

O P E R A T I N G
S Y S T E M
C O N C E P T S

Sixth Edition

A B R A H A M S ILBERSCHATZ
Bell Laboratories

PETER BAER G A L V I N
Corporate Technologies, Inc.

GREG G A G N E
Westminster College

J O H N WILEY & SONS, INC,
New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

ACQUISITIONS EDITOR Paul Crockett

SENIOR MARKETING MANAGER Katherine Hepburn

SENIOR PRODUCTION EDITOR Ken Santor

COVER DESIGNER Madelyn Lesure

COVER ART Susan E. Cyr

SENIOR ILLUSTRATION COORDINATOR Anna Melhorn

This book was set in Palatino by Abraham Silberschatz and printed and
bound by Courier-Westford. The cover was printed by Phoenix Color
Corporation.

This book is printed on acid-free paper.

The paper in this book was manufactured by a mill whose forest manage-
ment programs include sustained yield harvesting of its timberlands.
Sustained yield harvesting principles ensure that the numbers of trees cut
each year does not exceed the amount of new growth.

Copyright O 2002 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (508) 750-8400, fax (508) 750-4470. Requests to the Publisher for permis-
sion should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-

ISBN 0-471-41743-2

Printed in the United States of America

PREFACE

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing change at a breathtakingly rapid rate, as
computers are now prevalent in virtually every application, from games for
children through the most sophisticated planning tools for governments and
multinational firms. Yet the fundamental concepts remain fairly clear, and it is
on these that we base this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level. It
provides a clear description of the concepts that underlie operating systems. As
prerequisites, we assume that the reader is familiar with basic data structures,
computer organization, and a high-level language, such as C. The hardware
topics required for an understanding of operating systems are included in
Chapter 2. For code examples, we use predominantly C as well as some
Java, but the reader can still understand the algoritluns without a thorough
knowledge of these languages.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim is to
present these concepts and algorithms in a general setting that is not tied to
one particular operating system. We present a large number of examples that
pertain to the most popular operating systems, including Sun Microsystems'
Solaris 2, Linux; Microsoft MS-DOS, Windows NT, and Windows 2000; DEC VMS
and TOPS-20, IBM OS/2, and the Apple Macintosh Operating System.

viii Preface

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

Content of this Book

The text is organized in seven major parts:

Overview: Chapters 1 through 3 explain what operating systems are, what
they do, and how they are designed and constructed. They explain how the
concept of an operating system has developed, what the common features
of an operating system are, what an operating system does for the user,
and what it does for the computer-system operator. The presentation is
motivational, historical, and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individuals or for students in lower-level classes who
want to learn what an operating system is, without getting into the details
of the internal algorithms. Chapter 2 covers the hardware topics that are
important to an understanding of operating systems. Readers well-versed
in hardware topics, including I/O, DMA, and hard-disk operation, may
choose to skim or skip this chapter.

Process management: Chapters 4 through 8 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code), and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

Storage management: Chapters 9 through 12 deal with a process in main
memory during execution. To improve both the utilization of CPU and the
speed of its response to its users, the computer must keep several processes
in memory. There are many different memory-management schemes.
These schemes reflect various approaches to memory management, and
the effectiveness of the different algorithms depends on the situation. Since
main memory is usually too small to accommodate all data and programs,
and since it cannot store data permanently, the computer system must pro-
vide secondary storage to back up main memory. Most modern computer
systems use disks as the primary on-line storage medium for information,

Preface ix

both programs and data. The file system provides the mechanism for on-
line storage of and access to both data and programs residing on the disks.
These chapters describe the classic internal algorithms and structures of
storage management. They provide a firm practical understanding of the
algorithms used-the properties, advantages, and disadvantages.

I10 systems: Chapters 13 and 14 describe the devices that attach to a com-
puter and the multiple dimensions in which they vary. In many ways, they
are also the slowest major components of the computer. Because devices
differ so widely, the operating system needs to provide a wide range of
functionality to applications to allow them to control all aspects of the
devices. This section discusses system I/O in depth, including 1/0 system
design, interfaces, and internal system structures and functions. Because
devices are a performance bottleneck, performance issues are examined.
Matters related to secondary and tertiary storage are explained as well.

Distributed systems: Chapters 15 through 17 deal with a collection of
processors that do not share memory or a clock-a distributed system.
Such a system provides the user with access to the various resources that
the system maintains. Access to a shared resource allows computation
speedup and improved data availability and reliability. Such a system also
provides the user with a distributed file system, which is a file-service
system whose users, servers, and storage devices are dispersed among
the sites of a distributed system. A distributed system must provide
various mechanisms for process synchronization and communication, for
dealing with the deadlock problem and the variety of failures that are not
encountered in a centralized system.

Protection and security: Chapters 18 and 19 explain the processes in an
operating system that must be protected from one another's activities. For
the purposes of protection and security, we use mechanisms that ensure
that only those processes that have gained proper authorization from the
operating system can operate on the files, memory segments, CPU, and
other resources. Protection is a mechanism for controlling the access of
programs, processes, or users to the resources defined by a computer
system. This mechanism must provide a means for specification of the
controls to be imposed, as well as a means of enforcement. Security
protects the information stored in the system (both data and code), as
well as the physical resources of the computer system, from unauthorized
access, malicious destruction or alteration, and accidental introduction of
inconsistency.

Case studies: Chapters 20 through 22, in the book, and Appendices A
through C, on the website, integrate the concepts described in this book by
describing real operating systems. These systems include Linux, Windows
2000, FreeBSD, Mach, and Nachos. We chose Linux and FreeBSD because

x Preface

UNIX-at one time-was almost small enough to understand, yet was not
a "toy" operating system. Most of its internal algorithms were selected for
simplicity, rather than for speed or sophistication. Both Linux and FreeBSD
are readily available to computer-science departments, so many students
have access to these systems. We chose Windows 2000 because it provides
an opportunity for us to study a modern operating system that has a design
and implementation drastically different from those of UNIX. We also cover
the Nachos System, which allows students to get their hands dirty-to take
apart the code for an operating system, to see how it works at a low level, to
build significant pieces of the operating system themselves, and to observe
the effects of their work. Chapter 22 briefly describes a few other influential
operating systems.

The Sixth Edition

As we wrote this Sixth Edition, we were guided by the many comments and
suggestions we received from readers of our previous editions, as well as by
our own observations about the rapidly changing fields of operating systems
and networking. We rewrote the material in most of the chapters by bringing
older material up to date and removing material that was no longer of interest.
We rewrote all Pascal code, used in previous editions to demonstrate certain
algorithms, into C, and we included a small amount of Java as well.

We made substantive revisions and changes in organization in many of
the chapters. Most importantly, we added two new chapters and reorganized
the distributed systems coverage. Because networking and distributed systems
have become more prevalent in operating systems, we moved some distributed
systems material, client-server, in particular, out of distributed systems chap-
ters and integrated it into earlier chapters.

Chapter 3, Operating-System Structures, now includes a section dis-
cussing the Java virtual machine (JVM).

Chapter 4, Processes, includes new sections describing sockets and remote
procedure calls (RPCs).

Chapter 5, Threads, is a new chapter that covers multithreaded computer
systems. Many modern operating systems now provide features for a
process to contain multiple threads of control.

Chapters 6 through 10 are the old Chapters 5 through 9, respectively

Chapter 11, File-System Interface, is the old Chapter 10. We have mod-
ified the chapter substantially, including the coverage of NFS from the
Distributed File System chapter (Chapter 16).

Preface xi

Chapter 12 and 13 are the old Chapters 11 and 12, respectively. We have
added a new section in Chapter 13, I/O Systems, covering STREAMS.

Chapter 14, Mass-Storage Structure, combines old Chapters 13 and 14.

Chapter 15, Distributed System Structures, combines old Chapters 15
and 16.

Chapter 19, Security, is the old Chapter 20.

Chapter 20, The Linux System, is the old Chapter 22, updated to cover new
recent developments.

Chapter 21, Windows 2000, is a new chapter.

Chapter 22, Historical Perspective, is the old Chapter 24.

Appendix A is the old Chapter 21 on UNIX updated to cover FreeBSD.

Appendix B covers the Mach operating system.

Appendix Cs the Nachos system.

The three appendices are provided online.

Teaching Supplements and Web Page

The web page for this book contains the three appendices, the set of slides that
accompanies the book, in PDF and Powerpoint format, the three case studies,
the most recent errata list, and a link to the authors home page. John Wiley &
Sons maintains the web page at

To obtain restricted supplements, contact your local John Wiley & Sons sales
representative. You can find your representative at the "Find a Rep?' web page:
http: / /www.jsw-edcv.wiley.com/college/findarep

Mailing List

We provide an environment in which users can communicate among them-
selves and with us. We have created a mailing list consisting of users of our
book with the following address: 0s-book@research.bell-1abs.com. If you wish
to be on the list, please send a message to aviabell-1abs.com indicating your
name, affiliation, and e-mail address.

xii Preface

Suggestions

We have attempted to clean up every error in this new Edition, but-as hap-
pens with operating systems-a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify. If you would like to suggest improvements or to contribute exer-
cises, we would also be glad to hear from you. Please send correspondence
to Avi Silberschatz, Vice President, Information Sciences Research Center, MH
2T-310, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 (aviabell-
1abs.com).

Acknowledgments

This book is derived from the previous editions, the first three of which were
coauthored by James Peterson. Others who helped us with previous editions
include Hamid Arabnia, Randy Bentson, David Black, Joseph Boykin, Jeff
Brumfield, Gael Buckley, P. C. Capon, John Carpenter, Thomas Casavant, Ajoy
Kumar Datta, Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake,
M. Ragit Eskicioglu, Hans Flack, Robert Fowler, G. Scott Graham, Rebecca Hart-
man, Wayne Hathaway, Christopher Haynes, Mark Holliday, Richard Kieburtz,
Carol Kroll, Thomas LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Michael Molloy, Yoichi Muraoka, Jim M. Ng, Banu
~ z d e n , Ed Posnak, Boris Putanec, Charles Qualline, John Quarterman, Jesse
St. Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, Hal Stern, Louis
Stevens, Pete Thomas, David Umbaugh, Steve Vinoski, Tommy Wagner, John
Werth, and J. S. Weston.

We thank the following people who contributed to this edition of the book:
Bruce Hillyer reviewed and helped with the rewrite of Chapters 2, 12, 13, and
14. Mike Reiter reviewed and helped with the rewrite of Chapter 18. Parts
of Chapter 14 were derived from a paper by Hillyer and Silberschatz [1996].
Parts of Chapter 17 were derived from a paper by Levy and Silberschatz [1990].
Chapter 20 was derived from an unpublished manuscript by Stephen Tweedie.
Chapter 21 was derived from an unpublished manuscript by Cliff Martin.
Cliff Martin helped with updating the UNIX appendix to cover FreeBSD. Mike
Shapiro reviewed the Solaris information and Jim Mauro answered several
Solaris-related questions.

We thank the following people who reviewed this edition of the book:
Rida Bazzi, Arizona State University; Roy Campbell, University of Illinois-
Chicago; Gil Carrick, University of Texas at Arlington; Richard Guy, UCLA;
Max Hailperin, Gustavus Adolphus College; Ahrned Kamel, North Dakota
State University; Morty Kwestel, New Jersey Institute of Technology; Gustavo
Rodriguez-Rivera, Purdue University; Carolyn J. C. Schauble, Colorado State
University; Thomas I? Skinner, Boston University; Yannis Smaragdakis, Geor-

Preface xiii

gia Tech; Larry L. Wear, California State University, Chico; James M. Westall,
Clemson University; and Yang Xiang, University of Massassachusetts.

Our Acquisitions Editors, Bill Zobrist and Paul Crockett, provided expert
guidance as we prepared this Edition. They were both assisted by Susan-
nah Barr, who managed the many details of this project smoothly. Katherine
Hepburn was our Marketing Manager. The Senior Production Editor was Ken
Santor. The cover illustrator was Susan Cyr while the cover designer was Made-
lyn Lesure. Barbara Heaney was in charge of overseeing the copy-editing and
Katie Habib copyedited the manuscript. The freelance proofreader was Katrina
Avery; the freelance indexer was Rosemary Simpson. The Senior Illustration
Coordinator was Anna Melhorn. Marilyn Turnamian helped generate figures
and update the text, Instructors Manual, and slides.

Finally, we would like to add some personal notes. Avi would like to extend
his gratitude to Krystyna Kwiecien, whose devoted care of his mother has given
him the peace of mind he needed to focus on the writing of this book; Pete,
would like to thank Harry Kasparian, and his other co-workers, who gave him
the freedom to work on this project while doing his "real job"; Greg would
like to acknowledge two significant achievements by his children during the
period he worked on this text: Tom-age 5-learned to read, and Jay-age 2
-learned to talk.

Abraham Silberschatz, Murray Hill, NJ, 2001
Peter Baer Galvin, Norton, MA, 2001
Greg Gagne, Salt Lake City, UT, 2001

CONTENTS

PARTONE W OVERVIEW

Chapter 1 Introduction
1.1 What Is an Operating System? 3 1.8 Handheld Systems 19
1.2 Mainframe Systems 7 1.9 Feature Migration 20
1.3 Desktop Systems 11 1.10 Computing Environments
1.4 Multiprocessor Systems 12 1.11 Summary 23
1.5 Distributed Systems 14 Exercises 24
1.6 Clustered Systems 16 Bibliographical Notes 25
1.7 Real-Time Systems 17

Chapter 2 Computer-System Structures
2.1 Computer-System Operation 27 2.6 Network Structure 48
2.2 1/0 Structure 30 2.7 Summary 51
2.3 Storage Structure 34 Exercises 52
2.4 Storage Hierarchy 38 Bibliographical Notes 54
2.5 Hardware Protection 42

xvi Contents

Chapter 3 Operating-System Structures
3.1 System Components 55 3.7 System Design and
3.2 Operating-System Services 61 Implementation 85
3.3 System Calls 63 3.8 System Generation 88

3.4 System Programs 72 3.9 Summary 89
3.5 System Structure 74 Exercises 90
3.6 Virtual Machines 80 Bibliographical Notes 92

PART TWO PROCESS MANAGEMENT

Chapter 4 Processes
4.1 Process Concept 95 4.6 Communication in Client -
4.2 Process Scheduling 99 Server Systems 117
4.3 Operations on Processes 103 4.7 Summary 126
4.4 Cooperating Processes 107 Exercises 127
4.5 Interprocess Communication 109 Bibliographical Notes 128

Chapter 5 Threads
5.1 Overview 129
5.2 Multithreading Models 132
5.3 Threading Issues 135
5.4 Pthreads 139
5.5 Solaris 2 Threads 141
5.6 Window 2000 Threads 143

5.7 Linux Threads 144
5.8 Java Threads 145
5.9 Summary 147

Exercises 147
Bibliographical Notes 148

Chapter 6 CPU Scheduling
6.1 Basic Concepts 151 6.6 Algorithm Evaluation 172
6.2 Scheduling Criteria 155 6.7 Process Scheduling Models 177
6.3 Scheduling Algorithms 157 6.8 Summary 184
6.4 Multiple-Processor Scheduling 169 Exercises 185
6.5 Real-Time Scheduling 170 Bibliographical Notes 187

Contents xvii

Chapter 7 Process Synchronization
7.1 Background 189 7.7 Monitors 216
7.2 The Critical-Section Problem 191 7.8 OS Synchronization 223
7.3 Synchronization Hardware 197 7.9 Atomic Transactions 225
7.4 Semaphores 201 7.10 Summary 235
7.5 Classic Problems of Exercises 236

Synchronization 206 Bibliographical Notes 240
7.6 Critical Regions 211

Chapter 8 Deadlocks
8.1 System Model 243 8.6 Deadlock Detection 260
8.2 Deadlock Characterization 245 8.7 Recovery from Deadlock 264
8.3 Methods for Handling 8.8 Summary 266

Deadlocks 248 Exercises 266
8.4 Deadlock Prevention 250 Bibliographical Notes 270
8.5 Deadlock Avoidance 253

PART THREE . STORAGE MANAGEMENT

Chapter 9 Memory Management
9.1 Background 273 9.6 Segmentation with Paging 309
9.2 Swapping 280 9.7 Summary 312
9.3 Contiguous Memory Allocation 283 Exercises 313
9.4 Paging 287 Bibliographical Notes 316
9.5 Segmentation 303

Chapter 10 Virtual Memory
10.1 Background 317 10.7 Operating-System Examples 353
10.2 Demand Paging 320 10.8 Other Considerations 356
10.3 Process Creation 328 10.9 Summary 363
10.4 Page Replacement 330 Exercises 364
10.5 Allocation of Frames 344 Bibliographical Notes 369
10.6 Thrashing 348

xviii Contents

Chapter 11 File-System Interface
11.1 File Concept 371 11.6 Protection 402
11.2 Access Methods 379 11.7 Summary 406
11.3 Directory Structure 383 Exercises 407
11.4 File-System Mounting 393 Bibliographical Notes 409
11.5 File Sharing 395

Chapter 12 File-System Implementation
12.1 File-System Structure 411 12.7 Recovery 437
12.2 File-System Implementation 413 12.8 Log-Structured File System 439
12.3 Directory Implementation 420 12.9 NFS 441
12.4 Allocation Methods 421 12.10 Summary 448
12.5 Free-Space Management 430 Exercises 449
12.6 Efficiency and Performance 433 Bibliographical Notes 451

PART FOUR I10 SYSTEMS

Chapter 13 I10 Systems
13.1 Overview 455 13.6 STREAMS 481
13.2 1 / 0 Hardware 456 13.7 Performance 483
13.3 Application 1 / 0 Interface 466 13.8 Summary 487
13.4 Kernel I/O Subsystem 472 Exercises 487
13.5 Transforming 1 / 0 to Hardware Bibliographical Notes 488

Operations 478

Chapter 14 Mass-Storage Structure
14.1 Disk Structure 491 14.7 Stable-Storage Implementation 514
14.2 Disk Scheduling 492 14.8 Tertiary-Storage Structure 516
14.3 Disk Management 498 14.9 Summary 526
14.4 Swap-Space Management 502 Exercises 528
14.5 RAID Structure 505 Bibliographical Notes 535
14.6 Disk Attachment 512

Contents xix

PART FIVE DISTRIBUTED SYSTEMS

Chapter 15 Distributed System Structures
15.1 Background 539 15.7 Design Issues 564
15.2 Topology 546 15.8 An Example: Networking 566
15.3 Network Types 548 15.9 Summary 568
15.4 Communication 551 Exercises 569
15.5 Communication Protocols 558 Bibliographical Notes 571
15.6 Robustness 562

Chapter 16 Distributed File Systems
16.1 Background 573 16.6 An Example: AFS 586
16.2 Naming and Transparency 575 16.7 Summary 591
16.3 Remote File Access 579 Exercises 592
16.4 Stateful Versus Stateless Service 583 Bibliographical Notes 593
16.5 File Replication 585

Chapter 17 Distributed Coordination
17.1 Event Ordering 595 17.6 Election Algorithms 618
17.2 Mutual Exclusion 598 17.7 Reaching Agreement 620
17.3 Atomicity 601 17.8 Summary 623
17.4 Concurrency Control 605 Exercises 624
17.5 Deadlock Handling 610 Bibliographical Notes 625

PART SIX W PROTECTION AND SECURITY

Chapter 18 Protection
18.1 Goals of Protection 629 18.6 Capability-Based Systems 645
18.2 Domain of Protection 630 18.7 Language-Based Protection 648
18.3 Access Matrix 636 18.8 Summary 654
18.4 Implementation of Access Exercises 655

Matrix 640 Bibliographical Notes 656
18.5 Revocation of Access Rights 643

xx Contents

Chapter 19 Security
19.1 The Security Problem 657 19.8 Computer-Security
19.2 User Authentication 659 Classifications 686
19.3 Program Threats 663 19.9 An Example: Windows NT 687
19.4 System Threats 666 19.10 Summary 689
19.5 Securing Systems and Facilities 671 Exercises 690
19.6 Intrusion Detection 674 Bibliographical Notes 691
19.7 Cryptography 680

PART SEVEN CASE STUDIES

Chapter 20 The Linux System
20.1 History 695 20.8 Input and Output 729
20.2 Design Principles 700 20.9 Interprocess Communication 732
20.3 Kernel Modules 703 20.10 Network Structure 734
20.4 Process Management 707 20.11 Security 737
20.5 Scheduling 711 20.12 Summary 739
20.6 Memory Management 716 Exercises 740
20.7 File Systems 724 Bibliographical Notes 741

Chapter 21 Windows 2000
21.1 History 743 21.6 Networking 774
21.2 Design Principles 744 21.7 Programmer Interface 780
21.3 System Components 746 21.8 Summary 787
21.4 Environmental Subsystems 763 Exercises 787
21.5 File System 766 Bibliographical Notes 788

Chapter 22 Historical Perspective
22.1 Early Systems 789 22.6 CTSS 800
22.2 Atlas 796 22.7 MULTICS 800

22.3 XDS-940 797 22.8 OS/360 801

22.4 THE 798 22.9 Mach 803
22.5 RC 4000 799 22.10 Other Systems 804

Contents xxi

Appendix A The FreeBSD System (contents online)
A.l History A807 A.7 File System A834
A.2 Design Principles A813 A.8 1 / 0 System A842
A.3 Programmer Interface A815 A.9 Interprocess Communication A846
A.4 User Interface A823 A.10 Summary A852
A.5 Process Management A827 Exercises A852
A.6 Memory Management A831 Bibliographical Notes A853

Appendix B The Mach System (contents online)
B.l History A855 B.7 Programmer Interface A880
B.2 Design Principles A857 B.8 Summary A881
B.3 System Components A858 Exercises A882
8.4 Process Management A862 Bibliographical Notes A883
8.5 Interprocess Communication A868 Credits A885
8.6 Memory Management A874

Appendix C The Nachos System (contents online)
C.1 Overview A888 C.5 Conclusions A900
C.2 Nachos Software Structure A890 Bibliographical Notes A901
C.3 Sample Assignments A893 Credits A902
C.4 Obtaining a Copy of Nachos A898

Bibliography 807

Credits 837

Index 839

Part One

An operating system is a program that acts as an intermediary between the
user of a computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute programs in a
convenient and efficient manner.

We trace the development of operating systems from the first hands-on sys-

!
tems, through multiprogrammed and time-shared systems, to current handheld
and real- time systems. Understanding the evolution of operating systems gives
us an appreciation for what an operating system does and how it does it.

The operating system must ensure the correct operation of the computer
system. To prevent user programs from interfering with the proper opera-
tion of the system, the hardware must provide appropriate mechanisms. We
describe the basic computer architecture that makes it possible to write a correct
operating system.

The operating system provides certain services to programs and to the users
of those programs in order to make their tasks easier. The services differ from
one operating system to another, but we identify and explore some common
classes of these services.

Chapter 1

An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between a user of a computer and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Handheld computer
operating systems are designed to provide an environment in which a user can
easily interface with the computer to execute programs. Thus, some operating
systems are designed to be convenient, others to be eficient, and others some
combination of the two.

To understand what operating systems are, we must first understand how
they have developed. In this chapter, we trace the development of operating
systems from the first hands-on systems through multiprogramrned and time-
shared systems to PCs, and handheld computers. We also discuss operating
system variations, such as parallel, real-time, and embedded systems. As we
move through the various stages, we see how the components of operating
systems evolved as natural solutions to problems in early computer systems.

1.1 . What Is an Operating System?

An operating system is an important part of almost every computer system. A
computer system can be divided roughly into four components: the hardware,
the operating sys tem, the application programs, and the users (Figure 1.1).

4 Chapter 1 Introduction

Figure 1.1 Abstract view of the components of a computer system.

The hardware-the central processing unit (CPU), the memory, and the
inputloutput (110) devices-provides the basic computing resources. The
application programs-such as word processors, spreadsheets, compilers, and
web browsers-define the ways in which these resources are used to solve
the computing problems of the users. The operating system controls and
coordinates the use of the hardware among the various application programs
for the various users.

The components of a computer system are its hardware, software, and data.
The operating system provides the means for the proper use of these resources
in the operation of the computer system. An operating system is similar to
a government. Like a government, it performs no useful function by itself. It
simply provides an enuironment within which other programs can do useful
work. Operating systems can be explored from two viewpoints: the user and
the system.

1.1.1 User View
The user view of the computer varies by the interface being used. Most
computer users sit in front of a PC, consisting of a monitor, keyboard, mouse,
and system unit. Such a system is designed for one user to monopolize
its resources, to maximize the work (or play) that the user is performing.
In this case, the operating system is designed mostly for ease of use, with

1.1 What Is an Operating System? 5

some attention paid to performance, and none paid to resource utilization.
Performance is important to the user, but it does not matter if most of the system
is sitting idle, waiting for the slow 1/0 speed of the user.

Some users sit at a terminal connected to a mainframe or minicomputer.
Other users are accessing the same computer through other terminals. These
users share resources and may exchange information. The operating system
is designed to maximize resource utilization-to assure that all available CPU
time, memory, and I/O are used efficiently, and that no individual user takes
more than her fair share.

Other users sit at workstations, connected to networks of other worksta-
tions and servers. These users have dedicated resources at their disposal, but
they also share resources such as networking and servers-file, compute and
print servers. Therefore, their operating system is designed to compromise
between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
These devices are mostly standalone, used singly by individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems. Due to power and interface limitations they perform relatively few
remote operations. The operating systems are designed mostly for individual
usability, but performance per amount of battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have a numeric keypad, and
may turn indicator lights on or off to show status, but mostly they and their
operating systems are designed to run without user intervention.

1.1.2 System View
From the computer's point of view, the operating system is the program that
is most intimate with the hardware. We can view an operating system as a
resource allocator. A computer system has many resources-hardware and
software-that may be required to solve a problem: CPU time, memory space,
file-storage space, I/O devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly.

A slightly different view of an operating system emphasizes the need to
control the various 1 / 0 devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of I/O devices.

In general, however, we have no completely adequate definition of an
operating system. Operating systems exist because they are a reasonable way
to solve the problem of creating a usable computing system. The fundamental

6 Chapter 1 Introduction

goal of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
developed. These programs require certain common operations, such as those
controlling the I/O devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part
of the operating system. A simple viewpoint is that it includes everything a
vendor ships when you order "the operating system." The storage (memory,
disks, and tapes) requirements and features included, however, vary greatly
across systems. (The storage capacity of a system is measured in gigabytes. (A
kilobyte or KB is 1,024 bytes, a megabyte or MB is 1,024' bytes, and a gigabyte or
GB is 1,024~ bytes, but computer manufacturers often round off these numbers
and say that a megabyte is 1 million bytes, and a gigabyte is 1 billion bytes.))
Some systems take up less than 1 megabyte of space and lack even a full-
screen editor, whereas others require hundreds of megabytes of space and are
entirely based on graphical windowing systems. A more common definition
is that the operating system is the one program running at all times on the
computer (usually called the kernel), with all else being application programs.
This last definition is the one that we generally follow. The matter of what
constitutes an operating system is becoming important. In 1998, the United
States Department of Justice filed suit against Microsoft, in essence claiming
that Microsoft included too much functionality in its operating systems and
thus prevented competition from application vendors.

1.1.3 System Goals
It is easier to define an operating system by what it does than by what it is,
but even this can be tricky. The primary goal of some operating system is
convenience for the user. Operating systems exist because they are supposed
to make it easier to compute with them than without them. This view is
particularly clear when you look at operating systems for small PCs.

The primary goal of other operating systems is efficient operation of the
computer system. This is the case for large, shared, multiuser systems. These
systems are expensive, so it is desirable to make them as efficient as possible.
These two goals-convenience and efficiency-are sometimes contradictory.
In the past, efficiency was often more important than convenience (Section
1.2.1). Thus, much of operating-system theory concentrates on optimal use
of computing resources. Operating systems have also evolved over time. For
example, UNIX started with a keyboard and printer as its interface, limiting how
convenient it could be for the user. Over time, hardware changed, and UNIX
was ported to new hardware with more user-friendly interfaces. Many graphic

1.2 Mainframe Systems 7

user interfaces (GUIs) were added, allowing UNIX to be more convenient for
users while still concentrating on efficiency.

The design of an operating system is a complex task. Designers face many
tradeoffs in the design and implementation, and many people are involved not
only in bringing an operating system to fruition, but also constantly revising
and updating it. How well any given operating system meets its design goals is
open to debate, and is subjective to the different users of the operating system.

To see what operating systems are and what they do, let us consider how
they have developed over the past 45 years. By tracing that evolution, we can
identify the common elements of operating systems, and see how and why
these systems have developed as they have.

Operating systems and computer architecture have influenced each other
a great deal. To facilitate the use of the hardware, researchers developed
operating systems. Users of the operating systems then proposed changes
in hardware design to simplify them. In this short historical review, notice
how identification of operating-system problems led to the introduction of new
hardware features.

1.2 Mainframe Systems

Mainframe computer systems were the first computers used to tackle many
commercial and scientific applications. In this section, we trace the growth of
mainframe systems from simple batch systems, where the computer runs one
-and only one-application, to time-shared systems, which allow for user
interaction with the computer system.

1.2.1 Batch Systems
Early computers were physically enormous machines run from a console. The
common input devices were card readers and tape drives. The common output
devices were line printers, tape drives, and card punches. The user did not
intkract directly with the computer systems. Rather, the user prepared a job
-which consisted of the program, the data, and some control information
about the nature of the job (control cards)-and submitted it to the computer
operator. The job was usually in the form of punch cards. At some later time
(after minutes, hours, or days), the output appeared. The output consisted of
the result of the program, as well as a dump of the final memory and register
contents for debugging.

The operating system in these early computers was fairly simple. Its
major task was to transfer control automatically from one job to the next. The
operating system was always resident in memory (Figure 1.2).

To speed up processing, operators batched together jobs with similar needs
and ran them through the computer as a group. Thus, the programmers would

8 Chapter 1 Introduction

Figure 1.2 Memory layout for a simple batch system.

leave their programs with the operator. The operator would sort programs
into batches with similar requirements and, as the computer became available,
would run each batch. The output from each job would be sent back to the
appropriate programmer.

In this execution environment, the CPU is often idle, because the speeds of
the mechanical I/O devices are intrinsically slower than are those of electronic
devices. Even a slow CPU works in the microsecond range, with thousands of
instructions executed per second. A fast card reader, on the other hand, might
read 1200 cards per minute (or 20 cards per second). Thus, the difference in
speed between the CPU and its I/O devices may be three orders of magnitude or
more. Over time, of course, improvements in technology and the introduction
of disks resulted in faster I/O devices. However, CPU speeds increased to an
even greater extent, so the problem was not only unresolved, but exacerbated.

The introduction of disk technology allowed the operating system to keep
all jobs on a disk, rather than in a serial card reader. With direct access to several
jobs, the operating system could perform job scheduling, to use resources and
perform tasks efficiently. We discuss a few important aspects of job and CPU
scheduling here; we discuss them in detail in Chapter 6.

1.2.2 Multiprogrammed Systems
The most important aspect of job scheduling is the ability to multiprogram. A
single user cannot, in general, keep either the CPU or the 1/0 devices busy at all
times. Multiprogramming increases CPU utilization by organizing jobs so that
the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.3). This set of jobs is a subset of the jobs kept in the
job pool-since the number of jobs that can be kept simultaneously in memory
is usually much smaller than the number of jobs that can be in the job pool. The

1.2 Mainframe Systems 9

Figure 1.3 Memory layout for a multiprogramming system.

operating system picks and begins to execute one of the jobs in the memory.
Eventually, the job may have to wait for some task, such as an I/O operation,
to complete. In a non-multiprogrammed system, the CPU would sit idle. In
a multiprogramming system, the operating system simply switches to, and
executes, another job. When that job needs to wait, the CPU is switched to
another job, and so on. Eventually, the first job finishes waiting and gets the
CPU back. As long as at least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time. While one case is waiting to go to trial or have
papers typed, the lawyer can work on another case. If she has enough clients,
the lawyer will never be idle for lack of work. (Idle lawyers tend to become
politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogramming is the first instance where the operating system must
make decisions for the users. Multiprogrammed operating systems are there-
fore fairly sophisticated. All the jobs that enter the system are kept in the job
pool. This pool consists of all processes residing on disk awaiting allocation
of main memory. If several jobs are ready to be brought into memory, and if
there is not enough room for all of them, then the system must choose among
them. Making this decision is job scheduling, which is discussed in Chapter 6.
When the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 9
and 10. In addition, if several jobs are ready to run at the same time, the system
must choose among them. Making this decision is CPU scheduling, which is
discussed in Chapter 6. Finally, multiple jobs running concurrently require
that their ability to affect one another be limited in all phases of the operating

10 Chapter 1 Introduction

system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

1.2.3 Time-Sharing Systems
Multiprogrammed, batched systems provided an environment where the var-
ious system resources (for example, CPU, memory, peripheral devices) were
utilized effectively, but it did not provide for user interaction with the computer
system. Time sharing (or multitasking) is a logical extension of multipro-
gramming. The CPU executes multiple jobs by switching among them, but the
switches occur so frequently that the users can interact with each program while
it is running.

An interactive (or hands-on) computer system provides direct communi-
cation between the user and the system. The user gives instructions to the
operating system or to a program directly, using a keyboard or a mouse, and
waits for immediate results. Accordingly, the response time should be short-
typically within 1 second or so.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends to
be short, only a little CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to her use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into
memory and executing is commonly referred to as a process. When a process
executes, it typically executes for only a short time before it either finishes or
needs to perform I/O. I/O may be interactive; that is, output is to a display
for the user and input is from a user keyboard, mouse, or other device. Since
interactive I/O typically runs at "people speeds," it may take a long time to
complete. Input, for example, may be bounded by the user's typing speed;
seven characters per second is fast for people, but incredibly slow for comput-
ers. Rather than let the CPU sit idle when this interactive input takes place,
the operating system will rapidly switch the CPU to the program of some other
user.

Time-sharing operating systems are even more complex than multipro-
grammed operating systems. In both, several jobs must be kept simultaneously
in memory, so the system must have memory management and protection
(Chapter 9). To obtain a reasonable response time, jobs may have to be swapped
in and out of main memory to the disk that now serves as a backing store for
main memory. A common method for achieving this goal is virtual memory,
which is a technique that allows the execution of a job that may not be com-
pletely in memory (Chapter 10). The main advantage of the virtual-memory

1.3 Desktop Systems 11

scheme is that programs can be larger than physical memory. Further, it
abstracts main memory into a large, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 11 and 12).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 14). Also, time-sharing systems provide a mechanism for
concurrent execution, which requires sophisticated CPU-scheduling schemes
(Chapter 6). To ensure orderly execution, the system must provide mechanisms
for job synchronization and communication (Chapter 7), and it may ensure that
jobs do not get stuck in a deadlock, forever waiting for one another (Chapter 8).

The idea of time sharing was demonstrated as early as 1960, but since
time-shared systems are difficult and expensive to build, they did not become
common until the early 1970s. Although some batch processing is still done,
most systems today are time sharing. Accordingly, multiprogramming and
time sharing are the central themes of modern operating systems, and they are
the central themes of this book.

1.3 . Desktop Systems

Personal computers PCs appeared in the 1970s. During their first decade, the
CPUs in PCs lacked the features needed to protect an operating system from
user programs. PC operating systems therefore were neither multiuser nor
multitasking. However, the goals of these operating systems have changed with
time; instead of maximizing CPU and peripheral utilization, the systems opt for
maximizing user convenience and responsiveness. These systems include PCs
running Microsoft Windows and the Apple Macintosh. The MS-DOS operating
system from Microsoft has been superseded by multiple flavors of Microsoft
Windows, and IBM has upgraded MS-DOS to the OS/2 multitasking system.
The Apple Macintosh operating system has been ported to more advanced
hardware, and now includes new features, such as virtual memory and mul-
titasking. With the release of MacOS X, the core of the operating system is now
based on Mach and FreeBSD UNIX for scalability, performance, and features, but
it retains the same rich GUI. Linux, a UNIX-like operating system available for
PCs, has also become popular recently.

Operating systems for these computers have benefited in several ways
from the development of operating systems for mainframes. Microcomputers
were immediately able to adopt some of the technology developed for larger
operating systems. On the other hand, the hardware costs for microcomputers
are sufficiently low that individuals have sole use of the computer, and CPU
utilization is no longer a prime concern. Thus, some of the design decisions
made in operating systems for mainframes may not be appropriate for smaller
systems.

12 Chapter 1 Introduction

Other design decisions still apply. For example, file protection was, at first,
not necessary on a personal machine. However, these computers are now often
tied into other computers over local-area networks or other Internet connec-
tions. When other computers and other users can access the files on a PC, file
protection again becomes a necessary feature of the operating system. The lack
of such protection has made it easy for malicious programs to destroy data on
systems such as MS-DOS and the Macintosh operating system. These programs
may be self-replicating, and may spread rapidly via worm or virus mechanisms
and disrupt entire companies or even worldwide networks. Advanced time-
sharing features such as protected memory and file permissions are not enough,
on their own, to safeguard a system from attack. Recent security breaches have
shown that time and again. These topics are discussed in Chapters 18 and 19.

1.4 Multiprocessor Systems

Most systems to date are single-processor systems; that is, they have only one
main CPU. However, multiprocessor systems (also known as parallel systems
or tightly coupled systems) are growing in importance. Such systems have
more than one processor in close communication, sharing the computer bus,
the clock, and sometimes memory and peripheral devices.

Multiprocessor systems have three main advantages.

1. Increased throughput. By increasing the number of processors, we hope
to get more work done in less time. The speed-up ratio with N processors
is not N; rather, it is less than N. When multiple processors cooperate on
a task, a certain amount of overhead is incurred in keeping all the parts
working correctly. This overhead, plus contention for shared resources,
lowers the expected gain from additional processors. Similarly, a group
of N programmers working closely together does not result in N times the
amount of work being accomplished.

2. Economy of scale. Multiprocessor systems can save more money than
multiple single-processor systems, because they can share peripherals,
mass storage, and power supplies. If several programs operate on the same
set of data, it is cheaper to store those data on one disk and to have all the
processors share them, than to have many computers with local disks and
many copies of the data.

3. Increased reliablility. If functions can be distributed properly among
several processors, then the failure of one processor will not halt the system,
only slow it down. If we have ten processors and one fails, then each of the
remaining nine processors must pick up a share of the work of the failed
processor. Thus, the entire system runs only 10 percent slower, rather than
failing altogether. This ability to continue providing service proportional

1.4 Multiprocessor Systems 13

to the level of surviving hardware is called graceful degradation. Systems
designed for graceful degradation are also called fault tolerant.

Continued operation in the presence of failures requires a mechanism to
allow the failure to be detected, diagnosed, and, if possible, corrected. The Tan-
dem system uses both hardware and software duplication to ensure continued
operation despite faults. The system consists of two identical processors, each
with its own local memory. The processors are connected by a bus. One pro-
cessor is the primary and the other is the backup. Two copies are kept of each
process: one on the primary processor and the other on the backup. At fixed
checkpoints in the execution of the system, the state information of each job-
including a copy of the memory image-is copied from the primary machine to
the backup. If a failure is detected, the backup copy is activated and is restarted
from the most recent checkpoint. This solution is expensive, since it involves
considerable hardware duplication.

The most common multiple-processor systems now use symmetric mul-
tiprocessing (SMP), in whch each processor runs an identical copy of the
operating system, and these copies communicate with one another as needed.
Some systems use asymmetric multiprocessing, in which each processor is
assigned a specific task. A master processor controls the system; the other pro-
cessors either look to the master for instruction or have predefined tasks. This
scheme defines a master-slave relationship. The master processor schedules
and allocates work to the slave processors.

SMP means that all processors are peers; no master-slave relationship exists
between processors. Each processor concurrently runs a copy of the operating
system. Figure 1.4 illustrates a typical SMP architecture. An example of the
SMP system is Encore's version of UNIX for the Multimax computer. This
computer can be configured such that it employs dozens of processors, all
running copies of UNIX. The benefit of this model is that many processes
can run simultaneously-N processes can run if there are N CPUs-without
causing a significant deterioration of performance. However, we must carefully
control I/O to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,
resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow

Figure 1.4 Symmetric multiprocessing architecture.

I 14 Chapter 1 Introduction

processes and resources-such as memory-to be shared dynamically among
the various processors, and can lower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 7. Virtually
all modern operating systems-including Windows NT, Solaris, Digital UNIX,
0S/2, and Linux-now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may be
the result of either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun's operating system SunOS Version 4 provides
asymmetric multiprocessing, whereas Version 5 (Solaris 2) is symmetric on the
same hardware.

As microprocessors become less expensive and more powerful, additional
operating-system functions are off-loaded to slave processors (or back-ends).
For example, it is fairly easy to add a microprocessor with its own memory
to manage a disk system. The microprocessor could receive a sequence of
requests from the main CPU and implement its own disk queue and scheduling
algorithm. This arrangement relieves the main CPU of the overhead of disk
scheduling. PCs contain a microprocessor in the keyboard to convert the
keystrokes into codes to be sent to the CPU. In fact, this use of microprocessors
has become so common that it is no longer considered multiprocessing.

1.5 Distributed Systems

A network, in the simplest terms, is a communication path between two or
more systems. Distributed systems depend on networking for their function-
ality. By being able to communicate, distributed systems are able to share
computational tasks, and provide a rich set of features to users.

Networks vary by the protocols used, the distances between nodes, and
the transport media. TCP/IP is the most common network protocol, although
ATM and other protocols are in widespread use. Likewise, operating-system
support of protocols varies. Most operating systems support TCP/IP, including
the Windows and UNIX operating systems. Some systems support proprietary
protocols to suit their needs. To an operating system, a network protocol
simply needs an interface device-a network adapter, for example-with a
device driver to manage it, and software to package data in the communications
protocol to send it and to unpackage it to receive it. These concepts are
discussed throughout the book.

Networks are typecast based on the distances between their nodes. A
local-area network (LAN), exists within a room, a floor, or a building. A
wide-area network (WAN), usually exists between buildings, cities, or coun-
tries. A global company may have a WAN to connect its offices, worldwide.
These networks could run one protocol or several protocols. The continuing
advent of new technologies brings about new forms of networks. For exam-

1.5 Distributed Systems 15

ple, a metropolitan-area network (MAN), could link buildings within a city.
BlueTooth devices communicate over a short distance of several feet, in essence
creating a small-area network.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate
they use or create a network. These networks also vary by their performance
and reliability.

1.5.1 Client-Server Systems
As PCs have become faster, more powerful, and cheaper, designers have shifted
away from the centralized system architecture. Terminals connected to central-
ized systems are now being supplanted by PCs. Correspondingly, user-interface
functionality that used to be handled directly by the centralized systems is
increasingly being handled by the PCs. As a result, centralized systems today
act as server systems to satisfy requests generated by client systems. The
general structure of a client-server system is depicted in Figure 1.5.

Server systems can be broadly categorized as compute servers and file
servers.

Compute-server systems provide an interface to which clients can send
requests to perform an action, in response to which they execute the action
and send back results to the client.

File-server systems provide a file-system interface where clients can create,
update, read, and delete files.

1.5.2 Peer-to-Peer Systems

The growth of computer networks-especially the Internet and World Wide
Web (WWW)-has had a profound influence on the recent development of
operating systems. When PCs were introduced in the 1970s, they were designed

I I I
I network

Figure 1.5 General structure of a client-server system.

16 Chapter 1 Introduction

for "personal" use and were generally considered standalone computers. With
the beginning of widespread public use of the Internet in the 1980s for electronic
mail, ftp, and gopher, many PCs became connected to computer networks. With
the introduction of the Web in the mid-1990s, network connectivity became an
essential component of a computer system.

Virtually all modern PCs and workstations are capable of running a web
browser for accessing hypertext documents on the Web. Operating systems
(such as Windows, OS/2, MacOS, and UNIX) now also include the system
software (such as TCP/IP and PPP) that enables a computer to access the Internet
via a local-area network or telephone connection. Several include the web
browser itself, as well as electronic mail, remote login, and file-transfer clients
and servers.

In contrast to the tightly coupled systems discussed in Section 1.4, the com-
puter networks used in these applications consist of a collection of processors
that do not share memory or a clock. Instead, each processor has its own local
memory. The processors communicate with one another through various com-
munication lines, such as high-speed buses or telephone lines. These systems
are usually referred to as loosely coupled systems (or distributed systems).

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity A
network operating system is an operating system that provides features such
as file sharing across the network, and that includes a communication scheme
that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system is a less autonomous environment: The different operating systems
communicate closely enough to provide the illusion that only a single operating
system controls the network. We cover computer networks and distributed
systems in Chapters 15 through 17.

1.6 . Clustered Systems

Like parallel systems, clustered systems gather together multiple CPUs to
accomplish computational work. Clustered systems differ from parallel sys-
tems, however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is, and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via LAN networking.

Clustering is usually performed to provide high availability. A layer of
cluster software runs on the cluster nodes. Each node can monitor one or more
of the others (over the LAN). If the monitored machine fails, the monitoring

1.7 Real-Time Systems 17

machine can take ownership of its storage, and restart the application(s) that
were running on the failed machine. The failed machine can remain down, but
the users and clients of the application would only see a brief interruption of
service.

In asymmetric clustering, one machine is in hot standby mode while
the other is running the applications. The hot standby host (machine) does
nothing but monitor the active server. If that server fails, the hot standby host
becomes the active server. In symmetric mode, two or more hosts are running
applications, and they are monitoring each other. This mode is obviously more
efficient, as it uses all of the available hardware. It does require that more than
one application be available to run.

Other forms of clusters include parallel clusters and clustering over a WAN.

I Parallel clusters allow multiple hosts to access the same data on the shared
storage. Because most operating systems lack support for this simultaneous
data access by multiple hosts, parallel clusters are usually accomplished by
special versions of software and special releases of applications. For example,
Oracle Parallel Server is a version of Oracle's database that has been designed
to run on parallel clusters. Each machine runs Oracle, and a layer of software
tracks access to the shared disk. Each machine has full access to all data in the
database.

In spite of improvements in distributed computing, most systems do not
offer general-purpose distributed file systems. Therefore, most clusters do
not allow shared access to data on the disk. For this, distributed file systems
must provide access control and locking to the files to ensure no conflicting
operations occur. This type of service is commonly known as a distributed lock
manager (DLM). Work is ongoing for general-purpose distributed file systems,
with vendors like Sun Microsystems announcing roadmaps for delivery of a
DLM within the operating system.

Cluster technology is rapidly changing. Cluster directions include global
clusters, in which the machines could be anywhere in the world (or anywhere a
WAN reaches). Such projects are still the subject of research and development.

Clustered system use and features should expand greatly as storage-area
networks (SANS), as described in Section 14.6.3, become prevalent. SANs allow
easy attachment of multiple hosts to multiple storage units. Current clusters
are usually limited to two or four hosts due to the complexity of connecting the
hosts to shared storage.

Real-Time Systems

Another form of a special-purpose operating system is the real-time system. A
real-time system is used when rigid time requirements have been placed on the
operation of a processor or the flow of data; thus, it is often used as a control
device in a dedicated application. Sensors bring data to the computer. The com-

18 Chapter 1 Introduction

puter must analyze the data and possibly adjust controls to modify the sensor
inputs. Systems that control scientific experiments, medical imaging systems,
industrial control systems, and certain display systems are real-time systems.
Some automobile-engine fuel-injection systems, home-appliance controllers,
and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For
instance, it would not do for a robot arm to be instructed to halt after it had
smashed into the car it was building. A real-time system functions correctly
~nly if it returns the correct result within its time constraints. Contrast this

requirement to a time-sharing system, where it is desirable (but not mandatory)
to respond quickly, or to a batch system, which may have no time constraints at
all.

Real-time systems come in two flavors: hard and soft. A hard real-time
system guarantees that critical tasks be completed on time. This goal requires
that all delays in the system be bounded, from the retrieval of stored data to
the time that it takes the operating system to finish any request made of it. Such
time constraints dictate the facilities that are available in hard real-time systems.

I
Secondary storage of any sort is usually limited or missing, with data instead
being stored in short-term memory or in read-only memory (ROM). ROM is
located on nonvolatile storage devices that retain their contents even in the case
of electric outage; most other types of memory are volatile. Most advanced
operating-system features are absent too, since they tend to separate the user
from the hardware, and that separation results in uncertainty about the amount
of time an operation will take. For instance, virtual memory (Chapter 10) is
almost never found on real-time systems. Therefore, hard real-time systems
conflict with the operation of time-sharing systems, and the two cannot be
mixed. Since none of the existing general-purpose operating systems support
hard real-time functionality, we do not concern ourselves with this type of
system in this text.

A less restrictive type of real-time system is a soft real-time system, where
a critical real-time task gets priority over other tasks, and retains that priority
until it completes. As in hard real-time systems, the operating-system kernel
delays need to be bounded: A real-time task cannot be kept waiting indefinitely
for the kernel to run it. Soft real time is an achievable goal that can be mixed
with other types of systems. Soft real-time systems, however, have more limited
utility than hard real-time systems. Given their lack of deadline support, they
are risky to use for industrial control and robotics. They are useful, however
in several areas, including multimedia, virtual reality, and advanced scientific
projects-such as undersea exploration and planetary rovers. These systems
need advanced operating-system features that cannot be supported by hard
real-time systems. Because of the expanded uses for soft real-time functionality,
it is finding its way into most current operating systems, including major
versions of UNIX.

1.8 Handheld Systems 19

In Chapter 6, we consider the scheduling facility needed to implement soft
real-time functionality in an operating system. In Chapter 10, we describe the
design of memory management for real-time computing. Finally, in Chapter 21,
we describe the real-time components of the Windows 2000 operating system.

1.8 Handheld Systems

Handheld systems include personal digital assistants (PDAs), such as Palm-
Pilots or cellular telephones with connectivity to a network such as the Internet.
Developers of handheld systems and applications face many challenges, most
of which are due to the limited size of such devices. For example, a PDA is
typically about 5 inches in height and 3 inches in width, and it weighs less than
one-half pound. Due to this limited size, most handheld devices have a small
amount of memory, include slow processors, and feature small display screens.
We will take a look now at each of these limitations.

Many handheld devices have between 512 KB and 8 MB of memory. (Con-
trast this with a typical PC or workstation, which may have several hundred
megabytes of memory!) As a result, the operating system and applications must
manage memory efficiently. This includes returning all allocated memory back
to the memory manager once the memory is no longer being used. In Chapter
10 we will explore virtual memory, which allows developers to write programs
that behave as if the system has more memory than may be physically available.
Currently, many handheld devices do not use virtual memory techniques, thus
forcing program developers to work within the confines of limited physical
memory.

A second issue of concern to developers of handheld devices is the speed
of the processor used in the device. Processors for most handheld devices often
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require a
larger battery that would have to be replaced (or recharged) more frequently. To
minimize the size of most handheld devices, smaller, slower processors which
consume less power are typically used. Therefore, the operating system and
applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is the
small display screens typically available. Whereas a monitor for a home com-
puter may measure up to 21 inches, the display for a handheld device is often
no more than 3 inches square. Familiar tasks, such as reading e-mail or brows-
ing web pages, must be condensed onto smaller displays. One approach for
displaying the content in web pages is web clipping, where only a small subset
of a web page is delivered and displayed on the handheld device.

Some handheld devices may use wireless technology, such as BlueTooth
(Section 1.5), allowing remote access to e-mail and web browsing. Cellular
telephones with connectivity to the Internet fall into this category. However,

20 Chapter 1 Introduction

many PDAs currently do not provide wireless access. To download data to these
devices, typically one first downloads the data to a PC or workstation, and then
downloads the data to the PDA. Some PDAs allow data to be directly copied
from one device to another using an infrared link. Generally, the limitations
in the functionality of PDAs are balanced by their convenience and portability.
Their use continues to expand as network connections become more available
and other options, such as cameras and MP3 players, expand their utility.

1.9 Feature Migration

Overall, an examination of operating systems for mainframes and microcom-
puters shows that features once available only on mainframes have been
adopted by microcomputers. The same concepts are appropriate for the var-
ious classes of computers: mainframes, minicomputers, microcomputers, and
handhelds. Many of the concepts depicted in Figure 1.6 will be covered later
in this book. However, to start understanding modern operating systems, you
need to realize the theme of feature migration and to recognize the long history
of many operating-system features.

Figure 1.6 Migration of operating-system concepts and features.

1.10 Computing Environments 21

A good example of this movement occurred with the MULTIplexed
Information and Computing Services (MULTICS) operating system. MULTICS
was developed from 1965 to 1970 at the Massachusetts Institute of Technology
(MIT) as a computing utility. It ran on a large, complex mainframe computer
(the GE 645). Many of the ideas that were developed for MULTICS were
subsequently used at Bell Laboratories (one of the original partners in the
development of MULTICS) in the design of UNIX. The UNIX operating system
was designed circa 1970 for a PDP-11 minicomputer. Around 1980, the features
of UNIX became the basis for UNIX-like operating systems on microcomputer
systems, and they are being included in more recent operating systems such
as Microsoft Windows NT, IBM 0S/2, and the Macintosh operating system.
Thus, the features developed for a large mainframe system have moved to
microcomputers over time.

At the same time as features of large operating systems were being scaled
down to fit PCs, more powerful, faster, and more sophisticated hardware sys-
tems were being developed. The personal workstation is a large PC-for
example, the Sun SPARCstation, the HP/Apollo, the IBM RS/6000, and the Intel
Pentium class system running Windows NT or a UNIX derivative. Many uni-
versities and businesses have large numbers of workstations tied together with
local-area networks. As PCs gain more sophisticated hardware and software,
the line dividing the two categories-mainframes and microcomputers-is
blurring.

1.10 . Computing Environments

Now that we have traced the development of operating systems from the first
hands-on systems through multiprogrammed and time-shared systems to PCs
and handheld computers, we can give a brief overview of how such systems
are used in a variety of computing environment settings.

1.10.1 Traditional Computing
As computing matures, the lines among many of the traditional computing
environments are blurring. Consider the "typical office environment." Just
a few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print service. Remote access was awkward,
and portability was achieved by laptop computers carrying some of the user's
workspace. Terminals attached to mainframes were prevalent at many compa-
nies as well, with even fewer remote access and portability options.

The current trend is toward more ways to access these environments. Web
technologies are stretching the boundaries of traditional computing. Com-
panies implement portals which provide web accessibility to their internal
servers. Network computers are essentially terminals that understand web-

22 Chapter 1 Introduction

based computing. Handheld computers can synchronize with PCs to allow
very portable use of company information. They can also connect to wireless
networks to use the company's web portal (as well as the myriad other web
resources).

At home, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Network connection speeds once attainable
only at great cost are now available at low cost, allowing more access to more
data at a company or from the Web. Those fast data connections are allowing
home computers to serve up web pages and to contain their own networks
with printers, client PCs, and servers. Some homes even have firewalls to
protect these home environments from security breaches. Those firewalls cost
thousands of dollars a few years ago, and did not even exist a decade ago.

1.10.2 Web-Based Computing
The Web has become ubiquitous, leading to more access by a wider variety of
devices than was dreamt about a few years ago. PCs are still the most prevalent
access devices, with workstations (high-end graphics-oriented PCs), handheld
PDAs, and even cell phones also providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now have wired or wireless access. Devices
that were networked now have faster network connectivity, either by improved
networking technology, optimized network implementation code, or both.

The implementation of web-based computing has given rise to new cate-
gories of devices, such as load balancers which distribute network connections
among a pool of similar servers. Operating systems like Windows 95, which
acted as web clients, have evolved into Windows ME and Windows 2000, which
can act as web servers as well as clients. Generally, the Web has increased the
complexity of devices as their users require them to be web-enabled.

1.10.3 Embedded Computing
Embedded computers are the most prevalent form of computers in exis-
tence. They run embedded real-time operating systems. These devices are
found everywhere, from car engines and manufacturing robots to VCRs and
microwave ovens. They tend to have very specific tasks. The systems they run
on are usually primitive, lacking advanced features, such as virtual memory,
and even disks. Thus, the operating systems provide limited features. They
usually have little or no user interface, preferring to spend their time monitor-
ing and managing hardware devices, such as automobile engines and robotic
arms.

As an example, consider the aforementioned firewalls and load balancers.
Some are general-purpose computers, running standard operating systems-
such as UNIX-with special-purpose applications loaded to implement the

1.11 Summary 23

functionality. Others are hardware devices with a special-purpose operating
system embedded within, providing just the functionality desired.

The use of embedded systems continues to expand. The power of those
devices, both as standalone units and as members of networks and the Web, is
sure to increase as well. Entire houses can be computerized, so that a central
computer-either a general-purpose computer or an embedded system-can
control heating and lighting, alarm systems, and even coffee makers. Web
access can let a home-owner tell the house to heat up before he arrives home.
Someday, the refrigerator may call the grocery store when it notices the milk is
gone.

1.11 . Summary

Operating systems have been developed over the past 45 years for two main
purposes. First, the operating system attempts to schedule computational activ-
ities to ensure good performance of the computing system. Second, it provides
a convenient environment for the development and execution of programs.
Initially, computer systems were used from the front console. Software such
as assemblers, loaders, linkers, and compilers improved the convenience of
programming the system, but also required substantial set-up time. To reduce
the set-up time, facilities hired operators and batched similar jobs.

Batch systems allowed automatic job sequencing by a resident operating
system and greatly improved the overall utilization of the computer. The
computer no longer had to wait for human operation. CPU utilization was still
low, however, because of the slow speed of the 1 /0 devices relative to that of
the CPU. Off-line operation of slow devices provided a means to use multiple
reader-to-tape and tape-to-printer systems for one CPU.

To improve the overall performance of the computer system, developers
introduced the concept of multiprogramming, so that several jobs could be kept
in memory at one time. The CPU is switched back and forth among them to
increase CPU utilization and to decrease the total time needed to execute the
jobs.

Multiprogramming also allows time sharing. Time-shared operating sys-
tems allow many users (from one to several hundred) to use a computer system
interactively at the same time.

PCs are microcomputers; they are considerably smaller and less expensive
than mainframe systems. Operating systems for these computers have ben-
efited from the development of operating systems for mainframes in several
ways. However, since an individual has sole use of the computer, CPU utiliza-
tion is no longer a prime concern. Hence, some of the design decisions made for
mainframe operating systems may not be appropriate for these smaller systems.
Other design decisions, such as those for security, are appropriate for both small
and large systems, as PCs can now be connected to other computers and users
through networks and the Web.

24 Chapter 1 Introduction

Parallel systems have more than one CPU in close communication; the CPUs
share the computer bus, and sometimes share memory and peripheral devices.
Such systems can provide increased throughput and enhanced reliability. Dis-
tributed systems allow sharing of resources on geographically dispersed hosts.
Clustered systems allow multiple machines to perform computations on data
contained on shared storage, and let computing continue in the case of failure
of some subset of cluster members.

A hard real-time system is often used as a control device in a dedicated
application. A hard real-time operating system has well-defined, fixed time
constraints. Processing must be done within the defined constraints, or the
system will fail. Soft real-time systems have less stringent timing constraints,
and do not support deadline scheduling.

Recently, the influence of the Internet and the World Wide Web has encour-
aged the development of modern operating systems that include web browsers
and networking and communication software as integral features.

We have shown the logical progression of operating-system development,
driven by inclusion of features in the CPU hardware needed for advanced
functionality. This trend can be seen today in the evolution of PCs, with
inexpensive hardware being improved sufficiently to allow, in turn, improved
characteristics.

Exercises

1.1 What are the three main purposes of an operating system?

1.2 List the four steps needed to run a program on a completely dedicated
machine.

1.3 What is the main advantage of multiprogramming?

1.4 What are the main differences between operating systems for mainframe
computers and PCs?

1.5 In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared machine
as we have in a dedicated machine? Explain your answer.

1.6 Define the essential properties of the following types of operating systems:

a. Batch

b. Interactive

Bibliographical Notes 25

c. Time sharing

d. Real time

e. Network

f. Parallel

g. Distributed

h. Clustered

i. Handheld

1.7 We have stressed the need for an operating system to make efficient use of
the computing hardware. When is it appropriate for the operating system
to forsake this principle and to "waste" resources? Why is such a system
not really wasteful?

1.8 Under what circumstances would a user be better off using a time-sharing
system, rather than a PC or single-user workstation?

1.9 Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

1.10 What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?

1.11 Consider the various definitions of operating system. Consider whether
the operating system should include applications such as web browsers
and mail programs. Argue both pro and con positions, and support your
answers.

1.12 What are the tradeoffs inherent in handheld computers?

1.13 Consider a computing cluster consisting of two nodes running a database.
Describe two ways in which the cluster software can manage access to the
data on the disk. Discuss the benefits and detriments of each.

Bibliographical Notes

Time-sharing systems were proposed first by Strachey [1959]. The earliest time-
sharing systems were the Compatible Time-Sharing System (CTSS) developed
at MIT (Corbato et al. [1962]) and the SDC Q-32 system, built by the System
Development Corporation (Schwartz et al. [1964], Schwartz and Weissman
[1967]). Other early, but more sophisticated, systems include the MULTIplexed
Information and Computing Services (MULTICS) system developed at MIT (Cor-
bat0 and Vyssotsky [1965]), the XDS-940 system developed at the University of

26 Chapter 1 Introduction

California at Berkeley (Lichtenberger and Pirtle [1965]), and the IBM TSS/360
system (Lett and Konigsford [1968]).

MS-DOS and PCs are described by Norton [I9861 and by Norton and Wilton
[1988]. An overview of the Apple Macintosh hardware and software is pre-
sented in Apple [1987]. The OS/2 operating system is covered in Microsoft
[1989]. More OS/2 information can be found in Letwin [I9881 and in Deitel
and Kogan [1992]. Solomon and Russinovich [2000] discuss the structure of
Microsoft Windows 2000 operating system.

A good coverage of cluster computing is presented by Buyya [1999]. Recent
advances in cluster computing is offered by Ahmed [ZOOO].

Discussions concerning handheld devices are offered by Murray [I9981 and
Rhodes and McKeehan [1999].

Many general textbooks cover operating systems, including Milenkovic
[1987], Finkel [1988], Deitel [1990], Stallings [ZOOOb], Nutt [I9991 and Tanen-
baum [2001].

Chapter 2

COMPUTER-
SYSTEM
STRUCTURES

We need to have a general knowledge of the structure of a computer system
before we can explore the details of system operation. In this chapter, we look
at several disparate parts of this structure to round out our background knowl-
edge. This chapter is mostly concerned with computer-system architecture, so
you can skim or skip it if you already understand the concepts. The first topics
covered here include system startup, I/O, and storage.

The operating system must also ensure the correct operation of the com-
puter system. To ensure that user programs will not interfere with the proper
operation of the system, the hardware must provide appropriate mechanisms
to ensure correct behavior. Later in this chapter, we describe the basic computer
architecture that makes it possible to write a functional operating system. We
conclude with a network architecture overview.

2.1 . Computer-System Operation

A modern, general-purpose computer system consists of a CPU and a number
of device controllers that are connected through a common bus that provides
access to shared memory (Figure 2.1). Each device controller is in charge
of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memory.

28 Chapter 2 Computer-System Structures

disk disk printer tape drives

I I I
I

1- system bus

Figure 2.1 A modern computer system.

For a computer to start running-for instance, when it is powered up or
rebooted-it needs to have an initial program to run. This initial program,
or bootstrap program, tends to be simple. Typically, it is stored in read-only
memory (ROM) such as firmware or EEPROM within the computer hardware.
It initializes all aspects of the system, from CPU registers to device controllers
to memory contents. The bootstrap program must know how to load the
operating system and to start executing that system. To accomplish this goal,
the bootstrap program must locate and load into memory the operating-system
kernel. The operating system then starts executing the first process, such as
"init," and waits for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software may
trigger an interrupt by executing a special operation called a system call (also
called a monitor call).

Modern operating systems are interrupt driven. If there are no processes
to execute, no 1 /0 devices to service, and no users to whom to respond, an
operating system will sit quietly, waiting for something to happen. Events are
almost always signaled by the occurrence of an interrupt or a trap. A trap (or
an exception) is a software-generated interrupt caused either by an error (for
example, division by zero or invalid memory access) or by a specific request

2.1 Computer-System Operation 29

from a user program that an operating-system service be performed. The
interrupt-driven nature of an operating system defines that system's general
structure. For each type of interrupt, separate segments of code in the operating
system determine what action should be taken. An interrupt service routine is
provided that is responsible for dealing with the interrupt.

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 2.2.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for handling this transfer would be to invoke
a generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly, and, given that only a predefined number of interrupts is possible,
a table of pointers to interrupt routines can be used instead. The interrupt
routine is then called indirectly through the table, with no intermediate routine
needed. Generally, the table of pointers is stored in low memory (the first 100
or so locations). These locations hold the addresses of the interrupt service
routines for the various devices. This array, or interrupt vector, of addresses is
then indexed by a unique device number, given with the interrupt request, to
provide the address of the interrupt service routine for the interrupting device.
Operating systems as different as MS-DOS and UNIX dispatch interrupts in this
manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a fixed
location or in a location indexed by the device number. More recent architec-

CPU user
process
executing

I10 interrupt
processing

I10 idle
device transferring I

I10 transfer 110 transfer
request done request done

Figure 2.2 Interrupt time line for a single process doing output.

30 Chapter 2 Computer-System Structures

tures store the return address on the system stack. If the interrupt routine needs
to modify the processor state-for instance, by modifying register values-it
must explicitly save the current state and then restore that state before return-
ing. After the interrupt is serviced, the saved return address is loaded into
the program counter, and the interrupted computation resumes as though the
interrupt had not occurred.

A system call is invoked in a variety of ways, depending on the function-
ality provided by the underlying processor. In all forms, it is the method used
by a process to request action by the operating system. A system call usually
takes the form of a trap to a specific location in the interrupt vector. This trap
can be executed by a generic t r a p instruction, although some systems (such as
the MIPS R2000 family) have a specific s y s c a l l instruction.

2.2 . I 1 0 Structure

As we discussed in Section 2.1, a general-purpose computer system consists of a
CPU and multiple device controllers that are connected through a common bus.
Each device controller is in charge of a specific type of device. Depending on the
controller, there may be more than one attached device. For instance, the small
computer-systems interface (SCSI) controller can have seven or more devices
attached to it. A device controller maintains some local buffer storage and a set
of special-purpose registers. The device controller is responsible for moving the
data between the peripheral devices that it controls and its local buffer storage.
The size of the local buffer within a device controller varies from one controller
to another, depending on the particular device being controlled. For example,
the size of the buffer of a disk controller is the same as or a multiple of the size
of the smallest addressable portion of a disk, called a sector, which is usually
512 bytes.

2.2.1 I10 Interrupts
To start an I/O operation, the CPU loads the appropriate registers within the
device controller. The device controller, in turn, examines the contents of these
registers to determine what action to take. For example, if it finds a read request,
the controller will start the transfer of data from the device to its local buffer.
Once the transfer of data is complete, the device controller informs the CPU that
it has finished its operation. It accomplishes this communication by triggering
an interrupt.

This situation will occur, in general, as the result of a user process request-
ing I/O. Once the I/O is started, two courses of action are possible. In the
simplest case, the I/O is started; then, at I/O completion, control is returned
to the user process. This case is known as synchronous I/O. The other pos-
sibility, called asynchronous I/O, returns control to the user program without

2.2 110 Structure 31

user

kernel

time - time -

+ user

kernel

Figure 2.3 Two I/O methods: (a) synchronous, and (b) asynchronous.

waiting for the 1 /0 to complete. The 1 /0 then can continue while other system
operations occur (Figure 2.3).

Waiting for I/O completion may be accomplished in one of two ways. Some
computers have a special wait instruction that idles the CPU until the next
interrupt. Machines that do not have such an instruction may have a wait loop:

Loop: j mp Loop

This tight loop simply continues until an interrupt occurs, transferring control
to another part of the operating system. Such a loop might also need to poll any
1/0 devices that do not support the interrupt structure; instead, these devices
simply set a flag in one of their registers and expect the operating system to
notice that flag.

If the CPU always waits for 1/0 completion, at most one 1/0 request is
outstanding at a time. Thus, whenever an 1/0 interrupt occurs, the operat-
ing system knows exactly which device is interrupting. On the other hand,
this approach excludes concurrent I/O operations to several devices, and also
excludes the possibility of overlapping useful computation with I/O.

A better alternative is to start the I/O and then to continue processing other
operating-system or user program code. A system call is then needed to allow
the user program to wait for I/O completion, if desired. If no user programs are
ready to run, and the operating system has no other work to do, we still require
the wait instruction or idle loop, as before. We also need to be able to keep
track of many I/O requests at the same time. For this purpose, the operating
system uses a table containing an entry for each I/O device: the device-status
table (Figure 2.4). Each table entry indicates the device's type, address, and
state (not functioning, idle, or busy). If the device is busy with a request, the
type of request and other parameters will be stored in the table entry for that

32 Chapter 2 Computer-System Structures

device: mouse

device: disk unit 1
status: idle 1
device: disk unit 2
status: busy

Figure 2.4 Device-status table.

device. Since it is possible for other processes to issue requests to the same
device, the operating system will also maintain a wait queue-a list of waiting
requests-for each I/O device.

An I/O device interrupts when it needs service. When an interrupt occurs,
the operating system first determines which I/O device caused the interrupt. It
then indexes into the I/O device table to determine the status of that device,
and modifies the table entry to reflect the occurrence of the interrupt. For
most devices, an interrupt signals completion of an I/O request. If there are
additional requests waiting in the queue for this device, the operating system
starts processing the next request.

Finally, control is returned from the I/O interrupt. If a process was waiting
for this request to complete (as recorded in the device-status table), we can now
return control to it. Otherwise, we return to whatever we were doing before
the I/O interrupt: to the execution of the user program (the program started an
I/O operation and that operation has now finished, but the program has not yet
waited for the operation to complete) or to the wait loop (the program started
two or more I/O operations and is waiting for a particular one to finish, but ths
interrupt was from one of the other operations). In a time-sharing system, the
operating system could switch to another ready-to-run process.

The schemes used by specific input devices may vary from this one. Many
interactive systems allow users to type ahead-to enter data before the data are
requested-on the keyboard. In this case, interrupts may occur, signaling the
arrival of characters from the terminal, while the device-status block indicates
that no program has requested input from this device. If typeahead is to be
allowed, then a buffer must be provided to store the typeahead characters until

2.2 110 Structure 33

some program wants them. In general, we may need a buffer for each input
device.

The main advantage of asynchronous 1/0 is increased system efficiency.
While 1/0 is taking place, the system CPU can be used for processing or starting
I/Os to other devices. Because 1/0 can be slow compared to processor speed,
the system makes efficient use of its facilities. In Section 2.2.2, we describe
another mechanism for improving system performance.

2.2.2 DMA Structure
In a simple terminal-input driver, when a line is to be read from the terminal,
the first character typed is sent to the computer. When that character is
received, the asynchronous-communication (or serial-port) device to which the
terminal line is connected interrupts the CPU. When the interrupt request from
the terminal arrives, the CPU is about to execute some instruction. (If the
CPU is in the middle of executing an instruction, the interrupt is normally
held pending the completion of instruction execution.) The address of this
interrupted instruction is saved, and control is transferred to the interrupt
service routine for the appropriate device.

The interrupt service routine saves the contents of any CPU registers that it
will need to use. It checks for any error conditions that might have resulted
from the most recent input operation. It then takes the character from the
device, and stores that character in a buffer. The interrupt routine must also
adjust pointer and counter variables, to be sure that the next input character will
be stored at the next location in the buffer. The interrupt routine next sets a flag
in memory indicating to the other parts of the operating system that new input
has been received. The other parts are responsible for processing the data in
the buffer, and for transferring the characters to the program that is requesting
input (see Section 2.5). Then, the interrupt service routine restores the contents
of any saved registers, and transfers control back to the interrupted instruction.

If characters are being typed to a 9600-baud terminal, the terminal can
accept and transfer one character approximately every 1 millisecond, or 1000
microseconds. A well-written interrupt service routine to input characters into
a buffer may require 2 microseconds per character, leaving 998 microseconds
out of every 1000 for CPU computation (and for servicing of other interrupts).
Given this disparity, asynchronous I/O is usually assigned a low interrupt
priority, allowing other, more important interrupts to be processed first, or even
to preempt the current interrupt for another. A high-speed device, however-
such as a tape, disk, or communications network-may be able to transmit
information at close to memory speeds; if the CPU needs two microseconds to
respond to each interrupt and interrupts arrive every four microseconds, for
example, that does not leave much time for process execution.

To solve this problem, direct memory access (DMA) is used for high-speed
I/O devices. After setting up buffers, pointers, and counters for the I/O device,

34 Chapter 2 Computer-System Structures

the device controller transfers an entire block of data directly to or from its
own buffer storage to memory, with no intervention by the CPU. Only one
interrupt is generated per block, rather than the one interrupt per byte (or word)
generated for low-speed devices.

The basic operation of the CPU is the same. A user program, or the
operating system itself, may request data transfer. The operating system finds
a buffer (an empty buffer for input, or a full buffer for output) from a pool of
buffers for the transfer. (A buffer is typically 128 to 4,096 bytes, depending on
the device type.) Next, a portion of the operating system called a device driver
sets the DMA controller registers to use appropriate source and destination
addresses, and transfer length. The DMA controller is then instructed to start
the 1 /0 operation. While the DMA controller is performing the data transfer,
the CPU is free to perform other tasks. Since the memory generally can transfer
only one word at a time, the DMA controller "steals" memory cycles from the
CPU. This cycle stealing can slow down the CPU execution while a DMA transfer
is in progress. The DMA controller interrupts the CPU when the transfer has
been completed.

2.3 . Storage Structure

Computer programs must be in main memory (also called random-access
memory or RAM) to be executed. Main memory is the only large storage
area (millions to billions of bytes) that the processor can access directly. It is
implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words. Each word has
its own address. Interaction is achieved through a sequence of l o a d or s t o r e
instructions to specific memory addresses. The l o a d instruction moves a word
from main memory to an internal register within the CPU, whereas the s t o r e
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction-execution cycle, as executed on a system with a
von Neumann architecture, will first fetch an instruction from memory and
will store that instruction in the instruction register. The instruction is then
decoded and may cause operands to be fetched from memory and stored in
some internal register. After the instruction on the operands has been executed,
the result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore how a memory
address is generated by a program. We are interested only in the sequence of
memory addresses generated by the running program.

2.3 Storage Structure 35

Ideally, we want the programs and data to reside in main memory perma-
nently. This arrangement is not possible for the following two reasons:

1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory is a volatile storage device that loses its contents when power
is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage of both programs and data. Most programs (web browsers,
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they are loaded into memory. Many programs then use the disk as both a source
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 14.

In a larger sense, however, the storage structure that we have described-
consisting of registers, main memory, and magnetic disks-is only one of many
possible storage systems. There are also cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum, and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, size, and
volatility. In Sections 2.3.1 through 2.3.3, we describe main memory, magnetic
disks, and magnetic tapes, because they illustrate the general properties of all
important, commercially-available storage devices. In Chapter 14, we discuss
the specific properties of many particular devices, such as floppy disks, hard
disks, CD-ROMs, and DVDs.

2.3.1 Main Memory
Main memory and the registers built into the processor itself are the only stor-
age that the CPU can access directly. There are machine instructions that take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions, must
be in one of these direct-access storage devices. If the data are not in memory,
they must be moved there before the CPU can operate on them.

In the case of I/O, as mentioned in Section 2.1, each I/O controller includes
registers to hold commands and the data being transferred. Usually, special I/O
instructions allow data transfers between these registers and system memory.
To allow more convenient access to I/O devices, many computer architectures
provide memory-mapped 110. In this case, ranges of memory addresses are

36 Chapter 2 Computer-System Structures

set aside, and are mapped to the device registers. Reads and writes to these
memory addresses cause the data to be transferred to and from the device
registers. This method is appropriate for devices that have fast response times,
such as video controllers. In the IBM PC, each location on the screen is mapped
to a memory location. Displaying text on the screen is almost as easy as writing
the text into the appropriate memory-mapped locations.

Memory-mapped I/O is also convenient for other devices, such as the serial
and parallel ports used to connect modems and printers to a computer. The
CPU transfers data through these kinds of devices by reading and writing a few
device registers, called an 1 /0 port. To send out a long string of bytes through a
memory-mapped serial port, the CPU writes one data byte to the data register,
then sets a bit in the control register to signal that the byte is available. The
device takes the data byte, and then clears the bit in the control register to signal
that it is ready for the next byte. Then, the CPU can transfer the next byte. If
the CPU uses polling to watch the control bit, constantly looping to see whether
the device is ready, this method of operation is called programmed 110 (PIO). If
the CPU does not poll the control bit, but instead receives an interrupt when the
device is ready for the next byte, the data transfer is said to be interrupt driven.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform
simple operations on register contents at the rate of one or more operations
per clock tick. The same cannot be said of main memory, which is accessed
via a transaction on the memory bus. Memory access may take many cycles
of the CPU clock to complete, in which case the processor normally needs
to stall, since it does not have the data required to complete the instruction
that it is executing. This situation is intolerable because of the frequency of
memory accesses. The remedy is to add fast memory between the CPU and
main memory. A memory buffer used to accommodate a speed differential,
called a cache, is described in Section 2.4.1.

2.3.2 Magnetic Disks
Magnetic disks provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 2.5). Each disk platter
has a flat circular shape, like a CD. Common platter diameters range from 1.8 to
5.25 inches. The two surfaces of a platter are covered with a magnetic material.
We store information by recording it magnetically on the platters.

A read-write head "flies" just above each surface of every platter. The
heads are attached to a disk arm, which moves all the heads as a unit. The sur-
face of a platter is logically divided into circular tracks, which are subdivided
into sectors. The set of tracks that are at one arm position forms a cylinder.
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of common disk drives
is measured in gigabytes.

2.3 Storage Structure 37

track t ,

arm assembly

rotation

Figure 2.5 Moving-head disk mechanism.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 200 times per second. Disk speed has two parts. The transfer
rate is the rate at which data flow between the drive and the computer. The
positioning time, sometimes called the random-access time, consists of the
time to move the disk arm to the desired cylinder, called the seek time, and
the time for the desired sector to rotate to the disk head, called the rotational
latency. Typical disks can transfer several megabytes of data per second, and
they have seek times and rotational latencies of several milliseconds.

Because the disk head flies on an extremely thin (measured in microns)
cushion of air, there is a danger of the head making contact with the disk
surface. Although the disk platters are coated with a thin protective layer,
sometimes the head will damage the magnetic surface. This accident is called a
head crash. A head crash normally cannot be repaired; the entire disk must be
replaced.

A disk can be removable, allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic case
to prevent damage while not in the disk drive. Floppy disks are inexpensive
removable magnetic disks that have a soft plastic case containing a flexible
platter. The head of a floppy-disk drive generally sits directly on the disk
surface, so the drive is designed to rotate more slowly than a hard-disk drive
to reduce the wear on the disk surface. The storage capacity of a floppy disk is
typically only 1 MB or so. Removable disks are available that work much like
normal hard disks and have capacities measured in gigabytes.

38 Chapter 2 Computer-System Structures

A disk drive is attached to a computer by a set of wires called an 110
bus. Several kinds of buses are available, including enhanced integrated drive
electronics (EIDE), advanced technology attachment (ATA), and SCSI buses.
The data transfers on a bus are carried out by special electronic processors
called controllers. The host controller is the controller at the computer end
of the bus. A disk controller is built into each disk drive. To perform a
disk 1/0 operation, the computer places a command into the host controller,
typically using memory-mapped I/O ports, as described in Section 2.3.1. The
host controller then sends the command via messages to the disk controller, and
the disk controller operates the disk-drive hardware to carry out the command.
Disk controllers usually have a built-in cache. Data transfer at the disk drive
happens between the cache and the disk surface, and data transfer to the host,
at fast electronic speeds, occurs between the cache and the host controller.

2.3.3 Magnetic Tapes
Magnetic tape was used as an early secondary-storage medium. Although it
is relatively permanent and can hold large quantities of data, its access time
is slow in comparison to that of main memory. In addition, random access to
magnetic tape is about a thousand times slower than random access to magnetic
disk, so tapes are not very useful for secondary storage. Tapes are used mainly
for backup, for storage of infrequently used information, and as a medium for
transferring information from one system to another.

A tape is kept in a spool, and is wound or rewound past a read-write head.
Moving to the correct spot on a tape can take minutes, but once positioned, tape
drives can write data at speeds comparable to disk drives. Tape capacities vary
greatly, depending on the particular kind of tape drive. Some tapes hold 2 to 3
times more data than does a large disk drive. Tapes and their drivers are usually
categorized by width, including 4,8, and 19 millimeters, 1 /4 and 1/2 inch.

2.4 Storage Hierarchy

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 2.6) according to speed and cost. The higher levels
are expensive, but they are fast. As we move down the hierarchy, the cost
per bit generally decreases, whereas the access time generally increases. This
tradeoff is reasonable; if a given storage system were both faster and less
expensive than another-other properties being the same-then there would
be no reason to use the slower, more expensive memory. In fact, many early
storage devices, including paper tape and core memories, are relegated to
museums now that magnetic tape and semiconductor memory have become
faster and cheaper. The top three levels of memory in Figure 2.6 may be
constructed using semiconductor memory.

2.4 Storage Hierarchy 39

Figure 2.6 Storage-device hierarchy.

In addition to having differing speed and cost, the various storage systems
are either volatile or nonvolatile. Volatile storage loses its contents when
the power to the device is removed. In the absence of expensive battery
and generator backup systems, data must be written to nonvolatile storage
for safekeeping. In the hierarchy shown in Figure 2.6, the storage systems
above the electronic disk are volatile, whereas those below are nonvolatile. An
electronic disk can be designed to be either volatile or nonvolatile. During
normal operation, the electronic disk stores data in a large DRAM array, which is
volatile. But many electronic-disk devices contain a hidden magnetic hard disk
and a battery for backup power. If external power is interrupted, the electronic-
disk controller copies the data from RAM to the magnetic disk. When external
power is restored, the controller copies the data back into the RAM.

The design of a complete memory system must balance all these factors:
It uses only as much expensive memory as necessary, while providing as
much inexpensive, nonvolatile memory as possible. Caches can be installed to
improve performance where a large access-time or transfer-rate disparity exists
between two components.

40 Chapter 2 Computer-System Structures

2.4.1 Caching
Caching is an important principle of computer systems. Information is nor-
mally kept in some storage system (such as main memory). As it is used, it is
copied into a faster storage system-the cache-on a temporary basis. When
we need a particular piece of information, we first check whether it is in the
cache. If it is, we use the information directly from the cache; if it is not, we
use the information from the main storage system, putting a copy in the cache
under the assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or com-
piler) implements the register-allocation and register-replacement algorithms
to decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait several
cycles while an instruction is fetched from main memory. For similar reasons,
most systems have one or more high-speed data caches in the memory hierar-
chy. We are not concerned with these hardware-only caches in this text, since
they are outside of the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement policy
can result in 80 to 99 percent of all accesses being in the cache, greatly increasing
performance. Various replacement algorithms for software-controlled caches
are discussed in Chapter 10.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory. Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turn, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 14).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the con-
trolling operating-system software. For instance, data transfer from cache to
CPU and registers is usually a hardware function, with no operating-system
intervention. On the other hand, transfer of data from disk to memory is usually
controlled by the operating system.

2.4 Storage Hierarchy 41

2.4.2 Coherency and Consistency
In a hierarchical storage structure, the same data may appear in different levels
of the storage system. For example, suppose that an integer A is located in
file B that is to be incremented by 1, and file B resides on magnetic disk. The
increment operation proceeds by first issuing an 1/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 2.7). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time, this
arrangement poses no difficulties, since an access to the integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various pro-
cesses, extreme care must be taken to ensure that, if several processes wish to
access A, then each of these processes will obtain the most recently updated
value of A.

The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache. In such an environment, a copy of A may exist simulta-
neously in several caches. Since the various CPUs can all execute concurrently,
we must make sure that an update to the value of A in one cache is imme-
diately reflected in all other caches where A resides. This situation is called
cache coherency, and it is usually a hardware problem (handled below the
operating-system level).

In a distributed environment, the situation becomes even more complex. In
such an environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and updated concurrently, we must ensure that, when a replica
is updated in one place, all other replicas are brought up-to-date as soon as
possible. There are various ways to achieve this guarantee, as we discuss in
Chapter 16.

Figure 2.7 Migration of integer A from disk to register.

42 Chapter 2 Computer-System Structures

2.5 . Hardware Protection

Early computer systems were single-user programmer-operated systems.
When the programmers operated the computer from the console, they had
complete control over the system. As operating systems developed, however,
this control was given to the operating system. Early operating systems were
called resident monitors, and starting with the resident monitor, the operating
system began to perform many of the functions, especially I/O, for which the
programmer had previously been responsible.

In addition, to improve system utilization, the operating system began to
share system resources among several programs simultaneously. With spooling,
one program might have been executing while I/O occurred for other processes;
the disk simultaneously held data for many processes. Multiprogramming put
several programs in memory at the same time.

This sharing both improved utilization and increased problems. When the
system was run without sharing, an error in a program could cause problems
for only the one program that was running. With sharing, many processes could
be adversely affected by a bug in one program.

For example, consider the simple batch operating system (Section 1.2.1),
which provides nothing more than automatic job sequencing. If a program gets
stuck in a loop reading input cards, the program will read through all its data
and, unless something stops it, will continue reading the cards of the next job,
and the next, and so on. This loop could prevent the correct operation of many
jobs.

Even more subtle errors can occur in a multiprogramming system, where
one erroneous program might modify the program or data of another program,
or even the resident monitor itself. MS-DOS and the Macintosh OS both allow
this kind of error.

Without protection against these sorts of errors, either the computer must
execute only one process at a time, or all output must be suspect. A prop-
erly designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

Many programming errors are detected by the hardware. These errors are
normally handled by the operating system. If a user program fails in some way
-such as by making an attempt either to execute an illegal instruction, or to
access memory that is not in the user's address space-then the hardware will
trap to the operating system. The trap transfers control through the interrupt
vector to the operating system, just like an interrupt. Whenever a program
error occurs, the operating system must abnormally terminate the program.
This situation is handled by the same code as is a user-requested abnormal
termination. An appropriate error message is given, and the memory of the
program may be dumped. The memory dump is usually written to a file so that
the user or programmer can examine it, and perhaps can correct and restart the
program.

2.5 Hardware Protection 43

2.5.1 Dual-Mode Operation
To ensure proper operation, we must protect the operating system and all
other programs and their data from any malfunctioning program. Protection
is needed for any shared resource. The approach taken by many operating sys-
tems provides hardware support that allows us to differentiate among various
modes of execution.

At the very least, we need two separate modes of operation: user mode
and monitor mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: monitor (0) or user (1). With the mode bit, we are
able to distinguish between a task that is executed on behalf of the operating
system, and one that is executed on behalf of the user. As we shall see, this
architectural enhancement is useful for many other aspects of system operation.

At system boot time, the hardware starts in monitor mode. The operating
system is then loaded, and starts user processes in user mode. Whenever a trap
or interrupt occurs, the hardware switches from user mode to monitor mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in monitor mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to a
user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users, and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in monitor mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction, but rather treats the instruction as illegal and traps it to the
operating system.

The concept of privileged instructions also provides us with the means for
the user to interact with the operating system by asking the system to perform
some designated tasks that only the operating system should do. Each such
request is invoked by the user executing a privileged instruction. Such a request
is known as a system call (also called a monitor call or an operating-system
function call)-as described in Section 2.1.

When a system call is executed, it is treated by the hardware as a software
interrupt. Control passes through the interrupt vector to a service routine in
the operating system, and the mode bit is set to monitor mode. The system-call
service routine is a part of the operating system. The monitor examines the
interrupting instruction to determine what system call has occurred; a param-
eter indicates what type of service the user program is requesting. Additional
information needed for the request may be passed in registers, on the stack, or
in memory (with pointers to the memory locations passed in registers). The
monitor verifies that the parameters are correct and legal, executes the request,
and returns control to the instruction following the system call.

44 Chapter 2 Computer-System Structures

The lack of a hardware-supported dual mode can cause serious shortcom-
ings in an operating system. For instance, MS-DOS was written for the Intel
8088 archtecture, which has no mode bit, and therefore, no dual mode. A user
program running awry can wipe out the operating system by writing over it
with data, and multiple programs are able to write to a device at the same time,
with possibly disastrous results. More recent and advanced versions of the
Intel CPU, such as the Pentium, do provide dual-mode operation. As a result,
more recent operating systems, such as Microsoft Windows 2000 and IBM 0 5 / 2 ,
take advantage of this feature and provide greater protection for the operating
system.

2.5.2 110 Protection
A user program may disrupt the normal operation of the system by issuing
illegal I/O instructions, by accessing memory locations within the operating
system itself, or by refusing to relinquish the CPU. We can use various mecha-
nisms to ensure that such disruptions cannot take place in the system.

To prevent users from performing illegal I/O, we define all I/O instruc-
tions to be privileged instructions. Thus, users cannot issue I/O instructions
directly; they must do it through the operating system. For I/O protection to
be complete, we must be sure that a user program can never gain control of the
computer in monitor mode. If it could, 1/0 protection could be compromised.

Consider a computer executing in user mode. It will switch to monitor
mode whenever an interrupt or trap occurs, jumping to the address determined
from the interrupt vector. If a user program, as part of its execution, stores a new
address in the interrupt vector, this new address could overwrite the previous
address with an address in the user program. Then, when a corresponding trap
or interrupt occurred, the hardware would switch to monitor mode, and would
transfer control through the (modified) interrupt vector to the user program!
The user program could gain control of the computer in monitor mode. In
fact, user programs could gain control of the computer in monitor mode in
many other ways. In addition, new bugs are discovered every day that can be
exploited to bypass system protections. Those topics are discussed in Chapters
18 and 19. Thus, to do I/O, a user program executes a system call to request
that the operating system perform 1/0 on its behalf (Figure 2.8). The operating
system, executing in monitor mode, checks that the request is valid, and (if the
request is valid) does the I/O requested. The operating system then returns to
the user.

2.5:3 Memory Protection
To ensure correct operation, we must protect the interrupt vector from modifica-
tion by a user program. In addition, we must also protect the interrupt-service
routines in the operating system from modification. Even if the user did not

2.5 Hardware Protection 45

trap to
monitor

resident
monitor

perform I/O

return
to user

user
program

Figure 2.8 Use of a system call to perform I/O.

gain unauthorized control of the computer, modifying the interrupt service
routines would probably disrupt the proper operation of the computer system
and of its spooling and buffering.

We see then that we must provide memory protection at least for the
interrupt vector and the interrupt-service routines of the operating system. In
general, we want to protect the operating system from access by user programs,
and, in addition, to protect user programs from one another. This protection
must be provided by the hardware. It can be implemented in several ways, as
we describe in Chapter 9. Here, we outline one such possible implementation.

To separate each program's memory space, we need the ability to determine
the range of legal addresses that the program may access, and to protect the
memory outside that space. We can provide this protection by using two
registers, usually a base and a limit, as illustrated in Figure 2.9. The base
register holds the smallest legal physical memory address; the limit register
contains the size of the range. For example, if the base register holds 300040
and limit register is 120900, then the program can legally access all addresses
from 300040 through 420940 inclusive.

This protection is accomplished by the CPU hardware comparing every
address generated in user mode with the registers. Any attempt by a program

46 Chapter 2 Computer-System Structures

Figure 2.9 A base and a limit register define a logical address space.

executing in user mode to access monitor memory or other users' memory
results in a trap to the monitor, which treats the attempt as a fatal error
(Figure 2.10). This scheme prevents the user program from (accidentally or
deliberately) modifying the code or data structures of either the operating
system or other users.

The base and limit registers can be loaded by only the operating system,
which uses a special privileged instruction. Since privileged instructions can be
executed in only monitor mode, and since only the operating system executes
in monitor mode, only the operating system can load the base and limit regis-
ters. This scheme allows the monitor to change the value of the registers, but
prevents user programs from changing the registers' contents.

The operating system, executing in monitor mode, is given unrestricted
access to both monitor and users' memory. This provision allows the operating
system to load users' programs into users' memory, to dump out those pro-
grams in case of errors, to access and modify parameters of system calls, and so
on.

2.5.4 CPU Protection
In addition to protecting I/O and memory, we must ensure that the operating
system maintains control. We must prevent a user program from getting stuck
in an infinite loop or not calling system services, and never returning control
to the operating system. To accomplish this goal, we can use a timer. A timer
can be set to interrupt the computer after a specified period. The period may be

2.5 Hardware Protection 47

monitor-addressing error memory

Figure 2.10 Hardware address protection with base and limit registers.

fixed (for example, 1/60 second) or variable (for example, from 1 millisecond to
1 second). A variable timer is generally implemented by a fixed-rate clock and
a counter. The operating system sets the counter. Every time the clock ticks,
the counter is decremented. When the counter reaches 0, an interrupt occurs.
For instance, a 10-bit counter with a 1-millisecond clock allows interrupts at
intervals from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures that
the timer is set to interrupt. If the timer interrupts, control transfers automat-
ically to the operating system, which may treat the interrupt as a fatal error
or may give the program more time. Clearly, instructions that modify the
operation of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time that a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time limit.

A more common use of a timer is to implement time sharing. In the most
straightforward case, the timer could be set to interrupt every N milliseconds,
where N is the time slice that each user is allowed to execute before the next
user gets control of the CPU. The operating system is invoked at the end of each
time slice to perform various housekeeping tasks, such as adding the value N
to the record that specifies (for accounting purposes) the amount of time the
user program has executed thus far. The operating system also saves registers,
internal variables, and buffers, and changes several other parameters to prepare
for the next program to run. This procedure is known as a context switch; it is
explored in Chapter 4. Following a context switch, the next program continues

48 Chapter 2 Computer-System Structures

with its execution from the point at which it left off (when its previous time slice
ran out).

Another use of the timer is to compute the current time. A timer interrupt
signals the passage of some period, allowing the operating system to compute
the current time in reference to some initial time. If we have interrupts every
1 second, and we have had 1427 interrupts since we were told that it was 1:00
P.M., then we can compute that the current time is 1:23:47 P.M. Some computers
determine the current time in this manner, but the calculations must be done
carefully for the time to be kept accurately, since the interrupt-processing time
(and other times when interrupts are disabled) tends to cause the software clock
to slow down. Most computers have a separate hardware time-of-day clock that
is independent of the operating system.

2.6 Network Structure

There are basically two types of networks: local-area networks (LAN) and
wide-area networks (WAN). The main difference between the two is the way in
which they are geographically distributed. Local-area networks are composed
of processors that are distributed over small geographical areas (such as a single
building or a number of adjacent buildings). Wide-area networks, on the other
hand, are composed of a number of autonomous processors that are distributed
over a large geographical area (such as the United States). These differences
imply major variations in the speed and reliability of the communications
network, and they are reflected in the distributed operating-system design.

2.6.1 Local-Area Networks

Local-area networks emerged in the early 1970s, as a substitute for large main-
frame computer systems. For many enterprises, it is more economical to have
a number of small computers, each with its own self-contained applications,
rather than a single large system. Because each small computer is likely to
need a full complement of peripheral devices (such as disks and printers), and
because some form of data sharing is likely to occur in a single enterprise, it
was a natural step to connect these small systems into a network.

LANs are usually designed to cover a small geographical area (such as a
single building, or a few adjacent buildings) and are generally used in an office
environment. All the sites in such systems are close to one another, so the
communication links tend to have a higher speed and lower error rate than
do their counterparts in wide-area networks. High-quality (expensive) cables
are needed to attain this higher speed and reliability. It is also possible to use
the cable exclusively for data network traffic. Over longer distances, the cost of
using high-quality cable is enormous, and the exclusive use of the cable tends
to be prohibitive.

2.6 Network Structure 49

micro printer mini

processors

gateway

processors

file system mini micro

Figure 2.11 Local-area network.

The most common links in a local-area network are twisted pair and fiber
optic cabling. The most common configurations are multiaccess bus, ring,
and star networks. Communication speeds range from 1 megabit per second,
for networks such as AppleTalk, infrared, and the new Bluetooth local radio
network, to 1 gigabit per second for gigabit-Ethernet. Ten megabits per
second is most common, and is the speed of lOBaseT Ethernet. lOOBaseT
Ethernet requires a higher-quality cable but runs at 100 megabits per second,
and is becoming common. Also growing is the use of optical-fiber-based FDDI
networking. The FDDI network is token-based and runs at over 100 megabits
per second.

A typical LAN may consist of a number of different computers (from
mainframes to laptops or PDAs), various shared peripheral devices (such as
laser printers or magnetic-tape drives), and one or more gateways (specialized
processors) that provide access to other networks (Figure 2.11). An Ethernet
scheme is commonly used to construct LANs. An Ethernet network has no
central controller, because it is a multiaccess bus, so new hosts can be added
easily to the network.

2.6.2 Wide-Area Networks
Wide-area networks emerged in the late 1960s, mainly as an academic research
project to provide efficient communication among sites, allowing hardware and
software to be shared conveniently and economically by a wide community of
users. The first WAN to be designed and developed was the Arpanet. Begun
in 1968, the Arpanet has grown from a four-site experimental network to a

50 Chapter 2 Computer-System Structures

worldwide network of networks, the Internet, comprising millions of computer
systems.

Because the sites in a WAN are physically distributed over a large geograph-
ical area, the communication links are, by default, relatively slow and unreli-
able. Typical links are telephone lines, leased (dedicated data) lines, microwave
links, and satellite channels. These communication links are controlled by spe-
cial communication processors (Figure 2.12), which are responsible for defining
the interface through which the sites communicate over the network, as well as
for transferring information among the various sites.

For example, the Internet WAN provides the ability for hosts at geograph-
ically separated sites to communicate with one another. The host computers
typically differ from one another in type, speed, word length, operating sys-
tem, and so on. Hosts are generally on LANs, which are, in turn, connected
to the Internet via regional networks. The regional networks, such as NSFnet
in the northeast United States, are interlinked with routers (Section 15.4.2) to
form the worldwide network. Connections between networks frequently use
a telephone-system service called TI, which provides a transfer rate of 1.544

communication hwt weratlng eptm
subsystem,

H

communication
network host user processes processor

user processes

host operating system 1 - 1

network host

Figure 2.12 Communication processors in a wide-area network.

2.7 Summary 51

megabits per second over a leased line. For sites requiring faster Internet
access, Tls are collected into multiple-T1 units that work in parallel to provide
more throughput. For instance, a T3 is composed of 28 T1 connections and
has a transfer rate of 45 megabits per second. The routers control the path
each message takes through the net. This routing may be either dynamic, to
increase communications efficiency, or static, to reduce security risks or to allow
communications charges to be computed.

Other WANs in operation use standard telephone lines as their primary
means of communication. Modems are devices that accept digital data from
the computer side and convert it to the analog signals that the telephone system
uses. A modem at the destination site converts the analog signal back to digital
and the destination receives the data. The UNIX news network, UUCP, allows
systems to communicate with each other at predetermined times, via modems,
to exchange messages. The messages are then routed to other nearby systems
and in this way either are propagated to all hosts on the network (public
messages) or are transferred to their destination (private messages). WANs
are generally slower than LANs; their transmission rates range from 1,200 bits
per second to over 1 megabit per second. UUCP has been superseded by PPP,
the Point-to-Point Protocol. PPP functions over modem connections, allowing
home computers to be fully connected to the Internet.

2.7 Summary

Multiprogramming and time-sharing systems improve performance by over-
lapping CPU and I/O operations on a single machine. Such an overlap requires
that data transfer between the CPU and an I/O device be handled either by
polled or interrupt-driven access to an 1 /0 port, or by a DMA data transfer.

For a computer to do its job of executing programs, the programs must
be in main memory. Main memory is the only large storage area that the
processor can access directly. It is an array of words or bytes, ranging in size
from hundreds of thousands to hundreds of millions. Each word has its own
address. The main memory is a volatile storage device that loses its contents
when power is turned off or lost. Most computer systems provide secondary
storage as an extension of main memory. The main requirement of secondary
storage is to be able to hold large quantities of data permanently. The most
common secondary-storage device is a magnetic disk, which provides storage
of both programs and data. A magnetic disk is a nonvolatile storage device
that also provides random access. Magnetic tapes are used mainly for backup,
for storage of infrequently used information, and as a medium for transferring
information from one system to another.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to their speed and cost. The higher levels are expen-

52 Chapter 2 Computer-System Structures

sive, but they are fast. As we move down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

The operating system must ensure correct operation of the computer sys-
tem. To prevent user programs from interfering with the proper operation of the
system, the hardware has two modes: user mode and monitor mode. Various
instructions (such as I/O instructions and halt instructions) are privileged, and
can be executed in only monitor mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, timer interrupt) are basic building blocks used by operating
systems to achieve correct operation. Chapter 3 continues this discussion with
details of the facilities that operating systems provide.

LANs and WANs are the two basic types of networks. Usually connected by
expensive twisted-pair or fiber-optic cabling, LANs allow processors distributed
over a small geographical area to communicate. Connected by telephone lines,
leased lines, microwave links, or satellite channels, WANs allow processors
distributed over a larger geographical area to communicate. LANs typically
transmit more than 100 megabits per second, whereas slower WANs transmit
from 1,200 bits per second to more than 1 megabit per second.

Exercises

2.1 Prefetching is a method of overlapping the I/O of a job with that job's own
computation. The idea is simple. After a read operation completes and the
job is about to start operating on the data, the input device is instructed to
begin the next read immediately. The CPU and input device are then both
busy. With luck, by the time that the job is ready for the next data item,
the input device will have finished reading that data item. The CPU can
then begin processing the newly read data, while the input device starts
to read the following data. A similar idea can be used for output. In this
case, the job creates data that are put into a buffer until an output device
can accept them.

Compare the prefetching scheme with spooling, where the CPU
overlaps the input of one job with the computation and output of other
jobs.

2.2 How does the distinction between monitor mode and user mode function
as a rudimentary form of protection (security) system?

2.3 What are the differences between a trap and an interrupt? What is the use
of each function?

2.4 For what types of operations is DMA useful? Explain your answer.

2.5 Which of the following instructions should be privileged?

Exercises 53

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Turn off interrupts.

e. Switch from user to monitor mode.

2.6 Some computer systems do not provide a privileged mode of operation in
hardware. Is it possible to construct a secure operating system for these
computers? Give arguments both that it is and that it is not possible.

2.7 Some early computers protected the operating system by placing it in a
memory partition that could not be modified by either the user job or the
operating system itself. Describe two difficulties that you think could arise
with such a scheme.

2.8 Protecting the operating system is crucial to ensuring that the computer
system operates correctly. Provision of this protection is the reason for
dual-mode operation, memory protection, and the timer. To allow max-
imum flexibility, however, you should also place minimal constraints on
the user.

The following is a list of instructions that are normally protected. What
is the minimal set of instructions that must be protected?

a. Change to user mode.

b. Change to monitor mode.

c. Read from monitor memory.

d. Write into monitor memory.

e. Fetch an instruction from monitor memory.

f. Turn on timer interrupt.

g. Turn off timer interrupt.

2.9 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk), why
not make it that large and eliminate the device?

2.10 Writing an operating system that can operate without interference from
malicious or undebugged user programs requires hardware assistance.
Name three hardware aids for writing an operating system, and describe
how they could be used together to protect the operating system.

54 Chapter 2 Computer-System Structures

2.11 Some CPUs provide for more than two modes of operation. What are two
possible uses of these multiple modes?

2.12 What are the main differences between a WAN and a LAN?

2.13 What network configuration would best suit the following environ-
ments?

a. A dormitory floor

b. A university campus

c. A state

d. A nation

Bibliographical Notes

Hennessy and Patterson [I9961 provide coverage of 1/0 systems and buses, and
of system architecture in general. Tanenbaum [I9901 describes the architecture
of microcomputers, starting at a detailed hardware level.

Discussions concerning magnetic-disk technology are presented by Freed-
man [I9831 and by Harker et al. [1981]. Optical disks are covered by Kenville
[1982], Fujitani [1984], O'Leary and Kitts [1985], Gait [1988], and Olsen and Ken-
ley [1989]. Discussions of floppy disks are offered by Pechura and Schoeffler
[I9831 and by Sarisky [1983].

i Cache memories, including associative memory, are described and ana- ,
lyzed by Smith [1982]. That paper also includes an extensive bibliography on
the subject.

General discussions concerning mass-storage technology are offered by Chi
[I9821 and by Hoagland [1985].

Tanenbaum [I9961 and Halsall [I9921 provide general overviews of com-
puter networks. Fortier [I9891 presents a detailed discussion of networking
hardware and software.

Chapter 3

OPERATING-
SYSTEM
STRUCTURES

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, being
organized along many different lines. The design of a new operating system is
a major task. The goals of the system must be well defined before the design
begins. The type of system desired is the basis for choices among various
algorithms and strategies.

An operating system may be viewed from several vantage points. One is by
examining the services that it provides. Another is by looking at the interface
that it makes available to users and programmers. A third is by disassembling
the system into its components and their interconnections. In this chapter, we
explore all three aspects of operating systems, showing the viewpoints of users,
programmers, and operating-system designers. We consider what services
an operating system provides, how they are provided, and what the various
methodologies are for designing such systems.

3.1 . System Components

We can create a system as large and complex as an operating system only
by partitioning it into smaller pieces. Each piece should be a well-delineated
portion of the system, with carefully defined inputs, outputs, and functions.
Obviously, not all systems have the same structure. However, many mod-
ern systems share the goal of supporting the system components outlined in
Sections 3.1.1 through 3.1.8.

56 Chapter 3 Operating-System Structures

3.1.1 Process Management
A program does nothing unless its instructions are executed by a CPU. A
process can be thought of as a program in execution, but its definition will
broaden as we explore it further. A time-shared user program such as a
compiler is a process. A word-processing program being run by an individual
user on a PC is a process. A system task, such as sending output to a printer, is
also a process. For now, you can consider a process to be a job or a time-shared
program, but later you will learn that the concept is more general. As we shall
see in Chapter 4, we can provide system calls that allow processes to create
subprocesses to execute concurrently.

A process needs certain resources-including CPU time, memory, files, and
I/O devices-to accomplish its task. These resources are either given to the
process when it is created, or allocated to it while it is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (or input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file, and
will execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a
passive entity, such as the contents of a file stored on disk, whereas a process
is an active entity, with a program counter specifying the next instruction to
execute. The execution of a process must be sequential. The CPU executes one
instruction of the process after another, until the process completes. Further, at
any time, at most one instruction is executed on behalf of the process. Thus,
although two processes may be associated with the same program, they are
nevertheless considered two separate execution sequences. It is common to
have a program that spawns many processes as it runs.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently, by
multiplexing the CPU among them.

The operating system is responsible for the following activities in connec-
tion with process management:

Creating and deleting both user and system processes

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communication

Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 4 through 7.

3.1 System Components 57

3.1.2 Main-Memory Management
As we discussed in Chapter 1, the main memory is central to the operation of
a modern computer system. Main memory is a large array of words or bytes,
ranging in size from hundreds of thousands to billions. Each word or byte
has its own address. Main memory is a repository of quickly accessible data
shared by the CPU and I/O devices. The central processor reads instructions
from main memory during the instruction-fetch cycle, and it both reads and
writes data from main memory during the data-fetch cycle. The I/O operations
implemented via DMA also read and write data in main memory. The main
memory is generally the only large storage device that the CPU is able to address
and access directly. For example, for the CPU to process data from disk, those
data must first be transferred to main memory by CPU-generated I/O calls.
Equivalently, instructions must be in memory for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer's
response to its users, we must keep several programs in memory. Many
different memory-management schemes are available, and the effectiveness of
the different algorithms depends on the particular situation. Selection of a
memory-management scheme for a specific system depends on many factors
-especially on the hardware design of the system. Each algorithm requires its
own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

Keeping track of which parts of memory are currently being used and by
whom

Deciding which processes are to be loaded into memory when memory
space becomes available

Allocating and deallocating memory space as needed

Memory-management techniques will be discussed in Chapters 9 and 10.

3.1.3 File Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic tape, magnetic disk, and optical disk are the most common media.
Each of these media has its own characteristics and physical organization. Each

58 Chapter 3 Operating-System Structures

medium is controlled by a device, such as a disk drive or tape drive, that also
has unique characteristics. These properties include access speed, capacity,
data-transfer rate, and access method (sequential or random).

For convenient use of the computer system, the operating system provides
a uniform logical view of information storage. The operating system abstracts
from the physical properties of its storage devices to define a logical storage
unit, the file. The operating system maps files onto physical media, and accesses
these files via the storage devices.

A file is a collection of related information defined by its creator. Com-
monly, files represent programs (both source and object forms) and data. Data
files may be numeric, alphabetic, or alphanumeric. Files may be free-form (for
example, text files), or may be formatted rigidly (for example, fixed fields). A
file consists of a sequence of bits, bytes, lines, or records whose meanings are
defined by their creators. The concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass storage media, such as disks and tapes, and the devices that control them.
Also, files are normally organized into directories to ease their use. Finally,
when multiple users have access to files, we may want to control by whom and
in what ways (for example, read, write, append) files may be accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

Creating and deleting files

Creating and deleting directories

Supporting primitives for manipulating files and directories

Mapping files onto secondary storage

Backing up files on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 11 and 12.

3.1.4 110-System Management
One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of
1 /0 devices are hidden from the bulk of the operating system itself by the I10
subsystem. The I/O subsystem consists of

A memory-management component that includes buffering, caching, and
spooling

A general device-driver interface

Drivers for specific hardware devices

3.1 System Components 59

Only the device driver knows the peculiarities of the specific device to which it
is assigned.

We discussed in Chapter 2 how interrupt handlers and device drivers are
used in the construction of efficient I/O subsystems. In Chapter 13, we will
discuss how the I/O subsystem interfaces to the other system components,
manages devices, transfers data, and detects I/O completion.

3.1.5 Secondary-Storage Management
The main purpose of a computer system is to execute programs. These pro-
grams, with the data they access, must be in main memory, or primary storage,
during execution. Because main memory is too small to accommodate all data
and programs, and because the data that it holds are lost when power is lost,
the computer system must provide secondary storage to back up main mem-
ory. Most modern computer systems use disks as the principal on-line storage
medium, for both programs and data. Most programs-including compilers,
assemblers, sort routines, editors, and formatters-are stored on a disk until
loaded into memory, and then use the disk as both the source and destination
of their processing. Hence, the proper management of disk storage is of central
importance to a computer system.

The operating system is responsible for the following activities in connec-
tion with disk management:

Free-space management

Storage allocation

Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and of the algorithms that manipulate that subsystem. Techniques
for secondary-storage management will be discussed in Chapter 14.

3.1.6 Networking
A distributed system is a collection of processors that do not share memory,
peripheral devices, or a clock. Instead, each processor has its own local memory
and clock, and the processors communicate with one another through various
communication lines, such as high-speed buses or networks. The processors in
a distributed system vary in size and function. They may include small micro-
processors, workstations, minicomputers, and large, general-purpose computer
systems.

The processors in the system are connected through a communication net-
work, which can be configured in a number of different ways. The network
may be fully or partially connected. The communication-network design must

60 Chapter 3 Operating-System Structures

consider message routing and connection strategies, and the problems of con-
tention and security.

A distributed system collects physically separate, possibly heterogeneous,
systems into a single coherent system, providing the user with access to the
various resources that the system maintains. Access to a shared resource allows
computation speedup, increased functionality, increased data availability, and
enhanced reliability. Operating systems usually generalize network access as
a form of file access, with the details of networking being contained in the
network interface's device driver. The protocols that create a distributed system
can have a great effect on that system's utility and popularity. The innovation
of the World Wide Web was to create a new access method for information
sharing. It improved on the existing file-transfer protocol (FTP) and network
file-system (NFS) protocol by removing the need for a user to log in before she is
allowed to use a remote resource. It defined a new protocol, hypertext transfer
protocol (http), for use in communication between a web server and a web
browser. A web browser then just needs to send a request for information to a
remote machine's web server, and the information (text, graphics, links to other
information) is returned. This increase in convenience fostered huge growth in
the use of http and of the Web in general.

We discuss networks and distributed systems in Chapters 15 through 17.

3.1.7 Protection System
If a computer system has multiple users and allows the concurrent execution
of multiple processes, then the various processes must be protected from one
another's activities. For that purpose, mechanisms ensure that the files, mem-
ory segments, CPU, and other resources can be operated on by only those
processes that have gained proper authorization from the operating system.

For example, memory-addressing hardware ensures that a process can
execute only within its own address space. The timer ensures that no process
can gain control of the CPU without eventually relinquishing control. Device-
control registers are not accessible to users, so that the integrity of the various
peripheral devices is protected.

Protection is any mechanism for controlling the access of programs, pro-
cesses, or users to the resources defined by a computer system. This mechanism
must provide means for specification of the controls to be imposed and means
for enforcement.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that is
malfunctioning. An unprotected resource cannot defend against use (or mis-
use) by an unauthorized or incompetent user. A protection-oriented system
provides a means to distinguish between authorized and unauthorized usage,
as we discuss in Chapter 18.

3.2 Operating-System Services 61

3.1.8 Command-Interpreter System
One of the most important systems programs for an operating system is the
command interpreter, which is the interface between the user and the operating
system. Some operating systems include the command interpreter in the
kernel. Other operating systems, such as MS-DOS and UNIX, treat the command
interpreter as a special program that is running when a job is initiated, or when
a user first logs on (on time-sharing systems).

Many commands are given to the operating system by control statements.
When a new job is started in a batch system, or when a user logs on to a
time-shared system, a program that reads and interprets control statements
is executed automatically. This program is sometimes called the control-card
interpreter or the command-line interpreter, and is often known as the shell.
Its function is simple: To get the next command statement and execute it.

Operating systems are frequently differentiated in the area of the shell,
with a user-friendly command interpreter making the system more agreeable
to some users. One style of user-friendly interface is the mouse-based window-
and-menu system used in the Macintosh and in Microsoft Windows. The
mouse is moved to position the mouse pointer on images, or icons, on the
screen that represent programs, files, and system functions. Depending on
the mouse pointer's location, clicking a button on the mouse can invoke a
program, select a file or directory-known as a folder-or pull down a menu
that contains commands. More powerful, complex, and difficult-to-learn shells
are appreciated by other users. In some of these shells, commands are typed on
a keyboard and displayed on a screen or printing terminal, with the enter (or
return) key signaling that a command is complete and is ready to be executed.
The MS-DOS and UNIX shells operate in this way.

The command statements themselves deal with process creation and man-
agement, I/O handling, secondary-storage management, main-memory man-
agement, file-system access, protection, and networking.

3.2 . Operating-System Services

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming
task easier.

Program execution: The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

62 Chapter 3 Operating-System Structures

110 operations: A running program may require I/O. This 1/0 may involve
a file or an I/O device. For specific devices, special functions may be desired
(such as to rewind a tape drive, or to blank a CRT screen). For efficiency and
protection, users usually cannot control 1/0 devices directly. Therefore, the
operating system must provide a means to do I/O.

a File-system manipulation: The file system is of particular interest. Obvi-
ously, programs need to read and write files. Programs also need to create
and delete files by name.

Communications: In many circumstances, one process needs to exchange
information with another process. Such communication can occur in two
major ways. The first takes place between processes that are executing
on the same computer; the second takes place between processes that
are executing on different computer systems that are tied together by a
computer network. Communications may be implemented via shared
memory, or by the technique of message passing, in which packets of
information are moved between processes by the operating system.

Error detection: The operating system constantly needs to be aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in I/O devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing.

In addition, another set of operating-system functions exists not for helping
the user, but for ensuring the efficient operation of the system itself. Systems
with multiple users can gain efficiency by sharing the computer resources
among the users.

Resource allocation: When multiple users are logged on the system or
multiple jobs are running at the same time, resources must be allocated
to each of them. Many different types of resources are managed by the
operating system. Some (such as CPU cycles, main memory, and file
storage) may have special allocation code, whereas others (such as I/O
devices) may have much more general request and release code. For
instance, in determining how best to use the CPU, operating systems have
CPU-scheduling routines that take into account the speed of the CPU, the
jobs that must be executed, the number of registers available, and other
factors. There might also be routines to allocate a tape drive for use by a job.
One such routine locates an unused tape drive and marks an internal table
to record the drive's new user. Another routine is used to clear that table.

3.3 System Calls 63

These routines may also allocate plotters, modems, and other peripheral
devices.

Accounting: We want to keep track of which users use how many and
which kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

Protection: The owners of information stored in a multiuser computer sys-
tem may want to control use of that information. When several disjointed
processes execute concurrently, it should not be possible for one process
to interfere with the others, or with the operating system itself. Protection
involves ensuring that all access to system resources is controlled. Security
of the system from outsiders is also important. Such security starts with
each user having to authenticate himself to the system, usually by means
of a password, to be allowed access to the resources. It extends to defend-
ing external 1/0 devices, including modems and network adapters, from
invalid access attempts, and to recording all such connections for detection
of break-ins. If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

3.3 H System Calls

System calls provide the interface between a process and the operating sys-
tem. These calls are generally available as assembly-language instructions, and
they are usually listed in the various manuals used by the assembly-language
programmers.

Certain systems allow system calls to be made directly from a higher-
level language program, in which case the calls normally resemble predefined
function or subroutine calls. They may generate a call to a special run-time
routine that makes the system call, or the system call may be generated directly
in-line.

Several languages-such as C, C++, and Perl-have been defined to replace
assembly language for systems programming. These languages allow system
calls to be made directly. For example, UNIX system calls may be invoked
directly from a C or C++ program. System calls for modern Microsoft Windows
platforms are part of the Win32 application programmer interface (API), which
is available for use by all the compilers written for Microsoft Windows.

As an example of how system calls are used, consider writing a simple
program to read data from one file and to copy them to another file. The first
input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the

64 Chapter 3 Operating-System Structures

user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen, and then to read from the keyboard the characters that define the two
files. On mouse-based window-and-menu systems, a menu of file names is
usually displayed in a window. The user can then use the mouse to select the
source name, and a similar window can be opened for the destination name to
be specified.

Once the two file names are obtained, the program must open the input
file and create the output file. Each of these operations requires another system
call and may encounter possible error conditions. When the program tries to
open the input file, it may find that no file of that name exists or that the file is
protected against access. In these cases, the program should print a message on
the console (another sequence of system calls), and then terminate abnormally
(another system call). If the input file exists, then we must create a new output
file. We may find an output file with the same name. This situation may cause
the program to abort (a system call), or we may delete the existing file (another
system call) and create a new one (another system call). In an interactive system,
another option is to ask the user (a sequence of system calls to output the
prompting message and to read the response from the keyboard) whether to
replace the existing file or to abort the program.

Now that both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each
read and write must return status information regarding various possible
error conditions. On input, the program may find that the end of the file has
been reached, or that a hardware failure occurred in the read (such as a parity
error). On output, various errors may occur, depending on the output device
(such as no more disk space, physical end of tape, printer out of paper).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console (more system calls), and
finally terminate normally (the final system call). As we can see, even simple
programs may make heavy use of the operating system.

Most users never see this level of detail, however. The run-time support
system (the set of functions built into libraries included with a compiler) for
most programming languages provides a much simpler interface. For example,
the count statement in C++ is probably compiled into a call to a run-time
support routine that issues the necessary system calls, checks for errors, and
finally returns to the user program. Thus, most of the details of the operating-
system interface are hidden from the programmer by the compiler and by the
run-time support package.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, and the address and length of

user program

3.3 System Calls 65

rl=x71
register

r

operating system

code for
system
call 13

Figure 3.1 Passing of parameters as a table.

the memory buffer into which the input should be read. Of course, the device
or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block or table in memory, and the address of
the block is passed as a parameter in a register (Figure 3.1). This is the approach
taken by Linux. Parameters can also be placed, or pushed, onto the stack by
the program, and popped o f the stack by the operating system. Some operating
systems prefer the block or stack methods, because those approaches do not
limit the number or length of parameters being passed.

System calls can be grouped roughly into five major categories: process
control, file management, device management, information maintenance, and
communications. In Sections 3.3.1 through 3.3.5, we discuss briefly the types of
system calls that may be provided by an operating system. Most of these system
calls support, or are supported by, concepts and functions that are discussed
in later chapters. Figure 3.2 summarizes the types of system calls normally
provided by an operating system.

3.3.1 Process Control
A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and causes
an error trap, a dump of memory is sometimes taken and an error message
generated. The dump is written to disk and may be examined by a debugger
to determine the cause of the problem. Under either normal or abnormal

66 Chapter 3 Operating-System Structures

Process control

o end, abort

o load, execute

o create process, terminate process

o get process attributes, set process attributes

o wait for time

o wait event, signal event

o allocate and free memory

File management

o create file, delete file

o open, close

o read, write, reposition

o get file attributes, set file attributes

Device management

o request device, release device

o read, write, reposition

o get device attributes, set device attributes

o logically attach or detach devices

Information maintenance

o get time or date, set time or date

o get system data, set system data

o get process, file, or device attributes

o set process, file, or device attributes

Communications

o create, delete communication connection

o send, receive messages

o transfer status information

o attach or detach remote devices

Figure 3.2 Types of system calls.

3.3 System Calls 67

circumstances, the operating system must transfer control to the command
interpreter. The command interpreter then reads the next command. In an
interactive system, the command interpreter simply continues with the next
command; it is assumed that the user will issue an appropriate command to
respond to any error. In a batch system, the command interpreter usually
terminates the entire job and continues with the next job. Some systems allow
control cards to indicate special recovery actions in case an error occurs. If the
program discovers an error in its input and wants to terminate abnormally, it
may also want to define an error level. More severe errors can be indicated
by a higher-level error parameter. It is then possible to combine normal and
abnormal termination by defining a normal termination as error at level 0.
The command interpreter or a following program can use this error level to
determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse, or
a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.

If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to
be multiprogrammed. Often, system calls exists specifically for this purpose
(create process or submit job).

If we create a new job or process, or perhaps even a set of jobs or pro-
cesses, we should be able to control its execution. This control requires the
ability to determine and reset the attributes of a job or process, including the
job's priority, its maximum allowable execution time, and so on (get process
a t t r i bu te s and s e t process a t t r i bu te s) . We may also want to termi-
nate a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them to
finish their execution. We may want to wait for a certain amount of time (wait
time); more likely, we may want to wait for a specific event to occur (w a i t
event). The jobs or processes should then signal when that event has occurred
(signal event). System calls of this type, dealing with the coordination of
concurrent processes, are discussed in great detail in Chapter 7.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program t r a c e lists each instruction as it is executed; it is
provided by fewer systems. Even microprocessors provide a CPU mode known
as single step, in which a trap is executed by the CPU after every instruction.

68 Chapter 3 Operating-System Structures

The trap is usually caught by a debugger, which is a system program designed
to aid the programmer in finding and correcting bugs.

Many operating systems provide a time profile of a program. It indicates
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

Process and job control have so many facets and variations that we shall use
examples to clarify these concepts. The MS-DOS operating system is an example
of a single-tasking system, which has a command interpreter that is invoked
when the computer is started (Figure 3.3(a)). Because MS-DOS is single-tasking,
it uses a simple method to run a program and does not create a new process. It ,
loads the program into memory, writing over most of itself to give the program
as much memory as possible (Figure 3.3(b)). It then sets the instruction pointer
to the first instruction of the program. The program then runs and either an
error causes a trap, or the program executes a system call to terminate. In either
case, the error code is saved in the system memory for later use. Following this
action, the small portion of the command interpreter that was not overwritten
resumes execution. Its first task is to reload the rest of the command interpreter
from disk. Once this task is accomplished, the command interpreter makes the
previous error code available to the user or to the next program.

Although the MS-DOS operating system does not have general multitasking
capabilities, it does provide a method for limited concurrent execution. A
TSR program is a program that "hooks an interrupt" and then exits with the

(a) (b)

Figure 3.3 MS-DOS execution. (a) At system startup. (b) Running a program.

3.3 System Calls 69

terminate and stay resident system call. For instance, it can hook the
clock interrupt by placing the address of one of its subroutines into the list of
interrupt routines to be called when the system timer is triggered. This way,
the TSR routine will be executed several times per second, at each clock tick.
The terminate and stay resident system call causes MS-DOS to reserve
the space occupied by the TSR, so it will not be overwritten when the command
interpreter is reloaded.

FreeBSD is an example of a multitasking system. When a user logs on to
the system, the shell (or command interpreter) of the user's choice is run. This
shell is similar to the MS-DOS shell in that it accepts commands and executes
programs that the user requests. However, since FreeBSD is a multitasking
system, the command interpreter may continue running while another program
is executed (Figure 3.4). To start a new process, the shell executes a fork
system call. Then, the selected program is loaded into memory via an exec
system call, and the program is then executed. Depending on the way the
command is issued, the shell then either waits for the process to finish, or
runs the process "in the background." In the latter case, the shell immediately
requests another command. When a process is running in the background, it
cannot receive input directly from the keyboard, because the shell is using this
resource. 1 /0 is therefore done through files, or through a window-and-menu
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program's priority,
and so on. When the process is done, it executes an exit system call to
terminate, returning to the invoking process a status code of 0, or a nonzero
error code. This status (or error) code is then available to the shell or other
programs. Processes are discussed in Chapter 4.

Figure 3.4 UNIX running multiple programs.

70 Chapter 3 Operating-System Structures

3.3.2 File Management
We will discuss the file system in more detail in Chapters 11 and 12. We can
identify several common system calls dealing with files, however.

We first need to be able to c r ea t e and d e l e t e files. Either system call
requires the name of the file and perhaps some of the file's attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
r epos i t i on (rewind or skip to the end of the file, for example). Finally, we
need to c lose the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes, and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on. At
least two system calls, g e t f i l e a t t r i b u t e and s e t f i l e a t t r i b u t e , are
required for this function. Some operating systems provide many more calls.

3.3.3 Device Management
A program, as it is running, may need additional resources to proceed. Addi-
tional resources may be more memory, tape drives, access to files, and so on.
If the resources are available, they can be granted, and control can be returned
to the user program; otherwise, the program will have to wait until sufficient
resources are available.

Files can be thought of as abstract or virtual devices. Thus, many of the
system calls for files are also needed for devices. If the system has multiple
users, however, we must first request the device, to ensure exclusive use of it.
After we are finished with the device, we must r e l ea se it. These functions are
similar to the open and c lose system calls for files.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) r epos i t i on the device, just as we can with ordinary
files. In fact, the similarity between I/O devices and files is so great that many
operating systems, including UNIX and MS-DOS, merge the two into a combined
file-device structure. In this case, 1/0 devices are identified by special file
names.

3.3.4 Information Maintenance
Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
systems have a system call to return the current time and date . Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

3.3 System Calls 71

In addition, the operating system keeps information about all its processes,
and there are system calls to access this information. Generally, there are
also calls to reset the process information (get process attributes and
set process attributes). In Section 4.1.3, we discuss what information is
normally kept.

3.3.5 Communication
There are two common models of communication. In the message-passing
model, information is exchanged through an interprocess-communication facil-
ity provided by the operating system. Before communication can take place, a
connection must be opened. The name of the other communicator must be
known, be it another process on the same CPU, or a process on another com-
puter connected by a communications network. Each computer in a network
has a host name, such as an IP name, by which it is commonly known. Similarly,
each process has a process name, which is translated into an equivalent iden-
tifier by which the operating system can refer to it. The get hostid and get
processid system calls do this translation. These identifiers are then passed
to the general-purpose open and close calls provided by the file system, or
to specific open connect ion and close connect ion system calls, depend-
ing on the system's model of communications. The recipient process usually
must give its permission for communication to take place with an accept
connect ion call. Most processes that will be receiving connections are special-
purpose daemons-systems programs provided for that purpose. They exe-
cute a wait for connection call and are awakened when a connection is
made. The source of the communication, known as the client, and the receiving
daemon, known as a server, then exchange messages by read message and
write message system calls. The close connect ion call terminates the
communication.

In the shared-memory model, processes use map memory system calls to
gain access to regions of memory owned by other processes. Recall that,
normally, the operating system tries to prevent one process from accessing
another process' memory. Shared memory requires that several processes agree
to remove this restriction. They may then exchange information by reading
and writing data in these shared areas. The form of the data and the location
are determined by these processes and are not under the operating system's
control. The processes are also responsible for ensuring that they are not writing
to the same location simultaneously. Such mechanisms are discussed in Chapter
7. We will also look at a variation of the process model-threads-that shares
memory by default. Threads will be covered in Chapter 5.

Both of these methods are common in operating systems, and some systems
even implement both. Message passing is useful when smaller numbers of data
need to be exchanged, because no conflicts need to be avoided. It is also easier
to implement than is shared memory for intercomputer communication. Shared

72 Chapter 3 Operating-System Structures

Figure 3.5 Communications models. (a) Msg passing. (b) Shared memory.

memory allows maximum speed and convenience of communication, as it can
be done at memory speeds when within a computer. Problems exist, however,
in the areas of protection and synchronization. The two communications
models are contrasted in Figure 3.5.

3.4 . System Programs

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest
level is hardware. Next is the operating system, then the system programs,
and finally the application programs. System programs provide a convenient
environment for program development and execution. Some of them are
simply user interfaces to system calls; others are considerably more complex.
They can be divided into these categories:

File management: These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

Status information: Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. That information is then formatted, and is
printed to the terminal or other output device or file.

3.4 System Programs 73

a File modification: Several text editors may be available to create and
modify the content of files stored on disk or tape.

a Programming-language support: Compilers, assemblers, and interpreters
for common programming languages (such as C, C++, Java, Visual Basic,
and PERL) are often provided to the user with the operating system. Some
of these programs are now priced and provided separately.

a Program loading and execution: Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed also.

a Communications: These programs provide the mechanism for creating vir-
tual connections among processes, users, and different computer systems.
They allow users to send messages to one another's screens, to browse web
pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

Most operating systems are supplied with programs that solve com-
mon problems, or perform common operations. Such programs include web
browsers, word processors and text formatters, spreadsheets, database systems,
compiler compilers, plotting and statistical-analysis packages, and games.
These programs are known as system utilities or application programs.

Perhaps the most important system program for an operating system is the
command interpreter, the main function of which is to get and execute the next
user-specified command.

Many of the commands given at this level manipulate files: create, delete,
list, print, copy, execute, and so on. These commands can be implemented in
two general ways. In one approach, the command interpreter itself contains the
code to execute the command. For example, a command to delete a file may
cause the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach-used by UNIX, among other operating systems
-implements most commands by system programs. In this case, the command
interpreter does not understand the command in any way; it merely uses the
command to identify a file to be loaded into memory and executed. Thus, the
UNIX command to delete a file

would search for a file called rm, load the file into memory, and execute it
with the parameter G. The function associated with the r m command would

74 Chapter 3 Operating-System Structures

be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

This approach to the design of a command interpreter has problems. First,
because the code to execute a command is a separate system program, the
operating system must provide a mechanism for passing parameters from the
command interpreter to the system program. This task can often be clumsy,
because the command interpreter and the system program may not be in
memory at the same time, and the parameter list can be extensive. Also, it
is slower to load a program and to execute it than simply to jump to another
section of code within the current program.

Another problem is that the interpretation of the parameters is left up to
the programmer of the system program. Thus, parameters may be provided
inconsistently across programs that appear similar to the user, but were written
at different times by different programmers.

The view of the operating system seen by most users is thus defined by
the system programs, rather than by the actual system calls. Think of using a
PC. When your computer is running the Microsoft Windows operating system,
you might see a command-line MS-DOS shell, or the graphical window-and-
menu interface. Both use the same set of system calls, but the system calls
look different and act in different ways. Consequently, your view may be
substantially removed from the actual system structure. The design of a useful
and friendly user interface is therefore not a direct function of the operating
system. In this book, we shall concentrate on the fundamental problems of
providing adequate service to user programs. From the point of view of the
operating system, we do not distinguish between user programs and system
programs.

3.5 . System Structure

A system as large and complex as a modern operating system must be engi-
neered carefully if it is to function properly and be modified easily. A com-
mon approach is to partition the task into small components, rather than have
one monolithic system. Each of these modules should be a well-defined por-
tion of the system, with carefully defined inputs, outputs, and function. We
have already discussed briefly the common components of operating systems
(Section 3.1). In this section, we discuss the way that these components are
interconnected and melded into a kernel.

3.5.1 Simple Structure
Many commercial systems do not have a well-defined structure. Frequently,
such operating systems started as small, simple, and limited systems, and then

3.5 System Structure 75

MS-DOS device drivers

ROM BlOS device drivers

Figure 3.6 MS-DOS layer structure.

grew beyond their original scope. MS-DOS is an example of such a system.
It was originally designed and implemented by a few people who had no
idea that it would become so popular. It was written to provide the most
functionality in the least space (because of the limited hardware on which it
ran), so it was not divided into modules carefully. Figure 3.6 shows its structure.

UNIX is another system that was initially limited by hardware functionality.
It consists of two separable parts: the kernel and the system programs. The
kernel is further separated into a series of interfaces and device drivers, which
were added and expanded over the years as UNIX evolved. We can view the
traditional UNIX operating system as being layered as shown in Figure 3.7.
Everything below the system-call interface and above the physical hardware is
the kernel. The kernel provides the file system, CPU scheduling, memory man-
agement, and other operating-system functions through system calls. Taken in
sum, that is an enormous amount of functionality to be combined into one level.
This makes UNIX difficult to enhance, as changes in one section could adversely
affect other areas.

System calls define the API to UNIX; the set of system programs commonly
available defines the user interface. The programmer and user interfaces define
the context that the kernel must support.

New versions of UNIX are designed to use more advanced hardware. Given
proper hardware support, operating systems may be broken into pieces that are
smaller and more appropriate than are those allowed by the original MS-DOS
or UNIX systems. The operating system can then retain much greater control
over the computer and over the applications that make use of that computer.
Implementers have more freedom to make changes to the inner workings of
the system and in the creation of modular operating systems. Under the top-

76 Chapter 3 Operating-System Structures

Figure 3.7 UNIX system structure.

down approach, the overall functionality and features are determined and
are separated into components. This separation allows programmers to hide
information; they are therefore free to implement the low-level routines as they
see fit, provided that the external interface of the routine stays unchanged and
that the routine itself performs the advertised task.

3.5.2 Layered Approach
The modularization of a system can be done in many ways. One method is the
layered approach, in which the operating system is broken up into a number of
layers (or levels), each built on top of lower layers. The bottom layer (layer 0) is
the hardware; the highest (layer N) is the user interface.

An operating-system layer is an implementation of an abstract object that
is the encapsulation of data, and of the operations that can manipulate those
data. A typical operating-system layer-say layer M-is depicted in Figure
3.8. It consists of data structures and a set of routines that can be invoked
by higher-level layers. Layer M, in turn, can invoke operations on lower-level
layers.

The main advantage of the layered approach is modularity. The layers
are selected such that each uses functions (or operations) and services of only
lower-level layers. This approach simplifies debugging and system verification.
The first layer can be debugged without any concern for the rest of the system,
because, by definition, it uses only the basic hardware (which is assumed
correct) to implement its functions. Once the first layer is debugged, its correct
functioning can be assumed while the second layer is debugged, and so on.
If an error is found during the debugging of a particular layer, the error must

3.5 System Structure 77

Figure 3.8 An operating-system layer.

be on that layer, because the layers below it are already debugged. Thus, the
design and implementation of the system are simplified when the system is
broken down into layers.

Each layer is implemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are irnple-
mented; it needs to know only what these operations do. Hence, each layer
hides the existence of certain data strucbres, operations, and hardware from
higher-level layers.

The major difficulty with the layered approach involves the careful defi-
nition of the layers, because a layer can use only those layers below it. For
example, the device driver for the disk space used by virtual-memory algo-
rithms must be at a level lower than that of the memory-management routines,
because memory management requires the ability to use the disk space.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
I/O and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about all the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CPU scheduler.

A final problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an I/O
operation, it executes a system call that is trapped to the I/O layer, which calls
the memory-management layer, whch in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net result is a system call that takes longer than does one on
a nonlayered system.

78 Chapter 3 Operating-System Structures

These limitations have caused a small backlash against layering in recent
years. Fewer layers with more functionality are being designed, providing most
of the advantages of modularized code while avoiding the difficult problems
of layer definition and interaction. For instance, OS/2 is a descendant of MS-
DOS that adds multitasking and dual-mode operation, as well as other new
features. Because of this added complexity and the more powerful hardware
for which OS/2 was designed, the system was implemented in a more layered
fashion. Compare the MS-DOS structure (Figure 3.6) with that shown in Figure
3.9; from both the system-design and implementation standpoints, OS/2 has the
advantage. For instance, direct user access to low-level facilities is not allowed,
providing the operating system with more control over the hardware and more
knowledge of which resources each user program is using.

As a further example, consider the history of Windows NT. The first release
had a highly layer-oriented organization; however, it delivered low perfor-
mance compared to that of Windows 95. Windows NT 4.0 partially redressed
the performance problem by moving layers from user space to kernel space and
more closely integrating them.

Figure 3.9 OS/2 layer structure.

application - prugramming interface API sxtension 1

3.5 System Structure 79

3.5.3 Microkernels
As the UNIX operating system expanded, the kernel became large and diffi-
cult to manage. In the mid-1980s, researchers at Carnegie Mellon University
developed an operating system called Mach that modularizes the kernel using
the microkernel approach. This method structures the operating system by
removing all nonessential components from the kernel, and implementing them
as system- and user-level programs. The result is a smaller kernel. There
is little consensus regarding which services should remain in the kernel and
which should be implemented in user space. In general, however, microkernels
typically provide minimal process and memory management, in addition to a
communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 3.3.5. For example, if the client program wishes to access a
file, it must interact with the file server. The client program and the service
never interact directly. Rather, they communicate indirectly by exchanging
messages with the microkernel.

The benefits of the microkernel approach include the ease of extending the
operating system. All new services are added to user space and consequently
do not require modification of the kernel. When the kernel does have to be
modified, the changes tend to be fewer, because the microkernel is a smaller
kernel. The resulting operating system is easier to port from one hardware
design to another. The microkernel also provides more security and reliability,
since most services are running as user-rather than kernel-processes. If a
service fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to the
user, but it is implemented with a Mach kernel. The Mach kernel maps UNIX
system calls into messages to the appropriate user-level services. The Apple
MacOS X Server operating system is based on the Mach kernel.

QNX is a real-time operating system that is also based upon the microkernel
design. The QNX microkernel provides services for message passing and
process scheduling. It also handles low-level network communication and
hardware interrupts. All other services in QNX are provided by standard
processes that run outside the kernel in user mode.

Windows NT uses a hybrid structure. We have already mentioned that part
of the Windows NT architecture uses layering. Windows NT is designed to run
various applications, including Win32 (native Windows applications), 0S/2,
and POSIX. It provides a server that runs in user space for each application type.
Client programs for each application type also run in user space. The kernel
coordinates the message passing between client applications and application
servers. The client-server structure of Windows NT is depicted in Figure 3.10.

80 Chapter 3 Operating-System Structures

Figure 3.10 Windows NT client-server structure.

3.6 . Virtual Machines

Conceptually, a computer system is made up of layers. The hardware is the
lowest level in all such systems. The kernel running at the next level uses the
hardware instructions to create a set of system calls for use by outer layers. The
system programs above the kernel are therefore able to use either system calls
or hardware instructions, and in some ways these programs do not differentiate
between these two. Thus, although they are accessed differently, they both
provide functionality that the program can use to create even more advanced
functions. System programs, in turn, treat the hardware and the system calls as
though they were both at the same level.

Some systems carry this scheme a step further by allowing the system
programs to be called easily by the application programs. As before, although
the system programs are at a level higher than that of the other routines, the
application programs may view everything under them in the hierarchy as
though the latter were part of the machine itself. This layered approach is
taken to its logical conclusion in the concept of a virtual machine. The VM
operating system for IBM systems is the best example of the virtual-machine
concept, because IBM pioneered the work in this area.

By using CPU scheduling (Chapter 6) and virtual-memory techniques
(Chapter lo), an operating system can create the illusion that a process has its
own processor with its own (virtual) memory. Of course, normally, the process
has additional features, such as system calls and a file system, that are not pro-
vided by the bare hardware. The virtual-machine approach, on the other hand,
does not provide any additional functionality, but rather provides an interface
that is identical to the underlying bare hardware. Each process is provided with
a (virtual) copy of the underlying computer (Figure 3.11).

The physical computer shares resources to create the virtual machines. CPU
scheduling can share out the CPU to create the appearance that users have their
own processors. Spooling and a file system can provide virtual card readers and
virtual line printers. A normal user time-sharing terminal provides the function
of the virtual-machine operator's console.

3.6 Virtual Machines 81

programming
interface

Figure 3.11 System models. (a) Nonvirtual machine. (b) Virtual machine.

A major difficulty with the virtual-machine approach involves disk sys- I
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot allocate a disk drive to each 1 virtual machine. Remember that the virtual-machine software itself will need
substantial disk space to provide virtual memory. The solution is to provide I

I

virtual disks, which are identical in all respects except size-termed minidisks
in IBM's VM operating system. The system implements each minidisk by allo- I

cating as many tracks on the physical disks as the minidisk needs. Obviously,
the sum of the sizes of all minidisks must be smaller than the size of the physical
disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
machine. For the IBM VM system, a user normally runs CMS-a single-user
interactive operating system. The virtual-machine software is concerned with
multiprogramming multiple virtual machines onto a physical machine, but
it does not need to consider any user-support software. This arrangement
may provide a useful partitioning into two smaller pieces of the problem of
designing a multiuser interactive system.

3.6.1 Implementation
Although the virtual-machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.

82 Chapter 3 Operating-System Structures

Remember that the underlying machine has two modes: user mode and moni-
tor mode. The virtual-machine software can run in monitor mode, since it is the
operating system. The virtual machine itself can execute in only user mode. Just
as the physical machine has two modes, however, so must the virtual machine.
Consequently, we must have a virtual user mode and a virtual monitor mode,
both of which run in a physical user mode. Those actions that cause a transfer
from user mode to monitor mode on a real machine (such as a system call or
an attempt to execute a privileged instruction) must also cause a transfer from
virtual user mode to virtual monitor mode on a virtual machine.

This transfer can generally be done fairly easily. When a system call, for
example, is made by a program running on a virtual machine, in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine.
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect
of the system call. It can then restart the virtual machine, noting that it is
now in virtual monitor mode. If the virtual machine then tries, for example,
to read from its virtual card reader, it will execute a privileged I/O instruction.
Because the virtual machine is running in physical user mode, this instruction
will trap to the virtual-machine monitor. The virtual-machine monitor must
then simulate the effect of the 1/0 instruction. First, it finds the spooled file that
implements the virtual card reader. Then, it translates the read of the virtual
card reader into a read on the spooled disk file, and transfers the next virtual
"card image" into the virtual memory of the virtual machine. Finally, it can
restart the virtual machine. The state of the virtual machine has been modified
exactly as though the 1 /0 instruction had been executed with a real card reader
for a real machine executing in a real monitor mode.

The major difference, of course, is time. Whereas the real I/O might
have taken 100 milliseconds, the virtual I/O might take less time (because it
is spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privileged instructions (needed
mainly for I/O) must be simulated and hence execute more slowly.

3.6.2 Benefits

There are two primary advantages to using virtual machines. First, by com-
pletely protecting system resources, the virtual machine provides a robust level
of security. Second, the virtual machine allows system development to be done
without disrupting normal system operation.

Each virtual machine is completely isolated from all other virtual machines,
so we have no security problems as the various system resources are completely

3.6 Virtual Machines 83

protected. For example, untrusted applications downloaded from the Internet
could be run within a separate virtual machine. A disadvantage of this environ-
ment is that there is no direct sharing of resources. Two approaches to provide
sharing have been implemented. First, it is possible to share a minidisk. This
scheme is modeled after a physical shared disk, but is implemented by soft-
ware. With this technique, files can be shared. Second, it is possible to define
a network of virtual machines, each of which can send information over the
virtual communications network. Again, the network is modeled after physical
communication networks, but it is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a
difficult task. Because operating systems are large and complex programs, a
change in one part may cause obscure bugs in some other part. The power of
the operating system makes this situation particularly dangerous. Because the
operating system executes in monitor mode, a wrong change in a pointer could
cause an error that would destroy the entire file system. Thus, it is necessary to
test all changes to the operating system carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly called system-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load is low.

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development
is done on the virtual machine instead of on the actual physical machine. Nor-
mal system operation seldom needs to be disrupted for system development.
Despite these advantages, little improvement on the technique had been made
until recently.

Virtual machines are increasing in popularity as a means of solving system
compatibility problems. For instance, thousands of applications are available
for Microsoft Windows on Intel CPU-based systems. Computer vendors such as
Sun Microsystems use other, faster processors, but would like their customers
to be able to run these Windows applications. The solution is to create a virtual
Intel machine on top of the native processor. A Windows program is run in this
environment, and its Intel instructions are translated into the native instruction
set. Microsoft Windows is also run in this virtual machine, so the program
can make its system calls as usual. The net result is a program that appears
to be running on an Intel-based system but is really executing on a different
processor. If the processor is sufficiently fast, the Windows program will run
quickly, even though every instruction is being translated into several native
instructions for execution. Similarly, the PowerPC-based Apple Macintosh
includes a Motorola 68000 virtual machine to allow execution of binary codes
that were written for the older 68000-based Macintosh. Unfortunately, the more

84 Chapter 3 Operating-System Structures

complex the machine being emulated, the more difficult it is to build an accurate
virtual machine, and the slower that virtual machine runs.

A more recent example can be shown with the growth of the Linux oper-
ating system. Virtual machines now exist that allow Windows applications to
run on Linux-based computers. The virtual machine runs both the Windows
application and the Windows operating system.

One of the key features of Java is that it runs on a virtual machine, thereby
allowing a Java program to run on any computer system that has a Java virtual
machine.

3.6.3 Java
Java is a very popular object-oriented language introduced by Sun Microsys-
tems in late 1995. In addition to a language specification and a large API library,
Java also provides a specification for a Java virtual machine (JVM).

Java objects are specified with the class construct; a Java program con-
sists of one or more classes. For each Java class, the Java compiler produces
an architecture-neutral bytecode output (. class) file that will run on any
implementation of the JVM.

The JVM is a specification for an abstract computer. The JVM consists
of a class loader, a class verifier, and a Java interpreter that executes the
architecture-neutral bytecodes. The class loader loads . class files from both
the Java program and the Java API for execution by the Java interpreter. After a
class is loaded, the verifier checks that the class file is valid Java bytecode and
does not overflow or underflow the stack. It also ensures that the bytecode does
not perform pointer arithmetic, which could potentially provide illegal memory
access. If the class passes verification, it is run by the Java interpreter. The
JVM also automatically manages memory by performing garbage collection-
the practice of reclaiming memory from objects no longer in use and returning
it to the system. Much research focuses on garbage collection algorithms for
increasing the performance of Java programs in the virtual machine.

The Java interpreter may be a software module that interprets the byte-
codes one at a time, or it may be a just-in-time (TIT) compiler that turns the
architecture-neutral bytecodes into native machine language for the host com-
puter. Most implementations of the JVM use a JIT compiler for enhanced per-
formance. In other instances, the interpreter may be implemented in hardware
that executes Java bytecodes natively. The JVM is presented in Figure 3.12.

The JVM makes it possible to develop programs that are architecture neutral
and portable. The implementation of the JVM is specific for each system-such
as Windows or UNIX-and it abstracts the system in a standard way to the Java
program, providing a clean, architecture-neutral interface. This interface allows
a . class file to run on any system that has implemented the JVM according to
the specification.

Java takes advantage of the complete environment that a virtual machine
implements. Its virtual-machine design provides a secure, efficient, object-

3.7 System Design and Implementation 85

java .class files

1

Figure 3.12 The Java virtual machine.

oriented, portable, and architecture-neutral platform on which to run Java
programs.

3.7 System Design and Implementation

In this section, we discuss problems we face when designing and implementing
a system. No complete solutions to the design problems exist, but some
approaches have been successful.

3.7.1 Design Goals
The first problem in designing a system is to define the goals and specifications
of the system. At the highest level, the design of the system will be affected
by the choice of hardware and type of system: batch, time shared, single user,
multiuser, distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can be divided into two basic groups: user goals and
system goals.

Users desire certain obvious properties in a system: The system should be
convenient and easy to use, easy to learn, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve these goals.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The operating system should
be easy to design, implement, and maintain; it should be flexible, reliable, error
free, and efficient. Again, these requirements are vague and have no general
solution.

86 Chapter 3 Operating-System Structures

We have no unique solution to the problem of defining the requirements for
an operating system. The wide range of systems shows that different require-
ments can result in a large variety of solutions for different environments. For
example, the requirements for MS-DOS, a single-user system for microcom-
puters, must have been substantially different from those for MVS, the large
multiuser, multiaccess operating system for IBM mainframes.

3.7.2 Mechanisms and Policies
The specification and design of an operating system is a highly creative task.
Although no textbook can tell you how to do it, general software engineering
principles do exist that are especially applicable to operating systems.

One important principle is the separation of policy from mechanism. Mech-
anisms determine how to do something; policies determine what will be done.
For example, the timer construct (Section 2.5) is a mechanism for ensuring CPU
protection, but deciding how long the timer is to be set for a particular user is a
policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism would be more desirable. A change in policy would then require
redefinition of only certain parameters of the system. For instance, if, in
one computer system, a policy decision is made that I/O-intensive programs
should have priority over CPU-intensive ones, then the opposite policy could
be instituted easily on some other computer system if the mechanism were
properly separated and were policy independent.

Microkernel-based operating systems take the separation of mechanism
and policy to one extreme, by implementing a basic set of primitive building
blocks. These blocks are almost policy free, allowing more advanced mecha-
nisms and policies to be added via user-created kernel modules, or via user
programs themselves. At the other extreme is a system such as the Apple Mac-
intosh operating system, in which both mechanism and policy are encoded in
the system to enforce a global look and feel to the system. All applications have
similar interfaces, because the interface itself is built into the kernel.

Policy decisions must be made for all resource-allocation and scheduling
problems. Whenever the question is how rather than what, it is a mechanism
that must be determined.

3.7.3 Implementation
Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are often written in higher-level languages such as C or C++.

3.7 System Design and Implementation 87

The first system not written in assembly language was probably the Master
Control Program (MCP) for Burroughs computers. MCP was written in a variant
of ALGOL. MULTICS, developed at MIT, was written mainly in PL/l. The Primos
operating system for Prime computers is written in a dialect of Fortran. The
UNIX operating system, OS/2, and Windows NT are mainly written in C. Only
some 900 lines of code of the original UNIX were in assembly language, most of
which constituted the scheduler and device drivers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port-to move to some other hardware-if
it is written in a high-level language. For example, MS-DOS was written in Intel
8088 assembly language. Consequently, it is available on only the Intel family
of CPUs.

The UNIX operating system, on the other hand, which is written mostly in
C, is available on a number of different CPUs, including Intel 80x86, Pentiurn,
Motorola 680x0, Ultra SPARC, Compaq Alpha, and MIPS RX000.

Opponents of implementing an operating system in a higher-level lan-
guage claim the major disadvantages are reduced speed and increased stor-
age requirements. Although an expert assembly-language programmer can
produce efficient small routines, for large programs a modern compiler can
perform complex analysis and apply sophisticated optimizations that produce
excellent code. Modern processors have deep pipelining and multiple func-
tional units, which can handle complex dependencies that can overwhelm the
limited ability of the human mind to keep track of details.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system is written and is working correctly, bottleneck routines
can be identified and replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior. In
a number of systems, the operating system does this task by producing trace
listings of system behavior. All interesting events are logged with their time and
important parameters and are written to a file. Later, an analysis program can
process the log file to determine system performance and to identify bottlenecks
and inefficiencies. These same traces can be run as input for a simulation of
a suggested improved system. Traces also can help people to find errors in
operating-system behavior.

88 Chapter 3 Operating-System Structures

An alternative is to compute and display the performance measures in
real time. For example, a timer can trigger a routine to store the current
instruction pointer value. The result is a statistical picture of the program
locations most frequently used within the program. This approach may allow
system operators to become familiar with system behavior and to modify
system operation in real time.

3.8 . System Generation

We can design, code, and implement an operating system specifically for one
machine at one site. More commonly, however, operating systems are designed
to run on any of a class of machines at a variety of sites with a variety of
peripheral configurations. The system must then be configured or generated for
each specific computer site, a process sometimes known as system generation
(SYSGEN).

The operating system is normally distributed on disk or tape. To generate
a system, we use a special program. The SYSGEN program reads from a
given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
must be determined.

What CPU will be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple-CPU systems, each
CPU must be described.

How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
"illegal address" fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device's
type and model, and any special device characteristics.

What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
SO on.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data

3.9 Summary 89

declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can cause the creation
of tables and the selection of modules from a precompiled library. These
modules are linked together to form the generated operating system. Selection
allows the library to contain the device drivers for all supported 1 /0 devices,
but only those needed are linked into the operating system. Because the system
is not recompiled, system generation is faster, but the resulting system may be
overly general.

At the other extreme, a system that is completely table driven can be con-
structed. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system. Most mod-
ern operating systems are constructed in this manner. Solaris performs some
system-configuration discovery at installation time, and some at boot time. A
configuration file can be used by the systems administrator to fine-tune sys-
tem variables, but hardware support is automatically configured by the kernel.
Likewise, Windows 2000 requires no manual configuration on installation or at
boot time. Once the basic questions about disk layout and network configu-
ration are answered, the installation program automatically detects the system
hardware and installs a properly generated operating system.

The major differences among these approaches are the size and generality
of the generated system and the ease of modification as the hardware configu-
ration changes. Consider the cost of modifying the system to support a newly
acquired graphics terminal or another disk drive. Balanced against that cost, of
course, is the frequency (or infrequency) of such changes.

After an operating system is generated, it must be made available for use
by the hardware. But how does the hardware know where the kernel is, or
how to load that kernel? The procedure of starting a computer by loading the
kernel is known as booting the system. Most computer systems have a small
piece of code, stored in ROM, known as the bootstrap program or bootstrap
loader. This code is able to locate the kernel, load it into main memory, and
start its execution. Some computer systems, such as PCs, use a two-step process
in which a simple bootstrap loader fetches a more complex boot program from
disk, which in turn loads the kernel. Booting a system is discussed in Section
14.3.2 and in Appendix A.

3.9 Summary

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a mech-

90 Chapter 3 Operating-System Structures

anism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution, or directly from a keyboard
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to the level of the request. The system-
call level must provide the basic functions, such as process control and file
and device management. Higher-level requests, satisfied by the command
interpreter or system programs, are translated into a sequence of system calls.
System services can be classified into several categories: program control, status
requests, and 1 / 0 requests. Program errors can be considered implicit requests
for service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system's jobs.

The design of a new operating system is a major task. The goals of
the system must be well defined before the design begins. They form the
foundation for choices among various algorithms and strategies that will be
necessary.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
all hardware. Other operating systems may even be loaded on top of this virtual
machine.

Any operating system that has implemented the JVM is able to run all
Java programs, because the JVM abstracts the underlying system to the Java
program, providing an architecture-neutral interface.

Throughout the entire operating-system design cycle, we must be careful to
separate policy decisions from implementation details (or mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system for a particular machine configuration, we must perform system
generation.

Exercises

3.1 What are the five major activities of an operating system in regard to
process management?

3.2 What are the three major activities of an operating system in regard to
memory management?

Exercises 91

3.3 What are the three major activities of an operating system in regard to
secondary-storage management?

3.4 What are the five major activities of an operating system in regard to file
management?

3.5 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?

3.6 List five services provided by an operating system. Explain how each
provides convenience to the users. Explain in which cases it would be
impossible for user-level programs to provide these services.

3.7 What is the purpose of system calls?

3.8 Using system calls, write a program in either C or C++ that reads data
from one file and copies it to another file. Such a program was described
in Section 3.3.

3.9 Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example where
a native method is useful.

3.10 What is the purpose of system programs?

3.11 What is the main advantage of the layered approach to system design?

3.12 What is the main advantage of the microkernel approach to system
design?

3.13 What is the main advantage for an operating-system designer of using a
virtual-machine architecture? What is the main advantage for a user?

3.14 Why is a just-in-time compiler useful for executing Java programs?

3.15 Why is the separation of mechanism and policy a desirable principle?

3.16 The experimental Synthesis operating system has an assembler incorpo-
rated within the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithe-
sis of the layered approach, in which the path through the kernel is
extended so that building the operating system is made easier. Discuss the
pros and cons of the Synthesis approach to kernel design and to system-
performance optimization.

92 Chapter 3 Operating-System Structures

Bibliographical Notes

Dijkstra [I9681 advocated the layered approach to operating-system design.
Brinch-Hansen [I9701 was an early proponent of the construction of an
operating system as a kernel (or nucleus) on which can be built more
complete systems. Information of the QNX microkernel can be found at
http:/ /www.qnx.com.

The first operating system to provide a virtual machine was the CP/67 on
an IBM 360/67. The commercially available IBM VM/370 operating system was
derived from CP/67. General discussions concerning virtual machines have
been presented by Hendricks and Hartmann [19791, by MacKinnon [1979], and
by Schultz [1988]. A virtual machine allowing Windows applications to run
on Linux is shown at http://www.vmware.com. Cheung and Loong [I9951
explored issues of operating-systems structuring from microkernel to extensible
systems. Back et al. [2000] discusses the design of Java operating systems.

MS-DOS, Version 3.1, is described in Microsoft [1986]. Windows NT is
described by Solomon [1998]. The Apple Macintosh operating system is
described in Apple [1987]. Berkeley UNIX (BSD) is described in McKusick et al.
119961. The standard AT&T UNIX system V is described in Earhart [1986]. A
good description of OS/2 is given by Iacobucci [1988]. Mach is introduced
by Accetta et al. [1986], and AIX is presented in Loucks and Sauer [1987].
The experimental Synthesis operating system is discussed by Massalin and Pu
[1989]. Linux kernel details are presented by Bar [2000].

The specification for the Java language and the Java virtual machine is pre-
sented by Gosling et al. [I9961 and by Lindholm and Yellin [1998], respectively.
The internal workings of the Java virtual machine are described by Venners
[I9981 and by Meyer and Downing [1997]. Jones and Lin [I9961 provide a
thorough coverage of garbage-collection algorithms. More information on Java
is available on the Web at http://www.javasoft.com.

Part Two

PROCESS
MANAGEMENT

A process can be thought of as a program in execution. A process will need cer-
tain resources-such as CPU time, memory, files, and I/O devices-to accom-
plish its task. These resources are allocated to the process either when it is
created or while it is executing.

A process is the unit of work in most systems. Such a system consists of a
collection of processes: Operating-system processes execute system code, and
user processes execute user code. All these processes may execute concurrently.

Although traditionally a process contained only a single thread of control
as it ran, most modern operating systems now support processes that have
multiple threads.

The operating system is responsible for the following activities in connec-
tion with process and thread management: the creation and deletion of both
user and system processes; the scheduling of processes; and the provision of
mechanisms for synchronization, communication, and deadlock handling for
processes.

Chapter 4

PROCESSES

Early computer systems allowed only one program to be executed at a time.
This program had complete control of the system, and had access to all the sys-
tem's resources. Current-day computer systems allow multiple programs to be ,
loaded into memory and to be executed concurrently. This evolution required ,
firmer control and more compartmentalization of the various programs. These I
needs resulted in the notion of a process, which is a program in execution. A
process is the unit of work in a modern time-sharing system. 1

The more complex the operating system, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: Operating-
system processes executing system code, and user processes executing user
code. All these processes can potentially execute concurrently, with the CPU
(or CPUs) multiplexed among them. By switching the CPU between processes,
the operating system can make the computer more productive.

4.1 . Process Concept

One impediment to our discussion of operating systems is the question of what
to call all the CPU activities. A batch system executes jobs, whereas a time-
shared system has user programs, or tasks. Even on a single-user system, such
as Microsoft Windows and Macintosh OS, a user may be able to run several
programs at one time: a word processor, web browser, and e-mail package.

96 Chapter 4 Processes

Even if the user can execute only one program at a time, the operating system
may need to support its own internal programmed activities, such as memory
management. In many respects, all these activities are similar, so we call all of
them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid the use
of commonly accepted terms that include the word job (such as job scheduling)
simply because process has superseded job.

4.1.1 The Process

Informally, a process is a program in execution. A process is more than the
program code, which is sometimes known as the text section. It also includes
the current activity, as represented by the value of the program counter and the
contents of the processor's registers. In addition, a process generally includes
the process stack, which contains temporary data (such as method parameters,
return addresses, and local variables), and a data section, which contains global
variables.

We emphasize that a program by itself is not a process; a program is a
passive entity, such as the contents of a file stored on disk, whereas a process
is an active entity, with a program counter specifying the next instruction to
execute and a set of associated resources.

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the editor program. Each of these is a separate
process, and, although the text sections are equivalent, the data sections vary.
It is also common to have a process that spawns many processes as it runs. We
discuss such matters in Section 4.4.

4.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).

Ready: The process is waiting to be assigned to a processor.

4.1 Process Concept 97

mitted interrupt

n

I10 or event completion 10 or event wait

Figure 4.1 Diagram of process state.

Terminated: The process has finished execution.

These state names are arbitrary, and they vary across operating systems.
The states that they represent are found on all systems, however. Certain
operating systems more finely delineate process states. Only one process can
be running on any processor at any instant, although many processes may be
ready and waiting. The state diagram corresponding to these states is presented
in Figure 4.1.

4.1.3 Process Control Block
Each process is represented in the operating system by a process control block
(PCB)-also called a task control block. A PCB is shown in Figure 4.2. It contains
many pieces of information associated with a specific process, including these:

Figure 4.2 Process control block (PCB).

98 Chapter 4 Processes

Process state: The state may be new, ready, running, waiting, halted, and
SO on.

Program counter: The counter indicates the address of the next instruction
to be executed for this process.

CPU registers: The registers vary in number and type, depending on the
computer architecture. They include accumulators, index registers, stack
pointers, and general-purpose registers, plus any condition-code informa-
tion. Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly
afterward (Figure 4.3).

CPU-scheduling information: This information includes a process prior-
ity, pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

Memory-management information: This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 9).

process Po operating system process P,

interrupt or system call

executing

executing

1
saw state into PCB,

reload state from PCB, G /
i interrupt or system call

save state into PCB,

ierbad Wm PCB,

::

idle

executing

I idle

Figure 4.3 Diagram showing CPU switch from process to process.

4.2 Process Scheduling 99

Accounting information: This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

status information: The information includes the list of I/O devices
allocated to this process, a list of open files, and so on.

The PCB simply serves as the repository for any information that may vary
from process to process.

4.1.4 Threads

The process model discussed so far has implied that a process is a program that
performs a single thread of execution. For example, if a process is running a
word-processor program, a single thread of instructions is being executed. This
single thread of control allows the process to perform only one task at one time.
For example, the user could not simultaneously type in characters and run the
spell checker within the same process. Many modern operating systems have
extended the process concept to allow a process to have multiple threads of
execution. They thus allow the process to perform more than one task at a time.
Chapter 5 explores multithreaded processes.

4.2 . Process Scheduling

The objective of multiprogramming is to have some process running at all times,
so as to maximize CPU utilization. The objective of time-sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. A uniprocessor system can have only one running process.
If more processes exist, the rest must wait until the CPU is free and can be
rescheduled.

4.2.1 Scheduling Queues
As processes enter the system, they are put into a job queue. This queue
consists of all processes in the system. The processes that are residing in main
memory and are ready and waiting to execute are kept on a list called the ready
queue. This queue is generally stored as a linked list. A ready-queue header
contains pointers to the first and final PCBs in the list. We extend each PCB to
include a pointer field that points to the next PCB in the ready queue.

The operating system also has other queues. When a process is allocated
the CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/O request.
In the case of an 1/0 request, such a request may be to a dedicated tape drive, or
to a shared device, such as a disk. Since the system has many processes, the disk

100 Chapter 4 Processes

queue header PCB, PCB,

ready

queue

mag
tape

unit 0

"'ag
tape

unit 1

disk

unit 0

PCB, PCB,, PCB,

PCB,

terminal

unit 0

Figure 4.4 The ready queue and various I/O device queues.

may be busy with the I/O request of some other process. The process therefore
may have to wait for the disk. The list of processes waiting for a particular
I/O device is called a device queue. Each device has its own device queue
(Figure 4.4).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 4.5. Each rectangular box represents a queue. Two types
of queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits in the ready queue
until it is selected for execution (or dispatched). Once the process is assigned to
the CPU and is executing, one of several events could occur:

The process could issue an I/O request, and then be placed in an I/O queue.

The process could create a new subprocess and wait for its termination.

The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

4.2 Process Scheduling 101

Figure 4.5 Queueing-diagram representation of process scheduling.

In the first two cases, the process eventually switches from the waiting state
to the ready state, and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

4.2.2 Schedulers
A process migrates between the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

In a batch system, often more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically
a disk), where they are kept for later execution. The long-term scheduler, or
job scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute, and allocates the CPU to one of them.

The primary distinction between these two schedulers is the frequency of
their execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an I/O request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the brief time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used (or
wasted) simply for scheduling the work.

102 Chapter 4 Processes

The long-term scheduler, on the other hand, executes much less frequently.
There may be minutes between the creation of new processes in the system. The
long-term scheduler controls the degree of multiprogramming-the number
of processes in memory. If the degree of multiprogramming is stable, then the
average rate of process creation must be equal to the average departure rate of
processes leaving the system. Thus, the long-term scheduler may need to be
invoked only when a process leaves the system. Because of the longer interval
between executions, the long-term scheduler can afford to take more time to
select a process for execution.

The long-term scheduler must make a careful selection. In general, most
processes can be described as either I/O bound or CPU bound. An 110-bound
process spends more of its time doing I/O than it spends doing computations.
A CPU-bound process, on the other hand, generates I/O requests infrequently,
using more of its time doing computation than an I/O-bound process uses.
The long-term scheduler should select a good process mix of I/O-bound and
CPU-bound processes. If all processes are I/O bound, the ready queue will
almost always be empty, and the short-term scheduler will have little to do.
If all processes are CPU bound, the I/O waiting queue will almost always be
empty, devices will go unused, and again the system will be unbalanced. The
system with the best performance will have a combination of CPU-bound and
I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal. For
example, time-sharing systems such as UNIX often have no long-term scheduler,
but simply put every new process in memory for the short-term scheduler. The
stability of these systems depends either on a physical limitation (such as the
number of available terminals) or on the self-adjusting nature of human users.
If the performance declines to unacceptable levels, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler,

Figure 4.6 Addition of medium-term scheduling to the queueing diagram.

4.3 Operations on Processes 103

diagrammed in Figure 4.6, removes processes from memory (and from active
contention for the CPU), and thus reduces the degree of multiprogramming. At
some later time, the process can be reintroduced into memory and its execution
can be continued where it left off. This scheme is called swapping. The pro-
cess is swapped out, and is later swapped in, by the medium-term scheduler.
Swapping may be necessary to improve the process mix, or because a change in
memory requirements has overcommitted available memory, requiring mem-
ory to be freed up. Swapping is discussed in Chapter 9.

4.2.3 Context Switch
Switching the CPU to another process requires saving the state of the old process
and loading the saved state for the new process. This task is known as a
context switch. The context of a process is represented in the PCB of a process;
it includes the value of the CPU registers, the process state (Figure 4.1), and
memory-management information. When a context switch occurs, the kernel
saves the context of the old process in its PCB and loads the saved context of the
new process scheduled to run. Context-switch time is pure overhead, because
the system does no useful work while switching. Its speed varies from machine
to machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds range from 1 to 1000 microseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets of
registers. A context switch simply includes changing the pointer to the current
register set. Of course, if active processes exceed register sets, the system resorts
to copying register data to and from memory, as before. Also, the more complex
the operating system, the more work must be done during a context switch.
As we will see in Chapter 9, advanced memory-management techniques may
require extra data to be switched with each context. For instance, the address
space of the current process must be preserved as the space of the next task is
prepared for use. How the address space is preserved, and what amount of
work is needed to preserve it, depend on the memory-management method
of the operating system. As we will see in Chapter 5, context switching
has become such a performance bottleneck that programmers are using new
structures (threads) to avoid it whenever possible.

4.3 rn Operations on Processes

The processes in the system can execute concurrently, and they must be cre-
ated and deleted dynamically. Thus, the operating system must provide a
mechanism (or facility) for process creation and termination.

104 Chapter 4 Processes

4.3.1 Process Creation
A process may create several new processes, via a create-process system
call, during the course of execution. The creating process is called a parent
process, whereas the new processes are called the children of that process. Each
of these new processes may in turn create other processes, forming a tree of
processes (Figure 4.7).

In general, a process will need certain resources (such as CPU time, memory,
files, I/O devices) to accomplish its task. When a process creates a subprocess,
that subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent's
resources prevents any process from overloading the system by creating too
many subprocesses.

When a process is created it obtains, in addition to the various physical and
logical resources, initialization data (or input) that may be passed along from
the parent process to the child process. For example, consider a process whose
function is to display the status of a file, say F1, on the screen of a terminal.
When it is created, it will get, as an input from its parent process, the name of the
file F1, and it will execute using that datum to obtain the desired information.

4.3 Operations on Processes 105

It may also get the name of the output device. Some operating systems pass
resources to child processes. On such a system, the new process may get two
open files, F1 and the terminal device, and may just need to transfer the datum
between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

To illustrate these different implementations, let us consider the UNIX operating
system. In UNIX, each process is identified by its process identifier, which
is a unique integer. A new process is created by the fork system call. The
new process consists of a copy of the address space of the original process.
This mechanism allows the parent process to communicate easily with its child
process. Both processes (the parent and the child) continue execution at the
instruction after the fork system call, with one difference: The return code for
the fork system call is zero for the new (child) process, whereas the (nonzero)
process identifier of the child is returned to the parent.

Typically, the execlp system call is used after a fork system call by
one of the two processes to replace the process' memory space with a new
program. The execlp system call loads a binary file into memory-destroying
the memory image of the program containing the execlp system call-and
starts its execution. In this manner, the two processes are able to communicate,

l and then to go their separate ways. The parent can then create more children, or,
if it has nothing else to do while the child runs, it can issue a wait system call to
move itself off the ready queue until the termination of the child. The C program
shown in Figure 4.8 illustrates the UNIX system calls previously described. The
parent creates a child process using the fork system call. We now have two
different processes running a copy of the same program. The value of pid for
the child process is zero; that for the parent is an integer value greater than zero.
The child process overlays its address space with the UNIX command /b in / l s
(used to get a directory listing) using the execlp system call. The parent waits
for the child process to complete with the wait system call. When the child
process completes, the parent process resumes from the call to wait where it
completes using the e x i t system call.

The DEC VMS operating system, in contrast, creates a new process, loads
a specified program into that process, and starts it running. The Microsoft

106 Chapter 4 Processes

void main(int argc, char *argv [I)
{
int pid;

/* fork another process */
pid = fork();

if (pid < 0) { /* error occurred */
f printf (stderr , "Fork Failed") ;
exit (-1) ;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls" , "1s" ,NULL) ;

1
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL) ;
printf ("Child Complete") ;
exit (0) ;

}
}

Figure 4.8 C program forking a separate process.

Windows NT operating system supports both models: The parent's address
space may be duplicated, or the parent may specify the name of a program
for the operating system to load into the address space of the new process.

4.3.2 Process Termination
A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit system call. At that point, the
process may return data (output) to its parent process (via the wait system call).
All the resources of the process-including physical and virtual memory, open
files, and 1 /0 buffers-are deallocated by the operating system.

Termination occurs under additional circumstances. A process can cause
the termination of another process via an appropriate system call (for example,
abort). Usually, only the parent of the process that is to be terminated can
invoke such a system call. Otherwise, users could arbitrarily kill each other's
jobs. A parent therefore needs to know the identities of its children. Thus, when
one process creates a new process, the identity of the newly created process is
passed to the parent.

4.4 Cooperating Processes 107

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

The child has exceeded its usage of some of the resources that it has been
allocated. This requires the parent to have a mechanism to inspect the state
of its children.

The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates. On such systems, if a process terminates
(either normally or abnormally), then all its children must also be termi-
nated. This phenomenon, referred to as cascading termination, is normally
initiated by the operating system.

To illustrate process execution and termination, consider that in UNIX we can
terminate a process by using the e x i t system call; its parent process may wait
for the termination of a child process by using the wait system call. The
wait system call returns the process identifier of a terminated child, so that
the parent can tell which of its possibly many children has terminated. If the
parent terminates, however, all its children have assigned as their new parent
the i n i t process. Thus, the children still have a parent to collect their status
and execution statistics.

4.4 . Cooperating Processes

The concurrent processes executing in the operating system may be either
independent processes or cooperating processes. A process is independent if
it cannot affect or be affected by the other processes executing in the system.
Clearly, any process that does not share any data (temporary or persistent) with
any other process is independent. On the other hand, a process is cooperating
if it can affect or be affected by the other processes executing in the system.
Clearly, any process that shares data with other processes is a cooperating
process.

We may want to provide an environment that allows process cooperation
for several reasons:

Information sharing: Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to these types of resources.

Computation speedup: If we want a particular task to run faster, we must
break it into subtasks, each of wluch will be executing in parallel with the
others. Such a speedup can be achieved only if the computer has multiple
processing elements (such as CPUS or I/O channels).

108 Chapter 4 Processes

a Modularity: We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 3.

Convenience: Even an individual user may have many tasks on which
to work at one time. For instance, a user may be editing, printing, and
compiling in parallel.

Concurrent execution of cooperating processes requires mechanisms that allow
processes to communicate with one another (Section 4.5) and to synchronize
their actions (Chapter 7).

To illustrate the concept of cooperating processes, let us consider the pro-
ducer-consumer problem, which is a common paradigm for cooperating pro-
cesses. A producer process produces information that is consumed by a con-
sumer process. For example, a print program produces characters that are
consumed by the printer driver. A compiler may produce assembly code, which
is consumed by an assembler. The assembler, in turn, may produce object
modules, which are consumed by the loader.

To allow producer and consumer processes to run concurrently, we must
have available a buffer of items that can be filled by the producer and emptied
by the consumer. A producer can produce one item while the consumer is
consuming another item. The producer and consumer must be synchronized,
so that the consumer does not try to consume an item that has not yet been
produced. In this situation, the consumer must wait until an item is produced.

The unbounded-buffer producer-consumer problem places no practical
limit on the size of the buffer. The consumer may have to wait for new items, but
the producer can always produce new items. The bounded-buffer producer-
consumer problem assumes a fixed buffer size. In this case, the consumer must
wait if the buffer is empty, and the producer must wait if the buffer is full.

The buffer may either be provided by the operating system through the use
of an interprocess-communication (IPC) facility (Section 4.5), or by explicitly
coded by the application programmer with the use of shared memory. Let
us illustrate a shared-memory solution to the bounded-buffer problem. The
producer and consumer processes share the following variables:

#define BUFFER-SIZE 10

typedef s t r u c t {
. . .

) i tem;

item bu f fe r [BUFFER-SIZE] ;
i n t i n = 0;
i n t out = 0;

4.5 Interprocess Communication 109

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out ; the buffer is full when ((in + 1) % BUFFERSIZE) == out.

The code for the producer and consumer processes follows. The producer
process has a local variable nextproduced in which the new item to be pro-
duced is stored:

while (1) {
/* produce an item in nextproduced */
while (((in + 1) % BUFFER-SIZE) == out)

; /* do nothing */
buffer [in] = nextproduced;
in = (in + 1) % BUFFER-SIZE;

1

The consumer process has a local variable nextconsumed in which the item to
be consumed is stored:

while (I) {
while (in == out)

; // do nothing

nextconsumed = buffer [out] ;
out = (out + 1) % BUFFER-SIZE;
/* consume the item in nextconsumed */

1
This scheme allows at most BUFFER-SIZE - 1 items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFERSIZE
items can be in the buffer st the same time.

In Chapter 7, we discuss how synchronization among cooperating pro-
cesses can be implemented effectively in a shared-memory environment.

4.5 Interprocess Communication

In Section 4.4, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share
a common buffer pool, and that the code for implementing the buffer be
written explicitly by the application programmer. Another way to achieve the
same effect is for the operating system to provide the means for cooperating
processes to communicate with each other via an interprocess communication
(PC) facility.

110 Chapter 4 Processes

IPC provides a mechanism to allow processes to communicate and to syn-
chronize their actions without sharing the same address space. IPC is particu-
larly useful in a distributed environment where the communicating processes
may reside on different computers connected with a network. An example is a
chat program used on the World Wide Web.

IPC is best provided by a message-passing system, and message systems
can be defined in many ways. In this section, we look at different issues when
designing message-passing systems.

4.5.1 Message-Passing System
The function of a message system is to allow processes to communicate with
one another without the need to resort to shared data. We have already seen
message passing used as a method of communication in microkernels (Section
3.5.3). In this scheme, services are provided as ordinary user processes. That
is, the services operate outside of the kernel. Communication among the user
processes is accomplished through the passing of messages. An IPC facility
provides at least the two operations: send(message) and receive(message).

Messages sent by a process can be of either fixed or variable size. If
only fixed-sized messages can be sent, the system-level implementation is
straightforward. This restriction, however, makes the task of programming
more difficult. On the other hand, variable-sized messages require a more
complex system-level implementation, but the programming task becomes
simpler.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link's physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 15), but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send/receive operations:

Direct or indirect communication

Symmetric or asymmetric communication

Automatic or explicit buffering

Send by copy or send by reference

Fixed-sized or variable-sized messages

We look at each of these types of message systems next.

4.5 Interprocess Communication 111

4.5.2 Naming
Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

4.5.2.1 Direct Communication

With direct communication, each process that wants to communicate must
explicitly name the recipient or sender of the communication. In this scheme,
the send and receive primitives are defined as:

receive (Q , message) -Receive a message from process Q.

A communication link in this scheme has the following properties:

A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other's
identity to communicate.

A link is associated with exactly two processes.

Exactly one link exists between each pair of processes.

This scheme exhibits symmetry in addressing; that is, both the sender and
the receiver processes must name the other to communicate. A variant of
this scheme employs asymmetry in addressing. Only the sender names the
recipient; the recipient is not required to name the sender. In this scheme, the
send and receive primitives are defined as follows:

receive (id, message) -Receive a message from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both symmetric and asymmetric schemes is the limited
modularity of the resulting process definitions. Changing the name of a process
may necessitate examining all other process definitions. All references to the
old name must be found, so that they can be modified to the new name. This
situation is not desirable from the viewpoint of separate compilation.

4.5.2.2 Indirect Communication

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into

112 Chapter 4 Processes

which messages can be placed by processes and from which messages can be
removed. Each mailbox has a unique identification. In this scheme, a process
can communicate with some other process via a number of different mailboxes.
Two processes can communicate only if they share a mailbox. The send and
receive primitives are defined as follows:

send (A, message) -Send a message to mailbox A.

receive (A, message) -Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

A link may be associated with more than two processes.

A number of different links may exist between each pair of communicating
processes, with each link corresponding to one mailbox.

Now suppose that processes PI, P2, and P3 all share mailbox A. Process PI
sends a message to A, while P2 and P3 each execute a receive from A. Which
process will receive the message sent by PI ? The answer depends on the scheme
that we choose:

Allow a link to be associated with at most two processes.

Allow at most one process at a time to execute a receive operation.

Allow the system to select arbitrarily which process will receive the mes-
sage (that is, either P2 or P3, but not both, will receive the message). The
system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (who can only
receive messages through this mailbox) and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox. When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

On the other hand, a mailbox owned by the operating system is indepen-
dent and is not attached to any particular process. The operating system then
must provide a mechanism that allows a process to do the following:

4.5 Interprocess Communication 113

Create a new mailbox.

Send and receive messages through the mailbox.

Delete a mailbox.

The process that creates a new mailbox is that mailbox's owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receive privilege may be passed to other
processes through appropriate system calls. Of course, this provision could
result in multiple receivers for each mailbox.

4.5.3 Synchronization

Communication between processes takes place by calls to send and receive
primitives. There are different design options for implementing each primitive.
Message passing may be either blocking or nonblocking-also known as
synchronous and asynchronous.

Blocking send: The sending process is blocked until the message is
received by the receiving process or by the mailbox.

Nonblocking send: The sending process sends the message and resumes
operation.

Blocking receive: The receiver blocks until a message is available.

Nonblocking receive: The receiver retrieves either a valid message or a
null.

Different combinations of send and receive are possible. When both the
send and receive are blocking, we have a rendezvous between the sender
and the receiver.

4.5.4 Buffering

Whether the communication is direct or indirect, messages exchanged by com-
municating processes reside in a temporary queue. Basically, such a queue can
be implemented in three ways:

Zero capacity: The queue has maximum length 0; thus, the link cannot
have any messages waiting in it. In this case, the sender must block until
the recipient receives the message.

114 Chapter 4 Processes

Bounded capacity: The queue has finite length n; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
latter is placed in the queue (either the message is copied or a pointer to the
message is kept), and the sender can continue execution without waiting.
The link has a finite capacity, however. If the link is full, the sender must
block until space is available in the queue.

Unbounded capacity: The queue has potentially infinite length; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as automatic buffering.

4.5.5 An Example: Mach
As an example of a message-based operating system, consider the Mach oper-
ating system, developed at Carnegie Mellon University. The Mach kernel
supports the creation and destruction of multiple tasks, which are similar to
processes but have multiple threads of control. Most communication in Mach
-including most of the system calls and all intertask information-is carried
out by messages. Messages are sent to and received from mailboxes, called ports
in Mach.

Even system calls are made by messages. When each task is created,
two special mailboxes-the Kernel mailbox and the Notify mailbox-are also
created. The kernel uses the Kernel mailbox to communicate with the task.
The kernel sends notification of event occurrences to the Notify port. Only
three system calls are needed for message transfer. The msg-send call sends
a message to a mailbox. A message is received via msgxeceive. Remote
procedure calls (RPCs) are executed via msg-rpc, which sends a message and
waits for exactly one return message from the sender. In this way, RPC model a
typical subroutine procedure call, but can work between systems.

The port -allocat e system call creates a new mailbox and allocates space
for its queue of messages. The maximum size of the message queue defaults to
eight messages. The task that creates the mailbox is that mailbox's owner. The
owner also is given receive access to the mailbox. Only one task at a time can
either own or receive from a mailbox, but these rights can be sent to other tasks
if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copied into the mailbox. All messages
have the same priority. Mach guarantees that multiple messages from the same
sender are queued in first-in, first-out (FIFO) order, but does not guarantee an
absolute ordering. For instance, messages sent from each of two senders may
be queued in any order.

The messages themselves consist of a fixed-length header, followed by a
variable-length data portion. The header includes the length of the message

4.5 Interprocess Communication 115

and two mailbox names. When a message is sent, one mailbox name is the
mailbox to which the message is being sent. Commonly, the sending thread
expects a reply; the mailbox name of the sender is passed on to the receiving
task, which may use it as a "return address" to send messages back.

The variable part of a message is a list of typed data items. Each entry in the
list has a type, size, and value. The type of the objects specified in the message
is important, since operating-system-defined objects-such as the ownership
or receive access rights, task states, and memory segments-may be sent in
messages.

The send and receive operations themselves are flexible. For instance,
when a message is sent to a mailbox, the mailbox may be full. If the mailbox is
not full, the message is copied to the mailbox and the sending thread continues.
If the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.

2. Wait at most n milliseconds.

3. Do not wait at all, but rather return immediately.

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which it is being sent is full.
When the message can be put in the mailbox, a notification message is sent
back to the sender; only one such message to a full mailbox can be pending
at any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, these tasks may need to send a one-time reply to the task
that had requested service, but must also continue with other service requests,
even if the reply mailbox for a client is full.

The rece ive operation must specify from which mailbox or mailbox set
to receive a message. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for
the purposes of the task. Threads in a task can receive from only a mailbox
or mailbox set for which that task has receive access. A por t- s ta tus system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from either of the following:

1. any mailbox in a mailbox set

2. a specific (named) mailbox

If no message is waiting to be received, the receiving thread may wait, wait at
most n milliseconds, or not wait.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 15 through 17, but Mach is also suitable for single-
processor systems. The major problem with message systems has generally

116 Chapter 4 Processes

been poor performance caused by copying the message first from the sender to
the mailbox, and then from the mailbox to the receiver. The Mach message
system attempts to avoid double-copy operations by using virtual-memory
-management techniques (Chapter 10). Essentially, Mach maps the address
space containing the sender's message into the receiver's address space. The
message itself is never actually copied. This message-management technique
provides a large performance boost, but works only for intrasystem messages.
The Mach operating system is discussed in an extra chapter that is posted on
our web site (http:/ /www.bell-labs.com/topic/books/os-book).

4.5.6 An Example: Windows 2000

The Windows 2000 operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed to
implement new features. Windows 2000 provides support for multiple oper-
ating environments or subsystems, with which application programs commu-
nicate via a message-passing mechanism. The application programs can be
considered to be clients of the Windows 2000 subsystem server.

The message-passing facility in Windows 2000 is called the local procedure-
call (LPC) facility. The LPC in Windows 2000 communicates between two
processes that are on the same machine. It is similar to the standard RPC
mechanism that is widely used, but it is optimized for and specific to Windows
2000. Like Mach, Windows 2000 uses a port object to establish and maintain a
connection between two processes. Every client that calls a subsystem needs
a communication channel, which is provided by a port object and is never
inherited. Windows 2000 uses two types of ports: connection ports and commu-
nication ports. They are really the same but are given different names according
to how they are used. Connection ports are named objects, which are visible to
all processes; they give applications a way to set up a communication channel
(Chapter 21). This communication works as follows:

The client opens a handle to the subsystem's connection port object. I

The client sends a connection request. I
The server creates two private communication ports, and returns the handle
to one of them to the client. I
The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies. I
Windows 2000 uses three types of message-passing techniques over a port

that the client specifies when it establishes the channel. The simplest, which is
used for small messages, uses the port's message queue as intermediate storage

4.6 Communication in Client - Server Systems 117

and copies the message from one process to the other. Under this method,
messages of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a section object (or shared memory). The client has to decide, when it sets up
the channel, whether or not it will need to send a large message. If the client
determines that it does want to send large messages, it asks for a section object
to be created. Likewise, if the server decides that replies will be large, it creates a
section object. So that the section object can be used, a small message is sent that
contains a pointer and size information about that section object. This method is
more complicated than the first method, but it avoids the data copying. In both
cases, a callback mechanism can be used when either the client or the server
cannot respond immediately to a request. The callback mechanism allows them
to perform asynchronous message handling.

4.6 . Communication in Client - Server Systems

Consider a user who needs access to data located at some server. For example,
a user may wish to find out the total number of lines, words, and characters in
a file located at server A. This request is handled by a remote server A, which
accesses the file, computes the desired result, and eventually transfers the actual
data back to the user.

4.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employs a pair of sockets-one for each pro-
cess. A socket is made up of an IP address concatenated with a port number. In
general, sockets use a client-server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.

Servers implementing specific services (such as telnet, ftp, and http) listen
to well-known ports (a telnet server listens to port 23, an ftp server listens to
port 21, and a web (or http) server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes
to establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X, and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 4.9. The packets
traveling between the hosts are delivered to the appropriate process, based on
the destination port number.

118 Chapter 4 Processes

host X

(1 46.86.5.20)

web server

(1 61.25.19.8)

Figure 4.9 Communication using sockets.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming in
C or C++ should consult the Bibliographical Notes.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use the Datagramsocket class. A third type is the Multicastsocket class, which
is a subclass of the DatagramSocket class. A multicast socket allows data to
be sent to multiple recipients.

As an example of Java-based sockets, we now present a Java class that
implements a time-of-day server. The operation allows clients to request the
time of day from the server. The server listens to port 5155, although the
port could be any arbitrary number greater than 1024. When a connection is
received, the server returns the time of day to the client.

The time-of-day server is shown in Figure 4.10. The server creates a
Serversocket that specifies it will listen to port 5155. It then begins listening
to the port with the accept method. The server blocks on the accept method
waiting for a client to request a connection. When a connection request is
received, accept returns a socket that the server can use to communicate with
the client.

The details illustrating how the server communicates with the socket are
as follows. The server first establishes a PrintWriter object that it will use to
communicate with the client. A PrintWriter object allows the server to write
to the socket using the normal print and println methods for output. The

4.6 Communication in Client - Server Systems 119

import java.net.*;
import java.io.*;

public class Server

{
public static void main(String[] args) throws IOException {

Socket client = null;
PrintWriter pout = null;
ServerSocket sock = null;

try
sock = new ServerSocket (5155) ;
// now listen for connections

while (true) {
client = sock.accept();

// we have a connection
pout = new PrintWriter (client. getOutputstream() , true) ;

// write the Date to the socket
pout.println(new java.util.DateO.toString());

pout. close 0 ;
client. close0 ;

1
}
catch (IOException ioe) {

System.err .println(ioe) ;

1
finally {

if (client != null)
client. close0 ;

if (sock != null)
sock. close 0 ;

1
}

}

Figure 4.10 Time-of-day server.

server process sends the time of day to the client calling the method p r in t ln .
Once it has written the time of day to the socket, the server closes the socket to
the client and resumes listening for more requests.

120 Chapter 4 Processes

A client communicates with the server by creating a socket and connecting
to the port the server is listening on. We implement such a client in the Java
program shown in Figure 4.11. The client creates a Socket and requests a
connection with the server at IP address 127.0.0.1 on port 5155. Once the
connection is made, the client can read from the socket using normal stream I/O
statements. After it has received the time of day from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
local host. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows the client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the time-of-day server.

import java.net.*;
import j ava. io . * ;

public class Client

public static void main(String[] args) throws IOException {
Inputstream in = null;
BufferedReader bin = null;
Socket sock = null;

try
//make connection to socket
sock = new Socket (11127.0.0. 1" ,5155) ;

in = sock. getInputStream0 ;
bin = new BufferedReader(new Input~treamReader(in));

String line;
while ((line = bin.readline()) != null)

System.out.println(line);

1
catch (IOException ioe) {

System.err .println(ioe) ;

}
finally {

if (sock != null)
sock. close 0 ;

}
1

Figure 4.11 The client.

4.6 Communication in Client - Server Systems 121

Communication using sockets-although common and efficient-is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two alternative, higher-level methods of communica-
tion: remote procedure calls (RPCs) and remote method invocation (RMI).

4.6.2 Remote Procedure Calls
One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 4.5.4. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 4.5, and it is usually built on top of such a system. Because we are
dealing with an environment in which the processes are executing on separate
systems, we must use a message-based communication scheme to provide
remote service. In contrast to the IPC facility, the messages exchanged for RPC
communication are well structured and are thus no longer just packets of data.
They are addressed to an RPC daemon listening to a port on the remote system,
and contain an identifier of the function to execute and the parameters to pass
to that function. The function is then executed as requested, and any output is
sent back to the requester in a separate message.

A port is simply a number included at the start of a message packet.
Whereas a system normally has one network address, it can have many ports
within that address to differentiate the many network services it supports. If a
remote process needs a service, it addresses its messages to the proper port. For
instance, if a system wished to allow other systems to be able to list the current
users on it, it would have a daemon supporting such an RPC attached to a port
-say, port 3027. Any remote system could obtain the needed information (that
is, the list of current users) by sending an RPC message to port 3027 on the
server; the data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote host
as it would invoke a procedure locally. The RPC system hides the necessary
details allowing the communication to take place. The RPC system does this by
providing a stub on the client side. Typically, a separate stub exists for each
separate remote procedure. When the client invokes a remote procedure, the
RPC system calls the appropriate stub, passing it the parameters provided to
the remote procedure. This stub locates the port on the server and marshalls
the parameters. Parameter marshalling involves packaging the parameters into
a form which may be transmitted over a network. The stub then transmits a
message to the server using message passing. A similar stub on the server side
receives this message and invokes the procedure on the server. If necessary,
return values are passed back to the client using the same technique.

122 Chapter 4 Processes

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems use the high memory address to store the most signif-
icant byte (known as big-endian), while other systems store the least significant
byte at the high memory address (known as little-endian). To resolve this, many
RPC systems define a machine-independent representation of data. One such
representation is known as external data representation (XDR). On the client
side, parameter marshalling involves converting the machine-dependent data
into XDR before being sent to the server. On the server side, the XDR data is
unmarshalled and converted into the machine-dependent representation for the
server.

The RPC mechanism is common on networked systems, so we should
discuss several other issues in regard to its operation. One important issue is
the semantics of a call. Whereas local procedure calls fail only under extreme
circumstances, RPCs can fail, or be duplicated and executed more than once,
due to common network errors. Because we are dealing with message transfer
over unreliable communication links, it is much easier for an operating system
to ensure that a message was acted on at most once, than it is to ensure that the
message was acted on exactly once. Because local procedure calls have the latter
meaning, most systems attempt to duplicate that functionality. They do so by
attaching to each message a timestamp. The server must keep a history of all
the timestamps of messages it has already processed, or a history large enough
to ensure that repeated messages are detected. Incoming messages that have a
timestamp already in the history are ignored. Generation of these timestamps
is discussed in Section 17.1.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes
place during link, load, or execution time (Chapter 9), such that a procedure
call's name is replaced by the memory address of the procedure call. The
RPC scheme requires a similar binding of the client and the server port, but
how does a client know the port numbers on the server? Neither system
has full information about the other because they do not share memory. Two
approaches are common. First, the binding information may be predetermined,
in the form of fixed port addresses. At compile time, an RPC call has a fixed
port number associated with it. Once a program is compiled, the server cannot
change the port number of the requested service. Second, binding can be
done dynamically by a rendezvous mechanism. Typically, an operating system
provides a rendezvous (also called a matchmaker) daemon on a fixed RPC
port. A client then sends a message, containing the name of the RPC, to the
rendezvous daemon requesting the port address of the RPC it needs to execute.
The port number is returned, and the RPC calls may be sent to that port until
the process terminates (or the server crashes). This method requires the extra
overhead of the initial request, but is more flexible than the first approach.
Figure 4.12 shows a sample interaction.

4.6 Communication in Client - Server Systems 123

client messages server

user calls kernel
to send RPC
message to

Figure 4.12 Execution of a remote procedure call (RPC).

The RPC scheme is useful in implementing a distributed file system (Chap-
ter 16). Such a system can be implemented as a set of RPC daemons and clients.
The messages are addressed to the DFS port on a server on which a file operation
is to take place. The message contains the disk operation to be performed. Disk
operations might be read, write, rename, delete , or s t a tus , corresponding
to the usual file-related system calls. The return message contains any data

124 Chapter 4 Processes

resulting from that call, which is executed by the DFS daemon on behalf of the
client. For instance, a message might contain a request to transfer a whole file
to a client, or be limited to simple block requests. In the latter case, several such
requests might be needed if a whole file is to be transferred.

4.6.3 Remote Method Invocation
The remote method invocation (RMI) is a Java feature similar to RPCs. RMI
allows a thread to invoke a method on a remote object. Objects are considered
remote if they reside in a different Java virtual machine (JVM). Therefore, the
remote object may be in a different JVM on the same computer or on a remote
host connected by a network. This situation is illustrated in Figure 4.13. RMI
and RPCs differ in two fundamental ways. First, RPCs support procedural
programming whereby only remote procedures or functions may be called. RMI
is object-based: It supports invocation of methods on remote objects. Second,
the parameters to remote procedures are ordinary data structures in RPC; with
RMI it is possible to pass objects as parameters to remote methods. By allowing
a Java program to invoke methods on remote objects, RMI makes it possible for
users to develop Java applications that are distributed across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes
a remote method, this stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and
invoking the desired method on the server. The skeleton then marshalls the
return value (or exception, if any) into a parcel and returns this parcel to the
client. The stub unmarshalls the return value and passes it to the client.

Let us demonstrate how this process works. Assume that a client
wishes to invoke a method on a remote object Server with the signature

JVM

Figure 4.13 Remote method invocation.

4.6 Communication in Client - Server Systems 125

client remote object

Figure 4.14 Marshalling parameters.

someMethod(0bject , Object) that returns a boolean value. The client
executes the statement

boolean val = Server. some~ethod(A, B) ;

The call to someMethod with the parameters A and B invokes the stub for the
remote object. The stub marshalls into a parcel the parameters A and B and
the name of the method that is to be invoked on the server, then sends this
parcel to the server. The skeleton on the server unrnarshalls the parameters and
invokes the method someMethod. The actual implementation of someMethod
resides on the server. Once the method is completed, the skeleton marshalls the
Boolean value returned from someMethod and sends this value back to the
client. The stub unrnarshalls this return value and passes it to the client. The
process is shown in Figure 4.14.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java developers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, that you understand a few rules about the behavior of parameter
passing.

If the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A is a local object and B a remote object, A is serialized and
passed by copy, and B is passed by reference. This would in turn allow the
server to invoke methods on B remotely.

126 Chapter 4 Processes

If local objects are to be passed as parameters to remote objects, they must
implement the interface j ava . io . Serializable. Many objects in the
core Java API implement Serializable, allowing them to be used with
RMI. Object serialization allows the state of an object to be written to a byte
stream.

4.7 Summary

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process' current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. The
two major classes of queues in an operating system are I/O request queues
and the ready queue. The ready queue contains all the processes that are
ready to execute and are waiting for the CPU. Each process is represented by
a PCB, and the PCBs can be linked together to form a ready queue. Long-term
(or job) scheduling is the selection of processes to be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allocation considerations, especially memory management. Short-term (or
CPU) scheduling is the selection of one process from the ready queue.

The processes in the system can execute concurrently. There are several
reasons for allowing concurrent execution: information sharing, computation
speedup, modularity, and convenience. Concurrent execution requires mecha-
nisms for process creation and deletion.

The processes executing in the operating system may be either indepen-
dent processes or cooperating processes. Cooperating processes must have
the means to communicate with each other. Principally, two complementary
communication schemes exist: shared memory and message systems. The
shared-memory method requires communicating processes to share some vari-
ables. The processes are expected to exchange information through the use of
these shared variables. In a shared-memory system, the responsibility for pro-
viding communication rests with the application programmers; the operating
system needs to provide only the shared memory. The message-system method
allows the processes to exchange messages. The responsibility for providing
communication may rest with the operating system itself. These two schemes
are not mutually exclusive, and can be used simultaneously within a single
operating system.

A socket is defined as an endpoint for communication. A connection
between a pair of applications consists of a pair of sockets, one at each end of the
communication channel. RPCs are another form of distributed communication.
An RPC occurs when a process (or thread) calls a procedure on a remote

Exercises 127

application. RMI is the Java version of an RPC. RMI allows a thread to invoke a
method on a remote object just as it would invoke a method on a local object.
The primary distinction between RPCs and RMIs is that the data being passed
to a remote procedure are in the form of an ordinary data structure. RMI allows
objects to be passed in remote method calls.

Exercises

4.1 MS-DOS provided no means of concurrent processing. Discuss three major
complications that concurrent processing adds to an operating system.

4.2 Describe the differences among short-term, medium-term, and long-term
scheduling.

4.3 A DECSYSTEM-20 computer has multiple register sets. Describe the actions
of a context switch if the new context is already loaded into one of the
register sets. What else must happen if the new context is in memory
rather than in a register set, and all the register sets are in use?

4.4 Describe the actions taken by a kernel to switch context between processes.

4.5 What are the benefits and the detriments of each of the following? Con-
sider both the systems and the programmers' levels.

a. Direct and indirect communication

b. Symmetric and asymmetric communication

c. Automatic and explicit buffering

d. Send by copy and send by reference

e. Fixed-sized and variable-sized messages

4.6 The correct producer-consumer algorithm in Section 4.4 allows only n - 1
buffers to be full at any one time. Modify the algorithm to allow all buffers
to be utilized fully.

4.7 Consider the interprocess-communication scheme where mailboxes are
used.

a. Suppose a process P wants to wait for two messages, one from
mailbox A and one from mailbox B. What sequence of send and
receive should it execute?

b. What sequence of send and receive should P execute if P wants
to wait for one message from mailbox A or from mailbox B (or from
both)?

128 Chapter 4 Processes

c. A receive operation makes a process wait until the mailbox is
nonempty. Devise a scheme that allows a process to wait until a
mailbox is empty, or explain why such a scheme cannot exist.

4.8 Write a socket-based Fortune Teller server. Your program should create a
server that listens to a specified port. When a client receives a connection,
the server should respond with a random fortune chosen from its database
of fortunes.

Bibliographical Notes

The subject of interprocess communication was discussed by Brinch-Hansen
[I9701 with respect to the RC 4000 system. Schlichting and Schneider 119821
discussed asynchronous message-passing primitives. The IPC facility imple-
mented at the user level was described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems were presented by
Gray 119971. Barrera [I9911 and Vahalia [I9961 presented interprocess com-
munication in the Mach system. Solomon and Russinovich [2000] outlined
interprocess communication in Windows 2000. A thorough discussion of socket
programming can be found in Stevens [1997].

Discussions concerning the implementation of RPCs were presented by
Birrell and Nelson [1984]. A design of a reliable RPC mechanism was presented
by Shrivastava and Panzieri [1982]. A survey of RPCs was presented by Tay and
Ananda [19901. Stankovic [I9821 and Staunstrup [I9821 discussed procedure
calls versus message-passing communication.

Tanenbaum [I9961 describes sockets and RPCs. Waldo [I9881 and Farley
[I9981 discusses RPCs and M I . Niemeyer and Peck [I9971 and Horstmann and
Cornell [I9981 give good introductions to using RMI. The M I homepage at
[http:/ /www.javasoft.com/products/jdk/rmi] lists up-to-date resources.

Chapter 5

The process model introduced in Chapter 4 assumed that a process was an
executing program with a single thread of control. Many modern operating
systems now provide features for a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the Pthread API and Java threads.
We will look at many issues related to multithreaded programming and how
it affects the design of operating systems. Finally, we will explore how several
modern operating systems support threads at the kernel level.

5.1 . Overview

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU
utilization; it comprises a thread ID, a program counter, a register set, and
a stack. It shares with other threads belonging to the same process its code
section, data section, and other operating-system resources, such as open files
and signals. A traditional (or heavyweight) process has a single thread of
control. If the process has multiple threads of control, it can do more than
one task at a time. Figure 5.1 illustrates the difference between a traditional
single-threaded process and a multithreaded process.

5.1.1 Motivation
Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several

130 Chapter 5 Threads

thread

single-threaded multithreaded

Figure 5.1 Single- and multithreaded processes.

threads of control. A web browser might have one thread display images or text
while another thread retrieves data from the network. A word processor may
have a thread for displaying graphics, another thread for reading keystrokes
from the user, and a third thread for performing spelling and grammar checking
in the background.

In certain situations a single application may be required to perform several
similar tasks. For example, a web server accepts client requests for web pages,
images, sound, and so forth. A busy web server may have several (perhaps
hundreds) of clients concurrently accessing it. If the web server ran as a
traditional single-threaded process, it would be able to service only one client
at a time. The amount of time that a client might have to wait for its request to
be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process to
service that request. In fact, this process-creation method was in common use
before threads became popular. Process creation is very heavyweight, as was
shown in the previous chapter. If the new process will perform the same tasks as
the existing process, why incur all that overhead? It is generally more efficient
for one process that contains multiple threads to serve the same purpose. This
approach would multithread the web-server process. The server would create a
separate thread that would listen for client requests; when a request was made,
rather than creating another process, it would create another thread to service
the request.

5.1 Overview 131

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 4 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests.

5.1.2 Benefits
The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness: Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image is being loaded in another thread.

2. Resource sharing: By default, threads share the memory and the resources
of the process to which they belong. The benefit of code sharing is that it
allows an application to have several different threads of activity all within
the same address space.

3. Economy: Allocating memory and resources for process creation is costly.
Alternatively, because threads share resources of the process to which they
belong, it is more economical to create and context switch threads. It can
be difficult to gauge empirically the difference in overhead for creating and
maintaining a process rather than a thread, but in general it is much more
time consuming to create and manage processes than threads. In Solaris 2,
creating a process is about 30 times slower than is creating a thread, and
context switching is about five times slower.

4. Utilization of multiprocessor architectures: The benefits of multithreading
can be greatly increased in a multiprocessor architecture, where each thread
may be running in parallel on a different processor. A single-threaded
process can only run on one CPU, no matter how many are available.
Multithreading on a multi-CPU machine increases concurrency. In a single-
processor architecture, the CPU generally moves between each thread so
quickly as to create an illusion of parallelism, but in reality only one thread
is running at a time.

5.1.3 User and Kernel Threads
Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided at either the user level, for user threads, or by the
kernel, for kernel threads.

132 Chapter 5 Threads

User threads are supported above the kernel and are implemented by a
thread library at the user level. The library provides support for thread
creation, scheduling, and management with no support from the kernel.
Because the kernel is unaware of user-level threads, all thread creation and
scheduling are done in user space without the need for kernel intervention.
Therefore, user-level threads are generally fast to create and manage; they
have drawbacks, however. For instance, if the kernel is single-threaded,
then any user-level thread performing a blocking system call will cause the
entire process to block, even if other threads are available to run within the
application. User-thread libraries include POSIX Pthreads, Mach C-threads,
and Solaris 2 UI-threads.

Kernel threads are supported directly by the operating system: The kernel
performs thread creation, scheduling, and management in kernel space.
Because thread management is done by the operating system, kernel
threads are generally slower to create and manage than are user threads.
However, since the kernel is managing the threads, if a thread performs a
blocking system call, the kernel can schedule another thread in the appli-
cation for execution. Also, in a multiprocessor environment, the kernel
can schedule threads on different processors. Most contemporary operat-
ing systems-including Windows NT, Windows 2000, Solaris 2, BeOS, and
Tru64 UNIX (formerly Digital UN1X)-support kernel threads.

We will cover Pthreads in Section 5.4 as an example of a user-level thread
library. We will also cover Windows 2000 (Section 5.6) and Solaris 2 (Section 5.5)
as examples of operating systems with kernel-thread support. We will discuss
how Linux provides support for threads in Section 5.7 (although Linux does not
quite refer to them as threads).

Java provides support for threads as well. However, as Java threads are
created and managed by the Java virtual machine (JVM), they do not easily fall
under the realm of either user or kernel threads. We will cover Java threads in
Section 5.8.

5.2 . Multithreading Models

Many systems provide support for both user and kernel threads, resulting in
different multithreading models. We look at three common types of threading
implementation.

5.2.1 Many-to-One Model
The many-to-one model (Figure 5.2) maps many user-level threads to one
kernel thread. Thread management is done in user space, so it is efficient, but

5.2 Multithreading Models 133

user thread

Figure 5.2 Many-to-one model.

the entire process will block if a thread makes a blocking system call. Also,
because only one thread can access the kernel at a time, multiple threads are
unable to run in parallel on multiprocessors. Green threads-a thread library
available for Solaris 2-uses this model. In addition, user-level thread libraries
implemented on operating systems that do not support kernel threads use the
many-to-one model.

5.2.2 One-to-one Model
The one-to-one model (Figure 5.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Windows NT, Windows 2000, and
OS/2 implement the one-to-one model.

5.2.3 Many-to-Many Model
The many-to-many model (Figure 5.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a multiprocessor than on

134 Chapter 5 Threads

& - kernel thread

Figure 5.3 One-to-one model.

a uniprocessor). Whereas the many-to-one model allows the developer to create
as many user threads as she wishes, true concurrency is not gained because the
kernel can schedule only one thread at a time. The one-to-one model allows
for greater concurrency, but the developer has to be careful not to create too
many threads within an application (and in some instances may be limited in
the number of threads she can create). The many-to-many model suffers from
neither of these shortcomings: Developers can create as many user threads
as necessary, and the corresponding kernel threads can run in parallel on a
multiprocessor. Also, when a thread performs a blocking system call, the kernel
can schedule another thread for execution. Solaris 2, IRIX, HP-UX, and Tru64
UNIX support this model.

user

thread

thread

Figure 5.4 Many-to-many model.

5.3 Threading Issues 135

5.3 . Threading Issues

In this section we discuss some of the issues to consider with multithreaded
programs.

5.3.1 The fork and exec System Calls
In Chapter 4 we described how the fork system call is used to create a separate,
duplicate process. In a multithreaded program, the semantics of the fork and
exec system calls change. If one thread in a program calls fork, does the
new process duplicate all threads or is the new process single-threaded? Some
UNIX systems have chosen to have two versions of fork, one that duplicates
all threads and another that duplicates only the thread that invoked the fork
system call. The exec system call typically works in the same way as described
in Chapter 4. That is, if a thread invokes the exec system call, the program
specified in the parameter to exec will replace the entire process-including
all threads and LWPs.

Usage of the two versions of fork depends upon the application. If exec
is called immediately after forking, then duplicating all threads is unnecessary,
as the program specified in the parameters to exec will replace the process. In
this instance, duplicating only the calling thread is appropriate. If, however, the
separate process does not call exec after forking, the separate process should
duplicate all threads.

5.3.2 Cancellation
Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be cancelled.
Another situation might occur when a user presses a button on a web browser
that stops a web page from loading any further. Often a web page is loaded in
a separate thread. When a user presses the stop button, the thread loading the
page is cancelled.

A thread that is to be cancelled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation: One thread immediately terminates the target
thread.

2. Deferred cancellation: The target thread can periodically check if it should
terminate, allowing the target thread an opportunity to terminate itself in
an orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a cancelled thread or if a thread was cancelled while in

136 Chapter 5 Threads

the middle of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. The operating system
will often reclaim system resources from a cancelled thread, but often will not
reclaim all resources. Therefore, cancelling a thread asynchronously may not
free a necessary system-wide resource.

Alternatively, deferred cancellation works by one thread indicating that a
target thread is to be cancelled. However, cancellation will occur only when
the target thread checks to determine if it should be cancelled or not. This
allows a thread to check if it should be cancelled at a point when it can safely
be cancelled. Pthreads refers to such points as cancellation points.

Most operating systems allow a process or thread to be cancelled asyn-
chronously. However, the Pthread API provides deferred cancellation. This
means that an operating system implementing the Pthread API will allow
deferred cancellation.

5.3.3 Signal Handling
A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending upon the source and the reason for the event being signalled.
Whether a signal is synchronous or asynchronous, all signals follow the same
pattern:

1. A signal is generated by the occurrence of a particular event.

2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

An example of a synchronous signal includes an illegal memory access or
division by zero. In this instance, if a running program performs either of these
actions, a signal is generated. Synchronous signals are delivered to the same
process that performed the operation causing the signal (hence the reason they
are considered synchronous).

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control><C>) or
having a timer expire. Typically an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler

2. A user-defined signal handler

5.3 Threading Issues 137

Every signal has a default signal handler that is run by the kernel when
handling the signal. This default action may be overridden by a user-defined
signal handler function. In this instance, the user-defined function is called
to handle the signal rather than the default action. Both synchronous and
asynchronous signals may be handled in different ways. Some signals may be
simply ignored (such as changing the size of a window); others may be handled
by terminating the program (such as an illegal memory access).

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more compli-
cated in multithreaded programs, as a process may have several threads. Where
then should a signal be delivered?

In general, the following options exist:

1. Deliver the signal to the thread to which the signal applies.

2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends upon the type of signal gen-
erated. For example, synchronous signals need to be delivered to the thread
that generated the signal and not to other threads in the process. However, the
situation with asynchronous signals is not as clear. Some asynchronous signals
-such as a signal that terminates a process (<control><C>, for example)
-should be sent to all threads. Some multithreaded versions of UNIX allow a
thread to specify which signals it will accept and which it will block. Therefore,
some asynchronous signals may be delivered to only those threads that are not
blocking the signal. However, because signals need to be handled only once,

I
I

typically a signal is delivered only to the first thread found in a process that
is not blocking the signal. Solaris 2 implements the fourth option: it creates a
specific thread within each process solely for signal handling. When an asyn-
chronous signal is sent to a process, it is sent to this special thread, which then
delivers the signal to the first thread that is not blocking the signal.

Although Windows 2000 does not explicitly provide support for signals,
they can be emulated using asynchronous procedure calls (APCS). The APC
facility allows a user thread to specify a function that is to be called when the
user thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward as an APC is delivered to
a particular thread rather than process.

138 Chapter 5 Threads

5.3.4 Thread Pools
In Section 5.1, we described the scenario of multithreading a web server. In
this situation, whenever the server receives a request, it creates a separate
thread to service the request. Whereas creating a separate thread is certainly
superior to creating a separate process, a multithreaded server nonetheless has
potential problems. The first concerns the amount of time required to create the
thread prior to servicing the request, compounded with the fact that this thread
will be discarded once it has completed its work. The second issue is more
problematic: If we allow all concurrent requests to be serviced in a new thread,
we have not placed a bound on the number of threads concurrently active in the
system. Unlimited threads could exhaust system resources, such as CPU time
or memory. One solution to this issue is to use thread pools.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool-if one
is available-passing it the request to service. Once the thread completes its
service, it returns to the pool awaiting more work. If the pool contains no
available thread, the server waits until one becomes free.

In particular, the benefits of thread pools are:

1. It is usually faster to service a request with an existing thread than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point. This
is particularly important on systems that cannot support a large number of
concurrent threads.

The number of threads in the pool can be set heuristically based upon fac-
tors such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool-thereby consuming less memory-when the load on
the system is low.

5.3.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, each thread might need its own copy of certain data in some cir-
cumstances. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To

5.4 Pthreads 139

associate each thread with its unique identifier we could use thread-specific
data. Most thread libraries-including Win32 and Pthreads-provide some
form of support for thread-specific data. Java provides support as well.

5.4 . Pthreads

Pthreads refers to the POSIX standard (IEEE 1003.1~) defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
implementation. Operating system designers may implement the specification
in any way they wish. Generally, libraries implementing the Pthreads speci-
fication are restricted to UNIX-based systems such as Solaris 2. The Windows
operating systems have generally not supported Pthreads, although shareware
versions are available in the public domain.

In this section we introduce some of the Pthread API as an example of a
user-level thread library. We refer to it as a user-level library because no distinct
relationship exists between a thread created using the Pthread API and any
associated kernel threads. The C program shown in Figure 5.5 demonstrates
the basic Pthread API for constructing a multithreaded program. If you are
interested in more details on the Pthread API, we encourage you to consult the
Bibliographical Notes.

The program shown in Figure 5.5 creates a separate thread that determines
the summation of a non-negative integer. In a Pthread program, separate
threads begin execution in a specified function. In Figure 5.5, this is the runner
function. When this program begins, a single thread of control begins in main.
After some initialization, main creates a second thread that begins control in
the runner function.

We will now provide a more detailed overview of this program. All
Pthread programs must include the pthread. h header file. The statement
pthread-t t i d declares the identifier for the thread we will create. Each
thread has a set of attributes including stack size and scheduling information.
The pthread-at t r- t a t t r declaration represents the attributes for the thread.
We will set the attributes in the function call p thread-a t t r - in i t (& a t t r) .
Because we did not explicitly set any attributes, we will use the default
attributes provided. A separate thread is created with the pthread-create
function call. In addition to passing the thread identifier and the attributes for
the thread, we also pass the name of the function where the new thread will
begin execution, in this case the runner function. Lastly, we pass the integer
parameter that was provided on the command line, argv 111 .

At this point, the program has two threads: the initial thread in main and
the thread performing the summation in the runner function. After creating
the second thread, the main thread will wait for the runner thread to complete
by calling the pthread-j o in function. The runner thread will complete when
it calls the function pthread-exit .

140 Chapter 5 Threads

i n t sum; /* t h i s data is shared by the thread(s1 */
void *runner (void *param) ; /* the thread */

main(int argc , char *argv [I
{

pthread-t t i d ; /* the thread i d e n t i f i e r */
pthread-attr-t a t t r ; /* s e t of thread a t t r i b u t e s */
i f (argc != 2) {

fp r in t f (s tde r r , "usage : a . out <integer value>\nN) ;
ex i t 0 ;

1
i f (a to i (argv [I] < 0) {

fp r in t f (s tde r r , "%d must be <= O\nl', a t o i (argv [I])) ;
e x i t () ;

}
/* get the default a t t r i b u t e s */
pthread-attr- ini t (t a t t r) ;
/* create the thread */
pthread-create (& t i d , & a t t r ,runner ,argv[l]) ;
/* now wait f o r the thread t o e x i t */
pthread-join(tid,N~LL) ;
printf("sum = %d\n",sum);

}

/* The thread w i l l begin control i n t h i s function */
void *runner(void *param)

{
i n t upper = a t o i (param) ;
i n t i ;
sum = 0;
i f (upper > 0) {

f o r (i = 1; i <= upper; i++)
sum += i;

1
pthread-exit (0) ;

1
Figure 5.5 Multithreaded C program using the Pthread API.

5.5 Solaris 2 Threads 141

5.5 . Solaris 2 Threads

Solaris 2 is a version of UNIX with support for threads at the kernel and user
levels, SMP, and real-time scheduling. Solaris 2 implements the Pthread API dis-
cussed in Section 5.4 in addition to supporting user-level threads with a library
containing APIs for thread creation and management (known as UI threads).
The differences between these two libraries are insignificant, although most
developers now opt for the Pthread library. Solaris 2 defines an intermediate
level of threads as well. Between user- and kernel-level threads are lightweight
processes (LWPs). Each process contains at least one LWP. The thread library
multiplexes user-level threads on the pool of LWPs for the process, and only
user-level threads currently connected to an LWP accomplish work. The rest are
either blocked or waiting for an LWP on which they can run.

Standard kernel-level threads execute all operations w i t h the kernel. Each
LWP has a kernel-level thread, and some kernel-level threads run on the kernel's
behalf and have no associated LWP (for instance, a thread to service disk
requests). Kernel-level threads are the only objects scheduled within the system
(Chapter 6). Solaris 2 implements the many-to-many model; its entire thread
system is depicted in Figure 5.6.

User-level threads may be either bound or unbound. A bound user-level
thread is permanently attached to an LWP. Only that thread runs on the LWP,
and by request the LWP can be dedicated to a single processor (see the rightmost
thread in Figure 5.6). Binding a thread is useful in situations that require quick
response time, such as a real-time application. An unbound thread is not
permanently attached to any LWP. All unbound threads in an application are
multiplexed onto the pool of available LWPs for the application. Threads are

task 1 task 2 task 3

user-level thread

lightweight process

kernel thread -

Figure 5.6 Solaris 2 threads.

142 Chapter 5 Threads

unbound by default. Solaris 8 also provides an alternate thread library that, by
default, binds all threads with an associated LWP.

Consider the system in operation: Any one process may have many user-
level threads. These user-level threads may be scheduled and switched among
the LWPs by the thread library without kernel intervention. User-level threads
are extremely efficient because no kernel support is required for thread creation
or destruction, or for the thread library to context switch from one user-level
thread to another.

Each LWP is connected to exactly one kernel-level thread, whereas each
user-level thread is independent of the kernel. Many LWPs may be in a process,
but they are needed only when the thread needs to communicate with the
kernel. For instance, one LWP is needed for every thread that may block
concurrently in system calls. Consider five different file-read requests that
occur simultaneously. Then, five LWPs would be needed, because they could
all be waiting for I/O completion in the kernel. If a task had only four LWPs,
then the fifth request would have to wait for one of the LWPs to return from
the kernel. Adding a sixth LWP would gain nothing if there were only enough
work for five.

The kernel threads are scheduled by the kernel's scheduler and execute on
the CPU or CPUs in the system. If a kernel thread blocks (such as while waiting
for an 1/0 operation to complete), the processor is free to run another kernel
thread. If the thread that blocked was running on behalf of an LWP, the LWP
blocks as well. Up the chain, the user-level thread currently attached to the
LWP also blocks. If a process has more than one LWP, the kernel can schedule
another LWP.

The thread library dynamically adjusts the number of LWPs in the pool
to ensure the best performance for the application. For example, if all the
LWPs in a process are blocked and other threads are able to run, the thread
library automatically creates another LWP to be assigned to a waiting thread.
A program is thus prevented from being blocked by a lack of unblocked LWPs.
Also, LWPs are expensive kernel resources to maintain if they are not being
used. The thread library "ages" LWPs and deletes them when they are unused
for a long time, typically about 5 minutes.

The developers used the following data structures to implement threads on
Solaris 2:

A user-level thread contains a thread ID; register set (including a pro-
gram counter and stack pointer); stack; and priority (used by the thread
library for scheduling purposes). None of these data structures are kernel
resources; all exist within user space.

An LWP has a register set for the user-level thread it is running, as well as
memory and accounting information. An LWP is a kernel data structure,
and it resides in kernel space.

5.6 Window 2000 Threads 143

Figure 5.7 Solaris 2 process.

A kernel thread has only a small data structure and a stack. The data
structure includes a copy of the kernel registers, a pointer to the LWP to
which it is attached, and priority and scheduling information.

Each process in Solaris 2 contains much of the information described in the
process control block (PCB), which was discussed in Section 4.1.3. In particular,
a Solaris 2 process contains a process ID (PID); memory map; list of open files;
priority; and pointer to a list of kernel threads associated with the process
(Figure 5.7).

5.6 H Window 2000 Threads

Windows 2000 implements the Win32 API. The Win32 API is the primary API for
the family of Microsoft operating systems (Windows 95/98/NT and Windows
2000). Indeed, much of what is mentioned in this section applies to this family
of operating systems.

A Windows application runs as a separate process where each process
may contain one or more threads. Windows 2000 uses the one-to-one mapping
described in Section 5.2.2 where each user-level thread maps to an associated
kernel thread. However, Windows also provides support for a fiber library,
which provides the functionality of the many-to-many model (Section 5.2.3).
Every thread belonging to a process can access the virtual address space of the
process.

The general components of a thread include:

A thread ID uniquely identifying the thread.

A register set representing the status of the processor.

A user stack used when the thread is running is user mode. Similarly, each
thread also has a kernel stack used when the thread is running in kernel
mode.

A private storage area used by various run-time libraries and dynamic link
libraries (DLLs).

144 Chapter 5 Threads

The register set, stacks, and private storage area are known as the context of
the thread and are architecture-specific to the hardware on which the operating
system is running. The primary data structures of a thread include:

ETHREAD (executive thread block).

KTHREAD (kernel thread block).

TEB (thread environment block).

The key components of the ETHREAD include a pointer to the process to
which the thread belongs and the address of the routine in which the thread
starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when
the thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
only the kernel can access them. The TEB is a user-space data structure that is
accessed when the thread is running in user mode. Among other fields, the
TEB contains a user mode stack and an array for thread-specific data (which
Windows terms thread-local storage).

5.7 . Linux Threads

The Linux kernel introduced threads in version 2.2. Linux provides a fork
system call with the traditional functionality of duplicating a process. Linux
also provides the clone system call that is analogous to creating a thread.
clone behaves much like fork, except that instead of creating a copy of the
calling process, it creates a separate process that shares the address space of the
calling process. It is through this sharing of the address space of the parent
process that a cloned task behaves much like a separate thread.

The sharing of the address space is allowed because of the representation
of a process in the Linux kernel. A unique kernel data structure exists for each
process in the system. However, rather than storing the data for each process in
this data structure, it contains pointers to other data structures where this data
is stored. For example, this per-process data structure contains pointers to other
data structures that represent the list of open files, signal-handling information,
and virtual memory. When fo rk is invoked, a new process is created along
with a copy of all the associated data structures of the parent process. When
the clone system call is made, a new process is created. However, rather than
copying all data structures, the new process points to the data structures of the
parent process, thereby allowing the child process to share the memory and
other process resources of the parent. A set of flags is passed as a parameter
to the clone system call. This set of flags is used to indicate how much of

the parent process is to be shared with the child. If none of the flags is set,
no sharing occurs and clone acts just like fork. If all five flags are set, the
child process shares everything with the parent. Other combinations of the
flags allow various levels of sharing between these two extremes.

Interestingly, Linux does not distinguish between processes and threads.
In fact, Linux generally uses the term task-rather than process or thread-
when referring to a flow of control within a program. Aside from the cloned
process, Linux does not support multithreading, separate data structures, or
kernel routines. However, various Pthreads implementations are available for
user-level multithreading.

5.8 . Java Threads

As we have already seen, support for threads may be provided at the user level
with a library such as Pthreads. Furthermore, most operating systems provide
support for threads at the kernel level as well. Java is one of a small number
of languages that provide support at the language level for the creation and
management of threads. However, because threads are managed by the Java
Virtual Machine (JVM), not by a user-level library or kernel, it is difficult to
classify Java threads as either user- or kernel-level. In this section we present
Java threads as an alternative to the strict user- or kernel-level models. Later
in this section, we will discuss how a Java thread may be mapped to the
underlying kernel thread.

All Java programs comprise at least a single thread of control. Even a simple
Java program consisting of only a main method runs as a single thread in the
JVM. In addition, Java provides commands that allow the developer to create
and manipulate additional threads of control within the program.

5.8.1 Thread Creation
One way to create a thread explicitly is to create a new class that is derived from
the Thread class, and to override the run method of the Thread class. This
approach is shown in Figure 5.8, the Java version of a multithreaded program
that determines the summation of a non-negative integer.

An object of this derived class will run as a separate thread of control in the
JVM. However, creating an object that is derived from the Thread class does not
specifically create the new thread; rather, it is the s t a r t method that actually
creates the new thread. Calling the s t a r t method for the new object does two
things:

1. It allocates memory and initializes a new thread in the JVM.

2. It calls the run method, making the thread eligible to be run by the JVM.
(Note that you do not ever call the run method directly. Rather, call the
s t a r t method, and it will call the run method on your behalf.)

146 Chapter 5 Threads

class Summation extends Thread

{
public Summation(int n) {
upper = n;

1

public void run() {
int sum = 0;

if (upper > 0) {
for (int i = 1; i <= upper; i++)
sum += i;

}

System.out.println("The sum of "+upper+" is "+sum);

1

private int upper;

I

public class ThreadTester

{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer .parseInt (args [O]) < 0)
System. err .println(args [Ol + " must be >= 0. la) ;

else {
Summation thrd = new Summat ion(1nteger .parseInt (args [O])) ;
thrd. start 0 ;

else
System.err.println("Usage: Summation <integer value>");

I

Figure 5.8 Java program for the summation of a non-negative integer.

When the summation program runs, two threads are created by the JVM.
The first is the thread associated with the application-the thread that starts
execution at the main method. The second thread is the Summat ion thread that
is created explicitly with the s t a r t method. The Summation thread begins
execution in its run method. The thread terminates when it exits from its run
method.

Exercises 147

5.8.2 The JVM and the Host Operating System
The typical implementation of the JVM is on top of a host operating system.
This setup allows the JVM to hide the implementation details of the underlying
operating system and to provide a consistent, abstract environment that allows
Java programs to operate on any platform that supports a JVM. The specification
for the JVM does not indicate how Java threads are to be mapped to the
underlying operating system, instead leaving that decision to the particular
implementation of the JVM. Windows 95/98/NT and Windows 2000 use the one-
to-one model; therefore, each Java thread for a JVM running on these operating
systems maps to a kernel thread. Solaris 2 initially implemented the JVM using
the many-to-one model (called green threads). However, as of Version 1.1 of the
JVM with Solaris 2.6, it was implemented using the many-to-many model.

5.9 . Summary

A thread is a flow of control within a process. A multithreaded process contains
several different flows of control within the same address space. The benefits of
multithreading include increased responsiveness to the user, resource sharing
within the process, economy, and the ability to take advantage of multiproces-
sor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. A thread library in user space typically manages user-
level threads. The operating-system kernel supports and manages kernel-level
threads. In general, user-level threads are faster to create and manage than are
kernel threads. Three different types of models relate user and kernel threads:
The many-to-one model maps many user threads to a single kernel thread.
The one-to-one model maps each user thread to a corresponding kernel thread.
The many-to-many model multiplexes many user threads to a smaller or equal
number of kernel threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the f o r k and exec system calls. Other issues
include thread cancellation, signal handling, and thread-specific data. Many
modern operating systems provide kernel support for threads; among these
are Windows NT and Windows 2000, Solaris 2, and Linux. The Pthread API
provides a set of functions to create and manage threads at the user level. Java
provides a similar API for supporting threads. However, because Java threads
are managed by the JVM and not by a user-level thread library or kernel, they
do not fall under the category of either user- or kernel-level threads.

Exercises

5.1 Provide two programming examples of multithreading that improve per-
formance over a single-threaded solution.

148 Chapter 5 Threads

5.2 Provide two programming examples of multithreading that do not
improve performance over a single-threaded solution.

5.3 What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

5.4 Describe the actions taken by a kernel to context switch between kernel-
level threads.

5.5 Describe the actions taken by a thread library to context switch between
user-level threads.

5.6 What resources are used when a thread is created? How do they differ
from those used when a process is created?

5.7 Assume an operating system maps user-level threads to the kernel using
the many-to-many model where the mapping is done through LWPs.
Furthermore, the system allows the developers to create real-time threads.
Is it necessary to bound a real-time thread to an LWP? Explain.

5.8 Write a multithreaded Pthread or Java program that generates the
Fibonacci series. This program should work as follows: The user will run
the program and will enter on the command line the number of Fibonacci
numbers that the program is to generate. The program will then create a
separate thread that will generate the Fibonacci numbers.

5.9 Write a multithreaded Pthread or Java program that outputs prime num-
bers. This program should work as follows: The user will run the program
and will enter a number on the command line. The program will then
create a separate thread that outputs all the prime numbers less than or
equal to the number that the user entered.

Bibliographical Notes

Thread performance issues were discussed by Anderson et al. [1989], who
continued their work in Anderson et al. [I9911 by evaluating the performance
of user-level threads with kernel support. Marsh et al. [I9911 discussed first-
class user-level threads. Bershad et al. [I9901 described combining threads
with RPC. Draves et al. [I9911 discussed the use of continuations to implement
thread management and communication in operating systems. Engelschall
[2000] discusses a techmque for supporting user-level threads. An analysis of
an optimal thread pool size can be found in Ling et al. [2000].

The IBM 0 S / 2 operating system is a multithreaded operating system that
runs on personal computers (Kogan and Rawson [1988]). Peacock [I9921 dis-
cussed the multithreading of the file system in Solaris 2. Vahalia [I9961 covers
threading in several versions of UNIX. Mauro and McDougall [2001] describe

Bibliographical Notes 149

recent developments in threading the Solaris 2 kernel. Zabatta and Young
[I9981 compare Windows NT and Solaris 2 threads on a symmetric multipro-
cessor.

Information on multithreaded programming is given in Lewis and Berg
[1988], Sun [1995], and Kleiman et al. [1996], although these references tend
to be biased toward Pthreads. Oaks and Wong [1999], Lea [2000], and Hart-
ley [I9981 discuss multithreading in Java. Solomon [I9981 and Solomon and
Russinovich [2000] describe how threads are implemented in Windows NT
and Windows 2000, respectively. Beveridge and Wiener [I9971 discuss mul-
tithreading using Win32, and Pham and Garg [I9961 describe multithreading
programming using Windows NT.

Chapter 6

CPU
SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By switch-
ing the CPU among processes, the operating system can make the computer
more productive. In this chapter, we introduce the basic scheduling concepts
and present several different CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

6.1 Basic Concepts

The objective of multiprogramming is to have some process running at all
times, in order to maximize CPU utilization. In a uniprocessor system, only
one process may run at a time; any other processes must wait until the CPU is
free and can be rescheduled.

The idea of multiprogramming is relatively simple. A process is executed
until it must wait, typically for the completion of some I/O request. In a
simple computer system, the CPU would then sit idle; all this waiting time is
wasted. With multiprogramming, we try to use this time productively. Several
processes are kept in memory at one time. When one process has to wait, the
operating system takes the CPU away from that process and gives the CPU to
another process. This pattern continues.

Scheduling is a fundamental operating-system function. Almost all com-
puter resources are scheduled before use. The CPU is, of course, one of the pri-
mary computer resources. Thus, its scheduling is central to operating-system
design.

152 Chapter 6 CPU Scheduling

6.1.1 CPU-110 Burst Cycle
The success of CPU scheduling depends on the following observed property
of processes: Process execution consists of a cycle of CPU execution and I/O
wait. Processes alternate between these two states. Process execution begins
with a CPU burst. That is followed by an 110 burst, then another CPU burst,
then another I/O burst, and so on. Eventually, the last CPU burst will end with
a system request to terminate execution, rather than with another I/O burst
(Figure 6.1).

The durations of these CPU bursts have been extensively measured.
Although they vary greatly by process and by computer, they tend to have a
frequency curve similar to that shown in Figure 6.2. The curve is generally
characterized as exponential or hyperexponential, with many short CPU bursts,
and a few long CPU bursts. An I/O-bound program would typically have many
very short CPU bursts. A CPU-bound program might have a few very long

load store
add store
read from file CPU burst

store increment
index
write to file

load store
add store
read from file

waif @r E/O 1

\ I10 burst

1 CPU burst

I I10 burst

} CPU burst

1 I10 burst

Figure 6.1 Alternating sequence of CPU and I/O bursts.

6.1 Basic Concepts 153

4

0 8 16 24 32 40

burst duration (milliseconds)

Figure 6.2 Histogram of CPU-burst times.

CPU bursts. This distribution can help us select an appropriate CPU-scheduling
algorithm.

6.1.2 CPU Scheduler
Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects from
among the processes in memory that are ready to execute, and allocates the CPU
to one of them.

The ready queue is not necessarily a first-in, first-out (FIFO) queue. As we
shall see when we consider the various scheduling algorithms, a ready queue
may be implemented as a FIFO queue, a priority queue, a tree, or simply an
unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

6.1.3 Preemptive Scheduling
CPU scheduling decisions may take place under the following four circum-
stances:

154 Chapter 6 CPU Scheduling

1. When a process switches from the running state to the waiting state (for
example, I/O request, or invocation of wait for the termination of one of
the child processes)

2. When a process switches from the running state to the ready state (for
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, completion of I/O)

4. When a process terminates

In circumstances 1 and 4, there is no choice in terms of scheduling. A new
process (if one exists in the ready queue) must be selected for execution. There
is a choice, however, in circumstances 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
the scheduling scheme is nonpreemptive; otherwise, the scheduling scheme
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
is used by the Microsoft Windows 3.1 and by the Apple Macintosh operating
systems. It is the only method that can be used on certain hardware platforms,
because it does not require the special hardware (for example, a timer) needed
for preemptive scheduling.

Unfortunately, preemptive scheduling incurs a cost. Consider the case of
two processes sharing data. One may be in the midst of updating the data when
it is preempted and the second process is run. The second process may try to
read the data, which are currently in an inconsistent state. New mechanisms
thus are needed to coordinate access to shared data; this topic is discussed in
Chapter 7.

Preemption also has an effect on the design of the operating-system kernel.
During the processing of a system call, the kernel may be busy with an activity
on behalf of a process. Such activities may involve changing important kernel
data (for instance, I/O queues). What happens if the process is preempted in
the middle of these changes, and the kernel (or the device driver) needs to read
or modify the same structure? Chaos could ensue. Some operating systems,
including most versions of UNIX, deal with this problem by waiting either for a
system call to complete, or for an I/O block to take place, before doing a context
switch. This scheme ensures that the kernel structure is simple, since the kernel
will not preempt a process while the kernel data structures are in an inconsistent
state. Unfortunately, this kernel-execution model is a poor one for supporting
real-time computing and multiprocessing. These problems, and their solutions,
are described in Sections 6.4 and 6.5.

In the case of UNIX, sections of code are still at risk. Because interrupts can,
by definition, occur at any time, and because they cannot always be ignored

6.2 Scheduling Criteria 155

by the kernel, the sections of code affected by interrupts must be guarded from
simultaneous use. The operating system needs to accept interrupts at almost
all times, otherwise input might be lost or output overwritten. So that these
code sections are not accessed concurrently by several processes, they disable
interrupts at entry and reenable interrupts at exit. Unfortunately, disabling and
enabling interrupts is time consuming, especially on multiprocessor systems.
For systems to scale efficiently beyond a few CPUs, interrupt state changes
must be minimized and fine-grained locking maximized. For instance, this is a
challenge to the scalability of Linux.

6.1.4 Dispatcher
Another component involved in the CPU scheduling function is the dispatcher.
The dispatcher is the module that gives control of the CPU to the process
selected by the short-term scheduler. This function involves:

Switching context

Switching to user mode

Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, given that it is invoked during
every process switch. The time it takes for the dispatcher to stop one process
and start another running is known as the dispatch latency.

6.2 . Scheduling Criteria

Different CPU-scheduling algorithms have different properties and may favor
one class of processes over another. In choosing which algorithm to use in a
particular situation, we must consider the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algo-
rithms. The characteristics used for comparison can make a substantial dif-
ference in the determination of the best algorithm. The criteria include the
following:

CPU utilization: We want to keep the CPU as busy as possible. CPU
utilization may range from 0 to 100 percent. In a real system, it should range
from 40 percent (for a lightly loaded system) to 90 percent (for a heavily
used system).

Throughput: If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes completed per time
unit, called throughput. For long processes, this rate may be 1 process per
hour; for short transactions, throughput might be 10 processes per second.

156 Chapter 6 CPU Scheduling

a Turnaround time: From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing I/O.

Waiting time: The CPU-scheduling algorithm does not affect the amount of
time during which a process executes or does I/O; it affects only the amount
of time that a process spends waiting in the ready queue. Waiting time is
the sum of the periods spent waiting in the ready queue.

a Response time: In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early,
and can continue computing new results while previous results are being
output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the amount of time it takes to start responding, but not the
time that it takes to output that response. The turnaround time is generally
limited by the speed of the output device.

We want to maximize CPU utilization and throughput, and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, in some circumstances we want to optimize
the minimum or maximum values, rather than the average. For example,
to guarantee that all users get good service, we may want to minimize the
maximum response time.

For interactive systems (such as time-sharing systems), some analysts sug-
gest that minimizing the variance in the response time is more important than
minimizing the average response time. A system with reasonable and pre-
dictable response time may be considered more desirable than a system that
is faster on the average, but is highly variable. However, little work has been
done on CPU-scheduling algorithms to minimize variance. 1

As we discuss various CPU-scheduling algorithms, we want to illustrate
their operation. An accurate illustration should involve many processes, each
being a sequence of several hundred CPU bursts and I/O bursts. For simplicity
of illustration, we consider only one CPU burst (in milliseconds) per process in
our examples. Our measure of comparison is the average waiting time. More
elaborate evaluation mechanisms are discussed in Section 6.6.

6.3 Scheduling Algorithms 157 I
1

6.3 . Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in
the ready queue is to be allocated the CpU. In this section, we describe several
of the many CPU-scheduling algorithms that exist.

6.3.1 First-Come, First-Served Scheduling
By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU-burst time given in milliseconds:

Process Burst Time

PI 24
9 3
P3 3

If the processes arrive in the order PI, P2, P3, and are served in FCFS order,
we get the result shown in the following Gantt chart:

The waiting time is 0 milliseconds for process PI, 24 milliseconds for process PZ,
and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 +
27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however,
the results will be as shown in the following Gantt chart:

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under a FCFS policy is generally

158 Chapter 6 CPU Scheduling

not minimal, and may vary substantially if the process CPU-burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario may
result. The CPU-bound process will get the CPU and hold it. During this time, all
the other processes will finish their I/O and move into the ready queue, waiting
for the CPU. While the processes wait in the ready queue, the I/O devices are
idle. Eventually, the CPU-bound process finishes its CPU burst and moves to
an I/O device. All the I/O-bound processes, which have very short CPU bursts,
execute quickly and move back to the I/O queues. At this point, the CPU sits
idle. The CPU-bound process will then move back to the ready queue and be
allocated the CPU. Again, all the I/O processes end up waiting in the ready
queue until the CPU-bound process is done. There is a convoy effect, as all
the other processes wait for the one big process to get off the CPU. This effect
results in lower CPU and device utilization than might be possible if the shorter
processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been
allocated to a process, that process keeps the CpU until it releases the CPU,
either by terminating or by requesting I/O. The FCFS algorithm is particularly
troublesome for time-sharing systems, where each user needs to get a share of
the CPU at regular intervals. It would be disastrous to allow one process to keep
the CPU for an extended period.

6.3.2 Shortest-Job-First Scheduling
A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
latter's next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If two processes have the same length
next CPU burst, FCFS scheduling is used to break the tie. Note that a more
appropriate term would be the shortest next CPU burst, because the scheduling
is done by examining the length of the next CPU burst of a process, rather than
its total length. We use the term SJF because most people and textbooks refer to
this type of scheduling discipline as SJF.

As an example, consider the following set of processes, with the length of
the CPU-burst time given in milliseconds:

Process Burst Time

PI 6
p2 8
p3 7
p4 3

I" 7

6.3 Scheduling Algorithms 159

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

The waiting time is 3 milliseconds for process PI, 16 milliseconds for process
P2,9 milliseconds for process PS, and 0 milliseconds for process Pq. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using
the FCFS scheduling scheme, then the average waiting time would be 10.25
milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the min-
imum average waiting time for a given set of processes. By moving a short
process before a long one, the waiting time of the short process decreases more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (or job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the job.
Thus, users are motivated to estimate the process time limit accurately, since a
lower value may mean faster response. (Too low a value will cause a time-limit-
exceeded error and require resubmission.) SJF scheduling is used frequently in
long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SJF scheduling. We may not
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let t, be the length of the nth CPU
burst, and let ~ , + l be our predicted value for the next CPU burst. Then, for a,
0 < a < 1, define

This formula defines an exponential average. The value of t, contains our
most recent information; T, stores the past history. The parameter a controls
the relative weight of recent and past history in our prediction. If a = 0, then
T,+I = T,, and recent history has no effect (current conditions are assumed to be
transient); if a = 1, then T,+I = tn, and only the most recent CPU burst matters

160 Chapter 6 CPU Scheduling

time ---+

CPU burst (ti) 6 4 6 4 13 13 13 . . .

"guess" (T~) 10 8 6 6 5 9 11 12 . . .

Figure 6.3 Prediction of the length of the next CPU burst.

(history is assumed to be old and irrelevant). More commonly, a = 1 /2, so recent
history and past history are equally weighted. The initial TO can be defined as
a constant or as an overall system average. Figure 6.3 shows an exponential
average with a = 1/2 and TO = 10.

To understand the behavior of the exponential average, we can expand the
formula for rn+l by substituting for T,, to find

Since both n and (1 - a) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm may be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
executing. The new process may have a shorter next CPU burst than what is left
of the currently executing process. A preemptive SJF algorithm will preempt the
currently executing process, whereas a nonpreemptive SJF algorithm will allow
the currently running process to finish its CPU burst. Preemptive SJF scheduling
is sometimes called shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of
the CPU-burst time given in milliseconds:

6.3 Scheduling Algorithms 161

Process Arrival Time Burst Time

P1 0 8
P2 1 4
P3 2 9
p4 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

Process PI is started at time 0, since it is the only process in the queue. Process
PZ arrives at time 1. The remaining time for process P1 (7 milliseconds) is
larger than the time required by process P2 (4 milliseconds), so process P1 is
preempted, and process P2 is scheduled. The average waiting time for this
example is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A
nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

6.3.3 Priority Scheduling
The SJF algorithm is a special case of the general priority-scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the
process with the highest priority. Equal-priority processes are scheduled in
FCFS order.

An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095.
However, there is no general agreement on whether 0 is the highest or lowest
priority. Some systems use low numbers to represent low priority; others use
low numbers for high priority. This difference can lead to confusion. In this
text, we use low numbers to represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0, in the order PI, P2, ..., Ps, with the length of the CPU-burst
time given in milliseconds:

162 Chapter 6 CPU Scheduling

Process Burst Time Priority

P1 10 3
p2 1 1
p3 2 4
P4 1 5
P5 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority of
a process. For example, time limits, memory requirements, the number of open
files, and the ratio of average I/O burst to average CPU burst have been used
in computing priorities. External priorities are set by criteria that are external
to the operating system, such as the importance of the process, the type and
amount of funds being paid for computer use, the department sponsoring the
work, and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority of
the currently running process. A preemptive priority-scheduling algorithm will
preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A nonpreemptive priority-scheduling
algorithm will simply put the new process at the head of the ready queue.

A major problem with priority-scheduling algorithms is indefinite block-
ing (or starvation). A process that is ready to run but lacking the CPU can
be considered blocked-waiting for the CPU. A priority-scheduling algorithm
can leave some low-priority processes waiting indefinitely for the CPU. In a
heavily loaded computer system, a steady stream of higher-priority processes
can prevent a low-priority process from ever getting the CPU. Generally, one of
two things will happen. Either the process will eventually be run (at 2 A.M.
Sunday, when the system is finally lightly loaded), or the computer system
will eventually crash and lose all unfinished low-priority processes. (Rumor
has it that, when they shut down the IBM 7094 at MIT in 1973, they found a
low-priority process that had been submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from

6.3 Scheduling Algorithms 163

127 (low) to 0 (high), we could decrement the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact, it
would take no more than 32 hours for a priority 127 process to age to a priority
0 process.

6.3.4 Round-Robin Scheduling
The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum (or time
slice), is defined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy, however, is often quite long.
Consider the following set of processes that arrive at time 0, with the length of
the CPU-burst time given in milliseconds:

Process Burst Time

PI 24
P2 3
P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P2. Since process P2 does not need 4 milliseconds, it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once
each process has received 1 time quantum, the CPU is returned to process P1 for
an additional time quantum. The resulting RR schedule is

164 Chapter 6 CPU Scheduling

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR scheduling algorithm, no process is allocated the CPU for more

than 1 time quantum in a row. If a process' CPU burst exceeds 1 time quantum,
that process is preempted and is put back in the ready queue. The RR scheduling
algorithm is preemptive.

If there are n processes in the ready queue and the time quantum is q, then
each process gets l/n of the CPU time in chunks of at most q time units. Each
process must wait no longer than (n - 1) x q time units until its next time
quantum. For example, if there are five processes, with a time quantum of
20 milliseconds, then each process will get up to 20 milliseconds every 100
milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is very large (infinite), the
RR policy is the same as the FCFS policy. If the time quantum is very small (say
1 microsecond), the RR approach is called processor sharing, and appears (in
theory) to the users as though each of n processes has its own processor running
at l/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement 10 peripheral processors with
only one set of hardware and 10 sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in 10 slow processors rather than one fast processor. (Actually, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than 10 real processors would
have been.)

process time = 10 quantum context
switches

0

Figure 6.4 Showing how a smaller time quantum increases context switches.

6.3 Scheduling Algorithms 165 1

In software, however, we need also to consider the effect of context switch-
ing on the performance of RR scheduling. Let us assume that we have only one
process of 10 time units. If the quantum is 12 time units, the process finishes
in less than 1 time quantum, with no overhead. If the quantum is 6 time units,
however, the process requires 2 quanta, resulting in 1 context switch. If the
time quantum is 1 time unit, then 9 context switches will occur, slowing the
execution of the process accordingly (Figure 6.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the time
quantum, then about 10 percent of the CPU time will be spent in context switch.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 6.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround time is
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches will be required.

1 2 3 4 5 6 7

time quantum

Figure 6.5 Showing how turnaround time varies with the time quantum.

166 Chapter 6 CPU Scheduling

On the other hand, if the time quantum is too large, RR scheduling degener-
ates to FCFS policy. A rule of thumb is that 80 percent of the CPU bursts should
be shorter than the time quantum.

6.3.5 Multilevel Queue Scheduling
Another class of scheduling algorithms has been created for situations in which
processes are easily classified into different groups. For example, a common
division is made between foreground (or interactive) processes and back-
ground (or batch) processes. These two types of processes have different
response-time requirements, and so might have different scheduling needs. In
addition, foreground processes may have priority (or externally defined) over
background processes.

A multilevel queue-scheduling algorithm partitions the ready queue into
several separate queues (Figure 6.6). The processes are permanently assigned
to one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

highest priority

lowest priority

Figure 6.6 Multilevel queue scheduling.

6.3 Scheduling Algorithms 167

Let us look at an example of a multilevel queue-scheduling algorithm with
five queues:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted. Solaris 2 uses a form of this
algorithm.

Another possibility is to time slice between the queues. Each queue gets a
certain portion of the CPU time, which it can then schedule among the various
processes in its queue. For instance, in the foreground-background queue
example, the foreground queue can be given 80 percent of the CPU time for
RR scheduling among its processes, whereas the background queue receives 20
percent of the CPU to give to its processes in a FCFS manner.

6.3.6 Multilevel Feedback Queue Scheduling
Normally, in a multilevel queue-scheduling algorithm, processes are perma-
nently assigned to a queue on entry to the system. Processes do not move
between queues. If there are separate queues for foreground and background
processes, for example, processes do not move from one queue to the other,
since processes do not change their foreground or background nature. This
setup has the advantage of low scheduling overhead, but the disadvantage of
being inflexible.

Multilevel feedback queue scheduling, however, allows a process to move
between queues. The idea is to separate processes with different CPU-burst
characteristics. If a process uses too much CPU time, it will be moved to a
lower-priority queue. This scheme leaves I/O-bound and interactive processes
in the higher-priority queues. Similarly, a process that waits too long in a lower-
priority queue may be moved to a higher-priority queue. This form of aging
prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0

168 Chapter 6 CPU Scheduling

Figure 6.7 Multilevel feedback queues.

and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process that arrives for queue 0 will, in turn, preempt a process in
queue 1.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis, only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish its
CPU burst, and go off to its next I/O burst. Processes that need more than 8, but
less than 24, milliseconds are also served quickly, although with lower priority
than shorter processes. Long processes automatically sink to queue 2 and are
served in FCFS order with any CPU cycles left over from queues 0 and 1.

In general, a multilevel feedback queue scheduler is defined by the follow-
ing parameters:

The number of queues

The scheduling algorithm for each queue

The method used to determine when to upgrade a process to a higher-
priority queue

The method used to determine when to demote a process to a lower-priority
queue

The method used to determine which queue a process will enter when that
process needs service

6.4 Multiple-Processor Scheduling 169

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it also requires some means of selecting
values for all the parameters to define the best scheduler. Although a multilevel
feedback queue is the most general scheme, it is also the most complex.

6.4 . Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, the scheduling
problem is correspondingly more complex. Many possibilities have been tried,
and, as we saw with single-processor CPU scheduling, there is no one best
solution. In the following, we discuss briefly some of the issues concerning
multiprocessor scheduling. (Complete coverage of multiprocessor scheduling
is beyond the scope of this text; for more information, please refer to the Biblio-
graphical Notes.) We concentrate on systems where the processors are identical
(or homogeneous) in terms of their functionality; any available processor can
then be used to run any processes in the queue. We also assume uniform
memory access (UMA). In Chapters 15 through 17 we discuss systems where
processors are different (a heterogeneous system). Only programs compiled
for a given processor's instruction set could be run on that processor.

Even within a homogeneous multiprocessor, there are sometimes lirnita-
tions on scheduling. Consider a system with an I/O device attached to a private
bus of one processor. Processes wishing to use that device must be scheduled
to run on that processor, otherwise the device would not be available.

If several identical processors are available, then load sharing can occur. It
would be possible to provide a separate queue for each processor. In this case,
however, one processor could be idle, with an empty queue, while another
processor was very busy. To prevent this situation, we use a common ready
queue. All processes go into one queue and are scheduled onto any available
processor.

In such a scheme, one of two scheduling approaches may be used. In
one approach, each processor is self-scheduling. Each processor examines
the common ready queue and selects a process to execute. As we shall see
in Chapter 7, if we have multiple processors trying to access and update a
common data structure, each processor must be programmed very carefully.
We must ensure that two processors do not choose the same process, and that
processes are not lost from the queue. The other approach avoids this problem
by appointing one processor as scheduler for the other processors, thus creating
a master-slave structure.

Some systems carry this structure one step further, by having all scheduling
decisions, I/O processing, and other system activities handled by one single
processor-the master server. The other processors only execute user code.

170 Chapter 6 CPU Scheduling

This asymmetric multiprocessing is far simpler than symmetric multiprocess-
ing, because only one processor accesses the system data structures, alleviating
the need for data sharing. However, it is also not as efficient. I/O-bound pro-
cesses may bottleneck on the one CPU that is performing all of the operations.
Typically, asymmetric multiprocessing is implemented first within an operat-
ing system, and is then upgraded to symmetric multiprocessing as the system
evolves.

6.5 . Real-Time Scheduling

In Chapter 1, we gave an overview of real-time operating systems and dis-
cussed their growing importance. Here, we continue the discussion by describ-
ing the scheduling facility needed to support real-time computing within a
general-purpose computer system.

Real-time computing is divided into two types. Hard real-time systems
are required to complete a critical task within a guaranteed amount of time.
Generally, a process is submitted along with a statement of the amount of
time in which it needs to complete or perform I/O. The scheduler then either
admits the process, guaranteeing that the process will complete on time, or
rejects the request as impossible. This is known as resource reservation. Such
a guarantee requires that the scheduler know exactly how long each type
of operating-system function takes to perform, and therefore each operation
must be guaranteed to take a maximum amount of time. Such a guarantee is
impossible in a system with secondary storage or virtual memory, as we shall
show in the next few chapters, because these subsystems cause unavoidable
and unforeseeable variation in the amount of time to execute a particular
process. Therefore, hard real-time systems are composed of special-purpose
software running on hardware dedicated to their critical process, and lack the
full functionality of modern computers and operating systems.

Soft real-time computing is less restrictive. It requires that critical processes
receive priority over less fortunate ones. Although adding soft real-time func-
tionality to a time-sharing system may cause an unfair allocation of resources
and may result in longer delays, or even starvation, for some processes, it is at
least possible to achieve. The result is a general-purpose system that can also
support multimedia, high-speed interactive graphics, and a variety of tasks that
would not function acceptably in an environment that does not support soft
real-time computing.

Implementing soft real-time functionality requires careful design of the
scheduler and related aspects of the operating system. First, the system must
have priority scheduling, and real-time processes must have the highest prior-
ity. The priority of real-time processes must not degrade over time, even though
the priority of non-real-time processes may. Second, the dispatch latency must
be small. The smaller the latency, the faster a real-time process can start execut-
ing once it is runable.

6.5 Real-Time Scheduling 171

It is relatively simple to ensure that the former property holds. For example,
we can disallow process aging on real-time processes, thereby guaranteeing that
the priority of the various processes does not change. However, ensuring the
latter property is much more involved. The problem is that many operating
systems, including most versions of UNIX, are forced to wait either for a system
call to complete or for an I/O block to take place before doing a context switch.
The dispatch latency in such systems can be long, since some system calls are
complex and some 1 /0 devices are slow.

To keep dispatch latency low, we need to allow system calls to be pre-
emptible. There are several ways to achieve this goal. One is to insert pre-
emption points in long-duration system calls, that check to see whether a high-
priority process needs to be run. If so, a context switch takes place and, when
the high-priority process terminates, the interrupted process continues with the
system call. Preemption points can be placed at only "safe" locations in the
kernel-only where kernel data structures are not being modified. Even with
preemption points dispatch latency can be large, because only a few preemption
points can be practically added to a kernel.

Another method for dealing with preemption is to make the entire kernel
preemptible. So that correct operation is ensured, all kernel data structures
must be protected through the use of various synchronization mechanisms
that we discuss in Chapter 7. With this method, the kernel can always be
preemptible, because any kernel data being updated are protected from mod-
ification by the high-priority process. This is the most effective (and complex)
method in widespread use; it is used in Solaris 2.

But what happens if the higher-priority process needs to read or modify
kernel data currently being accessed by another, lower-priority process? The
high-priority process would be waiting for a lower-priority one to finish. This
situation is known as priority inversion. In fact, a chain of processes could all
be accessing resources that the high-priority process needs. This problem can
be solved via the priority-inheritance protocol, in which all these processes
(the ones accessing resources that the high-priority process needs) inherit the
high priority until they are done with the resource in question. When they are
finished, their priority reverts to its original value.

In Figure 6.8, we show the makeup of dispatch latency. The conflict phase
of dispatch latency has two components:

1. Preemption of any process running in the kernel

2. Release by low-priority processes resources needed by the high-priority
process

As an example, in Solaris 2, the dispatch latency with preemption disabled is
over 100 milliseconds. However, the dispatch latency with preemption enabled
is usually reduced to 2 milliseconds.

172 Chapter 6 CPU Scheduling

event response to event

4 response interval B

___)

time

process made

Figure 6.8 Dispatch latency.

6.6 . Algorithm Evaluation

real-time
process

execution '

interrupt
processing

I w

How do we select a CPU-scheduling algorithm for a particular system? As we
saw in Section 6.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algo-
rithm. As we saw in Section 6.2, criteria are often defined in terms of CPU
utilization, response time, or throughput. To select an algorithm, we must
first define the relative importance of these measures. Our criteria may include
several measures, such as:

available

dispatch latency b

c O n f i c t s t dispatch --+

Maximize CPU utilization under the constraint that the maximum response
time is 1 second.

Maximize throughput such that turnaround time is (on average) linearly
proportional to total execution time.

Once the selection criteria have been defined, we want to evaluate the
various algorithms under consideration. We describe the different evaluation
methods in Sections 6.6.1 through 6.6.4.

6.6 Algorithm Evaluation 173

6.6.1 Deterministic Modeling
One major class of evaluation methods is called analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload.

For example, assume that we have the workload shown. All five processes
arrive at time 0, in the order given, with the length of the CPU-burst time given
in milliseconds:

Process Burst Time

P1 10
p2 29
P3 3
p4 7
p5 12

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling algo-
rithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

0 10 39 42 49 6 1

The waiting time is 0 milliseconds for process PI, 10 milliseconds for process
P2, 39 milliseconds for process Pb, 42 milliseconds for process P4, and 49
milliseconds for process Ps. Thus, the average waiting time is (0 + 10 + 39 +
42 + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute the processes as

0 3 10 20 32 61

The waiting time is 10 milliseconds for process PI, 32 milliseconds for process
P2, 0 milliseconds for process PJ, 3 milliseconds for process P4, and 20 millisec-
onds for process P5. Thus, the average waiting time is (10 + 32 + 0 + 3 + 20)/5 =
13 milliseconds.

174 Chapter 6 CPU Scheduling

With the RR algorithm, we execute the processes as

The waiting time is 0 milliseconds for process PI, 32 milliseconds for process
P2, 20 milliseconds for process Pg, 23 milliseconds for process P4, and 40
milliseconds for process Ps. Thus, the average waiting time is (0 + 32 + 20 +
23 + 40)/5 = 23 milliseconds.

We see that, in this case, the SJF policy results in less than one-half the
average waiting time obtained with FCFS scheduling; the RR algorithm gives
us an intermediate value.

Deterministic modeling is simple and fast. It gives exact numbers, allowing
the algorithms to be compared. However, it requires exact numbers for input,
and its answers apply to only those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples.
In cases where we may be running the same programs over and over again
and can measure the program's processing requirements exactly, we may be
able to use deterministic modeling to select a scheduling algorithm. Over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time O), the
SJF policy will always result in the minimum waiting time.

In general, however, deterministic modeling is too specific, and requires too
much exact knowledge, to be useful.

6.6.2 Queueing Models
The processes that are run on many systems vary from day to day, so there is
no static set of processes (and times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and I/O bursts. These
distributions may be measured and then approximated or simply estimated.
The result is a mathematical formula describing the probability of a particular
CPU burst. Commonly, this distribution is exponential and is described by its
mean. Similarly, the distribution of times when processes arrive in the system
-the arrival-time distribution-must be given.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is the
I/O system with its device queues. Knowing arrival rates and service rates, we
can compute utilization, average queue length, average wait time, and so on.
This area of study is called queueing-network analysis.

6.6 Algorithm Evaluation 175

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). Then, we expect that during the time W that a process waits, X
x W new processes will arrive in the queue. If the system is in a steady state,
then the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

This equation is known as Little's formula. Little's formula is particularly
useful because it is valid for any scheduling algorithm and arrival distribution.

We can use Little's formula to compute one of the three variables, if we
know the other two. For example, if we know that seven processes arrive every
second (on average), and that there are normally 14 processes in the queue, then
we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms, but
it also has limitations. At the moment, the classes of algorithms and distribu-
tions that can be handled are fairly limited. The mathematics of complicated
algorithms or distributions can be difficult to work with. Thus, arrival and ser-
vice distributions are often defined in unrealistic, but mathematically tractable,
ways. It is also generally necessary to make a number of independent assump-
tions, that may not be accurate. Thus, so that they will be able to compute an
answer, queueing models are often only an approximation of a real system. As
a result, the accuracy of the computed results may be questionable.

6.6.3 Simulations
To get a more accurate evaluation of scheduling algorithms, we can use sim-
ulations. Simulations involve programming a model of the computer sys-
tem. Software data structures represent the major components of the system.
The simulator has a variable representing a clock; as this variable's value is
increased, the simulator modifies the system state to reflect the activities of the
devices, the processes, and the scheduler. As the simulation executes, statistics
that indicate algorithm performance are gathered and printed.

The data to drive the simulation can be generated in several ways. The most
common method uses a random-number generator, which is programmed to
generate processes, CPU-burst times, arrivals, departures, and so on, according
to probability distributions. The distributions may be defined mathematically
(uniform, exponential, Poisson) or empirically. If the distribution is to be
defined empirically, measurements of the actual system under study are taken.
The results are used to define the actual distribution of events in the real system,
and this distribution can then be used to drive the simulation.

176 Chapter 6 CPU Scheduling

performance
statistics
for FCFS

performance
statistics
for SJF

performance
statistics

for RR(q = 14)

Figure 6.9 Evaluation of CPU schedulers by simulation.

A distribution-driven simulation may be inaccurate, however, due to rela-
tionships between successive events in the real system. The frequency distribu-
tion indicates only how many of each event occur; it does not indicate anything
about the order of their occurrence. To correct this problem, we can use trace
tapes. We create a trace tape by monitoring the real system, recording the
sequence of actual events (Figure 6.9). This sequence is then used to drive the
simulation. Trace tapes provide an excellent way to compare two algorithms on
exactly the same set of real inputs. This method can produce accurate results
for its inputs.

Simulations can be expensive, however, often requiring hours of computer
time. A more detailed simulation provides more accurate results, but also
requires more computer time. In addition, trace tapes can require large amounts
of storage space. Finally, the design, coding, and debugging of the simulator
can be a major task.

6.6.4 Implementation
Even a simulation is of limited accuracy. The only completely accurate way to
evaluate a scheduling algorithm is to code it, put it in the operating system, and
see how it works. This approach puts the actual algorithm in the real system
for evaluation under real operating conditions.

6.7 Process Scheduling Models 177

The major difficulty is the cost of this approach. The expense is incurred not
only in coding the algorithm and modifying the operating system to support it
as well as its required data structures, but also in the reaction of the users to a
constantly changing operating system. Most users are not interested in building
a better operating system; they merely want to get their processes executed
and to use their results. A constantly changing operating system does not help
the users to get their work done. A form of this method is used commonly
for new computer installations. For instance, a new web facility may have
simulated user loads generated against it before it "goes live", to determine
any bottlenecks in the facility and to estimate how many users the system can
support.

The other difficulty with any algorithm evaluation is that the environment
in which the algorithm is used will change. The environment will change not
only in the usual way, as new programs are written and the types of problems
change, but also as a result of the performance of the scheduler. If short
processes are given priority, then users may break larger processes into sets of
smaller processes. If interactive processes are given priority over noninteractive
processes, then users may switch to interactive use.

For example, in DEC TOPS-20, the system classified interactive and nonin-
teractive processes automatically by looking at the amount of terminal I/O. If
a process did not input or output to the terminal in a 1-minute interval, the
process was classified as noninteractive and was moved to a lower-priority
queue. This policy resulted in a situation where one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
less than 1 minute. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms can be altered by the system
managers or by the users. During operating-system build time, boot time, or
run time, the variables used by the schedulers can be changed to reflect the
expected future use of the system. The need for flexible scheduling is another
instance where the separation of mechanism from policy is useful. For instance,
if paychecks need to be processed and printed immediately, but are normally
done as a low-priority batch job, the batch queue could be given a higher
priority temporarily. Unfortunately, few operating systems allow this type of
tunable scheduling.

6.7 Process Scheduling Models

In this section we will cover process scheduling in the Solaris 2, Windows 2000,
and Linux operating systems. However, prior to looking at these different
scheduling models, we first relate threads to process scheduling.

In Chapter 5, we introduced threads to the process model, thus allowing
a single process to have multiple threads of control. Furthermore, we dis-

178 Chapter 6 CPU Scheduling

tinguished between user-level and kernel-level threads. User-level threads are
managed by a thread library, and the kernel is unaware of them. To run on
a CPU, user-level threads are ultimately mapped to an associated kernel-level
thread, although this mapping may be indirect and use a lightweight process
(LWP). One distinction between user-level and kernel-level threads lies in how
they are scheduled. The thread library schedules user-level threads to run on an
available LWP, a scheme known as process local scheduling, in which thread
scheduling is done local to the application. Conversely, the kernel uses system
global scheduling to decide which kernel thread to schedule. We do not cover
in detail how different thread libraries locally schedule threads; thread schedul-
ing is a software-library concern rather than an operating-system concern. We
cover global scheduling because it is performed by the operating system.

6.7.1 An Example: Solaris 2

Solaris 2 uses priority-based process scheduling. It has four classes of schedul-
ing, which are, in order of priority, real time, system, time sharing, and
interactive. Each class includes different priorities and scheduling algorithms,
although time sharing and interactive use the same scheduling policies. Solaris
2 scheduling is illustrated in Figure 6.10.

A process starts with one LWP and is able to create new LWPs as needed.
Each LWP inherits the scheduling class and priority of the parent process.
The default scheduling class for a process is time sharing. The scheduling
policy for time sharing dynamically alters priorities and assigns time slices
of different lengths using a multilevel feedback queue. By default, there is
an inverse relationship between priorities and time slices: The higher the
priority, the smaller the time slice, and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority, CPU-bound
processes a lower priority. This scheduling policy gives good response time for
interactive processes and good throughput for CPU-bound processes. Solaris 2.4
introduced the interactive class to process scheduling. The interactive class uses
the same scheduling policy as the time-sharing class, but it gives windowing
applications a higher priority for better performance.

Solaris 2 uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does not
change. The system class is reserved for kernel use (user processes running in
kernel mode are not in the system class). The scheduling policy for the system
class does not time-slice. Rather, a thread belonging to the system class runs
until it either blocks or is preempted by a higher priority thread.

Threads in the real-time class are given the highest priority to run among
all classes. This assignment allows a real-time process to have a guaranteed
response from the system within a bounded period of time. A real-time process
will run before a process in any other class. In general, few processes belong to
the real-time class.

6.7 Process Scheduling Models 179

global
priority

highest

scheduling
order

first

class-
specific scheduler run

priorities classes queue

real time kernel - threads of real-
time LWPs

system n kernel
service
threads

interactive and kernel
time sharing threads of

interactive and

I I time-sharing
LWPs

lowest last

Figure 6.10 Solaris 2 scheduling.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities, and selects to run the
thread with the highest global priority. The selected thread runs on the CPU
until one of the following occurs:

1. It blocks

2. It uses its time slice (if it is not a system thread)

3. It is preempted by a higher-priority thread

If multiple threads have the same priority, the scheduler uses a round-robin
queue.

180 Chapter 6 CPU Scheduling

6.7.2 An Example: Windows 2000

Windows 2000 schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows 2000 scheduler ensures the highest-priority thread will
always run. The portion of the Windows 2000 kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run
until it is preempted by a higher-priority thread, until it terminates, until its
time quantum ends, or until it calls a blocking system call, such as for I/O. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption
gives a real-time thread preferential access to the CPU when the thread needs
such access. Windows 2000 is not a hard real-time operating system, however,
because it does not guarantee that a real-time thread will start to execute within
any particular time limit.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: the variable class
contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority, and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows 2000
kernel and the Win32 API. The Win32 API identifies several priority classes that
a process may belong to. These include:

REALTIME-PRIORITY -CLASS

HIGH-PRIORITY _CLASS

ABOVE-NORMAL-PRIORITY-CLASS

NORMAL-PRIORITY -CLASS

BELOWNORMAL-PRIORITY-CLASS

IDLEPRIORITY -CLASS

All priority classes except the REALTIME-PRIORITY-CLASS are variable class
priorities, meaning that the priority of a thread belonging to one of these classes
can change.

Within each of these priority classes is a relative priority. The values for
relative priority include:

TIME-CRITICAL

HIGHEST

6.7 Process Scheduling Models 181

ABOVE-NORMAL

NORMAL

LOWEST

IDLE

The priority of each thread is based upon the priority class it belongs to and the
relative priority within the class. This relationship is shown in Figure 6.11. The
values of each priority class appear in the top row. The left column contains the
values for the different relative priorities. For example, if the relative priority
of a thread in the ABOVE-NORMALPRIORITY-CLASS is NORMAL, the numeric
priority of that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

HIGHPRIORITY-CLASS- 13.

ABOVE-NORMALPRIORITY-CLASS- 10.

NORMAL-PRIORITY-CLASS - 8.

IDLEPRIORITY _CLASS -4.

Figure 6.11 Windows 2000 priorities.

I

182 Chapter 6 CPU Scheduling

Processes are typically members of the NORMAL-PRIORITY-CLASS unless
the parent of the process was of the IDLE-PRIORITY-CLASS, or another class
was specified when the process was created. The initial priority of a thread
is typically the base priority of the process the thread belongs to.

When a thread's time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread's
priority tends to limit the CPU consumption of compute-bound threads. When a
variable-priority thread is released from a wait operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get a large
priority increase, whereas a thread waiting for a disk operation would get a
moderate one. This strategy tends to give good response times to interactive
threads that are using the mouse and windows, and enables I/O-bound threads
to keep the I/O devices busy, while permitting compute-bound threads to use
spare CPU cycles in the background. This strategy is used by several time-
sharing operating systems, including UNIX. In addition, the current window
with which the user is interacting also receives a priority boost to enhance its
response time.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows 2000
has a special scheduling rule for processes in the NORMALTRIORITY-CLASS.
Windows 2000 distinguishes between the foreground process that is currently
selected on the screen, and the background processes that are not currently
selected. When a process moves into the foreground, Windows 2000 increases
the scheduling quantum by some factor-typically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
occurs.

6.7.3 An Example: Linux
Linux provides two separate process-scheduling algorithms. One is a time-
sharing algorithm for fair preemptive scheduling among multiple processes;
the other is designed for real-time tasks where absolute priorities are more
important than fairness. In Section 6.5, we described a situation in which real-
time systems must allow the kernel to be preempted to keep dispatch latency
low. Linux allows only processes running in user mode to be preempted. A
process may not be preempted while it is running in kernel mode, even if a
real-time process with a higher priority is available to run.

Part of every process' identity is a scheduling class, that defines which
of these algorithms to apply to the process. The scheduling classes used by
Linux are defined in the POSIX standard's extensions for real-time computing
(POSIX.4, now known as POSIX.lb).

6.7 Process Scheduling Models 183

The first scheduling class is for time-sharing processes. For conventional,
time-shared processes, Linux uses a prioritized, credit-based algorithm. Each
process possesses a certain number of scheduling credits; when a new task must
be chosen to run, the process with the most credits is selected. Every time that a
timer interrupt occurs, the currently running process loses one credit; when its
credits reaches zero, it is suspended and another process is chosen.

If no runnable processes have any credits, then Linux performs a recrediting
operation, adding credits to every process in the system (rather than to just the
runable ones), according to the following rule:

credits
credits = ---

2
+ priority

This algorithm tends to mix two factors: the process' history and its priority.
One-half of the credits that a process still holds since the previous recrediting
operation will be retained after the algorithm has been applied, retaining some
history of the process' recent behavior. Processes that are running all the
time tend to exhaust their credits rapidly, but processes that spend much of
their time suspended can accumulate credits over multiple recreditings and
consequently end up with a higher credit count after a recredit. This crediting
system automatically gives high priority to interactive or I/O-bound processes,
for which a rapid response time is important.

The use of a process priority in calculating new credits allows the priority
of a process to be fine-tuned. Background batch jobs can be given a low pri-
ority; they will automatically receive fewer credits than interactive users' jobs,
and hence will receive a smaller percentage of the CPU time than will similar
jobs with higher priorities. Linux uses this priority system to implement the
standard UNIX nice process-priority mechanism. Linux's real-time scheduling
is simpler still. Linux implements the two real-time scheduling classes required
by POSIX.lb: first come, first served (FCFS), and round-robin (RR) (Sections 6.3.1
and 6.3.4, respectively). In both cases, each process has a priority in addition
to its scheduling class. In time-sharing scheduling, however, processes of dif-
ferent priorities can still compete with one another to some extent; in real-time
scheduling, the scheduler always runs the process with the highest priority.
Among processes of equal priority, it runs the process that has been waiting
longest. The only difference between FCFS and RR scheduling is that FCFS
processes continue to run until they either exit or block, whereas a round-robin
process will be preempted after a while and will be moved to the end of the
scheduling queue, so round-robin processes of equal priority will automatically
time share among themselves.

Note that Linux's real-time scheduling is soft-rather than hard-real
time. The scheduler offers strict guarantees about the relative priorities of
real-time processes, but the kernel does not offer any guarantees about how
quickly a real-time process will be scheduled once that process becomes run-
able. Remember that Linux kernel code can never be preempted by user-mode

184 Chapter 6 CPU Scheduling

code. If an interrupt arrives that wakes up a real-time process while the kernel
is already executing a system call on behalf of another process, the real-time
process will just have to wait until the currently running system call completes
or blocks.

6.8 . Summary

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SJF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult because predicting the
length of the next CPU burst is difficult. The SJF algorithm is a special case of
the general priority-scheduling algorithm, which simply allocates the CPU to
the highest-priority process. Both priority and SJF scheduling may suffer from
starvation. Aging is a technique to prevent starvation.

Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for q time units, where q is the time quantum. After q time units, if
the process has not relinquished the CPU, it is preempted and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The
SJF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for var-
ious classes of processes. The most common is a foreground interactive queue,
which uses RR scheduling, and a background batch queue, which uses FCFS
scheduling. Multilevel feedback queues allow processes to move from one
queue to another.

Because such a wide variety of scheduling algorithms are available, we
need methods to select among them. Analytic methods use mathematical anal-
ysis to determine the performance of an algorithm. Simulation methods deter-
mine performance by imitating the scheduling algorithm on a "representative"
sample of processes, and computing the resulting performance.

Operating systems supporting threads at the kernel level must schedule
threads-not processes-for execution. This is the case with Solaris 2 and
Windows 2000 where both systems schedule threads using preemptive, priority-
based scheduling algorithms including support for real-time threads. The
Linux process scheduler also uses a priority-based algorithm with real-time

Exercises 185

support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

Exercises

6.1 A CPU-scheduling algorithm determines an order for the execution of its
scheduled processes. Given n processes to be scheduled on one processor,
how many different schedules are possible? Give a formula in terms of n.

6.2 Define the difference between preemptive and nonpreemptive scheduling.
State why strict nonpreemptive scheduling is unlikely to be used in a
computer center.

6.3 Consider the following set of processes, with the length of the CPU-burst
time given in milliseconds:

Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 3
p4 1 4
P5 5 2

The processes are assumed to have arrived in the order PI, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts illustrating the execution of these processes
using FCFS, SJF, a nonpreemptive priority (a smaller priority number
implies a higher priority), and RR (quantum = 1) scheduling.

b. What is the turnaround time of each process for each of the schedul-
ing algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the schedules in part a results in the minimal average
waiting time (over all processes)?

6.4 Suppose that the following processes arrive for execution at the times
indicated. Each process will run the listed amount of time. In answering
the questions, use nonpreemptive scheduling and base all decisions on the
information you have at the time the decision must be made.

186 Chapter 6 CPU Scheduling

Process Arrival Time Burst Time

PI 0.0 8
p2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the SJF
scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process PI at time 0 because we did not know
that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CpU is left idle for the first
1 unit and then SJF scheduling is used. Remember that processes
P1 and PZ are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

6.5 Consider a variant of the RR scheduling algorithm where the entries in the
ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same process
in the ready queue?

b. What would be the major advantages and disadvantages of this
scheme?

c. How would you modify the basic RR algorithm to achieve the same
effect without the duplicate pointers?

6.6 What advantage is there in having different time-quantum sizes on differ-
ent levels of a multilevel queueing system?

6.7 Consider the following preemptive priority-scheduling algorithm based
on dynamically changing priorities. Larger priority numbers imply higher
priority. When a process is waiting for the CPU (in the ready queue, but
not running), its priority changes at a rate a; when it is running, its priority
changes at a rate P. All processes are given a priority of 0 when they enter
the ready queue. The parameters a and P can be set to give many different
scheduling algorithms.

a. What is the algorithm that results from P > a > O?

b. What is the algorithm that results from a! < /3 < O?

6.8 Many CPU-scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel

Bibliographical Notes 187

feedback queues require parameters to define the number of queues, the
scheduling algorithms for each queue, the criteria used to move processes
between queues, and so on.

These algorithms are thus really sets of algorithms (for example, the
set of RR algorithms for all time slices, and so on). One set of algorithms
may include another (for example, the FCFS algorithm is the RR algorithm
with an infinite time quantum). What (if any) relation holds between the
following pairs of sets of algorithms?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RRandSJF

6.9 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor time
in the recent past. Why will this algorithm favor I/O-bound programs and
yet not permanently starve CPU-bound programs?

6.10 Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

Bibliographical Notes

Lampson [I9681 provided general discussions concerning scheduling. More
formal treatments of scheduling theory were contained in Kleinrock [1975],
Sauer and Chandy [1981], and Lazowska et al. [1984]. A unifying approach
to scheduling was presented by Ruschizka and Fabry [1977]. Haldar and
Subramanian [I9911 discuss fairness in processor scheduling in time-sharing
systems.

Feedback queues were originally implemented on the CTSS system
described in Corbato et al. [1962]. This feedback queueing system was
analyzed by Schrage [1967]; variations on multilevel feedback queues were
studied by Coffman and Kleinrock [1968]. Additional studies were presented
by Coffman and Denning [I9731 and Svobodova [1976]. A data structure for
manipulating priority queues was presented by Vuillemin [1978].

Anderson et al. 119891 discussed thread scheduling. Discussions concerning
I multiprocessor scheduling were presented by Jones and Schwarz [1980], Tucker
I

188 Chapter 6 CPU Scheduling

and Gupta [1989], Zaho rjan and McCann [1990], Feitelson and Rudolph [1990],
and Leutenegger and Vernon [1990].

Discussions concerning scheduling in real-time systems were offered by
Liu and Layland [1973], Abbot [1984], Jensen et al. 119851, Hong et al. [1989],
and Khanna et al. 119921. A special issue on real-time operating systems was
edited by Zhao [1989]. Eykholt et al. 119921 described the real-time component
of Solaris 2.

Fair-share schedulers were covered by Henry [1984], Woodside [1986], and
Kay and Lauder [1988].

Details concerning scheduling in Solaris 2, Windows 2000, and Linux can be
found in Mauro and McDougall [2001], Solomon and Russinovich [2000], and
Bovet and Cesati [2001] respectively.

Chapter 7

PROCESS
SYNCHRONIZATIO

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes may either directly share a
logical address space (that is, both code and data), or be allowed to share data
only through files. The former case is achieved through the use of lightweight
processes or threads, which we discussed in Section 5. Concurrent access to
shared data may result in data inconsistency. In this chapter, we discuss various
mechanisms to ensure the orderly execution of cooperating processes that share
a logical address space, so that data consistency is maintained.

1 7.1 . Background

In Chapter 4, we developed a model of a system consisting of a number of
cooperating sequential processes, all running asynchronously and possibly
sharing data. We illustrated this model with the bounded-buffer scheme, which
is representative of operating systems.

Let us return to the shared-memory solution to the bounded-buffer prob-
lem that we presented in Section 4.4. As we pointed out, our solution allows
at most BUFFER-SIZE - 1 items in the buffer at the same time. Suppose that
we want to modify the algorithm to remedy this deficiency. One possibility is

I
to add an integer variable counter, initialized to 0. counter is incremented
every time we add a new item to the buffer, and is decremented every time
we remove one item from the buffer. The code for the producer process can be
modified as follows:

190 Chapter 7 Process Synchronization

while (1) {
/* produce an item in nextproduced */
while (counter == BUFFER-SIZE)

; /* do nothing */
buffer [in] = nextproduced;
in = (in + I) % BUFFER-SIZE;
counter++;

}

The code for the consumer process can be modified as follows:

while (1) {
while (counter == 0)

; /* do nothing */
nextconsumed = buffer [out] ;
out = (out + 1) % BUFFER-SIZE;
counter--;
/* consume the item in nextconsumed */

1
Although both the producer and consumer routines are correct separately,

they may not function correctly when executed concurrently. As an illustration,
suppose that the value of the variable counter is currently 5, and that the
producer and consumer processes execute the statements "counter++" and
"counter--" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result
is counter == 5, which is generated correctly if the producer and consumer
execute separately.

We can show that the value of ccunter may be incorrect as follows. Note
that the statement "counter++" may be implemented in machine language (on
a typical machine) as

registerl = counter
registerl = registerl + 1
counter = registerl

where register1 is a local CPU register. Similarly, the statement "counter--" is
implemented as follows:

register2 = counter
register2 = register:! - 1
counter = register2

where again register2 is a local CPU register. Even though register1 and register2
may be the same physical register (an accumulator, say), remember that the

7.2 The Critical-Section Problem 191

contents of this register will be saved and restored by the interrupt handler
(Section 2.1).

The concurrent execution of "counter++" and "counter--" is equivalent
to a sequential execution where the lower-level statements presented previ-
ously are interleaved in some arbitrary order (but the order within each high-
level statement is preserved). One such interleaving is

To: producer execute registerl = counter {registerl = 5)
TI: producer execute register1 = registerl + 1 {registerl = 6)
T2: consumer execute register2 = counter {register2 = 5)
T3: consumer execute register2 = register2 - 1 {register2 = 4)
Tq: producer execute counter = registerl {counter = 6)
Ts: consumer execute counter = register2 {counter = 4)

Notice that we have arrived at the incorrect state "counter == 4" recording that
there are four full buffers, when, in fact, there are five full buffers. If we reversed
the order of the statements at T4 and T5, we would arrive at the incorrect state
"counter == 6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter . To make such a guarantee, we require some form of
synchronization of the processes. Such situations occur frequently in operating
systems as different parts of the system manipulate resources and we want the
changes not to interfere with one another. A major portion of this chapter is
concerned with the issue of process synchronization and coordination.

7.2 . The Critical-Section Problem

Consider a system consisting of n processes {Po,P1, ..., P,-1). Each process
has a segment of code, called a critical section, in which the process may be
changing common variables, updating a table, writing a file, and so on. The
important feature of the system is that, when one process is executing in its
critical section, no other process is to be allowed to execute in its critical section.
Thus, the execution of critical sections by the processes is mutually exclusive
in time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the

, remainder section. ,

192 Chapter 7 Process Synchronization

(entry section (

critical section

remainder section

) while (1);

Figure 7.1 General structure of a typical process Pi.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual Exclusion: If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress: If no process is executing in its critical section and some processes
wish to enter their critical sections, then only those processes that are
not executing in their remainder section can participate in the decision
on which will enter its critical section next, and this selection cannot be
postponed indefinitely.

3. Bounded Waiting: There exists a bound on the number of times that other
processes are allowed to enter their critical sections after a process has made
a request to enter its critical section and before that request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

In Sections 7.2.1 and 7.2.2, we work up to solutions to the critical-section
problem that satisfy these three requirements. The solutions do not rely on any
assumptions concerning the hardware instructions or the number of processors
that the hardware supports. We do, however, assume that the basic machine-
language instructions (the primitive instructions such as load, s tore , and
t e s t) are executed atomically. That is, if two such instructions are executed
concurrently, the result is equivalent to their sequential execution in some
unknown order. Thus, if n load and a s t o r e are executed concurrently, the
load will get either the old value or the new value, but not some combination
of the two.

When presenting an algorithm, we define only the variables used for syn-
chronization purposes, and describe only a typical process Pi whose general
structure is shown in Figure 7.1. The entry section and exit section are enclosed
in boxes to highlight these important segments of code.

7.2 The Critical-Section Problem 193

1 while (t u rn != i) ; 1

critical section

(t u r n = j ; (

remainder section

) while (1);

Figure 7.2 The structure of process Pi in algorithm 1.

7.2.1 Two-Process Solutions
In this section, we restrict our attention to algorithms that are applicable to
only two processes at a time. The processes are numbered Po and PI. For
convenience, when presenting Pi, we use Pi to denote the other process; that
is, j == 1 - i .

7.2.1.1 Algorithm 1

Our first approach is to let the processes share a common integer variable t u r n
initialized to 0 (or 1). If t u r n == i, then process Pi is allowed to execute in its
critical section. The structure of process Pi is shown in Figure 7.2.

This solution ensures that only one process at a time can be in its critical
section. However, it does not satisfy the progress requirement, since it requires
strict alternation of processes in the execution of the critical section. For
example, if t u r n == 0 and PI is ready to enter its critical section, PI cannot
do so, even though Po may be in its remainder section.

7.2.1.2 Algorithm 2

The problem with algorithm 1 is that it does not retain sufficient information
about the state of each process; it remembers only which process is allowed to
enter its critical section. To remedy this problem, we can replace the variable
turn with the following array:

boolean f l a g C21 ;

The elements of the array are initialized to false. If f l a g [il is t rue , this value
indicates that Pi is ready to enter the critical section. The structure of process Pi
is shown in Figure 7.3.

In this algorithm, process Pi first sets f l a g [il to be t rue, signaling that it
is ready to enter its critical section. Then, Pi checks to verify that process Pi is

194 Chapter 7 Process Synchronization

do {

while (f l a g [j l) ;

critical section

f l a g [i l = f a l s e ;

remainder section

) while (1);

Figure 7.3 The structure of process Pi in algorithm 2.

not also ready to enter its critical section. If Pi were ready, then Pi would wait
until Pi had indicated that it no longer needed to be in the critical section (that
is, until f l a g [j I was false) . At this point, Pi would enter the critical section.
On exiting the critical section, Pi would set f l a g [i l to be fa lse , allowing the
other process (if it is waiting) to enter its critical section.

In this solution, the mutual-exclusion requirement is satisfied. Unfortu-
nately, the progress requirement is not met. To illustrate this problem, we
consider the following execution sequence:

To: Po sets f l a g [OI = t r u e
TI: P1setsflagCll = t r u e

Now Po and PI are looping forever in their respective while statements.
This algorithm is crucially dependent on the exact timing of the two pro-

cesses. The sequence could have been derived in an environment where there
are several processors executing concurrently, or where an interrupt (such as a
timer interrupt) occurs immediately after step To is executed, and the CPU is
switched from one process to another.

Note that switching the order of the instructions for setting f l a g [il, and
testing the value of a f l a g [j] , will not solve our problem. Rather, we will have
a situation where it is possible for both processes to be in the critical section at
the same time, violating the mutual-exclusion requirement.

7.2.1.3 Algorithm 3

By combining the key ideas of algorithm 1 and algorithm 2, we obtain a correct
solution to the critical-section problem, where all three requirements are met.
The processes share two variables:

boolean f l a g [21;
i n t tu rn ;

7.2 The Critical-Section Problem 195

Initially f l a g [O] = f l a g [I] = f a l s e , and the value of t u r n is immaterial (but
is either 0 or 1). The structure of process Pi is shown in Figure 7.4.

To enter the critical section, process Pi first sets f l a g [il to be t r u e and
then sets t u r n to the value j, thereby asserting that if the other process wishes
to enter the critical section it can do so. If both processes try to enter at the
same time, t u r n will be set to both i and j at roughly the same time. Only
one of these assignments will last; the other will occur, but will be overwritten
immediately. The eventual value of t u r n decides which of the two processes is
allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved,

2. The progress requirement is satisfied,

3. The bounded-waiting requirement is met.

To prove property 1, we note that each P, enters its critical section only
if either f l a g [j l == f a l s e or t u r n == i. Also note that, if both processes
can be executing in their critical sections at the same time, then f l a g COI ==
f l a g [ll == t rue . These two observations imply that Po and PI could not
have successfully executed their while statements at about the same time, since
the value of t u r n can be either 0 or 1, but cannot be both. Hence, one of
the processes-say Pj-must have successfully executed the while statement,
whereas Pi had to execute at least one additional statement ("turn == j").
However, since, at that time, f l a g Cjl == t rue, and t u r n == j, and this
condition will persist as long as Pi is in its critical section, the result follows:
Mutual exclusion is preserved.

critical section

I flagCi1 = f a l s e ; 1
remainder section

) while (1);

Figure 7.4 The structure of process Pi in algorithm 3.

196 Chapter 7 Process Synchronization

To prove properties 2 and 3, we note that a process Pi can be prevented
from entering the critical section only if it is stuck in the while loop with the
condition f l a g [j1 == t r u e and tu rn == j; this loop is the only one. If Pi is not
ready to enter the critical section, then f l a g [j I == f a l s e and Pi can enter its
critical section. If Pi has set f l a g C jl to t r u e and is also executing in its while
statement, then either tu rn == i or tu rn == j. If t u rn == i , then Pi will enter
the critical section. If t u rn == j, then Pi will enter the critical section. However,
once Pi exits its critical section, it will reset f l a g [j l to fa lse , allowing Pi to
enter its critical section. If Pi resets f l a g [j 1 to t rue, it must also set tu rn to i .
Thus, since Pi does not change the value of the variable tu rn while executing
the while statement, Pi will enter the critical section (progress) after at most
one entry by Pi (bounded waiting).

7.2.2 Multiple-Process Solutions
We have seen that algorithm 3 solves the critical-section problem for two
processes. Now let us develop an algorithm for solving the critical-section
problem for n processes. This algorithm is known as the bakery algorithm, and
it is based on a scheduling algorithm commonly used in bakeries, ice-cream
stores, deli counters, motor-vehicle registries, and other locations where order
must be made out of chaos. This algorithm was developed for a distributed
environment, but at this point we are concerned with only those aspects of the
algorithm that pertain to a centralized environment.

On entering the store, each customer receives a number. The customer with
the lowest number is served next. Unfortunately, the bakery algorithm cannot
guarantee that two processes (customers) do not receive the same number. In
the case of a tie, the process with the lowest name is served first. That is, if
Pi and Pi receive the same number and if i < j, then Pi is served first. Since
process names are unique and totally ordered, our algorithm is completely
deterministic,

The common data structures are

boolean choosing [nl ;
i n t number En1 ;

Initially, these data structures are initialized to f a l s e and 0, respectively. For
convenience, we define the following notation:

(a,b) < (c,d) if a < c or if a == c and b < d.

a max(ao, ..., a,-l) is a number, k, such that k 2 ai for i = 0, ..., n - 1.

The structure of process Pi, used in the bakery algorithm, is shown in Figure 7.5.
To prove that the bakery algorithm is correct, we need first to show that, if

Pi is in its critical section and Pk (k != i) has already chosen its number k != 0,

7.3 Synchronization Hardware 197

choosing[il = true;
number [i] = max (number 101 , number [I], ... , number [n- 11) + 1;
choosing [il = false ;
for (j=O; j < n; j++) {

while (choosing [j]) ;
while ((number [j 1 != 0) && (number [j , j 1 < number [i , i])) ;

1

critical section

(number Cil = 0; I

remainder section

) while (1);

Figure 7.5 The structure of process Pi in the bakery algorithm.

then (number Cil , i) < (number [kl , k). The proof of this algorithm is left to
you in Exercise 7.3.

Given this result, it is now simple to show that mutual exclusion is
observed. Indeed, consider Pi in its critical section and Pk trying to enter the
Pk critical section. When process Pk executes the second while statement for
j == i, it finds that

numberCi1 != 0

(number [il , i) < (number [kl , k).

Thus, it continues looping in the while statement until Pi leaves the Pi
critical section.

If we wish to show that the progress and bounded-waiting requirements
are preserved, and that the algorithm ensures fairness, it is sufficient to observe
that the processes enter their critical section on a first-come, first-served basis.

7.3 Synchronization Hardware

As with other aspects of software, hardware features can make the program-
ming task easier and improve system efficiency. In this section, we present
some simple hardware instructions that are available on many systems, and
show how they can be used effectively in solving the critical-section problem.

198 Chapter 7 Process Synchronization

boolean TestAndSet(boo1ean &target) {
boolean rv = target;
target = true;
return rv;

1

Figure 7.6 The definition of the TestAndSet instruction.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could forbid interrupts to occur while a shared variable is being
modified. In this manner, we could be sure that the current sequence of instruc-
tions would be allowed to execute in order without preemption. No other
instructions would be run, so no unexpected modifications could be made to
the shared variable.

Unfortunately, this solution is not feasible in a multiprocessor environment.
Disabling interrupts on a multiprocessor can be time-consuming, as the mes-
sage is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system's clock, if the clock is kept updated by interrupts.

Many machines therefore provide special hardware instructions that allow
us either to test and modify the content of a word, or to swap the contents
of two words, atomically-that is, as one uninterruptible unit. We can use
these special instructions to solve the critical-section problem in a relatively
simple manner. Rather than discussing one specific instruction for one specific
machine, let us abstract the main concepts behind these types of instructions.

The TestAndSet instruction can be defined as shown in Figure 7.6. The
important characteristic is that this instruction is executed atomically. Thus, if
two TestAndSet instructions are executed simultaneously (each on a different
CPU), they will be executed sequentially in some arbitrary order.

[while (TestAndSet (lock)) ; 1
critical section

lock = false;

remainder section

} while (1);

Figure 7.7 Mutual-exclusion implementation with Test AndSet.

7.3 Synchronization Hardware 199
I

void Swap(boo1ean &a, boolean &b) {
boolean temp = a ;
a = b ;
b = temp;

1

Figure 7.8 The definition of the Swap instruction.

If the machine supports the TestAndSet instruction, then we can imple-
ment mutual exclusion by declaring a Boolean variable lock , initialized to
fa l se . The structure of process Pi is shown in Figure 7.7.

The Swap instruction, defined as shown in Figure 7.8, operates on the con-
tents of two words; like the TestAndSet instruction, it is executed atomically.

If the machine supports the Swap instruction, then mutual exclusion can
be provided as follows. A global Boolean variable lock is declared and is
initialized to f a l s e . In addition, each process also has a local Boolean variable
key. The structure of process Pi is shown in Figure 7.9.

These algorithms do not satisfy the bounded-waiting requirement. We
present an algorithm that uses the TestAndSet instruction in Figure 7.10.
This algorithm satisfies all the critical-section requirements. The common data
structures are

boolean wait ing In] ;
boolean lock;

These data structures are initialized to f a l s e . To prove that the mutual-
exclusion requirement is met, we note that process Pi can enter its critical section

while (key == t r u e)

critical section

remainder section

} while (1);

Figure 7.9 Mutual-exclusion implementation with the Swap instruction.

200 Chapter 7 Process Synchronization

waiting [il = t r u e ;
key = t r u e ;
while (wai t ing[i l && key)

key = TestAndSet (lock) ;

wai t ingr i l = f a l s e ;

critical section

j = (i + l) % n;
while ((j != i) && !wa i t i ng [j l>

j = (j + l) % n;
i f (j == i>

lock = f a l s e ;
e l s e

waitingCj1 = f a l s e ;

remainder section

) while (1);

Figure 7.10 Bounded-waiting mutual exclusion with TestAndSet.

only if either waitingCi1 == f a l s e or key == f a l s e . The value of key
can become f a l s e only if the TestAndSet is executed. The first process to
execute the TestAndSet will find key == f a l s e ; all others must wait. The
variable waitingEi1 can become f a l s e only if another process leaves its
critical section; only one waiting [i l is set to f a l s e , maintaining the mutual-
exclusion requirement.

To prove the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to f a l s e , or sets waiting [j l to f a l s e . Both
allow a process that is waiting to enter its critical section to proceed.

To prove the bounded-waiting requirement is met, we note that, when a
process leaves its critical section, it scans the array waiting in the cyclic order-
ing (i + 1, i + 2, ..., n - 1,O, ..., i - 1). It designates the first process in this ordering
that is in the entry section (waiting [jl == t r ue) as the next one to enter the
critical section. Any process waiting to enter its critical section will thus do
so within n - 1 turns. Unfortunately for hardware designers, implementing
atomic TestAndSet instructions on multiprocessors is not a trivial task. Such
implementations are discussed in books on computer architecture.

7.4 Semaphores 201

7.4 . Semaphores

The solutions to the critical-section problem presented in Section 7.3 are not
easy to generalize to more complex problems. To overcome this difficulty, we
can use a synchronization tool called a semaphore. A semaphore S is an integer
variable that, apart from initialization, is accessed only through two standard
atomic operations: wait and s igna l . These operations were originally termed
P (for wait; from the Dutch proberen, to test) and V (for signal; from verhogen, to
increment). The classical definition of wait in pseudocode is

wait(S) {
while (S 5 0)

; / / no-op
s--;

1

The classical definitions of s igna l in pseudocode is

Modifications to the integer value of the semaphore in the wait and s ig-
nal operations must be executed indivisibly. That is, when one process mod-
ifies the semaphore value, no other process can simultaneously modify that
same semaphore value. In addition, in the case of the wait (S), the testing of
the integer value of S (S 5 O), and its possible modification (S--), must also
be executed without interruption. We shall see how these operations can be
implemented in Section 7.4.2; first, let us see how semaphores can be used.

7.4.1 Usage
We can use semaphores to deal with the n-process critical-section problem.
The n processes share a semaphore, mutex (standing for mutual exclusion),
initialized to 1. Each process Pi is organized as shown in Figure 7.11.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: PI with a statement
S1 and P2 with a statement S2. Suppose that we require that S2 be executed
only after S1 has completed. We can implement this scheme readily by letting
P1 and P2 share a common semaphore synch, initialized to 0, and by inserting
the statements

s1;
s igna l (synch) ;

202 Chapter 7 Process Synchronization

do {

(wait (mutex) ; I

critical section

(signal (mutex) ; 1
remainder section

) while (1);

Figure 7.11 Mutual-exclusion implementation with semaphores.

in process PI, and the statements

wait (synch) ;
s2;

in process P2. Because synch is initialized to 0, P2 will execute S2 only after PI
has invoked signal (synch) , which is after S1.

7.4.2 Implementation
The main disadvantage of the mutual-exclusion solutions of Section 7.2, and
of the semaphore definition given here, is that they all require busy waiting.
While a process is in its critical section, any other process that tries to enter its
critical section must loop continuously in the entry code. This continual looping
is clearly a problem in a real multiprogramming system, where a single CPU is
shared among many processes. Busy waiting wastes CPU cycles that some other
process might be able to use productively. This type of semaphore is also called
a spinlock (because the process "spins" while waiting for the lock). Spinlocks
are useful in multiprocessor systems. The advantage of a spinlock is that no
context switch is required when a process must wait on a lock, and a context
switch may take considerable time. Thus, when locks are expected to be held
for short times, spinlocks are useful.

To overcome the need for busy waiting, we can modify the definition of
the wait and signal semaphore operations. When a process executes the
wait operation and finds that the semaphore value is not positive, it must
wait. However, rather than busy waiting, the process can block itself. The block
operation places a process into a waiting queue associated with the semaphore,
and the state of the process is switched to the waiting state. Then, control is
transferred to the CPU scheduler, which selects another process to execute.

A process that is blocked, waiting on a semaphore S , should be restarted
when some other process executes a signal operation. The process is restarted

7.4 Semaphores 203

by a wakeup operation, which changes the process from the waiting state to
the ready state. The process is then placed in the ready queue. (The CPU may
or may not be switched from the running process to the newly ready process,
depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a "C" struct:

typedef struct {
int value ;
struct process *L;

) semaphore;

Each semaphore has an integer value and a list of processes. When a process
must wait on a semaphore, it is added to the list of processes. A signal
operation removes one process from the list of waiting processes and awakens
that process.

The wait semaphore operation can now be defined as

void wait(semaphore S) {
S.value--;
if (S.value < 0) {

add this process to S . L;
block0 ;

}
1

The signal semaphore operation can now be defined as

void signal(semaphore S) {
S.value++;
if (S.value <= 0) {

remove a process P from S . L ;
wakeup (PI ;

1
1

The block operation suspends the process that invokes it. The wakeup(P1
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that, although under the classical definition of semaphores with busy
waiting the semaphore value is never negative, this implementation may have
negative semaphore values. If the semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact is a result of

204 Chapter 7 Process Synchronization

the switching of the order of the decrement and the test in the implementation
of the wait operation. The list of waiting processes can be easily implemented
by a link field in each process control block (PCB). Each semaphore contains
an integer value and a pointer to a list of PCBs. One way to add and remove
processes from the list, that ensures bounded waiting would be to use a FIFO
queue, where the semaphore contains both head and tail pointers to the queue.
In general, however, the Iist may use any queueing strategy. Correct usage
of semaphores does not depend on a particular queueing strategy for the
semaphore lists.

The critical aspect of semaphores is that they are executed atomically. We
must guarantee that no two processes can execute wait and s ignal operations
on the same semaphore at the same time. This situation is a critical-section
problem, and can be solved in either of two ways.

In a uniprocessor environment (that is, where only one CPU exists), we
can simply inhibit interrupts during the time the wait and s ignal operations
are executing. This scheme works in a uniprocessor environment because,
once interrupts are inhibited, instructions from different processes cannot be
interleaved. Only the currently running process executes, until interrupts are
reenabled and the scheduler can regain control.

In a multiprocessor environment, inhibiting interrupts does not work.
Instructions from different processes (running on different processors) may be
interleaved in some arbitrary way. If the hardware does not provide any special
instructions, we can employ any of the correct software solutions for the critical-
section problem (Section 7.2), where the critical sections consist of the wait and
s ignal procedures.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait and s ignal operations. Rather, we
have removed busy waiting from the entry to the critical sections of application
programs. Furthermore, we have limited busy waiting to only the critical
sections of the wait and s ignal operations, and these sections are short (if
properly coded, they should be no more than about 10 instructions). Thus, the
critical section is almost never occupied, and busy waiting occurs rarely, and
then for only a short time. An entirely different situation exists with application
programs whose critical sections may be long (minutes or even hours) or may
be almost always occupied. In this case, busy waiting is extremely inefficient.

7.4.3 Deadlocks and Starvation
The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event that
can be caused only by one of the waiting processes. The event in question is the
execution of a s ignal operation. When such a state is reached, these processes
are said to be deadlocked.

7.4 Semaphores 205

To illustrate this, we consider a system consisting of two processes, Po and
PI, each accessing two semaphores, S and Q, set to the value 1:

w a i t (S) ; w a i t (4) ;
wait (Q) ; wait (S) ;

s igna l (S) ; s igna l (Q1;
s igna l (Q) ; s igna l (S) ;

Suppose that Po executes wait (S) , and then P1 executes wait (Q) . When
Po executes wait (41, it must wait until PI executes s igna l (4). Similarly,
when P1 executes wait (S), it must wait until Po executes s igna l (S) . Since
these s igna l operations cannot be executed, Po and P1 are deadlocked.

We say that a set of processes is in a deadlock state when every process in
the set is waiting for an event that can be caused only by another process in the
set. The events with which we are mainly concerned here are resource acquisition
and release. However, other types of events may result in deadlocks, as we shall
show in Chapter 8. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking or starvation,
a situation where processes wait indefinitely within the semaphore. Indefinite
blocking may occur if we add and remove processes from the list associated
with a semaphore in LIFO order.

7.4.4 Binary Semaphores
The semaphore construct described in the previous sections is commonly
known as a counting semaphore, since its integer value can range over an
unrestricted domain. A binary semaphore is a semaphore with an integer
value that can range only between 0 and 1. A binary semaphore can be sim-
pler to implement than a counting semaphore, depending on the underlying
hardware architecture. We will now show how a counting semaphore can be
implemented using binary semaphores.

Let S be a counting semaphore. To implement it in terms of binary
semaphores we need the following data structures:

binary-semaphore S1, S2;
i n t C;

Initially S1 = 1, S2 = 0, and the value of integer C is set to the initial value
of the counting semaphore S.

206 Chapter 7 Process Synchronization

The wait operation on the counting semaphore S can be implemented as
follows:

wait (S1) ;
c--;
i f (C < 0) {

s igna l (S1) ;
wait (S2) ;

The s i g n a l operation on the counting semaphore S can be implemented
as follows:

w a i t (S1) ;
C++ ;
i f (C <= 0)

s i g n a l (S2) ;
e l s e

s i g n a l (S1) ;

7.5 . Classic Problems of Synchronization

In this section, we present a number of different synchronization problems as
examples for a large class of concurrency-control problems. These problems
are used for testing nearly every newly proposed synchronization scheme.
Semaphores are used for synchronization in our solutions.

7.5.1 The Bounded-Buffer Problem
The bounded-buffer problem was introduced in Section 7.1; it is commonly used
to illustrate the power of synchronization primitives. We present here a gen-
eral structure of this scheme, without committing ourselves to any particular
implementation. We assume that the pool consists of n buffers, each capable
of holding one item. The mutex semaphore provides mutual exclusion for
accesses to the buffer pool and is initialized to the value 1. The empty and
full semaphores count the number of empty and full buffers, respectively. The
semaphore empty is initialized to the value n; the semaphore f u l l is initialized
to the value 0.

The code for the producer process is shown in Figure 7.12; the code for
the consumer process is shown in Figure 7.13. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer, or as the consumer producing empty
buffers for the producer.

7.5 Classic Problems of Synchronization 207

...
produce an item in nextp

...
wait (empty) ;
wait (mutex) ;

...
add nextp to buffer

. . .
signal(mutex1;
signal (full) ;

) while (1);

Figure 7.12 The structure of the producer process.

7.5.2 The Readers- Writers Problem
A data object (such as a file or record) is to be shared among several concurrent
processes. Some of these processes may want only to read the content of
the shared object, whereas others may want to update (that is, to read and
write) the shared object. We distinguish between these two types of processes
by referring to those processes that are interested in only reading as readers,
and to the rest as writers. Obviously, if two readers access the shared data
object simultaneously, no adverse effects will result. However, if a writer
and some other process (either a reader or a writer) access the shared object
simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared object. This synchronization problem is
referred to as the readers-writers problem. Since it was originally stated, it has

do
wait (full) ;
wait (mutex) ;

. . .
remove an item from buffer to nextc

...
signal (mutex) ;
signal (empty) ;

...
consume the item in nextc

...
) while (1);

Figure 7.13 The structure of the consumer process.

208 Chapter 7 Process Synchronization

wait (wrt) ;
. . .

writing is performed

Figure 7.14 The structure of a writer process.

been used to test nearly every new synchronization primitive. The readers-
writers problem has several variations, all involving priorities. The simplest
one, referred to as the first readers-writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish simply because a writer is waiting. The second readers-writers problem
requires that, once a writer is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present
a solution to the first readers-writers problem. Refer to the Bibliographical
Notes for relevant references on starvation-free solutions to the readers-writers
problem.

In the solution to the first readers-writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt ;
i n t readcount;

The semaphores mutex and w r t are initialized to 1; readcount is ini-
tialized to 0. The semaphore w r t is common to both the reader and writer
processes. The mutex semaphore is used to ensure mutual exclusion when the
variable readcount is updated. The readcount variable keeps track of how
many processes are currently reading the object. The semaphore w r t functions
as a mutual-exclusion semaphore for the writers. It is also used by the first or
last reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 7.14; the code for a reader
process is shown in Figure 7.15. Note that, if a writer is in the critical section
and n readers are waiting, then one reader is queued on w r t , and n - 1 readers
are queued on mutex. Also observe that, when a writer executes s igna l (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

7.5 Classic Problems of Synchronization 209

wait (mutex) ;
readcount++;
if (readcount == 1)

wait (wrt) ;
signal (mutex) ;

. . .
reading is performed
...

wait (mutex) ;
readcount--;
if (readcount == 0)

signal(wrt1;
signal (mutex) ;

Figure 7.15 The structure of a reader process.

7.5.3 The Dining-Philosophers Problem
Consider five philosophers who spend their lives thinking and eating. The
philosophers share a common circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table is a bowl of rice, and
the table is laid with five single chopsticks (Figure 7.16). When a philosopher
thinks, she does not interact with her colleagues. From time to time, a philoso-
pher gets hungry and tries to pick up the two chopsticks that are closest to
her (the chopsticks that are between her and her left and right neighbors). A
philosopher may pick up only one chopstick at a time. Obviously, she cannot
pick up a chopstick that is already in the hand of a neighbor. When a hungry
philosopher has both her chopsticks at the same time, she eats without releas-

Figure 7.16 The situation of the dining philosophers.

210 Chapter 7 Process Synchronization

do {
wait (chopstickCi1) ;
wait (chopstickC(i+l) % 51) ;

...
eat
. . .

signal (chopstick [ill ;
signal(chopstickC(i+l) % 51) ;

. . .
think
...

) while (1);

Figure 7.17 The structure of philosopher i.

ing her chopsticks. When she is finished eating, she puts down both of her
chopsticks and starts thinking again.

The dining-philosophers problem is considered a classic synchronization
problem, neither because of its practical importance nor because computer
scientists dislike philosophers, but because it is an example of a large class of
concurrency-control problems. It is a simple representation of the need to allo-
cate several resources among several processes in a deadlock- and starvation-
free manner.

One simple solution is to represent each chopstick by a semaphore. A
philosopher tries to grab the chopstick by executing a wait operation on that
semaphore; she releases her chopsticks by executing the signal operation on
the appropriate semaphores. Thus, the shared data are

semaphore chopstick 151 ;

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 7.17.

Although this solution guarantees that no two neighbors are eating simulta-
neously, it nevertheless must be rejected because it has the possibility of creating
a deadlock. Suppose that all five philosophers become hungry simultaneously,
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next. In
Section 7.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

Allow at most four philosophers to be sitting simultaneously at the table.

Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in a critical section).

7.6 Critical Regions 211

Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of star-
vation.

7.6 Critical Regions

Although semaphores provide a convenient and effective mechanism for pro-
cess synchronization, their incorrect use can still result in timing errors that are
difficult to detect, since these errors happen only if some particular execution
sequences take place, and these sequences do not always occur.

We have seen an example of such types of errors in the use of counters in
our solution to the producer-consumer problem (Section 7.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be a reasonable value-off by only 1. Nevertheless, this solution
is obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur with the use of
semaphores. To illustrate how, let us review the solution to the critical-section
problem using semaphores. All processes share a semaphore variable mutex,
which is initialized to 1. Each process must execute wait (mutex) before
entering the critical section, and signal (mutex) afterward. If this sequence is
not observed, two processes may be in their critical sections simultaneously.

Let us examine the various difficulties that may result. Note that these
difficulties will arise if even a single process is not well behaved. This situation
may be the result of an honest programming error or of an uncooperative
programmer.

Suppose that a process interchanges the order in which the wait and
signal operations on the semaphore mutex are executed, resulting in the
following execution:

signal (muted ;
...

critical section
. . .

wait (mutex) ;

In this situation, several processes may be executing in their critical sec-
tion simultaneously, violating the mutual-exclusion requirement. This error

212 Chapter 7 Process Synchronization

may be discovered only if several processes are simultaneously active in
their critical sections. Note that this situation may not always be repro-
ducible.

Suppose that a process replaces s igna l (mutex) with w a i t (mutex) . That
is, it executes

. . .
critical section

. . .
wait (mutex) ;

In this case, a deadlock will occur.

Suppose that a process omits the wait (mutex), or the signal(mutex1,
or both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated eas-
ily when semaphores are used incorrectly to solve the critical-section problem.
Similar problems may arise in the other synchronization models we discussed
in Section 7.5.

To deal with the type of errors we have outlined, a number of high-level
language constructs have been introduced. In this section, we describe one fun-
damental high-level synchronization construct- the critical region (sometimes
referred to as conditional critical region). In Section 7.7, we present another
fundamental synchronization construct-the monitor. In our presentation of
these two constructs, we assume that a process consists of some local data, and a
sequential program that can operate on the data. The local data can be accessed
by only the sequential program that is encapsulated within the same process.
That is, one process cannot directly access the local data of another process.
Processes can, however, share global data.

The critical-region high-level language synchronization construct requires
that a variable v of type T, which is to be shared among many processes, be
declared as

v: shared T;

The variable v can be accessed only inside a region statement of the following
form:

region v when B do S;

This construct means that, while statement S is being executed, no other
process can access the variable v. The expression B is a Boolean expression

7.6 Critical Regions 213

that governs the access to the critical region. When a process tries to enter the
critical-section region, the Boolean expression B is evaluated. If the expression
is true, statement S is executed. If it is false, the process relinquishes the
mutual exclusion and is delayed until B becomes true and no other process is
in the region associated with v. Thus, if the two statements,

region v when (true) S1;
region v when (true) S2;

are executed concurrently in distinct sequential processes, the result will be
equivalent to the sequential execution "S1 followed by S2" or "S2 followed by
Sl."

The critical-region construct guards against certain simple errors associated
with the semaphore solution to the critical-section problem that may be made
by a programmer. Note that it does not necessarily eliminate all synchroniza-
tion errors; rather, it reduces their number. If errors occur in the logic of the
program, reproducing a particular sequence of events may not be simple.

The critical-region construct can be effectively used to solve certain general
synchronization problems. To illustrate, let us code the bounded-buffer scheme.
The buffer space and its pointers are encapsulated in

struct buffer {
item pool [nl ;
int count, in, out;

1;

The producer process inserts a new item nextp into the shared buffer by
executing

region buffer when (count < n) {
pool [in] = nextp;
in = (in+l) % n;
count++ ;

}

The consumer process removes an item from the shared buffer and puts it
in nextc by executing

region buffer when (count > 0) {
nextc = pool[outl ;
out = (out+l) % n;
count-- ;

1

214 Chapter 7 Process Synchronization

Let us illustrate how the conditional critical region could be implemented
by a compiler. With each shared variable, the following variables are associated:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

The semaphore mutex is initialized to 1; the semaphores f irst-delay
and second-delay are initialized to 0. The integers first -count and sec-
ond-count are initialized to 0.

Mutually exclusive access to the critical section is provided by mutex. If
a process cannot enter the critical section because the Boolean condition B is
false, it initially waits on the f irst-delay semaphore. A process waiting
on the first -delay semaphore is eventually moved to the second-delay
semaphore before it is allowed to reevaluate its Boolean condition B. We keep
track of the number of processes waiting on first -delay and second-delay,
with f irst-count and second-count respectively.

wait (mutex) ;
while (!B) {
f irst-count++;
if (second-count > 0)

signal (second-delay) ;
else

signal (mutex) ;
wait (f irst-delay) ;
f irst-count--;
second-count++ ;
if (first-count > 0)

signal (f irst-delay) ;
else

signal(second-delay);
wait (second-delay) ;
second-count-- ;

if (f irst-count > 0)
signal (f irst-delay) ;

else if (second-count > 0)
signal (second-delay) ;

else
signal(mutex1;

Figure 7.18 Implementation of the conditional-region construct.

7.6 Critical Regions 215

When a process leaves the critical section, it may have changed the value
of some Boolean condition B that prevented another process from entering the
critical section. Accordingly, we must trace through the queue of processes
waiting on f irst-delay and second-delay (in that order) allowing each
process to test its Boolean condition. When a process tests its Boolean condition
(during this trace), it may discover that the latter now evaluates to the value
true. In this case, the process enters its critical section. Otherwise, the
process must wait again on the f irst-delay and second-delay semaphores,
as described previously. Accordingly, for a shared variable x, the statement

region x when (B) S;

can be implemented as shown in Figure 7.18. Note that this implementation
requires the reevaluation of the expression B for any waiting processes every
time a process leaves the critical region. If several processes are delayed waiting
for their respective Boolean expressions to become true, this reevaluation
overhead may result in inefficient code. We can use various optimization
methods to reduce this overhead. Refer to the Bibliographical Notes for relevant
references.

monitor monitor-name

shared variable declarations

procedure body P1 (. . .
. . .

) {

}
procedure body P2 (. . . {

procedure body Pn (. . . {

{
initialization code

1
1

Figure 7.19 Syntax of a monitor.

216 Chapter 7 Process Synchronization

7.7 rn Monitors

Another high-level synchronization construct is the monitor type. A monitor
is characterized by a set of programmer-defined operators. The representation
of a monitor type consists of declarations of variables whose values define the
state of an instance of the type, as well as the bodies of procedures or functions
that implement operations on the type. The syntax of a monitor is shown in
Figure 7.19.

The representation of a monitor type cannot be used directly by the var-
ious processes. Thus, a procedure defined within a monitor can access only
those variables declared locally within the monitor and its formal parameters.
Similarly, the local variables of a monitor can be accessed by only the local
procedures.

The monitor construct ensures that only one process at a time can be active
within the monitor. Consequently, the programmer does not need to code
this synchronization constraint explicitly (Figure 7.20). However, the monitor
construct, as defined so far, is not sufficiently powerful for modeling some
synchronization schemes. For this purpose, we need to define additional syn-
chronization mechanisms. These mechanisms are provided by the cond i t ion

operations \-1
Figure 7.20 Schematic view of a monitor.

7.7 Monitors 217

construct. A programmer who needs to write her own tailor-made synchro-
nization scheme can define one or more variables of type condition:

condition x, y;

The only operations that can be invoked on a condition variable are wait
and signal. The operation

means that the process invoking this operation is suspended until another
process invokes

The x . signal (1 operation resumes exactly one suspended process. If no
process is suspended, then the signal operation has no effect; that is, the state
of x is as though the operation were never executed (Figure 7.21). Contrast
this operation with the signal operation associated with semaphores, which
always affects the state of the semaphore.

Now suppose that, when the x . signal () operation is invoked by a pro-
cess P, there is a suspended process Q associated with condition x. Clearly, if the

operations

Figure 7.21 Monitor with condition variables.

218 Chapter 7 Process Synchronization

suspended process Q is allowed to resume its execution, the signaling process
P must wait. Otherwise, both P and Q will be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

1. P either waits until Q leaves the monitor, or waits for another condition.

2. Q either waits until P leaves the monitor, or waits for another condition.

There are reasonable arguments in favor of adopting either option 1 or
option 2. Since P was already executing in the monitor, choice 2 seems more
reasonable. However, if we allow process P to continue, the "logical" condition
for which Q was waiting may no longer hold by the time Q is resumed.

Choice 1 was advocated by Hoare, mainly because the preceding argument
in favor of it translates directly to simpler and more elegant proof rules. A com-
promise between these two choices was adopted in the language Concurrent
C. When process P executes the signal operation, process Q is immediately
resumed. This model is less powerful than Hoare's, because a process cannot
signal more than once during a single procedure call.

Let us illustrate these concepts by presenting a deadlock-free solution to
the dining-philosophers problem. Recall that a philosopher is allowed to pick
up her chopsticks only if both of them are available. To code this solution, we
need to distinguish among three states in which a philosopher may be. For this
purpose, we introduce the following data structure:

enum {thinking, hungry, eating) state [51 ;

Philosopher i can set the variable state [il = eating only if her
two neighbors are not eating: (state [(i+4) % 51 ! = eating) and
(state[(i+l) % 51 != eating).

We also need to declare

condition self C51 ;

where philosopher i can delay herself when she is hungry, but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution to the dining-philosopher
problem. The distribution of the chopsticks is controlled by the monitor dp,
whose definition is shown in Figure 7.22. Each philosopher, before starting
to eat, must invoke the operation pickup. This may result in the suspension
of the philosopher process. After the successful completion of the operation,
the philosopher may eat. Following this, the philosopher invokes the put-
down operation, and may start to think. Thus, philosopher i must invoke the
operations pickup and putdown in the following sequence:

7.7 Monitors 219

monitor dp

enum {thinking, hungry, eating) state [51 ;
condition self [51 ;

void pickup(int i) {
state [i] = hungry;
test (i) ;
if (state [i] ! = eating)

self [i] .wait 0 ;
}

void putdown(int i) {
state [i] = thinking;
test((i + 4) % 5) ;
test((i + 1) % 5) ;

}

void test(int i) {
if ((state[(i + 4) % 51 != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 51 != eating)) {

stateri] = eating;
self [i] . signal 0 ;

void init () {
for (int i = 0 ; i < 5; i++)

state [iJ = thinking;

}

Figure 7.22 A monitor solution to the dining-philosopher problem.

dp .pickup(i) ;
...
eat

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously, and that no deadlocks will occur. We note, however, that
it is possible for a philosopher to starve to death. We shall not present a

220 Chapter 7 Process Synchronization

solution to this problem, but rather shall leave it as an exercise for you. We
shall now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a semaphore mut ex (initialized to 1) is provided.
A process must execute wait (mutex) before entering the monitor, and must
execute s igna l (mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to 0, on
which the signaling processes may suspend themselves. An integer variable
next-count will also be provided to count the number of processes suspended
on next. Thus, each external procedure F will be replaced by

wait (mutex) ;
...

body of F
...

if (next-count > 0)
s igna l (next) ;

e l s e
s igna l (muted ;

Mutual exclusion within a monitor is ensured.
We can now describe how condition variables are implemented. For each

condition x, we introduce a semaphore x-sem and an integer variable x-count ,
both initialized to 0. The operation x . wait can now be implemented as

x-count++ ;
i f (next-count > 0)

s i g n a l h e x t) ;
e l s e

s igna l (mut ex) ;
wait (x-sem) ;
x-count-- ;

The operation x . s igna l (1 can be implemented as

i f (x-count > 0) {
next -count++ ;
s igna l (x-sem) ;
wait (next) ;
next -count -- ;

1

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the

7.7 Monitors 223

implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 7.13.

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x.signa1 operation is
executed by some process, then how do we determine which of the suspended
processes should be resumed next? One simple solution is to use a FCFS
ordering, so that the process waiting the longest is resumed first. In many
circumstances, however, such a simple scheduling scheme is not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

where c is an integer expression that is evaluated when the wait operation is
executed. The value of c, which is called a priority number, is then stored
with the name of the process that is suspended. When x. signal is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the monitor shown in Fig-
ure 7.23, which controls the allocation of a single resource among competing
processes. Each process, when requesting an allocation of its resources, speci-
fies the maximum time it plans to use the resource. The monitor allocates the
resource to that process that has the shortest time-allocation request.

A process that needs to access the resource in question must observe the
following sequence:

monitor ResourceAllocation

boolean busy;
condition x;

void acquire(int time) {
if (busy)

x. wait (time) ;
busy = true;

1

void release() {
busy = false;
x. signal0 ;

}
void init 0 {

busy = false;
1

1

Figure 7.23 A monitor to allocate a single resource.

222 Chapter 7 Process Synchronization

R. acquire (t) ;
...

access the resource;
. . .

R. release 0 ;

where R is an instance of type ResourceAllocation.
Unfortunately, the monitor concept cannot guarantee that the preceding

access sequences will be observed. In particular,

A process might access the resource without first gaining access permission
to that resource.

A process might never release the resource once it has been granted access
to that resource.

A process might attempt to release a resource that it never requested.

A process might request the same resource twice (without first releasing
that resource).

The same difficulties are encountered with the critical section construct, and
these difficulties are similar in nature to those that encouraged us to develop
the critical-region and monitor constructs in the first place. Previously, we had
to worry about the correct use of semaphores. Now, we have to worry about
the correct use of higher-level programmer-defined operations, with which the
compiler can no longer assist us.

One possible solution to the above problem is to include the resource-
access operations within the ResourceAllocation monitor. However, this
solution will result in scheduling being done according to the built-in monitor-
scheduling algorithm, rather than by the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocation monitor
and its managed resource. There are two conditions that we must check to
establish the correctness of this system. First, user processes must always make
their calls on the monitor in a correct sequence. Second, we must be sure that
an uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can
we guarantee that no time-dependent errors will occur, and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is
not reasonable for a large system or for a dynamic system. This access-control
problem can be solved only by additional mechanisms that will be elaborated
in Chapter 18.

7.8 OS Synchronization 223

7.8 . OS Synchronization

We next describe the synchronization mechanisms provided by the Solaris and
Windows 2000 operating systems.

7.8.1 Synchronization in Solaris 2

The Solaris 2 operating system was designed to provide real-time computing,
be multithreaded, and support multiple processors. To control access to critical
sections, Solaris 2 provides adaptive mutexes, condition variables, semaphores,
reader-writer locks, and turnstiles. Solaris 2 implements semaphores and con-
dition variables in the same way as they have been fundamentally presented in
Sections 7.4 and 7.7. In this section we describe the adaptive mutexes, reader-
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a mul-
tiprocessor system, an adaptive mutex starts as a standard semaphore imple-
mented as a spinlock. If the data are locked and therefore already in use, the
adaptive mutex does one of two things. If the lock is held by a thread that is
currently running on another CPU, the thread spins while waiting for the lock
to become available because the thread holding the lock is likely to be done
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the lock being released. It is put to
sleep so that it will avoid spinning when the lock will not be freed reasonably
quickly. A lock held by a sleeping thread is likely to be in this category. On a
uniprocessor system, the thread holding the lock is never running if the lock
is being tested by another thread, because only one thread can run at a time.
Therefore, on a uniprocessor system, threads always sleep rather than spin if
they encounter a lock. We use the adaptive-mutex method to protect only those
data that are accessed by short code segments. That is, a mutex is used if a lock
will be held for less than a few hundred instructions. If the code segment is
longer than that, spin waiting will be exceedingly inefficient. For longer code
segments, condition variables and semaphores are used. If the desired lock is
already held, the thread issues a wait and sleeps. When a thread frees the lock, it
issues a signal to the next sleeping thread in the queue. The extra cost of putting
a thread to sleep and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

The readers-writers locks are used to protect data that are accessed
frequently, but usually only in a read-only manner. In these circumstances,
readers-writers locks are more efficient than semaphores, because multiple
threads may be reading data concurrently, whereas semaphores would always
serialize access to the data. Readers-writers locks are relatively expensive to
implement, so again they are used on only long sections of code.

Solaris 2 uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader-writer lock. A turnstile is a queue structure

224 Chapter 7 Process Synchronization

containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire
the lock will block and enter the turnstile for that lock. When the lock is
released, the kernel selects a thread from the turnstile as the next owner of
the lock. Each synchronized object with at least one thread blocked on the
object's lock requires a separate turnstile. However, rather than associating
a turnstile with each synchronized object, Solaris 2 gives each kernel thread
its own turnstile. The turnstile for the first thread to block on a synchronized
object becomes the turnstile for the object itself. Subsequent threads blocking
on the lock will be added to this turnstile. When the initial thread ultimately
releases the lock, it gains a new turnstile from a list of free turnstiles the kernel
maintains. To prevent a priority inversion, turnstiles are organized according
to a priority inheritance protocol (Section 6.5). This means that if a lower-
priority thread currently holds a lock that a higher-priority thread is blocked
on, the thread with the lower priority will temporarily inherit the priority of
the higher-priority thread. Upon releasing the lock, the thread will revert to its
original priority.

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 6.5; user-
level thread-locking mechanisms do not provide this functionality.

Because locks are used frequently, and typically are used for crucial kernel
functions, fine-tuning their implementation and use can provide great perfor-
mance gains. To optimize Solaris 2 performance, developers continually refine
the locking methods.

7.8.2 Synchronization in Windows 2000

The Windows 2000 operating system is a multithreaded kernel that also pro-
vides support for real-time applications and multiple processors. When the
Windows 2000 kernel accesses a global resource on a uniprocessor system, it
temporarily masks interrupts for all interrupt handlers that may also access
the global resource. On a multiprocessor system, Windows 2000 protects access
to global resources using spinlocks. Just as in Solaris 2, the kernel only uses
spinlocks only to protect short code segments. Furthermore, for reasons of effi-
ciency, the kernel ensures that a thread will never be preempted while holding
a spinlock. For thread synchronization outside of the kernel, Windows 2000 pro-
vides dispatcher objects. Using a dispatcher object, a thread can synchronize
according to several different mechanisms including mutexes, semaphores, and
events. Shared data can be protected by requiring a thread to gain ownership of
a mutex to access the data and to release ownership when it is finished. Events
are a synchronization mechanism that may be used much as are condition

7.9 Atomic Transactions 225

variables; that is, they may notify a waiting thread when a desired condition
occurs.

Dispatcher objects may be in either a signaled or nonsignaled state. A
signaled state indicates that an object is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and that a thread will block when attempting to acquire the object.
There is a relationship between the state of a dispatcher object and the state of
a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting and the thread is placed in a waiting queue for
that object. When the state for the dispatcher object moves to signaled, the
kernel checks if there are any threads waiting on the object. If so, the kernel
moves one-or possibly more-threads from the waiting state to the ready
state where they can resume executing. The number of threads the kernel
selects from the waiting queue depends upon the type of dispatcher object they
are waiting upon. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be "owned" by only a single thread. For
an event object, the kernel will select all threads that are waiting for the event.

Let us use a mutex lock as an illustrating example of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (the result
of another thread releasing the lock on the mutex), the thread waiting on the
mutex will:

1. Be moved from the wait to the ready state,

2. Acquire the mutex lock.

7.9 rn Atomic Transactions

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at all.
An example is funds transfer, in which one account is debited and another is
credited. Clearly, it is essential for data consistency that either both the credit
and debit occur, or that neither occur.

The remainder of this section is related to the field of database systems.
Databases are concerned with the storage and retrieval of data, and with the
consistency of the data. Recently, there has been an upsurge of interest in using
database-systems techniques in operating systems. Operating systems can be
viewed as manipulators of data; as such, they can benefit from the advanced

226 Chapter 7 Process Synchronization

techniques and models available from database research. For instance, many
of the ad hoc techniques used in operating systems to manage files could be
more flexible and powerful if more formal database methods were used in their
place. In Sections 7.9.2 to 7.9.4, we describe what these database techniques are
and how they can be used by operating systems.

7.9.1 System Model
A collection of instructions (or operations) that performs a single logical func-
tion is called a transaction. A major issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system. In this section, we describe various mechanisms for ensuring transac-
tion atomicity. We do so by first considering an environment where only one
transaction can be executing at a time. Then, we consider the case where multi-
ple transactions are active simultaneously. A transaction is a program unit that
accesses and possibly updates various data items that may reside on the disk
within some files. From our point of view, a transaction is simply a sequence
of read and write operations, terminated by either a commit operation or an
abort operation. A commit operation signifies that the transaction has termi-
nated its execution successfully, whereas an abort operation signifies that the
transaction had to cease its normal execution due to some logical error. A ter-
minated transaction that has completed its execution successfully is committed;
otherwise, it is aborted. The effect of a committed transaction cannot be undone
by abortion of the transaction.

A transaction may also cease its normal execution due to a system failure. In
either case, since an aborted transaction may have already modified the various
data that it has accessed, the state of these data may not be the same as it would
be had the transaction executed atomically. So that the atomicity property is
ensured, an aborted transaction must have no effect on the state of the data
that it has already modified. Thus, the state of the data accessed by an aborted
transaction must be restored to what it was just before the transaction started
executing. We say that such a transaction has been rolled back. It is part of the
responsibility of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

Volatile Storage: Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of
the speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

7.9 Atomic Transactions 227

Nonvolatile Storage: Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than is main memory, but are less
reliable than are magnetic tapes. Both disks and tapes, however, are subject
to failure, which may result in loss of information. Currently, nonvolatile
storage is slower than volatile storage by several orders of magnitude,
because disk and tape devices are electromechanical and require physical
motion to access data.

Stable Storage: Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes, and to update the information in a
controlled manner (Section 14.7).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

7.9.2 Log-Based Recovery
One way to ensure atomicity is to record, on stable storage, information describ-
ing all the modifications made by the transaction to the various data it accessed.
The most widely used method for achieving this form of recording is write-
ahead logging. The system maintains, on stable storage, a data structure called
the log. Each log record describes a single operation of a transaction write, and
has the following fields:

Transaction Name: The unique name of the transaction that performed the
w r i t e operation

Data Item Name: The unique name of the data item written

Old Value: The value of the data item prior to the w r i t e operation

New Value: The value that the data item will have after the write

Other special log records exist to record significant events during transac-
tion processing, such as the start of a transaction and the commit or abort of a
transaction.

Before a transaction Ti starts its execution, the record < Ti starts> is
written to the log. During its execution, any w r i t e operation by Ti is preceded
by the writing of the appropriate new record to the log. When Ti commits, the
record < Ti c o m m i t s > is written to the log.

Because the information in the log is used in reconstructing the state of
the data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is

228 Chapter 7 Process Synchronization

written out to stable storage. We therefore require that, prior to a write(X)
operation being executed, the log records corresponding to X be written onto
stable storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed: for
the data themselves and for the log of the changes. In cases where the data are
extremely important and fast failure recovery is necessary, the price is worth
the functionality.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

undo(Ti), which restores the value of all data updated by transaction Ti to
the old values

redo(Ti), which sets the value of all data updated by transaction Ti to the
new values

The set of data updated by Ti and their respective old and new values can
be found in the log.

The undo and redo operations must be idempotent (that is, multiple
executions of an operation have the same result as does one execution) to
guarantee correct behavior, even if a failure occurs during the recovery process.

If a transaction Ti aborts, then we can restore the state of the data that
it has updated by simply executing undo(Ti). If a system failure occurs, we
restore the state of all updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classification
of transactions is accomplished as follows:

Transaction Ti needs to be undone if the log contains the < Ti s t a r t s >
record, but does not contain the < Ti commits> record.

Transaction Ti needs to be redone if the log contains both the < Ti s t a r t s >
and the < Ti commits> records.

7.9.3 Checkpoints
When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entire log to make these determinations. There
are two major drawbacks to this approach:

1. The searching process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone
have already actually updated the data that the log says they need to

7.9 Atomic Transactions 229

modify. Although redoing the data modifications will cause no harm (due
to idempotency), it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

1. Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

2. Output all modified data residing in volatile storage to the stable storage.

3. Output a log record <checkpoint> onto stable storage.

The presence of a <checkpoint> record in the log allows the system to
streamline its recovery procedure. Consider a transaction Ti that committed
prior to the checkpoint. The < Ti commits> record appears in the log before the
<checkpoint> record. Any modifications made by Ti must have been written
to stable storage either prior to the checkpoint, or as part of the checkpoint itself.
Thus, at recovery time, there is no need to perform a redo operation on Ti.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction Ti that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent < Ti
start > record.

Once transaction Ti has been identified, the redo and undo operations need
to be applied to only transaction Ti and all transactions Ti that started executing
after transaction Ti. Let us denote these transactions by the set T. The remainder
of the log can thus be ignored. The recovery operations that are required are as
follows:

a For all transactions Tk in T such that the record < Tk commits, appears in
the log, execute redo(Tk).

a For all transactions Tk in T that have no < Tk commits> record in the log,
execute undo(Tk).

7.9.4 Concurrent Atomic Transactions
Because each transaction is atomic, the concurrent execution of transactions
must be equivalent to the case where these transactions executed serially in
some arbitrary order. This property called serializability, can be maintained
by simply executing each transaction within a critical section. That is, all

230 Chapter 7 Process Synchronization

transactions share a common semaphore mutex, which is initialized to 1. When
a transaction starts executing, its first action is to execute wait(mutex). After
the transaction either commits or aborts, it executes signal(mutex).

Although this scheme ensures the atomicity of all concurrently execut-
ing transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can allow transactions to overlap their execution, while maintaining
serializability. A number of different concurrency-control algorithms ensure
serializability. These are described below.

7.9.4.1 Serializability

Consider a system with two data items A and B that are both read and written
by two transactions To and TI. Suppose that these transactions are executed
atomically in the order To followed by TI. This execution sequence, which is
called a schedule, is represented in Figure 7.24. In schedule 1 of Figure 7.24, the
sequence of instruction steps is in chronological order from top to bottom, with
instructions of To appearing in the left column and instructions of TI appearing
in the right column.

A schedule where each transaction is executed atomically is called a serial
schedule. Each serial schedule consists of a sequence of instructions from
various transactions where the instructions belonging to one single transaction
appear together in that schedule. Thus, for a set of n transactions, there exist
n! different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions, in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result-
ing schedule is no longer serial. A nonserial schedule does not necessarily
imply that the resulting execution is incorrect (that is, is not equivalent to a
serial schedule). To see that this is the case, we need to define the notion of con-
flicting operations. Consider a schedule S in which there are two consecutive
operations Oi and Oj of transactions Ti and Ti, respectively. We say that Oi and

Figure 7.24 Schedule 1: A serial schedule in which To is followed by TI. 1

7.9 Atomic Transactions 231

Figure 7.25 Schedule 2: A concurrent serializable schedule.

Oi conflict if they access the same data item and at least one of these operations
is a write operation. To illustrate the concept of conflicting operations, we
consider the nonserial schedule 2 of Figure 7.25. The w r i t e (A) operation of
To conflicts with the read(A) operation of TI. However, the w r i t e (A) opera-
tion of T1 does not conflict with the read(B) operation of To, because the two
operations access different data items.

Let Oi and Oj be consecutive operations of a schedule S. If Oi and Oj are
operations of different transactions and Oi and Oj do not conflict, then we can
swap the order of Oi and Oi to produce a new schedule S'. We expect S to be
equivalent to S', as all operations appear in the same order in both schedules,
except for Oi and Oi, whose order does not matter.

Let us illustrate the swapping idea by considering again schedule 2 of Fig-
ure 7.25. As the w r i t e (A) operation of T1 does not conflict with the read(B)
operation of To, we can swap these operations to generate an equivalent sched-
ule. Regardless of the initial system state, both schedules produce the same
final system state. Continuing with this procedure of swapping nonconflicting
operations, we get:

Swap the read(B) operation of To with the read(A) operation of TI.

Swap the w r i t e(B) operation of To with the w r i t e(A) operation of TI.

Swap the w r i t e @) operation of To with the read(A) operation of TI.

The final result of these swaps is schedule 1 in Figure 7.24, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. This result implies that, regardless of the initial system state, schedule
2 will produce the same final state as will some serial schedule.

If a schedule S can be transformed into a serial schedule S' by a series of
swaps of nonconflicting operations, we say that a schedule S is conflict serial-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

232 Chapter 7 Process Synchronization

7.9.4.2 Locking Protocol

One way to ensure serializability is to associate with each data item a lock, and
to require that each transaction follow a locking protocol that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:

Shared: If a transaction Ti has obtained a shared-mode lock (denoted by S)
on data item Q, then Ti can read this item, but cannot write Q.

Exclusive: If a transaction Ti has obtained an exclusive-mode lock (denoted
by X) on data item Q, then Ti can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access a data item Q, transaction Ti must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and Ti can now
access it. However, if the data item Q is currently locked by some other
transaction, then Ti may have to wait. More specifically, suppose that Ti
requests an exclusive lock on Q. In this case, Ti must wait until the lock on Q is
released. If Ti requests a shared lock on Q, then Ti must wait if Q is locked in
exclusive mode. Otherwise, it can obtain the lock and access Q. Notice that this
scheme is quite similar to the readers-writers algorithm discussed in Section
7.5.2.

A transaction may unlock a data item that it had locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

Growing Phase: A transaction may obtain locks, but may not release any
lock.

Shrinking Phase: A transaction may release locks, but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
7.23). It does not, however, ensure freedom from deadlock. We note that it

7.9 Atomic Transactions 233

is possible that, for a set of transactions, there are conflict-serializable sched-
ules that cannot be obtained through the two-phase locking protocol. How-
ever, to improve performance over two-phase locking, we need either to have
additional information about the transactions or to impose some structure or
ordering on the set of data.

7.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order between every pair of
conflicting transactions is determined at execution time by the first lock that
they both request and that involves incompatible modes. Another method for
determining the serializability order is to select an ordering among transactions
in advance. The most common method for doing so is to use a timestamp-
ordering scheme.

With each transaction Ti in the system, we associate a unique fixed time-
stamp, denoted by TS(Ti). This timestamp is assigned by the system before the
transaction Ti starts execution. If a transaction Ti has been assigned timestamp
TS(Ti), and later on a new transaction Ti enters the system, then TS(Ti) < TS(Ti).
There are two simple methods for implementing this scheme:

Use the value of the system clock as the timestamp; that is, a transaction's
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

Use a logical counter as the timestamp; that is, a transaction's timestamp
is equal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(Ti) < TS(Ti), then the system must ensure that the produced sched-
ule is equivalent to a serial schedule in which transaction Ti appears before
transaction Ti.

To implement this scheme, we associate with each data item Q two time-
stamp values:

W-timestamp(Q), which denotes the largest timestamp of any transaction
that executed w r i t e(Q) successfully

R-timestamp(Q), which denotes the largest timestamp of any transaction
that executed read(Q) successfully

These timestamps are updated whenever a new read(Q) or write(Q) instruc-
tion is executed.

234 Chapter 7 Process Synchronization

The timestamp-ordering protocol ensures that any conflicting read and
wr i te operations are executed in timestamp order. This protocol operates as
follows:

Suppose that transaction Ti issues read(&):

o If TS(Ti) < W-timestamp(), then this state implies that Ti needs to read a
value of Q that was already overwritten. Hence, the read operation is
rejected, and Ti is rolled back.

o If TS(Ti) 2 W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

Suppose that transaction Ti issues write(Q):

o If TS(Ti) < R-timestamp(Q), then this state implies that the value of Q
that Ti is producing was needed previously and Ti assumed that this
value would never be produced. Hence, the wr i t e operation is rejected,
and Ti is rolled back.

o If TS(Ti) < W-timestamp(Q), then this state implies that Ti is attempting
to write an obsolete value of Q. Hence, this wr i t e operation is rejected,
and Ti is rolled back.

o Otherwise, the wr i t e operation is executed.

A transaction Ti, that is rolled back by the concurrency-control scheme as
a result of the issuing of either a read or wr i t e operation is assigned a new
timestamp and is restarted.

To illustrate this protocol, we consider schedule 3 of Figure 7.26 with
transactions T2 and T3. We assume that a transaction is assigned a timestamp
immediately before its first instruction. Thus, in schedule 3, TS(T2) < TS(T3),
and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa (Exercise 7.24).

The timestamp-ordering protocol ensures conflict serializability. This capa-
bility follows from the fact that conflicting operations are processed in time-

Figure 7.26 Schedule 3: A schedule possible under the timestamp protocol.

7.10 Summary 235

stamp order. The protocol ensures freedom from deadlock, because no transac-
tion ever waits.

7.10 Summary

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided. One solution is to ensure that a critical section of
code is in use by only one process or thread at a time. Different algorithms exist
for solving the critical-section problem, with the assumption that only storage
interlock is available.

The main disadvantage of these user-coded solutions is that they all require
busy waiting. Semaphores overcome this difficulty. Semaphores can be used
to solve various synchronization problems and can be implemented efficiently,
especially if hardware support for atomic operations is available.

Various different synchronization problems (such as the bounded-buffer
problem, the readers-writers problem, and the dining-philosophers problem)
are important mainly becau;e they are examples of a large class of concurrency-
control problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these
problems. Critical regions can be used to implement mutual-exclusion and
arbitrary- synchronization problems safely and efficiently. Monitors provide
the synchronization mechanism for sharing abstract data types. A condition
variable provides a method for a monitor procedure to block its execution until
it is signaled to continue.

Solaris 2 is an example of a modern operating system that implements a
variety of locks to support multitasking, multithreading (including real-time
threads), and multiprocessing. It uses adaptive mutexes for efficiency when
protecting data from short code segments. Condition variables and readers-
writers locks are used when longer sections of code need access to data. Solaris
uses turnstiles to order the list of threads waiting to acquire an adaptive mutex
or readers-writers lock.

Windows 2000 supports realtime processes and multiprocessing. When the
kernel attempts to access global resources on uniprocessor systems, interrupts
that may also access the global resource are masked. On multiprocessor sys-
tems, global resources are protected using spinlocks. Outside of the kernel,
synchronization is provided using dispatcher objects. A dispatcher object may
be used as a mutex, semaphore, or event. An event is a type of dispatcher object
that behaves similar to condition variables.

A transaction is a program unit that must be executed atomically; that is,
either all the operations associated with it are executed to completion, or none
are performed. To ensure atomicity despite system failure, we can use a write-
ahead log. All updates are recorded on the log, which is kept in stable storage.

236 Chapter 7 Process Synchronization

If a system crash occurs, the information in the log is used in restoring the state
of the updated data items, which is accomplished with the use of the undo and
redo operations. To reduce the overhead in searching the log after a system
failure has occurred, we can use a checkpoint scheme.

When several transactions overlap their execution, the resulting execution
may no longer be equivalent to an execution where these transactions executed
atomically. To ensure correct execution, we must use a concurrency-control
scheme to guarantee serializability. There are various different concurrency-
control schemes that ensure serializability by either delaying an operation or
aborting the transaction that issued the operation. The most common ones are
locking protocols and timestamp-ordering schemes.

Exercises

7.1 What is the meaning of the term busy waiting? What other kinds of waiting
are there in an operating system? Can busy waiting be avoided altogether?
Explain your answer.

7.2 Explain why spinlocks are not appropriate for uniprocessor systems yet
may be suitable for multiprocessor systems.

7.3 Prove that, in the bakery algorithm (Section 7.2.2), the following property
holds: If Pi is in its critical section and Pk (k $ i) has already chosen its
number Ckl # 0, then (number Cil , i) < (number [kl , k) .

7.4 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, Po and
PI, share the following variables:

boolean f l a g [21; /* i n i t i a l l y f a l s e */
i n t turn;

The structure of process Pi (i == 0 or I), with Pi (j == 1 or 0) being the
other process, is shown in Figure 7.27.

Prove that the algorithm satisfies all three requirements for the critical-
section problem.

7.5 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n - 1 turns was pre-
sented by Eisenberg and McGuire. The processes share the following
variables:

enum p s t a t e { id l e , want-in, in-cs);
p s t a t e flagCnl ;
i n t t u rn ;

Exercises 237 I

flagCi1 = t r u e ;
while (f l ag [j 1 > {

i f (turn == j> {
f l a g [il = f a l s e ;
while (turn == j) ;
flagCi1 = t r u e ;

}
1

critical section

f l a g [i l = f a l s e ;

remainder section

) while (1);

Figure 7.27 The structure of process Pi in Dekker's algorithm.

All the elements of f l a g are initially i d l e ; the initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in
Figure 7.28.

Prove that the algorithm satisfies all three requirements for the critical-
section problem.

7.6 In Section 7.3, we mentioned that disabling interrupts frequently can affect
the system's clock. Explain why it can, and how such effects can be
minimized.

7.7 Show that, if the wait and s ignal operations are not executed atomically,
then mutual exclusion may be violated.

7.8 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and the barber room containing the barber chair. If there are
no customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up the
barber. Write a program to coordinate the barber and the customers.

7.9 The Cigarette-Smokers Problem. Consider a system with three smoker
processes and one agent process. Each smoker continuously rolls a
cigarette and then smokes it. But to roll and smoke a cigarette, the smoker

238 Chapter 7 Process Synchronization

do {

while(1) {
f l a g [i] = want-in;
j = t u rn ;
while (j ! = i) {

i f (flagCj1 != i d l e)
j = turn ;

e l s e
j = (j + l > % n;

1
f l a g Cil = in-cs;
j = 0 ;
while ((j < n) && (j == i I 1 f l a g [j] != in-cs))

j ++;
i f ((j >= n) && (turn == i I I f l a g [turn] == i d l e)) break;

}
t u rn = i ;

critical section

while (f l ag r j] == i d l e)
j = (j + l > % n;

tu rn = j ;

remainder section

) while (1);

Figure 7.28 The structure of process Pi in Eisenberg and McGuire's algorithm.

needs three ingredients: tobacco, paper, and matches. One of the smoker
processes has paper, another has tobacco, and the third has matches. The
agent has an infinite supply of all three materials. The agent places two of
the ingredients on the table. The smoker who has the remaining ingredient
then makes and smokes a cigarette, signaling the agent on completion.
The agent then puts out another two of the three ingredients, and the cycle
repeats. Write a program to synchronize the agent and the smokers.

7.10 Demonstrate that monitors, conditional critical regions, and semaphores
are all equivalent, insofar as the same types of synchronization problems
can be implemented with them.

Exercises 239 I

7.11 Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

7.12 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 7.11 mainly suitable for small portions.

a. Explain why this assertion is true.

b. Design a new scheme that is suitable for larger portions.

7.13 Suppose that the signal statement can appear as only the last statement
in a monitor procedure. Suggest how the implementation described in
Section 7.7 can be simplified.

7.14 Consider a system consisting of processes PI, P2, ..., P,, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

7.15 A file is to be shared among different processes, each of which has a
unique number. The file can be accessed simultaneously by several pro-
cesses, subject to the following constraint: The sum of all unique numbers
associated with all the processes currently accessing the file must be less
than n. Write a monitor to coordinate access to the file.

7.16 Suppose that we replace the wait and signal operations of monitors
with a single construct await (B) , where B is a general Boolean expression
that causes the process executing it to wait until B becomes true.

a. Write a monitor using this scheme to implement the readers-writers
problem.

b. Explain why, in general, this construct cannot be implemented effi-
ciently.

c. What restrictions need to be put on the await statement so that it
can be implemented efficiently? (Hint: Restrict the generality of B;
see Kessels 119771.)

7.17 Write a monitor that implements an alarm clock that enables a calling pro-
gram to delay itself for a specified number of time units (ticks). You may
assume the existence of a real hardware clock that invokes a procedure tick
in your monitor at regular intervals.

7.18 Why does Solaris 2 implement multiple locking mechanisms? Under
what circumstances does it use spinlocks, semaphores, adaptive mutexes,
conditional variables, and readers-writers locks? Why does it use each
mechanism? What is the purpose of turnstiles?

240 Chapter 7 Process Synchronization

7.19 Why do Solaris 2 and Windows 2000 use spinlocks as a synchroniza-
tion mechanism on only multiprocessor systems and not on uniprocessor
systems?

7.20 Explain the differences, in terms of cost, among the three storage types:
volatile, nonvolatile, and stable.

7.21 Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? How does the frequency of checkpoints affect:

System performance when no failure occurs?

The time it takes to recover from a system crash?

The time it takes to recover from a disk crash?

7.22 Explain the concept of transaction atomicity.

7.23 Show that the two-phase locking protocol ensures conflict serializability.

7.24 Show that some schedules are possible under the two-phase locking pro-
tocol but not possible under the timestamp protocol, and vice versa.

Bibliographical Notes

The mutual-exclusion algorithms 1 and 2 for two processes were first discussed
in the classic paper by Dijkstra [1965a]. Dekker's algorithm (Exercise 6.3)-the
first correct software solution to the two-process mutual-exclusion problem-
was developed by the Dutch mathematician T. Dekker. This algorithm also was
discussed by Dijkstra [1965a]. A simpler solution to the two-process mutual-
exclusion problem has since been presented by Peterson [I9811 (algorithm 3).

Dijkstra [1965b] presented the first solution to the mutual-exclusion prob-
lem for n processes. This solution, however does not have an upper bound
on the amount of time a process must wait before it is allowed to enter the
critical section. Knuth [I9661 presented the first algorithm with a bound; his
bound was 2" turns. A refinement of Knuth's algorithm by deBruijn [I9671
reduced the waiting time to n2 turns, after which Eisenberg and McGuire 119721
(Exercise 6.4) succeeded in reducing the time to the lower bound of n-1 turns.
The bakery algorithm (algorithm 5) was developed by Lamport [1974]; it also
requires n-1 turns, but it is easier to program and to understand. Burns [I9781
developed the hardware-solution algorithm that satisfies the bounded waiting
requirement.

General discussions concerning the mutual-exclusion problem were offered
by Lamport [I9861 and Lamport [1991]. A collection of algorithms for mutual
exclusion was given by Raynal[1986].

Bibliographical Notes 241

The semaphore concept was suggested by Dijkstra [1965a]. Patil [I9711
examined the question of whether semaphores can solve all possible synchro-
nization problems. Parnas [I9751 discussed some of the flaws in Patil's argu-
ments. Kosaraju [I9731 followed up on Patil's work to produce a problem that
cannot be solved by wait and signal operations. Lipton [I9741 discussed the
limitations of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The bounded-
buffer problem, the dining-philosophers problem, and the sleeping-barber
problem (Exercise 6.7) were suggested by Dijkstra [1965a] and Dijkstra [1971].
The cigarette-smokers problem (Exercise 6.8) was developed by Patil [1971].
The readers-writers problem was suggested by Courtois et al. [1971]. The issue
of concurrent reading and writing was discussed by Lamport [1977]. The prob-
lem of synchronization of independent processes was discussed by Lamport
[1976].

The critical-region concept was suggested by Hoare [I9721 and by Brinch-
Hansen [1972]. The monitor concept was developed by Brinch-Hansen [1973].
A complete description of the monitor was given by Hoare [1974]. Kessels
[I9771 proposed an extension to the monitor to allow automatic signaling.
General discussions concerning concurrent programming were offered by Ben-
Ari [1990].

Some details of the locking mechanisms used in Solaris 2 are presented in
Mauro and McDougall [2001]. Note that the locking mechanisms used by the
kernel are implemented for user-level threads as well, so the same types of locks
are available inside and outside of the kernel. Details of the Windows 2000
synchronization can be found in Solomon and Russinovich [2000].

The write-ahead log scheme was first introduced in System R by Gray et al.
[1981]. The concept of serializability was formulated by Eswaran et al. [I9761 in
connection with their work on concurrency control for System R. The two-phase
locking protocol was introduced by Eswaran et al. [1976]. The timestamp-
based concurrency-control scheme was provided by Reed [1983]. An exposition
of various timestamp-based concurrency-control algorithms was presented by
Bernstein and Goodman [1980].

Chapter 8

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a wait state. Waiting processes may
never again change state, because the resources they have requested are held by
other waiting processes. This situation is called a deadlock. We have already
discussed this issue briefly in Chapter 7, in connection with semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: "When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone."

In this chapter, we describe methods that an operating system can use to
prevent or deal with deadlocks. Most current operating systems do not provide
deadlock-prevention facilities, but such features will probably be added soon.
Deadlock problems can only become more common, given current trends,
including larger numbers of processes, multiheaded programs, many more
resources within a system, and the emphasis on long-lived file and database
servers rather than batch systems.

8.1 . System Model

A system consists of a finite number of resources to be distributed among a
number of competing processes. The resources are partitioned into several
types, each of which consists of some number of identical instances. Memory

244 Chapter 8 Deadlocks

space, CPU cycles, files, and I/O devices (such as printers and tape drives)
are examples of resource types. If a system has two CPUs, then the resource
type CPU has two instances. Similarly, the resource type printer may have five
instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it, and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

1. Request: If the request cannot be granted immediately (for example, the
resource is being used by another process), then the requesting process
must wait until it can acquire the resource.

2. Use: The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

3. Release: The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 3. Examples are the request and r e l ease device, open and close
f i l e , and a l l o c a t e and f r e e memory system calls. Request and release of
other resources can be accomplished through the waif and signal operations on
semaphores. Therefore, for each use, the operating system checks to make sure
that the using process has requested and been allocated the resource. A system
table records whether each resource is free or allocated, and, if a resource is
allocated, to which process. If a process requests a resource that is currently
allocated to another process, it can be added to a queue of processes waiting for
this resource.

A set of processes is in a deadlock state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,

8.2 Deadlock Characterization 245

files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the IPC facilities discussed in Chapter 4).

To illustrate a deadlock state, we consider a system with three tape drives.
Suppose each of three processes holds one of these tape drives. If each process
now requests another tape drive, the three processes will be in a deadlock state.
Each is waiting for the event "tape drive is released," which can be caused
only by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
a system with one printer and one tape drive. Suppose that process Pi is holding
the tape drive and process Pi is holding the printer. If Pi requests the printer and
Pi requests the tape drive, a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem: Multithreaded programs are good candi-
dates for deadlock because multiple threads can compete for shared resources.

8.2 Deadlock Characterization

In a deadlock, processes never finish executing and system resources are tied
up, preventing other jobs from starting. Before we discuss the various meth-
ods for dealing with the deadlock problem, we shall describe features that
characterize deadlocks.

8.2.1 Necessary Conditions
A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

1. Mutual exclusion: At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed until
the resource has been released.

2. Hold and wait: A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be
released only voluntarily by the process holding it, after that process has
completed its task.

4. Circular wait: A set {Po, PI, ..., P,) of waiting processes must exist such that
Po is waiting for a resource that is held by PI, PI is waiting for a resource
that is held by P2, ..., PnPl is waiting for a resource that is held by P,, and
P, is waiting for a resource that is held by Po.

246 Chapter 8 Deadlocks

We emphasize that all four conditions must hold for a deadlock to occur.
The circular-wait condition implies the hold-and-wait condition, so the four
conditions are not completely independent. We shall see in Section 8.4, how-
ever, that it is useful to consider each condition separately.

8.2.2 Resource-Allocation Graph
Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types
of nodes P = {PI, P2, ..., Pn}, the set consisting of all the active processes in the
system, and R = {R1, R2, ..., Rm), the set consisting of all resource types in the
system.

A directed edge from process Pi to resource type Rj is denoted by Pi -+ Rj;

it signifies that process Pi requested an instance of resource type Ri and is
currently waiting for that resource. A directed edge from resource type Ri to
process Pi is denoted by Rj -+ Pi; it signifies that an instance of resource type
Ri has been allocated to process Pi. A directed edge Pi -+ Rj is called a request
edge; a directed edge Rj + Pi is called an assignment edge.

Pictorially, we represent each process Pi as a circle, and each resource type
Ri as a square. Since resource type Ri may have more than one instance, we
represent each such instance as a dot within the square. Note that a request edge
points to only the square Xi, whereas an assignment edge must also designate
one of the dots in the square.

When process Pi requests an instance of resource type Rj, a request edge is
inserted in the resource-allocation graph. When this request can be fulfilled, the
request edge is instantaneously transformed to an assignment edge. When the
process no longer needs access to the resource it releases the resource, and as a
result the assignment edge is deleted.

The resource-allocation graph shown in Figure 8.1 depicts the following
situation.

The sets P, R, and E:

Resource instances:

o One instance of resource type R1

o Two instances of resource type R2

o One instance of resource type R3

o Three instances of resource type R4

8.2 Deadlock Characterization 247

Figure 8.1 Resource-allocation graph.

Process states:

o Process PI is holding an instance of resource type R2, and is waiting for
an instance of resource type R1.

o Process P2 is holding an instance of R1 and R2, and is waiting for an
instance of resource type R3.

o Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If the
graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, let us return to the resource-allocation graph
depicted in Figure 8.1. Suppose that process P3 requests an instance of resource
type R2. Since no resource instance is currently available, a request edge P3 -+

RL is added to the graph (Figure 8.2). At this point, two minimal cycles exist in
the system:

248 Chapter 8 Deadlocks

Figure 8.2 Resource-allocation graph with a deadlock.

Processes PI, P2, and P3 are deadlocked. Process P2 is waiting for the resource
R3, which is held by process P3. Process P3, on the other hand, is waiting for
either process PI or process P2 to release resource R2. In addition, process PI is
waiting for process P2 to release resource R1.

Now consider the resource-allocation graph in Figure 8.3. In this example,
we also have a cycle

However, there is no deadlock. Observe that process P4 may release its instance
of resource type R2. That resource can then be allocated to P3, breaking the
cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlock state. On the other hand, if there is a cycle, then the
system may or may not be in a deadlock state. This observation is important
when we deal with the deadlock problem.

8.3 Methods for Handling Deadlocks

Principally, we can deal with the deadlock problem in one of three ways:

We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlock state.

We can allow the system to enter a deadlock state, detect it, and recover.

8.3 Methods for Handling Deadlocks 249

Figure 8.3 Resource-allocation graph with a cycle but no deadlock.

We can ignore the problem altogether, and pretend that deadlocks never
occur in the system. This solution is used by most operating systems,
including UNIX.

We shall elaborate briefly on each method. Then, in Sections 8.4 to 8.7, we shall
present detailed algorithms.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention is a set of
methods for ensuring that at least one of the necessary conditions (Section 8.2.1)
cannot hold. These methods prevent deadlocks by constraining how requests
for resources can be made. We discuss these methods in Section 8.4.

Deadlock avoidance, on the other hand, requires that the operating system
be given in advance additional information concerning which resources a pro-
cess will request and use during its lifetime. With this additional knowledge,
we can decide for each request whether or not the process should wait. To
decide whether the current request can be satisfied or must be delayed, the
system must consider the resources currently available, the resources currently
allocated to each process, and the future requests and releases of each process.
We discuss these schemes in Section 8.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred, and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 8.6 and Section 8.7.

If a system does not ensure that a deadlock will never occur, and also does
not provide a mechanism for deadlock detection and recovery, then we may
arrive at a situation where the system is in a deadlock state yet has no way

250 Chapter 8 Deadlocks

of recognizing what has happened. In this case, the undetected deadlock will
result in the deterioration of the system performance, because resources are
being held by processes that cannot run, and because more and more processes,
as they make requests for resources, enter a deadlock state. Eventually, the
system will stop functioning and will need to be restarted manually.

Although this method does not seem to be a viable approach to the dead-
lock problem, it is nevertheless used in some operating systems. In many
systems, deadlocks occur infrequently (say, once per year); thus, this method is
cheaper than the costly deadlock-prevention, deadlock-avoidance, or deadlock-
detection and recovery methods that must be used constantly. Also, in some
circumstances, the system is in a frozen state but not in a deadlock state. As
an example, consider a real-time process running at the highest priority (or any
process running on a non-preemptive scheduler) and never returning control to
the operating system. Thus, systems must have manual recovery methods for
non-deadlock conditions, and may simply use those techniques for deadlock
recovery.

8.4 . Deadlock Prevention

As we noted in Section 8.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. Let us elaborate on this
approach by examining each of the four necessary conditions separately.

8.4.1 Mutual Exclusion
The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, on the other hand, do not require mutually exclusive access,
and thus cannot be involved in a deadlock. Read-only files are a good example
of a sharable resource. If several processes attempt to open a read-only file at
the same time, they can be granted simultaneous access to the file. A process
never needs to wait for a sharable resource. In general, however, we cannot
prevent deadlocks by denying the mutual-exclusion condition: Some resources
are intrinsically nonsharable.

8.4.2 Hold and Wait
To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement

8.4 Deadlock Prevention 251

this provision by requiring that system calls requesting resources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when
the process has none. A process may request some resources and use them.
Before it can request any additional resources, however, it must release all the
resources that it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a tape drive to a disk file, sorts the disk file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the tape drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the tape
drive and disk file. It copies from the tape drive to the disk, then releases both
the tape drive and the disk file. The process must then again request the disk
file and the printer. After copying the disk file to the printer, it releases these
two resources and terminates.

These protocols have two main disadvantages. First, resource utilization
may be low, since many of the resources may be allocated but unused for a long
period. In the example given, for instance, we can release the tape drive and
disk file, and then again request the disk file and printer, only if we can be sure
that our data will remain on the disk file. If we cannot be assured that they will,
then we must request all resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always allocated to some other process.

8.4.3 No Preemption
The third necessary condition is that there be no preemption of resources that
have already been allocated. To ensure that this condition does not hold, we can
use the following protocol. If a process is holding some resources and requests
another resource that cannot be immediately allocated to it (that is, the process
must wait), then all resources currently being held are preempted. In other
words, these resources are implicitly released. The preempted resources are
added to the list of resources for which the process is waiting. The process will
be restarted only when it can regain its old resources, as well as the new ones
that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not available,
we check whether they are allocated to some other process that is waiting for
additional resources. If so, we preempt the desired resources from the waiting
process and allocate them to the requesting process. If the resources are not

I either available or held by a waiting process, the requesting process must wait.

252 Chapter 8 Deadlocks

While it is waiting, some of its resources may be preempted, but only if another
process requests them. A process can be restarted only when it is allocated the
new resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

8.4.4 Circular Wait
The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types, and to require that each process requests resources in an
increasing order of enumeration.

Let R = {XI, R2, ..., R,) be the set of resource types. We assign to each
resource type a unique integer number, which allows us to compare two
resources and to determine whether one precedes another in our ordering. For-
mally, we define a one-to-one function F: R + N, where N is the set of natural
numbers. For example, if the set of resource types R includes tape drives, disk
drives, and printers, then the function F might be defined as follows:

F(tape drive) = 1,
F(disk drive) = 5,
F(printer) = 12.

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process can initially request any number of instances of a resource type,
say Xi. After that, the process can request instances of resource type Ri if and
only if F(Rj) > F(Ri). If several instances of the same resource type are needed,
a single request for all of them must be issued. For example, using the function
defined previously, a process that wants to use the tape drive and printer at the
same time must first request the tape drive and then request the printer.

Alternatively, we can require that, whenever a process requests an instance
of resource type Rj, it has released any resources Ri such that F(Ri) 2 F(Rj).

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists (proof
by contradiction). Let the set of processes involved in the circular wait be {Po,
PI, ..., P,), where Pi is waiting for a resource Xi, which is held by process Pi+l.
(Modulo arithmetic is used on the indexes, so that P, is waiting for a resource
R, held by Po.) Then, since process Pi+l is holding resource Ri while requesting
resource Ri+l, we must have F(Ri) < F(Ri+1), for all i. But this condition means
that F(Ro) < F(R1) < ... < F(R,) < F(Ro). By transitivity, F(Ro) < F(Ro), which is
impossible. Therefore, there can be no circular wait.

8.5 Deadlock Avoidance 253

Note that the function F should be defined according to the normal
order of usage of the resources in a system. For example, since the tape
drive is usually needed before the printer, it would be reasonable to define
F(tape drive) < F(printer).

8.5 Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in Section 8.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur, and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, we might be told that process P will
request first the tape drive, and later the printer, before releasing both resources.
Process Q, on the other hand, will request first the printer, and then the tape
drive. With this knowledge of the complete sequence of requests and releases
for each process, we can decide for each request whether or not the process
should wait. Each request requires that the system consider the resources
currently available, the resources currently allocated to each process, and the
future requests and releases of each process, to decide whether the current
request can be satisfied or must wait to avoid a possible future deadlock.

The various algorithms differ in the amount and type of information
required. The simplest and most useful model requires that each process
declare the maximum number of resources of each type that it may need. Given
a priori information about the maximum number of resources of each type
that may be requested for each process, it is possible to construct an algorithm
that ensures that the system will never enter a deadlock state. This algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources, and the maximum demands of
the processes.

8.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes
<PI, P2, ..., P,> is a safe sequence for the current allocation state if, for each Pi,
the resources that Pi can still request can be satisfied by the currently available
resources plus the resources held by all the Pi, with j < i. In this situation, if

254 Chapter 8 Deadlocks

Figure 8.4 Safe, unsafe, and deadlock state spaces.

the resources that process Pi needs are not immediately available, then Pi can
wait until all Pi have finished. When they have finished, Pi can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When Pi terminates, Pi+l can obtain its needed resources, and so
on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlock state. Conversely, a deadlock state is an unsafe
state. Not all unsafe states are deadlocks, however (Figure 8.4). An unsafe
state may lead to a deadlock. As long as the state is safe, the operating system
can avoid unsafe (and deadlock) states. In an unsafe state, the operating sys-
tem cannot prevent processes from requesting resources such that a deadlock
occurs: The behavior of the processes controls unsafe states.

To illustrate, we consider a system with 12 magnetic tape drives and 3
processes: Po, PI, and P2. Process Po requires 10 tape drives, process PI may
need as many as 4, and process P2 may need up to 9 tape drives. Suppose
that, at time to, process Po is holding 5 tape drives, process PI is holding 2, and
process PZ is holding 2 tape drives. (Thus, there are 3 free tape drives.)

Maximum Needs Current Needs

Po 10 5
P1 4 2
P2 9 2

At time to, the system is in a safe state. The sequence <PI, PO, P2> satisfies
the safety condition, since process PI can immediately be allocated all its tape
drives and then return them (the system will then have 5 available tape drives),
then process Po can get all its tape drives and return them (the system will then
have 10 available tape drives), and finally process P2 could get all its tape drives
and return them (the system will then have all 12 tape drives available).

8.5 Deadlock Avoidance 255 i j

A system may go from a safe state to an unsafe state. Suppose that, at time
tl, process Pp requests and is allocated 1 more tape drive. The system is no
longer in a safe state. At this point, only process PI can be allocated all its tape
drives. When it returns them, the system will have only 4 available tape drives.
Since process Po is allocated 5 tape drives, but has a maximum of 10, it may then
request 5 more tape drives. Since they are unavailable, process Po must wait.
Similarly, process P2 may request an additional 6 tape drives and have to wait,
resulting in a deadlock.

Our mistake was in granting the request from process P2 for 1 more tape
drive. If we had made P2 wait until either of the other processes had finished
and released its resources, then we could have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available, it
may still have to wait. Thus, resource utilization may be lower than it would be
without a deadlock-avoidance algorithm.

8.5.2 Resource-Allocation Graph Algorithm
If we have a resource-allocation system with only one instance of each resource
type, a variant of the resource-allocation graph defined in Section 8.2.2 can be
used for deadlock avoidance.

In addition to the request and assignment edges, we introduce a new type
of edge, called a claim edge. A claim edge Pi -+ Rj indicates that process Pi may
request resource Rj at some time in the future. This edge resembles a request
edge in direction, but is represented by a dashed line. When process Pi requests
resource Rj, the claim edge Pi -+ Rj is converted to a request edge. Similarly,
when a resource Rj is released by Pi, the assignment edge Rj -+ Pi is reconverted
to a claim edge Pi -+ Xi. We note that the resources must be claimed a priori in
the system. That is, before process Pi starts executing, all its claim edges must
already appear in the resource-allocation graph. We can relax this condition by
allowing a claim edge Pi + Rj to be added to the graph only if all the edges
associated with process Pi are claim edges.

Suppose that process Pi requests resource Rj. The request can be granted
only if converting the request edge Pi -+ Rj to an assignment edge Rj + Pi does
not result in the formation of a cycle in the resource-allocation graph. Note
that we check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of n2 operations, where n is the
number of processes in the system.

P-

256 Chapter 8 Deadlocks

Figure 8.5 Resource-allocation graph for deadlock avoidance.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in
an unsafe state. Therefore, process Pi will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 8.5. Suppose that P2 requests R2. Although R2 is currently free, we
cannot allocate it to P2, since this action will create a cycle in the graph (Figure
8.6). A cycle indicates that the system is in an unsafe state. If PI requests R2,
and P2 requests R1, then a deadlock will occur.

8.5.3 Banker's Algorithm
The resource-allocation graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The
deadlock-avoidance algorithm that we describe next is applicable to such
a system, but is less efficient than the resource-allocation graph scheme. This
algorithm is commonly known as the banker's algorithm. The name was chosen
because this algorithm could be used in a banking system to ensure that the

Figure 8.6 An unsafe state in a resource-allocation graph.

8.5 Deadlock Avoidance 257

bank never allocates its available cash such that it can no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Several data structures must be maintained to implement the banker's
algorithm. These data structures encode the state of the resource-allocation
system. Let n be the number of processes in the system and rn be the number of
resource types. We need the following data structures:

Available: A vector of length rn indicates the number of available resources
of each type. If Available[j] = k, there are k instances of resource type Rj
available.

Max: An n x rn matrix defines the maximum demand of each process. If
Max[i,j] = k, then process Pi may request at most k instances of resource type
Ri .

Allocation: An n x rn matrix defines the number of resources of each type
currently allocated to each process. If Allocation[i,j] = k, then process Pi is
currently allocated k instances of resource type Rj.

Need: An n x rn matrix indicates the remaining resource need of each
process. If Need[i,j] = k, then process Pi may need k more instances of
resource type Ri to complete its task. Note that Need[i,j] = Max[i,j] -
Allocafion[i,j].

These data structures vary over time in both size and value.
To simplify the presentation of the banker's algorithm, let us establish some

notation. Let X and Y be vectors of length n. We say that X 5 Y if and only if
X[i] 5 Y [i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1),
thenY 5 X. Y < Xif Y IXandY$X.

We can treat each row in the matrices Allocation and Need as vectors and
refer to them as Allocationi and Needi, respectively. The vector Allocation; speci-
fies the resources currently allocated to process Pi; the vector Need, specifies the
additional resources that process Pi may still request to complete its task.

8.5.3.1 Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state can be
described as follows:

258 Chapter 8 Deadlocks

1. Let Work and Finish be vectors of length m and n, respectively. Initialize
Work := Available and Finisk[i] :=false for i = 1,2, ..., n.

2. Find an i such that both

a. Finisk[i] =false

b. Needi 5 Work.

If no such i exists, go to step 4.

3. Work := Work + Allocationi
Finisk[i] := true
go to step 2.

4. If Finish[i] = true for all i, then the system is in a safe state.

This algorithm may require an order of rn x n2 operations to decide whether a
state is safe.

8.5.3.2 Resource-Request Algorithm

Let Requesti be the request vector for process Pi. If Request;[j] = k, then process
Pi wants k instances of resource type Rj. When a request for resources is made
by process Pi, the following actions are taken:

1. If Requesti 5 Needi, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.

2. If Requesti 5 Available, go to step 3. Otherwise, Pi must wait, since the
resources are not available.

3. Have the system pretend to have allocated the requested resources to
process Pi by modifying the state as follows:

Available := Available - Request,;
Allocationi := Allocation; + Request;;
Needi := Needi - Requesti;

If the resulting resource-allocation state is safe, the transaction is completed
and process Pi is allocated its resources. However, if the new state is
unsafe, then Pi must wait for Requesti and the old resource-allocation state
is restored.

8.5 Deadlock Avoidance 259

8.5.3.3 An Illustrative Example

Consider a system with five processes Po through P4 and three resource types
A, B, C. Resource type A has 10 instances, resource type B has 5 instances, and
resource type C has 7 instances. Suppose that, at time To, the following snapshot
of the system has been taken:

Allocation M a x Available - --

A B C A B C A B C
Po 0 1 0 7 5 3 3 3 2
PI 2 0 0 3 2 2
p2 3 0 2 9 0 2
P3 2 1 1 2 2 2
f'4 0 0 2 4 3 3

The content of the matrix Need is defined to be M a x - Allocation and is

Need

A B C
Po 7 4 3
P1 1 2 2
P 6 0 0
3 0 1 1
P4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence
<PI, P3/ P4, P2/ Po> satisfies the safety criteria. Suppose now that process
PI requests one additional instance of resource type A and two instances of
resource type C, so Requestl = (1,0,2). To decide whether this request can be
immediately granted, we first check that Requestl 5 Available (that is, (1,0,2) 5
(3,3,2)), which is true. We then pretend that this request has been fulfilled, and
we arrive at the following new state:

Allocation Need Available

A B C A B C A B C
Po 0 1 0 7 4 3 2 3 0
PI 3 0 2 0 2 0
p2 3 0 2 6 0 0
p3 2 1 1 0 1 1
f'4 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <PI, P3, P4, POI P2>

260 Chapter 8 Deadlocks

satisfies our safety requirement. Hence, we can immediately grant the request
of process PI.

You should be able to see, however, that when the system is in t h s state, a
request for (3,3,0) by P4 cannot be granted, since the resources are not available.
A request for (0,2,0) by Po cannot be granted, even though the resources are
available, since the resulting state is unsafe.

8.6 . Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system must provide:

An algorithm that examines the state of the system to determine whether a
deadlock has occurred

An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, let
us note that a detection-and-recovery scheme requires overhead that includes
not only the run-time costs of maintaining the necessary information and
executing the detection algorithm, but also the potential losses inherent in
recovering from a deadlock.

8.6.1 Single Instance of Each Resource Type
If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the nodes of type resource and collapsing the appropriate edges.

More precisely, an edge from Pi to Pi in a wait-for graph implies that
process Pi is waiting for process Pi to release a resource that Pi needs. An edge
Pi -t Pi exists in a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges Pi -+ Rq and Rq + Pj for some resource
Rq. For example, in Figure 8.7, we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for
graph and periodically to invoke an algorithm that searches for a cycle in the
graph.

An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph.

1

8.6 Deadlock Detection 261

Figure 8.7 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

8.6.2 Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. The deadlock-detection algo-
rithm that we describe next is applicable to such a system. The algorithm
employs several time-varying data structures that are similar to those used in
the banker's algorithm (Section 8.5.3):

Available: A vector of length rn indicates the number of available resources
of each type.

Allocation: An n x rn matrix defines the number of resources of each type
currently allocated to each process.

Request: An n x rn matrix indicates the current request of each process. If
Request[i,j] = k, then process Pi is requesting k more instances of resource
type Ri.

The 5 relation between two vectors is defined as in Section 8.5.3. To
simplify notation, we shall again treat the rows in the matrices Allocation
and Request as vectors, and shall refer to them as Allocationi and Requesti,
respectively. The detection algorithm described here simply investigates every
possible allocation sequence for the processes that remain to be completed.
Compare this algorithm with the banker's algorithm of Section 8.5.3.

262 Chapter 8 Deadlocks

3. Let Work and Finish be vectors of length m and n , respectively. Initialize
Work := Available. For i = 1, 2, ..., n, if Allocationi $0, then Finish[i] :=false;
otherwise, Finish[i] := true.

2. Find an index i such that both

a. Finish[i] =false.

b. Requesti 5 Work.

If no such i exists, go to step 4.

3. Work := Work + Allocationi
Finish[i] := true
go to step 2.

4. If Finish[i] = false, for some i, 1 _< i 5 n, then the system is in a deadlock
state. Moreover, if Finish[i] =false, then process Pi is deadlocked.

Ths algorithm requires an order of m x n2 operations to detect whether the
system is in a deadlocked state.

You may wonder why we reclaim the resources of process Pi (in step 3)
as soon as we determine that Requesti _< Work (in step 2b). We know that Pi
is currently not involved in a deadlock (since Requesti < Work). Thus, we take
an optimistic attitude, and assume that Pi will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time that the deadlock-detection algorithm
is invoked.

To illustrate this algorithm, we consider a system with five processes Po
through P4 and three resource types A, B, C. Resource type A has 7 instances,
resource type B has 2 instances, and resource type C has 6 instances. Suppose
that, at time To, we have the following resource-allocation state:

Allocation Request Available

A B C A B C A B C
Po 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Po, P2, P3, P I , P4> will result in
Finish[i] = true for all i.

8.6 Deadlock Detection 263

Suppose now that process P2 makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Reauest

A B C
Po 0 0 0
PI 2 0 2
PZ 0 0 1
P 1 0 0
Pq 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Po, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes P I , P2, P3, and Pq.

8.6.3 Detection-Algorithm Usage
When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot be
granted immediately. This request may be the final request that completes a
chain of waiting processes. In the extreme, we could invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted imme-
diately. In this case, we can identify not only the set of processes that is dead-
locked, but also the specific process that "caused" the deadlock. (In reality, each
of the deadlocked processes is a link in the cycle in the resource graph, so all of
them, jointly, caused the deadlock.) If there are many different resource types,
one request may cause many cycles in the resource graph, each cycle completed
by the most recent request and "caused" by the one identifiable process.

Of course, invoking the deadlock-detection algorithm for every request
may incur a considerable overhead in computation time. A less expensive alter-
native is simply to invoke the algorithm at less frequent intervals-for example,
once per hour, or whenever CPU utilization drops below 40 percent. (A dead-
lock eventually cripples system throughput and will cause CPU utilization to

264 Chapter 8 Deadlocks

drop.) If the detection algorithm is invoked at arbitrary points in time, there
may be many cycles in the resource graph. We would generally not be able to
tell which of the many deadlocked processes "caused the deadlock.

8.7 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alter-
natives exist. One possibility is to inform the operator that a deadlock has
occurred, and to let the operator deal with the deadlock manually. The other
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One solution is simply to abort one
or more processes to break the circular wait. The second option is to preempt
some resources from one or more of the deadlocked processes.

8.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

Abort all deadlocked processes: This method clearly will break the dead-
lock cycle, but at a great expense; these processes may have computed for a
long time, and the results of these partial computations must be discarded
and probably recomputed later.

Abort one process at a time until the deadlock cycle is eliminated: This
method incurs considerable overhead, since, after each process is aborted,
a deadlock-detection algorithm must be invoked to determine whether any
processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on the printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then, given a set of deadlocked
processes, we must determine which process (or processes) should be termi-
nated in an attempt to break the deadlock. This determination is a policy
decision, similar to CPU-scheduling problems. The question is basically an
economic one; we should abort those processes the termination of which will
incur the minimum cost. Unfortunately, the term minimum cost is not a precise
one. Many factors may determine which process is chosen, including:

1. What the priority of the process is

8.7 Recovery from Deadlock 265 I

2. How long the process has computed, and how much longer the process
will compute before completing its designated task

3. How many and what type of resources the process has used (for example,
whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

6. Whether the process is interactive or batch

8.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

1. Selecting a victim: Which resources and which processes are to be pre-
empted? As in process termination, we must determine the order of pre-

1
emption to minimize cost. Cost factors may include such parameters as the
number of resources a deadlock process is holding, and the amount of time
a deadlocked process has thus far consumed during its execution.

2. Rollback: If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state, and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart it.
However, it is more effective to roll back the process only as far as necessary
to break the deadlock. On the other hand, this method requires the system
to keep more information about the state of all the running processes.

3. Starvation: How do we ensure that starvation will not occur? That is, how
can we guarantee that resources will not always be preempted from the
same process?

In a system where victim selection is based primarily on cost factors, it
may happen that the same process is always picked as a victim. As a result,
this process never completes its designated task, a starvation situation that
needs to be dealt with in any practical system. Clearly, we must ensure that
a process can be picked as a victim only a (small) finite number of times.
The most common solution is to include the number of rollbacks in the cost
factor.

266 Chapter 8 Deadlocks

8.8 Summary

A deadlock state occurs when two or more processes are waiting indefinitely for
an event that can be caused only by one of the waiting processes. Principally,
there are three methods for dealing with deadlocks:

Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlock state.

Allow the system to enter deadlock state, detect it, and then recover.

Ignore the problem all together, and pretend that deadlocks never occur
in the system. This solution is the one used by most operating systems,
including UNIX.

A deadlock situation may occur if and only if four necessary conditions
hold simultaneously in the system: mutual exclusion, hold and wait, no pre-
emption, and circular wait. To prevent deadlocks, we ensure that at least one of
the necessary conditions never holds.

Another method for avoiding deadlocks that is less stringent than the
prevention algorithms is to have a priori information on how each process will
be utilizing the resources. The banker's algorithm, for example, needs to know
the maximum number of each resource class that may be requested by each
process. Using this information, we can define a deadlock-avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme must be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock has
occurred. If a deadlock is detected, the system must recover either by terminat-
ing some of the deadlocked processes, or by preempting resources from some
of the deadlocked processes.

In a system that selects victims for rollback primarily on the basis of cost
factors, starvation may occur. As a result, the selected process never completes
its designated task.

Exercises

8.1 List three examples of deadlocks that are not related to a computer-system
environment.

8.2 Is it possible to have a deadlock involving only one process? Explain your
answer.

8.3 People have said that proper spooling would eliminate deadlocks. Cer-
tainly, it eliminates from contention card readers, plotters, printers, and so
on. It is even possible to spool tapes (called staging them), which would

Exercises 267 I

Figure 8.8 Traffic deadlock for Exercise 8.4.

leave the resources of CPU time, memory, and disk space. Is it possible
to have a deadlock involving these resources? If it is, how could such a
deadlock occur? If it is not, why not? What deadlock scheme would seem
best to eliminate these deadlocks (if any are possible), or what condition
is violated (if they are not possible)?

8.4 Consider the traffic deadlock depicted in Figure 8.8.

a. Show that the four necessary conditions for deadlock indeed hold in
this example.

b. State a simple rule that will avoid deadlocks in this system.

8.5 Suppose that a system is in an unsafe state. Show that it is possible for the
processes to complete their execution without entering a deadlock state.

8.6 In a real computer system, neither the resources available nor the demands
of processes for resources are consistent over long periods (months).
Resources break or are replaced, new processes come and go, new
resources are bought and added to the system. If deadlock is controlled
by the banker's algorithm, which of the following changes can be made
safely (without introducing the possibility of deadlock), and under what
circumstances?

a. Increase Available (new resources added)

268 Chapter 8 Deadlocks

b. Decrease Available (resource permanently removed from system)

c. Increase M a x for one process (the process needs more resources than
allowed, it may want more)

d. Decrease M a x for one process (the process decides it does not need
that many resources)

e. Increase the number of processes

f. Decrease the number of processes

8.7 Prove that the safety algorithm presented in Section 8.5.3 requires an order
of m x n2 operations.

8.8 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock-free.

8.9 Consider a system consisting of rn resources of the same type, being shared
by n processes. Resources can be requested and released by processes only
one at a time. Show that the system is deadlock-free if the following two
conditions hold:

a. The maximum need of each process is between 1 and rn resources

b. The sum of all maximum needs is less than rn + n

8.10 Consider a computer system that runs 5,000 jobs per month with no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun about
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the
jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker's algorithm) could be installed in the system
with an increase in the average execution time per job of about 10 percent.
Since the machine currently has 30-percent idle time, all 5,000 jobs per
month could still be run, although turnaround time would increase by
about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance algo-
rithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

8.11 We can obtain the banker's algorithm for a single resource type from the
general banker's algorithm simply by reducing the dimensionality of the
various arrays by 1. Show through an example that the multiple-resource-

Exercises 269

type banker's scheme cannot be implemented by individual application
of the single-resource-type scheme to each resource type.

8.12 Can a system detect that some of its processes are starving? If you answer
"yes," explain how it can. If you answer "no," explain how the system can
deal with the starvation problem.

8.13 Consider the following snapshot of a system: ~
Allocation Max Available

A B C D A B C D A B C D
Po 0 0 1 2 ' 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker's algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be
granted immediately?

8.14 Consider the following resource-allocation policy. Requests and releases
for resources are allowed at any time. If a request for resources cannot
be satisfied because the resources are not available, then we check any
processes that are blocked, waiting for resources. If they have the desired
resources, then these resources are taken away from them and are given
to the requesting process. The vector of resources for which the waiting
process is waiting is increased to include the resources that were taken
away.

For example, consider a system with three resource types and the vector
Available initialized to (4,2,2). If process Po asks for (2,2,1), it gets them. If
PI asks for (1,0,1), it gets them. Then, if Po asks for (0,0,1), it is blocked
(resource not available). If P2 now asks for (2,0,0), it gets the available one
(1,0,0) and one that was allocated to Po (since Po is blocked). Po's Allocation
vector goes down to (1,2,1), and its Need vector goes up to (1,0,1).

a. Can deadlock occur? If so, give an example. If not, which necessary
condition cannot occur?

b. Can indefinite blocking occur?

270 Chapter 8 Deadlocks

8.15 Suppose that you have coded the deadlock-avoidance safety algorithm
and now have been asked to implement the deadlock-detection algorithm.
Can you do so by simply using the safety algorithm code and redefining
Maxi = Waitingi + Allocationi, where Waitingi is a vector specifying the
resources process i is waiting for, and Allocationi is as defined in Section
8.5? Explain your answer.

Bibliographical Notes

Dijkstra [1965a] was one of the first and most influential contributors in the
deadlock area. Holt [I9721 was the first person to formalize the notion of
deadlocks in terms of a graph-theoretical model similar to the one presented
in this chapter. Starvation was covered by Holt [1972]. Hyman [I9851 provided
the deadlock example from the Kansas legislature.

The various prevention algorithms were suggested by Havender [1968],
who has devised the resource-ordering scheme for the IBM OS/360 system.

The banker's algorithm for avoiding deadlocks was developed for a single
resource type by Dijkstra [1965a], and was extended to multiple resource types
by Habermann 119691. Exercises 8.8 and 8.9 are from Holt 119711.

The deadlock-detection algorithm for multiple instances of a resource type,
which was described in Section 8.6.2, was presented by Coffman et al. [1971].

Bach [I9871 describes how many of the algorithms in the traditional UNIX
kernel handle deadlock.

Part Three

The main purpose of a computer system is to execute programs. These pro-
grams, together with the data they access, must be in main memory (at least
partially) during execution.

To improve both the utilization of the CPU and the speed of its response to
users, the computer must keep several processes in memory. Many memory-
management schemes exist, reflecting various approaches, and the effective-
ness of each algorithm depends on the situation. Selection of a memory-
management scheme for a system depends on many factors, especially on
the hardware design of the system. Each algorithm requires its own hardware
support.

Since main memory is usually too small to accommodate all the data and
programs permanently, the computer system must provide secondary storage
to back up main memory. Modern computer systems use disks as the primary
on-line storage medium for information (both programs and data). The file
system provides the mechanism for on-line storage of and access to both data
and programs residing on the disks. A file is a collection of related information
defined by its creator. The files are mapped by the operating system onto
physical devices. Files are normally organized into directories to ease their use.

Chapter 9

MEMORY
MANAGEMENT

In Chapter 6, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer's response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to pag-
ing and segmentation strategies. Each approach has its own advantages and
disadvantages. Selection of a memory-management method for a specific sys-
tem depends on many factors, especially on the hardware design of the system.
As we shall see, many algorithms require hardware support, although recent
designs have closely integrated the hardware and operating system.

9.1 Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

274 Chapter 9 Memory Management

operands, results may be stored back in memory. The memory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore how a memory
address is generated by a program. We are interested in only the sequence of
memory addresses generated by the running program.

9.1.1 Address Binding
Usually, a program resides on a disk as a binary executable file. The program
must be brought into memory and placed within a process for it to be executed.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The collection of processes
on the disk that is waiting to be brought into memory for execution forms the
input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical mem-
ory. Thus, although the address space of the computer starts at 00000, the first
address of the user process does not need to be 00000. This arrangement affects
the addresses that the user program can use. In most cases, a user program
will go through several steps-some of which may be optional-before being
executed (Figure 9.1). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as "14 bytes from the beginning of this module"). The link-
age editor or loader will in turn bind these relocatable addresses to absolute
addresses (such as 74014). Each binding is a mapping from one address space
to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

Compile time: If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
a priori that a user process resides starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary to
recompile this code. The MS-DOS .COM-format programs are absolute code
bound at compile time.

Load time: If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,

9.1 Background 275 I

source
program

I compile
time

load
time

execution
time (run
time)

Figure 9.1 Multistep processing of a user program.

final binding is delayed until load time. If the starting address changes, we
need only to reload the user code to incorporate this changed value.

Execution time: If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 9.1.2. Most general-purpose operating systems use
this method.

276 Chapter 9 Memory Management

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.

9.1.2 Logical- Versus Physical-Address Space
An address generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit-that is, the one loaded into
the memory-address register of the memory-is commonly referred to as a
physical address.

The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In this case,
we usually refer to the logical address as a virtual address. We use logical
address and virtual address interchangeably in this text. The set of all logical
addresses generated by a program is a logical-address space; the set of all phys-
ical addresses corresponding to these logical addresses is a physical-address
space. Thus, in the execution-time address-binding scheme, the logical- and
physical-address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from among many different methods to accomplish such a mapping, as we
discuss in Sections 9.3, 9.4, 9.5, and 9.6. For the time being, we illustrate
this mapping with a simple MMU scheme, which is a generalization of the
base-register scheme described in Section 2.5.3.

As illustrated in Figure 9.2, this method requires hardware support slightly
different from the hardware configuration discussed in Section 2.4. The base
register is now called a relocation register. The value in the relocation register
is added to every address generated by a user process at the time it is sent to
memory. For example, if the base is at 14000, then an attempt by the user
to address location 0 is dynamically relocated to location 14000; an access
to location 346 is mapped to location 14346. The MS-DOS operating system
running on the Intel 80x86 family of processors uses four relocation registers
when loading and running processes.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, compare it
to other addresses-all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 9.1.1. The final location of a
referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base

9.1 Background 277

Figure 9.2 Dynamic relocation using a relocation register.

value R). The user generates only logical addresses and thinks that the process
runs in locations 0 to max. The user program supplies logical addresses; these
logical addresses must be mapped to physical addresses before they are used.

The concept of a logical-address space that is bound to a separate physical-
address space is central to proper memory management.

9.1.3 Dynamic Loading

In our discussion so far, the entire program and data of a process must be in
physical memory for the process to execute. The size of a process is limited
to the size of physical memory. To obtain better memory-space utilization, we
can use dynamic loading. With dynamic loading, a routine is not loaded until
it is called. All routines are kept on disk in a relocatable load format. The
main program is loaded into memory and is executed. When a routine needs
to call another routine, the calling routine first checks to see whether the other
routine has been loaded. If not, the relocatable linking loader is called to load
the desired routine into memory and to update the program's address tables to
reflect this change. Then, control is passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In t h s
case, although the total program size may be large, the portion that is used (and
hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating sys-
tem. It is the responsibility of the users to design their programs to take

278 Chapter 9 Memory Management

advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

9.1.4 Dynamic Linking and Shared Libraries
Figure 9.1 also shows dynamically linked libraries. Some operating systems
support only static linking, in which system language libraries are treated
like any other object module and are combined by the loader into the binary
program image. The concept of dynamic linking is similar to that of dynamic
loading. Rather than loading being postponed until execution time, linking is
postponed. This feature is usually used with system libraries, such as language
subroutine libraries. Without this facility, all programs on a system need to
have a copy of their language library (or at least the routines referenced by
the program) included in the executable image. This requirement wastes both
disk space and main memory. With dynamic linking, a stub is included in
the image for each library-routine reference. This stub is a small piece of code
that indicates how to locate the appropriate memory-resident library routine,
or how to load the library if the routine is not already present.

When this stub is executed, it checks to see whether the needed routine is
already in memory. If not, the program loads the routine into memory. Either
way, the stub replaces itself with the address of the routine, and executes the
routine. Thus, the next time that that code segment is reached, the library
routine is executed directly, incurring no cost for dynamic linking. Under this
scheme, all processes that use a language library execute only one copy of the
library code.

This feature can be extended to library updates (such. as bug fixes). A
library may be replaced by a new version, and all programs that reference the
library will automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library.
So that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use. Minor changes retain the same version number, whereas major changes
increment the version number. Thus, only programs that are compiled with the
new library version are affected by the incompatible changes incorporated in it.
Other programs linked before the new library was installed will continue using
the older library. This system is also known as shared libraries.

Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another
(Section 9.3), then the operating system is the only entity that can check to see
whether the needed routine is in another process' memory space, or that can
allow multiple processes to access the same memory addresses. We elaborate
on this concept when we discuss paging in Section 9.4.5.

9.1 Background 279

9.1.5 Overlays
To enable a process to be larger than the amount of memory allocated to
it, we can use overlays. The idea of overlays is to keep in memory only
those instructions and data that are needed at any given time. When other
instructions are needed, they are loaded into space occupied previously by
instructions that are no longer needed.

As an example, consider a two-pass assembler. During pass 1, it constructs
a symbol table; then, during pass 2, it generates machine-language code. We
may be able to partition such an assembler into pass 1 code, pass 2 code, the
symbol table, and common support routines used by both pass 1 and pass 2.
Assume that the sizes of these components are as follows:

Pass 1 70 KB
Pass 2 80 KB
Symbol table 20 KB
Common routines 30 KB

To load everything at once, we would require 200 KB of memory. If only 150
KB is available, we cannot run our process. However, notice that pass 1 and pass
2 do not need to be in memory at the same time. We thus define two overlays:
Overlay A is the symbol table, common routines, and pass 1, and overlay B is
the symbol table, common routines, and pass 2.

We add an overlay driver (10 KB) and start with overlay A in memory.
When we finish pass 1, we jump to the overlay driver, which reads overlay
B into memory, overwriting overlay A, and then transfers control to pass
2. Overlay A needs only 120 KB, whereas overlay B needs 130 KB (Figure
9.3). We can now run our assembler in the 150 KB of memory. It will load
somewhat faster because fewer data need to be transferred before execution
starts. However, it will run somewhat slower, due to the extra 1 /0 to read the
code for overlay B over the code for overlay A.

The code for overlay A and the code for overlay B are kept on disk as
absolute memory images, and are read by the overlay driver as needed. Special
relocation and linking algorithms are needed to construct the overlays.

As in dynamic loading, overlays do not require any special support from
the operating system. They can be implemented completely by the user with
simple file structures, reading from the files into memory and then jumping to
that memory and executing the newly read instructions. The operating system
notices only that there is more I/O than usual.

The programmer, on the other hand, must design and program the overlay
structure properly. This task can be a major undertaking, requiring complete
knowledge of the structure of the program, its code, and its data structures.
Because the program is, by definition, large-small programs do not need to be
overlaid-obtaining a sufficient understanding of the program may be difficult.
For these reasons, the use of overlays is currently limited to microcomputer

280 Chapter 9 Memory Management

Figure 9.3 Overlays for a two-pass assembler.

and other systems that have limited amounts of physical memory and that
lack hardware support for more advanced techniques. Some microcomputer
compilers provide the programmer with support for overlays to make the task
easier. Automatic techniques to run large programs in limited amounts of
physical memory are certainly preferable.

9.2 . Swapping

A process needs to be in memory to be executed. A process, however, can
be swapped temporarily out of memory to a backing store, and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished, and to swap in another process to the memory space that has been
freed (Figure 9.4). In the meantime, the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. The quantum must also
be sufficiently large that reasonable amounts of computing are done between
swaps.

9.2 Swapping 281

main memory

Figure 9.4 Swapping of two processes using a disk as a backing store.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process so that it can load and execute
the higher-priority process. When the higher-priority process finishes, the
lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in.

Normally a process that is swapped out will be swapped back into the same
memory space that it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be moved to different locations. If execution-time binding
is being used, then a process can be swapped into a different memory space,
because the physical addresses are computed during execution time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images for
all users, and it must provide direct access to these memory images. The system
maintains a ready queue consisting of all processes whose memory images are
on the backing store or in memory and are ready to run. Whenever the CPU
scheduler decides to execute a process, it calls the dispatcher. The dispatcher
checks to see whether the next process in the queue is in memory. If not, and
there is no free memory region, the dispatcher swaps out a process currently in
memory and swaps in the desired process. It then reloads registers as normal
and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let us assume that the user process is of size 1

282 Chapter 9 Memory Management

MB and the backing store is a standard hard disk with a transfer rate of 5 MB
per second. The actual transfer of the 1 MB process to or from memory takes

1000 KB/5000 KB per second = 1 /5 second
= 200 milliseconds.

Assuming that no head seeks are necessary and an average latency of 8
milliseconds, the swap time takes 208 milliseconds. Since we must both swap
out and swap in, the total swap time is then about 416 milliseconds.

For efficient CPU utilization, we want our execution time for each process
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling
algorithm, for example, the time quantum should be substantially larger than
0.416 seconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If we
have a computer system with 128 MB of main memory and a resident operating
system taking 5 MB, the maximum size of the user process is 123 MB. However,
many user processes may be much smaller than this size-say, 1 MB. A 1
MB process could be swapped out in 208 milliseconds, compared to the 24.6
seconds for swapping 123 MB. Therefore, it would be useful to know exactly
how much memory a user process is using, not simply how much it might be
using. Then, we would need to swap only what is actually used, reducing swap
time. For this method to be effective, the user must keep the system informed of
any changes in memory requirements. Thus, a process with dynamic memory
requirements will need to issue system calls (request memory and release
memory) to inform the operating system of its changing memory needs.

Swapping is constrained by other factors as well. If we want to swap a
process, we must be sure that it is completely idle. Of particular concern is any
pending I/O. A process may be waiting for an I/O operation when we want to
swap that process to free up its memory. However, if the 1/0 is asynchronously
accessing the user memory for I/O buffers, then the process cannot be swapped.
Assume that the 1/0 operation was queued because the device was busy. Then,
if we were to swap out process PI and swap in process P2, the I/O operation
might then attempt to use memory that now belongs to process P2. The two
main solutions to this problem are never to swap a process with pending I/O,
or to execute 1 /0 operations only into operating-system buffers. Transfers
between operating-system buffers and process memory then occur only when
the process is swapped in.

The assumption that swapping requires few, if any, head seeks needs
further explanation. We postpone discussing this issue until Chapter 14, where
secondary-storage structure is covered. Generally, swap space is allocated as a
chunk of disk, separate from the file system, so that its use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too little execution time to be a reasonable

9.3 Contiguous Memory Allocation 283

memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping
was normally disabled, but would start if many processes were running and
were using a threshold amount of memory. Swapping would again be halted
if the load on the system were reduced. Memory management in UNIX is
described fully in Section A.6.

Early PCs lacked sophisticated hardware (or operating systems that
take advantage of the hardware) to implement more advanced memory-
management methods, but they were used to run multiple large processes by
a modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old process is swapped to disk. This operating system, however, does not
provide full swapping, because the user, rather than the scheduler, decides
when it is time to preempt one process for another. Any swapped-out process
remains swapped out (and not executing) until the user selects that process
to run. Follow-on Microsoft operating systems, such as Windows NT, take
advantage of advanced MMU features now found even on PCs. In Section 9.6,
we describe the memory-management hardware found on the Intel 386 family
of processors used in many PCs. In that section, we also describe the memory
management used on this CPU by another advanced operating system for PCs:
IBM OS/2.

9.3 . Contiguous Memory Allocation

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate different parts of the
main memory in the most efficient way possible. This section will explain one
common method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system, and one for the user processes. We may place the operating
system in either low memory or high memory. The major factor affecting this
decision is the location of the interrupt vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in low
memory as well. Thus, in this text, we shall discuss only the situation where
the operating system resides in low memory. The development of the other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory. In this
contiguous memory allocation, each process is contained in a single contiguous
section of memory.

284 Chapter 9 Memory Management

9.3.1 Memory Protection
Before discussing memory allocation, we must discuss the issue of memory pro-
tection-protecting the operating system from user processes, and protecting
user processes from one another. We can provide this protection by using a relo-
cation register, as discussed in Section 9.1.2, with a limit register, as discussed in
Section 2.5.3. The relocation register contains the value of the smallest physical
address; the limit register contains the range of logical addresses (for example,
relocation = 100040 and limit = 74600). With relocation and limit registers, each
logical address must be less than the limit register; the MMU maps the logical
address dynamically by adding the value in the relocation register. This mapped
address is sent to memory (Figure 9.5).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by the CPU is checked against
these registers, we can protect both the operating system and the other users'
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating-system size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory,
as we might be able to use that space for other purposes. Such code is some-
times called transient operating-system code; it comes and goes as needed.
Thus, using this code changes the size of the operating system during program
execution.

+
trap; addressing error

Figure 9.5 Hardware support for relocation and limit registers.

9.3 Contiguous Memory Allocation 285

9.3.2 Memory Allocation
Now we are ready to turn to memory allocation. One of the simplest methods
for memory allocation is to divide memory into several fixed-sized partitions.
Each partition may contain exactly one process. Thus, the degree of multipro-
gramming is bound by the number of partitions. In this multiple-partition
method, when a partition is free, a process is selected from the input queue
and is loaded into the free partition. When the process terminates, the partition
becomes available for another process. This method was originally used by the
IBM 0S/360 operating system (called MFT); it is no longer in use. The method
described next is a generalization of the fixed-partition scheme (called MVT); it
is used primarily in a batch environment. Many of the ideas presented here are
also applicable to a time-sharing environment in which pure segmentation is
used for memory management (Section 9.5).

The operating system keeps a table indicating which parts of memory are
available and which are occupied. Initially, all memory is available for user
processes, and is considered as one large block of available memory, a hole.
When a process arrives and needs memory, we search for a hole large enough
for this process. If we find one, we allocate only as much memory as is needed,
keeping the rest available to satisfy future requests.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory
and it can then compete for the CPU. When a process terminates, it releases its
memory, which the operating system may then fill with another process from
the input queue.

At any given time, we have a list of available block sizes and the input
queue. The operating system can order the input queue according to a schedul-
ing algorithm. Memory is allocated to processes until, finally, the memory
requirements of the next process cannot be satisfied; no available block of mem-
ory (or hole) is large enough to hold that process. The operating system can then
wait until a large enough block is available, or it can skip down the input queue
to see whether the smaller memory requirements of some other process can be
met.

In general, a set of holes, of various sizes, is scattered throughout memory at
any given time. When a process arrives and needs memory, the system searches
this set for a hole that is large enough for this process. If the hole is too large, it is
split into two: One part is allocated to the arriving process; the other is returned
to the set of holes. When a process terminates, it releases its block of memory,
which is then placed back in the set of holes. If the new hole is adjacent to other
holes, these adjacent holes are merged to form one larger hole. At this point, the
system may need to check whether there are processes waiting for memory and
whether this newly freed and recombined memory could satisfy the demands
of any of these waiting processes.

286 Chapter 9 Memory Management

This procedure is a particular instance of the general dynamic storage-
allocation problem, which is how to satisfy a request of size n from a list of free
holes. There are many solutions to this problem. The set of holes is searched
to determine which hole is best to allocate. The first-fit, best-fit, and worst-fit
strategies are the most common ones used to select a free hole from the set of
available holes.

Firstfit: Allocate thefirst hole that is big enough. Searching can start either
at the beginning of the set of holes or where the previous first-fit search
ended. We can stop searching as soon as we find a free hole that is large
enough.

Bestfit: Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is kept ordered by size. This strategy produces the
smallest leftover hole.

Worst fit: Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing both time and storage utilization. Neither first fit nor
best fit is clearly better in terms of storage utilization, but first fit is generally
faster.

These algorithms, however, suffer from external fragmentation. As pro-
cesses are loaded and removed from memory, the free memory space is broken
into little pieces. External fragmentation exists when enough total memory
space exists to satisfy a request, but it is not contiguous; storage is fragmented
into a large number of small holes. This fragmentation problem can be severe.
In the worst case, we could have a block of free (or wasted) memory between
every two processes. If all this memory were in one big free block, we might be
able to run several more processes.

The selection of the first-fit versus best-fit strategies can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.) Another factor is which end of a free block is allocated. (Which is
the leftover piece-the one on the top, or the one on the bottom?) No matter
which algorithm is used, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process
size, external fragmentation may be a minor or a major problem. Statistical
analysis of first fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5N blocks will be lost due to fragmentation.
That is, one-third of memory may be unusable! This property is known as the
50-percent rule.

9.4 Paging 287

9.3.3 Fragmentation
Memory fragmentation can be internal as well as external. Consider a multiple-
partition allocation scheme with a hole of 18,464 bytes. Suppose that the next
process requests 18,462 bytes. If we allocate exactly the requested block, we
are left with a hole of 2 bytes. The overhead to keep track of this hole will be
substantially larger than the hole itself. The general approach is to break the
physical memory into fixed-sized blocks, and allocate memory in unit of block
sizes. With this approach, the memory allocated to a process may be slightly
larger than the requested memory. The difference between these two numbers
is internal fragmentation-memory that is internal to a partition but is not
being used.

One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents to place all free memory together in one
large block. Compaction is not always possible. If relocation is static and is done
at assembly or load time, compaction cannot be done; compaction is possible
only if relocation is dynamic, and is done at execution time. If addresses are
relocated dynamically, relocation requires only moving the program and data,
and then changing the base register to reflect the new base address. When
compaction is possible, we must determine its cost. The simplest compaction
algorithm is simply to move all processes toward one end of memory; all holes
move in the other direction, producing one large hole of available memory. This
scheme can be expensive.

Another possible solution to the external-fragmentation problem is to per-
mit the logical-address space of a process to be noncontiguous, thus allowing
a process to be allocated physical memory wherever the latter is available.
Two complementary techniques achieve this solution: paging (Section 9.4) and
segmentation (Section 9.5). These techniques can also be combined (Section 9.6).

9.4 . Paging

Paging is a memory-management scheme that permits the physical-address
space of a process to be noncontiguous. Paging avoids the considerable prob-
lem of fitting the varying-sized memory chunks onto the backing store, from
which most of the previous memory-management schemes suffered. When
some code fragments or data residing in main memory need to be swapped
out, space must be found on the backing store. The fragmentation problems
discussed in connection with main memory are also prevalent with backing
store, except that access is much slower, so compaction is impossible. Because
of its advantages over the previous methods, paging in its various forms is
commonly used in most operating systems.

Traditionally, support for paging has been handled by hardware. However,
recent designs have implemented paging by closely integrating the hardware
and operating system, especially on 64-bit microprocessors.

288 Chapter 9 Memory Management

Figure 9.6 Paging hardware.

9.4.1 Basic Method

logical physical
address address

Physical memory is broken into fixed-sized blocks called frames. Logical
memory is also broken into blocks of the same size called pages. When a process
is to be executed, its pages are loaded into any available memory frames from
the backing store. The backing store is divided into fixed-sized blocks that are
of the same size as the memory frames.

The hardware support for paging is illustrated in Figure 9.6. Every address
generated by the CPU is divided into two parts: a page number (p) and a page
offset (d). The page number is used as an index into a page table. The page
table contains the base address of each page in physical memory. This base
address is combined with the page offset to define the physical memory address
that is sent to the memory unit. The paging model of memory is shown in
Figure 9.7.

The page size (like the frame size) is defined by the hardware. The size
of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture. The selection of a power of 2
as a page size makes the translation of a logical address into a page number
and page offset particularly easy. If the size of logical-address space is 2m, and
a page size is 2n addressing units (bytes or words), then the high-order rn - n
bits of a logical address designate the page number, and the n low-order bits
designate the page offset. Thus, the logical address is as follows:

physical

U memory
page table

f0000 . . .0000

f l l l l ... 1 1 1 1

CPU

If
I

4 P 1 d 1
4

f I d +
b

P[
f

,-

9.4 Paging 289

logical
memory

page table

frame
number

physical
memory

Figure 9.7 Paging model of logical and physical memory

m - n n

page number

P

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 9.8. Using a page size of 4 bytes and a physical memory of 32 bytes (8
pages), we show how the user's view of memory can be mapped into physical
memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we
find that page 0 is in frame 5. Thus, logical address 0 maps to physical address
20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical address
23 (= (5 x 4) + 3). Logical address 4 is page 1, offset 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical
address 24 (= (6 x 4) + 0). Logical address 13 maps to physical address 9.

You may have noticed that paging itself is a form of dynamic relocation.
Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation) registers,
one for each frame of memory.

When we use a paging scheme, we have no external fragmentation: Any
free frame can be allocated to a process that needs it. However, we may have
some internal fragmentation. Notice that frames are allocated as units. If the

page offset
d

290 Chapter 9 Memory Management

ii g 1
logical memory

page table

physical memory

Figure 9.8 Paging example for a 32-byte memory with 4-byte pages.

memory requirements of a process do not happen to fall on page boundaries,
the last frame allocated may not be completely full. For example, if pages are
2,048 bytes, a process of 72,766 bytes would need 35 pages plus 1,086 bytes. It
would be allocated 36 frames, resulting in an internal fragmentation of 2048 -
1086 = 962 bytes. In the worst case, a process would need n pages plus one
byte. It would be allocated n + 1 frames, resulting in an internal fragmentation
of almost an entire frame.

If process size is independent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that small
page sizes are desirable. However, overhead is involved in each page-table
entry, and this overhead is reduced as the size of the pages increases. Also,
disk I/O is more efficient when the number of data being transferred is larger
(Chapter 14). Generally, page sizes have grown over time as processes, data

9.4 Paging 291

sets, and main memory have become larger. Today pages typically are between
4 KB and 8 KB, and some systems support even larger page sizes. Some CPUs
and kernels even support multiple page sizes. For instance, Solaris uses 8 KB
and 4 MB page sizes, depending on the data stored by the pages. Researchers
are now developing variable on-the-fly page-size support.

Each page-table entry is usually 4 bytes long, but that size can vary as well.
A 32-bit entry can point to one of 232 physical page frames. If a frame is 4 KB,
then a system with 4-byte entries can address 236 bytes (or 64 GB) of physical
memory.

When a process arrives in the system to be executed, its size, expressed in
pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, and its frame number is put into the page table, and so on (Figure 9.9).

An important aspect of paging is the clear separation between the user's
view of memory and the actual physical memory. The user program views
that memory as one single contiguous space, containing only this one program.
In fact, the user program is scattered throughout physical memory, which also
holds other programs. The difference between the user's view of memory and

free-frame list
14
13
18
20
15

free-frame list
15

I new-process page table

Figure 9.9 Free frames. (a) Before allocation. (b) After allocation.

292 Chapter 9 Memory Management

the actual physical memory is reconciled by the address-translation hardware.
The logical addresses are translated into physical addresses. This mapping is
hidden from the user and is controlled by the operating system. Notice that the
user process by definition is unable to access memory it does not own. It has
no way of addressing memory outside of its page table, and the table includes
only those pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory: which frames are allocated, which
frames are available, how many total frames there are, and so on. This informa-
tion is generally kept in a data structure called a frame table. The frame table
has one entry for each physical page frame, indicating whether the latter is free
or allocated and, if it is allocated, to which page of which process or processes.

In addition, the operating system must be aware that user processes operate
in user space, and all logical addresses must be mapped to produce physical
addresses. If a user makes a system call (to do I/O, for example) and provides
an address as a parameter (a buffer, for instance), that address must be mapped
to produce the correct physical address. The operating system maintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresses whenever the operating system must map a logical address
to a physical address manually. It is also used by the CPU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

9.4.2 Hardware Support
Each operating system has its own methods for storing page tables. Most
allocate a page table for each process. A pointer to the page table is stored with
the other register values (like the instruction counter) in the process control
block. When the dispatcher is told to start a process, it must reload the user
registers and define the correct hardware page-table values from the stored user
page table.

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
registers. These registers should be built with very high-speed logic to make the
paging-address translation efficient. Every access to memory must go through
the paging map, so efficiency is a major consideration. The CPU dispatcher
reloads these registers, just as it reloads the other registers. Instructions to load
or modify the page-table registers are, of course, privileged, so that only the
operating system can change the memory map. The DEC PDP-11 is an example
of such an architecture. The address consists of 16 bits, and the page size is 8
KB. The page table thus consists of eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table is
reasonably small (for example, 256 entries). Most contemporary computers,

9.4 Paging 293

however, allow the page table to be very large (for example, 1 million entries).
For these machines, the use of fast registers to implement the page table is
not feasible. Rather, the page table is kept in main memory, and a page-table
base register (PTBR) points to the page table. Changing page tables requires
changing only this one register, substantially reducing context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into the
page table, using the value in the PTBR offset by the page number for i. This
task requires a memory access. It provides us with the frame number, which
is combined with the page offset to produce the actual address. We can then
access the desired place in memory. With this scheme, two memory accesses are
needed to access a byte (one for the page-table entry, one for the byte). Thus,
memory access is slowed by a factor of 2. This delay would be intolerable under
most circumstances. We might as well resort to swapping!

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache, called translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with
an item, it is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; the hardware,
however, is expensive. Typically, the number of entries in a TLB is small, often
numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, its page number is presented to the TLB. If the page number is found,
its frame number is immediately available and is used to access memory. The
whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. When the frame number is obtained,
we can use it to access memory (Figure 9.10). In addition, we add the page
number and frame number to the TLB, so that they will be found quickly on the
next reference. If the TLB is already full of entries, the operating system must
select one for replacement. Replacement policies range from least recently used
(LRU) to random. Furthermore, some TLBs allow entries to be wired down,
meaning that they cannot be removed from the TLB. Typically, TLB entries for
kernel code are often wired down.

Some TLBs store address-space identifiers (ASIDs) in each entry of the TLB.
An ASID uniquely identifies each process and is used to provide address space
protection for that process. When the TLB attempts to resolve virtual page
numbers, it ensures the ASID for the currently running process matches the ASID
associated with the virtual page. If the ASIDs do not match, they are treated
as a TLB miss. In addition to providing address-space protection, an ASID
allows the TLB to contain entries for several different processes simultaneously.

294 Chapter 9 Memory Management

Figure 9.10 Paging hardware with TLB.

If the TLB does not support separate ASIDs, every time a new page table is
selected (for instance, each context switch), the TLB must be flushed (or erased)
to ensure that the next executing process does not use the wrong translation
information. Otherwise, there could be old entries in the TLB that contain valid
virtual addresses but have incorrect or invalid physical addresses left over from
the previous process.

The percentage of times that a particular page number is found in the TLB
is called the hit ratio. An 80-percent hit ratio means that we find the desired
page number in the TLB 80 percent of the time. If it takes 20 nanoseconds
to search the TLB, and 100 nanoseconds to access memory, then a mapped-
memory access takes 120 nanoseconds when the page number is in the TLB.
If we fail to find the page number in the TLB (20 nanoseconds), then we must
first access memory for the page table and frame number (100 nanoseconds),
and then access the desired byte in memory (100 nanoseconds), for a total of
220 nanoseconds. To find the effective memory-access time, we must weigh
each case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

9.4 Paging 295

In this example, we suffer a 40-percent slowdown in memory access time (from
100 to 140 nanoseconds).

For a 98-percent hit ratio, we have

effective access time = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

This increased hit rate produces only a 22-percent slowdown in access time. We
will further explore the impact of the hit ratio on the TLB in Chapter 10.

9.4.3 Protection

Memory protection in a paged environment is accomplished by protection bits 11

that are associated with each frame. Normally, these bits are kept in the page
table. One bit can define a page to be read-write or read-only. Every reference
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits

I
~

can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read-write, or execute-only
protection. Or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses; illegal attempts will be trapped to
the operating system.

One more bit is generally attached to each entry in the page table: a valid-
invalid bit. When this bit is set to "valid," this value indicates that the associated
page is in the process' logical-address space, and is thus a legal (or valid) page.
If the bit is set to "invalid," this value indicates that the page is not in the
process' logical-address space. Illegal addresses are trapped by using the valid-
invalid bit. The operating system sets this bit for each page to allow or disallow
accesses to that page. For example, in a system with a 14-bit address space (0
to 16383), we may have a program that should use only addresses 0 to 10468.
Given a page size of 2 KB, we get the situation shown in Figure 9.11. Addresses
in pages 0, 1,2,3,4, and 5 are mapped normally through the page table. Any
attempt to generate an address in pages 6 or 7, however, finds that the valid-
invalid bit is set to invalid, and the computer will trap to the operating system
(invalid page reference).

Because the program extends to only address 10468, any reference beyond
that address is illegal. However, references to page 5 are classified as valid, so
accesses to addresses up to 12287 are valid. Only the addresses from 12288 to
16383 are invalid. This problem is a result of the 2 KB page size and reflects the

' internal fragmentation of paging.
Rarely does a process use all its address range. In fact, many processes

use only a small fraction of the address space available to them. It would be

296 Chapter 9 Memory Management

2

frame number , , valid-invalid bit

0

1

2

3

4

5

6

7

page table

Figure 9.11 Valid (v) or invalid (i) bit in a page table.

wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused, but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

9.4.4 Structure of the Page Table
In this section we explore some of the most common techniques for structuring
the page table.

9.4.4.1 Hierarchical Paging

Most modern computer systems support a large logical-address space (Z3' to
2@). In such an environment, the page table itself becomes excessively large.
For example, consider a system with a 32-bit logical-address space. If the page
size in such a system is 4 KB (212), then a page table may consist of up to 1 million

9.4 Paging 297

I

page table
memory

Figure 9.12 A two-level page-table scheme.

entries (232/212). Assuming that each entry consists of 4 bytes, each process may
need up to 4 MB of physical-address space for the page table alone. Clearly, we
would not want to allocate the page table contiguously in main memory. One
simple solution to this problem is to divide the page table into smaller pieces.
There are several ways to accomplish this division.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 9.12). Remember our example to our 32-bit machine
with a page size of 4 KB. A logical address is divided into a page number
consisting of 20 bits, and a page offset consisting of 12 bits. Because we page
the page table, the page number is further divided into a 10-bit page number
and a 10-bit page offset. Tl~us, a logical address is as follows:

page number page offset

298 Chapter 9 Memory Management

where pl is an index into the outer page table and p2 is the displacement within
the page of the outer page table. The address-translation method for this
architecture is shown in Figure 9.13. Because address translation works from
the outer page table inwards, this scheme is also known as a forward-mapped
page table. The Pentium-I1 uses this architecture.

The VAX architecture also supports a variation of two-level paging. The
VAX is a 32-bit machine with page size of 512 bytes. The logical-address space of
a process is divided into four equal sections, each of which consists of 230 bytes.
Each section represents a different part of the logical-address space of a process.
The first 2 high-order bits of the logical address designate the appropriate
section. The next 21 bits represent the logical page number of that section, and
the final 9 bits represent an offset in the desired page. By partitioning the page
table in this manner, the operating system can leave partitions unused until a
process needs them. An address on the VAX architecture is as follows:

where s designates the section number, p is an index into the page table, and d
is the displacement within the page.

The size of a one-level page table for a VAX process using one section still
is 2" bits * 4 bytes per entry = 8 MB. So that main-memory use is reduced even
further, the VAX pages the user-process page tables.

For a system with a 64-bit logical-address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let us suppose that the page
size in such a system is 4 KB (212). In this case, the page table will consist of
up to 252 entries. If we use a two-level paging scheme, then the inner page
tables could conveniently be one page long, or contain 21° 4-byte entries. The
addresses would look like:

loaical address

offset

d 1
section

s

Figure 9.13 Address translation for a two-level 32-bit paging architecture.

2 21 9

Page

P

9.4 Paging 299

The outer page table will consist of 242 entries, or 244 bytes. The obvious method
to avoid such a large table is to divide the outer page table into smaller pieces.
This approach is also used on some 32-bit processors for added flexibility and
efficiency.

We can divide the outer page table in various ways. We can page the
outer page table, giving us a three-level paging scheme. Suppose that the outer
page table is made up of standard-size pages (21° entries, or 2'' bytes); a 64-bit
address space is still daunting:

offset
d

outer page

r PI

The outer page table is still 234 bytes large.
The next step would be a four-level paging scheme, where the second-

level outer page table itself is also paged. The SPARC architecture (with 32-bit
addressing) supports a three-level paging scheme, whereas the 32-bit Motorola
68030 architecture supports a four-level paging scheme.

However, for 64-bit architectures, hierarchical page tables are generally
considered inappropriate. For example, the 64-bit UltraSPARC would require
seven levels of paging-a prohibitive number of memory accesses to translate
each logical address.

42 10 12

inner page

P2

2nd outer page

PI

9.4.4.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual-page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (a) the
virtual page number, (b) the value of he mapped page frame, and (c) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
to field (a) in the first element in the linked list. If there is a match, the
corresponding page frame (field (b)) is used to form the desired physical
address. If there is no match, subsequent entries in the linked list are searched
for a matching virtual page number. This scheme is shown in Figure 9.14.

A variation to this scheme that is favorable for 64-bit address spaces has
been proposed. Clustered page tables are similar to hashed page tables except
that each entry in the hash table refers to several pages (such as 16) rather than
a single page. Therefore, a single page-table entry can store the mappings for

32 10 10 12

outer page

~2

inner page

P3

offset
d

300 Chapter 9 Memory Management

hash table

Figure 9.14 Hashed page table.

multiple physical-page frames. Clustered page tables are particularly useful
for sparse address spaces where memory references are noncontiguous and
scattered throughout the address space.

9.4.4.3 Inverted Page Table

Usually, each process has a page table associated with it. The page table has
one entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter's validity). This table representation is a natural
one, since processes reference pages through the pages' virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical-address entry is, and
to use that value directly. One of the drawbacks of this method is that each
page table may consist of millions of entries. These tables may consume large
amounts of physical memory, which is required just to keep track of how the
other physical memory is being used.

To solve this problem, we can use an inverted page table. An inverted page
table has one entry for each real page (or frame) of memory. Each entry consists
of the virtual address of the page stored in that real memory location, with
information about the process that owns that page. Thus, only one page table
is in the system, and it has only one entry for each page of physical memory.
Figure 9.15 shows the operation of an inverted page table. Compare it to Figure
9.6, which depicts a standard page table in operation. Because only one page
table is in the system yet there are usually several different address spaces
mapping physical memory, inverted page tables often require an address-space
identifier (Section 9.4.2) stored in each entry of the page table. Storing the

9.4 Paging 301

physical

I
page table

Figure 9.15 Inverted page table.

address-space identifier ensures the mapping of a logical page for a particular
process to the corresponding physical page frame. Examples of systems using
inverted page tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the implemen-
tation of the inverted page table used in the IBM RT. Each virtual address in the
system consists of a triple

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found-say, at entry i-then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by a physical
address, but lookups occur on virtual addresses, the whole table might need to
be searched for a match. This search would take far too long. To alleviate this
problem, we use a hash table as described in Section 9.4.4.2 to limit the search
to one-or at most a few-page-table entries. Of course, each access to the
hash table adds a memory reference to the procedure, so one virtual-memory

302 Chapter 9 Memory Management

reference requires at least two real-memory reads: one for the hash-table entry
and one for the page table. To improve performance, recall that the TLB is
searched first, before the hash table is consulted.

9.4.5 Shared Pages
Another advantage of paging is the possibility of sharing common code. This
consideration is particularly important in a time-sharing environment. Con-
sider a system that supports 40 users, each of whom executes a text editor. If
the text editor consists of 150 KB of code and 50 KB of data space, we would
need 8,000 KB to support the 40 users. If the code is reentrant code, however, it
can be shared, as shown in Figure 9.16. Here we see a three-page editor-each
page of size 50 KB; the large page size is used to simplify the figure-being
shared among three processes. Each process has its own data page.

Reentrant code (or pure code) is non-self-modifying code. If the code is
reentrant, then it never changes during execution. Thus, two or more processes
can execute the same code at the same time. Each process has its own copy of
registers and data storage to hold the data for the process' execution. The data
for two different processes will, of course, vary for each process.

data 1 4
process P,

data 3 1
process P3

page table
for P,

page table
for P3

data 2 1
process P,

[7

page table
for P,

1 data 1

2 H data 3

7 6H data 2

Figure 9.16 Sharing of code in a paging environment.

9.5 Segmentation 303

Only one copy of the editor needs to be kept in physical memory. Each
user's page table maps onto the same physical copy of the editor, but data pages
are mapped onto different frames. Thus, to support 40 users, we need only one
copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user.
The total space required is now 2,150 KB, instead of 8,000 KB-a significant
savings.

Other heavily used programs can also be shared-compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the
code must be reentrant. The read-only nature of shared code should not be
left to the correctness of the code; the operating system should enforce this
property. This sharing of memory among processes on a system is similar to
the sharing of the address space of a task by threads, described in Chapter 5.
Furthermore, recall from Chapter 4 where we described shared memory as a
method of interprocess communication. Some operating systems implement
shared memory using shared pages.

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used, however, as there is only one
virtual page entry for every physical page, so one physical page cannot have
two (or more) shared virtual addresses.

Organizing memory according to pages provides numerous other benefits
in addition to allowing several processes to share the same physical pages. We
will cover several other benefits in Chapter 10.

9.5 Segmentation

An important aspect of memory management that became unavoidable with
paging is the separation of the user's view of memory and the actual physical
memory. The user's view of memory is not the same as the actual physical
memory. The user's view is mapped onto physical memory. The mapping
allows differentiation between logical memory and physical memory.

9.5.1 Basic Method
Do users think of memory as a linear array of bytes, some containing instruc-
tions and others containing data? Most people would say no. Rather, users
prefer to view memory as a collection of variable-sized segments, with no
necessary ordering among segments (Figure 9.17).

Consider how you think of a program when you are writing it. You think
of it as a main program with a set of subroutines, procedures, functions, or
modules. There may also be various data structures: tables, arrays, stacks,
variables, and so on. Each of these modules or data elements is referred to by

304 Chapter 9 Memory Management

logical address space

Figure 9.17 User's view of a program.

name. You talk about "the symbol table," "function Sqrt," "the main program,"
without caring what addresses in memory these elements occupy. You are
not concerned with whether the symbol table is stored before or after the Sqrt
function. Each of these segments is of variable length; the length is intrinsically
defined by the purpose of the segment in the program. Elements within a
segment are identified by their offset from the beginning of the segment: The
first statement of the program, the seventeenth entry in the symbol table, the
fifth instruction of the Sqrt function, and so on.

Segmentation is a memory-management scheme that supports this user
view of memory. A logical-address space is a collection of segments. Each
segment has a name and a length. The addresses specify both the segment name
and the offset within the segment. The user therefore specifies each address by
two quantities: a segment name and an offset. (Contrast this scheme with the
paging scheme, in which the user specified only a single address, which was
partitioned by the hardware into a page number and an offset, all invisible to
the programmer.)

For simplicity of implementation, segments are numbered and are referred
to by a segment number, rather than by a segment name. Thus, a logical address
consists of a two tuple:

9.5 Segmentation 305

Normally, the user program is compiled, and the compiler automatically con-
structs segments reflecting the input program. A Pascal compiler might create
separate segments for the following:

1. the global variables;

2. the procedure call stack, to store parameters and return addresses;

3. the code portion of each procedure or function;

4. the local variables of each procedure and function.

A Fortran compiler might create a separate segment for each common block.
Arrays might be assigned separate segments. The loader would take all these
segments and assign them segment numbers.

9.5.2 Hardware
Although the user can now refer to objects in the program by a two-dimensional
address, the actual physical memory is still, of course, a one-dimensional
sequence of bytes. Thus, we must define an implementation to map two-
dimensional user-defined addresses into one-dimensional physical addresses.
This mapping is affected by a segment table. Each entry of the segment table
has a segment base and a segment limit. The segment base contains the starting

trap; addressing error physical memory

Figure 9.18 Segmentation hardware.

306 Chapter 9 Memory Management

physical address where the segment resides in memory, whereas the segment
limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 9.18. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index into the segment table. The offset d of
the logical address must be between 0 and the segment limit. If it is not, we trap
to the operating system (logical addressing attempt beyond end of segment). If
this offset is legal, it is added to the segment base to produce the address in
physical memory of the desired byte. The segment table is thus essentially an
array of base-limit register pairs.

As an example, consider the situation shown in Figure 9.19. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long

stack El

logical address space

segment table

physical memory

Figure 9.19 Example of segmentation.

9.5 Segmentation 307

and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped
onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

9.5.3 Protection and Sharing
A particular advantage of segmentation is the association of protection with
the segments. Because the segments represent a semantically defined portion
of the program, it is likely that all entries in the segment will be used the
same way. Hence, some segments are instructions, whereas other segments
are data. In a modern architecture, instructions are non-self-modifying, so
instruction segments can be defined as read only or execute only. The memory-
mapping hardware will check the protection bits associated with each segment-
table entry to prevent illegal accesses to memory, such as attempts to write
into a read-only segment, or to use an execute-only segment as data. By
placing an array in its own segment, the memory-management hardware will
automatically check that array indexes are legal and do not stray outside the
array boundaries. Thus, many common program errors will be detected by the
hardware before they can cause serious damage.

Another advantage of segmentation involves the sharing of code or data.
Each process has a segment table associated with it, which the dispatcher
uses to define the hardware segment table when this process is given the
CPU. Segments are shared when entries in the segment tables of two different
processes point to the same physical location (Figure 9.20).

The sharing occurs at the segment level. Thus, any information can be
shared if it is defined to be a segment. Several segments can be shared, so a
program composed of several segments can be shared.

For example, consider the use of a text editor in a time-sharing system.
A complete editor might be quite large, composed of many segments. These
segments can be shared among all users, limiting the physical memory needed
to support editing tasks. Rather than n copies of the editor, we need only one
copy. For each user, we still need separate, unique segments to store local
variables. These segments, of course, would not be shared.

We can also share only parts of programs. For example, common subrou-
tine packages can be shared among many users if they are defined as sharable,
read-only segments. Two Fortran programs, for instance, may use the same Sqrt
subroutine, but only one physical copy of the Sqrt routine would be needed.

Although this sharing appears simple, there are subtle considerations.
Code segments typically contain references to themselves. For example, a
conditional jump normally has a transfer address, whch consists of a segment
number and offset. The segment number of the transfer address will be the
segment number of the code segment. If we try to share this segment, all

308 Chapter 9 Memory Management

sharing processes must define the shared code segment to have the same
segment number.

For instance, if we want to share the Sqrt routine, and one process wants
to make it segment 4 and another wants to make it segment 17, how should
the Sqrt routine refer to itself? Because there is only one physical copy of Sqrt,
it must refer to itself in the same way for both users-it must have a unique
segment number. As the number of users sharing the segment increases, so
does the difficulty of finding an acceptable segment number.

logical memory
process P,

segment table
process P,

segment table
process P,

logical memory
process P,

physical memory

Figure 9.20 Sharing of segments in a segmented memory system.

9.6 Segmentation with Paging 309

Read-only data segments that contain no physical pointers may be shared
as different segment numbers, as may code segments that refer to themselves
not directly, but rather only indirectly. For example, conditional branches that
specify the branch address as an offset from the current program counter or
relative to a register containing the current segment number would allow code
to avoid direct reference to the current segment number.

9.5.4 Fragmentation
The long-term scheduler must find and allocate memory for all the segments of
a user program. This situation is similar to paging except that the segments are
of variable length; pages are all the same size. Thus, as with the variable-sized
partition scheme, memory allocation is a dynamic storage-allocation problem,
usually solved with a best-fit or first-fit algorithm.

Segmentation may then cause external fragmentation, when all blocks of
free memory are too small to accommodate a segment. In this case, the process
may simply have to wait until more memory (or at least a larger hole) becomes
available, or until compaction creates a larger hole. Because segmentation is by
its nature a dynamic relocation algorithm, we can compact memory whenever
we want. If the CPU scheduler must wait for one process, because of a memory-
allocation problem, it may (or may not) skip through the CPU queue looking for
a smaller, lower-priority process to run.

How serious a problem is external fragmentation for a segmentation
scheme? Would long-term scheduling with compaction help? The answers
depend mainly on the average segment size. At one extreme, we could define
each process to be one segment. This approach reduces to the variable-sized
partition scheme. At the other extreme, every byte could be put in its own
segment and relocated separately. This arrangement eliminates external frag-
mentation altogether; however, every byte would need a base register for its
relocation, doubling memory use! Of course, the next logical step-fixed-sized,
small segments-is paging. Generally, if the average segment size is small,
external fragmentation will also be small. (By analogy, consider putting suit-
cases in the trunk of a car; they never quite seem to fit. However, if you open the
suitcases and put the individual items in the trunk, everything is more likely to
fit.) Because the individual segments are smaller than the overall process, they
are more likely to fit in the available memory blocks.

9.6 Segmentation with Paging

Both paging and segmentation have advantages and disadvantages. In fact, of
the two most popular microprocessors now being used, the Motorola 68000 line
is designed based on a flat-address space, whereas the Intel 80x86 and Pentium
family are based on segmentation. Both are merging memory models toward

310 Chapter 9 Memory Management

a mixture of paging and segmentation. We can combine these two methods to
improve on each. This combination is best illustrated by the architecture of the
Intel 386.

The IBM OS/2 32-bit version is an operating system running on top of the
Intel 386 (and later) architecture. The 386 uses segmentation with paging for
memory management. The maximum number of segments per process is 16
KB, and each segment can be as large as 4 gigabytes. The page size is 4 KB. We
shall not give a complete description of the memory-management structure of
the 386 in this text. Rather, we shall present the major ideas.

The logical-address space of a process is divided into two partitions. The
first partition consists of up to 8 KB segments that are private to that process.
The second partition consists of up to 8 KB segments that are shared among
all the processes. Information about the first partition is kept in the local
descriptor table (LDT), information about the second partition is kept in the
global descriptor table (GDT). Each entry in the LDT and GDT consists of 8
bytes, with detailed information about a particular segment including the base
location and length of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte (or word) within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the 386 avoid having to read the descriptor from memory for
every memory reference.

The physical address on the 386 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question are used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This address is then translated
into a physical address.

As pointed out previously, each segment is paged, and each page is 4 KB.
A page table may thus consist of up to 1 million entries. Because each entry
consists of 4 bytes, each process may need up to 4 MB of physical-address space
for the page table alone. Clearly, we would not want to allocate the page table
contiguously in main memory. The solution adopted in the 386 is to use a
two-level paging scheme. The linear address is divided into a page number

9.6 Segmentation with Paging 311

consisting of 20 bits, and a page offset consisting of 12 bits. Since we page
the page table, the page number is further divided into a 10-bit page directory
pointer and a 10-bit page table pointer. The logical address is as follows:

page number I page offset

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 9.13. The Intel address translation is shown in more detail in
Figure 9.21. To improve the efficiency of physical-memory use, Intel 386 page
tables can be swapped to disk. In this case, an invalid bit is used in the page-
directory entry to indicate whether the table to which the entry is pointing is

logical address selector I offset

I I I

I descriptor table

linear address

directory entry h bl page table entry I-'

Figure 9.21 Intel 80386 address translation.

312 Chapter 9 Memory Management

in memory or on disk. If the table is on disk, the operating system can use
the other 31 bits to specify the disk location of the table; the table then can be
brought into memory on demand.

9.7 Summary

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged segmentation. The
greatest determinant of the method used in a particular system is the hard-
ware provided. Every memory address generated by the CPU must be checked
for legality and possibly mapped to a physical address. The checking cannot
be implemented (efficiently) in software. Hence, we are constrained by the
hardware available.

The memory-management algorithms discussed (contiguous allocation,
paging, segmentation, and combinations of paging and segmentation) differ
in many aspects. In comparing different memory-management strategies, you
should use the following considerations:

Hardware support: A simple base register or a pair of base and limit reg-
isters is sufficient for the single- and multiple-partition schemes, whereas
paging and segmentation need mapping tables to define the address map.

Performance: As the memory-management algorithm becomes more com-
plex, the time required to map a logical address to a physical address
increases. For the simple systems, we need only to compare or add to the
logical address-operations that are fast. Paging and segmentation can be
as fast if the table is implemented in fast registers. If the table is in memory,
however, user memory accesses can be degraded substantially. A TLB can
reduce the performance degradation to an acceptable level.

Fragmentation: A multiprogrammed system will generally perform more
efficiently if it has a higher level of multiprogramming. For a given
set of processes, we can increase the multiprogramming level only by
packing more processes into memory. To accomplish this task, we must
reduce memory waste or fragmentation. Systems with fixed-sized allo-
cation units, such as the single-partition scheme and paging, suffer from
internal fragmentation. Systems with variable-sized allocation units, such
as the multiple-partition scheme and segmentation, suffer from external
fragmentation.

Relocation: One solution to the external-fragmentation problem is com-
paction. Compaction involves shifting a program in memory without
the program noticing the change. This consideration requires that logical
addresses be relocated dynamically, at execution time. If addresses are
relocated only at load time, we cannot compact storage.

Exercises 313

Swapping: Any algorithm can have swapping added to it. At intervals
determined by the operating system, usually dictated by CPU-scheduling
policies, processes are copied from main memory to a backing store, and
later are copied back to main memory. This scheme allows more processes
to be run than can be fit into memory at one time.

Sharing: Another means of increasing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used, to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but shared
programs and data must be designed carefully.

Protection: If paging or segmentation is provided, different sections of a
user program can be declared execute only, read only, or read-write. This
restriction is necessary with shared code or data, and is generally useful
in any case to provide simple run-time checks for common programming
errors.

Exercises

9.1 Name two differences between logical and physical addresses.

9.2 Explain the difference between internal and external fragmentation.

9.3 Describe the following allocation algorithms:

a. First fit

b. Best fit

c. Worst fit

9.4 When a process is rolled out of memory, it loses its ability to use the CPU
(at least for a while). Describe another situation where a process loses its
ability to use the CPU, but where the process does not get rolled out.

9.5 Given memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in
order), how would each of the first-fit, best-fit, and worst-fit algorithms
place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which
algorithm makes the most efficient use of memory?

9.6 Consider a system where a program can be separated into two parts: code
and data. The CPU knows whether it wants an instruction (instruction
fetch) or data (data fetch or store). Therefore, two base-limit register
pairs are provided: one for instructions and one for data. The instruction
base-limit register pair is automatically set to read only, so programs can

314 Chapter 9 Memory Management

be shared among different users. Discuss the advantages and disadvan-
tages of this scheme.

9.7 Why are page sizes always powers of 2?

9.8 Consider a logical-address space of eight pages of 1,024 words each,
mapped onto a physical memory of 32 frames.

a. How many bits are in the logical address?

b. How many bits are in the physical address?

9.9 On a system with paging, a process cannot access memory that it does
not own; why? How could the operating system allow access to other
memory? Why should it or should it not?

9.10 Consider a paging system with the page table stored in memory.

a. If a memory reference takes 200 nanoseconds, how long does a paged
memory reference take?

b. If we add TLBs, and 75 percent of all page-table references are found
in the TLBs, what is the effective memory reference time? (Assume
that finding a page-table entry in the TLBs takes zero time, if the
entry is there.)

9.11 What is the effect of allowing two entries in a page table to point to the
same page frame in memory? Explain how you could use this effect to
decrease the amount of time needed to copy a large amount of memory
from one place to another. What would the effect of updating some byte
in the one page be on the other page?

9.12 Why are segmentation and paging sometimes combined into one scheme?

9.13 Describe a mechanism by which one segment could belong to the address
space of two different processes.

9.14 Explain why it is easier to share a reentrant module using segmentation
than it is to do so when pure paging is used.

9.15 Sharing segments among processes without requiring the same segment
number is possible in a dynamically linked segmentation system.

a. Define a system that allows static linking and sharing of segments
without requiring that the segment numbers be the same.

b. Describe a paging scheme that allows pages to be shared without
requiring that the page numbers be the same.

9.16 Consider the following segment table:

Exercises 315

Segment Base Length
-

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

9.17 Consider the Intel address-translation scheme shown in Figure 9.21.

a. Describe all the steps that are taken by the Intel 80386 in translating
a logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory-translation hardware?

c. Are there any disadvantages to this address-translation system? If
so, what are they? If not, why is it not used by every manufacturer?

9.18 In the IBM/370, memory protection is provided through the use of keys.
A key is a 4-bit quantity. Each 2 KB block of memory has a key (the
storage key) associated with it. The CPU also has a key (the protection
key) associated with it. A store operation is allowed only if both keys are
equal, or if either is zero. Which of the following memory-management
schemes could be used successfully with this hardware?

a. Bare machine

b. Single-user system

c. Multiprogramming with a fixed number of processes

d. Multiprogramming with a variable number of processes

e. Paging

f. Segmentation

316 Chapter 9 Memory Management

Bibliographical Notes

Dynamic storage allocation was discussed by Knuth [I9731 (Section 2.5), who
found through simulation results that first fit is generally superior to best fit.
Knuth [I9731 discussed the 50-percent rule.

The concept of paging can be credited to the designers of the Atlas system,
which has been described by Kilburn et al. [I9611 and by Howarth et al.
[1961]. The concept of segmentation was first discussed by Dennis [1965].
Paged segmentation was first supported in the GE 645, on which MULTICS was
originally implemented (Organick [1972]).

Inverted page tables were discussed in an article about the IBM RT storage
manager by Chang and Mergen [1988].

Address translation in software is covered in Jacob and Mudge 119971.
Cache memories, including associative memory, were described and ana-

lyzed by Smith [1982]. This paper also includes an extensive bibliography on
the subject. Hennessy and Patterson [I9961 discussed the hardware aspects of
TLBs, caches, and MMUs. Talluri et al. [I9951 discusses page tables for 64-bit
address spaces. Dougan et al. [I9991 discusses a technique for managing the
TLB.

The Motorola 68000 microprocessor family was described in Motorola
[1989a]. Information on the paging hardware of 80386 can be found in Intel
[1986]. Tanenbaum [2001] also discussed Intel 80386 paging. The Intel 80486
hardware also is described in an Intel publication Intel [1989].

Memory management for several architectures-such as the Pentium 11,
PowerPC, and UltraSPARC-was described by Jacob and Mudge [1998a].

Chapter 10

In Chapter 9, we discussed various memory-management strategies that are
used in computer systems. All these strategies have the same goal: to keep
many processes in memory simultaneously to allow multiprogramming. How-
ever, they tend to require the entire process to be in memory before the process
can execute.

Virtual memory is a technique that allows the execution of processes that
may not be completely in memory. One major advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory. This
technique frees programmers from the concerns of memory-storage limitations.
Virtual memory also allows processes to easily share files and address spaces,
and it provides an efficient mechanism for process creation.

Virtual memory is not easy to implement, however, and may substantially
decrease performance if it is used carelessly. In this chapter, we discuss virtual
memory in the form of demand paging, and examine its complexity and cost.

10.1 . Background

The memory-management algorithms outlined in Chapter 9 are necessary
because of one basic requirement: The instructions being executed must be in
physical memory. The first approach to meeting this requirement is to place the
entire logical address space in physical memory. Overlays and dynamic loading

318 Chapter 10 Virtual Memory

can help to ease this restriction, but they generally require special precautions
and extra work by the programmer. This restriction seems both necessary and
reasonable, but it is also unfortunate, since it limits the size of a program to the
size of physical memory.

In fact, an examination of real programs shows us that, in many cases, the
entire program is not needed. For instance,

Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

Q Arrays, lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 by 100 elements, even though it is
seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

Q Certain options and features of a program may be used rarely. For instance,
the routines on U.S. government computers that balance the budget have
only recently been used.

Even in those cases where the entire program is needed, it may not all be
needed at the same time (such is the case with overlays, for example).

The ability to execute a program that is only partially in memory would
confer many benefits:

A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual-address space, simplifying the programming task.

Q Because each user program could take less physical memory, more pro-
grams could be run at the same time, with a corresponding increase in
CPU utilization and throughput, but with no increase in response time or
turnaround time.

Less I/O would be needed to load or swap each user program into memory,
so each user program would run faster.

Thus, running a program that is not entirely in memory would benefit both
the system and the user.

Virtual memory is the separation of user logical memory from physical
memory. This separation allows an extremely large virtual memory to be pro-
vided for programmers when only a smaller physical memory is available (Fig-
ure 10.1). Virtual memory makes the task of programming much easier, because
the programmer no longer needs to worry about the amount of physical mem-
ory available, or about what code can be placed in overlays; she can concentrate

10.1 Background 319

virtual
memory

physical
memory

Figure 10.1 Diagram showing virtual memory that is larger than physical
memory.

instead on the problem to be programmed. On systems that support virtual
memory, overlays have almost disappeared.

In addition to separating logical memory from physical memory, virtual
memory also allows files and memory to be shared by several different pro-
cesses through page sharing (Section 9.4.5). The sharing of pages further allows
performance improvements during process creation.

Virtual memory is commonly implemented by demand paging. It can
also be implemented in a segmentation system. Several systems provide a
paged segmentation scheme, where segments are broken into pages. Thus, the
user view is segmentation, but the operating system can implement this view
with demand paging. Demand segmentation can also be used to provide vir-
tual memory. Burroughs' computer systems have used demand segmentation.
The IBM OS/2 operating system also uses demand segmentation. However,
segment-replacement algorithms are more complex than are page-replacement
algorithms because the segments have variable sizes. We do not cover demand
segmentation in this text; refer to the Bibliographical Notes for relevant refer-
ences.

320 Chapter 10 Virtual Memory

10.2 Demand Paging

A demand-paging system is similar to a paging system with swapping (Figure
10.2). Processes reside on secondary memory (which is usually a disk). When
we want to execute a process, we swap it into memory. Rather than swapping
the entire process into memory, however, we use a lazy swapper. A lazy
swapper never swaps a page into memory unless that page will be needed.
Since we are now viewing a process as a sequence of pages, rather than as one
large contiguous address space, use of swap is technically incorrect. A swapper
manipulates entire processes, whereas a pager is concerned with the individual
pages of a process. We thus use pager, rather than swapper, in connection with
demand paging.

10.2.1 Basic Concepts
When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those necessary pages into memory. Thus, it
avoids reading into memory pages that will not be used anyway, decreasing
the swap time and the amount of physical memory needed.

program
A

program
B

main
memory

Figure 10.2 Transfer of a paged memory to contiguous disk space.

10.2 Demand Paging 321

With this scheme, we need some form of hardware support to distinguish
between those pages that are in memory and those pages that are on the disk.
The valid-invalid bit scheme described in Section 9.4.4 can be used for this
purpose. This time, however, when this bit is set to "valid," this value indicates
that the associated page is both legal and in memory. If the bit is set to "invalid,"
this value indicates that the page either is not valid (that is, not in the logical
address space of the process), or is valid but is currently on the disk. The
page-table entry for a page that is brought into memory is set as usual, but the
page-table entry for a page that is not currently in memory is simply marked
invalid, or contains the address of the page on disk. This situation is depicted
in Figure 10.3.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all and only
those pages that are actually needed, the process will run exactly as though we

0

1

2

3

4

5

6

7

logical
memory

valid-invalid

page table

physical memory

Figure 10.3 Page table when some pages are not in main memory.

322 Chapter 10 Virtual Memory

had brought in all pages. While the process executes and accesses pages that
are memory resident, execution proceeds normally.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page-fault trap.
The paging hardware, in translating the address through the page table, will
notice that the invalid bit is set, causing a trap to the operating system. This
trap is the result of the operating system's failure to bring the desired page
into memory (in an attempt to minimize disk-transfer overhead and memory
requirements), rather than an invalid address error as a result of an attempt to
use an illegal memory address (such as an incorrect array subscript). We must
therefore correct this oversight. The procedure for handling this page fault is
straightforward (Figure 10.4):

1. We check an internal table (usually kept with the process control block)
for this process, to determine whether the reference was a valid or invalid
memory access.

u
physical
memory

Figure 10.4 Steps in handling a page fault.

10.2 Demand Paging 323

2. If the reference was invalid, we terminate the process. If it was valid, but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with the
process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the illegal address trap.
The process can now access the page as though it had always been in
memory.

It is important to realize that, because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault occurs,
we can restart the process in exactly the same place and state, except that the
desired page is now in memory and is accessible. In this way, we are able to
execute a process, even though portions of it are not (yet) in memory. When the
process tries to access locations that are not in memory, the hardware traps to
the operating system (page fault). The operating system reads the desired page
into memory and restarts the process as though the page had always been in
memory.

In the extreme case, we could start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first
instruction of the process, which is on a non-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it needs
is in memory. At that point, it can execute with no more faults. This scheme is
pure demand paging: Never bring a page into memory until it is required.

Theoretically, some programs may access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, described in Section 10.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for
paging and swapping:

Page table: This table has the ability to mark an entry invalid through a
valid-invalid bit or special value of protection bits.

Secondary memory: This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk. It is
known as the swap device, and the section of disk used for this purpose is
known as swap space. Swap-space allocation is discussed in Chapter 14.

324 Chapter 10 Virtual Memory

In addition to this hardware support, considerable software is needed, as
we shall see. Additional architectural constraints must be imposed. A crucial
one is the need to be able to restart any instruction after a page fault. In most
cases, this requirement is easy to meet. A page fault could occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again, and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as ADD
the content of A to B placing the result in C. These are the steps to execute this
instruction:

1. Fetch and decode the instruction (ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we faulted when we tried to store in C (because C is in a page not
currently in memory), we would have to get the desired page, bring it in, correct
the page table, and restart the instruction. The restart would require fetching
the instruction again, decoding it again, fetching the two operands again, and
then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
occurs.

The major difficulty occurs when one instruction may modify several dif-
ferent locations. For example, consider the IBM System 360/370 MVC (move
character) instruction, which can move up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is partially
done. In addition, if the source and destination blocks overlap, the source block
may have been modified, in which case we cannot simply restart the instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occur, it will happen at this step, before anything is modified.
The move can then take place, as we know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values are written back into memory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction can
be repeated.

10.2 Demand Paging 325

A similar architectural problem occurs in machines that use special address-
ing modes, including autodecrement and autoincrement modes (for example,
the PDP-11). These addressing modes use a register as a pointer and auto-
matically decrement or increment the register as indicated. Autodecrement
automatically decrements the register before using its contents as the operand
address; autoincrement automatically increments the register after using its
contents as the operand address. Thus, the instruction

MOV (R2) +, - (R3)
copies the contents of the location pointed to by register2 into the location
pointed to by register3. Register2 is incremented (by two for a word, since the
PDP-11 is a byte-addressable computer) after it is used as a pointer; register3 is
decremented (by two) before it is used as a pointer. Now consider what will
happen if we get a fault when trying to store into the location pointed to by
register3. To restart the instruction, we must reset the two registers to the values
they had before we started the execution of the instruction. One solution is to
create a new special status register to record the register number and amount
modified for any register that is changed during the execution of an instruction.
This status register allows the operating system to undo the effects of a partially
executed instruction that causes a page fault.

These are by no means the only architectural problems resulting from
adding paging to an existing architecture to allow demand paging, but they
illustrate some of the difficulties. Paging is added between the CPU and the
memory in a computer system. It should be entirely transparent to the user
process. Thus, people often assume that paging could be added to any sys-
tem. Although this assumption is true for a non-demand-paging environment,
where a page fault represents a fatal error, it is not true where a page fault means
only that an additional page must be brought into memory and the process
restarted.

10.2.2 Performance of Demand Paging
Demand paging can have a significant effect on the performance of a computer
system. To see why, let us compute the effective access time for a demand-
paged memory. For most computer systems, the memory-access time, denoted
ma, now ranges from 10 to 200 nanoseconds. As long as we have no page faults,
the effective access time is equal to the memory access time. If, however, a page
fault occurs, we must first read the relevant page from disk, and then access the
desired word.

Let p be the probability of a page fault (0 5 p 5 1). We would expect p to be
close to zero; that is, there will be only a few page faults. The effective access
time is then

effective access time = (1 - p) x ma + p x page fault time.

326 Chapter 10 Virtual Memory

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

1. Trap to the operating system.

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check that the page reference was legal and determine the location of the
page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling;
optional).

7. Interrupt from the disk (I/O completed).

8. Save the registers and process state for the other user (if step 6 is executed).

9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is now
in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, then resume
the interrupted instruction.

Not all of these steps are necessary in every case. For example, we are assuming
that, in step 6, the CPU is allocated to another process while the I/O occurs.
This arrangement allows multiprogramming to maintain CPU utilization, but
requires additional time to resume the page-fault service routine when the I/O
transfer is complete.

In any case, we are faced with three major components of the page-fault
service time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

10.2 Demand Paging 327

The first and third tasks may be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds each.
The page-switch time, on the other hand, will probably be close to 24 millisec-
onds. A typical hard disk has an average latency of 8 milliseconds, a seek of
15 milliseconds, and a transfer time of 1 millisecond. Thus, the total paging
time would be close to 25 milliseconds, including hardware and software time.
Remember also that we are looking at only the device-service time. If a queue
of processes is waiting for the device (other processes that have caused page
faults), we have to add device-queueing time as we wait for the paging device
to be free to service our request, increasing even more the time to swap.

If we take an average page-fault service time of 25 milliseconds and a
memory-access time of 100 nanoseconds, then the effective access time in
nanoseconds is

effective access time = (1 - p) x (100) + p (25 milliseconds)
= (1 - p) x 100 + p x 25,000,000
= 100 + 24,999,900 x p.

We see then that the effective access time is directly proportional to the
page-fault rate. If one access out of 1,000 causes a page fault, the effective access
time is 25 microseconds. The computer would be slowed down by a factor of
250 because of demand paging! If we want less than 10-percent degradation,
we need

That is, to keep the slowdown due to paging to a reasonable level, we can allow
only less than one memory access out of 2,500,000 to page fault.

It is important to keep the page-fault rate low in a demand-paging sys-
tem. Otherwise, the effective access time increases, slowing process execution
dramatically.

One additional aspect of demand paging is the handling and overall use
of swap space. Disk I/O to swap space is generally faster than that to the file
system. It is faster because swap space is allocated in much larger blocks, and
file lookups and indirect allocation methods are not used (Chapter 14). It is
therefore possible for the system to gain better paging throughput, by copying
an entire file image into the swap space at process startup, and then performing
demand paging from the swap space. Another option is to demand pages
from the file system initially, but to write the pages to swap space as they are
replaced. This approach will ensure that only needed pages are ever read from
the file system, but all subsequent paging is done from swap space.

328 Chapter 10 Virtual Memory

Some systems attempt to limit the amount of swap space when binary
files are used. Demand pages for such files are brought directly from the file
system. However, when page replacement is called for, these pages can simply
be overwritten (because they are never modified) and read in from the file
system again if needed. Using this approach, the file system itself serves as the
baclung store. However, swap space must still be used for pages not associated
with a file; these pages include the stack and heap for a process. This technique
is used in several systems including Solaris 2. This method appears to be a good
compromise; it is used in BSD UNIX.

10.3 Process Creation

In Section 10.2, we illustrated how a process is first started using demand
paging. Using this technique, a process can start quickly by merely demand
paging in the page containing the first instruction. However, paging and virtual
memory can also provide for other benefits during process creation. In this
section, we will explore two techniques made available by virtual memory that
enhance performance creating and running processes.

Demand paging is used when reading a file from disk into memory and such
files may include binary executables. However, process creation using the
fork () system call may initially bypass the need for demand paging by using
a technique similar to page sharing (covered in Section 9.4.5). This technique
provides for rapid process creation and minimizes the number of new pages
that must be allocated to the newly created process.

Recall the fork0 system call creates a child process as a duplicate of
its parent. Traditionally fork0 worked by creating a copy of the parent's
address space for the child, duplicating the pages belonging to the parent.
However, considering that many child processes invoke the exec (1 system call
immediately after creation, the copying of the parent's address space may be
unnecessary. Alternatively, we can use a technique known as copy-on-write.
This works by allowing the parent and child processes to initially share the
same pages. These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the shared page is
created. For example, assume the child process attempts to modify a page
containing portions of the stack; the operating system recognizes this as a copy-
on-write page. The operating system will then create a copy of this page,
mapping it to the address space of the child process. Therefore, the child
process will modify its copied page and not the page belonging to the parent
process. Using the copy-on-write technique, it is obvious that only the pages
that are modified by either process are copied; all non-modified pages may

10.3 Process Creation 329

be shared by the parent and child processes. Note that only pages that may
be modified need be marked as copy-on-write. Pages that cannot be modified
(i.e., pages containing executable code) may be shared by the parent and child.
Copy-on-write is a common technique used by several operating systems when
duplicating processes, including Windows 2000, Linux, and Solaris 2.

When it is determined a page is going to be duplicated using copy-on-
write, it is important to note where the free page will be allocated from. Many
operating systems provide a pool of free pages for such requests. These free
pages are typically allocated when the stack or heap for a process must expand
or for managing copy-on-write pages. Operating systems typically allocate
these pages using a technique known as zero-fill-on-demand. Zero-fill-on-
demand pages have been zeroed-out before being allocated, thus erasing the
previous contents of the page. With copy-on-write, the page being copied
will be copied to a zero-filled page. Pages allocated for the stack or heap are
similarly assigned zero-filled pages.

Several versions of UNIX (including Solaris 2) also provide a variation
of the fork 0 system call-vf ork 0 (for virtual memory fork). vf orkO
operates differently than fork (with copy-on-write. With vf ork () the parent
process is suspended and the child process uses the address space of the parent.
Because vfork0 does not use copy-on-write, if the child process changes
any pages of the parent's address space, the altered pages will be visible to
the parent once it resumes. Therefore, vf ork0 must be used with caution,
ensuring that the child process does not modify the address space of the
parent. vf ork 0 is intended to be used when the child process calls exec 0
immediately after creation. Because no copying of pages takes place, vf orkO
is an extremely efficient method of process creation and is sometimes used to
implement UNIX command-line shell interfaces.

10.3.2 Memory-Mapped Files
Consider a sequential read of a file on disk using the standard system calls
open0, read 0, and write 0. Every time the file is accessed requires a
system call and disk access. Alternatively, we can use the virtual-memory
techniques discussed so far to treat file 1/0 as routine memory accesses. This
approach is known as memory mapping a file, allowing a part of the virtual-
address space to be logically associated with a file. Memory mapping a file
is possible by mapping a disk block to a page (or page(s)) in memory. Initial
access to the file proceeds using ordinary demand paging, resulting in a page
fault. However, a page-sized portion of the file is read from the file system
into a physical page (some systems may in fact opt to read in more than a
page-sized chunk of memory at a time.) Subsequent reads and writes to the
file are handled as routine memory accesses, thereby simplifying file access and
usage by allowing file manipulation through memory rather than the overhead
of using the read0 and write 0 system calls. Note that writes to the file

330 Chapter 10 Virtual Memory

mapped in memory may not necessarily be immediate writes to the file on
disk. Some systems may choose to update the physical file when the operating
system periodically checks if the page in memory mapping the file has been
modified. Closing the file results in all the memory-mapped data being written
back to disk and removed from the virtual memory of the process.

Some operating systems provide memory mapping only through a specific
system call and treat all other file 1/0 using the standard system calls. However,
some systems choose to memory map a file regardless of whether a file was
specified as memory mapped or not. Let's take Solaris 2 as an example. If
a file is specified as memory-mapped (using the mmap 0 system call), Solaris
2 maps the file into the address space of the process. However, if a file is
opened and accessed using ordinary system calls such as open () , read (1, and
wr i te 0, Solaris 2 still memory maps the file, however mapping it to the kernel
address space. Regardless how the file is opened, Solaris 2 treats all file 1/0 as
memory-mapped, allowing file access to take place in memory.

Multiple processes may be allowed to map the same file into the virtual
memory of each, to allow sharing of data. Writes by any of the processes
modify the data in virtual memory and can be seen by all others that map the
same section of the file. Given our knowledge of virtual memory, it should be
clear how the sharing of memory-mapped sections of memory is implemented:
The virtual-memory map of each sharing process points to the same page of
physical memory-the page that holds a copy of the disk block. This memory
sharing is illustrated in Figure 10.5. The memory-mapping system calls can
also support copy-on-write functionality, allowing processes to share a file in
read-only mode, but to have their own copies of any data they modify. So that
access to the shared data is coordinated, the processes involved might use one
of the mechanisms for achieving mutual exclusion described in Chapter 7.

10.4 . Page Replacement

In our presentation so far, the page-fault rate has not been a serious problem,
because each page has faulted at most once, when it is first referenced. This
representation is not strictly accurate. If a process of ten pages actually uses
only one-half of them, then demand paging saves the I/O necessary to load
the five pages that are never used. We could also increase our degree of
multiprogramming by running twice as many processes. Thus, if we had 40
frames, we could run eight processes, rather than the four that could run if each
required 10 frames (five of which were never used).

If we increase our degree of multiprogramming, we are over-allocating
memory. If we run six processes, each of which is ten pages in size, but actually
uses only five pages, we have higher CPU utilization and throughput, with
10 frames to spare. It is possible, however, that each of these processes, for a
particular data set, may suddenly try to use all ten of its pages, resulting in a

- -8

I - - - -
I

- 7 - 1

- 7 - I
I I I

- T T i
I I I
I I I

process A '
I 'r virtual memory ,

10.4 Page Replacement 331
I

I process B
I .
I v~rtual memory

disk file

Figure 10.5 Memory-mapped files.

need for 60 frames, when only 40 are available. Although this situation may be
unlikely, it becomes much more likely as we increase the multiprogramming
level, so that the average memory usage is close to the available physical
memory. (In our example, why stop at a multiprogramming level of six, when
we can move to a level of seven or eight?)

Further, consider that system memory is not used only for holding program
pages. Buffers for 1 /0 also consume a significant amount of memory. This use
can increase the strain on memory-placement algorithms. Deciding how much
memory to allocate to I/O and how much to program pages is a significant
challenge. Some systems allocate a fixed percentage of memory for I/O buffers,
whereas others allow both user processes and the I/O subsystem to compete for
all system memory.

Over-allocation manifests itself as follows. While a user process is execut-
ing, a page fault occurs. The hardware traps to the operating system, which
checks its internal tables to see that this page fault is a genuine one rather than
an illegal memory access. The operating system determines where the desired
page is residing on the disk, but then finds that there are no free frames on the
free-frame list: All memory is in use (Figure 10.6).

The operating system has several options at this point. It could terminate
the user process. However, demand paging is the operating system's attempt to
improve the computer system's utilization and throughput. Users should not

332 Chapter 10 Virtual Memory

valid-invalid

logical memory
for user 1

frame, bit

page table
for user 1

valid-invalid
o frami l :ii

1

2
2 v

3 7 v

physical
memory

logical memory page table
for user 2 for user 2

Figure 10.6 Need for page replacement.

be aware that their processes are running on a paged system-paging should
be logically transparent to the user. So this option is not the best choice.

The operating system could swap out a process, freeing all its frames, and
reducing the level of multiprogramming. This option is a good one in certain
circumstances; we consider it further in Section 10.6. Here, we discuss a more
intriguing possibility: page replacement.

10.4.1 Basic Scheme

Page replacement takes the following approach. If no frame is free, we find one
that is not currently being used and free it. We can free a frame by writing its
contents to swap space, and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 10.7). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

10.4 Page Replacement 333

b. If there is no free frame, use a page-replacement algorithm to select a
victim frame.

c. Write the victim page to the disk; change the page and frame tables
accordingly.

3. Read the desired page into the (newly) free frame; change the page and
frame tables.

4. Restart the user process.

Notice that, if no frames are free, two page transfers (one out and one in) are
required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). Each page
or frame may have a modify bit associated with it in the hardware. The modify
bit for a page is set by the hardware whenever any word or byte in the page is
written into, indicating that the page has been modified. When we select a page
for replacement, we examine its modify bit. If the bit is set, we know that the
page has been modified since it was read in from the disk. In this case, we must
write that page to the disk. If the modify bit is not set, however, the page has
not been modified since it was read into memory. Therefore, if the copy of the

frame, , valid-invalid bit

1 I 1 reset page
table for

page table new page

physical
memory

Figure 10.7 Page replacement.

334 Chapter 10 Virtual Memory

page on the disk has not been overwritten (by some other page, for example),
then we can avoid writing the memory page to the disk: it is already there. This
technique also applies to read-only pages (for example, pages of binary code).
Such pages cannot be modified; thus, they may be discarded when desired.
This scheme can reduce significantly the time required to service a page fault,
since it reduces I/O time by one-half if the page is not modified.

Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory. With this mechanism, an
enormous virtual memory can be provided for programmers on a smaller
physical memory. With non-demand paging, user addresses are mapped into
physical addresses, so the two sets of addresses can be different. All the pages of
a process still must be in physical memory, however. With demand paging, the
size of the logical address space is no longer constrained by physical memory.
If we have a user process of 20 pages, we can execute it in ten frames simply
by using demand paging, and using a replacement algorithm to find a free
frame whenever necessary. If a page that has been modified is to be replaced,
its contents are copied to the disk. A later reference to that page will cause a
page fault. At that time, the page will be brought back into memory, perhaps
replacing some other page in the process.

We must solve two major problems to implement demand paging: We must
develop a frame-allocation algorithm and a page-replacement algorithm. If
we have multiple processes in memory, we must decide how many frames to
allocate to each process. Further, when page replacement is required, we must
select the frames that are to be replaced. Designing appropriate algorithms to
solve these problems is an important task, because disk 1 / 0 is so expensive.
Even slight improvements in demand-paging methods yield large gains in
system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a par-
ticular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

We evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference string. We can generate reference strings
artificially (by a random-number generator, for example) or we can trace a
given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses
per second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than the
entire address. Second, if we have a reference to a page p, then any immediately
following references to page p will never cause a page fault. Page p will be in
memory after the first reference; the immediately following references will not
fault.

10.4 Page Replacement 335

For example, if we trace a particular process, we might record the following
address sequence:

which, at 100 bytes per page, is reduced to the following reference string

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults, one
fault for the first reference to each page. On the other hand, with only one
frame available, we would have a replacement with every reference, resulting
in 11 faults. In general, we expect a curve such as that in Figure 10.8. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

To illustrate the page-replacement algorithms, we shall use the reference
string

for a memory with three frames.

1 2 3 4 5 6

number of frames

Figure 10.8 Graph of page faults versus the number of frames.

336 Chapter 10 Virtual Memory

10.4.2 FIFO Page Replacement
The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replace-
ment algorithm associates with each page the time when that page was brought
into memory. When a page must be replaced, the oldest page is chosen. Notice
that it is not strictly necessary to record the time when a page is brought in. We
can create a FIFO queue to hold all pages in memory. We replace the page at the
head of the queue. When a page is brought into memory, we insert it at the tail
of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7,0,1) cause page faults, and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in page 0 being replaced, since
it was the first of the three pages in memory (0, 1, and 2) to be brought in.
Because of this replacement, the next reference, to 0, will fault. Page 1 is then
replaced by page 0. This process continues as shown in Figure 10.9. Every time
a fault occurs, we show which pages are in our three frames. There are 15 faults
altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. The page replaced may be an
initialization module that was used a long time ago and is no longer needed.
On the other hand, it could contain a heavily used variable that was initialized
early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we page out an active page to bring in a
new one, a fault occurs almost immediately to retrieve the active page. Some
other page will need to be replaced to bring the active page back into memory.
Thus, a bad replacement choice increases the page-fault rate and slows process
execution, but does not cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, we consider the reference string

reference string

page frames

Figure 10.9 FIFO page-replacement algorithm.

10.4 Page Replacement 337

a,

Zl 10
[I -
0 a
(I)

5
C

1 2 3 4 5 6 7

number of frames

Figure 10.10 Page-fault curve for FIFO replacement on a reference string.

Figure 10.10 shows the curve of page faults versus the number of available
frames. We notice that the number of faults for four frames (10) is greater than
the number of faults for three frames (nine)! This most unexpected result is
known as Belady's anomaly: For some page-replacement algorithms, the page-
fault rate may increase as the number of allocated frames increases. We would
expect that giving more memory to a process would improve its performance.
In some early research, investigators noticed that this assumption was not
always true. Belady's anomaly was discovered as a result.

10.4.3 Optimal Page Replacement
One result of the discovery of Belady's anomaly was the search for an optimal
page-replacement algorithm. An optimal page-replacement algorithm has the
lowest page-fault rate of all algorithms, and will never suffer from Belady's
anomaly. Such an algorithm does exist, and has been called OPT or MIN. It is
simply

Replace the page that will not be used
for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 10.11. The first three
references cause faults that fill the three empty frames. The reference to page

338 Chapter 10 Virtual Memory

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 [[[a [
page frames

Figure 10.11 Optimal page-replacement algorithm.

2 replaces page 7, because 7 will not be used until reference 18, whereas page
0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page 1,
as page 1 will be the last of the three pages in memory to be referenced again.
With only nine page faults, optimal replacement is much better than a FIFO
algorithm, which had 15 faults. (If we ignore the first three, which all algorithms
must suffer, then optimal replacement is twice as good as FIFO replacement.) In
fact, no replacement algorithm can process this reference string in three frames
with less than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst, and within 4.7
percent on average.

10.4.4 LRU Page Replacement
If the optimal algorithm is not feasible, perhaps an approximation to the opti-
mal algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward or forward in time) is that the FIFO
algorithm uses the time when a page was brought into memory; the OPT algo-
rithm uses the time when a page is to be used. If we use the recent past as an
approximation of the near future, then we will replace the page that has not
been used for the longest period of time (Figure 10.12). This approach is the
least-recently-used (LRU) algorithm.

LRU replacement associates with each page the time of that page's last use.
When a page must be replaced, LRU chooses that page that has not been used
for the longest period of time. This strategy is the optimal page-replacement
algorithm looking backward in time, rather than forward. (Strangely, if we
let SR be the reverse of a reference string S, then the page-fault rate for the
OPT algorithm on S is the same as the page-fault rate for the OPT algorithm on

10.4 Page Replacement 339

reference string

[[[I
page frames

Figure 10.12 LRU page-replacement algorithm.

SR. Similarly, the page-fault rate for the LRU algorithm on S is the same as the
page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 10.12. The LRU algorithm produces 12 faults. Notice that the
first five faults are the same as the optimal replacement. When the reference
to page 4 occurs, however, LRU replacement sees that, of the three frames in
memory, page 2 was used least recently. The most recently used page is page
0, and just before that page 3 was used. Thus, the LRU algorithm replaces page
2, not knowing that page 2 is about to be used. When it then faults for page 2,
the LRU algorithm replaces page 3 since, of the three pages in memory {0,3,4},
page 3 is the least recently used. Despite these problems, LRU replacement with
12 faults is still much better than FIFO replacement with 15.

The LRU policy is often used as a page-replacement algorithm and is consid-
ered to be good. The major problem is how to implement LRU replacement. An
LRU page-replacement algorithm may require substantial hardware assistance.
The problem is to determine an order for the frames defined by the time of last
use. Two implementations are feasible:

Counters: In the simplest case, we associate with each page-table entry a
time-of-use field, and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page is
made, the contents of the clock register are copied to the time-of-use field in
the page-table entry for that page. In this way, we always have the "time"
of the last reference to each page. We replace the page with the smallest
time value. This scheme requires a search of the page table to find the LRU
page, and a write to memory (to the time-of-use field in the page table)
for each memory access. The times must also be maintained when page
tables are changed (due to CPU scheduling). Overflow of the clock must be
considered.

Stack: Another approach to implementing LRU replacement is to keep a
stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the top of the stack is
always the most recently used page and the bottom is the LRU page (Figure

340 Chapter 10 Virtual Memory

10.13). Because entries must be removed from the middle of the stack, it
is best implemented by a doubly linked list, with a head and tail pointer.
Removing a page and putting it on the top of the stack then requires
changing six pointers at worst. Each update is a little more expensive, but
there is no search for a replacement; the tail pointer points to the bottom of
the stack, which is the LRU page. This approach is particularly appropriate
for software or microcode implementations of LRU replacement.

Neither optimal replacement nor LRU replacement suffers from Belady's
anomaly. There is a class of page-replacement algorithms, called stack algo-
rithms, that can never exhibit Belady's anomaly. A stack algorithm is an algo-
rithm for which it can be shown that the set of pages in memory for n frames is
always a subset of the set of pages that would be in memory with n + 1 frames.
For LRU replacement, the set of pages in memory would be the n most recently
referenced pages. If the number of frames is increased, these n pages will still
be the most recently referenced and so will still be in memory.

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the
clock fields or stack must be done for every memory reference. If we were to
use an interrupt for every reference, to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,
hence slowing every user process by a factor of ten. Few systems could tolerate
that level of overhead for memory management.

10.4.5 LRU Approximation Page Replacement
Few computer systems provide sufficient hardware support for true LRU page
replacement. Some systems provide no hardware support, and other page-

reference string

stack before a stack after b

Figure 10.13 Use of a stack to record the most recent page references.

10.4 Page Replacement 341

replacement algorithms (such as a FIFO algorithm) must be used. Many systems
provide some help, however, in the form of a reference bit. The reference bit
for a page is set, by the hardware, whenever that page is referenced (either a
read or a write to any byte in the page). Reference bits are associated with each
entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a user
process executes, the bit associated with each page referenced is set (to 1) by
the hardware. After some time, we can determine which pages have been used
and which have not been used by examining the reference bits. We do not know
the order of use, but we know which pages were used and which were not used.
This partial ordering information leads to many page-replacement algorithms
that approximate LRU replacement.

10.4.5.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference bits at
regular intervals. We can keep an 8-bit byte for each page in a table in memory.
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers
control to the operating system. The operating system shifts the reference bit
for each page into the high-order bit of its 8-bit byte, shifting the other bits right
1 bit, discarding the low-order bit. These &bit shift registers contain the history
of page use for the last eight time periods. If the shift register contains 00000000,
then the page has not been used for eight time periods; a page that is used at
least once each period would have a shift register value of 11111111.

A page with a history register value of 11000100 has been used more
recently than has one with 01110111. If we interpret these 8-bit bytes as unsigned
integers, the page with the lowest number is the LRU page, and it can be
replaced. Notice that the numbers are not guaranteed to be unique, however.
We can either replace (swap out) all pages with the smallest value, or use a FIFO
selection among them.

The number of bits of history can be varied, of course, and would be
selected (depending on the hardware available) to make the updating as fast
as possible. In the extreme case, the number can be reduced to zero, leaving
only the reference bit itself. This algorithm is called the second-chance page-
replacement algorithm.

10.4.5.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement algo-
rithm. When a page has been selected, however, we inspect its reference bit.
If the value is 0, we proceed to replace this page. If the reference bit is set to
1, however, we give that page a second chance and move on to select the next
FIFO page. When a page gets a second chance, its reference bit is cleared and
its arrival time is reset to the current time. Thus, a page that is given a second

342 Chapter 10 Virtual Memory

chance will not be replaced until all other pages are replaced (or given second
chances). In addition, if a page is used often enough to keep its reference bit set,
it will never be replaced.

One way to implement the second-chance (sometimes referred to as the
clock) algorithm is as a circular queue. A pointer indicates which page is to be
replaced next. When a frame is needed, the pointer advances until it finds a
page with a 0 reference bit. As it advances, it clears the reference bits (Figure
10.14). Once a victim page is found, the page is replaced, and the new page
is inserted in the circular queue in that position. Notice that, in the worst
case, when all bits are set, the pointer cycles through the whole queue, giving
each page a second chance. It clears all the reference bits before selecting the
next page for replacement. Second-chance replacement degenerates to FIFO
replacement if all bits are set.

reference
bits

next
victim

circular queue of pages

(a)

reference
bits

El

El

circular queue of pages

(b)

Figure 10.14 Second-chance (clock) page-replacement algorithm.

10.4 Page Replacement 343

10.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering both the reference
bit and the modify bit (Section 10.4) as an ordered pair. With these two bits, we
have the following four possible classes:

1. (0,O) neither recently used nor modified-best page to replace

2. (0,l) not recently used but modified-not quite as good, because the page
will need to be written out before replacement

3. (1,O) recently used but clean-it probably will be used again soon

4. (1,l) recently used and modified-it probably will be used again soon, and
the page will be need to be written out to disk before it can be replaced

When page replacement is called for, each page is in one of these four classes.
We use the same scheme as the clock algorithm, but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the first page
encountered in the lowest nonempty class. Notice that we may have to scan the
circular queue several times before we find a page to be replaced.

This algorithm is used in the Macintosh virtual-memory-management
scheme. The major difference between this algorithm and the simpler clock
algorithm is that here we give preference to those pages that have been modi-
fied to reduce the number of I/Os required.

10.4.6 Counting-Based Page Replacement
There are many other algorithms that can be used for page replacement. For
example, we could keep a counter of the number of references that have been
made to each page, and develop the following two schemes.

The least frequently used (LFU) page-replacement algorithm requires that
the page with the smallest count be replaced. The reason for this selection
is that an actively used page should have a large reference count. This
algorithm suffers from the situation in which a page is used heavily during
the initial phase of a process, but then is never used again. Since it was
used heavily, it has a large count and remains in memory even though it is
no longer needed. One solution is to shift the counts right by 1 bit at regular
intervals, forming an exponentially decaying average usage count.

The most frequently used (MFU) page-replacement algorithm is based
on the argument that the page with the smallest count was probably just
brought in and has yet to be used.

344 Chapter 10 Virtual Memory

As you might expect, neither MFU nor LFU replacement is common. The
implementation of these algorithms is expensive, and they do not approximate
OPT replacement well.

10.4.7 Page-Buffering Algorithm
Other procedures are often used in addition to a specific page-replacement
algorithm. For example, systems commonly keep a pool of free frames. When
a page fault occurs, a victim frame is chosen as before. However, the desired
page is read into a free frame from the pool before the victim is written out. This
procedure allows the process to restart as soon as possible, without waiting for
the victim page to be written out. When the victim is later written out, its frame
is added to the free-frame pool.

An expansion of this idea is to maintain a list of modified pages. Whenever
the paging device is idle, a modified page is selected and is written to the disk.
Its modify bit is then reset. This scheme increases the probability that a page
will be clean when it is selected for replacement, and will not need to be written
out.

Another modification is to keep a pool of free frames, but to remember
which page was in each frame. Since the frame contents are not modified when
a frame is written to the disk, the old page can be reused directly from the
free-frame pool if it is needed before that frame is reused. No 1/0 is needed in
this case. When a page fault occurs, we first check whether the desired page is
in the free-frame pool. If it is not, we must select a free frame and read into it.

This technique is used in the VAX/VMS system, with a FIFO replacement
algorithm. When the FIFO replacement algorithm mistakenly replaces a page
that is still in active use, that page is quickly retrieved from the free-frame
buffer, and no I/O is necessary. The free-frame buffer provides protection
against the relatively poor, but simple, FIFO replacement algorithm. This
method is necessary because the early versions of the VAX did not implement
the reference bit correctly.

10.5 . Allocation of Frames

How do we allocate the fixed amount of free memory among the various
processes? If we have 93 free frames and two processes, how many frames
does each process get?

The simplest case of virtual memory is the single-user system. Consider a
single-user system with 128 KB memory composed of pages of size 1 KB. Thus,
there are 128 frames. The operating system may take 35 KB, leaving 93 frames
for the user process. Under pure demand paging, all 93 frames would initially
be put on the free-frame list. When a user process started execution, it would
generate a sequence of page faults. The first 93 page faults would all get free

10.5 Allocation of Frames 345

frames from the free-frame list. When the free-frame list was exhausted, a page-
replacement algorithm would be used to select one of the 93 in-memory pages
to be replaced with the ninety-fourth, and so on. When the process terminated,
the 93 frames would once again be placed on the free-frame list.

There are many variations on this simple strategy. We can require that the
operating system allocate all its buffer and table space from the free-frame list.
When this space is not in use by the operating system, it can be used to support
user paging. We can try to keep three free frames reserved on the free-frame list
at all times. Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement can be selected,
which is then written to the disk as the user process continues to execute.

Other variants are also possible, but the basic strategy is clear: The user
process is allocated any free frame.

A different problem arises when demand paging is combined with multi-
programming. Multiprogramming puts two (or more) processes in memory at
the same time.

10.5.1 Minimum Number of Frames
Our strategies for the allocations of frames are constrained in various ways. We
cannot allocate more than the total number of available frames (unless there is
page sharing). We must also allocate at least a minimum number of frames.
Obviously, as the number of frames allocated to each process decreases, the
page-fault-rate increases, slowing process execution.

Besides the undesirable performance properties of allocating only a few
frames, there is a minimum number of frames that must be allocated. This
minimum number is defined by the instruction-set architecture. Remember
that, when a page fault occurs before an executing instruction is complete, the
instruction must be restarted. Consequently, we must have enough frames to
hold all the different pages that any single instruction can reference.

For example, consider a machine in which all memory-reference instruc-
tions have only one memory address. Thus, we need at least one frame for
the instruction and one frame for the memory reference. In addition, if one-
level indirect addressing is allowed (for example, a load instruction on page
16 can refer to an address on page 0, which is an indirect reference to page 23),
then paging requires at least three frames per process. Think about what might
happen if a process had only two frames.

The minimum number of frames is defined by the given computer archi-
tecture. For example, the move instruction for the PDP-11 is more than one
word for some addressing modes, and thus the instruction itself may straddle
two pages. In addition, each of its two operands may be indirect references,
for a total of six frames. The worst case for the IBM 370 is probably the MVC
instruction. Since the instruction is storage to storage, it takes 6 bytes and can
straddle two pages. The block of characters to move and the area to be moved

346 Chapter 10 Virtual Memory

to can each also straddle two pages. This situation would require six frames.
(Actually, the worst case occurs when the MVC instruction is the operand of an
EXECUTE instruction that straddles a page boundary; in this case, we need eight
frames.)

The worst-case scenario occurs in computer architectures that allow multi-
ple levels of indirection (for example, each 16-bit word could contain a 15-bit
address plus a 1-bit indirect indicator). Theoretically, a simple load instruction
could reference an indirect address that could reference an indirect address
(on another page) that could also reference an indirect address (on yet another
page), and so on, until every page in virtual memory had been touched. Thus,
in the worst case, the entire virtual memory must be in physical memory. To
overcome this difficulty, we must place a limit on the levels of indirection (for
example, limit an instruction to at most 16 levels of indirection). When the first
indirection occurs, a counter is set to 16; the counter is then decremented for
each successive indirection for this instruction. If the counter is decremented to
0, a trap occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same number
of frames.

The minimum number of frames per process is defined by the architecture,
whereas the maximum number is defined by the amount of available physical
memory. In between, we are still left with significant choice in frame allocation.

10.5.2 Allocation Algorithms
The easiest way to split m frames among n processes is to give everyone an
equal share, m / n frames. For instance, if there are 93 frames and five processes,
each process will get 18 frames. The leftover three frames could be used as a
free-frame buffer pool. This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing
amounts of memory. Consider a system with a 1 KB frame size. If a small
student process of 10 KB and an interactive database of 127 KB are the only two
processes running in a system with 62 free frames, it does not make much sense
to give each process 31 frames. The student process does not need more than
ten frames, so the other 21 are strictly wasted.

To solve this problem, we can use proportional allocation. We allocate
available memory to each process according to its size. Let the size of the virtual
memory for process pi be si, and define

Then, if the total number of available frames is m, we allocate ai frames to
process pi, where ai is approximately

10.5 Allocation of Frames 347

Of course, we must adjust each ai to be an integer that is greater than the
minimum number of frames required by the instruction set, with a sum not
exceeding m.

For proportional allocation, we would split 62 frames between two pro-
cesses, one of 10 pages and one of 127 pages, by allocating 4 frames and 57
frames, respectively, since

In this way, both processes share the available frames according to their
"needs," rather than equally.

In both equal and proportional allocation, of course, the allocation to each
process may vary according to the multiprogramming level. If the multipro-
gramming level is increased, each process will lose some frames to provide the
memory needed for the new process. On the other hand, if the multiprogram-
ming level decreases, the frames that had been allocated to the departed process
can now be spread over the remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition, however,
we may want to give the high-priority process more memory to speed its
execution, to the detriment of low-priority processes.

One approach is to use a proportional allocation scheme where the ratio of
frames depends not on the relative sizes of processes, but rather on the priorities
of processes, or on a combination of size and priority.

10.5.3 Global Versus Local Allocation
Another important factor in the way frames are allocated to the various pro-
cesses is page replacement. With multiple processes competing for frames,
we can classify page-replacement algorithms into two broad categories: global
replacement and local replacement. Global replacement allows a process to
select a replacement frame from the set of all frames, even if that frame is
currently allocated to some other process; one process can take a frame from
another. Local replacement requires that each process select from only its own
set of allocated frames.

For example, consider an allocation scheme where we allow high-priority
processes to select frames from low-priority processes for replacement. A
process can select a replacement from among its own frames or the frames
of any lower-priority process. This approach allows a high-priority process to
increase its frame allocation at the expense of the low-priority process.

With a local replacement strategy, the number of frames allocated to a
process does not change. With global replacement, a process may happen to
select only frames allocated to other processes, thus increasing the number of

348 Chapter 10 Virtual Memory

frames allocated to it (assuming that other processes do not choose its frames
for replacement).

One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process, but also on the paging
behavior of other processes. Therefore, the same process may perform quite
differently (taking 0.5 seconds for one execution and 10.3 seconds for the next
execution) due to totally external circumstances. Such is not the case with a local
replacement algorithm. Under local replacement, the set of pages in memory
for a process is affected by the paging behavior of only that process. For its
part, local replacement might hinder a process by not making available to it
other, less used pages of memory. Thus, global replacement generally results in
greater system throughput, and is therefore the more common method.

10.6 . Thrashing

If the number of frames allocated to a low-priority process falls below the
minimum number required by the computer architecture, we must suspend
that process' execution. We should then page out its remaining pages, freeing
all its allocated frames. This provision introduces a swap-in, swap-out level of
intermediate CPU scheduling.

In fact, look at any process that does not have "enough" frames. Although
it is technically possible to reduce the number of allocated frames to the mini-
mum, there is some (larger) number of pages in active use. If the process does
not have this number of frames, it will quickly page fault. At this point, it
must replace some page. However, since all its pages are in active use, it must
replace a page that will be needed again right away. Consequently, it quickly
faults again, and again, and again. The process continues to fault, replacing
pages for which it then faults and brings back in right away.

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

10.6.1 Cause of Thrashing
Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too
low, we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
with no regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These

10.6 Thrashing 349

faulting processes must use the paging device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization, and increases the
degree of multiprogramming as a result. The new process tries to get started by
taking frames from running processes, causing more page faults, and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred and system throughput plunges. The page-
fault rate increases tremendously. As a result, the effective memory access time
increases. No work is getting done, because the processes are spending all their
time paging.

This phenomenon is illustrated in Figure 10.15, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

We can limit the effects of thrashing by using a local replacement algorithm
(or priority replacement algorightm). With local replacement, if one process
starts thrashing, it cannot steal frames from another process and cause the latter
to thrash also. Pages are replaced with regard to the process of which they
are a part. However, if processes are thrashing, they will be in the queue for
the paging device most of the time. The average service time for a page fault
will increase, due to the longer average queue for the paging device. Thus, the
effective access time will increase even for a process that is not thrashing.

degree of multiprogramming

Figure 10.15 Thrashing.

350 Chapter 10 Virtual Memory

To prevent thrashing, we must provide a process as many frames as it
needs. But how do we know how many frames it "needs"? There are several
techniques. The working-set strategy (Section 10.6.2) starts by looking at how
many frames a process is actually using. This approach defines the locality
model of process execution.

Figure 10.16 Locality in a memory-reference pattern.

10.6 Thrashing 351

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together (Figure
10.16). A program is generally composed of several different localities, which
may overlap.

For example, when a subroutine is called, it defines a new locality. In this
locality, memory references are made to the instructions of the subroutine, its
local variables, and a subset of the global variables. When the subroutine is
exited, the process leaves this locality, since the local variables and instructions
of the subroutine are no longer in active use. We may return to this locality
later. Thus, we see that localities are defined by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book. If accesses to any
types of data were random rather than patterned, caching would be useless.

Suppose that we allocate enough frames to a process to accommodate its
current locality. It will fault for the pages in its locality until all these pages are
in memory; then, it will not fault again until it changes localities. If we allocate
fewer frames than the size of the current locality, the process will thrash, since
it cannot keep in memory all the pages that it is actively using.

10.6.2 Working-Set Model
The working-set model is based on the assumption of locality. This model
uses a parameter, A, to define the working-set window. The idea is to examine
the most recent A page references. The set of pages in the most recent A page
references is the working set (Figure 10.17). If a page is in active use, it will be in
the working set. If it is no longer being used, it will drop from the working set
A time units after its last reference. Thus, the working set is an approximation
of the program's locality.

For example, given the sequence of memory references shown in Figure
10.17, if A = 10 memory references, then the working set at time tl is (1, 2, 5,
6,7). By time t2, the working set has changed to {3,4).

The accuracy of the working set depends on the selection of A. If A is too
small, it will not encompass the entire locality; if A is too large, it may overlap

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

4 f l 4 t2

WS(t ,) = {1,2,5,6,71 WS(t2) = (3,41

Figure 10.17 Working-set model.

352 Chapter 10 Virtual Memory

several localities. In the extreme, if A is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set is its size. If we compute
the working-set size, WSSi, for each process in the system, we can then consider

where D is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSi frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

Use of the working-set model is then simple. The operating system mon-
itors the working set of each process and allocates to that working set enough
frames to provide it with its working-set size. If there are enough extra frames,
another process can be initiated. If the sum of the working-set sizes increases,
exceeding the total number of available frames, the operating system selects
a process to suspend. The process' pages are written out and its frames are
reallocated to other processes. The suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization.

The difficulty with the working-set model is keeping track of the working
set. The working-set window is a moving window. At each memory reference,
a new reference appears at one end and the oldest reference drops off the other
end. A page is in the working set if it is referenced anywhere in the working-set
window. We can approximate the working-set model with a fixed interval timer
interrupt and a reference bit.

For example, assume A is 10,000 references and we can cause a timer
interrupt every 5,000 references. When we get a timer interrupt, we copy and
clear the reference-bit values for each page. Thus, if a page fault occurs, we can
examine the current reference bit and 2 in-memory bits to determine whether a
page was used within the last 10,000 to 15,000 references. If it was used, at least
1 of these bits will be on. If it has not been used, these bits will be off. Those
pages with at least 1 bit on will be considered to be in the working set. Note that
this arrangement is not entirely accurate, because we cannot tell where, within
an interval of 5,000, a reference occurred. We can reduce the uncertainty by
increasing the number of our history bits and the frequency of interrupts (for
example, 10 bits and interrupts every 1,000 references). However, the cost to
service these more frequent interrupts will be correspondingly higher.

10.6.3 Page-Fault Frequency
The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 10.8.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

10.7 Operating-System Examples 353

number of frames

Figure 10.18 Page-fault frequency.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Similarly, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 10.18). If the
actual page-fault rate exceeds the upper limit, we allocate that process another
frame; if the page-fault rate falls below the lower limit, we remove a frame from
that process. Thus, we can directly measure and control the page-fault rate to
prevent thrashing.

As with the working-set strategy, we may have to suspend a process. If the
page-fault rate increases and no free frames are available, we must select some
process and suspend it. The freed frames are then distributed to processes with
high page-fault rates.

10.7 Operating-System Examples

In this section we describe how Windows NT and Solaris 2 implement virtual
memory.

10.7.1 Window NT
Windows NT implements virtual memory using demand paging with cluster-
ing. Clustering handles page faults by bringing in not only the faulting page,
but also multiple pages surrounding the faulting page. When a process is first
created, it is assigned a working-set minimum and maximum. The working-set

354 Chapter 10 Virtual Memory

minimum is the minimum number of pages the process is guaranteed to have in
memory. If sufficient memory is available, a process may be assigned as many
pages as its working-set maximum. (In some circumstances, a process may
be allowed to exceed its working-set maximum.) The virtual-memory manager
maintains a list of free page frames. Associated with this list is a threshold value
that is used to indicate whether there is sufficient free memory available or not.
If a page fault occurs for a process that is below its working-set maximum,
the virtual-memory manager allocates a page from this list of free pages. If
a process is at its working-set maximum and it incurs a page fault, it must
select a page for replacement using a local page-replacement policy. When the
amount of free memory falls below the threshold, the virtual-memory manager
uses a tactic known as automatic working-set trimming to restore the value
above the threshold. Automatic working-set trimming works by evaluating the
number of pages allocated to processes. If a process has been allocated more
pages than its working-set minimum, the virtual-memory manager removes
pages until the process reaches its working-set minimum. A process that is at
its working-set minimum may be allocated pages from the free page frame list
once sufficient free memory is available.

The algorithm used to determine which page to remove from a working
set depends upon the type of processor the operating system is running on.
On single-processor x86 systems, Windows NT uses a variation of the clock
algorithm discussed in Section 10.4.5.2. On Alpha and multiprocessor x86
systems, clearing the reference bit may require invalidating the entry in the
translation look-aside buffer on other processors. Rather than involving this
overhead, Windows NT uses a variation on the FIFO algorithm discussed in
Section 10.4.2.

10.7.2 Solaris 2

When a thread incurs a page fault, the kernel assigns a page to the faulting
thread from the list of free pages it maintains. Therefore, it is imperative that the
kernel maintain a sufficient amount of free memory available. Associated with
this list of free pages is a parameter-lotsfree-which represents a threshold to
begin paging. lotsfree is typically set to 1/64 of the size of the physical memory.
Four times per second, the kernel checks if the amount of free memory is less
than lotsfree.

If the number of free pages falls below lotsfree, a process known as the page-
out starts up. The pageout process is similar to the second-chance algorithm
described in Section 10.4.5.2 (also known as the two-handed-clock algorithm),
which works as follows. The first hand of the clock scans all pages in memory,
setting the reference bit to 0. At a later point in time, the second hand of the
clock examines the reference bit for the pages in memory, returning those pages
whose bit is still set to 0 to the free list.

10.7 Operating-System Examples 355

81 92
fastscan

minfree desfree lotsfree

amount of free memory

Figure 10.19 Solaris 2 page scanner.

The pageout algorithm uses several parameters to control the rate at which
pages are scanned (known as the scanrate). The scanrate is expressed in pages
per second and ranges from slowscan to fastscan. When free memory falls below
lotsfree, scanning occurs at slowscan pages per second and progresses tofastscan
depending upon the amount of free memory available. The default value of
slowscan is 100 pages per second. fastscan is typically set to (TotalPhysicalPages)/2
pages per second with a maximum of 8,192 pages per second. This is shown in
Figure 10.19 (with fastscan set to the maximum).

The distance (in pages) between the hands of the clock is determined by
a system parameter handspread. The amount of time between the front hand
clearing a bit and the back hand investigating its value depends upon the
scanrate and the handspread. If scanrate is 100 pages per second and handspread is
1,024 pages, 10 seconds can pass between the time a bit is set by the front hand
and checked by the back hand. However, because of the demands placed on the
memory system, a scanrate of several thousand is not uncommon. This means
that the amount of time between checking and investigating a bit is often a few
seconds.

As described above, the pageout process checks memory four times per
second. However, if free memory falls below desfree (Figure 10.19) pageout
will run 100 times per second with the intention of keeping at least desfree
free memory available. If the pageout process in unable to keep the amount
of free memory for a 30-second average at desfree, the kernel begins swapping
processes, thereby freeing all pages allocated to the process. In general, the
kernel looks for processes that have been idle for long periods of time. Last,

356 Chapter 10 Virtual Memory

if the system is unable to maintain the amount of free memory at minfree, the
pageout process is called for every request for a new page.

Recent releases of the Solaris 2 kernel have provided enhancements to the
paging algorithm. One such enhancement is recognizing pages from shared
libraries. Pages belonging to libraries that are being shared by several processes
-even if they are eligible to be claimed by the scanner-are skipped during the
page-scanning process. Another enhancement concerns distinguishing pages
that have been allocated to processes from pages allocated to regular files. This
is known as priority paging and is covered in Section 12.6.2.

10.8 Other Considerations

The selections of a replacement algorithm and allocation policy are the major
decisions that we make for a paging system. There are many other considera-
tions as well.

10.8.1 Prepaging

An obvious property of a pure demand-paging system is the large number of
page faults that occur when a process is started. This situation is a result of
trying to get the initial locality into memory. The same situation may arise at
other times. For instance, when a swapped-out process is restarted, all its pages
are on the disk and each must be brought in by its own page fault. Prepaging
is an attempt to prevent this high level of initial paging. The strategy is to bring
into memory at one time all the pages that will be needed.

In a system using the working-set model, for example, we keep with each
process a list of the pages in its working set. If we must suspend a process (due
to an I/O wait or a lack of free frames), we remember the working set for that
process. When the process is to be resumed (I/O completion or enough free
frames), we automatically bring back into memory its entire working set before
restarting the process.

Prepaging may be an advantage in some cases. The question is simply
whether the cost of using prepaging is less than the cost of servicing the
corresponding page faults. It may well be the case that many of the pages
brought back into memory by prepaging are not used.

Assume that s pages are prepaged and a fraction a of these s pages is
actually used (0 5 a < 1). The question is whether the cost of the s * cu saved
page faults is greater or less than the cost of prepaging s * (1 - a) unnecessary
pages. If a is close to zero, prepaging loses; if a is close to one, prepaging wins.

10.8.2 Page Size

The designers of an operating system for an existing machine seldom have
a choice concerning the page size. However, when new machines are being

10.8 Other Considerations 357

designed, a decision regarding the best page size must be made. As you might
expect, there is no single best page size. Rather, there is a set of factors that
support various sizes. Page sizes are invariably powers of 2, generally ranging
from 4,096 (212) to 4,194,304 (222) bytes.

How do we select a page size? One concern is the size of the page table. For
a given virtual-memory space, decreasing the page size increases the number of
pages, and hence the size of the page table. For a virtual memory of 4 MB (222),
there would be 4,096 pages of 1,024 bytes, but only 512 pages of 8,192 bytes.
Because each active process must have its own copy of the page table, a large
page size is desirable.

On the other hand, memory is better utilized with smaller pages. If a
process is allocated memory starting at location 00000, and continuing until
it has as much as it needs, it probably will not end exactly on a page boundary.
Thus, a part of the final page must be allocated (because pages are the units of
allocation) but is unused (internal fragmentation). Assuming independence of
process size and page size, we would expect that, on the average, one-half of
the final page of each process will be wasted. This loss would be only 256 bytes
for a page of 512 bytes, but would be 4,096 bytes for a page of 8,192 bytes. To
minimize internal fragmentation, we need a small page size.

Another problem is the time required to read or write a page. 1 /0 time
is composed of seek, latency, and transfer times. Transfer time is proportional
to the amount transferred (that is, the page size)-a fact that would seem to
argue for a small page size. Remember from Chapter 2, however, that latency
and seek time normally dwarf transfer time. At a transfer rate of 2 MB per
second, it takes only 0.2 milliseconds to transfer 512 bytes. Latency, on the other
hand, is perhaps 8 milliseconds and seek time 20 milliseconds. Of the total I/O
time (28.2 milliseconds), therefore, 1 percent is attributable to the actual transfer.
Doubling the page size increases I/O time to only 28.4 milliseconds. It takes 28.4
milliseconds to read a single page of 1,024 bytes, but 56.4 milliseconds to read
the same amount as two pages of 512 bytes each. Thus, a desire to minimize
1/0 time argues for a larger page size.

With a smaller page size, however, total 1 /0 should be reduced, since
locality will be improved. A smaller page size allows each page to match
program locality more accurately. For example, consider a process of size 200
KB, of which only one-half (100 KB) are actually used in an execution. If we
have only one large page, we must bring in the entire page, a total of 200 KB
transferred and allocated. If we had pages of only 1 byte, then we could bring in
only the 100 KB that are actually used, resulting in only 100 KB being transferred
and allocated. With a smaller page size, we have better resolution, allowing us
to isolate only the memory that is actually needed. With a larger page size, we
must allocate and transfer not only what is needed, but also anything else that
happens to be in the page, whether it is needed or not. Thus, a smaller page
size should result in less I/O and less total allocated memory.

358 Chapter 10 Virtual Memory

On the other hand, did you notice that with a page size of 1 byte, we would
have a page fault for each byte? A process of 200 KB, using only one-half of
that memory, would generate only one page fault with a page size of 200 KB,
but 102,400 page faults for a page size of 1 byte. Each page fault generates the
large amount of overhead needed for processing the interrupt, saving registers,
replacing a page, queueing for the paging device, and updating tables. To
minimize the number of page faults, we need to have a large page size.

There are other factors to consider (such as the relationship between page
size and sector size on the paging device). The problem has no best answer.
Some factors (internal fragmentation, locality) argue for a small page size,
whereas others (table size, I/O time) argue for a large page size. However,
the historical trend is toward larger page sizes. Indeed, the first edition of
Operating Systems Concepts (1983) used 4,096 bytes as the upper bound on
page sizes, and this value was the most common page size in 1990. However,
modern systems may now use page sizes that are much larger than this. We
explore this in the following section.

10.8.3 TLB Reach
In Chapter 9, we introduced the hit ratio of the TLB. Recall the hit ratio for the
TLB refers to the percentage of virtual address translations that are resolved in
the TLB rather than the page table. Clearly, the hit ratio is related to the number
of entries in the TLB and the way to increase the hit ratio is by increasing the
number of entries in the TLB. This, however, does not come cheaply, as the
associative memory used to construct the TLB is both expensive and power-
hungry.

Related to the hit ratio is a similar metric: the TLB reach. The TLB reach
refers to the amount of memory accessible from the TLB and is simply the
number of entries multiplied by the page size. Ideally, the working set for a
process is stored in the TLB. If not, the process will spend a considerable amount
of time resolving memory references in the page table rather than TLB. If we
double the number of entries in the TLB, we double the TLB reach. However, for
some memory-intensive applications this may still prove insufficient for storing
the working set.

Another approach for increasing the TLB reach is by either increasing the
size of the page or providing multiple page sizes. If we increase the page size
-say from 8 KB to 32 KB-we quadruple the TLB reach. However, this may
lead to an increase in fragmentation for some applications that do not require
such a large page size as 32 KB. Alternatively, an operating system may provide
several different page sizes. For example, the UltraSparc I1 supports 8 KB, 64
KB, 512 KB, and 4 M B page sizes. Of these available pages sizes, Solaris 2 uses
both 8 KB and 4 M B page sizes. And with a 64-entry TLB, the TLB reach for
Solaris 2 ranges from 512 KB with 8 KB pages to 256 M B with 4 M B pages. For

10.8 Other Considerations 359

the majority of applications, the 8 KB page size is sufficient, although Solaris 2
maps the first 4 MB of kernel code and data with two 4 MB pages. Solaris 2 also
allows applications-such as databases-to take advantage of the large 4 MB
page size as well

However, providing support for multiple pages requires the operating
system-not hardware-to manage the TLB. For example, one of the fields
in a TLB entry must indicate the size of the page frame corresponding to the
TLB entry. Managing the TLB in software and not hardware comes at a cost
in performance. However, the increased hit ratio and TLB reach offsets the
performance costs. Indeed, recent trends indicate a move towards software-
managed TLBs and operating-system support for multiple page sizes. The
UltraSparc, MIPS, and Alpha architectures employ software-managed TLBs.
The PowerPC and Pentium manage the TLB in hardware.

10.8.4 Inverted Page Table

In Section 9.4.4.3, the concept of an inverted page table was introduced. The
purpose of this form of page management was to reduce the amount of physical
memory that is needed to track virtual-to-physical address translations. We
accomplish this savings by creating a table that has one entry per physical
memory page, indexed by the pair <process-id, page-number> .

Because they keep information about which virtual-memory page is stored
in each physical frame, inverted page tables reduce the amount of physical
memory needed to store this information. However, the inverted page table
no longer contains complete information about the logical address space of a
process, and that information is required if a referenced page is not currently
in memory. Demand paging requires this information to process page faults.
For this information to be available, an external page table (one per process)
must be kept. Each such table looks like the traditional per-process page table,
containing information on where each virtual page is located.

But do external page tables negate the utility of inverted page tables? Since
these tables are referenced only when a page fault occurs, they do not need to
be available quickly. Instead, they are themselves paged in and out of memory
as necessary. Unfortunately, a page fault may now result in the virtual-memory
manager causing another page fault as it pages in the external page table it
needs to locate the virtual page on the backing store. This special case requires
careful handling in the kernel and a delay in the page-lookup processing.

10.8.5 Program Structure

Demand paging is designed to be transparent to the user program. In many
cases, the user is completely unaware of the paged nature of memory. In other
cases, however, system performance can be improved if the user (or compiler)
has an awareness of the underlying demand paging.

360 Chapter 10 Virtual Memory

Let's look at a contrived but informative example. Assume that pages are
128 words in size. Consider a Java program whose function is to initialize to 0
each element of a 128 by 128 array. The following code is typical:

in t A[] [I = new in t [I281 [I281 ;

f o r (int j = 0; j < A.length; j++)
f o r (in t i = 0; i < A.length; i++)

A [i] [j] = 0;

Notice that the array is stored row major. That is, the array is stored A LO1 [01 ,
A [O] [I], . . ., A [OI Cl271, A [I] C01, A C11 [I], - . ., A [I271 C1271. For pages of
128 words, each row takes one page. Thus, the preceding code zeros one word
in each page, then another word in each page, and so on. If the operating system
allocates less than 128 frames to the entire program, then its execution will result
in 128 x 128 = 16,384 page faults. Changing the code to

i n t A [I [I = new in t [I281 [I281 ;

f o r (int i = 0; i < A.length; i++)
f o r (int j = 0; j < A.length; j++)

A[il Cjl = 0;

on the other hand, zeros all the words on one page before starting the next page,
reducing the number of page faults to 128.

Careful selection of data structures and programming structures can
increase locality and hence lower the page-fault rate and the number of pages
in the working set. A stack has good locality, since access is always made to
the top. A hash table, on the other hand, is designed to scatter references,
producing bad locality. Of course, locality of reference is just one measure of
the efficiency of the use of a data structure. Other heavily weighted factors
include search speed, total number of memory references, and total number of
pages touched.

At a later stage, the compiler and loader can have a significant effect on
paging. Separating code and data and generating reentrant code means that
code pages can be read only and hence will never be modified. Clean pages
do not have to be paged out to be replaced. The loader can avoid placing
routines across page boundaries, keeping each routine completely in one page.
Routines that call each other many times can be packed into the same page.
This packaging is a variant of the bin-packing problem of operations research:
Try to pack the variable-sized load segments into the fixed-sized pages so that
interpage references are minimized. Such an approach is particularly useful for
large page sizes.

The choice of programming language can affect paging as well. For exam-
ple, C and C++ use pointers frequently, and pointers tend to randomize access
to memory, thereby potentially diminishing a process' locality. Some studies

10.8 Other Considerations 361

have shown that object-oriented programs also tend to have a poor locality of
reference. Contrast these languages with Java, which does not provide pointers.
Java programs will have better locality of reference than C or C++ programs on
a virtual-memory system.

10.8.6 110 Interlock
When demand paging is used, we sometimes need to allow some of the pages
to be locked in memory. One such situation occurs when 1/0 is done to or from
user (virtual) memory. 1 /0 is often implemented by a separate 1 /0 processor.
For example, a magnetic-tape controller is generally given the number of bytes
to transfer and a memory address for the buffer (Figure 10.20). When the
transfer is complete, the CPU is interrupted.

We must be sure the following sequence of events does not occur: A process
issues an 1/0 request, and is put in a queue for that 1/0 device. Meanwhile, the
CPU is given to other processes. These processes cause page faults, and, using
a global replacement algorithm, one of them replaces the page containing the
memory buffer for the waiting process. The pages are paged out. Some time
later, when the 1 /0 request advances to the head of the device queue, the I/O

362 Chapter 10 Virtual Memory

occurs to the specified address. However, this frame is now being used for a
different page belonging to another process.

There are two common solutions to this problem. One solution is never to
execute I/O to user memory. Instead, data are always copied between system
memory and user memory. 1/0 takes place only between system memory and
the I/O device. To write a block on tape, we first copy the block to system
memory, and then write it to tape.

This extra copying may result in unacceptably high overhead. Another
solution is to allow pages to be locked into memory. A lock bit is associated
with every frame. If the frame is locked, it cannot be selected for replacement.
Under this approach, to write a block on tape, we lock into memory the pages
containing the block. The system can then continue as usual. Locked pages
cannot be replaced. When the I/O is complete, the pages are unlocked.

Frequently, some or all of the operating-system kernel is locked into mem-
ory. Most operating systems cannot tolerate a page fault caused by the kernel.
Consider the result of the page-replacement routine causing a page fault.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events. A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into memory.
Ready to continue, the low-priority process enters the ready queue and waits
for the CPU. Since it is a low-priority process, it may not be selected by the
CPU scheduler for a while. While the low-priority process waits, a high-priority
process faults. Looking for a replacement, the paging system sees a page that
is in memory but has not been referenced or modified: It is the page that the
low-priority process just brought in. This page looks like a perfect replacement:
It is clean and will not need to be written out, and it apparently has not been
used for a long time.

Whether the high-priority process should be able to replace the low-priority
process is a policy decision. After all, we are simply delaying the low-priority
process for the benefit of the high-priority process. On the other hand, we are
wasting the effort spent to bring in the page of the low-priority process. If we
decide to prevent replacing a newly brought-in page until it can be used at least
once, then we can use the lock bit to implement this mechanism. When a page is
selected for replacement, its lock bit is turned on; it remains on until the faulting
process is again dispatched.

Using a lock bit can be dangerous, however: The lock bit may get turned on
but never turned off. Should this situation occur (due to a bug in the operating
system, for example), the locked frame becomes unusable. The Macintosh
Operating System provides a page-locking mechanism because it is a single-
user system, and the overuse of locking would hurt only the user doing the
locking. Multiuser systems must be less trusting of users. For instance, Solaris
2 allows locking "hints," but it is free to disregard these hints if the free-frame
pool becomes too small or if an individual process requests that too many pages
be locked in memory.

10.9 Summary 363

10.8.7 Real-Time Processing
The discussions in this chapter have concentrated on providing the best overall
utilization of a computer system by optimizing the use of memory. By using
memory for active data and moving inactive data to disk, we increase overall
system throughput. However, individual processes may suffer as a result,
because they now may take additional page faults during their execution.

Consider a real-time process or thread, as described in Chapter 4. Such
a process expects to gain control of the CPU, and to run to completion with a
minimum of delays. Virtual memory is the antithesis of real-time computing,
because it can introduce unexpected long-term delays in the execution of a
process while pages are brought into memory. Therefore, real-time systems
almost never have virtual memory.

In the case of Solaris 2, the developers at Sun Microsystems wanted to allow
both time-sharing and real-time computing within a system. To solve the page-
fault problem, Solaris 2 allows a process to tell it which pages are important to
that process. In addition to allowing "hints" on page use, the operating system
allows privileged users to require pages to be locked into memory. If abused,
this mechanism could lock all other processes out of the system. It is necessary
to allow real-time processes to have bounded and low-dispatch latency.

10.9 . Summary

It is desirable to be able to execute a process whose logical address space is
larger than the available physical address space. The programmer can make
such a process executable by restructuring it using overlays, but doing so is
generally a difficult programming task. Virtual memory is a technique to allow
a large logical address space to be mapped onto a smaller physical memory.
Virtual memory allows extremely large processes to be run, and also allows the
degree of multiprogramming to be raised, increasing CPU utilization. Further,
it frees application programmers from worrying about memory availability.

Pure demand paging never brings in a page until that page is referenced.
The first reference causes a page fault to the operating-system resident monitor.
The operating system consults an internal table to determine where the page
is located on the backing store. It then finds a free frame and reads the page
in from the backing store. The page table is updated to reflect this change,
and the instruction that caused the page fault is restarted. This approach
allows a process to run even though its entire memory image is not in main
memory at once. As long as the page-fault rate is reasonably low, performance
is acceptable.

We can use demand paging to reduce the number of frames allocated to
a process. This arrangement can increase the degree of multiprogramming
(allowing more processes to be available for execution at one time) and-in
theory, at least-the CPU utilization of the system. It also allows processes to be

364 Chapter 10 Virtual Memory

run even though their memory requirements exceed the total available physical
memory. Such processes run in virtual memory.

If total memory requirements exceed the physical memory, then it may
be necessary to replace pages from memory to free frames for new pages.
Various page-replacement algorithms are used. FIFO page replacement is easy
to program, but suffers from Belady's anomaly. Optimal page replacement
requires future knowledge. LRU replacement is an approximation of optimal,
but even it may be difficult to implement. Most page-replacement algorithms,
such as the second-chance algorithm, are approximations of LRU replacement.

In addition to a page-replacement algorithm, a frame-allocation policy
is needed. Allocation can be fixed, suggesting local page replacement, or
dynamic, suggesting global replacement. The working-set model assumes that
processes execute in localities. The working set is the set of pages in the current
locality. Accordingly, each process should be allocated enough frames for its
current working set.

If a process does not have enough memory for its working set, it will
thrash. Providing enough frames to each process to avoid thrashing may
require process swapping and scheduling.

In addition to requiring that we solve the major problems of page replace-
ment and frame allocation, the proper design of a paging system requires that
we consider page size, I/O, locking, prepaging, process creation, program struc-
ture, thrashing, and other topics. Virtual memory can be thought of as one level
of a hierarchy of storage levels in a computer system. Each level has its own
access time, size, and cost parameters. A full example of a hybrid, functional
virtual-memory system is presented in the Mach chapter, which is available on
our web site (http:/ /www.bell-labs.com/topic/books/os-book).

Exercises

10.1 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.

10.2 Assume that you have a page-reference string for a process with m
frames (initially all empty). The page-reference string has length p; n
distinct page numbers occur in it. Answer these questions for any page-
replacement algorithms:

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

10.3 A certain computer provides its users with a virtual-memory space of
232 bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how

Exercises 365

the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

10.4 Which of the following programming techniques and structures are
"good" for a demand-paged environment? Which are "bad"? Explain
your answers.

a. Stack

b. Hashed symbol table

c. Sequential search

d. Binary search

e. Pure code

f. Vector operations

g. Indirection

10.5 Assume that we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty frame
is available or if the replaced page is not modified, and 20 milliseconds if
the replaced page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

10.6 Consider the following page-replacement algorithms. Rank these algo-
rithms on a five-point scale from "bad" to "perfect" according to their
page-fault rate. Separate those algorithms that suffer from Belady's
anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

10.7 When virtual memory is implemented in a computing system, it carries
certain costs and certain benefits. List those costs and the benefits. It is
possible for the costs to exceed the benefits. Explain what measures you
can take to ensure that this imbalance does not occur.

10.8 An operating system supports a paged virtual memory, using a central
processor with a cycle time of 1 microsecond. It costs an additional 1
microsecond to access a page other than the current one. Pages have 1,000
words, and the paging device is a drum that rotates at 3,000 revolutions

366 Chapter 10 Virtual Memory

per minute and transfers one million words per second. The following
statistical measurements were obtained from the system:

One percent of all instructions executed accessed a page other than
the current page.

Of the instructions that accessed another page, 80 percent accessed a
page already in memory.

When a new page was required, the replaced page was modified 50
percent of the time.

Calculate the effective instruction time on this system, assuming that the
system is running one process only, and that the processor is idle during
drum transfers.

10.9 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, say whether it will (or is likely to) improve CPU
utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk, or multiple controllers with multiple hard
disks.

g. Add prepaging to the page-fetch algorithms.

h. Increase the page size.

10.10 Consider the two-dimensional array A:

int A [I [I = new int [I001 [I001 ;

where A [O] [O] is stored at location 200, in a paged memory system with
pages of size 200. A small process resides in page 0 (locations 0 to 199)
for manipulating the A matrix; thus, every instruction fetch will be from
page 0.

Exercises 367

For three page frames, how many page faults are generated by
the following array-initialization loops, using LRU replacement, and
assuming page frame 1 has the process in it, and the other two are
initially empty:

a. f o r (i n t j = 0 ; j < 100; j++)
f o r (i n t i = 0; i < 100; i++)

A C i l Cjl = 0 ;

b. f o r (i n t i = 0 ; i < 100; i++)
f o r (i n t j = 0; j < 100; j++)

A [i] [j] = 0;

10.11 Consider the following page-reference string:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6.

How many page faults would occur for the following replacement algo-
rithms, assuming one, two, three, four, five, six, or seven frames?
Remember that all frames are initially empty, so your first unique pages
will all cost one fault each.

LRU replacement

FIFO replacement

Optimal replacement

10.12 Suppose that you want to use a paging algorithm that requires a reference
bit (such as second-chance replacement or working-set model), but the
hardware does not provide one. Sketch how you could simulate a
reference bit even if one were not provided by the hardware. Calculate
the cost of doing so.

10.13 You have devised a new page-replacement algorithm that you think may
be optimal. In some contorted test cases, Belady's anomaly occurs. Is the
new algorithm optimal? Explain your answer.

10.14 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose by
using this policy rather than LRU or second-chance replacement?

10.15 Segmentation is similar to paging, but uses variable-sized "pages."
Define two segment-replacement algorithms based on FIFO and LRU
page-replacement schemes. Remember that, since segments are not the
same size, the segment that is chosen to be replaced may not be big
enough to leave enough consecutive locations for the needed segment.
Consider strategies for systems where segments cannot be relocated, and
those for systems where they can.

368 Chapter 10 Virtual Memory

10.16 A page-replacement algorithm should minimize the number of page
faults. We can do this minimization by distributing heavily used pages
evenly over all of memory, rather than having them compete for a small
number of page frames. We can associate with each page frame a counter
of the number of pages that are associated with that frame. Then, to
replace a page, we search for the page frame with the smallest counter.

a. Define a page-replacement algorithm using this basic idea. Specifi-
cally address the problems of:

i. what the initial value of the counters is,

ii. when counters are increased,

iii. when counters are decreased,

iv. how the page to be replaced is selected.

b. How many page faults occur for your algorithm for the following
reference string, for four page frames?

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

10.17 Consider a demand-paging system with a paging disk that has an aver-
age access and transfer time of 20 milliseconds. Addresses are translated
through a page table in main memory, with an access time of 1 microsec-
ond per memory access. Thus, each memory reference through the page
table takes two accesses. To improve this time, we have added an asso-
ciative memory that reduces access time to one memory reference, if the
page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory,
and that, of the remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?

10.18 Consider a demand-paged computer system where the degree of multi-
programming is currently fixed at four. The system was recently mea-
sured to determine utilization of CPU and the paging disk. The results
are one of the following alternatives. For each case, what is happening?
Can you increase the degree of multiprogramming to increase the CPU
utilization? Is the paging helping in improving performance?

a. CPU utilization, 13 percent; disk utilization, 97 percent

b. CPU utilization, 87 percent; disk utilization, 3 percent

c. CPU utilization, 13 percent; disk utilization, 3 percent

Bibliographical Notes 369

10.19 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table. Can
we set up the page tables to simulate base and limit registers? How can
we do so, or why can we not do so?

10.20 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

10.21 Write a program that implements the FIFO and LRU page-replacement
algorithms presented in this chapter. First, generate a random page-
reference string where page numbers range from 0 to 9. Apply the
random page-reference string to each algorithm and record the number
of page faults incurred by each algorithm. Implement the replacement
algorithms so that the number of page frames can vary from 1 to 7.
Assume that demand paging is used.

Bibliographical Notes

Demand paging was first used in the Atlas system, implemented on the Manch-
ester University MUSE computer around 1960 (Kilburn et al. [1961]). Another
early demand-paging system was MULTICS, implemented on the GE 645 system
(Organick [1972]).

Belady et al. [I9691 were the first researchers to observe that the FIFO
replacement strategy may have the anomaly that bears Belady's name. Mattson
et al. [I9701 demonstrated that stack algorithms are not subject to Belady's
anomaly.

The optimal replacement algorithm was presented by Belady [1966]. It was
proved to be optimal by Mattson et al. [1970]. Belady's optimal algorithm is
for a fixed allocation; Prieve and Fabry [I9761 have an optimal algorithm for
situations where the allocation can vary.

The enhanced clock algorithm was discussed by Carr and Hennessy [1981];
it is used in the Macintosh virtual memory-management scheme, and was
described by Goldman [1989].

The working-set model was developed by Denning [1968]. Discussions
concerning the working-set model were presented by Denning [1980].

The scheme for monitoring the page-fault rate was developed by Wulf
[1969], who successfully applied this technique to the Burroughs B5500 com-
puter system. Gupta and Franklin [I9781 provided a performance comparison
between the working-set scheme and the page-fault-frequency replacement
scheme.

Solomon [I9981 describes how Windows NT implements virtual memory.
Mauro and McDougall [2001] discusses virtual memory on Solaris 2. Virtual-
memory techniques in Linux and BSD are described by Bovet and Cesati [2001]

370 Chapter 10 Virtual Memory

and McKusick et al. [I9961 respectively. Details of OS/2 and demand segmen-
tation were described by Iacobucci [1988]. Ganapathy and Schimmel (19981
discuss operating system support for multiple page sizes.

Good discussions are available for the Intel 80386 paging hardware Intel
[I9861 and the Motorola 68030 hardware Motorola [1989b]. Virtual-memory
management in the VAX/VMS operating system was discussed by Levy and
Lipman [1982]. Discussions concerning workstation operating systems and
virtual memory were presented byHagmann [1989]. A comparison of an imple-
mentation of virtual memory in the MIPS, PowerPC, and Pentium architectures
can be found in Jacob and Mudge [1998b]. A companion article (Jacob and
Mudge [1998a]) describes the hardware support necessary for implementation
of virtual memory in six different architectures, including the UltraSPARC.

Chapter 11

FILE-SYSTEM
INTERFACE

For most users, the file system is the most visible aspect of an operating system.
It provides the mechanism for on-line storage of and access to both data and
programs of the operating system and all the users of the computer system. The
file system consists of two distinct parts: a collection offiles, each storing related
data, and a directory structure, which organizes and provides information about
all the files in the system. Some file systems have a third part, partitions, which
are used to separate physically or logically large collections of directories. In
this chapter, we consider the various aspects of files and the major directory
structures. We also discuss ways to handle file protection, necessary when
multiple users have access to files and we want to control by whom and in
what ways files may be accessed. Finally, we discuss the semantics of sharing
files among multiple processes, users, and computers.

11.1 File Concept

Computers can store information on several different storage media, such as
magnetic disks, magnetic tapes, and optical disks. So that the computer system
will be convenient to use, the operating system provides a uniform logical
view of information storage. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit (thefile). Files are
mapped, by the operating system, onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent through power failures
and system reboots.

372 Chapter 11 File-System Interface

A file is a named collection of related information that is recorded on
secondary storage. From a user's perspective, a file is the smallest allotment
of logical secondary storage; that is, data cannot be written to secondary
storage unless they are within a file. Commonly, files represent programs (both
source and object forms) and data. Data files may be numeric, alphabetic,
alphanumeric, or binary. Files may be free form, such as text files, or may be
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records,
the meaning of which is defined by the file's creator and user. The concept of a
file is thus extremely general.

The information in a file is defined by its creator. Many different types of
information may be stored in a file-source programs, object programs, exe-
cutable programs, numeric data, text, payroll records, graphic images, sound
recordings, and so on. A file has a certain defined structure according to its
type. A text file is a sequence of characters organized into lines (and possibly
pages). A source file is a sequence of subroutines and functions, each of which is
further organized as declarations followed by executable statements. An object
file is a sequence of bytes organized into blocks understandable by the system's
linker. An executable file is a series of code sections that the loader can bring into
memory and execute.

11.1.1 File Attributes
A file is named, for the convenience of its human users, and is referred to by its
name. A name is usually a string of characters, such as examp1e.c. Some systems
differentiate between upper- and lowercase characters in names, whereas other
systems consider the two cases to be equivalent. When a file is named, it
becomes independent of the process, the user, and even the system that created
it. For instance, one user might create the file example.^, whereas another user
might edit that file by specifying its name. The file's owner might write the file
to a floppy disk, send it in an e-mail, or copy it across a network, and it could
still be called examp1e.c on the destination system.

A file has certain other attributes, which vary from one operating system to
another, but typically consist of these:

Name: The symbolic file name is the only information kept in human-
readable form.

Identifier: This unique tag, usually a number, identifies the file within the
file system; it is the non-human-readable name for the file.

Type: This information is needed for those systems that support different
types.

Location: This information is a pointer to a device and to the location of the
file on that device.

11.1 File Concept 373

Size: The current size of the file (in bytes, words, or blocks), and possibly
the maximum allowed size are included in this attribute.

Protection: Access-control information determines who can do reading,
writing, executing, and so on.

Time, date, and user identification: This information may be kept for
creation, last modification, and last use. These data can be useful for
protection, security, and usage monitoring.

The information about all files is kept in the directory structure that also resides
on secondary storage. Typically, the directory entry consists of the file's name
and its unique identifier. The identifier in turn locates the other file attributes.
It may take more than a kilobyte to record this information for each file. In
a system with many files, the size of the directory itself may be megabytes.
Because directories, like files, must be nonvolatile, they must be stored on the
device and brought into memory piecemeal, as needed.

11.1.2 File Operations

A file is an abstract data type. To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let
us also consider what the operating system must do for each of the six basic
file operations. It should then be easy to see how similar operations, such as
renaming a file, would be implemented.

Creating a file: Two steps are necessary to create a file. First, space in the
file system must be found for the file. We shall discuss how to allocate space
for the file in Chapter 12. Second, an entry for the new file must be made
in the directory. The directory entry records the name of the file and the
location in the file system, and possibly other information.

Writing a file: To write a file, we make a system call specifying both the
name of the file and the information to be written to the file. Given the
name of the file, the system searches the directory to find the location of the
file. The system must keep a write pointer to the location in the file where
the next write is to take place. The write pointer must be updated whenever
a write occurs.

Reading a file: To read from a file, we use a system call that specifies the
name of the file and where (in memory) the next block of the file should be
put. Again, the directory is searched for the associated directory entry, and
the system needs to keep a read pointer to the location in the file where the
next read is to take place. Once the read has taken place, the read pointer is
updated. A given process is usually only reading or writing a given file, and

374 Chapter 11 File-System Interface

the current operation location is kept as a per-process current-file-position
pointer. Both the read and write operations use this same pointer, saving
space and reducing the system complexity.

Repositioning within a file: The directory is searched for the appropriate
entry, and the current-file-position is set to a given value. Repositioning
within a file does not need to involve any actual I/O. This file operation is
also known as a file seek.

a Deleting a file: To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase the directory entry.

a Truncating a file: The user may want to erase the contents of a file but keep
its attributes. Rather than forcing the user to delete the file and then recreate
it, this function allows all attributes to remain unchanged-except for file
length-but lets the file be reset to length zero and its file space released.

These six basic operations certainly comprise the minimal set of required
file operations. Other common operations include appending new information
to the end of an existing file and renaming an existing file. These primitive
operations may then be combined to perform other file operations. For instance,
creating a copy of a file, or copying the file to another I/O device, such as a
printer or a display, may be accomplished by creating a new file, and reading
from the old and writing to the new. We also want to have operations that allow
a user to get and set the various attributes of a file. For example, we may want
to have operations that allow a user to determine the status of a file, such as the
file's length, and allow a user to set file attributes, such as the file's owner.

Most of the file operations mentioned involve searching the directory for
the entry associated with the named file. To avoid this constant searching,
many systems require that an open system call be used before that file is first
used actively. The operating system keeps a small table containing information
about all open files (the open-file table). When a file operation is requested, the
file is specified via an index into this table, so no searching is required. When
the file is no longer actively used, it is closed by the process and the operating
system removes its entry in the open-file table.

Some systems implicitly open a file when the first reference is made to it.
The file is automatically closed when the job or program that opened the file
terminates. Most systems, however, require that the programmer open a file
explicitly with the open system call before that file can be used. The open
operation takes a file name and searches the directory, copying the directory
entry into the open-file table. The open call can also accept access-mode ,

information-create, read-only, read-write, append-only, and so on. This mode
is checked against the file's permissions. If the request mode is allowed, the file
is opened for the process. The open system call will typically return a pointer

11.1 File Concept 375

to the entry in the open-file table. This pointer, not the actual file name, is
used in all I/O operations, avoiding any further searching and simplifying the
system-call interface.

The implementation of the open and close operations in a multiuser
environment, such as UNIX, is more complicated. In such a system, several
users may open the file at the same time. Typically, the operating system uses
two levels of internal tables: a per-process table and a system-wide table. The
per-process table tracks all files that a process has open. Stored in this table is
information regarding the use of the file by the process. For instance, the current
file pointer for each file is found here, indicating the location in the file that the
next read or wr i te call will affect. Access rights to the file and accounting
information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file
table. The system-wide table contains process-independent information, such
as the location of the file on disk, access dates, and file size. Once a file is opened
by one process, another process executing an open call simply results in a new
entry being added to the process' open-file table, pointing to the appropriate
entry in the system-wide table. Typically, the open-file table also has an open
count associated with each file, indicating the number of processes that have
the file open. Each close decreases this count, and when the open count reaches
zero, the file is no longer in use, and the file's entry is removed from the open
file table. In summary, several pieces of information are associated with an open
file.

File pointer: On systems that do not include a file offset as part of the read
and wr i te system calls, the system must track the last read-write location
as a current-file-position pointer. This pointer is unique to each process
operating on the file, and therefore must be kept separate from the on-disk
file attributes.

File open count: As files are closed, the operating system must reuse its
open-file table entries, or it could run out of space in the table. Because
multiple processes may open a file, the system must wait for the last file
to close before removing the open-file table entry. This counter tracks the
number of opens and closes and reaches zero on the last close. The system
can then remove the entry.

Disk location of the file: Most file operations require the system to modify
data within the file. The information needed to locate the file on disk is kept
in memory to avoid having to read it from disk for each operation.

Access rights: Each process opens a file in an access mode. This informa-
tion is stored on the per-process table so the operating system can allow or
deny subsequent I/O requests.

376 Chapter 11 File-System Interface

Some operating systems provide facilities to lock sections of an open file for
multiprocess access, to share sections of a file among several processes (using
shared pages), and to map sections of a file into memory on virtual- memory
systems using memory mapping (Section 10.3.2).

11.1.3 File Types
When we design a file system, indeed the entire operating system, we always
consider whether the operating system should recognize and support file types.
If an operating system recognizes the type of a file, it can then operate on the file
in reasonable ways. For example, a common mistake occurs when a user tries
to print the binary-object form of a program. This attempt normally produces
garbage, but can be prevented if the operating system has been told that the file
is a binary-object program.

A common technique for implementing file types is to include the type as
part of the file name. The name is split into two parts-a name and an extension,
usually separated by a period character (Figure 11.1). In this way, the user and
the operating system can tell from the name alone what the type of a file is. For
example, in MS-DOS, a name can consist of up to eight characters followed by
a period and terminated by an extension of up to three characters. The system
uses the extension to indicate the type of the file and the type of operations
that can be done on that file. For instance, only a file with a .corn, .exe, or
.bat extension can be executed. The .corn and .exe files are two forms of binary
executable files, whereas a .bat file is a batch file containing, in ASCII format,
commands to the operating system. MS-DOS recognizes only a few extensions,
but application programs also use extensions to indicate file types in which
they are interested. For example, assemblers expect source files to have an .asm
extension, and the Wordperfect word processor expects its file to end with a
.wp extension. These extensions are not required, so a user may specify a file
without the extension (to save typing), and the application will look for a file
with the given name and the extension it expects. Because these extensions are
not supported by the operating system, they can be considered as "hints" to
applications that operate on them.

Another example of the utility of file types comes from the TOPS-20 oper-
ating system. If the user tries to execute an object program whose source file
has been modified (or edited) since the object file was produced, the source file
will be recompiled automatically. This function ensures that the user always
runs an up-to-date object file. Otherwise, the user could waste a significant
amount of time executing the old object file. For this function to be possible, the
operating system must be able to discriminate the source file from the object file,
to check the time that each file was created or last modified, and to determine
the language of the source program (in order to use the correct compiler).

Consider the Apple Macintosh operating system. In this system, each file
has a type, such as text or pict. Each file also has a creator attribute containing

11.1 File Concept 377

Figure 11.1 Common file types.

various word-processor

the name of the program that created it. This attribute is set by the operating
system during the create call, so its use is enforced and supported by the
system. For instance, a file produced by a word processor has the word
processor's name as its creator. When the user opens that file, by double-
clicking the mouse on the icon representing the file, the word processor is
invoked automatically and the file is loaded, ready to be edited.

The UNIX system is unable to provide such a feature because it uses a crude
magic number stored at the beginning of some files to indicate roughly the
type of the file-executable program, batch file (or shell script), postscript file,
and so on. Not all files have magic numbers, so system features cannot be
based solely on this type of information. UNIX does not record the name of the
creating program, either. UNIX does allow file-name-extension hints, but these
extensions are not enforced or depended on by the operating system; they are
mostly to aid users in determining the type of contents of the file. Extensions

library

print or view

archive

multimedia

doc

lib, a, so, dll,
mpeg, mov, rm

arc, zip, tar

arc, zip, tar

mpeg, mov, rm

formats

libraries of routines for
programmers

ASCII or binary file in a
format for printing or
viewing

related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

binary file containing
audio or AN information

378 Chapter 11 File-System Interface

can be used or ignored by a given application, but that is up to the application's
programmer.

11.1.4 File Structure
File types also may be used to indicate the internal structure of the file. As
mentioned in Section 11.1.3, source and object files have structures that match
the expectations of the programs that read them. Further, certain files must
conform to a required structure that is understood by the operating system.
For example, the operating system may require that an executable file have a
specific structure so that it can determine where in memory to load the file and
what the location of the first instruction is. Some operating systems extend
this idea into a set of system-supported file structures, with sets of special
operations for manipulating files with those structures. For instance, DEC's VMS
operating system has a file system that supports three defined file structures.

The above discussion brings us to one of the disadvantages of having the
operating system support multiple file structures: The resulting size of the
operating system is cumbersome. If the operating system defines five different
file structures, it needs to contain the code to support these file structures. In
addition, every file may need to be definable as one of the file types supported
by the operating system. Severe problems may result from new applications
that require information structured in ways not supported by the operating
system.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed) and
executable binary files. Now, if we (as users) want to define an encrypted file
to protect our contents from being read by unauthorized people, we may find
neither file type to be appropriate. The encrypted file is not ASCII text lines,
but rather is (apparently) random bits. Although it may appear to be a binary
file, it is not executable. As a result, we may have to circumvent or misuse the
operating system's file-types mechanism, or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, MS-DOS, and others. UNIX
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits
is made by the operating system. This scheme provides maximum flexibility,
but little support. Each application program must include its own code to
interpret an input file into the appropriate structure. However, all operating
systems must support at least one structure-that of an executable file-so that
the system is able to load and run programs.

The Macintosh operating system also supports a minimal number of file
structures. It expects files to contain two parts: a resource fork and a data
fork. The resource fork contains information of interest to the user. For
instance, it holds the labels of any buttons displayed by the program. A
foreign user may want to relabel these buttons in his own language, and

11.2 Access Methods 379

the Macintosh operating system provides tools to allow modification of the
data in the resource fork. The data fork contains program code or data: the
traditional file contents. To accomplish the same task on a UNIX or MS-DOS
system, the programmer would need to change and recompile the source code,
unless she created her own user-changeable data file. Clearly, it is useful for
an operating system to support structures that will be used frequently, and
that will save the programmer substantial effort. Too few structures make
programming inconvenient, whereas too many cause operating-system bloat
and programmer confusion.

11.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Recall from Chapter 2 that disk systems typically have a well-defined
block size determined by the size of a sector. All disk I/O is performed in units
of one block (physical record), and all blocks are the same size. It is unlikely
that the physical record size will exactly match the length of the desired logical
record. Logical records may even vary in length. Packing a number of logical
records into physical blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply a
stream of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record is 1 byte. The file
system automatically packs and unpacks bytes into physical disk blocks-say,
512 bytes per block-as necessary.

The logical record size, physical block size, and packing technique deter-
mine how many logical records are in each physical block. The packing can be
done either by the user's application program or by the operating system.

In either case, the file may be considered to be a sequence of blocks. All
the basic I/O functions operate in terms of blocks. The conversion from logical
records to physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each block were 512 bytes, then a file of
1,949 bytes would be allocated four blocks (2,048 bytes); the last 99 bytes would
be wasted. The wasted bytes allocated to keep everything in units of blocks
(instead of bytes) is internal fragmentation. All file systems suffer from internal
fragmentation; the larger the block size, the greater the internal fragmentation.

11.2 Access Methods

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. Other

380 Chapter 11 File-System Interface

systems, such as those of IBM, support many access methods, and choosing the
right one for a particular application is a major design problem.

11.2.1 Sequential Access
The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far
the most common; for example, editors and compilers usually access files in
this fashion.

The bulk of the operations on a file is reads and writes. A read operation
reads the next portion of the file and automatically advances a file pointer,
which tracks the I/O location. Similarly, a write appends to the end of the file
and advances to the end of the newly written material (the new end of file).
Such a file can be reset to the beginning and, on some systems, a program may
be able to skip forward or backward n records, for some integer n-perhaps
only for n = 1. Sequential access is depicted in Figure 11.2. Sequential access is
based on a tape model of a file, and works as well on sequential-access devices
as it does on random-access ones.

11.2.2 Direct Access
Another method is direct access (or relative access). A file is made up of fixed-
length logical records that allow programs to read and write records rapidly
in no particular order. The direct-access method is based on a disk model of
a file, since disks allow random access to any file block. For direct access, the
file is viewed as a numbered sequence of blocks or records. A direct-access file
allows arbitrary blocks to be read or written. Thus, we may read block 14, then
read block 53, and then write block 7. There are no restrictions on the order of
reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer, and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block

beginning
current position

I
end

rewind
read or write +

Figure 11.2 Sequential-access file.

11.2 Access Methods 381

identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store information about a
larger set, such as people, we might compute a hash function on the people's
names, or search a small in-memory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read n, where n is
the block number, rather than read next, and write n rather than write next. An
alternative approach is to retain read next and write next, as with sequential
access, and to add an operation position file to n, where n is the block number.
Then, to effect a read n, we would position to n and then read next.

The block number provided by the user to the operating system is normally
a relative block number. A relative block number is an index relative to the
beginning of the file. Thus, the first relative block of the file is 0, the next is
1, and so on, even though the actual absolute disk address of the block may
be 14703 for the first block and 3192 for the second. The use of relative block
numbers allows the operating system to decide where the file should be placed
(called the allocation problem, as discussed in Chapter 12), and helps to prevent
the user from accessing portions of the file system that may not be part of his
file. Some systems start their relative block numbers at 0; others start at 1.

Given a logical record length L, a request for record N is turned into an I/O
request for L bytes starting at location L * (N -1) within the file (assuming first
record is N = 1). Since logical records are of a fixed size, it is also easy to read,
write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created; such a file can be accessed only in a manner consistent with its
declaration. However, it is easy to simulate sequential access on a direct-access
file. If we simply keep a variable cp that defines our current position, then we
can simulate sequential file operations, as shown in Figure 11.3. On the other
hand, it is extremely inefficient and clumsy to simulate a direct-access file on a
sequential-access file.

Figure 11.3 Simulation of sequential access on a direct-access file..

implementatian for direct eaccess

reset

read next

write next

cp = 0;

read cp;
cp = cp+l;

write cp;
cp = cp+l;

382 Chapter 11 File-System Interface

11.2.3 Other Access Methods
Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. TO

find a record in the file, we first search the index, and then use the pointer to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per block, we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To
find the price of a particular item, we can (binary) search the index. From this
search, we would know exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little I/O.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary
index file would contain pointers to secondary index files, which would point
to the actual data items.

For example, IBM's indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired

logical record

index file relative file

Figure 11.4 Example of index and relative files.

11.3 Directory Structure 383

record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 11.4 shows a
similar situation as implemented by VMS index and relative files.

11.3 . Directory Structure

The file systems of computers can be extensive. Some systems store millions of
files on terabytes of disk. To manage all these data, we need to organize them.
This organization is usually done in two parts. First, disks are split into one or
more partitions, also known as minidisks in the IBM world or volumes in the PC
and Macintosh arenas. Typically, each disk on a system contains at least one
partition, which is a low-level structure in which files and directories reside.
Sometimes, partitions are used to provide several separate areas within one
disk, each treated as a separate storage device, whereas other systems allow
partitions to be larger than a disk to group disks into one logical structure. In
this way, the user needs to be concerned with only the logical directory and
file structure, and can ignore completely the problems of physically allocating
space for files. For this reason partitions can be thought of as virtual disks.
Partitions can also store multiple operating systems, allowing a system to boot
and run more than one.

Second, each partition contains information about files within it. This
information is kept in entries in a device directory or volume table of contents.
The device directory (more commonly known simply as a directory) records
information-such as name, location, size, and type-for all files on that
partition. Figure 11.5 shows the typical file-system organization.

The directory can be viewed as a symbol table that translates file names
into their directory entries. If we take such a view, we see that the directory

J

Figure 11.5 A typical file-system organization.

384 Chapter 11 File-System Interface

itself can be organized in many ways. We want to be able to insert entries,
to delete entries, to search for a named entry, and to list all the entries in
the directory. In Chapter 12, we discuss the appropriate data structures that
can be used in the implementation of the directory structure. In this section,
we examine several schemes for defining the logical structure of the directory
system. When considering a particular directory structure, we need to keep in
mind the operations that are to be performed on a directory:

Search for a file: We need to be able to search a directory structure to find
the entry for a particular file. Since files have symbolic names and similar
names may indicate a relationship between files, we may want to be able to
find all files whose names match a particular pattern.

Create a file: New files need to be created and added to the directory.

Delete a file: When a file is no longer needed, we want to remove it from
the directory.

List a directory: We need to be able to list the files in a directory, and the
contents of the directory entry for each file in the list.

Rename a file: Because the name of a file represents its contents to its users,
the name must be changeable when the contents or use of the file changes.
Renaming a file may also allow its position within the directory structure
to be changed.

Traverse the file system: We may wish to access every directory, and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. This
saving often consists of copying all files to magnetic tape. This technique
provides a backup copy in case of system failure or if the file is simply no
longer in use. In this case, the file can be copied to tape, and the disk space
of that file released for reuse by another file.

In Sections 11.3.1 through 11.3.5, we describe the most common schemes for
defining the logical structure of a directory.

11.3.1 Single-Level Directory
The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand
(Figure 11.6).

A single-level directory has significant limitations, however, when the
number of files increases or when the system has more than one user. Since
all files are in the same directory, they must have unique names. If two users
call their data file test, then the unique-name rule is violated. For example,

11.3 Directory Structure 385

directory

files

Figure 11.6 Single-level directory.

in one programming class, 23 students called the program for their second
assignment prog2; another 11 called it assign2. Although file names are generally
selected to reflect the content of the file, they are often limited in length. The
MS-DOS operating system allows only 11-character file names; UNIX allows 255
characters.

Even a single user on a single-level directory may find it difficult to remem-
ber the names of all the files, as the number of files increases. It is not uncom-
mon for a user to have hundreds of files on one computer system and an equal
number of additional files on another system. In such an environment, keeping
track of so many files is a daunting task.

11.3.2 Two-Level Directory

A single-level directory often leads to confusion of file names between different
users. The standard solution is to create a separate directory for each user.

In the two-level directory structure, each user has her own user file direc-
tory (UFD). Each UFD has a similar structure, but lists only the files of a single
user. When a user job starts or a user logs in, the system's master file directory
(MFD) is searched. The MFD is indexed by user name or account number, and
each entry points to the UFD for that user (Figure 11.7).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique.

To create a file for a user, the operating system searches only that user's
UFD to ascertain whether another file of that name exists. To delete a file, the
operating system confines its search to the local UFD; thus, it cannot accidentally
delete another user's file that has the same name.

The user directories themselves must be created and deleted as necessary.
A special system program is run with the appropriate user name and account
information. The program creates a new UFD and adds an entry for it to the
MFD. The execution of this program might be restricted to system administra-
tors. The allocation of disk space for user directories can be handled with the
techniques discussed in Chapter 12 for files themselves.

Although the two-level directory structure solves the name-collision prob-
lem, it still has disadvantages. This structure effectively isolates one user from
another. This isolation is an advantage when the users are completely indepen-

388 Chapter 11 File-System Interface

Figure 11.8 Tree-structured directory structure.

some other predefined location) to find an entry for this user (for accounting
purposes). In the accounting file is a pointer to (or the name of) the user's initial
directory. This pointer is copied to a local variable for this user that specifies the
user's initial current directory.

Path names can be of two types: absolicte path names or relative path names.
An absolute path name begins at the root and follows a path down to the
specified file, giving the directory names on the path. A relative path name
defines a path from the current directory. For example, in the tree-structured
file system of Figure 11.8, if the current directory is root/spell/mail, then the
relative path name prtlfirst refers to the same file as does the absolute path name
root/spell/rnail/prtlfivst.

Allowing the user to define his own subdirectories permits him to impose
a structure on his files. This structure might result in separate directories for
files associated with different topics (for example, a subdirectory was created
to hold the text of this book) or different forms of information (for example, the
directory programs may contain source programs; the directory bin may store all
the binaries).

An interesting policy decision in a tree-structured directory structure is how
to handle the deletion of a directory. If a directory is empty, its entry in its
containing directory can simply be deleted. However, suppose the directory
to be deleted is not empty, but contains several files or subdirectories: One of

11.3 Directory Structure 389

two approaches can be taken. Some systems, such as MS-DOS, will not delete a
directory unless it is empty. Thus, to delete a directory, the user must first delete
all the files in that directory. If any subdirectories exist, this procedure must be
applied recursively to them, so that they can be deleted also. This approach
may result in a substantial amount of work.

An alternative approach, such as that taken by the UNIX r m command, is
to provide the option that, when a request is made to delete a directory, all that
directory's files and subdirectories are also to be deleted. Either approach is
fairly easy to implement; the choice is one of policy. The latter policy is more
convenient, but more dangerous, because an entire directory structure may be
removed with one command. If that command were issued in error, a large
number of files and directories would need to be restored from backup tapes.

With a tree-structured directory system, users can access, in addition to
their files, the files of other users. For example, user B can access files of user
A by specifying their path names. User B can specify either an absolute or a
relative path name. Alternatively, user B could change her current directory to
be user A's directory, and access the files by their file names. Some systems also
allow users to define their own search paths. In this case, user B could define
her search path to be (1) her local directory, (2) the system file directory, and (3)
user A's directory, in that order. As long as the name of a file of user A did not
conflict with the name of a local file or system file, it could be referred to simply
by its name.

A path to a file in a tree-structured directory can be longer than that in
a two-level directory. To allow users to access programs without having to
remember these long paths, the Macintosh operating system automates the
search for executable programs. It maintains a file, called the Desktop File,
containing the name and location of all executable programs it has seen. When
a new hard disk or floppy disk is added to the system, or the network is
accessed, the operating system traverses the directory structure, searching for
executable programs on the device and recording the pertinent information.
This mechanism supports the double-click execution functionality described
previously. A double-click on a file causes its creator attribute to be read,
and the Desktop File to be searched for a match. Once the match is found, the
appropriate executable program is started with the clicked-on file as its input.
The Microsoft Windows family of operating systems (95,95, NT, 2000) maintains
an extended two-level directory structure, with devices and partitions assigned
a drive letter (Section 11.4).

11.3.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in

390 Chapter 11 File-System Interface

Figure 11.9 Acyclic-graph directory structure.

their own directories. The common subdirectory should be shared. A shared
directory or file will exist in the file system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories. An acyclic
graph allows directories to have shared subdirectories and files (Figure 11.9).
The same file or subdirectory may be in two different directories. An acyclic
graph, that is, a graph with no cycles, is a natural generalization of the tree-
structured directory scheme.

A shared file (or directory) is not the same as two copies of the file. With
two copies, each programmer can view the copy rather than the original, but
if one programmer changes the file, the changes will not appear in the other's
copy. With a shared file, only one actual file exists, so any changes made by one
person are immediately visible to the other. Sharing is particularly important
for subdirectories; a new file created by one person will automatically appear
in all the shared subdirectories.

When people are working as a team, all the files they want to share may
be put into one directory. The UFDs of all the team members would each
contain this directory of shared files as a subdirectory. Even when there is a
single user, his file organization may require that some files be put into different
subdirectories. For example, a program written for a particular project should
be both in the directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file or
subdirectory. For example, a link may be implemented as an absolute or relative
path name. When a reference to a file is made, we search the directory. If the

11.3 Directory Structure 391

directory entry is marked as a link, then the name of the real file (or directory)
is given. We resolve the link by using the path name to locate the real file. Links
are easily identified by their format in the directory entry (or by their having a
special type on systems that support types), and are effectively named indirect
pointers. The operating system ignores these links when traversing directory
trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to dupli-
cate all information about them in both sharing directories. Thus, both entries
are identical and equal. A link is clearly different from the original directory
entry; thus, the two are not equal. Duplicate directory entries, however, make
the original and the copy indistinguishable. A major problem with duplicate
directory entries is maintaining consistency if the file is modified.

An acyclic-graph directory structure is more flexible than is a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system-to find a file, to accumulate statistics on all files, or to copy
all files to backup storage-this problem becomes significant, since we do not
want to traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to the
now-nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this situation
is somewhat easier to handle. The deletion of a link does not need to affect

! the original file; only the link is removed. If the file entry itself is deleted, the
space for the file is deallocated, leaving the links dangling. We can search for
these links and remove them also, but unless a list of the associated links is
kept with each file, this search can be expensive. Alternatively, we can leave
the links until an attempt is made to use them. At that time, we can determine
that the file of the name given by the link does not exist, and can fail to resolve
the link name; the access is treated just like any other illegal file name. (In this

i case, the system designer should consider carefully what to do when a file is
deleted and another file of the same name is created, before a symbolic link to
the original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the original file is gone or has
been replaced. Microsoft Windows (all flavors) uses the same approach.

Another approach to deletion is to preserve the file until all references to
it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When a

392 Chapter 11 File-System Interface

link or a copy of the directory entry is established, a new entry is added to the
file-reference list. When a link or directory entry is deleted, we remove its entry
on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size
of the file-reference list. However, we really do not need to keep the entire
list-we need to keep only a count of the number of references. A new link
or directory entry increments the reference count; deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are
no remaining references to it. The UNIX operating system uses this approach
for nonsymbolic links (or hard links), keeping a reference count in the file
information block (or inode, see Appendix A.7.2). By effectively prohibiting
multiple references to directories, we maintain an acyclic-graph structure.

To avoid these problems, some systems do not allow shared directories or
links. For example, in MS-DOS, the directory structure is a tree structure, rather
than an acyclic graph.

11.3.5 General Graph Directory

One serious problem with using an acyclic-graph structure is ensuring that
there are no cycles. If we start with a two-level directory and allow users to
create subdirectories, a tree-structured directory results. It should be fairly
easy to see that simply adding new files and subdirectories to an existing tree-
structured directory preserves the tree-structured nature. However, when we
add links to an existing tree-structured directory, the tree structure is destroyed,
resulting in a simple graph structure (Figure 11.10).

root

Figure 11.10 General graph directory.

11.4 File-System Mounting 393

The primary advantage of an acyclic graph is the relative simplicity of the
algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file, without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to avoid
searching any component twice, for reasons of correctness as well as perfor-
mance. A poorly designed algorithm might result in an infinite loop continually
searching through the cycle and never terminating. One solution is arbitrarily
to limit the number of directories that will be accessed during a search.

A similar problem exists when we are trying to determine when a file can
be deleted. As with acyclic-graph directory structures, a value zero in the
reference count means that there are no more references to the file or directory,
and the file can be deleted. However, when cycles exist, the reference count
may be nonzero, even when it is no longer possible to refer to a directory or
file. This anomaly results from the possibility of self-referencing (or a cycle)
in the directory structure. In this case, we generally need to use a garbage-
collection scheme to determine when the last reference has been deleted and
the disk space can be reallocated. Garbage collection involves traversing the
entire file system, marking everything that can be accessed. Then, a second
pass collects everything that is not marked onto a list of free space. (A similar
marking procedure can be used to ensure that a traversal or search will cover
everything in the file system once and only once.) Garbage collection for a disk-
based file system, however, is extremely time-consuming and is thus seldom
attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure is much easier to work with. The difficulty is to
avoid cycles as new links are added to the structure. How do we know when a
new link will complete a cycle? There are algorithms to detect cycles in graphs;
however, they are computationally expensive, especially when the graph is on
disk storage. A simpler algorithm in the special case of directories and links
is to bypass links during directory traversal. Cycles are avoided and no extra
overhead is incurred.

11.4 . File-System Mounting

Just as a file must be opened before it is used, a file system must be mounted
before it can be available to processes on the system. More specifically, the
directory structure can be built out of multiple partitions, which must be
mounted to make them available within the file system name space.

The mount procedure is straightforward. The operating system is given the
name of the device, and the location within the file structure at which to attach

394 Chapter 11 File-System Interface

Figure 11.11 File system. (a) Existing. (b) Unmounted partition.

the file system (or mount point). Typically, a mount point is an empty directory
at which the mounted file system will be attached. For instance, on a UNIX
system, a file system containing user's home directories might be mounted as
home; then, to access the directory structure within that file system, one could
precede the directory names with /home, as in /honze/jane. Mounting that file
system under /users would result in the path name /usersljane to reach the same
directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse
its directory structure, switching among file systems as appropriate.

To illustrate file mounting, consider the file system depicted in Figure 11.11,
where the triangles represent subtrees of directories that are of interest. In
Figure ll.ll(a), an existing file system is shown, while in Figure ll.ll(b), an
unmounted partition residing on /device/dsk is shown. At this point, only the
files on the existing file system can be accessed. In Figure 11.12, the effects of
the mounting of the partition residing on /device/dsk over /users are shown. If
the partition is unmounted, the file system is restored to the situation depicted
in Figure 11.11.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files, or make the mounted
file system available at that directory and obscure the directory's existing files
until the file system is unmounted, terminating the use of the file system and
allowing access to the original files in that directory. As another example, a

11.5 File Sharing 395

jane

A

Figure 11.12 Mount point.

system may allow the same file system to be mounted repeatedly, at different
mount points, or it may only allow one mount per file system.

Consider the actions of the Macintosh operating system. Whenever the
system encounters a disk for the first time (hard disks are found at boot time,
floppy disks are seen when they are inserted into the drive), the Macintosh
operating system searches for a file system on the device. If it finds one, it
automatically mounts the file system at the root level, adding a folder icon on
the screen labeled with the name of the file system (as stored in the device
directory). The user then is able to click on the icon and thus to display the
newly mounted file system.

The Microsoft Windows family of operating systems (95,98, NT, and 2000)
maintains an extended two-level directory structure, with devices and parti-
tions assigned a drive letter. Partitions have a general graph directory structure
associated with the drive letter. The path to a specific file is then in the form
of drive- letter:\path\tople. These operating systems automatically discover all
devices and mount all located file systems at boot time. In some systems, like
UNIX, the mount commands are explicit. A system configuration file contains a
list of devices and mount points for automatic mounting at boot time, but other
mounts may be executed manually.

File system mounting is further discussed in Sections 12.2.2 and A.7.5.

11.5 File Sharing

In the previous sections, we explored the motivation for file sharing and some of
the difficulties involved in allowing users to share files. Such file sharing is very
desirable for users who want to collaborate and to reduce the effort required to
achieve a computing goal. Therefore, user-oriented operating systems must
accommodate the need to share files in spite of the inherent difficulties.

396 Chapter 11 File-System Interface

In this section, we examine more aspects of file sharing. First is the topic
of multiple users and the sharing methods possible. Once multiple users are
allowed to share files, the challenge is to extend sharing to multiple file systems,
including remote file systems. Finally, there can be several interpretations of
conflicting actions occurring on shared files. For instance, if multiple users
are writing to the file, should all the writes be allowed to occur, or should
the operating system protect the user actions from each other? Consistency
semantics is discussed in Section 11.5.3.

11.5.1 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the
file sharing. The system either can allow a user to access the files of other users
by default, or it may require that a user specifically grant access to the files.
These are the issues of access control and protection, which are covered below.

To implement sharing and protection, the system must maintain more file
and directory attributes than on a single-user system. Although there have been
many approaches to this topic historically, most systems have evolved to the
concepts of file/directory owner (or user) and group. The owner is the user who
may change attributes, grant access, and has the most control over the file or
directory. The group attribute of a file is used to define a subset of users who
may share access to the file. For example, the owner of a file on a UNIX system
may issue all operations on a file, while members of the file's group may execute
one subset of those operations, and all other users may execute another subset
of operations. Exactly which operations can be executed by group members
and other users is definable by the file's owner. More details on permission
attributes are included in the next section.

Most systems implement owner attributes by managing a list of user names
and associated user identifiers (user IDS). In Windows NT parlance, this is
a Security ID (SID). These numerical IDS are unique, one per user. When a
user logs in to the system, the authentication stage determines the appropriate
user ID for the user. That user ID is associated with all of the user's processes
and threads. When they need to be user readable, they are translated back
to the user name via the user name list. Likewise, group functionality can
be implemented as a system-wide list of group names and group identifiers.
Every user can be in one or more groups, depending upon operating system
design decisions. The user's group IDS are also included in every associated
process and thread.

The owner and group IDS of a given file or directory are stored with the
other file attributes. When a user requests an operation on a file, the user ID can
be compared to the owner attribute to determine if the requesting user is the
owner of the file. Likewise, the group IDS can be compared. The result indicates

11.5 File Sharing 397

which permissions are applicable. The system then applies those permissions
to the requested operation, and allows or denies it.

The user information within a process can be used for other purposes as
well. One process may attempt to interact with another process, and user
information can dictate the result, based on the design of the operating system.
For example, a process may attempt to terminate, background, or lower the
priority of another process. If the owner of each process is the same, then the
command may succeed, or else it may be denied. It may also be allowed to
succeed if it is owned by the privileged user.

Many systems have multiple local file systems, including partitions of a
single disk or multiple partitions on multiple attached disks. In these cases, the
ID checking and permission matching are straightforward, once the file systems
are mounted.

11.5.2 Remote File Systems
The advent of networks (Chapter 15) allowed communication between remote
computers. Networking allows the sharing of resources spread within a cam-
pus or even around the world. One obvious resource to share is data, in the
form of files. Through the evolution of network and file technology, file-sharing
methods have changed. In the first implemented method, users manually trans-
fer files between machines via programs like f tp . The second major method is
a distributed file system (DFS) in which remote directories are visible from the
local machine. In some ways, the third method, the World Wide Web, is a
reversion to the first. A browser is needed to gain access to the remote files, and
separate operations (essentially a wrapper for f tp) are used to transfer files.

f t p is used for both anonymous and authenticated access. Anonymous
access allows a user to transfer files without having an account on the remote
system. The World Wide Web uses anonymous file exchange almost exclusively.
DFS involve a much tighter integration between the machine that is accessing
the remote files and the machine providing the files. This integration adds
complexity, which we describe in this section.

11.5.2.1 The Client-Server Model

Remote file systems allow a computer to mount one or more file systems from
one or more remote machines. In this case, the machine containing the files
is the server, and the machine wanting access to the files is the client. The
client-server relationship is common with networked machines. Generally, the
server declares that a resource is available to clients and specifies exactly which
resource (in this case, which files) and exactly which clients. Files are usually
specified on a partition or subdirectory level. A server can serve multiple
clients, and a client can use multiple servers, depending on the implementation
details of a given client-server facility.

398 Chapter 11 File-System Interface

Client identification is more difficult. Clients can be specified by their
network name or other identifier, such as IP address, but these can be spoofed
(or imitated). An unauthorized client can spoof the server into deciding that it
is authorized, and the unauthorized client could be allowed access. More secure
solutions include secure authentication of the client to the server via encrypted
keys. Unfortunately, with security comes many challenges, including ensuring
compatibility of the client and server (they must use the same encryption
algorithms) and secure key exchanges (intercepted keys could again allow
unauthorized client access). These problems are difficult enough that, most
commonly, unsecure authentication methods are used. In the case of UNIX
and its network file system (NFS), authentication is via the client networking
information, by default. In this scheme, the user IDS must match on the client
and server. If not, the server will be unable to determine access rights to files.

Consider the example of a user who has the ID of 1000 on the client and
2000 on the server. A request from the client to the server for a specific file
will not be handled appropriately, as the server will determine if user 1000 has
access to the file, rather than the real user ID of 2000. Access would be granted
or denied based on incorrect authentication information. The server must trust
the client to present the correct user ID. The NFS protocols allow many-to-many
relationships. That is, many servers can provide files to many clients. In fact,
a given machine can be both a server to other NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent on
the behalf of the user, across the network, to the server, via the DFS protocol.
Typically, a file open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user
has credentials to access the file in the mode requested. The request is either
allowed or denied. If it is allowed, a file handle is returned to the client
application, and the application then may perform read, write, and other
operations on the file. The client closes the file when access is completed. The
operating system may apply semantics similar to those for a local file system
mount, or may have different semantics.

11.5.2.2 Distributed Information Systems

To ease the management of client-server services, distributed information sys-
tems, also known as distributed naming services, have been devised to pro-
vide a unified access to the information needed for remote computing. Domain
name system (DNS) provides host-name-to-network-address translations for
the entire Internet (including the World Wide Web). Before DNS was invented
and became widespread, files containing the same information were sent via e-
mail or f t p between all networked hosts. This methodology was not scalable.
DNS is further discussed in 15.4.1.

Other distributed information systems provide user narne/password/user
ID/group ID space for a distributed facility. UNIX systems have had a wide

11.5 File Sharing 399

variety of distributed information methods. Sun Microsystems introduced yel-
lozv pages (since renamed to network information service (NIS)), and most of
the industry adopted its use. It centralizes storage of user names, host names,
printer information, and the like. Unfortunately, it uses unsecure authentica-
tion methods, including sending user passwords unencrypted (in clear text) and
identifying hosts by IP address. Sun's NIS+ is a much more secure replacement
for NIS, but is also much more complicated and has not been widely adopted.

In the case of Microsoft networks (CIFS), network information is used in
conjunction with user authentication (user name and password) to create a
network login that the server uses to decide whether to allow or deny access to
a requested file system. For this authentication to be valid, the user names must
match between the machines (as with NFS). Microsoft uses two distributed-
naming structures to provide a single namespace for users. The older naming
technology is domains. The newer technology, available in Windows 2000 and
beyond, is active directory. Once established, the distributed-naming facility is
used by all clients and servers to authenticate users.

The industry is moving toward lightweight directory-access protocol
(LDAP) as a secure, distributed naming mechanism. In fact, active directory
is based on LDAP. Sun Microsystems' Solaris 8 allows LDAP to be used for user
authentication as well as system-wide retrieval of information such as available
printers. If the convergence of the use of LDAP succeeds, then one distributed
LDAP directory will be used by an organization to store all user and resource
information for all computers within that organization. The result would be
secure single sign-on for users, who would enter their authentication infor-
mation once for access to all computers within the organization. It would also
ease systems-administration efforts by combining, into one location, informa-
tion that is currently scattered in various files on each system or in differing
distributed information services.

11.5.2.3 Failure Modes

Local file systems can fail for a variety of reasons, including failure of the disk
containing the file system, corruption of the directory structure or other disk
management information (collectively called metadata), disk-controller failure,
cable failure, or host adapter failure. User or systems-administrator failure
can also cause files to be lost, or entire directories or partitions to be deleted.
Many of these failures would cause a host to crash and an error condition to be
displayed, and require human intervention to repair.

Some failures do not cause loss of data or loss of availability of data.
Redundant arrays of inexpensive disks (RAID) can prevent the loss of a disk
from resulting in the loss of data. RAID is covered further in Section 14.5.

Remote file systems have more failure modes. By nature of the complexity
of network systems and the required interactions between remote machines,
many more problems can interfere with the proper operation of remote file
systems. In the case of networks, the network can be interrupted between

400 Chapter 11 File-System Interface

the two hosts. This could be due to hardware failure or misconfiguration, or
networking implementation issues at any of the involved hosts. Although some
networks have built-in resiliency, including multiple paths between each host,
many do not. Any single failure could interrupt the flow of DFS commands.

Consider a client in the midst of using a remote file system. It has remote
file systems mounted and may have files open from the remote host; among
other activities, it may be performing directory lookups to open files, reading
or writing data to files, and closing files. Now consider a partitioning of the
network, a crash of the server, or even a scheduled shutdown of that server,
such that the remote file system is no longer reachable. This scenario is rather
common, so it would not be appropriate for the client to act as it would in the
case of a loss of a local file system.

Rather, the system could either terminate all operations to the lost server,
or delay operations until the server is again reachable. This failure semantics
is defined and implemented as part of the remote file system protocol. Termi-
nation of all operations can result in users losing data, and patience. Most DFS
protocols either enforce or allow delaying of file-system operations to remote
hosts, with the hope that the remote host will become available again.

For this kind of recovery from failure, some kind of state information may
be maintained on both the client and server. If the server has crashed, but
must recognize that it had exported file systems, remotely mounted them, and
opened certain files, NFS takes a simple approach, implementing a stateless
DFS. In essence, it assumes that a client request for a file read or write would not
have occurred unless the file system had been remotely mounted and the file
had been previously open. The NFS protocol carries all the information needed
to locate the appropriate file and perform the requested operation on a file.
Likewise, it does not track which clients have its exported partitions mounted,
again assuming that if a request comes it, it must be legitimate. While this
stateless approach makes NFS resilient and rather easy to implement, it makes
it unsecure. For example, forged read or write requests could be allowed by an
NFS server even though the requisite mount request and permission check have
not take place.

11.5.3 Consistency Semantics
Consistency semantics is an important criterion for evaluating any file system
that supports file sharing. It is a characterization of the system that specifies the
semantics of multiple users accessing a shared file simultaneously. In particular,
these semantics should specify when modifications of data by one user are
observable by other users. The semantics are typically implemented as code
with the file system.

Consistency semantics are directly related to the process synchronization
algorithms of Chapter 7. However, the complex algorithms of that chapter tend
not to be implemented in the case of file I/O because of the great latencies and

11.5 File Sharing 401

slow transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications or
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to perform poorly. A successful implementation of complex
sharing semantics can be found in the Andrew File System.

For the following discussion, we assume that a series of file accesses (that
is, reads and writes) attempted by a user to the same file is always enclosed
between the open and close operations. The series of accesses between the
open and close operations is a file session. To illustrate the concept, we sketch
several prominent examples of consistency semantics.

11.5.4 UNIX Semantics
The UNIX file system (Chapter 16) uses the following consistency semantics:

Writes to an open file by a user are visible immediately to other users that
have this file open at the same time.

One mode of sharing allows users to share the pointer of current location
into the file. Thus, the advancing of the pointer by one user affects all
sharing users. Here, a file has a single image that interleaves all accesses,
regardless of their origin.

In the UNIx semantics a file is associated with a single physical image that is
accessed as an exclusive resource. Contention for this single image results in
user processes being delayed.

11.5.5 Session Semantics
The Andrew file system (AFS) (Chapter 16) uses the following consistency
semantics:

Writes to an open file by a user are not visible immediately to other users
that have the same file open simultaneously.

Once a file is closed, the changes made to it are visible only in sessions
starting later. Already open instances of the file do not reflect these changes.

According to these semantics, a file may be associated temporarily with several
(possibly different) images at the same time. Consequently, multiple users are
allowed to perform both read and write accesses concurrently on their image
of the file, without delay. Almost no constraints are enforced on scheduling
accesses.

11.5.6 Immutable-Shared-Files Semantics
A unique approach is that of immutable shared files. Once a file is declared
as shared by its creator, it cannot be modified. An immutable file has two

402 Chapter 11 File-System Interface

key properties: Its name may not be reused and its contents may not be
altered. Thus, the name of an immutable file signifies that the contents of the
file are fixed, rather than the file being a container for variable information.
The implementation of these semantics in a distributed system (Chapter 16) is
simple, because the sharing is disciplined (read-only).

11.6 Protection

When information is kept in a computer system, we want to keep it safe from
physical damage (reliability) and improper access (protection).

Reliability is generally provided by duplicate copies of files. Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk files to tape at regular intervals (once per day or week
or month) to maintain a copy should a file system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,
and vandalism. Files may be deleted accidentally. Bugs in the file-system soft-
ware can also cause file contents to be lost. Reliability is covered in more detail
in Chapter 14.

Protection can be provided in many ways. For a small single-user system,
we might provide protection by physically removing the floppy disks and
locking them in a desk drawer or file cabinet. In a multiuser system, however,
other mechanisms are needed.

11.6.1 Types of Access
The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is controlled access.

Protection mechanisms provide controlled access by limiting the types of
file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

Read: Read from the file.

Write: Write or rewrite the file.

Execute: Load the file into memory and execute it.

Append: Write new information at the end of the file.

Delete: Delete the file and free its space for possible reuse.

List: List the name and attributes of the file.

11.6 Protection 403

Other operations, such as renaming, copying, or editing the file, may also
be controlled. For many systems, however, these higher-level functions may
be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each scheme has
advantages and disadvantages and must be appropriate for its intended appli-
cation. A small computer system that is used by only a few members of a
research group may not need the same types of protection as will a large cor-
porate computer that is used for research, finance, and personnel operations. A
complete treatment of the protection problem is deferred to Chapter 18.

11.6.2 Access Control
The most common approach to the protection problem is to make access depen-
dent on the identity of the user. Various users may need different types of access
to a file or directory. The most general scheme to implement identity-dependent
access is to associate with each file and directory an access-control list (ACL)
specifying the user name and the types of access allowed for each user. When a
user requests access to a particular file, the operating system checks the access
list associated with that file. If that user is listed for the requested access, the
access is allowed. Otherwise, a protection violation occurs, and the user job is
denied access to the file.

This approach has the advantage of enabling complex access methodolo-
gies. The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This technique
has two undesirable consequences:

Constructing such a list may be a tedious and unrewarding task, especially
if we do not know in advance the list of users in the system.

The directory entry, previously of fixed size, now needs to be of variable
size, resulting in more complicated space management.

These problems can be resolved by use of a condensed version of the access list.
To condense the length of the access control list, many systems recognize

three classifications of users in connection with each file:

Owner: The user who created the file is the owner.

Group: A set of users who are sharing the file and need similar access is a
group, or work group. I

I

Universe: All other users in the system constitute the universe.
I
I
I

404 Chapter 11 File-System Interface

The most common recent approach is to combine access control lists with
the more general (and easier to implement) owner, group, and universe access-
control scheme that was described above. For example, Solaris 2.6 and beyond
uses the three categories of access by default, but allows access control lists to
be added to specific files and directories when more fine-grained access control
is desired.

As an example, consider a person, Sara, who is writing a new book. She
has hired three graduate students (Jim, Dawn, and Jill) to help with the project.
The text of the book is kept in a file named book. The protection associated with
this file is as follows:

rn Sara should be able to invoke all operations on the file.

rn Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

rn All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain appropriate feedback.)

To achieve such a protection, we must create a new group, say text, with
members Jim, Dawn, and Jill. The name of the group text must be then
associated with the file book, and the access right must be set in accordance
with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to chapter 1. The visitor cannot be added to the text group because that grants to
the vistor access to all chapters. Because files can only be in one group, another
group cannot be added to chapter 1. With the addition of access-control-list
functionality, the visitor can be added to the access control list of chapter 1.

For this scheme to work properly, permissions and access lists must be
controlled tightly. This control can be accomplished in several ways. For
example, in the UNIX system, groups can be created and modified by only the
manager of the facility (or by any superuser). Thus, this control is achieved
through human interaction. In the VMS system, the owner of the file can create
and modify this list. Access lists are discussed further in Section 18.4.2.

With the more limited protection classification, only three fields are needed
to define protection. Each field is often a collection of bits, each of which either
allows or prevents the access associated with it. For example, the UNIX system
defines three fields of 3 bits each-rwx, where r controls read access, w controls
write access, and x controls execution. A separate field is kept for the file owner,
for the file's group, and for all other users. In this scheme, 9 bits per file are
needed to record protection information. Thus, for our example, the protection
fields for the file book are as follows: For the owner Sara, all 3 bits are set; for the
group text, the r and w bits are set; and for the universe, only the r bit is set.

11.6 Protection 405

One difficulty in combining approaches comes in the user interface. Users
must be able to tell when the optional ACL permissions are set on a file. In the
Solaris example, a "+" appends the regular permissions, as in:

19 -rw-r--r--+ 1 jim s t a f f 130 May 25 22:13 f i l e 1

A separate set of commands s e t f a c l and g e t f a c l are used to manage the
ACLs. Another difficulty is assigning precedence when permission and ACLs
conflict. For example, if Joe is in a file's group, which has read permission, but
the file has an ACL granting Joe read and write permissions, should a write
by Joe be granted or denied? Solaris gives ACLs permission (as they are more
fine-grained and are not assigned by default). This follows the general rule that
specificity should have priority.

11.6.3 Other Protection Approaches

Another approach to the protection problem is to associate a password with
each file. Just as access to the computer system is often controlled by a pass-
word, access to each file can be controlled by a password. If the passwords
are chosen randomly and changed often, this scheme may be effective in limit-
ing access to a file to only those users who know the password. This scheme,
however, has several disadvantages. First, the number of passwords that a user
needs to remember may become large, making the scheme impractical. Sec-
ondly, if only one password is used for all the files, then, once it is discovered,
all files are accessible. Some systems (for example, TOPS-20) allow a user to
associate a password with a subdirectory, rather than with an individual file,
to deal with this problem. The IBM VM/CMS operating system allows three
passwords for a minidisk-one each for read, write, and multiwrite access.
Thirdly, commonly, only one password is associated with all of the user's files.
Thus, protection is on an all-or-nothing basis. To provide protection on a more
detailed level, we must use multiple passwords.

Limited file protection is also currently available on single user systems,
such as MS-DOS and Macintosh operating system. These operating systems,
when originally designed, essentially ignored the protection problem. How-
ever, since these systems are now being placed on networks where file sharing
and communication are necessary, protection mechanisms must be retrofitted
into the operating system. Designing a feature into a new operating system is
almost always easier than adding a feature to an existing one. Such updates are
usually less effective and are not seamless.

In a multilevel directory structure, we need to protect not only individual
files, but also collections of files in a subdirectory; that is, we need to provide
a mechanism for directory protection. The directory operations that must be
protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want

406 Chapter 11 File-System Interface

to control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file may be significant in
itself. Thus, listing the contents of a directory must be a protected operation.
Therefore, if a path name refers to a file in a directory, the user must be allowed
access to both the directory and the file. In systems where files may have
numerous path names (such as acyclic or general graphs), a given user may
have different access rights to a file, depending on the path name used.

11.6.4 An Example: UNIX
In the UNIX system, directory protection is handled similarly to file protection.
That is, associated with each subdirectory are three fields-owner, group, and
universe-each consisting of the 3 bits rwx. Thus, a user can list the content of
a subdirectory only if the r bit is set in the appropriate field. Similarly, a user
can change his current directory to another current directory (say foo) only if the
x bit associated with the foo subdirectory is set in the appropriate field.

A sample directory listing from a UNIX environment is shown in Figure
11.13. The first field describes the file or directory's protection. A d as the first
character indicates a subdirectory. Also shown are the number of links to the
file, the owner's name, the group's name, the size of the file in unit of bytes, the
creation date, and finally the file's name (with optional extension).

11.7 rn Summary

A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte, a line
(fixed or variable length), or a more complex data item. The operating system
may specifically support various record types or may leave that support to the
application program.

The major task for the operating system is to map the logical file concept
onto physical storage devices such as magnetic tape or disk. Since the physical
record size of the device may not be the same as the logical record size, it may

-rw-rw-r-
drwx-
drwxrwxr-x
dmxrwx-
-rw-r-r-
-rwxr-xr-x
drwx-x-x
drwx-
drwxrwxrwx

staff
staff
staff
student
staff
staff
faculty
staff
staff

Sep 3 08:30
Jul 8 09:33
Jul 8 09:35
Aug 3 14:13
Feb 24 1999
Feb 24 200
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

intro.ps
private/
doc/
student-proj /
pr0gram.c
program
lib /
mail/
test/

Figure 11.13 A sample directory listing.

Exercises 407

be necessary to block logical records into physical records. Again, this task may
be supported by the operating system or left for the application program.

Each device in a file system keeps a volume table of contents or device
directory listing the location of the files on the device. In addition, it is useful
to create directories to allow files to be organized. A single-level directory
in a multiuser system causes naming problems, since each file must have a
unique name. A two-level directory solves this problem by creating a separate
directory for each user. Each user has her own directory, containing her own
files. The directory lists the files by name, and includes such information as the
file's location on the disk, length, type, owner, time of creation, time of last use,
and so on.

The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize his files. Acyclic-graph directory structures allow subdirectories
and files to be shared, but complicate searching and deletion. A general graph
structure allows complete flexibility in the sharing of files and directories, but
sometimes requires garbage collection to recover unused disk space.

Disks are segmented into one or more partitions, each containing a file
system or left "raw". File systems may be mounted into the system's naming
structures to make them available. The naming scheme varies by operating
system. Once mounted, the files within the partition are available for use. File
systems may be unmounted to disable access or for maintenance.

File sharing depends on the semantics provided by the system. Files may
have multiple readers, multiple writers, or limits on the sharing. Distributed
file systems allow client hosts to mount partitions or directories from servers,
as long as they can access each other across a network. Remote file systems have
challenges in reliability, performance, and security. Distributed information
systems maintain user, host, and access information such that clients and
servers share state information to manage use and access.

Since files are the main information-storage mechanism in most computer
systems, file protection is needed. Access to files can be controlled separately for
each type of access-read, write, execute, append, delete, list directory, and so
on. File protection can be provided by passwords, by access lists, or by special
ad hoc techniques.

Exercises

11.1 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur
if a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?

11.2 Some systems automatically delete all user files when a user logs off or a
job terminates, unless the user explicitly requests that they be kept; other

408 Chapter 11 File-System Interface

systems keep all files unless the user explicitly deletes them. Discuss the
relative merits of each approach.

11.3 Why do some systems keep track of the type of a file, while others leave
it to the user or simply do not implement multiple file types? Which
system is "better"?

11.4 Similarly, some systems support many types of structures for a file's data,
while others simply support a stream of bytes. What are the advantages
and disadvantages?

11.5 What are the advantages and disadvantages of recording the name of the
creating program with the file's attributes (as is done in the Macintosh
operating system)?

11.6 Could you simulate a multilevel directory structure with a single-level
directory structure in which arbitrarily long names can be used? If your
answer is yes, explain how you can do so, and contrast this scheme
with the multilevel directory scheme. If your answer is no, explain what
prevents your simulation's success. How would your answer change if
file names were limited to seven characters?

11.7 Explain the purpose of the open and c lo se operations.

11.8 Some systems automatically open a file when it is referenced for the first
time, and close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme as compared to the more traditional
one, where the user has to open and close the file explicitly.

11.9 Give an example of an application in which data in a file should be
accessed in the following order:

a. Sequentially

b. Randomly

11.10 Some systems provide file sharing by maintaining a single copy of a file;
other systems maintain several copies, one for each of the users sharing
the file. Discuss the relative merits of each approach.

11.11 In some systems, a subdirectory can be read and written by an authorized
user, just as ordinary files can be.

a. Describe the protection problems that could arise.

b. Suggest a scheme for dealing with each of the protection problems
you named in part a.

11.12 Consider a system that supports 5000 users. Suppose that you want to
allow 4990 of these users to be able to access one file.

Bibliographical Notes 409

a. How would you specify this protection scheme in UNIX?

b. Could you suggest another protection scheme that can be used more
effectively for this purpose than the scheme provided by UNIX?

11.13 Researchers have suggested that, instead of having an access list associ-
ated with each file (specifying which users can access the file, and how),
we should have a user control list associated with each user (specifying
which files a user can access, and how). Discuss the relative merits of
these two schemes.

Bibliographical Notes

General discussions concerning file systems were offered by Grosshans [1986].
Golden and Pechura [I9861 described the structure of microcomputer file sys-
tems. Database systems and their file structures were described in full in
Silberschatz et al. [2001].

A multilevel directory structure was first implemented on the MULTICS
system (Organick [1972]). Most operating systems now implement multilevel
directory structures. These include UNIX (Ritchie and Thompson [1974]), the
Apple Macintosh operating system (Apple [1991]), and MS-DOS (Microsoft
[1991]).

The MS-DOS file system was described in Norton and Wilton [1988]. That of
VAX VMS was covered in Kenah et al. [I9881 and DEC [1981]. The Network File
System (NFS), designed by Sun Microsystems, allows directory structures to be
spread across networked computer systems. Discussions concerning NFS were
presented in Sandberg et al. [1985], Sandberg [1987], and Sun [1990]. NFS is fully
described in Chapter 16. The immutable-shared-files semantics was described
by Schroeder et al. 119851.

DNS was first proposed by Su [I9821 and has gone through several revision
since, with Mockapetris [I9871 adding several major features. Most recently,
Eastlake 119991 proposing security extensions to let DNS hold security keys.

LDAP, also known as X.509, is a derivative subset of the X.500 distributed
directory protocol. It was defined by Yeong et al. [I9951 and has been imple-
mented on many operating systems. Interesting research is ongoing in the area
of file-system interfaces, in particular, on issues relating to file naming and
attributes. For example, the Plan 9 operating system from Bell Laboratories
(Lucent Technology) makes all objects look like file systems. Thus, to display
a list of processes on a system, a user simply lists the contents of the /proc
directory. Similarly, to display the time of day, a user needs only to type the file
/dev/time.

Chapter 12

FILE-SY STEM
IMPLEMENTATION

As we saw in Chapter 11, the file system provides the mechanism for on-line
storage and access to file contents, including data and programs. The file
system resides permanently on secondary storage, which is designed to hold a
large amount of data permanently. This chapter is primarily concerned with
issues surrounding file storage and access on the most common secondary-
storage medium, the disk. We explore ways to structure file use, to allocate
disk space, to recover freed space, to track the locations of data, and to interface
other parts of the operating system to secondary storage. Performance issues
are considered throughout the chapter.

12.1 . File-System Structure

Disks provide the bulk of secondary storage on which a file system is main-
tained. They have two characteristics that make them a convenient medium for
storing multiple files:

1. They can be rewritten in place; it is possible to read a block from the disk,
to modify the block, and to write it back into the same place.

2. They can access directly any given block of information on the disk. Thus, it
is simple to access any file either sequentially or randomly, and switching
from one file to another requires only moving the read-write heads and
waiting for the disk to rotate.

We discuss disk structure in great detail in Chapter 14.

412 Chapter 12 File-System Implementation

Rather than transferring a byte at a time, to improve I/O efficiency, I/O
transfers between memory and disk are performed in units of blocks. Each block
is one or more sectors. Depending on the disk drive, sectors vary from 32 bytes
to 4,096 bytes; usually, they are 512 bytes.

To provide an efficient and convenient access to the disk, the operating
system imposes one or more file systems to allow the data to be stored, located,
and retrieved easily. A file system poses two quite different design problems.
The first problem is defining how the file system should look to the user. This
task involves defining a file and its attributes, the operations allowed on a file,
and the directory structure for organizing files. The second problem is creating
algorithms and data structures to map the logical file system onto the physical
secondary-storage devices.

The file system itself is generally composed of many different levels. The
structure shown in Figure 12.1 is an example of a layered design. Each level
in the design uses the features of lower levels to create new features for use by
higher levels.

The lowest level, the I/O control, consists of device drivers and interrupt
handlers to transfer information between the main memory and the disk sys-
tem. A device driver can be thought of as a translator. Its input consists of
high-level commands such as "retrieve block 123." Its output consists of low-
level, hardware-specific instructions that are used by the hardware controller,
which interfaces the I/O device to the rest of the system. The device driver
usually writes specific bit patterns to special locations in the 1 /0 controller's
memory to tell the controller on which device location to act and what actions

application programs

logical file system

file-organization module

basic file system

I/O control

devices

Figure 12.1 Layered file system.

12.2 File-System Implementation 413

to take. The details of device drivers and the 1/0 infrastructure are covered in
Chapter 13.

The basic file system needs only to issue generic commands to the appro-
priate device driver to read and write physical blocks on the disk. Each physical
block is identified by its numeric disk address (for example, drive 1, cylinder
73, track 2, sector 10).

The file-organization module knows about files and their logical blocks,
as well as physical blocks. By knowing the type of file allocation used and
the location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer. Each
file's logical blocks are numbered from 0 (or 1) through N, whereas the physical
blocks containing the data usually do not match the logical numbers, so a
translation is needed to locate each block. The file-organization module also
includes the free-space manager, which tracks unallocated blocks and provides
these blocks to the file-organization module when requested.

Finally, the logical file system manages metadata information. Metadata
includes all of the file-system structure, excluding the actual data (or contents of
the files). The logical file system manages the directory structure to provide
the file-organization module with the information the latter needs, given a
symbolic file name. It maintains file structure via file control blocks. A file
control block (FCB) contains information about the file, including ownership,
permissions, and location of the file contents. The logical file system is also
responsible for protection and security, as was discussed in Chapter 11 and will
be further discussed in Chapter 18.

Many implemented file systems currently exist. Most operating systems
support more than one file system. For example, most CD-ROMs are written
in the High Sierra format, which is a standard format agreed upon by CD-ROM
manufacturers. Without such a standard, there would be little or no interoper-
ability between systems trying to use CD-ROMs. Aside from removable media
file systems, each operating system has one (or more) disk-based file system.
UNIX uses the UNIX file system (UFS) as a base. Windows NT supports disk
file-system formats of FAT, FAT32 and NTFS (or Windows NT File System), as
well as CD-ROM, DVD, and floppy-disk file-system formats. By using a layered
structure for file-system implementation, duplication of code is minimized. The
I/O control and sometimes the basic file system code can be used by multiple
file systems. Each file system may then have its own logical file system and
file-organization modules.

12.2 File-System Implementation

As was described in Section 11.1.2, operating systems implement open and
close systems calls for processes to request access to file contents. In this

414 Chapter 12 File-System Implementation

section, we delve into the structures and operations used to implement file-
system operations.

12.2.1 Overview

Several on-disk and in-memory structures are used to implement a file system.
These vary depending on the operating system and the file system, but some
general principles apply. On-disk, the file system may contain information
about how to boot an operating system stored there, the total number of blocks,
the number and location of free blocks, the directory structure, and individual
files. Many of these structures are detailed throughout the remainder of this
chapter.

The on-disk structures include:

A boot control block can contain information needed by the system to boot
an operating from that partition. If the disk does not contain an operating
system, this block can be empty. It is typically the first block of a partition.
In UFS, this is called the boot block; in NTFS, it is the partition boot sector.

A partition control block contains partition details, such as the number of
blocks in the partition, size of the blocks, free-block count and free-block
pointers, and free FCB count and FCB pointers. In UFS this is called a
superblock; in NTFS, it is the Master File Table.

A directory structure is used to organize the files

An FCB contains many of the file's details, including file permissions,
ownership, size, and location of the data blocks. In UFS this is called the
inode. In NTFS, this information is actually stored within the Master File
Table, which uses a relational database structure, with a row per file.

The in-memory information is used for both file-system management and
performance improvement via caching. The structures can include:

An in-memory partition table containing information about each mounted
partition.

An in-memory directory structure that holds the directory information
of recently accessed directories. (For directories at which partitions are
mounted, it can contain a pointer to the partition table.)

The system-wide open-file table contains a copy of the FCB of each open
file, as well as other information.

The per-process open-file table contains a pointer to the appropriate entry
in the system-wide open-file table, as well as other information.

12.2 File-System Implementation 415

To create a new file, an application program calls the logical file system.
The logical file system knows the format of the directory structures. To create
a new file, it allocates a new FCB, reads the appropriate directory into memory,
updates it with the new file name and FCB, and writes it back to the disk. A
typical FCB is shown in Figure 12.2.

Some operating systems, including UNIX, treat a directory exactly as a
file-one with a type field indicating that it is a directory. Other operating
systems, including Windows NT, implement separate system calls for files and
directories and treat directories as entities separate from files. No matter the
larger structural issues, the logical file system can call the file-organization
module to map the directory I/O into disk-block numbers, which are passed on
to the basic file system and I/O control system. The file-organization module
also allocates blocks for storage of the file's data.

Now that a file has been created, it can be used for I/O. First, though, it
must be opened. The open call passes a file name to the file system. When a file
is opened, the directory structure is searched for the given file name. Parts of the
directory structure are usually cached in memory to speed directory operations.
Once the file is found, the FCB is copied into a system- wide open-file table in
memory. This table not only stores the FCB, but also has entries for a count of
the number of processes that have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other fields can include a pointer to the current location in the file (for the
next read or wr i t e operation) and the access mode in which the file is open.
The open call returns a pointer to the appropriate entry in the per-process file-
system table. All file operations are then performed via this pointer. The file
name may not be part of the open-file table, as the system has no use for it once
the appropriate FCB is located on disk. The name given to the index varies.

Figure 12.2 A typical file control block.

416 Chapter 12 File-System Implementation

UNIX systems refer to it as a file descriptor; Windows 2000 refers to it as a file
handle. Consequently, as long as the file is not closed, all file operations are
done on the open-file table.

When a process closes the file, the per-process table entry is removed,
and the system-wide entry's open count is decremented. When all users that
have opened the file close it, the updated file information is copied back to
the disk-based directory structure and the system-wide open-file table entry is
removed.

In reality, the open system call first searches the system-wide open-file table
to see if the file is already in use by another process. If it is, a per-process
open-file table entry is created pointing to the existing system-wide open-file
table. This algorithm can save substantial overhead when opening files that are
already open.

Some systems complicate this scheme even further by using the file system
as an interface to other system aspects, such as networking. For example, in
UFS, the system-wide open-file table holds the inodes and other information for
files and directories. It also holds similar information for network connections
and devices. In this way, one mechanism can be used for multiple system
aspects.

The caching aspects of these structures should not be overlooked. Using
this scheme, all information about an open file, except for its actual data blocks,
is in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A

The operating structures of a file-system implementation are summarized
in Figure 12.3.

12.2.2 Partitions and Mounting
The layout of a disk can have many variations, depending on the operating
system. A disk can be sliced into multiple partitions, or a partition can span
multiple disks. The former is discussed here, while the latter is more appropri-
ately considered a form of RAID and is covered in Section 14.5.

Each partition can either be "raw," containing no file system, or "cooked,"
containing a file system. Raw disk is used where no file system is appropriate.
UNIX swap space can use a raw partition, as it uses its own format on disk and
does not use a file system. Likewise, some databases use raw disk and format
the data to suit their needs. Raw disk can also hold information needed by
disk RAID systems, such as bit maps indicating which blocks are mirrored and
which have changed and need to be mirrored. Similarly, raw disk can contain
a miniature database holding RAID configuration information, such as which
disks are members of each RAID set. Raw disk use is further discussed in Section
14.3.1.

12.2 File-System Implementation 417

user space kernel memory secondary storage

Boot information can be stored in a separate partition. Again, it has its
own format, because at boot time the system does not have file-system device
drivers loaded and therefore cannot interpret the file-system format. Rather,
it is usually a sequential series of blocks, loaded as an image into memory.
Execution of the image starts at a predefined location, such as the first byte. This
boot image can contain more than the instructions for how to boot a specific
operating system. For instance, PCs and other systems can be dual-booted.
Multiple operating systems can be installed on such a system. How does the
system know which one to boot? A boot loader that understands multiple
file systems and multiple operating systems can occupy the boot space. Once
loaded, it can boot one of the operating systems available on the disk. The disk
can have multiple partitions, each containing a different type of file system and
a different operating system.

The root partition, which contains the operating-system kernel and poten-
tially other system files, is mounted at boot time. Other partitions can be
automatically mounted at boot or manually mounted later, depending on the
operating system. As part of a successful mount operation, the operating sys-

I
Index

I o m
I
I

read (index)

data blocks

per-process system-wide
open-file table open-file table

f~ le control block

user space kernel memory secondary storage

418 Chapter 12 File-System Implementation

tem verifies that the device contains a valid file system. It does so by asking the
device driver to read the device directory and verifying that the directory has
the expected format. If the format is invalid, the partition must have its consis-
tency checked and possibly corrected, either with or without user intervention.
Finally, the operating system notes in its in-memory mount table structure that
a file system is mounted, and the type of the file system. The details of this
function depend on the operating system. Microsoft Windows-based systems
mount each partition in a separate name space, denoted by a letter and a colon.
To record that a file system is mounted a t t , for example, the operating system
places a pointer to the file system in a field of the device structure corresponding
to fi. When a process specifies the driver letter, the operating system finds the
appropriate file-system pointer and traverses the directory structures on that
device to find the specified file or directory.

On UNIX, file systems can be mounted at any directory. This is implemented
by setting a flag in the in-memory copy of the inode for that directory. The flag
indicates that the directory is a mount point. A field then points to an entry in
the mount table, indicating which device is mounted there. The mount table
entry contains a pointer to the superblock of the file system on that device.
This scheme enables the operating system to traverse its directory structure,
switching among file systems as appropriate.

12.2.3 Virtual File Systems
While the previous section makes it clear that modern operating systems must
support concurrently multiple types of file systems, we now need to discuss
some implementation details. How does an operating system allow multiple
types of file systems to be integrated into a directory structure? How can users
seamlessly move between file-system types as they navigate the file-system
space?

An obvious but suboptimal method of implementing multiple types of
file systems is to write directory and file routines for each type. Rather, most
operating systems, including UNIX, use object-oriented techniques to simplify,
organize, and modularize the implementation. The use of these methods allows
very dissimilar file-system types to be implemented within the same structure,
including network file systems, such as NFS. Users can access files that are
contained within multiple file systems on the local disk, or even on file systems
available across the network.

Data structures and procedures are used to isolate the basic system call
functionality from the implementation details. Thus, the file-system implemen-
tation consists of three major layers; it is depicted schematically in Figure 12.4.
The first layer is the file-system interface, based on the open, read, write, and
close calls, and file descriptors.

The second layer is called the Virtual File System (VFS) layer; it serves two
important functions:

12.2 File-System Implementation 419

I
&

network

Figure 12.4 Schematic view of a virtual file system.

1. It separates file-system-generic operations from their implementation by
defining a clean VFS interface. Several implementations for the VFS inter-
face may coexist on the same machine, allowing transparent access to
different types of file systems mounted locally.

2. The VFS is based on a file-representation structure, called a vnode, that
contains a numerical designator for a network-wide unique file. (UNIX
inodes are unique within only a single file system.) This network-wide
uniqueness is required for support of network file systems. The kernel
maintains one vnode structure for each active node (file or directory).

Thus, the VFS distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local requests
according to their file-system types, and even calls the NFS protocol procedures
for remote requests. File handles are constructed from the relevant vnodes
and are passed as arguments to these procedures. The layer implementing
the file-system type, or remote file system protocol, is the bottom layer of the
architecture. An illustration of VFS operation is found in Section 12.9.

420 Chapter 12 File-System Implementation

12.3 Directory Implementation

The selection of directory-allocation and directory-management algorithms has
a large effect on the efficiency, performance, and reliability of the file system.
Therefore, you need to understand the tradeoffs involved in these algorithms.

12.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. A linear list of directory entries requires
a linear search to find a particular entry. This method is simple to program
but time-consuming to execute. To create a new file, we must first search the
directory to be sure that no existing file has the same name. Then, we add a
new entry at the end of the directory. To delete a file, we search the directory
for the named file, then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, or with a used-unused
bit in each entry), or we can attach it to a list of free directory entries. A third
alternative is to copy the last entry in the directory into the freed location, and
to decrease the length of the directory. A linked list can also be used to decrease
the time to delete a file.

The real disadvantage of a linear list of directory entries is the linear search
to find a file. Directory information is used frequently, and users would notice a
slow implementation of access to it. In fact, many operating systems implement
a software cache to store the most recently used directory information. A cache
hit avoids constantly rereading the information from disk. A sorted list allows a
binary search and decreases the average search time. However, the requirement
that the list must be kept sorted may complicate creating and deleting files,
since we may have to move substantial amounts of directory information to
maintain a sorted directory. A more sophisticated tree data structure, such as a
B-tree, might help here. An advantage of the sorted list is that a sorted directory
listing can be produced without a separate sort step.

12.3.2 Hash Table

Another data structure that has been used for a file directory is a hash table. In
this method, a linear list stores the directory entries, but a hash data structure is
also used. The hash table takes a value computed from the file name and returns
a pointer to the file name in the linear list. Therefore, it can greatly decrease the
directory search time. Insertion and deletion are also fairly straightforward,
although some provision must be made for collisions-situations where two
file names hash to the same location. The major difficulties with a hash table are
its generally fixed size and the dependence of the hash function on that size.

For example, assume that we make a linear-probing hash table that holds
64 entries. The hash function converts file names into integers from 0 to 63, for

12.4 Allocation Methods 421

instance, by using the remainder of a division by 64. If we later try to create
a 65th file, we must enlarge the directory hash table-say, to 128 entries. As
a result, we need a new hash function that must map file names to the range
0 to 127, and we must reorganize the existing directory entries to reflect their
new hash-function values. Alternately, a chained-overflow hash table can be
used. Each hash entry can be a linked list instead of an individual value, and
we can resolve collisions by adding the new entry to the linked list. Lookups
may be somewhat slowed, because searching for a name might require stepping
through a linked list of colliding table entries, but this is likely to be much faster
than a linear search through the entire directory.

12.4 Allocation Methods

The direct-access nature of disks allows us flexibility in the implementation of
files. In almost every case, many files will be stored on the same disk. The
main problem is how to allocate space to these files so that disk space is utilized
effectively and files can be accessed quickly. Three major methods of allocating
disk space are in wide use: contiguous, linked, and indexed. Each method has
advantages and disadvantages. Some systems (such as Data General's RDOS
for its Nova line of computers) support all three. More commonly, a system
will use one particular method for all files.

12.4.1 Contiguous Allocation
The contiguous-allocation method requires each file to occupy a set of contigu-
ous blocks on the disk. Disk addresses define a linear ordering on the disk.
With this ordering, assuming that only one job is accessing the disk, accessing
block b + 1 after block b normally requires no head movement. When head
movement is needed (from the last sector of one cylinder to the first sector of the
next cylinder), it is only one track. Thus, the number of disk seeks required for
accessing contiguously allocated files is minimal, as is seek time when a seek is
finally needed. The IBM VM/CMS operating system uses contiguous allocation
because it provides such good performance.

Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is n blocks long and starts at location
b, then it occupies blocks b, b + 1, b + 2, ..., b + n - 1. The directory entry for
each file indicates the address of the starting block and the length of the area
allocated for this file (Figure 12.5).

Accessing a file that has been allocated contiguously is easy. For sequential
access, the file system remembers the disk address of the last block referenced
and, when necessary, reads the next block. For direct access to block i of a
file that starts at block b, we can immediately access block b + i. Thus, both
sequential and direct access can be supported by contiguous allocation.

422 Chapter 12 File-System Implementation

directory

I file start length I count

list

8 0 9 0 1 0 0 1 1 0

I list I

Figure 12.5 Contiguous allocation of disk space.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The implementation of the free-space-management
system, discussed in Section 12.5, determines how this task is accomplished.
Any management system can be used, but some are slower than others.

The contiguous disk-space-allocation problem can be seen to be a particular
application of the general dynamic storage-allocation problem discussed in
Section 9.3, which is how to satisfy a request of size n from a list of free
holes. First fit and best fit are the most common strategies used to select a
free hole from the set of available holes. Simulations have shown that both
first fit and best fit are more efficient than worst fit in terms of both time and
storage utilization. Neither first fit nor best fit is clearly best in terms of storage
utilization, but first fit is generally faster.

These algorithms suffer from the problem of external fragmentation. AS

files are allocated and deleted, the free disk space is broken into little pieces.
External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, no one of which is large
enough to store the data. Depending on the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

Some older microcomputer systems used contiguous allocation on floppy
disks. To prevent loss of significant amounts of disk space to external fragmen-
tation, the user had to run a repacking routine that copied the entire file system

12.4 Allocation Methods 423 1

onto another floppy disk or onto a tape. The original floppy disk was then freed
completely, creating one large contiguous free space. The routine then copied
the files back onto the floppy disk by allocating contiguous space from this one
large hole. This scheme effectively compacts all free space into one contiguous
space, solving the fragmentation problem. The cost of this compaction is time.
The time cost is particularly severe for large hard disks that use contiguous allo-
cation, where compacting all the space may take hours and may be necessary
on a weekly basis. During this down time, normal system operation generally
cannot be permitted, so such compaction is avoided at all costs on production
machines.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space
it will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this determination
may be fairly simple (copying an existing file, for example); in general, however,
the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
Two possibilities then exist. First, the user program can be terminated, with
an appropriate error message. The user must then allocate more space and
run the program again. These repeated runs may be costly. To prevent them,
the user will normally overestimate the amount of space needed, resulting in
considerable wasted space.

The other possibility is to find a larger hole, copy the contents of the file to
the new space, and release the previous space. This series of actions may be
repeated as long as space exists, although it can be time-consuming. However,
in this case, the user never needs to be informed explicitly about what is
happening; the system continues despite the problem, although more and more
slowly.

Even if the total amount of space needed for a file is known in advance,
preallocation may be inefficient. A file that grows slowly over a long period
(months or years) must be allocated enough space for its final size, even though
much of that space may be unused for a long time. The file, therefore, has a
large amount of internal fragmentation.

To minimize these drawbacks, some operating systems use a modified
contiguous-allocation scheme, in which a contiguous chunk of space is allo-
cated initially, and then, when that amount is not large enough, another chunk
of contiguous space, an extent, is added to the i d i a l allocation. The location
of a file's blocks is then recorded as a location and a block count, plus a link
to the first block of the next extent. On some systems, the owner of the file
can set the extent size, but this setting results in inefficiencies if the owner is
incorrect. Internal fragmentation can still be a problem if the extents are too

I large, and external fragmentation can be a problem as extents of varying sizes

424 Chapter 12 File-System Implementation

are allocated and deallocated. The commercial Veritas File System uses extents
to optimize performance. It is a high-performance replacement for the standard
UFS.

12.4.2 Linked Allocation
Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first
and last blocks of the file. For example, a file of five blocks might start at block
9, continue at block 16, then block 1, block 10, and finally block 25 (Figure 12.6).
Each block contains a pointer to the next block. These pointers are not made
available to the user. Thus, if each block is 512 bytes, and a disk address (the
pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the first disk block of
the file. This pointer is initialized to nil (the end-of-list pointer value) to signify
an empty file. The size field is also set to 0. A write to the file causes a free
block to be found via the free-space-management system, and this new block
is then written to, and is linked to the end of the file. To read a file, we simply
read blocks by following the pointers from block to block. There is no external
fragmentation with linked allocation, and any free block on the free-space list

directory

file start end

Figure 12.6 Linked allocation of disk space.

12.4 Allocation Methods 425

can be used to satisfy a request. The size of a file does not need to be declared
when that file is created. A file can continue to grow as long as free blocks are
available. Consequently, it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To find the ith
block of a file, we must start at the beginning of that file, and follow the pointers
until we get to the ith block. Each access to a pointer requires a disk read, and
sometimes a disk seek. Consequently, it is inefficient to support a direct-access
capability for linked allocation files.

Another disadvantage to linked allocation is the space required for the
pointers. If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent
of the disk is being used for pointers, rather than for information. Each file
requires slightly more space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called
clusters, and to allocate the clusters rather than blocks. For instance, the file
system may define a cluster as 4 blocks, and operate on the disk in only cluster
units. Pointers then use a much smaller percentage of the file's disk space.
This method allows the logical-to-physical block mapping to remain simple,
but improves disk throughput (fewer disk head seeks) and decreases the space
needed for block allocation and free-list management. The cost of this approach
is an increase in internal fragmentation, because more space is wasted if a
cluster is partially full than when a block is partially full. Clusters can be used
to improve the disk-access time for many other algorithms, so they are used in
most operating systems.

Yet another problem of linked allocation is reliability. Since the files are
linked together by pointers scattered all over the disk, consider what would
happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong
pointer. This error could result in linking into the free-space list or into another
file. Partial solutions are to use doubly linked lists or to store the file name and
relative block number in each block; however, these schemes require even more
overhead for each file.

An important variation on the linked allocation method is the use of a file-
allocation table (FAT). This simple but efficient method of disk-space allocation
is used by the MS-DOS and OS/2 operating systems. A section of disk at the
beginning of each partition is set aside to contain the table. The table has one
entry for each disk block, and is indexed by block number. The FAT is used
much as is a linked list. The directory entry contains the block number of
the first block of the file. The table entry indexed by that block number then
contains the block number of the next block in the file. This chain continues
until the last block, which has a special end-of-file value as the table entry.
Unused blocks are indicated by a 0 table value. Allocating a new block to a
file is a simple matter of finding the first 0-valued table entry, and replacing
the previous end-of-file value with the address of the new block. The 0 is then

426 Chapter 12 File-System Implementation

directory entry

[test I . . .
name start block

1

no. of disk blocks

FAT

Figure 12.7 File-allocation table.

replaced with the end-of-file value. An illustrative example is the FAT structure
of Figure 12.7 for a file consisting of disk blocks 217,618, and 339.

The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the
partition to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random access time is improved, because
the disk head can find the location of any block by reading the information in
the FAT.

12.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob-
lems of contiguous allocation. However, in the absence of a FAT, linked alloca-
tion cannot support efficient direct access, since the pointers to the blocks are
scattered with the blocks themselves all over the disk and need to be retrieved
in order, Indexed allocation solves this problem by bringing all the pointers
together into one location: the index block.

Each file has its own index block, which is an array of disk-block addresses.
The ith entry in the index block points to the ith block of the file. The directory
contains the address of the index block (Figure 12.8). To read the ith block, we

12.4 Allocation Methods 427

directory

I I file index block

Figure 12.8 Indexed allocation of disk space.

use the pointer in the ith index-block entry to find and read the desired block.
This scheme is similar to the paging scheme described in Chapter 9.

When the file is created, all pointers in the index block are set to nil. When
the ith block is first written, a block is obtained from the free-space manager,
and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk may satisfy a request for more
space.

Indexed allocation does suffer from wasted space. The pointer overhead
of the index block is generally greater than the pointer overhead of linked
allocation. Consider a common case in which we have a file of only one or two
blocks. With linked allocation, we lose the space of only one pointer per block
(one or two pointers). With indexed allocation, an entire index block must be
allocated, even if only one or two pointers will be non-varnil.

This point raises the question of how large the index block should be. Every
file must have an index block, so we want the index block to be as small as
possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue:

Linked scheme: An index block is normally one disk block. Thus, it can
be read and written directly by itself. To allow for large files, we may link
together several index blocks. For example, an index block might contain a

428 Chapter 12 File-System Implementation

small header giving the name of the file, and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is nil (for a
small file) or is a pointer to another index block (for a large file).

Multilevel index: A variant of the linked representation is to use a first-
level index block to point to a set of second-level index blocks, which in
turn point to the file blocks. To access a block, the operating system uses
the first-level index to find a second-level index block, and that block to
find the desired data block. This approach could be continued to a third or
fourth level, depending on the desired maximum file size. With 4,096-byte
blocks, we could store 1,024 4-byte pointers in an index block. Two levels
of indexes allow 1,048,576 data blocks, which allows a file of up to 4 GB.

Combined scheme: Another alternative, used in the UFS, is to keep the first,
say, 15 pointers of the index block in the file's inode. The first 12 of these
pointers point to direct blocks; that is, they contain addresses of blocks that
contain data of the file. Thus, the data for small (no more than 12 blocks)
files do not need a separate index block. If the block size is 4 KB, then up
to 48 KB of data may be accessed directly. The next 3 pointers point to
indirect blocks. The first indirect block pointer is the address of a single
indirect block. The single indirect block is an index block, containing not
data, but rather the addresses of blocks that do contain data. Then there
is a double indirect block pointer, which contains the address of a block
that contains the addresses of blocks that contain pointers to the actual
data blocks. The last pointer would contain the address of a triple indirect
block. Under this method, the number of blocks that can be allocated to a
file exceeds the amount of space addressable by the 4-byte file pointers used
by many operating systems. A 32-bit file pointer reaches only 232 bytes, or
4 GB. Many UNIX implementations, including Solaris and IBM's AIX, now
support up to 64-bit file pointers. Pointers of this size allow files and file
systems to be terabytes in size. An inode is shown in Figure 12.9.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a partition.

12.4.4 Performance
The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should use a
method different from that for a system with mostly random access. For any
type of access, contiguous allocation requires only one access to get a disk

1

12.4 Allocation Methods 429

mode

(owners (2) 1
t~mestamps (3)

size block

I triple indirect I
*:

data

Figure 12.9 The UNIX inode.

block. Since we can easily keep the initial address of the file in memory, we
can calculate immediately the disk address of the ith block (or the next block)
and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for direct
access, however, an access to the ith block might require i disk reads. This
problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous
allocation and sequential access by linked allocation. For these systems, the
type of access to be made must be declared when the file is created. A file
created for sequential access will be linked and cannot be used for direct access.
A file created for direct access will be contiguous and can support both direct
access and sequential access, but its maximum length must be declared when
it is created. In this case, the operating system must have appropriate data
structures and algorithms to support both allocation methods. Files can be
converted from one type to another by the creation of a new file of the desired
type, into which the contents of the old file are copied. The old file may then be
deleted, and the new file renamed.

Indexed allocation is more complex. If the index block is already in mem-
ory, then the access can be made directly. However, keeping the index block in
memory requires considerable space. If this memory space is not available, then

430 Chapter 12 File-System Implementation

we may have to read first the index block and then the desired data block. For
a two-level index, two index-block reads might be necessary. For an extremely
large file, accessing a block near the end of the file would require reading in
all the index blocks to follow the pointer chain before the needed data block
finally could be read. Thus, the performance of indexed allocation depends
on the index structure, on the size of the file, and on the position of the block
desired.

Some systems combine contiguous allocation with indexed allocation by
using contiguous allocation for small files (up to three or four blocks), and
automatically switching to an indexed allocation if the file grows large. Since
most files are small, and contiguous allocation is efficient for small files, average
performance can be quite good.

For instance, the version of the UNIX operating system from Sun Microsys-
tems was changed in 1991 to improve performance in the file-system allocation
algorithm. The performance measurements indicated that the maximum disk
throughput on a typical workstation (12-MIPS SPARCstationl) took 50 percent
of the CPU and produced a disk bandwidth of only 1.5 MB per second. To
improve performance, Sun made changes to allocate space in clusters of size
56 KB whenever possible. (56 KB was the maximum size of a DMA transfer
on Suns at that time.) This allocation reduced external fragmentation, and
thus seek and latency times. In addition, the disk-reading routines were opti-
mized to read in these large clusters. The inode structure was left unchanged.
These changes, plus the use of read-ahead and free-behind (discussed in Section
12.6.2), resulted in 25 percent less CPU being used for substantially improved
throughput.

Many other optimizations are possible and are in use. Given the disparity
between CPU and disk speed, it is not unreasonable to add thousands of extra
instructions to the operating system to save just a few disk-head movements.
Furthermore, this disparity is increasing over time, to the point where hun-
dreds of thousands of instructions reasonably could be used to optimize head
movements.

Free-Space Management

Since disk space is limited, we need to reuse the space from deleted files for new
files, if possible. (Write-once optical disks only allow one write to any given
sector, and thus such reuse is not physically possible.) To keep track of free
disk space, the system maintains a free-space list. The free-space list records all
free disk blocks-those not allocated to some file or directory. To create a file,
we search the free-space list for the required amount of space, and allocate that
space to the new file. This space is then removed from the free-space list. When
a file is deleted, its disk space is added to the free-space list. The free-space list,
despite its name, might not be implemented as a list, as we shall discuss.

12.5 Free-Space Management 431

12.5.1 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3,4,5, 8, 9, 10, 11, 12, 13, 17,
18, 25, 26, and 27 are free, and the rest of the blocks are allocated. The free-
space bit map would be

The main advantage of this approach is its relatively simplicity and effi-
ciency in finding the first free block, or n consecutive free blocks on the disk.
Indeed, many computers supply bit-manipulation instructions that can be
used effectively for that purpose. For example, the Intel family starting with
the 80386 and the Motorola family starting with the 68020 (processors that
have powered PCs and Macintosh systems, respectively) have instructions that
return the offset in a word of the first bit with the value 1. In fact, the Apple
Macintosh operating system uses the bit-vector method to allocate disk space.
To find the first free block, the Macintosh operating system checks sequentially
each word in the bit map to see whether that value is not 0, since a 0-valued
word has all 0 bits and represents a set of allocated blocks. The first non-0 word
is scanned for the first 1 bit, which is the location of the first free block. The
calculation of the block number is

(number of bits per word) x (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfortu-
nately, bit vectors are inefficient unless the entire vector is kept in main memory
(and is written to disk occasionally for recovery needs). Keeping it in main
memory is possible for smaller disks, such as on microcomputers, but not for
larger ones. A 1.3-GB disk with 512-byte blocks would need a bit map of over
332 KB to track its free blocks. Clustering the blocks in groups of four reduces
this number to over 83 KB per disk.

12.5.2 Linked List

Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the first free block in a special location on the disk
and caching it in memory. This first block contains a pointer to the next free
disk block, and so on. In our example (Section 12.5.1), we would keep a pointer
to block 2, as the first free block. Block 2 would contain a pointer to block
3, which would point to block 4, which would point to block 5, which would
point to block 8, and so on (Figure 12.10). However, this scheme is not efficient;
to traverse the list, we must read each block, which requires substantial 1/0

432 Chapter 12 File-System Implementation

free-space list head

Figure 12.10 Linked free space list on disk.

time. Fortunately, traversing the free list is not a frequent action. Usually, the
operating system simply needs a free block so that it can allocate that block to
a file, so the first block in the free list is used. The FAT method incorporates
free-block accounting into the allocation data structure. No separate method is
needed.

12.5.3 Grouping
A modification of the free-list approach is to store the addresses of n free blocks
in the first free block. The first n-1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The importance
of this implementation is that the addresses of a large number of free blocks can
be found quickly, unlike in the standard linked-list approach.

12.5.4 Counting

Another approach is to take advantage of the fact that, generally, several con-
tiguous blocks may be allocated or freed simultaneously, particularly when
space is allocated with the contiguous-allocation algorithm or through clus-
tering. Thus, rather than keeping a list of n free disk addresses, we can keep
the address of the first free block and the number n of free contiguous blocks
that follow the first block. Each entry in the free-space list then consists of a
disk address and a count. Although each entry requires more space than would

12.6 Efficiency and Performance 433

a simple disk address, the overall list will be shorter, as long as the count is
generally greater than 1.

12.6 Efficiency and Performance

Now that we have discussed the block-allocation and directory-management
options, we can further consider their effect on performance and efficient disk
use. Disks tend to be a major bottleneck in system performance, since they are
the slowest main computer component. In this section, we discuss a variety
of techniques used to improve the efficiency and performance of secondary
storage.

12.6.1 Efficiency
The efficient use of disk space is heavily dependent on the disk allocation and
directory algorithms in use. For instance, UNIX inodes are preallocated on a
partition. Even an "empty" disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and spreading them across the partition,
we improve the file system's performance. This improved performance is a
result of the UNIX allocation and free-space algorithms, which try to keep a
file's data blocks near that file's inode block to reduce seek time.

As another example, let us reconsider the clustering scheme discussed in
Section 12.4, which aids in file-seek and file-transfer performance at the cost
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the
cluster size as a file grows. Large clusters are used where they can be filled, and
small clusters are used for small files and the last cluster of a file. This system
is described in Appendix A.

The types of data normally kept in a file's directory (or inode) entry also
require consideration. Commonly, a "last write date" is recorded to supply
information to the user and to determine whether the file needs to be backed
up. Some systems also keep a "last access date," so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written to.
This change requires the block to be read into memory, a section changed, and
the block written back out to disk, because operations on disks occur only in
block (or cluster) chunks. So, any time a file is opened for reading, its directory
entry must be read and written as well. This requirement can be inefficient for
frequently accessed files, so we must weigh its benefit against its performance
cost when designing a file system. Generally, every data item associated with a
file needs to be considered for its effect on efficiency and performance.

As an example, consider how efficiency is affected by the size of the pointers
used to access data. Most systems use either 16- or 32-bit pointers throughout
the operating system. These pointer sizes limit the length of a file to either 216
(64 KB) or 232 bytes (4 GB). Some systems implement 64-bit pointers to increase

434 Chapter 12 File-System Implementation

this limit to 264 bytes, which is a very large number indeed. However, 64-bit
pointers take more space to store, and in turn make the allocation and free-
space-management methods (linked lists, indexes, and so on) use more disk
space.

One of the difficulties in choosing a pointer size, or indeed any fixed allo-
cation size within an operating system, is planning for the effects of changing
technology. Consider that the IBM PC XT had a 10-MB hard drive and an MS-DOS
file system that could support only 32 MB. (Each FAT entry was 12 bits, pointing
to an 8-KB cluster.) As disk capacities increased, larger disks had to be split
into 32-MB partitions, because the file system could not track blocks beyond 32
MB. As hard disks of over 100-MB capacities became common, the disk data
structures and algorithms in MS-DOS had to be modified to allow larger file
systems. (Each FAT entry was expanded to 16 bits, and later to 32 bits.) The
initial file-system decisions were made for efficiency reasons; however, with the
advent of MS-DOS Version 4, millions of computer users were inconvenienced
when they had to switch to the new, larger file system.

As another example, consider the evolution of Sun's Solaris operating
system. Originally, many data structures were of fixed lengths, allocated at
system startup. These structures included the process table and the open-file
table. When the process table became full, no more processes could be created.
When the file table became full, no more files could be opened. The system
would fail to provide services to the users. These table sizes could be increased
only by recompiling the kernel and rebooting the system. Since the release of
Solaris 2, almost all kernel structures are allocated dynamically, eliminating
these artificial limits on system performance. Of course, the algorithms that
manipulate these tables are more complicated, and the operating system is a
little slower because it must dynamically allocate and deallocate table entries,
but that price is the usual one for more functional generality.

12.6.2 Performance

Once the basic file-system algorithms are selected, we can still improve perfor-
mance in several ways. As noted in Chapter 2, most disk controllers include
local memory to form an on-board cache that is sufficiently large to store entire
tracks at a time. Once a seek is performed, the track is read into the disk cache
starting at the sector under the disk head (alleviating latency time). The disk
controller then transfers any sector requests to the operating system. Once
blocks make it from the disk controller into main memory, the operating system
may cache the blocks there.

Some systems maintain a separate section of main memory for a disk
cache, where blocks are kept under the assumption that they will be used again
shortly. Other systems cache file data using a page cache. The page cache
uses virtual-memory techniques to cache file data as pages rather than as file-
system-oriented blocks. Caching file data using virtual addresses is far more

12.6 Efficiency and Performance 435
I

file system .
Figure 12.11 1/0 without a unified buffer cache.

efficient than caching through physical disk blocks. Several systems, including
Solaris, some new Linux releases, and Windows NT and 2000, use page caching
to cache both process pages and file data. This is known as unified virtual
memory. Solaris uses both a block cache and a page cache. The block cache is
used for file-system metadata (such as inodes) and the page cache is used for
all file-system data.

Some versions of UNIX provide a unified buffer cache. Consider the two
alternatives of opening and accessing a file. One approach is to use memory
mapping (Section 10.3.2), the second is to use the standard system calls read
and write. Without a unified buffer cache, we have a situation similar to
Figure 12.11. In this instance, the read and wri te system calls go through
the buffer cache. The memory mapping call requires using two caches-the
page cache and buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtual memory system cannot interface with the buffer cache, the contents of
the file in the buffer cache must be copied into the page cache. This situation is
known as double caching and requires caching file-system data twice. Not only
is it wasteful of memory, but it wastes significant CPU and 1/0 cycles due to the
extra data movement within system memory. Also, inconsistencies between
the two caches can result in corrupt files. By providing a unified buffer cache,
both memory mapping and the read and wri te system calls use the same page
cache. This has the benefit of avoiding double caching and it allows the virtual
memory system to manage file-system data. The unified buffer cache is shown
in Figure 12.12.

436 Chapter 12 File-System Implementation

memory-mapped 110
read() and write()

Figure 12.12 I/O using a unified buffer cache.

Regardless of whether we are caching disk blocks or pages, LRU seems a
reasonable general-purpose algorithm for block or page replacement. However,
the evolution of the Solaris page-caching algorithms reveals the difficulty in
choosing an algorithm. Solaris allows processes and the page cache to share
unused memory. Prior to Solaris 2.5.1, there was no distinction between allocat-
ing pages to a process or the page cache. As a result, a system performing many
I/O operations uses most of the available memory for caching pages. Because
of the high rates of I/O, the page scanner (Section 10.7.2) reclaims pages from
processes-rather than the page cache-when free memory runs low. Solaris
2.6 and Solaris 7 optionally implemented priority paging, in which the page scan-
ner gives priority to process pages over the page cache. Solaris 8 added a fixed
limit between process pages and file-system page cache, preventing either from
forcing the other out of memory.

The page cache, the file system, and the disk drivers have some interesting
interactions. When data are written to a disk file, the pages are buffered in
the cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk-head seeks and to
write data at times optimized for disk rotation. Unless synchronous writes are
required, a process writing to disk simply writes into the cache, and the system
asynchronously writes the data to disk when convenient. The user process sees
very fast writes. When data are read from a disk file, the block I/O system does
some read-ahead; however, writes are much nearer to asynchronous than are
reads. Thus, output to the disk through the file system is often faster than is
input for large transfers, counter to intuition.

Synchronous writes occur in the order in which the disk subsystem
receives them, and the writes are not buffered. Thus the calling routine must
wait for the data to reach the disk drive before it can proceed. Asynchronous
writes are done the majority of the time. In an asynchronous write the data is
stored in the cache and returns control to the caller. Metadata writes, among

12.7 Recovery 437

others, can be synchronous. Operating systems frequently include a flag in
the open system call to allow a process to request that writes be performed
synchronously. For example, databases use this feature for atomic transactions,
to assure that data reaches stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or
written sequentially should not have its pages replaced in LRU order, because
the most recently used page will be used last, or perhaps never again. Instead,
sequential access may be optimized by techniques known as free-behind and
read-ahead. Free-behind removes a page from the buffer as soon as the next
page is requested. The previous pages are not likely to be used again and waste
buffer space. With read-ahead, a requested page and several subsequent pages
are read and cached. These pages are likely to be requested after the current
page is processed. Retrieving this data from the disk in one transfer and caching
it saves a considerable amount of time. A track cache on the controller does not
eliminate the need for read-ahead on a multiprogrammed system, because of
the high latency and overhead of many small transfers from the track cache to
main memory.

Another method of using main memory to improve performance is com-
mon on PCs. A section of memory is set aside and treated as a virtual disk (or
RAM disk). In this case, a RAM-disk device driver accepts all the standard disk
operations but performs those operations on the memory section, instead of on
a disk. All disk operations can then be executed on this RAM disk and, except
for the lightning-fast speed, users will not notice a difference. Unfortunately,
RAM disks are useful only for temporary storage, since a power failure or a
reboot of the system will usually erase them. Commonly, temporary files such
as intermediate compiler files are stored there.

The difference between a RAM disk and a disk cache is that the contents
of the RAM disk are totally user controlled, whereas those of the disk cache
are under the control of the operating system. For instance, a RAM disk will
stay empty until the user (or programs, at a user's direction) creates files there.
Figure 12.13 shows the possible caching locations in a system.

12.7 Recovery

Since files and directories are kept both in main memory and on disk, care must
taken to ensure that system failure does not result in loss of data or in data
inconsistency.

12.7.1 Consistency Checking

As discussed in Section 12.3, part of the directory information is kept in main
memory (or cache) to speed up access. The directory information in main

438 Chapter 12 File-System Implementation

I

controller disk

L I

main memory

Figure 12.13 Various disk-caching locations.

memory is generally more up to date than is the corresponding information
on the disk, because the write of cached directory information to disk does not
necessarily occur as soon as the update takes place.

Consider the possible effect of a computer crash. In this case, the table
of opened files is generally lost, and with it any changes in the directories
of opened files. This event can leave the file system in an inconsistent state:
The actual state of some files is not as described in the directory structure.
Frequently, a special program is run at reboot time to check for and correct disk
inconsistencies.

The consistency checker compares the data in the directory structure with
the data blocks on disk, and tries to fix any inconsistencies it finds. The allo-
cation and free-space-management algorithms dictate what types of problems
the checker can find, and how successful it will be in fixing them. For instance,
if linked allocation is used and there is a link from any block to its next block,
then the entire file can be reconstructed from the data blocks, and the directory
structure can be recreated. The loss of a directory entry on an indexed alloca-
tion system could be disastrous, because the data blocks have no knowledge of
one another. For this reason, UNIX caches directory entries for reads, but any
data write that results in space allocation, or other metadata changes, is done
synchronously, before the corresponding data blocks are written.

12.7.2 Backup and Restore

Because magnetic disks sometimes fail, care must be taken to ensure that the
data are not lost forever. To this end, system programs can be used to back up
data from disk to another storage device, such as a floppy disk, magnetic tape,
or optical disk. Recovery from the loss of an individual file, or of an entire disk,
may then be a matter of restoring the data from backup.

To minimize the copying needed, we can use information from each file's
directory entry. For instance, if the backup program knows when the last
backup of a file was done, and the file's last write date in the directory indicates

12.8 Log-Structured File System 439

that the file has not changed since that date, then the file does not need to be
copied again. A typical backup schedule may then be as follows:

Day 1: Copy to a backup medium all files from the disk. This is called a
full backup.

Day 2: Copy to another medium all files changed since day 1. This is an
incremental backup.

Day 3: Copy to another medium all files changed since day 2.

Day N: Copy to another medium all files changed since day N- 1. Then go
back to Day 1.

The new cycle can have its backup written over the previous set, or onto
a new set of backup media. In this manner, we can restore an entire disk
by starting restores with the full backup, and continuing through each of the
incremental backups. Of course, the larger N is, the more tapes or disks need
to be read for a complete restore. An added advantage of this backup cycle is
that we can restore any file accidentally deleted during the cycle by retrieving
the deleted file from the backup of the previous day. The length of the cycle is
a compromise between the amount of backup medium needed and the number
of days back from which a restore can be done.

A user may notice that a particular file is missing or corrupted long after
the damage was done. For this reason, we usually plan to take a full backup
from time to time that will be saved "forever," rather than reusing that backup
medium. It is a good idea to store these permanent backups far away from
the regular backups to protect against hazard, such as a fire that destroys the
computer and all the backups too. And if the backup cycle reuses media, one
must take care not to reuse the media too many times-if the media wear out,
it might not be possible to restore any data from the backups.

12.8 . Log-Structured File System

Frequently in computer science, algorithms and technologies transition from
their original use to other applicable areas. Such is the case with the database
log-based-recovery algorithms described in Section 7.9.2. These logging algo-
rithms have been applied successfully to the problem of consistency checking.
The resulting implementations are known as log-based transaction-oriented
(or journaling) file systems.

440 Chapter 12 File-System Implementation

Recall that on-disk file-system data structures-such as the directory struc-
tures, free-block pointers, free FCB pointers-can become inconsistent due to
a system crash. Before the use of log-based techniques in operating systems,
changes were usually applied to these structures in place. A typical operation,
such as file create, can involve many structural changes within the file system
on the disk. Directory structures are modified, FCBs are allocated, data blocks
are allocated, and the free counts for all of these blocks are decreased. Those
changes can be interrupted by a crash, with the result that the structures are
inconsistent. For example, the free FCB count might indicate that an FCB had
been allocated, but the directory structure might not point to the FCB. The FCB
would be lost were it not for the consistency-check phase.

There are several problems with the approach of allowing the structures to
break and repairing them on recovery. One is that the inconsistency may be
irreparable. The consistency check may not be able to recover the structures,
with the resulting loss of files and even entire directories. Consistency checking
can require human intervention to resolve conflicts, and that is inconvenient if
no human is available. The system can remain unavailable until the human tells
the system how to proceed. Consistency checking also takes system and clock
time. Terabytes of data can take hours of clock time to check.

The solution to this problem is to apply log-based-recovery techniques to
file-system metadata updates. NTFS and the Veritas File System both yse ths
method, and it is an option to UFS on Solaris 7 and beyond. In fa+ it is
becoming common on many operating systems.

Fundamentally, all metadata changes are written sequentially to a log.
Each set of operations that perform a specific task is a transaction. Once
the changes are written to this log, they are considered to be committed,
and the system call can return to the user process, allowing it to continue
execution. Meanwhile, these log entries are replayed across the actual file-
system structures. As the changes are made, a pointer is updated to indicate
which actions have completed and which are still incomplete. When an entire
committed transaction is completed, it is removed from the log file, which is
actually a circular buffer. The log may be in a separate section of the file system,
or could even be on a separate disk spindle. It is more efficient, but more
complex, to have it under separate read/write heads, thereby decreasing head
contention and seek times.

If the system crashes, there will zero or more transactions in the log file.
Those transactions were never completed to the file system even though they
were committed by the operating system, so they must be completed. The
transactions can be executed from the pointer until the work is complete, and
the file-system structures remain consistent. The only problem occurs when a
transaction has been aborted. That is, it was not committed before the system
crashed. Any changes from those transactions that were applied to the file
system must be undone, again preserving the consistency of the file system.

12.9 NFS 441

This recovery is all that is needed after a crash, eliminating all problems with
consistency checking.

A side benefit of using logging on disk metadata updates is that those
updates proceed much faster than when they are applied directly to the on-disk
data structures. The reason for this improvement is found in the performance
advantage of sequential 1/0 over random I/O. The costly synchronous ran-
dom metadata writes are turned into much less costly synchronous sequential
writes to the log-structured file systems logging area. Those changes in turn
are replayed asynchronously via random writes to the appropriate structures.
The overall result is a significant gain in performance of metadata-oriented
operations, such as file creation and deletion.

12.9 NFS

Network file systems are commonplace. They typically integrate with the
overall directory structure and interface of the client system. NFS is a good
example of a widely used, well-implemented client-server network file system.
Here, we use it as an example to explore the implementation details of network
file systems.

NFS is both an implementation and a specification of a software system
for accessing remote files across LANs (or even WANs). NFS is part of ONC+,
which most UNIX vendors and some PC operating systems are supporting.
The implementation described here is part of the Solaris operating system,
which is a modified version of UNIX SVR4, running on Sun workstations and
other hardware. It uses either the TCP or UDP/IP protocol (depending on
the interconnecting network). The specification and the implementation are
intertwined in our description of NFS. Whenever detail is needed, we refer to
the Sun implementation; whenever the description is general, it applies to the
specification also.

12.9.1 Overview

NFS views a set of interconnected workstations as a set of independent
machines with independent file systems. The goal is to allow some degree of
sharing among these file systems (on explicit request) in a transparent manner.
Sharing is based on a client-server relationship. A machine may be, and
often is, both a client and a server. Sharing is allowed between any pair of
machines, rather than with only dedicated server machines. To ensure machine
independence, sharing of a remote file system affects only the client machine
and no other machine.

So that a remote directory will be accessible in a transparent manner from
a particular machine-say, from MI-a client of that machine has to carry
out a mount operation first. The semantics of the operation are that a remote
directory is mounted over a directory of a local file system. Once the mount

Chapter 12 File-System Implementation

Figure 12.14 Three independent file systems.

operation is completed, the mounted directory looks like an integral subtree
of the local file system, replacing the subtree descending from the local direc-
tory. The local directory becomes the name of the root of the newly mounted
directory. Specification of the remote directory as an argument for the mount
operation is done in a non-transparent manner; the location (or host name) of
the remote directory has to be provided. However, from then on, users on
machine M1 can access files in the remote directory in a totally transparent
manner.

To illustrate file mounting, consider the file system depicted in Figure 12.14,
where the triangles represent subtrees of directories that are of interest. The
figure shows three independent file systems of machines named U, S1, and S2.
At this point, at each machine, only the local files can be accessed. In Figure
12.15(a), the effects of the mounting of Sl:/usr/shared over U:/usr/local are shown.
This figure depicts the view users on U have of their file system. Observe that
they can access any file within the dirl directory, for instance, using the prefix
/usr/local/dirl on U after the mount is complete. The original directory /usr/local
on that machine is no longer visible.

Subject to access-rights accreditation, potentially any file system, or any
directory within a file system, can be mounted remotely on top of any local
directory. Diskless workstations can even mount their own roots from servers.

Cascading mounts are also permitted in some NFS implementations. That
is, a file system can be mounted over another file system that is remotely
mounted, not local. A machine is affected by only those mounts that it has
itself invoked.

By mounting a remote file system, the client does not gain access to other
file systems that were, by chance, mounted over the former file system. Thus,
the mount mechanism does not exhibit a transitivity property. In Figure
12.15(b), we illustrate cascading mounts by continuing our previous example.

12.9 NFS 443

dirl

A - -
Figure 12.15 Mounting in NFS. (a) Mounts. (b) Cascading mounts.

The figure shows the result of mounting S2:/usr/dir2 over U:/usr/local/dirl, which
is already remotely mounted from S1. Users can access files within dir2 on
U using the prefix /usr/Zocal/dirl. If a shared file system is mounted over a
user's home directories on all machines in a network, a user can log in to
any workstation and get his home environment. This property permits user
mobility.

One of the design goals of NFS was to operate in a heterogeneous envi-
ronment of different machines, operating systems, and network architectures.
The NFS specification is independent of these media and thus encourages other
implementations. This independence is achieved through the use of RPC prim-
itives built on top of an External Data Representation (XDR) protocol used
between two implementation-independent interfaces. Hence, if the system con-
sists of heterogeneous machines and file systems that are properly interfaced to
NFS, file systems of different types can be mounted both locally and remotely.

The NFS specification di2tinguishes between the services provided by a
mount mechanism and the actual remote-file-access services. Accordingly,
two separate protocols are specified for these services: a mount protocol,
and a protocol for remote file accesses, the NFS protocol. The protocols are
specified as sets of RPCs. These RPCs are the building blocks used to implement
transparent remote file access.

12.9.2 The Mount Protocol

The mount protocol establishes the initial logical connection between a server
1 and a client. In Sun's implementation, each machine has a server process,
1 outside the kernel, performing the protocol functions.

444 Chapter 12 File-System Implementation

A mount operation includes the name of the remote directory to be
mounted and the name of the server machine storing it. The mount request
is mapped to the corresponding RPC and is forwarded to the mount server
running on the specific server machine. The server maintains an export list
-the /etc/dfs/dfstab in Solaris, which can be edited only by a superuser-which
specifies local file systems that it exports for mounting, along with names of
machines that are permitted to mount them. The specification can also include
access rights, such as read only. To simplify the maintenance of export lists and
mount tables, a distributed naming scheme can be used to hold this information
and make it available to appropriate clients.

Recall that any directory within an exported file system can be mounted
remotely by an accredited machine. Hence, a component unit is such a direc-
tory. When the server receives a mount request that conforms to its export list,
it returns to the client a file handle that serves as the key for further accesses
to files within the mounted file system. The file handle contains all the infor-
mation that the server needs to distinguish an individual file it stores. In UNIX
terms, the file handle consists of a file-system identifier and an inode number
to identify the exact mounted directory within the exported file system.

The server also maintains a list of the client machines and the correspond-
ing currently mounted directories. This list is used mainly for administrative
purposes-for instance, for notifying all clients that the server is going down.
Addition and deletion of entries in this list are the only ways that the server
state can be affected by the mount protocol.

Usually, a system has a static mounting preconfiguration that is established
at boot time (/etc/vfstab in Solaris); however, this layout can be modified. In
addition to the actual mount procedure, the mount protocol includes several
other procedures, such as unrnount and return export list.

12.9.3 The NFS Protocol

The NFS protocol provides a set of RPCs for remote file operations. The proce-
dures support the following operations:

Searching for a file within a directory

Reading a set of directory entries

Manipulating links and directories

Accessing file attributes

Reading and writing files

These procedures can be invoked only after a file handle for the remotely
mounted directory has been established.

12.9 NFS 445

The omission of open and close operations is intentional. A prominent
feature of NFS servers is that they are stateless. Servers do not maintain infor-
mation about their clients from one access to another. No parallels to UNIX's
open-files table or file structures exist on the server side. Consequently, each
request has to provide a full set of arguments, including a unique file identifier
and an absolute offset inside the file for the appropriate operations. The result-
ing design is robust; no special measures need to be taken to recover a server
after a crash. File operations need to be idempotent for this purpose. Every NFS
request has a sequence number, allowing the server to determine if a request is
duplicated or if any are missing.

Maintaining the list of clients that we mentioned seems to violate the
statelessness of the server. However, this list is not essential for the correct
operation of the client or the server, and hence it does not need to be restored
after a server crash. Consequently, it might include inconsistent data and is
treated as only a hint.

A further implication of the stateless-server philosophy and a result of the
synchrony of an RPC is that modified data (including indirection and status
blocks) must be committed to the server's disk before results are returned to
the client. That is, a client can cache write blocks, but when it flushes them
to the server, it assumes that they have reached the server's disks. The server
must write all NFS data synchronously. Thus, a server crash and recovery will
be invisible to a client; all blocks that the server is managing for the client
will be intact. The consequent performance penalty can be large, because
the advantages of caching are lost. Performance can be increased by using
storage with its own nonvolatile cache (usually battery-backed-up memory).
The disk controller acknowledges the disk write when the write is stored in the
nonvolatile cache. In essence the host sees a very fast synchronous write. These
blocks remain intact even after system crash, and are written from this stable
storage to disk periodically.

A single NFS write procedure call is guaranteed to be atomic, and also is not
intermixed with other write calls to the same file. The NFS protocol, however,
does not provide concurrency-control mechanisms. A wri te system call may
be broken down into several RPC writes, because each NFS write or read call
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a
result, two users writing to the same remote file may get their data intermixed.
The claim is that, because lock management is inherently stateful, a service
outside the NFS should provide locking (and Solaris does). Users are advised to
coordinate access to shared files using mechanisms outside the scope of NFS.

NFS is integrated into the operating system via a VFS. As an illustration of
the architecture, let us trace how an operation on an already open remote file is
handled (follow the example in Figure 12.16). The client initiates the operation
by a regular system call. The operating-system layer maps this call to a VFS

1 operation on the appropriate vnode. The VFS layer identifies the file as a remote
I one and invokes the appropriate NFS procedure. An RPC call is made to the

446 Chapter 12 File-System Implementation

client server

Figure 12.16 Schematic view of the NFS architecture.

NFS service layer at the remote server. This call is reinjected to the VFS layer
on the remote system, which finds that it is local and invokes the appropriate
file-system operation. This path is retraced to return the result. An advantage
of this architecture is that the client and the server are identical; thus, a machine
may be a client, or a server, or both.

The actual service on each server is performed by several kernel processes
that provide a temporary substitute to a lightweight process (or threads) mech-
anism.

12.9.4 Path-Name Translation
Path-name translation is done by breaking the path into component names
and performing a separate NFS lookup call for every pair of component
name and directory vnode. Once a mount point is crossed, every component
lookup causes a separate RPC to the server. This expensive path-name-traversal
scheme is needed, since each client has a unique layout of its logical name space,
dictated by the mounts it performed. It would have been much more efficient
to hand a server a path name and to receive a target vnode once a mount point
was encountered. At any point, however, there can be another mount point for
the particular client of which the stateless server is unaware.

12.9 NFS 447

So that lookup is fast, a directory name lookup cache on the client side
holds the vnodes for remote directory names. This cache speeds up references
to files with the same initial path name. The directory cache is discarded when
attributes returned from the server do not match the attributes of the cached
vnode.

Recall that mounting a remote file system on top of another already
mounted remote file system (cascading mount) is allowed in some implemen-
tations of NFS. However, a server cannot act as an intermediary between a
client and another server. Instead, a client must establish a direct client-server
connection with the second server by directly mounting the desired directory.
When a client has a cascading mount, more than one server can be involved in a
path-name traversal. However, each component lookup is performed between
the original client and some server. Therefore, when a client does a lookup on
a directory on which the server has mounted a file system, the client sees the
underlying directory, instead of the mounted directory.

12.9.5 Remote Operations
With the exception of opening and closing files, there is almost a one-to-one
correspondence between the regular UNIX system calls for file operations and
the NFS protocol RPCs. Thus, a remote file operation can be translated directly
to the corresponding RPC. Conceptually, NFS adheres to the remote-service
paradigm, but in practice buffering and caching techniques are employed for
the sake of performance. No direct correspondence exists between a remote
operation and an RPC. Instead, file blocks and file attributes are fetched by the
RPCs and are cached locally. Future remote operations use the cached data,
subject to consistency constraints.

There are two caches: the file-attribute (inode-information) cache and the
file-blocks cache. On a file open, the kernel checks with the remote server
whether to fetch or revalidate the cached attributes. The cached file blocks are
used only if the corresponding cached attributes are up to date. The attribute
cache is updated whenever new attributes arrive from the server. Cached
attributes are, by default, discarded after 60 seconds. Both read-ahead and
delayed-write techniques are used between the server and the client. Clients
do not free delayed-write blocks until the server confirms that the data have
been written to disk. In contrast to the system used in Sprite, delayed-write is
retained even when a file is opened concurrently, in conflicting modes. Hence,
UNIX semantics are not preserved.

Tuning the system for performance makes it difficult to characterize the
consistency semantics of NFS. New files created on a machine may not be visible
elsewhere for 30 seconds. It is indeterminate whether writes to a file at one
site are visible to other sites that have this file open for reading. New opens
of that file observe only the changes that have already been flushed to the
server. Thus, NFS provides neither strict emulation of UNIX semantics, nor the

448 Chapter 12 File-System Implementation

session semantics of Andrew. In spite of these drawbacks, the utility and high
performance of the mechanism makes it the most widely used multivendor
distributed system in operation.

12.10 Summary

The file system resides permanently on secondary storage, which is designed to
hold a large amount of data permanently. The most common secondary-storage
medium is the disk.

Physical disks may be segmented into partitions to control media use and
to allow multiple, possibly varying, file systems per spindle. These file systems
are mounted onto a logical file system architecture to make them available for
use. File systems are often implemented in a layered or modular structure. The
lower levels deal with the physical properties of storage devices. Upper levels
deal with symbolic file names and logical properties of files. Intermediate levels
map the logical file concepts into physical device properties.

Every file-system type can have different structures and algorithms. A VFS
layer allows the upper layers to deal with each file-system type uniformly. Even
remote file systems can be integrated into the system's directory structure and
acted on by standard system calls via the VFS interface.

The various files can be allocated space on the disk in three ways: through
contiguous, linked, or indexed allocation. Contiguous allocation can suffer
from external fragmentation. Direct access is very inefficient with linked allo-
cation. Indexed allocation may require substantial overhead for its index block.
These algorithms can be optimized in many ways. Contiguous space may be
enlarged through extents to increase flexibility and to decrease external frag-
mentation. Indexed allocation can be done in clusters of multiple blocks to
increase throughput and to reduce the number of index entries needed. Index-
ing in large clusters is similar to contiguous allocation with extents.

Free-space allocation methods also influence the efficiency of use of disk
space, the performance of the file system, and the reliability of secondary
storage. The methods used include bit vectors and linked lists. Optimizations
include grouping, counting, and the FAT, which places the linked list in one
contiguous area.

The directory-management routines must consider efficiency, performance,
and reliability. A hash table is the most frequently used method; it is fast
and efficient. Unfortunately, damage to the table or a system crash could
result in the directory information not corresponding to the disk's contents. A
consistency checker-a systems program such as f sck in UNIX, or chkdsk in
MS-DOS-can be used to repair the damage. Operating-system backup tools
allow disk data to be copied to tape, to recover from data or even disk loss due
to hardware failure, operating system bug, or user error.

Exercises 449

Network file systems, such as NFS, use client-server methodology to allow
users to access files and directories from remote machines as if they were on
local file systems. System calls on the client are translated into network pro-
tocols, and retranslated into file-system operations on the server. Networking
and multiple-client access create challenges in the areas of data consistency and
performance.

Due to the fundamental role that file systems play in system operation, their
performance and reliability is crucial. Techniques such as log structures and
caching help improve the performance, while log structures and RAID improve
reliability.

Exercises

12.1 Consider a file currently consisting of 100 blocks. Assume that the
FCB (and the index block, in the case of indexed allocation) is already
in memory. Calculate how many disk I/O operations are required for
contiguous, linked, and indexed (single-level) allocation strategies, if, for
one block, the following conditions hold. In the contiguous-allocation
case, assume that there is no room to grow in the beginning, but room to
grow in the end. Assume that the block information to be added is stored
in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

12.2 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the system
reconstruct the free-space list? Explain your answer.

b. Suggest a scheme to ensure that the pointer is never lost as a result
of memory failure.

12.3 What problems could occur if a system allowed a file system to be
mounted simultaneously at more than one location?

12.4 Why must the bit map for file allocation be kept on mass storage, rather
than in main memory?

450 Chapter 12 File-System Implementation

12.5 Consider a system that supports the strategies of contiguous, linked,
and indexed allocation. What criteria should be used in deciding which
strategy is best utilized for a particular file?

12.6 Consider a file system on a disk that has both logical and physical block
sizes of 512 bytes. Assume that the information about each file is already
in memory. For each of the three allocation strategies (contiguous, linked,
and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished in
this system? (For the indexed allocation, assume that a file is always
less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was
block 10) and want to access logical block 4, how many physical
blocks must be read from the disk?

One problem with contiguous allocation is that the user must preallocate
enough space for each file. If the file grows to be larger than the space
allocated for it, special actions must be taken. One solution is to define
a file structure consisting of an initial contiguous area (of a specified
size). If this area is filled, the operating system automatically defines
an overflow area that is linked to the initial contiguous area. If the
overflow area is filled, another overflow area is allocated. Compare
this implementation of a file with the standard contiguous and linked
implementations.

12.8 Fragmentation on a storage device could be eliminated by recompaction
of the information. Typical disk devices do not have relocation or base
registers (such as are used when memory is to be compacted), so how can
we relocate files? Give three reasons why recompacting and relocation of
files are often avoided.

12.9 How do caches help improve performance? Why do systems not use
more or larger caches if they are so useful?

12.10 In what situations would using memory as a RAM disk be more useful
than using it as a disk cache?

12.11 Why is it advantageous to the user for an operating system to dynami-
cally allocate its internal tables? What are the penalties to the operating
system for doing so?

12.12 Explain why logging metadata updates ensures recovery of a file system
after a file system crash.

12.13 Explain how the VFS layer allows an operating system easily to support
multiple types of file systems.

Bibliographical Notes 451

12.14 Consider the following backup scheme:

Day 1: Copy to a backup medium all files from the disk.

Day 2: Copy to another medium all files changed since day 1.

Day 3: Copy to another medium all files changed since day 1.

This contrasts to the schedule given in Section 12.7.2 by having all sub-
sequent backups copy all files modified since the first full backup. What
are the benefits of this system over the one in Section 12.7.2? What are
the drawbacks? Are restore operations made easier or more difficult?
Explain your answer.

Bibliographical Notes

The Apple Macintosh disk-space management scheme was discussed in Apple
[I9871 and Apple [1991]. The MS-DOS FAT system was explained in Norton and
Wilton [1988], and the OS/2 description is found in Iacobucci [1988]. These
operating systems use the Motorola MC68000 family (Motorola [1989a]) and
the Intel 8086 (Intel [1985b], Intel [1985a], Intel [1986], Intel [1990]) CPUs,
respectively. IBM allocation methods were described in Deitel [1990]. The
internals of the BSD UNIX system were covered in full in McKusick et al. [1996].
McVoy and Kleiman [I9911 presented optimizations to these methods made in
SunOS.

Disk file allocation based on the buddy system was discussed by Koch
[1987]. A file-organization scheme that guarantees retrieval in one access was
discussed by Larson and Kajla [1984].

Disk caching was discussed by McKeon [I9851 and Smith [1985]. Caching in
the experimental Sprite operating system was described in Nelson et al. [1988].
General discussions concerning mass-storage technology were offered by Chi
[I9821 and Hoagland [1985]. Folk and Zoellick [I9871 covered the gamut of file
structures. Silvers [2000] discusses implementing the page cache in the NetBSD
operating system.

The Network File System (NFS) is discussed in Sandberg et al. [1985],
Sandberg [1987], Sun [1990], and Callaghan [2000]. NFS and the UNIX File
System (UFS) are described in Vahalia [I9961 and Mauro and McDougall[2001].
The Windows NT file system, NTFS, is described in Solomon [1998]. The Ext2
file system used in Linux is described in Bovet and Cesati [2001].

Part Four

1/0 SYSTEMS

The devices that attach to a computer vary in many aspects. Some devices
transfer a character or a block of characters at a time. Some can be accessed
only sequentially, others randomly. Some transfer data synchronously, others
asynchronously. Some are dedicated, some shared. They can be read-only or
read-write. They vary greatly in speed. In many ways they are also the slowest
major component of the computer.

Because of all this device variation, the operating system needs to provide a
wide range of functionality to applications, to allow them to control all aspects
of the devices. One key goal of an operating system's 1/0 subsystem is to
provide the simplest interface possible to the rest of the system. Because devices
are a performance bottleneck, another key is to optimize I/O for maximum
concurrency. We initially describe the myriad variations of 1 /0 devices and
the ways in which operating systems control them. Afterwards we discuss the
more complicated 1/0 devices used for secondary and tertiary storage, and we
explain the special attention that operating systems must give them.

Chapter 13

1/0 SYSTEMS

The two main jobs of a computer are I/O and processing. In many cases, the
main job is I/O and the processing is merely incidental. For instance, when we
browse a web page or edit a file, our immediate interest is to read or enter some
information, not to compute an answer.

The role of the operating system in computer 1 /0 is to manage and control
1/0 operations and I/O devices. Although related topics appear in other
chapters, here we bring together the pieces to paint a complete picture of
I/O. First, we describe the basics of 1/0 hardware, because the nature of
the hardware interface places requirements on the internal facilities of the
operating system. Next, we discuss the I/O services provided by the operating
system, and the embodiment of these services in the application I/O interface.
Then, we explain how the operating system bridges the gap between the
hardware interface and the application interface. We also discuss the UNIX
System V STREAMS mechanism, which enables an application to assemble
pipelines of driver code dynamically. Finally, we discuss the performance
aspects of I/O, and the principles of operating-system design that improve the
1/0 performance.

13.1 . Overview

The control of devices connected to the computer is a major concern of
operating-system designers. Because I/O devices vary so widely in their func-
tion and speed (consider a mouse, a hard disk, and a CD-ROM jukebox), a

456 Chapter 13 I10 Systems

variety of methods are needed to control them. These methods form the I/O sub-
system of the kernel, which separates the rest of the kernel from the complexity
of managing I/O devices.

I/O-device technology exhibits two conflicting trends. On one hand, we
see increasing standardization of software and hardware interfaces. This trend
helps us to incorporate improved device generations into existing computers
and operating systems. On the other hand, we see an increasingly broad variety
of I/O devices. Some new devices are so unlike previous devices that it is
a challenge to incorporate them into our computers and operating systems.
This challenge is met by a combination of hardware and software techniques.
The basic 1/0 hardware elements, such as ports, buses, and device controllers,
accommodate a wide variety of I/O devices. To encapsulate the details and
oddities of different devices, the kernel of an operating system is structured
to use device-driver modules. The device drivers present a uniform device-
access interface to the I/O subsystem, much as system calls provide a standard
interface between the application and the operating system.

13.2 . I10 Hardware

Computers operate a great many kinds of devices. Most fit into the general cat-
egories of storage devices (disks, tapes), transmission devices (network cards,
modems), and human-interface devices (screen, keyboard, mouse). Other
devices are more specialized, such as the steering of a military fighter jet or
a space shuttle. In these aircraft, a human gives input to the flight computer
via a joystick, and the computer sends output commands that cause motors to
move rudders, flaps, and thrusters.

Despite the incredible variety of I/O devices, we need only a few concepts
to understand how the devices are attached, and how the software can control
the hardware.

A device communicates with a computer system by sending signals over a
cable or even through the air. The device communicates with the machine via
a connection point (or port), for example, a serial port. If one or more devices
use a common set of wires, the connection is called a bus. A bus is a set of wires
and a rigidly defined protocol that specifies a set of messages that can be sent
on the wires. In terms of the electronics, the messages are conveyed by patterns
of electrical voltages applied to the wires with defined timings. When device
A has a cable that plugs into device B, and device B has a cable that plugs into
device C, and device C plugs into a port on the computer, this arrangement is
called a daisy chain. A daisy chain usually operates as a bus.

Buses are used widely in computer architecture. Figure 13.1 shows a typical
PC bus structure. This figure shows a PC1 bus (the common PC system bus)
that connects the processor-memory subsystem to the fast devices, and an
expansion bus that connects relatively slow devices such as the keyboard and

13.2 I10 Hardware 457

processor

cache

graphics controller bridgelmemory
controller SCSI controller

IDE disk controller expansion bus interface

Figure 13.1 A typical PC bus structure.

serial and parallel ports. In the upper-right portion of the figure, four disks are
connected together on a SCSI bus plugged into a SCSI controller.

A controller is a collection of electronics that can operate a port, a bus, or
a device. A serial-port controller is a simple device controller. It is a single
chip (or portion of a chip) in the computer that controls the signals on the
wires of a serial port. By contrast, a SCSI bus controller is not simple. Because
the SCSI protocol is complex, the SCSI bus controller is often implemented as
a separate circuit board (or a host adapter) that plugs into the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the SCSI protocol messages. Some devices have their own built-in
controllers. If you look at a disk drive, you will see a circuit board attached to
one side. This board is the disk controller. It implements the disk side of the
protocol for some kind of connection, SCSI or IDE, for instance. It has microcode
and a processor to do many tasks, such as bad-sector mapping, prefetching,
buffering, and caching.

How can the processor give commands and data to a controller to accom-
plish an 1/0 transfer? The short answer is that the controller has one or more
registers for data and control signals. The processor communicates with the
controller by reading and writing bit patterns in these registers. One way that

458 Chapter 13 110 Systems

this communication can occur is through the use of special I/O instructions
that specify the transfer of a byte or word to an I/O port address. The I/O
instruction triggers bus lines to select the proper device and to move bits into
or out of a device register. Alternatively, the device controller can support
memory-mapped I/O. In this case, the device-control registers are mapped
into the address space of the processor. The CPU executes I/O requests using
the standard data-transfer instructions to read and write the device-control
registers.

Some systems use both techniques. For instance, PCs use I/O instructions
to control some devices and memory-mapped I/O to control others. Figure 13.2
shows the usual PC 1/0 port addresses. The graphics controller has I/O ports
for basic control operations, but the controller has a large memory-mapped
region to hold screen contents. The process sends output to the screen by
writing data into the memory-mapped region. The controller generates the
screen image based on the contents of this memory. This technique is simple
to use. Moreover, writing millions of bytes to the graphics memory is faster
than issuing millions of I/O instructions. But the ease of writing to a memory-
mapped I/O controller is offset by a disadvantage. Because a common type
of software fault is a write through an incorrect pointer to an unintended
region of memory, a memory-mapped device register is vulnerable to accidental
modification. Of course, protected memory helps to reduce this risk.

An I/O port typically consists of four registers, called the status, control,
data-in, and data-out registers.

Figure 13.2 Device 1/0 port locations on PCs (partial).

13.2 110 Hardware 459

The status register contains bits that can be read by the host. These bits indi-
cate states such as whether the current command has completed, whether a
byte is available to be read from the data-in register, and whether there has
been a device error.

The control register can be written by the host to start a command or to
change the mode of a device. For instance, a certain bit in the con t ro l reg-
ister of a serial port chooses between full-duplex and half-duplex commu-
nication, another enables parity checking, a third bit sets the word length
to 7 or 8 bits, and other bits select one of the speeds supported by the serial
port.

The data-in register is read by the host to get input.

The data-out register is written by the host to send output.

The data registers are typically 1 to 4 bytes. Some controllers have FIFO
chips that can hold several bytes of input or output data to expand the capacity
of the controller beyond the size of the data register. A FIFO chip can hold a
small burst of data until the device or host is able to receive those data.

13.2.1 Polling
The complete protocol for interaction between the host and a controller can be
intricate, but the basic handshaking notion is simple. We explain handshaking
by an example. We assume that 2 bits are used to coordinate the producer-
consumer relationship between the controller and the host. The controller
indicates its state through the busy bit in the status register. (Recall that to set
a bit means to write a 1 into the bit, and to clear a bit means to write a 0 into
it.) The controller sets the busy bit when it is busy working, and clears the busy
bit when it is ready to accept the next command. The host signals its wishes
via the command-ready bit in the command register. The host sets the command-
ready bit when a command is available for the controller to execute. For this
example, the host writes output through a port, coordinating with the controller
by handshaking as follows.

1. The host repeatedly reads the busy bit until that bit becomes clear.

2. The host sets the write bit in the command register and writes a byte into the
data-out register.

3. The host sets the command-ready bit.

4. When the controller notices that the command-ready bit is set, it sets the busy
bit.

5. The controller reads the command register and sees the wri te command.
It reads the data-out register to get the byte, and does the 1/0 to the device.

460 Chapter 13 110 Systems

6. The controller clears the command-ready bit, clears the error bit in the status
register to indicate that the device I/O succeeded, and clears the busy bit to
indicate that it is finished.

This loop is repeated for each byte.
In step 1, the host is busy-waiting or polling: It is in a loop, reading the

status register over and over until the busy bit becomes clear. If the controller
and device are fast, this method is a reasonable one. But if the wait may be long,
the host should probably switch to another task. How then does the host know
when the controller has become idle? For some devices, the host must service
the device quickly, or data will be lost. For instance, when data are streaming
in on a serial port or from a keyboard, the small buffer on the controller will
overflow and data will be lost if the host waits too long before returning to read
the bytes.

In many computer architectures, three CPU-instruction cycles are sufficient
to poll a device: read a device register, logical-and to extract a status bit, and
branch if not zero. Clearly, the basic polling operation is efficient. But polling
becomes inefficient when it is attempted repeatedly, yet rarely finds a device
to be ready for service, while other useful CPU processing remains undone. In
such instances, it may be more efficient to arrange for the hardware controller to
notify the CPU when the device becomes ready for service, rather than to require
the CPU to poll repeatedly for an 1/0 completion. The hardware mechanism
that enables a device to notify the CPU is called an interrupt.

13.2.2 Interrupts
The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on the
interrupt request line, the CPU saves a small amount of state, such as the current
value of the instruction pointer, and jumps to the interrupt-handler routine
at a fixed address in memory. The interrupt handler determines the cause of
the interrupt, performs the necessary processing, and executes a r e t u r n from
in t e r rup t instruction to return the CPU to the execution state prior to the
interrupt. We say that the device controller raises an interrupt by asserting a
signal on the interrupt request line, the CPU catches the interrupt and dispatches
to the interrupt handler, and the handler clears the interrupt by servicing the
device. Figure 13.3 summarizes the interrupt-driven 1/0 cycle.

This basic interrupt mechanism enables the CPU to respond to an asyn-
chronous event, such as a device controller becoming ready for service. In
a modern operating system, we need more sophisticated interrupt-handling
features. First, we need the ability to defer interrupt handling during critical
processing. Second, we need an efficient way to dispatch to the proper interrupt
handler for a device, without first polling all the devices to see which one raised
the interrupt. Third, we need multilevel interrupts, so that the operating system

13.2 110 Hardware 461

CPU I10 controller

CPU executing checks for
(interrupts between instructions I

Figure 13.3 Interrupt-driven I/O cycle.

can distinguish between high- and low-priority interrupts, and can respond
with the appropriate degree of urgency. In modern computer hardware, these
three features are provided by the CPU and by the interrupt-controller hard-
ware.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
The second interrupt line is maskable: It can be turned off by the CPU before
the execution of critical instruction sequences that must not be interrupted. The
maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an address-a number that selects a
specific interrupt-handling routine from a small set. In most architectures,
this address is an offset in a table called the interrupt vector. This vector
contains the memory addresses of specialized interrupt handlers. The purpose
of a vectored interrupt mechanism is to reduce the need for a single interrupt

462 Chapter 13 I10 Systems

handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use the technique of interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an interrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of a dispatching to a single interrupt handler.

Figure 13.4 illustrates the design of the interrupt vector for the Intel Pen-
tium processor. The events from 0 to 31, which are nonmaskable, are used to
signal various error conditions. The events from 32 to 255, which are maskable,
are used for purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of interrupt priority
levels. This mechanism enables the CPU to defer the handling of low-priority
interrupts without masking off all interrupts, and makes it possible for a high-
priority interrupt to preempt the execution of a low-priority interrupt.

A modern operating system interacts with the interrupt mechanism in
several ways. At boot time, the operating system probes the hardware buses
to determine what devices are present, and installs the corresponding interrupt
handlers into the interrupt vector. During I/O, the various device controllers

device not available

coprocessor segment overrun (resewed)
invalid task state segment

general protection

floating-point error
alignment check
machine check

Figure 13.4 Intel Pentium processor event-vector table.

13.2 I10 Hardware 463

raise interrupts when they are ready for service. These interrupts signify that
output has completed, or that input data are available, or that a failure has
been detected. The interrupt mechanism is also used to handle a wide variety
of exceptions, such as dividing by zero, accessing a protected or nonexistent
memory address, or attempting to execute a privileged instruction from user
mode. The events that trigger interrupts have a common property: They are
occurrences that induce the CPU to execute an urgent, self-contained routine.

An operating system has other good uses for an efficient hardware mech-
anism that saves a small amount of processor state, and then calls a privileged
routine in the kernel. For example, many operating systems use the interrupt
mechanism for virtual-memory paging. A page fault is an exception that raises
an interrupt. The interrupt suspends the current process and jumps to the page-
fault handler in the kernel. This handler saves the state of the process, moves
the process to the wait queue, performs page-cache management, schedules an
I/O operation to fetch the page, schedules another process to resume execution,
and then returns from the interrupt.

Another example is found in the implementation of system calls. A system
call is a function called by an application to invoke a kernel service. The system
call checks the arguments given by the application, builds a data structure to
convey the arguments to the kernel, and then executes a special instruction
called a software interrupt (or a trap). This instruction has an operand that
identifies the desired kernel service. When the system call executes the trap
instruction, the interrupt hardware saves the state of the user code, switches
to supervisor mode, and dispatches to the kernel routine that implements the
requested service. The trap is given a relatively low interrupt priority compared
to those assigned to device interrupts-executing a system call on behalf of an
application is less urgent than servicing a device controller before its FIFO queue
overflows and loses data.

Interrupts can also be used to manage the flow of control within the kernel.
For example, consider the processing required to complete a disk read. One
step is to copy data from kernel space to the user buffer. This copying is time
consuming but not urgent-it should not block other high-priority interrupt
handling. Another step is to start the next pending I/O for that disk drive. This
step has higher priority: If the disks are to be used efficiently, we need to start
the next I/O as soon as the previous one completes. Consequently, a pair of
interrupt handlers implements the kernel code that completes a disk read. The
high-priority handler records the I/O status, clears the device interrupt, starts
the next pending I/O, and raises a low-priority interrupt to complete the work.
Later, when the CPU is not occupied with high-priority work, the low-priority
interrupt will be dispatched. The corresponding handler completes the user-
level I/O by copying data from kernel buffers to the application space, and then
by calling the scheduler to place the application on the ready queue.

A threaded kernel architecture is well suited to implement multiple inter-
rupt priorities and to enforce the precedence of interrupt handling over back-

464 Chapter 13 110 Systems

ground processing in kernel and application routines. We illustrate this point
with the Solaris kernel. In Solaris, interrupt handlers are executed as kernel
threads. A range of high priorities is reserved for these threads. These pri-
orities give interrupt handlers precedence over application code and kernel
housekeeping, and implement the priority relationships among interrupt han-
dlers. The priorities cause the Solaris thread scheduler to preempt low-priority
interrupt handlers in favor of higher-priority ones, and the threaded imple-
mentation enables multiprocessor hardware to run several interrupt handlers
concurrently. We describe the interrupt architecture of UNIX and Windows NT
in Appendix A and Chapters 21, respectively.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events and to trap to supervisor-mode routines in the
kernel. To enable the most urgent work to be done first, modern computers
use a system of interrupt priorities. Device controllers, hardware faults, and
system calls all raise interrupts to trigger kernel routines. Because interrupts
are used so heavily for time-sensitive processing, efficient interrupt handling is
required for good system performance.

13.2.3 Direct Memory Access
For a device that does large transfers, such as a disk drive, it seems waste-
ful to use an expensive general-purpose processor to watch status bits and
to feed data into a controller register 1 byte at a time-a process termed pro-
grammed 110 (PIO). Many computers avoid burdening the main CPU with PI0
by offloading some of this work to a special-purpose processor called a direct-
memory-access (DMA) controller. To initiate a DMA transfer, the host writes a
DMA command block into memory. This block contains a pointer to the source
of a transfer, a pointer to the destination of the transfer, and a count of the
number of bytes to be transferred. The CPU writes the address of this command
block to the DMA controller, then goes on with other work. The DMA controller
proceeds to operate the memory bus directly, placing addresses on the bus to
perform transfers without the help of the main CPU. A simple DMA controller is
a standard component in PCs, and bus-mastering I/O boards for the PC usually
contain their own high-speed DMA hardware.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA- reques t and DMA-acknowledge.
The device controller places a signal on the DMA- reques t wire when a word
of data is available for transfer. This signal causes the DMA controller to
seize the memory bus, to place the desired address on the memory-address
wires, and to place a signal on the DMA-acknowledge wire. When the device
controller receives the DMA-acknowledge signal, it transfers the word of data
to memory, and removes the DMA- reques t signal.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 13.5. When the DMA controller seizes the

13.2 110 Hardware 465

1. device driver is told to
transfer disk data to
buffer at address X

5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C
increasing memory bytes from disk to buffer cache
address and decreasing at address X
C until C = 0

6. when C = 0, DMA
interrupts CPU to signal

DMNbusIinterrupt
controller memory '/I 1

transfer completion

-1 3. disk controller initiates
DMA transfer 1 IDE disk I 4 disk controller sends

1 1 each byte to DMA
controller

Figure 13.5 Steps in a DMA transfer.

memory bus, the CPU is momentarily prevented from accessing main memory,
although it can still access data items in its primary and secondary cache.
Although this cycle stealing can slow down the CPU computation, offloading
the data-transfer work to a DMA controller generally improves the total system
performance. Some computer architectures use physical memory addresses
for DMA, but others perform direct virtual-memory access (DVMA), using
virtual addresses that undergo virtual- to physical-memory address translation.
DVMA can perform a transfer between two memory-mapped devices without
the intervention of the CPU or the use of main memory.

On protected-mode kernels, the operating system generally prevents pro-
cesses from issuing device commands directly. This discipline protects data
from access-control violations, and also protects the system from erroneous use
of device controllers that could cause a system crash. Instead, the operating
system exports functions that a sufficiently privileged process can use to access
low-level operations on the underlying hardware. On kernels without memory
protection, processes can access device controllers directly. This direct access
can be used to obtain high performance, since it can avoid kernel communica-
tion, context switches, and layers of kernel software. Unfortunately, it interferes
with system security and stability. The trend in general-purpose operating sys-
tems is to protect memory and devices, so that the system can try to guard
against erroneous or malicious applications.

Although the hardware aspects of I/O are complex when considered at the
level of detail of electronics-hardware designers, the concepts that we have just

466 Chapter 13 I10 Systems

described are sufficient to understand many I/O aspects of operating systems.
Let's review the main concepts:

A bus

A controller

An I/O port and its registers

The handshaking relationship between the host and a device controller

The execution of this handshaking in a polling loop or via interrupts

The offloading of this work to a DMA controller for large transfers

We gave a basic example of the handshaking that takes place between a
device controller and the host in Section 13.2. In reality, the wide variety of
available devices poses a problem for operating-system implementers. Each
kind of device has its own set of capabilities, control-bit definitions, and pro-
tocol for interacting with the host-and they are all different. How can the
operating system be designed so that new devices can be attached to the com-
puter without the operating system being rewritten? Also, when the devices
vary so widely, how can the operating system give a convenient, uniform I/O
interface to applications?

13.3 Application I/O Interface

In this section, we discuss structuring techniques and interfaces for the oper-
ating system that enable 1/0 devices to be treated in a standard, uniform way.
We explain, for instance, how an application can open a file on a disk without
knowing what kind of disk it is, and how new disks and other devices can be
added to a computer without the operating system being disrupted.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Specifically, we
can abstract away the detailed differences in 1 /0 devices by identifying a few
general kinds. Each general kind is accessed through a standardized set of
functions-an interface. The differences are encapsulated in kernel modules
called device drivers that internally are custom tailored to each device, but that
export one of the standard interfaces. Figure 13.6 illustrates how the I/O-related
portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the 1/0 subsystem of the kernel, much as the I/O system
calls encapsulate the behavior of devices in a few generic classes that hide hard-
ware differences from applications. Making the I/O subsystem independent
of the hardware simplifies the job of the operating-system developer. It also
benefits the hardware manufacturers. They either design new devices to be

13.3 Application UO Interface 467

Figure 13.6 A kernel 1 /0 structure.

kernel

kernel I10 subsystem

compatible with an existing host controller interface (such as SCSI-2), or they
write device drivers to interface the new hardware to popular operating sys-
tems. Thus, new peripherals can be attached to a computer without waiting for
the operating-system vendor to develop support code.

Unfortunately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
may ship with multiple device drivers-for instance, drivers for MS-DOS, Win-
dows 95/98, Windows NT/2000, and Solaris. Devices vary in many dimensions,
as illustrated in Figure 13.7.

Character-stream or block: A character-stream device transfers bytes one
by one, whereas a block device transfers a block of bytes as a unit.

SCSl
device
driver

Sequential or random-access: A sequential device transfers data in a fixed
order determined by the device, whereas the user of a random-access
device can instruct the device to seek to any of the available data storage
locations.

PC1 bus
device
driver

Synchronous or asynchronous: A synchronous device is one that performs
data transfers with predictable response times. An asynchronous device
exhibits irregular or unpredictable response times.

keyboard
device
driver

floppy
device
driver

ATAPl
device
driver

mouse
device
driver

• • •

468 Chapter 13 110 Systems

Figure 13.7 Characteristics of I/O devices.

Sharable or dedicated: A sharable device can be used concurrently by
several processes or threads; a dedicated device cannot.

Speed of operation: Device speeds range from a few bytes per second to a
few gigabytes per second.

Read-write, read only, or write only: Some devices perform both input
and output, but others support only one data direction.

For the purpose of application access, many of these differences are hidden
by the operating system, and the devices are grouped into a few conventional
types. The resulting styles of device access have been found to be useful
and broadly applicable. Although the exact system calls may differ across
operating systems, the device categories are fairly standard. The major access
conventions include block I/O, character-stream I/O, memory-mapped file
access, and network sockets. Operating systems also provide special system
calls to access a few additional devices, such as a time-of-day clock and a timer.
Some operating systems provide a set of system calls for graphical display,
video, and audio devices.

Most operating systems also have an escape (or back-door) that transpar-
ently passes arbitrary commands from an application to a device driver. In
UNIX, this system call is ioctl0 (for I/O control). The ioctl0 system call
enables an application to access any functionality that can be implemented by
any device driver, without the need to invent a new system call. The ioctl0

13.3 Application I/0 Interface 469

system call has three arguments. The first is a file descriptor that connects the
application to the driver by referring to a hardware device managed by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory,
thus enabling the application and driver to communicate any necessary control
information or data.

13.3.1 Block and Character Devices
The block-device interface captures all the aspects necessary for accessing disk
drives and other block-oriented devices. The expectation is that the device
understands commands such as read 0 and wr i t e (), and, if it is a random-
access device, it has a seek () command to specify which block to transfer next.
Applications normally access such a device through a file-system interface. The
operating system itself, and special applications such as database-management
systems, may prefer to access a block device as a simple linear array of blocks.
This mode of access is sometimes called raw 110. We can see that read() ,
wri te (1, and seek (capture the essential behaviors of block-storage devices,
so that applications are insulated from the low-level differences among those
devices.

Memory-mapped file access can be layered on top of block-device drivers.
Rather than offering read and write operations, a memory-mapped interface
provides access to disk storage via an array of bytes in main memory. The
system call that maps a file into memory returns the virtual-memory address
of an array of characters that contains a copy of the file. The actual data
transfers are performed only when needed to satisfy access to the memory
image. Because the transfers are handled by the same mechanism as that used
for demand-paged virtual-memory access, memory-mapped I/O is efficient.
Memory mapping is also convenient for programmers-access to a memory-
mapped file is as simple as reading and writing to memory. Operating systems
that offer virtual memory commonly use the mapping interface for kernel
services. For instance, to execute a program, the operating system maps the
executable into memory, and then transfers control to the entry address of the
executable. The mapping interface is also commonly used for kernel access to
swap space on disk.

A keyboard is an example of a device that is accessed through a character-
stream interface. The basic system calls in this interface enable an application
to ge t () or put () one character. On top of this interface, libraries can be built
that offer line-at-a-time access, with buffering and editing services (for example,
when a user types a backspace, the preceding character is removed from the
input stream). This style of access is convenient for input devices such as
keyboards, mice, and modems, which produce data for input "spontaneously"
-that is, at times that cannot necessarily be predicted by the application. This

470 Chapter 13 I10 Systems

access style is also good for output devices such as printers or audio boards,
which naturally fit the concept of a linear stream of bytes.

13.3.2 Network Devices

Because the performance and addressing characteristics of network I/O differ
significantly from those of disk I/O, most operating systems provide a network
1/0 interface that is different from the r e a d 0 -wr i te () -seek() interface
used for disks. One interface available in many operating systems, including
UNIX and Windows NT, is the network socket interface.

Think of a wall socket for electricity: Any electrical appliance can be
plugged in. By analogy, the system calls in the socket interface enable an
application to create a socket, to connect a local socket to a remote address
(which plugs this application into a socket created by another application), to
listen for any remote application to plug into the local socket, and to send and
receive packets over the connection. To support the implementation of servers,
the socket interface also provides a function called s e l e c t (1 that manages a set
of sockets. A call to s e l e c t 0 returns information about which sockets have a
packet waiting to be received, and which sockets have room to accept a packet
to be sent. The use of s e l e c t 0 eliminates the polling and busy waiting that
would otherwise be necessary for network I/O. These functions encapsulate the
essential behaviors of networks, greatly facilitating the creation of distributed
applications that can use any underlying network hardware and protocol stack.

Many other approaches to interprocess communication and network com-
munication have been implemented. For instance, Windows NT provides one
interface to the network interface card, and a second interface to the network
protocols (Section 21.6). In UNIX, which has a long history as a proving ground
for network technology, we find half-duplex pipes, full-duplex FIFOs, full-
duplex STREAMS, message queues, and sockets. Information on UNIX network-
ing is given in Section A.9.

13.3.3 Clocks and Timers

Most computers have hardware clocks and timers that provide three basic
functions:

Give the current time

Give the elapsed time

Set a timer to trigger operation X at time T

These functions are used heavily by the operating system, and also by time-
sensitive applications. Unfortunately, the system calls that implement these
functions are not standardized across operating systems.

1 13.3 Application 110 Interface 471

The hardware to measure elapsed time and to trigger operations is called
a programmable interval timer. It can be set to wait a certain amount of time
and then to generate an interrupt. It can be set to do this operation once, or
to repeat the process, to generate periodic interrupts. The scheduler uses this
mechanism to generate an interrupt that will preempt a process at the end of
its time slice. The disk I/O subsystem uses it to invoke the flushing of dirty
cache buffers to disk periodically, and the network subsystem uses it to cancel
operations that are proceeding too slowly because of network congestion or
failures. The operating system may also provide an interface for user processes
to use timers. The operating system can support more timer requests than the
number of timer hardware channels by simulating virtual clocks. To do so, the
kernel (or the timer device driver) maintains a list of interrupts wanted by its
own routines and by user requests, sorted in earliest-time-first order. It sets the
timer for the earliest time. When the timer interrupts, the kernel signals the
requester, and reloads the timer with the next earliest time.

On many computers, the interrupt rate generated by the ticking of the
hardware clock is between 18 and 60 ticks per second. This resolution is coarse,
since a modern computer can execute hundreds of millions of instructions per
second. The precision of triggers is limited by the coarse resolution of the
timer, together with the overhead of maintaining virtual clocks. And, if the
timer ticks are used to maintain the system time-of-day clock, the system clock
can drift. In most computers, the hardware clock is constructed from a high-
frequency counter. In some computers, the value of this counter can be read
from a device register, in which case the counter can be considered to be a
high-resolution clock. Although this clock does not generate interrupts, it offers
accurate measurements of time intervals.

13.3.4 Blocking and Nonblocking 110

Another aspect of the system-call interface relates to the choice between block-
ing 1 / 0 and nonblocking (or asynchronous) I/O. When an application issues
a blocking system call, the execution of the application is suspended. The
application is moved from the operating system's run queue to a wait queue.
After the system call completes, the application is moved back to the run queue,
where it is eligible to resume execution, at which time it will receive the values
returned by the system call. The physical actions performed by 1 / 0 devices
are generally asynchronous-they take a varying or unpredictable amount of
time. Nevertheless, most operating systems use blocking system calls for the
application interface, because blocking application code is easier to understand
than nonblocking application code.

Some user-level processes need nonblocking 1/0. One example is a user
interface that receives keyboard and mouse input while processing and dis-
playing data on the screen. Another example is a video application that reads

472 Chapter 13 I10 Systems

frames from a file on disk while simultaneously decompressing and displaying
the output on the display.

One way that an application writer can overlap execution with I/O is to
write a multithreaded application. Some threads can perform blocking sys-
tem calls, while others continue executing. The Solaris developers used this
technique to implement a user-level library for asynchronous I/O, freeing the
application writer from that task. Some operating systems provide nonblocking
I/O system calls. A nonblocking call does not halt the execution of the applica-
tion for an extended time. Instead, it returns quickly, with a return value that
indicates how many bytes were transferred.

An alternative to a nonblocking system call is an asynchronous system
call. An asynchronous call returns immediately, without waiting for the I/O to
complete. The application continues to execute its code. The completion of the
1/0 at some future time is communicated to the application, either through the
setting of some variable in the address space of the application, or through the
triggering of a signal or software interrupt or a call-back routine that is executed
outside the linear control flow of the application. The difference between
nonblocking and asynchronous system calls is that a nonblocking read0
returns immediately with whatever data are available-the full number of
bytes requested, fewer, or none at all. An asynchronous read0 call requests
a transfer that will be performed in its entirety, but that will complete at some
future time.

A good example of nonblocking behavior is the select 0 system call for
network sockets. This system call takes an argument that specifies a maximum
waiting time. By setting it to 0, an application can poll for network activity
without blocking. But using select 0 introduces extra overhead, because
the select 0 call only checks whether I/O is possible. For a data transfer,
select 0 must be followed by some kind of read0 or write0 command.
A variation of this approach, found in Mach, is a blocking multiple-read call.
It specifies desired reads for several devices in one system call, and returns as
soon as any one of them completes.

13.4 . Kernel I10 Subsystem

Kernels provide many services related to I/O. Several services-scheduling,
buffering, caching, spooling, device reservation, and error handling-are pro-
vided by the kernel's I/O subsystem and build on the hardware and device-
driver infrastructure.

13.4.1 110 Scheduling
To schedule a set of I/O requests means to determine a good order in which
to execute them. The order in which applications issue system calls rarely is
the best choice. Scheduling can improve overall system performance, can share

13.4 Kernel 110 Subsystem 473

device access fairly among processes, and can reduce the average waiting time
for 1/0 to complete. Here is a simple example to illustrate the opportunity. Sup-
pose that a disk arm is near the beginning of a disk, and that three applications
issue blocking read calls to that disk. Application 1 requests a block near the
end of the disk, application 2 requests one near the beginning, and application
3 requests one in the middle of the disk. The operating system can reduce the
distance that the disk arm travels by serving the applications in order 2, 3, 1.
Rearranging the order of service in this way is the essence of I/O scheduling.

Operating-system developers implement scheduling by maintaining a
queue of requests for each device. When an application issues a blocking
I/O system call, the request is placed on the queue for that device. The I/O
scheduler rearranges the order of the queue to improve the overall system
efficiency and the average response time experienced by applications. The
operating system may also try to be fair, so that no one application receives
especially poor service, or it may give priority service for delay-sensitive
requests. For instance, requests from the virtual-memory subsystem may take
priority over application requests. Several scheduling algorithms for disk I/O
are detailed in Section 14.2.

One way that the 1/0 subsystem improves the efficiency of the computer is
by scheduling I/O operations. Another way is by using storage space in main
memory or on disk, via techniques called buffering, caching, and spooling.

13.4.2 Buffering
A buffer is a memory area that stores data while they are transferred between
two devices or between a device and an application. Buffering is done for
three reasons. One reason is to cope with a speed mismatch between the
producer and consumer of a data stream. Suppose, for example, that a file is
being received via modem for storage on the hard disk. The modem is about
a thousand times slower than the hard disk. So a buffer is created in main
memory to accumulate the bytes received from the modem. When an entire
buffer of data has arrived, the buffer can be written to disk in a single operation.
Since the disk write is not instantaneous and the modem still needs a place to
store additional incoming data, two buffers are used. After the modem fills the
first buffer, the disk write is requested. The modem then starts to fill the second
buffer while the first buffer is written to disk. By the time the modem has filled
the second buffer, the disk write from the first one should have completed,
so the modem can switch back to the first buffer while the disk writes the
second one. This double buffering decouples the producer of data from the
consumer, thus relaxing timing requirements between them. The need for this
decoupling is illustrated in Figure 13.8, which lists the enormous differences in
device speeds for typical computer hardware.

A second use of buffering is to adapt between devices that have differ-
ent data-transfer sizes. Such disparities are especially common in computer

474 Chapter 13 110 Systems 1

gigaplane
bus

SBUS

SCSl bus

fast
ethernet

hard disk

ethernet

laser
printer

modem

mouse

keyboard

Figure 13.8 Sun Enterprise 6000 device-transfer rates (logarithmic).

networking, where buffers are used widely for fragmentation and reassembly
of messages. At the sending side, a large message is fragmented into small
network packets. The packets are sent over the network, and the receiving side
places them in a reassembly buffer to form an image of the source data.

A third use of buffering is to support copy semantics for application I/O.
An example will clarify the meaning of "copy semantics." Suppose that an
application has a buffer of data that it wishes to write to disk. It calls the
wr i te (1 system call, providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens if
the application changes the contents of the buffer? With copy semantics, the
version of the data written to disk is guaranteed to be the version at the time
of the application system call, independent of any subsequent changes in the
application's buffer. A simple way that the operating system can guarantee
copy semantics is for the wr i te (1 system call to copy the application data into
a kernel buffer before returning control to the application. The disk write is
performed from the kernel buffer, so that subsequent changes to the application
buffer have no effect. Copying of data between kernel buffers and application

I 13.4 Kernel UO Subsystem 475

data space is common in operating systems, despite the overhead that this
operation introduces, because of the clean semantics. The same effect can be
obtained more efficiently by clever use of virtual-memory mapping and copy-

I on-write page protection.

13.4.3 Caching

A cache is a region of fast memory that holds copies of data. Access to the
cached copy is more efficient than access to the original. For instance, the
instructions of the currently running process are stored on disk, cached in
physical memory, and copied again in the CPU's secondary and primary caches.
The difference between a buffer and a cache is that a buffer may hold the only
existing copy of a data item, whereas a cache, by definition, just holds a copy
on faster storage of an item that resides elsewhere.

Caching and buffering are distinct functions, but sometimes a region of
memory can be used for both purposes. For instance, to preserve copy seman-
tics and to enable efficient scheduling of disk I/O, the operating system uses
buffers in main memory to hold disk data. These buffers are also used as a
cache, to improve the I/O efficiency for files that are shared by applications or
that are being written and reread rapidly. When the kernel receives a file I/O
request, the kernel first accesses the buffer cache to see whether that region
of the file is already available in main memory. If so, a physical disk I/O
can be avoided or deferred. Also, disk writes are accumulated in the buffer
cache for several seconds, so that large transfers are gathered to allow efficient
write schedules. This strategy of delaying writes to improve I/O efficiency is
discussed, in the context of remote file access, in Section 16.3.

13.4.4 Spooling and Device Reservation

A spool is a buffer that holds output for a device, such as a printer, that cannot
accept interleaved data streams. Although a printer can serve only one job
at a time, several applications may wish to print their output concurrently,
without having their output mixed together. The operating system solves this
problem by intercepting all output to the printer. Each application's output
is spooled to a separate disk file. When an application finishes printing, the
spooling system queues the corresponding spool file for output to the printer.
The spooling system copies the queued spool files to the printer one at a time.
In some operating systems, spooling is managed by a system daemon process.
In other operating systems, it is handled by an in-kernel thread. In either case,
the operating system provides a control interface that enables users and system
administrators to display the queue, to remove unwanted jobs before those jobs
print, to suspend printing while the printer is serviced, and so on.

Some devices, such as tape drives and printers, cannot usefully multiplex
the I/O requests of multiple concurrent applications. Spooling is one way that

476 Chapter 13 110 Systems

operating systems can coordinate concurrent output. Another way to deal with
concurrent device access is to provide explicit facilities for coordination. Some
operating systems (including VMS) provide support for exclusive device access,
by enabling a process to allocate an idle device, and to deallocate that device
when it is no longer needed. Other operating systems enforce a limit of one
open file handle to such a device. Many operating systems provide functions
that enable processes to coordinate exclusive access among themselves. For
instance, Windows NT provides system calls to wait until a device object
becomes available. It also has a parameter to the open0 system call that
declares the types of access to be permitted to other concurrent threads. On
these systems, it is up to the applications to avoid deadlock.

13.4.5 Error Handling

An operating system that uses protected memory can guard against many kinds
of hardware and application errors, so that a complete system failure is not the
usual result of each minor mechanical glitch. Devices and 1/0 transfers can
fail in many ways, either for transient reasons, such as a network becoming
overloaded, or for "permanent" reasons, such as a disk controller becoming
defective. Operating systems can often compensate effectively for transient
failures. For instance, a disk r e a d 0 failure results in a r e a d 0 retry, and
a network send 0 error results in a resend 0, if the protocol so specifies.
Unfortunately, if an important component experiences a permanent failure, the
operating system is unlikely to recover.

As a general rule, an I/O system call will return 1 bit of information about
the status of the call, signifying either success or failure. In the UNIX operating
system, an additional integer variable named errno is used to return an error
code-one of about 100 values-indicating the general nature of the failure
(for example, argument out of range, bad pointer, or file not open). By contrast,
some hardware can provide highly detailed error information, although many
current operating systems are not designed to convey this information to the
application. For instance, a failure of a SCSI device is reported by the SCSI
protocol in terms of a sense key that identifies the general nature of the failure,
such as a hardware error or an illegal request; an additional sense code that
states the category of failure, such as a bad command parameter or a self-test
failure; and an additional sense-code qualifier that gives even more detail,
such as which command parameter was in error, or which hardware subsystem
failed its self-test. Further, many SCSI devices maintain internal pages of error-
log information that can be requested by the host, but that seldom are.

13.4.6 Kernel Data Structures

The kernel needs to keep state information about the use of I/O components.
It does so through a variety of in-kernel data structures, such as the open-file

13.4 Kernel 110 Subsystem 477

table structure from Section 12.1. The kernel uses many similar structures to
track network connections, character-device communications, and other I/O

UNIX provides file-system access to a variety of entities, such as user files,
raw devices, and the address spaces of processes. Although each of these
entities supports a read 0 operation, the semantics differ. For instance, to
read a user file, the kernel needs to probe the buffer cache before deciding
whether to perform a disk I/O. To read a raw disk, the kernel needs to ensure
that the request size is a multiple of the disk sector size, and is aligned on a
sector boundary. To read a process image, it is merely necessary to copy data
from memory. UNIX encapsulates these differences within a uniform structure
by using an object-oriented technique. The open-file record, shown in Figure
13.9, contains a dispatch table that holds pointers to the appropriate routines,
depending on the type of file.

Some operating systems use object-oriented methods even more exten-
sively. For instance, Windows NT uses a message-passing implementation for
I/O. An 1/0 request is converted into a message that is sent through the kernel
to the I/O manager and then to the device driver, each of which may change the
message contents. For output, the message contains the data to be written. For
input, the message contains a buffer to receive the data. The message-passing
approach can add overhead, by comparison with procedural techniques that
use shared data structures, but it simplifies the structure and design of the I/O
system, and adds flexibility.

Figure 13.9 UNIX I/O kernel structure.

478 Chapter 13 I10 Systems

In summary, the I/O subsystem coordinates an extensive collection of
services that are available to applications and to other parts of the kernel. The
I/O subsystem supervises

The management of the name space for files and devices

Access control to files and devices

Operation control (for example, a modem cannot seek ())

File system space allocation

Device allocation

Buffering, caching, and spooling

I/O scheduling

Device status monitoring, error handling, and failure recovery

Device driver configuration and initialization

The upper levels of the I/O subsystem access devices via the uniform
interface provided by the device drivers.

13.5 . Transforming I10 to Hardware Operations

Earlier, we described the handshaking between a device driver and a device
controller, but we did not explain how the operating system connects an appli-
cation request to a set of network wires or to a specific disk sector. Let us
consider the example of reading a file from disk. The application refers to the
data by a file name. Within a disk, the file system maps from the file name
through the file-system directories to obtain the space allocation of the file. For
instance, in MS-DOS, the name maps to a number that indicates an entry in the
file-access table, and that table entry tells which disk blocks are allocated to the
file. In UNIX, the name maps to an inode number, and the corresponding inode
contains the space-allocation information.

How is the connection made from the file name to the disk controller (the
hardware port address or the memory-mapped controller registers)? First, we
consider MS-DOS, a relatively simple operating system. The first part of an MS-
DOS file name, preceding the colon, is a string that identifies a specific hardware
device. For example, c: is the first part of every file name on the primary hard
disk. The fact that c: represents the primary hard disk is built into the operating
system; c: is mapped to a specific port address through a device table. Because
of the colon separator, the device name space is separate from the file-system
name space within each device. This separation makes it easy for the operating

13.5 Transforming I10 to Hardware Operations 479

system to associate extra functionality with each device. For instance, it is easy
to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system
name space, as it is in UNIX, the normal file-system name services are provided
automatically. If the file system provides ownership and access control to all
file names, then devices have owners and access control. Since files are stored
on devices, such an interface provides access to the I/O system at two levels.
Names can be used to access the devices themselves, or to access the files stored
on the devices.

UNIX represents device names in the regular file-system name space.
Unlike an MS-DOS file name, which has the colon separator, a UNIX path name
has no clear separation of the device portion. In fact, no part of the path
name is the name of a device. UNIX has a mount table that associates pre-
fixes of path names with specific device names. To resolve a path name, UNIX
looks up the name in the mount table to find the longest matching prefix; the
corresponding entry in the mount table gives the device name. This device
name also has the form of a name in the file-system name space. When UNIX
looks up this name in the file-system directory structures, instead of finding an
inode number, UNIX finds a <major, minor> device number. The major device
number identifies a device driver that should be called to handle I/O to this
device. The minor device number is passed to the device driver to index into
a device table. The corresponding device-table entry gives the port address or
the memory-mapped address of the device controller.

Modern operating systems obtain significant flexibility from the multiple
stages of lookup tables in the path between a request and a physical device
controller. The mechanisms that pass requests between applications and drivers
are general. Thus, we can introduce new devices and drivers into a computer
without recompiling the kernel. In fact, some operating systems have the ability
to load device drivers on demand. At boot time, the system first probes the
hardware buses to determine what devices are present, and then the system
loads in the necessary drivers, either immediately, or when first required by an
I/O request.

Now we describe the typical lifecycle of a blocking read request, as depicted
in Figure 13.10. The figure suggests that an I/O operation requires a great many
steps that together consume a tremendous number of CPU cycles.

1. A process issues a blocking read 0 system call to a file descriptor of a file
that has been opened previously.

2. The system-call code in the kernel checks the parameters for correctness. In
the case of input, if the data are already available in the buffer cache, the
data are returned to the process and the I/O request is completed.

3. Otherwise, a physical I/O needs to be performed, so the process is removed
from the run queue and is placed on the wait queue for the device, and the

480 Chapter 13 110 Systems I

1/0 request is scheduled. Eventually, the I/O subsystem sends the request
to the device driver. Depending on the operating system, the request is sent
via a subroutine call or via an in-kernel message.

4. The device driver allocates kernel buffer space to receive the data, and
schedules the I/O. Eventually, the driver sends commands to the device
controller by writing into the device control registers.

system call I
I return from system call

kernel
I10 subsystem

determine which 110
device
driver

t
interrupt

Figure 13.10 The life cycle of an I/O request.

13.6 STREAMS 481

5. The device controller operates the device hardware to perform the data
transfer.

6. The driver may poll for status and data, or it may have set up a DMA
transfer into kernel memory. We assume that the transfer is managed by a
DMA controller, which generates an interrupt when the transfer completes.

7. The correct interrupt handler receives the interrupt via the interrupt-vector
table, stores any necessary data, signals the device driver, and returns from
the interrupt.

8. The device driver receives the signal, determines which I/O request com-
pleted, determines the request's status, and signals the kernel I/O subsys-
tem that the request has been completed.

9. The kernel transfers data or return codes to the address space of the
requesting process, and moves the process from the wait queue back to
the ready queue.

10. Moving the process to the ready queue unblocks the process. When the
scheduler assigns the process to the CPU, the process resumes execution at
the completion of the system call.

13.6 STREAMS

UNIX System V has an interesting mechanism, called STREAMS, that enables
an application to assemble pipelines of driver code dynamically. A stream is
a full-duplex connection between a device driver and a user-level process. It
consists of a stream head that interfaces with the user process, a driver end
that controls the device, and zero or more stream modules between them. The
stream head, the driver end, and each module contain a pair of queues-a read
queue and a write queue. Message passing is used to transfer data between
queues. The STREAMS structure is shown in Figure 13.11.

Modules provide the functionality of STREAMS processing and they are
pushed onto a stream using the ioctl0 system call. For example, a process
can open a serial-port device via a stream, and can push on a module to handle
input editing. Because messages are exchanged between queues in adjacent
modules, a queue in one module may overflow an adjacent queue. To prevent
this from occurring, a queue may support flow control. Without flow control,
a queue accepts all messages and immediately sends them on to the queue in
the adjacent module without buffering them. A queue supporting flow control
buffers messages and does not accept messages without sufficient buffer space.
Flow control is supported by exchanging control messages between queues in
adjacent modules.

A user process writes data to a device using either the write0 or
putmsg0 system calls. The write () system call writes raw data to the stream

482 Chapter 13 110 Systems

stream head

read queue write queue

read queue write queue I1
t 1 modules

Figure 13.11 The STREAMS structure.

whereas putmsg () allows the user process to specify a message. Regardless of
the system call used by the user process, the stream head copies the data into a
message and delivers it to the queue for the next module in line. This copying of
messages continues until the message is copied to the driver end and hence the
device. Similarly, the user process reads data from the stream head using either
the read () or getmsg () system calls. If read () is used, the stream head gets
a message from its adjacent queue and returns ordinary data (an unstructured
byte stream) to the process. If getmsg0 is used, a message is returned to the
process.

STREAMS 1/0 is asynchronous (or non-blocking) with the exception of
when the user process communicates with the stream head. When writing
to the stream, the user process will block, assuming the next queue uses flow
control, until there is room to copy the message. Likewise, the user process will
block when reading from the stream until data is available.

The driver end is similar to a stream head or a module in that it has a read
and write queue. However, the driver end must respond to interrupts such
as one triggered when a frame is ready to be read from a network. Unlike the
stream head that may block if it is unable to copy a message to the next queue in
line, the driver end must handle all incoming data. Drivers must support flow

13.7 Performance 483

control as well. However, if a device's buffer is full, a device typically resorts to
dropping incoming messages. Consider a network card whose input buffer is
full. The network card must simply drop further messages until there is ample
buffer space to store incoming messages.

The benefit of using STREAMS is that it provides a framework to a modular
and incremental approach to writing device drivers and network protocols.

Modules may be used by different STREAMS and hence by different devices.
For example, a networking module may be used by both an Ethernet network
card and a token ring network card. Furthermore, rather than treating character
device I/O as an unstructured byte stream, STREAMS allow support for message
boundaries and control information between modules. Support for STREAMS
is widespread among most UNU(variants and it is the preferred method for
writing protocols and device drivers. For example, in System V UNIX and
Solaris, the socket mechanism is implemented using STREAMS.

13.7 . Performance

I/O is a major factor in system performance. It places heavy demands on
the CPU to execute device-driver code and to schedule processes fairly and
efficiently as they block and unblock. The resulting context switches stress
the CPU and its hardware caches. I/O also exposes any inefficiencies in the
interrupt-handling mechanisms in the kernel, and I/O loads down the memory
bus during data copy between controllers and physical memory, and again
during copies between kernel buffers and application data space. Coping
gracefully with all these demands is one of the major concerns of a computer
architect.

Although modern computers can handle many thousands of interrupts per
second, interrupt handling is a relatively expensive task: Each interrupt causes
the system to perform a state change, to execute the interrupt handler, and
then to restore state. Programmed I/O can be more efficient than interrupt-
driven I/O, if the number of cycles spent busy-waiting is not excessive. An
1/0 completion typically unblocks a process, leading to the full overhead of a
context switch.

Network traffic can also cause a high context-switch rate. Consider, for
instance, a remote login from one machine to another. Each character typed on
the local machine must be transported to the remote machine. On the local
machine, the character is typed; a keyboard interrupt is generated; and the
character is passed through the interrupt handler to the device driver, to the
kernel, and then to the user process. The user process issues a network I/O
system call to send the character to the remote machine. The character then
flows into the local kernel, through the network layers that construct a network
packet, and into the network device driver. The network device driver transfers
the packet to the network controller, which sends the character and generates

484 Chapter 13 110 Systems

an interrupt. The interrupt is passed back up through the kernel to cause the
network I/O system call to complete.

Now, the remote system's network hardware receives the packet, and an
interrupt is generated. The character is unpacked from the network proto-
cols and is given to the appropriate network daemon. The network daemon
identifies which remote login session is involved, and passes the packet to the
appropriate subdaemon for that session. Throughout this flow there are con-
text switches and state switches (Figure 13.12). Usually, the receiver echoes the
character back to the sender; that approach doubles the work.

The Solaris developers reimplemented the telnet daemon using in-kernel
threads to eliminate the context switches involved in moving each charac-
ter between daemons and the kernel. Sun estimates that this improvement

Figure 13.12 Intercomputer communications.

13.7 Performance 485

increased the maximum number of network logins from a few hundred to a
few thousand on a large server.

Other systems use separate front-end processors for terminal I/O, to
reduce the interrupt burden on the main CPU. For instance, a terminal con-
centrator can multiplex the traffic from hundreds of remote terminals into one
port on a large computer. An 110 channel is a dedicated, special-purpose CPU
found in mainframes and in other high-end systems. The job of a channel is
to offload 1/0 work from the main CPU. The idea is that the channels keep the
data flowing smoothly, while the main CPU remains free to process the data.
Like the device controllers and DMA controllers found in smaller computers, a
channel can process more general and sophisticated programs, so channels can
be tuned for particular workloads.

We can employ several principles to improve the efficiency of I/O:

a Reduce the number of context switches.

a Reduce the number of times that data must be copied in memory while
passing between device and application.

Reduce the frequency of interrupts by using large transfers, smart con-
trollers, and polling (if busy-waiting can be minimized).

a Increase concurrency by using DMA-knowledgeable controllers or channels
to offload simple data copying from the CPU.

a Move processing primitives into hardware, to allow their operation in
device controllers concurrent with the CPU and bus operation.

a Balance CPU, memory subsystem, bus, and I/O performance, because an
overload in any one area will cause idleness in others.

Devices vary greatly in complexity. For instance, a mouse is simple. The
mouse movements and button clicks are converted into numeric values that are
passed from hardware, through the mouse device driver, to the application. By
contrast, the functionality provided by the NT disk device driver is complex. It
not only manages individual disks but also implements RAID arrays (Section
14.5). To do so, it converts an application's read or write request into a
coordinated set of disk I/O operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms, and takes many steps to optimize
disk performance, because of the importance of secondary-storage performance
to overall system performance.

Where should the I/O functionality be implemented-in the device hard-
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 13.13.

a Initially, we implement experimental I/O algorithms at the application
level, because application code is flexible, and application bugs are unlikely

486 Chapter 13 I10 Systems

to cause system crashes. Furthermore, by developing code at the applica-
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inefficient,
however, because of the overhead of context switches, and because the
application cannot take advantage of internal kernel data structures and
kernel functionality (such as efficient in-kernel messaging, threading, and
locking).

When an application-level algorithm has demonstrated its worth, we may
reimplement it in the kernel. This can improve the performance, but the
development effort is more challenging, because an operating-system ker-
nel is a large, complex software system. Moreover, an in-kernel implemen-
tation must be thoroughly debugged to avoid data corruption and system
crashes.

The highest performance may be obtained by a specialized implementation
in hardware, either in the device or in the controller. The disadvantages of
a hardware implementation include the difficulty and expense of making
further improvements or of fixing bugs, the increased development time
(months rather than days), and the decreased flexibility. For instance, a
hardware RAID controller may not provide any means for the kernel to
influence the order or location of individual block reads and writes, even
if the kernel has special information about the workload that would enable
the kernel to improve the I/O performance.

Figure 13.13 Device-functionality progression.

Exercises 487

13.8 Summary

The basic hardware elements involved in 1 /0 are buses, device controllers,
and the devices themselves. The work of moving data between devices and
main memory is performed by the CPU as programmed I/O, or is offloaded
to a DMA controller. The kernel module that controls a device is a device
driver. The system-call interface provided to applications is designed to handle
several basic categories of hardware, including block devices, character devices,
memory-mapped files, network sockets, and programmed interval timers. The
system calls usually block the process that issues them, but nonblocking and
asynchronous calls are used by the kernel itself, and by applications that must
not sleep while waiting for an I/O operation to complete.

The kernel's 1 /0 subsystem provides numerous services. Among these are
I/O scheduling, buffering, spooling, error handling, and device reservation.
Another service is name translation, to make the connection between hardware
devices and the symbolic file names used by applications. It involves several
levels of mapping that translate from a character string name to a specific device
driver and device address, and then to physical addresses of 1 /0 ports or bus
controllers. This mapping may occur within the file-system name space, as it
does in UNIX, or in a separate device-name space, as it does in MS-DOS.

STREAMS is an implementation and methodology for making drivers
reusable and easy to use. Through them, drivers can be stacked, with data
passed through them sequentially and bidirectionally for processing.

I/O system calls are costly in terms of CPu consumption, because of the
many layers of software between a physical device and the application. These
layers imply the overheads of context switching to cross the kernel's protection
boundary, of signal and interrupt handling to service the 1 /0 devices, and of
the load on the CPU and memory system to copy data between kernel buffers
and application space.

Exercises

13.1 State three advantages of placing functionality in a device controller,
rather than in the kernel. State three disadvantages.

13.2 Consider the following I/O scenarios on a single-user PC.

a. A mouse used with a graphical user interface

b. A tape drive on a multitasking operating system (assume no device
preallocation is available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through
memory-mapped I/O

488 Chapter 13 I10 Systems

For each of these I/O scenarios, would you design the operating system
to use buffering, spooling, caching, or a combination? Would you use
polled I/O or interrupt-driven I/O? Give reasons for your choices.

13.3 The example of handshaking in Section 13.2 used 2 bits: a busy bit and
a command-ready bit. Is it possible to implement this handshaking with
only 1 bit? If it is, describe the protocol. If not, explain why 1 bit is
insufficient.

13.4 Describe three circumstances under which blocking I/O should be used.
Describe three circumstances under which nonblocking I/O should be
used. Why not just implement nonblocking I/O and have processes
busy-wait until their device is ready?

13.5 Why might a system use interrupt-driven I/O to manage a single serial
port, but polling I/O to manage a front-end processor, such as a terminal
concentrator?

13.6 Polling for an I/O completion can waste a large number of CPU cycles
if the processor iterates a busy-waiting loop many times before the I/O
completes. But if the I/O device is ready for service, polling can be much
more efficient than is catching and dispatching an interrupt. Describe a
hybrid strategy that combines polling, sleeping, and interrupts for I/O
device service. For each of these three strategies (pure polling, pure
interrupts, hybrid), describe a computing environment in which that
strategy is more efficient than is either of the others.

13.7 UNIX coordinates the activities of the kernel I/O components by manipu-
lating shared in-kernel data structures, whereas Windows NT uses object-
oriented message passing between kernel I/O components. Discuss three
pros and three cons of each approach.

13.8 How does DMA increase system concurrency? How does it complicate
the hardware design?

13.9 Write (in pseudocode) an implementation of virtual clocks, including
the queueing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.

13.10 Why is it important to scale up system bus and device speeds as the CPU
speed increases?

13.11 Distinguish between a STREAMS driver and a STREAMS module.

Bibliographical Notes

Vahalia [I9961 provides a good overview of I/O and networking in UNIX. Lef-
fler et al. [I9891 detail the I/O structures and methods employed in BSD UNIX.

1 Bibliographical Notes 489

Milenkovic [I9871 discusses the complexity of I/O methods and implementa-
tion. The use and programming of the various interprocess-communication
and network protocols in UNIX is explored in Stevens [1992]. Brain [I9961
documents the Windows NT application interface. The 1/0 implementation in
the sample MINIX OS is described in Tanenbaum and Woodhulll[1997]. Custer
[I9941 includes detailed information on the NT message-passing implementa-
tion of I/O.

For details of hardware-level I/O handling and memory-mapping function-
ality, processor reference manuals (Motorola [I9931 and Intel [1993]), are among
the best sources. Hennessy and Patterson [I9961 describe multiprocessor sys-
tems and cache-consistency issues. Tanenbaum [I9901 describes hardware I/O
design at a low level, and Sargent and Shoemaker [I9951 provide a program-
mer's guide to low-level PC hardware and software. The IBM PC device 1/0
address map is given in IBM [1983]. An issue of the March 1994 IEEE Computer
is devoted to advanced I/O hardware and software. Rago [I9931 provides a
good discussion on STREAMS.

Chapter 14

MASS-
STORAGE
STRUCTURE

The file system can be viewed logically as consisting of three parts. In Chapter
11, we saw the user and programmer interface to the file system. In Chapter 12,
we described the internal data structures and algorithms used by the operating
system to implement this interface. In this chapter, we discuss the lowest
level of the file system: the secondary and tertiary storage structures. We first
describe disk-scheduling algorithms that schedule the order of disk I/Os to
improve performance. Next, we discuss disk formatting and management of
boot blocks, damaged blocks, and swap space. We examine secondary storage
structure, covering disk reliability and stable-storage implementation. We
conclude with a brief description of tertiary storage devices, and the problems
that arise when an operating system uses tertiary storage.

14.1 . Disk Structure

Disks provide the bulk of secondary storage for modern computer systems.
Magnetic tape was used as an early secondary-storage medium, but the access
time is much slower than for disks. Thus, tapes are currently used mainly
for backup, for storage of infrequently used information, as a medium for
transferring information from one system to another, and for storing quantities
of data so large that they are impractical as disk systems. Tape storage is
described in Section 14.8.

Modern disk drives are addressed as large one-dimensional arrays of log-
ical blocks, where the logical block is the smallest unit of transfer. The size

492 Chapter 14 Mass-Storage Structure

of a logical block is usually 512 bytes, although some disks can be low-level
formatted to choose a different logical block size, such as 1,024 bytes. This
option is described in Section 14.3.1.

The one-dimensional array of logical blocks is mapped onto the sectors of
the disk sequentially. Sector 0 is the first sector of the first track on the outermost
cylinder. The mapping proceeds in order through that track, then through the
rest of the tracks in that cylinder, and then through the rest of the cylinders from
outermost to innermost.

By using this mapping, we can-at least in theory-convert a logical block
number into an old-style disk address that consists of a cylinder number, a track
number within that cylinder, and a sector number within that track. In practice,
it is difficult to perform this translation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sectors per track is not a
constant on some drives. On media that use constant linear velocity (CLV), the
density of bits per track is uniform. The farther a track is from the center of the
disk, the greater its length, so the more sectors it can hold. As we move from
outer zones to inner zones, the number of sectors per track decreases. Tracks
in the outermost zone typically hold 40 percent more sectors than do tracks in
the innermost zone. The drive increases its rotation speed as the head moves
from the outer to the inner tracks to keep the same rate of data moving under
the head. This method is used in CD-ROM and DVD-ROM drives. Alternatively,
the disk rotation speed can stay constant, and the density of bits decreases from
inner tracks to outer tracks to keep the data rate constant. This method is used
in hard disks and is known as constant angular velocity (CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

14.2 . Disk Scheduling

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having a fast
access time and disk bandwidth. The access time has two major components
(also see Section 2.3.2). The seek time is the time for the disk arm to move the
heads to the cylinder containing the desired sector. The rotational latency is
the additional time waiting for the disk to rotate the desired sector to the disk
head. The disk bandwidth is the total number of bytes transferred, divided by
the total time between the first request for service and the completion of the last
transfer. We can improve both the access time and the bandwidth by scheduling
the servicing of disk I/O requests in a good order.

14.2 Disk Scheduling 493

As we discussed in Chapter 2, whenever a process needs 1/0 to or from
the disk, it issues a system call to the operating system. The request specifies
several pieces of information:

I

i
I Whether this operation is input or output I

What the disk address for the transfer is I
What the memory address for the transfer is I
What the number of bytes to be transferred is I
If the desired disk drive and controller are available, the request can be

serviced immediately. If the drive or controller is busy, any new requests for
service will be placed on the queue of pending requests for that drive. For
a multiprogramming system with many processes, the disk queue may often
have several pending requests. Thus, when one request is completed, the
operating system chooses which pending request to service next.

14.2.1 FCFS Scheduling
The simplest form of disk scheduling is, of course, the first-come, first-served I

I

(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for 1 /0 to blocks on cylinders

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 14.1.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests at 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

14.2.2 SSTF Scheduling
It seems reasonable to service all the requests close to the current head position,
before moving the head far away to service other requests. This assumption is
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm
selects the request with the minimum seek time from the current head position.
Since seek time increases with the number of cylinders traversed by the head,
SSTF chooses the pending request closest to the current head position.

494 Chapter 14 Mass-Storage Structure

queue = 98,183,37,122, 14,124,65,67
head starts at 53

Figure 14.1 FCFS disk scheduling.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than
98, so 37 is served next. Continuing, we service the request at cylinder 14, then
98, 122, 124, and finally 183 (Figure 14.2). This scheduling method results in
a total head movement of only 236 cylinders-little more than one-third of the
distance needed for FCFS scheduling of this request queue. This algorithm gives
a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling,
and, like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in

queue = 98,183,37,122,14,124,65,67
head starts at 53

Figure 14.2 SSTF disk scheduling.

14.2 Disk Scheduling 495

the queue, for cylinders 14 and 186, and while servicing the request from 14, a
new request near 14 arrives. This new request will be serviced next, making the
request at 186 wait. While this request is being serviced, another request close to
14 could arrive. In theory, a continual stream of requests near one another could
arrive, causing the request for cylinder 186 to wait indefinitely. This scenario
becomes increasingly likely if the pending-request queue grows long.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65,67,98,122,124, and 183. This strategy reduces the
total head movement to 208 cylinders.

14.2.3 SCAN Scheduling
In the SCAN algorithm, the disk arm starts at one end of the disk, and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement is
reversed, and servicing continues. The head continuously scans back and forth
across the disk. We again use our example.

Before applying SCAN to schedule the requests on cylinders 98, 183, 37,
122, 14, 124, 65, and 67, we need to know the direction of head movement, in
addition to the head's current position (53). If the disk arm is moving toward
0, the head will service 37 and then 14. At cylinder 0, the arm will reverse and
will move toward the other end of the disk, servicing the requests at 65,67,98,
122, 124, and 183 (Figure 14.3). If a request arrives in the queue just in front of
the head, it will be serviced almost immediately; a request arriving just behind

queue = 98,183, 37,122,14,124,65,67
head starts at 53

Figure 14.3 SCAN disk scheduling.

496 Chapter 14 Mass-Storage Structure

queue = 98,183,37,122,14,124,65,67
head starts at 53

Figure 14.4 C-SCAN disk scheduling.

the head will have to wait until the arm moves to the end of the disk, reverses
direction, and comes back.

The SCAN algorithm is sometimes called the elevator algorithm, since the
disk arm behaves just like an elevator in a building, first servicing all the
requests going up, and then reversing to service requests the other way.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algorithm.

14.2.4 C-SCAN Scheduling
Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of
the disk to the other, servicing requests along the way. When the head reaches
the other end, however, it immediately returns to the beginning of the disk,
without servicing any requests on the return trip (Figure 14.4). The C-SCAN
scheduling algorithm essentially treats the cylinders as a circular list that wraps
around from the final cylinder to the first one.

14.2.5 LOOK Scheduling
As we described them, both SCAN and C-SCAN move the disk arm across the
full width of the disk. In practice, neither algorithm is implemented this way.
More commonly, the arm goes only as far as the final request in each direction.

14.2 Disk Scheduling 497

queue = 98,183,37,122,14,124,65,67
head starts at 53

Figure 14.5 C-LOOK disk scheduling.

Then, it reverses direction immediately, without going all the way to the end
of the disk. These versions of SCAN and C-SCAN are called LOOK and C-LOOK
scheduling, because they look for a request before continuing to move in a given
direction (Figure 14.5).

14.2.6 Selection of a Disk-Scheduling Algorithm
Given so many disk-scheduling algorithms, how do we choose the best one?
SSTF is common and has a natural appeal because it increases performance over
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load on
the disk, because they are less likely to have a starvation problem. For any
particular list of requests, we can define an optimal order of retrieval, but the
computation needed to find an optimal schedule may not justify the savings
over SSTF or SCAN.

With any scheduling algorithm, however, performance depends heavily on
the number and types of requests. For instance, suppose that the queue usually
has just one outstanding request. Then, all scheduling algorithms are forced to
behave the same, because they have only one choice for where to move the disk
head: They all behave like FCFS scheduling.

The requests for disk service can be greatly influenced by the file-allocation
method. A program reading a contiguously allocated file will generate several
requests that are close together on the disk, resulting in limited head movement.
A linked or indexed file, on the other hand, may include blocks that are widely
scattered on the disk, resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be used, and opening a file requires searching the
directory structure, the directories will be accessed frequently. Suppose that a

498 Chapter 14 Mass-Storage Structure

directory entry is on the first cylinder and a file's data are on the final cylinder.
In this case, the disk head has to move the entire width of the disk. If the
directory entry were on the middle cylinder, the head would have to move,
at most, one-half the width. Caching the directories and index blocks in main
memory can also help to reduce the disk-arm movement, particularly for read
requests.

Because of these complexities, the disk-scheduling algorithm should be
written as a separate module of the operating system, so that it can be replaced
with a different algorithm if necessary. Either SSTF or LOOK is a reasonable
choice for the default algorithm.

The scheduling algorithms described here consider only the seek distances.
For modern disks, the rotational latency can be nearly as large as the average
seek time. But it is difficult for the operating system to schedule for improved
rotational latency because modern disks do not disclose the physical location
of logical blocks. Disk manufacturers have been alleviating this problem by
implementing disk-scheduling algorithms in the controller hardware built into
the disk drive. If the operating system sends a batch of requests to the controller,
the controller can queue them and then schedule them to improve both the seek
time and the rotational latency. If 1/0 performance were the only consideration,
the operating system would gladly turn over the responsibility of disk schedul-
ing to the disk hardware. In practice, however, the operating system may have
other constraints on the service order for requests. For instance, demand paging
may take priority over application I/O, and writes are more urgent than reads if
the cache is running out of free pages. Also, it may be desirable to guarantee the
order of a set of disk writes to make the file system robust in the face of system
crashes. Consider what could happen if the operating system allocated a disk
page to a file, and the application wrote data into that page before the operating
system had a chance to flush the modified inode and free-space list back to disk.
To accommodate such requirements, an operating system may choose to do its
own disk scheduling and to spoon-feed the requests to the disk controller, one
by one, for some types of I/O.

14.3 Disk Management

The operating system is responsible for several other aspects of disk manage-
ment, too. Here we discuss disk initialization, booting from disk, and bad-block
recovery.

14.3.1 Disk Formatting
A new magnetic disk is a blank slate: It is just platters of a magnetic recording
material. Before a disk can store data, it must be divided into sectors that the
disk controller can read and write. This process is called low-level formatting

14.3 Disk Management 499

(or physical formatting). Low-level formatting fills the disk with a special data
structure for each sector. The data structure for a sector typically consists of a
header, a data area (usually 512 bytes in size), and a trailer. The header and
trailer contain information used by the disk controller, such as a sector number
and an error-correcting code (ECC). When the controller writes a sector of data
during normal I/O, the ECC is updated with a value calculated from all the
bytes in the data area. When the sector is read, the ECC is recalculated and
is compared with the stored value. If the stored and calculated numbers are
different, this mismatch indicates that the data area of the sector has become
corrupted and that the disk sector may be bad (Section 14.3.3). The ECC is an
error-correcting code because it contains enough information that, if only a few
bits of data have been corrupted, the controller can identify which bits have
changed and can calculate what their correct values should be. The controller I

I
automatically does the ECC processing whenever a sector is read or written.

Most hard disks are low-level formatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the

I

disk and to initialize the mapping from logical block numbers to defect-free
sectors on the disk. For many hard disks, when the disk controller is instructed
to low-level format the disk, it can also be told how many bytes of data space
to leave between the header and trailer of all sectors. It is usually possible
to choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a
disk with a larger sector size means that fewer sectors can fit on each track, but
that also means fewer headers and trailers are written on each track, and thus
increases the space available for user data. Some operating systems can handle
only a sector size of 512 bytes.

To use a disk to hold files, the operating system still needs to record its own
data structures on the disk. It does so in two steps. The first step is to partition
the disk into one or more groups of cylinders. The operating system can treat
each partition as though it were a separate disk. For instance, one partition can
hold a copy of the operating system's executable code, while another holds user
files. After partitioning, the second step is logical formatting (or creation of a
file system). In this step, the operating system stores the initial file-system data
structures onto the disk. These data structures may include maps of free and
allocated space (a FAT or inodes) and an initial empty directory.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and I/O to this
array is termed raw I/O. For example, some database systems prefer raw I/O
because it enables them to control the exact disk location where each database
record is stored. Raw 1 /0 bypasses all the file-system services, such as the buffer
cache, file locking, prefetching, space allocation, file names, and directories.
We can make certain applications more efficient by implementing their own
special-purpose storage services on a raw partition, but most applications
perform better when they use the regular file-system services.

500 Chapter 14 Mass-Storage Structure

14.3.2 Boot Block

For a computer to start running-for instance, when it is powered up or
rebooted-it needs to have an initial program to run. This initial bootstrap
program tends to be simple. It initializes all aspects of the system, from CPU
registers to device controllers and the contents of main memory, and then starts
the operating system. To do its job, the bootstrap program finds the operating-
system kernel on disk, loads that kernel into memory, and jumps to an initial
address to begin the operating-system execution.

For most computers, the bootstrap is stored in read-only memory (ROM).
This location is convenient, because ROM needs no initialization and is at a fixed
location that the processor can start executing when powered up or reset. And,
since ROM is read only, it cannot be infected by a computer virus. The problem
is that changing this bootstrap code requires changing the ROM hardware chips.
For this reason, most systems store a tiny bootstrap loader program in the boot
ROM, whose only job is to bring in a full bootstrap program from disk. The
full bootstrap program can be changed easily: A new version is simply written
onto the disk. The full bootstrap program is stored in a partition called the boot
blocks, at a fixed location on the disk. A disk that has a boot partition is called
a boot disk or system disk.

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point), and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM; it is able to load the entire operating system
from a nonfixed location on disk, and to start the operating system running.
Even so, the full bootstrap code may be small. For example, MS-DOS uses one
512-byte block for its boot program (Figure 14.6).

14.3.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk head
flies just above the disk surface), they are prone to failure. Sometimes the failure
is complete, and the disk needs to be replaced, and its contents restored from
backup media to the new disk. More frequently, one or more sectors become
defective. Most disks even come from the factory with bad blocks. Depending
on the disk and controller in use, these blocks are handled in a variety of ways.

On simple disks, such as some disks with IDE controllers, bad blocks are
handled manually. For instance, the MS-DOS format command does a logical
format and, as a part of the process, scans the disk to find bad blocks. Iff ormat
finds a bad block, it writes a special value into the corresponding FAT entry to
tell the allocation routines not to use that block. If blocks go bad during normal
operation, a special program (such as chkdsk) must be run manually to search
for the bad blocks and to lock them away as before. Data that resided on the
bad blocks usually are lost.

14.3 Disk Management 501

sector

sector

Figure 14.6 MS-DOS disk layout.

More sophisticated disks, such as the SCSI disks used in high-end PCs and
most workstations and servers, are smarter about bad-block recovery. The
controller maintains a list of bad blocks on the disk. The list is initialized during
the low-level format at the factory, and is updated over the life of the disk. Low-
level formatting also sets aside spare sectors not visible to the operating system.
The controller can be told to replace each bad sector logically with one of the
spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

The operating system tries to read logical block 87.

The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system.

The next time that the system is rebooted, a special command is run to tell
the SCSI controller to replace the bad sector with a spare.

After that, whenever the system requests logical block 87, the request is
translated into the replacement sector's address by the controller.

Such a redirection by the controller could invalidate any optimization by
the operating system's disk-scheduling algorithm! For this reason, most disks
are formatted to provide a few spare sectors in each cylinder, and a spare
cylinder as well. When a bad block is remapped, the controller uses a spare
sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that
logical block 17 becomes defective, and the first available spare follows sector
202. Then, sector slipping would remap all the sectors from 17 to 202, moving
them all down one spot. That is, sector 202 would be copied into the spare, then
sector 201 into 202, and then 200 into 201, and so on, until sector 18 is copied
into sector 19. Slipping the sectors in this way frees up the space of sector 18, so
sector 17 can be mapped to it.

502 Chapter 14 Mass-Storage Structure

The replacement of a bad block generally is not a totally automatic process
because the data in the bad block are usually lost. Thus, whatever file was
using that block must be repaired (for instance, by restoration from a backup
tape), and that requires manual intervention.

14.4 Swap-Space Management

Swap-space management is another low-level task of the operating system.
Virtual memory uses disk space as an extension of main memory. Since disk
access is much slower than memory access, using swap space significantly
decreases system performance. The main goal for the design and implemen-
tation of swap space is to provide the best throughput for the virtual-memory
system. In this section, we discuss how swap space is used, where swap space
is located on disk, and how swap space is managed.

14.4.1 Swap-Space Use
Swap space is used in various ways by different operating systems, depending
on the implemented memory-management algorithms. For instance, systems
that implement swapping may use swap space to hold the entire process image,
including the code and data segments. Paging systems may simply store pages
that have been pushed out of main memory. The amount of swap space needed
on a system can therefore vary depending on the amount of physical memory,
the amount of virtual memory it is backing, and the way in which the virtual
memory is used. It can range from a few megabytes of disk space to gigabytes.

Some operating systems, such as UNIX, allow the use of multiple swap
spaces. These swap spaces are usually put on separate disks, so the load placed
on the 1 /0 system by paging and swapping can be spread over the system's I/O
devices.

Note that it is safer to overestimate than to underestimate swap space,
because if a system runs out of swap space it may be forced to abort processes
or may crash entirely. Overestimation wastes disk space that could otherwise
be used for files, but does no other harm.

14.4.2 Swap-Space Location

A swap space can reside in two places: Swap space can be carved out of the
normal file system, or it can be in a separate disk partition. If the swap space
is simply a large file within the file system, normal file-system routines can be
used to create it, name it, and allocate its space. This approach, though easy
to implement, is also inefficient. Navigating the directory structure and the
disk-allocation data structures takes time and (potentially) extra disk accesses.
External fragmentation can greatly increase swapping times by forcing multiple

14.4 Swap-Space Management 503

seeks during reading or writing of a process image. We can improve perfor-
mance by caching the block location information in physical memory, and by
using special tools to allocate physically contiguous blocks for the swap file, but
the cost of traversing the file-system data structures still remains.

Alternatively, swap space can be created in a separate disk partition. No
file system or directory structure is placed on this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks. This
manager uses algorithms optimized for speed, rather than for storage efficiency.
Internal fragmentation may increase, but this tradeoff is acceptable because
data in the swap space generally live for much shorter amounts of time than
do files in the file system, and the swap area may be accessed much more
frequently. This approach creates a fixed amount of swap space during disk
partitioning. Adding more swap space can be done only via repartitioning
of the disk (which involves moving or destroying and restoring the other file-
system partitions from backup), or via adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Solaris 2 is an example. The policy and implementa-
tion are separate, allowing the machine's administrator to decide which type to
use. The tradeoff is between the convenience of allocation and management in
the file system, and the performance of swapping in raw partitions.

14.4.3 Swap-Space Management: An Example
To illustrate the methods used to manage swap space, we now follow the
evolution of swapping and paging in UNIX. As discussed fully in Appendix A,
UNIX started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX evolved to a combination
of swapping and paging, as paging hardware became available.

In 4.3 BSD, swap space is allocated to a process when the process is started.
Enough space is set aside to hold the program, known as the text pages or the
text segment, and the data segment of the process. Preallocating all the needed
space in this way generally prevents a process from running out of swap space
while it executes. When a process starts, its text is paged in from the file system.
These pages are written out to swap when necessary, and are read back in from
there, so the file system is consulted only once for each text page. Pages from
the data segment are read in from the file system, or are created (if they are
uninitialized), and are written to swap space and paged back in as needed.
One optimization (for instance, when two users run the same editor) is that
processes with identical text pages share these pages, both in physical memory
and in swap space.

Two per-process swap maps are used by the kernel to track swap-space
use. The text segment is a fixed size, so its swap space is allocated in 512 KB
chunks, except for the final chunk, which holds the remainder of the pages, in
1 KB increments (Figure 14.7).

504 Chapter 14 Mass-Storage Structure

Figure 14.7 4.3 BSD text-segment swap map.

The data-segment swap map is more complicated, because the data seg-
ment can grow over time. The map is of fixed size, but contains swap addresses
for blocks of varying size. Given index i, a block pointed to by swap-map entry
i is of size 2' x 16 KB, to a maximum of 2 MB. This data structure is shown
in Figure 14.8. (The block size minimum and maximum are variable, and can
be changed at system reboot.) When a process tries to grow its data segment
beyond the final allocated block in its swap area, the operating system allocates
another block, twice as large as the previous one. This scheme results in small
processes using only small blocks. It also minimizes fragmentation. The blocks
of large processes can be found quickly, and the swap map remains small.

In Solaris 1 (SunOS 4), the designers made changes to standard UNIX meth-
ods to improve efficiency and reflect technological changes. When a process
executes, text-segment pages are brought in from the file system, accessed in
main memory, and thrown away if selected for pageout. It is more efficient to
reread a page from the file system than to write it to swap space and then to
reread it from there.

More changes were made in Solaris 2. The biggest change is that Solaris 2
allocates swap space only when a page is forced out of physical memory, rather
than when the virtual-memory page is first created. This change gives better
performance on modern computers, which have more physical memory than
older systems and tend to page less.

Figure 14.8 4.3 BSD data-segment swap map.

14.5 RAID Structure 505

14.5 . RAID Structure

Disk drives have continued to get smaller and cheaper, so it is now economi-
cally feasible to attach a large number of disks to a computer system.

Having a large number of disks in a system presents opportunities for
improving the rate at which data can be read or written, if the disks are
operated in parallel. Furthermore, this setup offers the potential for improving
the reliability of data storage, because redundant information can be stored
on multiple disks. Thus, failure of one disk does not lead to loss of data. A
variety of disk-organization techniques, collectively called redundant arrays of
inexpensive disks (RAID), are commonly used to address the performance and
reliability issues.

In the past, RAIDS composed of small cheap disks were viewed as a cost-
effective alternative to large, expensive disks; today, RAIDS are used for their
higher reliability and higher data-transfer rate, rather than for economic rea-
sons. Hence, the I in RAID stands for "independent", instead of "inexpensive."

14.5.1 Improvement of Reliability via Redundancy
Let us first consider reliability. The chance that some disk out of a set of N
disks will fail is much higher than the chance that a specific single disk will
fail. Suppose that the mean time to failure of a single disk is 100,000 hours.
Then, the mean time to failure of some disk in an array of 100 disks will be
100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we store
only one copy of the data, then each disk failure will result in loss of a significant
amount of data-such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; we
store extra information that is not needed normally, but that can be used in the
event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost.

The simplest (but most expensive) approach to introducing redundancy is
to duplicate every disk. This technique is called mirroring (or shadowing). A
logical disk then consists of two physical disks, and every write is carried out
on both disks. If one of the disks fails, the data can be read from the other. Data
will be lost only if the second disk fails before the first failed disk is replaced.

The mean time to failure-where failure is the loss of data-of a mirrored
disk depends on two factors: the mean time to failure of the individual disks,
as well as on the mean time to repair, which is the time it takes (on average) to
replace a failed disk and to restore the data on it. Suppose that the failures of
the two disks are independent; that is, the failure of one disk is not connected
to the failure of the other. Then, if the mean time to failure of a single disk is
100,000 hours and the mean time to repair is 10 hours, then the mean time to
data loss of a mirrored disk system is 100, 0002/(2 * 10) = 500 * lo6 hours, or
57,000 years!

506 Chapter 14 Mass-Storage Structure

You should be aware that the assumption of independence of disk failures
is not valid. Power failures and natural disasters, such as earthquakes, fires,
and floods, may result in damage to both disks at the same time. Also,
manufacturing defects in a batch of disks can cause correlated failures. As disks
age, the probability of failure increases, increasing the chance that a second disk
will fail while the first is being repaired. In spite of all these considerations,
however, mirrored-disk systems offer much higher reliability than do single-
disk systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. However, even with mirroring of disks, if
writes are in progress to the same block in both disks, and power fails before
both blocks are fully written, the two blocks can be in an inconsistent state. The
solution to this problem is to write one copy first, then the next, so that one of
the two copies is always consistent. Some extra actions are required when we
restart after a power failure, to recover from incomplete writes.

14.5.2 Improvement in Performance via Parallelism
Now let us consider the benefit of parallel access to multiple disks. With disk
mirroring, the rate at which read requests can be handled is doubled, since read
requests can be sent to either disk (as long as both disks in a pair are functional,
as is almost always the case). The transfer rate of each read is the same as in a
single-disk system, but the number of reads per unit time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead) by
striping data across multiple disks. In its simplest form, data striping consists
of splitting the bits of each byte across multiple disks; such striping is called
bit-level striping. For example, if we have an array of eight disks, we write bit
i of each byte to disk i. The array of eight disks can be treated as a single disk
with sectors that are eight times the normal size, and, more important, that have
eight times the access rate. In such an organization, every disk participates in
every access (read or write), so the number of accesses that can be processed
per second is about the same as on a single disk, but each access can read eight
times as many data in the same time as on a single disk.

Bit-level striping can be generalized to a number of disks that either is a
multiple of 8 or divides 8. For example, if we use an array of four disks, bits i
and 4+i of each byte go to disk i. Further, striping does not need to be at the level
of bits of a byte: For example, in block-level striping, blocks of a file are striped
across multiple disks; with n disks, block i of a file goes to disk (i mod n) + 1.
Other levels of striping, such as bytes of a sector or sectors of a block, also are
possible.

In summary, there are two main goals of parallelism in a disk system:

1. Increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

2. Reduce the response time of large accesses.

14.5 RAID Structure 507 1

1 14.5.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes to
provide redundancy at lower cost by using the idea of disk striping combined
with "parity" bits (which we describe next) have been proposed. These schemes
have different cost-performance tradeoffs and are classified into levels called
RAID levels. We describe the various levels here; Figure 14.9 shows them
pictorially (in the figure, P indicates error-correcting bits and C indicates a
second copy of the data). In all cases depicted in the figure, four disks' worth of

(a) RAID 0: non-redundant striping

(b) RAID I : mirrored disks

(c) RAID 2: memory-style error-correcting codes

(d) RAID 3: bit-interleaved Parity

(e) RAID 4: block-interleaved parity

(0 RAID 5: block-Interleaved distributed parity

(g) RAID 6: P + Q redundancy

Figure 14.9 RAID levels.

508 Chapter 14 Mass-Storage Structure

data is stored, and the extra disks are used to store redundant information for
failure recovery.

RAID Level 0: RAID level 0 refers to disk arrays with striping at the level
of blocks, but without any redundancy (such as mirroring or parity bits).
Figure 14.9a shows an array of size 4.

RAID Level 1: RAID level 1 refers to disk mirroring. Figure 14.9b shows a
mirrored organization that holds four disks' worth of data.

RAID Level 2: RAID level 2 is also known as memory-style error-correcting-
code (ECC) organization. Memory systems have long implemented error
detection using parity bits. Each byte in a memory system may have a
parity bit associated with it that records whether the numbers of bits in the
byte set to 1 is even (parity=O) or odd (parity=l). If one of the bits in the
byte gets damaged (either a 1 becomes a 0, or a 0 becomes a I), the parity of
the byte changes and thus will not match the stored parity. Similarly, if the
stored parity bit gets damaged, it will not match the computed parity. Thus,
all single-bit errors are detected by the memory system. Error-correcting
schemes store two or more extra bits, and can reconstruct the data if a single
bit gets damaged. The idea of ECC can be used directly in disk arrays via
striping of bytes across disks. For example, the first bit of each byte could
be stored in disk 1, the second bit in disk 2, and so on until the eighth bit
is stored in disk 8, and the error-correction bits are stored in further disks.
This scheme is shown pictorially in Figure 14.9, where the disks labeled P
store the error-correction bits. If one of the disks fails, the remaining bits
of the byte and the associated error-correction bits can be read from other
disks and be used to reconstruct the damaged data. Figure 14.9~ shows an
array of size 4; note RAID level 2 requires only three disks' overhead for four
disks of data, unlike RAID level 1, which required four disks' overhead.

RAID level 3: RAID level 3, or bit-interleaved parity organization,
improves on level 2 by noting that, unlike memory systems, disk
controllers can detect whether a sector has been read correctly, so a single
parity bit can be used for error correction, as well as for detection. The idea
is as follows. If one of the sectors gets damaged, we know exactly which
sector it is, and, for each bit in the sector, we can figure out whether it is
a 1 or a 0 by computing the parity of the corresponding bits from sectors
in the other disks. If the parity of the remaining bits is equal to the stored
parity, the missing bit is 0; otherwise, it is 1. RAID level 3 is as good as
level 2 but is less expensive in the number of extra disks (it has only a
one-disk overhead), so level 2 is not used in practice. This scheme is shown
pictorially in Figure 14.9d.

RAID level 3 has two benefits over level 1. Only one parity disk is
needed for several regular disks, unlike one mirror disk for every disk in

I 14.5 RAID Structure 509

level 1, thus reducing the storage overhead. Since reads and writes of a
byte are spread out over multiple disks, with N-way striping of data, the
transfer rate for reading or writing a single block is N times as fast as with a
RAID-level-1 organization using N-way striping. On the other hand, RAID
level 3 supports a lower number of I/Os per second, since every disk has
to participate in every I/O request. A further performance problem with
RAID 3 (as with all parity-based RAID levels) is the expense of computing
and writing the parity. This overhead results in significantly slower writes,
as compared to non-parity RAID arrays. To moderate this performance
penalty, many RAID storage arrays include a hardware controller with
dedicated parity hardware. This offloads the parity computation from the
CPU to the array. The array has a non-volatile RAM (NVRAM) cache as well,
to store the blocks while the parity is computed and to buffer the writes
from the controller to the spindles. This combination can make parity RAID
almost as fast as non-parity. In fact, a caching array doing parity RAID can
outperform a non-caching non-parity RAID.

RAID Level 4: RAID level 4, or block-interleaved parity organization, uses
block-level striping, as in RAID 0, and in addition keeps a parity block on a
separate disk for corresponding blocks from N other disks. This scheme is
shown pictorially in Figure 14.9e. If one of the disks fails, the parity block
can be used with the corresponding blocks from the other disks to restore
the blocks of the failed disk.
A block read accesses only one disk, allowing other requests to be processed
by the other disks. Thus, the data-transfer rate for each access is slower, but
multiple read accesses can proceed in parallel, leading to a higher overall
I/O rate. The transfer rates for large reads is high, since all the disks can
be read in parallel; large writes also have high transfer rates, since the data
and parity can be written in parallel.
Small independent writes, on the other hand, cannot be performed in
parallel. A write of a block has to access the disk on which the block is
stored, as well as the parity disk, since the parity block has to be updated.
Moreover, both the old value of the parity block and the old value of the
block being written have to be read for the new parity to be computed.
This is known as the read-modify-write. Thus, a single write requires four
disk accesses: two to read the two old blocks, and two to write the two new
blocks.

RAID level 5: RAID level 5, or block-interleaved distributed parity, differs
from level 4 by spreading data and parity among all N + 1 disks, rather than
storing data in N disks and parity in one disk. For each block, one of the
disks stores the parity, and the others store data. For example, with an array
of five disks, the parity for the nth block is stored in disk (n mod 5) + 1; the

I
nth blocks of the other four disks store actual data for that block. This setup
is denoted pictorially in Figure 14.9f, where the Ps are distributed across all

510 Chapter 14 Mass-Storage Structure

the disks. A parity block cannot store parity for blocks in the same disk,
because a disk failure would result in loss of data as well as of parity, and
hence would not be recoverable. By spreading the parity across all the disks
in the set, RAID 5 avoids the potential overuse of a single parity disk that
can occur with RAID 4.

a RAID Level 6: RAID level 6, also called the P+Q redundancy scheme, is
much like RAID level 5, but stores extra redundant information to guard
against multiple disk failures. Instead of using parity, error-correcting
codes such as the Reed-Solomon codes are used. In the scheme shown in
Figure 14.9g, 2 bits of redundant data are stored for every 4 bits of data-
unlike 1 parity bit in level 5-and the system can tolerate two disk failures.

RAID level 0 + 1: RAID level 0 + 1 refers to a combination of RAID
levels 0 and 1. RAID 0 provides the performance, while RAID 1 provides
the reliability. Generally, it provides better performance than RAID 5. It
is common in environments where both performance and reliability are
important. Unfortunately, it doubles the number of disks needed for
storage, as does RAID 1, so it is also more expensive. In RAID 0 + 1, a set
of disks are striped, and then the stripe is mirrored to another, equivalent
stripe. Another RAID option that is becoming available commercially is
RAID 1 + 0, in which disks are mirrored in pairs, and then the resulting
mirror pairs are striped. This RAID has some theoretical advantages over
RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, the entire stripe
is inaccessible, leaving only the other stripe available. With a failure in RAID
1 + 0, the single disk is unavailable, but its mirrored pair is still available as
are all the rest of the disks (Figure 14.10).

Finally, we note that numerous variations have been proposed to the basic
RAID schemes described here. As a result, some confusion may exist about the
exact definitions of the different RAID levels.

14.5.4 Selecting a RAID Level
If a disk fails, the time to rebuild its data can be significant and will vary with the
RAID level used. Rebuilding is easiest for RAID level 1, since data can be copied
from another disk; for the other levels, we need to access all the other disks in
the array to rebuild data in a failed disk. The rebuild performance of a RAID
system may be an important factor if continuous supply of data is required, as
it is in high-performance or interactive database systems. Furthermore, rebuild
performance influences the mean time to failure.

RAID level 0 is used in high-performance applications where data loss is
not critical. RAID level 1 is popular for applications that require high reliability
with fast recovery. RAID 0 + 1 and 1 + 0 are used where performance and
reliability are important, for example for small databases. Due to RAID 1's high

14.5 RAID Structure 511

stripe

I mirror

stripe

a) RAID 0 + 1 with a single disk failure

1 mirror 1 mirror 1 mirror 1 mirror

b) RAID 1 + 0 with a single disk failure

Figure 14.10 RAID 0 + 1 and 1 + 0.

space overhead, RAID level 5 is often preferred for storing large volumes of
data. Level 6 is not supported currently by many RAID implementations, but it
should offer better reliability than level 5.

RAID system designers have to make several other decisions as well. For
example, how many disks should be in an array? How many bits should be
protected by each parity bit? If more disks are in an array, data-transfer rates
are higher, but the system is more expensive. If more bits are protected by a
parity bit, the space overhead due to parity bits is lower, but the chance that a
second disk will fail before the first failed disk is repaired is greater, and that
will result in data loss.

One other aspect of most RAID implementations is a hot spare disk or disks.
A hot spare is not used for data, but is configured to be used as a replacement
should any other disk fail. For instance, a hot spare can be used to rebuild a
mirror pair should one of the disks in the pair fail. In this way, the RAID level
can be reestablished automatically, without waiting for the failed disk to be
replaced. Allocating more than one hot spare allows more than one failure to
be repaired without human intervention.

512 Chapter 14 Mass-Storage Structure

14.5.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, the RAID structures are able to recover data even if
one of the tapes in an array of tapes is damaged. When applied to broadcast of
data, a block of data is split into short units and is broadcast along with a parity
unit; if one of the units is not received for any reason, it can be reconstructed
from the other units. Commonly, tape-drive robots containing multiple tape
drives will stripe data across all the drives to increase throughput and decrease
backup time.

14.6 Disk Attachment

Computers access disk storage in two ways. One way is via I/O ports (or host-
attached storage); this is common on small systems. The other way is via a
remote host via a distributed file system; this is referred to as network-attached
storage.

14.6.1 Host-Attached Storage

Host-attached storage is storage accessed via local I/O ports. These ports are
available in several technologies. The typical desktop PC uses an I/O bus
architecture called IDE or ATA. This architecture supports a maximum of two
drives per I/O bus. High-end workstations and servers generally use more
sophisticated 1 /0 architectures such as SCSI and fibre channel (FC).

SCSI is a bus architecture. Its physical medium is usually a ribbon cable
having a large number of conductors (typically 50 or 68). The SCSI protocol
supports a maximum of 16 devices on the bus. Typically this consists of one
controller card in the host (the SCSI initiator), and up to 15 storage devices (the
SCSI targets). A SCSI disk is a typical SCSI target, but the protocol provides
the ability to address up to 8 logical units in each SCSI target. A typical use of
logical unit addressing is to direct commands to components of a RAID array,
or components of a removable media library (such as a CD jukebox sending
commands to the media changer mechanism or to one of the drives).

FC is a high-speed serial architecture. This architecture can operate over
optical fiber or over a 4-conductor copper cable. It has two variants. One
is a large switched fabric having a 24-bit address space. This method is
expected to dominate in the future, and is the basis of storage-area networks
(SANS). Because of the large address space and the switched nature of the
communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in I/O communication. The other is an arbitrated loop
(FC-AL) that can address 126 devices (drives and controllers).

14.6 Disk Attachment 513

1

A wide variety of storage devices are suitable for use as host-attached
storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and
tape drives.

The I/O commands that initiate data transfers to a host-attached storage
device are reads and writes of logical data blocks, directed to specifically
identified storage units (such as bus ID, SCSI ID, and target logical unit, for
example).

I 14.6.2 Network-Attached Storage

A network-attached storage device is a special-purpose storage system that is
accessed remotely over a data network (Figure 14.11). Clients access network-
attached storage (NAS) via a remote-procedure-call interface such as NFS for
UNIX systems, or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network-usually the same local-
area network (LAN) that carries all data traffic to the clients. The network-
attached storage unit is usually implemented as a RAID array with software
that implements the remote procedure call interface. It is easiest to think of
NAS as simply another storage-access protocol. For example, rather than using
a SCSI device driver and SCSI protocols to access storage, a system using NAS
would use RPC over TCP/IP.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage, with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

14.6.3 Storage-Area Network

One drawback of network-attached storage systems is that the storage 1/0
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute

Figure 14.11 Network-attached storage.

514 Chapter 14 Mass-Storage Structure

Figure 14.12 Storage-area network.

in large client-server installations-the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage protocols
rather than networking protocols) among the servers and storage units, sepa-
rate from the LAN or WAN that connects the servers to the clients (Figure 14.12).
The power of a SAN lies in its flexibility. Multiple hosts and multiple storage
arrays can attach to the same SAN, and storage can be dynamically allocated to
hosts. As one example, if a host is running low on disk space, the SAN can be
configured to allocate more storage to that host. In 2001, many proprietary
single-vendor SAN systems are available, but SAN components are not well
standardized or interoperable. Most SAN systems in 2001 are based on fibre-
channel loops or fibre-channel switched networks. One emerging alternative to
a fibre-channel interconnect for the SAN is storage over IP network infrastruc-
ture such as Gigabit Ethernet. Another potential alternative is a special-purpose
SAN architecture named Infiniband, which provides hardware and software
support for high-speed interconnection networks for servers and storage units.

14.7 Stable-Storage Implementation

In Chapter 7, we introduced the write-ahead log, which required the availability
of stable storage. By definition, information residing in stable storage is never
lost. To implement such storage, we need to replicate the needed information
on multiple storage devices (usually disks) with independent failure modes.
We need to coordinate the writing of updates in a way that guarantees that
a failure during an update will not leave all the copies in a damaged state,
and that, when we are recovering from a failure, we can force all copies to a

14.7 Stable-Storage Implementation 515

consistent and correct value, even if another failure occurs during the recovery.
In the remainder of this section, we discuss how to meet our needs.

A disk write results in one of three outcomes:

I 1. Successful completion: The data were written correctly on disk.

2. Partial failure: A failure occurred in the midst of transfer, so only some of
I

the sectors were written with the new data, and the sector being written
during the failure may have been corrupted.

3. Total failure: The failure occurred before the disk write started, so the
previous data values on the disk remain intact.

We require that, whenever a failure occurs during writing of a block, the
system detects it and invokes a recovery procedure to restore the block to a
consistent state. To do that, the system must maintain two physical blocks for
each logical block. An output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information
onto the second physical block.

3. Declare the operation complete only after the second write completes suc-
cessfully.

During recovery from a failure, each pair of physical blocks is examined.
If both are the same and no detectable error exists, then no further action is
necessary. If one block contains a detectable error, then we replace its contents
with the value of the other block. If both blocks contain no detectable error,
but they differ in content, then we replace the content of the first block with
the value of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely or results in no change.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although a large number of
copies further reduces the probability of a failure, it is usually reasonable to
simulate stable storage with only two copies. The data in stable storage are
guaranteed to be safe unless a failure destroys all the copies.

Because waiting for disk writes to complete (synchronous I/O) is time
consuming, many storage arrays add NVRAM as a cache. Because the memory
is non-volatile (usually it has battery power as a backup to the unit's power), it
can be trusted to store the data on its way to the disks. It is thus considered part
of the stable storage. Writes to it are much faster than to disk, so performance
is greatly improved.

516 Chapter 14 Mass-Storage Structure

14.8 Tertiary-Storage Structure

Would you buy a VCR that had inside it only one tape that you could not take
out or replace? Or an audio cassette player or CD player that had one album
sealed inside? Of course not. You expect to use a VCR or CD player with
many relatively inexpensive tapes or disks. On a computer as well, using many
inexpensive cartridges with one drive lowers the overall cost.

14.8.1 Tertiary-Storage Devices
Low cost is the defining characteristic of tertiary storage. So, in practice,
tertiary storage is built with removable media. The most common examples
of removable media are floppy disks, CD-ROMs, and tapes; many other kinds of
tertiary-storage devices are available as well.

14.8.1.1 Removable Disks

Removable disks are one kind of tertiary storage. Floppy disks are an example
of removable magnetic disks. They are made from a thin flexible disk coated
with magnetic material, enclosed in a protective plastic case. Although com-
mon floppy disks can hold only about 1 MB, similar technology is used for
removable magnetic disks that hold more than 1 GB. Removable magnetic disks
can be nearly as fast as hard disks, although the recording surface is at greater
risk of damage from scratches.

A magneto-optic disk is another kind of removable disk. It records data
on a rigid platter coated with magnetic material, but the recording technology
is quite different from that for a magnetic disk. The magneto-optic head flies
much farther from the disk surface than a magnetic disk head does, and the
magnetic material is covered with a thick protective layer of plastic or glass.
This arrangement makes the disk much more resistant to head crashes.

The drive has a coil that produces a magnetic field; at room temperature,
the field is too large and too weak to magnetize a bit on the disk. To write a
bit, the disk head flashes a laser beam at the disk surface. The laser is aimed at
a tiny spot where a bit is to be written. The laser heats this spot, which makes
the spot susceptible to the magnetic field. So the large, weak magnetic field can
record a tiny bit.

The magneto-optic head is too far from the disk surface to read the data by
detecting the tiny magnetic fields in the way that the head of a hard disk does.
Instead, the drive reads a bit using a property of laser light- called the Kerr
effect. When a laser beam is bounced off of a magnetic spot, the polarization
of the laser beam is rotated clockwise or counter-clockwise, depending on the
orientation of the magnetic field. This rotation is what the head detects to read
a bit.

i
14.8 Tertiary-Storage Structure 517

Another category of removable disk is the optical disk. These disks do
not use magnetism at all. They use special materials that can be altered by
laser light to have relatively dark or bright spots. One example of optical-disk
technology is the phase-change disk.

The phase-change disk is coated with a material that can freeze into either
a crystalline or an amorphous state. The crystalline state is more transparent,
and hence a laser beam is brighter when it passes through the phase-change
material and bounces off the reflective layer. The phase-change drive uses laser
light at three different powers: low power to read data, medium power to erase
the disk by melting and refreezing the recording medium into the crystalline
state, and a high power to melt the medium into the amorphous state to write
to the disk. The most common examples of this technology are the re-recordable
CD-RW and DVD-RW.

The kinds of disks described here can be used over and over. They are
called read-write disks. In contrast, write-once, read-many-times (WORM)
disks form another category. An old way to make a WORM disk is to manufac-
ture a thin aluminum film sandwiched between two glass or plastic platters.
To write a bit, the drive uses a laser light to burn a small hole through the
aluminum. Because this burning cannot be reversed, any sector on the disk can
be written only once. Although it is possible to destroy the information on a
WORM disk by burning holes everywhere, it is virtually impossible to alter data
on the disk, because holes can only be added, and the ECC code associated with
each sector is likely to detect such additions. WORM disks are considered to
be durable and reliable because the metal layer is safely encapsulated between
the protective glass or plastic platters, and magnetic fields cannot damage the
recording. A newer write-once technology records on an organic polymer dye
instead of an aluminum layer: the dye absorbs laser light to form marks. This
technology is used in the recordable CD-R and DVD-R.

Read-only disks, such as CD-ROM and DVD, come from the factory with
the data pre-recorded. They use technology similar to that of WORM disks
(although the pits are pressed, not burnt), and they are very durable.

Most removable disks are slower than their non-removable counterparts.
The writing process is slower, as are rotation and sometimes seek time.

14.8.1.2 Tapes

Magnetic tape is another type of removable medium. As a general rule, a tape
holds more data than an optical or magnetic disk cartridge. Tape drives and
disk drives have similar transfer rates. But random access to tape is much
slower than a disk seek, because it requires a fast-forward or rewind operation
that takes tens of seconds, or even minutes.

Although a typical tape drive is more expensive than a typical disk drive,
the price of a tape cartridge is lower than the price of the equivalent capacity
of magnetic disks. So tape is an economical medium for purposes that do not

518 Chapter 14 Mass-Storage Structure

require fast random access. Tapes are commonly used to hold backup copies
of disk data. They are also used in large supercomputer centers to hold the
enormous volumes of data used in scientific research and by large commercial
enterprises.

Some tapes can hold much more data than can a disk drive; the surface area
of a tape is much larger than the surface area of a disk. The storage capacity of
tapes could improve even further, because at present the areal density (or bits
per square inch) of tape technology is much less than that for magnetic disks.

Large tape installations typically use robotic tape changers that move tapes
between tape drives and storage slots in a tape library. These mechanisms give
the computer automated access to a large number of tape cartridges.

A robotic tape library can lower the overall cost of data storage. A disk-
resident file that will not be needed for a while can be archived to tape,
where the cost per gigabyte can be lower; if the file is needed in the future,
the computer can stage it back into disk storage for active use. A robotic
tape library is sometimes called near-line storage, since it is between the high
performance of on-line magnetic disks and the low cost of off-line tapes sitting
on shelves in a storage room.

14.8.1.3 Future Technology

In the future, other storage technologies may become important. One promis-
ing storage technology, holographic storage, uses laser light to record holo-
graphic photographs on special media. We can think of a black-and-white
photograph as a two-dimensional array of pixels. Each pixel represents one
bit: 0 for black, or 1 for white. A sharp photograph can hold millions of bits of
data. And all the pixels in a hologram are transferred in one flash of laser light,
so the data rate is extremely high. With continued development, holographic
storage may become commercially viable.

Another storage technology under active research is based on micro-
electronic mechanical systems (MEMS). The idea is to apply the fabrication
technologies that produce electronic chips in order to manufacture small data
storage machines. One proposal calls for the fabrication of an array of 10,000
tiny disk heads, with a square centimeter of magnetic storage material sus-
pended above the array. When the storage material is moved lengthwise over
the heads, each head accesses its own linear track of data on the material. The
storage material can be shifted sideways slightly to enable all the heads to
access their next track. Although it remains to be seen whether this technology
can be successful, it may provide a nonvolatile data storage technology that is
faster than magnetic disk and cheaper than semiconductor DRAM.

Whether the storage medium is a removable magnetic disk, a DVD, or a
magnetic tape, the operating system needs to provide several capabilities to use
removable media for data storage. These capabilities are discussed in Section
14.8.2.

I
14.8 Tertiary-Storage Structure 519

14.8.2 Operating-System Jobs
Two major jobs of an operating system are to manage physical devices and to
present a virtual-machine abstraction to applications. In this chapter, we saw
that, for hard disks, the operating system provides two abstractions. One is the
raw device, which is just an array of data blocks. The other is a file system. For
a file system on a magnetic disk, the operating system queues and schedules
the interleaved requests from several applications. Now, we shall see how the
operating system does its job when the storage media are removable.

14.8.2.1 Application Interface

Most operating systems can handle removable disks almost exactly as they do
fixed disks. When a blank cartridge is inserted into the drive (or mounted), the
cartridge must be formatted, and then an empty file system is generated on the
disk. This file system is used just like a file system on a hard disk.

Tapes are often handled differently. The operating system usually presents
a tape as a raw storage medium. An application does not open a file on the
tape; it opens the whole tape drive as a raw device. Usually, the tape drive
then is reserved for the exclusive use of that application until the application
exits or closes the tape device. This exclusivity makes sense, because random
access on a tape can take tens of seconds, or even a few minutes, so interleaving
random accesses to tapes from more than one application would be likely to
cause thrashing.

When the tape drive is presented as a raw device, the operating system
does not provide file-system services. The application must decide how to use
the array of blocks. For instance, a program that backs up a hard disk to tape
might store a list of file names and sizes at the beginning of the tape, and then
copy the data of the files to the tape in that order.

It is easy to see the problems that can arise from this way of using tape.
Since every application makes up its own rules for how to organize a tape, a
tape full of data can generally be used by only the program that created it. For
instance, even if we know that a backup tape contains a list of file names and
file sizes followed by the file data in that order, we still would find it difficult to
use the tape. How exactly are the file names stored? Are the file sizes in binary
or in ASCII? Are the files written one per block, or are they all concatenated
together in one tremendously long string of bytes? We do not even know the
block size on the tape, because this variable is generally one that can be chosen
separately for each block written.

For a disk drive, the basic operations are read, write, and seek. Tape
drives, on the other hand, have a different set of basic operations. Instead of
seek, a tape drive uses the l o c a t e operation. The tape loca t e operation is
more precise than the disk seek operation, because it positions the tape to a
specific logical block, rather than an entire track. Locating to block 0 is the same
as rewinding the tape.

520 Chapter 14 Mass-Storage Structure

For most kinds of tape drives, it is possible to locate to any block that has
been written on a tape. In a partly filled tape, however, it is not possible to
locate into the empty space beyond the written area, because most tape drives
manage their physical space differently from disk drives. For a disk drive, the
sectors have a fixed size, and the formatting process must be used to place
empty sectors in their final positions before any data can be written. Most tape
drives have a variable block size, and the size of each block is determined on
the fly, when that block is written. If an area of defective tape is encountered
during writing, the bad area is skipped and the block is written again. This
operation explains why it is not possible to locate into the empty space beyond
the written area-the positions and numbers of the logical blocks have not yet
been determined.

Most tape drives have a r e a d p o s i t i o n operation that returns the logical
block number where the tape head is. Many tape drives also support a space
operation for relative motion. So, for example, the operation space -2 would
locate backward over two logical blocks.

For most kinds of tape drives, writing a block has the side effect of logically
erasing everything beyond the position of the write. In practice, this side effect
means that most tape drives are append-only devices, because updating a block
in the middle of the tape also effectively erases everything beyond that block.
The tape drive implements this appending by placing an end-of-tape (EOT)
mark after a block that is written. The drive refuses to locate past the EOT
mark, but it is possible to locate to the EOT and then to start writing. Doing
so overwrites the old EOT mark, and places a new one at the end of the new
blocks just written.

In principle, a file system can be implemented on a tape. But many of the
file-system data structures and algorithms would be different from those used
for disks, because of the append-only property of tape.

14.8.2.2 File Naming

Another question that the operating system needs to handle is how to name
files on removable media. For a fixed disk, naming is not difficult. On a PC, the
file name consists of a drive letter followed by a path name. In UNIX, the file
name does not contain a drive letter, but the mount table enables the operating
system to discover on what drive the file is located. But if the disk is removable,
knowing a drive that contained the cartridge at some time in the past does not
mean knowing how to find the file. If every removable cartridge in the world
had a different serial number, the name of a file on a removable device could
be prefixed with the serial number, but to ensure that no two serial numbers
are the same would require each one to be about 12 digits in length. Who could
remember the names of her files if she had to memorize a 12-digit serial number
for each one?

The problem becomes even more difficult when we want to write data
on a removable cartridge on one computer, and then use the cartridge in

14.8 Tertiary-Storage Structure 521

another computer. If both machines are of the same type and have the same
kind of removable drive, the only difficulty is knowing the contents and data
layout on the cartridge. But if the machines or drives are different, many
additional problems can arise. Even if the drives are compatible, different
computers may store bytes in different orders, and may use different encodings
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC on
mainframes).

Today's operating systems generally leave the name-space problem
unsolved for removable media, and depend on applications and users to figure
out how to access and interpret the data. Fortunately, a few kinds of removable
media are so well standardized that all computers use them the same way. One
example is the CD. Music CDs use a universal format that is understood by any
CD drive. Data CDs are available in only a few different formats, so it is usual
for a CD drive and the operating-system device driver to be programmed to
handle all the common formats. DVD formats are also well standardized.

14.8.2.3 Hierarchical Storage Management

A robotic jukebox enables the computer to change the removable cartridge in a
tape or disk drive without human assistance. Two major uses of this technology
are for backups and hierarchical storage systems. The use of a jukebox for
backups is simple: when one cartridge becomes full, the computer instructs the
jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives and
thousands of cartridges, with robotic arms managing the movement of tapes to
the drives.

A hierarchical storage system extends the storage hierarchy beyond pri-
mary memory and secondary storage (that is, magnetic disk) to incorporate
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes
or removable disks. This level of the storage hierarchy is larger, cheaper, and
probably slower.

Although the virtual-memory system can be extended in a straightforward
manner to tertiary storage, this extension is rarely carried out in practice. The
reason is that a retrieval from a jukebox can take tens of seconds or even
minutes, and such a long delay is intolerable for demand paging and for other
forms of virtual-memory use.

The usual way to incorporate tertiary storage is to extend the file sys-
tem. Small and frequently used files remain on magnetic disk, while large
and old files that are not actively used are archived to the jukebox. In some
file-archiving systems, the directory entry for the file continues to exist, but
the contents of the file no longer occupy space in secondary storage. If an
application tries to open the file, the open system call is suspended until the
file contents can be staged in from tertiary storage. When the contents are again
available from magnetic disk, the open operation returns control to the appli-
cation, which proceeds to use the disk-resident copy of the data. Hierarchical
storage management (HSM) has been implemented in ordinary time-sharing

522 Chapter 14 Mass-Storage Structure

systems such as TOPS-20, which ran on minicomputers from Digital Equipment
Corporation in the late 1970s. Today, HSM is usually found in supercomputing
centers and other large installations that have enormous volumes of data.

14.8.3 Performance Issues
As with any component of the operating system, the three most important
aspects of tertiary-storage performance are speed, reliability, and cost.

14.8.3.1 Speed

The speed of tertiary storage has two aspects: bandwidth and latency. We
measure the bandwidth in bytes per second. The sustained bandwidth is the
average data rate during a large transfer, that is, the number of bytes divided
by the transfer time. The effective bandwidth calculates the average over the
entire 1 /0 time, including the time for seek or loca te and any cartridge-
switching time in a jukebox. In essence, the sustained bandwidth is the data
rate when the data stream is actually flowing, and the effective bandwidth is
the overall data rate provided by the drive. The bandwidth of a drive is generally
understood to mean the sustained bandwidth.

For removable disks, the bandwidth ranges from less than 0.25 MB per
second for the slowest, to several megabytes per second for the fastest. Tapes
have an even wider range of bandwidths, from less than 0.25 MB per second
to over 30 MB per second. The fastest tape drives have significantly higher
bandwidth than do removable disk drives.

The second aspect of speed is the access latency. By this performance
measure, disks are much faster than tapes: Disk storage is essentially two-
dimensional-all the bits are out in the open. A disk access simply moves the
arm to the selected cylinder and waits for the rotational latency, which may take
less than 5 milliseconds. By contrast, tape storage is three-dimensional. At any
time, a small portion of the tape is accessible to the head, whereas most of the
bits are buried below hundreds or thousands of layers of tape wound on the
reel. A random access on tape requires winding the tape reels until the selected
block reaches the tape head, which can take tens or hundreds of seconds. So
we can generally say that random access within a tape cartridge is more than a
thousand times slower than random access on disk.

If a jukebox is involved, the access latency can be significantly higher. For
a removable disk to be changed, the drive must stop spinning, then the robotic
arm must switch the disk cartridges, and the drive must spin up the new
cartridge. This operation takes several seconds-about a hundred times larger
than the random-access time within one disk. So switching disks in a jukebox
incurs a relatively high performance penalty.

For tapes, the robotic-arm time is about the same as for disk. But for tapes
to be switched, the old tape generally must rewind before it can be ejected, and
that operation can take as long as 4 minutes. And, after a new tape is loaded

14.8 Tertiary-Storage Structure 523

into the drive, many seconds can be required for the drive to calibrate itself
to the tape and to prepare for I/O. Although a slow tape jukebox can have a
tape switch time of 1 or 2 minutes, this time is not enormously larger than the
random-access time within one tape.

So, to generalize, we say that random access in a disk jukebox has a latency
of tens of seconds, whereas random access in a tape jukebox has a latency of
hundreds of seconds; switching disks is expensive, but switching tapes is not.
Be careful not to overgeneralize: Some expensive tape jukeboxes can rewind,
eject, load a new tape, and fast forward to a random item of data all in less than
30 seconds.

If we pay attention to only the performance of the drives in a jukebox, the
bandwidth and latency seem reasonable. But if we focus our attention on the
cartridges instead, there is a terrible bottleneck. Consider first the bandwidth.
By comparison with a fixed disk, the bandwidth-to-storage-capacity ratio of a
robotic library is much less favorable. To read all the data stored on a large hard
disk could take about an hour. To read all the data stored in a large tape library
could take years. The situation with respect to access latency is nearly as bad.
To illustrate this, if 100 requests are queued for a disk drive, the average waiting
time will be about 1 second. If 100 requests are queued for a tape library, the
average waiting time could be over 1 hour. The low cost of tertiary storage
results from having many cheap cartridges share a few expensive drives. But
a removable library is best devoted to the storage of infrequently used data,
because the library can satisfy only a relatively small number of I/O requests
per hour.

14.8.3.2 Reliability

Although we often think good performance means high speed, another important
aspect of performance is reliability. If we try to read some data and are unable
to do so because of a drive or media failure, for all practical purposes the access
time is infinitely long and the bandwidth is infinitely small. So it is important
to understand the reliability of removable media.

Removable magnetic disks are somewhat less reliable than are fixed hard
disks because the cartridge is more likely to be exposed to harmful environ-
mental conditions such as dust, large changes in temperature and humidity,
and mechanical forces such as shock and bending. Optical disks are considered
very reliable, because the layer that stores the bits is protected by a transparent
plastic or glass layer. The reliability of magnetic tape varies widely, depending
on the kind of drive. Some inexpensive drives wear out tapes after a few dozen
uses; other kinds are gentle enough to allow millions of reuses. By comparison
with a magnetic disk, the head in a magnetic-tape drive is a weak spot. A disk
head flies above the media, but a tape head is in close contact with the tape.
The scrubbing action of the tape can wear out the head after a few thousands or
tens of thousands of hours.

524 Chapter 14 Mass-Storage Structure

In summary, we say that a fixed disk drive is likely to be more reliable than
a removable disk or tape drive, and an optical disk is likely to be more reliable
than a magnetic disk or tape. But a fixed magnetic disk has one weakness. A
head crash in a hard disk generally destroys the data, whereas the failure of a
tape drive or optical disk drive often leaves the data cartridge unharmed.

14.8.3.3 Cost

Storage cost is another important factor. Here is a concrete example of how
removable media may lower the overall storage cost. Suppose that a hard disk
that holds X GB has a price of $200; of this amount, $190 is for the housing,
motor, and controller, and $10 is for the magnetic platters. Then, the storage
cost for this disk is $200/X per gigabyte. Now, suppose that we can manufacture
the platters in a removable cartridge. For one drive and 10 cartridges, the total
price is $190 + $100 and the capacity is 10X GB, so the storage cost is $29/X per
gigabyte. Even if it is a little more expensive to make a removable cartridge,
the cost per gigabyte of removable storage may well be lower than the cost per
gigabyte of a hard disk, because the expense of one drive is averaged with the
low price of many removable cartridges.

Figures 14.13,14.14, and 14.15 show the cost trends per megabyte for DRAM
memory, magnetic hard disks, and tape drives. The prices in the graphs are the
lowest price found in advertisements in BYTE magazine and PC Magazine at the
end of each year. These prices reflect the small-computer marketplace of the

Year

Figure 14.13 Price per megabyte of DRAM, from 1981 to 2000.

-

I
14.8 Tertiary-Storage Structure 525

Year

Figure 14.14 Price per megabyte of magnetic hard disk, from 1981 to 2000.

readership of these magazines, where prices are low by comparison with the
mainframe and minicomputer markets. In the case of tape, the price is for a
drive with one tape. The overall cost of tape storage becomes much lower as
more tapes are purchased for use with the drive, because the price of a tape
is a small fraction of the price of the drive. However, in a huge tape library
containing thousands of cartridges, the storage cost is dominated by the cost of
the tape cartridges. As of this writing in 2001, the cost per GB of tape cartridges
can be approximated as $2.

The cost of DRAM fluctuates widely. In the period from 1981 to 2000, we
can see three price crashes (around 1981,1989, and 1996), as excess production
caused a glut in the marketplace. We can also see two periods (around 1987 and
1993), where shortages in the marketplace caused significant price increases. In
the case of hard disks, the price declines have been much steadier, although
the price decline appears to have accelerated since 1992. Tape-drive prices also
fell steadily up to 1997. Since 1997 the price per gigabyte of inexpensive tape
drives has ceased its dramatic fall, although mid-range tape technology (such as
DAT/DDS) has continued to fall, and is now approaching that of the inexpensive
drives. Tape-drive prices are not shown prior to 1984, because BYTE magazine
is targeted to the small-computer marketplace, and tape drives were not widely
used with small computers prior to 1984.

By comparing these graphs we see that the price of disk storage has plum-
meted relative to the price of DRAM and tape.

526 Chapter 14 Mass-Storage Structure

0.1

0.025
1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

Figure 14.15 Price per megabyte of a tape drive, from 1984 to 2000.

The price per megabyte of magnetic disk has improved by more than four
orders of magnitude during the past two decades, whereas the corresponding
improvement for main memory has only been three orders of magnitude. Main
memory today is more expensive than disk storage by a factor of 100.

The price per megabyte has dropped much more rapidly for disk drives
than for tape drives. In fact, the price per megabyte of magnetic disk drives
is approaching that of a tape cartridge without the tape drive. Consequently,
small- and medium-size tape libraries have a higher storage cost than disk
systems with equivalent capacity. The dramatic fall in disk prices has largely
rendered tertiary storage obsolete: We no longer have any tertiary storage
technology that is orders of magnitude less expensive than magnetic disk. It
appears that the revival of tertiary storage must await a revolutionary technol-
ogy breakthrough. Meanwhile, tape storage will find its use mostly limited to
purposes such as backups of disk drives and archival storage in enormous tape
libraries that greatly exceed the practical storage capacity of large disk farms.

14.9 . Summary

Disk drives are the major secondary-storage I/O device on most computers.
Requests for disk I/O are generated by the file system and by the virtual-
memory system. Each request specifies the address on the disk to be referenced,
in the form of a logical block number.

I 14.9 Summary 527

Disk-scheduling algorithms can improve the effective bandwidth, the aver-
age response time, and the variance in response time. Algorithms such as SSTF,
SCAN, C-SCAN, LOOK, and C-LOOK are designed to make such improvements
by strategies for disk-queue ordering.

Performance can be harmed by external fragmentation. Some systems
have utilities that scan the file system to identify fragmented files; they then

, move blocks around to decrease the fragmentation. Defragmenting a badly
fragmented file system can significantly improve the performance, but the sys-
tem may have reduced performance while the defragmentation is in progress.
Sophisticated file systems, such as the UNIX Fast File System, incorporate many
strategies to control fragmentation during space allocation, so that disk reorga-
nization is not needed.

The operating system manages the disk blocks. First, a disk must be low-
level formatted to create the sectors on the raw hardware-new disks usually
come pre-formatted. Then, the disk is partitioned and file systems created, and
boot blocks are allocated to store the system's bootstrap program. Finally, when
a block is corrupted, the system must have a way to lock out that block, or to
replace it logically with a spare.

Because an efficient swap space is a key to good performance, systems
usually bypass the file system and use raw disk access for paging I/O. Some
systems dedicate a raw disk partition to swap space, and others use a file within
the file system instead. Other systems allow the user or system administrator
to make the decision by providing both options.

The write-ahead log scheme requires the availability of stable storage.
To implement such storage, we need to replicate the needed information on
multiple nonvolatile storage devices (usually disks) with independent failure
modes. We also need to update the information in a controlled manner to
ensure that we can recover the stable data after any failure during data transfer
or recovery.

Because of the amount of storage required on large systems, disks are
frequently made redundant via RAID algorithms. These algorithms allow more
than one disk to be used for a given operation, and allow continued operation
and even automatic recovery in the face of a disk failure. RAID algorithms are
organized into different levels where each level provides some combination of
reliablity and high transfer rates.

Disks may be attached to a computer system one of two ways: (1) using the
local 1 /0 ports on the host computer or (2) using a network connection such as
storage area networks.

Tertiary storage is built from disk and tape drives that use removable
media. Many different technologies are available, including magnetic tape,
removable magnetic and magneto-optic disks, and optical disks.

For removable disks, the operating system generally provides the full
services of a file-system interface, including space management and request-
queue scheduling. For many operating systems, the name of a file on a

528 Chapter 14 Mass-Storage Structure

removable cartridge is a combination of a drive name and a file name within
that drive. This convention is simpler but potentially more confusing than is
using a name that identifies a specific cartridge.

For tapes, the operating system generally just provides a raw interface.
Many operating systems have no built-in support for jukeboxes. Jukebox
support can be provided by a device driver or by a privileged application
designed for backups or for HSM.

Three important aspects of performance are bandwidth, latency, and relia-
bility. A wide variety of bandwidths is available for both disks and tapes, but
the random-access latency for a tape is generally much slower than that for a
disk. Switching cartridges in a jukebox is also relatively slow. Because a jukebox
has a low ratio of drives to cartridges, reading a large fraction of the data in a
jukebox can take a long time. Optical media, which protect the sensitive layer
by a transparent coating, are generally more robust than magnetic media, which
expose the magnetic material to a greater possibility of physical damage.

Exercises

14.1 None of the disk-scheduling disciplines, except FCFS, are truly fair (star-
vation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure fair-
ness.

c. Explain why fairness is an important goal in a time-sharing system.

d. Give three or more examples of circumstances in which it is impor-
tant that the operating system be unfair in serving I/O requests.

14.2 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The
drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, in FIFO
order, is

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms?

a. FCFS

b. SSTF

c. SCAN

Exercises 529

d. LOOK

e. C-SCAN

f. C-LOOK

14.3 Elementary physics states that when an object is subjected to a constant
acceleration a, the relationship between distance d and time t is given
by d = ;at2. Suppose that, during a seek, the disk in Exercise 14.2
accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 millisecond, and a full-stroke seek over all 5,000 cylinders in 18
milliseconds.

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek dis-
tance. This equation should be of the form t = x + yv%, where t is
the time in milliseconds and L is the seek distance in cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
14.2. Determine which schedule is the fastest (has the smallest total
seek time).

d. The percentage speedup is the time saved divided by the original time.
What is the percentage speedup of the fastest schedule over FCFS?

14.4 Suppose that the disk in Exercise 14.3 rotates at 7,200 RPM.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found for
part a?

14.5 The accelerating seek described in Exercise 14.3 is typical of hard-disk
drives. By contrast, floppy disks (and many hard disks manufactured
before the mid-1980s) typically seek at a fixed rate. Suppose that the
disk in Exercise 14.3 has a constant-rate seek, rather than a constant-
acceleration seek, so the seek time is of the form t = x + yL, where t is
the time in milliseconds and L is the seek distance. Suppose that the
time to seek to an adjacent cylinder is 1 millisecond, as before, and is 0.5
milliseconds for each additional cylinder.

a. Write an equation for this seek time as a function of the seek dis-
tance.

530 Chapter 14 Mass-Storage Structure

b. Using the seek-time function from part a, calculate the total seek
time for each of the schedules in Exercise 14.2. Is your answer the
same as it was for Exercise 14.3c? Explain why it is the same or why
it is different.

c. What is the percentage speedup of the fastest schedule over FCFS in
this case?

14.6 Write a Java program for disk scheduling using the SCAN and C-SCAN
disk-scheduling algorithms.

14.7 Compare the performance of C-SCAN and SCAN scheduling, assuming a
uniform distribution of requests. Consider the average response time
(the time between the arrival of a request and the completion of that
request's service), the variation in response time, and the effective band-
width. How does performance depend on the relative sizes of seek time
and rotational latency?

14.8 Is disk scheduling, other than FCFS scheduling, useful in a single-user
environment? Explain your answer.

14.9 Explain why SSTF scheduling tends to favor middle cylinders over the
innermost and outermost cylinders.

14.10 Requests are not usually uniformly distributed. For example, a cylinder
containing the file system FAT or inodes can be expected to be accessed
more frequently than a cylinder that contains only files. Suppose that
you know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better perfor-
mance by taking advantage of this "hot spot" on the disk.

c. File systems typically find data blocks via an indirection table, such
as a FAT in DOS or inodes in UNIX. Describe one or more ways to
take advantage of this indirection to improve the disk performance.

14.11 Why is rotational latency usually not considered in disk scheduling?
How would you modify SSTF, SCAN, and C-SCAN to include latency
optimization?

14.12 How would the use of a RAM disk affect your selection of a disk-
scheduling algorithm? What factors would you need to consider? Do
the same considerations apply to hard-disk scheduling, given that the file
system stores recently used blocks in a buffer cache in main memory?

Exercises 531

14.13 Why is it important to balance file system I/O among the disks and
controllers on a system in a multitasking environment?

14.14 What are the tradeoffs involved in rereading code pages from the file
system, versus using swap space to store them?

14.15 Is there any way to implement truly stable storage? Explain your answer.
I

14.16 The reliability of a hard-disk drive is typically described in terms of a
quantity called mean time between failures (MTBF). Although this quantity
is called a "time," the MTBF actually is measured in drive-hours per
failure.

a. If a system contains 1,000 disk drives, each of which has a 750,000
hour MTBF, which of the following best describes how often a drive
failure will occur in that disk farm: once per thousand years, once
per century, once per decade, once per year, once per month, once
per week, once per day, once per hour, once per minute, or once per
second?

b. Mortality statistics indicate that, on the average, a U.S. resident has
about 1:1,000 chance of dying between ages 20 and 21 years. Deduce
the MTBF hours for 20 year olds. Convert this figure from hours to
years. What does this MTBF tell you about the expected lifetime of
a 20 year old?

c. The manufacturer guarantees a 1-million hour MTBF for a certain
model of disk drive. What can you conclude about the number of
years for which one of these drives is under warranty?

1 14.17 The term fast wide SCSI-II denotes a SCSI bus that operates at a data rate of
20 MB per second when it moves a packet of bytes between the host and
a device. Suppose that a fast wide SCSI-I1 disk drive spins at 7,200 RPM,

I has a sector size of 512 bytes, and holds 160 sectors per track.

a. Estimate the sustained transfer rate of this drive in megabytes per
second.

b. Suppose that the drive has 7,000 cylinders, 20 tracks per cylinder, a
head-switch time (from one platter to another) of 0.5 milliseconds,
and an adjacent-cylinder seek time of 2 milliseconds. Use this
additional information to give an accurate estimate of the sustained
transfer rate for a huge transfer.

c. Suppose that the average seek time for the drive is 8 milliseconds.
Estimate the I/Os per second and the effective transfer rate for
a random-access workload that reads individual sectors scattered
across the disk.

532 Chapter 14 Mass-Storage Structure

d. Calculate the random-access I/Os per second and transfer rate for
I/O sizes of 4 KB, 8 KB, and 64 KB.

e. If multiple requests are in the queue, a scheduling algorithm such as
SCAN should be able to reduce the average seek distance. Suppose
that a random-access workload is reading 8 KB pages, the average
queue length is 10, and the scheduling algorithm reduces the aver-
age seek time to 3 milliseconds. Calculate the I/Os per second and
the effective transfer rate of the drive.

14.18 More than one disk drive can be attached to a SCSI bus. In particular,
a fast wide SCSI-I1 bus (Exercise 14.17) can be connected to at most
15 disk drives. Recall that this bus has a bandwidth of 20 MB per
second. At any time, only one packet can be transferred on the bus
between some disk's internal cache and the host. However, a disk can
be moving its disk arm while some other disk is transferring a packet
on the bus. Also, a disk can be transferring data between its magnetic
platters and its internal cache while some other disk is transferring a
packet on the bus. Considering the transfer rates that you calculated for
the various workloads in Exercise 14.17, discuss how many disks can be
used effectively by one fast wide SCSI-I1 bus.

14.19 Remapping of bad blocks by sector sparing or sector slipping could
influence performance. Suppose that the drive in Exercise 14.17 has a
total of 100 bad sectors at random locations, and that each bad sector
is mapped to a spare that is located on a different track, but within the
same cylinder. Estimate the number of I/Os per second and the effective
transfer rate for a random-access workload consisting of 8 KB reads, with
a queue length of 1 (that is, the choice of scheduling algorithm is not a
factor). What is the effect of a bad sector on performance?

14.20 Discuss the relative advantages and disadvantages of sector sparing and
sector slipping.

14.21 The operating system generally treats removable disks as shared file
systems, but assigns a tape drive to only one application at a time. Give
three reasons that could explain this difference in treatment of disks and
tapes. Describe the additional features that an operating system would
need to support shared file-system access to a tape jukebox. Would the
applications sharing the tape jukebox need any special properties, or
could they use the files as though the files were disk-resident? Explain
your answer.

14.22 In a disk jukebox, what would be the effect if the number of open files
was greater than the number of drives in the jukebox?

I Exercises 533

I 14.23 What would be the effects on cost and performance if tape storage had
the same areal density as disk storage?

14.24 If magnetic hard disks eventually have the same cost per gigabyte as do
tapes, will tapes become obsolete, or will they still be needed? Explain
your answer.

14.25 You can use simple estimates to compare the cost and performance
of a terabyte storage system made entirely from disks with one that
incorporates tertiary storage. Suppose that magnetic disks each hold 10
GB, cost $1,000, transfer 5 MB per second, and have an average access
latency of 15 milliseconds. Suppose that a tape library costs $10 per
gigabyte, transfers 10 MB per second, and has an average access latency
of 20 seconds. Compute the total cost, the maximum total data rate,
and the average waiting time for a pure disk system. If you make
any assumptions about the workload, describe and justify them. Now,
suppose that 5 percent of the data are frequently used, so they must
reside on disk, but the other 95 percent are archived in the tape library.
Further suppose that the disk system handles 95 percent of the requests,
and the library handles the other 5 percent. What are the total cost,
the maximum total data rate, and the average waiting time for this
hierarchical storage system?

14.26 It is sometimes said that tape is a sequential-access medium, whereas
magnetic disk is a random-access medium. In fact, the suitability of
a storage device for random access depends on the transfer size. The
term streaming transfer rate denotes the data rate for a transfer underway,
excluding the effect of access latency. By contrast, the effective transfer rate
is the ratio of total bytes per total seconds, including overhead time such
as the access latency.

Suppose that, in a computer, the level-2 cache has an access latency
of 8 nanoseconds and a streaming transfer rate of 800 MB per second, the
main memory has an access latency of 60 nanoseconds and a streaming
transfer rate of 80 MB per second, the magnetic disk has an access latency
of 15 millisecond and a streaming transfer rate of 5 MB per second, and
a tape drive has an access latency of 60 seconds and a streaming transfer
rate of 2 MB per second.

a. Random access causes the effective transfer rate of a device to
decrease, because no data are transferred during the access time.
For the disk described, what is the effective transfer rate if a stream-
ing transfer of 512 bytes, 8 KB, 1 MB, and 16 MB follows an average
access?

b. The utilization of a device is the ratio of effective transfer rate to
streaming transfer rate. Calculate the utilization of the disk drive

534 Chapter 14 Mass-Storage Structure

for random access that performs transfers in each of the four sizes
given in part a.

c. Suppose that a utilization of 25 percent (or higher) is considered
acceptable. Using the performance figures given, compute the
smallest transfer size for disk that gives acceptable utilization.

d. Complete the following sentence: A disk is a random-access device
for transfers larger than ------ bytes, and is a sequential-access
device for smaller transfers.

e. Compute the minimum transfer sizes that give acceptable utiliza-
tion for cache, memory, and tape.

f. When is a tape a random-access device, and when is it a sequential-
access device?

14.27 Imagine that a holographic storage drive has been invented. Suppose
that a holographic drive costs $10,000 and has an average access time of
40 milliseconds. Suppose that it uses a $100 cartridge the size of a CD.
This cartridge holds 40,000 images, and each image is a square black-
and-white picture with resolution 6,000 x 6,000 pixels (each pixel stores 1
bit). Suppose that the drive can read or write one picture in 1 millisecond.
Answer the following questions.

a. What would be some good uses for this device?

b. How would this device affect the 1/0 performance of a computing
system?

c. Which other kinds of storage devices, if any, would become obsolete
as a result of this device being invented?

14.28 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal
density of 1 gigabit per square inch. Suppose that a magnetic tape has
an areal density of 20 megabits per square inch, and is V2 inch wide and
1,800 feet long. Calculate an estimate of the storage capacities of these
two kinds of storage cartridges. Suppose that an optical tape exists that
has the same physical size as the tape, but the same storage density as
the optical disk. What volume of data could the optical tape hold? What
would be a marketable price for the optical tape if the magnetic tape cost
$25?

14.29 Suppose that we agree that 1 KB is 1,024 bytes, 1 MB is 1,024~ bytes,
and 1 GB is 1,024~ bytes. This progression continues through terabytes,
petabytes, and exabytes (1,024~). Several newly proposed scientific
projects plan to be able to record and store a few exabytes of data during
the next decade. To answer the following questions, you will need to

Bibliographical Notes 535

make a few reasonable assumptions; state the assumptions that you
make.

a. How many disk drives would be required to hold 4 exabytes of
data?

b. How many magnetic tapes would be required to hold 4 exabytes of
data?

c. How many optical tapes would be required to hold 4 exabytes of
data (Exercise 14.28)?

d. How many holographic storage cartridges would be required to
hold 4 exabytes of data (Exercise 14.27)?

e. How many cubic feet of storage space would each option require?

14.30 Discuss how an operating system could maintain a free-space list for a
tape-resident file system. Assume that the tape technology is append-
only, and that it uses the EOT mark and locate , space, and read
p o s i t ion commands as described in Section 14.8.2.1.

Bibliographical Notes

Discussions of redundant arrays of independent disks (RAID) are presented by
Patterson et al. [I9881 and in the detailed survey of Chen et al. [1994]. Disk-
system architectures for high-performance computing are discussed by Katz
et al. [1989]. Teorey and Pinkerton [I9721 present an early comparative analysis
of disk-scheduling algorithms. They use simulations that model a disk for
which seek time is linear in the number of cylinders crossed. For this disk,
LOOK is a good choice for queue lengths below 140, and C-LOOK is good for
queue lengths above 100. King [I9901 describes ways to improve the seek time
by moving the disk arm when the disk is otherwise idle. Seltzer et al. [I9901
describe disk-scheduling algorithms that consider rotational latency in addition
to seek time. Worthington et al. [I9941 discuss disk performance, and show
the negligible performance impact of defect management. The placement of
hot data to improve seek times has been considered by Ruemmler and Wilkes
[I9911 and Akyurek and Salem [1993]. Ruemmler and Wilkes [I9941 describe an
accurate performance model for a modern disk drive. Worthington et al. [I9951
tell how to determine low-level disk properties such as the zone structure, and
this work is further advanced by Schindler and Gregory [1999].

The I/O size and randomness of the workload has a considerable influence
on disk performance. Ousterhout et al. [I9851 and Ruernmler and Wilkes [I9931
report numerous interesting workload characteristics, including that most files
are small, most newly created files are deleted soon thereafter, most files that
are opened for reading are read sequentially in their entirety, and most seeks

536 Chapter 14 Mass-Storage Structure

are short. McKusick et al. [I9841 describe the Berkeley Fast File System, which
uses many sophisticated techniques to obtain good performance for a wide
variety of workloads. McVoy and Kleiman [I9911 discuss further improvements
to the basic FFS. Quinlan [I9911 describes how to implement a file system on
WORM storage with a magnetic disk cache; Richards [I9901 discusses a file-
system approach to tertiary storage. Maher et al. [I9941 give an overview of the
integration of distributed file systems and tertiary storage.

The concept of a storage hierarchy has been studied for more than a quarter
of a century. For instance, a 1970 paper by Mattson et al. [I9701 describes
a mathematical approach to predict the performance of a storage hierarchy.
Alt [I9931 describes the accommodation of removable storage in a commercial
operating system, and Miller and Katz [I9931 describe the characteristics of
tertiary-storage access in a supercomputing environment. Benjamin [I9901
gives an overview of the massive storage requirements for the EOSDIS project
at NASA.

Holographic-storage technology is the subject of an article by Psaltis and
Mok [1995]; a collection of holographic-storage papers dating from 1963 has
been assembled by Sincerbox [1994]. Asthana and Finkelstein [I9951 describe
several emerging storage technologies, including holographic storage, optical
tape, and electron trapping. Toigo [2000] gives an in-depth description of
modern disk technology and several potential future storage technologies.

r
Part Five

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory, and the processors
communicate with each other through communication lines such as local- or
wide-area networks. The processors in a distributed system vary in size and
function. Such systems may include small handheld or real-time devices,
personal computers, workstations, and large mainframe computer systems.

The benefits of a distributed system include user access to the resources
maintained by the system and therefore computation speedup and improved
data availability and reliability. A distributed file system is a file-service system
whose users, servers, and storage devices are dispersed among the sites of a
distributed system. Accordingly, service activity has to be carried out across
the network; instead of a single centralized data repository, there are multiple
and independent storage devices.

Because a system is distributed, however, it must provide mechanisms for
process synchronization and communication, for dealing with the deadlock
problem, and for dealing with failures that are not encountered in a centralized
system.

Chapter 15

DISTRIBUTED
SYSTEM
STRUCTURES

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory. The processors com-
municate with one another through various communication networks, such as
high-speed buses or telephone lines. In this chapter, we discuss the general
structure of distributed systems and the networks that interconnect them. We
contrast the main differences in operating-system design between these sys-
tems and the centralized systems with which we were concerned previously.
Detailed discussions are given in Chapters 16 and 17.

15.1 . Background

A distributed system is a collection of loosely coupled processors intercon-
nected by a communication network. From the point of view of a specific
processor in a distributed system, the rest of the processors and their respective
resources are remote, whereas its own resources are local.

The processors in a distributed system may vary in size and function.
They may include small microprocessors, workstations, minicomputers, and
large general-purpose computer systems. These processors are referred to by a
number of names, such as sites, nodes, computers, machines, or hosts, depending
on the context in which they are mentioned. We mainly use site to indicate the
location of a machine, and host to refer to a specific system at a site. Generally,
one host at one site, the server, has a resource that another host at another site,
the client (or user), would like to use. The purpose of the distributed system is to

