email.
We also discussed ‘send-as messaging’, which is a convenient way
to send messages through a simple interface, using functions common
to all message types. We then contrasted the Symbian OS approach
with the Linux approach. We noted how a simple, usually text-based,
approach to messages can be abstract, allowing for the same interfaces
to work with many different message types, and also allow for the other
implementations to co-exist with current servers.

Exercises

1. Why are email messages always in readable text?

2. Is sending a fax an example of the push or pull model of messaging?

3. Why does Symbian OS use message servers? Why are clients not
allowed to access messages directly?

4. Let’s say that a new message format is invented that is like the SMS
format, but can be sent over a local area network. If you had to
implement a receiver for this kind of message, would you rather use
the approach of Linux or Symbian OS? Explain your answer.

5. Smartphones have powerful computers in them. Why would it not
work to make a smartphone into a mail server?

14
Security

The Great Wall of China is an amazing feat of architecture. Started during
China’s Zhou dynasty around 600 BC, the Great Wall still stands today.
It has been fortified and repaired and today runs for over 5000 kilometers
through northern China. Its purpose was chiefly defensive in nature: it
was a protective barrier between China and marauding tribes to the north.
Protection – keeping those who do not belong out – was the reason the
wall was built. When the wall was breached for the last time by the
Manchurians in 1644, it is said that the wall was still doing its job and
that a weakness in the government allowed others to take power.

While the Great Wall provided protection, it did not provide security.
Protection is a barrier keeping everything out. Security allows certain
things in. Security represents ‘smart protection’: protection is part of what
it does but there are added elements that determine if entrance into a
secure area is allowed.

In the context of an operating system, security has several facets. There
are many levels that must be secure. There must be a consideration of the
environment external to a computer system. Access to system elements
must be protected and authorized access must be granted. Security
needs to prevent malicious destruction and accidental misuse but allow
permissible access. Protection means more than simply preventing access;
security requires more than allowing entry into the system.

This chapter explores what security means to computer systems in
general and smartphones in detail. We examine the ways that data can
be misused and corrupted and present ways to guard against malicious
misuse.

286 SECURITY

14.1 Understanding Security Issues

It has been said that the only truly secure computer is one without
power – turn a computer off and it is fully secure. Security is difficult to
implement correctly.

In fact, total security cannot be achieved. A system is secure if its
resources are accessed and manipulated as intended in all circumstances.
This implies a guarantee, something which cannot be given. Security
violations occur because someone tried a way that was not blocked.
Unfortunately, system designers are only human and the components of
complex operating systems sometimes interact in unforeseen ways.

A classic security problem was revealed in Unix systems in the 1980s.
Unix had (and still has) a command called ‘finger’ that queries another
computer to see user information. Someone discovered that if you give
the name of a user in just the right way, you can overflow an internal
buffer (which was fixed at a static size) and push the overflowing data into
the executable part of the program. By structuring the query to contain
executable instruction data, a person could send a ‘query’ that was too
large and force the finger server to execute the code that had overflowed
into the executable data. And since the finger server ran with very high
privileges, a person could run programs as the system administrator. All
this because a programmer put a static bound on an array!

While we cannot guarantee the protection of a system, it is possible
to make the cost of system access very high. Operating system security
measures must secure all foreseen methods of accessing a system so
that using an unforeseen method is very costly. To make this cost high,
security must be exercised at four levels:

• physical access to the computer or device must be secured against
intruders; this means securing room access or keeping track of a
mobile phone

• human users must be screened to ensure that system access is done
by trusted individuals and those that access a system are who they
purport to be

• network access is implemented over wired lines or wireless connec-
tions, using Ethernet and mobile phone technologies; networks carry
data and provide a way to break in

• the operating system must protect and secure itself; all access must be
screened to determine if it is proper or not.

AUTHORIZATION 287

Both network and operating system security depend on a secure
physical environment and access from trusted individuals. No matter
how secure the operating system of your phone is, putting it on a table
and walking away encourages someone to steal it and access your data.
Allowing access to data to a person you think you trust who then gives
that access to malicious users (perhaps for money) cannot be predicted
or prevented by an operating system.

Because of the implications of an insecure system, it is worth consider-
able time and effort to make systems secure. Often this seems like a losing
game. For example, designers that are working on securing Linux also
publish the source code to the operating system. Such open source code is
scrutinized by far more people than are working on the implementation.
While hundreds might be working on security implementation, thousands
might be using the source code to gain access.

The remainder of this chapter focuses on operating system security.
The other areas of security, especially physical and human security, are
beyond the scope of this book.

14.2 Authorization

When a system function is used or data is accessed, there is a fundamental
assumption that the access is authorized. It is rare for an operating system
to ask for authorization before performing these functions (but it does
happen occasionally). We explore what authorization means in this
section.

Authorization means ‘to be given authority’. In turn, to be given
authority implies two things: it did not exist before and it was given by
some other authorized entity. So if you are authorized to do something,
you probably had to ask for authorization. The person who authorized
you verified your request and granted you authority. Often, authorization
is demonstrated by a token or symbol that is recognizable. A police officer
is usually authorized by his uniform; a plain-clothes officer requires a
badge to show her authorization. Sometimes, however, authorization is
not questioned. In this case, authorization is assumed or not required.
For example, it is not typical to need to show authorization to enter a
public library; the assumption is that anyone may use the library, so any
use does not need authorization.

In an operating system, a process carries information about itself that
can be used as tokens of authority. A process has a process ID and

288 SECURITY

owner and group designations. It also records the date and time of its
creation and which process created it. In most cases, this information set
is enough to pick from. This information is assigned when a process is
created, derived from the parent that created it.

Take, for example, a process hierarchy in a Unix system. Upon login,
a user can be granted shell access. The shell is a process whose job it is
to communicate with the user and execute commands on his behalf. The
shell process has the owner and group information assigned to it by the
operating system login process. Any process spawned by this shell derives
owner and group information from the shell. If the shell is authorized to
do something, a command spawned by the shell is authorized to do the
same.

Sometimes authority in a computer system is given to any process. In
Microsoft Windows 98 and earlier versions, authority was given to any
process simply because they were running on the system. These versions
of Windows did not require authorization to perform operating system
tasks. For example, if you were using the computer, you could delete
any and all files on the system’s hard drive. Even in more recent versions
of Windows, the permissions on files have been set to allow maximum
access with minimal user security.

14.3 Authentication

Because authority is mostly assumed in an operating system, getting
that authority is a function that must be administered carefully. If a
process is to grant access to the computer system to someone, the identity
of that person must be verified or authenticated. Authentication is the
verification of identifying characteristics and is an extremely important
part of security, because, as stated in the previous section, authority
is often not verified. Authentication is usually user-based. A user must
identify herself in a manner that the system can verify. Authentication is
usually based on one or more of three elements: what you know, what
you have or who you are.

What You Know

Authentication based on what you know usually takes the form of some
kind of password or ‘passalgorithm’ system. It is very common to base
security systems on passwords. Password systems usually ask for a user

AUTHENTICATION 289

identifier and a password that has been assigned to that identifier as the
basis for authentication. The user identifier is probably public knowledge
but the password should be unique to a user.

Passwords work on many levels. They are most often used to gain
permission to use a computer system. If system security is more fine-
grained, passwords can be applied to system resources. The network
device, for example, may be password-protected in many operating
systems and its use forces the operating system to ask the user for
the password. An even finer-grained approach could allow different
passwords to reflect different access rights: one password would allow
reading a file while another would allow reading and writing.

While passwords are common, they are not foolproof and have proven
very vulnerable in the history of operating systems. The problem with
passwords is that they must be remembered for the user to use them. This
means that the temptation to make them easy to remember is very great.
And if a password is easy to remember, it is also easy to guess. The most
common type of attack against system passwords is called the dictionary
attack, which simply walks through a dictionary and tries all the word
and variants on those words as passwords. Such attacks are easily done
and well documented (as are ways to foil such attempts).

Password storage is an issue that can make an operating system
vulnerable. On open-source operating systems such as Linux, where the
password-storage methods are available for all to examine, attacks are
frequent and passwords are vulnerable. Often passwords are stored in a
location separate from other user information, a location that can only be
accessed by processes with high system privileges.

Password encryption is often used to safeguard storage. To make
encryption difficult, encryption algorithms often use salts or keys to get
started. These are character sequences that are used by the algorithms to
offset encoding in special ways. Unfortunately, the salt or key must be
known ahead of time to reproduce the same encryption – or to produce
a decryption. This means that the salt or key must also be stored on
the computer system and could be accessible by those seeking to break
passwords.

Consider Unix password encoding. Unix uses a well-known encryp-
tion algorithm that needs a two-character salt to get started. The algorithm
produces an output – the encoded password – which is combined with
the salt that was used and stored. Anyone with access to the password
would also have access to the salt and could decrypt the password. How-
ever, while Unix designers used a well-known encryption algorithm to

290 SECURITY

encrypt, they did not provide the facilities to decrypt. And the well-known
algorithm they used was a very complicated one. This means that Unix
can easily encrypt passwords but not easily decrypt them. If you provide
Unix with your password, the only way to verify that your password is
correct is to encrypt it and to compare the encrypted versions. This is
why a system administrator on a Unix system cannot tell you what your
password is; she can only change it.

Passwords are not the only authentication method that focuses on
what you know. Passalgorithms are algorithms used to derive a password
or phrase. For example, a passalgorithm could be as simple as the
current day of the week concatenated with the day of the month. So the
password on Monday, June 26, becomes ‘monday26’. Often these types
of algorithms are used in challenge–response security systems. When a
user wants entrance into a system, the system generates a random word or
phrase and asks the user for the password, based on working that phrase
through the passalgorithm.

What You Have

Sometimes, passwords are not unique or secure enough and passalgo-
rithms are too complex for humans to work through them quickly. Then
it becomes a matter of computing passwords or otherwise authenticating
with some kind of device that a user must carry with him.

Often, when high security is required, people use devices to generate
passwords based on the time of day or some complicated algorithm. The
same methods are used by the computers that verify identity: the same
algorithms generate the same output and the output is compared. These
are often used with challenge–response systems where the challenge is
a character string to be typed into a handheld device that produces some
other character string that the user answers with.

Who You Are

One element that no one can duplicate is who you are. There are aspects
of each person that are truly unique and very hard to duplicate. These
make great sources for authentication.

One aspect of an individual is personal information. There are several
pieces of personal information that each person possesses. These include
name, gender, birth date, age, government identification numbers, etc.
When combined, these can form a unique information set that can be used

SYSTEM THREATS 291

to identify people. Personal information is used on many websites to gain
access. For example, many banking websites ask for your government
identification number and your name or email address. Combining these
produces information that is sufficiently private and difficult to guess.

Physical characteristics are another personal aspect that is very hard to
duplicate. Fingerprints, voice characteristics and retinal blood vessel pat-
terns are examples of unique human characteristics that can be sampled
for user authentication. Biometrics, as this area of identification is called,
are useful when the means of sampling them is inexpensive. Currently,
fingerprints are easy to sample – fingerprint readers come standard on
some computers. Retinal scans are expensive to take.

When No Authentication is Used
We mentioned older operating systems that did not use authentication.
One would think that all modern operating systems use authentication.
There are several cases, however, where authentication still is not used.

Consider a situation where a computer is a single-user device, as is
the case for smartphones. For these devices, ownership is equivalent to
authentication and possession of a device means that one should be
granted access to it. Computers in public places, such as libraries, are
also systems that would be difficult to use if authentication was to be
enforced.

Security is still required in these situations. If authority is granted to any
entity, the main concern is that any action that goes on is assumed to be
authorized. Some systems, such as those in libraries, simply accept this
fact and realize that systems can be modified at will. The administrators
of systems of this type simply reinstall the computers at regular intervals
to erase any malicious programs that might be on them. Other systems
ask many permission questions. When software is to be installed, for
example, the system might ask if installation is intended – and ask it
several times. Still other systems tighten security around specific system
functions such as writing data to a file or installing applications – while
allowing all other functions to continue unchecked. Symbian OS falls
into this last group.

14.4 System Threats

We go through a lot of trouble authenticating users and meticulously
granting authority to perform specific functions. This is because the world

292 SECURITY

outside a computer system usually contains some person or application
that wants access. There are always attacks on computer systems and
there are constant attempts to gain access to computers.

The security of passwords is threatened by many things including the
people using them. Humans are fallible people and they develop habits
regarding passwords that are helpful to them but harmful to security.
People use obvious information in their passwords or invent phrases that
are easily guessed. Dictionary attacks take advantage of these bad habits.
People also write down their passwords and place them in desk drawers
or stick them to monitors. Unless passwords are chosen very carefully,
and protected well, they can – and will – be discovered.

Trojan horses and spyware are ways to gain access to systems. When
a program or application masquerades as one type of program but
actually has more than one function (especially functions that are not
documented), that program is called a Trojan horse. For example, a
program that listed your files, but deleted them as it was listing them,
would be a Trojan horse. Even worse are programs that install other
applications when they are executed. Spyware does this: it piggybacks
on an application, which installs and runs the spyware. The spyware
replicates itself this way and consumes system resources.

Buffer overflows are a common threat to system security. As we
mentioned before, a buffer overflow is a condition that results from an
application trying to store data in a buffer that is too small. The result
is data that overwrites adjacent memory locations. This overflow could
corrupt data or write sections of executable code, as in the finger example.
Buffer overflows can cause a program to crash, can corrupt data or can
be a security breach. Preventing buffer overflows can prove difficult.

A virus is a program that ‘infects’ another program by embedding
executable code in it. The next time the infected program is run, it
does different things because new, embedded code is now executed.
Viruses may infect many programs and are usually designed to propagate
themselves. Infected programs are detectable by virus-checking software
because infections follow a specific pattern and are usually targeted at
specific programs.

Worms are programs that are introduced on systems without any
permission. This may be through bugs in an existing program or through
well-intentioned, but exploitable, features. A good example of this is a
worm that spread through Microsoft SQL Server 2000. This worm used
a buffer overflow, which existed in the way SQL handles data sent to its
Microsoft SQL monitor port. The worm would send data to the monitor

SECURITY ON SMARTPHONES 293

port, which processed the data and executed code during the processing.
The buffer overflow wrote code into the executable portion of SQL
Server, and the data processing was the attacker’s code. In addition, since
Microsoft SQL Server 2000 runs with system administrator privileges, the
attacker’s code also ran with such privileges. Fortunately, the worm did
not contain any additional malicious content; however, because of the
nature of the worm and the speed at which it attempts to re-infect systems,
it caused a denial-of-service attack against infected networks.

Denial-of-service attacks are threats to networks. An attacker might
flood a network with data, filling the network to capacity and making
any other kind of network traffic difficult. An attacker might target a
single service – say, a web service – and send a flood of HTTP requests,
thereby shutting down service to requests from any other source. Denial-
of-service attacks become even more insidious when they come from
multiple sources – called distributed denial-of-service attacks. In dis-
tributed denial-of-service attacks, many computers team up to bring
down a computer or website.

There are many other types of threat that exist. The number of attacks
on computers is limited only by human ingenuity.

Many operating systems are designed by concentrating on how to
manage the computer system and laying on security after that initial
design. The result is usually security that does not fit correctly with all
computer use. Examples abound. In the early design of Unix system
services such as trivial-file-transfer protocol (TFTP) were designed with
no authentication in mind, allowing any file to be transferred anywhere.
The invention and use of email spam initially resulted from a feature
designed by trusting mail transport designers. These designers allowed
one message to be sent to a site from anywhere and they allowed it to go
to many destinations at once.

14.5 Security on Smartphones

Smartphones provide a difficult environment to make secure. They are
single-user devices and require no user authentication to use basic func-
tions. Even more complicated functions (such as installing applications)
require authorization but no authentication.1 However, they run on

1 Bluetooth usage is an exception to this. The Bluetooth protocols specify a passkey be
used to allow Bluetooth functionality between phones.

294 SECURITY

complex operating systems with many ways to bring data – including
executing programs – in and out. Safeguarding these environments is
complicated.

Symbian OS is a good example. Users expect Symbian OS smartphones
to allow any kind of use without authentication – no logging in or verifying
your identity. Yet, as we have found out in this book, an operating system
as complicated as Symbian OS is very capable yet also susceptible to
viruses, worms, and other malicious programs. Versions of Symbian OS
prior to v9 offered a gatekeeper type of security: the system asked the user
for permission for every installed application. The thinking in this design
was that only user-installed applications could cause system havoc and
an informed user would know what programs he intended to install and
what programs were malicious. The user is trusted to use them wisely.

This gatekeeper design has a lot of merit. For example, a new smart-
phone with no user-installed applications would be a system that could
run without error. Installing only applications that a user knew were
not malicious would logically maintain the security of the system. The
problem with this design is that users do not always know the com-
plete ramifications of the software they are installing. There are viruses
that masquerade as useful programs, performing useful functions while
silently installing malicious code. Normal users are unable to verify the
complete trustworthiness of all the software available.

This verification of trust is what prompted a complete redesign of
platform security for Symbian OS v9. This version of the operating system
keeps the gatekeeper model, but takes the responsibility for verifying
software away from the user. Software developers are now responsible
for verifying their own software through a process called signing and
the system verifies the developer’s claim. Not all software requires such
verification, only those that access certain system functions. When an
application requires signing, this is done through a series of steps:

1. The software developer must obtain a vendor ID from a certificate
authority. These trusted parties are certified by Symbian.

2. When a developer has developed a software package and wants to
distribute it, he must submit his package to an independent test house
for validation. The developer submits his vendor ID, the software,
and a list of ways that the software accesses the system.

3. The test house then verifies that the list of software access types is
complete and that no other type of access occurs. If the test house

SECURITY ON SMARTPHONES 295

can make this verification, the software is signed by it. This means
that the installation package has a special amount of information that
details what it does to a Symbian OS system and that it may actually
do that.

4. The installation package is sent back signed to the software developer
and may now be distributed to users.

Note that this method depends on how the software accesses system
resources. Symbian OS says that in order to access a system resource,
a program must have the capability to access the resource. This idea of
capabilities is built into the kernel of Symbian OS. When a process is
created, part of its PCB records the capabilities granted to the process.
Should the process try to perform an access that was not listed in these
capabilities, the access would be denied by the kernel and a program
error would result.

The result of this seemingly elaborate process to distribute signed
applications is a trust system in which an automated gatekeeper built into
Symbian OS can verify software to be installed. The installation process
checks the signage of the installation package. If the signing of the
package is valid, the capabilities granted to the software are recorded and
these are the capabilities granted to the application by the kernel when
it executes. The diagram in Figure 14.1 depicts the trust relationships in
Symbian OS v9.

Messaging

Wserv

etel

esock

MMF

Kernel, F32, SWInstall

SWInstall is the
gatekeeper

Trusted-computing base:
full ability to modify file system;

contains Kernel, F32 and
SWInstall

Trusted-computing environment:
system servers run with different

privileges

Unsigned software:
untrustworthy applications that do not

affect file systems or the system
environment

Signed applications:
less-trusted software that is

signed according to its
stated purpose

Figure 14.1 The trust relationships in Symbian OS v9

296 SECURITY

Note here that there are several levels of trust built into the system.
There are some applications that do not access system resources at all,
and therefore do not require signing. An example of this might be an
application that only displays something on the screen. These applications
are not trusted, but they do not need to be. The next level of trust is made
up of user-level signed applications. These signed applications are only
granted the capabilities they need. The third level of trust is made up of
system servers. Like user-level applications, these servers may only need
certain capabilities to perform their duties. In a microkernel architecture
such as Symbian OS, these servers run at the user-level and are trusted like
user-level applications. Finally, there is a class of programs that requires
full trust of the system. This set of programs has the full ability to change
the system and is made up of kernel code.

There are several aspects to this system that might seem questionable.
For example, is this elaborate process really necessary (especially when
it costs money to do)? The answer is yes: the Symbian Signed system
replaces users as the verifier of software integrity and real verification
is done. This process might seem to make development difficult: does
each test on real hardware require a new signed installation package? To
answer this, Symbian OS recognizes the need for developer certificates. A
developer must get a special signed digital certificate that is time limited
(usually for six months) and specific to a particular smartphone. The
developer can then build his own installation packages with the digital
certificate.

In addition to this gatekeeping function in Symbian OS v9, Symbian
OS also employs something called data caging, which organizes data
into certain directories. Executable code only exists in one directory, for
example, that is writable only by the software installation application.
In addition, data written by applications can only be written into one
directory, which is private and inaccessible from other programs.

14.6 Summary

This chapter has provided an overview of operating system security. We
began by introducing general security concepts. We then discussed how
authorization and authentication are used to ensure secure system access.
We then outlined some of the threats that can jeopardize operating system
access. We concluded by taking a look at the security of Symbian OS.

EXERCISES 297

Exercises

1. Passwords can be problematic. Devise a few schemes that choose
good passwords but allow them to be remembered.

2. Files have characteristics that can be used to see if they have been
tampered with. Describe which characteristics of a file could reveal
corruption.

3. One method used for system security on mobile phones is a pass-
worded screen-saver application. A screen saver locks the screen
after a period of idle time and any use of the phone makes the
application ask for a password before allowing use. Discuss this as a
method of security. How much security does this provide? Is it good
enough for authentication?

4. Suppose a program advertised itself as installing a set of cool ringtones
on your mobile phone. You download this program and, when
Symbian OS asks you, you allow installation. You might get ringtones
when the program is run, but you also get a process that waits for
two weeks and then deletes all the files on your phone. How does
Symbian OS v9 catch this type of Trojan horse?

5. In 1988, Robert Morris unleashed an infamous attack on the Internet
with a worm of his design. It brought down thousands of comput-
ers and he eventually got a sentence of three years of probation,
400 hours of community service, a fine of $10 050 and the cost of
his probationary supervision. Make an argument for or against this
judgment.

6. What steps should an administrator of a computer hooked to the
Internet take to secure his system?

7. What steps should a Symbian OS smartphone user take to secure her
smartphone system?

15
Virtual Machines

Many science-fiction stories have a ‘virtual reality’ premise. A person or a
community lives and works in an environment they believe is their whole
world. One day, they stumble upon evidence that their world is not what
they think it is. In fact, they discover that their ‘world’ is really just a
contained environment within a larger world, usually much different from
their own.

This is the idea behind a virtual machine. The applications hosted
by the machine assume that it is a real computer, with operational and
functional components that a real computer has. In reality, it is probably
an emulated computer, with components also emulated by software or
connected through a larger operating system to hardware. There are
several reasons to use a virtual machine and the implementation of a
virtual machine poses certain challenges to operating system design (both
for the virtual machine itself and the host operating system).

This chapter discusses these issues in detail. This topic is a great
way to review and apply the principles from this book. We discuss
the basic concepts of virtual machines, including the need for them
and the challenges they represent. We also pay specific attention to
implementation of the Java virtual machine on Symbian OS.

15.1 Basic Concepts

We have discussed operating systems as layers or interfaces that provide
programs a way to interact with hardware. Through various models and

300 VIRTUAL MACHINES

implementations, operating systems provide an environment for multiple
programs to run at once and to access hardware in an organized and
shared manner. The layers in the structure that is built by an operating
system look like those in Figure 15.1.

Processes access the hardware by making system calls, which are
requests that are serviced by the kernel and responded to as the kernel
interacts with the computer’s hardware. The kernel takes active steps that
coordinate hardware use: scheduling the shared CPU, for example, or
virtual memory techniques that allow memory to be shared.

What if programs carried this operating structure further to allow other
programs to act as an operating system and execute other programs?
For example, what if an operating system ran inside another operating
system? This would mean one of the processes executed by an operating
system would actually be another operating system that also ran programs.
This idea is called a virtual machine and represents another layer to go
through in accessing the computer’s hardware. Figure 15.2 shows this
type of environment.

In order for a program on a virtual machine to access hardware, there
are now multiple layers to go through, each of which is implementing its
own access mechanisms and its own view of hardware.

As you can imagine, discussing the same concepts for operating-
systems-within-operating-systems can get quite confusing. We call the
bottom kernel level the host operating system and the hosted virtual
machine the virtual operating system.

Programs

Kernel

Hardware

Figure 15.1 Relationships between hardware, operating system and programs

BASIC CONCEPTS 301

Programs

ProgramsPrograms

Virtual kernel

Virtual hardware Virtual kernel Virtual kernel

Kernel

Hardware

Figure 15.2 Relationships between hardware, operating system and virtual machines

The Need for Virtual Machines

There are several reasons why virtual machines are handy devices to use.
Most of these reasons center on a virtual machine as a contained envi-
ronment that controls access to the host operating system and hardware.

Sheltering system resources from accidental abuse is a prime advantage
of virtual machines. A virtual machine is a contained environment,
accessing the host operating system through fixed, constrained methods.
Each virtual machine is isolated from all the others by the host operating
system’s memory management and protection mechanisms. A virtual
machine is a great place to run untrusted applications – ones that have
the potential to ruin an operating environment.

A protected and isolated environment is an excellent arena for devel-
opment of new system software – particularly new operating systems.
Operating system designers face a recursive problem: operating systems
need hardware for design and testing, but hardware needs an operating
system to allow design and testing. This catch-22 situation is remedied

302 VIRTUAL MACHINES

nicely by a virtual machine environment. Each operating system design
can be done in its own virtual machine environment. The designer can
control the parameters of the environment and the testing of the operating
system. The host operating system is untouched.

This is especially useful when the hardware is also being designed
and tested. New hardware requires a new layer – one that provides the
operating system an emulated hardware environment. A virtual machine
allows the hardware to be tested with real operating system software
without expensive building and rebuilding of hardware. Note here that
‘hardware’ is a misnomer; the hardware design is tested by the software-
emulated environment in a virtual machine.

Virtual machines also allow for software to be developed more eas-
ily for less-accessible systems. Symbian OS is a good example. The
development environment for Symbian OS software has always provided
an emulation environment: Symbian OS running on emulated hardware
contained in a Microsoft Windows operating system. This virtual machine
allows software to be developed using tools that run in Microsoft Win-
dows while the software itself can be tested and executed by the Symbian
OS emulator. Since Symbian smartphones are not designed to allow
general-purpose software development, the virtual machine approach is
the best way to facilitate new software.

Virtual machines are used to bridge system incompatibilities. Consider
this scenario. For various reasons, you must upgrade your computer
to Microsoft Windows XP but you have an essential software package
that only runs in Microsoft Windows 2000. Rather than buying a new
computer just for this software package or finding a new version of the
package that runs in Windows XP, you could install a Windows 2000 on
a virtual machine and run this essential software there. Virtual machine
software from companies such as VMware and Moka5 provide this kind
of virtual platform.

Virtual machines have recently been used as execution platforms.
Increasingly, we see more interpreted programming languages which are
designed to produce executable code that runs on a virtual machine
that makes the code platform-independent. That is, when you compile
a program in a language targeted to a virtual machine, that program
executes on any computer that can run the virtual machine. The original
program does not need to be recompiled. (The illusive ‘write once, run
everywhere’ goal is achieved successfully to a certain extent, with realistic
restrictions.)

BASIC CONCEPTS 303

Virtual Environments Are Everywhere
Virtual machines exist throughout an operating system. In fact, it is
usually the operating system’s goal to create a virtual machine for every
program. The environment a process runs in is designed to make that
process believe it is running alone on the computer’s CPU and has all
memory at its disposal – a virtual environment. Communication stacks
employ abstraction to make virtual environments – the ‘machine’ at a
certain layer in the stack is supposed to operate as if it is communicating
with the corresponding ‘machine’ at the same layer on another computer.
Abstraction is used in many areas of an operating system – from messaging
to I/O – to make virtual environments out of the raw hardware interface.

Implementation
Virtual machines can be implemented in two ways. They can be designed
to run on the same hardware as the host operating system or they can
be designed to run on an entirely different hardware architecture. Both of
these cases are illustrated in Figure 15.2.

If a virtual machine requires a hardware architecture that is dif-
ferent from the host architecture, then that hardware layer is usually
implemented first. This is a difficult task, because the hardware must be
emulated exactly, especially when I/O and hardware features (e.g., timers)
are important. However, it is also a very liberating task. It frees designers
to build an architecture of their own design, with unique capabilities that
might be unavailable if the architecture were actually built. For example,
the Java virtual machine features interesting architectural aspects – such
as a memory pool for constants and typed registers – that have proven
quite expensive to build yet work well in software.

The software layer represents the operating system on the virtual
machine. This is generally software compiled for the hardware machine
being emulated. Sometimes, depending on the way the virtual machine is
implemented, the software needs to be compiled in a special manner. If it
does, it generally cannot take advantage of all features of hardware – real
execution and testing needs to be done on real hardware.

Symbian OS provides a good example of this. In the emulated, virtual-
machine environment, it provides for software development: the system
libraries are delivered as Windows DLL-format files and the software
under development must be compiled specifically for the emulator envi-
ronment. This is because the emulator does not execute a specific
hardware’s instructions. Since the hardware cannot be emulated exactly,

304 VIRTUAL MACHINES

to test various parts of it (e.g., timers and real-time components) software
must be run on the actual smartphone target.

Sometimes there is no clear difference between the operating sys-
tem layer and the hardware layer. For example, on the Java virtual
machine, there is no operating system – just emulated hardware. Some-
times, because certain operating systems are designed for many different
hardware platforms, only the operating system layer is present in the
virtual machine, assuming that it will run on the native host architecture.

A virtual machine must emulate both user and privileged mode, but
runs on the host machine in user mode. This means that system calls on
the virtual machine must be translated into appropriate system calls on
the host machine. User mode operation on a virtual machine can execute
on the virtual machine. Any access to privileged hardware – almost any
system resource – must go through the host system.

The Challenges of Virtual Machines

Virtual machines are interesting and effective in concept, but are difficult
to implement in reality. The biggest challenge to implementation is the
exact duplication required for emulation. The goal for implementation
is to use exactly the same code for the operating system layer as in the
target platform, but this is not always possible. If the hardware layer is
needed, exact duplication is again required, but very difficult to render.

A good example is the Symbian OS emulator. Symbian OS is designed
to run on multiple platforms. However, the Windows emulator for Sym-
bian OS required a special implementation with special restrictions
(Chapter 7 discussed the special memory model developed for Symbian
OS when it ran on the emulator). For many programs, the emulated
virtual machine looks identical to the target hardware. However, certain
programs can only be tested on the target. Programs that work specifi-
cally with hardware, for instance, cannot be tested on the emulator. Also,
programs that rely on processes cannot run on the emulator because
the operating environment is one large process. Since Symbian OS v9.1,
these restrictions have mostly been eased; the design of Symbian OS has
since incorporated Windows as a target platform and the design of the
emulator more closely resembles hardware.

Virtual machines also suffer in terms of performance. Virtual machines
that are not optimized are basically interpreters: they translate actions by
programs they are executing into actions that can be executed by the host
machine. In a virtual-machine implementation with multiple layers, each

THE JAVA VIRTUAL MACHINE AND SYMBIAN OS 305

layer is an interpreter. The Java Virtual Machine (JVM) is an example of
this: Java is based on bytecode execution, but there is no computer system
the JVM runs on that executes JVM instructions (‘bytecode’) directly.
So each bytecode instruction must go through an interpretation, where
actual hardware instructions that implement each bytecode instruction are
eventually executed on that bytecode instruction’s behalf. Each passage
through an implementation layer represents a performance degradation.

One of the most complex challenges to virtual-machine implementa-
tion is the access to the host machine’s system resources. A major issue
that virtual-machine implementations must deal with is access to disk-file
systems. Consider a situation where the host system is running Microsoft
Windows with an NTFS file system but the virtual machine runs a Unix
operating system with a UFS file system. Clearly, these are incompatible.
Consider again a situation where the virtual machine requires access to
a peripheral, say a printer, that is being coordinated by the host operat-
ing system. These situations all require special handling. Usually, virtual
devices are connected with physical devices through special interfaces
that merge the virtual machine with the host machine’s device mecha-
nisms. Disks, however, are a special case. These are usually handled by
creating virtual disks that operate inside file space on physical disks. A
Linux virtual machine might have a 10 GB virtual disk that is connected
to a 10 GB file on a physical disk. The Symbian OS emulator can pro-
vide drives that are actually files on the host’s system, as well as MMC
emulation and an emulation of ROM.

15.2 The Java Virtual Machine and Symbian OS

The implementation of the JVM on Symbian OS provides an interesting
case study in the implementation of virtual machines.

Before looking at implementation issues, we must clarify which JVM
is implemented for the Symbian OS platform. Symbian OS has supported
Java for quite a long time – since the days when Symbian OS was actu-
ally EPOC, implemented on handheld devices, not smartphones. Early
Symbian OS versions supported two types of JVM: PersonalJava and Java
Platform, Micro Edition (Java ME). PersonalJava was an early attempt
to pare down the Standard Edition of Java to fit into smaller platforms.
It has largely been abandoned in favor of Java ME implementations.
Java ME is a general specification of how Java fits on small platforms.
Java ME is subdivided into configurations, profiles and optional pack-
ages. For their implementations, Symbian OS designers implemented

306 VIRTUAL MACHINES

the Mobile Information Device Profile (MIDP) with the Connected Lim-
ited Device Configuration (CLDC). The CLDC defines the base set of
application-programming interfaces and the Java Virtual Machine for
resource-constrained devices such as mobile phones, pagers, and main-
stream personal digital assistants. When put together with MIDP, it
provides a Java platform for developing applications to run on devices
with limited memory, processing power and graphical capabilities.

As we stated, the JVM is an interesting virtual machine in that it has
no operating system. Its sole existence is to implement an operating
environment for program execution. Java applications are implemented
as a set of classes that are dynamically loaded as needed by the virtual
machine. Java classes, in turn, are compiled to a sequence of bytecode’,
which is Java’s terminology for assembly language. Java bytecode is
designed to have short instructions that could be loaded from anywhere:
from a disk drive or over a network.

The Java Virtual Machine is an abstract computer that provides an
insulation layer between the Java program and the underlying hardware
platform and operating system.

The JVM can be divided into several basic parts that are implemented
in software to emulate a virtual underlying hardware layer: bytecode
execution stack, a small number of registers, the object heap and the
method area which stores streams of bytecode. The JVM also provides a
mechanism of native access to the host operating system.

The JVM reads sequences of bytecode, which is a sequence of assembly
instructions for the JVM. Each instruction consists of an opcode that
instructs the JVM on what needs to be done and the following instruction
operands provide the required information for the completion of the
command. As well as having in-built support for several primitive types,
the JVM bytecode set includes instructions that operate on operands as
objects in order to invoke instance and static-class methods.

The JVM has its own architecture. While this architecture is a vir-
tual architecture implemented in software, it nonetheless influences the
instruction set design of JVM bytecode. The JVM is based on a stack
design, which means that all data for computation must be pushed onto
the stack, so it can be used in calculation, and that the JVM needs no
registers for storing data. The combination of the emulated hardware
architecture, bytecode design and class-file format make a unique design
that is at a much higher level compared to real hardware. It has features
that enable fast interpretation of instructions: class-file-constant pools that

EXERCISES 307

allow loading and storing of constants by using short assembly instruc-
tions, a typed data stack and registers that hold the program counter and
manage the stack.

In addition to emulating virtual hardware, the JVM provides a mecha-
nism of native access to the host operating system. This means that imple-
mentation areas and various capabilities that are out of the scope of the
virtual machine role as a bytecode execution engine can be implemented
using the operating system native APIs. Symbian OS takes advantage
of this mechanism by providing its Java ME implementation access to
its rich native APIs. For example, the javax.microedition.lcdui.
TextField class is implemented as a native Symbian OS widget and so
a Java program benefits from the underlying usage of the native AVKON
widget implementation on a Nokia phone or the UIQ widget implementa-
tion on a Sony Ericsson phone. The two run the same Java program, based
on the same interfaces and JVM, but with a different look derived from
the manufacturer-dependent native implementation of the user interface.
Access to system resources is granted through standard Java APIs such as
the Bluetooth API and the Messaging API.

15.3 Summary

This chapter has given a broad overview of the concept of virtual
machines and how virtual machines can be used by operating systems.
We began by defining virtual machines and outlining their advantages
and challenges. We concluded the chapter by giving an example of how
the Java virtual machine is implemented on Symbian OS.

Exercises

1. Describe the sequence of actions or calls that must take place for
a program in a virtual machine on virtual hardware to write to the
virtual machine’s disk drive.

2. Consider memory management on a virtual machine. Would the
host or the virtual machine map the virtual machine’s logical address
requests to physical addresses? Would the host or the virtual machine
do paging if an application on the virtual machine referenced a page
that was not in memory?

308 VIRTUAL MACHINES

3. What are the consequences of a poor emulation? Is it sufficient
to simply state that a virtual machine ‘approximates’ an operating
environment?

4. The JVM has an architecture that allows for very short bytecode
instructions. Why is this advantageous for Java?

5. Does the design of Java have any implications for its performance on
Symbian OS?

Appendix A
Web Resources

http://developer.symbian.com/main

http://en.wikipedia.org/wiki/List of operating systems

www.imc.org

www.kernelthread.com/mac/oshistory

www.knoppix.org

www.levenez.com/unix

www.microsoft.com/windows/WinHistoryIntro.mspx

www.opengroup.org

www.pushl.com/taskspy

www.renegade-uiq.com

www.ubuntu.org

References

Campbell, J. (1990) ‘The Spirit of TIFF Class F’, Cygnet Technologies, 2560 9th.,
Suite 220, Berkeley, CA USA.

Lamport, L. (1987) ‘A fast mutual exclusion algorithm’, ACM Transactions on
Computer Systems, 5:1, 1–11.

Leung, J.Y.T. and Whitehead, J. (1982) ‘On the complexity of fixed-priority
scheduling of periodic, real-time tasks’, Performance Evaluation (Netherlands)
2:4 (December 1982), 237–50.

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling algorithms for multi-programming
in a hard real-time environment’, Journal of the ACM 20:1 (January 1973),
46–61.

Siberschatz, A., Galvin, P. and Gagne, G. (2003) Operating System Concepts,
John Wiley & Sons.

Index

3G networks 105
7-bit data 270
32-bit operating systems 159, 162
64-bit machines 163

absolute binding 140–1
abstraction principles

see also objects
communications 18–19, 22, 39, 53–4,

130–1, 198, 204–5, 210–11, 216,
229–31, 235–46, 249–62, 303

concepts 6–7, 10, 18, 22, 39, 42–3,
53–4, 118–20, 130–2, 167, 175–6,
198, 204–5, 210–11, 216–27,
229–46, 249–62, 303

file systems 167, 175–6
HAL 210–11
I/O 198, 204–5, 210–11, 303
networks 215–27
telephony 249–62

access issues 170–1, 174–5, 181, 189–4,
277, 285–97

see also capabilities; security issues

files 170–1, 174–5, 181, 189–4
MTMs 277

access models, storage structures 31–2,
33–38

accounting information 50, 64
active components, kernel 48–2
active objects

see also threads
concepts 73–4, 76–79, 83–6, 132,

212–13, 236–7
critique 79, 212–13

active scheduler, concepts 73–4, 84–6
addresses

message characteristics 265–71, 273–5
networks 217–19

AF_INET 243–5
AFS 225
Agenda engine 277
aging concepts, process scheduling 100–1
allocation patterns, memory management

147–50, 162–3
analog communications, telephony 248,

260–1
AnswerIncomingCall 259

314 INDEX

API see application programming interface
Apple computers 19, 91, 188
application engines 10
application programming interface (API)

communication resources 18–19,
26–29, 38–9, 76, 178, 220, 237–42,
275–6

concepts 4–5, 10, 18, 26–29, 36–39, 76,
172, 178, 220, 237–42, 275–6, 307

layers 18–19, 237–42
application-specific standard product (ASSP)

56–7
see also extensions

applications
see also processes
definition 62
files 171–2, 178
signed applications 294–6
size constraints 155

ARM processors 54, 161
see also CPU

ASCII 265, 268
assembly code 140–1, 305–6
ASSP see application-specific standard

product
asynchronous calls, nonblocking system calls

209
asynchronous cancellations, threads 72
asynchronous device I/O, concepts 27–29,

54–5, 84–6, 205, 236, 277
atomicity concepts 113, 116–20
attachments, messaging 268, 274–5, 278–9
attributes, files/directories 169–1, 179–2
authentication concepts 54, 192–4, 288–6

see also security issues
authorization concepts 287–88, 293–4
AVKON 307

Babbage, Charles 7
bad blocks, storage media 182
bakery method, multiple-process

synchronization 115–16
base registers 37, 64

batch-processing, mainframe systems
11–13, 62, 93

batteries 15–16
Bearer Information Object (BIO) messages

271–2, 276, 280
see also messaging

Bell Labs 8
BeOS 1
Beowulf clusters 220–1, 226–7
BESYS 8, 11–12, 17–18
binary files

see also files
concepts 168–9

binary semaphores
see also mutexes
concepts 118–20, 126–7

bind 243–5
binding processes, memory 140–1
binomial distribution 97
BIO (Bearer Information Object) messages

271–2, 276, 280
see also messaging

biometrics 291
blocking/nonblocking I/O 208–9, 212–13
blocks, storage media 146–7, 177–78,

179–2, 186–7
Bluetooth connectivity 1, 39, 42, 131, 202,

217, 219, 226–7, 233–5, 238, 240, 272,
282, 293, 307

bookkeeping operations 50, 64, 83
Booleans 114–15
bootstrap programs, concepts 24–5, 35, 51,

58, 76, 178–9, 184–5, 223
bounded services, real-time systems 16,

102–4, 122–3
bounded-waiting criteria, critical sections

113–16, 122–3
browsers 14, 33–5, 47, 67–68, 226, 232
buddy system, page frames 162
buffers 152–4, 206–7, 223–4, 286, 292

see also spools
bugs 37
bus-structured network topology 218–19

INDEX 315

buses
concepts 22–4, 137, 176–7, 198–14,

218–19
I/O 198–14
USB connectivity 22, 199, 200, 210

busy bits 203–4
busy waiting, concepts 118
bytecode execution 305–6

C 8, 10, 148–9
C++ 10, 119, 148–9
caches

concepts 30–1, 32, 137, 206–7, 222,
223–4

definition 30–1, 32
networks 223–4

CActive 84–6
see also active objects

CActiveScheduler 84–6
CAgnEntry 85
Call abstraction, ETel 251, 257–60
calls, telephony 250–60
cancellations, threads 72
capabilities

see also authentication concepts; security
issues

concepts 54, 192–4, 254–5, 295–6
case 86
catcommand 180
CBaseMtm...classes 275–6
CCITT 273
CD-R/RWs 188
CD-ROMs 31, 167–68, 188, 198
CDMA 234, 251
CDPD 234
character-stream devices 205
children IDs, processes 64–5, 66–7, 74–5,

81–3, 279
circuit-switched networks 251, 260

see also GSM . . .

classes, object-oriented approaches 119–20,
275

CLDC (Connected Limited Device
Configuration) 306

client–server architecture
see also networks
concepts 11, 14, 93, 130–1, 221, 231–2,

235, 237–42, 245, 265–68, 275–81
message-passing features 221

clones, processes 72, 79–4, 124–6
Close 254–60
close operations, files 173, 178
closed environments 215–16
clustering concepts, networks 220–1, 226–7
clusters, disks 177, 181
code see source code
command shells, mainframe systems 12–13
command-ready bits 203–4
communications 2–3, 9, 15–16, 18–19, 22,

25–29, 38–9, 43, 128–2, 197–214,
215–28, 229–46, 247–62

see also connectivity; networks
abstraction principles 18–19, 22, 39,

53–4, 130–1, 198, 204–5, 210–11,
216, 229–30, 235–46, 249–62, 303

asynchronous/synchronous device I/O
26–29, 54–5, 84–6, 205, 236, 277

bus 22–4, 137, 176–7, 198–14
concepts 9, 18–19, 22–4, 25–29, 38–9,

43, 128–2, 198–14, 215–28, 229–46
constraints 231
device I/O 25–29, 38–9, 50–3, 64–5,

84–6, 180–1, 197–214
distributed systems 13–14, 219–2
DMA 28–9, 203–4, 210–13
errors 230
event-driven communications 236–42
flexibility needs 230–1
general concepts 230–1, 237
general device I/O 201–4
historical background 9, 13–16
IPC 128–2
ISO model 232–3
Linux 229–30, 243–5, 249–50, 281–3
messaging 42–3, 221, 263–84
models 229–46

316 INDEX

communications (continued)
modularity principles 231, 234–5, 242,

251, 261–2
multimedia 15–16, 43
packets 232–5, 260–2
powerful tool 215
protocol-implementation layer 240–4
stacks 232–5, 237–44
structural issues 38–9, 43, 231–46
Symbian OS 18–19, 22, 38–9, 43, 132,

226–7, 237–42, 250–60, 275–81
synchronization operations 49, 76–7,

114–36
‘telephone game’ 229
telephony 247–62
types 9, 18–19, 22, 38–9
WAP 227, 232–5, 242

compact-flash cards 31, 154, 167–68, 177
compilation 139–1, 144–5
computers

see also devices; hardware; operating
systems; software

closed environments 215–16
core computing cycle (fetch–execute cycle)

29, 204
historical background 7–16, 17–19, 33,

182–5, 247
platforms 39–3
security issues 285–97
storage structures 29–2, 146–54,

167–68, 176–7, 178–2, 223–5,
278–9

structural issues 18–39, 43, 47–59,
146–7, 168–9, 171–95, 231–46,
250–60

system types 11–16, 93–4
concurrently-shared resources 34–5, 42, 69,

109–36, 236–7
see also synchronization . . .

concepts 34–5, 42, 69, 109–36
deadlocks 120–3, 133–4
dining-philosophers problem 120–6
environmental issues 110–12
models 110–16

producer–consumer problem 122–3
reader–writer problem 122
serializability goal 112–13
Symbian OS 126–7
Unix example 123–6

conditional variables 78
Connect 251–2
connected environments 33–38, 217–28

see also networks
Connected Limited Device Configuration

(CLDC) 306
connected/connectionless sockets

see also sockets
concepts 131

connectivity
see also communications; networks
concepts 9, 39, 201–3, 226–7, 231–46
Symbian OS 226–7

content, message characteristics 265–7,
273–5, 278–9

context-switches
concepts 25, 37–38, 40–1, 49–50, 55,

74, 76, 82, 91–102, 138, 145–6, 156,
160–1

pre-emptive/non-pre-emptive scheduling
concepts 90–106, 133–4

controllers, bus 22–4, 200–1
core computing cycle (fetch–execute cycle)

29, 204
corrupted data 112
coupling considerations, networks 218, 221
CPhoneCall 253–62
CPU

background 1, 8, 12, 20, 22–5, 35–38,
50–1, 52, 61–88, 89–108, 137–38,
202–3, 216, 231, 300

buses 22–4, 137, 202–3
constraints 89, 231
historical background 8, 12–13
interrupts 23–6, 204
multitasking 25, 37–38, 50–1, 52, 61–88
performance considerations 92–3,

137–38

INDEX 317

processes 13–16, 25, 32, 37–38, 48–50,
55–6, 61–88, 89–108

protection issues 35–38
registers 29–2, 37, 62–4, 68–9, 74, 91,

137, 202–3
scheduling concepts 12–13, 40–1,

89–108, 216
throughput criteria 92–3
timers 37–38, 55, 207–8
utilization criteria 92–4

create operations, files 172–3
critical regions, concepts 119–20
critical sections

see also synchronization operations
concepts 112–34
criteria 112–16, 122–3, 126–7

CSendAs 280–1
CSY modules 239, 241–2
cycle stealing DMA 203
cylinders, disks 177

data
caging 296
process sections 62–3
registers 202–3

databases
see also files
concepts 168–9, 175

date/time of access, files 170–1, 181
deadlines, real-time systems 102, 105–6
deadlocks

concepts 120–3, 133–4
dining-philosophers problem 120–3

DEC VMS 172
deferred cancellations, threads 72
defragmentation 182
delete operations, files 174
delivery information, message characteristics

265–71, 273–5
denial-of-service attacks, networks 293
desktop systems

see also personal computers
historical background 13–14, 93

destinations, message characteristics
265–71, 273–5

developer certificates, Symbian OS 296
device controllers, concepts 22–4, 198–1,

216
device drivers

see also logical . . . ; physical . . .
concepts 18, 41, 52–3, 56–58, 177, 198,

199–13, 216, 237–44, 253
definition 199
diagrammatic overview 56–7
extensions 56, 58, 210, 240
LDDs 52–3, 56–58, 210–12, 239–41
PDDs 52–3, 56–58, 210–11, 239–41
roles 56–7, 177, 198, 199–200, 209–10,

216, 243
device reservations 207
devices

see also hardware
asynchronous/synchronous device I/O

26–29, 54–5, 84–6, 205, 236, 277
concepts 8, 22–4, 25–29, 38–9, 41–2,

52–58, 66, 167–68, 174–94,
198–14, 225–7

concurrently-shared resources 34–5, 42,
69, 109–36

errors 207
I/O 25–29, 38–9, 50–3, 64–5, 84–6,

180–1, 197–214
interrupts 22–29, 35–6, 54–6, 204
network communications 225–7
performance considerations 29, 205–8
queues 66
types 201–4, 205

DFC Wait state, nanothreads 77–78
DFS (distributed file systems) 222–6
Dial 258–9
dictionary attacks, passwords 289, 292
Difference Engine 7
digital communications, telephony 248
dining-philosophers problem,

concurrently-shared resources 120–6
direct memory access (DMA), concepts

28–9, 203–4, 210–13

318 INDEX

direct model, memory implementation models
161–2

direct (random) access, files 174–5, 205
directories 32, 159–3, 167–95

see also files
attributes 169–1, 179–2
concepts 167–95
definition 168
files 32, 167–95
historical background 169
names 171, 179–80
page directories 159–3
paths 168–1
sizes 179
structures 179–2
table of contents 170–1
Unix 180

disks 12, 28–9, 31, 138, 145–6, 163,
167–68, 177, 180–5, 305

see also files; secondary storage
clusters 177, 181
components 177
cylinders 177
defragmentation 182
DMA 28–9, 203–4
FAT file systems 42, 182–5
fragmentation problems 180–2
mainframe computers 12
partitions 168–9, 179
sectors 177, 181
storage-free computers 223–5
tracks 177
types 31, 177
virtual disks 305

dispatchers, operating systems 91–4
displays

see also screens
double buffering 206
LCD management 210–11

distributed file systems (DFS) 222–6
distributed systems

see also networks
concepts 13–14, 219–6
historical background 13–14

models 14
DLLs see dynamically loaded libraries
DMA (direct memory access) 28–9, 203–4,

210–13
DOC files 169
DoCancel 84–6
DomainOS 14, 221
domains 161
double buffering 206
drives 212
DVDs 188
dynamic loading, concepts 143–5, 148–4,

243
dynamic memory 49, 51, 143–5, 148–6,

160–1
dynamically loaded libraries (DLLs) 49,

52–3, 139–1, 143–5, 155–6, 303–4
loading issues 155–6
memory management 143–5, 155–6
stubs 144–5, 160

ECOMM.LDD 210, 240
ECUART 241–2
electronic disks 31

see also disks
electronic mail (email) 53, 236–7, 263,

265–68, 271, 274–6, 280, 282–3
see also messaging

ELF format Solaris files 157
email (electronic mail) 53, 236–7, 263,

265–68, 271, 274–6, 280, 282–3
see also Internet; messaging

emulator, concepts 161–2, 251, 302, 303–4
encryption 186, 289–90
ENET.LDD 240
ENIAC 7
environmental issues

closed environments 215–16
concurrently-shared resources 110–12
connected environments 217–28

EPOC
see also Symbian OS
historical background 10–11, 19, 42, 305

INDEX 319

epochs, Linux 103–4
Ericsson 11, 247
errno 207
errors

I/O 207
socket streams 131
Symbian OS 160

ESDRV.PDD 240
ESOUND.LDD 240
ETel

Call abstraction 251, 257–60
concepts 247, 249, 251–60, 295
Line abstraction 251, 256–7
Phone abstraction 251, 254–5

Ethernet 226, 238, 240
ETHERNET.PDD 240
events, active objects 73–4, 76–79, 83–6,

212–13, 236–7
evolution, operating systems 17–19
exceptions

errors 160
interrupts 24

executable files 139–1
see also processes

execution in-place issues, memory
management 155

execution libraries 8
execution times

execution-time binding 139–1
interrupts 55, 105–6
predictions 105–6

executive calls 42–3
exit 81–2
extensibility needs, operating systems 6–7
extensions

see also application-specific . . . ;
bootstrap . . . ; device drivers

concepts 56, 58, 169–70, 210, 240
files 169–70, 172

external fragmentation, concepts 149–50,
181–2

F32 295

fast Semaphore Wait state, nanothreads
77–78

FAT file systems 42, 182–5, 188–9
fault tolerance, file systems 186
fax 251, 272–3, 276, 280

see also messaging
FCBs (file control blocks) 178, 179–2
FCFS see first-come-first-served strategy
fetch–execute cycle (core computing cycle)

29, 204
FIFO queues 90
file control blocks (FCBs) 178, 179–2
file servers 39, 42, 48–9, 53, 57, 93, 178,

187–88, 190–4, 211–12, 222–6
see also RF...; servers
naming considerations 222–3
networked file systems 222–6
replicated files 224

file systems
see also storage structures
abstraction principles 167, 175–6
access rights 32, 33–38, 189–4
building blocks 167–75
concepts 32, 42, 167–95, 216, 222–6
FAT file systems 42, 182–5, 188–9
fault tolerance 186
generic implementation layers 175–78
implementation issues 175–88
Microsoft Windows 42, 170–2, 182–3,

188–90
mobile phones 188–9, 193–4
networks 222–6
NTFS 185–6, 305
permissions 190–4
remote file systems 187–88
roots 171, 180, 190, 279
security issues 189–4
Symbian OS 42, 193–4, 227
Unix 186–7, 191–2, 305
VFAT file system 183–5

files 32, 39, 41–2, 167–95, 216, 222–6
see also databases; directories; disks
access issues 170–1, 174–5, 181, 189–4
applications 171–2, 178

320 INDEX

files (continued)
attributes 169–1, 179–2
binary files 168–9
close operations 173, 178
concepts 32, 39, 41–2, 167–95, 216
create operations 172–3
date/time of access 170–1, 181
definition 167–68
defragmentation 182
delete operations 174
direct (random) access 174–5, 205
extensions 169–70, 172
group identification 170–1, 190–4
historical background 169, 182–5, 216
identification issues 170–1, 190–4
indexed access 175
Linux 170–2, 188–9, 192–3
logical/physical files 170–1, 178, 181–2
Microsoft Windows 42, 170–2, 182–5,

188–90, 223, 288
names 169, 171, 181, 222–3
open operations 173, 178, 179
operation types 172–4, 178, 192–4
owners 170–1, 181, 190–4
partitions 168–9, 179
pathnames 171, 222–3
performance considerations 180–2,

206–8
read operations 173, 178, 192, 205, 209
replication benefits 224
reposition operations 173
roots 171, 180, 190, 279
sequential access 174–5, 205
sizes 170–1, 181–3
structural issues 168–9, 171–95
tables 170–1, 174, 178
truncate operations 174
types 168–70
users 170–1, 190–4
write operations 173, 178, 194, 205, 209

finger example, security issues 286, 292
fingerprints 291
Firewire 199

first-come-first-served strategy (FCFS), process
scheduling 94–6, 98, 116

flags, synchronization operations 114–15
flash storage 2, 31, 52, 146, 154, 167–68,

177, 188–9
FMSignal 127
FMWait 127
folders 32, 168, 277–79

see also directories
fork 79–1, 124–6
forking issues, processes 72, 79–2, 124–6
formats, message characteristics 265–7,

273–5
fragmentation

disks 180–2
memory 149–50

frames, physical memory 146–7, 159–1,
162–3

free space, storage media 182
FreeBSD 91
FSSignal 127
FSWait 127
function calls 5–6, 36, 42–3, 47, 49, 52–4,

69–1, 76, 79–2, 207–9, 231–2, 279

gatekeeper security model 294–6
gateway servers 232
general communications concepts 230–1,

237
see also communications

General Electric 8
generic implementation layers, file systems

175–78
Gentoo Linux 14
GetPhoneInfo 253–4
Gif files 168, 272
global memory 50, 128
GPRS networks 226
graphical user interfaces (GUIs)

asynchronous device I/O 28
historical background 13–16
process scheduling 97

The Great Wall of China 285

INDEX 321

group identification, files 170–1, 190–4
GSM protocol 57, 105, 234, 248, 250–1,

254–5, 260, 263, 269–3
GUIs see graphical user interfaces

HAL (hardware-abstraction layer) 210–11
handheld computers 9–10, 14–15, 28,

154–5, 247, 306
constraints 14–15, 154–5
historical background 9–10, 14–15, 247

HangUp 260
Hansen, Per Brinch 120
hard disks see disks
hard real-time systems

see also real-time . . .

concepts 16, 101–2
hardware

see also CPU; devices; disk . . . ; memory . . .

access issues 32–38, 170–1, 174–5
concepts 2–11, 17–45, 62–3, 156,

167–68, 174–94, 198–14, 237–42
concurrently-shared resources 34–5, 42,

69, 109–36
definition 3
goals 3–4
historical background 7–16, 33
I/O issues 201–4
interrupts 22–29, 35–6, 54–6, 204
kernel structures 20–2, 47–59
memory offloads 156
new hardware 301–2
operating systems 1–16, 17–45, 109–36
protection issues 33–38, 48–9, 189–4,

301–2
virtual machines 300–8

hardware-abstraction layer (HAL) 210–11
Hayes command set, modems 248
headers, messaging 265–71, 273–5, 278–9
heaps, concepts 149, 155, 156–7, 161, 306
hexadecimal 269–70
hidden scheduling problems 104
Hoare, C.A.R. 120
host operating systems, concepts 300–8

HTML pages 232
HTTP 227, 232, 293
human level, security issues 286–7, 292
hybrid kernels, concepts 21–2

I/O 25–29, 38–9, 50–3, 64–5, 84–6,
180–1, 197–214, 216, 225–7, 249–50

abstraction principles 198, 204–5,
210–11, 303

blocking/nonblocking I/O 208–9,
212–13

buffers 206–7
buses 198–14
communications models 229–46,

249–50
components 198–1
concepts 197–214, 216, 225–7, 229–46
device controllers 22–4, 198–1, 216
device drivers 198, 199–13
diagrammatic overview 201
DMA 203–4, 210–13
errors 207
hardware issues 201–4
interrupts 204
kernel structure 205–8, 210
memory-mapped I/O 202–4
network communications 225–7
performance considerations 29, 180–1,

205–7
polling 203–4
registers 202–4
removable storage media 212–13
sockets 39, 49, 130–2, 225–7, 235,

243–5
software issues 204–13
spools 206–7
Symbian OS 209–13
timers 207–8
types 198–1

IBM
350 disk file 169
MS-DOS 8–9, 13, 19, 36, 169, 182–3
MVS 40–1

322 INDEX

IBM (continued)
OS/360 8, 12, 40–1
SMB 225

identification issues
files 170–1, 190–4
processes 32, 64, 66–7, 74, 113–16,

287–88
idle processes 100–1
image files

see also files
concepts 168, 272–3

IMAP (Internet Message Access Protocol)
268, 275–6

IMC (Internet Mail Consortium) 272
indexed access, files 175
infrared connectivity 9, 10, 50–1, 226, 238,

240–2, 249, 271, 272
Initialize 255
InitL 253–61
input

see also I/O
concepts 3–7, 197–214

Intel chips 1, 8–9, 36, 162
interdependent distributed systems, concepts

14
interface designs 2
interleaving processes 111–12, 207
internal fragmentation, concepts 149–50,

181–2
International Telecommunication Union (ITU)

273
Internet 10–11, 14, 33–5, 39, 47, 67–68,

218, 226, 232–5, 267, 268, 272, 275–6
see also email; web

Internet Engineering Task Force 267
Internet Mail Consortium (IMC) 272
Internet Message Access Protocol (IMAP)

268, 275–6
interprocess communication (IPC)

concepts 128–2
mail model 129
phone model 129–30
RPCs 130, 132
sockets 130–2, 235

Symbian OS 132
interrupt service routines (ISRs) 23–5, 52–3,

55–6, 204
interrupt-request line 204
interrupts

see also system function calls
bootstrap programs 24–5
concepts 22–29, 35–6, 43, 49, 52–6, 72,

91–4, 104–6, 204
context-switches 25, 37–38, 40–1,

49–50, 55, 74, 76, 82, 91–102,
145–6, 156

definition 23–4, 54
dispatchers 91–4
exceptions 24
execution times 55, 105–6
I/O 204
implementation 54–6, 91–4
latency requirements 55, 92, 103–4, 106
maskable interrupts 24
operating systems 22–29, 35–6, 43, 49,

52–6, 72, 91–4, 104–6, 204
phases 55–6
priorities 55–6, 98, 104–6

interval timers 208
ioctl 205, 249
IP addresses 218–19
IPC see interprocess communication
IR see infrared . . .

IrCOMM 242
ISO networking model 232–4
ISRs (interrupt service routines) 23–5, 52–3,

55–6, 204
IsSupportedByModule 253–4
ITU (International Telecommunication Union)

273

Java 43, 299, 303–7
ME 305–6, 307
virtual machine (JVM) 299, 303–7

JFFS 189
jobs

see also processes

INDEX 323

mainframe systems 11–13, 62
scheduling 12, 40–1

join operations, process programming 79–2
Jpeg files 168, 272
JVM (Java virtual machine) 299, 303–7

KERN-1 EXECerror 160
kernel

see also micro . . . ; monolithic . . . ;
operating systems

active components 48–2
bootstrap programs 25, 51, 58, 76,

178–9, 184–5, 223
concepts 8–9, 16, 20–2, 25, 41–3,

47–59, 104–6, 161–2, 205–8, 210,
295–6, 300–8

definition 20
design issues 20–2, 47–53, 56–58
diagrammatic overview 56–7
hybrid kernels 21–2
I/O structure 205–8, 210
interrupt implementation 52–6, 91,

104–6
layers 48–58
memory model 56–7, 161–2, 227
nanokernel 48–58, 76–79, 126–7
passive components 48, 49, 52–3
performance considerations 51–2, 53,

205–8
roles 8–9, 20–2, 48–3, 54, 205–8, 300
servers 20–2, 43, 47–59, 132
structures 20–2, 47–59
system function calls 53–4, 69–1, 207–9,

231–2
telephony 249–50
types 20–2
virtual machines 300–8

kernel threads
see also threads
concepts 70–1

kernel-server requests 43

LANs (local area networks) 217–21

latency issues 55, 92, 103–4, 106
LCD management 210–11
ldd 141
LDDs (logical device drivers) 52–3, 56–58,

210–12, 239–40
libraries 8, 49, 52–3, 139–1, 143–5
lightweight processes (LWP)

see also threads
concepts 73–4, 77

limit registers 37, 64
Line abstraction, ETel 251, 256–7
link editors 139–1
Linux 1–2, 6, 14–15, 21–2, 28, 39–2,

74–6, 79–1, 84, 91, 103–4, 141, 143,
162–3, 170–2, 188–9, 192–3, 205,
229–30, 243–5, 249–50, 281–3

see also Unix
communications models 229–30, 243–5,

249–50, 281–3
epochs 103–4
files 170–2, 188–9, 192–3
handheld systems 15, 28
historical background 6, 14, 15, 41
I/O 205, 243–5
kernel 21–2, 162–3, 281–2
memory management 143, 162–3
messaging 264, 281–3
MMU 143, 162–3
module dependencies 141
processes 74–6, 79–1, 84, 91, 103–4
scheduling 103–4
security issues 287
shared process data 82, 91
simplicity dangers 283
telephony 249–50

list, operating systems 7
LoadPhoneModule 252–3
local area networks (LANs) 217–21
locks, semaphores 118–19
log-structured file systems 188
logical device drivers (LDDs), concepts

52–3, 56–58, 210–12, 239–40
logical file systems 170–1, 178, 181–2

see also files

324 INDEX

logical memory
see also memory . . .

concepts 141–3, 146–54, 156–59, 216
logical/physical addressing, memory

management 141–3, 146–54, 156–59,
177–78

loosely-coupled connections 218

Mach kernel 91
MacOS 91, 188
macro-style interleavings 111–12
magnetic disks 31, 138, 145–6, 163,

167–68
see also disks

mail model, IPC concepts 129
main memory

concepts 30–1, 32, 137–65, 202–3
definition 31

mainframe systems, historical background
11–13, 33, 40–1, 93

MakeCall 258–60
malicious code 35, 189, 194, 285, 292–6
malloc 148–9
many-to-many model of kernel threading 71
many-to-one model of kernel threading

70–1
Mark I computer (1948) 7
maskable interrupts 24
master boot record (MBR) 178–9, 180
Matsushita (Panasonic) 11
MBR see master boot record
memory 2–9, 15, 22, 30–2, 36–38, 49–3,

56–7, 64–5, 77–79, 91–4, 128,
137–65, 216, 221–3

see also caches; flash . . . ; RAM; ROM
binding processes 140–1
coherence issues 222
concepts 30–2, 36–38, 49–3, 56–7,

64–5, 77–79, 91–4, 128, 137–65,
216

DMA 28–9, 203–4, 210–13
implementation models 161–2
main memory 30–1, 32, 137–65, 202–3

MMUs 142–62
performance considerations 51–2, 53,

137–65
protection issues 36–38, 40–1, 153–4,

162–3, 216, 301–2
record-keeping needs 28
shared memory 137–65, 221–4
virtual memory 22, 32, 40–1, 43, 151–4,

159, 216
memory management

allocation patterns 147–50, 162–3
application size 155
complexity 142–3
concepts 57, 64–5, 137–65, 216
DLLs 143–5, 155–6
dynamic loading 143–5, 148–4, 243
execution in-place issues 155
fragmentation problems 149–50
frames 146–7, 159–1, 162–3
hardware-offloading issues 156
heaps 149, 155, 156–7, 161
Linux 143, 162–3
logical/physical memory 141–3, 146–54,

156–59, 216
MMUs 142–62
networks 221–2
on-demand paging 151–4
overlays 144–5
page tables 147–54, 159–2
pages 146–54, 156, 159–1
segmentation 156–59, 161, 162–3
smartphones 154–6, 159–2
swapping and paging 145–54, 159, 160,

163
Symbian OS 156, 159–2
thrashing problems 152–3
TLBs 152–3

memory management units (MMUs), concepts
142–62

memory model, concepts 56–7, 161–2, 227
memory-mapped I/O 202–4
message manager applications 3–6
message type modules (MTMs) 53, 239,

241–2, 275–81

INDEX 325

messaging 42–3, 221, 263–84
see also BIO; email; fax; SMS
attachments 268, 274–5, 278–9
characteristics 264–7, 273–5
concepts 42–3, 221, 263–84
dissected parts 264–7
headers 265–71, 273–5, 278–9
Linux 264, 281–3
manipulation overview 279–80
models 267, 273–5, 278–80, 281–2
overview 264–7, 279–80
protection issues 277–78
pull/push model 267, 269, 272
receiving overview 279–1, 283
send-as messaging interface 276–81
sending overview 279–1, 282–3
server functions 42–3, 275–81
Symbian OS 42–3, 53, 239, 241–2,

263–4, 275–81
types 263–73

microkernels
see also kernel
concepts 20–2, 43, 47–58, 93–4, 104–6,

132, 249–62, 277
critique 51–2
process scheduling criteria 93–4, 104–6
telephony 249–62

Microsoft Disk Basic system 182
Microsoft SQL Server 2000 292–3
Microsoft Windows 1, 6, 9, 13–14, 15,

18–19, 42, 51, 99–100, 143, 153,
170–1, 182–3, 188–9, 190, 249

3.1 91
95 1, 183
98 288
2000 71, 191, 302
CE 143
communication resources 18
emulator 162, 251, 302, 303–4
evolution 9, 13–14, 19
files 42, 170–2, 182–5, 188–9, 190, 223,

288
handheld systems 15
historical background 9, 13–14, 19

idle processes 100
kernel 51, 71
Mobile 249
NT 71, 184–6
plug-and-play concepts 6
priorities 99–100
roots of files 171
security issues 288
swap-space 153
telephony 249
threads 71
XP 1, 302

Microsoft Word 170–1
MIDP (Mobile Information Device Profile)

306
MIMD (multiple instructions, multiple data)

distributed systems 221
MIME (Multipurpose Internet Mail Extensions)

268
mini-SD cards 31
minidisks see partitions
MISD (multiple instructions, single data)

distributed systems 221
MIT 8
MMUs (memory management units) 142–62
Mobile Information Device Profile (MIDP)

306
mobile phones

see also smartphones; Symbian OS
concepts 1–16, 42–3, 48, 93–4
data requirements 15–16
EPOC 10–11, 19, 42, 305
file systems 188–9, 193–4
focus 4, 42–3
historical background 9–11, 15–16,

42–3, 247
memory management 154–6
networks 218, 226–7, 248–9
operating systems 2–4, 9–11, 15–16,

42–3, 48–58, 93–4
real-time systems 16, 56, 93–4
resource demands 15–16
storage media 177, 211–12
text messages 3–6, 15–16

326 INDEX

mobile-phone networks 248–9
modems 238, 248–50, 272–3
modularity principles 18–19, 22, 231,

234–5, 242, 251, 261–2
module dependencies, concepts 141
Moka5 302
monitors, semaphores 119–20
monolithic kernels

see also kernel
concepts 20–2, 41, 47–58, 105, 249
critique 51

Motorola 11
mouse 28, 198

see also I/O
moving model, memory implementation

models 161–2
MP3s 15–16
MPI 220
MS-DOS, historical background 8–9, 13,

19, 36, 169, 182–3, 188–9
MTMs (message type modules) 53, 239,

241–2, 275–81
MULTICS 8, 12–13, 41
multilevel feedback 101
multimedia communications 15–16, 43
MultiMediaCards 212
multiple instructions, multiple data (MIMD)

distributed systems 221
multiple instructions, single data (MISD)

distributed systems 221
multiple model, memory implementation

models 161–2
multiple-queuing strategy, process scheduling

101, 106
multiprogramming concepts 12–13, 15–16,

40–1
Multipurpose Internet Mail Extensions (MIME)

268
multitasking operating systems 8, 25,

37–38, 40–3, 50–1, 61–88
multithreading 25, 41–3, 48–2, 67–88, 212

see also threads
benefits 68–9
concepts 25, 41–3, 48–2

issues 71–2
performance considerations 51–2, 68–9,

79, 212
mutexes 49, 78, 123–7

see also binary semaphores;
synchronization operations

concepts 49, 126–7
definition 126

mutual-exclusion criteria, critical sections
113–16, 126–7

MVS, IBM 40–1

names
directories 171, 179–80
files 169, 171, 181, 222–3

nanokernel
concepts 48–58, 76–79, 126–7
roles 48–9
synchronization operations 49, 76–7,

126–7
nanothreads

concepts 76–79, 127–28
states 77–78

NASA 220
Network File Services (NFS) 186–7, 189,

225, 227
networks 1, 3–5, 9–14, 33–38, 39, 42, 93,

130–1, 202, 215–28, 231–2
see also communications; connectivity
abstraction principles 216–27
addresses 218–19
caches 223–4
client–server architecture 11, 14, 93,

130–1, 221, 231–2, 235, 237–42,
245, 265–68, 275–81

closed environments 215–16
clustering concepts 220–1, 226–7
concepts 11, 14, 33–38, 93, 130–1,

215–28, 231–2
connection strength 217–18
coupling considerations 218, 221
denial-of-service attacks 293
devices-communication methods 225–7

INDEX 327

distributed systems 13–14, 219–2
file systems 222–6
influencing criteria 217–19
interconnection concepts 217–19
message-passing features 42–3, 220–1
NFS 186–7, 189, 225, 227
performance considerations 223–5
powerful tool 215
protocols 218–19, 227, 240–4
routers 218–19
security issues 223–4, 286–7, 293
shared memory 221–4
shared resources 33–38, 69, 109–36,

205, 215–28
smartphones 218, 226–7
SMB 187, 189, 225
sockets 39, 49, 130–2, 225–7, 243–5,

261
storage-free computers 223–5
Symbian OS 226–7
topologies 217–19
Unix 220

new 148–9
new hardware, virtual machines 301–2
new state, processes 63–4
next-hop routing 219
NFastMutex 127
NFastSemaphore 127
NFS (Network File Services) 186–7, 189,

225, 227
no-starvation criteria, critical sections

113–16
Nokia 10–11, 247, 249, 255–6, 262, 307
non-pre-emptive concepts, process scheduling

90–106
nonblocking I/O 208–9, 212–13
notifications, telephony 254–5
NTFS file system 185–6, 305
NTP servers 226

object code 139–1
see also processes

object-oriented approaches 10–11, 42–3,
119–20, 275

objects
see also abstraction principles
active objects 73–4, 76–79, 83–6, 132,

212–13, 236–7
concepts 6–7, 10, 42–3, 48–9, 73–4,

76–79, 109
concurrently-shared resources 34–5, 42,

69, 109–36
offsets, segmentation 156–59
on-demand paging, memory management

151–4
ONC RPC 225
one-to-one model of kernel threading 71
open 42, 187–88, 254–60
open operations, files 173, 178, 179
open source 41–2, 91, 287, 289
open-file tables 179
OpenExistingCall 257–60
OpenNewCall 257–60
operating systems

see also IBM; kernel; Linux; Microsoft . . . ;
Symbian OS; Unix

30-bit operating systems 159, 162
62-bit machines 163
abstraction principles 6–7, 10, 18, 22, 39,

42–3, 53–4, 118–20, 130–2, 167,
175–6, 198, 204–5, 210–11, 216,
229–46, 249–62, 303

Apple computers 19, 91, 188
BESYS 8, 11–12, 17–18
character issues 17–45, 47
communication resources 18–19, 22,

38–9, 43, 198–14, 216, 229–46,
249–62

computer-systems perspective 11–16,
93–4

concepts 1–16, 17–45, 61–2, 90–4, 110,
159, 162, 219–2

concurrently-shared resources 34–5, 42,
69, 109–36

DEC VMS 172
definitions 2–7

328 INDEX

operating systems (continued)
design issues 17–22, 47–53, 56–58
device I/O 25–29, 38–9, 50–3, 64–5,

84–6, 197–214
dispatchers 91–4
distributed systems 13–14, 219–2
EPOC 10–11, 19, 42, 305
evolution 17–19
extensibility needs 6–7
file types 169–70
goals 1–7
good systems 4, 6–7, 18, 28
hardware 1–16, 17–45, 109–36
historical background 7–16, 17–18, 19,

33
host operating systems 300–8
IBM 8–9, 12, 13, 19, 36, 40–1, 182
interrupts 22–29, 35–6, 43, 49, 52–6,

72, 91–4, 104–6, 204
kernel structures 20–2, 25, 47–59
list 7
messaging 263–84
Microsoft Windows 1, 6, 9, 13–14, 15, 51
mobile phones 2–4, 9–11, 15–16, 42–3,

48–58, 93–4
MS-DOS 8–9, 13, 19, 36, 169, 182–3,

188–9
multitasking operating systems 8, 25,

37–38, 40–3, 50–1, 61–88
networks 33–38, 215–28
new operating systems 301–2
open-file tables 179
platforms 39–3
portability needs 7
pre-emptive/non-pre-emptive scheduling

concepts 90–106, 133–4
privileged-mode operations 35–6, 42–3,

48–9, 54, 55–6, 76–7
processes 25
protection issues 33–38, 40–1, 42–3,

48–4, 76–7, 82, 153–4, 190–4,
277–78, 285–97, 301–2

qualities 6–7
record-keeping needs 28

recursive problems 301–2
resource models 2–9, 33–38
robustness needs 6–7
‘rose-tinted glasses’ 1, 167
scalability needs 6
security issues 7, 33–38, 40–1, 42–3,

48–4, 76–7, 82, 153–4, 190–4,
277–78, 285–97

Solaris 123–6, 143, 157
structural issues 18–39, 47–59
telephony 247–62
threads 25, 48–9
throughput needs 6–7
varieties 1–2, 7–9, 13–16, 93–4
virtual machines 299–8

operation types, files 172–4, 178, 192–4
ordered-delivery property, socket streams

131
OS/360, IBM 8, 12, 40–1
output

see also I/O
concepts 3–7, 197–214

overlays, concepts 144–5
owners, files 170–1, 181, 190–4

packets, communications 232–5, 260–2
pages

directories 159–3
faults 151, 154
logical memory 146–54, 156, 159–1
page replacements 151–4
tables 147–54, 159–2

paging, memory management 146–54, 156
Palm handhelds 15, 156
parent IDs, processes 64–5, 66–7, 74–5,

81–3, 279
partition-label control block (PLCB) 179
partitions, disks 168–9, 179
Pascal 120
passalgorithms 290
passive components, kernel 48, 49, 52–3
passwords 288–6
pathnames, files 171, 222–3

INDEX 329

paths, directories 168–1
PCBs (process control blocks), concepts

64–7, 74, 76–84, 99–100, 104–5,
145–7, 295

PCMCIA 188–9
PCP 40–1
PCs see personal computers
PDAs 154, 306
PDDs (physical device drivers) 52–3,

56–58, 210–11, 239–40
PDF files 172
peer-to-peer systems, concepts 14, 218–19,

242, 248–9, 266–7
Pentium 1
perceptions 1
performance considerations 29, 51–2, 53,

68–9, 73–4, 92–3, 137–65, 205–8
CPU 92–3, 137–38
device I/O 29, 180–1, 205–7
files 180–2, 206–8
I/O handling 29, 180–1, 205–7
kernel 51–2, 53, 205–8
memory 51–2, 53, 137–65
multithreading 51–2, 68–9, 79, 212
networks 223–5
passive kernel components 53
real-time systems 102
response times 51, 93–106
turnaround times 92–103
virtual machines 304–5
waiting times 93–103

personal computers (PCs)
see also desktop systems
historical background 8–9, 13–14,

182–5
personal information, security issues 290–1
personality layers, concepts 56–7
Phone abstraction, ETel 251, 254–5
phone calls 15–16
phone model

see also remote procedure calls
IPC 129–30

photographs 15–16

physical device drivers (PDDs), concepts
52–3, 56–58, 210–11, 239–40

physical level, security issues 286–7, 290–1
physical memory

see also memory . . .

concepts 141–3, 146–54
physical/logical addressing, memory

management 141–3, 146–54, 156–59,
177–78, 216

pipes 82
platforms, operating systems 39–3
PLCB (partition-label control block) 179
plug-and-play concepts 6, 42, 51, 227
PNG files 168
polling 203–4
POP (Post Office Protocol) 268, 275–6, 280
portability needs, operating systems 7
ports 202
POSIX standards, Unix 76, 84
Post Office Protocol (POP) 268, 275–6, 280
power management 10, 15, 16
pre-emptive/non-pre-emptive concepts,

process scheduling 90–106, 133–4
predictions, execution times 105–6
printers 198, 206–7

see also I/O
priorities, interrupts 55–6, 98, 104–6
priority inheritance 128
priority inversion concepts 104
priority queues, process scheduling 101,

104–6, 127–28
priority strategy, process scheduling 98–1,

103, 105–6, 128
privileged-mode operations, operating systems

35–6, 42–3, 48–9, 54, 55–6, 76–7
process control blocks (PCBs), concepts

64–7, 74, 76–84, 99–100, 104–5,
145–7, 295

process scheduling
aging concepts 100–1
basics 25, 49, 64–6, 76–7, 90–4
concepts 25, 49, 64–6, 76–7, 89–108,

216
CPU 89–108

330 INDEX

process scheduling (continued)
criteria 92–4
deadlines 102, 105–6
dispatchers 91–4
first-come-first-served strategy (FCFS)

94–6, 98, 116
microkernels 93–4, 104–6
multiple-queuing strategy 101, 106
pre-emptive/non-pre-emptive concepts

90–106, 133–4
predicted execution-times 105–6
priority strategy 98–1, 103, 105–6, 128
real-time strategy 101–6
response times 93–106
round-robin strategy 97–98
shortest-job-first strategy (SJF) 96–98
starvation issues 100–1, 113–16, 122,

134
static monotonic scheduling 102, 105–6
strategies 93–103
Symbian OS 105–6
system types 93–4
turnaround times 92–103
waiting times 93–103, 113

processes
see also threads
access permissions 32, 33–38, 192
clones 72, 79–4, 124–6
concepts 13–16, 25, 32, 37–38, 48–9,

55–6, 61–88, 89–108, 138–1, 219–2
concurrently-shared resources 34–5, 42,

69, 109–36, 236–7
context-switches 25, 37–38, 40–1,

49–50, 55, 74, 76, 82, 91–102, 138,
145–6, 156, 160–1

conventional programming model 79–2
deadlocks 120–3, 133–4
definition 25, 61–2
distributed systems 13–14, 219–2
file structures 171–2
forking issues 72, 79–2, 124–6
identification 32, 64, 66–7, 74, 113–16,

287–88
implementation concepts 66–7

interleaving processes 111–12, 207
IPC 128–2
life cycle 138–1
Linux 74–6, 79–1, 84, 91, 103–4
multitasking 25, 37–38, 40–3, 50–1,

61–88
overview 62–79
parent–child relationships 64–5, 66–7,

74–5, 81–3, 279
programming 79–7
programs 62–3
queues 66, 75–6, 79–2, 90–106, 127–28
rollback approaches 134
shared data 82, 91–4, 109–36
signals 72, 117–18
source code 138–1
states 63–7, 72, 74–5, 90–4, 133–4,

145, 236–7
Symbian OS 73–4, 76–79, 83–7, 105–6
types 32, 62
zombie processes 67, 74–5

producer–consumer problem,
concurrently-shared resources 122–3

program counter 62–4, 67, 74
program stack 62–3, 68–9, 76–7, 156, 306
programming

concurrent processes 120
conventional model 79–2
historical background 8–11
MTM 276–7
processes 79–7
Symbian OS 83–7, 276–7
threads 82–7

programs, processes 62–3
protection issues

see also security . . .

definition 285
file systems 189–4
hardware 33–38, 48–9, 189–4
memory 36–38, 40–1, 153–4, 162–3,

216
messaging 277–78
modes 35–6, 48–9, 54, 76–7

INDEX 331

operating systems 33–38, 40–1, 42–3,
48–4, 76–7, 82, 153–4, 190–4,
277–78, 285–97, 301–2

software 34–38, 40–1, 48–9, 285–97
virtual machines 301–2

protocols 39, 42, 57, 105, 218–19, 226,
227, 232–5, 238–4, 282

concepts 39, 200, 218–19, 227, 240–2
encapsulation concepts 218–19

PRT modules 239, 241–2
Psion Computers

see also Symbian OS
historical background 9–10, 247

PSTN (public-switched-telephone network)
248, 260–1

Pthreads standard 76
public-switched-telephone network (PSTN)

248, 260–1
pull model, messaging 267
punched cards 12
push model, messaging 267, 269, 272
PVM 220

queues
devices 66
FIFO queues 90
process scheduling 66, 75–6, 79–2,

90–106, 127–28

radio connectivity 3–5, 9, 217
RAID 185–6
RAM 137–65, 221–2, 231

see also memory
random (direct) access, files 174–5, 205
RBusLogicalChannel 240
RCall 253–4, 257–60
read 244
read locks 118–20
read operations, files 173, 178, 192, 205,

209
read-only memory (ROM) 25, 223, 305
reader–writer problem, concurrently-shared

resources 122

ready queues, process scheduling 66, 75–6,
79–2, 90–106

ready state, processes 63–4, 66, 79–2,
90–106

real-time OS (RTOS), concepts 56–7
real-time systems

concepts 16, 27, 56–7, 93–4, 101–6
deadlines 102, 105–6
performance considerations 102
process scheduling 101–6
Symbian OS 16, 56, 105–6
types 16, 101–2

record-keeping needs, operating systems 28
recursive problems, new operating systems

301–2
registers

concepts 29–2, 37, 62–4, 68–9, 74, 91,
137, 159–60, 202–4

definition 30
I/O 202–4
polling 203–4
relocation registers 142–3

relay servers, messaging 266–69
reliability property, socket streams 131
relocatable binding 140–1
relocation registers, MMUs 142–3
remote file systems 187–88
remote procedure calls (RPCs)

see also phone model
IPC 130, 132

removable storage media 212–13
replication benefits, files 224
reposition operations, files 173
reserved-page frames 162–3
resource models

concepts 2, 4–9, 33–38
operating systems 2–9, 33–38

response times, concepts 51, 93–106
RFCOMM 234
RFile 42

see also file servers
rich text data 278–9
ring networks 218–19
ringtones 271

332 INDEX

Ritchie, Dennis 8
RLine 253–60
RMessage2 132
robustness needs, operating systems 6–7
rollback approaches, deadlocked processes

134
ROM (read-only memory) 25, 223, 305
roots, files 171, 180, 190, 279
‘rose-tinted glasses’ 1, 167
round-robin strategy, process scheduling

97–98
routers, networks 218–19
RPCs (remote procedure calls), IPC 130, 132
RPhone 253–59
RS230 port 240
RSemaphore 127
RTelServer 251–4
RTOS (real-time OS), concepts 56–7
RunL 84–6, 259
running state, processes 63–4, 66, 90–103,

105–6, 145

scalability needs, operating systems 6
scheduling 25, 49, 64–6, 76–7, 89–108,

216
see also process scheduling
jobs 12, 40–1
nanokernel 49
threads 71–2

screens
see also displays
LCD management 210–11

SCSI (Small Computer Systems Interface) bus
200–1

SDs (secure-digital cards) 31, 154, 212–13
secondary storage

see also disk . . . ; flash . . .

concepts 30–1, 137, 146–7, 167–68,
176–7

definition 31
sectors, disks 177, 181
secure-digital cards (SDs) 31, 154, 212–13

security issues 7, 33–38, 40–1, 42–3,
48–4, 76–7, 82, 153–4, 189–4, 223–4,
277–78, 285–97

see also protection . . .

authentication concepts 54, 192–4,
288–6

authorization concepts 287–88, 293–4
buffer overflows 286, 292
capabilities 54, 192–4, 254–5, 295–6
concepts 33–38, 40–1, 42–3, 48–4,

189–4, 223–4, 285–97
data caging 296
definition 285
difficulties 286–7
failures 190–2, 286
file systems 189–4
finger example 286, 292
gatekeeper security model 294–6
human level 286–7, 292
levels 286–7
Linux 287
Microsoft Windows 288
networks 223–4, 286–7, 293
operating systems 7, 33–38, 40–1, 42–3,

48–4, 76–7, 82, 153–4, 190–4,
277–78, 285–97

passwords 288–6
personal information 290–1
physical level 286–7, 290–1
signed applications 294–6
smartphones 193–4, 293–6
Symbian OS 193–4, 293–6
threat types 292–4
Unix 286, 288–90, 292–3
virtual machines 301–2

security needs, operating systems 7
segmentation, memory management

156–59, 161, 162–3
select 245
semaphores 49, 50, 77–78, 116–36

see also synchronization operations
binary semaphores 118–20, 126–7
concepts 116–20
definition 126–7

INDEX 333

locks 118–20
monitors 119–20
Unix example 123–6

Send 85–6
send-as messaging interface, MTM 276–81
senders, message characteristics 264–71,

273–5
SendItem 85–6
sequential access, files 174–5, 205
serial connectivity 9, 85–6, 210
serializability goal, concurrently-shared

resources 112–13
serially-shared network resources 33–5
Server Message Block (SMB) 187, 189, 225
servers

see also file . . .; sockets
client–server architecture 11, 14, 93,

130–1, 221, 231–2, 235, 237–42,
245, 265–68, 275–81

concepts 10–11, 14, 18, 20–2, 39, 42,
43, 48–9, 53, 57, 93, 130–1, 132,
178, 187–88, 190–4, 211–12, 221,
231–2, 251–60, 265–68

ETel 247, 249, 251–60
kernel 20–2, 43, 47–59, 132
messaging functions 42–3, 275–81
passive kernel components 53
relay servers 266–69
roles 49, 132, 231–2

Session Initiation Protocol (SIP) 261–2
SetActive 84–6
shared data, processes 82, 91–4, 109–36
shared memory 137–65, 221–4

see also memory . . .

shared resources 33–4, 61–88, 90–4,
109–36, 137–65, 205, 216–28

see also concurrently-shared . . . ; memory
management; networks

shell access, Unix 288
shortest-job-first strategy (SJF), process

scheduling 96–98
SIBO 9–10, 42
signal 117–18, 119–20, 122–7

see also synchronization

signals, processes 72, 117–18
signed applications 294–6
SIMD (single instruction, multiple data)

distributed systems 221
Simple Mail Transfer Protocol (SMTP) 268,

275
single instruction, multiple data (SIMD)

distributed systems 221
SIP (Session Initiation Protocol) 261–2
sizes

applications 155
directories 179
files 170–1, 181–3

SJF (shortest-job-first strategy) 96–98
sleeping state, nanothreads 77–78
Small Computer Systems Interface (SCSI) bus

200–1
smartphones 9–11, 20–2, 42–3, 47–58,

93–4, 154–6, 177, 229–30, 247–62,
285–97

see also mobile phones; Symbian OS
communications models 229–30
constraints 154–6, 231
file systems 188–9, 193–4
flash storage 2, 31, 52, 146, 154, 167–68,

177, 188–9
historical background 9–11, 42–3, 247
memory management 154–6, 159–2
microkernels 20–2, 43, 47–58, 93–4,

104–6, 132, 249, 277
networks 218, 226–7
platform uniqueness 56
security issues 193–4, 293–6
storage media 177, 211–12
telephony 247–62

SMB (Server Message Block) 187, 189, 225
SMS 53, 242, 263, 267, 268–1, 276, 280

see also messaging
SMTP (Simple Mail Transfer Protocol) 268,

275
sockets

see also servers; TCP/IP
concepts 39, 49, 130–2, 225–7, 235,

243–5, 261

334 INDEX

sockets (continued)
connected sockets 131
IPC 130–2, 235
network communications 225–7, 243–5,

261
streams 131

SOCK_STREAM 243–5
soft real-time systems

see also real-time . . .

concepts 16, 101–2
software

see also application . . . ; operating systems;
processes

concepts 2–11, 35–38, 204–13
definition 3
device drivers 18, 41, 52–3, 56–58, 177,

198, 199–13
goals 3–4
historical background 7–16
I/O issues 204–13
interrupts 24–5, 35–6, 43, 104–6
protection issues 34–38, 40–1, 48–9,

285–97, 301–2
signed applications 294–6
virtual machines 300–8
‘write once, run everywhere’ goal 302

software controllers 213
Solaris 123–6, 143, 157
solid-state storage 146
Sony Ericsson 307
sorting algorithms 82
source code

malicious code 35, 189, 194, 285, 292–6
open source 41–2, 91, 287, 289
processes 138–1

spam 283
spools

see also buffers
concepts 206–7

spyware 292
SQL 292–3
stacks

communications 232–5, 237–44

program stack 62–3, 68–9, 76–7, 156,
306

standards 198, 204–5, 230, 238–9, 271
see also protocols

star networks 218–9
starvation issues, process scheduling 100–1,

113–16, 122, 134
states

nanothreads 77–78
processes 63–7, 72, 74–5, 90–4, 133–4
threads 71–2, 77–78

static monotonic scheduling 102, 105–6
statically loaded system libraries 139–1,

144–5
storage media

bad blocks 182
blocks 146–7, 177–78, 179–2, 186–7
free space 182
removable storage media 212–13
smartphones 177, 211–12
structural issues 146–7, 177–82
Symbian OS 211–12

storage structures
access models 31–2, 33–38
concepts 29–2, 146–54, 167–68,

176–7, 178–2, 223–5, 278–9
core computing cycle (fetch–execute cycle)

29, 204
hierarchical levels 29–30, 188, 278–9
main mechanisms 29–30

storage-free computers 223–5
strategies, process scheduling 93–103
streams 131, 233–5
struct 119
structural issues

see also storage . . .

directories 179–2
files 168–9, 171–95
kernel 20–2, 47–59
operating systems 18–39, 47–59
telephony 250–60

stubs 144–5, 160
Sun Microsystems 145, 225
suspended state, nanothreads 77–78

INDEX 335

swap-space configuration, concepts 153–4,
163

swapping and paging, memory management
145–54, 159, 160, 163

SWinstall 295–6
switch 86
Symbian OS 2, 9–11, 15, 16, 18–19, 32,

38–9, 42–3, 48–58, 73–4, 76–79,
105–6, 126–7, 132, 156, 159–2,
209–13, 226–7, 237–42, 247–62,
293–6, 299, 302–7

see also mobile phones; operating systems
30-bit operating system 159
abstraction principles 210–11, 251–62
active objects 73–4, 76–79, 83–6, 132,

212–13, 236–7
communication resources 18–19, 22,

38–9, 43, 132, 226–7, 237–42,
250–60, 275–81

complexity issues 56–58, 276, 280–1
concurrently-shared resources 126–7
connectivity 226–7
data caging 296
developer certificates 296
diagrammatic overview 56–7
emulator 161–2, 251, 302, 303–4
EPOC 10–11, 19, 42, 305
errors 160
ETel 247, 249–60, 295
file systems 42, 193–4, 227
formation 11, 42
gatekeeper security model 294–6
historical background 9–11, 19, 38–9,

42–3, 247
I/O 209–13
IPC 132
JVM (Java virtual machine) 299, 303–7
kernel 20–2, 43, 48–58
memory implementation models 161–2
memory management 156, 159–2, 227
messaging 42–3, 53, 239, 241–2, 263–4,

275–81
microkernels 20–2, 43, 48–58, 132, 249,

277

networks 226–7
object-oriented approaches 10–11, 42–3,

275
page directories/tables 159–2
process scheduling 105–6
processes 73–4, 76–79, 83–7, 105–6
programming 83–7, 276–7
protocol-implementation communication

layer 240–4
real-time systems 16, 56, 105–6
removable storage media 212–13
roots of files 171, 279
security issues 193–4, 293–6
signed applications 294–6
storage media 211–12
telephony support 247–62
threads 73–4, 76–79, 83–7, 212–13,

236–7
trust relationships 295–6
TTBRs 159–60
Unix 42
v8 51
v9 16, 54, 193, 251, 261–2, 294–6
v9.1 54, 304
virtual machines 299, 302, 303–7
VoIP 261–2

synchronization operations 49, 76–7,
114–36

see also critical sections; mutexes;
semaphores

bakery method 115–16
concepts 49, 76–7, 114–36
dining-philosophers problem 120–6
flags 114–15
IPC 128–2
multiple processes 115–16
nanokernel 49, 76–7, 126–7
two processes 113–15

synchronous device I/O, concepts 26–29,
205

system function calls 5–6, 36, 42–3, 47, 49,
52–4, 69–1, 76, 79–2, 207–9, 231–2,
279

see also interrupts

336 INDEX

system function calls (continued)
concepts 5–6, 53–4, 69–1, 76, 207–9
kernel 53–4, 69–1, 207–9, 231–2
privileged-mode operations 36, 42–3, 47,

49, 54
system time 38
systems perspective, operating systems

11–16, 93–4

table of contents, directories 170–1
tables, files 170–1, 174, 178
tape drives, spools 207
TCP/IP protocol 39, 42, 218, 226, 227,

238–9, 241–2, 244, 261–2, 268
‘telephone game’, communications 229
telephony

analog communications 248, 260–1
concepts 247–62
digital communications 248
ETel 247, 249–60
kernel 249–50
Linux 249–50
Microsoft Windows 249
models 248–60
structural issues 250–60
voice communications 248–9, 257
VoIP 260–2

terminated state, processes 63–5, 66–7, 72,
78–80, 90–103, 134

tertiary (archival) storage
concepts 30–1
definition 31

test 126
text files

see also files
concepts 168–1, 267–68

text messages 3–6, 15–16, 53, 242, 263,
267, 268–1, 276, 280

see also SMS
text sections, processes 62–3
TFTP (trivial-file-transfer protocol) 293
Thompson, Ken 8

thrashing problems, memory management
152–3

thr_create 83
threads

see also active objects; multithreading;
processes

cancellations 72
concepts 25, 41–3, 48–9, 50–2, 67–88,

211–12, 236–7
creation 71–2, 82–3
definition 25, 67
kernel threads 70–1
management issues 71–2
nanothreads 76–79, 127–28
programming 82–7
scheduling 71–2
single threads 68–9, 71
states 71–2, 77–78, 236–7
Symbian OS 73–4, 76–79, 83–7,

212–13, 236–7
user threads 69–1

threat types, security issues 292–4
thr_join 83
throughput needs, operating systems 6–7
TIFF class F images 273
tightly-coupled connections 218
time slices 25, 37–38, 97–98, 103–4,

105–6
time-sharing concepts

mainframe systems 12–13
processes 25, 37–38, 97–98, 103–4

timers 37–38, 55, 207–8
timestamps, message characteristics

265–71, 273–5
TLBs (translation look-aside buffers) 152–4
token-ring networks 218–19
touch screens 10
tracks, disks 177
translation look-aside buffers (TLBs) 152–4
translation table-base registers (TTBRs)

159–60
tree-structured network topology 218–19
trivial-file-transfer protocol (TFTP) 293
trojan horses 292

INDEX 337

truncate operations, files 174
trust relationships, Symbian OS 295–6
TSY modules 239, 241–2, 251–4, 257, 261
TTBRs (translation table-base registers)

159–60
turnaround times, process scheduling

92–103
TXT files 169, 171, 184–5
type information, message characteristics

273–5

UDP 226
UFS, Unix 186–7, 305
UIQ 307
UltraSPARC architectures 74
UMTS 250–1
Unicode 268
uninterruptible state, processes 74–5
Unix 8–9, 14, 18–19, 24, 41–2, 51, 71,

74–6, 100–1, 123–6, 153, 180, 191–2,
220, 225–6, 229–30, 286, 288–90,
292–3

see also Linux
communication resources 18, 229–30
concurrently-shared resources 123–6
directories 180
evolution 19
file systems 186–7, 191–2, 305
historical background 8–9, 14, 19, 41
idle processes 100–1
interrupts 24
kernel 51, 71
networks 220, 225–6
POSIX standards 76, 84
security issues 286, 288–90, 292–3
semaphores example 123–6
shell access 288
swap-space 153
Symbian OS 42
TFTP 293
threads 71
UFS 186–7, 305
VFS 186–7

UnloadPhoneModule 252–3
URLs 67–68
USB connectivity 22, 199, 200, 210
user interfaces 2–3
user threads

see also threads
concepts 69–1

user-mode operations 35–6, 43, 48–58, 77,
93–4, 132, 161

user-space servers 43, 48–9, 57, 132
see also servers

users 2–3, 35–6, 43, 48–58, 69–1, 77,
93–4, 132, 161

files 170–1, 190–4
passwords 288–6

valid–invalid bits 154
vCalendar objects 271–2, 277
vCards 271–2

see also messaging
vectors, interrupts 23–29
Version 253–4
VFAT file system 183–5
VFS, Unix 186–7
video clips 15–16
‘viewing the world through rose-tinted glasses’

1, 167
virtual clocks 208
virtual disks 305
virtual machines

challenges 304–5
concepts 299–8
definition 300
implementation methods 303–4
JVM (Java virtual machine) 299, 303–7
performance considerations 304–5
security issues 301–2
Symbian OS 299, 302, 303–7
uses 301–2

virtual memory
concepts 22, 32, 40–1, 43, 151–4, 159,

216
systems without virtual memory 154–6

338 INDEX

virtual memory (continued)
uses 22, 32, 40–1, 43, 151–4

virtual reality 299
viruses 191, 194, 292, 294
VMware 302
Voice 257–59
voice communications, telephony 248–9,

257
voice over IP (VoIP) 260–2
volumes see partitions
von Neumann, John 29

wait 81–2, 117–18, 119–20, 122–7
see also synchronization . . .

waiting state, processes 63–4, 66, 79–1,
90–103, 133–4, 236–7

waiting times, process scheduling 93–103,
113

WAP (Wireless Access Protocol) 227,
232–5, 242

web
see also Internet
browsers 14, 33–5, 47, 67–68, 226,

232–5
resources 309
servers 226

whileloops 110–11, 113–14
Windows see Microsoft Windows
Wireless Access Protocol (WAP) 227,

232–5, 242
wireless connectivity 3–5, 9, 53, 202,

217–19, 226–7, 248–9, 263
wireless LANs 217–19
worms 292–3, 294
write 39, 85, 244
write locks 118–20
‘write once, run everywhere’ goal, software

302
write operations, files 173, 178, 194, 205,

209

XNU kernel 91

YAFFS 189

Zhou dynasty 285
zombie processes 67, 74–5

