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PREFACE 

Operating systems are an essential part of any computer system. Similarly, 
a course on operating systems is an essential part of any computer-science 
education. This field is undergoing change at a breathtakingly rapid rate, as 
computers are now prevalent in virtually every application, from games for 
children through the most sophisticated planning tools for governments and 
multinational firms. Yet the fundamental concepts remain fairly clear, and it is 
on these that we base this book. 

We wrote this book as a text for an introductory course in operating systems 
at the junior or senior undergraduate level or at the first-year graduate level. It 
provides a clear description of the concepts that underlie operating systems. As 
prerequisites, we assume that the reader is familiar with basic data structures, 
computer organization, and a high-level language, such as C. The hardware 
topics required for an understanding of operating systems are included in 
Chapter 2. For code examples, we use predominantly C as well as some 
Java, but the reader can still understand the algoritluns without a thorough 
knowledge of these languages. 

The fundamental concepts and algorithms covered in the book are often 
based on those used in existing commercial operating systems. Our aim is to 
present these concepts and algorithms in a general setting that is not tied to 
one particular operating system. We present a large number of examples that 
pertain to the most popular operating systems, including Sun Microsystems' 
Solaris 2, Linux; Microsoft MS-DOS, Windows NT, and Windows 2000; DEC VMS 
and TOPS-20, IBM OS/2, and the Apple Macintosh Operating System. 
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Concepts are presented using intuitive descriptions. Important theoretical 
results are covered, but formal proofs are omitted. The bibliographical notes 
contain pointers to research papers in which results were first presented and 
proved, as well as references to material for further reading. In place of proofs, 
figures and examples are used to suggest why we should expect the result in 
question to be true. 

Content of this Book 

The text is organized in seven major parts: 

Overview: Chapters 1 through 3 explain what operating systems are, what 
they do, and how they are designed and constructed. They explain how the 
concept of an operating system has developed, what the common features 
of an operating system are, what an operating system does for the user, 
and what it does for the computer-system operator. The presentation is 
motivational, historical, and explanatory in nature. We have avoided a 
discussion of how things are done internally in these chapters. Therefore, 
they are suitable for individuals or for students in lower-level classes who 
want to learn what an operating system is, without getting into the details 
of the internal algorithms. Chapter 2 covers the hardware topics that are 
important to an understanding of operating systems. Readers well-versed 
in hardware topics, including I/O, DMA, and hard-disk operation, may 
choose to skim or skip this chapter. 

Process management: Chapters 4 through 8 describe the process concept 
and concurrency as the heart of modern operating systems. A process 
is the unit of work in a system. Such a system consists of a collection 
of concurrently executing processes, some of which are operating-system 
processes (those that execute system code), and the rest of which are user 
processes (those that execute user code). These chapters cover methods for 
process scheduling, interprocess communication, process synchronization, 
and deadlock handling. Also included under this topic is a discussion of 
threads. 

Storage management: Chapters 9 through 12 deal with a process in main 
memory during execution. To improve both the utilization of CPU and the 
speed of its response to its users, the computer must keep several processes 
in memory. There are many different memory-management schemes. 
These schemes reflect various approaches to memory management, and 
the effectiveness of the different algorithms depends on the situation. Since 
main memory is usually too small to accommodate all data and programs, 
and since it cannot store data permanently, the computer system must pro- 
vide secondary storage to back up main memory. Most modern computer 
systems use disks as the primary on-line storage medium for information, 
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both programs and data. The file system provides the mechanism for on- 
line storage of and access to both data and programs residing on the disks. 
These chapters describe the classic internal algorithms and structures of 
storage management. They provide a firm practical understanding of the 
algorithms used-the properties, advantages, and disadvantages. 

I10 systems: Chapters 13 and 14 describe the devices that attach to a com- 
puter and the multiple dimensions in which they vary. In many ways, they 
are also the slowest major components of the computer. Because devices 
differ so widely, the operating system needs to provide a wide range of 
functionality to applications to allow them to control all aspects of the 
devices. This section discusses system I/O in depth, including 1/0 system 
design, interfaces, and internal system structures and functions. Because 
devices are a performance bottleneck, performance issues are examined. 
Matters related to secondary and tertiary storage are explained as well. 

Distributed systems: Chapters 15 through 17 deal with a collection of 
processors that do not share memory or a clock-a distributed system. 
Such a system provides the user with access to the various resources that 
the system maintains. Access to a shared resource allows computation 
speedup and improved data availability and reliability. Such a system also 
provides the user with a distributed file system, which is a file-service 
system whose users, servers, and storage devices are dispersed among 
the sites of a distributed system. A distributed system must provide 
various mechanisms for process synchronization and communication, for 
dealing with the deadlock problem and the variety of failures that are not 
encountered in a centralized system. 

Protection and security: Chapters 18 and 19 explain the processes in an 
operating system that must be protected from one another's activities. For 
the purposes of protection and security, we use mechanisms that ensure 
that only those processes that have gained proper authorization from the 
operating system can operate on the files, memory segments, CPU, and 
other resources. Protection is a mechanism for controlling the access of 
programs, processes, or users to the resources defined by a computer 
system. This mechanism must provide a means for specification of the 
controls to be imposed, as well as a means of enforcement. Security 
protects the information stored in the system (both data and code), as 
well as the physical resources of the computer system, from unauthorized 
access, malicious destruction or alteration, and accidental introduction of 
inconsistency. 

Case studies: Chapters 20 through 22, in the book, and Appendices A 
through C, on the website, integrate the concepts described in this book by 
describing real operating systems. These systems include Linux, Windows 
2000, FreeBSD, Mach, and Nachos. We chose Linux and FreeBSD because 
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UNIX-at one time-was almost small enough to understand, yet was not 
a "toy" operating system. Most of its internal algorithms were selected for 
simplicity, rather than for speed or sophistication. Both Linux and FreeBSD 
are readily available to computer-science departments, so many students 
have access to these systems. We chose Windows 2000 because it provides 
an opportunity for us to study a modern operating system that has a design 
and implementation drastically different from those of UNIX. We also cover 
the Nachos System, which allows students to get their hands dirty-to take 
apart the code for an operating system, to see how it works at a low level, to 
build significant pieces of the operating system themselves, and to observe 
the effects of their work. Chapter 22 briefly describes a few other influential 
operating systems. 

The Sixth Edition 

As we wrote this Sixth Edition, we were guided by the many comments and 
suggestions we received from readers of our previous editions, as well as by 
our own observations about the rapidly changing fields of operating systems 
and networking. We rewrote the material in most of the chapters by bringing 
older material up to date and removing material that was no longer of interest. 
We rewrote all Pascal code, used in previous editions to demonstrate certain 
algorithms, into C, and we included a small amount of Java as well. 

We made substantive revisions and changes in organization in many of 
the chapters. Most importantly, we added two new chapters and reorganized 
the distributed systems coverage. Because networking and distributed systems 
have become more prevalent in operating systems, we moved some distributed 
systems material, client-server, in particular, out of distributed systems chap- 
ters and integrated it into earlier chapters. 

Chapter 3, Operating-System Structures, now includes a section dis- 
cussing the Java virtual machine (JVM). 

Chapter 4, Processes, includes new sections describing sockets and remote 
procedure calls (RPCs). 

Chapter 5, Threads, is a new chapter that covers multithreaded computer 
systems. Many modern operating systems now provide features for a 
process to contain multiple threads of control. 

Chapters 6 through 10 are the old Chapters 5 through 9, respectively 

Chapter 11, File-System Interface, is the old Chapter 10. We have mod- 
ified the chapter substantially, including the coverage of NFS from the 
Distributed File System chapter (Chapter 16). 
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Chapter 12 and 13 are the old Chapters 11 and 12, respectively. We have 
added a new section in Chapter 13, I/O Systems, covering STREAMS. 

Chapter 14, Mass-Storage Structure, combines old Chapters 13 and 14. 

Chapter 15, Distributed System Structures, combines old Chapters 15 
and 16. 

Chapter 19, Security, is the old Chapter 20. 

Chapter 20, The Linux System, is the old Chapter 22, updated to cover new 
recent developments. 

Chapter 21, Windows 2000, is a new chapter. 

Chapter 22, Historical Perspective, is the old Chapter 24. 

Appendix A is the old Chapter 21 on UNIX updated to cover FreeBSD. 

Appendix B covers the Mach operating system. 

Appendix Cs the Nachos system. 

The three appendices are provided online. 

Teaching Supplements and Web Page 

The web page for this book contains the three appendices, the set of slides that 
accompanies the book, in PDF and Powerpoint format, the three case studies, 
the most recent errata list, and a link to the authors home page. John Wiley & 
Sons maintains the web page at 

To obtain restricted supplements, contact your local John Wiley & Sons sales 
representative. You can find your representative at the "Find a Rep?' web page: 
http: / /www.jsw-edcv.wiley.com/college/findarep 

Mailing List 

We provide an environment in which users can communicate among them- 
selves and with us. We have created a mailing list consisting of users of our 
book with the following address: 0s-book@research.bell-1abs.com. If you wish 
to be on the list, please send a message to aviabell-1abs.com indicating your 
name, affiliation, and e-mail address. 
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Suggestions 

We have attempted to clean up every error in this new Edition, but-as hap- 
pens with operating systems-a few obscure bugs may remain. We would 
appreciate hearing from you about any textual errors or omissions that you 
identify. If you would like to suggest improvements or to contribute exer- 
cises, we would also be glad to hear from you. Please send correspondence 
to Avi Silberschatz, Vice President, Information Sciences Research Center, MH 
2T-310, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 (aviabell- 
1abs.com). 
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Part One 

An operating system is a program that acts as an intermediary between the 
user of a computer and the computer hardware. The purpose of an operating 
system is to provide an environment in which a user can execute programs in a 
convenient and efficient manner. 

We trace the development of operating systems from the first hands-on sys- 

! 
tems, through multiprogrammed and time-shared systems, to current handheld 
and real- time systems. Understanding the evolution of operating systems gives 
us an appreciation for what an operating system does and how it does it. 

The operating system must ensure the correct operation of the computer 
system. To prevent user programs from interfering with the proper opera- 
tion of the system, the hardware must provide appropriate mechanisms. We 
describe the basic computer architecture that makes it possible to write a correct 
operating system. 

The operating system provides certain services to programs and to the users 
of those programs in order to make their tasks easier. The services differ from 
one operating system to another, but we identify and explore some common 
classes of these services. 



Chapter 1 

An operating system is a program that manages the computer hardware. It 
also provides a basis for application programs and acts as an intermediary 
between a user of a computer and the computer hardware. An amazing aspect 
of operating systems is how varied they are in accomplishing these tasks. 
Mainframe operating systems are designed primarily to optimize utilization 
of hardware. Personal computer (PC) operating systems support complex 
games, business applications, and everything in between. Handheld computer 
operating systems are designed to provide an environment in which a user can 
easily interface with the computer to execute programs. Thus, some operating 
systems are designed to be convenient, others to be eficient, and others some 
combination of the two. 

To understand what operating systems are, we must first understand how 
they have developed. In this chapter, we trace the development of operating 
systems from the first hands-on systems through multiprogramrned and time- 
shared systems to PCs, and handheld computers. We also discuss operating 
system variations, such as parallel, real-time, and embedded systems. As we 
move through the various stages, we see how the components of operating 
systems evolved as natural solutions to problems in early computer systems. 

1.1 . What Is an Operating System? 

An operating system is an important part of almost every computer system. A 
computer system can be divided roughly into four components: the hardware, 
the operating sys tem, the application programs, and the users (Figure 1.1). 
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Figure 1.1 Abstract view of the components of a computer system. 

The hardware-the central processing unit (CPU), the memory, and the 
inputloutput (110) devices-provides the basic computing resources. The 
application programs-such as word processors, spreadsheets, compilers, and 
web browsers-define the ways in which these resources are used to solve 
the computing problems of the users. The operating system controls and 
coordinates the use of the hardware among the various application programs 
for the various users. 

The components of a computer system are its hardware, software, and data. 
The operating system provides the means for the proper use of these resources 
in the operation of the computer system. An operating system is similar to 
a government. Like a government, it performs no useful function by itself. It 
simply provides an enuironment within which other programs can do useful 
work. Operating systems can be explored from two viewpoints: the user and 
the system. 

1.1.1 User View 
The user view of the computer varies by the interface being used. Most 
computer users sit in front of a PC, consisting of a monitor, keyboard, mouse, 
and system unit. Such a system is designed for one user to monopolize 
its resources, to maximize the work (or play) that the user is performing. 
In this case, the operating system is designed mostly for ease of use, with 



1.1 What Is an Operating System? 5 

some attention paid to performance, and none paid to resource utilization. 
Performance is important to the user, but it does not matter if most of the system 
is sitting idle, waiting for the slow 1/0  speed of the user. 

Some users sit at a terminal connected to a mainframe or minicomputer. 
Other users are accessing the same computer through other terminals. These 
users share resources and may exchange information. The operating system 
is designed to maximize resource utilization-to assure that all available CPU 
time, memory, and I/O are used efficiently, and that no individual user takes 
more than her fair share. 

Other users sit at workstations, connected to networks of other worksta- 
tions and servers. These users have dedicated resources at their disposal, but 
they also share resources such as networking and servers-file, compute and 
print servers. Therefore, their operating system is designed to compromise 
between individual usability and resource utilization. 

Recently, many varieties of handheld computers have come into fashion. 
These devices are mostly standalone, used singly by individual users. Some are 
connected to networks, either directly by wire or (more often) through wireless 
modems. Due to power and interface limitations they perform relatively few 
remote operations. The operating systems are designed mostly for individual 
usability, but performance per amount of battery life is important as well. 

Some computers have little or no user view. For example, embedded 
computers in home devices and automobiles may have a numeric keypad, and 
may turn indicator lights on or off to show status, but mostly they and their 
operating systems are designed to run without user intervention. 

1.1.2 System View 
From the computer's point of view, the operating system is the program that 
is most intimate with the hardware. We can view an operating system as a 
resource allocator. A computer system has many resources-hardware and 
software-that may be required to solve a problem: CPU time, memory space, 
file-storage space, I/O devices, and so on. The operating system acts as the 
manager of these resources. Facing numerous and possibly conflicting requests 
for resources, the operating system must decide how to allocate them to specific 
programs and users so that it can operate the computer system efficiently and 
fairly. 

A slightly different view of an operating system emphasizes the need to 
control the various 1 / 0  devices and user programs. An operating system is a 
control program. A control program manages the execution of user programs 
to prevent errors and improper use of the computer. It is especially concerned 
with the operation and control of I/O devices. 

In general, however, we have no completely adequate definition of an 
operating system. Operating systems exist because they are a reasonable way 
to solve the problem of creating a usable computing system. The fundamental 
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goal of computer systems is to execute user programs and to make solving user 
problems easier. Toward this goal, computer hardware is constructed. Since 
bare hardware alone is not particularly easy to use, application programs are 
developed. These programs require certain common operations, such as those 
controlling the I/O devices. The common functions of controlling and allocating 
resources are then brought together into one piece of software: the operating 
system. 

In addition, we have no universally accepted definition of what is part 
of the operating system. A simple viewpoint is that it includes everything a 
vendor ships when you order "the operating system." The storage (memory, 
disks, and tapes) requirements and features included, however, vary greatly 
across systems. (The storage capacity of a system is measured in gigabytes. (A 
kilobyte or KB is 1,024 bytes, a megabyte or MB is 1,024' bytes, and a gigabyte or 
GB is 1,024~ bytes, but computer manufacturers often round off these numbers 
and say that a megabyte is 1 million bytes, and a gigabyte is 1 billion bytes.)) 
Some systems take up less than 1 megabyte of space and lack even a full- 
screen editor, whereas others require hundreds of megabytes of space and are 
entirely based on graphical windowing systems. A more common definition 
is that the operating system is the one program running at all times on the 
computer (usually called the kernel), with all else being application programs. 
This last definition is the one that we generally follow. The matter of what 
constitutes an operating system is becoming important. In 1998, the United 
States Department of Justice filed suit against Microsoft, in essence claiming 
that Microsoft included too much functionality in its operating systems and 
thus prevented competition from application vendors. 

1.1.3 System Goals 
It is easier to define an operating system by what it does than by what it is, 
but even this can be tricky. The primary goal of some operating system is 
convenience for the user. Operating systems exist because they are supposed 
to make it easier to compute with them than without them. This view is 
particularly clear when you look at operating systems for small PCs. 

The primary goal of other operating systems is efficient operation of the 
computer system. This is the case for large, shared, multiuser systems. These 
systems are expensive, so it is desirable to make them as efficient as possible. 
These two goals-convenience and efficiency-are sometimes contradictory. 
In the past, efficiency was often more important than convenience (Section 
1.2.1). Thus, much of operating-system theory concentrates on optimal use 
of computing resources. Operating systems have also evolved over time. For 
example, UNIX started with a keyboard and printer as its interface, limiting how 
convenient it could be for the user. Over time, hardware changed, and UNIX 
was ported to new hardware with more user-friendly interfaces. Many graphic 
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user interfaces (GUIs) were added, allowing UNIX to be more convenient for 
users while still concentrating on efficiency. 

The design of an operating system is a complex task. Designers face many 
tradeoffs in the design and implementation, and many people are involved not 
only in bringing an operating system to fruition, but also constantly revising 
and updating it. How well any given operating system meets its design goals is 
open to debate, and is subjective to the different users of the operating system. 

To see what operating systems are and what they do, let us consider how 
they have developed over the past 45 years. By tracing that evolution, we can 
identify the common elements of operating systems, and see how and why 
these systems have developed as they have. 

Operating systems and computer architecture have influenced each other 
a great deal. To facilitate the use of the hardware, researchers developed 
operating systems. Users of the operating systems then proposed changes 
in hardware design to simplify them. In this short historical review, notice 
how identification of operating-system problems led to the introduction of new 
hardware features. 

1.2 Mainframe Systems 

Mainframe computer systems were the first computers used to tackle many 
commercial and scientific applications. In this section, we trace the growth of 
mainframe systems from simple batch systems, where the computer runs one 
-and only one-application, to time-shared systems, which allow for user 
interaction with the computer system. 

1.2.1 Batch Systems 
Early computers were physically enormous machines run from a console. The 
common input devices were card readers and tape drives. The common output 
devices were line printers, tape drives, and card punches. The user did not 
intkract directly with the computer systems. Rather, the user prepared a job 
-which consisted of the program, the data, and some control information 
about the nature of the job (control cards)-and submitted it to the computer 
operator. The job was usually in the form of punch cards. At some later time 
(after minutes, hours, or days), the output appeared. The output consisted of 
the result of the program, as well as a dump of the final memory and register 
contents for debugging. 

The operating system in these early computers was fairly simple. Its 
major task was to transfer control automatically from one job to the next. The 
operating system was always resident in memory (Figure 1.2). 

To speed up processing, operators batched together jobs with similar needs 
and ran them through the computer as a group. Thus, the programmers would 
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Figure 1.2 Memory layout for a simple batch system. 

leave their programs with the operator. The operator would sort programs 
into batches with similar requirements and, as the computer became available, 
would run each batch. The output from each job would be sent back to the 
appropriate programmer. 

In this execution environment, the CPU is often idle, because the speeds of 
the mechanical I/O devices are intrinsically slower than are those of electronic 
devices. Even a slow CPU works in the microsecond range, with thousands of 
instructions executed per second. A fast card reader, on the other hand, might 
read 1200 cards per minute (or 20 cards per second). Thus, the difference in 
speed between the CPU and its I/O devices may be three orders of magnitude or 
more. Over time, of course, improvements in technology and the introduction 
of disks resulted in faster I/O devices. However, CPU speeds increased to an 
even greater extent, so the problem was not only unresolved, but exacerbated. 

The introduction of disk technology allowed the operating system to keep 
all jobs on a disk, rather than in a serial card reader. With direct access to several 
jobs, the operating system could perform job scheduling, to use resources and 
perform tasks efficiently. We discuss a few important aspects of job and CPU 
scheduling here; we discuss them in detail in Chapter 6. 

1.2.2 Multiprogrammed Systems 
The most important aspect of job scheduling is the ability to multiprogram. A 
single user cannot, in general, keep either the CPU or the 1/0 devices busy at all 
times. Multiprogramming increases CPU utilization by organizing jobs so that 
the CPU always has one to execute. 

The idea is as follows: The operating system keeps several jobs in memory 
simultaneously (Figure 1.3). This set of jobs is a subset of the jobs kept in the 
job pool-since the number of jobs that can be kept simultaneously in memory 
is usually much smaller than the number of jobs that can be in the job pool. The 
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Figure 1.3 Memory layout for a multiprogramming system. 

operating system picks and begins to execute one of the jobs in the memory. 
Eventually, the job may have to wait for some task, such as an I/O operation, 
to complete. In a non-multiprogrammed system, the CPU would sit idle. In 
a multiprogramming system, the operating system simply switches to, and 
executes, another job. When that job needs to wait, the CPU is switched to 
another job, and so on. Eventually, the first job finishes waiting and gets the 
CPU back. As long as at least one job needs to execute, the CPU is never idle. 

This idea is common in other life situations. A lawyer does not work for 
only one client at a time. While one case is waiting to go to trial or have 
papers typed, the lawyer can work on another case. If she has enough clients, 
the lawyer will never be idle for lack of work. (Idle lawyers tend to become 
politicians, so there is a certain social value in keeping lawyers busy.) 

Multiprogramming is the first instance where the operating system must 
make decisions for the users. Multiprogrammed operating systems are there- 
fore fairly sophisticated. All the jobs that enter the system are kept in the job 
pool. This pool consists of all processes residing on disk awaiting allocation 
of main memory. If several jobs are ready to be brought into memory, and if 
there is not enough room for all of them, then the system must choose among 
them. Making this decision is job scheduling, which is discussed in Chapter 6. 
When the operating system selects a job from the job pool, it loads that job into 
memory for execution. Having several programs in memory at the same time 
requires some form of memory management, which is covered in Chapters 9 
and 10. In addition, if several jobs are ready to run at the same time, the system 
must choose among them. Making this decision is CPU scheduling, which is 
discussed in Chapter 6. Finally, multiple jobs running concurrently require 
that their ability to affect one another be limited in all phases of the operating 
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system, including process scheduling, disk storage, and memory management. 
These considerations are discussed throughout the text. 

1.2.3 Time-Sharing Systems 
Multiprogrammed, batched systems provided an environment where the var- 
ious system resources (for example, CPU, memory, peripheral devices) were 
utilized effectively, but it did not provide for user interaction with the computer 
system. Time sharing (or multitasking) is a logical extension of multipro- 
gramming. The CPU executes multiple jobs by switching among them, but the 
switches occur so frequently that the users can interact with each program while 
it is running. 

An interactive (or hands-on) computer system provides direct communi- 
cation between the user and the system. The user gives instructions to the 
operating system or to a program directly, using a keyboard or a mouse, and 
waits for immediate results. Accordingly, the response time should be short- 
typically within 1 second or so. 

A time-shared operating system allows many users to share the computer 
simultaneously. Since each action or command in a time-shared system tends to 
be short, only a little CPU time is needed for each user. As the system switches 
rapidly from one user to the next, each user is given the impression that the 
entire computer system is dedicated to her use, even though it is being shared 
among many users. 

A time-shared operating system uses CPU scheduling and multiprogram- 
ming to provide each user with a small portion of a time-shared computer. 
Each user has at least one separate program in memory. A program loaded into 
memory and executing is commonly referred to as a process. When a process 
executes, it typically executes for only a short time before it either finishes or 
needs to perform I/O. I/O may be interactive; that is, output is to a display 
for the user and input is from a user keyboard, mouse, or other device. Since 
interactive I/O typically runs at "people speeds," it may take a long time to 
complete. Input, for example, may be bounded by the user's typing speed; 
seven characters per second is fast for people, but incredibly slow for comput- 
ers. Rather than let the CPU sit idle when this interactive input takes place, 
the operating system will rapidly switch the CPU to the program of some other 
user. 

Time-sharing operating systems are even more complex than multipro- 
grammed operating systems. In both, several jobs must be kept simultaneously 
in memory, so the system must have memory management and protection 
(Chapter 9). To obtain a reasonable response time, jobs may have to be swapped 
in and out of main memory to the disk that now serves as a backing store for 
main memory. A common method for achieving this goal is virtual memory, 
which is a technique that allows the execution of a job that may not be com- 
pletely in memory (Chapter 10). The main advantage of the virtual-memory 
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scheme is that programs can be larger than physical memory. Further, it 
abstracts main memory into a large, uniform array of storage, separating logical 
memory as viewed by the user from physical memory. This arrangement frees 
programmers from concern over memory-storage limitations. 

Time-sharing systems must also provide a file system (Chapters 11 and 12). 
The file system resides on a collection of disks; hence, disk management must 
be provided (Chapter 14). Also, time-sharing systems provide a mechanism for 
concurrent execution, which requires sophisticated CPU-scheduling schemes 
(Chapter 6). To ensure orderly execution, the system must provide mechanisms 
for job synchronization and communication (Chapter 7), and it may ensure that 
jobs do not get stuck in a deadlock, forever waiting for one another (Chapter 8). 

The idea of time sharing was demonstrated as early as 1960, but since 
time-shared systems are difficult and expensive to build, they did not become 
common until the early 1970s. Although some batch processing is still done, 
most systems today are time sharing. Accordingly, multiprogramming and 
time sharing are the central themes of modern operating systems, and they are 
the central themes of this book. 

1.3 . Desktop Systems 

Personal computers PCs appeared in the 1970s. During their first decade, the 
CPUs in PCs lacked the features needed to protect an operating system from 
user programs. PC operating systems therefore were neither multiuser nor 
multitasking. However, the goals of these operating systems have changed with 
time; instead of maximizing CPU and peripheral utilization, the systems opt for 
maximizing user convenience and responsiveness. These systems include PCs 
running Microsoft Windows and the Apple Macintosh. The MS-DOS operating 
system from Microsoft has been superseded by multiple flavors of Microsoft 
Windows, and IBM has upgraded MS-DOS to the OS/2 multitasking system. 
The Apple Macintosh operating system has been ported to more advanced 
hardware, and now includes new features, such as virtual memory and mul- 
titasking. With the release of MacOS X, the core of the operating system is now 
based on Mach and FreeBSD UNIX for scalability, performance, and features, but 
it retains the same rich GUI. Linux, a UNIX-like operating system available for 
PCs, has also become popular recently. 

Operating systems for these computers have benefited in several ways 
from the development of operating systems for mainframes. Microcomputers 
were immediately able to adopt some of the technology developed for larger 
operating systems. On the other hand, the hardware costs for microcomputers 
are sufficiently low that individuals have sole use of the computer, and CPU 
utilization is no longer a prime concern. Thus, some of the design decisions 
made in operating systems for mainframes may not be appropriate for smaller 
systems. 
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Other design decisions still apply. For example, file protection was, at first, 
not necessary on a personal machine. However, these computers are now often 
tied into other computers over local-area networks or other Internet connec- 
tions. When other computers and other users can access the files on a PC, file 
protection again becomes a necessary feature of the operating system. The lack 
of such protection has made it easy for malicious programs to destroy data on 
systems such as MS-DOS and the Macintosh operating system. These programs 
may be self-replicating, and may spread rapidly via worm or virus mechanisms 
and disrupt entire companies or even worldwide networks. Advanced time- 
sharing features such as protected memory and file permissions are not enough, 
on their own, to safeguard a system from attack. Recent security breaches have 
shown that time and again. These topics are discussed in Chapters 18 and 19. 

1.4 Multiprocessor Systems 

Most systems to date are single-processor systems; that is, they have only one 
main CPU. However, multiprocessor systems (also known as parallel systems 
or tightly coupled systems) are growing in importance. Such systems have 
more than one processor in close communication, sharing the computer bus, 
the clock, and sometimes memory and peripheral devices. 

Multiprocessor systems have three main advantages. 

1. Increased throughput. By increasing the number of processors, we hope 
to get more work done in less time. The speed-up ratio with N processors 
is not N; rather, it is less than N. When multiple processors cooperate on 
a task, a certain amount of overhead is incurred in keeping all the parts 
working correctly. This overhead, plus contention for shared resources, 
lowers the expected gain from additional processors. Similarly, a group 
of N programmers working closely together does not result in N times the 
amount of work being accomplished. 

2. Economy of scale. Multiprocessor systems can save more money than 
multiple single-processor systems, because they can share peripherals, 
mass storage, and power supplies. If several programs operate on the same 
set of data, it is cheaper to store those data on one disk and to have all the 
processors share them, than to have many computers with local disks and 
many copies of the data. 

3. Increased reliablility. If functions can be distributed properly among 
several processors, then the failure of one processor will not halt the system, 
only slow it down. If we have ten processors and one fails, then each of the 
remaining nine processors must pick up a share of the work of the failed 
processor. Thus, the entire system runs only 10 percent slower, rather than 
failing altogether. This ability to continue providing service proportional 
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to the level of surviving hardware is called graceful degradation. Systems 
designed for graceful degradation are also called fault tolerant. 

Continued operation in the presence of failures requires a mechanism to 
allow the failure to be detected, diagnosed, and, if possible, corrected. The Tan- 
dem system uses both hardware and software duplication to ensure continued 
operation despite faults. The system consists of two identical processors, each 
with its own local memory. The processors are connected by a bus. One pro- 
cessor is the primary and the other is the backup. Two copies are kept of each 
process: one on the primary processor and the other on the backup. At fixed 
checkpoints in the execution of the system, the state information of each job- 
including a copy of the memory image-is copied from the primary machine to 
the backup. If a failure is detected, the backup copy is activated and is restarted 
from the most recent checkpoint. This solution is expensive, since it involves 
considerable hardware duplication. 

The most common multiple-processor systems now use symmetric mul- 
tiprocessing (SMP), in whch each processor runs an identical copy of the 
operating system, and these copies communicate with one another as needed. 
Some systems use asymmetric multiprocessing, in which each processor is 
assigned a specific task. A master processor controls the system; the other pro- 
cessors either look to the master for instruction or have predefined tasks. This 
scheme defines a master-slave relationship. The master processor schedules 
and allocates work to the slave processors. 

SMP means that all processors are peers; no master-slave relationship exists 
between processors. Each processor concurrently runs a copy of the operating 
system. Figure 1.4 illustrates a typical SMP architecture. An example of the 
SMP system is Encore's version of UNIX for the Multimax computer. This 
computer can be configured such that it employs dozens of processors, all 
running copies of UNIX. The benefit of this model is that many processes 
can run simultaneously-N processes can run if there are N CPUs-without 
causing a significant deterioration of performance. However, we must carefully 
control I/O to ensure that the data reach the appropriate processor. Also, since 
the CPUs are separate, one may be sitting idle while another is overloaded, 
resulting in inefficiencies. These inefficiencies can be avoided if the processors 
share certain data structures. A multiprocessor system of this form will allow 

Figure 1.4 Symmetric multiprocessing architecture. 
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processes and resources-such as memory-to be shared dynamically among 
the various processors, and can lower the variance among the processors. Such 
a system must be written carefully, as we shall see in Chapter 7. Virtually 
all modern operating systems-including Windows NT, Solaris, Digital UNIX, 
0S/2, and Linux-now provide support for SMP. 

The difference between symmetric and asymmetric multiprocessing may be 
the result of either hardware or software. Special hardware can differentiate the 
multiple processors, or the software can be written to allow only one master and 
multiple slaves. For instance, Sun's operating system SunOS Version 4 provides 
asymmetric multiprocessing, whereas Version 5 (Solaris 2) is symmetric on the 
same hardware. 

As microprocessors become less expensive and more powerful, additional 
operating-system functions are off-loaded to slave processors (or back-ends). 
For example, it is fairly easy to add a microprocessor with its own memory 
to manage a disk system. The microprocessor could receive a sequence of 
requests from the main CPU and implement its own disk queue and scheduling 
algorithm. This arrangement relieves the main CPU of the overhead of disk 
scheduling. PCs contain a microprocessor in the keyboard to convert the 
keystrokes into codes to be sent to the CPU. In fact, this use of microprocessors 
has become so common that it is no longer considered multiprocessing. 

1.5 Distributed Systems 

A network, in the simplest terms, is a communication path between two or 
more systems. Distributed systems depend on networking for their function- 
ality. By being able to communicate, distributed systems are able to share 
computational tasks, and provide a rich set of features to users. 

Networks vary by the protocols used, the distances between nodes, and 
the transport media. TCP/IP is the most common network protocol, although 
ATM and other protocols are in widespread use. Likewise, operating-system 
support of protocols varies. Most operating systems support TCP/IP, including 
the Windows and UNIX operating systems. Some systems support proprietary 
protocols to suit their needs. To an operating system, a network protocol 
simply needs an interface device-a network adapter, for example-with a 
device driver to manage it, and software to package data in the communications 
protocol to send it and to unpackage it to receive it. These concepts are 
discussed throughout the book. 

Networks are typecast based on the distances between their nodes. A 
local-area network (LAN), exists within a room, a floor, or a building. A 
wide-area network (WAN), usually exists between buildings, cities, or coun- 
tries. A global company may have a WAN to connect its offices, worldwide. 
These networks could run one protocol or several protocols. The continuing 
advent of new technologies brings about new forms of networks. For exam- 
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ple, a metropolitan-area network (MAN), could link buildings within a city. 
BlueTooth devices communicate over a short distance of several feet, in essence 
creating a small-area network. 

The media to carry networks are equally varied. They include copper wires, 
fiber strands, and wireless transmissions between satellites, microwave dishes, 
and radios. When computing devices are connected to cellular phones, they 
create a network. Even very short-range infrared communication can be used 
for networking. At a rudimentary level, whenever computers communicate 
they use or create a network. These networks also vary by their performance 
and reliability. 

1.5.1 Client-Server Systems 
As PCs have become faster, more powerful, and cheaper, designers have shifted 
away from the centralized system architecture. Terminals connected to central- 
ized systems are now being supplanted by PCs. Correspondingly, user-interface 
functionality that used to be handled directly by the centralized systems is 
increasingly being handled by the PCs. As a result, centralized systems today 
act as server systems to satisfy requests generated by client systems. The 
general structure of a client-server system is depicted in Figure 1.5. 

Server systems can be broadly categorized as compute servers and file 
servers. 

Compute-server systems provide an interface to which clients can send 
requests to perform an action, in response to which they execute the action 
and send back results to the client. 

File-server systems provide a file-system interface where clients can create, 
update, read, and delete files. 

1.5.2 Peer-to-Peer Systems 

The growth of computer networks-especially the Internet and World Wide 
Web (WWW)-has had a profound influence on the recent development of 
operating systems. When PCs were introduced in the 1970s, they were designed 
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Figure 1.5 General structure of a client-server system. 
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for "personal" use and were generally considered standalone computers. With 
the beginning of widespread public use of the Internet in the 1980s for electronic 
mail, ftp, and gopher, many PCs became connected to computer networks. With 
the introduction of the Web in the mid-1990s, network connectivity became an 
essential component of a computer system. 

Virtually all modern PCs and workstations are capable of running a web 
browser for accessing hypertext documents on the Web. Operating systems 
(such as Windows, OS/2, MacOS, and UNIX) now also include the system 
software (such as TCP/IP and PPP) that enables a computer to access the Internet 
via a local-area network or telephone connection. Several include the web 
browser itself, as well as electronic mail, remote login, and file-transfer clients 
and servers. 

In contrast to the tightly coupled systems discussed in Section 1.4, the com- 
puter networks used in these applications consist of a collection of processors 
that do not share memory or a clock. Instead, each processor has its own local 
memory. The processors communicate with one another through various com- 
munication lines, such as high-speed buses or telephone lines. These systems 
are usually referred to as loosely coupled systems (or distributed systems). 

Some operating systems have taken the concept of networks and dis- 
tributed systems further than the notion of providing network connectivity A 
network operating system is an operating system that provides features such 
as file sharing across the network, and that includes a communication scheme 
that allows different processes on different computers to exchange messages. 
A computer running a network operating system acts autonomously from all 
other computers on the network, although it is aware of the network and is 
able to communicate with other networked computers. A distributed operat- 
ing system is a less autonomous environment: The different operating systems 
communicate closely enough to provide the illusion that only a single operating 
system controls the network. We cover computer networks and distributed 
systems in Chapters 15 through 17. 

1.6 . Clustered Systems 

Like parallel systems, clustered systems gather together multiple CPUs to 
accomplish computational work. Clustered systems differ from parallel sys- 
tems, however, in that they are composed of two or more individual systems 
coupled together. The definition of the term clustered is not concrete; many 
commercial packages wrestle with what a clustered system is, and why one 
form is better than another. The generally accepted definition is that clustered 
computers share storage and are closely linked via LAN networking. 

Clustering is usually performed to provide high availability. A layer of 
cluster software runs on the cluster nodes. Each node can monitor one or more 
of the others (over the LAN). If the monitored machine fails, the monitoring 
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machine can take ownership of its storage, and restart the application(s) that 
were running on the failed machine. The failed machine can remain down, but 
the users and clients of the application would only see a brief interruption of 
service. 

In asymmetric clustering, one machine is in hot standby mode while 
the other is running the applications. The hot standby host (machine) does 
nothing but monitor the active server. If that server fails, the hot standby host 
becomes the active server. In symmetric mode, two or more hosts are running 
applications, and they are monitoring each other. This mode is obviously more 
efficient, as it uses all of the available hardware. It does require that more than 
one application be available to run. 

Other forms of clusters include parallel clusters and clustering over a WAN. 

I Parallel clusters allow multiple hosts to access the same data on the shared 
storage. Because most operating systems lack support for this simultaneous 
data access by multiple hosts, parallel clusters are usually accomplished by 
special versions of software and special releases of applications. For example, 
Oracle Parallel Server is a version of Oracle's database that has been designed 
to run on parallel clusters. Each machine runs Oracle, and a layer of software 
tracks access to the shared disk. Each machine has full access to all data in the 
database. 

In spite of improvements in distributed computing, most systems do not 
offer general-purpose distributed file systems. Therefore, most clusters do 
not allow shared access to data on the disk. For this, distributed file systems 
must provide access control and locking to the files to ensure no conflicting 
operations occur. This type of service is commonly known as a distributed lock 
manager (DLM). Work is ongoing for general-purpose distributed file systems, 
with vendors like Sun Microsystems announcing roadmaps for delivery of a 
DLM within the operating system. 

Cluster technology is rapidly changing. Cluster directions include global 
clusters, in which the machines could be anywhere in the world (or anywhere a 
WAN reaches). Such projects are still the subject of research and development. 

Clustered system use and features should expand greatly as storage-area 
networks (SANS), as described in Section 14.6.3, become prevalent. SANs allow 
easy attachment of multiple hosts to multiple storage units. Current clusters 
are usually limited to two or four hosts due to the complexity of connecting the 
hosts to shared storage. 

Real-Time Systems 

Another form of a special-purpose operating system is the real-time system. A 
real-time system is used when rigid time requirements have been placed on the 
operation of a processor or the flow of data; thus, it is often used as a control 
device in a dedicated application. Sensors bring data to the computer. The com- 
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puter must analyze the data and possibly adjust controls to modify the sensor 
inputs. Systems that control scientific experiments, medical imaging systems, 
industrial control systems, and certain display systems are real-time systems. 
Some automobile-engine fuel-injection systems, home-appliance controllers, 
and weapon systems are also real-time systems. 

A real-time system has well-defined, fixed time constraints. Processing 
must be done within the defined constraints, or the system will fail. For 
instance, it would not do for a robot arm to be instructed to halt after it had 
smashed into the car it was building. A real-time system functions correctly 
~nly if it returns the correct result within its time constraints. Contrast this 

requirement to a time-sharing system, where it is desirable (but not mandatory) 
to respond quickly, or to a batch system, which may have no time constraints at 
all. 

Real-time systems come in two flavors: hard and soft. A hard real-time 
system guarantees that critical tasks be completed on time. This goal requires 
that all delays in the system be bounded, from the retrieval of stored data to 
the time that it takes the operating system to finish any request made of it. Such 
time constraints dictate the facilities that are available in hard real-time systems. 

I 
Secondary storage of any sort is usually limited or missing, with data instead 
being stored in short-term memory or in read-only memory (ROM). ROM is 
located on nonvolatile storage devices that retain their contents even in the case 
of electric outage; most other types of memory are volatile. Most advanced 
operating-system features are absent too, since they tend to separate the user 
from the hardware, and that separation results in uncertainty about the amount 
of time an operation will take. For instance, virtual memory (Chapter 10) is 
almost never found on real-time systems. Therefore, hard real-time systems 
conflict with the operation of time-sharing systems, and the two cannot be 
mixed. Since none of the existing general-purpose operating systems support 
hard real-time functionality, we do not concern ourselves with this type of 
system in this text. 

A less restrictive type of real-time system is a soft real-time system, where 
a critical real-time task gets priority over other tasks, and retains that priority 
until it completes. As in hard real-time systems, the operating-system kernel 
delays need to be bounded: A real-time task cannot be kept waiting indefinitely 
for the kernel to run it. Soft real time is an achievable goal that can be mixed 
with other types of systems. Soft real-time systems, however, have more limited 
utility than hard real-time systems. Given their lack of deadline support, they 
are risky to use for industrial control and robotics. They are useful, however 
in several areas, including multimedia, virtual reality, and advanced scientific 
projects-such as undersea exploration and planetary rovers. These systems 
need advanced operating-system features that cannot be supported by hard 
real-time systems. Because of the expanded uses for soft real-time functionality, 
it is finding its way into most current operating systems, including major 
versions of UNIX. 
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In Chapter 6, we consider the scheduling facility needed to implement soft 
real-time functionality in an operating system. In Chapter 10, we describe the 
design of memory management for real-time computing. Finally, in Chapter 21, 
we describe the real-time components of the Windows 2000 operating system. 

1.8 Handheld Systems 

Handheld systems include personal digital assistants (PDAs), such as Palm- 
Pilots or cellular telephones with connectivity to a network such as the Internet. 
Developers of handheld systems and applications face many challenges, most 
of which are due to the limited size of such devices. For example, a PDA is 
typically about 5 inches in height and 3 inches in width, and it weighs less than 
one-half pound. Due to this limited size, most handheld devices have a small 
amount of memory, include slow processors, and feature small display screens. 
We will take a look now at each of these limitations. 

Many handheld devices have between 512 KB and 8 MB of memory. (Con- 
trast this with a typical PC or workstation, which may have several hundred 
megabytes of memory!) As a result, the operating system and applications must 
manage memory efficiently. This includes returning all allocated memory back 
to the memory manager once the memory is no longer being used. In Chapter 
10 we will explore virtual memory, which allows developers to write programs 
that behave as if the system has more memory than may be physically available. 
Currently, many handheld devices do not use virtual memory techniques, thus 
forcing program developers to work within the confines of limited physical 
memory. 

A second issue of concern to developers of handheld devices is the speed 
of the processor used in the device. Processors for most handheld devices often 
run at a fraction of the speed of a processor in a PC. Faster processors require 
more power. To include a faster processor in a handheld device would require a 
larger battery that would have to be replaced (or recharged) more frequently. To 
minimize the size of most handheld devices, smaller, slower processors which 
consume less power are typically used. Therefore, the operating system and 
applications must be designed not to tax the processor. 

The last issue confronting program designers for handheld devices is the 
small display screens typically available. Whereas a monitor for a home com- 
puter may measure up to 21 inches, the display for a handheld device is often 
no more than 3 inches square. Familiar tasks, such as reading e-mail or brows- 
ing web pages, must be condensed onto smaller displays. One approach for 
displaying the content in web pages is web clipping, where only a small subset 
of a web page is delivered and displayed on the handheld device. 

Some handheld devices may use wireless technology, such as BlueTooth 
(Section 1.5), allowing remote access to e-mail and web browsing. Cellular 
telephones with connectivity to the Internet fall into this category. However, 
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many PDAs currently do not provide wireless access. To download data to these 
devices, typically one first downloads the data to a PC or workstation, and then 
downloads the data to the PDA. Some PDAs allow data to be directly copied 
from one device to another using an infrared link. Generally, the limitations 
in the functionality of PDAs are balanced by their convenience and portability. 
Their use continues to expand as network connections become more available 
and other options, such as cameras and MP3 players, expand their utility. 

1.9 Feature Migration 

Overall, an examination of operating systems for mainframes and microcom- 
puters shows that features once available only on mainframes have been 
adopted by microcomputers. The same concepts are appropriate for the var- 
ious classes of computers: mainframes, minicomputers, microcomputers, and 
handhelds. Many of the concepts depicted in Figure 1.6 will be covered later 
in this book. However, to start understanding modern operating systems, you 
need to realize the theme of feature migration and to recognize the long history 
of many operating-system features. 

Figure 1.6 Migration of operating-system concepts and features. 
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A good example of this movement occurred with the MULTIplexed 
Information and Computing Services (MULTICS) operating system. MULTICS 
was developed from 1965 to 1970 at the Massachusetts Institute of Technology 
(MIT) as a computing utility. It ran on a large, complex mainframe computer 
(the GE 645). Many of the ideas that were developed for MULTICS were 
subsequently used at Bell Laboratories (one of the original partners in the 
development of MULTICS) in the design of UNIX. The UNIX operating system 
was designed circa 1970 for a PDP-11 minicomputer. Around 1980, the features 
of UNIX became the basis for UNIX-like operating systems on microcomputer 
systems, and they are being included in more recent operating systems such 
as Microsoft Windows NT, IBM 0S/2, and the Macintosh operating system. 
Thus, the features developed for a large mainframe system have moved to 
microcomputers over time. 

At the same time as features of large operating systems were being scaled 
down to fit PCs, more powerful, faster, and more sophisticated hardware sys- 
tems were being developed. The personal workstation is a large PC-for 
example, the Sun SPARCstation, the HP/Apollo, the IBM RS/6000, and the Intel 
Pentium class system running Windows NT or a UNIX derivative. Many uni- 
versities and businesses have large numbers of workstations tied together with 
local-area networks. As PCs gain more sophisticated hardware and software, 
the line dividing the two categories-mainframes and microcomputers-is 
blurring. 

1.10 . Computing Environments 

Now that we have traced the development of operating systems from the first 
hands-on systems through multiprogrammed and time-shared systems to PCs 
and handheld computers, we can give a brief overview of how such systems 
are used in a variety of computing environment settings. 

1.10.1 Traditional Computing 
As computing matures, the lines among many of the traditional computing 
environments are blurring. Consider the "typical office environment." Just 
a few years ago, this environment consisted of PCs connected to a network, 
with servers providing file and print service. Remote access was awkward, 
and portability was achieved by laptop computers carrying some of the user's 
workspace. Terminals attached to mainframes were prevalent at many compa- 
nies as well, with even fewer remote access and portability options. 

The current trend is toward more ways to access these environments. Web 
technologies are stretching the boundaries of traditional computing. Com- 
panies implement portals which provide web accessibility to their internal 
servers. Network computers are essentially terminals that understand web- 
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based computing. Handheld computers can synchronize with PCs to allow 
very portable use of company information. They can also connect to wireless 
networks to use the company's web portal (as well as the myriad other web 
resources). 

At home, most users had a single computer with a slow modem connection 
to the office, the Internet, or both. Network connection speeds once attainable 
only at great cost are now available at low cost, allowing more access to more 
data at a company or from the Web. Those fast data connections are allowing 
home computers to serve up web pages and to contain their own networks 
with printers, client PCs, and servers. Some homes even have firewalls to 
protect these home environments from security breaches. Those firewalls cost 
thousands of dollars a few years ago, and did not even exist a decade ago. 

1.10.2 Web-Based Computing 
The Web has become ubiquitous, leading to more access by a wider variety of 
devices than was dreamt about a few years ago. PCs are still the most prevalent 
access devices, with workstations (high-end graphics-oriented PCs), handheld 
PDAs, and even cell phones also providing access. 

Web computing has increased the emphasis on networking. Devices that 
were not previously networked now have wired or wireless access. Devices 
that were networked now have faster network connectivity, either by improved 
networking technology, optimized network implementation code, or both. 

The implementation of web-based computing has given rise to new cate- 
gories of devices, such as load balancers which distribute network connections 
among a pool of similar servers. Operating systems like Windows 95, which 
acted as web clients, have evolved into Windows ME and Windows 2000, which 
can act as web servers as well as clients. Generally, the Web has increased the 
complexity of devices as their users require them to be web-enabled. 

1.10.3 Embedded Computing 
Embedded computers are the most prevalent form of computers in exis- 
tence. They run embedded real-time operating systems. These devices are 
found everywhere, from car engines and manufacturing robots to VCRs and 
microwave ovens. They tend to have very specific tasks. The systems they run 
on are usually primitive, lacking advanced features, such as virtual memory, 
and even disks. Thus, the operating systems provide limited features. They 
usually have little or no user interface, preferring to spend their time monitor- 
ing and managing hardware devices, such as automobile engines and robotic 
arms. 

As an example, consider the aforementioned firewalls and load balancers. 
Some are general-purpose computers, running standard operating systems- 
such as UNIX-with special-purpose applications loaded to implement the 
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functionality. Others are hardware devices with a special-purpose operating 
system embedded within, providing just the functionality desired. 

The use of embedded systems continues to expand. The power of those 
devices, both as standalone units and as members of networks and the Web, is 
sure to increase as well. Entire houses can be computerized, so that a central 
computer-either a general-purpose computer or an embedded system-can 
control heating and lighting, alarm systems, and even coffee makers. Web 
access can let a home-owner tell the house to heat up before he arrives home. 
Someday, the refrigerator may call the grocery store when it notices the milk is 
gone. 

1.11 . Summary 

Operating systems have been developed over the past 45 years for two main 
purposes. First, the operating system attempts to schedule computational activ- 
ities to ensure good performance of the computing system. Second, it provides 
a convenient environment for the development and execution of programs. 
Initially, computer systems were used from the front console. Software such 
as assemblers, loaders, linkers, and compilers improved the convenience of 
programming the system, but also required substantial set-up time. To reduce 
the set-up time, facilities hired operators and batched similar jobs. 

Batch systems allowed automatic job sequencing by a resident operating 
system and greatly improved the overall utilization of the computer. The 
computer no longer had to wait for human operation. CPU utilization was still 
low, however, because of the slow speed of the 1 /0  devices relative to that of 
the CPU. Off-line operation of slow devices provided a means to use multiple 
reader-to-tape and tape-to-printer systems for one CPU. 

To improve the overall performance of the computer system, developers 
introduced the concept of multiprogramming, so that several jobs could be kept 
in memory at one time. The CPU is switched back and forth among them to 
increase CPU utilization and to decrease the total time needed to execute the 
jobs. 

Multiprogramming also allows time sharing. Time-shared operating sys- 
tems allow many users (from one to several hundred) to use a computer system 
interactively at the same time. 

PCs are microcomputers; they are considerably smaller and less expensive 
than mainframe systems. Operating systems for these computers have ben- 
efited from the development of operating systems for mainframes in several 
ways. However, since an individual has sole use of the computer, CPU utiliza- 
tion is no longer a prime concern. Hence, some of the design decisions made for 
mainframe operating systems may not be appropriate for these smaller systems. 
Other design decisions, such as those for security, are appropriate for both small 
and large systems, as PCs can now be connected to other computers and users 
through networks and the Web. 
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Parallel systems have more than one CPU in close communication; the CPUs 
share the computer bus, and sometimes share memory and peripheral devices. 
Such systems can provide increased throughput and enhanced reliability. Dis- 
tributed systems allow sharing of resources on geographically dispersed hosts. 
Clustered systems allow multiple machines to perform computations on data 
contained on shared storage, and let computing continue in the case of failure 
of some subset of cluster members. 

A hard real-time system is often used as a control device in a dedicated 
application. A hard real-time operating system has well-defined, fixed time 
constraints. Processing must be done within the defined constraints, or the 
system will fail. Soft real-time systems have less stringent timing constraints, 
and do not support deadline scheduling. 

Recently, the influence of the Internet and the World Wide Web has encour- 
aged the development of modern operating systems that include web browsers 
and networking and communication software as integral features. 

We have shown the logical progression of operating-system development, 
driven by inclusion of features in the CPU hardware needed for advanced 
functionality. This trend can be seen today in the evolution of PCs, with 
inexpensive hardware being improved sufficiently to allow, in turn, improved 
characteristics. 

Exercises 

1.1 What are the three main purposes of an operating system? 

1.2 List the four steps needed to run a program on a completely dedicated 
machine. 

1.3 What is the main advantage of multiprogramming? 

1.4 What are the main differences between operating systems for mainframe 
computers and PCs? 

1.5 In a multiprogramming and time-sharing environment, several users 
share the system simultaneously. This situation can result in various 
security problems. 

a. What are two such problems? 

b. Can we ensure the same degree of security in a time-shared machine 
as we have in a dedicated machine? Explain your answer. 

1.6 Define the essential properties of the following types of operating systems: 

a. Batch 

b. Interactive 
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c. Time sharing 

d. Real time 

e. Network 

f. Parallel 

g. Distributed 

h. Clustered 

i. Handheld 

1.7 We have stressed the need for an operating system to make efficient use of 
the computing hardware. When is it appropriate for the operating system 
to forsake this principle and to "waste" resources? Why is such a system 
not really wasteful? 

1.8 Under what circumstances would a user be better off using a time-sharing 
system, rather than a PC or single-user workstation? 

1.9 Describe the differences between symmetric and asymmetric multipro- 
cessing. What are three advantages and one disadvantage of multipro- 
cessor systems? 

1.10 What is the main difficulty that a programmer must overcome in writing 
an operating system for a real-time environment? 

1.11 Consider the various definitions of operating system. Consider whether 
the operating system should include applications such as web browsers 
and mail programs. Argue both pro and con positions, and support your 
answers. 

1.12 What are the tradeoffs inherent in handheld computers? 

1.13 Consider a computing cluster consisting of two nodes running a database. 
Describe two ways in which the cluster software can manage access to the 
data on the disk. Discuss the benefits and detriments of each. 
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Chapter 2 

COMPUTER- 
SYSTEM 
STRUCTURES 

We need to have a general knowledge of the structure of a computer system 
before we can explore the details of system operation. In this chapter, we look 
at several disparate parts of this structure to round out our background knowl- 
edge. This chapter is mostly concerned with computer-system architecture, so 
you can skim or skip it if you already understand the concepts. The first topics 
covered here include system startup, I/O, and storage. 

The operating system must also ensure the correct operation of the com- 
puter system. To ensure that user programs will not interfere with the proper 
operation of the system, the hardware must provide appropriate mechanisms 
to ensure correct behavior. Later in this chapter, we describe the basic computer 
architecture that makes it possible to write a functional operating system. We 
conclude with a network architecture overview. 

2.1 . Computer-System Operation 

A modern, general-purpose computer system consists of a CPU and a number 
of device controllers that are connected through a common bus that provides 
access to shared memory (Figure 2.1). Each device controller is in charge 
of a specific type of device (for example, disk drives, audio devices, and 
video displays). The CPU and the device controllers can execute concurrently, 
competing for memory cycles. To ensure orderly access to the shared memory, 
a memory controller is provided whose function is to synchronize access to the 
memory. 
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Figure 2.1 A modern computer system. 

For a computer to start running-for instance, when it is powered up or 
rebooted-it needs to have an initial program to run. This initial program, 
or bootstrap program, tends to be simple. Typically, it is stored in read-only 
memory (ROM) such as firmware or EEPROM within the computer hardware. 
It initializes all aspects of the system, from CPU registers to device controllers 
to memory contents. The bootstrap program must know how to load the 
operating system and to start executing that system. To accomplish this goal, 
the bootstrap program must locate and load into memory the operating-system 
kernel. The operating system then starts executing the first process, such as 
"init," and waits for some event to occur. 

The occurrence of an event is usually signaled by an interrupt from either 
the hardware or the software. Hardware may trigger an interrupt at any time 
by sending a signal to the CPU, usually by way of the system bus. Software may 
trigger an interrupt by executing a special operation called a system call (also 
called a monitor call). 

Modern operating systems are interrupt driven. If there are no processes 
to execute, no 1 /0  devices to service, and no users to whom to respond, an 
operating system will sit quietly, waiting for something to happen. Events are 
almost always signaled by the occurrence of an interrupt or a trap. A trap (or 
an exception) is a software-generated interrupt caused either by an error (for 
example, division by zero or invalid memory access) or by a specific request 
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from a user program that an operating-system service be performed. The 
interrupt-driven nature of an operating system defines that system's general 
structure. For each type of interrupt, separate segments of code in the operating 
system determine what action should be taken. An interrupt service routine is 
provided that is responsible for dealing with the interrupt. 

When the CPU is interrupted, it stops what it is doing and immediately 
transfers execution to a fixed location. The fixed location usually contains 
the starting address where the service routine for the interrupt is located. 
The interrupt service routine executes; on completion, the CPU resumes the 
interrupted computation. A time line of this operation is shown in Figure 2.2. 

Interrupts are an important part of a computer architecture. Each computer 
design has its own interrupt mechanism, but several functions are common. 
The interrupt must transfer control to the appropriate interrupt service routine. 
The straightforward method for handling this transfer would be to invoke 
a generic routine to examine the interrupt information; the routine, in turn, 
would call the interrupt-specific handler. However, interrupts must be handled 
quickly, and, given that only a predefined number of interrupts is possible, 
a table of pointers to interrupt routines can be used instead. The interrupt 
routine is then called indirectly through the table, with no intermediate routine 
needed. Generally, the table of pointers is stored in low memory (the first 100 
or so locations). These locations hold the addresses of the interrupt service 
routines for the various devices. This array, or interrupt vector, of addresses is 
then indexed by a unique device number, given with the interrupt request, to 
provide the address of the interrupt service routine for the interrupting device. 
Operating systems as different as MS-DOS and UNIX dispatch interrupts in this 
manner. 

The interrupt architecture must also save the address of the interrupted 
instruction. Many old designs simply stored the interrupt address in a fixed 
location or in a location indexed by the device number. More recent architec- 

CPU user 
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I10 interrupt 
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I10 transfer 110 transfer 
request done request done 

Figure 2.2 Interrupt time line for a single process doing output. 
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tures store the return address on the system stack. If the interrupt routine needs 
to modify the processor state-for instance, by modifying register values-it 
must explicitly save the current state and then restore that state before return- 
ing. After the interrupt is serviced, the saved return address is loaded into 
the program counter, and the interrupted computation resumes as though the 
interrupt had not occurred. 

A system call is invoked in a variety of ways, depending on the function- 
ality provided by the underlying processor. In all forms, it is the method used 
by a process to request action by the operating system. A system call usually 
takes the form of a trap to a specific location in the interrupt vector. This trap 
can be executed by a generic t r a p  instruction, although some systems (such as 
the MIPS R2000 family) have a specific s y s c a l l  instruction. 

2.2 . I 1 0  Structure 

As we discussed in Section 2.1, a general-purpose computer system consists of a 
CPU and multiple device controllers that are connected through a common bus. 
Each device controller is in charge of a specific type of device. Depending on the 
controller, there may be more than one attached device. For instance, the small 
computer-systems interface (SCSI) controller can have seven or more devices 
attached to it. A device controller maintains some local buffer storage and a set 
of special-purpose registers. The device controller is responsible for moving the 
data between the peripheral devices that it controls and its local buffer storage. 
The size of the local buffer within a device controller varies from one controller 
to another, depending on the particular device being controlled. For example, 
the size of the buffer of a disk controller is the same as or a multiple of the size 
of the smallest addressable portion of a disk, called a sector, which is usually 
512 bytes. 

2.2.1 I10  Interrupts 
To start an I/O operation, the CPU loads the appropriate registers within the 
device controller. The device controller, in turn, examines the contents of these 
registers to determine what action to take. For example, if it finds a read request, 
the controller will start the transfer of data from the device to its local buffer. 
Once the transfer of data is complete, the device controller informs the CPU that 
it has finished its operation. It accomplishes this communication by triggering 
an interrupt. 

This situation will occur, in general, as the result of a user process request- 
ing I/O. Once the I/O is started, two courses of action are possible. In the 
simplest case, the I/O is started; then, at I/O completion, control is returned 
to the user process. This case is known as synchronous I/O. The other pos- 
sibility, called asynchronous I/O, returns control to the user program without 
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Figure 2.3 Two I/O methods: (a) synchronous, and (b) asynchronous. 

waiting for the 1 /0  to complete. The 1 /0  then can continue while other system 
operations occur (Figure 2.3). 

Waiting for I/O completion may be accomplished in one of two ways. Some 
computers have a special wait instruction that idles the CPU until the next 
interrupt. Machines that do not have such an instruction may have a wait loop: 

Loop: j mp Loop 

This tight loop simply continues until an interrupt occurs, transferring control 
to another part of the operating system. Such a loop might also need to poll any 
1/0 devices that do not support the interrupt structure; instead, these devices 
simply set a flag in one of their registers and expect the operating system to 
notice that flag. 

If the CPU always waits for 1/0 completion, at most one 1/0 request is 
outstanding at a time. Thus, whenever an 1/0 interrupt occurs, the operat- 
ing system knows exactly which device is interrupting. On the other hand, 
this approach excludes concurrent I/O operations to several devices, and also 
excludes the possibility of overlapping useful computation with I/O. 

A better alternative is to start the I/O and then to continue processing other 
operating-system or user program code. A system call is then needed to allow 
the user program to wait for I/O completion, if desired. If no user programs are 
ready to run, and the operating system has no other work to do, we still require 
the wait instruction or idle loop, as before. We also need to be able to keep 
track of many I/O requests at the same time. For this purpose, the operating 
system uses a table containing an entry for each I/O device: the device-status 
table (Figure 2.4). Each table entry indicates the device's type, address, and 
state (not functioning, idle, or busy). If the device is busy with a request, the 
type of request and other parameters will be stored in the table entry for that 
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device: disk unit 1 
status: idle 1 
device: disk unit 2 
status: busy 

Figure 2.4 Device-status table. 

device. Since it is possible for other processes to issue requests to the same 
device, the operating system will also maintain a wait queue-a list of waiting 
requests-for each I/O device. 

An I/O device interrupts when it needs service. When an interrupt occurs, 
the operating system first determines which I/O device caused the interrupt. It 
then indexes into the I/O device table to determine the status of that device, 
and modifies the table entry to reflect the occurrence of the interrupt. For 
most devices, an interrupt signals completion of an I/O request. If there are 
additional requests waiting in the queue for this device, the operating system 
starts processing the next request. 

Finally, control is returned from the I/O interrupt. If a process was waiting 
for this request to complete (as recorded in the device-status table), we can now 
return control to it. Otherwise, we return to whatever we were doing before 
the I/O interrupt: to the execution of the user program (the program started an 
I/O operation and that operation has now finished, but the program has not yet 
waited for the operation to complete) or to the wait loop (the program started 
two or more I/O operations and is waiting for a particular one to finish, but ths  
interrupt was from one of the other operations). In a time-sharing system, the 
operating system could switch to another ready-to-run process. 

The schemes used by specific input devices may vary from this one. Many 
interactive systems allow users to type ahead-to enter data before the data are 
requested-on the keyboard. In this case, interrupts may occur, signaling the 
arrival of characters from the terminal, while the device-status block indicates 
that no program has requested input from this device. If typeahead is to be 
allowed, then a buffer must be provided to store the typeahead characters until 
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some program wants them. In general, we may need a buffer for each input 
device. 

The main advantage of asynchronous 1/0 is increased system efficiency. 
While 1/0 is taking place, the system CPU can be used for processing or starting 
I/Os to other devices. Because 1/0 can be slow compared to processor speed, 
the system makes efficient use of its facilities. In Section 2.2.2, we describe 
another mechanism for improving system performance. 

2.2.2 DMA Structure 
In a simple terminal-input driver, when a line is to be read from the terminal, 
the first character typed is sent to the computer. When that character is 
received, the asynchronous-communication (or serial-port) device to which the 
terminal line is connected interrupts the CPU. When the interrupt request from 
the terminal arrives, the CPU is about to execute some instruction. (If the 
CPU is in the middle of executing an instruction, the interrupt is normally 
held pending the completion of instruction execution.) The address of this 
interrupted instruction is saved, and control is transferred to the interrupt 
service routine for the appropriate device. 

The interrupt service routine saves the contents of any CPU registers that it 
will need to use. It checks for any error conditions that might have resulted 
from the most recent input operation. It then takes the character from the 
device, and stores that character in a buffer. The interrupt routine must also 
adjust pointer and counter variables, to be sure that the next input character will 
be stored at the next location in the buffer. The interrupt routine next sets a flag 
in memory indicating to the other parts of the operating system that new input 
has been received. The other parts are responsible for processing the data in 
the buffer, and for transferring the characters to the program that is requesting 
input (see Section 2.5). Then, the interrupt service routine restores the contents 
of any saved registers, and transfers control back to the interrupted instruction. 

If characters are being typed to a 9600-baud terminal, the terminal can 
accept and transfer one character approximately every 1 millisecond, or 1000 
microseconds. A well-written interrupt service routine to input characters into 
a buffer may require 2 microseconds per character, leaving 998 microseconds 
out of every 1000 for CPU computation (and for servicing of other interrupts). 
Given this disparity, asynchronous I/O is usually assigned a low interrupt 
priority, allowing other, more important interrupts to be processed first, or even 
to preempt the current interrupt for another. A high-speed device, however- 
such as a tape, disk, or communications network-may be able to transmit 
information at close to memory speeds; if the CPU needs two microseconds to 
respond to each interrupt and interrupts arrive every four microseconds, for 
example, that does not leave much time for process execution. 

To solve this problem, direct memory access (DMA) is used for high-speed 
I/O devices. After setting up buffers, pointers, and counters for the I/O device, 
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the device controller transfers an entire block of data directly to or from its 
own buffer storage to memory, with no intervention by the CPU. Only one 
interrupt is generated per block, rather than the one interrupt per byte (or word) 
generated for low-speed devices. 

The basic operation of the CPU is the same. A user program, or the 
operating system itself, may request data transfer. The operating system finds 
a buffer (an empty buffer for input, or a full buffer for output) from a pool of 
buffers for the transfer. (A buffer is typically 128 to 4,096 bytes, depending on 
the device type.) Next, a portion of the operating system called a device driver 
sets the DMA controller registers to use appropriate source and destination 
addresses, and transfer length. The DMA controller is then instructed to start 
the 1 /0  operation. While the DMA controller is performing the data transfer, 
the CPU is free to perform other tasks. Since the memory generally can transfer 
only one word at a time, the DMA controller "steals" memory cycles from the 
CPU. This cycle stealing can slow down the CPU execution while a DMA transfer 
is in progress. The DMA controller interrupts the CPU when the transfer has 
been completed. 

2.3 . Storage Structure 

Computer programs must be in main memory (also called random-access 
memory or RAM) to be executed. Main memory is the only large storage 
area (millions to billions of bytes) that the processor can access directly. It is 
implemented in a semiconductor technology called dynamic random-access 
memory (DRAM), which forms an array of memory words. Each word has 
its own address. Interaction is achieved through a sequence of l o a d  or s t o r e  
instructions to specific memory addresses. The l o a d  instruction moves a word 
from main memory to an internal register within the CPU, whereas the s t o r e  
instruction moves the content of a register to main memory. Aside from explicit 
loads and stores, the CPU automatically loads instructions from main memory 
for execution. 

A typical instruction-execution cycle, as executed on a system with a 
von Neumann architecture, will first fetch an instruction from memory and 
will store that instruction in the instruction register. The instruction is then 
decoded and may cause operands to be fetched from memory and stored in 
some internal register. After the instruction on the operands has been executed, 
the result may be stored back in memory. Notice that the memory unit sees only 
a stream of memory addresses; it does not know how they are generated (by the 
instruction counter, indexing, indirection, literal addresses, and so on) or what 
they are for (instructions or data). Accordingly, we can ignore how a memory 
address is generated by a program. We are interested only in the sequence of 
memory addresses generated by the running program. 
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Ideally, we want the programs and data to reside in main memory perma- 
nently. This arrangement is not possible for the following two reasons: 

1. Main memory is usually too small to store all needed programs and data 
permanently. 

2. Main memory is a volatile storage device that loses its contents when power 
is turned off or otherwise lost. 

Thus, most computer systems provide secondary storage as an extension 
of main memory. The main requirement for secondary storage is that it be able 
to hold large quantities of data permanently. 

The most common secondary-storage device is a magnetic disk, which 
provides storage of both programs and data. Most programs (web browsers, 
compilers, word processors, spreadsheets, and so on) are stored on a disk until 
they are loaded into memory. Many programs then use the disk as both a source 
and a destination of the information for their processing. Hence, the proper 
management of disk storage is of central importance to a computer system, as 
we discuss in Chapter 14. 

In a larger sense, however, the storage structure that we have described- 
consisting of registers, main memory, and magnetic disks-is only one of many 
possible storage systems. There are also cache memory, CD-ROM, magnetic 
tapes, and so on. Each storage system provides the basic functions of storing 
a datum, and of holding that datum until it is retrieved at a later time. The 
main differences among the various storage systems lie in speed, cost, size, and 
volatility. In Sections 2.3.1 through 2.3.3, we describe main memory, magnetic 
disks, and magnetic tapes, because they illustrate the general properties of all 
important, commercially-available storage devices. In Chapter 14, we discuss 
the specific properties of many particular devices, such as floppy disks, hard 
disks, CD-ROMs, and DVDs. 

2.3.1 Main Memory 
Main memory and the registers built into the processor itself are the only stor- 
age that the CPU can access directly. There are machine instructions that take 
memory addresses as arguments, but none that take disk addresses. Therefore, 
any instructions in execution, and any data being used by the instructions, must 
be in one of these direct-access storage devices. If the data are not in memory, 
they must be moved there before the CPU can operate on them. 

In the case of I/O, as mentioned in Section 2.1, each I/O controller includes 
registers to hold commands and the data being transferred. Usually, special I/O 
instructions allow data transfers between these registers and system memory. 
To allow more convenient access to I/O devices, many computer architectures 
provide memory-mapped 110. In this case, ranges of memory addresses are 
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set aside, and are mapped to the device registers. Reads and writes to these 
memory addresses cause the data to be transferred to and from the device 
registers. This method is appropriate for devices that have fast response times, 
such as video controllers. In the IBM PC, each location on the screen is mapped 
to a memory location. Displaying text on the screen is almost as easy as writing 
the text into the appropriate memory-mapped locations. 

Memory-mapped I/O is also convenient for other devices, such as the serial 
and parallel ports used to connect modems and printers to a computer. The 
CPU transfers data through these kinds of devices by reading and writing a few 
device registers, called an 1 /0  port. To send out a long string of bytes through a 
memory-mapped serial port, the CPU writes one data byte to the data register, 
then sets a bit in the control register to signal that the byte is available. The 
device takes the data byte, and then clears the bit in the control register to signal 
that it is ready for the next byte. Then, the CPU can transfer the next byte. If 
the CPU uses polling to watch the control bit, constantly looping to see whether 
the device is ready, this method of operation is called programmed 110 (PIO). If 
the CPU does not poll the control bit, but instead receives an interrupt when the 
device is ready for the next byte, the data transfer is said to be interrupt driven. 

Registers that are built into the CPU are generally accessible within one 
cycle of the CPU clock. Most CPUs can decode instructions and perform 
simple operations on register contents at the rate of one or more operations 
per clock tick. The same cannot be said of main memory, which is accessed 
via a transaction on the memory bus. Memory access may take many cycles 
of the CPU clock to complete, in which case the processor normally needs 
to stall, since it does not have the data required to complete the instruction 
that it is executing. This situation is intolerable because of the frequency of 
memory accesses. The remedy is to add fast memory between the CPU and 
main memory. A memory buffer used to accommodate a speed differential, 
called a cache, is described in Section 2.4.1. 

2.3.2 Magnetic Disks 
Magnetic disks provide the bulk of secondary storage for modern computer 
systems. Conceptually, disks are relatively simple (Figure 2.5). Each disk platter 
has a flat circular shape, like a CD. Common platter diameters range from 1.8 to 
5.25 inches. The two surfaces of a platter are covered with a magnetic material. 
We store information by recording it magnetically on the platters. 

A read-write head "flies" just above each surface of every platter. The 
heads are attached to a disk arm, which moves all the heads as a unit. The sur- 
face of a platter is logically divided into circular tracks, which are subdivided 
into sectors. The set of tracks that are at one arm position forms a cylinder. 
There may be thousands of concentric cylinders in a disk drive, and each track 
may contain hundreds of sectors. The storage capacity of common disk drives 
is measured in gigabytes. 
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Figure 2.5 Moving-head disk mechanism. 

When the disk is in use, a drive motor spins it at high speed. Most drives 
rotate 60 to 200 times per second. Disk speed has two parts. The transfer 
rate is the rate at which data flow between the drive and the computer. The 
positioning time, sometimes called the random-access time, consists of the 
time to move the disk arm to the desired cylinder, called the seek time, and 
the time for the desired sector to rotate to the disk head, called the rotational 
latency. Typical disks can transfer several megabytes of data per second, and 
they have seek times and rotational latencies of several milliseconds. 

Because the disk head flies on an extremely thin (measured in microns) 
cushion of air, there is a danger of the head making contact with the disk 
surface. Although the disk platters are coated with a thin protective layer, 
sometimes the head will damage the magnetic surface. This accident is called a 
head crash. A head crash normally cannot be repaired; the entire disk must be 
replaced. 

A disk can be removable, allowing different disks to be mounted as needed. 
Removable magnetic disks generally consist of one platter, held in a plastic case 
to prevent damage while not in the disk drive. Floppy disks are inexpensive 
removable magnetic disks that have a soft plastic case containing a flexible 
platter. The head of a floppy-disk drive generally sits directly on the disk 
surface, so the drive is designed to rotate more slowly than a hard-disk drive 
to reduce the wear on the disk surface. The storage capacity of a floppy disk is 
typically only 1 MB or so. Removable disks are available that work much like 
normal hard disks and have capacities measured in gigabytes. 
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A disk drive is attached to a computer by a set of wires called an 110 
bus. Several kinds of buses are available, including enhanced integrated drive 
electronics (EIDE), advanced technology attachment (ATA), and SCSI buses. 
The data transfers on a bus are carried out by special electronic processors 
called controllers. The host controller is the controller at the computer end 
of the bus. A disk controller is built into each disk drive. To perform a 
disk 1/0 operation, the computer places a command into the host controller, 
typically using memory-mapped I/O ports, as described in Section 2.3.1. The 
host controller then sends the command via messages to the disk controller, and 
the disk controller operates the disk-drive hardware to carry out the command. 
Disk controllers usually have a built-in cache. Data transfer at the disk drive 
happens between the cache and the disk surface, and data transfer to the host, 
at fast electronic speeds, occurs between the cache and the host controller. 

2.3.3 Magnetic Tapes 
Magnetic tape was used as an early secondary-storage medium. Although it 
is relatively permanent and can hold large quantities of data, its access time 
is slow in comparison to that of main memory. In addition, random access to 
magnetic tape is about a thousand times slower than random access to magnetic 
disk, so tapes are not very useful for secondary storage. Tapes are used mainly 
for backup, for storage of infrequently used information, and as a medium for 
transferring information from one system to another. 

A tape is kept in a spool, and is wound or rewound past a read-write head. 
Moving to the correct spot on a tape can take minutes, but once positioned, tape 
drives can write data at speeds comparable to disk drives. Tape capacities vary 
greatly, depending on the particular kind of tape drive. Some tapes hold 2 to 3 
times more data than does a large disk drive. Tapes and their drivers are usually 
categorized by width, including 4,8, and 19 millimeters, 1 /4 and 1/2 inch. 

2.4 Storage Hierarchy 

The wide variety of storage systems in a computer system can be organized 
in a hierarchy (Figure 2.6) according to speed and cost. The higher levels 
are expensive, but they are fast. As we move down the hierarchy, the cost 
per bit generally decreases, whereas the access time generally increases. This 
tradeoff is reasonable; if a given storage system were both faster and less 
expensive than another-other properties being the same-then there would 
be no reason to use the slower, more expensive memory. In fact, many early 
storage devices, including paper tape and core memories, are relegated to 
museums now that magnetic tape and semiconductor memory have become 
faster and cheaper. The top three levels of memory in Figure 2.6 may be 
constructed using semiconductor memory. 
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Figure 2.6 Storage-device hierarchy. 

In addition to having differing speed and cost, the various storage systems 
are either volatile or nonvolatile. Volatile storage loses its contents when 
the power to the device is removed. In the absence of expensive battery 
and generator backup systems, data must be written to nonvolatile storage 
for safekeeping. In the hierarchy shown in Figure 2.6, the storage systems 
above the electronic disk are volatile, whereas those below are nonvolatile. An 
electronic disk can be designed to be either volatile or nonvolatile. During 
normal operation, the electronic disk stores data in a large DRAM array, which is 
volatile. But many electronic-disk devices contain a hidden magnetic hard disk 
and a battery for backup power. If external power is interrupted, the electronic- 
disk controller copies the data from RAM to the magnetic disk. When external 
power is restored, the controller copies the data back into the RAM. 

The design of a complete memory system must balance all these factors: 
It uses only as much expensive memory as necessary, while providing as 
much inexpensive, nonvolatile memory as possible. Caches can be installed to 
improve performance where a large access-time or transfer-rate disparity exists 
between two components. 
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2.4.1 Caching 
Caching is an important principle of computer systems. Information is nor- 
mally kept in some storage system (such as main memory). As it is used, it is 
copied into a faster storage system-the cache-on a temporary basis. When 
we need a particular piece of information, we first check whether it is in the 
cache. If it is, we use the information directly from the cache; if it is not, we 
use the information from the main storage system, putting a copy in the cache 
under the assumption that we will need it again soon. 

In addition, internal programmable registers, such as index registers, 
provide a high-speed cache for main memory. The programmer (or com- 
piler) implements the register-allocation and register-replacement algorithms 
to decide which information to keep in registers and which to keep in main 
memory. There are also caches that are implemented totally in hardware. For 
instance, most systems have an instruction cache to hold the next instructions 
expected to be executed. Without this cache, the CPU would have to wait several 
cycles while an instruction is fetched from main memory. For similar reasons, 
most systems have one or more high-speed data caches in the memory hierar- 
chy. We are not concerned with these hardware-only caches in this text, since 
they are outside of the control of the operating system. 

Because caches have limited size, cache management is an important 
design problem. Careful selection of the cache size and of a replacement policy 
can result in 80 to 99 percent of all accesses being in the cache, greatly increasing 
performance. Various replacement algorithms for software-controlled caches 
are discussed in Chapter 10. 

Main memory can be viewed as a fast cache for secondary storage, since 
data in secondary storage must be copied into main memory for use, and 
data must be in main memory before being moved to secondary storage for 
safekeeping. The file-system data, which resides permanently on secondary 
storage, may appear on several levels in the storage hierarchy. At the highest 
level, the operating system may maintain a cache of file-system data in main 
memory. Also, electronic RAM disks (also known as solid-state disks) may be 
used for high-speed storage that is accessed through the file-system interface. 
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage, 
in turn, is often backed up onto magnetic tapes or removable disks to protect 
against data loss in case of a hard-disk failure. Some systems automatically 
archive old file data from secondary storage to tertiary storage, such as tape 
jukeboxes, to lower the storage cost (see Chapter 14). 

The movement of information between levels of a storage hierarchy may 
be either explicit or implicit, depending on the hardware design and the con- 
trolling operating-system software. For instance, data transfer from cache to 
CPU and registers is usually a hardware function, with no operating-system 
intervention. On the other hand, transfer of data from disk to memory is usually 
controlled by the operating system. 
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2.4.2 Coherency and Consistency 
In a hierarchical storage structure, the same data may appear in different levels 
of the storage system. For example, suppose that an integer A is located in 
file B that is to be incremented by 1, and file B resides on magnetic disk. The 
increment operation proceeds by first issuing an 1/0  operation to copy the 
disk block on which A resides to main memory. This operation is followed by 
copying A to the cache and to an internal register. Thus, the copy of A appears 
in several places: on the magnetic disk, in main memory, in the cache, and in an 
internal register (see Figure 2.7). Once the increment takes place in the internal 
register, the value of A differs in the various storage systems. The value of A 
becomes the same only after the new value of A is written from the internal 
register back to the magnetic disk. 

In a computing environment where only one process executes at a time, this 
arrangement poses no difficulties, since an access to the integer A will always 
be to the copy at the highest level of the hierarchy. However, in a multitasking 
environment, where the CPU is switched back and forth among various pro- 
cesses, extreme care must be taken to ensure that, if several processes wish to 
access A, then each of these processes will obtain the most recently updated 
value of A. 

The situation becomes more complicated in a multiprocessor environment 
where, in addition to maintaining internal registers, each of the CPUs also 
contains a local cache. In such an environment, a copy of A may exist simulta- 
neously in several caches. Since the various CPUs can all execute concurrently, 
we must make sure that an update to the value of A in one cache is imme- 
diately reflected in all other caches where A resides. This situation is called 
cache coherency, and it is usually a hardware problem (handled below the 
operating-system level). 

In a distributed environment, the situation becomes even more complex. In 
such an environment, several copies (or replicas) of the same file can be kept 
on different computers that are distributed in space. Since the various replicas 
may be accessed and updated concurrently, we must ensure that, when a replica 
is updated in one place, all other replicas are brought up-to-date as soon as 
possible. There are various ways to achieve this guarantee, as we discuss in 
Chapter 16. 

Figure 2.7 Migration of integer A from disk to register. 
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2.5 . Hardware Protection 

Early computer systems were single-user programmer-operated systems. 
When the programmers operated the computer from the console, they had 
complete control over the system. As operating systems developed, however, 
this control was given to the operating system. Early operating systems were 
called resident monitors, and starting with the resident monitor, the operating 
system began to perform many of the functions, especially I/O, for which the 
programmer had previously been responsible. 

In addition, to improve system utilization, the operating system began to 
share system resources among several programs simultaneously. With spooling, 
one program might have been executing while I/O occurred for other processes; 
the disk simultaneously held data for many processes. Multiprogramming put 
several programs in memory at the same time. 

This sharing both improved utilization and increased problems. When the 
system was run without sharing, an error in a program could cause problems 
for only the one program that was running. With sharing, many processes could 
be adversely affected by a bug in one program. 

For example, consider the simple batch operating system (Section 1.2.1), 
which provides nothing more than automatic job sequencing. If a program gets 
stuck in a loop reading input cards, the program will read through all its data 
and, unless something stops it, will continue reading the cards of the next job, 
and the next, and so on. This loop could prevent the correct operation of many 
jobs. 

Even more subtle errors can occur in a multiprogramming system, where 
one erroneous program might modify the program or data of another program, 
or even the resident monitor itself. MS-DOS and the Macintosh OS both allow 
this kind of error. 

Without protection against these sorts of errors, either the computer must 
execute only one process at a time, or all output must be suspect. A prop- 
erly designed operating system must ensure that an incorrect (or malicious) 
program cannot cause other programs to execute incorrectly. 

Many programming errors are detected by the hardware. These errors are 
normally handled by the operating system. If a user program fails in some way 
-such as by making an attempt either to execute an illegal instruction, or to 
access memory that is not in the user's address space-then the hardware will 
trap to the operating system. The trap transfers control through the interrupt 
vector to the operating system, just like an interrupt. Whenever a program 
error occurs, the operating system must abnormally terminate the program. 
This situation is handled by the same code as is a user-requested abnormal 
termination. An appropriate error message is given, and the memory of the 
program may be dumped. The memory dump is usually written to a file so that 
the user or programmer can examine it, and perhaps can correct and restart the 
program. 
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2.5.1 Dual-Mode Operation 
To ensure proper operation, we must protect the operating system and all 
other programs and their data from any malfunctioning program. Protection 
is needed for any shared resource. The approach taken by many operating sys- 
tems provides hardware support that allows us to differentiate among various 
modes of execution. 

At the very least, we need two separate modes of operation: user mode 
and monitor mode (also called supervisor mode, system mode, or privileged 
mode). A bit, called the mode bit, is added to the hardware of the computer to 
indicate the current mode: monitor (0) or user (1). With the mode bit, we are 
able to distinguish between a task that is executed on behalf of the operating 
system, and one that is executed on behalf of the user. As we shall see, this 
architectural enhancement is useful for many other aspects of system operation. 

At system boot time, the hardware starts in monitor mode. The operating 
system is then loaded, and starts user processes in user mode. Whenever a trap 
or interrupt occurs, the hardware switches from user mode to monitor mode 
(that is, changes the state of the mode bit to 0). Thus, whenever the operating 
system gains control of the computer, it is in monitor mode. The system always 
switches to user mode (by setting the mode bit to 1) before passing control to a 
user program. 

The dual mode of operation provides us with the means for protecting the 
operating system from errant users, and errant users from one another. We 
accomplish this protection by designating some of the machine instructions that 
may cause harm as privileged instructions. The hardware allows privileged 
instructions to be executed only in monitor mode. If an attempt is made to 
execute a privileged instruction in user mode, the hardware does not execute 
the instruction, but rather treats the instruction as illegal and traps it to the 
operating system. 

The concept of privileged instructions also provides us with the means for 
the user to interact with the operating system by asking the system to perform 
some designated tasks that only the operating system should do. Each such 
request is invoked by the user executing a privileged instruction. Such a request 
is known as a system call (also called a monitor call or an operating-system 
function call)-as described in Section 2.1. 

When a system call is executed, it is treated by the hardware as a software 
interrupt. Control passes through the interrupt vector to a service routine in 
the operating system, and the mode bit is set to monitor mode. The system-call 
service routine is a part of the operating system. The monitor examines the 
interrupting instruction to determine what system call has occurred; a param- 
eter indicates what type of service the user program is requesting. Additional 
information needed for the request may be passed in registers, on the stack, or 
in memory (with pointers to the memory locations passed in registers). The 
monitor verifies that the parameters are correct and legal, executes the request, 
and returns control to the instruction following the system call. 



44 Chapter 2 Computer-System Structures 

The lack of a hardware-supported dual mode can cause serious shortcom- 
ings in an operating system. For instance, MS-DOS was written for the Intel 
8088 archtecture, which has no mode bit, and therefore, no dual mode. A user 
program running awry can wipe out the operating system by writing over it 
with data, and multiple programs are able to write to a device at the same time, 
with possibly disastrous results. More recent and advanced versions of the 
Intel CPU, such as the Pentium, do provide dual-mode operation. As a result, 
more recent operating systems, such as Microsoft Windows 2000 and IBM 0 5 / 2 ,  
take advantage of this feature and provide greater protection for the operating 
system. 

2.5.2 110 Protection 
A user program may disrupt the normal operation of the system by issuing 
illegal I/O instructions, by accessing memory locations within the operating 
system itself, or by refusing to relinquish the CPU. We can use various mecha- 
nisms to ensure that such disruptions cannot take place in the system. 

To prevent users from performing illegal I/O, we define all I/O instruc- 
tions to be privileged instructions. Thus, users cannot issue I/O instructions 
directly; they must do it through the operating system. For I/O protection to 
be complete, we must be sure that a user program can never gain control of the 
computer in monitor mode. If it could, 1/0 protection could be compromised. 

Consider a computer executing in user mode. It will switch to monitor 
mode whenever an interrupt or trap occurs, jumping to the address determined 
from the interrupt vector. If a user program, as part of its execution, stores a new 
address in the interrupt vector, this new address could overwrite the previous 
address with an address in the user program. Then, when a corresponding trap 
or interrupt occurred, the hardware would switch to monitor mode, and would 
transfer control through the (modified) interrupt vector to the user program! 
The user program could gain control of the computer in monitor mode. In 
fact, user programs could gain control of the computer in monitor mode in 
many other ways. In addition, new bugs are discovered every day that can be 
exploited to bypass system protections. Those topics are discussed in Chapters 
18 and 19. Thus, to do I/O, a user program executes a system call to request 
that the operating system perform 1/0 on its behalf (Figure 2.8). The operating 
system, executing in monitor mode, checks that the request is valid, and (if the 
request is valid) does the I/O requested. The operating system then returns to 
the user. 

2.5:3 Memory Protection 
To ensure correct operation, we must protect the interrupt vector from modifica- 
tion by a user program. In addition, we must also protect the interrupt-service 
routines in the operating system from modification. Even if the user did not 
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Figure 2.8 Use of a system call to perform I/O. 

gain unauthorized control of the computer, modifying the interrupt service 
routines would probably disrupt the proper operation of the computer system 
and of its spooling and buffering. 

We see then that we must provide memory protection at least for the 
interrupt vector and the interrupt-service routines of the operating system. In 
general, we want to protect the operating system from access by user programs, 
and, in addition, to protect user programs from one another. This protection 
must be provided by the hardware. It can be implemented in several ways, as 
we describe in Chapter 9. Here, we outline one such possible implementation. 

To separate each program's memory space, we need the ability to determine 
the range of legal addresses that the program may access, and to protect the 
memory outside that space. We can provide this protection by using two 
registers, usually a base and a limit, as illustrated in Figure 2.9. The base 
register holds the smallest legal physical memory address; the limit register 
contains the size of the range. For example, if the base register holds 300040 
and limit register is 120900, then the program can legally access all addresses 
from 300040 through 420940 inclusive. 

This protection is accomplished by the CPU hardware comparing every 
address generated in user mode with the registers. Any attempt by a program 
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Figure 2.9 A base and a limit register define a logical address space. 

executing in user mode to access monitor memory or other users' memory 
results in a trap to the monitor, which treats the attempt as a fatal error 
(Figure 2.10). This scheme prevents the user program from (accidentally or 
deliberately) modifying the code or data structures of either the operating 
system or other users. 

The base and limit registers can be loaded by only the operating system, 
which uses a special privileged instruction. Since privileged instructions can be 
executed in only monitor mode, and since only the operating system executes 
in monitor mode, only the operating system can load the base and limit regis- 
ters. This scheme allows the monitor to change the value of the registers, but 
prevents user programs from changing the registers' contents. 

The operating system, executing in monitor mode, is given unrestricted 
access to both monitor and users' memory. This provision allows the operating 
system to load users' programs into users' memory, to dump out those pro- 
grams in case of errors, to access and modify parameters of system calls, and so 
on. 

2.5.4 CPU Protection 
In addition to protecting I/O and memory, we must ensure that the operating 
system maintains control. We must prevent a user program from getting stuck 
in an infinite loop or not calling system services, and never returning control 
to the operating system. To accomplish this goal, we can use a timer. A timer 
can be set to interrupt the computer after a specified period. The period may be 
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Figure 2.10 Hardware address protection with base and limit registers. 

fixed (for example, 1/60 second) or variable (for example, from 1 millisecond to 
1 second). A variable timer is generally implemented by a fixed-rate clock and 
a counter. The operating system sets the counter. Every time the clock ticks, 
the counter is decremented. When the counter reaches 0, an interrupt occurs. 
For instance, a 10-bit counter with a 1-millisecond clock allows interrupts at 
intervals from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond. 

Before turning over control to the user, the operating system ensures that 
the timer is set to interrupt. If the timer interrupts, control transfers automat- 
ically to the operating system, which may treat the interrupt as a fatal error 
or may give the program more time. Clearly, instructions that modify the 
operation of the timer are privileged. 

Thus, we can use the timer to prevent a user program from running too 
long. A simple technique is to initialize a counter with the amount of time that a 
program is allowed to run. A program with a 7-minute time limit, for example, 
would have its counter initialized to 420. Every second, the timer interrupts 
and the counter is decremented by 1. As long as the counter is positive, control 
is returned to the user program. When the counter becomes negative, the 
operating system terminates the program for exceeding the assigned time limit. 

A more common use of a timer is to implement time sharing. In the most 
straightforward case, the timer could be set to interrupt every N milliseconds, 
where N is the time slice that each user is allowed to execute before the next 
user gets control of the CPU. The operating system is invoked at the end of each 
time slice to perform various housekeeping tasks, such as adding the value N 
to the record that specifies (for accounting purposes) the amount of time the 
user program has executed thus far. The operating system also saves registers, 
internal variables, and buffers, and changes several other parameters to prepare 
for the next program to run. This procedure is known as a context switch; it is 
explored in Chapter 4. Following a context switch, the next program continues 
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with its execution from the point at which it left off (when its previous time slice 
ran out). 

Another use of the timer is to compute the current time. A timer interrupt 
signals the passage of some period, allowing the operating system to compute 
the current time in reference to some initial time. If we have interrupts every 
1 second, and we have had 1427 interrupts since we were told that it was 1:00 
P.M., then we can compute that the current time is 1:23:47 P.M. Some computers 
determine the current time in this manner, but the calculations must be done 
carefully for the time to be kept accurately, since the interrupt-processing time 
(and other times when interrupts are disabled) tends to cause the software clock 
to slow down. Most computers have a separate hardware time-of-day clock that 
is independent of the operating system. 

2.6 Network Structure 

There are basically two types of networks: local-area networks (LAN) and 
wide-area networks (WAN). The main difference between the two is the way in 
which they are geographically distributed. Local-area networks are composed 
of processors that are distributed over small geographical areas (such as a single 
building or a number of adjacent buildings). Wide-area networks, on the other 
hand, are composed of a number of autonomous processors that are distributed 
over a large geographical area (such as the United States). These differences 
imply major variations in the speed and reliability of the communications 
network, and they are reflected in the distributed operating-system design. 

2.6.1 Local-Area Networks 

Local-area networks emerged in the early 1970s, as a substitute for large main- 
frame computer systems. For many enterprises, it is more economical to have 
a number of small computers, each with its own self-contained applications, 
rather than a single large system. Because each small computer is likely to 
need a full complement of peripheral devices (such as disks and printers), and 
because some form of data sharing is likely to occur in a single enterprise, it 
was a natural step to connect these small systems into a network. 

LANs are usually designed to cover a small geographical area (such as a 
single building, or a few adjacent buildings) and are generally used in an office 
environment. All the sites in such systems are close to one another, so the 
communication links tend to have a higher speed and lower error rate than 
do their counterparts in wide-area networks. High-quality (expensive) cables 
are needed to attain this higher speed and reliability. It is also possible to use 
the cable exclusively for data network traffic. Over longer distances, the cost of 
using high-quality cable is enormous, and the exclusive use of the cable tends 
to be prohibitive. 
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Figure 2.11 Local-area network. 

The most common links in a local-area network are twisted pair and fiber 
optic cabling. The most common configurations are multiaccess bus, ring, 
and star networks. Communication speeds range from 1 megabit per second, 
for networks such as AppleTalk, infrared, and the new Bluetooth local radio 
network, to 1 gigabit per second for gigabit-Ethernet. Ten megabits per 
second is most common, and is the speed of lOBaseT Ethernet. lOOBaseT 
Ethernet requires a higher-quality cable but runs at 100 megabits per second, 
and is becoming common. Also growing is the use of optical-fiber-based FDDI 
networking. The FDDI network is token-based and runs at over 100 megabits 
per second. 

A typical LAN may consist of a number of different computers (from 
mainframes to laptops or PDAs), various shared peripheral devices (such as 
laser printers or magnetic-tape drives), and one or more gateways (specialized 
processors) that provide access to other networks (Figure 2.11). An Ethernet 
scheme is commonly used to construct LANs. An Ethernet network has no 
central controller, because it is a multiaccess bus, so new hosts can be added 
easily to the network. 

2.6.2 Wide-Area Networks 
Wide-area networks emerged in the late 1960s, mainly as an academic research 
project to provide efficient communication among sites, allowing hardware and 
software to be shared conveniently and economically by a wide community of 
users. The first WAN to be designed and developed was the Arpanet. Begun 
in 1968, the Arpanet has grown from a four-site experimental network to a 
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worldwide network of networks, the Internet, comprising millions of computer 
systems. 

Because the sites in a WAN are physically distributed over a large geograph- 
ical area, the communication links are, by default, relatively slow and unreli- 
able. Typical links are telephone lines, leased (dedicated data) lines, microwave 
links, and satellite channels. These communication links are controlled by spe- 
cial communication processors (Figure 2.12), which are responsible for defining 
the interface through which the sites communicate over the network, as well as 
for transferring information among the various sites. 

For example, the Internet WAN provides the ability for hosts at geograph- 
ically separated sites to communicate with one another. The host computers 
typically differ from one another in type, speed, word length, operating sys- 
tem, and so on. Hosts are generally on LANs, which are, in turn, connected 
to the Internet via regional networks. The regional networks, such as NSFnet 
in the northeast United States, are interlinked with routers (Section 15.4.2) to 
form the worldwide network. Connections between networks frequently use 
a telephone-system service called TI, which provides a transfer rate of 1.544 

communication hwt weratlng eptm 
subsystem, 

H 
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network host user processes processor 

user processes 
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Figure 2.12 Communication processors in a wide-area network. 
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megabits per second over a leased line. For sites requiring faster Internet 
access, Tls are collected into multiple-T1 units that work in parallel to provide 
more throughput. For instance, a T3 is composed of 28 T1 connections and 
has a transfer rate of 45 megabits per second. The routers control the path 
each message takes through the net. This routing may be either dynamic, to 
increase communications efficiency, or static, to reduce security risks or to allow 
communications charges to be computed. 

Other WANs in operation use standard telephone lines as their primary 
means of communication. Modems are devices that accept digital data from 
the computer side and convert it to the analog signals that the telephone system 
uses. A modem at the destination site converts the analog signal back to digital 
and the destination receives the data. The UNIX news network, UUCP, allows 
systems to communicate with each other at predetermined times, via modems, 
to exchange messages. The messages are then routed to other nearby systems 
and in this way either are propagated to all hosts on the network (public 
messages) or are transferred to their destination (private messages). WANs 
are generally slower than LANs; their transmission rates range from 1,200 bits 
per second to over 1 megabit per second. UUCP has been superseded by PPP, 
the Point-to-Point Protocol. PPP functions over modem connections, allowing 
home computers to be fully connected to the Internet. 

2.7 Summary 

Multiprogramming and time-sharing systems improve performance by over- 
lapping CPU and I/O operations on a single machine. Such an overlap requires 
that data transfer between the CPU and an I/O device be handled either by 
polled or interrupt-driven access to an 1 /0  port, or by a DMA data transfer. 

For a computer to do its job of executing programs, the programs must 
be in main memory. Main memory is the only large storage area that the 
processor can access directly. It is an array of words or bytes, ranging in size 
from hundreds of thousands to hundreds of millions. Each word has its own 
address. The main memory is a volatile storage device that loses its contents 
when power is turned off or lost. Most computer systems provide secondary 
storage as an extension of main memory. The main requirement of secondary 
storage is to be able to hold large quantities of data permanently. The most 
common secondary-storage device is a magnetic disk, which provides storage 
of both programs and data. A magnetic disk is a nonvolatile storage device 
that also provides random access. Magnetic tapes are used mainly for backup, 
for storage of infrequently used information, and as a medium for transferring 
information from one system to another. 

The wide variety of storage systems in a computer system can be organized 
in a hierarchy according to their speed and cost. The higher levels are expen- 
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sive, but they are fast. As we move down the hierarchy, the cost per bit generally 
decreases, whereas the access time generally increases. 

The operating system must ensure correct operation of the computer sys- 
tem. To prevent user programs from interfering with the proper operation of the 
system, the hardware has two modes: user mode and monitor mode. Various 
instructions (such as I/O instructions and halt instructions) are privileged, and 
can be executed in only monitor mode. The memory in which the operating 
system resides must also be protected from modification by the user. A timer 
prevents infinite loops. These facilities (dual mode, privileged instructions, 
memory protection, timer interrupt) are basic building blocks used by operating 
systems to achieve correct operation. Chapter 3 continues this discussion with 
details of the facilities that operating systems provide. 

LANs and WANs are the two basic types of networks. Usually connected by 
expensive twisted-pair or fiber-optic cabling, LANs allow processors distributed 
over a small geographical area to communicate. Connected by telephone lines, 
leased lines, microwave links, or satellite channels, WANs allow processors 
distributed over a larger geographical area to communicate. LANs typically 
transmit more than 100 megabits per second, whereas slower WANs transmit 
from 1,200 bits per second to more than 1 megabit per second. 

Exercises 

2.1 Prefetching is a method of overlapping the I/O of a job with that job's own 
computation. The idea is simple. After a read operation completes and the 
job is about to start operating on the data, the input device is instructed to 
begin the next read immediately. The CPU and input device are then both 
busy. With luck, by the time that the job is ready for the next data item, 
the input device will have finished reading that data item. The CPU can 
then begin processing the newly read data, while the input device starts 
to read the following data. A similar idea can be used for output. In this 
case, the job creates data that are put into a buffer until an output device 
can accept them. 

Compare the prefetching scheme with spooling, where the CPU 
overlaps the input of one job with the computation and output of other 
jobs. 

2.2 How does the distinction between monitor mode and user mode function 
as a rudimentary form of protection (security) system? 

2.3 What are the differences between a trap and an interrupt? What is the use 
of each function? 

2.4 For what types of operations is DMA useful? Explain your answer. 

2.5 Which of the following instructions should be privileged? 
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a. Set value of timer. 

b. Read the clock. 

c. Clear memory. 

d. Turn off interrupts. 

e. Switch from user to monitor mode. 

2.6 Some computer systems do not provide a privileged mode of operation in 
hardware. Is it possible to construct a secure operating system for these 
computers? Give arguments both that it is and that it is not possible. 

2.7 Some early computers protected the operating system by placing it in a 
memory partition that could not be modified by either the user job or the 
operating system itself. Describe two difficulties that you think could arise 
with such a scheme. 

2.8 Protecting the operating system is crucial to ensuring that the computer 
system operates correctly. Provision of this protection is the reason for 
dual-mode operation, memory protection, and the timer. To allow max- 
imum flexibility, however, you should also place minimal constraints on 
the user. 

The following is a list of instructions that are normally protected. What 
is the minimal set of instructions that must be protected? 

a. Change to user mode. 

b. Change to monitor mode. 

c. Read from monitor memory. 

d. Write into monitor memory. 

e. Fetch an instruction from monitor memory. 

f. Turn on timer interrupt. 

g. Turn off timer interrupt. 

2.9 Give two reasons why caches are useful. What problems do they solve? 
What problems do they cause? If a cache can be made as large as the 
device for which it is caching (for instance, a cache as large as a disk), why 
not make it that large and eliminate the device? 

2.10 Writing an operating system that can operate without interference from 
malicious or undebugged user programs requires hardware assistance. 
Name three hardware aids for writing an operating system, and describe 
how they could be used together to protect the operating system. 
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2.11 Some CPUs provide for more than two modes of operation. What are two 
possible uses of these multiple modes? 

2.12 What are the main differences between a WAN and a LAN? 

2.13 What network configuration would best suit the following environ- 
ments? 

a. A dormitory floor 

b. A university campus 

c. A state 

d. A nation 
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Chapter 3 

OPERATING- 
SYSTEM 
STRUCTURES 

An operating system provides the environment within which programs are 
executed. Internally, operating systems vary greatly in their makeup, being 
organized along many different lines. The design of a new operating system is 
a major task. The goals of the system must be well defined before the design 
begins. The type of system desired is the basis for choices among various 
algorithms and strategies. 

An operating system may be viewed from several vantage points. One is by 
examining the services that it provides. Another is by looking at the interface 
that it makes available to users and programmers. A third is by disassembling 
the system into its components and their interconnections. In this chapter, we 
explore all three aspects of operating systems, showing the viewpoints of users, 
programmers, and operating-system designers. We consider what services 
an operating system provides, how they are provided, and what the various 
methodologies are for designing such systems. 

3.1 . System Components 

We can create a system as large and complex as an operating system only 
by partitioning it into smaller pieces. Each piece should be a well-delineated 
portion of the system, with carefully defined inputs, outputs, and functions. 
Obviously, not all systems have the same structure. However, many mod- 
ern systems share the goal of supporting the system components outlined in 
Sections 3.1.1 through 3.1.8. 
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3.1.1 Process Management 
A program does nothing unless its instructions are executed by a CPU. A 
process can be thought of as a program in execution, but its definition will 
broaden as we explore it further. A time-shared user program such as a 
compiler is a process. A word-processing program being run by an individual 
user on a PC is a process. A system task, such as sending output to a printer, is 
also a process. For now, you can consider a process to be a job or a time-shared 
program, but later you will learn that the concept is more general. As we shall 
see in Chapter 4, we can provide system calls that allow processes to create 
subprocesses to execute concurrently. 

A process needs certain resources-including CPU time, memory, files, and 
I/O devices-to accomplish its task. These resources are either given to the 
process when it is created, or allocated to it while it is running. In addition 
to the various physical and logical resources that a process obtains when it is 
created, various initialization data (or input) may be passed along. For example, 
consider a process whose function is to display the status of a file on the screen 
of a terminal. The process will be given as an input the name of the file, and 
will execute the appropriate instructions and system calls to obtain and display 
on the terminal the desired information. When the process terminates, the 
operating system will reclaim any reusable resources. 

We emphasize that a program by itself is not a process; a program is a 
passive entity, such as the contents of a file stored on disk, whereas a process 
is an active entity, with a program counter specifying the next instruction to 
execute. The execution of a process must be sequential. The CPU executes one 
instruction of the process after another, until the process completes. Further, at 
any time, at most one instruction is executed on behalf of the process. Thus, 
although two processes may be associated with the same program, they are 
nevertheless considered two separate execution sequences. It is common to 
have a program that spawns many processes as it runs. 

A process is the unit of work in a system. Such a system consists of a 
collection of processes, some of which are operating-system processes (those 
that execute system code) and the rest of which are user processes (those that 
execute user code). All these processes can potentially execute concurrently, by 
multiplexing the CPU among them. 

The operating system is responsible for the following activities in connec- 
tion with process management: 

Creating and deleting both user and system processes 

Suspending and resuming processes 

Providing mechanisms for process synchronization 

Providing mechanisms for process communication 

Providing mechanisms for deadlock handling 

We discuss process-management techniques in Chapters 4 through 7. 
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3.1.2 Main-Memory Management 
As we discussed in Chapter 1, the main memory is central to the operation of 
a modern computer system. Main memory is a large array of words or bytes, 
ranging in size from hundreds of thousands to billions. Each word or byte 
has its own address. Main memory is a repository of quickly accessible data 
shared by the CPU and I/O devices. The central processor reads instructions 
from main memory during the instruction-fetch cycle, and it both reads and 
writes data from main memory during the data-fetch cycle. The I/O operations 
implemented via DMA also read and write data in main memory. The main 
memory is generally the only large storage device that the CPU is able to address 
and access directly. For example, for the CPU to process data from disk, those 
data must first be transferred to main memory by CPU-generated I/O calls. 
Equivalently, instructions must be in memory for the CPU to execute them. 

For a program to be executed, it must be mapped to absolute addresses and 
loaded into memory. As the program executes, it accesses program instructions 
and data from memory by generating these absolute addresses. Eventually, 
the program terminates, its memory space is declared available, and the next 
program can be loaded and executed. 

To improve both the utilization of the CPU and the speed of the computer's 
response to its users, we must keep several programs in memory. Many 
different memory-management schemes are available, and the effectiveness of 
the different algorithms depends on the particular situation. Selection of a 
memory-management scheme for a specific system depends on many factors 
-especially on the hardware design of the system. Each algorithm requires its 
own hardware support. 

The operating system is responsible for the following activities in connec- 
tion with memory management: 

Keeping track of which parts of memory are currently being used and by 
whom 

Deciding which processes are to be loaded into memory when memory 
space becomes available 

Allocating and deallocating memory space as needed 

Memory-management techniques will be discussed in Chapters 9 and 10. 

3.1.3 File Management 

File management is one of the most visible components of an operating system. 
Computers can store information on several different types of physical media. 
Magnetic tape, magnetic disk, and optical disk are the most common media. 
Each of these media has its own characteristics and physical organization. Each 
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medium is controlled by a device, such as a disk drive or tape drive, that also 
has unique characteristics. These properties include access speed, capacity, 
data-transfer rate, and access method (sequential or random). 

For convenient use of the computer system, the operating system provides 
a uniform logical view of information storage. The operating system abstracts 
from the physical properties of its storage devices to define a logical storage 
unit, the file. The operating system maps files onto physical media, and accesses 
these files via the storage devices. 

A file is a collection of related information defined by its creator. Com- 
monly, files represent programs (both source and object forms) and data. Data 
files may be numeric, alphabetic, or alphanumeric. Files may be free-form (for 
example, text files), or may be formatted rigidly (for example, fixed fields). A 
file consists of a sequence of bits, bytes, lines, or records whose meanings are 
defined by their creators. The concept of a file is an extremely general one. 

The operating system implements the abstract concept of a file by managing 
mass storage media, such as disks and tapes, and the devices that control them. 
Also, files are normally organized into directories to ease their use. Finally, 
when multiple users have access to files, we may want to control by whom and 
in what ways (for example, read, write, append) files may be accessed. 

The operating system is responsible for the following activities in connec- 
tion with file management: 

Creating and deleting files 

Creating and deleting directories 

Supporting primitives for manipulating files and directories 

Mapping files onto secondary storage 

Backing up files on stable (nonvolatile) storage media 

File-management techniques will be discussed in Chapters 11 and 12. 

3.1.4 110-System Management 
One of the purposes of an operating system is to hide the peculiarities of specific 
hardware devices from the user. For example, in UNIX, the peculiarities of 
1 /0  devices are hidden from the bulk of the operating system itself by the I10 
subsystem. The I/O subsystem consists of 

A memory-management component that includes buffering, caching, and 
spooling 

A general device-driver interface 

Drivers for specific hardware devices 



3.1 System Components 59 

Only the device driver knows the peculiarities of the specific device to which it 
is assigned. 

We discussed in Chapter 2 how interrupt handlers and device drivers are 
used in the construction of efficient I/O subsystems. In Chapter 13, we will 
discuss how the I/O subsystem interfaces to the other system components, 
manages devices, transfers data, and detects I/O completion. 

3.1.5 Secondary-Storage Management 
The main purpose of a computer system is to execute programs. These pro- 
grams, with the data they access, must be in main memory, or primary storage, 
during execution. Because main memory is too small to accommodate all data 
and programs, and because the data that it holds are lost when power is lost, 
the computer system must provide secondary storage to back up main mem- 
ory. Most modern computer systems use disks as the principal on-line storage 
medium, for both programs and data. Most programs-including compilers, 
assemblers, sort routines, editors, and formatters-are stored on a disk until 
loaded into memory, and then use the disk as both the source and destination 
of their processing. Hence, the proper management of disk storage is of central 
importance to a computer system. 

The operating system is responsible for the following activities in connec- 
tion with disk management: 

Free-space management 

Storage allocation 

Disk scheduling 

Because secondary storage is used frequently, it must be used efficiently. The 
entire speed of operation of a computer may hinge on the speeds of the disk 
subsystem and of the algorithms that manipulate that subsystem. Techniques 
for secondary-storage management will be discussed in Chapter 14. 

3.1.6 Networking 
A distributed system is a collection of processors that do not share memory, 
peripheral devices, or a clock. Instead, each processor has its own local memory 
and clock, and the processors communicate with one another through various 
communication lines, such as high-speed buses or networks. The processors in 
a distributed system vary in size and function. They may include small micro- 
processors, workstations, minicomputers, and large, general-purpose computer 
systems. 

The processors in the system are connected through a communication net- 
work, which can be configured in a number of different ways. The network 
may be fully or partially connected. The communication-network design must 
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consider message routing and connection strategies, and the problems of con- 
tention and security. 

A distributed system collects physically separate, possibly heterogeneous, 
systems into a single coherent system, providing the user with access to the 
various resources that the system maintains. Access to a shared resource allows 
computation speedup, increased functionality, increased data availability, and 
enhanced reliability. Operating systems usually generalize network access as 
a form of file access, with the details of networking being contained in the 
network interface's device driver. The protocols that create a distributed system 
can have a great effect on that system's utility and popularity. The innovation 
of the World Wide Web was to create a new access method for information 
sharing. It improved on the existing file-transfer protocol (FTP) and network 
file-system (NFS) protocol by removing the need for a user to log in before she is 
allowed to use a remote resource. It defined a new protocol, hypertext transfer 
protocol (http), for use in communication between a web server and a web 
browser. A web browser then just needs to send a request for information to a 
remote machine's web server, and the information (text, graphics, links to other 
information) is returned. This increase in convenience fostered huge growth in 
the use of http and of the Web in general. 

We discuss networks and distributed systems in Chapters 15 through 17. 

3.1.7 Protection System 
If a computer system has multiple users and allows the concurrent execution 
of multiple processes, then the various processes must be protected from one 
another's activities. For that purpose, mechanisms ensure that the files, mem- 
ory segments, CPU, and other resources can be operated on by only those 
processes that have gained proper authorization from the operating system. 

For example, memory-addressing hardware ensures that a process can 
execute only within its own address space. The timer ensures that no process 
can gain control of the CPU without eventually relinquishing control. Device- 
control registers are not accessible to users, so that the integrity of the various 
peripheral devices is protected. 

Protection is any mechanism for controlling the access of programs, pro- 
cesses, or users to the resources defined by a computer system. This mechanism 
must provide means for specification of the controls to be imposed and means 
for enforcement. 

Protection can improve reliability by detecting latent errors at the interfaces 
between component subsystems. Early detection of interface errors can often 
prevent contamination of a healthy subsystem by another subsystem that is 
malfunctioning. An unprotected resource cannot defend against use (or mis- 
use) by an unauthorized or incompetent user. A protection-oriented system 
provides a means to distinguish between authorized and unauthorized usage, 
as we discuss in Chapter 18. 
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3.1.8 Command-Interpreter System 
One of the most important systems programs for an operating system is the 
command interpreter, which is the interface between the user and the operating 
system. Some operating systems include the command interpreter in the 
kernel. Other operating systems, such as MS-DOS and UNIX, treat the command 
interpreter as a special program that is running when a job is initiated, or when 
a user first logs on (on time-sharing systems). 

Many commands are given to the operating system by control statements. 
When a new job is started in a batch system, or when a user logs on to a 
time-shared system, a program that reads and interprets control statements 
is executed automatically. This program is sometimes called the control-card 
interpreter or the command-line interpreter, and is often known as the shell. 
Its function is simple: To get the next command statement and execute it. 

Operating systems are frequently differentiated in the area of the shell, 
with a user-friendly command interpreter making the system more agreeable 
to some users. One style of user-friendly interface is the mouse-based window- 
and-menu system used in the Macintosh and in Microsoft Windows. The 
mouse is moved to position the mouse pointer on images, or icons, on the 
screen that represent programs, files, and system functions. Depending on 
the mouse pointer's location, clicking a button on the mouse can invoke a 
program, select a file or directory-known as a folder-or pull down a menu 
that contains commands. More powerful, complex, and difficult-to-learn shells 
are appreciated by other users. In some of these shells, commands are typed on 
a keyboard and displayed on a screen or printing terminal, with the enter (or 
return) key signaling that a command is complete and is ready to be executed. 
The MS-DOS and UNIX shells operate in this way. 

The command statements themselves deal with process creation and man- 
agement, I/O handling, secondary-storage management, main-memory man- 
agement, file-system access, protection, and networking. 

3.2 . Operating-System Services 

An operating system provides an environment for the execution of programs. 
It provides certain services to programs and to the users of those programs. 
The specific services provided, of course, differ from one operating system to 
another, but we can identify common classes. These operating-system services 
are provided for the convenience of the programmer, to make the programming 
task easier. 

Program execution: The system must be able to load a program into 
memory and to run that program. The program must be able to end its 
execution, either normally or abnormally (indicating error). 
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110 operations: A running program may require I/O. This 1/0 may involve 
a file or an I/O device. For specific devices, special functions may be desired 
(such as to rewind a tape drive, or to blank a CRT screen). For efficiency and 
protection, users usually cannot control 1/0 devices directly. Therefore, the 
operating system must provide a means to do I/O. 

a File-system manipulation: The file system is of particular interest. Obvi- 
ously, programs need to read and write files. Programs also need to create 
and delete files by name. 

Communications: In many circumstances, one process needs to exchange 
information with another process. Such communication can occur in two 
major ways. The first takes place between processes that are executing 
on the same computer; the second takes place between processes that 
are executing on different computer systems that are tied together by a 
computer network. Communications may be implemented via shared 
memory, or by the technique of message passing, in which packets of 
information are moved between processes by the operating system. 

Error detection: The operating system constantly needs to be aware of 
possible errors. Errors may occur in the CPU and memory hardware (such 
as a memory error or a power failure), in I/O devices (such as a parity error 
on tape, a connection failure on a network, or lack of paper in the printer), 
and in the user program (such as an arithmetic overflow, an attempt to 
access an illegal memory location, or a too-great use of CPU time). For each 
type of error, the operating system should take the appropriate action to 
ensure correct and consistent computing. 

In addition, another set of operating-system functions exists not for helping 
the user, but for ensuring the efficient operation of the system itself. Systems 
with multiple users can gain efficiency by sharing the computer resources 
among the users. 

Resource allocation: When multiple users are logged on the system or 
multiple jobs are running at the same time, resources must be allocated 
to each of them. Many different types of resources are managed by the 
operating system. Some (such as CPU cycles, main memory, and file 
storage) may have special allocation code, whereas others (such as I/O 
devices) may have much more general request and release code. For 
instance, in determining how best to use the CPU, operating systems have 
CPU-scheduling routines that take into account the speed of the CPU, the 
jobs that must be executed, the number of registers available, and other 
factors. There might also be routines to allocate a tape drive for use by a job. 
One such routine locates an unused tape drive and marks an internal table 
to record the drive's new user. Another routine is used to clear that table. 
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These routines may also allocate plotters, modems, and other peripheral 
devices. 

Accounting: We want to keep track of which users use how many and 
which kinds of computer resources. This record keeping may be used for 
accounting (so that users can be billed) or simply for accumulating usage 
statistics. Usage statistics may be a valuable tool for researchers who wish 
to reconfigure the system to improve computing services. 

Protection: The owners of information stored in a multiuser computer sys- 
tem may want to control use of that information. When several disjointed 
processes execute concurrently, it should not be possible for one process 
to interfere with the others, or with the operating system itself. Protection 
involves ensuring that all access to system resources is controlled. Security 
of the system from outsiders is also important. Such security starts with 
each user having to authenticate himself to the system, usually by means 
of a password, to be allowed access to the resources. It extends to defend- 
ing external 1/0 devices, including modems and network adapters, from 
invalid access attempts, and to recording all such connections for detection 
of break-ins. If a system is to be protected and secure, precautions must be 
instituted throughout it. A chain is only as strong as its weakest link. 

3.3 H System Calls 

System calls provide the interface between a process and the operating sys- 
tem. These calls are generally available as assembly-language instructions, and 
they are usually listed in the various manuals used by the assembly-language 
programmers. 

Certain systems allow system calls to be made directly from a higher- 
level language program, in which case the calls normally resemble predefined 
function or subroutine calls. They may generate a call to a special run-time 
routine that makes the system call, or the system call may be generated directly 
in-line. 

Several languages-such as C, C++, and Perl-have been defined to replace 
assembly language for systems programming. These languages allow system 
calls to be made directly. For example, UNIX system calls may be invoked 
directly from a C or C++ program. System calls for modern Microsoft Windows 
platforms are part of the Win32 application programmer interface (API), which 
is available for use by all the compilers written for Microsoft Windows. 

As an example of how system calls are used, consider writing a simple 
program to read data from one file and to copy them to another file. The first 
input that the program will need is the names of the two files: the input file 
and the output file. These names can be specified in many ways, depending 
on the operating-system design. One approach is for the program to ask the 
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user for the names of the two files. In an interactive system, this approach will 
require a sequence of system calls, first to write a prompting message on the 
screen, and then to read from the keyboard the characters that define the two 
files. On mouse-based window-and-menu systems, a menu of file names is 
usually displayed in a window. The user can then use the mouse to select the 
source name, and a similar window can be opened for the destination name to 
be specified. 

Once the two file names are obtained, the program must open the input 
file and create the output file. Each of these operations requires another system 
call and may encounter possible error conditions. When the program tries to 
open the input file, it may find that no file of that name exists or that the file is 
protected against access. In these cases, the program should print a message on 
the console (another sequence of system calls), and then terminate abnormally 
(another system call). If the input file exists, then we must create a new output 
file. We may find an output file with the same name. This situation may cause 
the program to abort (a system call), or we may delete the existing file (another 
system call) and create a new one (another system call). In an interactive system, 
another option is to ask the user (a sequence of system calls to output the 
prompting message and to read the response from the keyboard) whether to 
replace the existing file or to abort the program. 

Now that both files are set up, we enter a loop that reads from the input 
file (a system call) and writes to the output file (another system call). Each 
read and write must return status information regarding various possible 
error conditions. On input, the program may find that the end of the file has 
been reached, or that a hardware failure occurred in the read (such as a parity 
error). On output, various errors may occur, depending on the output device 
(such as no more disk space, physical end of tape, printer out of paper). 

Finally, after the entire file is copied, the program may close both files 
(another system call), write a message to the console (more system calls), and 
finally terminate normally (the final system call). As we can see, even simple 
programs may make heavy use of the operating system. 

Most users never see this level of detail, however. The run-time support 
system (the set of functions built into libraries included with a compiler) for 
most programming languages provides a much simpler interface. For example, 
the count statement in C++ is probably compiled into a call to a run-time 
support routine that issues the necessary system calls, checks for errors, and 
finally returns to the user program. Thus, most of the details of the operating- 
system interface are hidden from the programmer by the compiler and by the 
run-time support package. 

System calls occur in different ways, depending on the computer in use. 
Often, more information is required than simply the identity of the desired 
system call. The exact type and amount of information vary according to the 
particular operating system and call. For example, to get input, we may need 
to specify the file or device to use as the source, and the address and length of 
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Figure 3.1 Passing of parameters as a table. 

the memory buffer into which the input should be read. Of course, the device 
or file and length may be implicit in the call. 

Three general methods are used to pass parameters to the operating system. 
The simplest approach is to pass the parameters in registers. In some cases, 
however, there may be more parameters than registers. In these cases, the 
parameters are generally stored in a block or table in memory, and the address of 
the block is passed as a parameter in a register (Figure 3.1). This is the approach 
taken by Linux. Parameters can also be placed, or pushed, onto the stack by 
the program, and popped o f  the stack by the operating system. Some operating 
systems prefer the block or stack methods, because those approaches do not 
limit the number or length of parameters being passed. 

System calls can be grouped roughly into five major categories: process 
control, file management, device management, information maintenance, and 
communications. In Sections 3.3.1 through 3.3.5, we discuss briefly the types of 
system calls that may be provided by an operating system. Most of these system 
calls support, or are supported by, concepts and functions that are discussed 
in later chapters. Figure 3.2 summarizes the types of system calls normally 
provided by an operating system. 

3.3.1 Process Control 
A running program needs to be able to halt its execution either normally (end) 
or abnormally (abort). If a system call is made to terminate the currently 
running program abnormally, or if the program runs into a problem and causes 
an error trap, a dump of memory is sometimes taken and an error message 
generated. The dump is written to disk and may be examined by a debugger 
to determine the cause of the problem. Under either normal or abnormal 
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Process control 

o end, abort 

o load, execute 

o create process, terminate process 

o get process attributes, set process attributes 

o wait for time 

o wait event, signal event 

o allocate and free memory 

File management 

o create file, delete file 

o open, close 

o read, write, reposition 

o get file attributes, set file attributes 

Device management 

o request device, release device 

o read, write, reposition 

o get device attributes, set device attributes 

o logically attach or detach devices 

Information maintenance 

o get time or date, set time or date 

o get system data, set system data 

o get process, file, or device attributes 

o set process, file, or device attributes 

Communications 

o create, delete communication connection 

o send, receive messages 

o transfer status information 

o attach or detach remote devices 

Figure 3.2 Types of system calls. 
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circumstances, the operating system must transfer control to the command 
interpreter. The command interpreter then reads the next command. In an 
interactive system, the command interpreter simply continues with the next 
command; it is assumed that the user will issue an appropriate command to 
respond to any error. In a batch system, the command interpreter usually 
terminates the entire job and continues with the next job. Some systems allow 
control cards to indicate special recovery actions in case an error occurs. If the 
program discovers an error in its input and wants to terminate abnormally, it 
may also want to define an error level. More severe errors can be indicated 
by a higher-level error parameter. It is then possible to combine normal and 
abnormal termination by defining a normal termination as error at level 0. 
The command interpreter or a following program can use this error level to 
determine the next action automatically. 

A process or job executing one program may want to load and execute 
another program. This feature allows the command interpreter to execute a 
program as directed by, for example, a user command, the click of a mouse, or 
a batch command. An interesting question is where to return control when 
the loaded program terminates. This question is related to the problem of 
whether the existing program is lost, saved, or allowed to continue execution 
concurrently with the new program. 

If control returns to the existing program when the new program termi- 
nates, we must save the memory image of the existing program; thus, we have 
effectively created a mechanism for one program to call another program. If 
both programs continue concurrently, we have created a new job or process to 
be multiprogrammed. Often, system calls exists specifically for this purpose 
(create process or submit job). 

If we create a new job or process, or perhaps even a set of jobs or pro- 
cesses, we should be able to control its execution. This control requires the 
ability to determine and reset the attributes of a job or process, including the 
job's priority, its maximum allowable execution time, and so on (get process 
a t t r i bu te s  and s e t  process a t t r i bu te s ) .  We may also want to termi- 
nate a job or process that we created (terminate process) if we find that it is 
incorrect or is no longer needed. 

Having created new jobs or processes, we may need to wait for them to 
finish their execution. We may want to wait for a certain amount of time (wait 
time); more likely, we may want to wait for a specific event to occur ( w a i t  
event). The jobs or processes should then signal when that event has occurred 
(signal event). System calls of this type, dealing with the coordination of 
concurrent processes, are discussed in great detail in Chapter 7. 

Another set of system calls is helpful in debugging a program. Many 
systems provide system calls to dump memory. This provision is useful for 
debugging. A program t r a c e  lists each instruction as it is executed; it is 
provided by fewer systems. Even microprocessors provide a CPU mode known 
as single step, in which a trap is executed by the CPU after every instruction. 



68 Chapter 3 Operating-System Structures 

The trap is usually caught by a debugger, which is a system program designed 
to aid the programmer in finding and correcting bugs. 

Many operating systems provide a time profile of a program. It indicates 
the amount of time that the program executes at a particular location or set 
of locations. A time profile requires either a tracing facility or regular timer 
interrupts. At every occurrence of the timer interrupt, the value of the program 
counter is recorded. With sufficiently frequent timer interrupts, a statistical 
picture of the time spent on various parts of the program can be obtained. 

Process and job control have so many facets and variations that we shall use 
examples to clarify these concepts. The MS-DOS operating system is an example 
of a single-tasking system, which has a command interpreter that is invoked 
when the computer is started (Figure 3.3(a)). Because MS-DOS is single-tasking, 
it uses a simple method to run a program and does not create a new process. It , 
loads the program into memory, writing over most of itself to give the program 
as much memory as possible (Figure 3.3(b)). It then sets the instruction pointer 
to the first instruction of the program. The program then runs and either an 
error causes a trap, or the program executes a system call to terminate. In either 
case, the error code is saved in the system memory for later use. Following this 
action, the small portion of the command interpreter that was not overwritten 
resumes execution. Its first task is to reload the rest of the command interpreter 
from disk. Once this task is accomplished, the command interpreter makes the 
previous error code available to the user or to the next program. 

Although the MS-DOS operating system does not have general multitasking 
capabilities, it does provide a method for limited concurrent execution. A 
TSR program is a program that "hooks an interrupt" and then exits with the 

(a) (b) 

Figure 3.3 MS-DOS execution. (a) At system startup. (b) Running a program. 
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terminate and stay resident system call. For instance, it can hook the 
clock interrupt by placing the address of one of its subroutines into the list of 
interrupt routines to be called when the system timer is triggered. This way, 
the TSR routine will be executed several times per second, at each clock tick. 
The terminate and stay resident system call causes MS-DOS to reserve 
the space occupied by the TSR, so it will not be overwritten when the command 
interpreter is reloaded. 

FreeBSD is an example of a multitasking system. When a user logs on to 
the system, the shell (or command interpreter) of the user's choice is run. This 
shell is similar to the MS-DOS shell in that it accepts commands and executes 
programs that the user requests. However, since FreeBSD is a multitasking 
system, the command interpreter may continue running while another program 
is executed (Figure 3.4). To start a new process, the shell executes a fork 
system call. Then, the selected program is loaded into memory via an exec 
system call, and the program is then executed. Depending on the way the 
command is issued, the shell then either waits for the process to finish, or 
runs the process "in the background." In the latter case, the shell immediately 
requests another command. When a process is running in the background, it 
cannot receive input directly from the keyboard, because the shell is using this 
resource. 1 /0  is therefore done through files, or through a window-and-menu 
interface. Meanwhile, the user is free to ask the shell to run other programs, to 
monitor the progress of the running process, to change that program's priority, 
and so on. When the process is done, it executes an exit system call to 
terminate, returning to the invoking process a status code of 0, or a nonzero 
error code. This status (or error) code is then available to the shell or other 
programs. Processes are discussed in Chapter 4. 

Figure 3.4 UNIX running multiple programs. 
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3.3.2 File Management 
We will discuss the file system in more detail in Chapters 11 and 12. We can 
identify several common system calls dealing with files, however. 

We first need to be able to c r ea t e  and d e l e t e  files. Either system call 
requires the name of the file and perhaps some of the file's attributes. Once the 
file is created, we need to open it and to use it. We may also read, write, or 
r epos i t i on  (rewind or skip to the end of the file, for example). Finally, we 
need to c lose  the file, indicating that we are no longer using it. 

We may need these same sets of operations for directories if we have a 
directory structure for organizing files in the file system. In addition, for either 
files or directories, we need to be able to determine the values of various 
attributes, and perhaps to reset them if necessary. File attributes include the 
file name, a file type, protection codes, accounting information, and so on. At 
least two system calls, g e t  f i l e  a t t r i b u t e  and s e t  f i l e  a t t r i b u t e ,  are 
required for this function. Some operating systems provide many more calls. 

3.3.3 Device Management 
A program, as it is running, may need additional resources to proceed. Addi- 
tional resources may be more memory, tape drives, access to files, and so on. 
If the resources are available, they can be granted, and control can be returned 
to the user program; otherwise, the program will have to wait until sufficient 
resources are available. 

Files can be thought of as abstract or virtual devices. Thus, many of the 
system calls for files are also needed for devices. If the system has multiple 
users, however, we must first request  the device, to ensure exclusive use of it. 
After we are finished with the device, we must r e l ea se  it. These functions are 
similar to the open and c lose  system calls for files. 

Once the device has been requested (and allocated to us), we can read, 
write,  and (possibly) r epos i t i on  the device, just as we can with ordinary 
files. In fact, the similarity between I/O devices and files is so great that many 
operating systems, including UNIX and MS-DOS, merge the two into a combined 
file-device structure. In this case, 1/0 devices are identified by special file 
names. 

3.3.4 Information Maintenance 
Many system calls exist simply for the purpose of transferring information 
between the user program and the operating system. For example, most 
systems have a system call to return the current time and date .  Other system 
calls may return information about the system, such as the number of current 
users, the version number of the operating system, the amount of free memory 
or disk space, and so on. 
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In addition, the operating system keeps information about all its processes, 
and there are system calls to access this information. Generally, there are 
also calls to reset the process information (get process attributes and 
set process attributes). In Section 4.1.3, we discuss what information is 
normally kept. 

3.3.5 Communication 
There are two common models of communication. In the message-passing 
model, information is exchanged through an interprocess-communication facil- 
ity provided by the operating system. Before communication can take place, a 
connection must be opened. The name of the other communicator must be 
known, be it another process on the same CPU, or a process on another com- 
puter connected by a communications network. Each computer in a network 
has a host name, such as an IP name, by which it is commonly known. Similarly, 
each process has a process name, which is translated into an equivalent iden- 
tifier by which the operating system can refer to it. The get hostid and get 
processid system calls do this translation. These identifiers are then passed 
to the general-purpose open and close calls provided by the file system, or 
to specific open connect ion and close connect ion system calls, depend- 
ing on the system's model of communications. The recipient process usually 
must give its permission for communication to take place with an accept 
connect ion call. Most processes that will be receiving connections are special- 
purpose daemons-systems programs provided for that purpose. They exe- 
cute a wait for connection call and are awakened when a connection is 
made. The source of the communication, known as the client, and the receiving 
daemon, known as a server, then exchange messages by read message and 
write message system calls. The close connect ion call terminates the 
communication. 

In the shared-memory model, processes use map memory system calls to 
gain access to regions of memory owned by other processes. Recall that, 
normally, the operating system tries to prevent one process from accessing 
another process' memory. Shared memory requires that several processes agree 
to remove this restriction. They may then exchange information by reading 
and writing data in these shared areas. The form of the data and the location 
are determined by these processes and are not under the operating system's 
control. The processes are also responsible for ensuring that they are not writing 
to the same location simultaneously. Such mechanisms are discussed in Chapter 
7. We will also look at a variation of the process model-threads-that shares 
memory by default. Threads will be covered in Chapter 5. 

Both of these methods are common in operating systems, and some systems 
even implement both. Message passing is useful when smaller numbers of data 
need to be exchanged, because no conflicts need to be avoided. It is also easier 
to implement than is shared memory for intercomputer communication. Shared 
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Figure 3.5 Communications models. (a) Msg passing. (b) Shared memory. 

memory allows maximum speed and convenience of communication, as it can 
be done at memory speeds when within a computer. Problems exist, however, 
in the areas of protection and synchronization. The two communications 
models are contrasted in Figure 3.5. 

3.4 . System Programs 

Another aspect of a modern system is the collection of system programs. Recall 
Figure 1.1, which depicted the logical computer hierarchy. At the lowest 
level is hardware. Next is the operating system, then the system programs, 
and finally the application programs. System programs provide a convenient 
environment for program development and execution. Some of them are 
simply user interfaces to system calls; others are considerably more complex. 
They can be divided into these categories: 

File management: These programs create, delete, copy, rename, print, 
dump, list, and generally manipulate files and directories. 

Status information: Some programs simply ask the system for the date, 
time, amount of available memory or disk space, number of users, or 
similar status information. That information is then formatted, and is 
printed to the terminal or other output device or file. 
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a File modification: Several text editors may be available to create and 
modify the content of files stored on disk or tape. 

a Programming-language support: Compilers, assemblers, and interpreters 
for common programming languages (such as C, C++, Java, Visual Basic, 
and PERL) are often provided to the user with the operating system. Some 
of these programs are now priced and provided separately. 

a Program loading and execution: Once a program is assembled or com- 
piled, it must be loaded into memory to be executed. The system may 
provide absolute loaders, relocatable loaders, linkage editors, and overlay 
loaders. Debugging systems for either higher-level languages or machine 
language are needed also. 

a Communications: These programs provide the mechanism for creating vir- 
tual connections among processes, users, and different computer systems. 
They allow users to send messages to one another's screens, to browse web 
pages, to send electronic-mail messages, to log in remotely, or to transfer 
files from one machine to another. 

Most operating systems are supplied with programs that solve com- 
mon problems, or perform common operations. Such programs include web 
browsers, word processors and text formatters, spreadsheets, database systems, 
compiler compilers, plotting and statistical-analysis packages, and games. 
These programs are known as system utilities or application programs. 

Perhaps the most important system program for an operating system is the 
command interpreter, the main function of which is to get and execute the next 
user-specified command. 

Many of the commands given at this level manipulate files: create, delete, 
list, print, copy, execute, and so on. These commands can be implemented in 
two general ways. In one approach, the command interpreter itself contains the 
code to execute the command. For example, a command to delete a file may 
cause the command interpreter to jump to a section of its code that sets up the 
parameters and makes the appropriate system call. In this case, the number of 
commands that can be given determines the size of the command interpreter, 
since each command requires its own implementing code. 

An alternative approach-used by UNIX, among other operating systems 
-implements most commands by system programs. In this case, the command 
interpreter does not understand the command in any way; it merely uses the 
command to identify a file to be loaded into memory and executed. Thus, the 
UNIX command to delete a file 

would search for a file called rm, load the file into memory, and execute it 
with the parameter G. The function associated with the r m  command would 



74 Chapter 3 Operating-System Structures 

be defined completely by the code in the file rm. In this way, programmers can 
add new commands to the system easily by creating new files with the proper 
names. The command-interpreter program, which can be small, does not have 
to be changed for new commands to be added. 

This approach to the design of a command interpreter has problems. First, 
because the code to execute a command is a separate system program, the 
operating system must provide a mechanism for passing parameters from the 
command interpreter to the system program. This task can often be clumsy, 
because the command interpreter and the system program may not be in 
memory at the same time, and the parameter list can be extensive. Also, it 
is slower to load a program and to execute it than simply to jump to another 
section of code within the current program. 

Another problem is that the interpretation of the parameters is left up to 
the programmer of the system program. Thus, parameters may be provided 
inconsistently across programs that appear similar to the user, but were written 
at different times by different programmers. 

The view of the operating system seen by most users is thus defined by 
the system programs, rather than by the actual system calls. Think of using a 
PC. When your computer is running the Microsoft Windows operating system, 
you might see a command-line MS-DOS shell, or the graphical window-and- 
menu interface. Both use the same set of system calls, but the system calls 
look different and act in different ways. Consequently, your view may be 
substantially removed from the actual system structure. The design of a useful 
and friendly user interface is therefore not a direct function of the operating 
system. In this book, we shall concentrate on the fundamental problems of 
providing adequate service to user programs. From the point of view of the 
operating system, we do not distinguish between user programs and system 
programs. 

3.5 . System Structure 

A system as large and complex as a modern operating system must be engi- 
neered carefully if it is to function properly and be modified easily. A com- 
mon approach is to partition the task into small components, rather than have 
one monolithic system. Each of these modules should be a well-defined por- 
tion of the system, with carefully defined inputs, outputs, and function. We 
have already discussed briefly the common components of operating systems 
(Section 3.1). In this section, we discuss the way that these components are 
interconnected and melded into a kernel. 

3.5.1 Simple Structure 
Many commercial systems do not have a well-defined structure. Frequently, 
such operating systems started as small, simple, and limited systems, and then 
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MS-DOS device drivers 

ROM BlOS device drivers 

Figure 3.6 MS-DOS layer structure. 

grew beyond their original scope. MS-DOS is an example of such a system. 
It was originally designed and implemented by a few people who had no 
idea that it would become so popular. It was written to provide the most 
functionality in the least space (because of the limited hardware on which it 
ran), so it was not divided into modules carefully. Figure 3.6 shows its structure. 

UNIX is another system that was initially limited by hardware functionality. 
It consists of two separable parts: the kernel and the system programs. The 
kernel is further separated into a series of interfaces and device drivers, which 
were added and expanded over the years as UNIX evolved. We can view the 
traditional UNIX operating system as being layered as shown in Figure 3.7. 
Everything below the system-call interface and above the physical hardware is 
the kernel. The kernel provides the file system, CPU scheduling, memory man- 
agement, and other operating-system functions through system calls. Taken in 
sum, that is an enormous amount of functionality to be combined into one level. 
This makes UNIX difficult to enhance, as changes in one section could adversely 
affect other areas. 

System calls define the API to UNIX; the set of system programs commonly 
available defines the user interface. The programmer and user interfaces define 
the context that the kernel must support. 

New versions of UNIX are designed to use more advanced hardware. Given 
proper hardware support, operating systems may be broken into pieces that are 
smaller and more appropriate than are those allowed by the original MS-DOS 
or UNIX systems. The operating system can then retain much greater control 
over the computer and over the applications that make use of that computer. 
Implementers have more freedom to make changes to the inner workings of 
the system and in the creation of modular operating systems. Under the top- 
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Figure 3.7 UNIX system structure. 

down approach, the overall functionality and features are determined and 
are separated into components. This separation allows programmers to hide 
information; they are therefore free to implement the low-level routines as they 
see fit, provided that the external interface of the routine stays unchanged and 
that the routine itself performs the advertised task. 

3.5.2 Layered Approach 
The modularization of a system can be done in many ways. One method is the 
layered approach, in which the operating system is broken up into a number of 
layers (or levels), each built on top of lower layers. The bottom layer (layer 0) is 
the hardware; the highest (layer N) is the user interface. 

An operating-system layer is an implementation of an abstract object that 
is the encapsulation of data, and of the operations that can manipulate those 
data. A typical operating-system layer-say layer M-is depicted in Figure 
3.8. It consists of data structures and a set of routines that can be invoked 
by higher-level layers. Layer M, in turn, can invoke operations on lower-level 
layers. 

The main advantage of the layered approach is modularity. The layers 
are selected such that each uses functions (or operations) and services of only 
lower-level layers. This approach simplifies debugging and system verification. 
The first layer can be debugged without any concern for the rest of the system, 
because, by definition, it uses only the basic hardware (which is assumed 
correct) to implement its functions. Once the first layer is debugged, its correct 
functioning can be assumed while the second layer is debugged, and so on. 
If an error is found during the debugging of a particular layer, the error must 



3.5 System Structure 77 

Figure 3.8 An operating-system layer. 

be on that layer, because the layers below it are already debugged. Thus, the 
design and implementation of the system are simplified when the system is 
broken down into layers. 

Each layer is implemented with only those operations provided by lower- 
level layers. A layer does not need to know how these operations are irnple- 
mented; it needs to know only what these operations do. Hence, each layer 
hides the existence of certain data strucbres, operations, and hardware from 
higher-level layers. 

The major difficulty with the layered approach involves the careful defi- 
nition of the layers, because a layer can use only those layers below it. For 
example, the device driver for the disk space used by virtual-memory algo- 
rithms must be at a level lower than that of the memory-management routines, 
because memory management requires the ability to use the disk space. 

Other requirements may not be so obvious. The backing-store driver would 
normally be above the CPU scheduler, because the driver may need to wait for 
I/O and the CPU can be rescheduled during this time. However, on a large 
system, the CPU scheduler may have more information about all the active 
processes than can fit in memory. Therefore, this information may need to be 
swapped in and out of memory, requiring the backing-store driver routine to 
be below the CPU scheduler. 

A final problem with layered implementations is that they tend to be less 
efficient than other types. For instance, when a user program executes an I/O 
operation, it executes a system call that is trapped to the I/O layer, which calls 
the memory-management layer, whch in turn calls the CPU-scheduling layer, 
which is then passed to the hardware. At each layer, the parameters may be 
modified, data may need to be passed, and so on. Each layer adds overhead to 
the system call; the net result is a system call that takes longer than does one on 
a nonlayered system. 
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These limitations have caused a small backlash against layering in recent 
years. Fewer layers with more functionality are being designed, providing most 
of the advantages of modularized code while avoiding the difficult problems 
of layer definition and interaction. For instance, OS/2 is a descendant of MS- 
DOS that adds multitasking and dual-mode operation, as well as other new 
features. Because of this added complexity and the more powerful hardware 
for which OS/2 was designed, the system was implemented in a more layered 
fashion. Compare the MS-DOS structure (Figure 3.6) with that shown in Figure 
3.9; from both the system-design and implementation standpoints, OS/2 has the 
advantage. For instance, direct user access to low-level facilities is not allowed, 
providing the operating system with more control over the hardware and more 
knowledge of which resources each user program is using. 

As a further example, consider the history of Windows NT. The first release 
had a highly layer-oriented organization; however, it delivered low perfor- 
mance compared to that of Windows 95. Windows NT 4.0 partially redressed 
the performance problem by moving layers from user space to kernel space and 
more closely integrating them. 

Figure 3.9 OS/2 layer structure. 

application - prugramming interface API sxtension 1 
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3.5.3 Microkernels 
As the UNIX operating system expanded, the kernel became large and diffi- 
cult to manage. In the mid-1980s, researchers at Carnegie Mellon University 
developed an operating system called Mach that modularizes the kernel using 
the microkernel approach. This method structures the operating system by 
removing all nonessential components from the kernel, and implementing them 
as system- and user-level programs. The result is a smaller kernel. There 
is little consensus regarding which services should remain in the kernel and 
which should be implemented in user space. In general, however, microkernels 
typically provide minimal process and memory management, in addition to a 
communication facility. 

The main function of the microkernel is to provide a communication facility 
between the client program and the various services that are also running 
in user space. Communication is provided by message passing, which was 
described in Section 3.3.5. For example, if the client program wishes to access a 
file, it must interact with the file server. The client program and the service 
never interact directly. Rather, they communicate indirectly by exchanging 
messages with the microkernel. 

The benefits of the microkernel approach include the ease of extending the 
operating system. All new services are added to user space and consequently 
do not require modification of the kernel. When the kernel does have to be 
modified, the changes tend to be fewer, because the microkernel is a smaller 
kernel. The resulting operating system is easier to port from one hardware 
design to another. The microkernel also provides more security and reliability, 
since most services are running as user-rather than kernel-processes. If a 
service fails, the rest of the operating system remains untouched. 

Several contemporary operating systems have used the microkernel 
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to the 
user, but it is implemented with a Mach kernel. The Mach kernel maps UNIX 
system calls into messages to the appropriate user-level services. The Apple 
MacOS X Server operating system is based on the Mach kernel. 

QNX is a real-time operating system that is also based upon the microkernel 
design. The QNX microkernel provides services for message passing and 
process scheduling. It also handles low-level network communication and 
hardware interrupts. All other services in QNX are provided by standard 
processes that run outside the kernel in user mode. 

Windows NT uses a hybrid structure. We have already mentioned that part 
of the Windows NT architecture uses layering. Windows NT is designed to run 
various applications, including Win32 (native Windows applications), 0S/2, 
and POSIX. It provides a server that runs in user space for each application type. 
Client programs for each application type also run in user space. The kernel 
coordinates the message passing between client applications and application 
servers. The client-server structure of Windows NT is depicted in Figure 3.10. 
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Figure 3.10 Windows NT client-server structure. 

3.6 . Virtual Machines 

Conceptually, a computer system is made up of layers. The hardware is the 
lowest level in all such systems. The kernel running at the next level uses the 
hardware instructions to create a set of system calls for use by outer layers. The 
system programs above the kernel are therefore able to use either system calls 
or hardware instructions, and in some ways these programs do not differentiate 
between these two. Thus, although they are accessed differently, they both 
provide functionality that the program can use to create even more advanced 
functions. System programs, in turn, treat the hardware and the system calls as 
though they were both at the same level. 

Some systems carry this scheme a step further by allowing the system 
programs to be called easily by the application programs. As before, although 
the system programs are at a level higher than that of the other routines, the 
application programs may view everything under them in the hierarchy as 
though the latter were part of the machine itself. This layered approach is 
taken to its logical conclusion in the concept of a virtual machine. The VM 
operating system for IBM systems is the best example of the virtual-machine 
concept, because IBM pioneered the work in this area. 

By using CPU scheduling (Chapter 6) and virtual-memory techniques 
(Chapter lo), an operating system can create the illusion that a process has its 
own processor with its own (virtual) memory. Of course, normally, the process 
has additional features, such as system calls and a file system, that are not pro- 
vided by the bare hardware. The virtual-machine approach, on the other hand, 
does not provide any additional functionality, but rather provides an interface 
that is identical to the underlying bare hardware. Each process is provided with 
a (virtual) copy of the underlying computer (Figure 3.11). 

The physical computer shares resources to create the virtual machines. CPU 
scheduling can share out the CPU to create the appearance that users have their 
own processors. Spooling and a file system can provide virtual card readers and 
virtual line printers. A normal user time-sharing terminal provides the function 
of the virtual-machine operator's console. 



3.6 Virtual Machines 81 

programming 
interface 

Figure 3.11 System models. (a) Nonvirtual machine. (b) Virtual machine. 

A major difficulty with the virtual-machine approach involves disk sys- I 
tems. Suppose that the physical machine has three disk drives but wants to 
support seven virtual machines. Clearly, it cannot allocate a disk drive to each 1 virtual machine. Remember that the virtual-machine software itself will need 
substantial disk space to provide virtual memory. The solution is to provide I 

I 

virtual disks, which are identical in all respects except size-termed minidisks 
in IBM's VM operating system. The system implements each minidisk by allo- I 

cating as many tracks on the physical disks as the minidisk needs. Obviously, 
the sum of the sizes of all minidisks must be smaller than the size of the physical 
disk space available. 

Users thus are given their own virtual machines. They can then run any of 
the operating systems or software packages that are available on the underlying 
machine. For the IBM VM system, a user normally runs CMS-a single-user 
interactive operating system. The virtual-machine software is concerned with 
multiprogramming multiple virtual machines onto a physical machine, but 
it does not need to consider any user-support software. This arrangement 
may provide a useful partitioning into two smaller pieces of the problem of 
designing a multiuser interactive system. 

3.6.1 Implementation 
Although the virtual-machine concept is useful, it is difficult to implement. 
Much work is required to provide an exact duplicate of the underlying machine. 



82 Chapter 3 Operating-System Structures 

Remember that the underlying machine has two modes: user mode and moni- 
tor mode. The virtual-machine software can run in monitor mode, since it is the 
operating system. The virtual machine itself can execute in only user mode. Just 
as the physical machine has two modes, however, so must the virtual machine. 
Consequently, we must have a virtual user mode and a virtual monitor mode, 
both of which run in a physical user mode. Those actions that cause a transfer 
from user mode to monitor mode on a real machine (such as a system call or 
an attempt to execute a privileged instruction) must also cause a transfer from 
virtual user mode to virtual monitor mode on a virtual machine. 

This transfer can generally be done fairly easily. When a system call, for 
example, is made by a program running on a virtual machine, in virtual user 
mode, it will cause a transfer to the virtual-machine monitor in the real machine. 
When the virtual-machine monitor gains control, it can change the register 
contents and program counter for the virtual machine to simulate the effect 
of the system call. It can then restart the virtual machine, noting that it is 
now in virtual monitor mode. If the virtual machine then tries, for example, 
to read from its virtual card reader, it will execute a privileged I/O instruction. 
Because the virtual machine is running in physical user mode, this instruction 
will trap to the virtual-machine monitor. The virtual-machine monitor must 
then simulate the effect of the 1/0 instruction. First, it finds the spooled file that 
implements the virtual card reader. Then, it translates the read of the virtual 
card reader into a read on the spooled disk file, and transfers the next virtual 
"card image" into the virtual memory of the virtual machine. Finally, it can 
restart the virtual machine. The state of the virtual machine has been modified 
exactly as though the 1 /0  instruction had been executed with a real card reader 
for a real machine executing in a real monitor mode. 

The major difference, of course, is time. Whereas the real I/O might 
have taken 100 milliseconds, the virtual I/O might take less time (because it 
is spooled) or more time (because it is interpreted). In addition, the CPU is 
being multiprogrammed among many virtual machines, further slowing down 
the virtual machines in unpredictable ways. In the extreme case, it may be 
necessary to simulate all instructions to provide a true virtual machine. VM 
works for IBM machines because normal instructions for the virtual machines 
can execute directly on the hardware. Only the privileged instructions (needed 
mainly for I/O) must be simulated and hence execute more slowly. 

3.6.2 Benefits 

There are two primary advantages to using virtual machines. First, by com- 
pletely protecting system resources, the virtual machine provides a robust level 
of security. Second, the virtual machine allows system development to be done 
without disrupting normal system operation. 

Each virtual machine is completely isolated from all other virtual machines, 
so we have no security problems as the various system resources are completely 
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protected. For example, untrusted applications downloaded from the Internet 
could be run within a separate virtual machine. A disadvantage of this environ- 
ment is that there is no direct sharing of resources. Two approaches to provide 
sharing have been implemented. First, it is possible to share a minidisk. This 
scheme is modeled after a physical shared disk, but is implemented by soft- 
ware. With this technique, files can be shared. Second, it is possible to define 
a network of virtual machines, each of which can send information over the 
virtual communications network. Again, the network is modeled after physical 
communication networks, but it is implemented in software. 

Such a virtual-machine system is a perfect vehicle for operating-systems 
research and development. Normally, changing an operating system is a 
difficult task. Because operating systems are large and complex programs, a 
change in one part may cause obscure bugs in some other part. The power of 
the operating system makes this situation particularly dangerous. Because the 
operating system executes in monitor mode, a wrong change in a pointer could 
cause an error that would destroy the entire file system. Thus, it is necessary to 
test all changes to the operating system carefully. 

The operating system, however, runs on and controls the entire machine. 
Therefore, the current system must be stopped and taken out of use while 
changes are made and tested. This period is commonly called system- 
development time. Since it makes the system unavailable to users, system- 
development time is often scheduled late at night or on weekends, when system 
load is low. 

A virtual-machine system can eliminate much of this problem. System 
programmers are given their own virtual machine, and system development 
is done on the virtual machine instead of on the actual physical machine. Nor- 
mal system operation seldom needs to be disrupted for system development. 
Despite these advantages, little improvement on the technique had been made 
until recently. 

Virtual machines are increasing in popularity as a means of solving system 
compatibility problems. For instance, thousands of applications are available 
for Microsoft Windows on Intel CPU-based systems. Computer vendors such as 
Sun Microsystems use other, faster processors, but would like their customers 
to be able to run these Windows applications. The solution is to create a virtual 
Intel machine on top of the native processor. A Windows program is run in this 
environment, and its Intel instructions are translated into the native instruction 
set. Microsoft Windows is also run in this virtual machine, so the program 
can make its system calls as usual. The net result is a program that appears 
to be running on an Intel-based system but is really executing on a different 
processor. If the processor is sufficiently fast, the Windows program will run 
quickly, even though every instruction is being translated into several native 
instructions for execution. Similarly, the PowerPC-based Apple Macintosh 
includes a Motorola 68000 virtual machine to allow execution of binary codes 
that were written for the older 68000-based Macintosh. Unfortunately, the more 
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complex the machine being emulated, the more difficult it is to build an accurate 
virtual machine, and the slower that virtual machine runs. 

A more recent example can be shown with the growth of the Linux oper- 
ating system. Virtual machines now exist that allow Windows applications to 
run on Linux-based computers. The virtual machine runs both the Windows 
application and the Windows operating system. 

One of the key features of Java is that it runs on a virtual machine, thereby 
allowing a Java program to run on any computer system that has a Java virtual 
machine. 

3.6.3 Java 
Java is a very popular object-oriented language introduced by Sun Microsys- 
tems in late 1995. In addition to a language specification and a large API library, 
Java also provides a specification for a Java virtual machine (JVM). 

Java objects are specified with the class construct; a Java program con- 
sists of one or more classes. For each Java class, the Java compiler produces 
an architecture-neutral bytecode output (. class) file that will run on any 
implementation of the JVM. 

The JVM is a specification for an abstract computer. The JVM consists 
of a class loader, a class verifier, and a Java interpreter that executes the 
architecture-neutral bytecodes. The class loader loads . class files from both 
the Java program and the Java API for execution by the Java interpreter. After a 
class is loaded, the verifier checks that the class file is valid Java bytecode and 
does not overflow or underflow the stack. It also ensures that the bytecode does 
not perform pointer arithmetic, which could potentially provide illegal memory 
access. If the class passes verification, it is run by the Java interpreter. The 
JVM also automatically manages memory by performing garbage collection- 
the practice of reclaiming memory from objects no longer in use and returning 
it to the system. Much research focuses on garbage collection algorithms for 
increasing the performance of Java programs in the virtual machine. 

The Java interpreter may be a software module that interprets the byte- 
codes one at a time, or it may be a just-in-time (TIT) compiler that turns the 
architecture-neutral bytecodes into native machine language for the host com- 
puter. Most implementations of the JVM use a JIT compiler for enhanced per- 
formance. In other instances, the interpreter may be implemented in hardware 
that executes Java bytecodes natively. The JVM is presented in Figure 3.12. 

The JVM makes it possible to develop programs that are architecture neutral 
and portable. The implementation of the JVM is specific for each system-such 
as Windows or UNIX-and it abstracts the system in a standard way to the Java 
program, providing a clean, architecture-neutral interface. This interface allows 
a . class file to run on any system that has implemented the JVM according to 
the specification. 

Java takes advantage of the complete environment that a virtual machine 
implements. Its virtual-machine design provides a secure, efficient, object- 
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Figure 3.12 The Java virtual machine. 

oriented, portable, and architecture-neutral platform on which to run Java 
programs. 

3.7 System Design and Implementation 

In this section, we discuss problems we face when designing and implementing 
a system. No complete solutions to the design problems exist, but some 
approaches have been successful. 

3.7.1 Design Goals 
The first problem in designing a system is to define the goals and specifications 
of the system. At the highest level, the design of the system will be affected 
by the choice of hardware and type of system: batch, time shared, single user, 
multiuser, distributed, real time, or general purpose. 

Beyond this highest design level, the requirements may be much harder to 
specify. The requirements can be divided into two basic groups: user goals and 
system goals. 

Users desire certain obvious properties in a system: The system should be 
convenient and easy to use, easy to learn, reliable, safe, and fast. Of course, 
these specifications are not particularly useful in the system design, since there 
is no general agreement on how to achieve these goals. 

A similar set of requirements can be defined by those people who must 
design, create, maintain, and operate the system: The operating system should 
be easy to design, implement, and maintain; it should be flexible, reliable, error 
free, and efficient. Again, these requirements are vague and have no general 
solution. 
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We have no unique solution to the problem of defining the requirements for 
an operating system. The wide range of systems shows that different require- 
ments can result in a large variety of solutions for different environments. For 
example, the requirements for MS-DOS, a single-user system for microcom- 
puters, must have been substantially different from those for MVS, the large 
multiuser, multiaccess operating system for IBM mainframes. 

3.7.2 Mechanisms and Policies 
The specification and design of an operating system is a highly creative task. 
Although no textbook can tell you how to do it, general software engineering 
principles do exist that are especially applicable to operating systems. 

One important principle is the separation of policy from mechanism. Mech- 
anisms determine how to do something; policies determine what will be done. 
For example, the timer construct (Section 2.5) is a mechanism for ensuring CPU 
protection, but deciding how long the timer is to be set for a particular user is a 
policy decision. 

The separation of policy and mechanism is important for flexibility. Policies 
are likely to change across places or over time. In the worst case, each change 
in policy would require a change in the underlying mechanism. A general 
mechanism would be more desirable. A change in policy would then require 
redefinition of only certain parameters of the system. For instance, if, in 
one computer system, a policy decision is made that I/O-intensive programs 
should have priority over CPU-intensive ones, then the opposite policy could 
be instituted easily on some other computer system if the mechanism were 
properly separated and were policy independent. 

Microkernel-based operating systems take the separation of mechanism 
and policy to one extreme, by implementing a basic set of primitive building 
blocks. These blocks are almost policy free, allowing more advanced mecha- 
nisms and policies to be added via user-created kernel modules, or via user 
programs themselves. At the other extreme is a system such as the Apple Mac- 
intosh operating system, in which both mechanism and policy are encoded in 
the system to enforce a global look and feel to the system. All applications have 
similar interfaces, because the interface itself is built into the kernel. 

Policy decisions must be made for all resource-allocation and scheduling 
problems. Whenever the question is how rather than what, it is a mechanism 
that must be determined. 

3.7.3 Implementation 
Once an operating system is designed, it must be implemented. Traditionally, 
operating systems have been written in assembly language. Now, however, 
they are often written in higher-level languages such as C or C++. 
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The first system not written in assembly language was probably the Master 
Control Program (MCP) for Burroughs computers. MCP was written in a variant 
of ALGOL. MULTICS, developed at MIT, was written mainly in PL/l. The Primos 
operating system for Prime computers is written in a dialect of Fortran. The 
UNIX operating system, OS/2, and Windows NT are mainly written in C. Only 
some 900 lines of code of the original UNIX were in assembly language, most of 
which constituted the scheduler and device drivers. 

The advantages of using a higher-level language, or at least a systems- 
implementation language, for implementing operating systems are the same 
as those accrued when the language is used for application programs: The 
code can be written faster, is more compact, and is easier to understand and 
debug. In addition, improvements in compiler technology will improve the 
generated code for the entire operating system by simple recompilation. Finally, 
an operating system is far easier to port-to move to some other hardware-if 
it is written in a high-level language. For example, MS-DOS was written in Intel 
8088 assembly language. Consequently, it is available on only the Intel family 
of CPUs. 

The UNIX operating system, on the other hand, which is written mostly in 
C, is available on a number of different CPUs, including Intel 80x86, Pentiurn, 
Motorola 680x0, Ultra SPARC, Compaq Alpha, and MIPS RX000. 

Opponents of implementing an operating system in a higher-level lan- 
guage claim the major disadvantages are reduced speed and increased stor- 
age requirements. Although an expert assembly-language programmer can 
produce efficient small routines, for large programs a modern compiler can 
perform complex analysis and apply sophisticated optimizations that produce 
excellent code. Modern processors have deep pipelining and multiple func- 
tional units, which can handle complex dependencies that can overwhelm the 
limited ability of the human mind to keep track of details. 

As is true in other systems, major performance improvements in operating 
systems are more likely to be the result of better data structures and algorithms 
than of excellent assembly-language code. In addition, although operating sys- 
tems are large, only a small amount of the code is critical to high performance; 
the memory manager and the CPU scheduler are probably the most critical rou- 
tines. After the system is written and is working correctly, bottleneck routines 
can be identified and replaced with assembly-language equivalents. 

To identify bottlenecks, we must be able to monitor system performance. 
Code must be added to compute and display measures of system behavior. In 
a number of systems, the operating system does this task by producing trace 
listings of system behavior. All interesting events are logged with their time and 
important parameters and are written to a file. Later, an analysis program can 
process the log file to determine system performance and to identify bottlenecks 
and inefficiencies. These same traces can be run as input for a simulation of 
a suggested improved system. Traces also can help people to find errors in 
operating-system behavior. 
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An alternative is to compute and display the performance measures in 
real time. For example, a timer can trigger a routine to store the current 
instruction pointer value. The result is a statistical picture of the program 
locations most frequently used within the program. This approach may allow 
system operators to become familiar with system behavior and to modify 
system operation in real time. 

3.8 . System Generation 

We can design, code, and implement an operating system specifically for one 
machine at one site. More commonly, however, operating systems are designed 
to run on any of a class of machines at a variety of sites with a variety of 
peripheral configurations. The system must then be configured or generated for 
each specific computer site, a process sometimes known as system generation 
(SYSGEN). 

The operating system is normally distributed on disk or tape. To generate 
a system, we use a special program. The SYSGEN program reads from a 
given file, or asks the operator of the system for information concerning the 
specific configuration of the hardware system, or probes the hardware directly 
to determine what components are there. The following kinds of information 
must be determined. 

What CPU will be used? What options (extended instruction sets, floating- 
point arithmetic, and so on) are installed? For multiple-CPU systems, each 
CPU must be described. 

How much memory is available? Some systems will determine this value 
themselves by referencing memory location after memory location until an 
"illegal address" fault is generated. This procedure defines the final legal 
address and hence the amount of available memory. 

What devices are available? The system will need to know how to address 
each device (the device number), the device interrupt number, the device's 
type and model, and any special device characteristics. 

What operating-system options are desired, or what parameter values are 
to be used? These options or values might include how many buffers of 
which sizes should be used, what type of CPU-scheduling algorithm is 
desired, what the maximum number of processes to be supported is, and 
SO on. 

Once this information is determined, it can be used in several ways. At one 
extreme, a system administrator can use it to modify a copy of the source code of 
the operating system. The operating system then is completely compiled. Data 
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declarations, initializations, and constants, along with conditional compilation, 
produce an output object version of the operating system that is tailored to the 
system described. 

At a slightly less tailored level, the system description can cause the creation 
of tables and the selection of modules from a precompiled library. These 
modules are linked together to form the generated operating system. Selection 
allows the library to contain the device drivers for all supported 1 /0  devices, 
but only those needed are linked into the operating system. Because the system 
is not recompiled, system generation is faster, but the resulting system may be 
overly general. 

At the other extreme, a system that is completely table driven can be con- 
structed. All the code is always part of the system, and selection occurs at 
execution time, rather than at compile or link time. System generation involves 
simply creating the appropriate tables to describe the system. Most mod- 
ern operating systems are constructed in this manner. Solaris performs some 
system-configuration discovery at installation time, and some at boot time. A 
configuration file can be used by the systems administrator to fine-tune sys- 
tem variables, but hardware support is automatically configured by the kernel. 
Likewise, Windows 2000 requires no manual configuration on installation or at 
boot time. Once the basic questions about disk layout and network configu- 
ration are answered, the installation program automatically detects the system 
hardware and installs a properly generated operating system. 

The major differences among these approaches are the size and generality 
of the generated system and the ease of modification as the hardware configu- 
ration changes. Consider the cost of modifying the system to support a newly 
acquired graphics terminal or another disk drive. Balanced against that cost, of 
course, is the frequency (or infrequency) of such changes. 

After an operating system is generated, it must be made available for use 
by the hardware. But how does the hardware know where the kernel is, or 
how to load that kernel? The procedure of starting a computer by loading the 
kernel is known as booting the system. Most computer systems have a small 
piece of code, stored in ROM, known as the bootstrap program or bootstrap 
loader. This code is able to locate the kernel, load it into main memory, and 
start its execution. Some computer systems, such as PCs, use a two-step process 
in which a simple bootstrap loader fetches a more complex boot program from 
disk, which in turn loads the kernel. Booting a system is discussed in Section 
14.3.2 and in Appendix A. 

3.9 Summary 

Operating systems provide a number of services. At the lowest level, system 
calls allow a running program to make requests from the operating system 
directly. At a higher level, the command interpreter or shell provides a mech- 
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anism for a user to issue a request without writing a program. Commands 
may come from files during batch-mode execution, or directly from a keyboard 
when in an interactive or time-shared mode. System programs are provided to 
satisfy many common user requests. 

The types of requests vary according to the level of the request. The system- 
call level must provide the basic functions, such as process control and file 
and device management. Higher-level requests, satisfied by the command 
interpreter or system programs, are translated into a sequence of system calls. 
System services can be classified into several categories: program control, status 
requests, and 1 / 0  requests. Program errors can be considered implicit requests 
for service. 

Once the system services are defined, the structure of the operating system 
can be developed. Various tables are needed to record the information that 
defines the state of the computer system and the status of the system's jobs. 

The design of a new operating system is a major task. The goals of 
the system must be well defined before the design begins. They form the 
foundation for choices among various algorithms and strategies that will be 
necessary. 

Since an operating system is large, modularity is important. Designing a 
system as a sequence of layers or using a microkernel is considered a good 
technique. The virtual-machine concept takes the layered approach and treats 
both the kernel of the operating system and the hardware as though they were 
all hardware. Other operating systems may even be loaded on top of this virtual 
machine. 

Any operating system that has implemented the JVM is able to run all 
Java programs, because the JVM abstracts the underlying system to the Java 
program, providing an architecture-neutral interface. 

Throughout the entire operating-system design cycle, we must be careful to 
separate policy decisions from implementation details (or mechanisms). This 
separation allows maximum flexibility if policy decisions are to be changed 
later. 

Operating systems are now almost always written in a systems- 
implementation language or in a higher-level language. This feature improves 
their implementation, maintenance, and portability. To create an operating 
system for a particular machine configuration, we must perform system 
generation. 

Exercises 

3.1 What are the five major activities of an operating system in regard to 
process management? 

3.2 What are the three major activities of an operating system in regard to 
memory management? 
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3.3 What are the three major activities of an operating system in regard to 
secondary-storage management? 

3.4 What are the five major activities of an operating system in regard to file 
management? 

3.5 What is the purpose of the command interpreter? Why is it usually 
separate from the kernel? 

3.6 List five services provided by an operating system. Explain how each 
provides convenience to the users. Explain in which cases it would be 
impossible for user-level programs to provide these services. 

3.7 What is the purpose of system calls? 

3.8 Using system calls, write a program in either C or C++ that reads data 
from one file and copies it to another file. Such a program was described 
in Section 3.3. 

3.9 Why does Java provide the ability to call from a Java program native 
methods that are written in, say, C or C++? Provide an example where 
a native method is useful. 

3.10 What is the purpose of system programs? 

3.11 What is the main advantage of the layered approach to system design? 

3.12 What is the main advantage of the microkernel approach to system 
design? 

3.13 What is the main advantage for an operating-system designer of using a 
virtual-machine architecture? What is the main advantage for a user? 

3.14 Why is a just-in-time compiler useful for executing Java programs? 

3.15 Why is the separation of mechanism and policy a desirable principle? 

3.16 The experimental Synthesis operating system has an assembler incorpo- 
rated within the kernel. To optimize system-call performance, the kernel 
assembles routines within kernel space to minimize the path that the 
system call must take through the kernel. This approach is the antithe- 
sis of the layered approach, in which the path through the kernel is 
extended so that building the operating system is made easier. Discuss the 
pros and cons of the Synthesis approach to kernel design and to system- 
performance optimization. 
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Part Two 

PROCESS 
MANAGEMENT 

A process can be thought of as a program in execution. A process will need cer- 
tain resources-such as CPU time, memory, files, and I/O devices-to accom- 
plish its task. These resources are allocated to the process either when it is 
created or while it is executing. 

A process is the unit of work in most systems. Such a system consists of a 
collection of processes: Operating-system processes execute system code, and 
user processes execute user code. All these processes may execute concurrently. 

Although traditionally a process contained only a single thread of control 
as it ran, most modern operating systems now support processes that have 
multiple threads. 

The operating system is responsible for the following activities in connec- 
tion with process and thread management: the creation and deletion of both 
user and system processes; the scheduling of processes; and the provision of 
mechanisms for synchronization, communication, and deadlock handling for 
processes. 



Chapter 4 

PROCESSES 

Early computer systems allowed only one program to be executed at a time. 
This program had complete control of the system, and had access to all the sys- 
tem's resources. Current-day computer systems allow multiple programs to be , 
loaded into memory and to be executed concurrently. This evolution required , 
firmer control and more compartmentalization of the various programs. These I 
needs resulted in the notion of a process, which is a program in execution. A 
process is the unit of work in a modern time-sharing system. 1 

The more complex the operating system, the more it is expected to do on 
behalf of its users. Although its main concern is the execution of user programs, 
it also needs to take care of various system tasks that are better left outside the 
kernel itself. A system therefore consists of a collection of processes: Operating- 
system processes executing system code, and user processes executing user 
code. All these processes can potentially execute concurrently, with the CPU 
(or CPUs) multiplexed among them. By switching the CPU between processes, 
the operating system can make the computer more productive. 

4.1 . Process Concept 

One impediment to our discussion of operating systems is the question of what 
to call all the CPU activities. A batch system executes jobs, whereas a time- 
shared system has user programs, or tasks. Even on a single-user system, such 
as Microsoft Windows and Macintosh OS, a user may be able to run several 
programs at one time: a word processor, web browser, and e-mail package. 
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Even if the user can execute only one program at a time, the operating system 
may need to support its own internal programmed activities, such as memory 
management. In many respects, all these activities are similar, so we call all of 
them processes. 

The terms job and process are used almost interchangeably in this text. 
Although we personally prefer the term process, much of operating-system 
theory and terminology was developed during a time when the major activity 
of operating systems was job processing. It would be misleading to avoid the use 
of commonly accepted terms that include the word job (such as job scheduling) 
simply because process has superseded job. 

4.1.1 The Process 

Informally, a process is a program in execution. A process is more than the 
program code, which is sometimes known as the text section. It also includes 
the current activity, as represented by the value of the program counter and the 
contents of the processor's registers. In addition, a process generally includes 
the process stack, which contains temporary data (such as method parameters, 
return addresses, and local variables), and a data section, which contains global 
variables. 

We emphasize that a program by itself is not a process; a program is a 
passive entity, such as the contents of a file stored on disk, whereas a process 
is an active entity, with a program counter specifying the next instruction to 
execute and a set of associated resources. 

Although two processes may be associated with the same program, they 
are nevertheless considered two separate execution sequences. For instance, 
several users may be running different copies of the mail program, or the same 
user may invoke many copies of the editor program. Each of these is a separate 
process, and, although the text sections are equivalent, the data sections vary. 
It is also common to have a process that spawns many processes as it runs. We 
discuss such matters in Section 4.4. 

4.1.2 Process State 

As a process executes, it changes state. The state of a process is defined in 
part by the current activity of that process. Each process may be in one of the 
following states: 

New: The process is being created. 

Running: Instructions are being executed. 

Waiting: The process is waiting for some event to occur (such as an I/O 
completion or reception of a signal). 

Ready: The process is waiting to be assigned to a processor. 



4.1 Process Concept 97 

mitted interrupt 

n 

I10 or event completion 10 or event wait 

Figure 4.1 Diagram of process state. 

Terminated: The process has finished execution. 

These state names are arbitrary, and they vary across operating systems. 
The states that they represent are found on all systems, however. Certain 
operating systems more finely delineate process states. Only one process can 
be running on any processor at any instant, although many processes may be 
ready and waiting. The state diagram corresponding to these states is presented 
in Figure 4.1. 

4.1.3 Process Control Block 
Each process is represented in the operating system by a process control block 
(PCB)-also called a task control block. A PCB is shown in Figure 4.2. It contains 
many pieces of information associated with a specific process, including these: 

Figure 4.2 Process control block (PCB). 
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Process state: The state may be new, ready, running, waiting, halted, and 
SO on. 

Program counter: The counter indicates the address of the next instruction 
to be executed for this process. 

CPU registers: The registers vary in number and type, depending on the 
computer architecture. They include accumulators, index registers, stack 
pointers, and general-purpose registers, plus any condition-code informa- 
tion. Along with the program counter, this state information must be saved 
when an interrupt occurs, to allow the process to be continued correctly 
afterward (Figure 4.3). 

CPU-scheduling information: This information includes a process prior- 
ity, pointers to scheduling queues, and any other scheduling parameters. 
(Chapter 6 describes process scheduling.) 

Memory-management information: This information may include such 
information as the value of the base and limit registers, the page tables, 
or the segment tables, depending on the memory system used by the 
operating system (Chapter 9). 

process Po operating system process P, 

interrupt or system call 

executing 

executing 

1 
saw state into PCB, 

reload state from PCB, G / 
i interrupt or system call 

save state into PCB, 

ierbad Wm PCB, 

:: 

idle 

executing 

I idle 

Figure 4.3 Diagram showing CPU switch from process to process. 
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Accounting information: This information includes the amount of CPU 
and real time used, time limits, account numbers, job or process numbers, 
and so on. 

status information: The information includes the list of I/O devices 
allocated to this process, a list of open files, and so on. 

The PCB simply serves as the repository for any information that may vary 
from process to process. 

4.1.4 Threads 

The process model discussed so far has implied that a process is a program that 
performs a single thread of execution. For example, if a process is running a 
word-processor program, a single thread of instructions is being executed. This 
single thread of control allows the process to perform only one task at one time. 
For example, the user could not simultaneously type in characters and run the 
spell checker within the same process. Many modern operating systems have 
extended the process concept to allow a process to have multiple threads of 
execution. They thus allow the process to perform more than one task at a time. 
Chapter 5 explores multithreaded processes. 

4.2 . Process Scheduling 

The objective of multiprogramming is to have some process running at all times, 
so as to maximize CPU utilization. The objective of time-sharing is to switch the 
CPU among processes so frequently that users can interact with each program 
while it is running. A uniprocessor system can have only one running process. 
If more processes exist, the rest must wait until the CPU is free and can be 
rescheduled. 

4.2.1 Scheduling Queues 
As processes enter the system, they are put into a job queue. This queue 
consists of all processes in the system. The processes that are residing in main 
memory and are ready and waiting to execute are kept on a list called the ready 
queue. This queue is generally stored as a linked list. A ready-queue header 
contains pointers to the first and final PCBs in the list. We extend each PCB to 
include a pointer field that points to the next PCB in the ready queue. 

The operating system also has other queues. When a process is allocated 
the CPU, it executes for a while and eventually quits, is interrupted, or waits for 
the occurrence of a particular event, such as the completion of an I/O request. 
In the case of an 1/0 request, such a request may be to a dedicated tape drive, or 
to a shared device, such as a disk. Since the system has many processes, the disk 
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Figure 4.4 The ready queue and various I/O device queues. 

may be busy with the I/O request of some other process. The process therefore 
may have to wait for the disk. The list of processes waiting for a particular 
I/O device is called a device queue. Each device has its own device queue 
(Figure 4.4). 

A common representation of process scheduling is a queueing diagram, 
such as that in Figure 4.5. Each rectangular box represents a queue. Two types 
of queues are present: the ready queue and a set of device queues. The circles 
represent the resources that serve the queues, and the arrows indicate the flow 
of processes in the system. 

A new process is initially put in the ready queue. It waits in the ready queue 
until it is selected for execution (or dispatched). Once the process is assigned to 
the CPU and is executing, one of several events could occur: 

The process could issue an I/O request, and then be placed in an I/O queue. 

The process could create a new subprocess and wait for its termination. 

The process could be removed forcibly from the CPU, as a result of an 
interrupt, and be put back in the ready queue. 
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Figure 4.5 Queueing-diagram representation of process scheduling. 

In the first two cases, the process eventually switches from the waiting state 
to the ready state, and is then put back in the ready queue. A process continues 
this cycle until it terminates, at which time it is removed from all queues and 
has its PCB and resources deallocated. 

4.2.2 Schedulers 
A process migrates between the various scheduling queues throughout its 
lifetime. The operating system must select, for scheduling purposes, processes 
from these queues in some fashion. The selection process is carried out by the 
appropriate scheduler. 

In a batch system, often more processes are submitted than can be executed 
immediately. These processes are spooled to a mass-storage device (typically 
a disk), where they are kept for later execution. The long-term scheduler, or 
job scheduler, selects processes from this pool and loads them into memory for 
execution. The short-term scheduler, or CPU scheduler, selects from among 
the processes that are ready to execute, and allocates the CPU to one of them. 

The primary distinction between these two schedulers is the frequency of 
their execution. The short-term scheduler must select a new process for the CPU 
frequently. A process may execute for only a few milliseconds before waiting 
for an I/O request. Often, the short-term scheduler executes at least once every 
100 milliseconds. Because of the brief time between executions, the short-term 
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process 
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used (or 
wasted) simply for scheduling the work. 
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The long-term scheduler, on the other hand, executes much less frequently. 
There may be minutes between the creation of new processes in the system. The 
long-term scheduler controls the degree of multiprogramming-the number 
of processes in memory. If the degree of multiprogramming is stable, then the 
average rate of process creation must be equal to the average departure rate of 
processes leaving the system. Thus, the long-term scheduler may need to be 
invoked only when a process leaves the system. Because of the longer interval 
between executions, the long-term scheduler can afford to take more time to 
select a process for execution. 

The long-term scheduler must make a careful selection. In general, most 
processes can be described as either I/O bound or CPU bound. An 110-bound 
process spends more of its time doing I/O than it spends doing computations. 
A CPU-bound process, on the other hand, generates I/O requests infrequently, 
using more of its time doing computation than an I/O-bound process uses. 
The long-term scheduler should select a good process mix of I/O-bound and 
CPU-bound processes. If all processes are I/O bound, the ready queue will 
almost always be empty, and the short-term scheduler will have little to do. 
If all processes are CPU bound, the I/O waiting queue will almost always be 
empty, devices will go unused, and again the system will be unbalanced. The 
system with the best performance will have a combination of CPU-bound and 
I/O-bound processes. 

On some systems, the long-term scheduler may be absent or minimal. For 
example, time-sharing systems such as UNIX often have no long-term scheduler, 
but simply put every new process in memory for the short-term scheduler. The 
stability of these systems depends either on a physical limitation (such as the 
number of available terminals) or on the self-adjusting nature of human users. 
If the performance declines to unacceptable levels, some users will simply quit. 

Some operating systems, such as time-sharing systems, may introduce an 
additional, intermediate level of scheduling. This medium-term scheduler, 

Figure 4.6 Addition of medium-term scheduling to the queueing diagram. 
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diagrammed in Figure 4.6, removes processes from memory (and from active 
contention for the CPU), and thus reduces the degree of multiprogramming. At 
some later time, the process can be reintroduced into memory and its execution 
can be continued where it left off. This scheme is called swapping. The pro- 
cess is swapped out, and is later swapped in, by the medium-term scheduler. 
Swapping may be necessary to improve the process mix, or because a change in 
memory requirements has overcommitted available memory, requiring mem- 
ory to be freed up. Swapping is discussed in Chapter 9. 

4.2.3 Context Switch 
Switching the CPU to another process requires saving the state of the old process 
and loading the saved state for the new process. This task is known as a 
context switch. The context of a process is represented in the PCB of a process; 
it includes the value of the CPU registers, the process state (Figure 4.1), and 
memory-management information. When a context switch occurs, the kernel 
saves the context of the old process in its PCB and loads the saved context of the 
new process scheduled to run. Context-switch time is pure overhead, because 
the system does no useful work while switching. Its speed varies from machine 
to machine, depending on the memory speed, the number of registers that must 
be copied, and the existence of special instructions (such as a single instruction 
to load or store all registers). Typical speeds range from 1 to 1000 microseconds. 

Context-switch times are highly dependent on hardware support. For 
instance, some processors (such as the Sun UltraSPARC) provide multiple sets of 
registers. A context switch simply includes changing the pointer to the current 
register set. Of course, if active processes exceed register sets, the system resorts 
to copying register data to and from memory, as before. Also, the more complex 
the operating system, the more work must be done during a context switch. 
As we will see in Chapter 9, advanced memory-management techniques may 
require extra data to be switched with each context. For instance, the address 
space of the current process must be preserved as the space of the next task is 
prepared for use. How the address space is preserved, and what amount of 
work is needed to preserve it, depend on the memory-management method 
of the operating system. As we will see in Chapter 5, context switching 
has become such a performance bottleneck that programmers are using new 
structures (threads) to avoid it whenever possible. 

4.3 rn Operations on Processes 

The processes in the system can execute concurrently, and they must be cre- 
ated and deleted dynamically. Thus, the operating system must provide a 
mechanism (or facility) for process creation and termination. 
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4.3.1 Process Creation 
A process may create several new processes, via a create-process system 
call, during the course of execution. The creating process is called a parent 
process, whereas the new processes are called the children of that process. Each 
of these new processes may in turn create other processes, forming a tree of 
processes (Figure 4.7). 

In general, a process will need certain resources (such as CPU time, memory, 
files, I/O devices) to accomplish its task. When a process creates a subprocess, 
that subprocess may be able to obtain its resources directly from the operating 
system, or it may be constrained to a subset of the resources of the parent 
process. The parent may have to partition its resources among its children, 
or it may be able to share some resources (such as memory or files) among 
several of its children. Restricting a child process to a subset of the parent's 
resources prevents any process from overloading the system by creating too 
many subprocesses. 

When a process is created it obtains, in addition to the various physical and 
logical resources, initialization data (or input) that may be passed along from 
the parent process to the child process. For example, consider a process whose 
function is to display the status of a file, say F1, on the screen of a terminal. 
When it is created, it will get, as an input from its parent process, the name of the 
file F1, and it will execute using that datum to obtain the desired information. 
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It may also get the name of the output device. Some operating systems pass 
resources to child processes. On such a system, the new process may get two 
open files, F1 and the terminal device, and may just need to transfer the datum 
between the two. 

When a process creates a new process, two possibilities exist in terms of 
execution: 

1. The parent continues to execute concurrently with its children. 

2. The parent waits until some or all of its children have terminated. 

There are also two possibilities in terms of the address space of the new process: 

1. The child process is a duplicate of the parent process. 

2. The child process has a program loaded into it. 

To illustrate these different implementations, let us consider the UNIX operating 
system. In UNIX, each process is identified by its process identifier, which 
is a unique integer. A new process is created by the fork system call. The 
new process consists of a copy of the address space of the original process. 
This mechanism allows the parent process to communicate easily with its child 
process. Both processes (the parent and the child) continue execution at the 
instruction after the fork system call, with one difference: The return code for 
the fork system call is zero for the new (child) process, whereas the (nonzero) 
process identifier of the child is returned to the parent. 

Typically, the execlp system call is used after a fork system call by 
one of the two processes to replace the process' memory space with a new 
program. The execlp system call loads a binary file into memory-destroying 
the memory image of the program containing the execlp system call-and 
starts its execution. In this manner, the two processes are able to communicate, 

l and then to go their separate ways. The parent can then create more children, or, 
if it has nothing else to do while the child runs, it can issue a wait system call to 
move itself off the ready queue until the termination of the child. The C program 
shown in Figure 4.8 illustrates the UNIX system calls previously described. The 
parent creates a child process using the fork system call. We now have two 
different processes running a copy of the same program. The value of pid for 
the child process is zero; that for the parent is an integer value greater than zero. 
The child process overlays its address space with the UNIX command /b in / l s  
(used to get a directory listing) using the execlp system call. The parent waits 
for the child process to complete with the wait system call. When the child 
process completes, the parent process resumes from the call to wait where it 
completes using the e x i t  system call. 

The DEC VMS operating system, in contrast, creates a new process, loads 
a specified program into that process, and starts it running. The Microsoft 
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void main(int argc, char *argv [I ) 
{ 
int pid; 

/*  fork another process */ 
pid = fork(); 

if (pid < 0) { /* error occurred */ 
f printf (stderr , "Fork Failed") ; 
exit (-1) ; 

} 
else if (pid == 0) { /* child process */ 

execlp("/bin/ls" , "1s" ,NULL) ; 

1 
else { /* parent process */ 

/* parent will wait for the child to complete */ 
wait (NULL) ; 
printf ("Child Complete") ; 
exit (0) ; 

} 
} 

Figure 4.8 C program forking a separate process. 

Windows NT operating system supports both models: The parent's address 
space may be duplicated, or the parent may specify the name of a program 
for the operating system to load into the address space of the new process. 

4.3.2 Process Termination 
A process terminates when it finishes executing its final statement and asks the 
operating system to delete it by using the exit system call. At that point, the 
process may return data (output) to its parent process (via the wait system call). 
All the resources of the process-including physical and virtual memory, open 
files, and 1 /0  buffers-are deallocated by the operating system. 

Termination occurs under additional circumstances. A process can cause 
the termination of another process via an appropriate system call (for example, 
abort). Usually, only the parent of the process that is to be terminated can 
invoke such a system call. Otherwise, users could arbitrarily kill each other's 
jobs. A parent therefore needs to know the identities of its children. Thus, when 
one process creates a new process, the identity of the newly created process is 
passed to the parent. 
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A parent may terminate the execution of one of its children for a variety of 
reasons, such as these: 

The child has exceeded its usage of some of the resources that it has been 
allocated. This requires the parent to have a mechanism to inspect the state 
of its children. 

The task assigned to the child is no longer required. 

The parent is exiting, and the operating system does not allow a child to 
continue if its parent terminates. On such systems, if a process terminates 
(either normally or abnormally), then all its children must also be termi- 
nated. This phenomenon, referred to as cascading termination, is normally 
initiated by the operating system. 

To illustrate process execution and termination, consider that in UNIX we can 
terminate a process by using the e x i t  system call; its parent process may wait 
for the termination of a child process by using the wait  system call. The 
wait system call returns the process identifier of a terminated child, so that 
the parent can tell which of its possibly many children has terminated. If the 
parent terminates, however, all its children have assigned as their new parent 
the i n i t  process. Thus, the children still have a parent to collect their status 
and execution statistics. 

4.4 . Cooperating Processes 

The concurrent processes executing in the operating system may be either 
independent processes or cooperating processes. A process is independent if 
it cannot affect or be affected by the other processes executing in the system. 
Clearly, any process that does not share any data (temporary or persistent) with 
any other process is independent. On the other hand, a process is cooperating 
if it can affect or be affected by the other processes executing in the system. 
Clearly, any process that shares data with other processes is a cooperating 
process. 

We may want to provide an environment that allows process cooperation 
for several reasons: 

Information sharing: Since several users may be interested in the same 
piece of information (for instance, a shared file), we must provide an 
environment to allow concurrent access to these types of resources. 

Computation speedup: If we want a particular task to run faster, we must 
break it into subtasks, each of wluch will be executing in parallel with the 
others. Such a speedup can be achieved only if the computer has multiple 
processing elements (such as CPUS or I/O channels). 
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a Modularity: We may want to construct the system in a modular fashion, 
dividing the system functions into separate processes or threads, as we 
discussed in Chapter 3. 

Convenience: Even an individual user may have many tasks on which 
to work at one time. For instance, a user may be editing, printing, and 
compiling in parallel. 

Concurrent execution of cooperating processes requires mechanisms that allow 
processes to communicate with one another (Section 4.5) and to synchronize 
their actions (Chapter 7). 

To illustrate the concept of cooperating processes, let us consider the pro- 
ducer-consumer problem, which is a common paradigm for cooperating pro- 
cesses. A producer process produces information that is consumed by a con- 
sumer process. For example, a print program produces characters that are 
consumed by the printer driver. A compiler may produce assembly code, which 
is consumed by an assembler. The assembler, in turn, may produce object 
modules, which are consumed by the loader. 

To allow producer and consumer processes to run concurrently, we must 
have available a buffer of items that can be filled by the producer and emptied 
by the consumer. A producer can produce one item while the consumer is 
consuming another item. The producer and consumer must be synchronized, 
so that the consumer does not try to consume an item that has not yet been 
produced. In this situation, the consumer must wait until an item is produced. 

The unbounded-buffer producer-consumer problem places no practical 
limit on the size of the buffer. The consumer may have to wait for new items, but 
the producer can always produce new items. The bounded-buffer producer- 
consumer problem assumes a fixed buffer size. In this case, the consumer must 
wait if the buffer is empty, and the producer must wait if the buffer is full. 

The buffer may either be provided by the operating system through the use 
of an interprocess-communication (IPC) facility (Section 4.5), or by explicitly 
coded by the application programmer with the use of shared memory. Let 
us illustrate a shared-memory solution to the bounded-buffer problem. The 
producer and consumer processes share the following variables: 

#define BUFFER-SIZE 10 

typedef s t r u c t  { 
. . . 

) i tem; 

item bu f fe r  [BUFFER-SIZE] ; 
i n t  i n  = 0;  
i n t  out = 0;  



4.5 Interprocess Communication 109 

The shared buffer is implemented as a circular array with two logical 
pointers: in and out. The variable in points to the next free position in the 
buffer; out points to the first full position in the buffer. The buffer is empty 
when in == out ; the buffer is full when ((in + 1) % BUFFERSIZE) == out. 

The code for the producer and consumer processes follows. The producer 
process has a local variable nextproduced in which the new item to be pro- 
duced is stored: 

while (1) { 
/* produce an item in nextproduced */ 
while ( ( (in + 1) % BUFFER-SIZE) == out) 

; /* do nothing */ 
buffer [in] = nextproduced; 
in = (in + 1) % BUFFER-SIZE; 

1 

The consumer process has a local variable nextconsumed in which the item to 
be consumed is stored: 

while (I) { 
while (in == out) 

; // do nothing 

nextconsumed = buffer [out] ; 
out = (out + 1) % BUFFER-SIZE; 
/* consume the item in nextconsumed */ 

1 
This scheme allows at most BUFFER-SIZE - 1 items in the buffer at the same 
time. We leave it as an exercise for you to provide a solution where BUFFERSIZE 
items can be in the buffer st the same time. 

In Chapter 7, we discuss how synchronization among cooperating pro- 
cesses can be implemented effectively in a shared-memory environment. 

4.5 Interprocess Communication 

In Section 4.4, we showed how cooperating processes can communicate in a 
shared-memory environment. The scheme requires that these processes share 
a common buffer pool, and that the code for implementing the buffer be 
written explicitly by the application programmer. Another way to achieve the 
same effect is for the operating system to provide the means for cooperating 
processes to communicate with each other via an interprocess communication 
(PC) facility. 
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IPC provides a mechanism to allow processes to communicate and to syn- 
chronize their actions without sharing the same address space. IPC is particu- 
larly useful in a distributed environment where the communicating processes 
may reside on different computers connected with a network. An example is a 
chat program used on the World Wide Web. 

IPC is best provided by a message-passing system, and message systems 
can be defined in many ways. In this section, we look at different issues when 
designing message-passing systems. 

4.5.1 Message-Passing System 
The function of a message system is to allow processes to communicate with 
one another without the need to resort to shared data. We have already seen 
message passing used as a method of communication in microkernels (Section 
3.5.3). In this scheme, services are provided as ordinary user processes. That 
is, the services operate outside of the kernel. Communication among the user 
processes is accomplished through the passing of messages. An IPC facility 
provides at least the two operations: send(message) and receive(message). 

Messages sent by a process can be of either fixed or variable size. If 
only fixed-sized messages can be sent, the system-level implementation is 
straightforward. This restriction, however, makes the task of programming 
more difficult. On the other hand, variable-sized messages require a more 
complex system-level implementation, but the programming task becomes 
simpler. 

If processes P and Q want to communicate, they must send messages to and 
receive messages from each other; a communication link must exist between 
them. This link can be implemented in a variety of ways. We are concerned here 
not with the link's physical implementation (such as shared memory, hardware 
bus, or network, which are covered in Chapter 15), but rather with its logical 
implementation. Here are several methods for logically implementing a link 
and the send/receive operations: 

Direct or indirect communication 

Symmetric or asymmetric communication 

Automatic or explicit buffering 

Send by copy or send by reference 

Fixed-sized or variable-sized messages 

We look at each of these types of message systems next. 
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4.5.2 Naming 
Processes that want to communicate must have a way to refer to each other. 
They can use either direct or indirect communication. 

4.5.2.1 Direct Communication 

With direct communication, each process that wants to communicate must 
explicitly name the recipient or sender of the communication. In this scheme, 
the send and receive primitives are defined as: 

receive (Q , message) -Receive a message from process Q. 

A communication link in this scheme has the following properties: 

A link is established automatically between every pair of processes that 
want to communicate. The processes need to know only each other's 
identity to communicate. 

A link is associated with exactly two processes. 

Exactly one link exists between each pair of processes. 

This scheme exhibits symmetry in addressing; that is, both the sender and 
the receiver processes must name the other to communicate. A variant of 
this scheme employs asymmetry in addressing. Only the sender names the 
recipient; the recipient is not required to name the sender. In this scheme, the 
send and receive primitives are defined as follows: 

receive (id, message) -Receive a message from any process; the vari- 
able id is set to the name of the process with which communication has 
taken place. 

The disadvantage in both symmetric and asymmetric schemes is the limited 
modularity of the resulting process definitions. Changing the name of a process 
may necessitate examining all other process definitions. All references to the 
old name must be found, so that they can be modified to the new name. This 
situation is not desirable from the viewpoint of separate compilation. 

4.5.2.2 Indirect Communication 

With indirect communication, the messages are sent to and received from 
mailboxes, or ports. A mailbox can be viewed abstractly as an object into 



112 Chapter 4 Processes 

which messages can be placed by processes and from which messages can be 
removed. Each mailbox has a unique identification. In this scheme, a process 
can communicate with some other process via a number of different mailboxes. 
Two processes can communicate only if they share a mailbox. The send and 
receive primitives are defined as follows: 

send (A, message) -Send a message to mailbox A. 

receive (A, message) -Receive a message from mailbox A. 

In this scheme, a communication link has the following properties: 

A link is established between a pair of processes only if both members of 
the pair have a shared mailbox. 

A link may be associated with more than two processes. 

A number of different links may exist between each pair of communicating 
processes, with each link corresponding to one mailbox. 

Now suppose that processes PI, P2, and P3 all share mailbox A. Process PI 
sends a message to A, while P2 and P3 each execute a receive from A. Which 
process will receive the message sent by PI ? The answer depends on the scheme 
that we choose: 

Allow a link to be associated with at most two processes. 

Allow at most one process at a time to execute a receive operation. 

Allow the system to select arbitrarily which process will receive the mes- 
sage (that is, either P2 or P3, but not both, will receive the message). The 
system may identify the receiver to the sender. 

A mailbox may be owned either by a process or by the operating system. 
If the mailbox is owned by a process (that is, the mailbox is part of the address 
space of the process), then we distinguish between the owner (who can only 
receive messages through this mailbox) and the user (who can only send 
messages to the mailbox). Since each mailbox has a unique owner, there can be 
no confusion about who should receive a message sent to this mailbox. When a 
process that owns a mailbox terminates, the mailbox disappears. Any process 
that subsequently sends a message to this mailbox must be notified that the 
mailbox no longer exists. 

On the other hand, a mailbox owned by the operating system is indepen- 
dent and is not attached to any particular process. The operating system then 
must provide a mechanism that allows a process to do the following: 
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Create a new mailbox. 

Send and receive messages through the mailbox. 

Delete a mailbox. 

The process that creates a new mailbox is that mailbox's owner by default. 
Initially, the owner is the only process that can receive messages through this 
mailbox. However, the ownership and receive privilege may be passed to other 
processes through appropriate system calls. Of course, this provision could 
result in multiple receivers for each mailbox. 

4.5.3 Synchronization 

Communication between processes takes place by calls to send and receive 
primitives. There are different design options for implementing each primitive. 
Message passing may be either blocking or nonblocking-also known as 
synchronous and asynchronous. 

Blocking send: The sending process is blocked until the message is 
received by the receiving process or by the mailbox. 

Nonblocking send: The sending process sends the message and resumes 
operation. 

Blocking receive: The receiver blocks until a message is available. 

Nonblocking receive: The receiver retrieves either a valid message or a 
null. 

Different combinations of send and receive are possible. When both the 
send and receive are blocking, we have a rendezvous between the sender 
and the receiver. 

4.5.4 Buffering 

Whether the communication is direct or indirect, messages exchanged by com- 
municating processes reside in a temporary queue. Basically, such a queue can 
be implemented in three ways: 

Zero capacity: The queue has maximum length 0; thus, the link cannot 
have any messages waiting in it. In this case, the sender must block until 
the recipient receives the message. 
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Bounded capacity: The queue has finite length n; thus, at most n messages 
can reside in it. If the queue is not full when a new message is sent, the 
latter is placed in the queue (either the message is copied or a pointer to the 
message is kept), and the sender can continue execution without waiting. 
The link has a finite capacity, however. If the link is full, the sender must 
block until space is available in the queue. 

Unbounded capacity: The queue has potentially infinite length; thus, any 
number of messages can wait in it. The sender never blocks. 

The zero-capacity case is sometimes referred to as a message system with no 
buffering; the other cases are referred to as automatic buffering. 

4.5.5 An Example: Mach 
As an example of a message-based operating system, consider the Mach oper- 
ating system, developed at Carnegie Mellon University. The Mach kernel 
supports the creation and destruction of multiple tasks, which are similar to 
processes but have multiple threads of control. Most communication in Mach 
-including most of the system calls and all intertask information-is carried 
out by messages. Messages are sent to and received from mailboxes, called ports 
in Mach. 

Even system calls are made by messages. When each task is created, 
two special mailboxes-the Kernel mailbox and the Notify mailbox-are also 
created. The kernel uses the Kernel mailbox to communicate with the task. 
The kernel sends notification of event occurrences to the Notify port. Only 
three system calls are needed for message transfer. The msg-send call sends 
a message to a mailbox. A message is received via msgxeceive. Remote 
procedure calls (RPCs) are executed via msg-rpc, which sends a message and 
waits for exactly one return message from the sender. In this way, RPC model a 
typical subroutine procedure call, but can work between systems. 

The port  -allocat e system call creates a new mailbox and allocates space 
for its queue of messages. The maximum size of the message queue defaults to 
eight messages. The task that creates the mailbox is that mailbox's owner. The 
owner also is given receive access to the mailbox. Only one task at a time can 
either own or receive from a mailbox, but these rights can be sent to other tasks 
if desired. 

The mailbox has an initially empty queue of messages. As messages are 
sent to the mailbox, the messages are copied into the mailbox. All messages 
have the same priority. Mach guarantees that multiple messages from the same 
sender are queued in first-in, first-out (FIFO) order, but does not guarantee an 
absolute ordering. For instance, messages sent from each of two senders may 
be queued in any order. 

The messages themselves consist of a fixed-length header, followed by a 
variable-length data portion. The header includes the length of the message 
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and two mailbox names. When a message is sent, one mailbox name is the 
mailbox to which the message is being sent. Commonly, the sending thread 
expects a reply; the mailbox name of the sender is passed on to the receiving 
task, which may use it as a "return address" to send messages back. 

The variable part of a message is a list of typed data items. Each entry in the 
list has a type, size, and value. The type of the objects specified in the message 
is important, since operating-system-defined objects-such as the ownership 
or receive access rights, task states, and memory segments-may be sent in 
messages. 

The send and receive operations themselves are flexible. For instance, 
when a message is sent to a mailbox, the mailbox may be full. If the mailbox is 
not full, the message is copied to the mailbox and the sending thread continues. 
If the mailbox is full, the sending thread has four options: 

1. Wait indefinitely until there is room in the mailbox. 

2. Wait at most n milliseconds. 

3. Do not wait at all, but rather return immediately. 

4. Temporarily cache a message. One message can be given to the operating 
system to keep, even though the mailbox to which it is being sent is full. 
When the message can be put in the mailbox, a notification message is sent 
back to the sender; only one such message to a full mailbox can be pending 
at any time for a given sending thread. 

The final option is meant for server tasks, such as a line-printer driver. After 
finishing a request, these tasks may need to send a one-time reply to the task 
that had requested service, but must also continue with other service requests, 
even if the reply mailbox for a client is full. 

The rece ive  operation must specify from which mailbox or mailbox set 
to receive a message. A mailbox set is a collection of mailboxes, as declared 
by the task, which can be grouped together and treated as one mailbox for 
the purposes of the task. Threads in a task can receive from only a mailbox 
or mailbox set for which that task has receive access. A por t- s ta tus  system 
call returns the number of messages in a given mailbox. The receive operation 
attempts to receive from either of the following: 

1. any mailbox in a mailbox set 

2. a specific (named) mailbox 

If no message is waiting to be received, the receiving thread may wait, wait at 
most n milliseconds, or not wait. 

The Mach system was especially designed for distributed systems, which 
we discuss in Chapters 15 through 17, but Mach is also suitable for single- 
processor systems. The major problem with message systems has generally 



116 Chapter 4 Processes 

been poor performance caused by copying the message first from the sender to 
the mailbox, and then from the mailbox to the receiver. The Mach message 
system attempts to avoid double-copy operations by using virtual-memory 
-management techniques (Chapter 10). Essentially, Mach maps the address 
space containing the sender's message into the receiver's address space. The 
message itself is never actually copied. This message-management technique 
provides a large performance boost, but works only for intrasystem messages. 
The Mach operating system is discussed in an extra chapter that is posted on 
our web site (http:/ /www.bell-labs.com/topic/books/os-book). 

4.5.6 An Example: Windows 2000 

The Windows 2000 operating system is an example of modern design that 
employs modularity to increase functionality and decrease the time needed to 
implement new features. Windows 2000 provides support for multiple oper- 
ating environments or subsystems, with which application programs commu- 
nicate via a message-passing mechanism. The application programs can be 
considered to be clients of the Windows 2000 subsystem server. 

The message-passing facility in Windows 2000 is called the local procedure- 
call (LPC) facility. The LPC in Windows 2000 communicates between two 
processes that are on the same machine. It is similar to the standard RPC 
mechanism that is widely used, but it is optimized for and specific to Windows 
2000. Like Mach, Windows 2000 uses a port object to establish and maintain a 
connection between two processes. Every client that calls a subsystem needs 
a communication channel, which is provided by a port object and is never 
inherited. Windows 2000 uses two types of ports: connection ports and commu- 
nication ports. They are really the same but are given different names according 
to how they are used. Connection ports are named objects, which are visible to 
all processes; they give applications a way to set up a communication channel 
(Chapter 21). This communication works as follows: 

The client opens a handle to the subsystem's connection port object. I 

The client sends a connection request. I 
The server creates two private communication ports, and returns the handle 
to one of them to the client. I 
The client and server use the corresponding port handle to send messages 
or callbacks and to listen for replies. I 
Windows 2000 uses three types of message-passing techniques over a port 

that the client specifies when it establishes the channel. The simplest, which is 
used for small messages, uses the port's message queue as intermediate storage 
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and copies the message from one process to the other. Under this method, 
messages of up to 256 bytes can be sent. 

If a client needs to send a larger message, it passes the message through 
a section object (or shared memory). The client has to decide, when it sets up 
the channel, whether or not it will need to send a large message. If the client 
determines that it does want to send large messages, it asks for a section object 
to be created. Likewise, if the server decides that replies will be large, it creates a 
section object. So that the section object can be used, a small message is sent that 
contains a pointer and size information about that section object. This method is 
more complicated than the first method, but it avoids the data copying. In both 
cases, a callback mechanism can be used when either the client or the server 
cannot respond immediately to a request. The callback mechanism allows them 
to perform asynchronous message handling. 

4.6 . Communication in Client - Server Systems 

Consider a user who needs access to data located at some server. For example, 
a user may wish to find out the total number of lines, words, and characters in 
a file located at server A. This request is handled by a remote server A, which 
accesses the file, computes the desired result, and eventually transfers the actual 
data back to the user. 

4.6.1 Sockets 

A socket is defined as an endpoint for communication. A pair of processes 
communicating over a network employs a pair of sockets-one for each pro- 
cess. A socket is made up of an IP address concatenated with a port number. In 
general, sockets use a client-server architecture. The server waits for incoming 
client requests by listening to a specified port. Once a request is received, the 
server accepts a connection from the client socket to complete the connection. 

Servers implementing specific services (such as telnet, ftp, and http) listen 
to well-known ports (a telnet server listens to port 23, an ftp server listens to 
port 21, and a web (or http) server listens to port 80). All ports below 1024 are 
considered well known; we can use them to implement standard services. 

When a client process initiates a request for a connection, it is assigned a 
port by the host computer. This port is some arbitrary number greater than 
1024. For example, if a client on host X with IP address 146.86.5.20 wishes 
to establish a connection with a web server (which is listening on port 80) at 
address 161.25.19.8, host X may be assigned port 1625. The connection will 
consist of a pair of sockets: (146.86.5.20:1625) on host X, and (161.25.19.8:80) 
on the web server. This situation is illustrated in Figure 4.9. The packets 
traveling between the hosts are delivered to the appropriate process, based on 
the destination port number. 
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host X 

(1 46.86.5.20) 

web server 

(1 61.25.19.8) 

Figure 4.9 Communication using sockets. 

All connections must be unique. Therefore, if another process also on host 
X wished to establish another connection with the same web server, it would be 
assigned a port number greater than 1024 and not equal to 1625. This ensures 
that all connections consist of a unique pair of sockets. 

Although most program examples in this text use C, we will illustrate 
sockets using Java as it provides a much easier interface to sockets and has a 
rich library for networking utilities. Those interested in socket programming in 
C or C++ should consult the Bibliographical Notes. 

Java provides three different types of sockets. Connection-oriented (TCP) 
sockets are implemented with the Socket class. Connectionless (UDP) sockets 
use the Datagramsocket class. A third type is the Multicastsocket class, which 
is a subclass of the DatagramSocket class. A multicast socket allows data to 
be sent to multiple recipients. 

As an example of Java-based sockets, we now present a Java class that 
implements a time-of-day server. The operation allows clients to request the 
time of day from the server. The server listens to port 5155, although the 
port could be any arbitrary number greater than 1024. When a connection is 
received, the server returns the time of day to the client. 

The time-of-day server is shown in Figure 4.10. The server creates a 
Serversocket that specifies it will listen to port 5155. It then begins listening 
to the port with the accept method. The server blocks on the accept method 
waiting for a client to request a connection. When a connection request is 
received, accept returns a socket that the server can use to communicate with 
the client. 

The details illustrating how the server communicates with the socket are 
as follows. The server first establishes a PrintWriter object that it will use to 
communicate with the client. A PrintWriter object allows the server to write 
to the socket using the normal print and println methods for output. The 
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import java.net.*; 
import java.io.*; 

public class Server 

{ 
public static void main(String[] args) throws IOException { 

Socket client = null; 
PrintWriter pout = null; 
ServerSocket sock = null; 

try 
sock = new ServerSocket (5155) ; 
// now listen for connections 

while (true) { 
client = sock.accept(); 

// we have a connection 
pout = new PrintWriter (client. getOutputstream() , true) ; 

// write the Date to the socket 
pout.println(new java.util.DateO.toString()); 

pout. close 0 ; 
client. close0 ; 

1 
} 
catch (IOException ioe) { 

System.err .println(ioe) ; 

1 
finally { 

if (client != null) 
client. close0 ; 

if (sock != null) 
sock. close 0 ; 

1 
} 

} 

Figure 4.10 Time-of-day server. 

server process sends the time of day to the client calling the method p r in t ln .  
Once it has written the time of day to the socket, the server closes the socket to 
the client and resumes listening for more requests. 
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A client communicates with the server by creating a socket and connecting 
to the port the server is listening on. We implement such a client in the Java 
program shown in Figure 4.11. The client creates a Socket and requests a 
connection with the server at IP address 127.0.0.1 on port 5155. Once the 
connection is made, the client can read from the socket using normal stream I/O 
statements. After it has received the time of day from the server, the client closes 
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the 
local host. When a computer refers to IP address 127.0.0.1, it is referring to itself. 
This mechanism allows the client and server on the same host to communicate 
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the 
IP address of another host running the time-of-day server. 

import java.net.*; 
import j ava. io . * ; 

public class Client 

public static void main(String[] args) throws IOException { 
Inputstream in = null; 
BufferedReader bin = null; 
Socket sock = null; 

try 
//make connection to socket 
sock = new Socket (11127.0.0. 1" ,5155) ; 

in = sock. getInputStream0 ; 
bin = new BufferedReader(new Input~treamReader(in)); 

String line; 
while ( (line = bin.readline()) != null) 

System.out.println(line); 

1 
catch (IOException ioe) { 

System.err .println(ioe) ; 

} 
finally { 

if (sock != null) 
sock. close 0 ; 

} 
1 

Figure 4.11 The client. 
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Communication using sockets-although common and efficient-is con- 
sidered a low-level form of communication between distributed processes. 
One reason is that sockets allow only an unstructured stream of bytes to be 
exchanged between the communicating threads. It is the responsibility of the 
client or server application to impose a structure on the data. In the next two 
subsections, we look at two alternative, higher-level methods of communica- 
tion: remote procedure calls (RPCs) and remote method invocation (RMI). 

4.6.2 Remote Procedure Calls 
One of the most common forms of remote service is the RPC paradigm, which 
we discussed briefly in Section 4.5.4. The RPC was designed as a way to 
abstract the procedure-call mechanism for use between systems with network 
connections. It is similar in many respects to the IPC mechanism described in 
Section 4.5, and it is usually built on top of such a system. Because we are 
dealing with an environment in which the processes are executing on separate 
systems, we must use a message-based communication scheme to provide 
remote service. In contrast to the IPC facility, the messages exchanged for RPC 
communication are well structured and are thus no longer just packets of data. 
They are addressed to an RPC daemon listening to a port on the remote system, 
and contain an identifier of the function to execute and the parameters to pass 
to that function. The function is then executed as requested, and any output is 
sent back to the requester in a separate message. 

A port is simply a number included at the start of a message packet. 
Whereas a system normally has one network address, it can have many ports 
within that address to differentiate the many network services it supports. If a 
remote process needs a service, it addresses its messages to the proper port. For 
instance, if a system wished to allow other systems to be able to list the current 
users on it, it would have a daemon supporting such an RPC attached to a port 
-say, port 3027. Any remote system could obtain the needed information (that 
is, the list of current users) by sending an RPC message to port 3027 on the 
server; the data would be received in a reply message. 

The semantics of RPCs allow a client to invoke a procedure on a remote host 
as it would invoke a procedure locally. The RPC system hides the necessary 
details allowing the communication to take place. The RPC system does this by 
providing a stub on the client side. Typically, a separate stub exists for each 
separate remote procedure. When the client invokes a remote procedure, the 
RPC system calls the appropriate stub, passing it the parameters provided to 
the remote procedure. This stub locates the port on the server and marshalls 
the parameters. Parameter marshalling involves packaging the parameters into 
a form which may be transmitted over a network. The stub then transmits a 
message to the server using message passing. A similar stub on the server side 
receives this message and invokes the procedure on the server. If necessary, 
return values are passed back to the client using the same technique. 
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One issue that must be dealt with concerns differences in data representa- 
tion on the client and server machines. Consider the representation of 32-bit 
integers. Some systems use the high memory address to store the most signif- 
icant byte (known as big-endian), while other systems store the least significant 
byte at the high memory address (known as little-endian). To resolve this, many 
RPC systems define a machine-independent representation of data. One such 
representation is known as external data representation (XDR). On the client 
side, parameter marshalling involves converting the machine-dependent data 
into XDR before being sent to the server. On the server side, the XDR data is 
unmarshalled and converted into the machine-dependent representation for the 
server. 

The RPC mechanism is common on networked systems, so we should 
discuss several other issues in regard to its operation. One important issue is 
the semantics of a call. Whereas local procedure calls fail only under extreme 
circumstances, RPCs can fail, or be duplicated and executed more than once, 
due to common network errors. Because we are dealing with message transfer 
over unreliable communication links, it is much easier for an operating system 
to ensure that a message was acted on at most once, than it is to ensure that the 
message was acted on exactly once. Because local procedure calls have the latter 
meaning, most systems attempt to duplicate that functionality. They do so by 
attaching to each message a timestamp. The server must keep a history of all 
the timestamps of messages it has already processed, or a history large enough 
to ensure that repeated messages are detected. Incoming messages that have a 
timestamp already in the history are ignored. Generation of these timestamps 
is discussed in Section 17.1. 

Another important issue concerns the communication between a server 
and a client. With standard procedure calls, some form of binding takes 
place during link, load, or execution time (Chapter 9), such that a procedure 
call's name is replaced by the memory address of the procedure call. The 
RPC scheme requires a similar binding of the client and the server port, but 
how does a client know the port numbers on the server? Neither system 
has full information about the other because they do not share memory. Two 
approaches are common. First, the binding information may be predetermined, 
in the form of fixed port addresses. At compile time, an RPC call has a fixed 
port number associated with it. Once a program is compiled, the server cannot 
change the port number of the requested service. Second, binding can be 
done dynamically by a rendezvous mechanism. Typically, an operating system 
provides a rendezvous (also called a matchmaker) daemon on a fixed RPC 
port. A client then sends a message, containing the name of the RPC, to the 
rendezvous daemon requesting the port address of the RPC it needs to execute. 
The port number is returned, and the RPC calls may be sent to that port until 
the process terminates (or the server crashes). This method requires the extra 
overhead of the initial request, but is more flexible than the first approach. 
Figure 4.12 shows a sample interaction. 
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client messages server 

user calls kernel 
to send RPC 
message to 

Figure 4.12 Execution of a remote procedure call (RPC). 

The RPC scheme is useful in implementing a distributed file system (Chap- 
ter 16). Such a system can be implemented as a set of RPC daemons and clients. 
The messages are addressed to the DFS port on a server on which a file operation 
is to take place. The message contains the disk operation to be performed. Disk 
operations might be read, write, rename, delete ,  or s t a tus ,  corresponding 
to the usual file-related system calls. The return message contains any data 
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resulting from that call, which is executed by the DFS daemon on behalf of the 
client. For instance, a message might contain a request to transfer a whole file 
to a client, or be limited to simple block requests. In the latter case, several such 
requests might be needed if a whole file is to be transferred. 

4.6.3 Remote Method Invocation 
The remote method invocation (RMI) is a Java feature similar to RPCs. RMI 
allows a thread to invoke a method on a remote object. Objects are considered 
remote if they reside in a different Java virtual machine (JVM). Therefore, the 
remote object may be in a different JVM on the same computer or on a remote 
host connected by a network. This situation is illustrated in Figure 4.13. RMI 
and RPCs differ in two fundamental ways. First, RPCs support procedural 
programming whereby only remote procedures or functions may be called. RMI 
is object-based: It supports invocation of methods on remote objects. Second, 
the parameters to remote procedures are ordinary data structures in RPC; with 
RMI it is possible to pass objects as parameters to remote methods. By allowing 
a Java program to invoke methods on remote objects, RMI makes it possible for 
users to develop Java applications that are distributed across a network. 

To make remote methods transparent to both the client and the server, 
RMI implements the remote object using stubs and skeletons. A stub is a 
proxy for the remote object; it resides with the client. When a client invokes 
a remote method, this stub for the remote object is called. This client-side stub 
is responsible for creating a parcel consisting of the name of the method to be 
invoked on the server and the marshalled parameters for the method. The stub 
then sends this parcel to the server, where the skeleton for the remote object 
receives it. The skeleton is responsible for unmarshalling the parameters and 
invoking the desired method on the server. The skeleton then marshalls the 
return value (or exception, if any) into a parcel and returns this parcel to the 
client. The stub unmarshalls the return value and passes it to the client. 

Let us demonstrate how this process works. Assume that a client 
wishes to invoke a method on a remote object Server with the signature 

JVM 

Figure 4.13 Remote method invocation. 
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client remote object 

Figure 4.14 Marshalling parameters. 

someMethod(0bject , Object) that returns a boolean value. The client 
executes the statement 

boolean val = Server. some~ethod(A, B) ; 

The call to someMethod with the parameters A and B invokes the stub for the 
remote object. The stub marshalls into a parcel the parameters A and B and 
the name of the method that is to be invoked on the server, then sends this 
parcel to the server. The skeleton on the server unrnarshalls the parameters and 
invokes the method someMethod. The actual implementation of someMethod 
resides on the server. Once the method is completed, the skeleton marshalls the 
Boolean value returned from someMethod and sends this value back to the 
client. The stub unrnarshalls this return value and passes it to the client. The 
process is shown in Figure 4.14. 

Fortunately, the level of abstraction that RMI provides makes the stubs and 
skeletons transparent, allowing Java developers to write programs that invoke 
distributed methods just as they would invoke local methods. It is crucial, 
however, that you understand a few rules about the behavior of parameter 
passing. 

If the marshalled parameters are local (or nonremote) objects, they are 
passed by copy using a technique known as object serialization. However, 
if the parameters are also remote objects, they are passed by reference. In 
our example, if A is a local object and B a remote object, A is serialized and 
passed by copy, and B is passed by reference. This would in turn allow the 
server to invoke methods on B remotely. 
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If local objects are to be passed as parameters to remote objects, they must 
implement the interface j ava . io . Serializable. Many objects in the 
core Java API implement Serializable, allowing them to be used with 
RMI. Object serialization allows the state of an object to be written to a byte 
stream. 

4.7 Summary 

A process is a program in execution. As a process executes, it changes state. The 
state of a process is defined by that process' current activity. Each process may 
be in one of the following states: new, ready, running, waiting, or terminated. 
Each process is represented in the operating system by its own process-control 
block (PCB). 

A process, when it is not executing, is placed in some waiting queue. The 
two major classes of queues in an operating system are I/O request queues 
and the ready queue. The ready queue contains all the processes that are 
ready to execute and are waiting for the CPU. Each process is represented by 
a PCB, and the PCBs can be linked together to form a ready queue. Long-term 
(or job) scheduling is the selection of processes to be allowed to contend for 
the CPU. Normally, long-term scheduling is heavily influenced by resource- 
allocation considerations, especially memory management. Short-term (or 
CPU) scheduling is the selection of one process from the ready queue. 

The processes in the system can execute concurrently. There are several 
reasons for allowing concurrent execution: information sharing, computation 
speedup, modularity, and convenience. Concurrent execution requires mecha- 
nisms for process creation and deletion. 

The processes executing in the operating system may be either indepen- 
dent processes or cooperating processes. Cooperating processes must have 
the means to communicate with each other. Principally, two complementary 
communication schemes exist: shared memory and message systems. The 
shared-memory method requires communicating processes to share some vari- 
ables. The processes are expected to exchange information through the use of 
these shared variables. In a shared-memory system, the responsibility for pro- 
viding communication rests with the application programmers; the operating 
system needs to provide only the shared memory. The message-system method 
allows the processes to exchange messages. The responsibility for providing 
communication may rest with the operating system itself. These two schemes 
are not mutually exclusive, and can be used simultaneously within a single 
operating system. 

A socket is defined as an endpoint for communication. A connection 
between a pair of applications consists of a pair of sockets, one at each end of the 
communication channel. RPCs are another form of distributed communication. 
An RPC occurs when a process (or thread) calls a procedure on a remote 
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application. RMI is the Java version of an RPC. RMI allows a thread to invoke a 
method on a remote object just as it would invoke a method on a local object. 
The primary distinction between RPCs and RMIs is that the data being passed 
to a remote procedure are in the form of an ordinary data structure. RMI allows 
objects to be passed in remote method calls. 

Exercises 

4.1 MS-DOS provided no means of concurrent processing. Discuss three major 
complications that concurrent processing adds to an operating system. 

4.2 Describe the differences among short-term, medium-term, and long-term 
scheduling. 

4.3 A DECSYSTEM-20 computer has multiple register sets. Describe the actions 
of a context switch if the new context is already loaded into one of the 
register sets. What else must happen if the new context is in memory 
rather than in a register set, and all the register sets are in use? 

4.4 Describe the actions taken by a kernel to switch context between processes. 

4.5 What are the benefits and the detriments of each of the following? Con- 
sider both the systems and the programmers' levels. 

a. Direct and indirect communication 

b. Symmetric and asymmetric communication 

c. Automatic and explicit buffering 

d. Send by copy and send by reference 

e. Fixed-sized and variable-sized messages 

4.6 The correct producer-consumer algorithm in Section 4.4 allows only n - 1 
buffers to be full at any one time. Modify the algorithm to allow all buffers 
to be utilized fully. 

4.7 Consider the interprocess-communication scheme where mailboxes are 
used. 

a. Suppose a process P wants to wait for two messages, one from 
mailbox A and one from mailbox B. What sequence of send and 
receive should it execute? 

b. What sequence of send and receive should P execute if P wants 
to wait for one message from mailbox A or from mailbox B (or from 
both)? 
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c. A receive operation makes a process wait until the mailbox is 
nonempty. Devise a scheme that allows a process to wait until a 
mailbox is empty, or explain why such a scheme cannot exist. 

4.8 Write a socket-based Fortune Teller server. Your program should create a 
server that listens to a specified port. When a client receives a connection, 
the server should respond with a random fortune chosen from its database 
of fortunes. 
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Chapter 5 

The process model introduced in Chapter 4 assumed that a process was an 
executing program with a single thread of control. Many modern operating 
systems now provide features for a process to contain multiple threads of 
control. This chapter introduces many concepts associated with multithreaded 
computer systems, including a discussion of the Pthread API and Java threads. 
We will look at many issues related to multithreaded programming and how 
it affects the design of operating systems. Finally, we will explore how several 
modern operating systems support threads at the kernel level. 

5.1 . Overview 

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU 
utilization; it comprises a thread ID, a program counter, a register set, and 
a stack. It shares with other threads belonging to the same process its code 
section, data section, and other operating-system resources, such as open files 
and signals. A traditional (or heavyweight) process has a single thread of 
control. If the process has multiple threads of control, it can do more than 
one task at a time. Figure 5.1 illustrates the difference between a traditional 
single-threaded process and a multithreaded process. 

5.1.1 Motivation 
Many software packages that run on modern desktop PCs are multithreaded. 
An application typically is implemented as a separate process with several 
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thread 

single-threaded multithreaded 

Figure 5.1 Single- and multithreaded processes. 

threads of control. A web browser might have one thread display images or text 
while another thread retrieves data from the network. A word processor may 
have a thread for displaying graphics, another thread for reading keystrokes 
from the user, and a third thread for performing spelling and grammar checking 
in the background. 

In certain situations a single application may be required to perform several 
similar tasks. For example, a web server accepts client requests for web pages, 
images, sound, and so forth. A busy web server may have several (perhaps 
hundreds) of clients concurrently accessing it. If the web server ran as a 
traditional single-threaded process, it would be able to service only one client 
at a time. The amount of time that a client might have to wait for its request to 
be serviced could be enormous. 

One solution is to have the server run as a single process that accepts 
requests. When the server receives a request, it creates a separate process to 
service that request. In fact, this process-creation method was in common use 
before threads became popular. Process creation is very heavyweight, as was 
shown in the previous chapter. If the new process will perform the same tasks as 
the existing process, why incur all that overhead? It is generally more efficient 
for one process that contains multiple threads to serve the same purpose. This 
approach would multithread the web-server process. The server would create a 
separate thread that would listen for client requests; when a request was made, 
rather than creating another process, it would create another thread to service 
the request. 
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Threads also play a vital role in remote procedure call (RPC) systems. Recall 
from Chapter 4 that RPCs allow interprocess communication by providing a 
communication mechanism similar to ordinary function or procedure calls. 
Typically, RPC servers are multithreaded. When a server receives a message, it 
services the message using a separate thread. This allows the server to service 
several concurrent requests. 

5.1.2 Benefits 
The benefits of multithreaded programming can be broken down into four 
major categories: 

1. Responsiveness: Multithreading an interactive application may allow a 
program to continue running even if part of it is blocked or is performing 
a lengthy operation, thereby increasing responsiveness to the user. For 
instance, a multithreaded web browser could still allow user interaction 
in one thread while an image is being loaded in another thread. 

2. Resource sharing: By default, threads share the memory and the resources 
of the process to which they belong. The benefit of code sharing is that it 
allows an application to have several different threads of activity all within 
the same address space. 

3. Economy: Allocating memory and resources for process creation is costly. 
Alternatively, because threads share resources of the process to which they 
belong, it is more economical to create and context switch threads. It can 
be difficult to gauge empirically the difference in overhead for creating and 
maintaining a process rather than a thread, but in general it is much more 
time consuming to create and manage processes than threads. In Solaris 2, 
creating a process is about 30 times slower than is creating a thread, and 
context switching is about five times slower. 

4. Utilization of multiprocessor architectures: The benefits of multithreading 
can be greatly increased in a multiprocessor architecture, where each thread 
may be running in parallel on a different processor. A single-threaded 
process can only run on one CPU, no matter how many are available. 
Multithreading on a multi-CPU machine increases concurrency. In a single- 
processor architecture, the CPU generally moves between each thread so 
quickly as to create an illusion of parallelism, but in reality only one thread 
is running at a time. 

5.1.3 User and Kernel Threads 
Our discussion so far has treated threads in a generic sense. However, support 
for threads may be provided at either the user level, for user threads, or by the 
kernel, for kernel threads. 
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User threads are supported above the kernel and are implemented by a 
thread library at the user level. The library provides support for thread 
creation, scheduling, and management with no support from the kernel. 
Because the kernel is unaware of user-level threads, all thread creation and 
scheduling are done in user space without the need for kernel intervention. 
Therefore, user-level threads are generally fast to create and manage; they 
have drawbacks, however. For instance, if the kernel is single-threaded, 
then any user-level thread performing a blocking system call will cause the 
entire process to block, even if other threads are available to run within the 
application. User-thread libraries include POSIX Pthreads, Mach C-threads, 
and Solaris 2 UI-threads. 

Kernel threads are supported directly by the operating system: The kernel 
performs thread creation, scheduling, and management in kernel space. 
Because thread management is done by the operating system, kernel 
threads are generally slower to create and manage than are user threads. 
However, since the kernel is managing the threads, if a thread performs a 
blocking system call, the kernel can schedule another thread in the appli- 
cation for execution. Also, in a multiprocessor environment, the kernel 
can schedule threads on different processors. Most contemporary operat- 
ing systems-including Windows NT, Windows 2000, Solaris 2, BeOS, and 
Tru64 UNIX (formerly Digital UN1X)-support kernel threads. 

We will cover Pthreads in Section 5.4 as an example of a user-level thread 
library. We will also cover Windows 2000 (Section 5.6) and Solaris 2 (Section 5.5) 
as examples of operating systems with kernel-thread support. We will discuss 
how Linux provides support for threads in Section 5.7 (although Linux does not 
quite refer to them as threads). 

Java provides support for threads as well. However, as Java threads are 
created and managed by the Java virtual machine (JVM), they do not easily fall 
under the realm of either user or kernel threads. We will cover Java threads in 
Section 5.8. 

5.2 . Multithreading Models 

Many systems provide support for both user and kernel threads, resulting in 
different multithreading models. We look at three common types of threading 
implementation. 

5.2.1 Many-to-One Model 
The many-to-one model (Figure 5.2) maps many user-level threads to one 
kernel thread. Thread management is done in user space, so it is efficient, but 
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user thread 

Figure 5.2 Many-to-one model. 

the entire process will block if a thread makes a blocking system call. Also, 
because only one thread can access the kernel at a time, multiple threads are 
unable to run in parallel on multiprocessors. Green threads-a thread library 
available for Solaris 2-uses this model. In addition, user-level thread libraries 
implemented on operating systems that do not support kernel threads use the 
many-to-one model. 

5.2.2 One-to-one Model 
The one-to-one model (Figure 5.3) maps each user thread to a kernel thread. It 
provides more concurrency than the many-to-one model by allowing another 
thread to run when a thread makes a blocking system call; it also allows 
multiple threads to run in parallel on multiprocessors. The only drawback to 
this model is that creating a user thread requires creating the corresponding 
kernel thread. Because the overhead of creating kernel threads can burden the 
performance of an application, most implementations of this model restrict the 
number of threads supported by the system. Windows NT, Windows 2000, and 
OS/2 implement the one-to-one model. 

5.2.3 Many-to-Many Model 
The many-to-many model (Figure 5.4) multiplexes many user-level threads to 
a smaller or equal number of kernel threads. The number of kernel threads 
may be specific to either a particular application or a particular machine (an 
application may be allocated more kernel threads on a multiprocessor than on 
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Figure 5.3 One-to-one model. 

a uniprocessor). Whereas the many-to-one model allows the developer to create 
as many user threads as she wishes, true concurrency is not gained because the 
kernel can schedule only one thread at a time. The one-to-one model allows 
for greater concurrency, but the developer has to be careful not to create too 
many threads within an application (and in some instances may be limited in 
the number of threads she can create). The many-to-many model suffers from 
neither of these shortcomings: Developers can create as many user threads 
as necessary, and the corresponding kernel threads can run in parallel on a 
multiprocessor. Also, when a thread performs a blocking system call, the kernel 
can schedule another thread for execution. Solaris 2, IRIX, HP-UX, and Tru64 
UNIX support this model. 

user 

thread 

thread 

Figure 5.4 Many-to-many model. 
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5.3 . Threading Issues 

In this section we discuss some of the issues to consider with multithreaded 
programs. 

5.3.1 The fork and exec System Calls 
In Chapter 4 we described how the fork  system call is used to create a separate, 
duplicate process. In a multithreaded program, the semantics of the fork  and 
exec system calls change. If one thread in a program calls fork, does the 
new process duplicate all threads or is the new process single-threaded? Some 
UNIX systems have chosen to have two versions of fork, one that duplicates 
all threads and another that duplicates only the thread that invoked the fork  
system call. The exec system call typically works in the same way as described 
in Chapter 4. That is, if a thread invokes the exec system call, the program 
specified in the parameter to exec will replace the entire process-including 
all threads and LWPs. 

Usage of the two versions of fork  depends upon the application. If exec 
is called immediately after forking, then duplicating all threads is unnecessary, 
as the program specified in the parameters to exec will replace the process. In 
this instance, duplicating only the calling thread is appropriate. If, however, the 
separate process does not call exec after forking, the separate process should 
duplicate all threads. 

5.3.2 Cancellation 
Thread cancellation is the task of terminating a thread before it has completed. 
For example, if multiple threads are concurrently searching through a database 
and one thread returns the result, the remaining threads might be cancelled. 
Another situation might occur when a user presses a button on a web browser 
that stops a web page from loading any further. Often a web page is loaded in 
a separate thread. When a user presses the stop button, the thread loading the 
page is cancelled. 

A thread that is to be cancelled is often referred to as the target thread. 
Cancellation of a target thread may occur in two different scenarios: 

1. Asynchronous cancellation: One thread immediately terminates the target 
thread. 

2. Deferred cancellation: The target thread can periodically check if it should 
terminate, allowing the target thread an opportunity to terminate itself in 
an orderly fashion. 

The difficulty with cancellation occurs in situations where resources have 
been allocated to a cancelled thread or if a thread was cancelled while in 
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the middle of updating data it is sharing with other threads. This becomes 
especially troublesome with asynchronous cancellation. The operating system 
will often reclaim system resources from a cancelled thread, but often will not 
reclaim all resources. Therefore, cancelling a thread asynchronously may not 
free a necessary system-wide resource. 

Alternatively, deferred cancellation works by one thread indicating that a 
target thread is to be cancelled. However, cancellation will occur only when 
the target thread checks to determine if it should be cancelled or not. This 
allows a thread to check if it should be cancelled at a point when it can safely 
be cancelled. Pthreads refers to such points as cancellation points. 

Most operating systems allow a process or thread to be cancelled asyn- 
chronously. However, the Pthread API provides deferred cancellation. This 
means that an operating system implementing the Pthread API will allow 
deferred cancellation. 

5.3.3 Signal Handling 
A signal is used in UNIX systems to notify a process that a particular event has 
occurred. A signal may be received either synchronously or asynchronously, 
depending upon the source and the reason for the event being signalled. 
Whether a signal is synchronous or asynchronous, all signals follow the same 
pattern: 

1. A signal is generated by the occurrence of a particular event. 

2. A generated signal is delivered to a process. 

3. Once delivered, the signal must be handled. 

An example of a synchronous signal includes an illegal memory access or 
division by zero. In this instance, if a running program performs either of these 
actions, a signal is generated. Synchronous signals are delivered to the same 
process that performed the operation causing the signal (hence the reason they 
are considered synchronous). 

When a signal is generated by an event external to a running process, that 
process receives the signal asynchronously. Examples of such signals include 
terminating a process with specific keystrokes (such as <control><C>) or 
having a timer expire. Typically an asynchronous signal is sent to another 
process. 

Every signal may be handled by one of two possible handlers: 

1. A default signal handler 

2. A user-defined signal handler 
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Every signal has a default signal handler that is run by the kernel when 
handling the signal. This default action may be overridden by a user-defined 
signal handler function. In this instance, the user-defined function is called 
to handle the signal rather than the default action. Both synchronous and 
asynchronous signals may be handled in different ways. Some signals may be 
simply ignored (such as changing the size of a window); others may be handled 
by terminating the program (such as an illegal memory access). 

Handling signals in single-threaded programs is straightforward; signals 
are always delivered to a process. However, delivering signals is more compli- 
cated in multithreaded programs, as a process may have several threads. Where 
then should a signal be delivered? 

In general, the following options exist: 

1. Deliver the signal to the thread to which the signal applies. 

2. Deliver the signal to every thread in the process. 

3. Deliver the signal to certain threads in the process. 

4. Assign a specific thread to receive all signals for the process. 

The method for delivering a signal depends upon the type of signal gen- 
erated. For example, synchronous signals need to be delivered to the thread 
that generated the signal and not to other threads in the process. However, the 
situation with asynchronous signals is not as clear. Some asynchronous signals 
-such as a signal that terminates a process (<control><C>, for example) 
-should be sent to all threads. Some multithreaded versions of UNIX allow a 
thread to specify which signals it will accept and which it will block. Therefore, 
some asynchronous signals may be delivered to only those threads that are not 
blocking the signal. However, because signals need to be handled only once, 

I 
I 

typically a signal is delivered only to the first thread found in a process that 
is not blocking the signal. Solaris 2 implements the fourth option: it creates a 
specific thread within each process solely for signal handling. When an asyn- 
chronous signal is sent to a process, it is sent to this special thread, which then 
delivers the signal to the first thread that is not blocking the signal. 

Although Windows 2000 does not explicitly provide support for signals, 
they can be emulated using asynchronous procedure calls (APCS). The APC 
facility allows a user thread to specify a function that is to be called when the 
user thread receives notification of a particular event. As indicated by its name, 
an APC is roughly equivalent to an asynchronous signal in UNIX. However, 
whereas UNIX must contend with how to deal with signals in a multithreaded 
environment, the APC facility is more straightforward as an APC is delivered to 
a particular thread rather than process. 
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5.3.4 Thread Pools 
In Section 5.1, we described the scenario of multithreading a web server. In 
this situation, whenever the server receives a request, it creates a separate 
thread to service the request. Whereas creating a separate thread is certainly 
superior to creating a separate process, a multithreaded server nonetheless has 
potential problems. The first concerns the amount of time required to create the 
thread prior to servicing the request, compounded with the fact that this thread 
will be discarded once it has completed its work. The second issue is more 
problematic: If we allow all concurrent requests to be serviced in a new thread, 
we have not placed a bound on the number of threads concurrently active in the 
system. Unlimited threads could exhaust system resources, such as CPU time 
or memory. One solution to this issue is to use thread pools. 

The general idea behind a thread pool is to create a number of threads at 
process startup and place them into a pool, where they sit and wait for work. 
When a server receives a request, it awakens a thread from this pool-if one 
is available-passing it the request to service. Once the thread completes its 
service, it returns to the pool awaiting more work. If the pool contains no 
available thread, the server waits until one becomes free. 

In particular, the benefits of thread pools are: 

1. It is usually faster to service a request with an existing thread than waiting 
to create a thread. 

2. A thread pool limits the number of threads that exist at any one point. This 
is particularly important on systems that cannot support a large number of 
concurrent threads. 

The number of threads in the pool can be set heuristically based upon fac- 
tors such as the number of CPUs in the system, the amount of physical memory, 
and the expected number of concurrent client requests. More sophisticated 
thread-pool architectures can dynamically adjust the number of threads in the 
pool according to usage patterns. Such architectures provide the further benefit 
of having a smaller pool-thereby consuming less memory-when the load on 
the system is low. 

5.3.5 Thread-Specific Data 

Threads belonging to a process share the data of the process. Indeed, this 
sharing of data provides one of the benefits of multithreaded programming. 
However, each thread might need its own copy of certain data in some cir- 
cumstances. We will call such data thread-specific data. For example, in a 
transaction-processing system, we might service each transaction in a separate 
thread. Furthermore, each transaction may be assigned a unique identifier. To 
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associate each thread with its unique identifier we could use thread-specific 
data. Most thread libraries-including Win32 and Pthreads-provide some 
form of support for thread-specific data. Java provides support as well. 

5.4 . Pthreads 

Pthreads refers to the POSIX standard (IEEE 1003.1~) defining an API for thread 
creation and synchronization. This is a specification for thread behavior, not an 
implementation. Operating system designers may implement the specification 
in any way they wish. Generally, libraries implementing the Pthreads speci- 
fication are restricted to UNIX-based systems such as Solaris 2. The Windows 
operating systems have generally not supported Pthreads, although shareware 
versions are available in the public domain. 

In this section we introduce some of the Pthread API as an example of a 
user-level thread library. We refer to it as a user-level library because no distinct 
relationship exists between a thread created using the Pthread API and any 
associated kernel threads. The C program shown in Figure 5.5 demonstrates 
the basic Pthread API for constructing a multithreaded program. If you are 
interested in more details on the Pthread API, we encourage you to consult the 
Bibliographical Notes. 

The program shown in Figure 5.5 creates a separate thread that determines 
the summation of a non-negative integer. In a Pthread program, separate 
threads begin execution in a specified function. In Figure 5.5, this is the runner 
function. When this program begins, a single thread of control begins in main. 
After some initialization, main creates a second thread that begins control in 
the runner function. 

We will now provide a more detailed overview of this program. All 
Pthread programs must include the pthread. h header file. The statement 
pthread-t t i d  declares the identifier for the thread we will create. Each 
thread has a set of attributes including stack size and scheduling information. 
The pthread-at t r- t  a t t r  declaration represents the attributes for the thread. 
We will set the attributes in the function call p thread-a t t r - in i t  ( & a t t r ) .  
Because we did not explicitly set any attributes, we will use the default 
attributes provided. A separate thread is created with the pthread-create 
function call. In addition to passing the thread identifier and the attributes for 
the thread, we also pass the name of the function where the new thread will 
begin execution, in this case the runner function. Lastly, we pass the integer 
parameter that was provided on the command line, argv 111 . 

At this point, the program has two threads: the initial thread in main and 
the thread performing the summation in the runner function. After creating 
the second thread, the main thread will wait for the runner thread to complete 
by calling the pthread-j o in  function. The runner thread will complete when 
it calls the function pthread-exit .  
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i n t  sum; /* t h i s  data  is  shared by the thread(s1 */ 
void *runner (void *param) ; /* the  thread */ 

main(int argc , char *argv [I 
{ 

pthread-t t i d ;  /* the  thread i d e n t i f i e r  */ 
pthread-attr-t a t t r ;  /*  s e t  of thread a t t r i b u t e s  */ 
i f  (argc !=  2) { 

fp r in t f  ( s tde r r  , "usage : a .  out <integer value>\nN) ; 
ex i t  0 ; 

1 
i f  ( a to i  (argv [I] < 0) { 

fp r in t f  ( s tde r r ,  "%d must be <= O\nl', a t o i  (argv [I] ) ) ; 
e x i t  () ; 

} 
/* get the default  a t t r i b u t e s  */ 
pthread-attr- ini t  ( t a t t r )  ; 
/* create  the  thread */ 
pthread-create ( & t i d , & a t t r  ,runner ,argv[l] ) ; 
/* now wait f o r  the  thread t o  e x i t  */ 
pthread-join(tid,N~LL) ; 
printf("sum = %d\n",sum); 

} 

/* The thread w i l l  begin control  i n  t h i s  function */ 
void *runner(void *param) 

{ 
i n t  upper = a t o i  (param) ; 
i n t  i ;  
sum = 0; 
i f  (upper > 0) { 

f o r  ( i  = 1;  i <= upper; i++) 
sum += i; 

1 
pthread-exit (0) ; 

1 
Figure 5.5 Multithreaded C program using the Pthread API. 
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5.5 . Solaris 2 Threads 

Solaris 2 is a version of UNIX with support for threads at the kernel and user 
levels, SMP, and real-time scheduling. Solaris 2 implements the Pthread API dis- 
cussed in Section 5.4 in addition to supporting user-level threads with a library 
containing APIs for thread creation and management (known as UI threads). 
The differences between these two libraries are insignificant, although most 
developers now opt for the Pthread library. Solaris 2 defines an intermediate 
level of threads as well. Between user- and kernel-level threads are lightweight 
processes (LWPs). Each process contains at least one LWP. The thread library 
multiplexes user-level threads on the pool of LWPs for the process, and only 
user-level threads currently connected to an LWP accomplish work. The rest are 
either blocked or waiting for an LWP on which they can run. 

Standard kernel-level threads execute all operations w i t h  the kernel. Each 
LWP has a kernel-level thread, and some kernel-level threads run on the kernel's 
behalf and have no associated LWP (for instance, a thread to service disk 
requests). Kernel-level threads are the only objects scheduled within the system 
(Chapter 6). Solaris 2 implements the many-to-many model; its entire thread 
system is depicted in Figure 5.6. 

User-level threads may be either bound or unbound. A bound user-level 
thread is permanently attached to an LWP. Only that thread runs on the LWP, 
and by request the LWP can be dedicated to a single processor (see the rightmost 
thread in Figure 5.6). Binding a thread is useful in situations that require quick 
response time, such as a real-time application. An unbound thread is not 
permanently attached to any LWP. All unbound threads in an application are 
multiplexed onto the pool of available LWPs for the application. Threads are 

task 1 task 2 task 3 

user-level thread 

lightweight process 

kernel thread - 

Figure 5.6 Solaris 2 threads. 
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unbound by default. Solaris 8 also provides an alternate thread library that, by 
default, binds all threads with an associated LWP. 

Consider the system in operation: Any one process may have many user- 
level threads. These user-level threads may be scheduled and switched among 
the LWPs by the thread library without kernel intervention. User-level threads 
are extremely efficient because no kernel support is required for thread creation 
or destruction, or for the thread library to context switch from one user-level 
thread to another. 

Each LWP is connected to exactly one kernel-level thread, whereas each 
user-level thread is independent of the kernel. Many LWPs may be in a process, 
but they are needed only when the thread needs to communicate with the 
kernel. For instance, one LWP is needed for every thread that may block 
concurrently in system calls. Consider five different file-read requests that 
occur simultaneously. Then, five LWPs would be needed, because they could 
all be waiting for I/O completion in the kernel. If a task had only four LWPs, 
then the fifth request would have to wait for one of the LWPs to return from 
the kernel. Adding a sixth LWP would gain nothing if there were only enough 
work for five. 

The kernel threads are scheduled by the kernel's scheduler and execute on 
the CPU or CPUs in the system. If a kernel thread blocks (such as while waiting 
for an 1/0 operation to complete), the processor is free to run another kernel 
thread. If the thread that blocked was running on behalf of an LWP, the LWP 
blocks as well. Up the chain, the user-level thread currently attached to the 
LWP also blocks. If a process has more than one LWP, the kernel can schedule 
another LWP. 

The thread library dynamically adjusts the number of LWPs in the pool 
to ensure the best performance for the application. For example, if all the 
LWPs in a process are blocked and other threads are able to run, the thread 
library automatically creates another LWP to be assigned to a waiting thread. 
A program is thus prevented from being blocked by a lack of unblocked LWPs. 
Also, LWPs are expensive kernel resources to maintain if they are not being 
used. The thread library "ages" LWPs and deletes them when they are unused 
for a long time, typically about 5 minutes. 

The developers used the following data structures to implement threads on 
Solaris 2: 

A user-level thread contains a thread ID; register set (including a pro- 
gram counter and stack pointer); stack; and priority (used by the thread 
library for scheduling purposes). None of these data structures are kernel 
resources; all exist within user space. 

An LWP has a register set for the user-level thread it is running, as well as 
memory and accounting information. An LWP is a kernel data structure, 
and it resides in kernel space. 
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Figure 5.7 Solaris 2 process. 

A kernel thread has only a small data structure and a stack. The data 
structure includes a copy of the kernel registers, a pointer to the LWP to 
which it is attached, and priority and scheduling information. 

Each process in Solaris 2 contains much of the information described in the 
process control block (PCB), which was discussed in Section 4.1.3. In particular, 
a Solaris 2 process contains a process ID (PID); memory map; list of open files; 
priority; and pointer to a list of kernel threads associated with the process 
(Figure 5.7). 

5.6 H Window 2000 Threads 

Windows 2000 implements the Win32 API. The Win32 API is the primary API for 
the family of Microsoft operating systems (Windows 95/98/NT and Windows 
2000). Indeed, much of what is mentioned in this section applies to this family 
of operating systems. 

A Windows application runs as a separate process where each process 
may contain one or more threads. Windows 2000 uses the one-to-one mapping 
described in Section 5.2.2 where each user-level thread maps to an associated 
kernel thread. However, Windows also provides support for a fiber library, 
which provides the functionality of the many-to-many model (Section 5.2.3). 
Every thread belonging to a process can access the virtual address space of the 
process. 

The general components of a thread include: 

A thread ID uniquely identifying the thread. 

A register set representing the status of the processor. 

A user stack used when the thread is running is user mode. Similarly, each 
thread also has a kernel stack used when the thread is running in kernel 
mode. 

A private storage area used by various run-time libraries and dynamic link 
libraries (DLLs). 
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The register set, stacks, and private storage area are known as the context of 
the thread and are architecture-specific to the hardware on which the operating 
system is running. The primary data structures of a thread include: 

ETHREAD (executive thread block). 

KTHREAD (kernel thread block). 

TEB (thread environment block). 

The key components of the ETHREAD include a pointer to the process to 
which the thread belongs and the address of the routine in which the thread 
starts control. The ETHREAD also contains a pointer to the corresponding 
KTHREAD. 

The KTHREAD includes scheduling and synchronization information for 
the thread. In addition, the KTHREAD includes the kernel stack (used when 
the thread is running in kernel mode) and a pointer to the TEB. 

The ETHREAD and the KTHREAD exist entirely in kernel space; this means 
only the kernel can access them. The TEB is a user-space data structure that is 
accessed when the thread is running in user mode. Among other fields, the 
TEB contains a user mode stack and an array for thread-specific data (which 
Windows terms thread-local storage). 

5.7 . Linux Threads 

The Linux kernel introduced threads in version 2.2. Linux provides a fork  
system call with the traditional functionality of duplicating a process. Linux 
also provides the clone system call that is analogous to creating a thread. 
clone behaves much like fork, except that instead of creating a copy of the 
calling process, it creates a separate process that shares the address space of the 
calling process. It is through this sharing of the address space of the parent 
process that a cloned task behaves much like a separate thread. 

The sharing of the address space is allowed because of the representation 
of a process in the Linux kernel. A unique kernel data structure exists for each 
process in the system. However, rather than storing the data for each process in 
this data structure, it contains pointers to other data structures where this data 
is stored. For example, this per-process data structure contains pointers to other 
data structures that represent the list of open files, signal-handling information, 
and virtual memory. When fo rk  is invoked, a new process is created along 
with a copy of all the associated data structures of the parent process. When 
the clone system call is made, a new process is created. However, rather than 
copying all data structures, the new process points to the data structures of the 
parent process, thereby allowing the child process to share the memory and 
other process resources of the parent. A set of flags is passed as a parameter 
to the clone system call. This set of flags is used to indicate how much of 



the parent process is to be shared with the child. If none of the flags is set, 
no sharing occurs and clone acts just like fork. If all five flags are set, the 
child process shares everything with the parent. Other combinations of the 
flags allow various levels of sharing between these two extremes. 

Interestingly, Linux does not distinguish between processes and threads. 
In fact, Linux generally uses the term task-rather than process or thread- 
when referring to a flow of control within a program. Aside from the cloned 
process, Linux does not support multithreading, separate data structures, or 
kernel routines. However, various Pthreads implementations are available for 
user-level multithreading. 

5.8 . Java Threads 

As we have already seen, support for threads may be provided at the user level 
with a library such as Pthreads. Furthermore, most operating systems provide 
support for threads at the kernel level as well. Java is one of a small number 
of languages that provide support at the language level for the creation and 
management of threads. However, because threads are managed by the Java 
Virtual Machine (JVM), not by a user-level library or kernel, it is difficult to 
classify Java threads as either user- or kernel-level. In this section we present 
Java threads as an alternative to the strict user- or kernel-level models. Later 
in this section, we will discuss how a Java thread may be mapped to the 
underlying kernel thread. 

All Java programs comprise at least a single thread of control. Even a simple 
Java program consisting of only a main method runs as a single thread in the 
JVM. In addition, Java provides commands that allow the developer to create 
and manipulate additional threads of control within the program. 

5.8.1 Thread Creation 
One way to create a thread explicitly is to create a new class that is derived from 
the Thread class, and to override the run method of the Thread class. This 
approach is shown in Figure 5.8, the Java version of a multithreaded program 
that determines the summation of a non-negative integer. 

An object of this derived class will run as a separate thread of control in the 
JVM. However, creating an object that is derived from the Thread class does not 
specifically create the new thread; rather, it is the s t a r t  method that actually 
creates the new thread. Calling the s t a r t  method for the new object does two 
things: 

1. It allocates memory and initializes a new thread in the JVM. 

2. It calls the run method, making the thread eligible to be run by the JVM. 
(Note that you do not ever call the run method directly. Rather, call the 
s t a r t  method, and it will call the run method on your behalf.) 
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class Summation extends Thread 

{ 
public Summation(int n) { 
upper = n; 

1 

public void run() { 
int sum = 0; 

if (upper > 0) { 
for (int i = 1; i <= upper; i++) 
sum += i; 

} 

System.out.println("The sum of "+upper+" is "+sum); 

1 

private int upper; 

I 

public class ThreadTester 

{ 
public static void main(String[] args) { 
if (args.length > 0) { 
if (Integer .parseInt (args [O] ) < 0) 
System. err .println(args [Ol + " must be >= 0. la) ; 

else { 
Summation thrd = new Summat ion(1nteger .parseInt (args [O]) ) ; 
thrd. start 0 ; 

else 
System.err.println("Usage: Summation <integer value>"); 

I 

Figure 5.8 Java program for the summation of a non-negative integer. 

When the summation program runs, two threads are created by the JVM. 
The first is the thread associated with the application-the thread that starts 
execution at the main method. The second thread is the Summat ion thread that 
is created explicitly with the s t a r t  method. The Summation thread begins 
execution in its run method. The thread terminates when it exits from its run 
method. 
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5.8.2 The JVM and the Host Operating System 
The typical implementation of the JVM is on top of a host operating system. 
This setup allows the JVM to hide the implementation details of the underlying 
operating system and to provide a consistent, abstract environment that allows 
Java programs to operate on any platform that supports a JVM. The specification 
for the JVM does not indicate how Java threads are to be mapped to the 
underlying operating system, instead leaving that decision to the particular 
implementation of the JVM. Windows 95/98/NT and Windows 2000 use the one- 
to-one model; therefore, each Java thread for a JVM running on these operating 
systems maps to a kernel thread. Solaris 2 initially implemented the JVM using 
the many-to-one model (called green threads). However, as of Version 1.1 of the 
JVM with Solaris 2.6, it was implemented using the many-to-many model. 

5.9 . Summary 

A thread is a flow of control within a process. A multithreaded process contains 
several different flows of control within the same address space. The benefits of 
multithreading include increased responsiveness to the user, resource sharing 
within the process, economy, and the ability to take advantage of multiproces- 
sor architectures. 

User-level threads are threads that are visible to the programmer and are 
unknown to the kernel. A thread library in user space typically manages user- 
level threads. The operating-system kernel supports and manages kernel-level 
threads. In general, user-level threads are faster to create and manage than are 
kernel threads. Three different types of models relate user and kernel threads: 
The many-to-one model maps many user threads to a single kernel thread. 
The one-to-one model maps each user thread to a corresponding kernel thread. 
The many-to-many model multiplexes many user threads to a smaller or equal 
number of kernel threads. 

Multithreaded programs introduce many challenges for the programmer, 
including the semantics of the f o r k  and exec system calls. Other issues 
include thread cancellation, signal handling, and thread-specific data. Many 
modern operating systems provide kernel support for threads; among these 
are Windows NT and Windows 2000, Solaris 2, and Linux. The Pthread API 
provides a set of functions to create and manage threads at the user level. Java 
provides a similar API for supporting threads. However, because Java threads 
are managed by the JVM and not by a user-level thread library or kernel, they 
do not fall under the category of either user- or kernel-level threads. 

Exercises 

5.1 Provide two programming examples of multithreading that improve per- 
formance over a single-threaded solution. 
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5.2 Provide two programming examples of multithreading that do not 
improve performance over a single-threaded solution. 

5.3 What are two differences between user-level threads and kernel-level 
threads? Under what circumstances is one type better than the other? 

5.4 Describe the actions taken by a kernel to context switch between kernel- 
level threads. 

5.5 Describe the actions taken by a thread library to context switch between 
user-level threads. 

5.6 What resources are used when a thread is created? How do they differ 
from those used when a process is created? 

5.7 Assume an operating system maps user-level threads to the kernel using 
the many-to-many model where the mapping is done through LWPs. 
Furthermore, the system allows the developers to create real-time threads. 
Is it necessary to bound a real-time thread to an LWP? Explain. 

5.8 Write a multithreaded Pthread or Java program that generates the 
Fibonacci series. This program should work as follows: The user will run 
the program and will enter on the command line the number of Fibonacci 
numbers that the program is to generate. The program will then create a 
separate thread that will generate the Fibonacci numbers. 

5.9 Write a multithreaded Pthread or Java program that outputs prime num- 
bers. This program should work as follows: The user will run the program 
and will enter a number on the command line. The program will then 
create a separate thread that outputs all the prime numbers less than or 
equal to the number that the user entered. 
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Chapter 6 

CPU 
SCHEDULING 

CPU scheduling is the basis of multiprogrammed operating systems. By switch- 
ing the CPU among processes, the operating system can make the computer 
more productive. In this chapter, we introduce the basic scheduling concepts 
and present several different CPU-scheduling algorithms. We also consider the 
problem of selecting an algorithm for a particular system. 

6.1 Basic Concepts 

The objective of multiprogramming is to have some process running at all 
times, in order to maximize CPU utilization. In a uniprocessor system, only 
one process may run at a time; any other processes must wait until the CPU is 
free and can be rescheduled. 

The idea of multiprogramming is relatively simple. A process is executed 
until it must wait, typically for the completion of some I/O request. In a 
simple computer system, the CPU would then sit idle; all this waiting time is 
wasted. With multiprogramming, we try to use this time productively. Several 
processes are kept in memory at one time. When one process has to wait, the 
operating system takes the CPU away from that process and gives the CPU to 
another process. This pattern continues. 

Scheduling is a fundamental operating-system function. Almost all com- 
puter resources are scheduled before use. The CPU is, of course, one of the pri- 
mary computer resources. Thus, its scheduling is central to operating-system 
design. 
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6.1.1 CPU-110 Burst Cycle 
The success of CPU scheduling depends on the following observed property 
of processes: Process execution consists of a cycle of CPU execution and I/O 
wait. Processes alternate between these two states. Process execution begins 
with a CPU burst. That is followed by an 110 burst, then another CPU burst, 
then another I/O burst, and so on. Eventually, the last CPU burst will end with 
a system request to terminate execution, rather than with another I/O burst 
(Figure 6.1). 

The durations of these CPU bursts have been extensively measured. 
Although they vary greatly by process and by computer, they tend to have a 
frequency curve similar to that shown in Figure 6.2. The curve is generally 
characterized as exponential or hyperexponential, with many short CPU bursts, 
and a few long CPU bursts. An I/O-bound program would typically have many 
very short CPU bursts. A CPU-bound program might have a few very long 
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Figure 6.1 Alternating sequence of CPU and I/O bursts. 
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Figure 6.2 Histogram of CPU-burst times. 

CPU bursts. This distribution can help us select an appropriate CPU-scheduling 
algorithm. 

6.1.2 CPU Scheduler 
Whenever the CPU becomes idle, the operating system must select one of the 
processes in the ready queue to be executed. The selection process is carried 
out by the short-term scheduler (or CPU scheduler). The scheduler selects from 
among the processes in memory that are ready to execute, and allocates the CPU 
to one of them. 

The ready queue is not necessarily a first-in, first-out (FIFO) queue. As we 
shall see when we consider the various scheduling algorithms, a ready queue 
may be implemented as a FIFO queue, a priority queue, a tree, or simply an 
unordered linked list. Conceptually, however, all the processes in the ready 
queue are lined up waiting for a chance to run on the CPU. The records in the 
queues are generally process control blocks (PCBs) of the processes. 

6.1.3 Preemptive Scheduling 
CPU scheduling decisions may take place under the following four circum- 
stances: 
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1. When a process switches from the running state to the waiting state (for 
example, I/O request, or invocation of wait for the termination of one of 
the child processes) 

2. When a process switches from the running state to the ready state (for 
example, when an interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for 
example, completion of I/O) 

4. When a process terminates 

In circumstances 1 and 4, there is no choice in terms of scheduling. A new 
process (if one exists in the ready queue) must be selected for execution. There 
is a choice, however, in circumstances 2 and 3. 

When scheduling takes place only under circumstances 1 and 4, we say 
the scheduling scheme is nonpreemptive; otherwise, the scheduling scheme 
is preemptive. Under nonpreemptive scheduling, once the CPU has been 
allocated to a process, the process keeps the CPU until it releases the CPU either 
by terminating or by switching to the waiting state. This scheduling method 
is used by the Microsoft Windows 3.1 and by the Apple Macintosh operating 
systems. It is the only method that can be used on certain hardware platforms, 
because it does not require the special hardware (for example, a timer) needed 
for preemptive scheduling. 

Unfortunately, preemptive scheduling incurs a cost. Consider the case of 
two processes sharing data. One may be in the midst of updating the data when 
it is preempted and the second process is run. The second process may try to 
read the data, which are currently in an inconsistent state. New mechanisms 
thus are needed to coordinate access to shared data; this topic is discussed in 
Chapter 7. 

Preemption also has an effect on the design of the operating-system kernel. 
During the processing of a system call, the kernel may be busy with an activity 
on behalf of a process. Such activities may involve changing important kernel 
data (for instance, I/O queues). What happens if the process is preempted in 
the middle of these changes, and the kernel (or the device driver) needs to read 
or modify the same structure? Chaos could ensue. Some operating systems, 
including most versions of UNIX, deal with this problem by waiting either for a 
system call to complete, or for an I/O block to take place, before doing a context 
switch. This scheme ensures that the kernel structure is simple, since the kernel 
will not preempt a process while the kernel data structures are in an inconsistent 
state. Unfortunately, this kernel-execution model is a poor one for supporting 
real-time computing and multiprocessing. These problems, and their solutions, 
are described in Sections 6.4 and 6.5. 

In the case of UNIX, sections of code are still at risk. Because interrupts can, 
by definition, occur at any time, and because they cannot always be ignored 
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by the kernel, the sections of code affected by interrupts must be guarded from 
simultaneous use. The operating system needs to accept interrupts at almost 
all times, otherwise input might be lost or output overwritten. So that these 
code sections are not accessed concurrently by several processes, they disable 
interrupts at entry and reenable interrupts at exit. Unfortunately, disabling and 
enabling interrupts is time consuming, especially on multiprocessor systems. 
For systems to scale efficiently beyond a few CPUs, interrupt state changes 
must be minimized and fine-grained locking maximized. For instance, this is a 
challenge to the scalability of Linux. 

6.1.4 Dispatcher 
Another component involved in the CPU scheduling function is the dispatcher. 
The dispatcher is the module that gives control of the CPU to the process 
selected by the short-term scheduler. This function involves: 

Switching context 

Switching to user mode 

Jumping to the proper location in the user program to restart that program 

The dispatcher should be as fast as possible, given that it is invoked during 
every process switch. The time it takes for the dispatcher to stop one process 
and start another running is known as the dispatch latency. 

6.2 . Scheduling Criteria 

Different CPU-scheduling algorithms have different properties and may favor 
one class of processes over another. In choosing which algorithm to use in a 
particular situation, we must consider the properties of the various algorithms. 

Many criteria have been suggested for comparing CPU-scheduling algo- 
rithms. The characteristics used for comparison can make a substantial dif- 
ference in the determination of the best algorithm. The criteria include the 
following: 

CPU utilization: We want to keep the CPU as busy as possible. CPU 
utilization may range from 0 to 100 percent. In a real system, it should range 
from 40 percent (for a lightly loaded system) to 90 percent (for a heavily 
used system). 

Throughput: If the CPU is busy executing processes, then work is being 
done. One measure of work is the number of processes completed per time 
unit, called throughput. For long processes, this rate may be 1 process per 
hour; for short transactions, throughput might be 10 processes per second. 
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a Turnaround time: From the point of view of a particular process, the 
important criterion is how long it takes to execute that process. The interval 
from the time of submission of a process to the time of completion is the 
turnaround time. Turnaround time is the sum of the periods spent waiting 
to get into memory, waiting in the ready queue, executing on the CPU, and 
doing I/O. 

Waiting time: The CPU-scheduling algorithm does not affect the amount of 
time during which a process executes or does I/O; it affects only the amount 
of time that a process spends waiting in the ready queue. Waiting time is 
the sum of the periods spent waiting in the ready queue. 

a Response time: In an interactive system, turnaround time may not be 
the best criterion. Often, a process can produce some output fairly early, 
and can continue computing new results while previous results are being 
output to the user. Thus, another measure is the time from the submission 
of a request until the first response is produced. This measure, called 
response time, is the amount of time it takes to start responding, but not the 
time that it takes to output that response. The turnaround time is generally 
limited by the speed of the output device. 

We want to maximize CPU utilization and throughput, and to minimize 
turnaround time, waiting time, and response time. In most cases, we optimize 
the average measure. However, in some circumstances we want to optimize 
the minimum or maximum values, rather than the average. For example, 
to guarantee that all users get good service, we may want to minimize the 
maximum response time. 

For interactive systems (such as time-sharing systems), some analysts sug- 
gest that minimizing the variance in the response time is more important than 
minimizing the average response time. A system with reasonable and pre- 
dictable response time may be considered more desirable than a system that 
is faster on the average, but is highly variable. However, little work has been 
done on CPU-scheduling algorithms to minimize variance. 1 

As we discuss various CPU-scheduling algorithms, we want to illustrate 
their operation. An accurate illustration should involve many processes, each 
being a sequence of several hundred CPU bursts and I/O bursts. For simplicity 
of illustration, we consider only one CPU burst (in milliseconds) per process in 
our examples. Our measure of comparison is the average waiting time. More 
elaborate evaluation mechanisms are discussed in Section 6.6. 
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6.3 . Scheduling Algorithms 

CPU scheduling deals with the problem of deciding which of the processes in 
the ready queue is to be allocated the CpU. In this section, we describe several 
of the many CPU-scheduling algorithms that exist. 

6.3.1 First-Come, First-Served Scheduling 
By far the simplest CPU-scheduling algorithm is the first-come, first-served 
(FCFS) scheduling algorithm. With this scheme, the process that requests the 
CPU first is allocated the CPU first. The implementation of the FCFS policy is 
easily managed with a FIFO queue. When a process enters the ready queue, its 
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to 
the process at the head of the queue. The running process is then removed from 
the queue. The code for FCFS scheduling is simple to write and understand. 

The average waiting time under the FCFS policy, however, is often quite 
long. Consider the following set of processes that arrive at time 0, with the 
length of the CPU-burst time given in milliseconds: 

Process Burst Time 

PI 24 
9 3 
P3 3 

If the processes arrive in the order PI, P2, P3, and are served in FCFS order, 
we get the result shown in the following Gantt chart: 

The waiting time is 0 milliseconds for process PI, 24 milliseconds for process PZ, 
and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 
27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however, 
the results will be as shown in the following Gantt chart: 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction 
is substantial. Thus, the average waiting time under a FCFS policy is generally 



158 Chapter 6 CPU Scheduling 

not minimal, and may vary substantially if the process CPU-burst times vary 
greatly. 

In addition, consider the performance of FCFS scheduling in a dynamic 
situation. Assume we have one CPU-bound process and many I/O-bound 
processes. As the processes flow around the system, the following scenario may 
result. The CPU-bound process will get the CPU and hold it. During this time, all 
the other processes will finish their I/O and move into the ready queue, waiting 
for the CPU. While the processes wait in the ready queue, the I/O devices are 
idle. Eventually, the CPU-bound process finishes its CPU burst and moves to 
an I/O device. All the I/O-bound processes, which have very short CPU bursts, 
execute quickly and move back to the I/O queues. At this point, the CPU sits 
idle. The CPU-bound process will then move back to the ready queue and be 
allocated the CPU. Again, all the I/O processes end up waiting in the ready 
queue until the CPU-bound process is done. There is a convoy effect, as all 
the other processes wait for the one big process to get off the CPU. This effect 
results in lower CPU and device utilization than might be possible if the shorter 
processes were allowed to go first. 

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been 
allocated to a process, that process keeps the CpU until it releases the CPU, 
either by terminating or by requesting I/O. The FCFS algorithm is particularly 
troublesome for time-sharing systems, where each user needs to get a share of 
the CPU at regular intervals. It would be disastrous to allow one process to keep 
the CPU for an extended period. 

6.3.2 Shortest-Job-First Scheduling 
A different approach to CPU scheduling is the shortest-job-first (SJF) schedul- 
ing algorithm. This algorithm associates with each process the length of the 
latter's next CPU burst. When the CPU is available, it is assigned to the process 
that has the smallest next CPU burst. If two processes have the same length 
next CPU burst, FCFS scheduling is used to break the tie. Note that a more 
appropriate term would be the shortest next CPU burst, because the scheduling 
is done by examining the length of the next CPU burst of a process, rather than 
its total length. We use the term SJF because most people and textbooks refer to 
this type of scheduling discipline as SJF. 

As an example, consider the following set of processes, with the length of 
the CPU-burst time given in milliseconds: 

Process Burst Time 

PI 6 
p2 8 
p3 7 
p4 3 
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Using SJF scheduling, we would schedule these processes according to the 
following Gantt chart: 

The waiting time is 3 milliseconds for process PI, 16 milliseconds for process 
P2,9 milliseconds for process PS, and 0 milliseconds for process Pq. Thus, the 
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using 
the FCFS scheduling scheme, then the average waiting time would be 10.25 
milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the min- 
imum average waiting time for a given set of processes. By moving a short 
process before a long one, the waiting time of the short process decreases more 
than it increases the waiting time of the long process. Consequently, the average 
waiting time decreases. 

The real difficulty with the SJF algorithm is knowing the length of the next 
CPU request. For long-term (or job) scheduling in a batch system, we can use as 
the length the process time limit that a user specifies when he submits the job. 
Thus, users are motivated to estimate the process time limit accurately, since a 
lower value may mean faster response. (Too low a value will cause a time-limit- 
exceeded error and require resubmission.) SJF scheduling is used frequently in 
long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be implemented at the level 
of short-term CPU scheduling. There is no way to know the length of the next 
CPU burst. One approach is to try to approximate SJF scheduling. We may not 
know the length of the next CPU burst, but we may be able to predict its value. 
We expect that the next CPU burst will be similar in length to the previous ones. 
Thus, by computing an approximation of the length of the next CPU burst, we 
can pick the process with the shortest predicted CPU burst. 

The next CPU burst is generally predicted as an exponential average of the 
measured lengths of previous CPU bursts. Let t, be the length of the nth CPU 
burst, and let ~ , + l  be our predicted value for the next CPU burst. Then, for a, 
0 < a < 1, define 

This formula defines an exponential average. The value of t, contains our 
most recent information; T, stores the past history. The parameter a controls 
the relative weight of recent and past history in our prediction. If a = 0, then 
T,+I = T,, and recent history has no effect (current conditions are assumed to be 
transient); if a = 1, then T,+I = tn, and only the most recent CPU burst matters 
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time ---+ 

CPU burst (ti) 6 4 6 4 13 13 13 . .  . 

"guess" (T~) 10 8 6 6 5 9 11 12 . . .  

Figure 6.3 Prediction of the length of the next CPU burst. 

(history is assumed to be old and irrelevant). More commonly, a = 1 /2, so recent 
history and past history are equally weighted. The initial TO can be defined as 
a constant or as an overall system average. Figure 6.3 shows an exponential 
average with a = 1/2 and TO = 10. 

To understand the behavior of the exponential average, we can expand the 
formula for rn+l by substituting for T,, to find 

Since both n and (1 - a )  are less than or equal to 1, each successive term has 
less weight than its predecessor. 

The SJF algorithm may be either preemptive or nonpreemptive. The choice 
arises when a new process arrives at the ready queue while a previous process is 
executing. The new process may have a shorter next CPU burst than what is left 
of the currently executing process. A preemptive SJF algorithm will preempt the 
currently executing process, whereas a nonpreemptive SJF algorithm will allow 
the currently running process to finish its CPU burst. Preemptive SJF scheduling 
is sometimes called shortest-remaining-time-first scheduling. 

As an example, consider the following four processes, with the length of 
the CPU-burst time given in milliseconds: 
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Process Arrival Time Burst Time 

P1 0 8 
P2 1 4 
P3 2 9 
p4 3 5 

If the processes arrive at the ready queue at the times shown and need the 
indicated burst times, then the resulting preemptive SJF schedule is as depicted 
in the following Gantt chart: 

Process PI is started at time 0, since it is the only process in the queue. Process 
PZ arrives at time 1. The remaining time for process P1 (7 milliseconds) is 
larger than the time required by process P2 (4 milliseconds), so process P1 is 
preempted, and process P2 is scheduled. The average waiting time for this 
example is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A 
nonpreemptive SJF scheduling would result in an average waiting time of 7.75 
milliseconds. 

6.3.3 Priority Scheduling 
The SJF algorithm is a special case of the general priority-scheduling algorithm. 
A priority is associated with each process, and the CPU is allocated to the 
process with the highest priority. Equal-priority processes are scheduled in 
FCFS order. 

An SJF algorithm is simply a priority algorithm where the priority (p) is the 
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower 
the priority, and vice versa. 

Note that we discuss scheduling in terms of high priority and low priority. 
Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095. 
However, there is no general agreement on whether 0 is the highest or lowest 
priority. Some systems use low numbers to represent low priority; others use 
low numbers for high priority. This difference can lead to confusion. In this 
text, we use low numbers to represent high priority. 

As an example, consider the following set of processes, assumed to have 
arrived at time 0, in the order PI, P2, ..., Ps, with the length of the CPU-burst 
time given in milliseconds: 
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Process Burst Time Priority 

P1 10 3 
p2 1 1 
p3 2 4 
P4 1 5 
P5 5 2 

Using priority scheduling, we would schedule these processes according to the 
following Gantt chart: 

The average waiting time is 8.2 milliseconds. 
Priorities can be defined either internally or externally. Internally defined 

priorities use some measurable quantity or quantities to compute the priority of 
a process. For example, time limits, memory requirements, the number of open 
files, and the ratio of average I/O burst to average CPU burst have been used 
in computing priorities. External priorities are set by criteria that are external 
to the operating system, such as the importance of the process, the type and 
amount of funds being paid for computer use, the department sponsoring the 
work, and other, often political, factors. 

Priority scheduling can be either preemptive or nonpreemptive. When a 
process arrives at the ready queue, its priority is compared with the priority of 
the currently running process. A preemptive priority-scheduling algorithm will 
preempt the CPU if the priority of the newly arrived process is higher than the 
priority of the currently running process. A nonpreemptive priority-scheduling 
algorithm will simply put the new process at the head of the ready queue. 

A major problem with priority-scheduling algorithms is indefinite block- 
ing (or starvation). A process that is ready to run but lacking the CPU can 
be considered blocked-waiting for the CPU. A priority-scheduling algorithm 
can leave some low-priority processes waiting indefinitely for the CPU. In a 
heavily loaded computer system, a steady stream of higher-priority processes 
can prevent a low-priority process from ever getting the CPU. Generally, one of 
two things will happen. Either the process will eventually be run (at 2 A.M. 
Sunday, when the system is finally lightly loaded), or the computer system 
will eventually crash and lose all unfinished low-priority processes. (Rumor 
has it that, when they shut down the IBM 7094 at MIT in 1973, they found a 
low-priority process that had been submitted in 1967 and had not yet been run.) 

A solution to the problem of indefinite blockage of low-priority processes 
is aging. Aging is a technique of gradually increasing the priority of processes 
that wait in the system for a long time. For example, if priorities range from 
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127 (low) to 0 (high), we could decrement the priority of a waiting process by 
1 every 15 minutes. Eventually, even a process with an initial priority of 127 
would have the highest priority in the system and would be executed. In fact, it 
would take no more than 32 hours for a priority 127 process to age to a priority 
0 process. 

6.3.4 Round-Robin Scheduling 
The round-robin (RR) scheduling algorithm is designed especially for time- 
sharing systems. It is similar to FCFS scheduling, but preemption is added to 
switch between processes. A small unit of time, called a time quantum (or time 
slice), is defined. A time quantum is generally from 10 to 100 milliseconds. The 
ready queue is treated as a circular queue. The CPU scheduler goes around the 
ready queue, allocating the CPU to each process for a time interval of up to 1 
time quantum. 

To implement RR scheduling, we keep the ready queue as a FIFO queue of 
processes. New processes are added to the tail of the ready queue. The CPU 
scheduler picks the first process from the ready queue, sets a timer to interrupt 
after 1 time quantum, and dispatches the process. 

One of two things will then happen. The process may have a CPU burst of 
less than 1 time quantum. In this case, the process itself will release the CPU 
voluntarily. The scheduler will then proceed to the next process in the ready 
queue. Otherwise, if the CPU burst of the currently running process is longer 
than 1 time quantum, the timer will go off and will cause an interrupt to the 
operating system. A context switch will be executed, and the process will be 
put at the tail of the ready queue. The CPU scheduler will then select the next 
process in the ready queue. 

The average waiting time under the RR policy, however, is often quite long. 
Consider the following set of processes that arrive at time 0, with the length of 
the CPU-burst time given in milliseconds: 

Process Burst Time 

PI 24 
P2 3 
P3 3 

If we use a time quantum of 4 milliseconds, then process P1 gets the first 
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after 
the first time quantum, and the CPU is given to the next process in the queue, 
process P2. Since process P2 does not need 4 milliseconds, it quits before its time 
quantum expires. The CPU is then given to the next process, process P3. Once 
each process has received 1 time quantum, the CPU is returned to process P1 for 
an additional time quantum. The resulting RR schedule is 
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The average waiting time is 17/3 = 5.66 milliseconds. 
In the RR scheduling algorithm, no process is allocated the CPU for more 

than 1 time quantum in a row. If a process' CPU burst exceeds 1 time quantum, 
that process is preempted and is put back in the ready queue. The RR scheduling 
algorithm is preemptive. 

If there are n processes in the ready queue and the time quantum is q, then 
each process gets l/n of the CPU time in chunks of at most q time units. Each 
process must wait no longer than (n - 1) x q time units until its next time 
quantum. For example, if there are five processes, with a time quantum of 
20 milliseconds, then each process will get up to 20 milliseconds every 100 
milliseconds. 

The performance of the RR algorithm depends heavily on the size of the 
time quantum. At one extreme, if the time quantum is very large (infinite), the 
RR policy is the same as the FCFS policy. If the time quantum is very small (say 
1 microsecond), the RR approach is called processor sharing, and appears (in 
theory) to the users as though each of n processes has its own processor running 
at l/n the speed of the real processor. This approach was used in Control 
Data Corporation (CDC) hardware to implement 10 peripheral processors with 
only one set of hardware and 10 sets of registers. The hardware executes one 
instruction for one set of registers, then goes on to the next. This cycle continues, 
resulting in 10 slow processors rather than one fast processor. (Actually, since 
the processor was much faster than memory and each instruction referenced 
memory, the processors were not much slower than 10 real processors would 
have been.) 

process time = 10 quantum context 
switches 

0 

Figure 6.4 Showing how a smaller time quantum increases context switches. 
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In software, however, we need also to consider the effect of context switch- 
ing on the performance of RR scheduling. Let us assume that we have only one 
process of 10 time units. If the quantum is 12 time units, the process finishes 
in less than 1 time quantum, with no overhead. If the quantum is 6 time units, 
however, the process requires 2 quanta, resulting in 1 context switch. If the 
time quantum is 1 time unit, then 9 context switches will occur, slowing the 
execution of the process accordingly (Figure 6.4). 

Thus, we want the time quantum to be large with respect to the context- 
switch time. If the context-switch time is approximately 10 percent of the time 
quantum, then about 10 percent of the CPU time will be spent in context switch. 

Turnaround time also depends on the size of the time quantum. As we 
can see from Figure 6.5, the average turnaround time of a set of processes does 
not necessarily improve as the time-quantum size increases. In general, the 
average turnaround time can be improved if most processes finish their next 
CPU burst in a single time quantum. For example, given three processes of 10 
time units each and a quantum of 1 time unit, the average turnaround time is 
29. If the time quantum is 10, however, the average turnaround time drops to 
20. If context-switch time is added in, the average turnaround time increases 
for a smaller time quantum, since more context switches will be required. 

1 2 3 4 5 6 7  

time quantum 

Figure 6.5 Showing how turnaround time varies with the time quantum. 
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On the other hand, if the time quantum is too large, RR scheduling degener- 
ates to FCFS policy. A rule of thumb is that 80 percent of the CPU bursts should 
be shorter than the time quantum. 

6.3.5 Multilevel Queue Scheduling 
Another class of scheduling algorithms has been created for situations in which 
processes are easily classified into different groups. For example, a common 
division is made between foreground (or interactive) processes and back- 
ground (or batch) processes. These two types of processes have different 
response-time requirements, and so might have different scheduling needs. In 
addition, foreground processes may have priority (or externally defined) over 
background processes. 

A multilevel queue-scheduling algorithm partitions the ready queue into 
several separate queues (Figure 6.6). The processes are permanently assigned 
to one queue, generally based on some property of the process, such as memory 
size, process priority, or process type. Each queue has its own scheduling 
algorithm. For example, separate queues might be used for foreground and 
background processes. The foreground queue might be scheduled by an RR 
algorithm, while the background queue is scheduled by an FCFS algorithm. 

In addition, there must be scheduling among the queues, which is com- 
monly implemented as fixed-priority preemptive scheduling. For example, the 
foreground queue may have absolute priority over the background queue. 

highest priority 

lowest priority 

Figure 6.6 Multilevel queue scheduling. 
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Let us look at an example of a multilevel queue-scheduling algorithm with 
five queues: 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 

5. Student processes 

Each queue has absolute priority over lower-priority queues. No process in the 
batch queue, for example, could run unless the queues for system processes, 
interactive processes, and interactive editing processes were all empty. If an 
interactive editing process entered the ready queue while a batch process was 
running, the batch process would be preempted. Solaris 2 uses a form of this 
algorithm. 

Another possibility is to time slice between the queues. Each queue gets a 
certain portion of the CPU time, which it can then schedule among the various 
processes in its queue. For instance, in the foreground-background queue 
example, the foreground queue can be given 80 percent of the CPU time for 
RR scheduling among its processes, whereas the background queue receives 20 
percent of the CPU to give to its processes in a FCFS manner. 

6.3.6 Multilevel Feedback Queue Scheduling 
Normally, in a multilevel queue-scheduling algorithm, processes are perma- 
nently assigned to a queue on entry to the system. Processes do not move 
between queues. If there are separate queues for foreground and background 
processes, for example, processes do not move from one queue to the other, 
since processes do not change their foreground or background nature. This 
setup has the advantage of low scheduling overhead, but the disadvantage of 
being inflexible. 

Multilevel feedback queue scheduling, however, allows a process to move 
between queues. The idea is to separate processes with different CPU-burst 
characteristics. If a process uses too much CPU time, it will be moved to a 
lower-priority queue. This scheme leaves I/O-bound and interactive processes 
in the higher-priority queues. Similarly, a process that waits too long in a lower- 
priority queue may be moved to a higher-priority queue. This form of aging 
prevents starvation. 

For example, consider a multilevel feedback queue scheduler with three 
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all 
processes in queue 0. Only when queue 0 is empty will it execute processes 
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0 
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Figure 6.7 Multilevel feedback queues. 

and 1 are empty. A process that arrives for queue 1 will preempt a process in 
queue 2. A process that arrives for queue 0 will, in turn, preempt a process in 
queue 1. 

A process entering the ready queue is put in queue 0. A process in queue 0 
is given a time quantum of 8 milliseconds. If it does not finish within this time, 
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head 
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is 
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS 
basis, only when queues 0 and 1 are empty. 

This scheduling algorithm gives highest priority to any process with a CPU 
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish its 
CPU burst, and go off to its next I/O burst. Processes that need more than 8, but 
less than 24, milliseconds are also served quickly, although with lower priority 
than shorter processes. Long processes automatically sink to queue 2 and are 
served in FCFS order with any CPU cycles left over from queues 0 and 1. 

In general, a multilevel feedback queue scheduler is defined by the follow- 
ing parameters: 

The number of queues 

The scheduling algorithm for each queue 

The method used to determine when to upgrade a process to a higher- 
priority queue 

The method used to determine when to demote a process to a lower-priority 
queue 

The method used to determine which queue a process will enter when that 
process needs service 
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The definition of a multilevel feedback queue scheduler makes it the most 
general CPU-scheduling algorithm. It can be configured to match a specific 
system under design. Unfortunately, it also requires some means of selecting 
values for all the parameters to define the best scheduler. Although a multilevel 
feedback queue is the most general scheme, it is also the most complex. 

6.4 . Multiple-Processor Scheduling 

Our discussion thus far has focused on the problems of scheduling the CPU in 
a system with a single processor. If multiple CPUs are available, the scheduling 
problem is correspondingly more complex. Many possibilities have been tried, 
and, as we saw with single-processor CPU scheduling, there is no one best 
solution. In the following, we discuss briefly some of the issues concerning 
multiprocessor scheduling. (Complete coverage of multiprocessor scheduling 
is beyond the scope of this text; for more information, please refer to the Biblio- 
graphical Notes.) We concentrate on systems where the processors are identical 
(or homogeneous) in terms of their functionality; any available processor can 
then be used to run any processes in the queue. We also assume uniform 
memory access (UMA). In Chapters 15 through 17 we discuss systems where 
processors are different (a heterogeneous system). Only programs compiled 
for a given processor's instruction set could be run on that processor. 

Even within a homogeneous multiprocessor, there are sometimes lirnita- 
tions on scheduling. Consider a system with an I/O device attached to a private 
bus of one processor. Processes wishing to use that device must be scheduled 
to run on that processor, otherwise the device would not be available. 

If several identical processors are available, then load sharing can occur. It 
would be possible to provide a separate queue for each processor. In this case, 
however, one processor could be idle, with an empty queue, while another 
processor was very busy. To prevent this situation, we use a common ready 
queue. All processes go into one queue and are scheduled onto any available 
processor. 

In such a scheme, one of two scheduling approaches may be used. In 
one approach, each processor is self-scheduling. Each processor examines 
the common ready queue and selects a process to execute. As we shall see 
in Chapter 7, if we have multiple processors trying to access and update a 
common data structure, each processor must be programmed very carefully. 
We must ensure that two processors do not choose the same process, and that 
processes are not lost from the queue. The other approach avoids this problem 
by appointing one processor as scheduler for the other processors, thus creating 
a master-slave structure. 

Some systems carry this structure one step further, by having all scheduling 
decisions, I/O processing, and other system activities handled by one single 
processor-the master server. The other processors only execute user code. 
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This asymmetric multiprocessing is far simpler than symmetric multiprocess- 
ing, because only one processor accesses the system data structures, alleviating 
the need for data sharing. However, it is also not as efficient. I/O-bound pro- 
cesses may bottleneck on the one CPU that is performing all of the operations. 
Typically, asymmetric multiprocessing is implemented first within an operat- 
ing system, and is then upgraded to symmetric multiprocessing as the system 
evolves. 

6.5 . Real-Time Scheduling 

In Chapter 1, we gave an overview of real-time operating systems and dis- 
cussed their growing importance. Here, we continue the discussion by describ- 
ing the scheduling facility needed to support real-time computing within a 
general-purpose computer system. 

Real-time computing is divided into two types. Hard real-time systems 
are required to complete a critical task within a guaranteed amount of time. 
Generally, a process is submitted along with a statement of the amount of 
time in which it needs to complete or perform I/O. The scheduler then either 
admits the process, guaranteeing that the process will complete on time, or 
rejects the request as impossible. This is known as resource reservation. Such 
a guarantee requires that the scheduler know exactly how long each type 
of operating-system function takes to perform, and therefore each operation 
must be guaranteed to take a maximum amount of time. Such a guarantee is 
impossible in a system with secondary storage or virtual memory, as we shall 
show in the next few chapters, because these subsystems cause unavoidable 
and unforeseeable variation in the amount of time to execute a particular 
process. Therefore, hard real-time systems are composed of special-purpose 
software running on hardware dedicated to their critical process, and lack the 
full functionality of modern computers and operating systems. 

Soft real-time computing is less restrictive. It requires that critical processes 
receive priority over less fortunate ones. Although adding soft real-time func- 
tionality to a time-sharing system may cause an unfair allocation of resources 
and may result in longer delays, or even starvation, for some processes, it is at 
least possible to achieve. The result is a general-purpose system that can also 
support multimedia, high-speed interactive graphics, and a variety of tasks that 
would not function acceptably in an environment that does not support soft 
real-time computing. 

Implementing soft real-time functionality requires careful design of the 
scheduler and related aspects of the operating system. First, the system must 
have priority scheduling, and real-time processes must have the highest prior- 
ity. The priority of real-time processes must not degrade over time, even though 
the priority of non-real-time processes may. Second, the dispatch latency must 
be small. The smaller the latency, the faster a real-time process can start execut- 
ing once it is runable. 
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It is relatively simple to ensure that the former property holds. For example, 
we can disallow process aging on real-time processes, thereby guaranteeing that 
the priority of the various processes does not change. However, ensuring the 
latter property is much more involved. The problem is that many operating 
systems, including most versions of UNIX, are forced to wait either for a system 
call to complete or for an I/O block to take place before doing a context switch. 
The dispatch latency in such systems can be long, since some system calls are 
complex and some 1 /0  devices are slow. 

To keep dispatch latency low, we need to allow system calls to be pre- 
emptible. There are several ways to achieve this goal. One is to insert pre- 
emption points in long-duration system calls, that check to see whether a high- 
priority process needs to be run. If so, a context switch takes place and, when 
the high-priority process terminates, the interrupted process continues with the 
system call. Preemption points can be placed at only "safe" locations in the 
kernel-only where kernel data structures are not being modified. Even with 
preemption points dispatch latency can be large, because only a few preemption 
points can be practically added to a kernel. 

Another method for dealing with preemption is to make the entire kernel 
preemptible. So that correct operation is ensured, all kernel data structures 
must be protected through the use of various synchronization mechanisms 
that we discuss in Chapter 7. With this method, the kernel can always be 
preemptible, because any kernel data being updated are protected from mod- 
ification by the high-priority process. This is the most effective (and complex) 
method in widespread use; it is used in Solaris 2. 

But what happens if the higher-priority process needs to read or modify 
kernel data currently being accessed by another, lower-priority process? The 
high-priority process would be waiting for a lower-priority one to finish. This 
situation is known as priority inversion. In fact, a chain of processes could all 
be accessing resources that the high-priority process needs. This problem can 
be solved via the priority-inheritance protocol, in which all these processes 
(the ones accessing resources that the high-priority process needs) inherit the 
high priority until they are done with the resource in question. When they are 
finished, their priority reverts to its original value. 

In Figure 6.8, we show the makeup of dispatch latency. The conflict phase 
of dispatch latency has two components: 

1. Preemption of any process running in the kernel 

2. Release by low-priority processes resources needed by the high-priority 
process 

As an example, in Solaris 2, the dispatch latency with preemption disabled is 
over 100 milliseconds. However, the dispatch latency with preemption enabled 
is usually reduced to 2 milliseconds. 
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6.6 . Algorithm Evaluation 
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How do we select a CPU-scheduling algorithm for a particular system? As we 
saw in Section 6.3, there are many scheduling algorithms, each with its own 
parameters. As a result, selecting an algorithm can be difficult. 

The first problem is defining the criteria to be used in selecting an algo- 
rithm. As we saw in Section 6.2, criteria are often defined in terms of CPU 
utilization, response time, or throughput. To select an algorithm, we must 
first define the relative importance of these measures. Our criteria may include 
several measures, such as: 

available 

dispatch latency b 

c O n f i c t s  t dispatch --+ 

Maximize CPU utilization under the constraint that the maximum response 
time is 1 second. 

Maximize throughput such that turnaround time is (on average) linearly 
proportional to total execution time. 

Once the selection criteria have been defined, we want to evaluate the 
various algorithms under consideration. We describe the different evaluation 
methods in Sections 6.6.1 through 6.6.4. 
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6.6.1 Deterministic Modeling 
One major class of evaluation methods is called analytic evaluation. Analytic 
evaluation uses the given algorithm and the system workload to produce a 
formula or number that evaluates the performance of the algorithm for that 
workload. 

One type of analytic evaluation is deterministic modeling. This method 
takes a particular predetermined workload and defines the performance of each 
algorithm for that workload. 

For example, assume that we have the workload shown. All five processes 
arrive at time 0, in the order given, with the length of the CPU-burst time given 
in milliseconds: 

Process Burst Time 

P1 10 
p2 29 
P3 3 
p4 7 
p5 12 

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling algo- 
rithms for this set of processes. Which algorithm would give the minimum 
average waiting time? 

For the FCFS algorithm, we would execute the processes as 

0 10 39 42 49 6 1 

The waiting time is 0 milliseconds for process PI, 10 milliseconds for process 
P2, 39 milliseconds for process Pb, 42 milliseconds for process P4, and 49 
milliseconds for process Ps. Thus, the average waiting time is (0 + 10 + 39 + 
42 + 49)/5 = 28 milliseconds. 

With nonpreemptive SJF scheduling, we execute the processes as 

0 3 10 20 32 61 

The waiting time is 10 milliseconds for process PI, 32 milliseconds for process 
P2, 0 milliseconds for process PJ, 3 milliseconds for process P4, and 20 millisec- 
onds for process P5. Thus, the average waiting time is (10 + 32 + 0 + 3 + 20)/5 = 
13 milliseconds. 
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With the RR algorithm, we execute the processes as 

The waiting time is 0 milliseconds for process PI, 32 milliseconds for process 
P2, 20 milliseconds for process Pg, 23 milliseconds for process P4, and 40 
milliseconds for process Ps. Thus, the average waiting time is (0 + 32 + 20 + 
23 + 40)/5 = 23 milliseconds. 

We see that, in this case, the SJF policy results in less than one-half the 
average waiting time obtained with FCFS scheduling; the RR algorithm gives 
us an intermediate value. 

Deterministic modeling is simple and fast. It gives exact numbers, allowing 
the algorithms to be compared. However, it requires exact numbers for input, 
and its answers apply to only those cases. The main uses of deterministic 
modeling are in describing scheduling algorithms and providing examples. 
In cases where we may be running the same programs over and over again 
and can measure the program's processing requirements exactly, we may be 
able to use deterministic modeling to select a scheduling algorithm. Over a 
set of examples, deterministic modeling may indicate trends that can then be 
analyzed and proved separately. For example, it can be shown that, for the 
environment described (all processes and their times available at time O), the 
SJF policy will always result in the minimum waiting time. 

In general, however, deterministic modeling is too specific, and requires too 
much exact knowledge, to be useful. 

6.6.2 Queueing Models 
The processes that are run on many systems vary from day to day, so there is 
no static set of processes (and times) to use for deterministic modeling. What 
can be determined, however, is the distribution of CPU and I/O bursts. These 
distributions may be measured and then approximated or simply estimated. 
The result is a mathematical formula describing the probability of a particular 
CPU burst. Commonly, this distribution is exponential and is described by its 
mean. Similarly, the distribution of times when processes arrive in the system 
-the arrival-time distribution-must be given. 

The computer system is described as a network of servers. Each server has 
a queue of waiting processes. The CPU is a server with its ready queue, as is the 
I/O system with its device queues. Knowing arrival rates and service rates, we 
can compute utilization, average queue length, average wait time, and so on. 
This area of study is called queueing-network analysis. 
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As an example, let n be the average queue length (excluding the process 
being serviced), let W be the average waiting time in the queue, and let X be 
the average arrival rate for new processes in the queue (such as three processes 
per second). Then, we expect that during the time W that a process waits, X 
x W new processes will arrive in the queue. If the system is in a steady state, 
then the number of processes leaving the queue must be equal to the number of 
processes that arrive. Thus, 

This equation is known as Little's formula. Little's formula is particularly 
useful because it is valid for any scheduling algorithm and arrival distribution. 

We can use Little's formula to compute one of the three variables, if we 
know the other two. For example, if we know that seven processes arrive every 
second (on average), and that there are normally 14 processes in the queue, then 
we can compute the average waiting time per process as 2 seconds. 

Queueing analysis can be useful in comparing scheduling algorithms, but 
it also has limitations. At the moment, the classes of algorithms and distribu- 
tions that can be handled are fairly limited. The mathematics of complicated 
algorithms or distributions can be difficult to work with. Thus, arrival and ser- 
vice distributions are often defined in unrealistic, but mathematically tractable, 
ways. It is also generally necessary to make a number of independent assump- 
tions, that may not be accurate. Thus, so that they will be able to compute an 
answer, queueing models are often only an approximation of a real system. As 
a result, the accuracy of the computed results may be questionable. 

6.6.3 Simulations 
To get a more accurate evaluation of scheduling algorithms, we can use sim- 
ulations. Simulations involve programming a model of the computer sys- 
tem. Software data structures represent the major components of the system. 
The simulator has a variable representing a clock; as this variable's value is 
increased, the simulator modifies the system state to reflect the activities of the 
devices, the processes, and the scheduler. As the simulation executes, statistics 
that indicate algorithm performance are gathered and printed. 

The data to drive the simulation can be generated in several ways. The most 
common method uses a random-number generator, which is programmed to 
generate processes, CPU-burst times, arrivals, departures, and so on, according 
to probability distributions. The distributions may be defined mathematically 
(uniform, exponential, Poisson) or empirically. If the distribution is to be 
defined empirically, measurements of the actual system under study are taken. 
The results are used to define the actual distribution of events in the real system, 
and this distribution can then be used to drive the simulation. 
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Figure 6.9 Evaluation of CPU schedulers by simulation. 

A distribution-driven simulation may be inaccurate, however, due to rela- 
tionships between successive events in the real system. The frequency distribu- 
tion indicates only how many of each event occur; it does not indicate anything 
about the order of their occurrence. To correct this problem, we can use trace 
tapes. We create a trace tape by monitoring the real system, recording the 
sequence of actual events (Figure 6.9). This sequence is then used to drive the 
simulation. Trace tapes provide an excellent way to compare two algorithms on 
exactly the same set of real inputs. This method can produce accurate results 
for its inputs. 

Simulations can be expensive, however, often requiring hours of computer 
time. A more detailed simulation provides more accurate results, but also 
requires more computer time. In addition, trace tapes can require large amounts 
of storage space. Finally, the design, coding, and debugging of the simulator 
can be a major task. 

6.6.4 Implementation 
Even a simulation is of limited accuracy. The only completely accurate way to 
evaluate a scheduling algorithm is to code it, put it in the operating system, and 
see how it works. This approach puts the actual algorithm in the real system 
for evaluation under real operating conditions. 
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The major difficulty is the cost of this approach. The expense is incurred not 
only in coding the algorithm and modifying the operating system to support it 
as well as its required data structures, but also in the reaction of the users to a 
constantly changing operating system. Most users are not interested in building 
a better operating system; they merely want to get their processes executed 
and to use their results. A constantly changing operating system does not help 
the users to get their work done. A form of this method is used commonly 
for new computer installations. For instance, a new web facility may have 
simulated user loads generated against it before it "goes live", to determine 
any bottlenecks in the facility and to estimate how many users the system can 
support. 

The other difficulty with any algorithm evaluation is that the environment 
in which the algorithm is used will change. The environment will change not 
only in the usual way, as new programs are written and the types of problems 
change, but also as a result of the performance of the scheduler. If short 
processes are given priority, then users may break larger processes into sets of 
smaller processes. If interactive processes are given priority over noninteractive 
processes, then users may switch to interactive use. 

For example, in DEC TOPS-20, the system classified interactive and nonin- 
teractive processes automatically by looking at the amount of terminal I/O. If 
a process did not input or output to the terminal in a 1-minute interval, the 
process was classified as noninteractive and was moved to a lower-priority 
queue. This policy resulted in a situation where one programmer modified his 
programs to write an arbitrary character to the terminal at regular intervals of 
less than 1 minute. The system gave his programs a high priority, even though 
the terminal output was completely meaningless. 

The most flexible scheduling algorithms can be altered by the system 
managers or by the users. During operating-system build time, boot time, or 
run time, the variables used by the schedulers can be changed to reflect the 
expected future use of the system. The need for flexible scheduling is another 
instance where the separation of mechanism from policy is useful. For instance, 
if paychecks need to be processed and printed immediately, but are normally 
done as a low-priority batch job, the batch queue could be given a higher 
priority temporarily. Unfortunately, few operating systems allow this type of 
tunable scheduling. 

6.7 Process Scheduling Models 

In this section we will cover process scheduling in the Solaris 2, Windows 2000, 
and Linux operating systems. However, prior to looking at these different 
scheduling models, we first relate threads to process scheduling. 

In Chapter 5, we introduced threads to the process model, thus allowing 
a single process to have multiple threads of control. Furthermore, we dis- 
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tinguished between user-level and kernel-level threads. User-level threads are 
managed by a thread library, and the kernel is unaware of them. To run on 
a CPU, user-level threads are ultimately mapped to an associated kernel-level 
thread, although this mapping may be indirect and use a lightweight process 
(LWP). One distinction between user-level and kernel-level threads lies in how 
they are scheduled. The thread library schedules user-level threads to run on an 
available LWP, a scheme known as process local scheduling, in which thread 
scheduling is done local to the application. Conversely, the kernel uses system 
global scheduling to decide which kernel thread to schedule. We do not cover 
in detail how different thread libraries locally schedule threads; thread schedul- 
ing is a software-library concern rather than an operating-system concern. We 
cover global scheduling because it is performed by the operating system. 

6.7.1 An Example: Solaris 2 

Solaris 2 uses priority-based process scheduling. It has four classes of schedul- 
ing, which are, in order of priority, real time, system, time sharing, and 
interactive. Each class includes different priorities and scheduling algorithms, 
although time sharing and interactive use the same scheduling policies. Solaris 
2 scheduling is illustrated in Figure 6.10. 

A process starts with one LWP and is able to create new LWPs as needed. 
Each LWP inherits the scheduling class and priority of the parent process. 
The default scheduling class for a process is time sharing. The scheduling 
policy for time sharing dynamically alters priorities and assigns time slices 
of different lengths using a multilevel feedback queue. By default, there is 
an inverse relationship between priorities and time slices: The higher the 
priority, the smaller the time slice, and the lower the priority, the larger the 
time slice. Interactive processes typically have a higher priority, CPU-bound 
processes a lower priority. This scheduling policy gives good response time for 
interactive processes and good throughput for CPU-bound processes. Solaris 2.4 
introduced the interactive class to process scheduling. The interactive class uses 
the same scheduling policy as the time-sharing class, but it gives windowing 
applications a higher priority for better performance. 

Solaris 2 uses the system class to run kernel processes, such as the scheduler 
and paging daemon. Once established, the priority of a system process does not 
change. The system class is reserved for kernel use (user processes running in 
kernel mode are not in the system class). The scheduling policy for the system 
class does not time-slice. Rather, a thread belonging to the system class runs 
until it either blocks or is preempted by a higher priority thread. 

Threads in the real-time class are given the highest priority to run among 
all classes. This assignment allows a real-time process to have a guaranteed 
response from the system within a bounded period of time. A real-time process 
will run before a process in any other class. In general, few processes belong to 
the real-time class. 
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Figure 6.10 Solaris 2 scheduling. 

Each scheduling class includes a set of priorities. However, the scheduler 
converts the class-specific priorities into global priorities, and selects to run the 
thread with the highest global priority. The selected thread runs on the CPU 
until one of the following occurs: 

1. It blocks 

2. It uses its time slice (if it is not a system thread) 

3. It is preempted by a higher-priority thread 

If multiple threads have the same priority, the scheduler uses a round-robin 
queue. 
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6.7.2 An Example: Windows 2000 

Windows 2000 schedules threads using a priority-based, preemptive scheduling 
algorithm. The Windows 2000 scheduler ensures the highest-priority thread will 
always run. The portion of the Windows 2000 kernel that handles scheduling 
is called the dispatcher. A thread selected to run by the dispatcher will run 
until it is preempted by a higher-priority thread, until it terminates, until its 
time quantum ends, or until it calls a blocking system call, such as for I/O. If a 
higher-priority real-time thread becomes ready while a lower-priority thread 
is running, the lower-priority thread will be preempted. This preemption 
gives a real-time thread preferential access to the CPU when the thread needs 
such access. Windows 2000 is not a hard real-time operating system, however, 
because it does not guarantee that a real-time thread will start to execute within 
any particular time limit. 

The dispatcher uses a 32-level priority scheme to determine the order of 
thread execution. Priorities are divided into two classes: the variable class 
contains threads having priorities from 1 to 15, and the real-time class contains 
threads with priorities ranging from 16 to 31. (There is also a thread running at 
priority 0 that is used for memory management.) The dispatcher uses a queue 
for each scheduling priority, and traverses the set of queues from highest to 
lowest until it finds a thread that is ready to run. If no ready thread is found, 
the dispatcher will execute a special thread called the idle thread. 

There is a relationship between the numeric priorities of the Windows 2000 
kernel and the Win32 API. The Win32 API identifies several priority classes that 
a process may belong to. These include: 

REALTIME-PRIORITY -CLASS 

HIGH-PRIORITY _CLASS 

ABOVE-NORMAL-PRIORITY-CLASS 

NORMAL-PRIORITY -CLASS 

BELOWNORMAL-PRIORITY-CLASS 

IDLEPRIORITY -CLASS 

All priority classes except the REALTIME-PRIORITY-CLASS are variable class 
priorities, meaning that the priority of a thread belonging to one of these classes 
can change. 

Within each of these priority classes is a relative priority. The values for 
relative priority include: 

TIME-CRITICAL 

HIGHEST 
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ABOVE-NORMAL 

NORMAL 

LOWEST 

IDLE 

The priority of each thread is based upon the priority class it belongs to and the 
relative priority within the class. This relationship is shown in Figure 6.11. The 
values of each priority class appear in the top row. The left column contains the 
values for the different relative priorities. For example, if the relative priority 
of a thread in the ABOVE-NORMALPRIORITY-CLASS is NORMAL, the numeric 
priority of that thread is 10. 

Furthermore, each thread has a base priority representing a value in the 
priority range for the class the thread belongs to. By default, the base priority 
is the value of the NORMAL relative priority for that specific class. The base 
priorities for each priority class are: 

HIGHPRIORITY-CLASS- 13. 

ABOVE-NORMALPRIORITY-CLASS- 10. 

NORMAL-PRIORITY-CLASS - 8. 

IDLEPRIORITY _CLASS -4. 

Figure 6.11 Windows 2000 priorities. 

I 
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Processes are typically members of the NORMAL-PRIORITY-CLASS unless 
the parent of the process was of the IDLE-PRIORITY-CLASS, or another class 
was specified when the process was created. The initial priority of a thread 
is typically the base priority of the process the thread belongs to. 

When a thread's time quantum runs out, that thread is interrupted; if the 
thread is in the variable-priority class, its priority is lowered. The priority 
is never lowered below the base priority, however. Lowering the thread's 
priority tends to limit the CPU consumption of compute-bound threads. When a 
variable-priority thread is released from a wait operation, the dispatcher boosts 
the priority. The amount of the boost depends on what the thread was waiting 
for; for example, a thread that was waiting for keyboard 1/0  would get a large 
priority increase, whereas a thread waiting for a disk operation would get a 
moderate one. This strategy tends to give good response times to interactive 
threads that are using the mouse and windows, and enables I/O-bound threads 
to keep the I/O devices busy, while permitting compute-bound threads to use 
spare CPU cycles in the background. This strategy is used by several time- 
sharing operating systems, including UNIX. In addition, the current window 
with which the user is interacting also receives a priority boost to enhance its 
response time. 

When a user is running an interactive program, the system needs to provide 
especially good performance for that process. For this reason, Windows 2000 
has a special scheduling rule for processes in the NORMALTRIORITY-CLASS. 
Windows 2000 distinguishes between the foreground process that is currently 
selected on the screen, and the background processes that are not currently 
selected. When a process moves into the foreground, Windows 2000 increases 
the scheduling quantum by some factor-typically by 3. This increase gives the 
foreground process three times longer to run before a time-sharing preemption 
occurs. 

6.7.3 An Example: Linux 
Linux provides two separate process-scheduling algorithms. One is a time- 
sharing algorithm for fair preemptive scheduling among multiple processes; 
the other is designed for real-time tasks where absolute priorities are more 
important than fairness. In Section 6.5, we described a situation in which real- 
time systems must allow the kernel to be preempted to keep dispatch latency 
low. Linux allows only processes running in user mode to be preempted. A 
process may not be preempted while it is running in kernel mode, even if a 
real-time process with a higher priority is available to run. 

Part of every process' identity is a scheduling class, that defines which 
of these algorithms to apply to the process. The scheduling classes used by 
Linux are defined in the POSIX standard's extensions for real-time computing 
(POSIX.4, now known as POSIX.lb). 
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The first scheduling class is for time-sharing processes. For conventional, 
time-shared processes, Linux uses a prioritized, credit-based algorithm. Each 
process possesses a certain number of scheduling credits; when a new task must 
be chosen to run, the process with the most credits is selected. Every time that a 
timer interrupt occurs, the currently running process loses one credit; when its 
credits reaches zero, it is suspended and another process is chosen. 

If no runnable processes have any credits, then Linux performs a recrediting 
operation, adding credits to every process in the system (rather than to just the 
runable ones), according to the following rule: 

credits 
credits = --- 

2 
+ priority 

This algorithm tends to mix two factors: the process' history and its priority. 
One-half of the credits that a process still holds since the previous recrediting 
operation will be retained after the algorithm has been applied, retaining some 
history of the process' recent behavior. Processes that are running all the 
time tend to exhaust their credits rapidly, but processes that spend much of 
their time suspended can accumulate credits over multiple recreditings and 
consequently end up with a higher credit count after a recredit. This crediting 
system automatically gives high priority to interactive or I/O-bound processes, 
for which a rapid response time is important. 

The use of a process priority in calculating new credits allows the priority 
of a process to be fine-tuned. Background batch jobs can be given a low pri- 
ority; they will automatically receive fewer credits than interactive users' jobs, 
and hence will receive a smaller percentage of the CPU time than will similar 
jobs with higher priorities. Linux uses this priority system to implement the 
standard UNIX nice process-priority mechanism. Linux's real-time scheduling 
is simpler still. Linux implements the two real-time scheduling classes required 
by POSIX.lb: first come, first served (FCFS), and round-robin (RR) (Sections 6.3.1 
and 6.3.4, respectively). In both cases, each process has a priority in addition 
to its scheduling class. In time-sharing scheduling, however, processes of dif- 
ferent priorities can still compete with one another to some extent; in real-time 
scheduling, the scheduler always runs the process with the highest priority. 
Among processes of equal priority, it runs the process that has been waiting 
longest. The only difference between FCFS and RR scheduling is that FCFS 
processes continue to run until they either exit or block, whereas a round-robin 
process will be preempted after a while and will be moved to the end of the 
scheduling queue, so round-robin processes of equal priority will automatically 
time share among themselves. 

Note that Linux's real-time scheduling is soft-rather than hard-real 
time. The scheduler offers strict guarantees about the relative priorities of 
real-time processes, but the kernel does not offer any guarantees about how 
quickly a real-time process will be scheduled once that process becomes run- 
able. Remember that Linux kernel code can never be preempted by user-mode 
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code. If an interrupt arrives that wakes up a real-time process while the kernel 
is already executing a system call on behalf of another process, the real-time 
process will just have to wait until the currently running system call completes 
or blocks. 

6.8 . Summary 

CPU scheduling is the task of selecting a waiting process from the ready queue 
and allocating the CPU to it. The CPU is allocated to the selected process by the 
dispatcher. 

First-come, first-served (FCFS) scheduling is the simplest scheduling algo- 
rithm, but it can cause short processes to wait for very long processes. Shortest- 
job-first (SJF) scheduling is provably optimal, providing the shortest average 
waiting time. Implementing SJF scheduling is difficult because predicting the 
length of the next CPU burst is difficult. The SJF algorithm is a special case of 
the general priority-scheduling algorithm, which simply allocates the CPU to 
the highest-priority process. Both priority and SJF scheduling may suffer from 
starvation. Aging is a technique to prevent starvation. 

Round-robin (RR) scheduling is more appropriate for a time-shared (inter- 
active) system. RR scheduling allocates the CPU to the first process in the ready 
queue for q time units, where q is the time quantum. After q time units, if 
the process has not relinquished the CPU, it is preempted and the process is 
put at the tail of the ready queue. The major problem is the selection of the 
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS 
scheduling; if the quantum is too small, scheduling overhead in the form of 
context-switch time becomes excessive. 

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The 
SJF and priority algorithms may be either preemptive or nonpreemptive. 

Multilevel queue algorithms allow different algorithms to be used for var- 
ious classes of processes. The most common is a foreground interactive queue, 
which uses RR scheduling, and a background batch queue, which uses FCFS 
scheduling. Multilevel feedback queues allow processes to move from one 
queue to another. 

Because such a wide variety of scheduling algorithms are available, we 
need methods to select among them. Analytic methods use mathematical anal- 
ysis to determine the performance of an algorithm. Simulation methods deter- 
mine performance by imitating the scheduling algorithm on a "representative" 
sample of processes, and computing the resulting performance. 

Operating systems supporting threads at the kernel level must schedule 
threads-not processes-for execution. This is the case with Solaris 2 and 
Windows 2000 where both systems schedule threads using preemptive, priority- 
based scheduling algorithms including support for real-time threads. The 
Linux process scheduler also uses a priority-based algorithm with real-time 
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support as well. The scheduling algorithms for these three operating systems 
typically favor interactive over batch and CPU-bound processes. 

Exercises 

6.1 A CPU-scheduling algorithm determines an order for the execution of its 
scheduled processes. Given n processes to be scheduled on one processor, 
how many different schedules are possible? Give a formula in terms of n. 

6.2 Define the difference between preemptive and nonpreemptive scheduling. 
State why strict nonpreemptive scheduling is unlikely to be used in a 
computer center. 

6.3 Consider the following set of processes, with the length of the CPU-burst 
time given in milliseconds: 

Process Burst Time Priority 

P1 10 3 
P2 1 1 
P3 2 3 
p4 1 4 
P5 5 2 

The processes are assumed to have arrived in the order PI, P2, P3, P4, P5, 
all at time 0. 

a. Draw four Gantt charts illustrating the execution of these processes 
using FCFS, SJF, a nonpreemptive priority (a smaller priority number 
implies a higher priority), and RR (quantum = 1) scheduling. 

b. What is the turnaround time of each process for each of the schedul- 
ing algorithms in part a? 

c. What is the waiting time of each process for each of the scheduling 
algorithms in part a? 

d. Which of the schedules in part a results in the minimal average 
waiting time (over all processes)? 

6.4 Suppose that the following processes arrive for execution at the times 
indicated. Each process will run the listed amount of time. In answering 
the questions, use nonpreemptive scheduling and base all decisions on the 
information you have at the time the decision must be made. 
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Process Arrival Time Burst Time 

PI 0.0 8 
p2 0.4 4 
P3 1.0 1 

a. What is the average turnaround time for these processes with the 
FCFS scheduling algorithm? 

b. What is the average turnaround time for these processes with the SJF 
scheduling algorithm? 

c. The SJF algorithm is supposed to improve performance, but notice 
that we chose to run process PI at time 0 because we did not know 
that two shorter processes would arrive soon. Compute what the 
average turnaround time will be if the CpU is left idle for the first 
1 unit and then SJF scheduling is used. Remember that processes 
P1 and PZ are waiting during this idle time, so their waiting time 
may increase. This algorithm could be known as future-knowledge 
scheduling. 

6.5 Consider a variant of the RR scheduling algorithm where the entries in the 
ready queue are pointers to the PCBs. 

a. What would be the effect of putting two pointers to the same process 
in the ready queue? 

b. What would be the major advantages and disadvantages of this 
scheme? 

c. How would you modify the basic RR algorithm to achieve the same 
effect without the duplicate pointers? 

6.6 What advantage is there in having different time-quantum sizes on differ- 
ent levels of a multilevel queueing system? 

6.7 Consider the following preemptive priority-scheduling algorithm based 
on dynamically changing priorities. Larger priority numbers imply higher 
priority. When a process is waiting for the CPU (in the ready queue, but 
not running), its priority changes at a rate a; when it is running, its priority 
changes at a rate P. All processes are given a priority of 0 when they enter 
the ready queue. The parameters a and P can be set to give many different 
scheduling algorithms. 

a. What is the algorithm that results from P > a > O? 

b. What is the algorithm that results from a! < /3 < O? 

6.8 Many CPU-scheduling algorithms are parameterized. For example, the 
RR algorithm requires a parameter to indicate the time slice. Multilevel 
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feedback queues require parameters to define the number of queues, the 
scheduling algorithms for each queue, the criteria used to move processes 
between queues, and so on. 

These algorithms are thus really sets of algorithms (for example, the 
set of RR algorithms for all time slices, and so on). One set of algorithms 
may include another (for example, the FCFS algorithm is the RR algorithm 
with an infinite time quantum). What (if any) relation holds between the 
following pairs of sets of algorithms? 

a. Priority and SJF 

b. Multilevel feedback queues and FCFS 

c. Priority and FCFS 

d. RRandSJF 

6.9 Suppose that a scheduling algorithm (at the level of short-term CPU 
scheduling) favors those processes that have used the least processor time 
in the recent past. Why will this algorithm favor I/O-bound programs and 
yet not permanently starve CPU-bound programs? 

6.10 Explain the differences in the degree to which the following scheduling 
algorithms discriminate in favor of short processes: 

a. FCFS 

b. RR 

c. Multilevel feedback queues 
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Chapter 7 

PROCESS 
SYNCHRONIZATIO 

A cooperating process is one that can affect or be affected by other processes 
executing in the system. Cooperating processes may either directly share a 
logical address space (that is, both code and data), or be allowed to share data 
only through files. The former case is achieved through the use of lightweight 
processes or threads, which we discussed in Section 5. Concurrent access to 
shared data may result in data inconsistency. In this chapter, we discuss various 
mechanisms to ensure the orderly execution of cooperating processes that share 
a logical address space, so that data consistency is maintained. 

1 7.1 . Background 

In Chapter 4, we developed a model of a system consisting of a number of 
cooperating sequential processes, all running asynchronously and possibly 
sharing data. We illustrated this model with the bounded-buffer scheme, which 
is representative of operating systems. 

Let us return to the shared-memory solution to the bounded-buffer prob- 
lem that we presented in Section 4.4. As we pointed out, our solution allows 
at most BUFFER-SIZE - 1 items in the buffer at the same time. Suppose that 
we want to modify the algorithm to remedy this deficiency. One possibility is 

I 
to add an integer variable counter, initialized to 0. counter is incremented 
every time we add a new item to the buffer, and is decremented every time 
we remove one item from the buffer. The code for the producer process can be 
modified as follows: 
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while (1) { 
/* produce an item in nextproduced */ 
while (counter == BUFFER-SIZE) 

; /* do nothing */ 
buffer [in] = nextproduced; 
in = (in + I) % BUFFER-SIZE; 
counter++; 

} 

The code for the consumer process can be modified as follows: 

while (1) { 
while (counter == 0) 

; /* do nothing */ 
nextconsumed = buffer [out] ; 
out = (out + 1) % BUFFER-SIZE; 
counter--; 
/* consume the item in nextconsumed */ 

1 
Although both the producer and consumer routines are correct separately, 

they may not function correctly when executed concurrently. As an illustration, 
suppose that the value of the variable counter is currently 5, and that the 
producer and consumer processes execute the statements "counter++" and 
"counter--" concurrently. Following the execution of these two statements, 
the value of the variable counter may be 4, 5, or 6! The only correct result 
is counter == 5, which is generated correctly if the producer and consumer 
execute separately. 

We can show that the value of ccunter may be incorrect as follows. Note 
that the statement "counter++" may be implemented in machine language (on 
a typical machine) as 

registerl = counter 
registerl = registerl + 1 
counter = registerl 

where register1 is a local CPU register. Similarly, the statement "counter--" is 
implemented as follows: 

register2 = counter 
register2 = register:! - 1 
counter = register2 

where again register2 is a local CPU register. Even though register1 and register2 
may be the same physical register (an accumulator, say), remember that the 
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contents of this register will be saved and restored by the interrupt handler 
(Section 2.1). 

The concurrent execution of "counter++" and "counter--" is equivalent 
to a sequential execution where the lower-level statements presented previ- 
ously are interleaved in some arbitrary order (but the order within each high- 
level statement is preserved). One such interleaving is 

To: producer execute registerl = counter {registerl = 5 )  
TI: producer execute register1 = registerl + 1 {registerl = 6 )  
T2: consumer execute register2 = counter {register2 = 5 )  
T3: consumer execute register2 = register2 - 1 {register2 = 4 )  
Tq: producer execute counter = registerl {counter = 6 )  
Ts: consumer execute counter = register2 {counter = 4 )  

Notice that we have arrived at the incorrect state "counter == 4" recording that 
there are four full buffers, when, in fact, there are five full buffers. If we reversed 
the order of the statements at T4 and T5, we would arrive at the incorrect state 
"counter == 6". 

We would arrive at this incorrect state because we allowed both processes 
to manipulate the variable counter concurrently. A situation like this, where 
several processes access and manipulate the same data concurrently and the 
outcome of the execution depends on the particular order in which the access 
takes place, is called a race condition. To guard against the race condition 
above, we need to ensure that only one process at a time can be manipulating 
the variable counter .  To make such a guarantee, we require some form of 
synchronization of the processes. Such situations occur frequently in operating 
systems as different parts of the system manipulate resources and we want the 
changes not to interfere with one another. A major portion of this chapter is 
concerned with the issue of process synchronization and coordination. 

7.2 . The Critical-Section Problem 

Consider a system consisting of n processes {Po,P1, ..., P,-1). Each process 
has a segment of code, called a critical section, in which the process may be 
changing common variables, updating a table, writing a file, and so on. The 
important feature of the system is that, when one process is executing in its 
critical section, no other process is to be allowed to execute in its critical section. 
Thus, the execution of critical sections by the processes is mutually exclusive 
in time. The critical-section problem is to design a protocol that the processes 
can use to cooperate. Each process must request permission to enter its critical 
section. The section of code implementing this request is the entry section. The 
critical section may be followed by an exit section. The remaining code is the 

, remainder section. , 
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( entry section ( 

critical section 

remainder section 

) while (1); 

Figure 7.1 General structure of a typical process Pi. 

A solution to the critical-section problem must satisfy the following three 
requirements: 

1. Mutual Exclusion: If process Pi is executing in its critical section, then no 
other processes can be executing in their critical sections. 

2. Progress: If no process is executing in its critical section and some processes 
wish to enter their critical sections, then only those processes that are 
not executing in their remainder section can participate in the decision 
on which will enter its critical section next, and this selection cannot be 
postponed indefinitely. 

3. Bounded Waiting: There exists a bound on the number of times that other 
processes are allowed to enter their critical sections after a process has made 
a request to enter its critical section and before that request is granted. 

We assume that each process is executing at a nonzero speed. However, we can 
make no assumption concerning the relative speed of the n processes. 

In Sections 7.2.1 and 7.2.2, we work up to solutions to the critical-section 
problem that satisfy these three requirements. The solutions do not rely on any 
assumptions concerning the hardware instructions or the number of processors 
that the hardware supports. We do, however, assume that the basic machine- 
language instructions (the primitive instructions such as load, s tore ,  and 
t e s t )  are executed atomically. That is, if two such instructions are executed 
concurrently, the result is equivalent to their sequential execution in some 
unknown order. Thus, if n load and a s t o r e  are executed concurrently, the 
load will get either the old value or the new value, but not some combination 
of the two. 

When presenting an algorithm, we define only the variables used for syn- 
chronization purposes, and describe only a typical process Pi whose general 
structure is shown in Figure 7.1. The entry section and exit section are enclosed 
in boxes to highlight these important segments of code. 



7.2 The Critical-Section Problem 193 

1 while ( t u rn  !=  i )  ; 1 

critical section 

( t u r n  = j ;  ( 

remainder section 

) while (1); 

Figure 7.2 The structure of process Pi in algorithm 1. 

7.2.1 Two-Process Solutions 
In this section, we restrict our attention to algorithms that are applicable to 
only two processes at a time. The processes are numbered Po and PI. For 
convenience, when presenting Pi, we use Pi to denote the other process; that 
is, j == 1 - i .  

7.2.1.1 Algorithm 1 

Our first approach is to let the processes share a common integer variable t u r n  
initialized to 0 (or 1). If t u r n  == i, then process Pi is allowed to execute in its 
critical section. The structure of process Pi is shown in Figure 7.2. 

This solution ensures that only one process at a time can be in its critical 
section. However, it does not satisfy the progress requirement, since it requires 
strict alternation of processes in the execution of the critical section. For 
example, if t u r n  == 0 and PI is ready to enter its critical section, PI cannot 
do so, even though Po may be in its remainder section. 

7.2.1.2 Algorithm 2 

The problem with algorithm 1 is that it does not retain sufficient information 
about the state of each process; it remembers only which process is allowed to 
enter its critical section. To remedy this problem, we can replace the variable 
turn  with the following array: 

boolean f l a g  C21 ; 

The elements of the array are initialized to false. If f l a g  [il is t rue ,  this value 
indicates that Pi is ready to enter the critical section. The structure of process Pi 
is shown in Figure 7.3. 

In this algorithm, process Pi first sets f l a g  [il to be t rue,  signaling that it 
is ready to enter its critical section. Then, Pi checks to verify that process Pi is 
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do { 

while ( f l a g [ j l ) ;  

critical section 

f l a g [ i l  = f a l s e ;  

remainder section 

) while (1); 

Figure 7.3 The structure of process Pi in algorithm 2. 

not also ready to enter its critical section. If Pi were ready, then Pi would wait 
until Pi had indicated that it no longer needed to be in the critical section (that 
is, until f l a g  [ j I was false) .  At this point, Pi would enter the critical section. 
On exiting the critical section, Pi would set f l a g  [ i l  to be fa lse ,  allowing the 
other process (if it is waiting) to enter its critical section. 

In this solution, the mutual-exclusion requirement is satisfied. Unfortu- 
nately, the progress requirement is not met. To illustrate this problem, we 
consider the following execution sequence: 

To: Po sets f l a g  [OI = t r u e  
TI: P1setsflagCll = t r u e  

Now Po and PI are looping forever in their respective while statements. 
This algorithm is crucially dependent on the exact timing of the two pro- 

cesses. The sequence could have been derived in an environment where there 
are several processors executing concurrently, or where an interrupt (such as a 
timer interrupt) occurs immediately after step To is executed, and the CPU is 
switched from one process to another. 

Note that switching the order of the instructions for setting f l a g  [il, and 
testing the value of a f l a g  [j] , will not solve our problem. Rather, we will have 
a situation where it is possible for both processes to be in the critical section at 
the same time, violating the mutual-exclusion requirement. 

7.2.1.3 Algorithm 3 

By combining the key ideas of algorithm 1 and algorithm 2, we obtain a correct 
solution to the critical-section problem, where all three requirements are met. 
The processes share two variables: 

boolean f l a g  [21; 
i n t  tu rn ;  
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Initially f l a g  [O] = f l a g  [I] = f a l s e ,  and the value of t u r n  is immaterial (but 
is either 0 or 1). The structure of process Pi is shown in Figure 7.4. 

To enter the critical section, process Pi first sets f l a g  [il to be t r u e  and 
then sets t u r n  to the value j, thereby asserting that if the other process wishes 
to enter the critical section it can do so. If both processes try to enter at the 
same time, t u r n  will be set to both i and j at roughly the same time. Only 
one of these assignments will last; the other will occur, but will be overwritten 
immediately. The eventual value of t u r n  decides which of the two processes is 
allowed to enter its critical section first. 

We now prove that this solution is correct. We need to show that: 

1. Mutual exclusion is preserved, 

2. The progress requirement is satisfied, 

3. The bounded-waiting requirement is met. 

To prove property 1, we note that each P, enters its critical section only 
if either f l a g  [ j l  == f a l s e  or t u r n  == i. Also note that, if both processes 
can be executing in their critical sections at the same time, then f l a g  COI == 
f l a g  [ll == t rue .  These two observations imply that Po and PI could not 
have successfully executed their while statements at about the same time, since 
the value of t u r n  can be either 0 or 1, but cannot be both. Hence, one of 
the processes-say Pj-must have successfully executed the while statement, 
whereas Pi had to execute at least one additional statement ("turn == j"). 
However, since, at that time, f l a g  Cjl == t rue,  and t u r n  == j, and this 
condition will persist as long as Pi is in its critical section, the result follows: 
Mutual exclusion is preserved. 

critical section 

I flagCi1 = f a l s e ;  1 
remainder section 

) while (1); 

Figure 7.4 The structure of process Pi in algorithm 3. 
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To prove properties 2 and 3, we note that a process Pi can be prevented 
from entering the critical section only if it is stuck in the while loop with the 
condition f l a g  [ j1 == t r u e  and tu rn  == j; this loop is the only one. If Pi is not 
ready to enter the critical section, then f l a g  [ j I == f a l s e  and Pi can enter its 
critical section. If Pi has set f l a g  C jl to t r u e  and is also executing in its while 
statement, then either tu rn  == i or tu rn  == j. If t u rn  == i ,  then Pi will enter 
the critical section. If t u rn  == j, then Pi will enter the critical section. However, 
once Pi exits its critical section, it will reset f l a g  [ j l  to fa lse ,  allowing Pi to 
enter its critical section. If Pi resets f l a g  [ j  1 to t rue,  it must also set tu rn  to i .  
Thus, since Pi does not change the value of the variable tu rn  while executing 
the while statement, Pi will enter the critical section (progress) after at most 
one entry by Pi (bounded waiting). 

7.2.2 Multiple-Process Solutions 
We have seen that algorithm 3 solves the critical-section problem for two 
processes. Now let us develop an algorithm for solving the critical-section 
problem for n processes. This algorithm is known as the bakery algorithm, and 
it is based on a scheduling algorithm commonly used in bakeries, ice-cream 
stores, deli counters, motor-vehicle registries, and other locations where order 
must be made out of chaos. This algorithm was developed for a distributed 
environment, but at this point we are concerned with only those aspects of the 
algorithm that pertain to a centralized environment. 

On entering the store, each customer receives a number. The customer with 
the lowest number is served next. Unfortunately, the bakery algorithm cannot 
guarantee that two processes (customers) do not receive the same number. In 
the case of a tie, the process with the lowest name is served first. That is, if 
Pi and Pi receive the same number and if i < j, then Pi is served first. Since 
process names are unique and totally ordered, our algorithm is completely 
deterministic, 

The common data structures are 

boolean choosing [nl ; 
i n t  number En1 ; 

Initially, these data structures are initialized to f a l s e  and 0, respectively. For 
convenience, we define the following notation: 

(a,b) < (c,d) if a < c or if a == c and b < d. 

a max(ao, ..., a,-l) is a number, k, such that k 2 ai for i = 0, ..., n - 1. 

The structure of process Pi, used in the bakery algorithm, is shown in Figure 7.5. 
To prove that the bakery algorithm is correct, we need first to show that, if 

Pi is in its critical section and Pk (k != i) has already chosen its number k != 0, 
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choosing[il = true; 
number [i] = max (number 101 , number [I], ... , number [n- 11 ) + 1; 
choosing [il = false ; 
for (j=O; j < n; j++) { 

while (choosing [ j] ) ; 
while ( (number [ j 1 != 0) && (number [j , j 1 < number [i , i] ) ) ; 

1 

critical section 

( number Cil = 0; I 

remainder section 

) while (1); 

Figure 7.5 The structure of process Pi in the bakery algorithm. 

then (number Cil , i) < (number [kl , k). The proof of this algorithm is left to 
you in Exercise 7.3. 

Given this result, it is now simple to show that mutual exclusion is 
observed. Indeed, consider Pi in its critical section and Pk trying to enter the 
Pk critical section. When process Pk executes the second while statement for 
j == i, it finds that 

numberCi1 != 0 

(number [il , i) < (number [kl , k). 

Thus, it continues looping in the while statement until Pi leaves the Pi 
critical section. 

If we wish to show that the progress and bounded-waiting requirements 
are preserved, and that the algorithm ensures fairness, it is sufficient to observe 
that the processes enter their critical section on a first-come, first-served basis. 

7.3 Synchronization Hardware 

As with other aspects of software, hardware features can make the program- 
ming task easier and improve system efficiency. In this section, we present 
some simple hardware instructions that are available on many systems, and 
show how they can be used effectively in solving the critical-section problem. 
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boolean TestAndSet(boo1ean &target) { 
boolean rv = target; 
target = true; 
return rv; 

1 

Figure 7.6 The definition of the TestAndSet instruction. 

The critical-section problem could be solved simply in a uniprocessor envi- 
ronment if we could forbid interrupts to occur while a shared variable is being 
modified. In this manner, we could be sure that the current sequence of instruc- 
tions would be allowed to execute in order without preemption. No other 
instructions would be run, so no unexpected modifications could be made to 
the shared variable. 

Unfortunately, this solution is not feasible in a multiprocessor environment. 
Disabling interrupts on a multiprocessor can be time-consuming, as the mes- 
sage is passed to all the processors. This message passing delays entry into 
each critical section, and system efficiency decreases. Also, consider the effect 
on a system's clock, if the clock is kept updated by interrupts. 

Many machines therefore provide special hardware instructions that allow 
us either to test and modify the content of a word, or to swap the contents 
of two words, atomically-that is, as one uninterruptible unit. We can use 
these special instructions to solve the critical-section problem in a relatively 
simple manner. Rather than discussing one specific instruction for one specific 
machine, let us abstract the main concepts behind these types of instructions. 

The TestAndSet instruction can be defined as shown in Figure 7.6. The 
important characteristic is that this instruction is executed atomically. Thus, if 
two TestAndSet instructions are executed simultaneously (each on a different 
CPU), they will be executed sequentially in some arbitrary order. 

[while (TestAndSet (lock)) ; 1 
critical section 

lock = false; 

remainder section 

} while (1); 

Figure 7.7 Mutual-exclusion implementation with Test AndSet. 
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void Swap(boo1ean &a,  boolean &b) { 
boolean temp = a ;  
a = b ;  
b = temp; 

1 

Figure 7.8 The definition of the Swap instruction. 

If the machine supports the TestAndSet instruction, then we can imple- 
ment mutual exclusion by declaring a Boolean variable lock ,  initialized to 
fa l se .  The structure of process Pi is shown in Figure 7.7. 

The Swap instruction, defined as shown in Figure 7.8, operates on the con- 
tents of two words; like the TestAndSet instruction, it is executed atomically. 

If the machine supports the Swap instruction, then mutual exclusion can 
be provided as follows. A global Boolean variable lock is declared and is 
initialized to f a l s e .  In addition, each process also has a local Boolean variable 
key. The structure of process Pi is shown in Figure 7.9. 

These algorithms do not satisfy the bounded-waiting requirement. We 
present an algorithm that uses the TestAndSet instruction in Figure 7.10. 
This algorithm satisfies all the critical-section requirements. The common data 
structures are 

boolean wait ing In] ; 
boolean lock;  

These data structures are initialized to f a l s e .  To prove that the mutual- 
exclusion requirement is met, we note that process Pi can enter its critical section 

while (key == t r u e )  

critical section 

remainder section 

} while (1); 

Figure 7.9 Mutual-exclusion implementation with the Swap instruction. 
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waiting [il = t r u e ;  
key = t r u e ;  
while (wai t ing[i l  && key) 

key = TestAndSet (lock) ; 

wai t ingr i l  = f a l s e ;  

critical section 

j = ( i + l )  % n;  
while ( ( j  !=  i )  && !wa i t i ng [ j l>  

j = ( j + l )  % n;  
i f  ( j  == i> 

lock = f a l s e ;  
e l s e  

waitingCj1 = f a l s e ;  

remainder section 

) while (1); 

Figure 7.10 Bounded-waiting mutual exclusion with TestAndSet. 

only if either waitingCi1 == f a l s e  or key == f a l s e .  The value of key 
can become f a l s e  only if the TestAndSet is executed. The first process to 
execute the TestAndSet will find key == f a l s e ;  all others must wait. The 
variable waitingEi1 can become f a l s e  only if another process leaves its 
critical section; only one waiting [i l  is set to f a l s e ,  maintaining the mutual- 
exclusion requirement. 

To prove the progress requirement is met, we note that the arguments 
presented for mutual exclusion also apply here, since a process exiting the 
critical section either sets lock to f a l s e ,  or sets waiting [ j l  to f a l s e .  Both 
allow a process that is waiting to enter its critical section to proceed. 

To prove the bounded-waiting requirement is met, we note that, when a 
process leaves its critical section, it scans the array waiting in the cyclic order- 
ing (i + 1, i + 2, ..., n - 1,O, ..., i - 1). It designates the first process in this ordering 
that is in the entry section (waiting [ jl == t r ue )  as the next one to enter the 
critical section. Any process waiting to enter its critical section will thus do 
so within n - 1 turns. Unfortunately for hardware designers, implementing 
atomic TestAndSet instructions on multiprocessors is not a trivial task. Such 
implementations are discussed in books on computer architecture. 
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7.4 . Semaphores 

The solutions to the critical-section problem presented in Section 7.3 are not 
easy to generalize to more complex problems. To overcome this difficulty, we 
can use a synchronization tool called a semaphore. A semaphore S is an integer 
variable that, apart from initialization, is accessed only through two standard 
atomic operations: wait and s igna l .  These operations were originally termed 
P (for wait; from the Dutch proberen, to test) and V (for signal; from verhogen, to 
increment). The classical definition of wait in pseudocode is 

wait(S) { 
while (S 5 0) 

; / /  no-op 
s--; 

1 

The classical definitions of s igna l  in pseudocode is 

Modifications to the integer value of the semaphore in the wait and s ig-  
nal operations must be executed indivisibly. That is, when one process mod- 
ifies the semaphore value, no other process can simultaneously modify that 
same semaphore value. In addition, in the case of the wait (S), the testing of 
the integer value of S (S 5 O), and its possible modification (S--), must also 
be executed without interruption. We shall see how these operations can be 
implemented in Section 7.4.2; first, let us see how semaphores can be used. 

7.4.1 Usage 
We can use semaphores to deal with the n-process critical-section problem. 
The n processes share a semaphore, mutex (standing for mutual exclusion), 
initialized to 1. Each process Pi is organized as shown in Figure 7.11. 

We can also use semaphores to solve various synchronization problems. 
For example, consider two concurrently running processes: PI with a statement 
S1 and P2 with a statement S2. Suppose that we require that S2 be executed 
only after S1 has completed. We can implement this scheme readily by letting 
P1 and P2 share a common semaphore synch, initialized to 0, and by inserting 
the statements 

s1; 
s igna l  (synch) ; 



202 Chapter 7 Process Synchronization 

do { 

(wait (mutex) ; I 

critical section 

( signal (mutex) ; 1 
remainder section 

) while (1); 

Figure 7.11 Mutual-exclusion implementation with semaphores. 

in process PI, and the statements 

wait (synch) ; 
s2; 

in process P2. Because synch is initialized to 0, P2 will execute S2 only after PI 
has invoked signal (synch) , which is after S1. 

7.4.2 Implementation 
The main disadvantage of the mutual-exclusion solutions of Section 7.2, and 
of the semaphore definition given here, is that they all require busy waiting. 
While a process is in its critical section, any other process that tries to enter its 
critical section must loop continuously in the entry code. This continual looping 
is clearly a problem in a real multiprogramming system, where a single CPU is 
shared among many processes. Busy waiting wastes CPU cycles that some other 
process might be able to use productively. This type of semaphore is also called 
a spinlock (because the process "spins" while waiting for the lock). Spinlocks 
are useful in multiprocessor systems. The advantage of a spinlock is that no 
context switch is required when a process must wait on a lock, and a context 
switch may take considerable time. Thus, when locks are expected to be held 
for short times, spinlocks are useful. 

To overcome the need for busy waiting, we can modify the definition of 
the wait and signal semaphore operations. When a process executes the 
wait operation and finds that the semaphore value is not positive, it must 
wait. However, rather than busy waiting, the process can block itself. The block 
operation places a process into a waiting queue associated with the semaphore, 
and the state of the process is switched to the waiting state. Then, control is 
transferred to the CPU scheduler, which selects another process to execute. 

A process that is blocked, waiting on a semaphore S ,  should be restarted 
when some other process executes a signal operation. The process is restarted 
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by a wakeup operation, which changes the process from the waiting state to 
the ready state. The process is then placed in the ready queue. (The CPU may 
or may not be switched from the running process to the newly ready process, 
depending on the CPU-scheduling algorithm.) 

To implement semaphores under this definition, we define a semaphore as 
a "C" struct: 

typedef struct { 
int value ; 
struct process *L; 

) semaphore; 

Each semaphore has an integer value and a list of processes. When a process 
must wait on a semaphore, it is added to the list of processes. A signal 
operation removes one process from the list of waiting processes and awakens 
that process. 

The wait semaphore operation can now be defined as 

void wait(semaphore S) { 
S.value--; 
if (S.value < 0) { 

add this process to S . L; 
block0 ; 

} 
1 

The signal semaphore operation can now be defined as 

void signal(semaphore S) { 
S.value++; 
if (S.value <= 0) { 

remove a process P from S . L ; 
wakeup (PI ; 

1 
1 

The block operation suspends the process that invokes it. The wakeup(P1 
operation resumes the execution of a blocked process P. These two operations 
are provided by the operating system as basic system calls. 

Note that, although under the classical definition of semaphores with busy 
waiting the semaphore value is never negative, this implementation may have 
negative semaphore values. If the semaphore value is negative, its magnitude 
is the number of processes waiting on that semaphore. This fact is a result of 
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the switching of the order of the decrement and the test in the implementation 
of the wait operation. The list of waiting processes can be easily implemented 
by a link field in each process control block (PCB). Each semaphore contains 
an integer value and a pointer to a list of PCBs. One way to add and remove 
processes from the list, that ensures bounded waiting would be to use a FIFO 
queue, where the semaphore contains both head and tail pointers to the queue. 
In general, however, the Iist may use any queueing strategy. Correct usage 
of semaphores does not depend on a particular queueing strategy for the 
semaphore lists. 

The critical aspect of semaphores is that they are executed atomically. We 
must guarantee that no two processes can execute wait and s ignal  operations 
on the same semaphore at the same time. This situation is a critical-section 
problem, and can be solved in either of two ways. 

In a uniprocessor environment (that is, where only one CPU exists), we 
can simply inhibit interrupts during the time the wait and s ignal  operations 
are executing. This scheme works in a uniprocessor environment because, 
once interrupts are inhibited, instructions from different processes cannot be 
interleaved. Only the currently running process executes, until interrupts are 
reenabled and the scheduler can regain control. 

In a multiprocessor environment, inhibiting interrupts does not work. 
Instructions from different processes (running on different processors) may be 
interleaved in some arbitrary way. If the hardware does not provide any special 
instructions, we can employ any of the correct software solutions for the critical- 
section problem (Section 7.2), where the critical sections consist of the wait and 
s ignal  procedures. 

It is important to admit that we have not completely eliminated busy 
waiting with this definition of the wait and s ignal  operations. Rather, we 
have removed busy waiting from the entry to the critical sections of application 
programs. Furthermore, we have limited busy waiting to only the critical 
sections of the wait and s ignal  operations, and these sections are short (if 
properly coded, they should be no more than about 10 instructions). Thus, the 
critical section is almost never occupied, and busy waiting occurs rarely, and 
then for only a short time. An entirely different situation exists with application 
programs whose critical sections may be long (minutes or even hours) or may 
be almost always occupied. In this case, busy waiting is extremely inefficient. 

7.4.3 Deadlocks and Starvation 
The implementation of a semaphore with a waiting queue may result in a 
situation where two or more processes are waiting indefinitely for an event that 
can be caused only by one of the waiting processes. The event in question is the 
execution of a s ignal  operation. When such a state is reached, these processes 
are said to be deadlocked. 
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To illustrate this, we consider a system consisting of two processes, Po and 
PI, each accessing two semaphores, S and Q, set to the value 1: 

w a i t  (S) ; w a i t  (4) ; 
wait (Q) ; wait (S) ; 

s igna l  (S) ; s igna l (Q1;  
s igna l  (Q) ; s igna l  (S) ; 

Suppose that Po executes wait (S) , and then P1 executes wait (Q) . When 
Po executes wait (41, it must wait until PI executes s igna l  (4). Similarly, 
when P1 executes wait (S), it must wait until Po executes s igna l  (S) . Since 
these s igna l  operations cannot be executed, Po and P1 are deadlocked. 

We say that a set of processes is in a deadlock state when every process in 
the set is waiting for an event that can be caused only by another process in the 
set. The events with which we are mainly concerned here are resource acquisition 
and release. However, other types of events may result in deadlocks, as we shall 
show in Chapter 8. In that chapter, we shall describe various mechanisms for 
dealing with the deadlock problem. 

Another problem related to deadlocks is indefinite blocking or starvation, 
a situation where processes wait indefinitely within the semaphore. Indefinite 
blocking may occur if we add and remove processes from the list associated 
with a semaphore in LIFO order. 

7.4.4 Binary Semaphores 
The semaphore construct described in the previous sections is commonly 
known as a counting semaphore, since its integer value can range over an 
unrestricted domain. A binary semaphore is a semaphore with an integer 
value that can range only between 0 and 1. A binary semaphore can be sim- 
pler to implement than a counting semaphore, depending on the underlying 
hardware architecture. We will now show how a counting semaphore can be 
implemented using binary semaphores. 

Let S be a counting semaphore. To implement it in terms of binary 
semaphores we need the following data structures: 

binary-semaphore S1, S2; 
i n t  C; 

Initially S1 = 1, S2 = 0, and the value of integer C is set to the initial value 
of the counting semaphore S. 
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The wait operation on the counting semaphore S can be implemented as 
follows: 

wait (S1) ; 
c--; 
i f  (C < 0) { 

s igna l (S1)  ; 
wait (S2) ; 

The s i g n a l  operation on the counting semaphore S can be implemented 
as follows: 

w a i t  (S1) ; 
C++ ; 
i f  (C <= 0) 

s i g n a l  (S2) ; 
e l s e  

s i g n a l  (S1) ; 

7.5 . Classic Problems of Synchronization 

In this section, we present a number of different synchronization problems as 
examples for a large class of concurrency-control problems. These problems 
are used for testing nearly every newly proposed synchronization scheme. 
Semaphores are used for synchronization in our solutions. 

7.5.1 The Bounded-Buffer Problem 
The bounded-buffer problem was introduced in Section 7.1; it is commonly used 
to illustrate the power of synchronization primitives. We present here a gen- 
eral structure of this scheme, without committing ourselves to any particular 
implementation. We assume that the pool consists of n buffers, each capable 
of holding one item. The mutex semaphore provides mutual exclusion for 
accesses to the buffer pool and is initialized to the value 1. The empty and 
full semaphores count the number of empty and full buffers, respectively. The 
semaphore empty is initialized to the value n; the semaphore f u l l  is initialized 
to the value 0. 

The code for the producer process is shown in Figure 7.12; the code for 
the consumer process is shown in Figure 7.13. Note the symmetry between 
the producer and the consumer. We can interpret this code as the producer 
producing full buffers for the consumer, or as the consumer producing empty 
buffers for the producer. 
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... 
produce an item in nextp 

... 
wait (empty) ; 
wait (mutex) ; 

... 
add nextp to buffer 

. . . 
signal(mutex1; 
signal (full) ; 

) while (1); 

Figure 7.12 The structure of the producer process. 

7.5.2 The Readers- Writers Problem 
A data object (such as a file or record) is to be shared among several concurrent 
processes. Some of these processes may want only to read the content of 
the shared object, whereas others may want to update (that is, to read and 
write) the shared object. We distinguish between these two types of processes 
by referring to those processes that are interested in only reading as readers, 
and to the rest as writers. Obviously, if two readers access the shared data 
object simultaneously, no adverse effects will result. However, if a writer 
and some other process (either a reader or a writer) access the shared object 
simultaneously, chaos may ensue. 

To ensure that these difficulties do not arise, we require that the writers 
have exclusive access to the shared object. This synchronization problem is 
referred to as the readers-writers problem. Since it was originally stated, it has 

do 
wait (full) ; 
wait (mutex) ; 

. . . 
remove an item from buffer to nextc 

... 
signal (mutex) ; 
signal (empty) ; 

... 
consume the item in nextc 

... 
) while (1); 

Figure 7.13 The structure of the consumer process. 
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wait (wrt) ; 
. . . 

writing is performed 

Figure 7.14 The structure of a writer process. 

been used to test nearly every new synchronization primitive. The readers- 
writers problem has several variations, all involving priorities. The simplest 
one, referred to as the first readers-writers problem, requires that no reader 
will be kept waiting unless a writer has already obtained permission to use 
the shared object. In other words, no reader should wait for other readers to 
finish simply because a writer is waiting. The second readers-writers problem 
requires that, once a writer is ready, that writer performs its write as soon as 
possible. In other words, if a writer is waiting to access the object, no new 
readers may start reading. 

A solution to either problem may result in starvation. In the first case, 
writers may starve; in the second case, readers may starve. For this reason, 
other variants of the problem have been proposed. In this section, we present 
a solution to the first readers-writers problem. Refer to the Bibliographical 
Notes for relevant references on starvation-free solutions to the readers-writers 
problem. 

In the solution to the first readers-writers problem, the reader processes 
share the following data structures: 

semaphore mutex, wrt ;  
i n t  readcount; 

The semaphores mutex and w r t  are initialized to 1; readcount is ini- 
tialized to 0. The semaphore w r t  is common to both the reader and writer 
processes. The mutex semaphore is used to ensure mutual exclusion when the 
variable readcount is updated. The readcount variable keeps track of how 
many processes are currently reading the object. The semaphore w r t  functions 
as a mutual-exclusion semaphore for the writers. It is also used by the first or 
last reader that enters or exits the critical section. It is not used by readers who 
enter or exit while other readers are in their critical sections. 

The code for a writer process is shown in Figure 7.14; the code for a reader 
process is shown in Figure 7.15. Note that, if a writer is in the critical section 
and n readers are waiting, then one reader is queued on w r t ,  and n - 1 readers 
are queued on mutex. Also observe that, when a writer executes s igna l  (wrt), 
we may resume the execution of either the waiting readers or a single waiting 
writer. The selection is made by the scheduler. 
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wait (mutex) ; 
readcount++; 
if (readcount == 1) 

wait (wrt) ; 
signal (mutex) ; 

. . . 
reading is performed 
... 

wait (mutex) ; 
readcount--; 
if (readcount == 0 )  

signal(wrt1; 
signal (mutex) ; 

Figure 7.15 The structure of a reader process. 

7.5.3 The Dining-Philosophers Problem 
Consider five philosophers who spend their lives thinking and eating. The 
philosophers share a common circular table surrounded by five chairs, each 
belonging to one philosopher. In the center of the table is a bowl of rice, and 
the table is laid with five single chopsticks (Figure 7.16). When a philosopher 
thinks, she does not interact with her colleagues. From time to time, a philoso- 
pher gets hungry and tries to pick up the two chopsticks that are closest to 
her (the chopsticks that are between her and her left and right neighbors). A 
philosopher may pick up only one chopstick at a time. Obviously, she cannot 
pick up a chopstick that is already in the hand of a neighbor. When a hungry 
philosopher has both her chopsticks at the same time, she eats without releas- 

Figure 7.16 The situation of the dining philosophers. 
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do { 
wait (chopstickCi1) ; 
wait (chopstickC(i+l) % 51 ) ; 

... 
eat 
. . . 

signal (chopstick [ill ; 
signal(chopstickC(i+l) % 51 ) ; 

. . . 
think 
... 

) while (1); 

Figure 7.17 The structure of philosopher i. 

ing her chopsticks. When she is finished eating, she puts down both of her 
chopsticks and starts thinking again. 

The dining-philosophers problem is considered a classic synchronization 
problem, neither because of its practical importance nor because computer 
scientists dislike philosophers, but because it is an example of a large class of 
concurrency-control problems. It is a simple representation of the need to allo- 
cate several resources among several processes in a deadlock- and starvation- 
free manner. 

One simple solution is to represent each chopstick by a semaphore. A 
philosopher tries to grab the chopstick by executing a wait operation on that 
semaphore; she releases her chopsticks by executing the signal operation on 
the appropriate semaphores. Thus, the shared data are 

semaphore chopstick 151 ; 

where all the elements of chopstick are initialized to 1. The structure of 
philosopher i is shown in Figure 7.17. 

Although this solution guarantees that no two neighbors are eating simulta- 
neously, it nevertheless must be rejected because it has the possibility of creating 
a deadlock. Suppose that all five philosophers become hungry simultaneously, 
and each grabs her left chopstick. All the elements of chopstick will now be 
equal to 0. When each philosopher tries to grab her right chopstick, she will be 
delayed forever. 

Several possible remedies to the deadlock problem are listed next. In 
Section 7.7, we present a solution to the dining-philosophers problem that 
ensures freedom from deadlocks. 

Allow at most four philosophers to be sitting simultaneously at the table. 

Allow a philosopher to pick up her chopsticks only if both chopsticks are 
available (to do this she must pick them up in a critical section). 



7.6 Critical Regions 211 

Use an asymmetric solution; that is, an odd philosopher picks up first her 
left chopstick and then her right chopstick, whereas an even philosopher 
picks up her right chopstick and then her left chopstick. 

Finally, any satisfactory solution to the dining-philosophers problem must 
guard against the possibility that one of the philosophers will starve to death. 
A deadlock-free solution does not necessarily eliminate the possibility of star- 
vation. 

7.6 Critical Regions 

Although semaphores provide a convenient and effective mechanism for pro- 
cess synchronization, their incorrect use can still result in timing errors that are 
difficult to detect, since these errors happen only if some particular execution 
sequences take place, and these sequences do not always occur. 

We have seen an example of such types of errors in the use of counters in 
our solution to the producer-consumer problem (Section 7.1). In that example, 
the timing problem happened only rarely, and even then the counter value 
appeared to be a reasonable value-off by only 1. Nevertheless, this solution 
is obviously not an acceptable one. It is for this reason that semaphores were 
introduced in the first place. 

Unfortunately, such timing errors can still occur with the use of 
semaphores. To illustrate how, let us review the solution to the critical-section 
problem using semaphores. All processes share a semaphore variable mutex, 
which is initialized to 1. Each process must execute wait (mutex) before 
entering the critical section, and signal (mutex) afterward. If this sequence is 
not observed, two processes may be in their critical sections simultaneously. 

Let us examine the various difficulties that may result. Note that these 
difficulties will arise if even a single process is not well behaved. This situation 
may be the result of an honest programming error or of an uncooperative 
programmer. 

Suppose that a process interchanges the order in which the wait and 
signal operations on the semaphore mutex are executed, resulting in the 
following execution: 

signal (muted ; 
... 

critical section 
. . . 

wait (mutex) ; 

In this situation, several processes may be executing in their critical sec- 
tion simultaneously, violating the mutual-exclusion requirement. This error 
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may be discovered only if several processes are simultaneously active in 
their critical sections. Note that this situation may not always be repro- 
ducible. 

Suppose that a process replaces s igna l  (mutex) with w a i t  (mutex) . That 
is, it executes 

. . . 
critical section 

. . . 
wait (mutex) ; 

In this case, a deadlock will occur. 

Suppose that a process omits the wait (mutex), or the signal(mutex1, 
or both. In this case, either mutual exclusion is violated or a deadlock will 
occur. 

These examples illustrate that various types of errors can be generated eas- 
ily when semaphores are used incorrectly to solve the critical-section problem. 
Similar problems may arise in the other synchronization models we discussed 
in Section 7.5. 

To deal with the type of errors we have outlined, a number of high-level 
language constructs have been introduced. In this section, we describe one fun- 
damental high-level synchronization construct- the critical region (sometimes 
referred to as conditional critical region). In Section 7.7, we present another 
fundamental synchronization construct-the monitor. In our presentation of 
these two constructs, we assume that a process consists of some local data, and a 
sequential program that can operate on the data. The local data can be accessed 
by only the sequential program that is encapsulated within the same process. 
That is, one process cannot directly access the local data of another process. 
Processes can, however, share global data. 

The critical-region high-level language synchronization construct requires 
that a variable v of type T, which is to be shared among many processes, be 
declared as 

v: shared T; 

The variable v can be accessed only inside a region statement of the following 
form: 

region v when B do S; 

This construct means that, while statement S is being executed, no other 
process can access the variable v. The expression B is a Boolean expression 
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that governs the access to the critical region. When a process tries to enter the 
critical-section region, the Boolean expression B is evaluated. If the expression 
is true, statement S is executed. If it is false, the process relinquishes the 
mutual exclusion and is delayed until B becomes true and no other process is 
in the region associated with v. Thus, if the two statements, 

region v when (true) S1; 
region v when (true) S2; 

are executed concurrently in distinct sequential processes, the result will be 
equivalent to the sequential execution "S1 followed by S2" or "S2 followed by 
Sl." 

The critical-region construct guards against certain simple errors associated 
with the semaphore solution to the critical-section problem that may be made 
by a programmer. Note that it does not necessarily eliminate all synchroniza- 
tion errors; rather, it reduces their number. If errors occur in the logic of the 
program, reproducing a particular sequence of events may not be simple. 

The critical-region construct can be effectively used to solve certain general 
synchronization problems. To illustrate, let us code the bounded-buffer scheme. 
The buffer space and its pointers are encapsulated in 

struct buffer { 
item pool [nl ; 
int count, in, out; 

1; 

The producer process inserts a new item nextp into the shared buffer by 
executing 

region buffer when (count < n) { 
pool [in] = nextp; 
in = (in+l) % n; 
count++ ; 

} 

The consumer process removes an item from the shared buffer and puts it 
in nextc by executing 

region buffer when (count > 0 )  { 
nextc = pool[outl ; 
out = (out+l) % n; 
count-- ; 

1 
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Let us illustrate how the conditional critical region could be implemented 
by a compiler. With each shared variable, the following variables are associated: 

semaphore mutex, first-delay, second-delay; 
int first-count, second-count; 

The semaphore mutex is initialized to 1; the semaphores f irst-delay 
and second-delay are initialized to 0. The integers first -count and sec- 
ond-count are initialized to 0. 

Mutually exclusive access to the critical section is provided by mutex. If 
a process cannot enter the critical section because the Boolean condition B is 
false, it initially waits on the f irst-delay semaphore. A process waiting 
on the first -delay semaphore is eventually moved to the second-delay 
semaphore before it is allowed to reevaluate its Boolean condition B. We keep 
track of the number of processes waiting on first -delay and second-delay, 
with f irst-count and second-count respectively. 

wait (mutex) ; 
while (!B) { 
f irst-count++; 
if (second-count > 0) 

signal (second-delay) ; 
else 

signal (mutex) ; 
wait (f irst-delay) ; 
f irst-count--; 
second-count++ ; 
if (first-count > 0) 

signal (f irst-delay) ; 
else 

signal(second-delay); 
wait (second-delay) ; 
second-count-- ; 

if (f irst-count > 0) 
signal (f irst-delay) ; 

else if (second-count > 0) 
signal (second-delay) ; 

else 
signal(mutex1; 

Figure 7.18 Implementation of the conditional-region construct. 
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When a process leaves the critical section, it may have changed the value 
of some Boolean condition B that prevented another process from entering the 
critical section. Accordingly, we must trace through the queue of processes 
waiting on f irst-delay and second-delay (in that order) allowing each 
process to test its Boolean condition. When a process tests its Boolean condition 
(during this trace), it may discover that the latter now evaluates to the value 
true. In this case, the process enters its critical section. Otherwise, the 
process must wait again on the f irst-delay and second-delay semaphores, 
as described previously. Accordingly, for a shared variable x, the statement 

region x when (B) S; 

can be implemented as shown in Figure 7.18. Note that this implementation 
requires the reevaluation of the expression B for any waiting processes every 
time a process leaves the critical region. If several processes are delayed waiting 
for their respective Boolean expressions to become true, this reevaluation 
overhead may result in inefficient code. We can use various optimization 
methods to reduce this overhead. Refer to the Bibliographical Notes for relevant 
references. 

monitor monitor-name 

shared variable declarations 

procedure body P1 ( . . .  
. . . 

) {  

} 
procedure body P2 ( . . .  { 

procedure body Pn ( . . .  { 

{ 
initialization code 

1 
1 

Figure 7.19 Syntax of a monitor. 
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7.7 rn Monitors 

Another high-level synchronization construct is the monitor type. A monitor 
is characterized by a set of programmer-defined operators. The representation 
of a monitor type consists of declarations of variables whose values define the 
state of an instance of the type, as well as the bodies of procedures or functions 
that implement operations on the type. The syntax of a monitor is shown in 
Figure 7.19. 

The representation of a monitor type cannot be used directly by the var- 
ious processes. Thus, a procedure defined within a monitor can access only 
those variables declared locally within the monitor and its formal parameters. 
Similarly, the local variables of a monitor can be accessed by only the local 
procedures. 

The monitor construct ensures that only one process at a time can be active 
within the monitor. Consequently, the programmer does not need to code 
this synchronization constraint explicitly (Figure 7.20). However, the monitor 
construct, as defined so far, is not sufficiently powerful for modeling some 
synchronization schemes. For this purpose, we need to define additional syn- 
chronization mechanisms. These mechanisms are provided by the cond i t ion  

operations \-1 
Figure 7.20 Schematic view of a monitor. 
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construct. A programmer who needs to write her own tailor-made synchro- 
nization scheme can define one or more variables of type condition: 

condition x, y; 

The only operations that can be invoked on a condition variable are wait 
and signal. The operation 

means that the process invoking this operation is suspended until another 
process invokes 

The x . signal (1 operation resumes exactly one suspended process. If no 
process is suspended, then the signal operation has no effect; that is, the state 
of x is as though the operation were never executed (Figure 7.21). Contrast 
this operation with the signal operation associated with semaphores, which 
always affects the state of the semaphore. 

Now suppose that, when the x . signal () operation is invoked by a pro- 
cess P, there is a suspended process Q associated with condition x. Clearly, if the 

operations 

Figure 7.21 Monitor with condition variables. 
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suspended process Q is allowed to resume its execution, the signaling process 
P must wait. Otherwise, both P and Q will be active simultaneously within the 
monitor. Note, however, that both processes can conceptually continue with 
their execution. Two possibilities exist: 

1. P either waits until Q leaves the monitor, or waits for another condition. 

2. Q either waits until P leaves the monitor, or waits for another condition. 

There are reasonable arguments in favor of adopting either option 1 or 
option 2. Since P was already executing in the monitor, choice 2 seems more 
reasonable. However, if we allow process P to continue, the "logical" condition 
for which Q was waiting may no longer hold by the time Q is resumed. 

Choice 1 was advocated by Hoare, mainly because the preceding argument 
in favor of it translates directly to simpler and more elegant proof rules. A com- 
promise between these two choices was adopted in the language Concurrent 
C. When process P executes the signal operation, process Q is immediately 
resumed. This model is less powerful than Hoare's, because a process cannot 
signal more than once during a single procedure call. 

Let us illustrate these concepts by presenting a deadlock-free solution to 
the dining-philosophers problem. Recall that a philosopher is allowed to pick 
up her chopsticks only if both of them are available. To code this solution, we 
need to distinguish among three states in which a philosopher may be. For this 
purpose, we introduce the following data structure: 

enum {thinking, hungry, eating) state [51 ; 

Philosopher i can set the variable state [il = eating only if her 
two neighbors are not eating: (state [(i+4) % 51 ! = eating) and 
(state[(i+l) % 51 !=  eating). 

We also need to declare 

condition self C51 ; 

where philosopher i can delay herself when she is hungry, but is unable to 
obtain the chopsticks she needs. 

We are now in a position to describe our solution to the dining-philosopher 
problem. The distribution of the chopsticks is controlled by the monitor dp, 
whose definition is shown in Figure 7.22. Each philosopher, before starting 
to eat, must invoke the operation pickup. This may result in the suspension 
of the philosopher process. After the successful completion of the operation, 
the philosopher may eat. Following this, the philosopher invokes the put- 
down operation, and may start to think. Thus, philosopher i must invoke the 
operations pickup and putdown in the following sequence: 
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monitor dp 

enum {thinking, hungry, eating) state [51 ; 
condition self [51 ; 

void pickup(int i) { 
state [i] = hungry; 
test (i) ; 
if (state [i] ! = eating) 

self [i] .wait 0 ; 
} 

void putdown(int i) { 
state [i] = thinking; 
test((i + 4) % 5) ; 
test((i + 1) % 5) ; 

} 

void test(int i) { 
if ((state[(i + 4) % 51 != eating) && 

(state[i] == hungry) && 
(state[(i + 1) % 51 != eating)) { 

stateri] = eating; 
self [i] . signal 0 ; 

void init () { 
for (int i = 0 ;  i < 5; i++) 

state [iJ = thinking; 

} 

Figure 7.22 A monitor solution to the dining-philosopher problem. 

dp .pickup(i) ; 
... 
eat 

It is easy to show that this solution ensures that no two neighbors are eating 
simultaneously, and that no deadlocks will occur. We note, however, that 
it is possible for a philosopher to starve to death. We shall not present a 
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solution to this problem, but rather shall leave it as an exercise for you. We 
shall now consider a possible implementation of the monitor mechanism using 
semaphores. For each monitor, a semaphore mut ex (initialized to 1) is provided. 
A process must execute wait (mutex) before entering the monitor, and must 
execute s igna l  (mutex) after leaving the monitor. 

Since a signaling process must wait until the resumed process either leaves 
or waits, an additional semaphore, next, is introduced, initialized to 0, on 
which the signaling processes may suspend themselves. An integer variable 
next-count will also be provided to count the number of processes suspended 
on next. Thus, each external procedure F will be replaced by 

wait (mutex) ; 
... 

body of F 
... 

if (next-count > 0) 
s igna l  (next) ; 

e l s e  
s igna l  (muted ; 

Mutual exclusion within a monitor is ensured. 
We can now describe how condition variables are implemented. For each 

condition x, we introduce a semaphore x-sem and an integer variable x-count , 
both initialized to 0. The operation x .  wait can now be implemented as 

x-count++ ; 
i f  (next-count > 0) 

s i g n a l h e x t ) ;  
e l s e  

s igna l  (mut ex) ; 
wait (x-sem) ; 
x-count-- ; 

The operation x . s igna l  (1 can be implemented as 

i f  (x-count > 0) { 
next -count++ ; 
s igna l  (x-sem) ; 
wait (next) ; 
next -count -- ; 

1 

This implementation is applicable to the definitions of monitors given by 
both Hoare and Brinch-Hansen. In some cases, however, the generality of the 
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implementation is unnecessary, and a significant improvement in efficiency is 
possible. We leave this problem to you in Exercise 7.13. 

We turn now to the subject of process-resumption order within a monitor. If 
several processes are suspended on condition x, and an x.signa1 operation is 
executed by some process, then how do we determine which of the suspended 
processes should be resumed next? One simple solution is to use a FCFS 
ordering, so that the process waiting the longest is resumed first. In many 
circumstances, however, such a simple scheduling scheme is not adequate. For 
this purpose, the conditional-wait construct can be used; it has the form 

where c is an integer expression that is evaluated when the wait operation is 
executed. The value of c, which is called a priority number, is then stored 
with the name of the process that is suspended. When x. signal is executed, 
the process with the smallest associated priority number is resumed next. 

To illustrate this new mechanism, we consider the monitor shown in Fig- 
ure 7.23, which controls the allocation of a single resource among competing 
processes. Each process, when requesting an allocation of its resources, speci- 
fies the maximum time it plans to use the resource. The monitor allocates the 
resource to that process that has the shortest time-allocation request. 

A process that needs to access the resource in question must observe the 
following sequence: 

monitor ResourceAllocation 

boolean busy; 
condition x; 

void acquire(int time) { 
if (busy) 

x. wait (time) ; 
busy = true; 

1 

void release() { 
busy = false; 
x. signal0 ; 

} 
void init 0 { 

busy = false; 
1 

1 

Figure 7.23 A monitor to allocate a single resource. 
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R. acquire (t) ; 
... 

access the resource; 
. . . 

R. release 0 ; 

where R is an instance of type ResourceAllocation. 
Unfortunately, the monitor concept cannot guarantee that the preceding 

access sequences will be observed. In particular, 

A process might access the resource without first gaining access permission 
to that resource. 

A process might never release the resource once it has been granted access 
to that resource. 

A process might attempt to release a resource that it never requested. 

A process might request the same resource twice (without first releasing 
that resource). 

The same difficulties are encountered with the critical section construct, and 
these difficulties are similar in nature to those that encouraged us to develop 
the critical-region and monitor constructs in the first place. Previously, we had 
to worry about the correct use of semaphores. Now, we have to worry about 
the correct use of higher-level programmer-defined operations, with which the 
compiler can no longer assist us. 

One possible solution to the above problem is to include the resource- 
access operations within the ResourceAllocation monitor. However, this 
solution will result in scheduling being done according to the built-in monitor- 
scheduling algorithm, rather than by the one we have coded. 

To ensure that the processes observe the appropriate sequences, we must 
inspect all the programs that make use of the ResourceAllocation monitor 
and its managed resource. There are two conditions that we must check to 
establish the correctness of this system. First, user processes must always make 
their calls on the monitor in a correct sequence. Second, we must be sure that 
an uncooperative process does not simply ignore the mutual-exclusion gateway 
provided by the monitor and try to access the shared resource directly, without 
using the access protocols. Only if these two conditions can be ensured can 
we guarantee that no time-dependent errors will occur, and that the scheduling 
algorithm will not be defeated. 

Although this inspection may be possible for a small, static system, it is 
not reasonable for a large system or for a dynamic system. This access-control 
problem can be solved only by additional mechanisms that will be elaborated 
in Chapter 18. 
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7.8 . OS Synchronization 

We next describe the synchronization mechanisms provided by the Solaris and 
Windows 2000 operating systems. 

7.8.1 Synchronization in Solaris 2 

The Solaris 2 operating system was designed to provide real-time computing, 
be multithreaded, and support multiple processors. To control access to critical 
sections, Solaris 2 provides adaptive mutexes, condition variables, semaphores, 
reader-writer locks, and turnstiles. Solaris 2 implements semaphores and con- 
dition variables in the same way as they have been fundamentally presented in 
Sections 7.4 and 7.7. In this section we describe the adaptive mutexes, reader- 
writer locks, and turnstiles. 

An adaptive mutex protects access to every critical data item. On a mul- 
tiprocessor system, an adaptive mutex starts as a standard semaphore imple- 
mented as a spinlock. If the data are locked and therefore already in use, the 
adaptive mutex does one of two things. If the lock is held by a thread that is 
currently running on another CPU, the thread spins while waiting for the lock 
to become available because the thread holding the lock is likely to be done 
soon. If the thread holding the lock is not currently in run state, the thread 
blocks, going to sleep until it is awakened by the lock being released. It is put to 
sleep so that it will avoid spinning when the lock will not be freed reasonably 
quickly. A lock held by a sleeping thread is likely to be in this category. On a 
uniprocessor system, the thread holding the lock is never running if the lock 
is being tested by another thread, because only one thread can run at a time. 
Therefore, on a uniprocessor system, threads always sleep rather than spin if 
they encounter a lock. We use the adaptive-mutex method to protect only those 
data that are accessed by short code segments. That is, a mutex is used if a lock 
will be held for less than a few hundred instructions. If the code segment is 
longer than that, spin waiting will be exceedingly inefficient. For longer code 
segments, condition variables and semaphores are used. If the desired lock is 
already held, the thread issues a wait and sleeps. When a thread frees the lock, it 
issues a signal to the next sleeping thread in the queue. The extra cost of putting 
a thread to sleep and waking it, and of the associated context switches, is less 
than the cost of wasting several hundred instructions waiting in a spinlock. 

The readers-writers locks are used to protect data that are accessed 
frequently, but usually only in a read-only manner. In these circumstances, 
readers-writers locks are more efficient than semaphores, because multiple 
threads may be reading data concurrently, whereas semaphores would always 
serialize access to the data. Readers-writers locks are relatively expensive to 
implement, so again they are used on only long sections of code. 

Solaris 2 uses turnstiles to order the list of threads waiting to acquire either 
an adaptive mutex or a reader-writer lock. A turnstile is a queue structure 
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containing threads blocked on a lock. For example, if one thread currently 
owns the lock for a synchronized object, all other threads trying to acquire 
the lock will block and enter the turnstile for that lock. When the lock is 
released, the kernel selects a thread from the turnstile as the next owner of 
the lock. Each synchronized object with at least one thread blocked on the 
object's lock requires a separate turnstile. However, rather than associating 
a turnstile with each synchronized object, Solaris 2 gives each kernel thread 
its own turnstile. The turnstile for the first thread to block on a synchronized 
object becomes the turnstile for the object itself. Subsequent threads blocking 
on the lock will be added to this turnstile. When the initial thread ultimately 
releases the lock, it gains a new turnstile from a list of free turnstiles the kernel 
maintains. To prevent a priority inversion, turnstiles are organized according 
to a priority inheritance protocol (Section 6.5). This means that if a lower- 
priority thread currently holds a lock that a higher-priority thread is blocked 
on, the thread with the lower priority will temporarily inherit the priority of 
the higher-priority thread. Upon releasing the lock, the thread will revert to its 
original priority. 

Note that the locking mechanisms used by the kernel are implemented 
for user-level threads as well, so the same types of locks are available inside 
and outside the kernel. A crucial implementation difference is the priority- 
inheritance protocol. Kernel-locking routines adhere to the kernel priority- 
inheritance methods used by the scheduler, as described in Section 6.5; user- 
level thread-locking mechanisms do not provide this functionality. 

Because locks are used frequently, and typically are used for crucial kernel 
functions, fine-tuning their implementation and use can provide great perfor- 
mance gains. To optimize Solaris 2 performance, developers continually refine 
the locking methods. 

7.8.2 Synchronization in Windows 2000 

The Windows 2000 operating system is a multithreaded kernel that also pro- 
vides support for real-time applications and multiple processors. When the 
Windows 2000 kernel accesses a global resource on a uniprocessor system, it 
temporarily masks interrupts for all interrupt handlers that may also access 
the global resource. On a multiprocessor system, Windows 2000 protects access 
to global resources using spinlocks. Just as in Solaris 2, the kernel only uses 
spinlocks only to protect short code segments. Furthermore, for reasons of effi- 
ciency, the kernel ensures that a thread will never be preempted while holding 
a spinlock. For thread synchronization outside of the kernel, Windows 2000 pro- 
vides dispatcher objects. Using a dispatcher object, a thread can synchronize 
according to several different mechanisms including mutexes, semaphores, and 
events. Shared data can be protected by requiring a thread to gain ownership of 
a mutex to access the data and to release ownership when it is finished. Events 
are a synchronization mechanism that may be used much as are condition 
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variables; that is, they may notify a waiting thread when a desired condition 
occurs. 

Dispatcher objects may be in either a signaled or nonsignaled state. A 
signaled state indicates that an object is available and a thread will not block 
when acquiring the object. A nonsignaled state indicates that an object is not 
available and that a thread will block when attempting to acquire the object. 
There is a relationship between the state of a dispatcher object and the state of 
a thread. When a thread blocks on a nonsignaled dispatcher object, its state 
changes from ready to waiting and the thread is placed in a waiting queue for 
that object. When the state for the dispatcher object moves to signaled, the 
kernel checks if there are any threads waiting on the object. If so, the kernel 
moves one-or possibly more-threads from the waiting state to the ready 
state where they can resume executing. The number of threads the kernel 
selects from the waiting queue depends upon the type of dispatcher object they 
are waiting upon. The kernel will select only one thread from the waiting queue 
for a mutex, since a mutex object may be "owned" by only a single thread. For 
an event object, the kernel will select all threads that are waiting for the event. 

Let us use a mutex lock as an illustrating example of dispatcher objects and 
thread states. If a thread tries to acquire a mutex dispatcher object that is in a 
nonsignaled state, that thread will be suspended and placed in a waiting queue 
for the mutex object. When the mutex moves to the signaled state (the result 
of another thread releasing the lock on the mutex), the thread waiting on the 
mutex will: 

1. Be moved from the wait to the ready state, 

2. Acquire the mutex lock. 

7.9 rn Atomic Transactions 

The mutual exclusion of critical sections ensures that the critical sections are 
executed atomically. That is, if two critical sections are executed concurrently, 
the result is equivalent to their sequential execution in some unknown order. 
Although this property is useful in many application domains, in many cases 
we would like to make sure that a critical section forms a single logical unit 
of work that either is performed in its entirety or is not performed at all. 
An example is funds transfer, in which one account is debited and another is 
credited. Clearly, it is essential for data consistency that either both the credit 
and debit occur, or that neither occur. 

The remainder of this section is related to the field of database systems. 
Databases are concerned with the storage and retrieval of data, and with the 
consistency of the data. Recently, there has been an upsurge of interest in using 
database-systems techniques in operating systems. Operating systems can be 
viewed as manipulators of data; as such, they can benefit from the advanced 
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techniques and models available from database research. For instance, many 
of the ad hoc techniques used in operating systems to manage files could be 
more flexible and powerful if more formal database methods were used in their 
place. In Sections 7.9.2 to 7.9.4, we describe what these database techniques are 
and how they can be used by operating systems. 

7.9.1 System Model 
A collection of instructions (or operations) that performs a single logical func- 
tion is called a transaction. A major issue in processing transactions is the 
preservation of atomicity despite the possibility of failures within the computer 
system. In this section, we describe various mechanisms for ensuring transac- 
tion atomicity. We do so by first considering an environment where only one 
transaction can be executing at a time. Then, we consider the case where multi- 
ple transactions are active simultaneously. A transaction is a program unit that 
accesses and possibly updates various data items that may reside on the disk 
within some files. From our point of view, a transaction is simply a sequence 
of read and write operations, terminated by either a commit operation or an 
abort operation. A commit operation signifies that the transaction has termi- 
nated its execution successfully, whereas an abort operation signifies that the 
transaction had to cease its normal execution due to some logical error. A ter- 
minated transaction that has completed its execution successfully is committed; 
otherwise, it is aborted. The effect of a committed transaction cannot be undone 
by abortion of the transaction. 

A transaction may also cease its normal execution due to a system failure. In 
either case, since an aborted transaction may have already modified the various 
data that it has accessed, the state of these data may not be the same as it would 
be had the transaction executed atomically. So that the atomicity property is 
ensured, an aborted transaction must have no effect on the state of the data 
that it has already modified. Thus, the state of the data accessed by an aborted 
transaction must be restored to what it was just before the transaction started 
executing. We say that such a transaction has been rolled back. It is part of the 
responsibility of the system to ensure this property. 

To determine how the system should ensure atomicity, we need first to 
identify the properties of devices used for storing the various data accessed 
by the transactions. Various types of storage media are distinguished by their 
relative speed, capacity, and resilience to failure. 

Volatile Storage: Information residing in volatile storage does not usually 
survive system crashes. Examples of such storage are main and cache 
memory. Access to volatile storage is extremely fast, both because of 
the speed of the memory access itself and because it is possible to access 
directly any data item in volatile storage. 



7.9 Atomic Transactions 227 

Nonvolatile Storage: Information residing in nonvolatile storage usually 
survives system crashes. Examples of media for such storage are disks and 
magnetic tapes. Disks are more reliable than is main memory, but are less 
reliable than are magnetic tapes. Both disks and tapes, however, are subject 
to failure, which may result in loss of information. Currently, nonvolatile 
storage is slower than volatile storage by several orders of magnitude, 
because disk and tape devices are electromechanical and require physical 
motion to access data. 

Stable Storage: Information residing in stable storage is never lost (never 
should be taken with a grain of salt, since theoretically such absolutes 
cannot be guaranteed). To implement an approximation of such storage, we 
need to replicate information in several nonvolatile storage caches (usually 
disk) with independent failure modes, and to update the information in a 
controlled manner (Section 14.7). 

Here, we are concerned only with ensuring transaction atomicity in an 
environment where failures result in the loss of information on volatile storage. 

7.9.2 Log-Based Recovery 
One way to ensure atomicity is to record, on stable storage, information describ- 
ing all the modifications made by the transaction to the various data it accessed. 
The most widely used method for achieving this form of recording is write- 
ahead logging. The system maintains, on stable storage, a data structure called 
the log. Each log record describes a single operation of a transaction write, and 
has the following fields: 

Transaction Name: The unique name of the transaction that performed the 
w r i t e  operation 

Data Item Name: The unique name of the data item written 

Old Value: The value of the data item prior to the w r i t e  operation 

New Value: The value that the data item will have after the write 

Other special log records exist to record significant events during transac- 
tion processing, such as the start of a transaction and the commit or abort of a 
transaction. 

Before a transaction Ti starts its execution, the record < Ti starts> is 
written to the log. During its execution, any w r i t e  operation by Ti is preceded 
by the writing of the appropriate new record to the log. When Ti commits, the 
record < Ti c o m m i t s >  is written to the log. 

Because the information in the log is used in reconstructing the state of 
the data items accessed by the various transactions, we cannot allow the actual 
update to a data item to take place before the corresponding log record is 
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written out to stable storage. We therefore require that, prior to a write(X) 
operation being executed, the log records corresponding to X be written onto 
stable storage. 

Note the performance penalty inherent in this system. Two physical writes 
are required for every logical write requested. Also, more storage is needed: for 
the data themselves and for the log of the changes. In cases where the data are 
extremely important and fast failure recovery is necessary, the price is worth 
the functionality. 

Using the log, the system can handle any failure that does not result in the 
loss of information on nonvolatile storage. The recovery algorithm uses two 
procedures: 

undo(Ti), which restores the value of all data updated by transaction Ti to 
the old values 

redo(Ti), which sets the value of all data updated by transaction Ti to the 
new values 

The set of data updated by Ti and their respective old and new values can 
be found in the log. 

The undo and redo operations must be idempotent (that is, multiple 
executions of an operation have the same result as does one execution) to 
guarantee correct behavior, even if a failure occurs during the recovery process. 

If a transaction Ti aborts, then we can restore the state of the data that 
it has updated by simply executing undo(Ti). If a system failure occurs, we 
restore the state of all updated data by consulting the log to determine which 
transactions need to be redone and which need to be undone. This classification 
of transactions is accomplished as follows: 

Transaction Ti needs to be undone if the log contains the < Ti s t a r t s >  
record, but does not contain the < Ti commits> record. 

Transaction Ti needs to be redone if the log contains both the < Ti s t a r t s >  
and the < Ti commits> records. 

7.9.3 Checkpoints 
When a system failure occurs, we must consult the log to determine those 
transactions that need to be redone and those that need to be undone. In 
principle, we need to search the entire log to make these determinations. There 
are two major drawbacks to this approach: 

1. The searching process is time-consuming. 

2. Most of the transactions that, according to our algorithm, need to be redone 
have already actually updated the data that the log says they need to 
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modify. Although redoing the data modifications will cause no harm (due 
to idempotency), it will nevertheless cause recovery to take longer. 

To reduce these types of overhead, we introduce the concept of check- 
points. During execution, the system maintains the write-ahead log. In addi- 
tion, the system periodically performs checkpoints that require the following 
sequence of actions to take place: 

1. Output all log records currently residing in volatile storage (usually main 
memory) onto stable storage. 

2. Output all modified data residing in volatile storage to the stable storage. 

3. Output a log record <checkpoint> onto stable storage. 

The presence of a <checkpoint> record in the log allows the system to 
streamline its recovery procedure. Consider a transaction Ti that committed 
prior to the checkpoint. The < Ti commits> record appears in the log before the 
<checkpoint> record. Any modifications made by Ti must have been written 
to stable storage either prior to the checkpoint, or as part of the checkpoint itself. 
Thus, at recovery time, there is no need to perform a redo operation on Ti. 

This observation allows us to refine our previous recovery algorithm. After 
a failure has occurred, the recovery routine examines the log to determine 
the most recent transaction Ti that started executing before the most recent 
checkpoint took place. It finds such a transaction by searching the log backward 
to find the first <checkpoint> record, and then finding the subsequent < Ti 
start > record. 

Once transaction Ti has been identified, the redo and undo operations need 
to be applied to only transaction Ti and all transactions Ti that started executing 
after transaction Ti. Let us denote these transactions by the set T. The remainder 
of the log can thus be ignored. The recovery operations that are required are as 
follows: 

a For all transactions Tk in T such that the record < Tk commits, appears in 
the log, execute redo(Tk). 

a For all transactions Tk in T that have no < Tk commits> record in the log, 
execute undo(Tk). 

7.9.4 Concurrent Atomic Transactions 
Because each transaction is atomic, the concurrent execution of transactions 
must be equivalent to the case where these transactions executed serially in 
some arbitrary order. This property called serializability, can be maintained 
by simply executing each transaction within a critical section. That is, all 
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transactions share a common semaphore mutex, which is initialized to 1. When 
a transaction starts executing, its first action is to execute wait(mutex). After 
the transaction either commits or aborts, it executes signal(mutex). 

Although this scheme ensures the atomicity of all concurrently execut- 
ing transactions, it is nevertheless too restrictive. As we shall see, in many 
cases we can allow transactions to overlap their execution, while maintaining 
serializability. A number of different concurrency-control algorithms ensure 
serializability. These are described below. 

7.9.4.1 Serializability 

Consider a system with two data items A and B that are both read and written 
by two transactions To and TI. Suppose that these transactions are executed 
atomically in the order To followed by TI. This execution sequence, which is 
called a schedule, is represented in Figure 7.24. In schedule 1 of Figure 7.24, the 
sequence of instruction steps is in chronological order from top to bottom, with 
instructions of To appearing in the left column and instructions of TI appearing 
in the right column. 

A schedule where each transaction is executed atomically is called a serial 
schedule. Each serial schedule consists of a sequence of instructions from 
various transactions where the instructions belonging to one single transaction 
appear together in that schedule. Thus, for a set of n transactions, there exist 
n! different valid serial schedules. Each serial schedule is correct, because it is 
equivalent to the atomic execution of the various participating transactions, in 
some arbitrary order. 

If we allow the two transactions to overlap their execution, then the result- 
ing schedule is no longer serial. A nonserial schedule does not necessarily 
imply that the resulting execution is incorrect (that is, is not equivalent to a 
serial schedule). To see that this is the case, we need to define the notion of con- 
flicting operations. Consider a schedule S in which there are two consecutive 
operations Oi and Oj of transactions Ti and Ti, respectively. We say that Oi and 

Figure 7.24 Schedule 1: A serial schedule in which To is followed by TI. 1 
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Figure 7.25 Schedule 2: A concurrent serializable schedule. 

Oi conflict if they access the same data item and at least one of these operations 
is a write operation. To illustrate the concept of conflicting operations, we 
consider the nonserial schedule 2 of Figure 7.25. The w r i t e ( A )  operation of 
To conflicts with the read(A)  operation of TI. However, the w r i t e ( A )  opera- 
tion of T1 does not conflict with the read(B)  operation of To, because the two 
operations access different data items. 

Let Oi and Oj be consecutive operations of a schedule S. If Oi and Oj are 
operations of different transactions and Oi and Oj do not conflict, then we can 
swap the order of Oi and Oi to produce a new schedule S'. We expect S to be 
equivalent to S', as all operations appear in the same order in both schedules, 
except for Oi and Oi, whose order does not matter. 

Let us illustrate the swapping idea by considering again schedule 2 of Fig- 
ure 7.25. As the w r i t e ( A )  operation of T1 does not conflict with the read(B)  
operation of To, we can swap these operations to generate an equivalent sched- 
ule. Regardless of the initial system state, both schedules produce the same 
final system state. Continuing with this procedure of swapping nonconflicting 
operations, we get: 

Swap the read(B)  operation of To with the read(A)  operation of TI. 

Swap the w r i t  e(B) operation of To with the w r i t  e(A) operation of TI. 

Swap the w r i t e @ )  operation of To with the read(A)  operation of TI. 

The final result of these swaps is schedule 1 in Figure 7.24, which is a 
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial 
schedule. This result implies that, regardless of the initial system state, schedule 
2 will produce the same final state as will some serial schedule. 

If a schedule S can be transformed into a serial schedule S' by a series of 
swaps of nonconflicting operations, we say that a schedule S is conflict serial- 
izable. Thus, schedule 2 is conflict serializable, because it can be transformed 
into the serial schedule 1. 
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7.9.4.2 Locking Protocol 

One way to ensure serializability is to associate with each data item a lock, and 
to require that each transaction follow a locking protocol that governs how 
locks are acquired and released. There are various modes in which a data item 
can be locked. In this section, we restrict our attention to two modes: 

Shared: If a transaction Ti has obtained a shared-mode lock (denoted by S) 
on data item Q, then Ti can read this item, but cannot write Q. 

Exclusive: If a transaction Ti has obtained an exclusive-mode lock (denoted 
by X) on data item Q, then Ti can both read and write Q. 

We require that every transaction request a lock in an appropriate mode on 
data item Q, depending on the type of operations it will perform on Q. 

To access a data item Q, transaction Ti must first lock Q in the appropriate 
mode. If Q is not currently locked, then the lock is granted, and Ti can now 
access it. However, if the data item Q is currently locked by some other 
transaction, then Ti may have to wait. More specifically, suppose that Ti 
requests an exclusive lock on Q. In this case, Ti must wait until the lock on Q is 
released. If Ti requests a shared lock on Q, then Ti must wait if Q is locked in 
exclusive mode. Otherwise, it can obtain the lock and access Q. Notice that this 
scheme is quite similar to the readers-writers algorithm discussed in Section 
7.5.2. 

A transaction may unlock a data item that it had locked at an earlier point. 
It must, however, hold a lock on a data item as long as it accesses that item. 
Moreover, it is not always desirable for a transaction to unlock a data item 
immediately after its last access of that data item, because serializability may 
not be ensured. 

One protocol that ensures serializability is the two-phase locking protocol. 
This protocol requires that each transaction issue lock and unlock requests in 
two phases: 

Growing Phase: A transaction may obtain locks, but may not release any 
lock. 

Shrinking Phase: A transaction may release locks, but may not obtain any 
new locks. 

Initially, a transaction is in the growing phase. The transaction acquires 
locks as needed. Once the transaction releases a lock, it enters the shrinking 
phase, and no more lock requests can be issued. 

The two-phase locking protocol ensures conflict serializability (Exercise 
7.23). It does not, however, ensure freedom from deadlock. We note that it 
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is possible that, for a set of transactions, there are conflict-serializable sched- 
ules that cannot be obtained through the two-phase locking protocol. How- 
ever, to improve performance over two-phase locking, we need either to have 
additional information about the transactions or to impose some structure or 
ordering on the set of data. 

7.9.4.3 Timestamp-Based Protocols 

In the locking protocols described above, the order between every pair of 
conflicting transactions is determined at execution time by the first lock that 
they both request and that involves incompatible modes. Another method for 
determining the serializability order is to select an ordering among transactions 
in advance. The most common method for doing so is to use a timestamp- 
ordering scheme. 

With each transaction Ti in the system, we associate a unique fixed time- 
stamp, denoted by TS(Ti). This timestamp is assigned by the system before the 
transaction Ti starts execution. If a transaction Ti has been assigned timestamp 
TS(Ti), and later on a new transaction Ti enters the system, then TS(Ti) < TS(Ti). 
There are two simple methods for implementing this scheme: 

Use the value of the system clock as the timestamp; that is, a transaction's 
timestamp is equal to the value of the clock when the transaction enters the 
system. This method will not work for transactions that occur on separate 
systems or for processors that do not share a clock. 

Use a logical counter as the timestamp; that is, a transaction's timestamp 
is equal to the value of the counter when the transaction enters the system. 
The counter is incremented after a new timestamp is assigned. 

The timestamps of the transactions determine the serializability order. 
Thus, if TS(Ti) < TS(Ti), then the system must ensure that the produced sched- 
ule is equivalent to a serial schedule in which transaction Ti appears before 
transaction Ti. 

To implement this scheme, we associate with each data item Q two time- 
stamp values: 

W-timestamp(Q), which denotes the largest timestamp of any transaction 
that executed w r i t  e(Q) successfully 

R-timestamp(Q), which denotes the largest timestamp of any transaction 
that executed read(Q) successfully 

These timestamps are updated whenever a new read(Q) or write(Q) instruc- 
tion is executed. 
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The timestamp-ordering protocol ensures that any conflicting read and 
wr i te  operations are executed in timestamp order. This protocol operates as 
follows: 

Suppose that transaction Ti issues read(&): 

o If TS(Ti) < W-timestamp(), then this state implies that Ti needs to read a 
value of Q that was already overwritten. Hence, the read operation is 
rejected, and Ti is rolled back. 

o If TS(Ti) 2 W-timestamp(Q), then the read operation is executed, and 
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti). 

Suppose that transaction Ti issues write(Q): 

o If TS(Ti) < R-timestamp(Q), then this state implies that the value of Q 
that Ti is producing was needed previously and Ti assumed that this 
value would never be produced. Hence, the wr i t e  operation is rejected, 
and Ti is rolled back. 

o If TS(Ti) < W-timestamp(Q), then this state implies that Ti is attempting 
to write an obsolete value of Q. Hence, this wr i t e  operation is rejected, 
and Ti is rolled back. 

o Otherwise, the wr i t e  operation is executed. 

A transaction Ti, that is rolled back by the concurrency-control scheme as 
a result of the issuing of either a read or wr i t e  operation is assigned a new 
timestamp and is restarted. 

To illustrate this protocol, we consider schedule 3 of Figure 7.26 with 
transactions T2 and T3. We assume that a transaction is assigned a timestamp 
immediately before its first instruction. Thus, in schedule 3, TS(T2) < TS(T3), 
and the schedule is possible under the timestamp protocol. 

This execution can also be produced by the two-phase locking protocol. 
However, some schedules are possible under the two-phase locking protocol 
but not under the timestamp protocol, and vice versa (Exercise 7.24). 

The timestamp-ordering protocol ensures conflict serializability. This capa- 
bility follows from the fact that conflicting operations are processed in time- 

Figure 7.26 Schedule 3: A schedule possible under the timestamp protocol. 
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stamp order. The protocol ensures freedom from deadlock, because no transac- 
tion ever waits. 

7.10 Summary 

Given a collection of cooperating sequential processes that share data, mutual 
exclusion must be provided. One solution is to ensure that a critical section of 
code is in use by only one process or thread at a time. Different algorithms exist 
for solving the critical-section problem, with the assumption that only storage 
interlock is available. 

The main disadvantage of these user-coded solutions is that they all require 
busy waiting. Semaphores overcome this difficulty. Semaphores can be used 
to solve various synchronization problems and can be implemented efficiently, 
especially if hardware support for atomic operations is available. 

Various different synchronization problems (such as the bounded-buffer 
problem, the readers-writers problem, and the dining-philosophers problem) 
are important mainly becau;e they are examples of a large class of concurrency- 
control problems. These problems are used to test nearly every newly proposed 
synchronization scheme. 

The operating system must provide the means to guard against timing 
errors. Several language constructs have been proposed to deal with these 
problems. Critical regions can be used to implement mutual-exclusion and 
arbitrary- synchronization problems safely and efficiently. Monitors provide 
the synchronization mechanism for sharing abstract data types. A condition 
variable provides a method for a monitor procedure to block its execution until 
it is signaled to continue. 

Solaris 2 is an example of a modern operating system that implements a 
variety of locks to support multitasking, multithreading (including real-time 
threads), and multiprocessing. It uses adaptive mutexes for efficiency when 
protecting data from short code segments. Condition variables and readers- 
writers locks are used when longer sections of code need access to data. Solaris 
uses turnstiles to order the list of threads waiting to acquire an adaptive mutex 
or readers-writers lock. 

Windows 2000 supports realtime processes and multiprocessing. When the 
kernel attempts to access global resources on uniprocessor systems, interrupts 
that may also access the global resource are masked. On multiprocessor sys- 
tems, global resources are protected using spinlocks. Outside of the kernel, 
synchronization is provided using dispatcher objects. A dispatcher object may 
be used as a mutex, semaphore, or event. An event is a type of dispatcher object 
that behaves similar to condition variables. 

A transaction is a program unit that must be executed atomically; that is, 
either all the operations associated with it are executed to completion, or none 
are performed. To ensure atomicity despite system failure, we can use a write- 
ahead log. All updates are recorded on the log, which is kept in stable storage. 



236 Chapter 7 Process Synchronization 

If a system crash occurs, the information in the log is used in restoring the state 
of the updated data items, which is accomplished with the use of the undo and 
redo operations. To reduce the overhead in searching the log after a system 
failure has occurred, we can use a checkpoint scheme. 

When several transactions overlap their execution, the resulting execution 
may no longer be equivalent to an execution where these transactions executed 
atomically. To ensure correct execution, we must use a concurrency-control 
scheme to guarantee serializability. There are various different concurrency- 
control schemes that ensure serializability by either delaying an operation or 
aborting the transaction that issued the operation. The most common ones are 
locking protocols and timestamp-ordering schemes. 

Exercises 

7.1 What is the meaning of the term busy waiting? What other kinds of waiting 
are there in an operating system? Can busy waiting be avoided altogether? 
Explain your answer. 

7.2 Explain why spinlocks are not appropriate for uniprocessor systems yet 
may be suitable for multiprocessor systems. 

7.3 Prove that, in the bakery algorithm (Section 7.2.2), the following property 
holds: If Pi is in its critical section and Pk (k $ i) has already chosen its 
number Ckl # 0, then (number Cil , i) < (number [kl , k) .  

7.4 The first known correct software solution to the critical-section problem 
for two processes was developed by Dekker. The two processes, Po and 
PI, share the following variables: 

boolean f l a g  [21; /* i n i t i a l l y  f a l s e  */ 
i n t  turn; 

The structure of process Pi (i == 0 or I), with Pi ( j  == 1 or 0) being the 
other process, is shown in Figure 7.27. 

Prove that the algorithm satisfies all three requirements for the critical- 
section problem. 

7.5 The first known correct software solution to the critical-section problem 
for n processes with a lower bound on waiting of n - 1 turns was pre- 
sented by Eisenberg and McGuire. The processes share the following 
variables: 

enum p s t a t e  { id l e ,  want-in, in-cs); 
p s t a t e  flagCnl ; 
i n t  t u rn ;  
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flagCi1 = t r u e ;  
while ( f l ag  [ j 1 > { 

i f  ( turn == j>  { 
f l a g  [il = f a l s e ;  
while ( turn == j) ; 
flagCi1 = t r u e ;  

} 
1 

critical section 

f l a g [ i l  = f a l s e ;  

remainder section 

) while (1); 

Figure 7.27 The structure of process Pi in Dekker's algorithm. 

All the elements of f l a g  are initially i d l e ;  the initial value of turn  is 
immaterial (between 0 and n-1). The structure of process Pi is shown in 
Figure 7.28. 

Prove that the algorithm satisfies all three requirements for the critical- 
section problem. 

7.6 In Section 7.3, we mentioned that disabling interrupts frequently can affect 
the system's clock. Explain why it can, and how such effects can be 
minimized. 

7.7 Show that, if the wait and s ignal  operations are not executed atomically, 
then mutual exclusion may be violated. 

7.8 The Sleeping-Barber Problem. A barbershop consists of a waiting room 
with n chairs and the barber room containing the barber chair. If there are 
no customers to be served, the barber goes to sleep. If a customer enters 
the barbershop and all chairs are occupied, then the customer leaves the 
shop. If the barber is busy but chairs are available, then the customer sits 
in one of the free chairs. If the barber is asleep, the customer wakes up the 
barber. Write a program to coordinate the barber and the customers. 

7.9 The Cigarette-Smokers Problem. Consider a system with three smoker 
processes and one agent process. Each smoker continuously rolls a 
cigarette and then smokes it. But to roll and smoke a cigarette, the smoker 
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do { 

while(1) { 
f l a g  [ i]  = want-in; 
j = t u rn ;  
while ( j  ! =  i )  { 

i f  (flagCj1 != i d l e )  
j = turn ;  

e l s e  
j  = ( j + l >  % n; 

1 
f l a g  Cil = in-cs; 
j  = 0 ;  
while ( ( j  < n) && ( j  == i I 1 f l a g  [j] != in-cs)) 

j ++; 
i f  ( (  j >= n) && ( turn  == i I I f l a g  [turn] == i d l e ) )  break; 

} 
t u rn  = i ; 

critical section 

while ( f l ag r j ]  == i d l e )  
j  = ( j + l >  % n;  

tu rn  = j ;  

remainder section 

) while (1); 

Figure 7.28 The structure of process Pi in Eisenberg and McGuire's algorithm. 

needs three ingredients: tobacco, paper, and matches. One of the smoker 
processes has paper, another has tobacco, and the third has matches. The 
agent has an infinite supply of all three materials. The agent places two of 
the ingredients on the table. The smoker who has the remaining ingredient 
then makes and smokes a cigarette, signaling the agent on completion. 
The agent then puts out another two of the three ingredients, and the cycle 
repeats. Write a program to synchronize the agent and the smokers. 

7.10 Demonstrate that monitors, conditional critical regions, and semaphores 
are all equivalent, insofar as the same types of synchronization problems 
can be implemented with them. 
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7.11 Write a bounded-buffer monitor in which the buffers (portions) are 
embedded within the monitor itself. 

7.12 The strict mutual exclusion within a monitor makes the bounded-buffer 
monitor of Exercise 7.11 mainly suitable for small portions. 

a. Explain why this assertion is true. 

b. Design a new scheme that is suitable for larger portions. 

7.13 Suppose that the signal statement can appear as only the last statement 
in a monitor procedure. Suggest how the implementation described in 
Section 7.7 can be simplified. 

7.14 Consider a system consisting of processes PI, P2, ..., P,, each of which has 
a unique priority number. Write a monitor that allocates three identical 
line printers to these processes, using the priority numbers for deciding 
the order of allocation. 

7.15 A file is to be shared among different processes, each of which has a 
unique number. The file can be accessed simultaneously by several pro- 
cesses, subject to the following constraint: The sum of all unique numbers 
associated with all the processes currently accessing the file must be less 
than n. Write a monitor to coordinate access to the file. 

7.16 Suppose that we replace the wait and signal operations of monitors 
with a single construct await (B) , where B is a general Boolean expression 
that causes the process executing it to wait until B becomes true. 

a. Write a monitor using this scheme to implement the readers-writers 
problem. 

b. Explain why, in general, this construct cannot be implemented effi- 
ciently. 

c. What restrictions need to be put on the await statement so that it 
can be implemented efficiently? (Hint: Restrict the generality of B; 
see Kessels 119771.) 

7.17 Write a monitor that implements an alarm clock that enables a calling pro- 
gram to delay itself for a specified number of time units (ticks). You may 
assume the existence of a real hardware clock that invokes a procedure tick 
in your monitor at regular intervals. 

7.18 Why does Solaris 2 implement multiple locking mechanisms? Under 
what circumstances does it use spinlocks, semaphores, adaptive mutexes, 
conditional variables, and readers-writers locks? Why does it use each 
mechanism? What is the purpose of turnstiles? 
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7.19 Why do Solaris 2 and Windows 2000 use spinlocks as a synchroniza- 
tion mechanism on only multiprocessor systems and not on uniprocessor 
systems? 

7.20 Explain the differences, in terms of cost, among the three storage types: 
volatile, nonvolatile, and stable. 

7.21 Explain the purpose of the checkpoint mechanism. How often should 
checkpoints be performed? How does the frequency of checkpoints affect: 

System performance when no failure occurs? 

The time it takes to recover from a system crash? 

The time it takes to recover from a disk crash? 

7.22 Explain the concept of transaction atomicity. 

7.23 Show that the two-phase locking protocol ensures conflict serializability. 

7.24 Show that some schedules are possible under the two-phase locking pro- 
tocol but not possible under the timestamp protocol, and vice versa. 
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Chapter 8 

In a multiprogramming environment, several processes may compete for a 
finite number of resources. A process requests resources; if the resources are 
not available at that time, the process enters a wait state. Waiting processes may 
never again change state, because the resources they have requested are held by 
other waiting processes. This situation is called a deadlock. We have already 
discussed this issue briefly in Chapter 7, in connection with semaphores. 

Perhaps the best illustration of a deadlock can be drawn from a law passed 
by the Kansas legislature early in the 20th century. It said, in part: "When two 
trains approach each other at a crossing, both shall come to a full stop and 
neither shall start up again until the other has gone." 

In this chapter, we describe methods that an operating system can use to 
prevent or deal with deadlocks. Most current operating systems do not provide 
deadlock-prevention facilities, but such features will probably be added soon. 
Deadlock problems can only become more common, given current trends, 
including larger numbers of processes, multiheaded programs, many more 
resources within a system, and the emphasis on long-lived file and database 
servers rather than batch systems. 

8.1 . System Model 

A system consists of a finite number of resources to be distributed among a 
number of competing processes. The resources are partitioned into several 
types, each of which consists of some number of identical instances. Memory 
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space, CPU cycles, files, and I/O devices (such as printers and tape drives) 
are examples of resource types. If a system has two CPUs, then the resource 
type CPU has two instances. Similarly, the resource type printer may have five 
instances. 

If a process requests an instance of a resource type, the allocation of any 
instance of the type will satisfy the request. If it will not, then the instances are 
not identical, and the resource type classes have not been defined properly. For 
example, a system may have two printers. These two printers may be defined to 
be in the same resource class if no one cares which printer prints which output. 
However, if one printer is on the ninth floor and the other is in the basement, 
then people on the ninth floor may not see both printers as equivalent, and 
separate resource classes may need to be defined for each printer. 

A process must request a resource before using it, and must release the 
resource after using it. A process may request as many resources as it requires 
to carry out its designated task. Obviously, the number of resources requested 
may not exceed the total number of resources available in the system. In other 
words, a process cannot request three printers if the system has only two. 

Under the normal mode of operation, a process may utilize a resource in 
only the following sequence: 

1. Request: If the request cannot be granted immediately (for example, the 
resource is being used by another process), then the requesting process 
must wait until it can acquire the resource. 

2. Use: The process can operate on the resource (for example, if the resource 
is a printer, the process can print on the printer). 

3. Release: The process releases the resource. 

The request and release of resources are system calls, as explained in 
Chapter 3. Examples are the request  and r e l ease  device,  open and close 
f i l e  , and a l l o c a t e  and f r e e  memory system calls. Request and release of 
other resources can be accomplished through the waif and signal operations on 
semaphores. Therefore, for each use, the operating system checks to make sure 
that the using process has requested and been allocated the resource. A system 
table records whether each resource is free or allocated, and, if a resource is 
allocated, to which process. If a process requests a resource that is currently 
allocated to another process, it can be added to a queue of processes waiting for 
this resource. 

A set of processes is in a deadlock state when every process in the set is 
waiting for an event that can be caused only by another process in the set. The 
events with which we are mainly concerned here are resource acquisition and 
release. The resources may be either physical resources (for example, printers, 
tape drives, memory space, and CPU cycles) or logical resources (for example, 
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files, semaphores, and monitors). However, other types of events may result in 
deadlocks (for example, the IPC facilities discussed in Chapter 4). 

To illustrate a deadlock state, we consider a system with three tape drives. 
Suppose each of three processes holds one of these tape drives. If each process 
now requests another tape drive, the three processes will be in a deadlock state. 
Each is waiting for the event "tape drive is released," which can be caused 
only by one of the other waiting processes. This example illustrates a deadlock 
involving the same resource type. 

Deadlocks may also involve different resource types. For example, consider 
a system with one printer and one tape drive. Suppose that process Pi is holding 
the tape drive and process Pi is holding the printer. If Pi requests the printer and 
Pi requests the tape drive, a deadlock occurs. 

A programmer who is developing multithreaded applications must pay 
particular attention to this problem: Multithreaded programs are good candi- 
dates for deadlock because multiple threads can compete for shared resources. 

8.2 Deadlock Characterization 

In a deadlock, processes never finish executing and system resources are tied 
up, preventing other jobs from starting. Before we discuss the various meth- 
ods for dealing with the deadlock problem, we shall describe features that 
characterize deadlocks. 

8.2.1 Necessary Conditions 
A deadlock situation can arise if the following four conditions hold simultane- 
ously in a system: 

1. Mutual exclusion: At least one resource must be held in a nonsharable 
mode; that is, only one process at a time can use the resource. If another 
process requests that resource, the requesting process must be delayed until 
the resource has been released. 

2. Hold and wait: A process must be holding at least one resource and 
waiting to acquire additional resources that are currently being held by 
other processes. 

3. No preemption: Resources cannot be preempted; that is, a resource can be 
released only voluntarily by the process holding it, after that process has 
completed its task. 

4. Circular wait: A set {Po, PI, ..., P,) of waiting processes must exist such that 
Po is waiting for a resource that is held by PI, PI is waiting for a resource 
that is held by P2, ..., PnPl is waiting for a resource that is held by P,, and 
P, is waiting for a resource that is held by Po. 
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We emphasize that all four conditions must hold for a deadlock to occur. 
The circular-wait condition implies the hold-and-wait condition, so the four 
conditions are not completely independent. We shall see in Section 8.4, how- 
ever, that it is useful to consider each condition separately. 

8.2.2 Resource-Allocation Graph 
Deadlocks can be described more precisely in terms of a directed graph called 
a system resource-allocation graph. This graph consists of a set of vertices V 
and a set of edges E. The set of vertices V is partitioned into two different types 
of nodes P = {PI, P2, ..., Pn}, the set consisting of all the active processes in the 
system, and R = {R1, R2, ..., Rm), the set consisting of all resource types in the 
system. 

A directed edge from process Pi to resource type Rj is denoted by Pi -+ Rj; 

it signifies that process Pi requested an instance of resource type Ri and is 
currently waiting for that resource. A directed edge from resource type Ri to 
process Pi is denoted by Rj -+ Pi; it signifies that an instance of resource type 
Ri has been allocated to process Pi. A directed edge Pi -+ Rj is called a request 
edge; a directed edge Rj + Pi is called an assignment edge. 

Pictorially, we represent each process Pi as a circle, and each resource type 
Ri as a square. Since resource type Ri may have more than one instance, we 
represent each such instance as a dot within the square. Note that a request edge 
points to only the square Xi, whereas an assignment edge must also designate 
one of the dots in the square. 

When process Pi requests an instance of resource type Rj, a request edge is 
inserted in the resource-allocation graph. When this request can be fulfilled, the 
request edge is instantaneously transformed to an assignment edge. When the 
process no longer needs access to the resource it releases the resource, and as a 
result the assignment edge is deleted. 

The resource-allocation graph shown in Figure 8.1 depicts the following 
situation. 

The sets P, R, and E: 

Resource instances: 

o One instance of resource type R1 

o Two instances of resource type R2 

o One instance of resource type R3 

o Three instances of resource type R4 
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Figure 8.1 Resource-allocation graph. 

Process states: 

o Process PI is holding an instance of resource type R2, and is waiting for 
an instance of resource type R1. 

o Process P2 is holding an instance of R1 and R2, and is waiting for an 
instance of resource type R3. 

o Process P3 is holding an instance of R3. 

Given the definition of a resource-allocation graph, it can be shown that, if 
the graph contains no cycles, then no process in the system is deadlocked. If the 
graph does contain a cycle, then a deadlock may exist. 

If each resource type has exactly one instance, then a cycle implies that a 
deadlock has occurred. If the cycle involves only a set of resource types, each 
of which has only a single instance, then a deadlock has occurred. Each process 
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a 
necessary and a sufficient condition for the existence of deadlock. 

If each resource type has several instances, then a cycle does not necessarily 
imply that a deadlock has occurred. In this case, a cycle in the graph is a 
necessary but not a sufficient condition for the existence of deadlock. 

To illustrate this concept, let us return to the resource-allocation graph 
depicted in Figure 8.1. Suppose that process P3 requests an instance of resource 
type R2. Since no resource instance is currently available, a request edge P3 -+ 

RL is added to the graph (Figure 8.2). At this point, two minimal cycles exist in 
the system: 
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Figure 8.2 Resource-allocation graph with a deadlock. 

Processes PI, P2, and P3 are deadlocked. Process P2 is waiting for the resource 
R3, which is held by process P3. Process P3, on the other hand, is waiting for 
either process PI or process P2 to release resource R2. In addition, process PI is 
waiting for process P2 to release resource R1. 

Now consider the resource-allocation graph in Figure 8.3. In this example, 
we also have a cycle 

However, there is no deadlock. Observe that process P4 may release its instance 
of resource type R2. That resource can then be allocated to P3, breaking the 
cycle. 

In summary, if a resource-allocation graph does not have a cycle, then the 
system is not in a deadlock state. On the other hand, if there is a cycle, then the 
system may or may not be in a deadlock state. This observation is important 
when we deal with the deadlock problem. 

8.3 Methods for Handling Deadlocks 

Principally, we can deal with the deadlock problem in one of three ways: 

We can use a protocol to prevent or avoid deadlocks, ensuring that the 
system will never enter a deadlock state. 

We can allow the system to enter a deadlock state, detect it, and recover. 
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Figure 8.3 Resource-allocation graph with a cycle but no deadlock. 

We can ignore the problem altogether, and pretend that deadlocks never 
occur in the system. This solution is used by most operating systems, 
including UNIX. 

We shall elaborate briefly on each method. Then, in Sections 8.4 to 8.7, we shall 
present detailed algorithms. 

To ensure that deadlocks never occur, the system can use either a deadlock- 
prevention or a deadlock-avoidance scheme. Deadlock prevention is a set of 
methods for ensuring that at least one of the necessary conditions (Section 8.2.1) 
cannot hold. These methods prevent deadlocks by constraining how requests 
for resources can be made. We discuss these methods in Section 8.4. 

Deadlock avoidance, on the other hand, requires that the operating system 
be given in advance additional information concerning which resources a pro- 
cess will request and use during its lifetime. With this additional knowledge, 
we can decide for each request whether or not the process should wait. To 
decide whether the current request can be satisfied or must be delayed, the 
system must consider the resources currently available, the resources currently 
allocated to each process, and the future requests and releases of each process. 
We discuss these schemes in Section 8.5. 

If a system does not employ either a deadlock-prevention or a deadlock- 
avoidance algorithm, then a deadlock situation may occur. In this environment, 
the system can provide an algorithm that examines the state of the system to 
determine whether a deadlock has occurred, and an algorithm to recover from 
the deadlock (if a deadlock has indeed occurred). We discuss these issues in 
Section 8.6 and Section 8.7. 

If a system does not ensure that a deadlock will never occur, and also does 
not provide a mechanism for deadlock detection and recovery, then we may 
arrive at a situation where the system is in a deadlock state yet has no way 
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of recognizing what has happened. In this case, the undetected deadlock will 
result in the deterioration of the system performance, because resources are 
being held by processes that cannot run, and because more and more processes, 
as they make requests for resources, enter a deadlock state. Eventually, the 
system will stop functioning and will need to be restarted manually. 

Although this method does not seem to be a viable approach to the dead- 
lock problem, it is nevertheless used in some operating systems. In many 
systems, deadlocks occur infrequently (say, once per year); thus, this method is 
cheaper than the costly deadlock-prevention, deadlock-avoidance, or deadlock- 
detection and recovery methods that must be used constantly. Also, in some 
circumstances, the system is in a frozen state but not in a deadlock state. As 
an example, consider a real-time process running at the highest priority (or any 
process running on a non-preemptive scheduler) and never returning control to 
the operating system. Thus, systems must have manual recovery methods for 
non-deadlock conditions, and may simply use those techniques for deadlock 
recovery. 

8.4 . Deadlock Prevention 

As we noted in Section 8.2.1, for a deadlock to occur, each of the four necessary 
conditions must hold. By ensuring that at least one of these conditions cannot 
hold, we can prevent the occurrence of a deadlock. Let us elaborate on this 
approach by examining each of the four necessary conditions separately. 

8.4.1 Mutual Exclusion 
The mutual-exclusion condition must hold for nonsharable resources. For 
example, a printer cannot be simultaneously shared by several processes. 
Sharable resources, on the other hand, do not require mutually exclusive access, 
and thus cannot be involved in a deadlock. Read-only files are a good example 
of a sharable resource. If several processes attempt to open a read-only file at 
the same time, they can be granted simultaneous access to the file. A process 
never needs to wait for a sharable resource. In general, however, we cannot 
prevent deadlocks by denying the mutual-exclusion condition: Some resources 
are intrinsically nonsharable. 

8.4.2 Hold and Wait 
To ensure that the hold-and-wait condition never occurs in the system, we must 
guarantee that, whenever a process requests a resource, it does not hold any 
other resources. One protocol that can be used requires each process to request 
and be allocated all its resources before it begins execution. We can implement 
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this provision by requiring that system calls requesting resources for a process 
precede all other system calls. 

An alternative protocol allows a process to request resources only when 
the process has none. A process may request some resources and use them. 
Before it can request any additional resources, however, it must release all the 
resources that it is currently allocated. 

To illustrate the difference between these two protocols, we consider a 
process that copies data from a tape drive to a disk file, sorts the disk file, and 
then prints the results to a printer. If all resources must be requested at the 
beginning of the process, then the process must initially request the tape drive, 
disk file, and printer. It will hold the printer for its entire execution, even though 
it needs the printer only at the end. 

The second method allows the process to request initially only the tape 
drive and disk file. It copies from the tape drive to the disk, then releases both 
the tape drive and the disk file. The process must then again request the disk 
file and the printer. After copying the disk file to the printer, it releases these 
two resources and terminates. 

These protocols have two main disadvantages. First, resource utilization 
may be low, since many of the resources may be allocated but unused for a long 
period. In the example given, for instance, we can release the tape drive and 
disk file, and then again request the disk file and printer, only if we can be sure 
that our data will remain on the disk file. If we cannot be assured that they will, 
then we must request all resources at the beginning for both protocols. 

Second, starvation is possible. A process that needs several popular 
resources may have to wait indefinitely, because at least one of the resources 
that it needs is always allocated to some other process. 

8.4.3 No Preemption 
The third necessary condition is that there be no preemption of resources that 
have already been allocated. To ensure that this condition does not hold, we can 
use the following protocol. If a process is holding some resources and requests 
another resource that cannot be immediately allocated to it (that is, the process 
must wait), then all resources currently being held are preempted. In other 
words, these resources are implicitly released. The preempted resources are 
added to the list of resources for which the process is waiting. The process will 
be restarted only when it can regain its old resources, as well as the new ones 
that it is requesting. 

Alternatively, if a process requests some resources, we first check whether 
they are available. If they are, we allocate them. If they are not available, 
we check whether they are allocated to some other process that is waiting for 
additional resources. If so, we preempt the desired resources from the waiting 
process and allocate them to the requesting process. If the resources are not 

I either available or held by a waiting process, the requesting process must wait. 
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While it is waiting, some of its resources may be preempted, but only if another 
process requests them. A process can be restarted only when it is allocated the 
new resources it is requesting and recovers any resources that were preempted 
while it was waiting. 

This protocol is often applied to resources whose state can be easily saved 
and restored later, such as CPU registers and memory space. It cannot generally 
be applied to such resources as printers and tape drives. 

8.4.4 Circular Wait 
The fourth and final condition for deadlocks is the circular-wait condition. One 
way to ensure that this condition never holds is to impose a total ordering of 
all resource types, and to require that each process requests resources in an 
increasing order of enumeration. 

Let R = {XI, R2, ..., R,) be the set of resource types. We assign to each 
resource type a unique integer number, which allows us to compare two 
resources and to determine whether one precedes another in our ordering. For- 
mally, we define a one-to-one function F: R + N, where N is the set of natural 
numbers. For example, if the set of resource types R includes tape drives, disk 
drives, and printers, then the function F might be defined as follows: 

F(tape drive) = 1, 
F(disk drive) = 5, 
F(printer) = 12. 

We can now consider the following protocol to prevent deadlocks: Each 
process can request resources only in an increasing order of enumeration. That 
is, a process can initially request any number of instances of a resource type, 
say Xi. After that, the process can request instances of resource type Ri if and 
only if F(Rj) > F(Ri). If several instances of the same resource type are needed, 
a single request for all of them must be issued. For example, using the function 
defined previously, a process that wants to use the tape drive and printer at the 
same time must first request the tape drive and then request the printer. 

Alternatively, we can require that, whenever a process requests an instance 
of resource type Rj, it has released any resources Ri such that F(Ri) 2 F(Rj). 

If these two protocols are used, then the circular-wait condition cannot 
hold. We can demonstrate this fact by assuming that a circular wait exists (proof 
by contradiction). Let the set of processes involved in the circular wait be {Po, 
PI, ..., P,), where Pi is waiting for a resource Xi, which is held by process Pi+l. 
(Modulo arithmetic is used on the indexes, so that P, is waiting for a resource 
R, held by Po.) Then, since process Pi+l is holding resource Ri while requesting 
resource Ri+l, we must have F(Ri) < F(Ri+1), for all i. But this condition means 
that F(Ro) < F(R1) < ... < F(R,) < F(Ro). By transitivity, F(Ro) < F(Ro), which is 
impossible. Therefore, there can be no circular wait. 
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Note that the function F should be defined according to the normal 
order of usage of the resources in a system. For example, since the tape 
drive is usually needed before the printer, it would be reasonable to define 
F(tape drive) < F(printer). 

8.5 Deadlock Avoidance 

Deadlock-prevention algorithms, as discussed in Section 8.4, prevent deadlocks 
by restraining how requests can be made. The restraints ensure that at least 
one of the necessary conditions for deadlock cannot occur, and, hence, that 
deadlocks cannot hold. Possible side effects of preventing deadlocks by this 
method, however, are low device utilization and reduced system throughput. 

An alternative method for avoiding deadlocks is to require additional 
information about how resources are to be requested. For example, in a system 
with one tape drive and one printer, we might be told that process P will 
request first the tape drive, and later the printer, before releasing both resources. 
Process Q, on the other hand, will request first the printer, and then the tape 
drive. With this knowledge of the complete sequence of requests and releases 
for each process, we can decide for each request whether or not the process 
should wait. Each request requires that the system consider the resources 
currently available, the resources currently allocated to each process, and the 
future requests and releases of each process, to decide whether the current 
request can be satisfied or must wait to avoid a possible future deadlock. 

The various algorithms differ in the amount and type of information 
required. The simplest and most useful model requires that each process 
declare the maximum number of resources of each type that it may need. Given 
a priori information about the maximum number of resources of each type 
that may be requested for each process, it is possible to construct an algorithm 
that ensures that the system will never enter a deadlock state. This algorithm 
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm 
dynamically examines the resource-allocation state to ensure that a circular- 
wait condition can never exist. The resource-allocation state is defined by the 
number of available and allocated resources, and the maximum demands of 
the processes. 

8.5.1 Safe State 

A state is safe if the system can allocate resources to each process (up to its 
maximum) in some order and still avoid a deadlock. More formally, a system 
is in a safe state only if there exists a safe sequence. A sequence of processes 
<PI, P2, ..., P,> is a safe sequence for the current allocation state if, for each Pi, 
the resources that Pi can still request can be satisfied by the currently available 
resources plus the resources held by all the Pi, with j < i. In this situation, if 
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Figure 8.4 Safe, unsafe, and deadlock state spaces. 

the resources that process Pi needs are not immediately available, then Pi can 
wait until all Pi have finished. When they have finished, Pi can obtain all of its 
needed resources, complete its designated task, return its allocated resources, 
and terminate. When Pi terminates, Pi+l can obtain its needed resources, and so 
on. If no such sequence exists, then the system state is said to be unsafe. 

A safe state is not a deadlock state. Conversely, a deadlock state is an unsafe 
state. Not all unsafe states are deadlocks, however (Figure 8.4). An unsafe 
state may lead to a deadlock. As long as the state is safe, the operating system 
can avoid unsafe (and deadlock) states. In an unsafe state, the operating sys- 
tem cannot prevent processes from requesting resources such that a deadlock 
occurs: The behavior of the processes controls unsafe states. 

To illustrate, we consider a system with 12 magnetic tape drives and 3 
processes: Po, PI, and P2. Process Po requires 10 tape drives, process PI may 
need as many as 4, and process P2 may need up to 9 tape drives. Suppose 
that, at time to, process Po is holding 5 tape drives, process PI is holding 2, and 
process PZ is holding 2 tape drives. (Thus, there are 3 free tape drives.) 

Maximum Needs Current Needs 

Po 10 5 
P1 4 2 
P2 9 2 

At time to, the system is in a safe state. The sequence <PI, PO, P2> satisfies 
the safety condition, since process PI can immediately be allocated all its tape 
drives and then return them (the system will then have 5 available tape drives), 
then process Po can get all its tape drives and return them (the system will then 
have 10 available tape drives), and finally process P2 could get all its tape drives 
and return them (the system will then have all 12 tape drives available). 
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A system may go from a safe state to an unsafe state. Suppose that, at time 
tl, process Pp requests and is allocated 1 more tape drive. The system is no 
longer in a safe state. At this point, only process PI can be allocated all its tape 
drives. When it returns them, the system will have only 4 available tape drives. 
Since process Po is allocated 5 tape drives, but has a maximum of 10, it may then 
request 5 more tape drives. Since they are unavailable, process Po must wait. 
Similarly, process P2 may request an additional 6 tape drives and have to wait, 
resulting in a deadlock. 

Our mistake was in granting the request from process P2 for 1 more tape 
drive. If we had made P2 wait until either of the other processes had finished 
and released its resources, then we could have avoided the deadlock. 

Given the concept of a safe state, we can define avoidance algorithms that 
ensure that the system will never deadlock. The idea is simply to ensure that the 
system will always remain in a safe state. Initially, the system is in a safe state. 
Whenever a process requests a resource that is currently available, the system 
must decide whether the resource can be allocated immediately or whether 
the process must wait. The request is granted only if the allocation leaves the 
system in a safe state. 

In this scheme, if a process requests a resource that is currently available, it 
may still have to wait. Thus, resource utilization may be lower than it would be 
without a deadlock-avoidance algorithm. 

8.5.2 Resource-Allocation Graph Algorithm 
If we have a resource-allocation system with only one instance of each resource 
type, a variant of the resource-allocation graph defined in Section 8.2.2 can be 
used for deadlock avoidance. 

In addition to the request and assignment edges, we introduce a new type 
of edge, called a claim edge. A claim edge Pi -+ Rj indicates that process Pi may 
request resource Rj at some time in the future. This edge resembles a request 
edge in direction, but is represented by a dashed line. When process Pi requests 
resource Rj, the claim edge Pi -+ Rj is converted to a request edge. Similarly, 
when a resource Rj is released by Pi, the assignment edge Rj -+ Pi is reconverted 
to a claim edge Pi -+ Xi. We note that the resources must be claimed a priori in 
the system. That is, before process Pi starts executing, all its claim edges must 
already appear in the resource-allocation graph. We can relax this condition by 
allowing a claim edge Pi + Rj to be added to the graph only if all the edges 
associated with process Pi are claim edges. 

Suppose that process Pi requests resource Rj. The request can be granted 
only if converting the request edge Pi -+ Rj to an assignment edge Rj + Pi does 
not result in the formation of a cycle in the resource-allocation graph. Note 
that we check for safety by using a cycle-detection algorithm. An algorithm for 
detecting a cycle in this graph requires an order of n2 operations, where n is the 
number of processes in the system. 
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Figure 8.5 Resource-allocation graph for deadlock avoidance. 

If no cycle exists, then the allocation of the resource will leave the system 
in a safe state. If a cycle is found, then the allocation will put the system in 
an unsafe state. Therefore, process Pi will have to wait for its requests to be 
satisfied. 

To illustrate this algorithm, we consider the resource-allocation graph of 
Figure 8.5. Suppose that P2 requests R2. Although R2 is currently free, we 
cannot allocate it to P2, since this action will create a cycle in the graph (Figure 
8.6). A cycle indicates that the system is in an unsafe state. If PI requests R2, 
and P2 requests R1, then a deadlock will occur. 

8.5.3 Banker's Algorithm 
The resource-allocation graph algorithm is not applicable to a resource- 
allocation system with multiple instances of each resource type. The 
deadlock-avoidance algorithm that we describe next is applicable to such 
a system, but is less efficient than the resource-allocation graph scheme. This 
algorithm is commonly known as the banker's algorithm. The name was chosen 
because this algorithm could be used in a banking system to ensure that the 

Figure 8.6 An unsafe state in a resource-allocation graph. 
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bank never allocates its available cash such that it can no longer satisfy the 
needs of all its customers. 

When a new process enters the system, it must declare the maximum 
number of instances of each resource type that it may need. This number may 
not exceed the total number of resources in the system. When a user requests 
a set of resources, the system must determine whether the allocation of these 
resources will leave the system in a safe state. If it will, the resources are 
allocated; otherwise, the process must wait until some other process releases 
enough resources. 

Several data structures must be maintained to implement the banker's 
algorithm. These data structures encode the state of the resource-allocation 
system. Let n be the number of processes in the system and rn be the number of 
resource types. We need the following data structures: 

Available: A vector of length rn indicates the number of available resources 
of each type. If Available[j] = k, there are k instances of resource type Rj 
available. 

Max: An n x rn matrix defines the maximum demand of each process. If 
Max[i,j] = k, then process Pi may request at most k instances of resource type 
Ri . 

Allocation: An n x rn matrix defines the number of resources of each type 
currently allocated to each process. If Allocation[i,j] = k, then process Pi is 
currently allocated k instances of resource type Rj. 

Need: An n x rn matrix indicates the remaining resource need of each 
process. If Need[i,j] = k, then process Pi may need k more instances of 
resource type Ri to complete its task. Note that Need[i,j] = Max[i,j] - 
Allocafion[i,j]. 

These data structures vary over time in both size and value. 
To simplify the presentation of the banker's algorithm, let us establish some 

notation. Let X and Y be vectors of length n. We say that X 5 Y if and only if 
X[i] 5 Y [ i ]  for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1), 
thenY 5 X. Y < Xif Y IXandY$X.  

We can treat each row in the matrices Allocation and Need as vectors and 
refer to them as Allocationi and Needi, respectively. The vector Allocation; speci- 
fies the resources currently allocated to process Pi; the vector Need, specifies the 
additional resources that process Pi may still request to complete its task. 

8.5.3.1 Safety Algorithm 

The algorithm for finding out whether or not a system is in a safe state can be 
described as follows: 
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1. Let Work and Finish be vectors of length m and n, respectively. Initialize 
Work := Available and Finisk[i] :=false for i = 1,2, ..., n. 

2. Find an i such that both 

a. Finisk[i] =false 

b. Needi 5 Work. 

If no such i exists, go to step 4. 

3. Work := Work + Allocationi 
Finisk[i] := true 
go to step 2. 

4. If Finish[i] = true for all i, then the system is in a safe state. 

This algorithm may require an order of rn x n2 operations to decide whether a 
state is safe. 

8.5.3.2 Resource-Request Algorithm 

Let Requesti be the request vector for process Pi. If Request;[j] = k, then process 
Pi wants k instances of resource type Rj. When a request for resources is made 
by process Pi, the following actions are taken: 

1. If Requesti 5 Needi, go to step 2. Otherwise, raise an error condition, since 
the process has exceeded its maximum claim. 

2. If Requesti 5 Available, go to step 3. Otherwise, Pi must wait, since the 
resources are not available. 

3. Have the system pretend to have allocated the requested resources to 
process Pi by modifying the state as follows: 

Available := Available - Request,; 
Allocationi := Allocation; + Request;; 
Needi := Needi - Requesti; 

If the resulting resource-allocation state is safe, the transaction is completed 
and process Pi is allocated its resources. However, if the new state is 
unsafe, then Pi must wait for Requesti and the old resource-allocation state 
is restored. 
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8.5.3.3 An Illustrative Example 

Consider a system with five processes Po through P4 and three resource types 
A, B, C.  Resource type A has 10 instances, resource type B has 5  instances, and 
resource type C has 7  instances. Suppose that, at time To,  the following snapshot 
of the system has been taken: 

Allocation M a x  Available - -- 

A B C  A B C  A B C  
Po 0 1 0  7 5 3  3 3 2  
PI 2 0 0  3 2 2  
p2 3 0 2  9 0 2  
P3 2 1 1  2  2  2  
f'4 0  0  2  4 3 3  

The content of the matrix Need is defined to be M a x  - Allocation and is 

Need 

A B C  
Po 7 4 3  
P1 1 2 2  
P 6 0 0  
3 0 1 1  
P4 4 3 1  

We claim that the system is currently in a safe state. Indeed, the sequence 
<PI, P3/ P4, P2/ Po> satisfies the safety criteria. Suppose now that process 
PI requests one additional instance of resource type A and two instances of 
resource type C,  so Requestl = (1,0,2). To decide whether this request can be 
immediately granted, we first check that Requestl 5 Available (that is, (1,0,2) 5 
(3,3,2)), which is true. We then pretend that this request has been fulfilled, and 
we arrive at the following new state: 

Allocation Need Available 

A B C  A B C  A B C  
Po 0 1 0  7 4 3  2 3  0  
PI 3 0 2  0  2  0  
p2 3 0 2  6 0 0  
p3 2 1 1  0 1 1  
f'4 0  0  2  4 3 1  

We must determine whether this new system state is safe. To do so, we 
execute our safety algorithm and find that the sequence <PI,  P3, P4, POI P2> 
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satisfies our safety requirement. Hence, we can immediately grant the request 
of process PI. 

You should be able to see, however, that when the system is in t h s  state, a 
request for (3,3,0) by P4 cannot be granted, since the resources are not available. 
A request for (0,2,0) by Po cannot be granted, even though the resources are 
available, since the resulting state is unsafe. 

8.6 . Deadlock Detection 

If a system does not employ either a deadlock-prevention or a deadlock- 
avoidance algorithm, then a deadlock situation may occur. In this environment, 
the system must provide: 

An algorithm that examines the state of the system to determine whether a 
deadlock has occurred 

An algorithm to recover from the deadlock 

In the following discussion, we elaborate on these two requirements as they 
pertain to systems with only a single instance of each resource type, as well as to 
systems with several instances of each resource type. At this point, however, let 
us note that a detection-and-recovery scheme requires overhead that includes 
not only the run-time costs of maintaining the necessary information and 
executing the detection algorithm, but also the potential losses inherent in 
recovering from a deadlock. 

8.6.1 Single Instance of Each Resource Type 
If all resources have only a single instance, then we can define a deadlock- 
detection algorithm that uses a variant of the resource-allocation graph, called 
a wait-for graph. We obtain this graph from the resource-allocation graph by 
removing the nodes of type resource and collapsing the appropriate edges. 

More precisely, an edge from Pi to Pi in a wait-for graph implies that 
process Pi is waiting for process Pi to release a resource that Pi needs. An edge 
Pi -t Pi exists in a wait-for graph if and only if the corresponding resource- 
allocation graph contains two edges Pi -+ Rq and Rq + Pj for some resource 
Rq. For example, in Figure 8.7, we present a resource-allocation graph and the 
corresponding wait-for graph. 

As before, a deadlock exists in the system if and only if the wait-for graph 
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for 
graph and periodically to invoke an algorithm that searches for a cycle in the 
graph. 

An algorithm to detect a cycle in a graph requires an order of n2 operations, 
where n is the number of vertices in the graph. 
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Figure 8.7 (a) Resource-allocation graph. (b) Corresponding wait-for graph. 

8.6.2 Several Instances of a Resource Type 
The wait-for graph scheme is not applicable to a resource-allocation system 
with multiple instances of each resource type. The deadlock-detection algo- 
rithm that we describe next is applicable to such a system. The algorithm 
employs several time-varying data structures that are similar to those used in 
the banker's algorithm (Section 8.5.3): 

Available: A vector of length rn indicates the number of available resources 
of each type. 

Allocation: An n x rn matrix defines the number of resources of each type 
currently allocated to each process. 

Request: An n x rn matrix indicates the current request of each process. If 
Request[i,j] = k, then process Pi is requesting k more instances of resource 
type Ri. 

The 5 relation between two vectors is defined as in Section 8.5.3. To 
simplify notation, we shall again treat the rows in the matrices Allocation 
and Request as vectors, and shall refer to them as Allocationi and Requesti, 
respectively. The detection algorithm described here simply investigates every 
possible allocation sequence for the processes that remain to be completed. 
Compare this algorithm with the banker's algorithm of Section 8.5.3. 
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3. Let Work and Finish be vectors of length m and n ,  respectively. Initialize 
Work := Available. For i = 1, 2, ..., n, if Allocationi $0, then Finish[i] :=false; 
otherwise, Finish[i] := true. 

2. Find an index i such that both 

a. Finish[i] =false. 

b. Requesti 5 Work. 

If no such i exists, go to step 4. 

3. Work := Work + Allocationi 
Finish[i] := true 
go to step 2. 

4. If Finish[i] = false, for some i, 1 _< i 5 n, then the system is in a deadlock 
state. Moreover, if Finish[i] =false, then process Pi is deadlocked. 

Ths  algorithm requires an order of m x n2 operations to detect whether the 
system is in a deadlocked state. 

You may wonder why we reclaim the resources of process Pi (in step 3) 
as soon as we determine that Requesti _< Work (in step 2b). We know that Pi 
is currently not involved in a deadlock (since Requesti < Work). Thus, we take 
an optimistic attitude, and assume that Pi will require no more resources to 
complete its task; it will thus soon return all currently allocated resources to 
the system. If our assumption is incorrect, a deadlock may occur later. That 
deadlock will be detected the next time that the deadlock-detection algorithm 
is invoked. 

To illustrate this algorithm, we consider a system with five processes Po 
through P4 and three resource types A, B, C. Resource type A has 7 instances, 
resource type B has 2  instances, and resource type C has 6 instances. Suppose 
that, at time To, we have the following resource-allocation state: 

Allocation Request Available 

A B C  A B C  A B C  
Po 0 1 0  0  0  0  0 0 0  
P1 2  0  0  2 0  2  
P2 3 0  3 0  0  0  
P3 2 1 1  1 0 0  
P4 0 0 2  0  0 2  

We claim that the system is not in a deadlocked state. Indeed, if we execute 
our algorithm, we will find that the sequence <Po, P2, P3, P I ,  P4> will result in 
Finish[i] = true for all i. 
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Suppose now that process P2 makes one additional request for an instance 
of type C. The Request matrix is modified as follows: 

Reauest 

A B C  
Po 0 0 0  
PI 2 0 2  
PZ 0 0 1  
P 1 0 0  
Pq 0 0 2  

We claim that the system is now deadlocked. Although we can reclaim the 
resources held by process Po, the number of available resources is not sufficient 
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting 
of processes P I ,  P2, P3, and Pq. 

8.6.3 Detection-Algorithm Usage 
When should we invoke the detection algorithm? The answer depends on two 
factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? 

If deadlocks occur frequently, then the detection algorithm should be invoked 
frequently. Resources allocated to deadlocked processes will be idle until the 
deadlock can be broken. In addition, the number of processes involved in the 
deadlock cycle may grow. 

Deadlocks occur only when some process makes a request that cannot be 
granted immediately. This request may be the final request that completes a 
chain of waiting processes. In the extreme, we could invoke the deadlock- 
detection algorithm every time a request for allocation cannot be granted imme- 
diately. In this case, we can identify not only the set of processes that is dead- 
locked, but also the specific process that "caused" the deadlock. (In reality, each 
of the deadlocked processes is a link in the cycle in the resource graph, so all of 
them, jointly, caused the deadlock.) If there are many different resource types, 
one request may cause many cycles in the resource graph, each cycle completed 
by the most recent request and "caused" by the one identifiable process. 

Of course, invoking the deadlock-detection algorithm for every request 
may incur a considerable overhead in computation time. A less expensive alter- 
native is simply to invoke the algorithm at less frequent intervals-for example, 
once per hour, or whenever CPU utilization drops below 40 percent. (A dead- 
lock eventually cripples system throughput and will cause CPU utilization to 
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drop.) If the detection algorithm is invoked at arbitrary points in time, there 
may be many cycles in the resource graph. We would generally not be able to 
tell which of the many deadlocked processes "caused the deadlock. 

8.7 Recovery from Deadlock 

When a detection algorithm determines that a deadlock exists, several alter- 
natives exist. One possibility is to inform the operator that a deadlock has 
occurred, and to let the operator deal with the deadlock manually. The other 
possibility is to let the system recover from the deadlock automatically. There 
are two options for breaking a deadlock. One solution is simply to abort one 
or more processes to break the circular wait. The second option is to preempt 
some resources from one or more of the deadlocked processes. 

8.7.1 Process Termination 

To eliminate deadlocks by aborting a process, we use one of two methods. In 
both methods, the system reclaims all resources allocated to the terminated 
processes. 

Abort all deadlocked processes: This method clearly will break the dead- 
lock cycle, but at a great expense; these processes may have computed for a 
long time, and the results of these partial computations must be discarded 
and probably recomputed later. 

Abort one process at a time until the deadlock cycle is eliminated: This 
method incurs considerable overhead, since, after each process is aborted, 
a deadlock-detection algorithm must be invoked to determine whether any 
processes are still deadlocked. 

Aborting a process may not be easy. If the process was in the midst of 
updating a file, terminating it will leave that file in an incorrect state. Similarly, 
if the process was in the midst of printing data on the printer, the system must 
reset the printer to a correct state before printing the next job. 

If the partial termination method is used, then, given a set of deadlocked 
processes, we must determine which process (or processes) should be termi- 
nated in an attempt to break the deadlock. This determination is a policy 
decision, similar to CPU-scheduling problems. The question is basically an 
economic one; we should abort those processes the termination of which will 
incur the minimum cost. Unfortunately, the term minimum cost is not a precise 
one. Many factors may determine which process is chosen, including: 

1. What the priority of the process is 



8.7 Recovery from Deadlock 265 I 

2. How long the process has computed, and how much longer the process 
will compute before completing its designated task 

3. How many and what type of resources the process has used (for example, 
whether the resources are simple to preempt) 

4. How many more resources the process needs in order to complete 

5. How many processes will need to be terminated 

6. Whether the process is interactive or batch 

8.7.2 Resource Preemption 

To eliminate deadlocks using resource preemption, we successively preempt 
some resources from processes and give these resources to other processes until 
the deadlock cycle is broken. 

If preemption is required to deal with deadlocks, then three issues need to 
be addressed: 

1. Selecting a victim: Which resources and which processes are to be pre- 
empted? As in process termination, we must determine the order of pre- 

1 
emption to minimize cost. Cost factors may include such parameters as the 
number of resources a deadlock process is holding, and the amount of time 
a deadlocked process has thus far consumed during its execution. 

2. Rollback: If we preempt a resource from a process, what should be done 
with that process? Clearly, it cannot continue with its normal execution; it 
is missing some needed resource. We must roll back the process to some 
safe state, and restart it from that state. 

Since, in general, it is difficult to determine what a safe state is, the 
simplest solution is a total rollback: Abort the process and then restart it. 
However, it is more effective to roll back the process only as far as necessary 
to break the deadlock. On the other hand, this method requires the system 
to keep more information about the state of all the running processes. 

3. Starvation: How do we ensure that starvation will not occur? That is, how 
can we guarantee that resources will not always be preempted from the 
same process? 

In a system where victim selection is based primarily on cost factors, it 
may happen that the same process is always picked as a victim. As a result, 
this process never completes its designated task, a starvation situation that 
needs to be dealt with in any practical system. Clearly, we must ensure that 
a process can be picked as a victim only a (small) finite number of times. 
The most common solution is to include the number of rollbacks in the cost 
factor. 
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8.8 Summary 

A deadlock state occurs when two or more processes are waiting indefinitely for 
an event that can be caused only by one of the waiting processes. Principally, 
there are three methods for dealing with deadlocks: 

Use some protocol to prevent or avoid deadlocks, ensuring that the system 
will never enter a deadlock state. 

Allow the system to enter deadlock state, detect it, and then recover. 

Ignore the problem all together, and pretend that deadlocks never occur 
in the system. This solution is the one used by most operating systems, 
including UNIX. 

A deadlock situation may occur if and only if four necessary conditions 
hold simultaneously in the system: mutual exclusion, hold and wait, no pre- 
emption, and circular wait. To prevent deadlocks, we ensure that at least one of 
the necessary conditions never holds. 

Another method for avoiding deadlocks that is less stringent than the 
prevention algorithms is to have a priori information on how each process will 
be utilizing the resources. The banker's algorithm, for example, needs to know 
the maximum number of each resource class that may be requested by each 
process. Using this information, we can define a deadlock-avoidance algorithm. 

If a system does not employ a protocol to ensure that deadlocks will never 
occur, then a detection-and-recovery scheme must be employed. A deadlock- 
detection algorithm must be invoked to determine whether a deadlock has 
occurred. If a deadlock is detected, the system must recover either by terminat- 
ing some of the deadlocked processes, or by preempting resources from some 
of the deadlocked processes. 

In a system that selects victims for rollback primarily on the basis of cost 
factors, starvation may occur. As a result, the selected process never completes 
its designated task. 

Exercises 

8.1 List three examples of deadlocks that are not related to a computer-system 
environment. 

8.2 Is it possible to have a deadlock involving only one process? Explain your 
answer. 

8.3 People have said that proper spooling would eliminate deadlocks. Cer- 
tainly, it eliminates from contention card readers, plotters, printers, and so 
on. It is even possible to spool tapes (called staging them), which would 
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Figure 8.8 Traffic deadlock for Exercise 8.4. 

leave the resources of CPU time, memory, and disk space. Is it possible 
to have a deadlock involving these resources? If it is, how could such a 
deadlock occur? If it is not, why not? What deadlock scheme would seem 
best to eliminate these deadlocks (if any are possible), or what condition 
is violated (if they are not possible)? 

8.4 Consider the traffic deadlock depicted in Figure 8.8. 

a. Show that the four necessary conditions for deadlock indeed hold in 
this example. 

b. State a simple rule that will avoid deadlocks in this system. 

8.5 Suppose that a system is in an unsafe state. Show that it is possible for the 
processes to complete their execution without entering a deadlock state. 

8.6 In a real computer system, neither the resources available nor the demands 
of processes for resources are consistent over long periods (months). 
Resources break or are replaced, new processes come and go, new 
resources are bought and added to the system. If deadlock is controlled 
by the banker's algorithm, which of the following changes can be made 
safely (without introducing the possibility of deadlock), and under what 
circumstances? 

a. Increase Available (new resources added) 
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b. Decrease Available (resource permanently removed from system) 

c. Increase M a x  for one process (the process needs more resources than 
allowed, it may want more) 

d. Decrease M a x  for one process (the process decides it does not need 
that many resources) 

e. Increase the number of processes 

f. Decrease the number of processes 

8.7 Prove that the safety algorithm presented in Section 8.5.3 requires an order 
of m x n2 operations. 

8.8 Consider a system consisting of four resources of the same type that are 
shared by three processes, each of which needs at most two resources. 
Show that the system is deadlock-free. 

8.9 Consider a system consisting of rn resources of the same type, being shared 
by n processes. Resources can be requested and released by processes only 
one at a time. Show that the system is deadlock-free if the following two 
conditions hold: 

a. The maximum need of each process is between 1 and rn resources 

b. The sum of all maximum needs is less than rn + n 

8.10 Consider a computer system that runs 5,000 jobs per month with no 
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur 
about twice per month, and the operator must terminate and rerun about 
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the 
jobs terminated tend to be about half-done when they are aborted. 

A systems programmer has estimated that a deadlock-avoidance 
algorithm (like the banker's algorithm) could be installed in the system 
with an increase in the average execution time per job of about 10 percent. 
Since the machine currently has 30-percent idle time, all 5,000 jobs per 
month could still be run, although turnaround time would increase by 
about 20 percent on average. 

a. What are the arguments for installing the deadlock-avoidance algo- 
rithm? 

b. What are the arguments against installing the deadlock-avoidance 
algorithm? 

8.11 We can obtain the banker's algorithm for a single resource type from the 
general banker's algorithm simply by reducing the dimensionality of the 
various arrays by 1. Show through an example that the multiple-resource- 
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type banker's scheme cannot be implemented by individual application 
of the single-resource-type scheme to each resource type. 

8.12 Can a system detect that some of its processes are starving? If you answer 
"yes," explain how it can. If you answer "no," explain how the system can 
deal with the starvation problem. 

8.13 Consider the following snapshot of a system: ~ 
Allocation Max Available 

A B C D  A B C D  A B C D  
Po 0 0 1 2  ' 0 0 1 2  1 5 2 0  
P1 1 0 0 0  1 7 5 0  
P 1 3 5 4  2 3 5 6  
P3 0 6 3 2  0 6 5 2  
P4 0 0 1 4  0 6 5 6  

Answer the following questions using the banker's algorithm: 

a. What is the content of the matrix Need? 

b. Is the system in a safe state? 

c. If a request from process P1 arrives for (0,4,2,0), can the request be 
granted immediately? 

8.14 Consider the following resource-allocation policy. Requests and releases 
for resources are allowed at any time. If a request for resources cannot 
be satisfied because the resources are not available, then we check any 
processes that are blocked, waiting for resources. If they have the desired 
resources, then these resources are taken away from them and are given 
to the requesting process. The vector of resources for which the waiting 
process is waiting is increased to include the resources that were taken 
away. 

For example, consider a system with three resource types and the vector 
Available initialized to (4,2,2). If process Po asks for (2,2,1), it gets them. If 
PI asks for (1,0,1), it gets them. Then, if Po asks for (0,0,1), it is blocked 
(resource not available). If P2 now asks for (2,0,0), it gets the available one 
(1,0,0) and one that was allocated to Po (since Po is blocked). Po's Allocation 
vector goes down to (1,2,1), and its Need vector goes up to (1,0,1). 

a. Can deadlock occur? If so, give an example. If not, which necessary 
condition cannot occur? 

b. Can indefinite blocking occur? 
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8.15 Suppose that you have coded the deadlock-avoidance safety algorithm 
and now have been asked to implement the deadlock-detection algorithm. 
Can you do so by simply using the safety algorithm code and redefining 
Maxi = Waitingi + Allocationi, where Waitingi is a vector specifying the 
resources process i is waiting for, and Allocationi is as defined in Section 
8.5? Explain your answer. 
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Part Three 

The main purpose of a computer system is to execute programs. These pro- 
grams, together with the data they access, must be in main memory (at least 
partially) during execution. 

To improve both the utilization of the CPU and the speed of its response to 
users, the computer must keep several processes in memory. Many memory- 
management schemes exist, reflecting various approaches, and the effective- 
ness of each algorithm depends on the situation. Selection of a memory- 
management scheme for a system depends on many factors, especially on 
the hardware design of the system. Each algorithm requires its own hardware 
support. 

Since main memory is usually too small to accommodate all the data and 
programs permanently, the computer system must provide secondary storage 
to back up main memory. Modern computer systems use disks as the primary 
on-line storage medium for information (both programs and data). The file 
system provides the mechanism for on-line storage of and access to both data 
and programs residing on the disks. A file is a collection of related information 
defined by its creator. The files are mapped by the operating system onto 
physical devices. Files are normally organized into directories to ease their use. 



Chapter 9 

MEMORY 
MANAGEMENT 

In Chapter 6, we showed how the CPU can be shared by a set of processes. As 
a result of CPU scheduling, we can improve both the utilization of the CPU and 
the speed of the computer's response to its users. To realize this increase in 
performance, however, we must keep several processes in memory; that is, we 
must share memory. 

In this chapter, we discuss various ways to manage memory. The memory- 
management algorithms vary from a primitive bare-machine approach to pag- 
ing and segmentation strategies. Each approach has its own advantages and 
disadvantages. Selection of a memory-management method for a specific sys- 
tem depends on many factors, especially on the hardware design of the system. 
As we shall see, many algorithms require hardware support, although recent 
designs have closely integrated the hardware and operating system. 

9.1 Background 

As we saw in Chapter 1, memory is central to the operation of a modern 
computer system. Memory consists of a large array of words or bytes, each 
with its own address. The CPU fetches instructions from memory according 
to the value of the program counter. These instructions may cause additional 
loading from and storing to specific memory addresses. 

A typical instruction-execution cycle, for example, first fetches an instruc- 
tion from memory. The instruction is then decoded and may cause operands 
to be fetched from memory. After the instruction has been executed on the 
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operands, results may be stored back in memory. The memory unit sees only a 
stream of memory addresses; it does not know how they are generated (by the 
instruction counter, indexing, indirection, literal addresses, and so on) or what 
they are for (instructions or data). Accordingly, we can ignore how a memory 
address is generated by a program. We are interested in only the sequence of 
memory addresses generated by the running program. 

9.1.1 Address Binding 
Usually, a program resides on a disk as a binary executable file. The program 
must be brought into memory and placed within a process for it to be executed. 
Depending on the memory management in use, the process may be moved 
between disk and memory during its execution. The collection of processes 
on the disk that is waiting to be brought into memory for execution forms the 
input queue. 

The normal procedure is to select one of the processes in the input queue 
and to load that process into memory. As the process is executed, it accesses 
instructions and data from memory. Eventually, the process terminates, and its 
memory space is declared available. 

Most systems allow a user process to reside in any part of the physical mem- 
ory. Thus, although the address space of the computer starts at 00000, the first 
address of the user process does not need to be 00000. This arrangement affects 
the addresses that the user program can use. In most cases, a user program 
will go through several steps-some of which may be optional-before being 
executed (Figure 9.1). Addresses may be represented in different ways during 
these steps. Addresses in the source program are generally symbolic (such as 
count). A compiler will typically bind these symbolic addresses to relocatable 
addresses (such as "14 bytes from the beginning of this module"). The link- 
age editor or loader will in turn bind these relocatable addresses to absolute 
addresses (such as 74014). Each binding is a mapping from one address space 
to another. 

Classically, the binding of instructions and data to memory addresses can 
be done at any step along the way: 

Compile time: If you know at compile time where the process will reside 
in memory, then absolute code can be generated. For example, if you know 
a priori that a user process resides starting at location R, then the generated 
compiler code will start at that location and extend up from there. If, at 
some later time, the starting location changes, then it will be necessary to 
recompile this code. The MS-DOS .COM-format programs are absolute code 
bound at compile time. 

Load time: If it is not known at compile time where the process will reside 
in memory, then the compiler must generate relocatable code. In this case, 
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Figure 9.1 Multistep processing of a user program. 

final binding is delayed until load time. If the starting address changes, we 
need only to reload the user code to incorporate this changed value. 

Execution time: If the process can be moved during its execution from 
one memory segment to another, then binding must be delayed until run 
time. Special hardware must be available for this scheme to work, as will 
be discussed in Section 9.1.2. Most general-purpose operating systems use 
this method. 
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A major portion of this chapter is devoted to showing how these vari- 
ous bindings can be implemented effectively in a computer system and to 
discussing appropriate hardware support. 

9.1.2 Logical- Versus Physical-Address Space 
An address generated by the CPU is commonly referred to as a logical address, 
whereas an address seen by the memory unit-that is, the one loaded into 
the memory-address register of the memory-is commonly referred to as a 
physical address. 

The compile-time and load-time address-binding methods generate iden- 
tical logical and physical addresses. However, the execution-time address- 
binding scheme results in differing logical and physical addresses. In this case, 
we usually refer to the logical address as a virtual address. We use logical 
address and virtual address interchangeably in this text. The set of all logical 
addresses generated by a program is a logical-address space; the set of all phys- 
ical addresses corresponding to these logical addresses is a physical-address 
space. Thus, in the execution-time address-binding scheme, the logical- and 
physical-address spaces differ. 

The run-time mapping from virtual to physical addresses is done by a 
hardware device called the memory-management unit (MMU). We can choose 
from among many different methods to accomplish such a mapping, as we 
discuss in Sections 9.3, 9.4, 9.5, and 9.6. For the time being, we illustrate 
this mapping with a simple MMU scheme, which is a generalization of the 
base-register scheme described in Section 2.5.3. 

As illustrated in Figure 9.2, this method requires hardware support slightly 
different from the hardware configuration discussed in Section 2.4. The base 
register is now called a relocation register. The value in the relocation register 
is added to every address generated by a user process at the time it is sent to 
memory. For example, if the base is at 14000, then an attempt by the user 
to address location 0 is dynamically relocated to location 14000; an access 
to location 346 is mapped to location 14346. The MS-DOS operating system 
running on the Intel 80x86 family of processors uses four relocation registers 
when loading and running processes. 

The user program never sees the real physical addresses. The program can 
create a pointer to location 346, store it in memory, manipulate it, compare it 
to other addresses-all as the number 346. Only when it is used as a memory 
address (in an indirect load or store, perhaps) is it relocated relative to the base 
register. The user program deals with logical addresses. The memory-mapping 
hardware converts logical addresses into physical addresses. This form of 
execution-time binding was discussed in Section 9.1.1. The final location of a 
referenced memory address is not determined until the reference is made. 

We now have two different types of addresses: logical addresses (in the 
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base 
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Figure 9.2 Dynamic relocation using a relocation register. 

value R). The user generates only logical addresses and thinks that the process 
runs in locations 0 to max. The user program supplies logical addresses; these 
logical addresses must be mapped to physical addresses before they are used. 

The concept of a logical-address space that is bound to a separate physical- 
address space is central to proper memory management. 

9.1.3 Dynamic Loading 

In our discussion so far, the entire program and data of a process must be in 
physical memory for the process to execute. The size of a process is limited 
to the size of physical memory. To obtain better memory-space utilization, we 
can use dynamic loading. With dynamic loading, a routine is not loaded until 
it is called. All routines are kept on disk in a relocatable load format. The 
main program is loaded into memory and is executed. When a routine needs 
to call another routine, the calling routine first checks to see whether the other 
routine has been loaded. If not, the relocatable linking loader is called to load 
the desired routine into memory and to update the program's address tables to 
reflect this change. Then, control is passed to the newly loaded routine. 

The advantage of dynamic loading is that an unused routine is never 
loaded. This method is particularly useful when large amounts of code are 
needed to handle infrequently occurring cases, such as error routines. In t h s  
case, although the total program size may be large, the portion that is used (and 
hence loaded) may be much smaller. 

Dynamic loading does not require special support from the operating sys- 
tem. It is the responsibility of the users to design their programs to take 
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advantage of such a method. Operating systems may help the programmer, 
however, by providing library routines to implement dynamic loading. 

9.1.4 Dynamic Linking and Shared Libraries 
Figure 9.1 also shows dynamically linked libraries. Some operating systems 
support only static linking, in which system language libraries are treated 
like any other object module and are combined by the loader into the binary 
program image. The concept of dynamic linking is similar to that of dynamic 
loading. Rather than loading being postponed until execution time, linking is 
postponed. This feature is usually used with system libraries, such as language 
subroutine libraries. Without this facility, all programs on a system need to 
have a copy of their language library (or at least the routines referenced by 
the program) included in the executable image. This requirement wastes both 
disk space and main memory. With dynamic linking, a stub is included in 
the image for each library-routine reference. This stub is a small piece of code 
that indicates how to locate the appropriate memory-resident library routine, 
or how to load the library if the routine is not already present. 

When this stub is executed, it checks to see whether the needed routine is 
already in memory. If not, the program loads the routine into memory. Either 
way, the stub replaces itself with the address of the routine, and executes the 
routine. Thus, the next time that that code segment is reached, the library 
routine is executed directly, incurring no cost for dynamic linking. Under this 
scheme, all processes that use a language library execute only one copy of the 
library code. 

This feature can be extended to library updates (such. as bug fixes). A 
library may be replaced by a new version, and all programs that reference the 
library will automatically use the new version. Without dynamic linking, all 
such programs would need to be relinked to gain access to the new library. 
So that programs will not accidentally execute new, incompatible versions of 
libraries, version information is included in both the program and the library. 
More than one version of a library may be loaded into memory, and each 
program uses its version information to decide which copy of the library to 
use. Minor changes retain the same version number, whereas major changes 
increment the version number. Thus, only programs that are compiled with the 
new library version are affected by the incompatible changes incorporated in it. 
Other programs linked before the new library was installed will continue using 
the older library. This system is also known as shared libraries. 

Unlike dynamic loading, dynamic linking generally requires help from the 
operating system. If the processes in memory are protected from one another 
(Section 9.3), then the operating system is the only entity that can check to see 
whether the needed routine is in another process' memory space, or that can 
allow multiple processes to access the same memory addresses. We elaborate 
on this concept when we discuss paging in Section 9.4.5. 
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9.1.5 Overlays 
To enable a process to be larger than the amount of memory allocated to 
it, we can use overlays. The idea of overlays is to keep in memory only 
those instructions and data that are needed at any given time. When other 
instructions are needed, they are loaded into space occupied previously by 
instructions that are no longer needed. 

As an example, consider a two-pass assembler. During pass 1, it constructs 
a symbol table; then, during pass 2, it generates machine-language code. We 
may be able to partition such an assembler into pass 1 code, pass 2 code, the 
symbol table, and common support routines used by both pass 1 and pass 2. 
Assume that the sizes of these components are as follows: 

Pass 1 70 KB 
Pass 2 80 KB 
Symbol table 20 KB 
Common routines 30 KB 

To load everything at once, we would require 200 KB of memory. If only 150 
KB is available, we cannot run our process. However, notice that pass 1 and pass 
2 do not need to be in memory at the same time. We thus define two overlays: 
Overlay A is the symbol table, common routines, and pass 1, and overlay B is 
the symbol table, common routines, and pass 2. 

We add an overlay driver (10 KB) and start with overlay A in memory. 
When we finish pass 1, we jump to the overlay driver, which reads overlay 
B into memory, overwriting overlay A, and then transfers control to pass 
2. Overlay A needs only 120 KB, whereas overlay B needs 130 KB (Figure 
9.3). We can now run our assembler in the 150 KB of memory. It will load 
somewhat faster because fewer data need to be transferred before execution 
starts. However, it will run somewhat slower, due to the extra 1 /0  to read the 
code for overlay B over the code for overlay A. 

The code for overlay A and the code for overlay B are kept on disk as 
absolute memory images, and are read by the overlay driver as needed. Special 
relocation and linking algorithms are needed to construct the overlays. 

As in dynamic loading, overlays do not require any special support from 
the operating system. They can be implemented completely by the user with 
simple file structures, reading from the files into memory and then jumping to 
that memory and executing the newly read instructions. The operating system 
notices only that there is more I/O than usual. 

The programmer, on the other hand, must design and program the overlay 
structure properly. This task can be a major undertaking, requiring complete 
knowledge of the structure of the program, its code, and its data structures. 
Because the program is, by definition, large-small programs do not need to be 
overlaid-obtaining a sufficient understanding of the program may be difficult. 
For these reasons, the use of overlays is currently limited to microcomputer 
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Figure 9.3 Overlays for a two-pass assembler. 

and other systems that have limited amounts of physical memory and that 
lack hardware support for more advanced techniques. Some microcomputer 
compilers provide the programmer with support for overlays to make the task 
easier. Automatic techniques to run large programs in limited amounts of 
physical memory are certainly preferable. 

9.2 . Swapping 

A process needs to be in memory to be executed. A process, however, can 
be swapped temporarily out of memory to a backing store, and then brought 
back into memory for continued execution. For example, assume a multipro- 
gramming environment with a round-robin CPU-scheduling algorithm. When 
a quantum expires, the memory manager will start to swap out the process that 
just finished, and to swap in another process to the memory space that has been 
freed (Figure 9.4). In the meantime, the CPU scheduler will allocate a time slice 
to some other process in memory. When each process finishes its quantum, it 
will be swapped with another process. Ideally, the memory manager can swap 
processes fast enough that some processes will be in memory, ready to execute, 
when the CPU scheduler wants to reschedule the CPU. The quantum must also 
be sufficiently large that reasonable amounts of computing are done between 
swaps. 
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main memory 

Figure 9.4 Swapping of two processes using a disk as a backing store. 

A variant of this swapping policy is used for priority-based scheduling 
algorithms. If a higher-priority process arrives and wants service, the memory 
manager can swap out the lower-priority process so that it can load and execute 
the higher-priority process. When the higher-priority process finishes, the 
lower-priority process can be swapped back in and continued. This variant 
of swapping is sometimes called roll out, roll in. 

Normally a process that is swapped out will be swapped back into the same 
memory space that it occupied previously. This restriction is dictated by the 
method of address binding. If binding is done at assembly or load time, then 
the process cannot be moved to different locations. If execution-time binding 
is being used, then a process can be swapped into a different memory space, 
because the physical addresses are computed during execution time. 

Swapping requires a backing store. The backing store is commonly a fast 
disk. It must be large enough to accommodate copies of all memory images for 
all users, and it must provide direct access to these memory images. The system 
maintains a ready queue consisting of all processes whose memory images are 
on the backing store or in memory and are ready to run. Whenever the CPU 
scheduler decides to execute a process, it calls the dispatcher. The dispatcher 
checks to see whether the next process in the queue is in memory. If not, and 
there is no free memory region, the dispatcher swaps out a process currently in 
memory and swaps in the desired process. It then reloads registers as normal 
and transfers control to the selected process. 

The context-switch time in such a swapping system is fairly high. To get an 
idea of the context-switch time, let us assume that the user process is of size 1 
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MB and the backing store is a standard hard disk with a transfer rate of 5 MB 
per second. The actual transfer of the 1 MB process to or from memory takes 

1000 KB/5000 KB per second = 1 /5 second 
= 200 milliseconds. 

Assuming that no head seeks are necessary and an average latency of 8 
milliseconds, the swap time takes 208 milliseconds. Since we must both swap 
out and swap in, the total swap time is then about 416 milliseconds. 

For efficient CPU utilization, we want our execution time for each process 
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling 
algorithm, for example, the time quantum should be substantially larger than 
0.416 seconds. 

Notice that the major part of the swap time is transfer time. The total 
transfer time is directly proportional to the amount of memory swapped. If we 
have a computer system with 128 MB of main memory and a resident operating 
system taking 5 MB, the maximum size of the user process is 123 MB. However, 
many user processes may be much smaller than this size-say, 1 MB. A 1 
MB process could be swapped out in 208 milliseconds, compared to the 24.6 
seconds for swapping 123 MB. Therefore, it would be useful to know exactly 
how much memory a user process is using, not simply how much it might be 
using. Then, we would need to swap only what is actually used, reducing swap 
time. For this method to be effective, the user must keep the system informed of 
any changes in memory requirements. Thus, a process with dynamic memory 
requirements will need to issue system calls (request memory and release 
memory) to inform the operating system of its changing memory needs. 

Swapping is constrained by other factors as well. If we want to swap a 
process, we must be sure that it is completely idle. Of particular concern is any 
pending I/O. A process may be waiting for an I/O operation when we want to 
swap that process to free up its memory. However, if the 1/0 is asynchronously 
accessing the user memory for I/O buffers, then the process cannot be swapped. 
Assume that the 1/0 operation was queued because the device was busy. Then, 
if we were to swap out process PI and swap in process P2, the I/O operation 
might then attempt to use memory that now belongs to process P2. The two 
main solutions to this problem are never to swap a process with pending I/O, 
or to execute 1 /0  operations only into operating-system buffers. Transfers 
between operating-system buffers and process memory then occur only when 
the process is swapped in. 

The assumption that swapping requires few, if any, head seeks needs 
further explanation. We postpone discussing this issue until Chapter 14, where 
secondary-storage structure is covered. Generally, swap space is allocated as a 
chunk of disk, separate from the file system, so that its use is as fast as possible. 

Currently, standard swapping is used in few systems. It requires too 
much swapping time and provides too little execution time to be a reasonable 
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memory-management solution. Modified versions of swapping, however, are 
found on many systems. 

A modification of swapping is used in many versions of UNIX. Swapping 
was normally disabled, but would start if many processes were running and 
were using a threshold amount of memory. Swapping would again be halted 
if the load on the system were reduced. Memory management in UNIX is 
described fully in Section A.6. 

Early PCs lacked sophisticated hardware (or operating systems that 
take advantage of the hardware) to implement more advanced memory- 
management methods, but they were used to run multiple large processes by 
a modified version of swapping. A prime example is the Microsoft Windows 
3.1 operating system, which supports concurrent execution of processes in 
memory. If a new process is loaded and there is insufficient main memory, 
an old process is swapped to disk. This operating system, however, does not 
provide full swapping, because the user, rather than the scheduler, decides 
when it is time to preempt one process for another. Any swapped-out process 
remains swapped out (and not executing) until the user selects that process 
to run. Follow-on Microsoft operating systems, such as Windows NT, take 
advantage of advanced MMU features now found even on PCs. In Section 9.6, 
we describe the memory-management hardware found on the Intel 386 family 
of processors used in many PCs. In that section, we also describe the memory 
management used on this CPU by another advanced operating system for PCs: 
IBM OS/2. 

9.3 . Contiguous Memory Allocation 

The main memory must accommodate both the operating system and the 
various user processes. We therefore need to allocate different parts of the 
main memory in the most efficient way possible. This section will explain one 
common method, contiguous memory allocation. 

The memory is usually divided into two partitions: one for the resident 
operating system, and one for the user processes. We may place the operating 
system in either low memory or high memory. The major factor affecting this 
decision is the location of the interrupt vector. Since the interrupt vector is 
often in low memory, programmers usually place the operating system in low 
memory as well. Thus, in this text, we shall discuss only the situation where 
the operating system resides in low memory. The development of the other 
situation is similar. 

We usually want several user processes to reside in memory at the same 
time. We therefore need to consider how to allocate available memory to the 
processes that are in the input queue waiting to be brought into memory. In this 
contiguous memory allocation, each process is contained in a single contiguous 
section of memory. 
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9.3.1 Memory Protection 
Before discussing memory allocation, we must discuss the issue of memory pro- 
tection-protecting the operating system from user processes, and protecting 
user processes from one another. We can provide this protection by using a relo- 
cation register, as discussed in Section 9.1.2, with a limit register, as discussed in 
Section 2.5.3. The relocation register contains the value of the smallest physical 
address; the limit register contains the range of logical addresses (for example, 
relocation = 100040 and limit = 74600). With relocation and limit registers, each 
logical address must be less than the limit register; the MMU maps the logical 
address dynamically by adding the value in the relocation register. This mapped 
address is sent to memory (Figure 9.5). 

When the CPU scheduler selects a process for execution, the dispatcher 
loads the relocation and limit registers with the correct values as part of the 
context switch. Because every address generated by the CPU is checked against 
these registers, we can protect both the operating system and the other users' 
programs and data from being modified by this running process. 

The relocation-register scheme provides an effective way to allow the 
operating-system size to change dynamically. This flexibility is desirable in 
many situations. For example, the operating system contains code and buffer 
space for device drivers. If a device driver (or other operating-system service) 
is not commonly used, we do not want to keep the code and data in memory, 
as we might be able to use that space for other purposes. Such code is some- 
times called transient operating-system code; it comes and goes as needed. 
Thus, using this code changes the size of the operating system during program 
execution. 

+ 
trap; addressing error 

Figure 9.5 Hardware support for relocation and limit registers. 
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9.3.2 Memory Allocation 
Now we are ready to turn to memory allocation. One of the simplest methods 
for memory allocation is to divide memory into several fixed-sized partitions. 
Each partition may contain exactly one process. Thus, the degree of multipro- 
gramming is bound by the number of partitions. In this multiple-partition 
method, when a partition is free, a process is selected from the input queue 
and is loaded into the free partition. When the process terminates, the partition 
becomes available for another process. This method was originally used by the 
IBM 0S/360 operating system (called MFT); it is no longer in use. The method 
described next is a generalization of the fixed-partition scheme (called MVT); it 
is used primarily in a batch environment. Many of the ideas presented here are 
also applicable to a time-sharing environment in which pure segmentation is 
used for memory management (Section 9.5). 

The operating system keeps a table indicating which parts of memory are 
available and which are occupied. Initially, all memory is available for user 
processes, and is considered as one large block of available memory, a hole. 
When a process arrives and needs memory, we search for a hole large enough 
for this process. If we find one, we allocate only as much memory as is needed, 
keeping the rest available to satisfy future requests. 

As processes enter the system, they are put into an input queue. The 
operating system takes into account the memory requirements of each process 
and the amount of available memory space in determining which processes are 
allocated memory. When a process is allocated space, it is loaded into memory 
and it can then compete for the CPU. When a process terminates, it releases its 
memory, which the operating system may then fill with another process from 
the input queue. 

At any given time, we have a list of available block sizes and the input 
queue. The operating system can order the input queue according to a schedul- 
ing algorithm. Memory is allocated to processes until, finally, the memory 
requirements of the next process cannot be satisfied; no available block of mem- 
ory (or hole) is large enough to hold that process. The operating system can then 
wait until a large enough block is available, or it can skip down the input queue 
to see whether the smaller memory requirements of some other process can be 
met. 

In general, a set of holes, of various sizes, is scattered throughout memory at 
any given time. When a process arrives and needs memory, the system searches 
this set for a hole that is large enough for this process. If the hole is too large, it is 
split into two: One part is allocated to the arriving process; the other is returned 
to the set of holes. When a process terminates, it releases its block of memory, 
which is then placed back in the set of holes. If the new hole is adjacent to other 
holes, these adjacent holes are merged to form one larger hole. At this point, the 
system may need to check whether there are processes waiting for memory and 
whether this newly freed and recombined memory could satisfy the demands 
of any of these waiting processes. 
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This procedure is a particular instance of the general dynamic storage- 
allocation problem, which is how to satisfy a request of size n from a list of free 
holes. There are many solutions to this problem. The set of holes is searched 
to determine which hole is best to allocate. The first-fit, best-fit, and worst-fit 
strategies are the most common ones used to select a free hole from the set of 
available holes. 

Firstfit: Allocate thefirst hole that is big enough. Searching can start either 
at the beginning of the set of holes or where the previous first-fit search 
ended. We can stop searching as soon as we find a free hole that is large 
enough. 

Bestfit: Allocate the smallest hole that is big enough. We must search the 
entire list, unless the list is kept ordered by size. This strategy produces the 
smallest leftover hole. 

Worst fit: Allocate the largest hole. Again, we must search the entire list, 
unless it is sorted by size. This strategy produces the largest leftover hole, 
which may be more useful than the smaller leftover hole from a best-fit 
approach. 

Simulations have shown that both first fit and best fit are better than worst 
fit in terms of decreasing both time and storage utilization. Neither first fit nor 
best fit is clearly better in terms of storage utilization, but first fit is generally 
faster. 

These algorithms, however, suffer from external fragmentation. As pro- 
cesses are loaded and removed from memory, the free memory space is broken 
into little pieces. External fragmentation exists when enough total memory 
space exists to satisfy a request, but it is not contiguous; storage is fragmented 
into a large number of small holes. This fragmentation problem can be severe. 
In the worst case, we could have a block of free (or wasted) memory between 
every two processes. If all this memory were in one big free block, we might be 
able to run several more processes. 

The selection of the first-fit versus best-fit strategies can affect the amount 
of fragmentation. (First fit is better for some systems, whereas best fit is better 
for others.) Another factor is which end of a free block is allocated. (Which is 
the leftover piece-the one on the top, or the one on the bottom?) No matter 
which algorithm is used, external fragmentation will be a problem. 

Depending on the total amount of memory storage and the average process 
size, external fragmentation may be a minor or a major problem. Statistical 
analysis of first fit, for instance, reveals that, even with some optimization, 
given N allocated blocks, another 0.5N blocks will be lost due to fragmentation. 
That is, one-third of memory may be unusable! This property is known as the 
50-percent rule. 
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9.3.3 Fragmentation 
Memory fragmentation can be internal as well as external. Consider a multiple- 
partition allocation scheme with a hole of 18,464 bytes. Suppose that the next 
process requests 18,462 bytes. If we allocate exactly the requested block, we 
are left with a hole of 2 bytes. The overhead to keep track of this hole will be 
substantially larger than the hole itself. The general approach is to break the 
physical memory into fixed-sized blocks, and allocate memory in unit of block 
sizes. With this approach, the memory allocated to a process may be slightly 
larger than the requested memory. The difference between these two numbers 
is internal fragmentation-memory that is internal to a partition but is not 
being used. 

One solution to the problem of external fragmentation is compaction. The 
goal is to shuffle the memory contents to place all free memory together in one 
large block. Compaction is not always possible. If relocation is static and is done 
at assembly or load time, compaction cannot be done; compaction is possible 
only if relocation is dynamic, and is done at execution time. If addresses are 
relocated dynamically, relocation requires only moving the program and data, 
and then changing the base register to reflect the new base address. When 
compaction is possible, we must determine its cost. The simplest compaction 
algorithm is simply to move all processes toward one end of memory; all holes 
move in the other direction, producing one large hole of available memory. This 
scheme can be expensive. 

Another possible solution to the external-fragmentation problem is to per- 
mit the logical-address space of a process to be noncontiguous, thus allowing 
a process to be allocated physical memory wherever the latter is available. 
Two complementary techniques achieve this solution: paging (Section 9.4) and 
segmentation (Section 9.5). These techniques can also be combined (Section 9.6). 

9.4 . Paging 

Paging is a memory-management scheme that permits the physical-address 
space of a process to be noncontiguous. Paging avoids the considerable prob- 
lem of fitting the varying-sized memory chunks onto the backing store, from 
which most of the previous memory-management schemes suffered. When 
some code fragments or data residing in main memory need to be swapped 
out, space must be found on the backing store. The fragmentation problems 
discussed in connection with main memory are also prevalent with backing 
store, except that access is much slower, so compaction is impossible. Because 
of its advantages over the previous methods, paging in its various forms is 
commonly used in most operating systems. 

Traditionally, support for paging has been handled by hardware. However, 
recent designs have implemented paging by closely integrating the hardware 
and operating system, especially on 64-bit microprocessors. 
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Figure 9.6 Paging hardware. 

9.4.1 Basic Method 

logical physical 
address address 

Physical memory is broken into fixed-sized blocks called frames. Logical 
memory is also broken into blocks of the same size called pages. When a process 
is to be executed, its pages are loaded into any available memory frames from 
the backing store. The backing store is divided into fixed-sized blocks that are 
of the same size as the memory frames. 

The hardware support for paging is illustrated in Figure 9.6. Every address 
generated by the CPU is divided into two parts: a page number (p) and a page 
offset (d). The page number is used as an index into a page table. The page 
table contains the base address of each page in physical memory. This base 
address is combined with the page offset to define the physical memory address 
that is sent to the memory unit. The paging model of memory is shown in 
Figure 9.7. 

The page size (like the frame size) is defined by the hardware. The size 
of a page is typically a power of 2, varying between 512 bytes and 16 MB per 
page, depending on the computer architecture. The selection of a power of 2 
as a page size makes the translation of a logical address into a page number 
and page offset particularly easy. If the size of logical-address space is 2m, and 
a page size is 2n addressing units (bytes or words), then the high-order rn - n 
bits of a logical address designate the page number, and the n low-order bits 
designate the page offset. Thus, the logical address is as follows: 
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Figure 9.7 Paging model of logical and physical memory 
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where p is an index into the page table and d is the displacement within the 
page. 

As a concrete (although minuscule) example, consider the memory in 
Figure 9.8. Using a page size of 4 bytes and a physical memory of 32 bytes (8 
pages), we show how the user's view of memory can be mapped into physical 
memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we 
find that page 0 is in frame 5. Thus, logical address 0 maps to physical address 
20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical address 
23 (= (5 x 4) + 3). Logical address 4 is page 1, offset 0; according to the page 
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical 
address 24 (= (6 x 4) + 0). Logical address 13 maps to physical address 9. 

You may have noticed that paging itself is a form of dynamic relocation. 
Every logical address is bound by the paging hardware to some physical 
address. Using paging is similar to using a table of base (or relocation) registers, 
one for each frame of memory. 

When we use a paging scheme, we have no external fragmentation: Any 
free frame can be allocated to a process that needs it. However, we may have 
some internal fragmentation. Notice that frames are allocated as units. If the 

page offset 
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Figure 9.8 Paging example for a 32-byte memory with 4-byte pages. 

memory requirements of a process do not happen to fall on page boundaries, 
the last frame allocated may not be completely full. For example, if pages are 
2,048 bytes, a process of 72,766 bytes would need 35 pages plus 1,086 bytes. It 
would be allocated 36 frames, resulting in an internal fragmentation of 2048 - 
1086 = 962 bytes. In the worst case, a process would need n pages plus one 
byte. It would be allocated n + 1 frames, resulting in an internal fragmentation 
of almost an entire frame. 

If process size is independent of page size, we expect internal fragmentation 
to average one-half page per process. This consideration suggests that small 
page sizes are desirable. However, overhead is involved in each page-table 
entry, and this overhead is reduced as the size of the pages increases. Also, 
disk I/O is more efficient when the number of data being transferred is larger 
(Chapter 14). Generally, page sizes have grown over time as processes, data 
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sets, and main memory have become larger. Today pages typically are between 
4 KB and 8 KB, and some systems support even larger page sizes. Some CPUs 
and kernels even support multiple page sizes. For instance, Solaris uses 8 KB 
and 4 MB page sizes, depending on the data stored by the pages. Researchers 
are now developing variable on-the-fly page-size support. 

Each page-table entry is usually 4 bytes long, but that size can vary as well. 
A 32-bit entry can point to one of 232 physical page frames. If a frame is 4 KB, 
then a system with 4-byte entries can address 236 bytes (or 64 GB) of physical 
memory. 

When a process arrives in the system to be executed, its size, expressed in 
pages, is examined. Each page of the process needs one frame. Thus, if the 
process requires n pages, at least n frames must be available in memory. If n 
frames are available, they are allocated to this arriving process. The first page 
of the process is loaded into one of the allocated frames, and the frame number 
is put in the page table for this process. The next page is loaded into another 
frame, and its frame number is put into the page table, and so on (Figure 9.9). 

An important aspect of paging is the clear separation between the user's 
view of memory and the actual physical memory. The user program views 
that memory as one single contiguous space, containing only this one program. 
In fact, the user program is scattered throughout physical memory, which also 
holds other programs. The difference between the user's view of memory and 
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Figure 9.9 Free frames. (a) Before allocation. (b) After allocation. 
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the actual physical memory is reconciled by the address-translation hardware. 
The logical addresses are translated into physical addresses. This mapping is 
hidden from the user and is controlled by the operating system. Notice that the 
user process by definition is unable to access memory it does not own. It has 
no way of addressing memory outside of its page table, and the table includes 
only those pages that the process owns. 

Since the operating system is managing physical memory, it must be aware 
of the allocation details of physical memory: which frames are allocated, which 
frames are available, how many total frames there are, and so on. This informa- 
tion is generally kept in a data structure called a frame table. The frame table 
has one entry for each physical page frame, indicating whether the latter is free 
or allocated and, if it is allocated, to which page of which process or processes. 

In addition, the operating system must be aware that user processes operate 
in user space, and all logical addresses must be mapped to produce physical 
addresses. If a user makes a system call (to do I/O, for example) and provides 
an address as a parameter (a buffer, for instance), that address must be mapped 
to produce the correct physical address. The operating system maintains a copy 
of the page table for each process, just as it maintains a copy of the instruction 
counter and register contents. This copy is used to translate logical addresses to 
physical addresses whenever the operating system must map a logical address 
to a physical address manually. It is also used by the CPU dispatcher to define 
the hardware page table when a process is to be allocated the CPU. Paging 
therefore increases the context-switch time. 

9.4.2 Hardware Support 
Each operating system has its own methods for storing page tables. Most 
allocate a page table for each process. A pointer to the page table is stored with 
the other register values (like the instruction counter) in the process control 
block. When the dispatcher is told to start a process, it must reload the user 
registers and define the correct hardware page-table values from the stored user 
page table. 

The hardware implementation of the page table can be done in several 
ways. In the simplest case, the page table is implemented as a set of dedicated 
registers. These registers should be built with very high-speed logic to make the 
paging-address translation efficient. Every access to memory must go through 
the paging map, so efficiency is a major consideration. The CPU dispatcher 
reloads these registers, just as it reloads the other registers. Instructions to load 
or modify the page-table registers are, of course, privileged, so that only the 
operating system can change the memory map. The DEC PDP-11 is an example 
of such an architecture. The address consists of 16 bits, and the page size is 8 
KB. The page table thus consists of eight entries that are kept in fast registers. 

The use of registers for the page table is satisfactory if the page table is 
reasonably small (for example, 256 entries). Most contemporary computers, 
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however, allow the page table to be very large (for example, 1 million entries). 
For these machines, the use of fast registers to implement the page table is 
not feasible. Rather, the page table is kept in main memory, and a page-table 
base register (PTBR) points to the page table. Changing page tables requires 
changing only this one register, substantially reducing context-switch time. 

The problem with this approach is the time required to access a user 
memory location. If we want to access location i, we must first index into the 
page table, using the value in the PTBR offset by the page number for i. This 
task requires a memory access. It provides us with the frame number, which 
is combined with the page offset to produce the actual address. We can then 
access the desired place in memory. With this scheme, two memory accesses are 
needed to access a byte (one for the page-table entry, one for the byte). Thus, 
memory access is slowed by a factor of 2. This delay would be intolerable under 
most circumstances. We might as well resort to swapping! 

The standard solution to this problem is to use a special, small, fast- 
lookup hardware cache, called translation look-aside buffer (TLB). The TLB 
is associative, high-speed memory. Each entry in the TLB consists of two parts: 
a key (or tag) and a value. When the associative memory is presented with 
an item, it is compared with all keys simultaneously. If the item is found, 
the corresponding value field is returned. The search is fast; the hardware, 
however, is expensive. Typically, the number of entries in a TLB is small, often 
numbering between 64 and 1,024. 

The TLB is used with page tables in the following way. The TLB contains 
only a few of the page-table entries. When a logical address is generated by 
the CPU, its page number is presented to the TLB. If the page number is found, 
its frame number is immediately available and is used to access memory. The 
whole task may take less than 10 percent longer than it would if an unmapped 
memory reference were used. 

If the page number is not in the TLB (known as a TLB miss), a memory 
reference to the page table must be made. When the frame number is obtained, 
we can use it to access memory (Figure 9.10). In addition, we add the page 
number and frame number to the TLB, so that they will be found quickly on the 
next reference. If the TLB is already full of entries, the operating system must 
select one for replacement. Replacement policies range from least recently used 
(LRU) to random. Furthermore, some TLBs allow entries to be wired down, 
meaning that they cannot be removed from the TLB. Typically, TLB entries for 
kernel code are often wired down. 

Some TLBs store address-space identifiers (ASIDs) in each entry of the TLB. 
An ASID uniquely identifies each process and is used to provide address space 
protection for that process. When the TLB attempts to resolve virtual page 
numbers, it ensures the ASID for the currently running process matches the ASID 
associated with the virtual page. If the ASIDs do not match, they are treated 
as a TLB miss. In addition to providing address-space protection, an ASID 
allows the TLB to contain entries for several different processes simultaneously. 
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Figure 9.10 Paging hardware with TLB. 

If the TLB does not support separate ASIDs, every time a new page table is 
selected (for instance, each context switch), the TLB must be flushed (or erased) 
to ensure that the next executing process does not use the wrong translation 
information. Otherwise, there could be old entries in the TLB that contain valid 
virtual addresses but have incorrect or invalid physical addresses left over from 
the previous process. 

The percentage of times that a particular page number is found in the TLB 
is called the hit ratio. An 80-percent hit ratio means that we find the desired 
page number in the TLB 80 percent of the time. If it takes 20 nanoseconds 
to search the TLB, and 100 nanoseconds to access memory, then a mapped- 
memory access takes 120 nanoseconds when the page number is in the TLB. 
If we fail to find the page number in the TLB (20 nanoseconds), then we must 
first access memory for the page table and frame number (100 nanoseconds), 
and then access the desired byte in memory (100 nanoseconds), for a total of 
220 nanoseconds. To find the effective memory-access time, we must weigh 
each case by its probability: 

effective access time = 0.80 x 120 + 0.20 x 220 
= 140 nanoseconds. 
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In this example, we suffer a 40-percent slowdown in memory access time (from 
100 to 140 nanoseconds). 

For a 98-percent hit ratio, we have 

effective access time = 0.98 x 120 + 0.02 x 220 
= 122 nanoseconds. 

This increased hit rate produces only a 22-percent slowdown in access time. We 
will further explore the impact of the hit ratio on the TLB in Chapter 10. 

9.4.3 Protection 

Memory protection in a paged environment is accomplished by protection bits 11 

that are associated with each frame. Normally, these bits are kept in the page 
table. One bit can define a page to be read-write or read-only. Every reference 
to memory goes through the page table to find the correct frame number. At 
the same time that the physical address is being computed, the protection bits 

I 
~ 

can be checked to verify that no writes are being made to a read-only page. An 
attempt to write to a read-only page causes a hardware trap to the operating 
system (or memory-protection violation). 

We can easily expand this approach to provide a finer level of protection. 
We can create hardware to provide read-only, read-write, or execute-only 
protection. Or, by providing separate protection bits for each kind of access, we 
can allow any combination of these accesses; illegal attempts will be trapped to 
the operating system. 

One more bit is generally attached to each entry in the page table: a valid- 
invalid bit. When this bit is set to "valid," this value indicates that the associated 
page is in the process' logical-address space, and is thus a legal (or valid) page. 
If the bit is set to "invalid," this value indicates that the page is not in the 
process' logical-address space. Illegal addresses are trapped by using the valid- 
invalid bit. The operating system sets this bit for each page to allow or disallow 
accesses to that page. For example, in a system with a 14-bit address space (0 
to 16383), we may have a program that should use only addresses 0 to 10468. 
Given a page size of 2 KB, we get the situation shown in Figure 9.11. Addresses 
in pages 0, 1,2,3,4, and 5 are mapped normally through the page table. Any 
attempt to generate an address in pages 6 or 7, however, finds that the valid- 
invalid bit is set to invalid, and the computer will trap to the operating system 
(invalid page reference). 

Because the program extends to only address 10468, any reference beyond 
that address is illegal. However, references to page 5 are classified as valid, so 
accesses to addresses up to 12287 are valid. Only the addresses from 12288 to 
16383 are invalid. This problem is a result of the 2 KB page size and reflects the 

' internal fragmentation of paging. 
Rarely does a process use all its address range. In fact, many processes 

use only a small fraction of the address space available to them. It would be 
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Figure 9.11 Valid (v) or invalid (i) bit in a page table. 

wasteful in these cases to create a page table with entries for every page in the 
address range. Most of this table would be unused, but would take up valuable 
memory space. Some systems provide hardware, in the form of a page-table 
length register (PTLR), to indicate the size of the page table. This value is 
checked against every logical address to verify that the address is in the valid 
range for the process. Failure of this test causes an error trap to the operating 
system. 

9.4.4 Structure of the Page Table 
In this section we explore some of the most common techniques for structuring 
the page table. 

9.4.4.1 Hierarchical Paging 

Most modern computer systems support a large logical-address space (Z3' to 
2@). In such an environment, the page table itself becomes excessively large. 
For example, consider a system with a 32-bit logical-address space. If the page 
size in such a system is 4 KB (212), then a page table may consist of up to 1 million 
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Figure 9.12 A two-level page-table scheme. 

entries (232/212). Assuming that each entry consists of 4 bytes, each process may 
need up to 4 MB of physical-address space for the page table alone. Clearly, we 
would not want to allocate the page table contiguously in main memory. One 
simple solution to this problem is to divide the page table into smaller pieces. 
There are several ways to accomplish this division. 

One way is to use a two-level paging algorithm, in which the page table 
itself is also paged (Figure 9.12). Remember our example to our 32-bit machine 
with a page size of 4 KB. A logical address is divided into a page number 
consisting of 20 bits, and a page offset consisting of 12 bits. Because we page 
the page table, the page number is further divided into a 10-bit page number 
and a 10-bit page offset. Tl~us, a logical address is as follows: 

page number page offset 
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where pl is an index into the outer page table and p2 is the displacement within 
the page of the outer page table. The address-translation method for this 
architecture is shown in Figure 9.13. Because address translation works from 
the outer page table inwards, this scheme is also known as a forward-mapped 
page table. The Pentium-I1 uses this architecture. 

The VAX architecture also supports a variation of two-level paging. The 
VAX is a 32-bit machine with page size of 512 bytes. The logical-address space of 
a process is divided into four equal sections, each of which consists of 230 bytes. 
Each section represents a different part of the logical-address space of a process. 
The first 2 high-order bits of the logical address designate the appropriate 
section. The next 21 bits represent the logical page number of that section, and 
the final 9 bits represent an offset in the desired page. By partitioning the page 
table in this manner, the operating system can leave partitions unused until a 
process needs them. An address on the VAX architecture is as follows: 

where s designates the section number, p is an index into the page table, and d 
is the displacement within the page. 

The size of a one-level page table for a VAX process using one section still 
is 2" bits * 4 bytes per entry = 8 MB. So that main-memory use is reduced even 
further, the VAX pages the user-process page tables. 

For a system with a 64-bit logical-address space, a two-level paging scheme 
is no longer appropriate. To illustrate this point, let us suppose that the page 
size in such a system is 4 KB (212). In this case, the page table will consist of 
up to 252 entries. If we use a two-level paging scheme, then the inner page 
tables could conveniently be one page long, or contain 21° 4-byte entries. The 
addresses would look like: 

loaical address 

offset 

d 1 
section 

s 

Figure 9.13 Address translation for a two-level 32-bit paging architecture. 
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The outer page table will consist of 242 entries, or 244 bytes. The obvious method 
to avoid such a large table is to divide the outer page table into smaller pieces. 
This approach is also used on some 32-bit processors for added flexibility and 
efficiency. 

We can divide the outer page table in various ways. We can page the 
outer page table, giving us a three-level paging scheme. Suppose that the outer 
page table is made up of standard-size pages (21° entries, or 2'' bytes); a 64-bit 
address space is still daunting: 

offset 
d 

outer page 

r PI 

The outer page table is still 234 bytes large. 
The next step would be a four-level paging scheme, where the second- 

level outer page table itself is also paged. The SPARC architecture (with 32-bit 
addressing) supports a three-level paging scheme, whereas the 32-bit Motorola 
68030 architecture supports a four-level paging scheme. 

However, for 64-bit architectures, hierarchical page tables are generally 
considered inappropriate. For example, the 64-bit UltraSPARC would require 
seven levels of paging-a prohibitive number of memory accesses to translate 
each logical address. 

42 10 12 

inner page 

P2 

2nd outer page 

PI  

9.4.4.2 Hashed Page Tables 

A common approach for handling address spaces larger than 32 bits is to use 
a hashed page table, with the hash value being the virtual-page number. Each 
entry in the hash table contains a linked list of elements that hash to the same 
location (to handle collisions). Each element consists of three fields: (a) the 
virtual page number, (b) the value of he mapped page frame, and (c) a pointer 
to the next element in the linked list. 

The algorithm works as follows: The virtual page number in the virtual 
address is hashed into the hash table. The virtual page number is compared 
to field (a) in the first element in the linked list. If there is a match, the 
corresponding page frame (field (b)) is used to form the desired physical 
address. If there is no match, subsequent entries in the linked list are searched 
for a matching virtual page number. This scheme is shown in Figure 9.14. 

A variation to this scheme that is favorable for 64-bit address spaces has 
been proposed. Clustered page tables are similar to hashed page tables except 
that each entry in the hash table refers to several pages (such as 16) rather than 
a single page. Therefore, a single page-table entry can store the mappings for 

32 10 10 12 

outer page 

~2 

inner page 
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offset 
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hash table 

Figure 9.14 Hashed page table. 

multiple physical-page frames. Clustered page tables are particularly useful 
for sparse address spaces where memory references are noncontiguous and 
scattered throughout the address space. 

9.4.4.3 Inverted Page Table 

Usually, each process has a page table associated with it. The page table has 
one entry for each page that the process is using (or one slot for each virtual 
address, regardless of the latter's validity). This table representation is a natural 
one, since processes reference pages through the pages' virtual addresses. The 
operating system must then translate this reference into a physical memory 
address. Since the table is sorted by virtual address, the operating system is 
able to calculate where in the table the associated physical-address entry is, and 
to use that value directly. One of the drawbacks of this method is that each 
page table may consist of millions of entries. These tables may consume large 
amounts of physical memory, which is required just to keep track of how the 
other physical memory is being used. 

To solve this problem, we can use an inverted page table. An inverted page 
table has one entry for each real page (or frame) of memory. Each entry consists 
of the virtual address of the page stored in that real memory location, with 
information about the process that owns that page. Thus, only one page table 
is in the system, and it has only one entry for each page of physical memory. 
Figure 9.15 shows the operation of an inverted page table. Compare it to Figure 
9.6, which depicts a standard page table in operation. Because only one page 
table is in the system yet there are usually several different address spaces 
mapping physical memory, inverted page tables often require an address-space 
identifier (Section 9.4.2) stored in each entry of the page table. Storing the 
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Figure 9.15 Inverted page table. 

address-space identifier ensures the mapping of a logical page for a particular 
process to the corresponding physical page frame. Examples of systems using 
inverted page tables include the 64-bit UltraSPARC and PowerPC. 

To illustrate this method, we describe a simplified version of the implemen- 
tation of the inverted page table used in the IBM RT. Each virtual address in the 
system consists of a triple 

<process-id, page-number, offset>. 

Each inverted page-table entry is a pair <process-id, page-number> where the 
process-id assumes the role of the address-space identifier. When a memory 
reference occurs, part of the virtual address, consisting of <process-id, page- 
number>, is presented to the memory subsystem. The inverted page table 
is then searched for a match. If a match is found-say, at entry i-then the 
physical address <i, offset> is generated. If no match is found, then an illegal 
address access has been attempted. 

Although this scheme decreases the amount of memory needed to store 
each page table, it increases the amount of time needed to search the table when 
a page reference occurs. Because the inverted page table is sorted by a physical 
address, but lookups occur on virtual addresses, the whole table might need to 
be searched for a match. This search would take far too long. To alleviate this 
problem, we use a hash table as described in Section 9.4.4.2 to limit the search 
to one-or at most a few-page-table entries. Of course, each access to the 
hash table adds a memory reference to the procedure, so one virtual-memory 
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reference requires at least two real-memory reads: one for the hash-table entry 
and one for the page table. To improve performance, recall that the TLB is 
searched first, before the hash table is consulted. 

9.4.5 Shared Pages 
Another advantage of paging is the possibility of sharing common code. This 
consideration is particularly important in a time-sharing environment. Con- 
sider a system that supports 40 users, each of whom executes a text editor. If 
the text editor consists of 150 KB of code and 50 KB of data space, we would 
need 8,000 KB to support the 40 users. If the code is reentrant code, however, it 
can be shared, as shown in Figure 9.16. Here we see a three-page editor-each 
page of size 50 KB; the large page size is used to simplify the figure-being 
shared among three processes. Each process has its own data page. 

Reentrant code (or pure code) is non-self-modifying code. If the code is 
reentrant, then it never changes during execution. Thus, two or more processes 
can execute the same code at the same time. Each process has its own copy of 
registers and data storage to hold the data for the process' execution. The data 
for two different processes will, of course, vary for each process. 

data 1 4 
process P, 

data 3 1 
process P3 

page table 
for P, 

page table 
for P3 

data 2 1 
process P, 

[ 7 

page table 
for P, 

1 data 1 

2 H data 3 

7 6H data 2 

Figure 9.16 Sharing of code in a paging environment. 
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Only one copy of the editor needs to be kept in physical memory. Each 
user's page table maps onto the same physical copy of the editor, but data pages 
are mapped onto different frames. Thus, to support 40 users, we need only one 
copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user. 
The total space required is now 2,150 KB, instead of 8,000 KB-a significant 
savings. 

Other heavily used programs can also be shared-compilers, window 
systems, run-time libraries, database systems, and so on. To be sharable, the 
code must be reentrant. The read-only nature of shared code should not be 
left to the correctness of the code; the operating system should enforce this 
property. This sharing of memory among processes on a system is similar to 
the sharing of the address space of a task by threads, described in Chapter 5. 
Furthermore, recall from Chapter 4 where we described shared memory as a 
method of interprocess communication. Some operating systems implement 
shared memory using shared pages. 

Systems that use inverted page tables have difficulty implementing shared 
memory. Shared memory is usually implemented as multiple virtual addresses 
(one for each process sharing the memory) that are mapped to one physical 
address. This standard method cannot be used, however, as there is only one 
virtual page entry for every physical page, so one physical page cannot have 
two (or more) shared virtual addresses. 

Organizing memory according to pages provides numerous other benefits 
in addition to allowing several processes to share the same physical pages. We 
will cover several other benefits in Chapter 10. 

9.5 Segmentation 

An important aspect of memory management that became unavoidable with 
paging is the separation of the user's view of memory and the actual physical 
memory. The user's view of memory is not the same as the actual physical 
memory. The user's view is mapped onto physical memory. The mapping 
allows differentiation between logical memory and physical memory. 

9.5.1 Basic Method 
Do users think of memory as a linear array of bytes, some containing instruc- 
tions and others containing data? Most people would say no. Rather, users 
prefer to view memory as a collection of variable-sized segments, with no 
necessary ordering among segments (Figure 9.17). 

Consider how you think of a program when you are writing it. You think 
of it as a main program with a set of subroutines, procedures, functions, or 
modules. There may also be various data structures: tables, arrays, stacks, 
variables, and so on. Each of these modules or data elements is referred to by 
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logical address space 

Figure 9.17 User's view of a program. 

name. You talk about "the symbol table," "function Sqrt," "the main program," 
without caring what addresses in memory these elements occupy. You are 
not concerned with whether the symbol table is stored before or after the Sqrt 
function. Each of these segments is of variable length; the length is intrinsically 
defined by the purpose of the segment in the program. Elements within a 
segment are identified by their offset from the beginning of the segment: The 
first statement of the program, the seventeenth entry in the symbol table, the 
fifth instruction of the Sqrt function, and so on. 

Segmentation is a memory-management scheme that supports this user 
view of memory. A logical-address space is a collection of segments. Each 
segment has a name and a length. The addresses specify both the segment name 
and the offset within the segment. The user therefore specifies each address by 
two quantities: a segment name and an offset. (Contrast this scheme with the 
paging scheme, in which the user specified only a single address, which was 
partitioned by the hardware into a page number and an offset, all invisible to 
the programmer.) 

For simplicity of implementation, segments are numbered and are referred 
to by a segment number, rather than by a segment name. Thus, a logical address 
consists of a two tuple: 
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Normally, the user program is compiled, and the compiler automatically con- 
structs segments reflecting the input program. A Pascal compiler might create 
separate segments for the following: 

1. the global variables; 

2. the procedure call stack, to store parameters and return addresses; 

3. the code portion of each procedure or function; 

4. the local variables of each procedure and function. 

A Fortran compiler might create a separate segment for each common block. 
Arrays might be assigned separate segments. The loader would take all these 
segments and assign them segment numbers. 

9.5.2 Hardware 
Although the user can now refer to objects in the program by a two-dimensional 
address, the actual physical memory is still, of course, a one-dimensional 
sequence of bytes. Thus, we must define an implementation to map two- 
dimensional user-defined addresses into one-dimensional physical addresses. 
This mapping is affected by a segment table. Each entry of the segment table 
has a segment base and a segment limit. The segment base contains the starting 

trap; addressing error physical memory 

Figure 9.18 Segmentation hardware. 
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physical address where the segment resides in memory, whereas the segment 
limit specifies the length of the segment. 

The use of a segment table is illustrated in Figure 9.18. A logical address 
consists of two parts: a segment number, s, and an offset into that segment, d. 
The segment number is used as an index into the segment table. The offset d of 
the logical address must be between 0 and the segment limit. If it is not, we trap 
to the operating system (logical addressing attempt beyond end of segment). If 
this offset is legal, it is added to the segment base to produce the address in 
physical memory of the desired byte. The segment table is thus essentially an 
array of base-limit register pairs. 

As an example, consider the situation shown in Figure 9.19. We have five 
segments numbered from 0 through 4. The segments are stored in physical 
memory as shown. The segment table has a separate entry for each segment, 
giving the beginning address of the segment in physical memory (or base) and 
the length of that segment (or limit). For example, segment 2 is 400 bytes long 

stack El 

logical address space 

segment table 

physical memory 

Figure 9.19 Example of segmentation. 



9.5 Segmentation 307 

and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped 
onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to 
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment 
0 would result in a trap to the operating system, as this segment is only 1,000 
bytes long. 

9.5.3 Protection and Sharing 
A particular advantage of segmentation is the association of protection with 
the segments. Because the segments represent a semantically defined portion 
of the program, it is likely that all entries in the segment will be used the 
same way. Hence, some segments are instructions, whereas other segments 
are data. In a modern architecture, instructions are non-self-modifying, so 
instruction segments can be defined as read only or execute only. The memory- 
mapping hardware will check the protection bits associated with each segment- 
table entry to prevent illegal accesses to memory, such as attempts to write 
into a read-only segment, or to use an execute-only segment as data. By 
placing an array in its own segment, the memory-management hardware will 
automatically check that array indexes are legal and do not stray outside the 
array boundaries. Thus, many common program errors will be detected by the 
hardware before they can cause serious damage. 

Another advantage of segmentation involves the sharing of code or data. 
Each process has a segment table associated with it, which the dispatcher 
uses to define the hardware segment table when this process is given the 
CPU. Segments are shared when entries in the segment tables of two different 
processes point to the same physical location (Figure 9.20). 

The sharing occurs at the segment level. Thus, any information can be 
shared if it is defined to be a segment. Several segments can be shared, so a 
program composed of several segments can be shared. 

For example, consider the use of a text editor in a time-sharing system. 
A complete editor might be quite large, composed of many segments. These 
segments can be shared among all users, limiting the physical memory needed 
to support editing tasks. Rather than n copies of the editor, we need only one 
copy. For each user, we still need separate, unique segments to store local 
variables. These segments, of course, would not be shared. 

We can also share only parts of programs. For example, common subrou- 
tine packages can be shared among many users if they are defined as sharable, 
read-only segments. Two Fortran programs, for instance, may use the same Sqrt 
subroutine, but only one physical copy of the Sqrt routine would be needed. 

Although this sharing appears simple, there are subtle considerations. 
Code segments typically contain references to themselves. For example, a 
conditional jump normally has a transfer address, whch consists of a segment 
number and offset. The segment number of the transfer address will be the 
segment number of the code segment. If we try to share this segment, all 
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sharing processes must define the shared code segment to have the same 
segment number. 

For instance, if we want to share the Sqrt routine, and one process wants 
to make it segment 4 and another wants to make it segment 17, how should 
the Sqrt routine refer to itself? Because there is only one physical copy of Sqrt, 
it must refer to itself in the same way for both users-it must have a unique 
segment number. As the number of users sharing the segment increases, so 
does the difficulty of finding an acceptable segment number. 

logical memory 
process P, 

segment table 
process P, 

segment table 
process P, 

logical memory 
process P, 

physical memory 

Figure 9.20 Sharing of segments in a segmented memory system. 
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Read-only data segments that contain no physical pointers may be shared 
as different segment numbers, as may code segments that refer to themselves 
not directly, but rather only indirectly. For example, conditional branches that 
specify the branch address as an offset from the current program counter or 
relative to a register containing the current segment number would allow code 
to avoid direct reference to the current segment number. 

9.5.4 Fragmentation 
The long-term scheduler must find and allocate memory for all the segments of 
a user program. This situation is similar to paging except that the segments are 
of variable length; pages are all the same size. Thus, as with the variable-sized 
partition scheme, memory allocation is a dynamic storage-allocation problem, 
usually solved with a best-fit or first-fit algorithm. 

Segmentation may then cause external fragmentation, when all blocks of 
free memory are too small to accommodate a segment. In this case, the process 
may simply have to wait until more memory (or at least a larger hole) becomes 
available, or until compaction creates a larger hole. Because segmentation is by 
its nature a dynamic relocation algorithm, we can compact memory whenever 
we want. If the CPU scheduler must wait for one process, because of a memory- 
allocation problem, it may (or may not) skip through the CPU queue looking for 
a smaller, lower-priority process to run. 

How serious a problem is external fragmentation for a segmentation 
scheme? Would long-term scheduling with compaction help? The answers 
depend mainly on the average segment size. At one extreme, we could define 
each process to be one segment. This approach reduces to the variable-sized 
partition scheme. At the other extreme, every byte could be put in its own 
segment and relocated separately. This arrangement eliminates external frag- 
mentation altogether; however, every byte would need a base register for its 
relocation, doubling memory use! Of course, the next logical step-fixed-sized, 
small segments-is paging. Generally, if the average segment size is small, 
external fragmentation will also be small. (By analogy, consider putting suit- 
cases in the trunk of a car; they never quite seem to fit. However, if you open the 
suitcases and put the individual items in the trunk, everything is more likely to 
fit.) Because the individual segments are smaller than the overall process, they 
are more likely to fit in the available memory blocks. 

9.6 Segmentation with Paging 

Both paging and segmentation have advantages and disadvantages. In fact, of 
the two most popular microprocessors now being used, the Motorola 68000 line 
is designed based on a flat-address space, whereas the Intel 80x86 and Pentium 
family are based on segmentation. Both are merging memory models toward 
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a mixture of paging and segmentation. We can combine these two methods to 
improve on each. This combination is best illustrated by the architecture of the 
Intel 386. 

The IBM OS/2 32-bit version is an operating system running on top of the 
Intel 386 (and later) architecture. The 386 uses segmentation with paging for 
memory management. The maximum number of segments per process is 16 
KB, and each segment can be as large as 4 gigabytes. The page size is 4 KB. We 
shall not give a complete description of the memory-management structure of 
the 386 in this text. Rather, we shall present the major ideas. 

The logical-address space of a process is divided into two partitions. The 
first partition consists of up to 8 KB segments that are private to that process. 
The second partition consists of up to 8 KB segments that are shared among 
all the processes. Information about the first partition is kept in the local 
descriptor table (LDT), information about the second partition is kept in the 
global descriptor table (GDT). Each entry in the LDT and GDT consists of 8 
bytes, with detailed information about a particular segment including the base 
location and length of that segment. 

The logical address is a pair (selector, offset), where the selector is a 16-bit 
number: 

in which s designates the segment number, g indicates whether the segment is 
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number 
specifying the location of the byte (or word) within the segment in question. 

The machine has six segment registers, allowing six segments to be 
addressed at any one time by a process. It has six 8-byte microprogram 
registers to hold the corresponding descriptors from either the LDT or GDT. 
This cache lets the 386 avoid having to read the descriptor from memory for 
every memory reference. 

The physical address on the 386 is 32 bits long and is formed as follows. 
The segment register points to the appropriate entry in the LDT or GDT. The 
base and limit information about the segment in question are used to generate 
a linear address. First, the limit is used to check for address validity. If the 
address is not valid, a memory fault is generated, resulting in a trap to the 
operating system. If it is valid, then the value of the offset is added to the value 
of the base, resulting in a 32-bit linear address. This address is then translated 
into a physical address. 

As pointed out previously, each segment is paged, and each page is 4 KB. 
A page table may thus consist of up to 1 million entries. Because each entry 
consists of 4 bytes, each process may need up to 4 MB of physical-address space 
for the page table alone. Clearly, we would not want to allocate the page table 
contiguously in main memory. The solution adopted in the 386 is to use a 
two-level paging scheme. The linear address is divided into a page number 
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consisting of 20 bits, and a page offset consisting of 12 bits. Since we page 
the page table, the page number is further divided into a 10-bit page directory 
pointer and a 10-bit page table pointer. The logical address is as follows: 

page number I page offset 

The address-translation scheme for this architecture is similar to the scheme 
shown in Figure 9.13. The Intel address translation is shown in more detail in 
Figure 9.21. To improve the efficiency of physical-memory use, Intel 386 page 
tables can be swapped to disk. In this case, an invalid bit is used in the page- 
directory entry to indicate whether the table to which the entry is pointing is 

logical address selector I offset 

I I I 

I descriptor table 

linear address 

directory entry h bl page table entry I-' 

Figure 9.21 Intel 80386 address translation. 
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in memory or on disk. If the table is on disk, the operating system can use 
the other 31 bits to specify the disk location of the table; the table then can be 
brought into memory on demand. 

9.7 Summary 

Memory-management algorithms for multiprogrammed operating systems 
range from the simple single-user system approach to paged segmentation. The 
greatest determinant of the method used in a particular system is the hard- 
ware provided. Every memory address generated by the CPU must be checked 
for legality and possibly mapped to a physical address. The checking cannot 
be implemented (efficiently) in software. Hence, we are constrained by the 
hardware available. 

The memory-management algorithms discussed (contiguous allocation, 
paging, segmentation, and combinations of paging and segmentation) differ 
in many aspects. In comparing different memory-management strategies, you 
should use the following considerations: 

Hardware support: A simple base register or a pair of base and limit reg- 
isters is sufficient for the single- and multiple-partition schemes, whereas 
paging and segmentation need mapping tables to define the address map. 

Performance: As the memory-management algorithm becomes more com- 
plex, the time required to map a logical address to a physical address 
increases. For the simple systems, we need only to compare or add to the 
logical address-operations that are fast. Paging and segmentation can be 
as fast if the table is implemented in fast registers. If the table is in memory, 
however, user memory accesses can be degraded substantially. A TLB can 
reduce the performance degradation to an acceptable level. 

Fragmentation: A multiprogrammed system will generally perform more 
efficiently if it has a higher level of multiprogramming. For a given 
set of processes, we can increase the multiprogramming level only by 
packing more processes into memory. To accomplish this task, we must 
reduce memory waste or fragmentation. Systems with fixed-sized allo- 
cation units, such as the single-partition scheme and paging, suffer from 
internal fragmentation. Systems with variable-sized allocation units, such 
as the multiple-partition scheme and segmentation, suffer from external 
fragmentation. 

Relocation: One solution to the external-fragmentation problem is com- 
paction. Compaction involves shifting a program in memory without 
the program noticing the change. This consideration requires that logical 
addresses be relocated dynamically, at execution time. If addresses are 
relocated only at load time, we cannot compact storage. 
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Swapping: Any algorithm can have swapping added to it. At intervals 
determined by the operating system, usually dictated by CPU-scheduling 
policies, processes are copied from main memory to a backing store, and 
later are copied back to main memory. This scheme allows more processes 
to be run than can be fit into memory at one time. 

Sharing: Another means of increasing the multiprogramming level is to 
share code and data among different users. Sharing generally requires 
that either paging or segmentation be used, to provide small packets of 
information (pages or segments) that can be shared. Sharing is a means 
of running many processes with a limited amount of memory, but shared 
programs and data must be designed carefully. 

Protection: If paging or segmentation is provided, different sections of a 
user program can be declared execute only, read only, or read-write. This 
restriction is necessary with shared code or data, and is generally useful 
in any case to provide simple run-time checks for common programming 
errors. 

Exercises 

9.1 Name two differences between logical and physical addresses. 

9.2 Explain the difference between internal and external fragmentation. 

9.3 Describe the following allocation algorithms: 

a. First fit 

b. Best fit 

c. Worst fit 

9.4 When a process is rolled out of memory, it loses its ability to use the CPU 
(at least for a while). Describe another situation where a process loses its 
ability to use the CPU, but where the process does not get rolled out. 

9.5 Given memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in 
order), how would each of the first-fit, best-fit, and worst-fit algorithms 
place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which 
algorithm makes the most efficient use of memory? 

9.6 Consider a system where a program can be separated into two parts: code 
and data. The CPU knows whether it wants an instruction (instruction 
fetch) or data (data fetch or store). Therefore, two base-limit register 
pairs are provided: one for instructions and one for data. The instruction 
base-limit register pair is automatically set to read only, so programs can 
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be shared among different users. Discuss the advantages and disadvan- 
tages of this scheme. 

9.7 Why are page sizes always powers of 2? 

9.8 Consider a logical-address space of eight pages of 1,024 words each, 
mapped onto a physical memory of 32 frames. 

a. How many bits are in the logical address? 

b. How many bits are in the physical address? 

9.9 On a system with paging, a process cannot access memory that it does 
not own; why? How could the operating system allow access to other 
memory? Why should it or should it not? 

9.10 Consider a paging system with the page table stored in memory. 

a. If a memory reference takes 200 nanoseconds, how long does a paged 
memory reference take? 

b. If we add TLBs, and 75 percent of all page-table references are found 
in the TLBs, what is the effective memory reference time? (Assume 
that finding a page-table entry in the TLBs takes zero time, if the 
entry is there.) 

9.11 What is the effect of allowing two entries in a page table to point to the 
same page frame in memory? Explain how you could use this effect to 
decrease the amount of time needed to copy a large amount of memory 
from one place to another. What would the effect of updating some byte 
in the one page be on the other page? 

9.12 Why are segmentation and paging sometimes combined into one scheme? 

9.13 Describe a mechanism by which one segment could belong to the address 
space of two different processes. 

9.14 Explain why it is easier to share a reentrant module using segmentation 
than it is to do so when pure paging is used. 

9.15 Sharing segments among processes without requiring the same segment 
number is possible in a dynamically linked segmentation system. 

a. Define a system that allows static linking and sharing of segments 
without requiring that the segment numbers be the same. 

b. Describe a paging scheme that allows pages to be shared without 
requiring that the page numbers be the same. 

9.16 Consider the following segment table: 
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Segment Base Length 
- 

0 219 600 
1 2300 14 
2 90 100 
3 1327 580 
4 1952 96 

What are the physical addresses for the following logical addresses? 

9.17 Consider the Intel address-translation scheme shown in Figure 9.21. 

a. Describe all the steps that are taken by the Intel 80386 in translating 
a logical address into a physical address. 

b. What are the advantages to the operating system of hardware that 
provides such complicated memory-translation hardware? 

c. Are there any disadvantages to this address-translation system? If 
so, what are they? If not, why is it not used by every manufacturer? 

9.18 In the IBM/370, memory protection is provided through the use of keys. 
A key is a 4-bit quantity. Each 2 KB block of memory has a key (the 
storage key) associated with it. The CPU also has a key (the protection 
key) associated with it. A store operation is allowed only if both keys are 
equal, or if either is zero. Which of the following memory-management 
schemes could be used successfully with this hardware? 

a. Bare machine 

b. Single-user system 

c. Multiprogramming with a fixed number of processes 

d. Multiprogramming with a variable number of processes 

e. Paging 

f. Segmentation 
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Chapter 10 

In Chapter 9, we discussed various memory-management strategies that are 
used in computer systems. All these strategies have the same goal: to keep 
many processes in memory simultaneously to allow multiprogramming. How- 
ever, they tend to require the entire process to be in memory before the process 
can execute. 

Virtual memory is a technique that allows the execution of processes that 
may not be completely in memory. One major advantage of this scheme is 
that programs can be larger than physical memory. Further, virtual memory 
abstracts main memory into an extremely large, uniform array of storage, 
separating logical memory as viewed by the user from physical memory. This 
technique frees programmers from the concerns of memory-storage limitations. 
Virtual memory also allows processes to easily share files and address spaces, 
and it provides an efficient mechanism for process creation. 

Virtual memory is not easy to implement, however, and may substantially 
decrease performance if it is used carelessly. In this chapter, we discuss virtual 
memory in the form of demand paging, and examine its complexity and cost. 

10.1 . Background 

The memory-management algorithms outlined in Chapter 9 are necessary 
because of one basic requirement: The instructions being executed must be in 
physical memory. The first approach to meeting this requirement is to place the 
entire logical address space in physical memory. Overlays and dynamic loading 
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can help to ease this restriction, but they generally require special precautions 
and extra work by the programmer. This restriction seems both necessary and 
reasonable, but it is also unfortunate, since it limits the size of a program to the 
size of physical memory. 

In fact, an examination of real programs shows us that, in many cases, the 
entire program is not needed. For instance, 

Programs often have code to handle unusual error conditions. Since these 
errors seldom, if ever, occur in practice, this code is almost never executed. 

Q Arrays, lists, and tables are often allocated more memory than they actually 
need. An array may be declared 100 by 100 elements, even though it is 
seldom larger than 10 by 10 elements. An assembler symbol table may 
have room for 3,000 symbols, although the average program has less than 
200 symbols. 

Q Certain options and features of a program may be used rarely. For instance, 
the routines on U.S. government computers that balance the budget have 
only recently been used. 

Even in those cases where the entire program is needed, it may not all be 
needed at the same time (such is the case with overlays, for example). 

The ability to execute a program that is only partially in memory would 
confer many benefits: 

A program would no longer be constrained by the amount of physical 
memory that is available. Users would be able to write programs for an 
extremely large virtual-address space, simplifying the programming task. 

Q Because each user program could take less physical memory, more pro- 
grams could be run at the same time, with a corresponding increase in 
CPU utilization and throughput, but with no increase in response time or 
turnaround time. 

Less I/O would be needed to load or swap each user program into memory, 
so each user program would run faster. 

Thus, running a program that is not entirely in memory would benefit both 
the system and the user. 

Virtual memory is the separation of user logical memory from physical 
memory. This separation allows an extremely large virtual memory to be pro- 
vided for programmers when only a smaller physical memory is available (Fig- 
ure 10.1). Virtual memory makes the task of programming much easier, because 
the programmer no longer needs to worry about the amount of physical mem- 
ory available, or about what code can be placed in overlays; she can concentrate 
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virtual 
memory 

physical 
memory 

Figure 10.1 Diagram showing virtual memory that is larger than physical 
memory. 

instead on the problem to be programmed. On systems that support virtual 
memory, overlays have almost disappeared. 

In addition to separating logical memory from physical memory, virtual 
memory also allows files and memory to be shared by several different pro- 
cesses through page sharing (Section 9.4.5). The sharing of pages further allows 
performance improvements during process creation. 

Virtual memory is commonly implemented by demand paging. It can 
also be implemented in a segmentation system. Several systems provide a 
paged segmentation scheme, where segments are broken into pages. Thus, the 
user view is segmentation, but the operating system can implement this view 
with demand paging. Demand segmentation can also be used to provide vir- 
tual memory. Burroughs' computer systems have used demand segmentation. 
The IBM OS/2 operating system also uses demand segmentation. However, 
segment-replacement algorithms are more complex than are page-replacement 
algorithms because the segments have variable sizes. We do not cover demand 
segmentation in this text; refer to the Bibliographical Notes for relevant refer- 
ences. 



320 Chapter 10 Virtual Memory 

10.2 Demand Paging 

A demand-paging system is similar to a paging system with swapping (Figure 
10.2). Processes reside on secondary memory (which is usually a disk). When 
we want to execute a process, we swap it into memory. Rather than swapping 
the entire process into memory, however, we use a lazy swapper. A lazy 
swapper never swaps a page into memory unless that page will be needed. 
Since we are now viewing a process as a sequence of pages, rather than as one 
large contiguous address space, use of swap is technically incorrect. A swapper 
manipulates entire processes, whereas a pager is concerned with the individual 
pages of a process. We thus use pager, rather than swapper, in connection with 
demand paging. 

10.2.1 Basic Concepts 
When a process is to be swapped in, the pager guesses which pages will be 
used before the process is swapped out again. Instead of swapping in a whole 
process, the pager brings only those necessary pages into memory. Thus, it 
avoids reading into memory pages that will not be used anyway, decreasing 
the swap time and the amount of physical memory needed. 

program 
A 

program 
B 

main 
memory 

Figure 10.2 Transfer of a paged memory to contiguous disk space. 
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With this scheme, we need some form of hardware support to distinguish 
between those pages that are in memory and those pages that are on the disk. 
The valid-invalid bit scheme described in Section 9.4.4 can be used for this 
purpose. This time, however, when this bit is set to "valid," this value indicates 
that the associated page is both legal and in memory. If the bit is set to "invalid," 
this value indicates that the page either is not valid (that is, not in the logical 
address space of the process), or is valid but is currently on the disk. The 
page-table entry for a page that is brought into memory is set as usual, but the 
page-table entry for a page that is not currently in memory is simply marked 
invalid, or contains the address of the page on disk. This situation is depicted 
in Figure 10.3. 

Notice that marking a page invalid will have no effect if the process never 
attempts to access that page. Hence, if we guess right and page in all and only 
those pages that are actually needed, the process will run exactly as though we 
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Figure 10.3 Page table when some pages are not in main memory. 
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had brought in all pages. While the process executes and accesses pages that 
are memory resident, execution proceeds normally. 

But what happens if the process tries to access a page that was not brought 
into memory? Access to a page marked invalid causes a page-fault trap. 
The paging hardware, in translating the address through the page table, will 
notice that the invalid bit is set, causing a trap to the operating system. This 
trap is the result of the operating system's failure to bring the desired page 
into memory (in an attempt to minimize disk-transfer overhead and memory 
requirements), rather than an invalid address error as a result of an attempt to 
use an illegal memory address (such as an incorrect array subscript). We must 
therefore correct this oversight. The procedure for handling this page fault is 
straightforward (Figure 10.4): 

1. We check an internal table (usually kept with the process control block) 
for this process, to determine whether the reference was a valid or invalid 
memory access. 

u 
physical 
memory 

Figure 10.4 Steps in handling a page fault. 
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2. If the reference was invalid, we terminate the process. If it was valid, but 
we have not yet brought in that page, we now page it in. 

3. We find a free frame (by taking one from the free-frame list, for example). 

4. We schedule a disk operation to read the desired page into the newly 
allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the 
process and the page table to indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the illegal address trap. 
The process can now access the page as though it had always been in 
memory. 

It is important to realize that, because we save the state (registers, condition 
code, instruction counter) of the interrupted process when the page fault occurs, 
we can restart the process in exactly the same place and state, except that the 
desired page is now in memory and is accessible. In this way, we are able to 
execute a process, even though portions of it are not (yet) in memory. When the 
process tries to access locations that are not in memory, the hardware traps to 
the operating system (page fault). The operating system reads the desired page 
into memory and restarts the process as though the page had always been in 
memory. 

In the extreme case, we could start executing a process with no pages in 
memory. When the operating system sets the instruction pointer to the first 
instruction of the process, which is on a non-memory-resident page, the process 
immediately faults for the page. After this page is brought into memory, the 
process continues to execute, faulting as necessary until every page that it needs 
is in memory. At that point, it can execute with no more faults. This scheme is 
pure demand paging: Never bring a page into memory until it is required. 

Theoretically, some programs may access several new pages of memory 
with each instruction execution (one page for the instruction and many for 
data), possibly causing multiple page faults per instruction. This situation 
would result in unacceptable system performance. Fortunately, analysis of 
running processes shows that this behavior is exceedingly unlikely. Programs 
tend to have locality of reference, described in Section 10.6.1, which results in 
reasonable performance from demand paging. 

The hardware to support demand paging is the same as the hardware for 
paging and swapping: 

Page table: This table has the ability to mark an entry invalid through a 
valid-invalid bit or special value of protection bits. 

Secondary memory: This memory holds those pages that are not present 
in main memory. The secondary memory is usually a high-speed disk. It is 
known as the swap device, and the section of disk used for this purpose is 
known as swap space. Swap-space allocation is discussed in Chapter 14. 
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In addition to this hardware support, considerable software is needed, as 
we shall see. Additional architectural constraints must be imposed. A crucial 
one is the need to be able to restart any instruction after a page fault. In most 
cases, this requirement is easy to meet. A page fault could occur at any memory 
reference. If the page fault occurs on the instruction fetch, we can restart by 
fetching the instruction again. If a page fault occurs while we are fetching an 
operand, we must fetch and decode the instruction again, and then fetch the 
operand. 

As a worst-case example, consider a three-address instruction such as ADD 
the content of A to B placing the result in C. These are the steps to execute this 
instruction: 

1. Fetch and decode the instruction (ADD). 

2. Fetch A. 

3. Fetch B. 

4. Add A and B. 

5. Store the sum in C. 

If we faulted when we tried to store in C (because C is in a page not 
currently in memory), we would have to get the desired page, bring it in, correct 
the page table, and restart the instruction. The restart would require fetching 
the instruction again, decoding it again, fetching the two operands again, and 
then adding again. However, there is not much repeated work (less than one 
complete instruction), and the repetition is necessary only when a page fault 
occurs. 

The major difficulty occurs when one instruction may modify several dif- 
ferent locations. For example, consider the IBM System 360/370 MVC (move 
character) instruction, which can move up to 256 bytes from one location to 
another (possibly overlapping) location. If either block (source or destination) 
straddles a page boundary, a page fault might occur after the move is partially 
done. In addition, if the source and destination blocks overlap, the source block 
may have been modified, in which case we cannot simply restart the instruction. 

This problem can be solved in two different ways. In one solution, the 
microcode computes and attempts to access both ends of both blocks. If a page 
fault is going to occur, it will happen at this step, before anything is modified. 
The move can then take place, as we know that no page fault can occur, since all 
the relevant pages are in memory. The other solution uses temporary registers 
to hold the values of overwritten locations. If there is a page fault, all the old 
values are written back into memory before the trap occurs. This action restores 
memory to its state before the instruction was started, so that the instruction can 
be repeated. 
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A similar architectural problem occurs in machines that use special address- 
ing modes, including autodecrement and autoincrement modes (for example, 
the PDP-11). These addressing modes use a register as a pointer and auto- 
matically decrement or increment the register as indicated. Autodecrement 
automatically decrements the register before using its contents as the operand 
address; autoincrement automatically increments the register after using its 
contents as the operand address. Thus, the instruction 

MOV (R2) +, - (R3) 
copies the contents of the location pointed to by register2 into the location 
pointed to by register3. Register2 is incremented (by two for a word, since the 
PDP-11 is a byte-addressable computer) after it is used as a pointer; register3 is 
decremented (by two) before it is used as a pointer. Now consider what will 
happen if we get a fault when trying to store into the location pointed to by 
register3. To restart the instruction, we must reset the two registers to the values 
they had before we started the execution of the instruction. One solution is to 
create a new special status register to record the register number and amount 
modified for any register that is changed during the execution of an instruction. 
This status register allows the operating system to undo the effects of a partially 
executed instruction that causes a page fault. 

These are by no means the only architectural problems resulting from 
adding paging to an existing architecture to allow demand paging, but they 
illustrate some of the difficulties. Paging is added between the CPU and the 
memory in a computer system. It should be entirely transparent to the user 
process. Thus, people often assume that paging could be added to any sys- 
tem. Although this assumption is true for a non-demand-paging environment, 
where a page fault represents a fatal error, it is not true where a page fault means 
only that an additional page must be brought into memory and the process 
restarted. 

10.2.2 Performance of Demand Paging 
Demand paging can have a significant effect on the performance of a computer 
system. To see why, let us compute the effective access time for a demand- 
paged memory. For most computer systems, the memory-access time, denoted 
ma, now ranges from 10 to 200 nanoseconds. As long as we have no page faults, 
the effective access time is equal to the memory access time. If, however, a page 
fault occurs, we must first read the relevant page from disk, and then access the 
desired word. 

Let p be the probability of a page fault (0 5 p 5 1). We would expect p to be 
close to zero; that is, there will be only a few page faults. The effective access 
time is then 

effective access time = (1 - p) x ma + p x page fault time. 
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To compute the effective access time, we must know how much time is 
needed to service a page fault. A page fault causes the following sequence to 
occur: 

1. Trap to the operating system. 

2. Save the user registers and process state. 

3. Determine that the interrupt was a page fault. 

4. Check that the page reference was legal and determine the location of the 
page on the disk. 

5. Issue a read from the disk to a free frame: 

a. Wait in a queue for this device until the read request is serviced. 

b. Wait for the device seek and/or latency time. 

c. Begin the transfer of the page to a free frame. 

6. While waiting, allocate the CPU to some other user (CPU scheduling; 
optional). 

7. Interrupt from the disk (I/O completed). 

8. Save the registers and process state for the other user (if step 6 is executed). 

9. Determine that the interrupt was from the disk. 

10. Correct the page table and other tables to show that the desired page is now 
in memory. 

11. Wait for the CPU to be allocated to this process again. 

12. Restore the user registers, process state, and new page table, then resume 
the interrupted instruction. 

Not all of these steps are necessary in every case. For example, we are assuming 
that, in step 6, the CPU is allocated to another process while the I/O occurs. 
This arrangement allows multiprogramming to maintain CPU utilization, but 
requires additional time to resume the page-fault service routine when the I/O 
transfer is complete. 

In any case, we are faced with three major components of the page-fault 
service time: 

1. Service the page-fault interrupt. 

2. Read in the page. 

3. Restart the process. 
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The first and third tasks may be reduced, with careful coding, to several 
hundred instructions. These tasks may take from 1 to 100 microseconds each. 
The page-switch time, on the other hand, will probably be close to 24 millisec- 
onds. A typical hard disk has an average latency of 8 milliseconds, a seek of 
15 milliseconds, and a transfer time of 1 millisecond. Thus, the total paging 
time would be close to 25 milliseconds, including hardware and software time. 
Remember also that we are looking at only the device-service time. If a queue 
of processes is waiting for the device (other processes that have caused page 
faults), we have to add device-queueing time as we wait for the paging device 
to be free to service our request, increasing even more the time to swap. 

If we take an average page-fault service time of 25 milliseconds and a 
memory-access time of 100 nanoseconds, then the effective access time in 
nanoseconds is 

effective access time = (1 - p) x (100) + p (25 milliseconds) 
= (1 - p) x 100 + p x 25,000,000 
= 100 + 24,999,900 x p. 

We see then that the effective access time is directly proportional to the 
page-fault rate. If one access out of 1,000 causes a page fault, the effective access 
time is 25 microseconds. The computer would be slowed down by a factor of 
250 because of demand paging! If we want less than 10-percent degradation, 
we need 

That is, to keep the slowdown due to paging to a reasonable level, we can allow 
only less than one memory access out of 2,500,000 to page fault. 

It is important to keep the page-fault rate low in a demand-paging sys- 
tem. Otherwise, the effective access time increases, slowing process execution 
dramatically. 

One additional aspect of demand paging is the handling and overall use 
of swap space. Disk I/O to swap space is generally faster than that to the file 
system. It is faster because swap space is allocated in much larger blocks, and 
file lookups and indirect allocation methods are not used (Chapter 14). It is 
therefore possible for the system to gain better paging throughput, by copying 
an entire file image into the swap space at process startup, and then performing 
demand paging from the swap space. Another option is to demand pages 
from the file system initially, but to write the pages to swap space as they are 
replaced. This approach will ensure that only needed pages are ever read from 
the file system, but all subsequent paging is done from swap space. 
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Some systems attempt to limit the amount of swap space when binary 
files are used. Demand pages for such files are brought directly from the file 
system. However, when page replacement is called for, these pages can simply 
be overwritten (because they are never modified) and read in from the file 
system again if needed. Using this approach, the file system itself serves as the 
baclung store. However, swap space must still be used for pages not associated 
with a file; these pages include the stack and heap for a process. This technique 
is used in several systems including Solaris 2. This method appears to be a good 
compromise; it is used in BSD UNIX. 

10.3 Process Creation 

In Section 10.2, we illustrated how a process is first started using demand 
paging. Using this technique, a process can start quickly by merely demand 
paging in the page containing the first instruction. However, paging and virtual 
memory can also provide for other benefits during process creation. In this 
section, we will explore two techniques made available by virtual memory that 
enhance performance creating and running processes. 

Demand paging is used when reading a file from disk into memory and such 
files may include binary executables. However, process creation using the 
fork () system call may initially bypass the need for demand paging by using 
a technique similar to page sharing (covered in Section 9.4.5). This technique 
provides for rapid process creation and minimizes the number of new pages 
that must be allocated to the newly created process. 

Recall the fork0 system call creates a child process as a duplicate of 
its parent. Traditionally fork0 worked by creating a copy of the parent's 
address space for the child, duplicating the pages belonging to the parent. 
However, considering that many child processes invoke the exec (1 system call 
immediately after creation, the copying of the parent's address space may be 
unnecessary. Alternatively, we can use a technique known as copy-on-write. 
This works by allowing the parent and child processes to initially share the 
same pages. These shared pages are marked as copy-on-write pages, meaning 
that if either process writes to a shared page, a copy of the shared page is 
created. For example, assume the child process attempts to modify a page 
containing portions of the stack; the operating system recognizes this as a copy- 
on-write page. The operating system will then create a copy of this page, 
mapping it to the address space of the child process. Therefore, the child 
process will modify its copied page and not the page belonging to the parent 
process. Using the copy-on-write technique, it is obvious that only the pages 
that are modified by either process are copied; all non-modified pages may 
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be shared by the parent and child processes. Note that only pages that may 
be modified need be marked as copy-on-write. Pages that cannot be modified 
(i.e., pages containing executable code) may be shared by the parent and child. 
Copy-on-write is a common technique used by several operating systems when 
duplicating processes, including Windows 2000, Linux, and Solaris 2. 

When it is determined a page is going to be duplicated using copy-on- 
write, it is important to note where the free page will be allocated from. Many 
operating systems provide a pool of free pages for such requests. These free 
pages are typically allocated when the stack or heap for a process must expand 
or for managing copy-on-write pages. Operating systems typically allocate 
these pages using a technique known as zero-fill-on-demand. Zero-fill-on- 
demand pages have been zeroed-out before being allocated, thus erasing the 
previous contents of the page. With copy-on-write, the page being copied 
will be copied to a zero-filled page. Pages allocated for the stack or heap are 
similarly assigned zero-filled pages. 

Several versions of UNIX (including Solaris 2) also provide a variation 
of the fork 0 system call-vf ork 0 (for virtual memory fork). vf orkO 
operates differently than fork ( with copy-on-write. With vf ork ( ) the parent 
process is suspended and the child process uses the address space of the parent. 
Because vfork0 does not use copy-on-write, if the child process changes 
any pages of the parent's address space, the altered pages will be visible to 
the parent once it resumes. Therefore, vf ork0 must be used with caution, 
ensuring that the child process does not modify the address space of the 
parent. vf ork 0 is intended to be used when the child process calls exec 0 
immediately after creation. Because no copying of pages takes place, vf orkO 
is an extremely efficient method of process creation and is sometimes used to 
implement UNIX command-line shell interfaces. 

10.3.2 Memory-Mapped Files 
Consider a sequential read of a file on disk using the standard system calls 
open0, read 0, and write 0.  Every time the file is accessed requires a 
system call and disk access. Alternatively, we can use the virtual-memory 
techniques discussed so far to treat file 1/0 as routine memory accesses. This 
approach is known as memory mapping a file, allowing a part of the virtual- 
address space to be logically associated with a file. Memory mapping a file 
is possible by mapping a disk block to a page (or page(s)) in memory. Initial 
access to the file proceeds using ordinary demand paging, resulting in a page 
fault. However, a page-sized portion of the file is read from the file system 
into a physical page (some systems may in fact opt to read in more than a 
page-sized chunk of memory at a time.) Subsequent reads and writes to the 
file are handled as routine memory accesses, thereby simplifying file access and 
usage by allowing file manipulation through memory rather than the overhead 
of using the read0 and write 0 system calls. Note that writes to the file 
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mapped in memory may not necessarily be immediate writes to the file on 
disk. Some systems may choose to update the physical file when the operating 
system periodically checks if the page in memory mapping the file has been 
modified. Closing the file results in all the memory-mapped data being written 
back to disk and removed from the virtual memory of the process. 

Some operating systems provide memory mapping only through a specific 
system call and treat all other file 1/0 using the standard system calls. However, 
some systems choose to memory map a file regardless of whether a file was 
specified as memory mapped or not. Let's take Solaris 2 as an example. If 
a file is specified as memory-mapped (using the mmap 0 system call), Solaris 
2 maps the file into the address space of the process. However, if a file is 
opened and accessed using ordinary system calls such as open ( ) , read ( 1, and 
wr i te  0, Solaris 2 still memory maps the file, however mapping it to the kernel 
address space. Regardless how the file is opened, Solaris 2 treats all file 1/0 as 
memory-mapped, allowing file access to take place in memory. 

Multiple processes may be allowed to map the same file into the virtual 
memory of each, to allow sharing of data. Writes by any of the processes 
modify the data in virtual memory and can be seen by all others that map the 
same section of the file. Given our knowledge of virtual memory, it should be 
clear how the sharing of memory-mapped sections of memory is implemented: 
The virtual-memory map of each sharing process points to the same page of 
physical memory-the page that holds a copy of the disk block. This memory 
sharing is illustrated in Figure 10.5. The memory-mapping system calls can 
also support copy-on-write functionality, allowing processes to share a file in 
read-only mode, but to have their own copies of any data they modify. So that 
access to the shared data is coordinated, the processes involved might use one 
of the mechanisms for achieving mutual exclusion described in Chapter 7. 

10.4 . Page Replacement 

In our presentation so far, the page-fault rate has not been a serious problem, 
because each page has faulted at most once, when it is first referenced. This 
representation is not strictly accurate. If a process of ten pages actually uses 
only one-half of them, then demand paging saves the I/O necessary to load 
the five pages that are never used. We could also increase our degree of 
multiprogramming by running twice as many processes. Thus, if we had 40 
frames, we could run eight processes, rather than the four that could run if each 
required 10 frames (five of which were never used). 

If we increase our degree of multiprogramming, we are over-allocating 
memory. If we run six processes, each of which is ten pages in size, but actually 
uses only five pages, we have higher CPU utilization and throughput, with 
10 frames to spare. It is possible, however, that each of these processes, for a 
particular data set, may suddenly try to use all ten of its pages, resulting in a 
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Figure 10.5 Memory-mapped files. 

need for 60 frames, when only 40 are available. Although this situation may be 
unlikely, it becomes much more likely as we increase the multiprogramming 
level, so that the average memory usage is close to the available physical 
memory. (In our example, why stop at a multiprogramming level of six, when 
we can move to a level of seven or eight?) 

Further, consider that system memory is not used only for holding program 
pages. Buffers for 1 /0  also consume a significant amount of memory. This use 
can increase the strain on memory-placement algorithms. Deciding how much 
memory to allocate to I/O and how much to program pages is a significant 
challenge. Some systems allocate a fixed percentage of memory for I/O buffers, 
whereas others allow both user processes and the I/O subsystem to compete for 
all system memory. 

Over-allocation manifests itself as follows. While a user process is execut- 
ing, a page fault occurs. The hardware traps to the operating system, which 
checks its internal tables to see that this page fault is a genuine one rather than 
an illegal memory access. The operating system determines where the desired 
page is residing on the disk, but then finds that there are no free frames on the 
free-frame list: All memory is in use (Figure 10.6). 

The operating system has several options at this point. It could terminate 
the user process. However, demand paging is the operating system's attempt to 
improve the computer system's utilization and throughput. Users should not 
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Figure 10.6 Need for page replacement. 

be aware that their processes are running on a paged system-paging should 
be logically transparent to the user. So this option is not the best choice. 

The operating system could swap out a process, freeing all its frames, and 
reducing the level of multiprogramming. This option is a good one in certain 
circumstances; we consider it further in Section 10.6. Here, we discuss a more 
intriguing possibility: page replacement. 

10.4.1 Basic Scheme 

Page replacement takes the following approach. If no frame is free, we find one 
that is not currently being used and free it. We can free a frame by writing its 
contents to swap space, and changing the page table (and all other tables) to 
indicate that the page is no longer in memory (Figure 10.7). We can now use 
the freed frame to hold the page for which the process faulted. We modify the 
page-fault service routine to include page replacement: 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 
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b. If there is no free frame, use a page-replacement algorithm to select a 
victim frame. 

c. Write the victim page to the disk; change the page and frame tables 
accordingly. 

3. Read the desired page into the (newly) free frame; change the page and 
frame tables. 

4. Restart the user process. 

Notice that, if no frames are free, two page transfers (one out and one in) are 
required. This situation effectively doubles the page-fault service time and 
increases the effective access time accordingly. 

We can reduce this overhead by using a modify bit (or dirty bit). Each page 
or frame may have a modify bit associated with it in the hardware. The modify 
bit for a page is set by the hardware whenever any word or byte in the page is 
written into, indicating that the page has been modified. When we select a page 
for replacement, we examine its modify bit. If the bit is set, we know that the 
page has been modified since it was read in from the disk. In this case, we must 
write that page to the disk. If the modify bit is not set, however, the page has 
not been modified since it was read into memory. Therefore, if the copy of the 

frame, , valid-invalid bit 

1 I 1 reset page 
table for 

page table new page 

physical 
memory 

Figure 10.7 Page replacement. 
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page on the disk has not been overwritten (by some other page, for example), 
then we can avoid writing the memory page to the disk: it is already there. This 
technique also applies to read-only pages (for example, pages of binary code). 
Such pages cannot be modified; thus, they may be discarded when desired. 
This scheme can reduce significantly the time required to service a page fault, 
since it reduces I/O time by one-half if the page is not modified. 

Page replacement is basic to demand paging. It completes the separation 
between logical memory and physical memory. With this mechanism, an 
enormous virtual memory can be provided for programmers on a smaller 
physical memory. With non-demand paging, user addresses are mapped into 
physical addresses, so the two sets of addresses can be different. All the pages of 
a process still must be in physical memory, however. With demand paging, the 
size of the logical address space is no longer constrained by physical memory. 
If we have a user process of 20 pages, we can execute it in ten frames simply 
by using demand paging, and using a replacement algorithm to find a free 
frame whenever necessary. If a page that has been modified is to be replaced, 
its contents are copied to the disk. A later reference to that page will cause a 
page fault. At that time, the page will be brought back into memory, perhaps 
replacing some other page in the process. 

We must solve two major problems to implement demand paging: We must 
develop a frame-allocation algorithm and a page-replacement algorithm. If 
we have multiple processes in memory, we must decide how many frames to 
allocate to each process. Further, when page replacement is required, we must 
select the frames that are to be replaced. Designing appropriate algorithms to 
solve these problems is an important task, because disk 1 / 0  is so expensive. 
Even slight improvements in demand-paging methods yield large gains in 
system performance. 

There are many different page-replacement algorithms. Every operating 
system probably has its own replacement scheme. How do we select a par- 
ticular replacement algorithm? In general, we want the one with the lowest 
page-fault rate. 

We evaluate an algorithm by running it on a particular string of memory 
references and computing the number of page faults. The string of memory 
references is called a reference string. We can generate reference strings 
artificially (by a random-number generator, for example) or we can trace a 
given system and record the address of each memory reference. The latter 
choice produces a large number of data (on the order of 1 million addresses 
per second). To reduce the number of data, we use two facts. 

First, for a given page size (and the page size is generally fixed by the 
hardware or system), we need to consider only the page number, rather than the 
entire address. Second, if we have a reference to a page p, then any immediately 
following references to page p will never cause a page fault. Page p will be in 
memory after the first reference; the immediately following references will not 
fault. 
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For example, if we trace a particular process, we might record the following 
address sequence: 

which, at 100 bytes per page, is reduced to the following reference string 

To determine the number of page faults for a particular reference string and 
page-replacement algorithm, we also need to know the number of page frames 
available. Obviously, as the number of frames available increases, the number 
of page faults decreases. For the reference string considered previously, for 
example, if we had three or more frames, we would have only three faults, one 
fault for the first reference to each page. On the other hand, with only one 
frame available, we would have a replacement with every reference, resulting 
in 11 faults. In general, we expect a curve such as that in Figure 10.8. As the 
number of frames increases, the number of page faults drops to some minimal 
level. Of course, adding physical memory increases the number of frames. 

To illustrate the page-replacement algorithms, we shall use the reference 
string 

for a memory with three frames. 

1 2 3 4 5 6 

number of frames 

Figure 10.8 Graph of page faults versus the number of frames. 
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10.4.2 FIFO Page Replacement 
The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replace- 
ment algorithm associates with each page the time when that page was brought 
into memory. When a page must be replaced, the oldest page is chosen. Notice 
that it is not strictly necessary to record the time when a page is brought in. We 
can create a FIFO queue to hold all pages in memory. We replace the page at the 
head of the queue. When a page is brought into memory, we insert it at the tail 
of the queue. 

For our example reference string, our three frames are initially empty. The 
first three references (7,0,1) cause page faults, and are brought into these empty 
frames. The next reference (2) replaces page 7, because page 7 was brought in 
first. Since 0 is the next reference and 0 is already in memory, we have no fault 
for this reference. The first reference to 3 results in page 0 being replaced, since 
it was the first of the three pages in memory (0, 1, and 2) to be brought in. 
Because of this replacement, the next reference, to 0, will fault. Page 1 is then 
replaced by page 0. This process continues as shown in Figure 10.9. Every time 
a fault occurs, we show which pages are in our three frames. There are 15 faults 
altogether. 

The FIFO page-replacement algorithm is easy to understand and program. 
However, its performance is not always good. The page replaced may be an 
initialization module that was used a long time ago and is no longer needed. 
On the other hand, it could contain a heavily used variable that was initialized 
early and is in constant use. 

Notice that, even if we select for replacement a page that is in active use, 
everything still works correctly. After we page out an active page to bring in a 
new one, a fault occurs almost immediately to retrieve the active page. Some 
other page will need to be replaced to bring the active page back into memory. 
Thus, a bad replacement choice increases the page-fault rate and slows process 
execution, but does not cause incorrect execution. 

To illustrate the problems that are possible with a FIFO page-replacement 
algorithm, we consider the reference string 

reference string 

page frames 

Figure 10.9 FIFO page-replacement algorithm. 



10.4 Page Replacement 337 

a, 

Zl 10 
[I - 
0 a 
(I) 

5 
C 

1 2 3 4 5 6 7 

number of frames 

Figure 10.10 Page-fault curve for FIFO replacement on a reference string. 

Figure 10.10 shows the curve of page faults versus the number of available 
frames. We notice that the number of faults for four frames (10) is greater than 
the number of faults for three frames (nine)! This most unexpected result is 
known as Belady's anomaly: For some page-replacement algorithms, the page- 
fault rate may increase as the number of allocated frames increases. We would 
expect that giving more memory to a process would improve its performance. 
In some early research, investigators noticed that this assumption was not 
always true. Belady's anomaly was discovered as a result. 

10.4.3 Optimal Page Replacement 
One result of the discovery of Belady's anomaly was the search for an optimal 
page-replacement algorithm. An optimal page-replacement algorithm has the 
lowest page-fault rate of all algorithms, and will never suffer from Belady's 
anomaly. Such an algorithm does exist, and has been called OPT or MIN. It is 
simply 

Replace the page that will not be used 
for the longest period of time. 

Use of this page-replacement algorithm guarantees the lowest possible page- 
fault rate for a fixed number of frames. 

For example, on our sample reference string, the optimal page-replacement 
algorithm would yield nine page faults, as shown in Figure 10.11. The first three 
references cause faults that fill the three empty frames. The reference to page 
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reference string 
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Figure 10.11 Optimal page-replacement algorithm. 

2 replaces page 7, because 7 will not be used until reference 18, whereas page 
0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page 1, 
as page 1 will be the last of the three pages in memory to be referenced again. 
With only nine page faults, optimal replacement is much better than a FIFO 
algorithm, which had 15 faults. (If we ignore the first three, which all algorithms 
must suffer, then optimal replacement is twice as good as FIFO replacement.) In 
fact, no replacement algorithm can process this reference string in three frames 
with less than nine faults. 

Unfortunately, the optimal page-replacement algorithm is difficult to 
implement, because it requires future knowledge of the reference string. (We 
encountered a similar situation with the SJF CPU-scheduling algorithm in 
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison 
studies. For instance, it may be useful to know that, although a new algorithm 
is not optimal, it is within 12.3 percent of optimal at worst, and within 4.7 
percent on average. 

10.4.4 LRU Page Replacement 
If the optimal algorithm is not feasible, perhaps an approximation to the opti- 
mal algorithm is possible. The key distinction between the FIFO and OPT 
algorithms (other than looking backward or forward in time) is that the FIFO 
algorithm uses the time when a page was brought into memory; the OPT algo- 
rithm uses the time when a page is to be used. If we use the recent past as an 
approximation of the near future, then we will replace the page that has not 
been used for the longest period of time (Figure 10.12). This approach is the 
least-recently-used (LRU) algorithm. 

LRU replacement associates with each page the time of that page's last use. 
When a page must be replaced, LRU chooses that page that has not been used 
for the longest period of time. This strategy is the optimal page-replacement 
algorithm looking backward in time, rather than forward. (Strangely, if we 
let SR be the reverse of a reference string S, then the page-fault rate for the 
OPT algorithm on S is the same as the page-fault rate for the OPT algorithm on 
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Figure 10.12 LRU page-replacement algorithm. 

SR. Similarly, the page-fault rate for the LRU algorithm on S is the same as the 
page-fault rate for the LRU algorithm on SR.) 

The result of applying LRU replacement to our example reference string is 
shown in Figure 10.12. The LRU algorithm produces 12 faults. Notice that the 
first five faults are the same as the optimal replacement. When the reference 
to page 4 occurs, however, LRU replacement sees that, of the three frames in 
memory, page 2 was used least recently. The most recently used page is page 
0, and just before that page 3 was used. Thus, the LRU algorithm replaces page 
2, not knowing that page 2 is about to be used. When it then faults for page 2, 
the LRU algorithm replaces page 3 since, of the three pages in memory {0,3,4}, 
page 3 is the least recently used. Despite these problems, LRU replacement with 
12 faults is still much better than FIFO replacement with 15. 

The LRU policy is often used as a page-replacement algorithm and is consid- 
ered to be good. The major problem is how to implement LRU replacement. An 
LRU page-replacement algorithm may require substantial hardware assistance. 
The problem is to determine an order for the frames defined by the time of last 
use. Two implementations are feasible: 

Counters: In the simplest case, we associate with each page-table entry a 
time-of-use field, and add to the CPU a logical clock or counter. The clock is 
incremented for every memory reference. Whenever a reference to a page is 
made, the contents of the clock register are copied to the time-of-use field in 
the page-table entry for that page. In this way, we always have the "time" 
of the last reference to each page. We replace the page with the smallest 
time value. This scheme requires a search of the page table to find the LRU 
page, and a write to memory (to the time-of-use field in the page table) 
for each memory access. The times must also be maintained when page 
tables are changed (due to CPU scheduling). Overflow of the clock must be 
considered. 

Stack: Another approach to implementing LRU replacement is to keep a 
stack of page numbers. Whenever a page is referenced, it is removed 
from the stack and put on the top. In this way, the top of the stack is 
always the most recently used page and the bottom is the LRU page (Figure 
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10.13). Because entries must be removed from the middle of the stack, it 
is best implemented by a doubly linked list, with a head and tail pointer. 
Removing a page and putting it on the top of the stack then requires 
changing six pointers at worst. Each update is a little more expensive, but 
there is no search for a replacement; the tail pointer points to the bottom of 
the stack, which is the LRU page. This approach is particularly appropriate 
for software or microcode implementations of LRU replacement. 

Neither optimal replacement nor LRU replacement suffers from Belady's 
anomaly. There is a class of page-replacement algorithms, called stack algo- 
rithms, that can never exhibit Belady's anomaly. A stack algorithm is an algo- 
rithm for which it can be shown that the set of pages in memory for n frames is 
always a subset of the set of pages that would be in memory with n + 1 frames. 
For LRU replacement, the set of pages in memory would be the n most recently 
referenced pages. If the number of frames is increased, these n pages will still 
be the most recently referenced and so will still be in memory. 

Note that neither implementation of LRU would be conceivable without 
hardware assistance beyond the standard TLB registers. The updating of the 
clock fields or stack must be done for every memory reference. If we were to 
use an interrupt for every reference, to allow software to update such data 
structures, it would slow every memory reference by a factor of at least ten, 
hence slowing every user process by a factor of ten. Few systems could tolerate 
that level of overhead for memory management. 

10.4.5 LRU Approximation Page Replacement 
Few computer systems provide sufficient hardware support for true LRU page 
replacement. Some systems provide no hardware support, and other page- 

reference string 

stack before a stack after b 

Figure 10.13 Use of a stack to record the most recent page references. 
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replacement algorithms (such as a FIFO algorithm) must be used. Many systems 
provide some help, however, in the form of a reference bit. The reference bit 
for a page is set, by the hardware, whenever that page is referenced (either a 
read or a write to any byte in the page). Reference bits are associated with each 
entry in the page table. 

Initially, all bits are cleared (to 0) by the operating system. As a user 
process executes, the bit associated with each page referenced is set (to 1) by 
the hardware. After some time, we can determine which pages have been used 
and which have not been used by examining the reference bits. We do not know 
the order of use, but we know which pages were used and which were not used. 
This partial ordering information leads to many page-replacement algorithms 
that approximate LRU replacement. 

10.4.5.1 Additional-Reference-Bits Algorithm 

We can gain additional ordering information by recording the reference bits at 
regular intervals. We can keep an 8-bit byte for each page in a table in memory. 
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers 
control to the operating system. The operating system shifts the reference bit 
for each page into the high-order bit of its 8-bit byte, shifting the other bits right 
1 bit, discarding the low-order bit. These &bit shift registers contain the history 
of page use for the last eight time periods. If the shift register contains 00000000, 
then the page has not been used for eight time periods; a page that is used at 
least once each period would have a shift register value of 11111111. 

A page with a history register value of 11000100 has been used more 
recently than has one with 01110111. If we interpret these 8-bit bytes as unsigned 
integers, the page with the lowest number is the LRU page, and it can be 
replaced. Notice that the numbers are not guaranteed to be unique, however. 
We can either replace (swap out) all pages with the smallest value, or use a FIFO 
selection among them. 

The number of bits of history can be varied, of course, and would be 
selected (depending on the hardware available) to make the updating as fast 
as possible. In the extreme case, the number can be reduced to zero, leaving 
only the reference bit itself. This algorithm is called the second-chance page- 
replacement algorithm. 

10.4.5.2 Second-Chance Algorithm 

The basic algorithm of second-chance replacement is a FIFO replacement algo- 
rithm. When a page has been selected, however, we inspect its reference bit. 
If the value is 0, we proceed to replace this page. If the reference bit is set to 
1, however, we give that page a second chance and move on to select the next 
FIFO page. When a page gets a second chance, its reference bit is cleared and 
its arrival time is reset to the current time. Thus, a page that is given a second 
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chance will not be replaced until all other pages are replaced (or given second 
chances). In addition, if a page is used often enough to keep its reference bit set, 
it will never be replaced. 

One way to implement the second-chance (sometimes referred to as the 
clock) algorithm is as a circular queue. A pointer indicates which page is to be 
replaced next. When a frame is needed, the pointer advances until it finds a 
page with a 0 reference bit. As it advances, it clears the reference bits (Figure 
10.14). Once a victim page is found, the page is replaced, and the new page 
is inserted in the circular queue in that position. Notice that, in the worst 
case, when all bits are set, the pointer cycles through the whole queue, giving 
each page a second chance. It clears all the reference bits before selecting the 
next page for replacement. Second-chance replacement degenerates to FIFO 
replacement if all bits are set. 

reference 
bits 

next 
victim 

circular queue of pages 

(a) 

reference 
bits 

El 

El 

circular queue of pages 

(b) 

Figure 10.14 Second-chance (clock) page-replacement algorithm. 
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10.4.5.3 Enhanced Second-Chance Algorithm 

We can enhance the second-chance algorithm by considering both the reference 
bit and the modify bit (Section 10.4) as an ordered pair. With these two bits, we 
have the following four possible classes: 

1. (0,O) neither recently used nor modified-best page to replace 

2. (0,l) not recently used but modified-not quite as good, because the page 
will need to be written out before replacement 

3. (1,O) recently used but clean-it probably will be used again soon 

4. (1,l) recently used and modified-it probably will be used again soon, and 
the page will be need to be written out to disk before it can be replaced 

When page replacement is called for, each page is in one of these four classes. 
We use the same scheme as the clock algorithm, but instead of examining 
whether the page to which we are pointing has the reference bit set to 1, 
we examine the class to which that page belongs. We replace the first page 
encountered in the lowest nonempty class. Notice that we may have to scan the 
circular queue several times before we find a page to be replaced. 

This algorithm is used in the Macintosh virtual-memory-management 
scheme. The major difference between this algorithm and the simpler clock 
algorithm is that here we give preference to those pages that have been modi- 
fied to reduce the number of I/Os required. 

10.4.6 Counting-Based Page Replacement 
There are many other algorithms that can be used for page replacement. For 
example, we could keep a counter of the number of references that have been 
made to each page, and develop the following two schemes. 

The least frequently used (LFU) page-replacement algorithm requires that 
the page with the smallest count be replaced. The reason for this selection 
is that an actively used page should have a large reference count. This 
algorithm suffers from the situation in which a page is used heavily during 
the initial phase of a process, but then is never used again. Since it was 
used heavily, it has a large count and remains in memory even though it is 
no longer needed. One solution is to shift the counts right by 1 bit at regular 
intervals, forming an exponentially decaying average usage count. 

The most frequently used (MFU) page-replacement algorithm is based 
on the argument that the page with the smallest count was probably just 
brought in and has yet to be used. 
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As you might expect, neither MFU nor LFU replacement is common. The 
implementation of these algorithms is expensive, and they do not approximate 
OPT replacement well. 

10.4.7 Page-Buffering Algorithm 
Other procedures are often used in addition to a specific page-replacement 
algorithm. For example, systems commonly keep a pool of free frames. When 
a page fault occurs, a victim frame is chosen as before. However, the desired 
page is read into a free frame from the pool before the victim is written out. This 
procedure allows the process to restart as soon as possible, without waiting for 
the victim page to be written out. When the victim is later written out, its frame 
is added to the free-frame pool. 

An expansion of this idea is to maintain a list of modified pages. Whenever 
the paging device is idle, a modified page is selected and is written to the disk. 
Its modify bit is then reset. This scheme increases the probability that a page 
will be clean when it is selected for replacement, and will not need to be written 
out. 

Another modification is to keep a pool of free frames, but to remember 
which page was in each frame. Since the frame contents are not modified when 
a frame is written to the disk, the old page can be reused directly from the 
free-frame pool if it is needed before that frame is reused. No 1/0 is needed in 
this case. When a page fault occurs, we first check whether the desired page is 
in the free-frame pool. If it is not, we must select a free frame and read into it. 

This technique is used in the VAX/VMS system, with a FIFO replacement 
algorithm. When the FIFO replacement algorithm mistakenly replaces a page 
that is still in active use, that page is quickly retrieved from the free-frame 
buffer, and no I/O is necessary. The free-frame buffer provides protection 
against the relatively poor, but simple, FIFO replacement algorithm. This 
method is necessary because the early versions of the VAX did not implement 
the reference bit correctly. 

10.5 . Allocation of Frames 

How do we allocate the fixed amount of free memory among the various 
processes? If we have 93 free frames and two processes, how many frames 
does each process get? 

The simplest case of virtual memory is the single-user system. Consider a 
single-user system with 128 KB memory composed of pages of size 1 KB. Thus, 
there are 128 frames. The operating system may take 35 KB, leaving 93 frames 
for the user process. Under pure demand paging, all 93 frames would initially 
be put on the free-frame list. When a user process started execution, it would 
generate a sequence of page faults. The first 93 page faults would all get free 
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frames from the free-frame list. When the free-frame list was exhausted, a page- 
replacement algorithm would be used to select one of the 93 in-memory pages 
to be replaced with the ninety-fourth, and so on. When the process terminated, 
the 93 frames would once again be placed on the free-frame list. 

There are many variations on this simple strategy. We can require that the 
operating system allocate all its buffer and table space from the free-frame list. 
When this space is not in use by the operating system, it can be used to support 
user paging. We can try to keep three free frames reserved on the free-frame list 
at all times. Thus, when a page fault occurs, there is a free frame available to 
page into. While the page swap is taking place, a replacement can be selected, 
which is then written to the disk as the user process continues to execute. 

Other variants are also possible, but the basic strategy is clear: The user 
process is allocated any free frame. 

A different problem arises when demand paging is combined with multi- 
programming. Multiprogramming puts two (or more) processes in memory at 
the same time. 

10.5.1 Minimum Number of Frames 
Our strategies for the allocations of frames are constrained in various ways. We 
cannot allocate more than the total number of available frames (unless there is 
page sharing). We must also allocate at least a minimum number of frames. 
Obviously, as the number of frames allocated to each process decreases, the 
page-fault-rate increases, slowing process execution. 

Besides the undesirable performance properties of allocating only a few 
frames, there is a minimum number of frames that must be allocated. This 
minimum number is defined by the instruction-set architecture. Remember 
that, when a page fault occurs before an executing instruction is complete, the 
instruction must be restarted. Consequently, we must have enough frames to 
hold all the different pages that any single instruction can reference. 

For example, consider a machine in which all memory-reference instruc- 
tions have only one memory address. Thus, we need at least one frame for 
the instruction and one frame for the memory reference. In addition, if one- 
level indirect addressing is allowed (for example, a load instruction on page 
16 can refer to an address on page 0, which is an indirect reference to page 23), 
then paging requires at least three frames per process. Think about what might 
happen if a process had only two frames. 

The minimum number of frames is defined by the given computer archi- 
tecture. For example, the move instruction for the PDP-11 is more than one 
word for some addressing modes, and thus the instruction itself may straddle 
two pages. In addition, each of its two operands may be indirect references, 
for a total of six frames. The worst case for the IBM 370 is probably the MVC 
instruction. Since the instruction is storage to storage, it takes 6 bytes and can 
straddle two pages. The block of characters to move and the area to be moved 
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to can each also straddle two pages. This situation would require six frames. 
(Actually, the worst case occurs when the MVC instruction is the operand of an 
EXECUTE instruction that straddles a page boundary; in this case, we need eight 
frames.) 

The worst-case scenario occurs in computer architectures that allow multi- 
ple levels of indirection (for example, each 16-bit word could contain a 15-bit 
address plus a 1-bit indirect indicator). Theoretically, a simple load instruction 
could reference an indirect address that could reference an indirect address 
(on another page) that could also reference an indirect address (on yet another 
page), and so on, until every page in virtual memory had been touched. Thus, 
in the worst case, the entire virtual memory must be in physical memory. To 
overcome this difficulty, we must place a limit on the levels of indirection (for 
example, limit an instruction to at most 16 levels of indirection). When the first 
indirection occurs, a counter is set to 16; the counter is then decremented for 
each successive indirection for this instruction. If the counter is decremented to 
0, a trap occurs (excessive indirection). This limitation reduces the maximum 
number of memory references per instruction to 17, requiring the same number 
of frames. 

The minimum number of frames per process is defined by the architecture, 
whereas the maximum number is defined by the amount of available physical 
memory. In between, we are still left with significant choice in frame allocation. 

10.5.2 Allocation Algorithms 
The easiest way to split m  frames among n  processes is to give everyone an 
equal share, m / n  frames. For instance, if there are 93 frames and five processes, 
each process will get 18 frames. The leftover three frames could be used as a 
free-frame buffer pool. This scheme is called equal allocation. 

An alternative is to recognize that various processes will need differing 
amounts of memory. Consider a system with a 1 KB frame size. If a small 
student process of 10 KB and an interactive database of 127 KB are the only two 
processes running in a system with 62 free frames, it does not make much sense 
to give each process 31 frames. The student process does not need more than 
ten frames, so the other 21 are strictly wasted. 

To solve this problem, we can use proportional allocation. We allocate 
available memory to each process according to its size. Let the size of the virtual 
memory for process pi be si, and define 

Then, if the total number of available frames is m, we allocate ai frames to 
process pi, where ai is approximately 
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Of course, we must adjust each ai to be an integer that is greater than the 
minimum number of frames required by the instruction set, with a sum not 
exceeding m. 

For proportional allocation, we would split 62 frames between two pro- 
cesses, one of 10 pages and one of 127 pages, by allocating 4 frames and 57 
frames, respectively, since 

In this way, both processes share the available frames according to their 
"needs," rather than equally. 

In both equal and proportional allocation, of course, the allocation to each 
process may vary according to the multiprogramming level. If the multipro- 
gramming level is increased, each process will lose some frames to provide the 
memory needed for the new process. On the other hand, if the multiprogram- 
ming level decreases, the frames that had been allocated to the departed process 
can now be spread over the remaining processes. 

Notice that, with either equal or proportional allocation, a high-priority 
process is treated the same as a low-priority process. By its definition, however, 
we may want to give the high-priority process more memory to speed its 
execution, to the detriment of low-priority processes. 

One approach is to use a proportional allocation scheme where the ratio of 
frames depends not on the relative sizes of processes, but rather on the priorities 
of processes, or on a combination of size and priority. 

10.5.3 Global Versus Local Allocation 
Another important factor in the way frames are allocated to the various pro- 
cesses is page replacement. With multiple processes competing for frames, 
we can classify page-replacement algorithms into two broad categories: global 
replacement and local replacement. Global replacement allows a process to 
select a replacement frame from the set of all frames, even if that frame is 
currently allocated to some other process; one process can take a frame from 
another. Local replacement requires that each process select from only its own 
set of allocated frames. 

For example, consider an allocation scheme where we allow high-priority 
processes to select frames from low-priority processes for replacement. A 
process can select a replacement from among its own frames or the frames 
of any lower-priority process. This approach allows a high-priority process to 
increase its frame allocation at the expense of the low-priority process. 

With a local replacement strategy, the number of frames allocated to a 
process does not change. With global replacement, a process may happen to 
select only frames allocated to other processes, thus increasing the number of 
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frames allocated to it (assuming that other processes do not choose its frames 
for replacement). 

One problem with a global replacement algorithm is that a process cannot 
control its own page-fault rate. The set of pages in memory for a process 
depends not only on the paging behavior of that process, but also on the paging 
behavior of other processes. Therefore, the same process may perform quite 
differently (taking 0.5 seconds for one execution and 10.3 seconds for the next 
execution) due to totally external circumstances. Such is not the case with a local 
replacement algorithm. Under local replacement, the set of pages in memory 
for a process is affected by the paging behavior of only that process. For its 
part, local replacement might hinder a process by not making available to it 
other, less used pages of memory. Thus, global replacement generally results in 
greater system throughput, and is therefore the more common method. 

10.6 . Thrashing 

If the number of frames allocated to a low-priority process falls below the 
minimum number required by the computer architecture, we must suspend 
that process' execution. We should then page out its remaining pages, freeing 
all its allocated frames. This provision introduces a swap-in, swap-out level of 
intermediate CPU scheduling. 

In fact, look at any process that does not have "enough" frames. Although 
it is technically possible to reduce the number of allocated frames to the mini- 
mum, there is some (larger) number of pages in active use. If the process does 
not have this number of frames, it will quickly page fault. At this point, it 
must replace some page. However, since all its pages are in active use, it must 
replace a page that will be needed again right away. Consequently, it quickly 
faults again, and again, and again. The process continues to fault, replacing 
pages for which it then faults and brings back in right away. 

This high paging activity is called thrashing. A process is thrashing if it is 
spending more time paging than executing. 

10.6.1 Cause of Thrashing 
Thrashing results in severe performance problems. Consider the following 
scenario, which is based on the actual behavior of early paging systems. 

The operating system monitors CPU utilization. If CPU utilization is too 
low, we increase the degree of multiprogramming by introducing a new process 
to the system. A global page-replacement algorithm is used; it replaces pages 
with no regard to the process to which they belong. Now suppose that a process 
enters a new phase in its execution and needs more frames. It starts faulting and 
taking frames away from other processes. These processes need those pages, 
however, and so they also fault, taking frames from other processes. These 
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faulting processes must use the paging device to swap pages in and out. As 
they queue up for the paging device, the ready queue empties. As processes 
wait for the paging device, CPU utilization decreases. 

The CPU scheduler sees the decreasing CPU utilization, and increases the 
degree of multiprogramming as a result. The new process tries to get started by 
taking frames from running processes, causing more page faults, and a longer 
queue for the paging device. As a result, CPU utilization drops even further, 
and the CPU scheduler tries to increase the degree of multiprogramming even 
more. Thrashing has occurred and system throughput plunges. The page- 
fault rate increases tremendously. As a result, the effective memory access time 
increases. No work is getting done, because the processes are spending all their 
time paging. 

This phenomenon is illustrated in Figure 10.15, in which CPU utilization 
is plotted against the degree of multiprogramming. As the degree of multi- 
programming increases, CPU utilization also increases, although more slowly, 
until a maximum is reached. If the degree of multiprogramming is increased 
even further, thrashing sets in and CPU utilization drops sharply. At this point, 
to increase CPU utilization and stop thrashing, we must decrease the degree of 
multiprogramming. 

We can limit the effects of thrashing by using a local replacement algorithm 
(or priority replacement algorightm). With local replacement, if one process 
starts thrashing, it cannot steal frames from another process and cause the latter 
to thrash also. Pages are replaced with regard to the process of which they 
are a part. However, if processes are thrashing, they will be in the queue for 
the paging device most of the time. The average service time for a page fault 
will increase, due to the longer average queue for the paging device. Thus, the 
effective access time will increase even for a process that is not thrashing. 

degree of multiprogramming 

Figure 10.15 Thrashing. 
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To prevent thrashing, we must provide a process as many frames as it 
needs. But how do we know how many frames it "needs"? There are several 
techniques. The working-set strategy (Section 10.6.2) starts by looking at how 
many frames a process is actually using. This approach defines the locality 
model of process execution. 

Figure 10.16 Locality in a memory-reference pattern. 
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The locality model states that, as a process executes, it moves from locality 
to locality. A locality is a set of pages that are actively used together (Figure 
10.16). A program is generally composed of several different localities, which 
may overlap. 

For example, when a subroutine is called, it defines a new locality. In this 
locality, memory references are made to the instructions of the subroutine, its 
local variables, and a subset of the global variables. When the subroutine is 
exited, the process leaves this locality, since the local variables and instructions 
of the subroutine are no longer in active use. We may return to this locality 
later. Thus, we see that localities are defined by the program structure and its 
data structures. The locality model states that all programs will exhibit this 
basic memory reference structure. Note that the locality model is the unstated 
principle behind the caching discussions so far in this book. If accesses to any 
types of data were random rather than patterned, caching would be useless. 

Suppose that we allocate enough frames to a process to accommodate its 
current locality. It will fault for the pages in its locality until all these pages are 
in memory; then, it will not fault again until it changes localities. If we allocate 
fewer frames than the size of the current locality, the process will thrash, since 
it cannot keep in memory all the pages that it is actively using. 

10.6.2 Working-Set Model 
The working-set model is based on the assumption of locality. This model 
uses a parameter, A, to define the working-set window. The idea is to examine 
the most recent A page references. The set of pages in the most recent A page 
references is the working set (Figure 10.17). If a page is in active use, it will be in 
the working set. If it is no longer being used, it will drop from the working set 
A time units after its last reference. Thus, the working set is an approximation 
of the program's locality. 

For example, given the sequence of memory references shown in Figure 
10.17, if A = 10 memory references, then the working set at time tl is (1, 2, 5, 
6,7). By time t2, the working set has changed to {3,4). 

The accuracy of the working set depends on the selection of A. If A is too 
small, it will not encompass the entire locality; if A is too large, it may overlap 

page reference table 
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Figure 10.17 Working-set model. 
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several localities. In the extreme, if A is infinite, the working set is the set of 
pages touched during the process execution. 

The most important property of the working set is its size. If we compute 
the working-set size, WSSi, for each process in the system, we can then consider 

where D is the total demand for frames. Each process is actively using the pages 
in its working set. Thus, process i needs WSSi frames. If the total demand is 
greater than the total number of available frames (D > m), thrashing will occur, 
because some processes will not have enough frames. 

Use of the working-set model is then simple. The operating system mon- 
itors the working set of each process and allocates to that working set enough 
frames to provide it with its working-set size. If there are enough extra frames, 
another process can be initiated. If the sum of the working-set sizes increases, 
exceeding the total number of available frames, the operating system selects 
a process to suspend. The process' pages are written out and its frames are 
reallocated to other processes. The suspended process can be restarted later. 

This working-set strategy prevents thrashing while keeping the degree of 
multiprogramming as high as possible. Thus, it optimizes CPU utilization. 

The difficulty with the working-set model is keeping track of the working 
set. The working-set window is a moving window. At each memory reference, 
a new reference appears at one end and the oldest reference drops off the other 
end. A page is in the working set if it is referenced anywhere in the working-set 
window. We can approximate the working-set model with a fixed interval timer 
interrupt and a reference bit. 

For example, assume A is 10,000 references and we can cause a timer 
interrupt every 5,000 references. When we get a timer interrupt, we copy and 
clear the reference-bit values for each page. Thus, if a page fault occurs, we can 
examine the current reference bit and 2 in-memory bits to determine whether a 
page was used within the last 10,000 to 15,000 references. If it was used, at least 
1 of these bits will be on. If it has not been used, these bits will be off. Those 
pages with at least 1 bit on will be considered to be in the working set. Note that 
this arrangement is not entirely accurate, because we cannot tell where, within 
an interval of 5,000, a reference occurred. We can reduce the uncertainty by 
increasing the number of our history bits and the frequency of interrupts (for 
example, 10 bits and interrupts every 1,000 references). However, the cost to 
service these more frequent interrupts will be correspondingly higher. 

10.6.3 Page-Fault Frequency 
The working-set model is successful, and knowledge of the working set can 
be useful for prepaging (Section 10.8.1), but it seems a clumsy way to control 
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more 
direct approach. 
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number of frames 

Figure 10.18 Page-fault frequency. 

The specific problem is how to prevent thrashing. Thrashing has a high 
page-fault rate. Thus, we want to control the page-fault rate. When it is too 
high, we know that the process needs more frames. Similarly, if the page-fault 
rate is too low, then the process may have too many frames. We can establish 
upper and lower bounds on the desired page-fault rate (Figure 10.18). If the 
actual page-fault rate exceeds the upper limit, we allocate that process another 
frame; if the page-fault rate falls below the lower limit, we remove a frame from 
that process. Thus, we can directly measure and control the page-fault rate to 
prevent thrashing. 

As with the working-set strategy, we may have to suspend a process. If the 
page-fault rate increases and no free frames are available, we must select some 
process and suspend it. The freed frames are then distributed to processes with 
high page-fault rates. 

10.7 Operating-System Examples 

In this section we describe how Windows NT and Solaris 2 implement virtual 
memory. 

10.7.1 Window NT 
Windows NT implements virtual memory using demand paging with cluster- 
ing. Clustering handles page faults by bringing in not only the faulting page, 
but also multiple pages surrounding the faulting page. When a process is first 
created, it is assigned a working-set minimum and maximum. The working-set 
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minimum is the minimum number of pages the process is guaranteed to have in 
memory. If sufficient memory is available, a process may be assigned as many 
pages as its working-set maximum. (In some circumstances, a process may 
be allowed to exceed its working-set maximum.) The virtual-memory manager 
maintains a list of free page frames. Associated with this list is a threshold value 
that is used to indicate whether there is sufficient free memory available or not. 
If a page fault occurs for a process that is below its working-set maximum, 
the virtual-memory manager allocates a page from this list of free pages. If 
a process is at its working-set maximum and it incurs a page fault, it must 
select a page for replacement using a local page-replacement policy. When the 
amount of free memory falls below the threshold, the virtual-memory manager 
uses a tactic known as automatic working-set trimming to restore the value 
above the threshold. Automatic working-set trimming works by evaluating the 
number of pages allocated to processes. If a process has been allocated more 
pages than its working-set minimum, the virtual-memory manager removes 
pages until the process reaches its working-set minimum. A process that is at 
its working-set minimum may be allocated pages from the free page frame list 
once sufficient free memory is available. 

The algorithm used to determine which page to remove from a working 
set depends upon the type of processor the operating system is running on. 
On single-processor x86 systems, Windows NT uses a variation of the clock 
algorithm discussed in Section 10.4.5.2. On Alpha and multiprocessor x86 
systems, clearing the reference bit may require invalidating the entry in the 
translation look-aside buffer on other processors. Rather than involving this 
overhead, Windows NT uses a variation on the FIFO algorithm discussed in 
Section 10.4.2. 

10.7.2 Solaris 2 

When a thread incurs a page fault, the kernel assigns a page to the faulting 
thread from the list of free pages it maintains. Therefore, it is imperative that the 
kernel maintain a sufficient amount of free memory available. Associated with 
this list of free pages is a parameter-lotsfree-which represents a threshold to 
begin paging. lotsfree is typically set to 1/64 of the size of the physical memory. 
Four times per second, the kernel checks if the amount of free memory is less 
than lotsfree. 

If the number of free pages falls below lotsfree, a process known as the page- 
out starts up. The pageout process is similar to the second-chance algorithm 
described in Section 10.4.5.2 (also known as the two-handed-clock algorithm), 
which works as follows. The first hand of the clock scans all pages in memory, 
setting the reference bit to 0. At a later point in time, the second hand of the 
clock examines the reference bit for the pages in memory, returning those pages 
whose bit is still set to 0 to the free list. 
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Figure 10.19 Solaris 2 page scanner. 

The pageout algorithm uses several parameters to control the rate at which 
pages are scanned (known as the scanrate). The scanrate is expressed in pages 
per second and ranges from slowscan to fastscan. When free memory falls below 
lotsfree, scanning occurs at slowscan pages per second and progresses tofastscan 
depending upon the amount of free memory available. The default value of 
slowscan is 100 pages per second. fastscan is typically set to (TotalPhysicalPages)/2 
pages per second with a maximum of 8,192 pages per second. This is shown in 
Figure 10.19 (with fastscan set to the maximum). 

The distance (in pages) between the hands of the clock is determined by 
a system parameter handspread. The amount of time between the front hand 
clearing a bit and the back hand investigating its value depends upon the 
scanrate and the handspread. If scanrate is 100 pages per second and handspread is 
1,024 pages, 10 seconds can pass between the time a bit is set by the front hand 
and checked by the back hand. However, because of the demands placed on the 
memory system, a scanrate of several thousand is not uncommon. This means 
that the amount of time between checking and investigating a bit is often a few 
seconds. 

As described above, the pageout process checks memory four times per 
second. However, if free memory falls below desfree (Figure 10.19) pageout 
will run 100 times per second with the intention of keeping at least desfree 
free memory available. If the pageout process in unable to keep the amount 
of free memory for a 30-second average at desfree, the kernel begins swapping 
processes, thereby freeing all pages allocated to the process. In general, the 
kernel looks for processes that have been idle for long periods of time. Last, 
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if the system is unable to maintain the amount of free memory at minfree, the 
pageout process is called for every request for a new page. 

Recent releases of the Solaris 2 kernel have provided enhancements to the 
paging algorithm. One such enhancement is recognizing pages from shared 
libraries. Pages belonging to libraries that are being shared by several processes 
-even if they are eligible to be claimed by the scanner-are skipped during the 
page-scanning process. Another enhancement concerns distinguishing pages 
that have been allocated to processes from pages allocated to regular files. This 
is known as priority paging and is covered in Section 12.6.2. 

10.8 Other Considerations 

The selections of a replacement algorithm and allocation policy are the major 
decisions that we make for a paging system. There are many other considera- 
tions as well. 

10.8.1 Prepaging 

An obvious property of a pure demand-paging system is the large number of 
page faults that occur when a process is started. This situation is a result of 
trying to get the initial locality into memory. The same situation may arise at 
other times. For instance, when a swapped-out process is restarted, all its pages 
are on the disk and each must be brought in by its own page fault. Prepaging 
is an attempt to prevent this high level of initial paging. The strategy is to bring 
into memory at one time all the pages that will be needed. 

In a system using the working-set model, for example, we keep with each 
process a list of the pages in its working set. If we must suspend a process (due 
to an I/O wait or a lack of free frames), we remember the working set for that 
process. When the process is to be resumed (I/O completion or enough free 
frames), we automatically bring back into memory its entire working set before 
restarting the process. 

Prepaging may be an advantage in some cases. The question is simply 
whether the cost of using prepaging is less than the cost of servicing the 
corresponding page faults. It may well be the case that many of the pages 
brought back into memory by prepaging are not used. 

Assume that s pages are prepaged and a fraction a of these s pages is 
actually used (0 5 a < 1). The question is whether the cost of the s * cu saved 
page faults is greater or less than the cost of prepaging s * (1 - a)  unnecessary 
pages. If a is close to zero, prepaging loses; if a is close to one, prepaging wins. 

10.8.2 Page Size 

The designers of an operating system for an existing machine seldom have 
a choice concerning the page size. However, when new machines are being 



10.8 Other Considerations 357 

designed, a decision regarding the best page size must be made. As you might 
expect, there is no single best page size. Rather, there is a set of factors that 
support various sizes. Page sizes are invariably powers of 2, generally ranging 
from 4,096 (212) to 4,194,304 (222) bytes. 

How do we select a page size? One concern is the size of the page table. For 
a given virtual-memory space, decreasing the page size increases the number of 
pages, and hence the size of the page table. For a virtual memory of 4 MB (222), 
there would be 4,096 pages of 1,024 bytes, but only 512 pages of 8,192 bytes. 
Because each active process must have its own copy of the page table, a large 
page size is desirable. 

On the other hand, memory is better utilized with smaller pages. If a 
process is allocated memory starting at location 00000, and continuing until 
it has as much as it needs, it probably will not end exactly on a page boundary. 
Thus, a part of the final page must be allocated (because pages are the units of 
allocation) but is unused (internal fragmentation). Assuming independence of 
process size and page size, we would expect that, on the average, one-half of 
the final page of each process will be wasted. This loss would be only 256 bytes 
for a page of 512 bytes, but would be 4,096 bytes for a page of 8,192 bytes. To 
minimize internal fragmentation, we need a small page size. 

Another problem is the time required to read or write a page. 1 /0  time 
is composed of seek, latency, and transfer times. Transfer time is proportional 
to the amount transferred (that is, the page size)-a fact that would seem to 
argue for a small page size. Remember from Chapter 2, however, that latency 
and seek time normally dwarf transfer time. At a transfer rate of 2 MB per 
second, it takes only 0.2 milliseconds to transfer 512 bytes. Latency, on the other 
hand, is perhaps 8 milliseconds and seek time 20 milliseconds. Of the total I/O 
time (28.2 milliseconds), therefore, 1 percent is attributable to the actual transfer. 
Doubling the page size increases I/O time to only 28.4 milliseconds. It takes 28.4 
milliseconds to read a single page of 1,024 bytes, but 56.4 milliseconds to read 
the same amount as two pages of 512 bytes each. Thus, a desire to minimize 
1/0  time argues for a larger page size. 

With a smaller page size, however, total 1 /0  should be reduced, since 
locality will be improved. A smaller page size allows each page to match 
program locality more accurately. For example, consider a process of size 200 
KB, of which only one-half (100 KB) are actually used in an execution. If we 
have only one large page, we must bring in the entire page, a total of 200 KB 
transferred and allocated. If we had pages of only 1 byte, then we could bring in 
only the 100 KB that are actually used, resulting in only 100 KB being transferred 
and allocated. With a smaller page size, we have better resolution, allowing us 
to isolate only the memory that is actually needed. With a larger page size, we 
must allocate and transfer not only what is needed, but also anything else that 
happens to be in the page, whether it is needed or not. Thus, a smaller page 
size should result in less I/O and less total allocated memory. 
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On the other hand, did you notice that with a page size of 1 byte, we would 
have a page fault for each byte? A process of 200 KB, using only one-half of 
that memory, would generate only one page fault with a page size of 200 KB, 
but 102,400 page faults for a page size of 1 byte. Each page fault generates the 
large amount of overhead needed for processing the interrupt, saving registers, 
replacing a page, queueing for the paging device, and updating tables. To 
minimize the number of page faults, we need to have a large page size. 

There are other factors to consider (such as the relationship between page 
size and sector size on the paging device). The problem has no best answer. 
Some factors (internal fragmentation, locality) argue for a small page size, 
whereas others (table size, I/O time) argue for a large page size. However, 
the historical trend is toward larger page sizes. Indeed, the first edition of 
Operating Systems Concepts (1983) used 4,096 bytes as the upper bound on 
page sizes, and this value was the most common page size in 1990. However, 
modern systems may now use page sizes that are much larger than this. We 
explore this in the following section. 

10.8.3 TLB Reach 
In Chapter 9, we introduced the hit ratio of the TLB. Recall the hit ratio for the 
TLB refers to the percentage of virtual address translations that are resolved in 
the TLB rather than the page table. Clearly, the hit ratio is related to the number 
of entries in the TLB and the way to increase the hit ratio is by increasing the 
number of entries in the TLB. This, however, does not come cheaply, as the 
associative memory used to construct the TLB is both expensive and power- 
hungry. 

Related to the hit ratio is a similar metric: the TLB reach. The TLB reach 
refers to the amount of memory accessible from the TLB and is simply the 
number of entries multiplied by the page size. Ideally, the working set for a 
process is stored in the TLB. If not, the process will spend a considerable amount 
of time resolving memory references in the page table rather than TLB. If we 
double the number of entries in the TLB, we double the TLB reach. However, for 
some memory-intensive applications this may still prove insufficient for storing 
the working set. 

Another approach for increasing the TLB reach is by either increasing the 
size of the page or providing multiple page sizes. If we increase the page size 
-say from 8 KB to 32 KB-we quadruple the TLB reach. However, this may 
lead to an increase in fragmentation for some applications that do not require 
such a large page size as 32 KB. Alternatively, an operating system may provide 
several different page sizes. For example, the UltraSparc I1 supports 8 KB, 64 
KB, 512 KB, and 4 M B  page sizes. Of these available pages sizes, Solaris 2 uses 
both 8 KB and 4 M B  page sizes. And with a 64-entry TLB, the TLB reach for 
Solaris 2 ranges from 512 KB with 8 KB pages to 256 M B  with 4 M B  pages. For 
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the majority of applications, the 8 KB page size is sufficient, although Solaris 2 
maps the first 4 MB of kernel code and data with two 4 MB pages. Solaris 2 also 
allows applications-such as databases-to take advantage of the large 4 MB 
page size as well 

However, providing support for multiple pages requires the operating 
system-not hardware-to manage the TLB. For example, one of the fields 
in a TLB entry must indicate the size of the page frame corresponding to the 
TLB entry. Managing the TLB in software and not hardware comes at a cost 
in performance. However, the increased hit ratio and TLB reach offsets the 
performance costs. Indeed, recent trends indicate a move towards software- 
managed TLBs and operating-system support for multiple page sizes. The 
UltraSparc, MIPS, and Alpha architectures employ software-managed TLBs. 
The PowerPC and Pentium manage the TLB in hardware. 

10.8.4 Inverted Page Table 

In Section 9.4.4.3, the concept of an inverted page table was introduced. The 
purpose of this form of page management was to reduce the amount of physical 
memory that is needed to track virtual-to-physical address translations. We 
accomplish this savings by creating a table that has one entry per physical 
memory page, indexed by the pair <process-id, page-number> . 

Because they keep information about which virtual-memory page is stored 
in each physical frame, inverted page tables reduce the amount of physical 
memory needed to store this information. However, the inverted page table 
no longer contains complete information about the logical address space of a 
process, and that information is required if a referenced page is not currently 
in memory. Demand paging requires this information to process page faults. 
For this information to be available, an external page table (one per process) 
must be kept. Each such table looks like the traditional per-process page table, 
containing information on where each virtual page is located. 

But do external page tables negate the utility of inverted page tables? Since 
these tables are referenced only when a page fault occurs, they do not need to 
be available quickly. Instead, they are themselves paged in and out of memory 
as necessary. Unfortunately, a page fault may now result in the virtual-memory 
manager causing another page fault as it pages in the external page table it 
needs to locate the virtual page on the backing store. This special case requires 
careful handling in the kernel and a delay in the page-lookup processing. 

10.8.5 Program Structure 

Demand paging is designed to be transparent to the user program. In many 
cases, the user is completely unaware of the paged nature of memory. In other 
cases, however, system performance can be improved if the user (or compiler) 
has an awareness of the underlying demand paging. 
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Let's look at a contrived but informative example. Assume that pages are 
128 words in size. Consider a Java program whose function is to initialize to 0 
each element of a 128 by 128 array. The following code is typical: 

in t  A[] [I = new in t  [I281 [I281 ; 

f o r  ( int  j = 0; j < A.length; j++) 
f o r  ( in t  i = 0;  i < A.length; i++) 

A [ i ]  [ j]  = 0; 

Notice that the array is stored row major. That is, the array is stored A LO1 [01 , 
A [O] [I], . . ., A [OI Cl271, A [I] C01, A C11 [I], - . ., A [I271 C1271. For pages of 
128 words, each row takes one page. Thus, the preceding code zeros one word 
in each page, then another word in each page, and so on. If the operating system 
allocates less than 128 frames to the entire program, then its execution will result 
in 128 x 128 = 16,384 page faults. Changing the code to 

i n t  A [I [I = new in t  [I281 [I281 ; 

f o r  ( int  i = 0;  i < A.length; i++) 
f o r  ( int  j = 0;  j < A.length; j++) 

A[il Cjl = 0;  

on the other hand, zeros all the words on one page before starting the next page, 
reducing the number of page faults to 128. 

Careful selection of data structures and programming structures can 
increase locality and hence lower the page-fault rate and the number of pages 
in the working set. A stack has good locality, since access is always made to 
the top. A hash table, on the other hand, is designed to scatter references, 
producing bad locality. Of course, locality of reference is just one measure of 
the efficiency of the use of a data structure. Other heavily weighted factors 
include search speed, total number of memory references, and total number of 
pages touched. 

At a later stage, the compiler and loader can have a significant effect on 
paging. Separating code and data and generating reentrant code means that 
code pages can be read only and hence will never be modified. Clean pages 
do not have to be paged out to be replaced. The loader can avoid placing 
routines across page boundaries, keeping each routine completely in one page. 
Routines that call each other many times can be packed into the same page. 
This packaging is a variant of the bin-packing problem of operations research: 
Try to pack the variable-sized load segments into the fixed-sized pages so that 
interpage references are minimized. Such an approach is particularly useful for 
large page sizes. 

The choice of programming language can affect paging as well. For exam- 
ple, C and C++ use pointers frequently, and pointers tend to randomize access 
to memory, thereby potentially diminishing a process' locality. Some studies 
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have shown that object-oriented programs also tend to have a poor locality of 
reference. Contrast these languages with Java, which does not provide pointers. 
Java programs will have better locality of reference than C or C++ programs on 
a virtual-memory system. 

10.8.6 110 Interlock 
When demand paging is used, we sometimes need to allow some of the pages 
to be locked in memory. One such situation occurs when 1/0 is done to or from 
user (virtual) memory. 1 /0  is often implemented by a separate 1 /0  processor. 
For example, a magnetic-tape controller is generally given the number of bytes 
to transfer and a memory address for the buffer (Figure 10.20). When the 
transfer is complete, the CPU is interrupted. 

We must be sure the following sequence of events does not occur: A process 
issues an 1/0  request, and is put in a queue for that 1/0 device. Meanwhile, the 
CPU is given to other processes. These processes cause page faults, and, using 
a global replacement algorithm, one of them replaces the page containing the 
memory buffer for the waiting process. The pages are paged out. Some time 
later, when the 1 /0  request advances to the head of the device queue, the I/O 
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occurs to the specified address. However, this frame is now being used for a 
different page belonging to another process. 

There are two common solutions to this problem. One solution is never to 
execute I/O to user memory. Instead, data are always copied between system 
memory and user memory. 1/0 takes place only between system memory and 
the I/O device. To write a block on tape, we first copy the block to system 
memory, and then write it to tape. 

This extra copying may result in unacceptably high overhead. Another 
solution is to allow pages to be locked into memory. A lock bit is associated 
with every frame. If the frame is locked, it cannot be selected for replacement. 
Under this approach, to write a block on tape, we lock into memory the pages 
containing the block. The system can then continue as usual. Locked pages 
cannot be replaced. When the I/O is complete, the pages are unlocked. 

Frequently, some or all of the operating-system kernel is locked into mem- 
ory. Most operating systems cannot tolerate a page fault caused by the kernel. 
Consider the result of the page-replacement routine causing a page fault. 

Another use for a lock bit involves normal page replacement. Consider 
the following sequence of events. A low-priority process faults. Selecting a 
replacement frame, the paging system reads the necessary page into memory. 
Ready to continue, the low-priority process enters the ready queue and waits 
for the CPU. Since it is a low-priority process, it may not be selected by the 
CPU scheduler for a while. While the low-priority process waits, a high-priority 
process faults. Looking for a replacement, the paging system sees a page that 
is in memory but has not been referenced or modified: It is the page that the 
low-priority process just brought in. This page looks like a perfect replacement: 
It is clean and will not need to be written out, and it apparently has not been 
used for a long time. 

Whether the high-priority process should be able to replace the low-priority 
process is a policy decision. After all, we are simply delaying the low-priority 
process for the benefit of the high-priority process. On the other hand, we are 
wasting the effort spent to bring in the page of the low-priority process. If we 
decide to prevent replacing a newly brought-in page until it can be used at least 
once, then we can use the lock bit to implement this mechanism. When a page is 
selected for replacement, its lock bit is turned on; it remains on until the faulting 
process is again dispatched. 

Using a lock bit can be dangerous, however: The lock bit may get turned on 
but never turned off. Should this situation occur (due to a bug in the operating 
system, for example), the locked frame becomes unusable. The Macintosh 
Operating System provides a page-locking mechanism because it is a single- 
user system, and the overuse of locking would hurt only the user doing the 
locking. Multiuser systems must be less trusting of users. For instance, Solaris 
2 allows locking "hints," but it is free to disregard these hints if the free-frame 
pool becomes too small or if an individual process requests that too many pages 
be locked in memory. 
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10.8.7 Real-Time Processing 
The discussions in this chapter have concentrated on providing the best overall 
utilization of a computer system by optimizing the use of memory. By using 
memory for active data and moving inactive data to disk, we increase overall 
system throughput. However, individual processes may suffer as a result, 
because they now may take additional page faults during their execution. 

Consider a real-time process or thread, as described in Chapter 4. Such 
a process expects to gain control of the CPU, and to run to completion with a 
minimum of delays. Virtual memory is the antithesis of real-time computing, 
because it can introduce unexpected long-term delays in the execution of a 
process while pages are brought into memory. Therefore, real-time systems 
almost never have virtual memory. 

In the case of Solaris 2, the developers at Sun Microsystems wanted to allow 
both time-sharing and real-time computing within a system. To solve the page- 
fault problem, Solaris 2 allows a process to tell it which pages are important to 
that process. In addition to allowing "hints" on page use, the operating system 
allows privileged users to require pages to be locked into memory. If abused, 
this mechanism could lock all other processes out of the system. It is necessary 
to allow real-time processes to have bounded and low-dispatch latency. 

10.9 . Summary 

It is desirable to be able to execute a process whose logical address space is 
larger than the available physical address space. The programmer can make 
such a process executable by restructuring it using overlays, but doing so is 
generally a difficult programming task. Virtual memory is a technique to allow 
a large logical address space to be mapped onto a smaller physical memory. 
Virtual memory allows extremely large processes to be run, and also allows the 
degree of multiprogramming to be raised, increasing CPU utilization. Further, 
it frees application programmers from worrying about memory availability. 

Pure demand paging never brings in a page until that page is referenced. 
The first reference causes a page fault to the operating-system resident monitor. 
The operating system consults an internal table to determine where the page 
is located on the backing store. It then finds a free frame and reads the page 
in from the backing store. The page table is updated to reflect this change, 
and the instruction that caused the page fault is restarted. This approach 
allows a process to run even though its entire memory image is not in main 
memory at once. As long as the page-fault rate is reasonably low, performance 
is acceptable. 

We can use demand paging to reduce the number of frames allocated to 
a process. This arrangement can increase the degree of multiprogramming 
(allowing more processes to be available for execution at one time) and-in 
theory, at least-the CPU utilization of the system. It also allows processes to be 
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run even though their memory requirements exceed the total available physical 
memory. Such processes run in virtual memory. 

If total memory requirements exceed the physical memory, then it may 
be necessary to replace pages from memory to free frames for new pages. 
Various page-replacement algorithms are used. FIFO page replacement is easy 
to program, but suffers from Belady's anomaly. Optimal page replacement 
requires future knowledge. LRU replacement is an approximation of optimal, 
but even it may be difficult to implement. Most page-replacement algorithms, 
such as the second-chance algorithm, are approximations of LRU replacement. 

In addition to a page-replacement algorithm, a frame-allocation policy 
is needed. Allocation can be fixed, suggesting local page replacement, or 
dynamic, suggesting global replacement. The working-set model assumes that 
processes execute in localities. The working set is the set of pages in the current 
locality. Accordingly, each process should be allocated enough frames for its 
current working set. 

If a process does not have enough memory for its working set, it will 
thrash. Providing enough frames to each process to avoid thrashing may 
require process swapping and scheduling. 

In addition to requiring that we solve the major problems of page replace- 
ment and frame allocation, the proper design of a paging system requires that 
we consider page size, I/O, locking, prepaging, process creation, program struc- 
ture, thrashing, and other topics. Virtual memory can be thought of as one level 
of a hierarchy of storage levels in a computer system. Each level has its own 
access time, size, and cost parameters. A full example of a hybrid, functional 
virtual-memory system is presented in the Mach chapter, which is available on 
our web site (http:/ /www.bell-labs.com/topic/books/os-book). 

Exercises 

10.1 Under what circumstances do page faults occur? Describe the actions 
taken by the operating system when a page fault occurs. 

10.2 Assume that you have a page-reference string for a process with m 
frames (initially all empty). The page-reference string has length p; n 
distinct page numbers occur in it. Answer these questions for any page- 
replacement algorithms: 

a. What is a lower bound on the number of page faults? 

b. What is an upper bound on the number of page faults? 

10.3 A certain computer provides its users with a virtual-memory space of 
232 bytes. The computer has 218 bytes of physical memory. The virtual 
memory is implemented by paging, and the page size is 4,096 bytes. 
A user process generates the virtual address 11123456. Explain how 
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the system establishes the corresponding physical location. Distinguish 
between software and hardware operations. 

10.4 Which of the following programming techniques and structures are 
"good" for a demand-paged environment? Which are "bad"? Explain 
your answers. 

a. Stack 

b. Hashed symbol table 

c. Sequential search 

d. Binary search 

e. Pure code 

f. Vector operations 

g. Indirection 

10.5 Assume that we have a demand-paged memory. The page table is held in 
registers. It takes 8 milliseconds to service a page fault if an empty frame 
is available or if the replaced page is not modified, and 20 milliseconds if 
the replaced page is modified. Memory-access time is 100 nanoseconds. 

Assume that the page to be replaced is modified 70 percent of the 
time. What is the maximum acceptable page-fault rate for an effective 
access time of no more than 200 nanoseconds? 

10.6 Consider the following page-replacement algorithms. Rank these algo- 
rithms on a five-point scale from "bad" to "perfect" according to their 
page-fault rate. Separate those algorithms that suffer from Belady's 
anomaly from those that do not. 

a. LRU replacement 

b. FIFO replacement 

c. Optimal replacement 

d. Second-chance replacement 

10.7 When virtual memory is implemented in a computing system, it carries 
certain costs and certain benefits. List those costs and the benefits. It is 
possible for the costs to exceed the benefits. Explain what measures you 
can take to ensure that this imbalance does not occur. 

10.8 An operating system supports a paged virtual memory, using a central 
processor with a cycle time of 1 microsecond. It costs an additional 1 
microsecond to access a page other than the current one. Pages have 1,000 
words, and the paging device is a drum that rotates at 3,000 revolutions 
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per minute and transfers one million words per second. The following 
statistical measurements were obtained from the system: 

One percent of all instructions executed accessed a page other than 
the current page. 

Of the instructions that accessed another page, 80 percent accessed a 
page already in memory. 

When a new page was required, the replaced page was modified 50 
percent of the time. 

Calculate the effective instruction time on this system, assuming that the 
system is running one process only, and that the processor is idle during 
drum transfers. 

10.9 Consider a demand-paging system with the following time-measured 
utilizations: 

CPU utilization 20% 
Paging disk 97.7% 
Other I/O devices 5% 

For each of the following, say whether it will (or is likely to) improve CPU 
utilization. Explain your answers. 

a. Install a faster CPU. 

b. Install a bigger paging disk. 

c. Increase the degree of multiprogramming. 

d. Decrease the degree of multiprogramming. 

e. Install more main memory. 

f. Install a faster hard disk, or multiple controllers with multiple hard 
disks. 

g. Add prepaging to the page-fetch algorithms. 

h. Increase the page size. 

10.10 Consider the two-dimensional array A: 

int A [I [I = new int [I001 [I001 ; 

where A [O] [O] is stored at location 200, in a paged memory system with 
pages of size 200. A small process resides in page 0 (locations 0 to 199) 
for manipulating the A matrix; thus, every instruction fetch will be from 
page 0. 
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For three page frames, how many page faults are generated by 
the following array-initialization loops, using LRU replacement, and 
assuming page frame 1 has the process in it, and the other two are 
initially empty: 

a. f o r  ( i n t  j = 0 ;  j < 100; j++) 
f o r  ( i n t  i = 0;  i < 100; i++)  

A C i l  Cjl = 0 ;  

b. f o r  ( i n t  i = 0 ;  i < 100; i++)  
f o r  ( i n t  j = 0;  j < 100; j++) 

A [ i ]  [j] = 0;  

10.11 Consider the following page-reference string: 

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. 

How many page faults would occur for the following replacement algo- 
rithms, assuming one, two, three, four, five, six, or seven frames? 
Remember that all frames are initially empty, so your first unique pages 
will all cost one fault each. 

LRU replacement 

FIFO replacement 

Optimal replacement 

10.12 Suppose that you want to use a paging algorithm that requires a reference 
bit (such as second-chance replacement or working-set model), but the 
hardware does not provide one. Sketch how you could simulate a 
reference bit even if one were not provided by the hardware. Calculate 
the cost of doing so. 

10.13 You have devised a new page-replacement algorithm that you think may 
be optimal. In some contorted test cases, Belady's anomaly occurs. Is the 
new algorithm optimal? Explain your answer. 

10.14 Suppose that your replacement policy (in a paged system) is to examine 
each page regularly and to discard that page if it has not been used since 
the last examination. What would you gain and what would you lose by 
using this policy rather than LRU or second-chance replacement? 

10.15 Segmentation is similar to paging, but uses variable-sized "pages." 
Define two segment-replacement algorithms based on FIFO and LRU 
page-replacement schemes. Remember that, since segments are not the 
same size, the segment that is chosen to be replaced may not be big 
enough to leave enough consecutive locations for the needed segment. 
Consider strategies for systems where segments cannot be relocated, and 
those for systems where they can. 
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10.16 A page-replacement algorithm should minimize the number of page 
faults. We can do this minimization by distributing heavily used pages 
evenly over all of memory, rather than having them compete for a small 
number of page frames. We can associate with each page frame a counter 
of the number of pages that are associated with that frame. Then, to 
replace a page, we search for the page frame with the smallest counter. 

a. Define a page-replacement algorithm using this basic idea. Specifi- 
cally address the problems of: 

i. what the initial value of the counters is, 

ii. when counters are increased, 

iii. when counters are decreased, 

iv. how the page to be replaced is selected. 

b. How many page faults occur for your algorithm for the following 
reference string, for four page frames? 

c. What is the minimum number of page faults for an optimal page- 
replacement strategy for the reference string in part b with four 
page frames? 

10.17 Consider a demand-paging system with a paging disk that has an aver- 
age access and transfer time of 20 milliseconds. Addresses are translated 
through a page table in main memory, with an access time of 1 microsec- 
ond per memory access. Thus, each memory reference through the page 
table takes two accesses. To improve this time, we have added an asso- 
ciative memory that reduces access time to one memory reference, if the 
page-table entry is in the associative memory. 

Assume that 80 percent of the accesses are in the associative memory, 
and that, of the remaining, 10 percent (or 2 percent of the total) cause 
page faults. What is the effective memory access time? 

10.18 Consider a demand-paged computer system where the degree of multi- 
programming is currently fixed at four. The system was recently mea- 
sured to determine utilization of CPU and the paging disk. The results 
are one of the following alternatives. For each case, what is happening? 
Can you increase the degree of multiprogramming to increase the CPU 
utilization? Is the paging helping in improving performance? 

a. CPU utilization, 13 percent; disk utilization, 97 percent 

b. CPU utilization, 87 percent; disk utilization, 3 percent 

c. CPU utilization, 13 percent; disk utilization, 3 percent 
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10.19 We have an operating system for a machine that uses base and limit 
registers, but we have modified the machine to provide a page table. Can 
we set up the page tables to simulate base and limit registers? How can 
we do so, or why can we not do so? 

10.20 What is the cause of thrashing? How does the system detect thrashing? 
Once it detects thrashing, what can the system do to eliminate this 
problem? 

10.21 Write a program that implements the FIFO and LRU page-replacement 
algorithms presented in this chapter. First, generate a random page- 
reference string where page numbers range from 0 to 9. Apply the 
random page-reference string to each algorithm and record the number 
of page faults incurred by each algorithm. Implement the replacement 
algorithms so that the number of page frames can vary from 1 to 7. 
Assume that demand paging is used. 
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FILE-SYSTEM 
INTERFACE 

For most users, the file system is the most visible aspect of an operating system. 
It provides the mechanism for on-line storage of and access to both data and 
programs of the operating system and all the users of the computer system. The 
file system consists of two distinct parts: a collection offiles, each storing related 
data, and a directory structure, which organizes and provides information about 
all the files in the system. Some file systems have a third part, partitions, which 
are used to separate physically or logically large collections of directories. In 
this chapter, we consider the various aspects of files and the major directory 
structures. We also discuss ways to handle file protection, necessary when 
multiple users have access to files and we want to control by whom and in 
what ways files may be accessed. Finally, we discuss the semantics of sharing 
files among multiple processes, users, and computers. 

11.1 File Concept 

Computers can store information on several different storage media, such as 
magnetic disks, magnetic tapes, and optical disks. So that the computer system 
will be convenient to use, the operating system provides a uniform logical 
view of information storage. The operating system abstracts from the physical 
properties of its storage devices to define a logical storage unit (thefile). Files are 
mapped, by the operating system, onto physical devices. These storage devices 
are usually nonvolatile, so the contents are persistent through power failures 
and system reboots. 
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A file is a named collection of related information that is recorded on 
secondary storage. From a user's perspective, a file is the smallest allotment 
of logical secondary storage; that is, data cannot be written to secondary 
storage unless they are within a file. Commonly, files represent programs (both 
source and object forms) and data. Data files may be numeric, alphabetic, 
alphanumeric, or binary. Files may be free form, such as text files, or may be 
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records, 
the meaning of which is defined by the file's creator and user. The concept of a 
file is thus extremely general. 

The information in a file is defined by its creator. Many different types of 
information may be stored in a file-source programs, object programs, exe- 
cutable programs, numeric data, text, payroll records, graphic images, sound 
recordings, and so on. A file has a certain defined structure according to its 
type. A text file is a sequence of characters organized into lines (and possibly 
pages). A source file is a sequence of subroutines and functions, each of which is 
further organized as declarations followed by executable statements. An object 
file is a sequence of bytes organized into blocks understandable by the system's 
linker. An executable file is a series of code sections that the loader can bring into 
memory and execute. 

11.1.1 File Attributes 
A file is named, for the convenience of its human users, and is referred to by its 
name. A name is usually a string of characters, such as examp1e.c. Some systems 
differentiate between upper- and lowercase characters in names, whereas other 
systems consider the two cases to be equivalent. When a file is named, it 
becomes independent of the process, the user, and even the system that created 
it. For instance, one user might create the file  example.^, whereas another user 
might edit that file by specifying its name. The file's owner might write the file 
to a floppy disk, send it in an e-mail, or copy it across a network, and it could 
still be called examp1e.c on the destination system. 

A file has certain other attributes, which vary from one operating system to 
another, but typically consist of these: 

Name: The symbolic file name is the only information kept in human- 
readable form. 

Identifier: This unique tag, usually a number, identifies the file within the 
file system; it is the non-human-readable name for the file. 

Type: This information is needed for those systems that support different 
types. 

Location: This information is a pointer to a device and to the location of the 
file on that device. 
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Size: The current size of the file (in bytes, words, or blocks), and possibly 
the maximum allowed size are included in this attribute. 

Protection: Access-control information determines who can do reading, 
writing, executing, and so on. 

Time, date, and user identification: This information may be kept for 
creation, last modification, and last use. These data can be useful for 
protection, security, and usage monitoring. 

The information about all files is kept in the directory structure that also resides 
on secondary storage. Typically, the directory entry consists of the file's name 
and its unique identifier. The identifier in turn locates the other file attributes. 
It may take more than a kilobyte to record this information for each file. In 
a system with many files, the size of the directory itself may be megabytes. 
Because directories, like files, must be nonvolatile, they must be stored on the 
device and brought into memory piecemeal, as needed. 

11.1.2 File Operations 

A file is an abstract data type. To define a file properly, we need to consider the 
operations that can be performed on files. The operating system can provide 
system calls to create, write, read, reposition, delete, and truncate files. Let 
us also consider what the operating system must do for each of the six basic 
file operations. It should then be easy to see how similar operations, such as 
renaming a file, would be implemented. 

Creating a file: Two steps are necessary to create a file. First, space in the 
file system must be found for the file. We shall discuss how to allocate space 
for the file in Chapter 12. Second, an entry for the new file must be made 
in the directory. The directory entry records the name of the file and the 
location in the file system, and possibly other information. 

Writing a file: To write a file, we make a system call specifying both the 
name of the file and the information to be written to the file. Given the 
name of the file, the system searches the directory to find the location of the 
file. The system must keep a write pointer to the location in the file where 
the next write is to take place. The write pointer must be updated whenever 
a write occurs. 

Reading a file: To read from a file, we use a system call that specifies the 
name of the file and where (in memory) the next block of the file should be 
put. Again, the directory is searched for the associated directory entry, and 
the system needs to keep a read pointer to the location in the file where the 
next read is to take place. Once the read has taken place, the read pointer is 
updated. A given process is usually only reading or writing a given file, and 
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the current operation location is kept as a per-process current-file-position 
pointer. Both the read and write operations use this same pointer, saving 
space and reducing the system complexity. 

Repositioning within a file: The directory is searched for the appropriate 
entry, and the current-file-position is set to a given value. Repositioning 
within a file does not need to involve any actual I/O. This file operation is 
also known as a file seek. 

a Deleting a file: To delete a file, we search the directory for the named file. 
Having found the associated directory entry, we release all file space, so 
that it can be reused by other files, and erase the directory entry. 

a Truncating a file: The user may want to erase the contents of a file but keep 
its attributes. Rather than forcing the user to delete the file and then recreate 
it, this function allows all attributes to remain unchanged-except for file 
length-but lets the file be reset to length zero and its file space released. 

These six basic operations certainly comprise the minimal set of required 
file operations. Other common operations include appending new information 
to the end of an existing file and renaming an existing file. These primitive 
operations may then be combined to perform other file operations. For instance, 
creating a copy of a file, or copying the file to another I/O device, such as a 
printer or a display, may be accomplished by creating a new file, and reading 
from the old and writing to the new. We also want to have operations that allow 
a user to get and set the various attributes of a file. For example, we may want 
to have operations that allow a user to determine the status of a file, such as the 
file's length, and allow a user to set file attributes, such as the file's owner. 

Most of the file operations mentioned involve searching the directory for 
the entry associated with the named file. To avoid this constant searching, 
many systems require that an open system call be used before that file is first 
used actively. The operating system keeps a small table containing information 
about all open files (the open-file table). When a file operation is requested, the 
file is specified via an index into this table, so no searching is required. When 
the file is no longer actively used, it is closed by the process and the operating 
system removes its entry in the open-file table. 

Some systems implicitly open a file when the first reference is made to it. 
The file is automatically closed when the job or program that opened the file 
terminates. Most systems, however, require that the programmer open a file 
explicitly with the open system call before that file can be used. The open 
operation takes a file name and searches the directory, copying the directory 
entry into the open-file table. The open call can also accept access-mode , 

information-create, read-only, read-write, append-only, and so on. This mode 
is checked against the file's permissions. If the request mode is allowed, the file 
is opened for the process. The open system call will typically return a pointer 
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to the entry in the open-file table. This pointer, not the actual file name, is 
used in all I/O operations, avoiding any further searching and simplifying the 
system-call interface. 

The implementation of the open and close operations in a multiuser 
environment, such as UNIX, is more complicated. In such a system, several 
users may open the file at the same time. Typically, the operating system uses 
two levels of internal tables: a per-process table and a system-wide table. The 
per-process table tracks all files that a process has open. Stored in this table is 
information regarding the use of the file by the process. For instance, the current 
file pointer for each file is found here, indicating the location in the file that the 
next read or wr i te  call will affect. Access rights to the file and accounting 
information can also be included. 

Each entry in the per-process table in turn points to a system-wide open-file 
table. The system-wide table contains process-independent information, such 
as the location of the file on disk, access dates, and file size. Once a file is opened 
by one process, another process executing an open call simply results in a new 
entry being added to the process' open-file table, pointing to the appropriate 
entry in the system-wide table. Typically, the open-file table also has an open 
count associated with each file, indicating the number of processes that have 
the file open. Each close decreases this count, and when the open count reaches 
zero, the file is no longer in use, and the file's entry is removed from the open 
file table. In summary, several pieces of information are associated with an open 
file. 

File pointer: On systems that do not include a file offset as part of the read 
and wr i te  system calls, the system must track the last read-write location 
as a current-file-position pointer. This pointer is unique to each process 
operating on the file, and therefore must be kept separate from the on-disk 
file attributes. 

File open count: As files are closed, the operating system must reuse its 
open-file table entries, or it could run out of space in the table. Because 
multiple processes may open a file, the system must wait for the last file 
to close before removing the open-file table entry. This counter tracks the 
number of opens and closes and reaches zero on the last close. The system 
can then remove the entry. 

Disk location of the file: Most file operations require the system to modify 
data within the file. The information needed to locate the file on disk is kept 
in memory to avoid having to read it from disk for each operation. 

Access rights: Each process opens a file in an access mode. This informa- 
tion is stored on the per-process table so the operating system can allow or 
deny subsequent I/O requests. 
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Some operating systems provide facilities to lock sections of an open file for 
multiprocess access, to share sections of a file among several processes (using 
shared pages), and to map sections of a file into memory on virtual- memory 
systems using memory mapping (Section 10.3.2). 

11.1.3 File Types 
When we design a file system, indeed the entire operating system, we always 
consider whether the operating system should recognize and support file types. 
If an operating system recognizes the type of a file, it can then operate on the file 
in reasonable ways. For example, a common mistake occurs when a user tries 
to print the binary-object form of a program. This attempt normally produces 
garbage, but can be prevented if the operating system has been told that the file 
is a binary-object program. 

A common technique for implementing file types is to include the type as 
part of the file name. The name is split into two parts-a name and an extension, 
usually separated by a period character (Figure 11.1). In this way, the user and 
the operating system can tell from the name alone what the type of a file is. For 
example, in MS-DOS, a name can consist of up to eight characters followed by 
a period and terminated by an extension of up to three characters. The system 
uses the extension to indicate the type of the file and the type of operations 
that can be done on that file. For instance, only a file with a .corn, .exe, or 
.bat extension can be executed. The .corn and .exe files are two forms of binary 
executable files, whereas a .bat file is a batch file containing, in ASCII format, 
commands to the operating system. MS-DOS recognizes only a few extensions, 
but application programs also use extensions to indicate file types in which 
they are interested. For example, assemblers expect source files to have an .asm 
extension, and the Wordperfect word processor expects its file to end with a 
.wp extension. These extensions are not required, so a user may specify a file 
without the extension (to save typing), and the application will look for a file 
with the given name and the extension it expects. Because these extensions are 
not supported by the operating system, they can be considered as "hints" to 
applications that operate on them. 

Another example of the utility of file types comes from the TOPS-20 oper- 
ating system. If the user tries to execute an object program whose source file 
has been modified (or edited) since the object file was produced, the source file 
will be recompiled automatically. This function ensures that the user always 
runs an up-to-date object file. Otherwise, the user could waste a significant 
amount of time executing the old object file. For this function to be possible, the 
operating system must be able to discriminate the source file from the object file, 
to check the time that each file was created or last modified, and to determine 
the language of the source program (in order to use the correct compiler). 

Consider the Apple Macintosh operating system. In this system, each file 
has a type, such as text or pict. Each file also has a creator attribute containing 
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Figure 11.1 Common file types. 
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the name of the program that created it. This attribute is set by the operating 
system during the create call, so its use is enforced and supported by the 
system. For instance, a file produced by a word processor has the word 
processor's name as its creator. When the user opens that file, by double- 
clicking the mouse on the icon representing the file, the word processor is 
invoked automatically and the file is loaded, ready to be edited. 

The UNIX system is unable to provide such a feature because it uses a crude 
magic number stored at the beginning of some files to indicate roughly the 
type of the file-executable program, batch file (or shell script), postscript file, 
and so on. Not all files have magic numbers, so system features cannot be 
based solely on this type of information. UNIX does not record the name of the 
creating program, either. UNIX does allow file-name-extension hints, but these 
extensions are not enforced or depended on by the operating system; they are 
mostly to aid users in determining the type of contents of the file. Extensions 
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can be used or ignored by a given application, but that is up to the application's 
programmer. 

11.1.4 File Structure 
File types also may be used to indicate the internal structure of the file. As 
mentioned in Section 11.1.3, source and object files have structures that match 
the expectations of the programs that read them. Further, certain files must 
conform to a required structure that is understood by the operating system. 
For example, the operating system may require that an executable file have a 
specific structure so that it can determine where in memory to load the file and 
what the location of the first instruction is. Some operating systems extend 
this idea into a set of system-supported file structures, with sets of special 
operations for manipulating files with those structures. For instance, DEC's VMS 
operating system has a file system that supports three defined file structures. 

The above discussion brings us to one of the disadvantages of having the 
operating system support multiple file structures: The resulting size of the 
operating system is cumbersome. If the operating system defines five different 
file structures, it needs to contain the code to support these file structures. In 
addition, every file may need to be definable as one of the file types supported 
by the operating system. Severe problems may result from new applications 
that require information structured in ways not supported by the operating 
system. 

For example, assume that a system supports two types of files: text files 
(composed of ASCII characters separated by a carriage return and line feed) and 
executable binary files. Now, if we (as users) want to define an encrypted file 
to protect our contents from being read by unauthorized people, we may find 
neither file type to be appropriate. The encrypted file is not ASCII text lines, 
but rather is (apparently) random bits. Although it may appear to be a binary 
file, it is not executable. As a result, we may have to circumvent or misuse the 
operating system's file-types mechanism, or abandon our encryption scheme. 

Some operating systems impose (and support) a minimal number of file 
structures. This approach has been adopted in UNIX, MS-DOS, and others. UNIX 
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits 
is made by the operating system. This scheme provides maximum flexibility, 
but little support. Each application program must include its own code to 
interpret an input file into the appropriate structure. However, all operating 
systems must support at least one structure-that of an executable file-so that 
the system is able to load and run programs. 

The Macintosh operating system also supports a minimal number of file 
structures. It expects files to contain two parts: a resource fork and a data 
fork. The resource fork contains information of interest to the user. For 
instance, it holds the labels of any buttons displayed by the program. A 
foreign user may want to relabel these buttons in his own language, and 
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the Macintosh operating system provides tools to allow modification of the 
data in the resource fork. The data fork contains program code or data: the 
traditional file contents. To accomplish the same task on a UNIX or MS-DOS 
system, the programmer would need to change and recompile the source code, 
unless she created her own user-changeable data file. Clearly, it is useful for 
an operating system to support structures that will be used frequently, and 
that will save the programmer substantial effort. Too few structures make 
programming inconvenient, whereas too many cause operating-system bloat 
and programmer confusion. 

11.1.5 Internal File Structure 

Internally, locating an offset within a file can be complicated for the operating 
system. Recall from Chapter 2 that disk systems typically have a well-defined 
block size determined by the size of a sector. All disk I/O is performed in units 
of one block (physical record), and all blocks are the same size. It is unlikely 
that the physical record size will exactly match the length of the desired logical 
record. Logical records may even vary in length. Packing a number of logical 
records into physical blocks is a common solution to this problem. 

For example, the UNIX operating system defines all files to be simply a 
stream of bytes. Each byte is individually addressable by its offset from the 
beginning (or end) of the file. In this case, the logical record is 1 byte. The file 
system automatically packs and unpacks bytes into physical disk blocks-say, 
512 bytes per block-as necessary. 

The logical record size, physical block size, and packing technique deter- 
mine how many logical records are in each physical block. The packing can be 
done either by the user's application program or by the operating system. 

In either case, the file may be considered to be a sequence of blocks. All 
the basic I/O functions operate in terms of blocks. The conversion from logical 
records to physical blocks is a relatively simple software problem. 

Because disk space is always allocated in blocks, some portion of the last 
block of each file is generally wasted. If each block were 512 bytes, then a file of 
1,949 bytes would be allocated four blocks (2,048 bytes); the last 99 bytes would 
be wasted. The wasted bytes allocated to keep everything in units of blocks 
(instead of bytes) is internal fragmentation. All file systems suffer from internal 
fragmentation; the larger the block size, the greater the internal fragmentation. 

11.2 Access Methods 

Files store information. When it is used, this information must be accessed and 
read into computer memory. The information in the file can be accessed in 
several ways. Some systems provide only one access method for files. Other 
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systems, such as those of IBM, support many access methods, and choosing the 
right one for a particular application is a major design problem. 

11.2.1 Sequential Access 
The simplest access method is sequential access. Information in the file is 
processed in order, one record after the other. This mode of access is by far 
the most common; for example, editors and compilers usually access files in 
this fashion. 

The bulk of the operations on a file is reads and writes. A read operation 
reads the next portion of the file and automatically advances a file pointer, 
which tracks the I/O location. Similarly, a write appends to the end of the file 
and advances to the end of the newly written material (the new end of file). 
Such a file can be reset to the beginning and, on some systems, a program may 
be able to skip forward or backward n records, for some integer n-perhaps 
only for n = 1. Sequential access is depicted in Figure 11.2. Sequential access is 
based on a tape model of a file, and works as well on sequential-access devices 
as it does on random-access ones. 

11.2.2 Direct Access 
Another method is direct access (or relative access). A file is made up of fixed- 
length logical records that allow programs to read and write records rapidly 
in no particular order. The direct-access method is based on a disk model of 
a file, since disks allow random access to any file block. For direct access, the 
file is viewed as a numbered sequence of blocks or records. A direct-access file 
allows arbitrary blocks to be read or written. Thus, we may read block 14, then 
read block 53, and then write block 7. There are no restrictions on the order of 
reading or writing for a direct-access file. 

Direct-access files are of great use for immediate access to large amounts 
of information. Databases are often of this type. When a query concerning a 
particular subject arrives, we compute which block contains the answer, and 
then read that block directly to provide the desired information. 

As a simple example, on an airline-reservation system, we might store all 
the information about a particular flight (for example, flight 713) in the block 
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end 
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read or write + 

Figure 11.2 Sequential-access file. 
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identified by the flight number. Thus, the number of available seats for flight 
713 is stored in block 713 of the reservation file. To store information about a 
larger set, such as people, we might compute a hash function on the people's 
names, or search a small in-memory index to determine a block to read and 
search. 

For the direct-access method, the file operations must be modified to 
include the block number as a parameter. Thus, we have read n, where n is 
the block number, rather than read next, and write n rather than write next. An 
alternative approach is to retain read next and write next, as with sequential 
access, and to add an operation position file to n, where n is the block number. 
Then, to effect a read n, we would position to n and then read next. 

The block number provided by the user to the operating system is normally 
a relative block number. A relative block number is an index relative to the 
beginning of the file. Thus, the first relative block of the file is 0, the next is 
1, and so on, even though the actual absolute disk address of the block may 
be 14703 for the first block and 3192 for the second. The use of relative block 
numbers allows the operating system to decide where the file should be placed 
(called the allocation problem, as discussed in Chapter 12), and helps to prevent 
the user from accessing portions of the file system that may not be part of his 
file. Some systems start their relative block numbers at 0; others start at 1. 

Given a logical record length L, a request for record N is turned into an I/O 
request for L bytes starting at location L * (N -1) within the file (assuming first 
record is N = 1). Since logical records are of a fixed size, it is also easy to read, 
write, or delete a record. 

Not all operating systems support both sequential and direct access for 
files. Some systems allow only sequential file access; others allow only direct 
access. Some systems require that a file be defined as sequential or direct when 
it is created; such a file can be accessed only in a manner consistent with its 
declaration. However, it is easy to simulate sequential access on a direct-access 
file. If we simply keep a variable cp that defines our current position, then we 
can simulate sequential file operations, as shown in Figure 11.3. On the other 
hand, it is extremely inefficient and clumsy to simulate a direct-access file on a 
sequential-access file. 

Figure 11.3 Simulation of sequential access on a direct-access file.. 
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11.2.3 Other Access Methods 
Other access methods can be built on top of a direct-access method. These 
methods generally involve the construction of an index for the file. The index, 
like an index in the back of a book, contains pointers to the various blocks. TO 

find a record in the file, we first search the index, and then use the pointer to 
access the file directly and to find the desired record. 

For example, a retail-price file might list the universal product codes (UPCs) 
for items, with the associated prices. Each record consists of a 10-digit UPC and 
a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per block, we 
can store 64 records per block. A file of 120,000 records would occupy about 
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define 
an index consisting of the first UPC in each block. This index would have 2,000 
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To 
find the price of a particular item, we can (binary) search the index. From this 
search, we would know exactly which block contains the desired record and 
access that block. This structure allows us to search a large file doing little I/O. 

With large files, the index file itself may become too large to be kept in 
memory. One solution is to create an index for the index file. The primary 
index file would contain pointers to secondary index files, which would point 
to the actual data items. 

For example, IBM's indexed sequential-access method (ISAM) uses a small 
master index that points to disk blocks of a secondary index. The secondary 
index blocks point to the actual file blocks. The file is kept sorted on a defined 
key. To find a particular item, we first make a binary search of the master index, 
which provides the block number of the secondary index. This block is read 
in, and again a binary search is used to find the block containing the desired 

logical record 

index file relative file 

Figure 11.4 Example of index and relative files. 
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record. Finally, this block is searched sequentially. In this way, any record can 
be located from its key by at most two direct-access reads. Figure 11.4 shows a 
similar situation as implemented by VMS index and relative files. 

11.3 . Directory Structure 

The file systems of computers can be extensive. Some systems store millions of 
files on terabytes of disk. To manage all these data, we need to organize them. 
This organization is usually done in two parts. First, disks are split into one or 
more partitions, also known as minidisks in the IBM world or volumes in the PC 
and Macintosh arenas. Typically, each disk on a system contains at least one 
partition, which is a low-level structure in which files and directories reside. 
Sometimes, partitions are used to provide several separate areas within one 
disk, each treated as a separate storage device, whereas other systems allow 
partitions to be larger than a disk to group disks into one logical structure. In 
this way, the user needs to be concerned with only the logical directory and 
file structure, and can ignore completely the problems of physically allocating 
space for files. For this reason partitions can be thought of as virtual disks. 
Partitions can also store multiple operating systems, allowing a system to boot 
and run more than one. 

Second, each partition contains information about files within it. This 
information is kept in entries in a device directory or volume table of contents. 
The device directory (more commonly known simply as a directory) records 
information-such as name, location, size, and type-for all files on that 
partition. Figure 11.5 shows the typical file-system organization. 

The directory can be viewed as a symbol table that translates file names 
into their directory entries. If we take such a view, we see that the directory 

J 

Figure 11.5 A typical file-system organization. 
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itself can be organized in many ways. We want to be able to insert entries, 
to delete entries, to search for a named entry, and to list all the entries in 
the directory. In Chapter 12, we discuss the appropriate data structures that 
can be used in the implementation of the directory structure. In this section, 
we examine several schemes for defining the logical structure of the directory 
system. When considering a particular directory structure, we need to keep in 
mind the operations that are to be performed on a directory: 

Search for a file: We need to be able to search a directory structure to find 
the entry for a particular file. Since files have symbolic names and similar 
names may indicate a relationship between files, we may want to be able to 
find all files whose names match a particular pattern. 

Create a file: New files need to be created and added to the directory. 

Delete a file: When a file is no longer needed, we want to remove it from 
the directory. 

List a directory: We need to be able to list the files in a directory, and the 
contents of the directory entry for each file in the list. 

Rename a file: Because the name of a file represents its contents to its users, 
the name must be changeable when the contents or use of the file changes. 
Renaming a file may also allow its position within the directory structure 
to be changed. 

Traverse the file system: We may wish to access every directory, and every 
file within a directory structure. For reliability, it is a good idea to save the 
contents and structure of the entire file system at regular intervals. This 
saving often consists of copying all files to magnetic tape. This technique 
provides a backup copy in case of system failure or if the file is simply no 
longer in use. In this case, the file can be copied to tape, and the disk space 
of that file released for reuse by another file. 

In Sections 11.3.1 through 11.3.5, we describe the most common schemes for 
defining the logical structure of a directory. 

11.3.1 Single-Level Directory 
The simplest directory structure is the single-level directory. All files are 
contained in the same directory, which is easy to support and understand 
(Figure 11.6). 

A single-level directory has significant limitations, however, when the 
number of files increases or when the system has more than one user. Since 
all files are in the same directory, they must have unique names. If two users 
call their data file test, then the unique-name rule is violated. For example, 
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directory 

files 

Figure 11.6 Single-level directory. 

in one programming class, 23 students called the program for their second 
assignment prog2; another 11 called it assign2. Although file names are generally 
selected to reflect the content of the file, they are often limited in length. The 
MS-DOS operating system allows only 11-character file names; UNIX allows 255 
characters. 

Even a single user on a single-level directory may find it difficult to remem- 
ber the names of all the files, as the number of files increases. It is not uncom- 
mon for a user to have hundreds of files on one computer system and an equal 
number of additional files on another system. In such an environment, keeping 
track of so many files is a daunting task. 

11.3.2 Two-Level Directory 

A single-level directory often leads to confusion of file names between different 
users. The standard solution is to create a separate directory for each user. 

In the two-level directory structure, each user has her own user file direc- 
tory (UFD). Each UFD has a similar structure, but lists only the files of a single 
user. When a user job starts or a user logs in, the system's master file directory 
(MFD) is searched. The MFD is indexed by user name or account number, and 
each entry points to the UFD for that user (Figure 11.7). 

When a user refers to a particular file, only his own UFD is searched. Thus, 
different users may have files with the same name, as long as all the file names 
within each UFD are unique. 

To create a file for a user, the operating system searches only that user's 
UFD to ascertain whether another file of that name exists. To delete a file, the 
operating system confines its search to the local UFD; thus, it cannot accidentally 
delete another user's file that has the same name. 

The user directories themselves must be created and deleted as necessary. 
A special system program is run with the appropriate user name and account 
information. The program creates a new UFD and adds an entry for it to the 
MFD. The execution of this program might be restricted to system administra- 
tors. The allocation of disk space for user directories can be handled with the 
techniques discussed in Chapter 12 for files themselves. 

Although the two-level directory structure solves the name-collision prob- 
lem, it still has disadvantages. This structure effectively isolates one user from 
another. This isolation is an advantage when the users are completely indepen- 
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Figure 11.8 Tree-structured directory structure. 

some other predefined location) to find an entry for this user (for accounting 
purposes). In the accounting file is a pointer to (or the name of) the user's initial 
directory. This pointer is copied to a local variable for this user that specifies the 
user's initial current directory. 

Path names can be of two types: absolicte path names or relative path names. 
An absolute path name begins at the root and follows a path down to the 
specified file, giving the directory names on the path. A relative path name 
defines a path from the current directory. For example, in the tree-structured 
file system of Figure 11.8, if the current directory is root/spell/mail, then the 
relative path name prtlfirst refers to the same file as does the absolute path name 
root/spell/rnail/prtlfivst. 

Allowing the user to define his own subdirectories permits him to impose 
a structure on his files. This structure might result in separate directories for 
files associated with different topics (for example, a subdirectory was created 
to hold the text of this book) or different forms of information (for example, the 
directory programs may contain source programs; the directory bin may store all 
the binaries). 

An interesting policy decision in a tree-structured directory structure is how 
to handle the deletion of a directory. If a directory is empty, its entry in its 
containing directory can simply be deleted. However, suppose the directory 
to be deleted is not empty, but contains several files or subdirectories: One of 
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two approaches can be taken. Some systems, such as MS-DOS, will not delete a 
directory unless it is empty. Thus, to delete a directory, the user must first delete 
all the files in that directory. If any subdirectories exist, this procedure must be 
applied recursively to them, so that they can be deleted also. This approach 
may result in a substantial amount of work. 

An alternative approach, such as that taken by the UNIX r m  command, is 
to provide the option that, when a request is made to delete a directory, all that 
directory's files and subdirectories are also to be deleted. Either approach is 
fairly easy to implement; the choice is one of policy. The latter policy is more 
convenient, but more dangerous, because an entire directory structure may be 
removed with one command. If that command were issued in error, a large 
number of files and directories would need to be restored from backup tapes. 

With a tree-structured directory system, users can access, in addition to 
their files, the files of other users. For example, user B can access files of user 
A by specifying their path names. User B can specify either an absolute or a 
relative path name. Alternatively, user B could change her current directory to 
be user A's directory, and access the files by their file names. Some systems also 
allow users to define their own search paths. In this case, user B could define 
her search path to be (1) her local directory, (2) the system file directory, and (3) 
user A's directory, in that order. As long as the name of a file of user A did not 
conflict with the name of a local file or system file, it could be referred to simply 
by its name. 

A path to a file in a tree-structured directory can be longer than that in 
a two-level directory. To allow users to access programs without having to 
remember these long paths, the Macintosh operating system automates the 
search for executable programs. It maintains a file, called the Desktop File, 
containing the name and location of all executable programs it has seen. When 
a new hard disk or floppy disk is added to the system, or the network is 
accessed, the operating system traverses the directory structure, searching for 
executable programs on the device and recording the pertinent information. 
This mechanism supports the double-click execution functionality described 
previously. A double-click on a file causes its creator attribute to be read, 
and the Desktop File to be searched for a match. Once the match is found, the 
appropriate executable program is started with the clicked-on file as its input. 
The Microsoft Windows family of operating systems (95,95, NT, 2000) maintains 
an extended two-level directory structure, with devices and partitions assigned 
a drive letter (Section 11.4). 

11.3.4 Acyclic-Graph Directories 

Consider two programmers who are working on a joint project. The files asso- 
ciated with that project can be stored in a subdirectory, separating them from 
other projects and files of the two programmers. But since both programmers 
are equally responsible for the project, both want the subdirectory to be in 
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Figure 11.9 Acyclic-graph directory structure. 

their own directories. The common subdirectory should be shared. A shared 
directory or file will exist in the file system in two (or more) places at once. 

A tree structure prohibits the sharing of files or directories. An acyclic 
graph allows directories to have shared subdirectories and files (Figure 11.9). 
The same file or subdirectory may be in two different directories. An acyclic 
graph, that is, a graph with no cycles, is a natural generalization of the tree- 
structured directory scheme. 

A shared file (or directory) is not the same as two copies of the file. With 
two copies, each programmer can view the copy rather than the original, but 
if one programmer changes the file, the changes will not appear in the other's 
copy. With a shared file, only one actual file exists, so any changes made by one 
person are immediately visible to the other. Sharing is particularly important 
for subdirectories; a new file created by one person will automatically appear 
in all the shared subdirectories. 

When people are working as a team, all the files they want to share may 
be put into one directory. The UFDs of all the team members would each 
contain this directory of shared files as a subdirectory. Even when there is a 
single user, his file organization may require that some files be put into different 
subdirectories. For example, a program written for a particular project should 
be both in the directory of all programs and in the directory for that project. 

Shared files and subdirectories can be implemented in several ways. A 
common way, exemplified by many of the UNIX systems, is to create a new 
directory entry called a link. A link is effectively a pointer to another file or 
subdirectory. For example, a link may be implemented as an absolute or relative 
path name. When a reference to a file is made, we search the directory. If the 
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directory entry is marked as a link, then the name of the real file (or directory) 
is given. We resolve the link by using the path name to locate the real file. Links 
are easily identified by their format in the directory entry (or by their having a 
special type on systems that support types), and are effectively named indirect 
pointers. The operating system ignores these links when traversing directory 
trees to preserve the acyclic structure of the system. 

Another common approach to implementing shared files is simply to dupli- 
cate all information about them in both sharing directories. Thus, both entries 
are identical and equal. A link is clearly different from the original directory 
entry; thus, the two are not equal. Duplicate directory entries, however, make 
the original and the copy indistinguishable. A major problem with duplicate 
directory entries is maintaining consistency if the file is modified. 

An acyclic-graph directory structure is more flexible than is a simple tree 
structure, but it is also more complex. Several problems must be considered 
carefully. A file may now have multiple absolute path names. Consequently, 
distinct file names may refer to the same file. This situation is similar to the 
aliasing problem for programming languages. If we are trying to traverse the 
entire file system-to find a file, to accumulate statistics on all files, or to copy 
all files to backup storage-this problem becomes significant, since we do not 
want to traverse shared structures more than once. 

Another problem involves deletion. When can the space allocated to a 
shared file be deallocated and reused? One possibility is to remove the file 
whenever anyone deletes it, but this action may leave dangling pointers to the 
now-nonexistent file. Worse, if the remaining file pointers contain actual disk 
addresses, and the space is subsequently reused for other files, these dangling 
pointers may point into the middle of other files. 

In a system where sharing is implemented by symbolic links, this situation 
is somewhat easier to handle. The deletion of a link does not need to affect 

! the original file; only the link is removed. If the file entry itself is deleted, the 
space for the file is deallocated, leaving the links dangling. We can search for 
these links and remove them also, but unless a list of the associated links is 
kept with each file, this search can be expensive. Alternatively, we can leave 
the links until an attempt is made to use them. At that time, we can determine 
that the file of the name given by the link does not exist, and can fail to resolve 
the link name; the access is treated just like any other illegal file name. (In this 

i case, the system designer should consider carefully what to do when a file is 
deleted and another file of the same name is created, before a symbolic link to 
the original file is used.) In the case of UNIX, symbolic links are left when a file 
is deleted, and it is up to the user to realize that the original file is gone or has 
been replaced. Microsoft Windows (all flavors) uses the same approach. 

Another approach to deletion is to preserve the file until all references to 
it are deleted. To implement this approach, we must have some mechanism 
for determining that the last reference to the file has been deleted. We could 
keep a list of all references to a file (directory entries or symbolic links). When a 



392 Chapter 11 File-System Interface 

link or a copy of the directory entry is established, a new entry is added to the 
file-reference list. When a link or directory entry is deleted, we remove its entry 
on the list. The file is deleted when its file-reference list is empty. 

The trouble with this approach is the variable and potentially large size 
of the file-reference list. However, we really do not need to keep the entire 
list-we need to keep only a count of the number of references. A new link 
or directory entry increments the reference count; deleting a link or entry 
decrements the count. When the count is 0, the file can be deleted; there are 
no remaining references to it. The UNIX operating system uses this approach 
for nonsymbolic links (or hard links), keeping a reference count in the file 
information block (or inode, see Appendix A.7.2). By effectively prohibiting 
multiple references to directories, we maintain an acyclic-graph structure. 

To avoid these problems, some systems do not allow shared directories or 
links. For example, in MS-DOS, the directory structure is a tree structure, rather 
than an acyclic graph. 

11.3.5 General Graph Directory 

One serious problem with using an acyclic-graph structure is ensuring that 
there are no cycles. If we start with a two-level directory and allow users to 
create subdirectories, a tree-structured directory results. It should be fairly 
easy to see that simply adding new files and subdirectories to an existing tree- 
structured directory preserves the tree-structured nature. However, when we 
add links to an existing tree-structured directory, the tree structure is destroyed, 
resulting in a simple graph structure (Figure 11.10). 

root 

Figure 11.10 General graph directory. 
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The primary advantage of an acyclic graph is the relative simplicity of the 
algorithms to traverse the graph and to determine when there are no more 
references to a file. We want to avoid traversing shared sections of an acyclic 
graph twice, mainly for performance reasons. If we have just searched a major 
shared subdirectory for a particular file, without finding it, we want to avoid 
searching that subdirectory again; the second search would be a waste of time. 

If cycles are allowed to exist in the directory, we likewise want to avoid 
searching any component twice, for reasons of correctness as well as perfor- 
mance. A poorly designed algorithm might result in an infinite loop continually 
searching through the cycle and never terminating. One solution is arbitrarily 
to limit the number of directories that will be accessed during a search. 

A similar problem exists when we are trying to determine when a file can 
be deleted. As with acyclic-graph directory structures, a value zero in the 
reference count means that there are no more references to the file or directory, 
and the file can be deleted. However, when cycles exist, the reference count 
may be nonzero, even when it is no longer possible to refer to a directory or 
file. This anomaly results from the possibility of self-referencing (or a cycle) 
in the directory structure. In this case, we generally need to use a garbage- 
collection scheme to determine when the last reference has been deleted and 
the disk space can be reallocated. Garbage collection involves traversing the 
entire file system, marking everything that can be accessed. Then, a second 
pass collects everything that is not marked onto a list of free space. (A similar 
marking procedure can be used to ensure that a traversal or search will cover 
everything in the file system once and only once.) Garbage collection for a disk- 
based file system, however, is extremely time-consuming and is thus seldom 
attempted. 

Garbage collection is necessary only because of possible cycles in the graph. 
Thus, an acyclic-graph structure is much easier to work with. The difficulty is to 
avoid cycles as new links are added to the structure. How do we know when a 
new link will complete a cycle? There are algorithms to detect cycles in graphs; 
however, they are computationally expensive, especially when the graph is on 
disk storage. A simpler algorithm in the special case of directories and links 
is to bypass links during directory traversal. Cycles are avoided and no extra 
overhead is incurred. 

11.4 . File-System Mounting 

Just as a file must be opened before it is used, a file system must be mounted 
before it can be available to processes on the system. More specifically, the 
directory structure can be built out of multiple partitions, which must be 
mounted to make them available within the file system name space. 

The mount procedure is straightforward. The operating system is given the 
name of the device, and the location within the file structure at which to attach 
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Figure 11.11 File system. (a) Existing. (b) Unmounted partition. 

the file system (or mount point). Typically, a mount point is an empty directory 
at which the mounted file system will be attached. For instance, on a UNIX 
system, a file system containing user's home directories might be mounted as 
home; then, to access the directory structure within that file system, one could 
precede the directory names with /home, as in /honze/jane. Mounting that file 
system under /users would result in the path name /usersljane to reach the same 
directory. 

Next, the operating system verifies that the device contains a valid file 
system. It does so by asking the device driver to read the device directory 
and verifying that the directory has the expected format. Finally, the operating 
system notes in its directory structure that a file system is mounted at the 
specified mount point. This scheme enables the operating system to traverse 
its directory structure, switching among file systems as appropriate. 

To illustrate file mounting, consider the file system depicted in Figure 11.11, 
where the triangles represent subtrees of directories that are of interest. In 
Figure ll.ll(a), an existing file system is shown, while in Figure ll.ll(b), an 
unmounted partition residing on /device/dsk is shown. At this point, only the 
files on the existing file system can be accessed. In Figure 11.12, the effects of 
the mounting of the partition residing on /device/dsk over /users are shown. If 
the partition is unmounted, the file system is restored to the situation depicted 
in Figure 11.11. 

Systems impose semantics to clarify functionality. For example, a system 
may disallow a mount over a directory that contains files, or make the mounted 
file system available at that directory and obscure the directory's existing files 
until the file system is unmounted, terminating the use of the file system and 
allowing access to the original files in that directory. As another example, a 
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jane 

A 

Figure 11.12 Mount point. 

system may allow the same file system to be mounted repeatedly, at different 
mount points, or it may only allow one mount per file system. 

Consider the actions of the Macintosh operating system. Whenever the 
system encounters a disk for the first time (hard disks are found at boot time, 
floppy disks are seen when they are inserted into the drive), the Macintosh 
operating system searches for a file system on the device. If it finds one, it 
automatically mounts the file system at the root level, adding a folder icon on 
the screen labeled with the name of the file system (as stored in the device 
directory). The user then is able to click on the icon and thus to display the 
newly mounted file system. 

The Microsoft Windows family of operating systems (95,98, NT, and 2000) 
maintains an extended two-level directory structure, with devices and parti- 
tions assigned a drive letter. Partitions have a general graph directory structure 
associated with the drive letter. The path to a specific file is then in the form 
of drive- letter:\path\tople. These operating systems automatically discover all 
devices and mount all located file systems at boot time. In some systems, like 
UNIX, the mount commands are explicit. A system configuration file contains a 
list of devices and mount points for automatic mounting at boot time, but other 
mounts may be executed manually. 

File system mounting is further discussed in Sections 12.2.2 and A.7.5. 

11.5 File Sharing 

In the previous sections, we explored the motivation for file sharing and some of 
the difficulties involved in allowing users to share files. Such file sharing is very 
desirable for users who want to collaborate and to reduce the effort required to 
achieve a computing goal. Therefore, user-oriented operating systems must 
accommodate the need to share files in spite of the inherent difficulties. 
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In this section, we examine more aspects of file sharing. First is the topic 
of multiple users and the sharing methods possible. Once multiple users are 
allowed to share files, the challenge is to extend sharing to multiple file systems, 
including remote file systems. Finally, there can be several interpretations of 
conflicting actions occurring on shared files. For instance, if multiple users 
are writing to the file, should all the writes be allowed to occur, or should 
the operating system protect the user actions from each other? Consistency 
semantics is discussed in Section 11.5.3. 

11.5.1 Multiple Users 

When an operating system accommodates multiple users, the issues of file 
sharing, file naming, and file protection become preeminent. Given a directory 
structure that allows files to be shared by users, the system must mediate the 
file sharing. The system either can allow a user to access the files of other users 
by default, or it may require that a user specifically grant access to the files. 
These are the issues of access control and protection, which are covered below. 

To implement sharing and protection, the system must maintain more file 
and directory attributes than on a single-user system. Although there have been 
many approaches to this topic historically, most systems have evolved to the 
concepts of file/directory owner (or user) and group. The owner is the user who 
may change attributes, grant access, and has the most control over the file or 
directory. The group attribute of a file is used to define a subset of users who 
may share access to the file. For example, the owner of a file on a UNIX system 
may issue all operations on a file, while members of the file's group may execute 
one subset of those operations, and all other users may execute another subset 
of operations. Exactly which operations can be executed by group members 
and other users is definable by the file's owner. More details on permission 
attributes are included in the next section. 

Most systems implement owner attributes by managing a list of user names 
and associated user identifiers (user IDS). In Windows NT parlance, this is 
a Security ID (SID). These numerical IDS are unique, one per user. When a 
user logs in to the system, the authentication stage determines the appropriate 
user ID for the user. That user ID is associated with all of the user's processes 
and threads. When they need to be user readable, they are translated back 
to the user name via the user name list. Likewise, group functionality can 
be implemented as a system-wide list of group names and group identifiers. 
Every user can be in one or more groups, depending upon operating system 
design decisions. The user's group IDS are also included in every associated 
process and thread. 

The owner and group IDS of a given file or directory are stored with the 
other file attributes. When a user requests an operation on a file, the user ID can 
be compared to the owner attribute to determine if the requesting user is the 
owner of the file. Likewise, the group IDS can be compared. The result indicates 
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which permissions are applicable. The system then applies those permissions 
to the requested operation, and allows or denies it. 

The user information within a process can be used for other purposes as 
well. One process may attempt to interact with another process, and user 
information can dictate the result, based on the design of the operating system. 
For example, a process may attempt to terminate, background, or lower the 
priority of another process. If the owner of each process is the same, then the 
command may succeed, or else it may be denied. It may also be allowed to 
succeed if it is owned by the privileged user. 

Many systems have multiple local file systems, including partitions of a 
single disk or multiple partitions on multiple attached disks. In these cases, the 
ID checking and permission matching are straightforward, once the file systems 
are mounted. 

11.5.2 Remote File Systems 
The advent of networks (Chapter 15) allowed communication between remote 
computers. Networking allows the sharing of resources spread within a cam- 
pus or even around the world. One obvious resource to share is data, in the 
form of files. Through the evolution of network and file technology, file-sharing 
methods have changed. In the first implemented method, users manually trans- 
fer files between machines via programs like f tp .  The second major method is 
a distributed file system (DFS) in which remote directories are visible from the 
local machine. In some ways, the third method, the World Wide Web, is a 
reversion to the first. A browser is needed to gain access to the remote files, and 
separate operations (essentially a wrapper for f tp )  are used to transfer files. 

f t p  is used for both anonymous and authenticated access. Anonymous 
access allows a user to transfer files without having an account on the remote 
system. The World Wide Web uses anonymous file exchange almost exclusively. 
DFS involve a much tighter integration between the machine that is accessing 
the remote files and the machine providing the files. This integration adds 
complexity, which we describe in this section. 

11.5.2.1 The Client-Server Model 

Remote file systems allow a computer to mount one or more file systems from 
one or more remote machines. In this case, the machine containing the files 
is the server, and the machine wanting access to the files is the client. The 
client-server relationship is common with networked machines. Generally, the 
server declares that a resource is available to clients and specifies exactly which 
resource (in this case, which files) and exactly which clients. Files are usually 
specified on a partition or subdirectory level. A server can serve multiple 
clients, and a client can use multiple servers, depending on the implementation 
details of a given client-server facility. 
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Client identification is more difficult. Clients can be specified by their 
network name or other identifier, such as IP address, but these can be spoofed 
(or imitated). An unauthorized client can spoof the server into deciding that it 
is authorized, and the unauthorized client could be allowed access. More secure 
solutions include secure authentication of the client to the server via encrypted 
keys. Unfortunately, with security comes many challenges, including ensuring 
compatibility of the client and server (they must use the same encryption 
algorithms) and secure key exchanges (intercepted keys could again allow 
unauthorized client access). These problems are difficult enough that, most 
commonly, unsecure authentication methods are used. In the case of UNIX 
and its network file system (NFS), authentication is via the client networking 
information, by default. In this scheme, the user IDS must match on the client 
and server. If not, the server will be unable to determine access rights to files. 

Consider the example of a user who has the ID of 1000 on the client and 
2000 on the server. A request from the client to the server for a specific file 
will not be handled appropriately, as the server will determine if user 1000 has 
access to the file, rather than the real user ID of 2000. Access would be granted 
or denied based on incorrect authentication information. The server must trust 
the client to present the correct user ID. The NFS protocols allow many-to-many 
relationships. That is, many servers can provide files to many clients. In fact, 
a given machine can be both a server to other NFS clients and a client of other 
NFS servers. 

Once the remote file system is mounted, file operation requests are sent on 
the behalf of the user, across the network, to the server, via the DFS protocol. 
Typically, a file open request is sent along with the ID of the requesting user. 
The server then applies the standard access checks to determine if the user 
has credentials to access the file in the mode requested. The request is either 
allowed or denied. If it is allowed, a file handle is returned to the client 
application, and the application then may perform read, write, and other 
operations on the file. The client closes the file when access is completed. The 
operating system may apply semantics similar to those for a local file system 
mount, or may have different semantics. 

11.5.2.2 Distributed Information Systems 

To ease the management of client-server services, distributed information sys- 
tems, also known as distributed naming services, have been devised to pro- 
vide a unified access to the information needed for remote computing. Domain 
name system (DNS) provides host-name-to-network-address translations for 
the entire Internet (including the World Wide Web). Before DNS was invented 
and became widespread, files containing the same information were sent via e- 
mail or f t p  between all networked hosts. This methodology was not scalable. 
DNS is further discussed in 15.4.1. 

Other distributed information systems provide user narne/password/user 
ID/group ID space for a distributed facility. UNIX systems have had a wide 
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variety of distributed information methods. Sun Microsystems introduced yel- 
lozv pages (since renamed to network information service (NIS)), and most of 
the industry adopted its use. It centralizes storage of user names, host names, 
printer information, and the like. Unfortunately, it uses unsecure authentica- 
tion methods, including sending user passwords unencrypted (in clear text) and 
identifying hosts by IP address. Sun's NIS+ is a much more secure replacement 
for NIS, but is also much more complicated and has not been widely adopted. 

In the case of Microsoft networks (CIFS), network information is used in 
conjunction with user authentication (user name and password) to create a 
network login that the server uses to decide whether to allow or deny access to 
a requested file system. For this authentication to be valid, the user names must 
match between the machines (as with NFS). Microsoft uses two distributed- 
naming structures to provide a single namespace for users. The older naming 
technology is domains. The newer technology, available in Windows 2000 and 
beyond, is active directory. Once established, the distributed-naming facility is 
used by all clients and servers to authenticate users. 

The industry is moving toward lightweight directory-access protocol 
(LDAP) as a secure, distributed naming mechanism. In fact, active directory 
is based on LDAP. Sun Microsystems' Solaris 8 allows LDAP to be used for user 
authentication as well as system-wide retrieval of information such as available 
printers. If the convergence of the use of LDAP succeeds, then one distributed 
LDAP directory will be used by an organization to store all user and resource 
information for all computers within that organization. The result would be 
secure single sign-on for users, who would enter their authentication infor- 
mation once for access to all computers within the organization. It would also 
ease systems-administration efforts by combining, into one location, informa- 
tion that is currently scattered in various files on each system or in differing 
distributed information services. 

11.5.2.3 Failure Modes 

Local file systems can fail for a variety of reasons, including failure of the disk 
containing the file system, corruption of the directory structure or other disk 
management information (collectively called metadata), disk-controller failure, 
cable failure, or host adapter failure. User or systems-administrator failure 
can also cause files to be lost, or entire directories or partitions to be deleted. 
Many of these failures would cause a host to crash and an error condition to be 
displayed, and require human intervention to repair. 

Some failures do not cause loss of data or loss of availability of data. 
Redundant arrays of inexpensive disks (RAID) can prevent the loss of a disk 
from resulting in the loss of data. RAID is covered further in Section 14.5. 

Remote file systems have more failure modes. By nature of the complexity 
of network systems and the required interactions between remote machines, 
many more problems can interfere with the proper operation of remote file 
systems. In the case of networks, the network can be interrupted between 
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the two hosts. This could be due to hardware failure or misconfiguration, or 
networking implementation issues at any of the involved hosts. Although some 
networks have built-in resiliency, including multiple paths between each host, 
many do not. Any single failure could interrupt the flow of DFS commands. 

Consider a client in the midst of using a remote file system. It has remote 
file systems mounted and may have files open from the remote host; among 
other activities, it may be performing directory lookups to open files, reading 
or writing data to files, and closing files. Now consider a partitioning of the 
network, a crash of the server, or even a scheduled shutdown of that server, 
such that the remote file system is no longer reachable. This scenario is rather 
common, so it would not be appropriate for the client to act as it would in the 
case of a loss of a local file system. 

Rather, the system could either terminate all operations to the lost server, 
or delay operations until the server is again reachable. This failure semantics 
is defined and implemented as part of the remote file system protocol. Termi- 
nation of all operations can result in users losing data, and patience. Most DFS 
protocols either enforce or allow delaying of file-system operations to remote 
hosts, with the hope that the remote host will become available again. 

For this kind of recovery from failure, some kind of state information may 
be maintained on both the client and server. If the server has crashed, but 
must recognize that it had exported file systems, remotely mounted them, and 
opened certain files, NFS takes a simple approach, implementing a stateless 
DFS. In essence, it assumes that a client request for a file read or write would not 
have occurred unless the file system had been remotely mounted and the file 
had been previously open. The NFS protocol carries all the information needed 
to locate the appropriate file and perform the requested operation on a file. 
Likewise, it does not track which clients have its exported partitions mounted, 
again assuming that if a request comes it, it must be legitimate. While this 
stateless approach makes NFS resilient and rather easy to implement, it makes 
it unsecure. For example, forged read or write requests could be allowed by an 
NFS server even though the requisite mount request and permission check have 
not take place. 

11.5.3 Consistency Semantics 
Consistency semantics is an important criterion for evaluating any file system 
that supports file sharing. It is a characterization of the system that specifies the 
semantics of multiple users accessing a shared file simultaneously. In particular, 
these semantics should specify when modifications of data by one user are 
observable by other users. The semantics are typically implemented as code 
with the file system. 

Consistency semantics are directly related to the process synchronization 
algorithms of Chapter 7. However, the complex algorithms of that chapter tend 
not to be implemented in the case of file I/O because of the great latencies and 
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slow transfer rates of disks and networks. For example, performing an atomic 
transaction to a remote disk could involve several network communications or 
several disk reads and writes, or both. Systems that attempt such a full set of 
functionalities tend to perform poorly. A successful implementation of complex 
sharing semantics can be found in the Andrew File System. 

For the following discussion, we assume that a series of file accesses (that 
is, reads and writes) attempted by a user to the same file is always enclosed 
between the open and close operations. The series of accesses between the 
open and close operations is a file session. To illustrate the concept, we sketch 
several prominent examples of consistency semantics. 

11.5.4 UNIX Semantics 
The UNIX file system (Chapter 16) uses the following consistency semantics: 

Writes to an open file by a user are visible immediately to other users that 
have this file open at the same time. 

One mode of sharing allows users to share the pointer of current location 
into the file. Thus, the advancing of the pointer by one user affects all 
sharing users. Here, a file has a single image that interleaves all accesses, 
regardless of their origin. 

In the UNIx semantics a file is associated with a single physical image that is 
accessed as an exclusive resource. Contention for this single image results in 
user processes being delayed. 

11.5.5 Session Semantics 
The Andrew file system (AFS) (Chapter 16) uses the following consistency 
semantics: 

Writes to an open file by a user are not visible immediately to other users 
that have the same file open simultaneously. 

Once a file is closed, the changes made to it are visible only in sessions 
starting later. Already open instances of the file do not reflect these changes. 

According to these semantics, a file may be associated temporarily with several 
(possibly different) images at the same time. Consequently, multiple users are 
allowed to perform both read and write accesses concurrently on their image 
of the file, without delay. Almost no constraints are enforced on scheduling 
accesses. 

11.5.6 Immutable-Shared-Files Semantics 
A unique approach is that of immutable shared files. Once a file is declared 
as shared by its creator, it cannot be modified. An immutable file has two 
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key properties: Its name may not be reused and its contents may not be 
altered. Thus, the name of an immutable file signifies that the contents of the 
file are fixed, rather than the file being a container for variable information. 
The implementation of these semantics in a distributed system (Chapter 16) is 
simple, because the sharing is disciplined (read-only). 

11.6 Protection 

When information is kept in a computer system, we want to keep it safe from 
physical damage (reliability) and improper access (protection). 

Reliability is generally provided by duplicate copies of files. Many comput- 
ers have systems programs that automatically (or through computer-operator 
intervention) copy disk files to tape at regular intervals (once per day or week 
or month) to maintain a copy should a file system be accidentally destroyed. 
File systems can be damaged by hardware problems (such as errors in reading 
or writing), power surges or failures, head crashes, dirt, temperature extremes, 
and vandalism. Files may be deleted accidentally. Bugs in the file-system soft- 
ware can also cause file contents to be lost. Reliability is covered in more detail 
in Chapter 14. 

Protection can be provided in many ways. For a small single-user system, 
we might provide protection by physically removing the floppy disks and 
locking them in a desk drawer or file cabinet. In a multiuser system, however, 
other mechanisms are needed. 

11.6.1 Types of Access 
The need to protect files is a direct result of the ability to access files. Systems 
that do not permit access to the files of other users do not need protection. Thus, 
we could provide complete protection by prohibiting access. Alternatively, we 
could provide free access with no protection. Both approaches are too extreme 
for general use. What is needed is controlled access. 

Protection mechanisms provide controlled access by limiting the types of 
file access that can be made. Access is permitted or denied depending on 
several factors, one of which is the type of access requested. Several different 
types of operations may be controlled: 

Read: Read from the file. 

Write: Write or rewrite the file. 

Execute: Load the file into memory and execute it. 

Append: Write new information at the end of the file. 

Delete: Delete the file and free its space for possible reuse. 

List: List the name and attributes of the file. 
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Other operations, such as renaming, copying, or editing the file, may also 
be controlled. For many systems, however, these higher-level functions may 
be implemented by a system program that makes lower-level system calls. 
Protection is provided at only the lower level. For instance, copying a file may 
be implemented simply by a sequence of read requests. In this case, a user with 
read access can also cause the file to be copied, printed, and so on. 

Many protection mechanisms have been proposed. Each scheme has 
advantages and disadvantages and must be appropriate for its intended appli- 
cation. A small computer system that is used by only a few members of a 
research group may not need the same types of protection as will a large cor- 
porate computer that is used for research, finance, and personnel operations. A 
complete treatment of the protection problem is deferred to Chapter 18. 

11.6.2 Access Control 
The most common approach to the protection problem is to make access depen- 
dent on the identity of the user. Various users may need different types of access 
to a file or directory. The most general scheme to implement identity-dependent 
access is to associate with each file and directory an access-control list (ACL) 
specifying the user name and the types of access allowed for each user. When a 
user requests access to a particular file, the operating system checks the access 
list associated with that file. If that user is listed for the requested access, the 
access is allowed. Otherwise, a protection violation occurs, and the user job is 
denied access to the file. 

This approach has the advantage of enabling complex access methodolo- 
gies. The main problem with access lists is their length. If we want to allow 
everyone to read a file, we must list all users with read access. This technique 
has two undesirable consequences: 

Constructing such a list may be a tedious and unrewarding task, especially 
if we do not know in advance the list of users in the system. 

The directory entry, previously of fixed size, now needs to be of variable 
size, resulting in more complicated space management. 

These problems can be resolved by use of a condensed version of the access list. 
To condense the length of the access control list, many systems recognize 

three classifications of users in connection with each file: 

Owner: The user who created the file is the owner. 

Group: A set of users who are sharing the file and need similar access is a 
group, or work group. I 

I 

Universe: All other users in the system constitute the universe. 
I 
I 
I 
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The most common recent approach is to combine access control lists with 
the more general (and easier to implement) owner, group, and universe access- 
control scheme that was described above. For example, Solaris 2.6 and beyond 
uses the three categories of access by default, but allows access control lists to 
be added to specific files and directories when more fine-grained access control 
is desired. 

As an example, consider a person, Sara, who is writing a new book. She 
has hired three graduate students (Jim, Dawn, and Jill) to help with the project. 
The text of the book is kept in a file named book. The protection associated with 
this file is as follows: 

rn Sara should be able to invoke all operations on the file. 

rn Jim, Dawn, and Jill should be able only to read and write the file; they 
should not be allowed to delete the file. 

rn All other users should be able to read, but not write, the file. (Sara is 
interested in letting as many people as possible read the text so that she 
can obtain appropriate feedback.) 

To achieve such a protection, we must create a new group, say text, with 
members Jim, Dawn, and Jill. The name of the group text must be then 
associated with the file book, and the access right must be set in accordance 
with the policy we have outlined. 

Now consider a visitor to whom Sara would like to grant temporary access 
to chapter 1. The visitor cannot be added to the text group because that grants to 
the vistor access to all chapters. Because files can only be in one group, another 
group cannot be added to chapter 1. With the addition of access-control-list 
functionality, the visitor can be added to the access control list of chapter 1. 

For this scheme to work properly, permissions and access lists must be 
controlled tightly. This control can be accomplished in several ways. For 
example, in the UNIX system, groups can be created and modified by only the 
manager of the facility (or by any superuser). Thus, this control is achieved 
through human interaction. In the VMS system, the owner of the file can create 
and modify this list. Access lists are discussed further in Section 18.4.2. 

With the more limited protection classification, only three fields are needed 
to define protection. Each field is often a collection of bits, each of which either 
allows or prevents the access associated with it. For example, the UNIX system 
defines three fields of 3 bits each-rwx, where r controls read access, w controls 
write access, and x controls execution. A separate field is kept for the file owner, 
for the file's group, and for all other users. In this scheme, 9 bits per file are 
needed to record protection information. Thus, for our example, the protection 
fields for the file book are as follows: For the owner Sara, all 3 bits are set; for the 
group text, the r and w bits are set; and for the universe, only the r bit is set. 
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One difficulty in combining approaches comes in the user interface. Users 
must be able to tell when the optional ACL permissions are set on a file. In the 
Solaris example, a "+" appends the regular permissions, as in: 

19 -rw-r--r--+ 1 jim s t a f f  130 May 25 22:13 f i l e 1  

A separate set of commands s e t f  a c l  and g e t f  a c l  are used to manage the 
ACLs. Another difficulty is assigning precedence when permission and ACLs 
conflict. For example, if Joe is in a file's group, which has read permission, but 
the file has an ACL granting Joe read and write permissions, should a write 
by Joe be granted or denied? Solaris gives ACLs permission (as they are more 
fine-grained and are not assigned by default). This follows the general rule that 
specificity should have priority. 

11.6.3 Other Protection Approaches 

Another approach to the protection problem is to associate a password with 
each file. Just as access to the computer system is often controlled by a pass- 
word, access to each file can be controlled by a password. If the passwords 
are chosen randomly and changed often, this scheme may be effective in limit- 
ing access to a file to only those users who know the password. This scheme, 
however, has several disadvantages. First, the number of passwords that a user 
needs to remember may become large, making the scheme impractical. Sec- 
ondly, if only one password is used for all the files, then, once it is discovered, 
all files are accessible. Some systems (for example, TOPS-20) allow a user to 
associate a password with a subdirectory, rather than with an individual file, 
to deal with this problem. The IBM VM/CMS operating system allows three 
passwords for a minidisk-one each for read, write, and multiwrite access. 
Thirdly, commonly, only one password is associated with all of the user's files. 
Thus, protection is on an all-or-nothing basis. To provide protection on a more 
detailed level, we must use multiple passwords. 

Limited file protection is also currently available on single user systems, 
such as MS-DOS and Macintosh operating system. These operating systems, 
when originally designed, essentially ignored the protection problem. How- 
ever, since these systems are now being placed on networks where file sharing 
and communication are necessary, protection mechanisms must be retrofitted 
into the operating system. Designing a feature into a new operating system is 
almost always easier than adding a feature to an existing one. Such updates are 
usually less effective and are not seamless. 

In a multilevel directory structure, we need to protect not only individual 
files, but also collections of files in a subdirectory; that is, we need to provide 
a mechanism for directory protection. The directory operations that must be 
protected are somewhat different from the file operations. We want to control 
the creation and deletion of files in a directory. In addition, we probably want 
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to control whether a user can determine the existence of a file in a directory. 
Sometimes, knowledge of the existence and name of a file may be significant in 
itself. Thus, listing the contents of a directory must be a protected operation. 
Therefore, if a path name refers to a file in a directory, the user must be allowed 
access to both the directory and the file. In systems where files may have 
numerous path names (such as acyclic or general graphs), a given user may 
have different access rights to a file, depending on the path name used. 

11.6.4 An Example: UNIX 
In the UNIX system, directory protection is handled similarly to file protection. 
That is, associated with each subdirectory are three fields-owner, group, and 
universe-each consisting of the 3 bits rwx. Thus, a user can list the content of 
a subdirectory only if the r bit is set in the appropriate field. Similarly, a user 
can change his current directory to another current directory (say foo) only if the 
x bit associated with the foo subdirectory is set in the appropriate field. 

A sample directory listing from a UNIX environment is shown in Figure 
11.13. The first field describes the file or directory's protection. A d as the first 
character indicates a subdirectory. Also shown are the number of links to the 
file, the owner's name, the group's name, the size of the file in unit of bytes, the 
creation date, and finally the file's name (with optional extension). 

11.7 rn Summary 

A file is an abstract data type defined and implemented by the operating 
system. It is a sequence of logical records. A logical record may be a byte, a line 
(fixed or variable length), or a more complex data item. The operating system 
may specifically support various record types or may leave that support to the 
application program. 

The major task for the operating system is to map the logical file concept 
onto physical storage devices such as magnetic tape or disk. Since the physical 
record size of the device may not be the same as the logical record size, it may 

-rw-rw-r- 
drwx- 
drwxrwxr-x 
dmxrwx- 
-rw-r-r- 
-rwxr-xr-x 
drwx-x-x 
drwx- 
drwxrwxrwx 

staff 
staff 
staff 
student 
staff 
staff 
faculty 
staff 
staff 

Sep 3 08:30 
Jul 8 09:33 
Jul 8 09:35 
Aug 3 14:13 
Feb 24 1999 
Feb 24 200 
Jul 31 10:31 
Aug 29 06:52 
Jul 8 09:35 

intro.ps 
private/ 
doc/ 
student-proj / 
pr0gram.c 
program 
lib / 
mail/ 
test/ 

Figure 11.13 A sample directory listing. 
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be necessary to block logical records into physical records. Again, this task may 
be supported by the operating system or left for the application program. 

Each device in a file system keeps a volume table of contents or device 
directory listing the location of the files on the device. In addition, it is useful 
to create directories to allow files to be organized. A single-level directory 
in a multiuser system causes naming problems, since each file must have a 
unique name. A two-level directory solves this problem by creating a separate 
directory for each user. Each user has her own directory, containing her own 
files. The directory lists the files by name, and includes such information as the 
file's location on the disk, length, type, owner, time of creation, time of last use, 
and so on. 

The natural generalization of a two-level directory is a tree-structured 
directory. A tree-structured directory allows a user to create subdirectories 
to organize his files. Acyclic-graph directory structures allow subdirectories 
and files to be shared, but complicate searching and deletion. A general graph 
structure allows complete flexibility in the sharing of files and directories, but 
sometimes requires garbage collection to recover unused disk space. 

Disks are segmented into one or more partitions, each containing a file 
system or left "raw". File systems may be mounted into the system's naming 
structures to make them available. The naming scheme varies by operating 
system. Once mounted, the files within the partition are available for use. File 
systems may be unmounted to disable access or for maintenance. 

File sharing depends on the semantics provided by the system. Files may 
have multiple readers, multiple writers, or limits on the sharing. Distributed 
file systems allow client hosts to mount partitions or directories from servers, 
as long as they can access each other across a network. Remote file systems have 
challenges in reliability, performance, and security. Distributed information 
systems maintain user, host, and access information such that clients and 
servers share state information to manage use and access. 

Since files are the main information-storage mechanism in most computer 
systems, file protection is needed. Access to files can be controlled separately for 
each type of access-read, write, execute, append, delete, list directory, and so 
on. File protection can be provided by passwords, by access lists, or by special 
ad hoc techniques. 

Exercises 

11.1 Consider a file system where a file can be deleted and its disk space 
reclaimed while links to that file still exist. What problems may occur 
if a new file is created in the same storage area or with the same absolute 
path name? How can these problems be avoided? 

11.2 Some systems automatically delete all user files when a user logs off or a 
job terminates, unless the user explicitly requests that they be kept; other 
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systems keep all files unless the user explicitly deletes them. Discuss the 
relative merits of each approach. 

11.3 Why do some systems keep track of the type of a file, while others leave 
it to the user or simply do not implement multiple file types? Which 
system is "better"? 

11.4 Similarly, some systems support many types of structures for a file's data, 
while others simply support a stream of bytes. What are the advantages 
and disadvantages? 

11.5 What are the advantages and disadvantages of recording the name of the 
creating program with the file's attributes (as is done in the Macintosh 
operating system)? 

11.6 Could you simulate a multilevel directory structure with a single-level 
directory structure in which arbitrarily long names can be used? If your 
answer is yes, explain how you can do so, and contrast this scheme 
with the multilevel directory scheme. If your answer is no, explain what 
prevents your simulation's success. How would your answer change if 
file names were limited to seven characters? 

11.7 Explain the purpose of the open and c lo se  operations. 

11.8 Some systems automatically open a file when it is referenced for the first 
time, and close the file when the job terminates. Discuss the advantages 
and disadvantages of this scheme as compared to the more traditional 
one, where the user has to open and close the file explicitly. 

11.9 Give an example of an application in which data in a file should be 
accessed in the following order: 

a. Sequentially 

b. Randomly 

11.10 Some systems provide file sharing by maintaining a single copy of a file; 
other systems maintain several copies, one for each of the users sharing 
the file. Discuss the relative merits of each approach. 

11.11 In some systems, a subdirectory can be read and written by an authorized 
user, just as ordinary files can be. 

a. Describe the protection problems that could arise. 

b. Suggest a scheme for dealing with each of the protection problems 
you named in part a. 

11.12 Consider a system that supports 5000 users. Suppose that you want to 
allow 4990 of these users to be able to access one file. 
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a. How would you specify this protection scheme in UNIX? 

b. Could you suggest another protection scheme that can be used more 
effectively for this purpose than the scheme provided by UNIX? 

11.13 Researchers have suggested that, instead of having an access list associ- 
ated with each file (specifying which users can access the file, and how), 
we should have a user control list associated with each user (specifying 
which files a user can access, and how). Discuss the relative merits of 
these two schemes. 
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Chapter 12 

FILE-SY STEM 
IMPLEMENTATION 

As we saw in Chapter 11, the file system provides the mechanism for on-line 
storage and access to file contents, including data and programs. The file 
system resides permanently on secondary storage, which is designed to hold a 
large amount of data permanently. This chapter is primarily concerned with 
issues surrounding file storage and access on the most common secondary- 
storage medium, the disk. We explore ways to structure file use, to allocate 
disk space, to recover freed space, to track the locations of data, and to interface 
other parts of the operating system to secondary storage. Performance issues 
are considered throughout the chapter. 

12.1 . File-System Structure 

Disks provide the bulk of secondary storage on which a file system is main- 
tained. They have two characteristics that make them a convenient medium for 
storing multiple files: 

1. They can be rewritten in place; it is possible to read a block from the disk, 
to modify the block, and to write it back into the same place. 

2. They can access directly any given block of information on the disk. Thus, it 
is simple to access any file either sequentially or randomly, and switching 
from one file to another requires only moving the read-write heads and 
waiting for the disk to rotate. 

We discuss disk structure in great detail in Chapter 14. 
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Rather than transferring a byte at a time, to improve I/O efficiency, I/O 
transfers between memory and disk are performed in units of blocks. Each block 
is one or more sectors. Depending on the disk drive, sectors vary from 32 bytes 
to 4,096 bytes; usually, they are 512 bytes. 

To provide an efficient and convenient access to the disk, the operating 
system imposes one or more file systems to allow the data to be stored, located, 
and retrieved easily. A file system poses two quite different design problems. 
The first problem is defining how the file system should look to the user. This 
task involves defining a file and its attributes, the operations allowed on a file, 
and the directory structure for organizing files. The second problem is creating 
algorithms and data structures to map the logical file system onto the physical 
secondary-storage devices. 

The file system itself is generally composed of many different levels. The 
structure shown in Figure 12.1 is an example of a layered design. Each level 
in the design uses the features of lower levels to create new features for use by 
higher levels. 

The lowest level, the I/O control, consists of device drivers and interrupt 
handlers to transfer information between the main memory and the disk sys- 
tem. A device driver can be thought of as a translator. Its input consists of 
high-level commands such as "retrieve block 123." Its output consists of low- 
level, hardware-specific instructions that are used by the hardware controller, 
which interfaces the I/O device to the rest of the system. The device driver 
usually writes specific bit patterns to special locations in the 1 /0  controller's 
memory to tell the controller on which device location to act and what actions 

application programs 

logical file system 

file-organization module 

basic file system 

I/O control 

devices 

Figure 12.1 Layered file system. 
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to take. The details of device drivers and the 1/0  infrastructure are covered in 
Chapter 13. 

The basic file system needs only to issue generic commands to the appro- 
priate device driver to read and write physical blocks on the disk. Each physical 
block is identified by its numeric disk address (for example, drive 1, cylinder 
73, track 2, sector 10). 

The file-organization module knows about files and their logical blocks, 
as well as physical blocks. By knowing the type of file allocation used and 
the location of the file, the file-organization module can translate logical block 
addresses to physical block addresses for the basic file system to transfer. Each 
file's logical blocks are numbered from 0 (or 1) through N, whereas the physical 
blocks containing the data usually do not match the logical numbers, so a 
translation is needed to locate each block. The file-organization module also 
includes the free-space manager, which tracks unallocated blocks and provides 
these blocks to the file-organization module when requested. 

Finally, the logical file system manages metadata information. Metadata 
includes all of the file-system structure, excluding the actual data (or contents of 
the files). The logical file system manages the directory structure to provide 
the file-organization module with the information the latter needs, given a 
symbolic file name. It maintains file structure via file control blocks. A file 
control block (FCB) contains information about the file, including ownership, 
permissions, and location of the file contents. The logical file system is also 
responsible for protection and security, as was discussed in Chapter 11 and will 
be further discussed in Chapter 18. 

Many implemented file systems currently exist. Most operating systems 
support more than one file system. For example, most CD-ROMs are written 
in the High Sierra format, which is a standard format agreed upon by CD-ROM 
manufacturers. Without such a standard, there would be little or no interoper- 
ability between systems trying to use CD-ROMs. Aside from removable media 
file systems, each operating system has one (or more) disk-based file system. 
UNIX uses the UNIX file system (UFS) as a base. Windows NT supports disk 
file-system formats of FAT, FAT32 and NTFS (or Windows NT File System), as 
well as CD-ROM, DVD, and floppy-disk file-system formats. By using a layered 
structure for file-system implementation, duplication of code is minimized. The 
I/O control and sometimes the basic file system code can be used by multiple 
file systems. Each file system may then have its own logical file system and 
file-organization modules. 

12.2 File-System Implementation 

As was described in Section 11.1.2, operating systems implement open and 
close systems calls for processes to request access to file contents. In this 
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section, we delve into the structures and operations used to implement file- 
system operations. 

12.2.1 Overview 

Several on-disk and in-memory structures are used to implement a file system. 
These vary depending on the operating system and the file system, but some 
general principles apply. On-disk, the file system may contain information 
about how to boot an operating system stored there, the total number of blocks, 
the number and location of free blocks, the directory structure, and individual 
files. Many of these structures are detailed throughout the remainder of this 
chapter. 

The on-disk structures include: 

A boot control block can contain information needed by the system to boot 
an operating from that partition. If the disk does not contain an operating 
system, this block can be empty. It is typically the first block of a partition. 
In UFS, this is called the boot block; in NTFS, it is the partition boot sector. 

A partition control block contains partition details, such as the number of 
blocks in the partition, size of the blocks, free-block count and free-block 
pointers, and free FCB count and FCB pointers. In UFS this is called a 
superblock; in NTFS, it is the Master File Table. 

A directory structure is used to organize the files 

An FCB contains many of the file's details, including file permissions, 
ownership, size, and location of the data blocks. In UFS this is called the 
inode. In NTFS, this information is actually stored within the Master File 
Table, which uses a relational database structure, with a row per file. 

The in-memory information is used for both file-system management and 
performance improvement via caching. The structures can include: 

An in-memory partition table containing information about each mounted 
partition. 

An in-memory directory structure that holds the directory information 
of recently accessed directories. (For directories at which partitions are 
mounted, it can contain a pointer to the partition table.) 

The system-wide open-file table contains a copy of the FCB of each open 
file, as well as other information. 

The per-process open-file table contains a pointer to the appropriate entry 
in the system-wide open-file table, as well as other information. 
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To create a new file, an application program calls the logical file system. 
The logical file system knows the format of the directory structures. To create 
a new file, it allocates a new FCB, reads the appropriate directory into memory, 
updates it with the new file name and FCB, and writes it back to the disk. A 
typical FCB is shown in Figure 12.2. 

Some operating systems, including UNIX, treat a directory exactly as a 
file-one with a type field indicating that it is a directory. Other operating 
systems, including Windows NT, implement separate system calls for files and 
directories and treat directories as entities separate from files. No matter the 
larger structural issues, the logical file system can call the file-organization 
module to map the directory I/O into disk-block numbers, which are passed on 
to the basic file system and I/O control system. The file-organization module 
also allocates blocks for storage of the file's data. 

Now that a file has been created, it can be used for I/O. First, though, it 
must be opened. The open call passes a file name to the file system. When a file 
is opened, the directory structure is searched for the given file name. Parts of the 
directory structure are usually cached in memory to speed directory operations. 
Once the file is found, the FCB is copied into a system- wide open-file table in 
memory. This table not only stores the FCB, but also has entries for a count of 
the number of processes that have the file open. 

Next, an entry is made in the per-process open-file table, with a pointer 
to the entry in the system-wide open-file table and some other fields. These 
other fields can include a pointer to the current location in the file (for the 
next read or wr i t e  operation) and the access mode in which the file is open. 
The open call returns a pointer to the appropriate entry in the per-process file- 
system table. All file operations are then performed via this pointer. The file 
name may not be part of the open-file table, as the system has no use for it once 
the appropriate FCB is located on disk. The name given to the index varies. 

Figure 12.2 A typical file control block. 
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UNIX systems refer to it as a file descriptor; Windows 2000 refers to it as a file 
handle. Consequently, as long as the file is not closed, all file operations are 
done on the open-file table. 

When a process closes the file, the per-process table entry is removed, 
and the system-wide entry's open count is decremented. When all users that 
have opened the file close it, the updated file information is copied back to 
the disk-based directory structure and the system-wide open-file table entry is 
removed. 

In reality, the open system call first searches the system-wide open-file table 
to see if the file is already in use by another process. If it is, a per-process 
open-file table entry is created pointing to the existing system-wide open-file 
table. This algorithm can save substantial overhead when opening files that are 
already open. 

Some systems complicate this scheme even further by using the file system 
as an interface to other system aspects, such as networking. For example, in 
UFS, the system-wide open-file table holds the inodes and other information for 
files and directories. It also holds similar information for network connections 
and devices. In this way, one mechanism can be used for multiple system 
aspects. 

The caching aspects of these structures should not be overlooked. Using 
this scheme, all information about an open file, except for its actual data blocks, 
is in memory. The BSD UNIX system is typical in its use of caches wherever 
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these 
techniques are well worth implementing. The BSD UNIX system is described 
fully in Appendix A 

The operating structures of a file-system implementation are summarized 
in Figure 12.3. 

12.2.2 Partitions and Mounting 
The layout of a disk can have many variations, depending on the operating 
system. A disk can be sliced into multiple partitions, or a partition can span 
multiple disks. The former is discussed here, while the latter is more appropri- 
ately considered a form of RAID and is covered in Section 14.5. 

Each partition can either be "raw," containing no file system, or "cooked," 
containing a file system. Raw disk is used where no file system is appropriate. 
UNIX swap space can use a raw partition, as it uses its own format on disk and 
does not use a file system. Likewise, some databases use raw disk and format 
the data to suit their needs. Raw disk can also hold information needed by 
disk RAID systems, such as bit maps indicating which blocks are mirrored and 
which have changed and need to be mirrored. Similarly, raw disk can contain 
a miniature database holding RAID configuration information, such as which 
disks are members of each RAID set. Raw disk use is further discussed in Section 
14.3.1. 
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user space kernel memory secondary storage 

Boot information can be stored in a separate partition. Again, it has its 
own format, because at boot time the system does not have file-system device 
drivers loaded and therefore cannot interpret the file-system format. Rather, 
it is usually a sequential series of blocks, loaded as an image into memory. 
Execution of the image starts at a predefined location, such as the first byte. This 
boot image can contain more than the instructions for how to boot a specific 
operating system. For instance, PCs and other systems can be dual-booted. 
Multiple operating systems can be installed on such a system. How does the 
system know which one to boot? A boot loader that understands multiple 
file systems and multiple operating systems can occupy the boot space. Once 
loaded, it can boot one of the operating systems available on the disk. The disk 
can have multiple partitions, each containing a different type of file system and 
a different operating system. 

The root partition, which contains the operating-system kernel and poten- 
tially other system files, is mounted at boot time. Other partitions can be 
automatically mounted at boot or manually mounted later, depending on the 
operating system. As part of a successful mount operation, the operating sys- 

I 
Index 

I o m  
I 
I 

read (index) 

data blocks 

per-process system-wide 
open-file table open-file table 

f~ le control block 

user space kernel memory secondary storage 



418 Chapter 12 File-System Implementation 

tem verifies that the device contains a valid file system. It does so by asking the 
device driver to read the device directory and verifying that the directory has 
the expected format. If the format is invalid, the partition must have its consis- 
tency checked and possibly corrected, either with or without user intervention. 
Finally, the operating system notes in its in-memory mount table structure that 
a file system is mounted, and the type of the file system. The details of this 
function depend on the operating system. Microsoft Windows-based systems 
mount each partition in a separate name space, denoted by a letter and a colon. 
To record that a file system is mounted a t t ,  for example, the operating system 
places a pointer to the file system in a field of the device structure corresponding 
to fi. When a process specifies the driver letter, the operating system finds the 
appropriate file-system pointer and traverses the directory structures on that 
device to find the specified file or directory. 

On UNIX, file systems can be mounted at any directory. This is implemented 
by setting a flag in the in-memory copy of the inode for that directory. The flag 
indicates that the directory is a mount point. A field then points to an entry in 
the mount table, indicating which device is mounted there. The mount table 
entry contains a pointer to the superblock of the file system on that device. 
This scheme enables the operating system to traverse its directory structure, 
switching among file systems as appropriate. 

12.2.3 Virtual File Systems 
While the previous section makes it clear that modern operating systems must 
support concurrently multiple types of file systems, we now need to discuss 
some implementation details. How does an operating system allow multiple 
types of file systems to be integrated into a directory structure? How can users 
seamlessly move between file-system types as they navigate the file-system 
space? 

An obvious but suboptimal method of implementing multiple types of 
file systems is to write directory and file routines for each type. Rather, most 
operating systems, including UNIX, use object-oriented techniques to simplify, 
organize, and modularize the implementation. The use of these methods allows 
very dissimilar file-system types to be implemented within the same structure, 
including network file systems, such as NFS. Users can access files that are 
contained within multiple file systems on the local disk, or even on file systems 
available across the network. 

Data structures and procedures are used to isolate the basic system call 
functionality from the implementation details. Thus, the file-system implemen- 
tation consists of three major layers; it is depicted schematically in Figure 12.4. 
The first layer is the file-system interface, based on the open, read, write,  and 
close calls, and file descriptors. 

The second layer is called the Virtual File System (VFS) layer; it serves two 
important functions: 
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Figure 12.4 Schematic view of a virtual file system. 

1. It separates file-system-generic operations from their implementation by 
defining a clean VFS interface. Several implementations for the VFS inter- 
face may coexist on the same machine, allowing transparent access to 
different types of file systems mounted locally. 

2. The VFS is based on a file-representation structure, called a vnode, that 
contains a numerical designator for a network-wide unique file. (UNIX 
inodes are unique within only a single file system.) This network-wide 
uniqueness is required for support of network file systems. The kernel 
maintains one vnode structure for each active node (file or directory). 

Thus, the VFS distinguishes local files from remote ones, and local files are 
further distinguished according to their file-system types. 

The VFS activates file-system-specific operations to handle local requests 
according to their file-system types, and even calls the NFS protocol procedures 
for remote requests. File handles are constructed from the relevant vnodes 
and are passed as arguments to these procedures. The layer implementing 
the file-system type, or remote file system protocol, is the bottom layer of the 
architecture. An illustration of VFS operation is found in Section 12.9. 
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12.3 Directory Implementation 

The selection of directory-allocation and directory-management algorithms has 
a large effect on the efficiency, performance, and reliability of the file system. 
Therefore, you need to understand the tradeoffs involved in these algorithms. 

12.3.1 Linear List 

The simplest method of implementing a directory is to use a linear list of file 
names with pointers to the data blocks. A linear list of directory entries requires 
a linear search to find a particular entry. This method is simple to program 
but time-consuming to execute. To create a new file, we must first search the 
directory to be sure that no existing file has the same name. Then, we add a 
new entry at the end of the directory. To delete a file, we search the directory 
for the named file, then release the space allocated to it. To reuse the directory 
entry, we can do one of several things. We can mark the entry as unused (by 
assigning it a special name, such as an all-blank name, or with a used-unused 
bit in each entry), or we can attach it to a list of free directory entries. A third 
alternative is to copy the last entry in the directory into the freed location, and 
to decrease the length of the directory. A linked list can also be used to decrease 
the time to delete a file. 

The real disadvantage of a linear list of directory entries is the linear search 
to find a file. Directory information is used frequently, and users would notice a 
slow implementation of access to it. In fact, many operating systems implement 
a software cache to store the most recently used directory information. A cache 
hit avoids constantly rereading the information from disk. A sorted list allows a 
binary search and decreases the average search time. However, the requirement 
that the list must be kept sorted may complicate creating and deleting files, 
since we may have to move substantial amounts of directory information to 
maintain a sorted directory. A more sophisticated tree data structure, such as a 
B-tree, might help here. An advantage of the sorted list is that a sorted directory 
listing can be produced without a separate sort step. 

12.3.2 Hash Table 

Another data structure that has been used for a file directory is a hash table. In 
this method, a linear list stores the directory entries, but a hash data structure is 
also used. The hash table takes a value computed from the file name and returns 
a pointer to the file name in the linear list. Therefore, it can greatly decrease the 
directory search time. Insertion and deletion are also fairly straightforward, 
although some provision must be made for collisions-situations where two 
file names hash to the same location. The major difficulties with a hash table are 
its generally fixed size and the dependence of the hash function on that size. 

For example, assume that we make a linear-probing hash table that holds 
64 entries. The hash function converts file names into integers from 0 to 63, for 
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instance, by using the remainder of a division by 64. If we later try to create 
a 65th file, we must enlarge the directory hash table-say, to 128 entries. As 
a result, we need a new hash function that must map file names to the range 
0 to 127, and we must reorganize the existing directory entries to reflect their 
new hash-function values. Alternately, a chained-overflow hash table can be 
used. Each hash entry can be a linked list instead of an individual value, and 
we can resolve collisions by adding the new entry to the linked list. Lookups 
may be somewhat slowed, because searching for a name might require stepping 
through a linked list of colliding table entries, but this is likely to be much faster 
than a linear search through the entire directory. 

12.4 Allocation Methods 

The direct-access nature of disks allows us flexibility in the implementation of 
files. In almost every case, many files will be stored on the same disk. The 
main problem is how to allocate space to these files so that disk space is utilized 
effectively and files can be accessed quickly. Three major methods of allocating 
disk space are in wide use: contiguous, linked, and indexed. Each method has 
advantages and disadvantages. Some systems (such as Data General's RDOS 
for its Nova line of computers) support all three. More commonly, a system 
will use one particular method for all files. 

12.4.1 Contiguous Allocation 
The contiguous-allocation method requires each file to occupy a set of contigu- 
ous blocks on the disk. Disk addresses define a linear ordering on the disk. 
With this ordering, assuming that only one job is accessing the disk, accessing 
block b + 1 after block b normally requires no head movement. When head 
movement is needed (from the last sector of one cylinder to the first sector of the 
next cylinder), it is only one track. Thus, the number of disk seeks required for 
accessing contiguously allocated files is minimal, as is seek time when a seek is 
finally needed. The IBM VM/CMS operating system uses contiguous allocation 
because it provides such good performance. 

Contiguous allocation of a file is defined by the disk address and length (in 
block units) of the first block. If the file is n blocks long and starts at location 
b, then it occupies blocks b, b + 1, b + 2, ..., b + n - 1. The directory entry for 
each file indicates the address of the starting block and the length of the area 
allocated for this file (Figure 12.5). 

Accessing a file that has been allocated contiguously is easy. For sequential 
access, the file system remembers the disk address of the last block referenced 
and, when necessary, reads the next block. For direct access to block i of a 
file that starts at block b, we can immediately access block b + i. Thus, both 
sequential and direct access can be supported by contiguous allocation. 
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Figure 12.5 Contiguous allocation of disk space. 

Contiguous allocation has some problems, however. One difficulty is 
finding space for a new file. The implementation of the free-space-management 
system, discussed in Section 12.5, determines how this task is accomplished. 
Any management system can be used, but some are slower than others. 

The contiguous disk-space-allocation problem can be seen to be a particular 
application of the general dynamic storage-allocation problem discussed in 
Section 9.3, which is how to satisfy a request of size n from a list of free 
holes. First fit and best fit are the most common strategies used to select a 
free hole from the set of available holes. Simulations have shown that both 
first fit and best fit are more efficient than worst fit in terms of both time and 
storage utilization. Neither first fit nor best fit is clearly best in terms of storage 
utilization, but first fit is generally faster. 

These algorithms suffer from the problem of external fragmentation. AS 

files are allocated and deleted, the free disk space is broken into little pieces. 
External fragmentation exists whenever free space is broken into chunks. It 
becomes a problem when the largest contiguous chunk is insufficient for a 
request; storage is fragmented into a number of holes, no one of which is large 
enough to store the data. Depending on the total amount of disk storage and the 
average file size, external fragmentation may be a minor or a major problem. 

Some older microcomputer systems used contiguous allocation on floppy 
disks. To prevent loss of significant amounts of disk space to external fragmen- 
tation, the user had to run a repacking routine that copied the entire file system 
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onto another floppy disk or onto a tape. The original floppy disk was then freed 
completely, creating one large contiguous free space. The routine then copied 
the files back onto the floppy disk by allocating contiguous space from this one 
large hole. This scheme effectively compacts all free space into one contiguous 
space, solving the fragmentation problem. The cost of this compaction is time. 
The time cost is particularly severe for large hard disks that use contiguous allo- 
cation, where compacting all the space may take hours and may be necessary 
on a weekly basis. During this down time, normal system operation generally 
cannot be permitted, so such compaction is avoided at all costs on production 
machines. 

Another problem with contiguous allocation is determining how much 
space is needed for a file. When the file is created, the total amount of space 
it will need must be found and allocated. How does the creator (program or 
person) know the size of the file to be created? In some cases, this determination 
may be fairly simple (copying an existing file, for example); in general, however, 
the size of an output file may be difficult to estimate. 

If we allocate too little space to a file, we may find that the file cannot 
be extended. Especially with a best-fit allocation strategy, the space on both 
sides of the file may be in use. Hence, we cannot make the file larger in place. 
Two possibilities then exist. First, the user program can be terminated, with 
an appropriate error message. The user must then allocate more space and 
run the program again. These repeated runs may be costly. To prevent them, 
the user will normally overestimate the amount of space needed, resulting in 
considerable wasted space. 

The other possibility is to find a larger hole, copy the contents of the file to 
the new space, and release the previous space. This series of actions may be 
repeated as long as space exists, although it can be time-consuming. However, 
in this case, the user never needs to be informed explicitly about what is 
happening; the system continues despite the problem, although more and more 
slowly. 

Even if the total amount of space needed for a file is known in advance, 
preallocation may be inefficient. A file that grows slowly over a long period 
(months or years) must be allocated enough space for its final size, even though 
much of that space may be unused for a long time. The file, therefore, has a 
large amount of internal fragmentation. 

To minimize these drawbacks, some operating systems use a modified 
contiguous-allocation scheme, in which a contiguous chunk of space is allo- 
cated initially, and then, when that amount is not large enough, another chunk 
of contiguous space, an extent, is added to the i d i a l  allocation. The location 
of a file's blocks is then recorded as a location and a block count, plus a link 
to the first block of the next extent. On some systems, the owner of the file 
can set the extent size, but this setting results in inefficiencies if the owner is 
incorrect. Internal fragmentation can still be a problem if the extents are too 

I large, and external fragmentation can be a problem as extents of varying sizes 
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are allocated and deallocated. The commercial Veritas File System uses extents 
to optimize performance. It is a high-performance replacement for the standard 
UFS. 

12.4.2 Linked Allocation 
Linked allocation solves all problems of contiguous allocation. With linked 
allocation, each file is a linked list of disk blocks; the disk blocks may be 
scattered anywhere on the disk. The directory contains a pointer to the first 
and last blocks of the file. For example, a file of five blocks might start at block 
9, continue at block 16, then block 1, block 10, and finally block 25 (Figure 12.6). 
Each block contains a pointer to the next block. These pointers are not made 
available to the user. Thus, if each block is 512 bytes, and a disk address (the 
pointer) requires 4 bytes, then the user sees blocks of 508 bytes. 

To create a new file, we simply create a new entry in the directory. With 
linked allocation, each directory entry has a pointer to the first disk block of 
the file. This pointer is initialized to nil (the end-of-list pointer value) to signify 
an empty file. The size field is also set to 0. A write to the file causes a free 
block to be found via the free-space-management system, and this new block 
is then written to, and is linked to the end of the file. To read a file, we simply 
read blocks by following the pointers from block to block. There is no external 
fragmentation with linked allocation, and any free block on the free-space list 

directory 

file start end 

Figure 12.6 Linked allocation of disk space. 
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can be used to satisfy a request. The size of a file does not need to be declared 
when that file is created. A file can continue to grow as long as free blocks are 
available. Consequently, it is never necessary to compact disk space. 

Linked allocation does have disadvantages, however. The major problem 
is that it can be used effectively only for sequential-access files. To find the ith 
block of a file, we must start at the beginning of that file, and follow the pointers 
until we get to the ith block. Each access to a pointer requires a disk read, and 
sometimes a disk seek. Consequently, it is inefficient to support a direct-access 
capability for linked allocation files. 

Another disadvantage to linked allocation is the space required for the 
pointers. If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent 
of the disk is being used for pointers, rather than for information. Each file 
requires slightly more space than it would otherwise. 

The usual solution to this problem is to collect blocks into multiples, called 
clusters, and to allocate the clusters rather than blocks. For instance, the file 
system may define a cluster as 4 blocks, and operate on the disk in only cluster 
units. Pointers then use a much smaller percentage of the file's disk space. 
This method allows the logical-to-physical block mapping to remain simple, 
but improves disk throughput (fewer disk head seeks) and decreases the space 
needed for block allocation and free-list management. The cost of this approach 
is an increase in internal fragmentation, because more space is wasted if a 
cluster is partially full than when a block is partially full. Clusters can be used 
to improve the disk-access time for many other algorithms, so they are used in 
most operating systems. 

Yet another problem of linked allocation is reliability. Since the files are 
linked together by pointers scattered all over the disk, consider what would 
happen if a pointer were lost or damaged. A bug in the operating-system 
software or a disk hardware failure might result in picking up the wrong 
pointer. This error could result in linking into the free-space list or into another 
file. Partial solutions are to use doubly linked lists or to store the file name and 
relative block number in each block; however, these schemes require even more 
overhead for each file. 

An important variation on the linked allocation method is the use of a file- 
allocation table (FAT). This simple but efficient method of disk-space allocation 
is used by the MS-DOS and OS/2 operating systems. A section of disk at the 
beginning of each partition is set aside to contain the table. The table has one 
entry for each disk block, and is indexed by block number. The FAT is used 
much as is a linked list. The directory entry contains the block number of 
the first block of the file. The table entry indexed by that block number then 
contains the block number of the next block in the file. This chain continues 
until the last block, which has a special end-of-file value as the table entry. 
Unused blocks are indicated by a 0 table value. Allocating a new block to a 
file is a simple matter of finding the first 0-valued table entry, and replacing 
the previous end-of-file value with the address of the new block. The 0 is then 
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Figure 12.7 File-allocation table. 

replaced with the end-of-file value. An illustrative example is the FAT structure 
of Figure 12.7 for a file consisting of disk blocks 217,618, and 339. 

The FAT allocation scheme can result in a significant number of disk head 
seeks, unless the FAT is cached. The disk head must move to the start of the 
partition to read the FAT and find the location of the block in question, then 
move to the location of the block itself. In the worst case, both moves occur for 
each of the blocks. A benefit is that random access time is improved, because 
the disk head can find the location of any block by reading the information in 
the FAT. 

12.4.3 Indexed Allocation 

Linked allocation solves the external-fragmentation and size-declaration prob- 
lems of contiguous allocation. However, in the absence of a FAT, linked alloca- 
tion cannot support efficient direct access, since the pointers to the blocks are 
scattered with the blocks themselves all over the disk and need to be retrieved 
in order, Indexed allocation solves this problem by bringing all the pointers 
together into one location: the index block. 

Each file has its own index block, which is an array of disk-block addresses. 
The ith entry in the index block points to the ith block of the file. The directory 
contains the address of the index block (Figure 12.8). To read the ith block, we 
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Figure 12.8 Indexed allocation of disk space. 

use the pointer in the ith index-block entry to find and read the desired block. 
This scheme is similar to the paging scheme described in Chapter 9. 

When the file is created, all pointers in the index block are set to nil. When 
the ith block is first written, a block is obtained from the free-space manager, 
and its address is put in the ith index-block entry. 

Indexed allocation supports direct access, without suffering from external 
fragmentation, because any free block on the disk may satisfy a request for more 
space. 

Indexed allocation does suffer from wasted space. The pointer overhead 
of the index block is generally greater than the pointer overhead of linked 
allocation. Consider a common case in which we have a file of only one or two 
blocks. With linked allocation, we lose the space of only one pointer per block 
(one or two pointers). With indexed allocation, an entire index block must be 
allocated, even if only one or two pointers will be non-varnil. 

This point raises the question of how large the index block should be. Every 
file must have an index block, so we want the index block to be as small as 
possible. If the index block is too small, however, it will not be able to hold 
enough pointers for a large file, and a mechanism will have to be available to 
deal with this issue: 

Linked scheme: An index block is normally one disk block. Thus, it can 
be read and written directly by itself. To allow for large files, we may link 
together several index blocks. For example, an index block might contain a 
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small header giving the name of the file, and a set of the first 100 disk-block 
addresses. The next address (the last word in the index block) is nil (for a 
small file) or is a pointer to another index block (for a large file). 

Multilevel index: A variant of the linked representation is to use a first- 
level index block to point to a set of second-level index blocks, which in 
turn point to the file blocks. To access a block, the operating system uses 
the first-level index to find a second-level index block, and that block to 
find the desired data block. This approach could be continued to a third or 
fourth level, depending on the desired maximum file size. With 4,096-byte 
blocks, we could store 1,024 4-byte pointers in an index block. Two levels 
of indexes allow 1,048,576 data blocks, which allows a file of up to 4 GB. 

Combined scheme: Another alternative, used in the UFS, is to keep the first, 
say, 15 pointers of the index block in the file's inode. The first 12 of these 
pointers point to direct blocks; that is, they contain addresses of blocks that 
contain data of the file. Thus, the data for small (no more than 12 blocks) 
files do not need a separate index block. If the block size is 4 KB, then up 
to 48 KB of data may be accessed directly. The next 3 pointers point to 
indirect blocks. The first indirect block pointer is the address of a single 
indirect block. The single indirect block is an index block, containing not 
data, but rather the addresses of blocks that do contain data. Then there 
is a double indirect block pointer, which contains the address of a block 
that contains the addresses of blocks that contain pointers to the actual 
data blocks. The last pointer would contain the address of a triple indirect 
block. Under this method, the number of blocks that can be allocated to a 
file exceeds the amount of space addressable by the 4-byte file pointers used 
by many operating systems. A 32-bit file pointer reaches only 232 bytes, or 
4 GB. Many UNIX implementations, including Solaris and IBM's AIX, now 
support up to 64-bit file pointers. Pointers of this size allow files and file 
systems to be terabytes in size. An inode is shown in Figure 12.9. 

Indexed-allocation schemes suffer from some of the same performance 
problems as does linked allocation. Specifically, the index blocks can be cached 
in memory, but the data blocks may be spread all over a partition. 

12.4.4 Performance 
The allocation methods that we have discussed vary in their storage efficiency 
and data-block access times. Both are important criteria in selecting the proper 
method or methods for an operating system to implement. 

Before selecting an allocation method, we need to determine how the 
systems will be used. A system with mostly sequential access should use a 
method different from that for a system with mostly random access. For any 
type of access, contiguous allocation requires only one access to get a disk 
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Figure 12.9 The UNIX inode. 

block. Since we can easily keep the initial address of the file in memory, we 
can calculate immediately the disk address of the ith block (or the next block) 
and read it directly. 

For linked allocation, we can also keep the address of the next block in 
memory and read it directly. This method is fine for sequential access; for direct 
access, however, an access to the ith block might require i disk reads. This 
problem indicates why linked allocation should not be used for an application 
requiring direct access. 

As a result, some systems support direct-access files by using contiguous 
allocation and sequential access by linked allocation. For these systems, the 
type of access to be made must be declared when the file is created. A file 
created for sequential access will be linked and cannot be used for direct access. 
A file created for direct access will be contiguous and can support both direct 
access and sequential access, but its maximum length must be declared when 
it is created. In this case, the operating system must have appropriate data 
structures and algorithms to support both allocation methods. Files can be 
converted from one type to another by the creation of a new file of the desired 
type, into which the contents of the old file are copied. The old file may then be 
deleted, and the new file renamed. 

Indexed allocation is more complex. If the index block is already in mem- 
ory, then the access can be made directly. However, keeping the index block in 
memory requires considerable space. If this memory space is not available, then 
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we may have to read first the index block and then the desired data block. For 
a two-level index, two index-block reads might be necessary. For an extremely 
large file, accessing a block near the end of the file would require reading in 
all the index blocks to follow the pointer chain before the needed data block 
finally could be read. Thus, the performance of indexed allocation depends 
on the index structure, on the size of the file, and on the position of the block 
desired. 

Some systems combine contiguous allocation with indexed allocation by 
using contiguous allocation for small files (up to three or four blocks), and 
automatically switching to an indexed allocation if the file grows large. Since 
most files are small, and contiguous allocation is efficient for small files, average 
performance can be quite good. 

For instance, the version of the UNIX operating system from Sun Microsys- 
tems was changed in 1991 to improve performance in the file-system allocation 
algorithm. The performance measurements indicated that the maximum disk 
throughput on a typical workstation (12-MIPS SPARCstationl) took 50 percent 
of the CPU and produced a disk bandwidth of only 1.5 MB per second. To 
improve performance, Sun made changes to allocate space in clusters of size 
56 KB whenever possible. (56 KB was the maximum size of a DMA transfer 
on Suns at that time.) This allocation reduced external fragmentation, and 
thus seek and latency times. In addition, the disk-reading routines were opti- 
mized to read in these large clusters. The inode structure was left unchanged. 
These changes, plus the use of read-ahead and free-behind (discussed in Section 
12.6.2), resulted in 25 percent less CPU being used for substantially improved 
throughput. 

Many other optimizations are possible and are in use. Given the disparity 
between CPU and disk speed, it is not unreasonable to add thousands of extra 
instructions to the operating system to save just a few disk-head movements. 
Furthermore, this disparity is increasing over time, to the point where hun- 
dreds of thousands of instructions reasonably could be used to optimize head 
movements. 

Free-Space Management 

Since disk space is limited, we need to reuse the space from deleted files for new 
files, if possible. (Write-once optical disks only allow one write to any given 
sector, and thus such reuse is not physically possible.) To keep track of free 
disk space, the system maintains a free-space list. The free-space list records all 
free disk blocks-those not allocated to some file or directory. To create a file, 
we search the free-space list for the required amount of space, and allocate that 
space to the new file. This space is then removed from the free-space list. When 
a file is deleted, its disk space is added to the free-space list. The free-space list, 
despite its name, might not be implemented as a list, as we shall discuss. 
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12.5.1 Bit Vector 

Frequently, the free-space list is implemented as a bit map or bit vector. Each 
block is represented by 1 bit. If the block is free, the bit is 1; if the block is 
allocated, the bit is 0. 

For example, consider a disk where blocks 2, 3,4,5, 8, 9, 10, 11, 12, 13, 17, 
18, 25, 26, and 27 are free, and the rest of the blocks are allocated. The free- 
space bit map would be 

The main advantage of this approach is its relatively simplicity and effi- 
ciency in finding the first free block, or n consecutive free blocks on the disk. 
Indeed, many computers supply bit-manipulation instructions that can be 
used effectively for that purpose. For example, the Intel family starting with 
the 80386 and the Motorola family starting with the 68020 (processors that 
have powered PCs and Macintosh systems, respectively) have instructions that 
return the offset in a word of the first bit with the value 1. In fact, the Apple 
Macintosh operating system uses the bit-vector method to allocate disk space. 
To find the first free block, the Macintosh operating system checks sequentially 
each word in the bit map to see whether that value is not 0, since a 0-valued 
word has all 0 bits and represents a set of allocated blocks. The first non-0 word 
is scanned for the first 1 bit, which is the location of the first free block. The 
calculation of the block number is 

(number of bits per word) x (number of 0-value words) + offset of first 1 bit. 

Again, we see hardware features driving software functionality. Unfortu- 
nately, bit vectors are inefficient unless the entire vector is kept in main memory 
(and is written to disk occasionally for recovery needs). Keeping it in main 
memory is possible for smaller disks, such as on microcomputers, but not for 
larger ones. A 1.3-GB disk with 512-byte blocks would need a bit map of over 
332 KB to track its free blocks. Clustering the blocks in groups of four reduces 
this number to over 83 KB per disk. 

12.5.2 Linked List 

Another approach to free-space management is to link together all the free disk 
blocks, keeping a pointer to the first free block in a special location on the disk 
and caching it in memory. This first block contains a pointer to the next free 
disk block, and so on. In our example (Section 12.5.1), we would keep a pointer 
to block 2, as the first free block. Block 2 would contain a pointer to block 
3, which would point to block 4, which would point to block 5, which would 
point to block 8, and so on (Figure 12.10). However, this scheme is not efficient; 
to traverse the list, we must read each block, which requires substantial 1/0 
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free-space list head 

Figure 12.10 Linked free space list on disk. 

time. Fortunately, traversing the free list is not a frequent action. Usually, the 
operating system simply needs a free block so that it can allocate that block to 
a file, so the first block in the free list is used. The FAT method incorporates 
free-block accounting into the allocation data structure. No separate method is 
needed. 

12.5.3 Grouping 
A modification of the free-list approach is to store the addresses of n free blocks 
in the first free block. The first n-1 of these blocks are actually free. The last 
block contains the addresses of another n free blocks, and so on. The importance 
of this implementation is that the addresses of a large number of free blocks can 
be found quickly, unlike in the standard linked-list approach. 

12.5.4 Counting 

Another approach is to take advantage of the fact that, generally, several con- 
tiguous blocks may be allocated or freed simultaneously, particularly when 
space is allocated with the contiguous-allocation algorithm or through clus- 
tering. Thus, rather than keeping a list of n free disk addresses, we can keep 
the address of the first free block and the number n of free contiguous blocks 
that follow the first block. Each entry in the free-space list then consists of a 
disk address and a count. Although each entry requires more space than would 
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a simple disk address, the overall list will be shorter, as long as the count is 
generally greater than 1. 

12.6 Efficiency and Performance 

Now that we have discussed the block-allocation and directory-management 
options, we can further consider their effect on performance and efficient disk 
use. Disks tend to be a major bottleneck in system performance, since they are 
the slowest main computer component. In this section, we discuss a variety 
of techniques used to improve the efficiency and performance of secondary 
storage. 

12.6.1 Efficiency 
The efficient use of disk space is heavily dependent on the disk allocation and 
directory algorithms in use. For instance, UNIX inodes are preallocated on a 
partition. Even an "empty" disk has a percentage of its space lost to inodes. 
However, by preallocating the inodes and spreading them across the partition, 
we improve the file system's performance. This improved performance is a 
result of the UNIX allocation and free-space algorithms, which try to keep a 
file's data blocks near that file's inode block to reduce seek time. 

As another example, let us reconsider the clustering scheme discussed in 
Section 12.4, which aids in file-seek and file-transfer performance at the cost 
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the 
cluster size as a file grows. Large clusters are used where they can be filled, and 
small clusters are used for small files and the last cluster of a file. This system 
is described in Appendix A. 

The types of data normally kept in a file's directory (or inode) entry also 
require consideration. Commonly, a "last write date" is recorded to supply 
information to the user and to determine whether the file needs to be backed 
up. Some systems also keep a "last access date," so that a user can determine 
when the file was last read. The result of keeping this information is that, 
whenever the file is read, a field in the directory structure must be written to. 
This change requires the block to be read into memory, a section changed, and 
the block written back out to disk, because operations on disks occur only in 
block (or cluster) chunks. So, any time a file is opened for reading, its directory 
entry must be read and written as well. This requirement can be inefficient for 
frequently accessed files, so we must weigh its benefit against its performance 
cost when designing a file system. Generally, every data item associated with a 
file needs to be considered for its effect on efficiency and performance. 

As an example, consider how efficiency is affected by the size of the pointers 
used to access data. Most systems use either 16- or 32-bit pointers throughout 
the operating system. These pointer sizes limit the length of a file to either 216 
(64 KB) or 232 bytes (4 GB). Some systems implement 64-bit pointers to increase 
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this limit to 264 bytes, which is a very large number indeed. However, 64-bit 
pointers take more space to store, and in turn make the allocation and free- 
space-management methods (linked lists, indexes, and so on) use more disk 
space. 

One of the difficulties in choosing a pointer size, or indeed any fixed allo- 
cation size within an operating system, is planning for the effects of changing 
technology. Consider that the IBM PC XT had a 10-MB hard drive and an MS-DOS 
file system that could support only 32 MB. (Each FAT entry was 12 bits, pointing 
to an 8-KB cluster.) As disk capacities increased, larger disks had to be split 
into 32-MB partitions, because the file system could not track blocks beyond 32 
MB. As hard disks of over 100-MB capacities became common, the disk data 
structures and algorithms in MS-DOS had to be modified to allow larger file 
systems. (Each FAT entry was expanded to 16 bits, and later to 32 bits.) The 
initial file-system decisions were made for efficiency reasons; however, with the 
advent of MS-DOS Version 4, millions of computer users were inconvenienced 
when they had to switch to the new, larger file system. 

As another example, consider the evolution of Sun's Solaris operating 
system. Originally, many data structures were of fixed lengths, allocated at 
system startup. These structures included the process table and the open-file 
table. When the process table became full, no more processes could be created. 
When the file table became full, no more files could be opened. The system 
would fail to provide services to the users. These table sizes could be increased 
only by recompiling the kernel and rebooting the system. Since the release of 
Solaris 2, almost all kernel structures are allocated dynamically, eliminating 
these artificial limits on system performance. Of course, the algorithms that 
manipulate these tables are more complicated, and the operating system is a 
little slower because it must dynamically allocate and deallocate table entries, 
but that price is the usual one for more functional generality. 

12.6.2 Performance 

Once the basic file-system algorithms are selected, we can still improve perfor- 
mance in several ways. As noted in Chapter 2, most disk controllers include 
local memory to form an on-board cache that is sufficiently large to store entire 
tracks at a time. Once a seek is performed, the track is read into the disk cache 
starting at the sector under the disk head (alleviating latency time). The disk 
controller then transfers any sector requests to the operating system. Once 
blocks make it from the disk controller into main memory, the operating system 
may cache the blocks there. 

Some systems maintain a separate section of main memory for a disk 
cache, where blocks are kept under the assumption that they will be used again 
shortly. Other systems cache file data using a page cache. The page cache 
uses virtual-memory techniques to cache file data as pages rather than as file- 
system-oriented blocks. Caching file data using virtual addresses is far more 
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file system . 
Figure 12.11 1/0 without a unified buffer cache. 

efficient than caching through physical disk blocks. Several systems, including 
Solaris, some new Linux releases, and Windows NT and 2000, use page caching 
to cache both process pages and file data. This is known as unified virtual 
memory. Solaris uses both a block cache and a page cache. The block cache is 
used for file-system metadata (such as inodes) and the page cache is used for 
all file-system data. 

Some versions of UNIX provide a unified buffer cache. Consider the two 
alternatives of opening and accessing a file. One approach is to use memory 
mapping (Section 10.3.2), the second is to use the standard system calls read 
and write.  Without a unified buffer cache, we have a situation similar to 
Figure 12.11. In this instance, the read and wri te  system calls go through 
the buffer cache. The memory mapping call requires using two caches-the 
page cache and buffer cache. A memory mapping proceeds by reading in disk 
blocks from the file system and storing them in the buffer cache. Because the 
virtual memory system cannot interface with the buffer cache, the contents of 
the file in the buffer cache must be copied into the page cache. This situation is 
known as double caching and requires caching file-system data twice. Not only 
is it wasteful of memory, but it wastes significant CPU and 1/0  cycles due to the 
extra data movement within system memory. Also, inconsistencies between 
the two caches can result in corrupt files. By providing a unified buffer cache, 
both memory mapping and the read and wri te  system calls use the same page 
cache. This has the benefit of avoiding double caching and it allows the virtual 
memory system to manage file-system data. The unified buffer cache is shown 
in Figure 12.12. 
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Figure 12.12 I/O using a unified buffer cache. 

Regardless of whether we are caching disk blocks or pages, LRU seems a 
reasonable general-purpose algorithm for block or page replacement. However, 
the evolution of the Solaris page-caching algorithms reveals the difficulty in 
choosing an algorithm. Solaris allows processes and the page cache to share 
unused memory. Prior to Solaris 2.5.1, there was no distinction between allocat- 
ing pages to a process or the page cache. As a result, a system performing many 
I/O operations uses most of the available memory for caching pages. Because 
of the high rates of I/O, the page scanner (Section 10.7.2) reclaims pages from 
processes-rather than the page cache-when free memory runs low. Solaris 
2.6 and Solaris 7 optionally implemented priority paging, in which the page scan- 
ner gives priority to process pages over the page cache. Solaris 8 added a fixed 
limit between process pages and file-system page cache, preventing either from 
forcing the other out of memory. 

The page cache, the file system, and the disk drivers have some interesting 
interactions. When data are written to a disk file, the pages are buffered in 
the cache, and the disk driver sorts its output queue according to disk address. 
These two actions allow the disk driver to minimize disk-head seeks and to 
write data at times optimized for disk rotation. Unless synchronous writes are 
required, a process writing to disk simply writes into the cache, and the system 
asynchronously writes the data to disk when convenient. The user process sees 
very fast writes. When data are read from a disk file, the block I/O system does 
some read-ahead; however, writes are much nearer to asynchronous than are 
reads. Thus, output to the disk through the file system is often faster than is 
input for large transfers, counter to intuition. 

Synchronous writes occur in the order in which the disk subsystem 
receives them, and the writes are not buffered. Thus the calling routine must 
wait for the data to reach the disk drive before it can proceed. Asynchronous 
writes are done the majority of the time. In an asynchronous write the data is 
stored in the cache and returns control to the caller. Metadata writes, among 
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others, can be synchronous. Operating systems frequently include a flag in 
the open system call to allow a process to request that writes be performed 
synchronously. For example, databases use this feature for atomic transactions, 
to assure that data reaches stable storage in the required order. 

Some systems optimize their page cache by using different replacement 
algorithms, depending on the access type of the file. A file being read or 
written sequentially should not have its pages replaced in LRU order, because 
the most recently used page will be used last, or perhaps never again. Instead, 
sequential access may be optimized by techniques known as free-behind and 
read-ahead. Free-behind removes a page from the buffer as soon as the next 
page is requested. The previous pages are not likely to be used again and waste 
buffer space. With read-ahead, a requested page and several subsequent pages 
are read and cached. These pages are likely to be requested after the current 
page is processed. Retrieving this data from the disk in one transfer and caching 
it saves a considerable amount of time. A track cache on the controller does not 
eliminate the need for read-ahead on a multiprogrammed system, because of 
the high latency and overhead of many small transfers from the track cache to 
main memory. 

Another method of using main memory to improve performance is com- 
mon on PCs. A section of memory is set aside and treated as a virtual disk (or 
RAM disk). In this case, a RAM-disk device driver accepts all the standard disk 
operations but performs those operations on the memory section, instead of on 
a disk. All disk operations can then be executed on this RAM disk and, except 
for the lightning-fast speed, users will not notice a difference. Unfortunately, 
RAM disks are useful only for temporary storage, since a power failure or a 
reboot of the system will usually erase them. Commonly, temporary files such 
as intermediate compiler files are stored there. 

The difference between a RAM disk and a disk cache is that the contents 
of the RAM disk are totally user controlled, whereas those of the disk cache 
are under the control of the operating system. For instance, a RAM disk will 
stay empty until the user (or programs, at a user's direction) creates files there. 
Figure 12.13 shows the possible caching locations in a system. 

12.7 Recovery 

Since files and directories are kept both in main memory and on disk, care must 
taken to ensure that system failure does not result in loss of data or in data 
inconsistency. 

12.7.1 Consistency Checking 

As discussed in Section 12.3, part of the directory information is kept in main 
memory (or cache) to speed up access. The directory information in main 
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Figure 12.13 Various disk-caching locations. 

memory is generally more up to date than is the corresponding information 
on the disk, because the write of cached directory information to disk does not 
necessarily occur as soon as the update takes place. 

Consider the possible effect of a computer crash. In this case, the table 
of opened files is generally lost, and with it any changes in the directories 
of opened files. This event can leave the file system in an inconsistent state: 
The actual state of some files is not as described in the directory structure. 
Frequently, a special program is run at reboot time to check for and correct disk 
inconsistencies. 

The consistency checker compares the data in the directory structure with 
the data blocks on disk, and tries to fix any inconsistencies it finds. The allo- 
cation and free-space-management algorithms dictate what types of problems 
the checker can find, and how successful it will be in fixing them. For instance, 
if linked allocation is used and there is a link from any block to its next block, 
then the entire file can be reconstructed from the data blocks, and the directory 
structure can be recreated. The loss of a directory entry on an indexed alloca- 
tion system could be disastrous, because the data blocks have no knowledge of 
one another. For this reason, UNIX caches directory entries for reads, but any 
data write that results in space allocation, or other metadata changes, is done 
synchronously, before the corresponding data blocks are written. 

12.7.2 Backup and Restore 

Because magnetic disks sometimes fail, care must be taken to ensure that the 
data are not lost forever. To this end, system programs can be used to back up 
data from disk to another storage device, such as a floppy disk, magnetic tape, 
or optical disk. Recovery from the loss of an individual file, or of an entire disk, 
may then be a matter of restoring the data from backup. 

To minimize the copying needed, we can use information from each file's 
directory entry. For instance, if the backup program knows when the last 
backup of a file was done, and the file's last write date in the directory indicates 
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that the file has not changed since that date, then the file does not need to be 
copied again. A typical backup schedule may then be as follows: 

Day 1: Copy to a backup medium all files from the disk. This is called a 
full backup. 

Day 2: Copy to another medium all files changed since day 1. This is an 
incremental backup. 

Day 3: Copy to another medium all files changed since day 2. 

Day N: Copy to another medium all files changed since day N- 1. Then go 
back to Day 1. 

The new cycle can have its backup written over the previous set, or onto 
a new set of backup media. In this manner, we can restore an entire disk 
by starting restores with the full backup, and continuing through each of the 
incremental backups. Of course, the larger N is, the more tapes or disks need 
to be read for a complete restore. An added advantage of this backup cycle is 
that we can restore any file accidentally deleted during the cycle by retrieving 
the deleted file from the backup of the previous day. The length of the cycle is 
a compromise between the amount of backup medium needed and the number 
of days back from which a restore can be done. 

A user may notice that a particular file is missing or corrupted long after 
the damage was done. For this reason, we usually plan to take a full backup 
from time to time that will be saved "forever," rather than reusing that backup 
medium. It is a good idea to store these permanent backups far away from 
the regular backups to protect against hazard, such as a fire that destroys the 
computer and all the backups too. And if the backup cycle reuses media, one 
must take care not to reuse the media too many times-if the media wear out, 
it might not be possible to restore any data from the backups. 

12.8 . Log-Structured File System 

Frequently in computer science, algorithms and technologies transition from 
their original use to other applicable areas. Such is the case with the database 
log-based-recovery algorithms described in Section 7.9.2. These logging algo- 
rithms have been applied successfully to the problem of consistency checking. 
The resulting implementations are known as log-based transaction-oriented 
(or journaling) file systems. 
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Recall that on-disk file-system data structures-such as the directory struc- 
tures, free-block pointers, free FCB pointers-can become inconsistent due to 
a system crash. Before the use of log-based techniques in operating systems, 
changes were usually applied to these structures in place. A typical operation, 
such as file create, can involve many structural changes within the file system 
on the disk. Directory structures are modified, FCBs are allocated, data blocks 
are allocated, and the free counts for all of these blocks are decreased. Those 
changes can be interrupted by a crash, with the result that the structures are 
inconsistent. For example, the free FCB count might indicate that an FCB had 
been allocated, but the directory structure might not point to the FCB. The FCB 
would be lost were it not for the consistency-check phase. 

There are several problems with the approach of allowing the structures to 
break and repairing them on recovery. One is that the inconsistency may be 
irreparable. The consistency check may not be able to recover the structures, 
with the resulting loss of files and even entire directories. Consistency checking 
can require human intervention to resolve conflicts, and that is inconvenient if 
no human is available. The system can remain unavailable until the human tells 
the system how to proceed. Consistency checking also takes system and clock 
time. Terabytes of data can take hours of clock time to check. 

The solution to this problem is to apply log-based-recovery techniques to 
file-system metadata updates. NTFS and the Veritas File System both yse ths 
method, and it is an option to UFS on Solaris 7 and beyond. In fa+ it is 
becoming common on many operating systems. 

Fundamentally, all metadata changes are written sequentially to a log. 
Each set of operations that perform a specific task is a transaction. Once 
the changes are written to this log, they are considered to be committed, 
and the system call can return to the user process, allowing it to continue 
execution. Meanwhile, these log entries are replayed across the actual file- 
system structures. As the changes are made, a pointer is updated to indicate 
which actions have completed and which are still incomplete. When an entire 
committed transaction is completed, it is removed from the log file, which is 
actually a circular buffer. The log may be in a separate section of the file system, 
or could even be on a separate disk spindle. It is more efficient, but more 
complex, to have it under separate read/write heads, thereby decreasing head 
contention and seek times. 

If the system crashes, there will zero or more transactions in the log file. 
Those transactions were never completed to the file system even though they 
were committed by the operating system, so they must be completed. The 
transactions can be executed from the pointer until the work is complete, and 
the file-system structures remain consistent. The only problem occurs when a 
transaction has been aborted. That is, it was not committed before the system 
crashed. Any changes from those transactions that were applied to the file 
system must be undone, again preserving the consistency of the file system. 
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This recovery is all that is needed after a crash, eliminating all problems with 
consistency checking. 

A side benefit of using logging on disk metadata updates is that those 
updates proceed much faster than when they are applied directly to the on-disk 
data structures. The reason for this improvement is found in the performance 
advantage of sequential 1/0 over random I/O. The costly synchronous ran- 
dom metadata writes are turned into much less costly synchronous sequential 
writes to the log-structured file systems logging area. Those changes in turn 
are replayed asynchronously via random writes to the appropriate structures. 
The overall result is a significant gain in performance of metadata-oriented 
operations, such as file creation and deletion. 

12.9 NFS 

Network file systems are commonplace. They typically integrate with the 
overall directory structure and interface of the client system. NFS is a good 
example of a widely used, well-implemented client-server network file system. 
Here, we use it as an example to explore the implementation details of network 
file systems. 

NFS is both an implementation and a specification of a software system 
for accessing remote files across LANs (or even WANs). NFS is part of ONC+, 
which most UNIX vendors and some PC operating systems are supporting. 
The implementation described here is part of the Solaris operating system, 
which is a modified version of UNIX SVR4, running on Sun workstations and 
other hardware. It uses either the TCP or UDP/IP protocol (depending on 
the interconnecting network). The specification and the implementation are 
intertwined in our description of NFS. Whenever detail is needed, we refer to 
the Sun implementation; whenever the description is general, it applies to the 
specification also. 

12.9.1 Overview 

NFS views a set of interconnected workstations as a set of independent 
machines with independent file systems. The goal is to allow some degree of 
sharing among these file systems (on explicit request) in a transparent manner. 
Sharing is based on a client-server relationship. A machine may be, and 
often is, both a client and a server. Sharing is allowed between any pair of 
machines, rather than with only dedicated server machines. To ensure machine 
independence, sharing of a remote file system affects only the client machine 
and no other machine. 

So that a remote directory will be accessible in a transparent manner from 
a particular machine-say, from MI-a client of that machine has to carry 
out a mount operation first. The semantics of the operation are that a remote 
directory is mounted over a directory of a local file system. Once the mount 



Chapter 12 File-System Implementation 

Figure 12.14 Three independent file systems. 

operation is completed, the mounted directory looks like an integral subtree 
of the local file system, replacing the subtree descending from the local direc- 
tory. The local directory becomes the name of the root of the newly mounted 
directory. Specification of the remote directory as an argument for the mount 
operation is done in a non-transparent manner; the location (or host name) of 
the remote directory has to be provided. However, from then on, users on 
machine M1 can access files in the remote directory in a totally transparent 
manner. 

To illustrate file mounting, consider the file system depicted in Figure 12.14, 
where the triangles represent subtrees of directories that are of interest. The 
figure shows three independent file systems of machines named U, S1, and S2. 
At this point, at each machine, only the local files can be accessed. In Figure 
12.15(a), the effects of the mounting of Sl:/usr/shared over U:/usr/local are shown. 
This figure depicts the view users on U have of their file system. Observe that 
they can access any file within the dirl directory, for instance, using the prefix 
/usr/local/dirl on U after the mount is complete. The original directory /usr/local 
on that machine is no longer visible. 

Subject to access-rights accreditation, potentially any file system, or any 
directory within a file system, can be mounted remotely on top of any local 
directory. Diskless workstations can even mount their own roots from servers. 

Cascading mounts are also permitted in some NFS implementations. That 
is, a file system can be mounted over another file system that is remotely 
mounted, not local. A machine is affected by only those mounts that it has 
itself invoked. 

By mounting a remote file system, the client does not gain access to other 
file systems that were, by chance, mounted over the former file system. Thus, 
the mount mechanism does not exhibit a transitivity property. In Figure 
12.15(b), we illustrate cascading mounts by continuing our previous example. 
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Figure 12.15 Mounting in NFS. (a) Mounts. (b) Cascading mounts. 

The figure shows the result of mounting S2:/usr/dir2 over U:/usr/local/dirl, which 
is already remotely mounted from S1. Users can access files within dir2 on 
U using the prefix /usr/Zocal/dirl. If a shared file system is mounted over a 
user's home directories on all machines in a network, a user can log in to 
any workstation and get his home environment. This property permits user 
mobility. 

One of the design goals of NFS was to operate in a heterogeneous envi- 
ronment of different machines, operating systems, and network architectures. 
The NFS specification is independent of these media and thus encourages other 
implementations. This independence is achieved through the use of RPC prim- 
itives built on top of an External Data Representation (XDR) protocol used 
between two implementation-independent interfaces. Hence, if the system con- 
sists of heterogeneous machines and file systems that are properly interfaced to 
NFS, file systems of different types can be mounted both locally and remotely. 

The NFS specification di2tinguishes between the services provided by a 
mount mechanism and the actual remote-file-access services. Accordingly, 
two separate protocols are specified for these services: a mount protocol, 
and a protocol for remote file accesses, the NFS protocol. The protocols are 
specified as sets of RPCs. These RPCs are the building blocks used to implement 
transparent remote file access. 

12.9.2 The Mount Protocol 

The mount protocol establishes the initial logical connection between a server 
1 and a client. In Sun's implementation, each machine has a server process, 
1 outside the kernel, performing the protocol functions. 
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A mount operation includes the name of the remote directory to be 
mounted and the name of the server machine storing it. The mount request 
is mapped to the corresponding RPC and is forwarded to the mount server 
running on the specific server machine. The server maintains an export list 
-the /etc/dfs/dfstab in Solaris, which can be edited only by a superuser-which 
specifies local file systems that it exports for mounting, along with names of 
machines that are permitted to mount them. The specification can also include 
access rights, such as read only. To simplify the maintenance of export lists and 
mount tables, a distributed naming scheme can be used to hold this information 
and make it available to appropriate clients. 

Recall that any directory within an exported file system can be mounted 
remotely by an accredited machine. Hence, a component unit is such a direc- 
tory. When the server receives a mount request that conforms to its export list, 
it returns to the client a file handle that serves as the key for further accesses 
to files within the mounted file system. The file handle contains all the infor- 
mation that the server needs to distinguish an individual file it stores. In UNIX 
terms, the file handle consists of a file-system identifier and an inode number 
to identify the exact mounted directory within the exported file system. 

The server also maintains a list of the client machines and the correspond- 
ing currently mounted directories. This list is used mainly for administrative 
purposes-for instance, for notifying all clients that the server is going down. 
Addition and deletion of entries in this list are the only ways that the server 
state can be affected by the mount protocol. 

Usually, a system has a static mounting preconfiguration that is established 
at boot time (/etc/vfstab in Solaris); however, this layout can be modified. In 
addition to the actual mount procedure, the mount protocol includes several 
other procedures, such as unrnount and return export list. 

12.9.3 The NFS Protocol 

The NFS protocol provides a set of RPCs for remote file operations. The proce- 
dures support the following operations: 

Searching for a file within a directory 

Reading a set of directory entries 

Manipulating links and directories 

Accessing file attributes 

Reading and writing files 

These procedures can be invoked only after a file handle for the remotely 
mounted directory has been established. 
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The omission of open and close operations is intentional. A prominent 
feature of NFS servers is that they are stateless. Servers do not maintain infor- 
mation about their clients from one access to another. No parallels to UNIX's 
open-files table or file structures exist on the server side. Consequently, each 
request has to provide a full set of arguments, including a unique file identifier 
and an absolute offset inside the file for the appropriate operations. The result- 
ing design is robust; no special measures need to be taken to recover a server 
after a crash. File operations need to be idempotent for this purpose. Every NFS 
request has a sequence number, allowing the server to determine if a request is 
duplicated or if any are missing. 

Maintaining the list of clients that we mentioned seems to violate the 
statelessness of the server. However, this list is not essential for the correct 
operation of the client or the server, and hence it does not need to be restored 
after a server crash. Consequently, it might include inconsistent data and is 
treated as only a hint. 

A further implication of the stateless-server philosophy and a result of the 
synchrony of an RPC is that modified data (including indirection and status 
blocks) must be committed to the server's disk before results are returned to 
the client. That is, a client can cache write blocks, but when it flushes them 
to the server, it assumes that they have reached the server's disks. The server 
must write all NFS data synchronously. Thus, a server crash and recovery will 
be invisible to a client; all blocks that the server is managing for the client 
will be intact. The consequent performance penalty can be large, because 
the advantages of caching are lost. Performance can be increased by using 
storage with its own nonvolatile cache (usually battery-backed-up memory). 
The disk controller acknowledges the disk write when the write is stored in the 
nonvolatile cache. In essence the host sees a very fast synchronous write. These 
blocks remain intact even after system crash, and are written from this stable 
storage to disk periodically. 

A single NFS write procedure call is guaranteed to be atomic, and also is not 
intermixed with other write calls to the same file. The NFS protocol, however, 
does not provide concurrency-control mechanisms. A wri te  system call may 
be broken down into several RPC writes, because each NFS write or read call 
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a 
result, two users writing to the same remote file may get their data intermixed. 
The claim is that, because lock management is inherently stateful, a service 
outside the NFS should provide locking (and Solaris does). Users are advised to 
coordinate access to shared files using mechanisms outside the scope of NFS. 

NFS is integrated into the operating system via a VFS. As an illustration of 
the architecture, let us trace how an operation on an already open remote file is 
handled (follow the example in Figure 12.16). The client initiates the operation 
by a regular system call. The operating-system layer maps this call to a VFS 

1 operation on the appropriate vnode. The VFS layer identifies the file as a remote 
I one and invokes the appropriate NFS procedure. An RPC call is made to the 
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client server 

Figure 12.16 Schematic view of the NFS architecture. 

NFS service layer at the remote server. This call is reinjected to the VFS layer 
on the remote system, which finds that it is local and invokes the appropriate 
file-system operation. This path is retraced to return the result. An advantage 
of this architecture is that the client and the server are identical; thus, a machine 
may be a client, or a server, or both. 

The actual service on each server is performed by several kernel processes 
that provide a temporary substitute to a lightweight process (or threads) mech- 
anism. 

12.9.4 Path-Name Translation 
Path-name translation is done by breaking the path into component names 
and performing a separate NFS lookup call for every pair of component 
name and directory vnode. Once a mount point is crossed, every component 
lookup causes a separate RPC to the server. This expensive path-name-traversal 
scheme is needed, since each client has a unique layout of its logical name space, 
dictated by the mounts it performed. It would have been much more efficient 
to hand a server a path name and to receive a target vnode once a mount point 
was encountered. At any point, however, there can be another mount point for 
the particular client of which the stateless server is unaware. 
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So that lookup is fast, a directory name lookup cache on the client side 
holds the vnodes for remote directory names. This cache speeds up references 
to files with the same initial path name. The directory cache is discarded when 
attributes returned from the server do not match the attributes of the cached 
vnode. 

Recall that mounting a remote file system on top of another already 
mounted remote file system (cascading mount) is allowed in some implemen- 
tations of NFS. However, a server cannot act as an intermediary between a 
client and another server. Instead, a client must establish a direct client-server 
connection with the second server by directly mounting the desired directory. 
When a client has a cascading mount, more than one server can be involved in a 
path-name traversal. However, each component lookup is performed between 
the original client and some server. Therefore, when a client does a lookup on 
a directory on which the server has mounted a file system, the client sees the 
underlying directory, instead of the mounted directory. 

12.9.5 Remote Operations 
With the exception of opening and closing files, there is almost a one-to-one 
correspondence between the regular UNIX system calls for file operations and 
the NFS protocol RPCs. Thus, a remote file operation can be translated directly 
to the corresponding RPC. Conceptually, NFS adheres to the remote-service 
paradigm, but in practice buffering and caching techniques are employed for 
the sake of performance. No direct correspondence exists between a remote 
operation and an RPC. Instead, file blocks and file attributes are fetched by the 
RPCs and are cached locally. Future remote operations use the cached data, 
subject to consistency constraints. 

There are two caches: the file-attribute (inode-information) cache and the 
file-blocks cache. On a file open, the kernel checks with the remote server 
whether to fetch or revalidate the cached attributes. The cached file blocks are 
used only if the corresponding cached attributes are up to date. The attribute 
cache is updated whenever new attributes arrive from the server. Cached 
attributes are, by default, discarded after 60 seconds. Both read-ahead and 
delayed-write techniques are used between the server and the client. Clients 
do not free delayed-write blocks until the server confirms that the data have 
been written to disk. In contrast to the system used in Sprite, delayed-write is 
retained even when a file is opened concurrently, in conflicting modes. Hence, 
UNIX semantics are not preserved. 

Tuning the system for performance makes it difficult to characterize the 
consistency semantics of NFS. New files created on a machine may not be visible 
elsewhere for 30 seconds. It is indeterminate whether writes to a file at one 
site are visible to other sites that have this file open for reading. New opens 
of that file observe only the changes that have already been flushed to the 
server. Thus, NFS provides neither strict emulation of UNIX semantics, nor the 
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session semantics of Andrew. In spite of these drawbacks, the utility and high 
performance of the mechanism makes it the most widely used multivendor 
distributed system in operation. 

12.10 Summary 

The file system resides permanently on secondary storage, which is designed to 
hold a large amount of data permanently. The most common secondary-storage 
medium is the disk. 

Physical disks may be segmented into partitions to control media use and 
to allow multiple, possibly varying, file systems per spindle. These file systems 
are mounted onto a logical file system architecture to make them available for 
use. File systems are often implemented in a layered or modular structure. The 
lower levels deal with the physical properties of storage devices. Upper levels 
deal with symbolic file names and logical properties of files. Intermediate levels 
map the logical file concepts into physical device properties. 

Every file-system type can have different structures and algorithms. A VFS 
layer allows the upper layers to deal with each file-system type uniformly. Even 
remote file systems can be integrated into the system's directory structure and 
acted on by standard system calls via the VFS interface. 

The various files can be allocated space on the disk in three ways: through 
contiguous, linked, or indexed allocation. Contiguous allocation can suffer 
from external fragmentation. Direct access is very inefficient with linked allo- 
cation. Indexed allocation may require substantial overhead for its index block. 
These algorithms can be optimized in many ways. Contiguous space may be 
enlarged through extents to increase flexibility and to decrease external frag- 
mentation. Indexed allocation can be done in clusters of multiple blocks to 
increase throughput and to reduce the number of index entries needed. Index- 
ing in large clusters is similar to contiguous allocation with extents. 

Free-space allocation methods also influence the efficiency of use of disk 
space, the performance of the file system, and the reliability of secondary 
storage. The methods used include bit vectors and linked lists. Optimizations 
include grouping, counting, and the FAT, which places the linked list in one 
contiguous area. 

The directory-management routines must consider efficiency, performance, 
and reliability. A hash table is the most frequently used method; it is fast 
and efficient. Unfortunately, damage to the table or a system crash could 
result in the directory information not corresponding to the disk's contents. A 
consistency checker-a systems program such as f sck in UNIX, or chkdsk in 
MS-DOS-can be used to repair the damage. Operating-system backup tools 
allow disk data to be copied to tape, to recover from data or even disk loss due 
to hardware failure, operating system bug, or user error. 
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Network file systems, such as NFS, use client-server methodology to allow 
users to access files and directories from remote machines as if they were on 
local file systems. System calls on the client are translated into network pro- 
tocols, and retranslated into file-system operations on the server. Networking 
and multiple-client access create challenges in the areas of data consistency and 
performance. 

Due to the fundamental role that file systems play in system operation, their 
performance and reliability is crucial. Techniques such as log structures and 
caching help improve the performance, while log structures and RAID improve 
reliability. 

Exercises 

12.1 Consider a file currently consisting of 100 blocks. Assume that the 
FCB (and the index block, in the case of indexed allocation) is already 
in memory. Calculate how many disk I/O operations are required for 
contiguous, linked, and indexed (single-level) allocation strategies, if, for 
one block, the following conditions hold. In the contiguous-allocation 
case, assume that there is no room to grow in the beginning, but room to 
grow in the end. Assume that the block information to be added is stored 
in memory. 

a. The block is added at the beginning. 

b. The block is added in the middle. 

c. The block is added at the end. 

d. The block is removed from the beginning. 

e. The block is removed from the middle. 

f. The block is removed from the end. 

12.2 Consider a system where free space is kept in a free-space list. 

a. Suppose that the pointer to the free-space list is lost. Can the system 
reconstruct the free-space list? Explain your answer. 

b. Suggest a scheme to ensure that the pointer is never lost as a result 
of memory failure. 

12.3 What problems could occur if a system allowed a file system to be 
mounted simultaneously at more than one location? 

12.4 Why must the bit map for file allocation be kept on mass storage, rather 
than in main memory? 
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12.5 Consider a system that supports the strategies of contiguous, linked, 
and indexed allocation. What criteria should be used in deciding which 
strategy is best utilized for a particular file? 

12.6 Consider a file system on a disk that has both logical and physical block 
sizes of 512 bytes. Assume that the information about each file is already 
in memory. For each of the three allocation strategies (contiguous, linked, 
and indexed), answer these questions: 

a. How is the logical-to-physical address mapping accomplished in 
this system? (For the indexed allocation, assume that a file is always 
less than 512 blocks long.) 

b. If we are currently at logical block 10 (the last block accessed was 
block 10) and want to access logical block 4, how many physical 
blocks must be read from the disk? 

One problem with contiguous allocation is that the user must preallocate 
enough space for each file. If the file grows to be larger than the space 
allocated for it, special actions must be taken. One solution is to define 
a file structure consisting of an initial contiguous area (of a specified 
size). If this area is filled, the operating system automatically defines 
an overflow area that is linked to the initial contiguous area. If the 
overflow area is filled, another overflow area is allocated. Compare 
this implementation of a file with the standard contiguous and linked 
implementations. 

12.8 Fragmentation on a storage device could be eliminated by recompaction 
of the information. Typical disk devices do not have relocation or base 
registers (such as are used when memory is to be compacted), so how can 
we relocate files? Give three reasons why recompacting and relocation of 
files are often avoided. 

12.9 How do caches help improve performance? Why do systems not use 
more or larger caches if they are so useful? 

12.10 In what situations would using memory as a RAM disk be more useful 
than using it as a disk cache? 

12.11 Why is it advantageous to the user for an operating system to dynami- 
cally allocate its internal tables? What are the penalties to the operating 
system for doing so? 

12.12 Explain why logging metadata updates ensures recovery of a file system 
after a file system crash. 

12.13 Explain how the VFS layer allows an operating system easily to support 
multiple types of file systems. 
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12.14 Consider the following backup scheme: 

Day 1: Copy to a backup medium all files from the disk. 

Day 2: Copy to another medium all files changed since day 1. 

Day 3: Copy to another medium all files changed since day 1. 

This contrasts to the schedule given in Section 12.7.2 by having all sub- 
sequent backups copy all files modified since the first full backup. What 
are the benefits of this system over the one in Section 12.7.2? What are 
the drawbacks? Are restore operations made easier or more difficult? 
Explain your answer. 
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Part Four 

1/0  SYSTEMS 

The devices that attach to a computer vary in many aspects. Some devices 
transfer a character or a block of characters at a time. Some can be accessed 
only sequentially, others randomly. Some transfer data synchronously, others 
asynchronously. Some are dedicated, some shared. They can be read-only or 
read-write. They vary greatly in speed. In many ways they are also the slowest 
major component of the computer. 

Because of all this device variation, the operating system needs to provide a 
wide range of functionality to applications, to allow them to control all aspects 
of the devices. One key goal of an operating system's 1/0 subsystem is to 
provide the simplest interface possible to the rest of the system. Because devices 
are a performance bottleneck, another key is to optimize I/O for maximum 
concurrency. We initially describe the myriad variations of 1 /0  devices and 
the ways in which operating systems control them. Afterwards we discuss the 
more complicated 1/0 devices used for secondary and tertiary storage, and we 
explain the special attention that operating systems must give them. 



Chapter 13 

1/0  SYSTEMS 

The two main jobs of a computer are I/O and processing. In many cases, the 
main job is I/O and the processing is merely incidental. For instance, when we 
browse a web page or edit a file, our immediate interest is to read or enter some 
information, not to compute an answer. 

The role of the operating system in computer 1 /0  is to manage and control 
1/0 operations and I/O devices. Although related topics appear in other 
chapters, here we bring together the pieces to paint a complete picture of 
I/O. First, we describe the basics of 1/0 hardware, because the nature of 
the hardware interface places requirements on the internal facilities of the 
operating system. Next, we discuss the I/O services provided by the operating 
system, and the embodiment of these services in the application I/O interface. 
Then, we explain how the operating system bridges the gap between the 
hardware interface and the application interface. We also discuss the UNIX 
System V STREAMS mechanism, which enables an application to assemble 
pipelines of driver code dynamically. Finally, we discuss the performance 
aspects of I/O, and the principles of operating-system design that improve the 
1/0 performance. 

13.1 . Overview 

The control of devices connected to the computer is a major concern of 
operating-system designers. Because I/O devices vary so widely in their func- 
tion and speed (consider a mouse, a hard disk, and a CD-ROM jukebox), a 
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variety of methods are needed to control them. These methods form the I/O sub- 
system of the kernel, which separates the rest of the kernel from the complexity 
of managing I/O devices. 

I/O-device technology exhibits two conflicting trends. On one hand, we 
see increasing standardization of software and hardware interfaces. This trend 
helps us to incorporate improved device generations into existing computers 
and operating systems. On the other hand, we see an increasingly broad variety 
of I/O devices. Some new devices are so unlike previous devices that it is 
a challenge to incorporate them into our computers and operating systems. 
This challenge is met by a combination of hardware and software techniques. 
The basic 1/0 hardware elements, such as ports, buses, and device controllers, 
accommodate a wide variety of I/O devices. To encapsulate the details and 
oddities of different devices, the kernel of an operating system is structured 
to use device-driver modules. The device drivers present a uniform device- 
access interface to the I/O subsystem, much as system calls provide a standard 
interface between the application and the operating system. 

13.2 . I10  Hardware 

Computers operate a great many kinds of devices. Most fit into the general cat- 
egories of storage devices (disks, tapes), transmission devices (network cards, 
modems), and human-interface devices (screen, keyboard, mouse). Other 
devices are more specialized, such as the steering of a military fighter jet or 
a space shuttle. In these aircraft, a human gives input to the flight computer 
via a joystick, and the computer sends output commands that cause motors to 
move rudders, flaps, and thrusters. 

Despite the incredible variety of I/O devices, we need only a few concepts 
to understand how the devices are attached, and how the software can control 
the hardware. 

A device communicates with a computer system by sending signals over a 
cable or even through the air. The device communicates with the machine via 
a connection point (or port), for example, a serial port. If one or more devices 
use a common set of wires, the connection is called a bus. A bus is a set of wires 
and a rigidly defined protocol that specifies a set of messages that can be sent 
on the wires. In terms of the electronics, the messages are conveyed by patterns 
of electrical voltages applied to the wires with defined timings. When device 
A has a cable that plugs into device B, and device B has a cable that plugs into 
device C, and device C plugs into a port on the computer, this arrangement is 
called a daisy chain. A daisy chain usually operates as a bus. 

Buses are used widely in computer architecture. Figure 13.1 shows a typical 
PC bus structure. This figure shows a PC1 bus (the common PC system bus) 
that connects the processor-memory subsystem to the fast devices, and an 
expansion bus that connects relatively slow devices such as the keyboard and 
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processor 
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graphics controller bridgelmemory 
controller SCSI controller 

IDE disk controller expansion bus interface 

Figure 13.1 A typical PC bus structure. 

serial and parallel ports. In the upper-right portion of the figure, four disks are 
connected together on a SCSI bus plugged into a SCSI controller. 

A controller is a collection of electronics that can operate a port, a bus, or 
a device. A serial-port controller is a simple device controller. It is a single 
chip (or portion of a chip) in the computer that controls the signals on the 
wires of a serial port. By contrast, a SCSI bus controller is not simple. Because 
the SCSI protocol is complex, the SCSI bus controller is often implemented as 
a separate circuit board (or a host adapter) that plugs into the computer. It 
typically contains a processor, microcode, and some private memory to enable 
it to process the SCSI protocol messages. Some devices have their own built-in 
controllers. If you look at a disk drive, you will see a circuit board attached to 
one side. This board is the disk controller. It implements the disk side of the 
protocol for some kind of connection, SCSI or IDE, for instance. It has microcode 
and a processor to do many tasks, such as bad-sector mapping, prefetching, 
buffering, and caching. 

How can the processor give commands and data to a controller to accom- 
plish an 1/0  transfer? The short answer is that the controller has one or more 
registers for data and control signals. The processor communicates with the 
controller by reading and writing bit patterns in these registers. One way that 
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this communication can occur is through the use of special I/O instructions 
that specify the transfer of a byte or word to an I/O port address. The I/O 
instruction triggers bus lines to select the proper device and to move bits into 
or out of a device register. Alternatively, the device controller can support 
memory-mapped I/O. In this case, the device-control registers are mapped 
into the address space of the processor. The CPU executes I/O requests using 
the standard data-transfer instructions to read and write the device-control 
registers. 

Some systems use both techniques. For instance, PCs use I/O instructions 
to control some devices and memory-mapped I/O to control others. Figure 13.2 
shows the usual PC 1/0 port addresses. The graphics controller has I/O ports 
for basic control operations, but the controller has a large memory-mapped 
region to hold screen contents. The process sends output to the screen by 
writing data into the memory-mapped region. The controller generates the 
screen image based on the contents of this memory. This technique is simple 
to use. Moreover, writing millions of bytes to the graphics memory is faster 
than issuing millions of I/O instructions. But the ease of writing to a memory- 
mapped I/O controller is offset by a disadvantage. Because a common type 
of software fault is a write through an incorrect pointer to an unintended 
region of memory, a memory-mapped device register is vulnerable to accidental 
modification. Of course, protected memory helps to reduce this risk. 

An I/O port typically consists of four registers, called the status, control, 
data-in, and data-out registers. 

Figure 13.2 Device 1/0 port locations on PCs (partial). 
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The status register contains bits that can be read by the host. These bits indi- 
cate states such as whether the current command has completed, whether a 
byte is available to be read from the data-in register, and whether there has 
been a device error. 

The control register can be written by the host to start a command or to 
change the mode of a device. For instance, a certain bit in the con t ro l  reg- 
ister of a serial port chooses between full-duplex and half-duplex commu- 
nication, another enables parity checking, a third bit sets the word length 
to 7 or 8 bits, and other bits select one of the speeds supported by the serial 
port. 

The data-in register is read by the host to get input. 

The data-out register is written by the host to send output. 

The data registers are typically 1 to 4 bytes. Some controllers have FIFO 
chips that can hold several bytes of input or output data to expand the capacity 
of the controller beyond the size of the data register. A FIFO chip can hold a 
small burst of data until the device or host is able to receive those data. 

13.2.1 Polling 
The complete protocol for interaction between the host and a controller can be 
intricate, but the basic handshaking notion is simple. We explain handshaking 
by an example. We assume that 2 bits are used to coordinate the producer- 
consumer relationship between the controller and the host. The controller 
indicates its state through the busy bit in the status register. (Recall that to set 
a bit means to write a 1 into the bit, and to clear a bit means to write a 0 into 
it.) The controller sets the busy bit when it is busy working, and clears the busy 
bit when it is ready to accept the next command. The host signals its wishes 
via the command-ready bit in the command register. The host sets the command- 
ready bit when a command is available for the controller to execute. For this 
example, the host writes output through a port, coordinating with the controller 
by handshaking as follows. 

1. The host repeatedly reads the busy bit until that bit becomes clear. 

2. The host sets the write bit in the command register and writes a byte into the 
data-out register. 

3. The host sets the command-ready bit. 

4. When the controller notices that the command-ready bit is set, it sets the busy 
bit. 

5. The controller reads the command register and sees the wri te  command. 
It reads the data-out register to get the byte, and does the 1/0  to the device. 
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6. The controller clears the command-ready bit, clears the error bit in the status 
register to indicate that the device I/O succeeded, and clears the busy bit to 
indicate that it is finished. 

This loop is repeated for each byte. 
In step 1, the host is busy-waiting or polling: It is in a loop, reading the 

status register over and over until the busy bit becomes clear. If the controller 
and device are fast, this method is a reasonable one. But if the wait may be long, 
the host should probably switch to another task. How then does the host know 
when the controller has become idle? For some devices, the host must service 
the device quickly, or data will be lost. For instance, when data are streaming 
in on a serial port or from a keyboard, the small buffer on the controller will 
overflow and data will be lost if the host waits too long before returning to read 
the bytes. 

In many computer architectures, three CPU-instruction cycles are sufficient 
to poll a device: read a device register, logical-and to extract a status bit, and 
branch if not zero. Clearly, the basic polling operation is efficient. But polling 
becomes inefficient when it is attempted repeatedly, yet rarely finds a device 
to be ready for service, while other useful CPU processing remains undone. In 
such instances, it may be more efficient to arrange for the hardware controller to 
notify the CPU when the device becomes ready for service, rather than to require 
the CPU to poll repeatedly for an 1/0 completion. The hardware mechanism 
that enables a device to notify the CPU is called an interrupt. 

13.2.2 Interrupts 
The basic interrupt mechanism works as follows. The CPU hardware has a 
wire called the interrupt-request line that the CPU senses after executing every 
instruction. When the CPU detects that a controller has asserted a signal on the 
interrupt request line, the CPU saves a small amount of state, such as the current 
value of the instruction pointer, and jumps to the interrupt-handler routine 
at a fixed address in memory. The interrupt handler determines the cause of 
the interrupt, performs the necessary processing, and executes a r e t u r n  from 
in t e r rup t  instruction to return the CPU to the execution state prior to the 
interrupt. We say that the device controller raises an interrupt by asserting a 
signal on the interrupt request line, the CPU catches the interrupt and dispatches 
to the interrupt handler, and the handler clears the interrupt by servicing the 
device. Figure 13.3 summarizes the interrupt-driven 1/0 cycle. 

This basic interrupt mechanism enables the CPU to respond to an asyn- 
chronous event, such as a device controller becoming ready for service. In 
a modern operating system, we need more sophisticated interrupt-handling 
features. First, we need the ability to defer interrupt handling during critical 
processing. Second, we need an efficient way to dispatch to the proper interrupt 
handler for a device, without first polling all the devices to see which one raised 
the interrupt. Third, we need multilevel interrupts, so that the operating system 
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Figure 13.3 Interrupt-driven I/O cycle. 

can distinguish between high- and low-priority interrupts, and can respond 
with the appropriate degree of urgency. In modern computer hardware, these 
three features are provided by the CPU and by the interrupt-controller hard- 
ware. 

Most CPUs have two interrupt request lines. One is the nonmaskable 
interrupt, which is reserved for events such as unrecoverable memory errors. 
The second interrupt line is maskable: It can be turned off by the CPU before 
the execution of critical instruction sequences that must not be interrupted. The 
maskable interrupt is used by device controllers to request service. 

The interrupt mechanism accepts an address-a number that selects a 
specific interrupt-handling routine from a small set. In most architectures, 
this address is an offset in a table called the interrupt vector. This vector 
contains the memory addresses of specialized interrupt handlers. The purpose 
of a vectored interrupt mechanism is to reduce the need for a single interrupt 
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handler to search all possible sources of interrupts to determine which one 
needs service. In practice, however, computers have more devices (and hence, 
interrupt handlers) than they have address elements in the interrupt vector. 
A common way to solve this problem is to use the technique of interrupt 
chaining, in which each element in the interrupt vector points to the head of 
a list of interrupt handlers. When an interrupt is raised, the handlers on the 
corresponding list are called one by one, until one is found that can service 
the request. This structure is a compromise between the overhead of a huge 
interrupt table and the inefficiency of a dispatching to a single interrupt handler. 

Figure 13.4 illustrates the design of the interrupt vector for the Intel Pen- 
tium processor. The events from 0 to 31, which are nonmaskable, are used to 
signal various error conditions. The events from 32 to 255, which are maskable, 
are used for purposes such as device-generated interrupts. 

The interrupt mechanism also implements a system of interrupt priority 
levels. This mechanism enables the CPU to defer the handling of low-priority 
interrupts without masking off all interrupts, and makes it possible for a high- 
priority interrupt to preempt the execution of a low-priority interrupt. 

A modern operating system interacts with the interrupt mechanism in 
several ways. At boot time, the operating system probes the hardware buses 
to determine what devices are present, and installs the corresponding interrupt 
handlers into the interrupt vector. During I/O, the various device controllers 

device not available 

coprocessor segment overrun (resewed) 
invalid task state segment 

general protection 

floating-point error 
alignment check 
machine check 

Figure 13.4 Intel Pentium processor event-vector table. 
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raise interrupts when they are ready for service. These interrupts signify that 
output has completed, or that input data are available, or that a failure has 
been detected. The interrupt mechanism is also used to handle a wide variety 
of exceptions, such as dividing by zero, accessing a protected or nonexistent 
memory address, or attempting to execute a privileged instruction from user 
mode. The events that trigger interrupts have a common property: They are 
occurrences that induce the CPU to execute an urgent, self-contained routine. 

An operating system has other good uses for an efficient hardware mech- 
anism that saves a small amount of processor state, and then calls a privileged 
routine in the kernel. For example, many operating systems use the interrupt 
mechanism for virtual-memory paging. A page fault is an exception that raises 
an interrupt. The interrupt suspends the current process and jumps to the page- 
fault handler in the kernel. This handler saves the state of the process, moves 
the process to the wait queue, performs page-cache management, schedules an 
I/O operation to fetch the page, schedules another process to resume execution, 
and then returns from the interrupt. 

Another example is found in the implementation of system calls. A system 
call is a function called by an application to invoke a kernel service. The system 
call checks the arguments given by the application, builds a data structure to 
convey the arguments to the kernel, and then executes a special instruction 
called a software interrupt (or a trap). This instruction has an operand that 
identifies the desired kernel service. When the system call executes the trap 
instruction, the interrupt hardware saves the state of the user code, switches 
to supervisor mode, and dispatches to the kernel routine that implements the 
requested service. The trap is given a relatively low interrupt priority compared 
to those assigned to device interrupts-executing a system call on behalf of an 
application is less urgent than servicing a device controller before its FIFO queue 
overflows and loses data. 

Interrupts can also be used to manage the flow of control within the kernel. 
For example, consider the processing required to complete a disk read. One 
step is to copy data from kernel space to the user buffer. This copying is time 
consuming but not urgent-it should not block other high-priority interrupt 
handling. Another step is to start the next pending I/O for that disk drive. This 
step has higher priority: If the disks are to be used efficiently, we need to start 
the next I/O as soon as the previous one completes. Consequently, a pair of 
interrupt handlers implements the kernel code that completes a disk read. The 
high-priority handler records the I/O status, clears the device interrupt, starts 
the next pending I/O, and raises a low-priority interrupt to complete the work. 
Later, when the CPU is not occupied with high-priority work, the low-priority 
interrupt will be dispatched. The corresponding handler completes the user- 
level I/O by copying data from kernel buffers to the application space, and then 
by calling the scheduler to place the application on the ready queue. 

A threaded kernel architecture is well suited to implement multiple inter- 
rupt priorities and to enforce the precedence of interrupt handling over back- 
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ground processing in kernel and application routines. We illustrate this point 
with the Solaris kernel. In Solaris, interrupt handlers are executed as kernel 
threads. A range of high priorities is reserved for these threads. These pri- 
orities give interrupt handlers precedence over application code and kernel 
housekeeping, and implement the priority relationships among interrupt han- 
dlers. The priorities cause the Solaris thread scheduler to preempt low-priority 
interrupt handlers in favor of higher-priority ones, and the threaded imple- 
mentation enables multiprocessor hardware to run several interrupt handlers 
concurrently. We describe the interrupt architecture of UNIX and Windows NT 
in Appendix A and Chapters 21, respectively. 

In summary, interrupts are used throughout modern operating systems to 
handle asynchronous events and to trap to supervisor-mode routines in the 
kernel. To enable the most urgent work to be done first, modern computers 
use a system of interrupt priorities. Device controllers, hardware faults, and 
system calls all raise interrupts to trigger kernel routines. Because interrupts 
are used so heavily for time-sensitive processing, efficient interrupt handling is 
required for good system performance. 

13.2.3 Direct Memory Access 
For a device that does large transfers, such as a disk drive, it seems waste- 
ful to use an expensive general-purpose processor to watch status bits and 
to feed data into a controller register 1 byte at a time-a process termed pro- 
grammed 110 (PIO). Many computers avoid burdening the main CPU with PI0 
by offloading some of this work to a special-purpose processor called a direct- 
memory-access (DMA) controller. To initiate a DMA transfer, the host writes a 
DMA command block into memory. This block contains a pointer to the source 
of a transfer, a pointer to the destination of the transfer, and a count of the 
number of bytes to be transferred. The CPU writes the address of this command 
block to the DMA controller, then goes on with other work. The DMA controller 
proceeds to operate the memory bus directly, placing addresses on the bus to 
perform transfers without the help of the main CPU. A simple DMA controller is 
a standard component in PCs, and bus-mastering I/O boards for the PC usually 
contain their own high-speed DMA hardware. 

Handshaking between the DMA controller and the device controller is 
performed via a pair of wires called DMA- reques t  and DMA-acknowledge. 
The device controller places a signal on the DMA- reques t  wire when a word 
of data is available for transfer. This signal causes the DMA controller to 
seize the memory bus, to place the desired address on the memory-address 
wires, and to place a signal on the DMA-acknowledge wire. When the device 
controller receives the DMA-acknowledge signal, it transfers the word of data 
to memory, and removes the DMA- reques t  signal. 

When the entire transfer is finished, the DMA controller interrupts the CPU. 
This process is depicted in Figure 13.5. When the DMA controller seizes the 
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Figure 13.5 Steps in a DMA transfer. 

memory bus, the CPU is momentarily prevented from accessing main memory, 
although it can still access data items in its primary and secondary cache. 
Although this cycle stealing can slow down the CPU computation, offloading 
the data-transfer work to a DMA controller generally improves the total system 
performance. Some computer architectures use physical memory addresses 
for DMA, but others perform direct virtual-memory access (DVMA), using 
virtual addresses that undergo virtual- to physical-memory address translation. 
DVMA can perform a transfer between two memory-mapped devices without 
the intervention of the CPU or the use of main memory. 

On protected-mode kernels, the operating system generally prevents pro- 
cesses from issuing device commands directly. This discipline protects data 
from access-control violations, and also protects the system from erroneous use 
of device controllers that could cause a system crash. Instead, the operating 
system exports functions that a sufficiently privileged process can use to access 
low-level operations on the underlying hardware. On kernels without memory 
protection, processes can access device controllers directly. This direct access 
can be used to obtain high performance, since it can avoid kernel communica- 
tion, context switches, and layers of kernel software. Unfortunately, it interferes 
with system security and stability. The trend in general-purpose operating sys- 
tems is to protect memory and devices, so that the system can try to guard 
against erroneous or malicious applications. 

Although the hardware aspects of I/O are complex when considered at the 
level of detail of electronics-hardware designers, the concepts that we have just 
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described are sufficient to understand many I/O aspects of operating systems. 
Let's review the main concepts: 

A bus 

A controller 

An I/O port and its registers 

The handshaking relationship between the host and a device controller 

The execution of this handshaking in a polling loop or via interrupts 

The offloading of this work to a DMA controller for large transfers 

We gave a basic example of the handshaking that takes place between a 
device controller and the host in Section 13.2. In reality, the wide variety of 
available devices poses a problem for operating-system implementers. Each 
kind of device has its own set of capabilities, control-bit definitions, and pro- 
tocol for interacting with the host-and they are all different. How can the 
operating system be designed so that new devices can be attached to the com- 
puter without the operating system being rewritten? Also, when the devices 
vary so widely, how can the operating system give a convenient, uniform I/O 
interface to applications? 

13.3 Application I/O Interface 

In this section, we discuss structuring techniques and interfaces for the oper- 
ating system that enable 1/0 devices to be treated in a standard, uniform way. 
We explain, for instance, how an application can open a file on a disk without 
knowing what kind of disk it is, and how new disks and other devices can be 
added to a computer without the operating system being disrupted. 

Like other complex software-engineering problems, the approach here 
involves abstraction, encapsulation, and software layering. Specifically, we 
can abstract away the detailed differences in 1 /0  devices by identifying a few 
general kinds. Each general kind is accessed through a standardized set of 
functions-an interface. The differences are encapsulated in kernel modules 
called device drivers that internally are custom tailored to each device, but that 
export one of the standard interfaces. Figure 13.6 illustrates how the I/O-related 
portions of the kernel are structured in software layers. 

The purpose of the device-driver layer is to hide the differences among 
device controllers from the 1/0 subsystem of the kernel, much as the I/O system 
calls encapsulate the behavior of devices in a few generic classes that hide hard- 
ware differences from applications. Making the I/O subsystem independent 
of the hardware simplifies the job of the operating-system developer. It also 
benefits the hardware manufacturers. They either design new devices to be 
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Figure 13.6 A kernel 1 /0  structure. 
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compatible with an existing host controller interface (such as SCSI-2), or they 
write device drivers to interface the new hardware to popular operating sys- 
tems. Thus, new peripherals can be attached to a computer without waiting for 
the operating-system vendor to develop support code. 

Unfortunately for device-hardware manufacturers, each type of operating 
system has its own standards for the device-driver interface. A given device 
may ship with multiple device drivers-for instance, drivers for MS-DOS, Win- 
dows 95/98, Windows NT/2000, and Solaris. Devices vary in many dimensions, 
as illustrated in Figure 13.7. 

Character-stream or block: A character-stream device transfers bytes one 
by one, whereas a block device transfers a block of bytes as a unit. 
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Figure 13.7 Characteristics of I/O devices. 

Sharable or dedicated: A sharable device can be used concurrently by 
several processes or threads; a dedicated device cannot. 

Speed of operation: Device speeds range from a few bytes per second to a 
few gigabytes per second. 

Read-write, read only, or write only: Some devices perform both input 
and output, but others support only one data direction. 

For the purpose of application access, many of these differences are hidden 
by the operating system, and the devices are grouped into a few conventional 
types. The resulting styles of device access have been found to be useful 
and broadly applicable. Although the exact system calls may differ across 
operating systems, the device categories are fairly standard. The major access 
conventions include block I/O, character-stream I/O, memory-mapped file 
access, and network sockets. Operating systems also provide special system 
calls to access a few additional devices, such as a time-of-day clock and a timer. 
Some operating systems provide a set of system calls for graphical display, 
video, and audio devices. 

Most operating systems also have an escape (or back-door) that transpar- 
ently passes arbitrary commands from an application to a device driver. In 
UNIX, this system call is ioctl0 (for I/O control). The ioctl0 system call 
enables an application to access any functionality that can be implemented by 
any device driver, without the need to invent a new system call. The ioctl0 
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system call has three arguments. The first is a file descriptor that connects the 
application to the driver by referring to a hardware device managed by that 
driver. The second is an integer that selects one of the commands implemented 
in the driver. The third is a pointer to an arbitrary data structure in memory, 
thus enabling the application and driver to communicate any necessary control 
information or data. 

13.3.1 Block and Character Devices 
The block-device interface captures all the aspects necessary for accessing disk 
drives and other block-oriented devices. The expectation is that the device 
understands commands such as read 0 and wr i t e  (), and, if it is a random- 
access device, it has a seek () command to specify which block to transfer next. 
Applications normally access such a device through a file-system interface. The 
operating system itself, and special applications such as database-management 
systems, may prefer to access a block device as a simple linear array of blocks. 
This mode of access is sometimes called raw 110. We can see that read() ,  
wri te  ( 1, and seek ( capture the essential behaviors of block-storage devices, 
so that applications are insulated from the low-level differences among those 
devices. 

Memory-mapped file access can be layered on top of block-device drivers. 
Rather than offering read and write operations, a memory-mapped interface 
provides access to disk storage via an array of bytes in main memory. The 
system call that maps a file into memory returns the virtual-memory address 
of an array of characters that contains a copy of the file. The actual data 
transfers are performed only when needed to satisfy access to the memory 
image. Because the transfers are handled by the same mechanism as that used 
for demand-paged virtual-memory access, memory-mapped I/O is efficient. 
Memory mapping is also convenient for programmers-access to a memory- 
mapped file is as simple as reading and writing to memory. Operating systems 
that offer virtual memory commonly use the mapping interface for kernel 
services. For instance, to execute a program, the operating system maps the 
executable into memory, and then transfers control to the entry address of the 
executable. The mapping interface is also commonly used for kernel access to 
swap space on disk. 

A keyboard is an example of a device that is accessed through a character- 
stream interface. The basic system calls in this interface enable an application 
to ge t  () or put () one character. On top of this interface, libraries can be built 
that offer line-at-a-time access, with buffering and editing services (for example, 
when a user types a backspace, the preceding character is removed from the 
input stream). This style of access is convenient for input devices such as 
keyboards, mice, and modems, which produce data for input "spontaneously" 
-that is, at times that cannot necessarily be predicted by the application. This 
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access style is also good for output devices such as printers or audio boards, 
which naturally fit the concept of a linear stream of bytes. 

13.3.2 Network Devices 

Because the performance and addressing characteristics of network I/O differ 
significantly from those of disk I/O, most operating systems provide a network 
1/0 interface that is different from the r e a d 0  -wr i te ( )  -seek() interface 
used for disks. One interface available in many operating systems, including 
UNIX and Windows NT, is the network socket interface. 

Think of a wall socket for electricity: Any electrical appliance can be 
plugged in. By analogy, the system calls in the socket interface enable an 
application to create a socket, to connect a local socket to a remote address 
(which plugs this application into a socket created by another application), to 
listen for any remote application to plug into the local socket, and to send and 
receive packets over the connection. To support the implementation of servers, 
the socket interface also provides a function called s e l e c t  (1 that manages a set 
of sockets. A call to s e l e c t  0 returns information about which sockets have a 
packet waiting to be received, and which sockets have room to accept a packet 
to be sent. The use of s e l e c t  0 eliminates the polling and busy waiting that 
would otherwise be necessary for network I/O. These functions encapsulate the 
essential behaviors of networks, greatly facilitating the creation of distributed 
applications that can use any underlying network hardware and protocol stack. 

Many other approaches to interprocess communication and network com- 
munication have been implemented. For instance, Windows NT provides one 
interface to the network interface card, and a second interface to the network 
protocols (Section 21.6). In UNIX, which has a long history as a proving ground 
for network technology, we find half-duplex pipes, full-duplex FIFOs, full- 
duplex STREAMS, message queues, and sockets. Information on UNIX network- 
ing is given in Section A.9. 

13.3.3 Clocks and Timers 

Most computers have hardware clocks and timers that provide three basic 
functions: 

Give the current time 

Give the elapsed time 

Set a timer to trigger operation X at time T 

These functions are used heavily by the operating system, and also by time- 
sensitive applications. Unfortunately, the system calls that implement these 
functions are not standardized across operating systems. 
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The hardware to measure elapsed time and to trigger operations is called 
a programmable interval timer. It can be set to wait a certain amount of time 
and then to generate an interrupt. It can be set to do this operation once, or 
to repeat the process, to generate periodic interrupts. The scheduler uses this 
mechanism to generate an interrupt that will preempt a process at the end of 
its time slice. The disk I/O subsystem uses it to invoke the flushing of dirty 
cache buffers to disk periodically, and the network subsystem uses it to cancel 
operations that are proceeding too slowly because of network congestion or 
failures. The operating system may also provide an interface for user processes 
to use timers. The operating system can support more timer requests than the 
number of timer hardware channels by simulating virtual clocks. To do so, the 
kernel (or the timer device driver) maintains a list of interrupts wanted by its 
own routines and by user requests, sorted in earliest-time-first order. It sets the 
timer for the earliest time. When the timer interrupts, the kernel signals the 
requester, and reloads the timer with the next earliest time. 

On many computers, the interrupt rate generated by the ticking of the 
hardware clock is between 18 and 60 ticks per second. This resolution is coarse, 
since a modern computer can execute hundreds of millions of instructions per 
second. The precision of triggers is limited by the coarse resolution of the 
timer, together with the overhead of maintaining virtual clocks. And, if the 
timer ticks are used to maintain the system time-of-day clock, the system clock 
can drift. In most computers, the hardware clock is constructed from a high- 
frequency counter. In some computers, the value of this counter can be read 
from a device register, in which case the counter can be considered to be a 
high-resolution clock. Although this clock does not generate interrupts, it offers 
accurate measurements of time intervals. 

13.3.4 Blocking and Nonblocking 110 

Another aspect of the system-call interface relates to the choice between block- 
ing 1 / 0  and nonblocking (or asynchronous) I/O. When an application issues 
a blocking system call, the execution of the application is suspended. The 
application is moved from the operating system's run queue to a wait queue. 
After the system call completes, the application is moved back to the run queue, 
where it is eligible to resume execution, at which time it will receive the values 
returned by the system call. The physical actions performed by 1 / 0  devices 
are generally asynchronous-they take a varying or unpredictable amount of 
time. Nevertheless, most operating systems use blocking system calls for the 
application interface, because blocking application code is easier to understand 
than nonblocking application code. 

Some user-level processes need nonblocking 1/0. One example is a user 
interface that receives keyboard and mouse input while processing and dis- 
playing data on the screen. Another example is a video application that reads 
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frames from a file on disk while simultaneously decompressing and displaying 
the output on the display. 

One way that an application writer can overlap execution with I/O is to 
write a multithreaded application. Some threads can perform blocking sys- 
tem calls, while others continue executing. The Solaris developers used this 
technique to implement a user-level library for asynchronous I/O, freeing the 
application writer from that task. Some operating systems provide nonblocking 
I/O system calls. A nonblocking call does not halt the execution of the applica- 
tion for an extended time. Instead, it returns quickly, with a return value that 
indicates how many bytes were transferred. 

An alternative to a nonblocking system call is an asynchronous system 
call. An asynchronous call returns immediately, without waiting for the I/O to 
complete. The application continues to execute its code. The completion of the 
1/0 at some future time is communicated to the application, either through the 
setting of some variable in the address space of the application, or through the 
triggering of a signal or software interrupt or a call-back routine that is executed 
outside the linear control flow of the application. The difference between 
nonblocking and asynchronous system calls is that a nonblocking read0 
returns immediately with whatever data are available-the full number of 
bytes requested, fewer, or none at all. An asynchronous read0 call requests 
a transfer that will be performed in its entirety, but that will complete at some 
future time. 

A good example of nonblocking behavior is the select 0 system call for 
network sockets. This system call takes an argument that specifies a maximum 
waiting time. By setting it to 0, an application can poll for network activity 
without blocking. But using select 0 introduces extra overhead, because 
the select 0 call only checks whether I/O is possible. For a data transfer, 
select 0 must be followed by some kind of read0 or write0 command. 
A variation of this approach, found in Mach, is a blocking multiple-read call. 
It specifies desired reads for several devices in one system call, and returns as 
soon as any one of them completes. 

13.4 . Kernel I10  Subsystem 

Kernels provide many services related to I/O. Several services-scheduling, 
buffering, caching, spooling, device reservation, and error handling-are pro- 
vided by the kernel's I/O subsystem and build on the hardware and device- 
driver infrastructure. 

13.4.1 110 Scheduling 
To schedule a set of I/O requests means to determine a good order in which 
to execute them. The order in which applications issue system calls rarely is 
the best choice. Scheduling can improve overall system performance, can share 
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device access fairly among processes, and can reduce the average waiting time 
for 1/0 to complete. Here is a simple example to illustrate the opportunity. Sup- 
pose that a disk arm is near the beginning of a disk, and that three applications 
issue blocking read calls to that disk. Application 1 requests a block near the 
end of the disk, application 2 requests one near the beginning, and application 
3 requests one in the middle of the disk. The operating system can reduce the 
distance that the disk arm travels by serving the applications in order 2, 3, 1. 
Rearranging the order of service in this way is the essence of I/O scheduling. 

Operating-system developers implement scheduling by maintaining a 
queue of requests for each device. When an application issues a blocking 
I/O system call, the request is placed on the queue for that device. The I/O 
scheduler rearranges the order of the queue to improve the overall system 
efficiency and the average response time experienced by applications. The 
operating system may also try to be fair, so that no one application receives 
especially poor service, or it may give priority service for delay-sensitive 
requests. For instance, requests from the virtual-memory subsystem may take 
priority over application requests. Several scheduling algorithms for disk I/O 
are detailed in Section 14.2. 

One way that the 1/0 subsystem improves the efficiency of the computer is 
by scheduling I/O operations. Another way is by using storage space in main 
memory or on disk, via techniques called buffering, caching, and spooling. 

13.4.2 Buffering 
A buffer is a memory area that stores data while they are transferred between 
two devices or between a device and an application. Buffering is done for 
three reasons. One reason is to cope with a speed mismatch between the 
producer and consumer of a data stream. Suppose, for example, that a file is 
being received via modem for storage on the hard disk. The modem is about 
a thousand times slower than the hard disk. So a buffer is created in main 
memory to accumulate the bytes received from the modem. When an entire 
buffer of data has arrived, the buffer can be written to disk in a single operation. 
Since the disk write is not instantaneous and the modem still needs a place to 
store additional incoming data, two buffers are used. After the modem fills the 
first buffer, the disk write is requested. The modem then starts to fill the second 
buffer while the first buffer is written to disk. By the time the modem has filled 
the second buffer, the disk write from the first one should have completed, 
so the modem can switch back to the first buffer while the disk writes the 
second one. This double buffering decouples the producer of data from the 
consumer, thus relaxing timing requirements between them. The need for this 
decoupling is illustrated in Figure 13.8, which lists the enormous differences in 
device speeds for typical computer hardware. 

A second use of buffering is to adapt between devices that have differ- 
ent data-transfer sizes. Such disparities are especially common in computer 
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Figure 13.8 Sun Enterprise 6000 device-transfer rates (logarithmic). 

networking, where buffers are used widely for fragmentation and reassembly 
of messages. At the sending side, a large message is fragmented into small 
network packets. The packets are sent over the network, and the receiving side 
places them in a reassembly buffer to form an image of the source data. 

A third use of buffering is to support copy semantics for application I/O. 
An example will clarify the meaning of "copy semantics." Suppose that an 
application has a buffer of data that it wishes to write to disk. It calls the 
wr i te  (1 system call, providing a pointer to the buffer and an integer specifying 
the number of bytes to write. After the system call returns, what happens if 
the application changes the contents of the buffer? With copy semantics, the 
version of the data written to disk is guaranteed to be the version at the time 
of the application system call, independent of any subsequent changes in the 
application's buffer. A simple way that the operating system can guarantee 
copy semantics is for the wr i te  (1 system call to copy the application data into 
a kernel buffer before returning control to the application. The disk write is 
performed from the kernel buffer, so that subsequent changes to the application 
buffer have no effect. Copying of data between kernel buffers and application 
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data space is common in operating systems, despite the overhead that this 
operation introduces, because of the clean semantics. The same effect can be 
obtained more efficiently by clever use of virtual-memory mapping and copy- 

I on-write page protection. 

13.4.3 Caching 

A cache is a region of fast memory that holds copies of data. Access to the 
cached copy is more efficient than access to the original. For instance, the 
instructions of the currently running process are stored on disk, cached in 
physical memory, and copied again in the CPU's secondary and primary caches. 
The difference between a buffer and a cache is that a buffer may hold the only 
existing copy of a data item, whereas a cache, by definition, just holds a copy 
on faster storage of an item that resides elsewhere. 

Caching and buffering are distinct functions, but sometimes a region of 
memory can be used for both purposes. For instance, to preserve copy seman- 
tics and to enable efficient scheduling of disk I/O, the operating system uses 
buffers in main memory to hold disk data. These buffers are also used as a 
cache, to improve the I/O efficiency for files that are shared by applications or 
that are being written and reread rapidly. When the kernel receives a file I/O 
request, the kernel first accesses the buffer cache to see whether that region 
of the file is already available in main memory. If so, a physical disk I/O 
can be avoided or deferred. Also, disk writes are accumulated in the buffer 
cache for several seconds, so that large transfers are gathered to allow efficient 
write schedules. This strategy of delaying writes to improve I/O efficiency is 
discussed, in the context of remote file access, in Section 16.3. 

13.4.4 Spooling and Device Reservation 

A spool is a buffer that holds output for a device, such as a printer, that cannot 
accept interleaved data streams. Although a printer can serve only one job 
at a time, several applications may wish to print their output concurrently, 
without having their output mixed together. The operating system solves this 
problem by intercepting all output to the printer. Each application's output 
is spooled to a separate disk file. When an application finishes printing, the 
spooling system queues the corresponding spool file for output to the printer. 
The spooling system copies the queued spool files to the printer one at a time. 
In some operating systems, spooling is managed by a system daemon process. 
In other operating systems, it is handled by an in-kernel thread. In either case, 
the operating system provides a control interface that enables users and system 
administrators to display the queue, to remove unwanted jobs before those jobs 
print, to suspend printing while the printer is serviced, and so on. 

Some devices, such as tape drives and printers, cannot usefully multiplex 
the I/O requests of multiple concurrent applications. Spooling is one way that 
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operating systems can coordinate concurrent output. Another way to deal with 
concurrent device access is to provide explicit facilities for coordination. Some 
operating systems (including VMS) provide support for exclusive device access, 
by enabling a process to allocate an idle device, and to deallocate that device 
when it is no longer needed. Other operating systems enforce a limit of one 
open file handle to such a device. Many operating systems provide functions 
that enable processes to coordinate exclusive access among themselves. For 
instance, Windows NT provides system calls to wait until a device object 
becomes available. It also has a parameter to the open0 system call that 
declares the types of access to be permitted to other concurrent threads. On 
these systems, it is up to the applications to avoid deadlock. 

13.4.5 Error Handling 

An operating system that uses protected memory can guard against many kinds 
of hardware and application errors, so that a complete system failure is not the 
usual result of each minor mechanical glitch. Devices and 1/0 transfers can 
fail in many ways, either for transient reasons, such as a network becoming 
overloaded, or for "permanent" reasons, such as a disk controller becoming 
defective. Operating systems can often compensate effectively for transient 
failures. For instance, a disk r e a d 0  failure results in a r e a d 0  retry, and 
a network send 0 error results in a resend 0, if the protocol so specifies. 
Unfortunately, if an important component experiences a permanent failure, the 
operating system is unlikely to recover. 

As a general rule, an I/O system call will return 1 bit of information about 
the status of the call, signifying either success or failure. In the UNIX operating 
system, an additional integer variable named errno is used to return an error 
code-one of about 100 values-indicating the general nature of the failure 
(for example, argument out of range, bad pointer, or file not open). By contrast, 
some hardware can provide highly detailed error information, although many 
current operating systems are not designed to convey this information to the 
application. For instance, a failure of a SCSI device is reported by the SCSI 
protocol in terms of a sense key that identifies the general nature of the failure, 
such as a hardware error or an illegal request; an additional sense code that 
states the category of failure, such as a bad command parameter or a self-test 
failure; and an additional sense-code qualifier that gives even more detail, 
such as which command parameter was in error, or which hardware subsystem 
failed its self-test. Further, many SCSI devices maintain internal pages of error- 
log information that can be requested by the host, but that seldom are. 

13.4.6 Kernel Data Structures 

The kernel needs to keep state information about the use of I/O components. 
It does so through a variety of in-kernel data structures, such as the open-file 
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table structure from Section 12.1. The kernel uses many similar structures to 
track network connections, character-device communications, and other I/O 

UNIX provides file-system access to a variety of entities, such as user files, 
raw devices, and the address spaces of processes. Although each of these 
entities supports a read 0 operation, the semantics differ. For instance, to 
read a user file, the kernel needs to probe the buffer cache before deciding 
whether to perform a disk I/O. To read a raw disk, the kernel needs to ensure 
that the request size is a multiple of the disk sector size, and is aligned on a 
sector boundary. To read a process image, it is merely necessary to copy data 
from memory. UNIX encapsulates these differences within a uniform structure 
by using an object-oriented technique. The open-file record, shown in Figure 
13.9, contains a dispatch table that holds pointers to the appropriate routines, 
depending on the type of file. 

Some operating systems use object-oriented methods even more exten- 
sively. For instance, Windows NT uses a message-passing implementation for 
I/O. An 1/0 request is converted into a message that is sent through the kernel 
to the I/O manager and then to the device driver, each of which may change the 
message contents. For output, the message contains the data to be written. For 
input, the message contains a buffer to receive the data. The message-passing 
approach can add overhead, by comparison with procedural techniques that 
use shared data structures, but it simplifies the structure and design of the I/O 
system, and adds flexibility. 

Figure 13.9 UNIX I/O kernel structure. 
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In summary, the I/O subsystem coordinates an extensive collection of 
services that are available to applications and to other parts of the kernel. The 
I/O subsystem supervises 

The management of the name space for files and devices 

Access control to files and devices 

Operation control (for example, a modem cannot seek ( ) ) 

File system space allocation 

Device allocation 

Buffering, caching, and spooling 

I/O scheduling 

Device status monitoring, error handling, and failure recovery 

Device driver configuration and initialization 

The upper levels of the I/O subsystem access devices via the uniform 
interface provided by the device drivers. 

13.5 . Transforming I10  to Hardware Operations 

Earlier, we described the handshaking between a device driver and a device 
controller, but we did not explain how the operating system connects an appli- 
cation request to a set of network wires or to a specific disk sector. Let us 
consider the example of reading a file from disk. The application refers to the 
data by a file name. Within a disk, the file system maps from the file name 
through the file-system directories to obtain the space allocation of the file. For 
instance, in MS-DOS, the name maps to a number that indicates an entry in the 
file-access table, and that table entry tells which disk blocks are allocated to the 
file. In UNIX, the name maps to an inode number, and the corresponding inode 
contains the space-allocation information. 

How is the connection made from the file name to the disk controller (the 
hardware port address or the memory-mapped controller registers)? First, we 
consider MS-DOS, a relatively simple operating system. The first part of an MS- 
DOS file name, preceding the colon, is a string that identifies a specific hardware 
device. For example, c: is the first part of every file name on the primary hard 
disk. The fact that c: represents the primary hard disk is built into the operating 
system; c: is mapped to a specific port address through a device table. Because 
of the colon separator, the device name space is separate from the file-system 
name space within each device. This separation makes it easy for the operating 
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system to associate extra functionality with each device. For instance, it is easy 
to invoke spooling on any files written to the printer. 

If, instead, the device name space is incorporated in the regular file-system 
name space, as it is in UNIX, the normal file-system name services are provided 
automatically. If the file system provides ownership and access control to all 
file names, then devices have owners and access control. Since files are stored 
on devices, such an interface provides access to the I/O system at two levels. 
Names can be used to access the devices themselves, or to access the files stored 
on the devices. 

UNIX represents device names in the regular file-system name space. 
Unlike an MS-DOS file name, which has the colon separator, a UNIX path name 
has no clear separation of the device portion. In fact, no part of the path 
name is the name of a device. UNIX has a mount table that associates pre- 
fixes of path names with specific device names. To resolve a path name, UNIX 
looks up the name in the mount table to find the longest matching prefix; the 
corresponding entry in the mount table gives the device name. This device 
name also has the form of a name in the file-system name space. When UNIX 
looks up this name in the file-system directory structures, instead of finding an 
inode number, UNIX finds a <major, minor> device number. The major device 
number identifies a device driver that should be called to handle I/O to this 
device. The minor device number is passed to the device driver to index into 
a device table. The corresponding device-table entry gives the port address or 
the memory-mapped address of the device controller. 

Modern operating systems obtain significant flexibility from the multiple 
stages of lookup tables in the path between a request and a physical device 
controller. The mechanisms that pass requests between applications and drivers 
are general. Thus, we can introduce new devices and drivers into a computer 
without recompiling the kernel. In fact, some operating systems have the ability 
to load device drivers on demand. At boot time, the system first probes the 
hardware buses to determine what devices are present, and then the system 
loads in the necessary drivers, either immediately, or when first required by an 
I/O request. 

Now we describe the typical lifecycle of a blocking read request, as depicted 
in Figure 13.10. The figure suggests that an I/O operation requires a great many 
steps that together consume a tremendous number of CPU cycles. 

1. A process issues a blocking read 0 system call to a file descriptor of a file 
that has been opened previously. 

2. The system-call code in the kernel checks the parameters for correctness. In 
the case of input, if the data are already available in the buffer cache, the 
data are returned to the process and the I/O request is completed. 

3. Otherwise, a physical I/O needs to be performed, so the process is removed 
from the run queue and is placed on the wait queue for the device, and the 
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1/0 request is scheduled. Eventually, the I/O subsystem sends the request 
to the device driver. Depending on the operating system, the request is sent 
via a subroutine call or via an in-kernel message. 

4. The device driver allocates kernel buffer space to receive the data, and 
schedules the I/O. Eventually, the driver sends commands to the device 
controller by writing into the device control registers. 

system call I 
I return from system call 

kernel 
I10 subsystem 

determine which 110 
device 
driver 

t 
interrupt 

Figure 13.10 The life cycle of an I/O request. 
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5. The device controller operates the device hardware to perform the data 
transfer. 

6. The driver may poll for status and data, or it may have set up a DMA 
transfer into kernel memory. We assume that the transfer is managed by a 
DMA controller, which generates an interrupt when the transfer completes. 

7. The correct interrupt handler receives the interrupt via the interrupt-vector 
table, stores any necessary data, signals the device driver, and returns from 
the interrupt. 

8. The device driver receives the signal, determines which I/O request com- 
pleted, determines the request's status, and signals the kernel I/O subsys- 
tem that the request has been completed. 

9. The kernel transfers data or return codes to the address space of the 
requesting process, and moves the process from the wait queue back to 
the ready queue. 

10. Moving the process to the ready queue unblocks the process. When the 
scheduler assigns the process to the CPU, the process resumes execution at 
the completion of the system call. 

13.6 STREAMS 

UNIX System V has an interesting mechanism, called STREAMS, that enables 
an application to assemble pipelines of driver code dynamically. A stream is 
a full-duplex connection between a device driver and a user-level process. It 
consists of a stream head that interfaces with the user process, a driver end 
that controls the device, and zero or more stream modules between them. The 
stream head, the driver end, and each module contain a pair of queues-a read 
queue and a write queue. Message passing is used to transfer data between 
queues. The STREAMS structure is shown in Figure 13.11. 

Modules provide the functionality of STREAMS processing and they are 
pushed onto a stream using the ioctl0 system call. For example, a process 
can open a serial-port device via a stream, and can push on a module to handle 
input editing. Because messages are exchanged between queues in adjacent 
modules, a queue in one module may overflow an adjacent queue. To prevent 
this from occurring, a queue may support flow control. Without flow control, 
a queue accepts all messages and immediately sends them on to the queue in 
the adjacent module without buffering them. A queue supporting flow control 
buffers messages and does not accept messages without sufficient buffer space. 
Flow control is supported by exchanging control messages between queues in 
adjacent modules. 

A user process writes data to a device using either the write0 or 
putmsg0 system calls. The write () system call writes raw data to the stream 
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stream head 

read queue write queue 

read queue write queue I1 
t 1 modules 

Figure 13.11 The STREAMS structure. 

whereas putmsg ( ) allows the user process to specify a message. Regardless of 
the system call used by the user process, the stream head copies the data into a 
message and delivers it to the queue for the next module in line. This copying of 
messages continues until the message is copied to the driver end and hence the 
device. Similarly, the user process reads data from the stream head using either 
the read () or getmsg () system calls. If read () is used, the stream head gets 
a message from its adjacent queue and returns ordinary data (an unstructured 
byte stream) to the process. If getmsg0 is used, a message is returned to the 
process. 

STREAMS 1/0 is asynchronous (or non-blocking) with the exception of 
when the user process communicates with the stream head. When writing 
to the stream, the user process will block, assuming the next queue uses flow 
control, until there is room to copy the message. Likewise, the user process will 
block when reading from the stream until data is available. 

The driver end is similar to a stream head or a module in that it has a read 
and write queue. However, the driver end must respond to interrupts such 
as one triggered when a frame is ready to be read from a network. Unlike the 
stream head that may block if it is unable to copy a message to the next queue in 
line, the driver end must handle all incoming data. Drivers must support flow 



13.7 Performance 483 

control as well. However, if a device's buffer is full, a device typically resorts to 
dropping incoming messages. Consider a network card whose input buffer is 
full. The network card must simply drop further messages until there is ample 
buffer space to store incoming messages. 

The benefit of using STREAMS is that it provides a framework to a modular 
and incremental approach to writing device drivers and network protocols. 

Modules may be used by different STREAMS and hence by different devices. 
For example, a networking module may be used by both an Ethernet network 
card and a token ring network card. Furthermore, rather than treating character 
device I/O as an unstructured byte stream, STREAMS allow support for message 
boundaries and control information between modules. Support for STREAMS 
is widespread among most UNU( variants and it is the preferred method for 
writing protocols and device drivers. For example, in System V UNIX and 
Solaris, the socket mechanism is implemented using STREAMS. 

13.7 . Performance 

I/O is a major factor in system performance. It places heavy demands on 
the CPU to execute device-driver code and to schedule processes fairly and 
efficiently as they block and unblock. The resulting context switches stress 
the CPU and its hardware caches. I/O also exposes any inefficiencies in the 
interrupt-handling mechanisms in the kernel, and I/O loads down the memory 
bus during data copy between controllers and physical memory, and again 
during copies between kernel buffers and application data space. Coping 
gracefully with all these demands is one of the major concerns of a computer 
architect. 

Although modern computers can handle many thousands of interrupts per 
second, interrupt handling is a relatively expensive task: Each interrupt causes 
the system to perform a state change, to execute the interrupt handler, and 
then to restore state. Programmed I/O can be more efficient than interrupt- 
driven I/O, if the number of cycles spent busy-waiting is not excessive. An 
1/0 completion typically unblocks a process, leading to the full overhead of a 
context switch. 

Network traffic can also cause a high context-switch rate. Consider, for 
instance, a remote login from one machine to another. Each character typed on 
the local machine must be transported to the remote machine. On the local 
machine, the character is typed; a keyboard interrupt is generated; and the 
character is passed through the interrupt handler to the device driver, to the 
kernel, and then to the user process. The user process issues a network I/O 
system call to send the character to the remote machine. The character then 
flows into the local kernel, through the network layers that construct a network 
packet, and into the network device driver. The network device driver transfers 
the packet to the network controller, which sends the character and generates 
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an interrupt. The interrupt is passed back up through the kernel to cause the 
network I/O system call to complete. 

Now, the remote system's network hardware receives the packet, and an 
interrupt is generated. The character is unpacked from the network proto- 
cols and is given to the appropriate network daemon. The network daemon 
identifies which remote login session is involved, and passes the packet to the 
appropriate subdaemon for that session. Throughout this flow there are con- 
text switches and state switches (Figure 13.12). Usually, the receiver echoes the 
character back to the sender; that approach doubles the work. 

The Solaris developers reimplemented the telnet daemon using in-kernel 
threads to eliminate the context switches involved in moving each charac- 
ter between daemons and the kernel. Sun estimates that this improvement 

Figure 13.12 Intercomputer communications. 
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increased the maximum number of network logins from a few hundred to a 
few thousand on a large server. 

Other systems use separate front-end processors for terminal I/O, to 
reduce the interrupt burden on the main CPU. For instance, a terminal con- 
centrator can multiplex the traffic from hundreds of remote terminals into one 
port on a large computer. An 110 channel is a dedicated, special-purpose CPU 
found in mainframes and in other high-end systems. The job of a channel is 
to offload 1/0 work from the main CPU. The idea is that the channels keep the 
data flowing smoothly, while the main CPU remains free to process the data. 
Like the device controllers and DMA controllers found in smaller computers, a 
channel can process more general and sophisticated programs, so channels can 
be tuned for particular workloads. 

We can employ several principles to improve the efficiency of I/O: 

a Reduce the number of context switches. 

a Reduce the number of times that data must be copied in memory while 
passing between device and application. 

Reduce the frequency of interrupts by using large transfers, smart con- 
trollers, and polling (if busy-waiting can be minimized). 

a Increase concurrency by using DMA-knowledgeable controllers or channels 
to offload simple data copying from the CPU. 

a Move processing primitives into hardware, to allow their operation in 
device controllers concurrent with the CPU and bus operation. 

a Balance CPU, memory subsystem, bus, and I/O performance, because an 
overload in any one area will cause idleness in others. 

Devices vary greatly in complexity. For instance, a mouse is simple. The 
mouse movements and button clicks are converted into numeric values that are 
passed from hardware, through the mouse device driver, to the application. By 
contrast, the functionality provided by the NT disk device driver is complex. It 
not only manages individual disks but also implements RAID arrays (Section 
14.5). To do so, it converts an application's read or write request into a 
coordinated set of disk I/O operations. Moreover, it implements sophisticated 
error-handling and data-recovery algorithms, and takes many steps to optimize 
disk performance, because of the importance of secondary-storage performance 
to overall system performance. 

Where should the I/O functionality be implemented-in the device hard- 
ware, in the device driver, or in application software? Sometimes we observe 
the progression depicted in Figure 13.13. 

a Initially, we implement experimental I/O algorithms at the application 
level, because application code is flexible, and application bugs are unlikely 



486 Chapter 13 I10 Systems 

to cause system crashes. Furthermore, by developing code at the applica- 
tion level, we avoid the need to reboot or reload device drivers after every 
change to the code. An application-level implementation can be inefficient, 
however, because of the overhead of context switches, and because the 
application cannot take advantage of internal kernel data structures and 
kernel functionality (such as efficient in-kernel messaging, threading, and 
locking). 

When an application-level algorithm has demonstrated its worth, we may 
reimplement it in the kernel. This can improve the performance, but the 
development effort is more challenging, because an operating-system ker- 
nel is a large, complex software system. Moreover, an in-kernel implemen- 
tation must be thoroughly debugged to avoid data corruption and system 
crashes. 

The highest performance may be obtained by a specialized implementation 
in hardware, either in the device or in the controller. The disadvantages of 
a hardware implementation include the difficulty and expense of making 
further improvements or of fixing bugs, the increased development time 
(months rather than days), and the decreased flexibility. For instance, a 
hardware RAID controller may not provide any means for the kernel to 
influence the order or location of individual block reads and writes, even 
if the kernel has special information about the workload that would enable 
the kernel to improve the I/O performance. 

Figure 13.13 Device-functionality progression. 
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13.8 Summary 

The basic hardware elements involved in 1 /0  are buses, device controllers, 
and the devices themselves. The work of moving data between devices and 
main memory is performed by the CPU as programmed I/O, or is offloaded 
to a DMA controller. The kernel module that controls a device is a device 
driver. The system-call interface provided to applications is designed to handle 
several basic categories of hardware, including block devices, character devices, 
memory-mapped files, network sockets, and programmed interval timers. The 
system calls usually block the process that issues them, but nonblocking and 
asynchronous calls are used by the kernel itself, and by applications that must 
not sleep while waiting for an I/O operation to complete. 

The kernel's 1 /0  subsystem provides numerous services. Among these are 
I/O scheduling, buffering, spooling, error handling, and device reservation. 
Another service is name translation, to make the connection between hardware 
devices and the symbolic file names used by applications. It involves several 
levels of mapping that translate from a character string name to a specific device 
driver and device address, and then to physical addresses of 1 /0  ports or bus 
controllers. This mapping may occur within the file-system name space, as it 
does in UNIX, or in a separate device-name space, as it does in MS-DOS. 

STREAMS is an implementation and methodology for making drivers 
reusable and easy to use. Through them, drivers can be stacked, with data 
passed through them sequentially and bidirectionally for processing. 

I/O system calls are costly in terms of CPu consumption, because of the 
many layers of software between a physical device and the application. These 
layers imply the overheads of context switching to cross the kernel's protection 
boundary, of signal and interrupt handling to service the 1 /0  devices, and of 
the load on the CPU and memory system to copy data between kernel buffers 
and application space. 

Exercises 

13.1 State three advantages of placing functionality in a device controller, 
rather than in the kernel. State three disadvantages. 

13.2 Consider the following I/O scenarios on a single-user PC. 

a. A mouse used with a graphical user interface 

b. A tape drive on a multitasking operating system (assume no device 
preallocation is available) 

c. A disk drive containing user files 

d. A graphics card with direct bus connection, accessible through 
memory-mapped I/O 
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For each of these I/O scenarios, would you design the operating system 
to use buffering, spooling, caching, or a combination? Would you use 
polled I/O or interrupt-driven I/O? Give reasons for your choices. 

13.3 The example of handshaking in Section 13.2 used 2 bits: a busy bit and 
a command-ready bit. Is it possible to implement this handshaking with 
only 1 bit? If it is, describe the protocol. If not, explain why 1 bit is 
insufficient. 

13.4 Describe three circumstances under which blocking I/O should be used. 
Describe three circumstances under which nonblocking I/O should be 
used. Why not just implement nonblocking I/O and have processes 
busy-wait until their device is ready? 

13.5 Why might a system use interrupt-driven I/O to manage a single serial 
port, but polling I/O to manage a front-end processor, such as a terminal 
concentrator? 

13.6 Polling for an I/O completion can waste a large number of CPU cycles 
if the processor iterates a busy-waiting loop many times before the I/O 
completes. But if the I/O device is ready for service, polling can be much 
more efficient than is catching and dispatching an interrupt. Describe a 
hybrid strategy that combines polling, sleeping, and interrupts for I/O 
device service. For each of these three strategies (pure polling, pure 
interrupts, hybrid), describe a computing environment in which that 
strategy is more efficient than is either of the others. 

13.7 UNIX coordinates the activities of the kernel I/O components by manipu- 
lating shared in-kernel data structures, whereas Windows NT uses object- 
oriented message passing between kernel I/O components. Discuss three 
pros and three cons of each approach. 

13.8 How does DMA increase system concurrency? How does it complicate 
the hardware design? 

13.9 Write (in pseudocode) an implementation of virtual clocks, including 
the queueing and management of timer requests for the kernel and 
applications. Assume that the hardware provides three timer channels. 

13.10 Why is it important to scale up system bus and device speeds as the CPU 
speed increases? 

13.11 Distinguish between a STREAMS driver and a STREAMS module. 
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Chapter 14 

MASS- 
STORAGE 
STRUCTURE 

The file system can be viewed logically as consisting of three parts. In Chapter 
11, we saw the user and programmer interface to the file system. In Chapter 12, 
we described the internal data structures and algorithms used by the operating 
system to implement this interface. In this chapter, we discuss the lowest 
level of the file system: the secondary and tertiary storage structures. We first 
describe disk-scheduling algorithms that schedule the order of disk I/Os to 
improve performance. Next, we discuss disk formatting and management of 
boot blocks, damaged blocks, and swap space. We examine secondary storage 
structure, covering disk reliability and stable-storage implementation. We 
conclude with a brief description of tertiary storage devices, and the problems 
that arise when an operating system uses tertiary storage. 

14.1 . Disk Structure 

Disks provide the bulk of secondary storage for modern computer systems. 
Magnetic tape was used as an early secondary-storage medium, but the access 
time is much slower than for disks. Thus, tapes are currently used mainly 
for backup, for storage of infrequently used information, as a medium for 
transferring information from one system to another, and for storing quantities 
of data so large that they are impractical as disk systems. Tape storage is 
described in Section 14.8. 

Modern disk drives are addressed as large one-dimensional arrays of log- 
ical blocks, where the logical block is the smallest unit of transfer. The size 
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of a logical block is usually 512 bytes, although some disks can be low-level 
formatted to choose a different logical block size, such as 1,024 bytes. This 
option is described in Section 14.3.1. 

The one-dimensional array of logical blocks is mapped onto the sectors of 
the disk sequentially. Sector 0 is the first sector of the first track on the outermost 
cylinder. The mapping proceeds in order through that track, then through the 
rest of the tracks in that cylinder, and then through the rest of the cylinders from 
outermost to innermost. 

By using this mapping, we can-at least in theory-convert a logical block 
number into an old-style disk address that consists of a cylinder number, a track 
number within that cylinder, and a sector number within that track. In practice, 
it is difficult to perform this translation, for two reasons. First, most disks have 
some defective sectors, but the mapping hides this by substituting spare sectors 
from elsewhere on the disk. Second, the number of sectors per track is not a 
constant on some drives. On media that use constant linear velocity (CLV), the 
density of bits per track is uniform. The farther a track is from the center of the 
disk, the greater its length, so the more sectors it can hold. As we move from 
outer zones to inner zones, the number of sectors per track decreases. Tracks 
in the outermost zone typically hold 40 percent more sectors than do tracks in 
the innermost zone. The drive increases its rotation speed as the head moves 
from the outer to the inner tracks to keep the same rate of data moving under 
the head. This method is used in CD-ROM and DVD-ROM drives. Alternatively, 
the disk rotation speed can stay constant, and the density of bits decreases from 
inner tracks to outer tracks to keep the data rate constant. This method is used 
in hard disks and is known as constant angular velocity (CAV). 

The number of sectors per track has been increasing as disk technology 
improves, and the outer zone of a disk usually has several hundred sectors per 
track. Similarly, the number of cylinders per disk has been increasing; large 
disks have tens of thousands of cylinders. 

14.2 . Disk Scheduling 

One of the responsibilities of the operating system is to use the hardware 
efficiently. For the disk drives, meeting this responsibility entails having a fast 
access time and disk bandwidth. The access time has two major components 
(also see Section 2.3.2). The seek time is the time for the disk arm to move the 
heads to the cylinder containing the desired sector. The rotational latency is 
the additional time waiting for the disk to rotate the desired sector to the disk 
head. The disk bandwidth is the total number of bytes transferred, divided by 
the total time between the first request for service and the completion of the last 
transfer. We can improve both the access time and the bandwidth by scheduling 
the servicing of disk I/O requests in a good order. 
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As we discussed in Chapter 2, whenever a process needs 1/0 to or from 
the disk, it issues a system call to the operating system. The request specifies 
several pieces of information: 

I 

i 
I Whether this operation is input or output I 

What the disk address for the transfer is I 
What the memory address for the transfer is I 
What the number of bytes to be transferred is I 
If the desired disk drive and controller are available, the request can be 

serviced immediately. If the drive or controller is busy, any new requests for 
service will be placed on the queue of pending requests for that drive. For 
a multiprogramming system with many processes, the disk queue may often 
have several pending requests. Thus, when one request is completed, the 
operating system chooses which pending request to service next. 

14.2.1 FCFS Scheduling 
The simplest form of disk scheduling is, of course, the first-come, first-served I 

I 

(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not 
provide the fastest service. Consider, for example, a disk queue with requests 
for 1 /0  to blocks on cylinders 

in that order. If the disk head is initially at cylinder 53, it will first move from 
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head 
movement of 640 cylinders. This schedule is diagrammed in Figure 14.1. 

The wild swing from 122 to 14 and then back to 124 illustrates the problem 
with this schedule. If the requests for cylinders 37 and 14 could be serviced 
together, before or after the requests at 122 and 124, the total head movement 
could be decreased substantially, and performance could be thereby improved. 

14.2.2 SSTF Scheduling 
It seems reasonable to service all the requests close to the current head position, 
before moving the head far away to service other requests. This assumption is 
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm 
selects the request with the minimum seek time from the current head position. 
Since seek time increases with the number of cylinders traversed by the head, 
SSTF chooses the pending request closest to the current head position. 
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queue = 98,183,37,122, 14,124,65,67 
head starts at 53 

Figure 14.1 FCFS disk scheduling. 

For our example request queue, the closest request to the initial head 
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest 
request is at cylinder 67. From there, the request at cylinder 37 is closer than 
98, so 37 is served next. Continuing, we service the request at cylinder 14, then 
98, 122, 124, and finally 183 (Figure 14.2). This scheduling method results in 
a total head movement of only 236 cylinders-little more than one-third of the 
distance needed for FCFS scheduling of this request queue. This algorithm gives 
a substantial improvement in performance. 

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling, 
and, like SJF scheduling, it may cause starvation of some requests. Remember 
that requests may arrive at any time. Suppose that we have two requests in 

queue = 98,183,37,122,14,124,65,67 
head starts at 53 

Figure 14.2 SSTF disk scheduling. 
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the queue, for cylinders 14 and 186, and while servicing the request from 14, a 
new request near 14 arrives. This new request will be serviced next, making the 
request at 186 wait. While this request is being serviced, another request close to 
14 could arrive. In theory, a continual stream of requests near one another could 
arrive, causing the request for cylinder 186 to wait indefinitely. This scenario 
becomes increasingly likely if the pending-request queue grows long. 

Although the SSTF algorithm is a substantial improvement over the FCFS 
algorithm, it is not optimal. In the example, we can do better by moving the 
head from 53 to 37, even though the latter is not closest, and then to 14, before 
turning around to service 65,67,98,122,124, and 183. This strategy reduces the 
total head movement to 208 cylinders. 

14.2.3 SCAN Scheduling 
In the SCAN algorithm, the disk arm starts at one end of the disk, and moves 
toward the other end, servicing requests as it reaches each cylinder, until it gets 
to the other end of the disk. At the other end, the direction of head movement is 
reversed, and servicing continues. The head continuously scans back and forth 
across the disk. We again use our example. 

Before applying SCAN to schedule the requests on cylinders 98, 183, 37, 
122, 14, 124, 65, and 67, we need to know the direction of head movement, in 
addition to the head's current position (53). If the disk arm is moving toward 
0, the head will service 37 and then 14. At cylinder 0, the arm will reverse and 
will move toward the other end of the disk, servicing the requests at 65,67,98, 
122, 124, and 183 (Figure 14.3). If a request arrives in the queue just in front of 
the head, it will be serviced almost immediately; a request arriving just behind 

queue = 98,183, 37,122,14,124,65,67 
head starts at 53 

Figure 14.3 SCAN disk scheduling. 



496 Chapter 14 Mass-Storage Structure 

queue = 98,183,37,122,14,124,65,67 
head starts at 53 

Figure 14.4 C-SCAN disk scheduling. 

the head will have to wait until the arm moves to the end of the disk, reverses 
direction, and comes back. 

The SCAN algorithm is sometimes called the elevator algorithm, since the 
disk arm behaves just like an elevator in a building, first servicing all the 
requests going up, and then reversing to service requests the other way. 

Assuming a uniform distribution of requests for cylinders, consider the 
density of requests when the head reaches one end and reverses direction. At 
this point, relatively few requests are immediately in front of the head, since 
these cylinders have recently been serviced. The heaviest density of requests 
is at the other end of the disk. These requests have also waited the longest, so 
why not go there first? That is the idea of the next algorithm. 

14.2.4 C-SCAN Scheduling 
Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide 
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of 
the disk to the other, servicing requests along the way. When the head reaches 
the other end, however, it immediately returns to the beginning of the disk, 
without servicing any requests on the return trip (Figure 14.4). The C-SCAN 
scheduling algorithm essentially treats the cylinders as a circular list that wraps 
around from the final cylinder to the first one. 

14.2.5 LOOK Scheduling 
As we described them, both SCAN and C-SCAN move the disk arm across the 
full width of the disk. In practice, neither algorithm is implemented this way. 
More commonly, the arm goes only as far as the final request in each direction. 
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queue = 98,183,37,122,14,124,65,67 
head starts at 53 

Figure 14.5 C-LOOK disk scheduling. 

Then, it reverses direction immediately, without going all the way to the end 
of the disk. These versions of SCAN and C-SCAN are called LOOK and C-LOOK 
scheduling, because they look for a request before continuing to move in a given 
direction (Figure 14.5). 

14.2.6 Selection of a Disk-Scheduling Algorithm 
Given so many disk-scheduling algorithms, how do we choose the best one? 
SSTF is common and has a natural appeal because it increases performance over 
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load on 
the disk, because they are less likely to have a starvation problem. For any 
particular list of requests, we can define an optimal order of retrieval, but the 
computation needed to find an optimal schedule may not justify the savings 
over SSTF or SCAN. 

With any scheduling algorithm, however, performance depends heavily on 
the number and types of requests. For instance, suppose that the queue usually 
has just one outstanding request. Then, all scheduling algorithms are forced to 
behave the same, because they have only one choice for where to move the disk 
head: They all behave like FCFS scheduling. 

The requests for disk service can be greatly influenced by the file-allocation 
method. A program reading a contiguously allocated file will generate several 
requests that are close together on the disk, resulting in limited head movement. 
A linked or indexed file, on the other hand, may include blocks that are widely 
scattered on the disk, resulting in greater head movement. 

The location of directories and index blocks is also important. Since every 
file must be opened to be used, and opening a file requires searching the 
directory structure, the directories will be accessed frequently. Suppose that a 
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directory entry is on the first cylinder and a file's data are on the final cylinder. 
In this case, the disk head has to move the entire width of the disk. If the 
directory entry were on the middle cylinder, the head would have to move, 
at most, one-half the width. Caching the directories and index blocks in main 
memory can also help to reduce the disk-arm movement, particularly for read 
requests. 

Because of these complexities, the disk-scheduling algorithm should be 
written as a separate module of the operating system, so that it can be replaced 
with a different algorithm if necessary. Either SSTF or LOOK is a reasonable 
choice for the default algorithm. 

The scheduling algorithms described here consider only the seek distances. 
For modern disks, the rotational latency can be nearly as large as the average 
seek time. But it is difficult for the operating system to schedule for improved 
rotational latency because modern disks do not disclose the physical location 
of logical blocks. Disk manufacturers have been alleviating this problem by 
implementing disk-scheduling algorithms in the controller hardware built into 
the disk drive. If the operating system sends a batch of requests to the controller, 
the controller can queue them and then schedule them to improve both the seek 
time and the rotational latency. If 1/0 performance were the only consideration, 
the operating system would gladly turn over the responsibility of disk schedul- 
ing to the disk hardware. In practice, however, the operating system may have 
other constraints on the service order for requests. For instance, demand paging 
may take priority over application I/O, and writes are more urgent than reads if 
the cache is running out of free pages. Also, it may be desirable to guarantee the 
order of a set of disk writes to make the file system robust in the face of system 
crashes. Consider what could happen if the operating system allocated a disk 
page to a file, and the application wrote data into that page before the operating 
system had a chance to flush the modified inode and free-space list back to disk. 
To accommodate such requirements, an operating system may choose to do its 
own disk scheduling and to spoon-feed the requests to the disk controller, one 
by one, for some types of I/O. 

14.3 Disk Management 

The operating system is responsible for several other aspects of disk manage- 
ment, too. Here we discuss disk initialization, booting from disk, and bad-block 
recovery. 

14.3.1 Disk Formatting 
A new magnetic disk is a blank slate: It is just platters of a magnetic recording 
material. Before a disk can store data, it must be divided into sectors that the 
disk controller can read and write. This process is called low-level formatting 
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(or physical formatting). Low-level formatting fills the disk with a special data 
structure for each sector. The data structure for a sector typically consists of a 
header, a data area (usually 512 bytes in size), and a trailer. The header and 
trailer contain information used by the disk controller, such as a sector number 
and an error-correcting code (ECC). When the controller writes a sector of data 
during normal I/O, the ECC is updated with a value calculated from all the 
bytes in the data area. When the sector is read, the ECC is recalculated and 
is compared with the stored value. If the stored and calculated numbers are 
different, this mismatch indicates that the data area of the sector has become 
corrupted and that the disk sector may be bad (Section 14.3.3). The ECC is an 
error-correcting code because it contains enough information that, if only a few 
bits of data have been corrupted, the controller can identify which bits have 
changed and can calculate what their correct values should be. The controller I 

I 
automatically does the ECC processing whenever a sector is read or written. 

Most hard disks are low-level formatted at the factory as a part of the 
manufacturing process. This formatting enables the manufacturer to test the 

I 

disk and to initialize the mapping from logical block numbers to defect-free 
sectors on the disk. For many hard disks, when the disk controller is instructed 
to low-level format the disk, it can also be told how many bytes of data space 
to leave between the header and trailer of all sectors. It is usually possible 
to choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a 
disk with a larger sector size means that fewer sectors can fit on each track, but 
that also means fewer headers and trailers are written on each track, and thus 
increases the space available for user data. Some operating systems can handle 
only a sector size of 512 bytes. 

To use a disk to hold files, the operating system still needs to record its own 
data structures on the disk. It does so in two steps. The first step is to partition 
the disk into one or more groups of cylinders. The operating system can treat 
each partition as though it were a separate disk. For instance, one partition can 
hold a copy of the operating system's executable code, while another holds user 
files. After partitioning, the second step is logical formatting (or creation of a 
file system). In this step, the operating system stores the initial file-system data 
structures onto the disk. These data structures may include maps of free and 
allocated space (a FAT or inodes) and an initial empty directory. 

Some operating systems give special programs the ability to use a disk 
partition as a large sequential array of logical blocks, without any file-system 
data structures. This array is sometimes called the raw disk, and I/O to this 
array is termed raw I/O. For example, some database systems prefer raw I/O 
because it enables them to control the exact disk location where each database 
record is stored. Raw 1 /0  bypasses all the file-system services, such as the buffer 
cache, file locking, prefetching, space allocation, file names, and directories. 
We can make certain applications more efficient by implementing their own 
special-purpose storage services on a raw partition, but most applications 
perform better when they use the regular file-system services. 
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14.3.2 Boot Block 

For a computer to start running-for instance, when it is powered up or 
rebooted-it needs to have an initial program to run. This initial bootstrap 
program tends to be simple. It initializes all aspects of the system, from CPU 
registers to device controllers and the contents of main memory, and then starts 
the operating system. To do its job, the bootstrap program finds the operating- 
system kernel on disk, loads that kernel into memory, and jumps to an initial 
address to begin the operating-system execution. 

For most computers, the bootstrap is stored in read-only memory (ROM). 
This location is convenient, because ROM needs no initialization and is at a fixed 
location that the processor can start executing when powered up or reset. And, 
since ROM is read only, it cannot be infected by a computer virus. The problem 
is that changing this bootstrap code requires changing the ROM hardware chips. 
For this reason, most systems store a tiny bootstrap loader program in the boot 
ROM, whose only job is to bring in a full bootstrap program from disk. The 
full bootstrap program can be changed easily: A new version is simply written 
onto the disk. The full bootstrap program is stored in a partition called the boot 
blocks, at a fixed location on the disk. A disk that has a boot partition is called 
a boot disk or system disk. 

The code in the boot ROM instructs the disk controller to read the boot 
blocks into memory (no device drivers are loaded at this point), and then starts 
executing that code. The full bootstrap program is more sophisticated than the 
bootstrap loader in the boot ROM; it is able to load the entire operating system 
from a nonfixed location on disk, and to start the operating system running. 
Even so, the full bootstrap code may be small. For example, MS-DOS uses one 
512-byte block for its boot program (Figure 14.6). 

14.3.3 Bad Blocks 

Because disks have moving parts and small tolerances (recall that the disk head 
flies just above the disk surface), they are prone to failure. Sometimes the failure 
is complete, and the disk needs to be replaced, and its contents restored from 
backup media to the new disk. More frequently, one or more sectors become 
defective. Most disks even come from the factory with bad blocks. Depending 
on the disk and controller in use, these blocks are handled in a variety of ways. 

On simple disks, such as some disks with IDE controllers, bad blocks are 
handled manually. For instance, the MS-DOS format command does a logical 
format and, as a part of the process, scans the disk to find bad blocks. Iff ormat 
finds a bad block, it writes a special value into the corresponding FAT entry to 
tell the allocation routines not to use that block. If blocks go bad during normal 
operation, a special program (such as chkdsk) must be run manually to search 
for the bad blocks and to lock them away as before. Data that resided on the 
bad blocks usually are lost. 
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sector 

sector 

Figure 14.6 MS-DOS disk layout. 

More sophisticated disks, such as the SCSI disks used in high-end PCs and 
most workstations and servers, are smarter about bad-block recovery. The 
controller maintains a list of bad blocks on the disk. The list is initialized during 
the low-level format at the factory, and is updated over the life of the disk. Low- 
level formatting also sets aside spare sectors not visible to the operating system. 
The controller can be told to replace each bad sector logically with one of the 
spare sectors. This scheme is known as sector sparing or forwarding. 

A typical bad-sector transaction might be as follows: 

The operating system tries to read logical block 87. 

The controller calculates the ECC and finds that the sector is bad. It reports 
this finding to the operating system. 

The next time that the system is rebooted, a special command is run to tell 
the SCSI controller to replace the bad sector with a spare. 

After that, whenever the system requests logical block 87, the request is 
translated into the replacement sector's address by the controller. 

Such a redirection by the controller could invalidate any optimization by 
the operating system's disk-scheduling algorithm! For this reason, most disks 
are formatted to provide a few spare sectors in each cylinder, and a spare 
cylinder as well. When a bad block is remapped, the controller uses a spare 
sector from the same cylinder, if possible. 

As an alternative to sector sparing, some controllers can be instructed to 
replace a bad block by sector slipping. Here is an example: Suppose that 
logical block 17 becomes defective, and the first available spare follows sector 
202. Then, sector slipping would remap all the sectors from 17 to 202, moving 
them all down one spot. That is, sector 202 would be copied into the spare, then 
sector 201 into 202, and then 200 into 201, and so on, until sector 18 is copied 
into sector 19. Slipping the sectors in this way frees up the space of sector 18, so 
sector 17 can be mapped to it. 
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The replacement of a bad block generally is not a totally automatic process 
because the data in the bad block are usually lost. Thus, whatever file was 
using that block must be repaired (for instance, by restoration from a backup 
tape), and that requires manual intervention. 

14.4 Swap-Space Management 

Swap-space management is another low-level task of the operating system. 
Virtual memory uses disk space as an extension of main memory. Since disk 
access is much slower than memory access, using swap space significantly 
decreases system performance. The main goal for the design and implemen- 
tation of swap space is to provide the best throughput for the virtual-memory 
system. In this section, we discuss how swap space is used, where swap space 
is located on disk, and how swap space is managed. 

14.4.1 Swap-Space Use 
Swap space is used in various ways by different operating systems, depending 
on the implemented memory-management algorithms. For instance, systems 
that implement swapping may use swap space to hold the entire process image, 
including the code and data segments. Paging systems may simply store pages 
that have been pushed out of main memory. The amount of swap space needed 
on a system can therefore vary depending on the amount of physical memory, 
the amount of virtual memory it is backing, and the way in which the virtual 
memory is used. It can range from a few megabytes of disk space to gigabytes. 

Some operating systems, such as UNIX, allow the use of multiple swap 
spaces. These swap spaces are usually put on separate disks, so the load placed 
on the 1 /0  system by paging and swapping can be spread over the system's I/O 
devices. 

Note that it is safer to overestimate than to underestimate swap space, 
because if a system runs out of swap space it may be forced to abort processes 
or may crash entirely. Overestimation wastes disk space that could otherwise 
be used for files, but does no other harm. 

14.4.2 Swap-Space Location 

A swap space can reside in two places: Swap space can be carved out of the 
normal file system, or it can be in a separate disk partition. If the swap space 
is simply a large file within the file system, normal file-system routines can be 
used to create it, name it, and allocate its space. This approach, though easy 
to implement, is also inefficient. Navigating the directory structure and the 
disk-allocation data structures takes time and (potentially) extra disk accesses. 
External fragmentation can greatly increase swapping times by forcing multiple 
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seeks during reading or writing of a process image. We can improve perfor- 
mance by caching the block location information in physical memory, and by 
using special tools to allocate physically contiguous blocks for the swap file, but 
the cost of traversing the file-system data structures still remains. 

Alternatively, swap space can be created in a separate disk partition. No 
file system or directory structure is placed on this space. Rather, a separate 
swap-space storage manager is used to allocate and deallocate the blocks. This 
manager uses algorithms optimized for speed, rather than for storage efficiency. 
Internal fragmentation may increase, but this tradeoff is acceptable because 
data in the swap space generally live for much shorter amounts of time than 
do files in the file system, and the swap area may be accessed much more 
frequently. This approach creates a fixed amount of swap space during disk 
partitioning. Adding more swap space can be done only via repartitioning 
of the disk (which involves moving or destroying and restoring the other file- 
system partitions from backup), or via adding another swap space elsewhere. 

Some operating systems are flexible and can swap both in raw partitions 
and in file-system space. Solaris 2 is an example. The policy and implementa- 
tion are separate, allowing the machine's administrator to decide which type to 
use. The tradeoff is between the convenience of allocation and management in 
the file system, and the performance of swapping in raw partitions. 

14.4.3 Swap-Space Management: An Example 
To illustrate the methods used to manage swap space, we now follow the 
evolution of swapping and paging in UNIX. As discussed fully in Appendix A, 
UNIX started with an implementation of swapping that copied entire processes 
between contiguous disk regions and memory. UNIX evolved to a combination 
of swapping and paging, as paging hardware became available. 

In 4.3 BSD, swap space is allocated to a process when the process is started. 
Enough space is set aside to hold the program, known as the text pages or the 
text segment, and the data segment of the process. Preallocating all the needed 
space in this way generally prevents a process from running out of swap space 
while it executes. When a process starts, its text is paged in from the file system. 
These pages are written out to swap when necessary, and are read back in from 
there, so the file system is consulted only once for each text page. Pages from 
the data segment are read in from the file system, or are created (if they are 
uninitialized), and are written to swap space and paged back in as needed. 
One optimization (for instance, when two users run the same editor) is that 
processes with identical text pages share these pages, both in physical memory 
and in swap space. 

Two per-process swap maps are used by the kernel to track swap-space 
use. The text segment is a fixed size, so its swap space is allocated in 512 KB 
chunks, except for the final chunk, which holds the remainder of the pages, in 
1 KB increments (Figure 14.7). 
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Figure 14.7 4.3 BSD text-segment swap map. 

The data-segment swap map is more complicated, because the data seg- 
ment can grow over time. The map is of fixed size, but contains swap addresses 
for blocks of varying size. Given index i, a block pointed to by swap-map entry 
i is of size 2' x 16 KB, to a maximum of 2 MB. This data structure is shown 
in Figure 14.8. (The block size minimum and maximum are variable, and can 
be changed at system reboot.) When a process tries to grow its data segment 
beyond the final allocated block in its swap area, the operating system allocates 
another block, twice as large as the previous one. This scheme results in small 
processes using only small blocks. It also minimizes fragmentation. The blocks 
of large processes can be found quickly, and the swap map remains small. 

In Solaris 1 (SunOS 4), the designers made changes to standard UNIX meth- 
ods to improve efficiency and reflect technological changes. When a process 
executes, text-segment pages are brought in from the file system, accessed in 
main memory, and thrown away if selected for pageout. It is more efficient to 
reread a page from the file system than to write it to swap space and then to 
reread it from there. 

More changes were made in Solaris 2. The biggest change is that Solaris 2 
allocates swap space only when a page is forced out of physical memory, rather 
than when the virtual-memory page is first created. This change gives better 
performance on modern computers, which have more physical memory than 
older systems and tend to page less. 

Figure 14.8 4.3 BSD data-segment swap map. 
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14.5 . RAID Structure 

Disk drives have continued to get smaller and cheaper, so it is now economi- 
cally feasible to attach a large number of disks to a computer system. 

Having a large number of disks in a system presents opportunities for 
improving the rate at which data can be read or written, if the disks are 
operated in parallel. Furthermore, this setup offers the potential for improving 
the reliability of data storage, because redundant information can be stored 
on multiple disks. Thus, failure of one disk does not lead to loss of data. A 
variety of disk-organization techniques, collectively called redundant arrays of 
inexpensive disks (RAID), are commonly used to address the performance and 
reliability issues. 

In the past, RAIDS composed of small cheap disks were viewed as a cost- 
effective alternative to large, expensive disks; today, RAIDS are used for their 
higher reliability and higher data-transfer rate, rather than for economic rea- 
sons. Hence, the I in RAID stands for "independent", instead of "inexpensive." 

14.5.1 Improvement of Reliability via Redundancy 
Let us first consider reliability. The chance that some disk out of a set of N 
disks will fail is much higher than the chance that a specific single disk will 
fail. Suppose that the mean time to failure of a single disk is 100,000 hours. 
Then, the mean time to failure of some disk in an array of 100 disks will be 
100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we store 
only one copy of the data, then each disk failure will result in loss of a significant 
amount of data-such a high rate of data loss is unacceptable. 

The solution to the problem of reliability is to introduce redundancy; we 
store extra information that is not needed normally, but that can be used in the 
event of failure of a disk to rebuild the lost information. Thus, even if a disk 
fails, data are not lost. 

The simplest (but most expensive) approach to introducing redundancy is 
to duplicate every disk. This technique is called mirroring (or shadowing). A 
logical disk then consists of two physical disks, and every write is carried out 
on both disks. If one of the disks fails, the data can be read from the other. Data 
will be lost only if the second disk fails before the first failed disk is replaced. 

The mean time to failure-where failure is the loss of data-of a mirrored 
disk depends on two factors: the mean time to failure of the individual disks, 
as well as on the mean time to repair, which is the time it takes (on average) to 
replace a failed disk and to restore the data on it. Suppose that the failures of 
the two disks are independent; that is, the failure of one disk is not connected 
to the failure of the other. Then, if the mean time to failure of a single disk is 
100,000 hours and the mean time to repair is 10 hours, then the mean time to 
data loss of a mirrored disk system is 100, 0002/(2 * 10) = 500 * lo6 hours, or 
57,000 years! 



506 Chapter 14 Mass-Storage Structure 

You should be aware that the assumption of independence of disk failures 
is not valid. Power failures and natural disasters, such as earthquakes, fires, 
and floods, may result in damage to both disks at the same time. Also, 
manufacturing defects in a batch of disks can cause correlated failures. As disks 
age, the probability of failure increases, increasing the chance that a second disk 
will fail while the first is being repaired. In spite of all these considerations, 
however, mirrored-disk systems offer much higher reliability than do single- 
disk systems. 

Power failures are a particular source of concern, since they occur far more 
frequently than do natural disasters. However, even with mirroring of disks, if 
writes are in progress to the same block in both disks, and power fails before 
both blocks are fully written, the two blocks can be in an inconsistent state. The 
solution to this problem is to write one copy first, then the next, so that one of 
the two copies is always consistent. Some extra actions are required when we 
restart after a power failure, to recover from incomplete writes. 

14.5.2 Improvement in Performance via Parallelism 
Now let us consider the benefit of parallel access to multiple disks. With disk 
mirroring, the rate at which read requests can be handled is doubled, since read 
requests can be sent to either disk (as long as both disks in a pair are functional, 
as is almost always the case). The transfer rate of each read is the same as in a 
single-disk system, but the number of reads per unit time has doubled. 

With multiple disks, we can improve the transfer rate as well (or instead) by 
striping data across multiple disks. In its simplest form, data striping consists 
of splitting the bits of each byte across multiple disks; such striping is called 
bit-level striping. For example, if we have an array of eight disks, we write bit 
i of each byte to disk i. The array of eight disks can be treated as a single disk 
with sectors that are eight times the normal size, and, more important, that have 
eight times the access rate. In such an organization, every disk participates in 
every access (read or write), so the number of accesses that can be processed 
per second is about the same as on a single disk, but each access can read eight 
times as many data in the same time as on a single disk. 

Bit-level striping can be generalized to a number of disks that either is a 
multiple of 8 or divides 8. For example, if we use an array of four disks, bits i 
and 4+i of each byte go to disk i. Further, striping does not need to be at the level 
of bits of a byte: For example, in block-level striping, blocks of a file are striped 
across multiple disks; with n disks, block i of a file goes to disk (i mod n) + 1. 
Other levels of striping, such as bytes of a sector or sectors of a block, also are 
possible. 

In summary, there are two main goals of parallelism in a disk system: 

1. Increase the throughput of multiple small accesses (that is, page accesses) 
by load balancing. 

2. Reduce the response time of large accesses. 



14.5 RAID Structure 507 1 

1 14.5.3 RAID Levels 

Mirroring provides high reliability, but it is expensive. Striping provides high 
data-transfer rates, but it does not improve reliability. Numerous schemes to 
provide redundancy at lower cost by using the idea of disk striping combined 
with "parity" bits (which we describe next) have been proposed. These schemes 
have different cost-performance tradeoffs and are classified into levels called 
RAID levels. We describe the various levels here; Figure 14.9 shows them 
pictorially (in the figure, P indicates error-correcting bits and C indicates a 
second copy of the data). In all cases depicted in the figure, four disks' worth of 

(a) RAID 0: non-redundant striping 

(b) RAID I : mirrored disks 

(c) RAID 2: memory-style error-correcting codes 

(d) RAID 3: bit-interleaved Parity 

(e) RAID 4: block-interleaved parity 

(0 RAID 5: block-Interleaved distributed parity 

(g) RAID 6: P + Q redundancy 

Figure 14.9 RAID levels. 
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data is stored, and the extra disks are used to store redundant information for 
failure recovery. 

RAID Level 0: RAID level 0 refers to disk arrays with striping at the level 
of blocks, but without any redundancy (such as mirroring or parity bits). 
Figure 14.9a shows an array of size 4. 

RAID Level 1: RAID level 1 refers to disk mirroring. Figure 14.9b shows a 
mirrored organization that holds four disks' worth of data. 

RAID Level 2: RAID level 2 is also known as memory-style error-correcting- 
code (ECC) organization. Memory systems have long implemented error 
detection using parity bits. Each byte in a memory system may have a 
parity bit associated with it that records whether the numbers of bits in the 
byte set to 1 is even (parity=O) or odd (parity=l). If one of the bits in the 
byte gets damaged (either a 1 becomes a 0, or a 0 becomes a I), the parity of 
the byte changes and thus will not match the stored parity. Similarly, if the 
stored parity bit gets damaged, it will not match the computed parity. Thus, 
all single-bit errors are detected by the memory system. Error-correcting 
schemes store two or more extra bits, and can reconstruct the data if a single 
bit gets damaged. The idea of ECC can be used directly in disk arrays via 
striping of bytes across disks. For example, the first bit of each byte could 
be stored in disk 1, the second bit in disk 2, and so on until the eighth bit 
is stored in disk 8, and the error-correction bits are stored in further disks. 
This scheme is shown pictorially in Figure 14.9, where the disks labeled P 
store the error-correction bits. If one of the disks fails, the remaining bits 
of the byte and the associated error-correction bits can be read from other 
disks and be used to reconstruct the damaged data. Figure 14.9~ shows an 
array of size 4; note RAID level 2 requires only three disks' overhead for four 
disks of data, unlike RAID level 1, which required four disks' overhead. 

RAID level 3: RAID level 3, or bit-interleaved parity organization, 
improves on level 2 by noting that, unlike memory systems, disk 
controllers can detect whether a sector has been read correctly, so a single 
parity bit can be used for error correction, as well as for detection. The idea 
is as follows. If one of the sectors gets damaged, we know exactly which 
sector it is, and, for each bit in the sector, we can figure out whether it is 
a 1 or a 0 by computing the parity of the corresponding bits from sectors 
in the other disks. If the parity of the remaining bits is equal to the stored 
parity, the missing bit is 0; otherwise, it is 1. RAID level 3 is as good as 
level 2 but is less expensive in the number of extra disks (it has only a 
one-disk overhead), so level 2 is not used in practice. This scheme is shown 
pictorially in Figure 14.9d. 

RAID level 3 has two benefits over level 1. Only one parity disk is 
needed for several regular disks, unlike one mirror disk for every disk in 
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level 1, thus reducing the storage overhead. Since reads and writes of a 
byte are spread out over multiple disks, with N-way striping of data, the 
transfer rate for reading or writing a single block is N times as fast as with a 
RAID-level-1 organization using N-way striping. On the other hand, RAID 
level 3 supports a lower number of I/Os per second, since every disk has 
to participate in every I/O request. A further performance problem with 
RAID 3 (as with all parity-based RAID levels) is the expense of computing 
and writing the parity. This overhead results in significantly slower writes, 
as compared to non-parity RAID arrays. To moderate this performance 
penalty, many RAID storage arrays include a hardware controller with 
dedicated parity hardware. This offloads the parity computation from the 
CPU to the array. The array has a non-volatile RAM (NVRAM) cache as well, 
to store the blocks while the parity is computed and to buffer the writes 
from the controller to the spindles. This combination can make parity RAID 
almost as fast as non-parity. In fact, a caching array doing parity RAID can 
outperform a non-caching non-parity RAID. 

RAID Level 4: RAID level 4, or block-interleaved parity organization, uses 
block-level striping, as in RAID 0, and in addition keeps a parity block on a 
separate disk for corresponding blocks from N other disks. This scheme is 
shown pictorially in Figure 14.9e. If one of the disks fails, the parity block 
can be used with the corresponding blocks from the other disks to restore 
the blocks of the failed disk. 
A block read accesses only one disk, allowing other requests to be processed 
by the other disks. Thus, the data-transfer rate for each access is slower, but 
multiple read accesses can proceed in parallel, leading to a higher overall 
I/O rate. The transfer rates for large reads is high, since all the disks can 
be read in parallel; large writes also have high transfer rates, since the data 
and parity can be written in parallel. 
Small independent writes, on the other hand, cannot be performed in 
parallel. A write of a block has to access the disk on which the block is 
stored, as well as the parity disk, since the parity block has to be updated. 
Moreover, both the old value of the parity block and the old value of the 
block being written have to be read for the new parity to be computed. 
This is known as the read-modify-write. Thus, a single write requires four 
disk accesses: two to read the two old blocks, and two to write the two new 
blocks. 

RAID level 5: RAID level 5, or block-interleaved distributed parity, differs 
from level 4 by spreading data and parity among all N + 1 disks, rather than 
storing data in N disks and parity in one disk. For each block, one of the 
disks stores the parity, and the others store data. For example, with an array 
of five disks, the parity for the nth block is stored in disk (n mod 5) + 1; the 

I 
nth blocks of the other four disks store actual data for that block. This setup 
is denoted pictorially in Figure 14.9f, where the Ps are distributed across all 
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the disks. A parity block cannot store parity for blocks in the same disk, 
because a disk failure would result in loss of data as well as of parity, and 
hence would not be recoverable. By spreading the parity across all the disks 
in the set, RAID 5 avoids the potential overuse of a single parity disk that 
can occur with RAID 4. 

a RAID Level 6: RAID level 6, also called the P+Q redundancy scheme, is 
much like RAID level 5, but stores extra redundant information to guard 
against multiple disk failures. Instead of using parity, error-correcting 
codes such as the Reed-Solomon codes are used. In the scheme shown in 
Figure 14.9g, 2 bits of redundant data are stored for every 4 bits of data- 
unlike 1 parity bit in level 5-and the system can tolerate two disk failures. 

RAID level 0 + 1: RAID level 0 + 1 refers to a combination of RAID 
levels 0 and 1. RAID 0 provides the performance, while RAID 1 provides 
the reliability. Generally, it provides better performance than RAID 5. It 
is common in environments where both performance and reliability are 
important. Unfortunately, it doubles the number of disks needed for 
storage, as does RAID 1, so it is also more expensive. In RAID 0 + 1, a set 
of disks are striped, and then the stripe is mirrored to another, equivalent 
stripe. Another RAID option that is becoming available commercially is 
RAID 1 + 0, in which disks are mirrored in pairs, and then the resulting 
mirror pairs are striped. This RAID has some theoretical advantages over 
RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, the entire stripe 
is inaccessible, leaving only the other stripe available. With a failure in RAID 
1 + 0, the single disk is unavailable, but its mirrored pair is still available as 
are all the rest of the disks (Figure 14.10). 

Finally, we note that numerous variations have been proposed to the basic 
RAID schemes described here. As a result, some confusion may exist about the 
exact definitions of the different RAID levels. 

14.5.4 Selecting a RAID Level 
If a disk fails, the time to rebuild its data can be significant and will vary with the 
RAID level used. Rebuilding is easiest for RAID level 1, since data can be copied 
from another disk; for the other levels, we need to access all the other disks in 
the array to rebuild data in a failed disk. The rebuild performance of a RAID 
system may be an important factor if continuous supply of data is required, as 
it is in high-performance or interactive database systems. Furthermore, rebuild 
performance influences the mean time to failure. 

RAID level 0 is used in high-performance applications where data loss is 
not critical. RAID level 1 is popular for applications that require high reliability 
with fast recovery. RAID 0 + 1 and 1 + 0 are used where performance and 
reliability are important, for example for small databases. Due to RAID 1's high 
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stripe 

I mirror 

stripe 

a) RAID 0 + 1 with a single disk failure 

1 mirror 1 mirror 1 mirror 1 mirror 

b) RAID 1 + 0 with a single disk failure 

Figure 14.10 RAID 0 + 1 and 1 + 0. 

space overhead, RAID level 5 is often preferred for storing large volumes of 
data. Level 6 is not supported currently by many RAID implementations, but it 
should offer better reliability than level 5. 

RAID system designers have to make several other decisions as well. For 
example, how many disks should be in an array? How many bits should be 
protected by each parity bit? If more disks are in an array, data-transfer rates 
are higher, but the system is more expensive. If more bits are protected by a 
parity bit, the space overhead due to parity bits is lower, but the chance that a 
second disk will fail before the first failed disk is repaired is greater, and that 
will result in data loss. 

One other aspect of most RAID implementations is a hot spare disk or disks. 
A hot spare is not used for data, but is configured to be used as a replacement 
should any other disk fail. For instance, a hot spare can be used to rebuild a 
mirror pair should one of the disks in the pair fail. In this way, the RAID level 
can be reestablished automatically, without waiting for the failed disk to be 
replaced. Allocating more than one hot spare allows more than one failure to 
be repaired without human intervention. 
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14.5.5 Extensions 

The concepts of RAID have been generalized to other storage devices, including 
arrays of tapes, and even to the broadcast of data over wireless systems. When 
applied to arrays of tapes, the RAID structures are able to recover data even if 
one of the tapes in an array of tapes is damaged. When applied to broadcast of 
data, a block of data is split into short units and is broadcast along with a parity 
unit; if one of the units is not received for any reason, it can be reconstructed 
from the other units. Commonly, tape-drive robots containing multiple tape 
drives will stripe data across all the drives to increase throughput and decrease 
backup time. 

14.6 Disk Attachment 

Computers access disk storage in two ways. One way is via I/O ports (or host- 
attached storage); this is common on small systems. The other way is via a 
remote host via a distributed file system; this is referred to as network-attached 
storage. 

14.6.1 Host-Attached Storage 

Host-attached storage is storage accessed via local I/O ports. These ports are 
available in several technologies. The typical desktop PC uses an I/O bus 
architecture called IDE or ATA. This architecture supports a maximum of two 
drives per I/O bus. High-end workstations and servers generally use more 
sophisticated 1 /0  architectures such as SCSI and fibre channel (FC). 

SCSI is a bus architecture. Its physical medium is usually a ribbon cable 
having a large number of conductors (typically 50 or 68). The SCSI protocol 
supports a maximum of 16 devices on the bus. Typically this consists of one 
controller card in the host (the SCSI initiator), and up to 15 storage devices (the 
SCSI targets). A SCSI disk is a typical SCSI target, but the protocol provides 
the ability to address up to 8 logical units in each SCSI target. A typical use of 
logical unit addressing is to direct commands to components of a RAID array, 
or components of a removable media library (such as a CD jukebox sending 
commands to the media changer mechanism or to one of the drives). 

FC is a high-speed serial architecture. This architecture can operate over 
optical fiber or over a 4-conductor copper cable. It has two variants. One 
is a large switched fabric having a 24-bit address space. This method is 
expected to dominate in the future, and is the basis of storage-area networks 
(SANS). Because of the large address space and the switched nature of the 
communication, multiple hosts and storage devices can attach to the fabric, 
allowing great flexibility in I/O communication. The other is an arbitrated loop 
(FC-AL) that can address 126 devices (drives and controllers). 
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A wide variety of storage devices are suitable for use as host-attached 
storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and 
tape drives. 

The I/O commands that initiate data transfers to a host-attached storage 
device are reads and writes of logical data blocks, directed to specifically 
identified storage units (such as bus ID, SCSI ID, and target logical unit, for 
example). 

I 14.6.2 Network-Attached Storage 

A network-attached storage device is a special-purpose storage system that is 
accessed remotely over a data network (Figure 14.11). Clients access network- 
attached storage (NAS) via a remote-procedure-call interface such as NFS for 
UNIX systems, or CIFS for Windows machines. The remote procedure calls 
(RPCs) are carried via TCP or UDP over an IP network-usually the same local- 
area network (LAN) that carries all data traffic to the clients. The network- 
attached storage unit is usually implemented as a RAID array with software 
that implements the remote procedure call interface. It is easiest to think of 
NAS as simply another storage-access protocol. For example, rather than using 
a SCSI device driver and SCSI protocols to access storage, a system using NAS 
would use RPC over TCP/IP. 

Network-attached storage provides a convenient way for all the computers 
on a LAN to share a pool of storage, with the same ease of naming and access 
enjoyed with local host-attached storage. However, it tends to be less efficient 
and have lower performance than some direct-attached storage options. 

14.6.3 Storage-Area Network 

One drawback of network-attached storage systems is that the storage 1/0  
operations consume bandwidth on the data network, thereby increasing the 
latency of network communication. This problem can be particularly acute 

Figure 14.11 Network-attached storage. 
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Figure 14.12 Storage-area network. 

in large client-server installations-the communication between servers and 
clients competes for bandwidth with the communication among servers and 
storage devices. 

A storage-area network (SAN) is a private network (using storage protocols 
rather than networking protocols) among the servers and storage units, sepa- 
rate from the LAN or WAN that connects the servers to the clients (Figure 14.12). 
The power of a SAN lies in its flexibility. Multiple hosts and multiple storage 
arrays can attach to the same SAN, and storage can be dynamically allocated to 
hosts. As one example, if a host is running low on disk space, the SAN can be 
configured to allocate more storage to that host. In 2001, many proprietary 
single-vendor SAN systems are available, but SAN components are not well 
standardized or interoperable. Most SAN systems in 2001 are based on fibre- 
channel loops or fibre-channel switched networks. One emerging alternative to 
a fibre-channel interconnect for the SAN is storage over IP network infrastruc- 
ture such as Gigabit Ethernet. Another potential alternative is a special-purpose 
SAN architecture named Infiniband, which provides hardware and software 
support for high-speed interconnection networks for servers and storage units. 

14.7 Stable-Storage Implementation 

In Chapter 7, we introduced the write-ahead log, which required the availability 
of stable storage. By definition, information residing in stable storage is never 
lost. To implement such storage, we need to replicate the needed information 
on multiple storage devices (usually disks) with independent failure modes. 
We need to coordinate the writing of updates in a way that guarantees that 
a failure during an update will not leave all the copies in a damaged state, 
and that, when we are recovering from a failure, we can force all copies to a 
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consistent and correct value, even if another failure occurs during the recovery. 
In the remainder of this section, we discuss how to meet our needs. 

A disk write results in one of three outcomes: 

I 1. Successful completion: The data were written correctly on disk. 

2. Partial failure: A failure occurred in the midst of transfer, so only some of 
I 

the sectors were written with the new data, and the sector being written 
during the failure may have been corrupted. 

3. Total failure: The failure occurred before the disk write started, so the 
previous data values on the disk remain intact. 

We require that, whenever a failure occurs during writing of a block, the 
system detects it and invokes a recovery procedure to restore the block to a 
consistent state. To do that, the system must maintain two physical blocks for 
each logical block. An output operation is executed as follows: 

1. Write the information onto the first physical block. 

2. When the first write completes successfully, write the same information 
onto the second physical block. 

3. Declare the operation complete only after the second write completes suc- 
cessfully. 

During recovery from a failure, each pair of physical blocks is examined. 
If both are the same and no detectable error exists, then no further action is 
necessary. If one block contains a detectable error, then we replace its contents 
with the value of the other block. If both blocks contain no detectable error, 
but they differ in content, then we replace the content of the first block with 
the value of the second. This recovery procedure ensures that a write to stable 
storage either succeeds completely or results in no change. 

We can extend this procedure easily to allow the use of an arbitrarily large 
number of copies of each block of stable storage. Although a large number of 
copies further reduces the probability of a failure, it is usually reasonable to 
simulate stable storage with only two copies. The data in stable storage are 
guaranteed to be safe unless a failure destroys all the copies. 

Because waiting for disk writes to complete (synchronous I/O) is time 
consuming, many storage arrays add NVRAM as a cache. Because the memory 
is non-volatile (usually it has battery power as a backup to the unit's power), it 
can be trusted to store the data on its way to the disks. It is thus considered part 
of the stable storage. Writes to it are much faster than to disk, so performance 
is greatly improved. 
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14.8 Tertiary-Storage Structure 

Would you buy a VCR that had inside it only one tape that you could not take 
out or replace? Or an audio cassette player or CD player that had one album 
sealed inside? Of course not. You expect to use a VCR or CD player with 
many relatively inexpensive tapes or disks. On a computer as well, using many 
inexpensive cartridges with one drive lowers the overall cost. 

14.8.1 Tertiary-Storage Devices 
Low cost is the defining characteristic of tertiary storage. So, in practice, 
tertiary storage is built with removable media. The most common examples 
of removable media are floppy disks, CD-ROMs, and tapes; many other kinds of 
tertiary-storage devices are available as well. 

14.8.1.1 Removable Disks 

Removable disks are one kind of tertiary storage. Floppy disks are an example 
of removable magnetic disks. They are made from a thin flexible disk coated 
with magnetic material, enclosed in a protective plastic case. Although com- 
mon floppy disks can hold only about 1 MB, similar technology is used for 
removable magnetic disks that hold more than 1 GB. Removable magnetic disks 
can be nearly as fast as hard disks, although the recording surface is at greater 
risk of damage from scratches. 

A magneto-optic disk is another kind of removable disk. It records data 
on a rigid platter coated with magnetic material, but the recording technology 
is quite different from that for a magnetic disk. The magneto-optic head flies 
much farther from the disk surface than a magnetic disk head does, and the 
magnetic material is covered with a thick protective layer of plastic or glass. 
This arrangement makes the disk much more resistant to head crashes. 

The drive has a coil that produces a magnetic field; at room temperature, 
the field is too large and too weak to magnetize a bit on the disk. To write a 
bit, the disk head flashes a laser beam at the disk surface. The laser is aimed at 
a tiny spot where a bit is to be written. The laser heats this spot, which makes 
the spot susceptible to the magnetic field. So the large, weak magnetic field can 
record a tiny bit. 

The magneto-optic head is too far from the disk surface to read the data by 
detecting the tiny magnetic fields in the way that the head of a hard disk does. 
Instead, the drive reads a bit using a property of laser light- called the Kerr 
effect. When a laser beam is bounced off of a magnetic spot, the polarization 
of the laser beam is rotated clockwise or counter-clockwise, depending on the 
orientation of the magnetic field. This rotation is what the head detects to read 
a bit. 
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Another category of removable disk is the optical disk. These disks do 
not use magnetism at all. They use special materials that can be altered by 
laser light to have relatively dark or bright spots. One example of optical-disk 
technology is the phase-change disk. 

The phase-change disk is coated with a material that can freeze into either 
a crystalline or an amorphous state. The crystalline state is more transparent, 
and hence a laser beam is brighter when it passes through the phase-change 
material and bounces off the reflective layer. The phase-change drive uses laser 
light at three different powers: low power to read data, medium power to erase 
the disk by melting and refreezing the recording medium into the crystalline 
state, and a high power to melt the medium into the amorphous state to write 
to the disk. The most common examples of this technology are the re-recordable 
CD-RW and DVD-RW. 

The kinds of disks described here can be used over and over. They are 
called read-write disks. In contrast, write-once, read-many-times (WORM) 
disks form another category. An old way to make a WORM disk is to manufac- 
ture a thin aluminum film sandwiched between two glass or plastic platters. 
To write a bit, the drive uses a laser light to burn a small hole through the 
aluminum. Because this burning cannot be reversed, any sector on the disk can 
be written only once. Although it is possible to destroy the information on a 
WORM disk by burning holes everywhere, it is virtually impossible to alter data 
on the disk, because holes can only be added, and the ECC code associated with 
each sector is likely to detect such additions. WORM disks are considered to 
be durable and reliable because the metal layer is safely encapsulated between 
the protective glass or plastic platters, and magnetic fields cannot damage the 
recording. A newer write-once technology records on an organic polymer dye 
instead of an aluminum layer: the dye absorbs laser light to form marks. This 
technology is used in the recordable CD-R and DVD-R. 

Read-only disks, such as CD-ROM and DVD, come from the factory with 
the data pre-recorded. They use technology similar to that of WORM disks 
(although the pits are pressed, not burnt), and they are very durable. 

Most removable disks are slower than their non-removable counterparts. 
The writing process is slower, as are rotation and sometimes seek time. 

14.8.1.2 Tapes 

Magnetic tape is another type of removable medium. As a general rule, a tape 
holds more data than an optical or magnetic disk cartridge. Tape drives and 
disk drives have similar transfer rates. But random access to tape is much 
slower than a disk seek, because it requires a fast-forward or rewind operation 
that takes tens of seconds, or even minutes. 

Although a typical tape drive is more expensive than a typical disk drive, 
the price of a tape cartridge is lower than the price of the equivalent capacity 
of magnetic disks. So tape is an economical medium for purposes that do not 
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require fast random access. Tapes are commonly used to hold backup copies 
of disk data. They are also used in large supercomputer centers to hold the 
enormous volumes of data used in scientific research and by large commercial 
enterprises. 

Some tapes can hold much more data than can a disk drive; the surface area 
of a tape is much larger than the surface area of a disk. The storage capacity of 
tapes could improve even further, because at present the areal density (or bits 
per square inch) of tape technology is much less than that for magnetic disks. 

Large tape installations typically use robotic tape changers that move tapes 
between tape drives and storage slots in a tape library. These mechanisms give 
the computer automated access to a large number of tape cartridges. 

A robotic tape library can lower the overall cost of data storage. A disk- 
resident file that will not be needed for a while can be archived to tape, 
where the cost per gigabyte can be lower; if the file is needed in the future, 
the computer can stage it back into disk storage for active use. A robotic 
tape library is sometimes called near-line storage, since it is between the high 
performance of on-line magnetic disks and the low cost of off-line tapes sitting 
on shelves in a storage room. 

14.8.1.3 Future Technology 

In the future, other storage technologies may become important. One promis- 
ing storage technology, holographic storage, uses laser light to record holo- 
graphic photographs on special media. We can think of a black-and-white 
photograph as a two-dimensional array of pixels. Each pixel represents one 
bit: 0 for black, or 1 for white. A sharp photograph can hold millions of bits of 
data. And all the pixels in a hologram are transferred in one flash of laser light, 
so the data rate is extremely high. With continued development, holographic 
storage may become commercially viable. 

Another storage technology under active research is based on micro- 
electronic mechanical systems (MEMS). The idea is to apply the fabrication 
technologies that produce electronic chips in order to manufacture small data 
storage machines. One proposal calls for the fabrication of an array of 10,000 
tiny disk heads, with a square centimeter of magnetic storage material sus- 
pended above the array. When the storage material is moved lengthwise over 
the heads, each head accesses its own linear track of data on the material. The 
storage material can be shifted sideways slightly to enable all the heads to 
access their next track. Although it remains to be seen whether this technology 
can be successful, it may provide a nonvolatile data storage technology that is 
faster than magnetic disk and cheaper than semiconductor DRAM. 

Whether the storage medium is a removable magnetic disk, a DVD, or a 
magnetic tape, the operating system needs to provide several capabilities to use 
removable media for data storage. These capabilities are discussed in Section 
14.8.2. 
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14.8.2 Operating-System Jobs 
Two major jobs of an operating system are to manage physical devices and to 
present a virtual-machine abstraction to applications. In this chapter, we saw 
that, for hard disks, the operating system provides two abstractions. One is the 
raw device, which is just an array of data blocks. The other is a file system. For 
a file system on a magnetic disk, the operating system queues and schedules 
the interleaved requests from several applications. Now, we shall see how the 
operating system does its job when the storage media are removable. 

14.8.2.1 Application Interface 

Most operating systems can handle removable disks almost exactly as they do 
fixed disks. When a blank cartridge is inserted into the drive (or mounted), the 
cartridge must be formatted, and then an empty file system is generated on the 
disk. This file system is used just like a file system on a hard disk. 

Tapes are often handled differently. The operating system usually presents 
a tape as a raw storage medium. An application does not open a file on the 
tape; it opens the whole tape drive as a raw device. Usually, the tape drive 
then is reserved for the exclusive use of that application until the application 
exits or closes the tape device. This exclusivity makes sense, because random 
access on a tape can take tens of seconds, or even a few minutes, so interleaving 
random accesses to tapes from more than one application would be likely to 
cause thrashing. 

When the tape drive is presented as a raw device, the operating system 
does not provide file-system services. The application must decide how to use 
the array of blocks. For instance, a program that backs up a hard disk to tape 
might store a list of file names and sizes at the beginning of the tape, and then 
copy the data of the files to the tape in that order. 

It is easy to see the problems that can arise from this way of using tape. 
Since every application makes up its own rules for how to organize a tape, a 
tape full of data can generally be used by only the program that created it. For 
instance, even if we know that a backup tape contains a list of file names and 
file sizes followed by the file data in that order, we still would find it difficult to 
use the tape. How exactly are the file names stored? Are the file sizes in binary 
or in ASCII? Are the files written one per block, or are they all concatenated 
together in one tremendously long string of bytes? We do not even know the 
block size on the tape, because this variable is generally one that can be chosen 
separately for each block written. 

For a disk drive, the basic operations are read, write,  and seek. Tape 
drives, on the other hand, have a different set of basic operations. Instead of 
seek, a tape drive uses the l o c a t e  operation. The tape loca t e  operation is 
more precise than the disk seek operation, because it positions the tape to a 
specific logical block, rather than an entire track. Locating to block 0 is the same 
as rewinding the tape. 
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For most kinds of tape drives, it is possible to locate to any block that has 
been written on a tape. In a partly filled tape, however, it is not possible to 
locate into the empty space beyond the written area, because most tape drives 
manage their physical space differently from disk drives. For a disk drive, the 
sectors have a fixed size, and the formatting process must be used to place 
empty sectors in their final positions before any data can be written. Most tape 
drives have a variable block size, and the size of each block is determined on 
the fly, when that block is written. If an area of defective tape is encountered 
during writing, the bad area is skipped and the block is written again. This 
operation explains why it is not possible to locate into the empty space beyond 
the written area-the positions and numbers of the logical blocks have not yet 
been determined. 

Most tape drives have a r e a d  p o s i t i o n  operation that returns the logical 
block number where the tape head is. Many tape drives also support a space 
operation for relative motion. So, for example, the operation space -2 would 
locate backward over two logical blocks. 

For most kinds of tape drives, writing a block has the side effect of logically 
erasing everything beyond the position of the write. In practice, this side effect 
means that most tape drives are append-only devices, because updating a block 
in the middle of the tape also effectively erases everything beyond that block. 
The tape drive implements this appending by placing an end-of-tape (EOT) 
mark after a block that is written. The drive refuses to locate past the EOT 
mark, but it is possible to locate to the EOT and then to start writing. Doing 
so overwrites the old EOT mark, and places a new one at the end of the new 
blocks just written. 

In principle, a file system can be implemented on a tape. But many of the 
file-system data structures and algorithms would be different from those used 
for disks, because of the append-only property of tape. 

14.8.2.2 File Naming 

Another question that the operating system needs to handle is how to name 
files on removable media. For a fixed disk, naming is not difficult. On a PC, the 
file name consists of a drive letter followed by a path name. In UNIX, the file 
name does not contain a drive letter, but the mount table enables the operating 
system to discover on what drive the file is located. But if the disk is removable, 
knowing a drive that contained the cartridge at some time in the past does not 
mean knowing how to find the file. If every removable cartridge in the world 
had a different serial number, the name of a file on a removable device could 
be prefixed with the serial number, but to ensure that no two serial numbers 
are the same would require each one to be about 12 digits in length. Who could 
remember the names of her files if she had to memorize a 12-digit serial number 
for each one? 

The problem becomes even more difficult when we want to write data 
on a removable cartridge on one computer, and then use the cartridge in 



14.8 Tertiary-Storage Structure 521 

another computer. If both machines are of the same type and have the same 
kind of removable drive, the only difficulty is knowing the contents and data 
layout on the cartridge. But if the machines or drives are different, many 
additional problems can arise. Even if the drives are compatible, different 
computers may store bytes in different orders, and may use different encodings 
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC on 
mainframes). 

Today's operating systems generally leave the name-space problem 
unsolved for removable media, and depend on applications and users to figure 
out how to access and interpret the data. Fortunately, a few kinds of removable 
media are so well standardized that all computers use them the same way. One 
example is the CD. Music CDs use a universal format that is understood by any 
CD drive. Data CDs are available in only a few different formats, so it is usual 
for a CD drive and the operating-system device driver to be programmed to 
handle all the common formats. DVD formats are also well standardized. 

14.8.2.3 Hierarchical Storage Management 

A robotic jukebox enables the computer to change the removable cartridge in a 
tape or disk drive without human assistance. Two major uses of this technology 
are for backups and hierarchical storage systems. The use of a jukebox for 
backups is simple: when one cartridge becomes full, the computer instructs the 
jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives and 
thousands of cartridges, with robotic arms managing the movement of tapes to 
the drives. 

A hierarchical storage system extends the storage hierarchy beyond pri- 
mary memory and secondary storage (that is, magnetic disk) to incorporate 
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes 
or removable disks. This level of the storage hierarchy is larger, cheaper, and 
probably slower. 

Although the virtual-memory system can be extended in a straightforward 
manner to tertiary storage, this extension is rarely carried out in practice. The 
reason is that a retrieval from a jukebox can take tens of seconds or even 
minutes, and such a long delay is intolerable for demand paging and for other 
forms of virtual-memory use. 

The usual way to incorporate tertiary storage is to extend the file sys- 
tem. Small and frequently used files remain on magnetic disk, while large 
and old files that are not actively used are archived to the jukebox. In some 
file-archiving systems, the directory entry for the file continues to exist, but 
the contents of the file no longer occupy space in secondary storage. If an 
application tries to open the file, the open system call is suspended until the 
file contents can be staged in from tertiary storage. When the contents are again 
available from magnetic disk, the open operation returns control to the appli- 
cation, which proceeds to use the disk-resident copy of the data. Hierarchical 
storage management (HSM) has been implemented in ordinary time-sharing 
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systems such as TOPS-20, which ran on minicomputers from Digital Equipment 
Corporation in the late 1970s. Today, HSM is usually found in supercomputing 
centers and other large installations that have enormous volumes of data. 

14.8.3 Performance Issues 
As with any component of the operating system, the three most important 
aspects of tertiary-storage performance are speed, reliability, and cost. 

14.8.3.1 Speed 

The speed of tertiary storage has two aspects: bandwidth and latency. We 
measure the bandwidth in bytes per second. The sustained bandwidth is the 
average data rate during a large transfer, that is, the number of bytes divided 
by the transfer time. The effective bandwidth calculates the average over the 
entire 1 /0  time, including the time for seek or loca te  and any cartridge- 
switching time in a jukebox. In essence, the sustained bandwidth is the data 
rate when the data stream is actually flowing, and the effective bandwidth is 
the overall data rate provided by the drive. The bandwidth of a drive is generally 
understood to mean the sustained bandwidth. 

For removable disks, the bandwidth ranges from less than 0.25 MB per 
second for the slowest, to several megabytes per second for the fastest. Tapes 
have an even wider range of bandwidths, from less than 0.25 MB per second 
to over 30 MB per second. The fastest tape drives have significantly higher 
bandwidth than do removable disk drives. 

The second aspect of speed is the access latency. By this performance 
measure, disks are much faster than tapes: Disk storage is essentially two- 
dimensional-all the bits are out in the open. A disk access simply moves the 
arm to the selected cylinder and waits for the rotational latency, which may take 
less than 5 milliseconds. By contrast, tape storage is three-dimensional. At any 
time, a small portion of the tape is accessible to the head, whereas most of the 
bits are buried below hundreds or thousands of layers of tape wound on the 
reel. A random access on tape requires winding the tape reels until the selected 
block reaches the tape head, which can take tens or hundreds of seconds. So 
we can generally say that random access within a tape cartridge is more than a 
thousand times slower than random access on disk. 

If a jukebox is involved, the access latency can be significantly higher. For 
a removable disk to be changed, the drive must stop spinning, then the robotic 
arm must switch the disk cartridges, and the drive must spin up the new 
cartridge. This operation takes several seconds-about a hundred times larger 
than the random-access time within one disk. So switching disks in a jukebox 
incurs a relatively high performance penalty. 

For tapes, the robotic-arm time is about the same as for disk. But for tapes 
to be switched, the old tape generally must rewind before it can be ejected, and 
that operation can take as long as 4 minutes. And, after a new tape is loaded 
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into the drive, many seconds can be required for the drive to calibrate itself 
to the tape and to prepare for I/O. Although a slow tape jukebox can have a 
tape switch time of 1 or 2 minutes, this time is not enormously larger than the 
random-access time within one tape. 

So, to generalize, we say that random access in a disk jukebox has a latency 
of tens of seconds, whereas random access in a tape jukebox has a latency of 
hundreds of seconds; switching disks is expensive, but switching tapes is not. 
Be careful not to overgeneralize: Some expensive tape jukeboxes can rewind, 
eject, load a new tape, and fast forward to a random item of data all in less than 
30 seconds. 

If we pay attention to only the performance of the drives in a jukebox, the 
bandwidth and latency seem reasonable. But if we focus our attention on the 
cartridges instead, there is a terrible bottleneck. Consider first the bandwidth. 
By comparison with a fixed disk, the bandwidth-to-storage-capacity ratio of a 
robotic library is much less favorable. To read all the data stored on a large hard 
disk could take about an hour. To read all the data stored in a large tape library 
could take years. The situation with respect to access latency is nearly as bad. 
To illustrate this, if 100 requests are queued for a disk drive, the average waiting 
time will be about 1 second. If 100 requests are queued for a tape library, the 
average waiting time could be over 1 hour. The low cost of tertiary storage 
results from having many cheap cartridges share a few expensive drives. But 
a removable library is best devoted to the storage of infrequently used data, 
because the library can satisfy only a relatively small number of I/O requests 
per hour. 

14.8.3.2 Reliability 

Although we often think good performance means high speed, another important 
aspect of performance is reliability. If we try to read some data and are unable 
to do so because of a drive or media failure, for all practical purposes the access 
time is infinitely long and the bandwidth is infinitely small. So it is important 
to understand the reliability of removable media. 

Removable magnetic disks are somewhat less reliable than are fixed hard 
disks because the cartridge is more likely to be exposed to harmful environ- 
mental conditions such as dust, large changes in temperature and humidity, 
and mechanical forces such as shock and bending. Optical disks are considered 
very reliable, because the layer that stores the bits is protected by a transparent 
plastic or glass layer. The reliability of magnetic tape varies widely, depending 
on the kind of drive. Some inexpensive drives wear out tapes after a few dozen 
uses; other kinds are gentle enough to allow millions of reuses. By comparison 
with a magnetic disk, the head in a magnetic-tape drive is a weak spot. A disk 
head flies above the media, but a tape head is in close contact with the tape. 
The scrubbing action of the tape can wear out the head after a few thousands or 
tens of thousands of hours. 
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In summary, we say that a fixed disk drive is likely to be more reliable than 
a removable disk or tape drive, and an optical disk is likely to be more reliable 
than a magnetic disk or tape. But a fixed magnetic disk has one weakness. A 
head crash in a hard disk generally destroys the data, whereas the failure of a 
tape drive or optical disk drive often leaves the data cartridge unharmed. 

14.8.3.3 Cost 

Storage cost is another important factor. Here is a concrete example of how 
removable media may lower the overall storage cost. Suppose that a hard disk 
that holds X GB has a price of $200; of this amount, $190 is for the housing, 
motor, and controller, and $10 is for the magnetic platters. Then, the storage 
cost for this disk is $200/X per gigabyte. Now, suppose that we can manufacture 
the platters in a removable cartridge. For one drive and 10 cartridges, the total 
price is $190 + $100 and the capacity is 10X GB, so the storage cost is $29/X per 
gigabyte. Even if it is a little more expensive to make a removable cartridge, 
the cost per gigabyte of removable storage may well be lower than the cost per 
gigabyte of a hard disk, because the expense of one drive is averaged with the 
low price of many removable cartridges. 

Figures 14.13,14.14, and 14.15 show the cost trends per megabyte for DRAM 
memory, magnetic hard disks, and tape drives. The prices in the graphs are the 
lowest price found in advertisements in BYTE magazine and PC Magazine at the 
end of each year. These prices reflect the small-computer marketplace of the 

Year 

Figure 14.13 Price per megabyte of DRAM, from 1981 to 2000. 
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Year 

Figure 14.14 Price per megabyte of magnetic hard disk, from 1981 to 2000. 

readership of these magazines, where prices are low by comparison with the 
mainframe and minicomputer markets. In the case of tape, the price is for a 
drive with one tape. The overall cost of tape storage becomes much lower as 
more tapes are purchased for use with the drive, because the price of a tape 
is a small fraction of the price of the drive. However, in a huge tape library 
containing thousands of cartridges, the storage cost is dominated by the cost of 
the tape cartridges. As of this writing in 2001, the cost per GB of tape cartridges 
can be approximated as $2. 

The cost of DRAM fluctuates widely. In the period from 1981 to 2000, we 
can see three price crashes (around 1981,1989, and 1996), as excess production 
caused a glut in the marketplace. We can also see two periods (around 1987 and 
1993), where shortages in the marketplace caused significant price increases. In 
the case of hard disks, the price declines have been much steadier, although 
the price decline appears to have accelerated since 1992. Tape-drive prices also 
fell steadily up to 1997. Since 1997 the price per gigabyte of inexpensive tape 
drives has ceased its dramatic fall, although mid-range tape technology (such as 
DAT/DDS) has continued to fall, and is now approaching that of the inexpensive 
drives. Tape-drive prices are not shown prior to 1984, because BYTE magazine 
is targeted to the small-computer marketplace, and tape drives were not widely 
used with small computers prior to 1984. 

By comparing these graphs we see that the price of disk storage has plum- 
meted relative to the price of DRAM and tape. 
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Figure 14.15 Price per megabyte of a tape drive, from 1984 to 2000. 

The price per megabyte of magnetic disk has improved by more than four 
orders of magnitude during the past two decades, whereas the corresponding 
improvement for main memory has only been three orders of magnitude. Main 
memory today is more expensive than disk storage by a factor of 100. 

The price per megabyte has dropped much more rapidly for disk drives 
than for tape drives. In fact, the price per megabyte of magnetic disk drives 
is approaching that of a tape cartridge without the tape drive. Consequently, 
small- and medium-size tape libraries have a higher storage cost than disk 
systems with equivalent capacity. The dramatic fall in disk prices has largely 
rendered tertiary storage obsolete: We no longer have any tertiary storage 
technology that is orders of magnitude less expensive than magnetic disk. It 
appears that the revival of tertiary storage must await a revolutionary technol- 
ogy breakthrough. Meanwhile, tape storage will find its use mostly limited to 
purposes such as backups of disk drives and archival storage in enormous tape 
libraries that greatly exceed the practical storage capacity of large disk farms. 

14.9 . Summary 

Disk drives are the major secondary-storage I/O device on most computers. 
Requests for disk I/O are generated by the file system and by the virtual- 
memory system. Each request specifies the address on the disk to be referenced, 
in the form of a logical block number. 
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Disk-scheduling algorithms can improve the effective bandwidth, the aver- 
age response time, and the variance in response time. Algorithms such as SSTF, 
SCAN, C-SCAN, LOOK, and C-LOOK are designed to make such improvements 
by strategies for disk-queue ordering. 

Performance can be harmed by external fragmentation. Some systems 
have utilities that scan the file system to identify fragmented files; they then 

, move blocks around to decrease the fragmentation. Defragmenting a badly 
fragmented file system can significantly improve the performance, but the sys- 
tem may have reduced performance while the defragmentation is in progress. 
Sophisticated file systems, such as the UNIX Fast File System, incorporate many 
strategies to control fragmentation during space allocation, so that disk reorga- 
nization is not needed. 

The operating system manages the disk blocks. First, a disk must be low- 
level formatted to create the sectors on the raw hardware-new disks usually 
come pre-formatted. Then, the disk is partitioned and file systems created, and 
boot blocks are allocated to store the system's bootstrap program. Finally, when 
a block is corrupted, the system must have a way to lock out that block, or to 
replace it logically with a spare. 

Because an efficient swap space is a key to good performance, systems 
usually bypass the file system and use raw disk access for paging I/O. Some 
systems dedicate a raw disk partition to swap space, and others use a file within 
the file system instead. Other systems allow the user or system administrator 
to make the decision by providing both options. 

The write-ahead log scheme requires the availability of stable storage. 
To implement such storage, we need to replicate the needed information on 
multiple nonvolatile storage devices (usually disks) with independent failure 
modes. We also need to update the information in a controlled manner to 
ensure that we can recover the stable data after any failure during data transfer 
or recovery. 

Because of the amount of storage required on large systems, disks are 
frequently made redundant via RAID algorithms. These algorithms allow more 
than one disk to be used for a given operation, and allow continued operation 
and even automatic recovery in the face of a disk failure. RAID algorithms are 
organized into different levels where each level provides some combination of 
reliablity and high transfer rates. 

Disks may be attached to a computer system one of two ways: (1) using the 
local 1 /0  ports on the host computer or (2) using a network connection such as 
storage area networks. 

Tertiary storage is built from disk and tape drives that use removable 
media. Many different technologies are available, including magnetic tape, 
removable magnetic and magneto-optic disks, and optical disks. 

For removable disks, the operating system generally provides the full 
services of a file-system interface, including space management and request- 
queue scheduling. For many operating systems, the name of a file on a 
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removable cartridge is a combination of a drive name and a file name within 
that drive. This convention is simpler but potentially more confusing than is 
using a name that identifies a specific cartridge. 

For tapes, the operating system generally just provides a raw interface. 
Many operating systems have no built-in support for jukeboxes. Jukebox 
support can be provided by a device driver or by a privileged application 
designed for backups or for HSM. 

Three important aspects of performance are bandwidth, latency, and relia- 
bility. A wide variety of bandwidths is available for both disks and tapes, but 
the random-access latency for a tape is generally much slower than that for a 
disk. Switching cartridges in a jukebox is also relatively slow. Because a jukebox 
has a low ratio of drives to cartridges, reading a large fraction of the data in a 
jukebox can take a long time. Optical media, which protect the sensitive layer 
by a transparent coating, are generally more robust than magnetic media, which 
expose the magnetic material to a greater possibility of physical damage. 

Exercises 

14.1 None of the disk-scheduling disciplines, except FCFS, are truly fair (star- 
vation may occur). 

a. Explain why this assertion is true. 

b. Describe a way to modify algorithms such as SCAN to ensure fair- 
ness. 

c. Explain why fairness is an important goal in a time-sharing system. 

d. Give three or more examples of circumstances in which it is impor- 
tant that the operating system be unfair in serving I/O requests. 

14.2 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The 
drive is currently serving a request at cylinder 143, and the previous 
request was at cylinder 125. The queue of pending requests, in FIFO 
order, is 

Starting from the current head position, what is the total distance (in 
cylinders) that the disk arm moves to satisfy all the pending requests 
for each of the following disk-scheduling algorithms? 

a. FCFS 

b. SSTF 

c. SCAN 
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d. LOOK 

e. C-SCAN 

f. C-LOOK 

14.3 Elementary physics states that when an object is subjected to a constant 
acceleration a, the relationship between distance d and time t is given 
by d = ;at2. Suppose that, during a seek, the disk in Exercise 14.2 
accelerates the disk arm at a constant rate for the first half of the seek, 
then decelerates the disk arm at the same rate for the second half of the 
seek. Assume that the disk can perform a seek to an adjacent cylinder 
in 1 millisecond, and a full-stroke seek over all 5,000 cylinders in 18 
milliseconds. 

a. The distance of a seek is the number of cylinders that the head 
moves. Explain why the seek time is proportional to the square 
root of the seek distance. 

b. Write an equation for the seek time as a function of the seek dis- 
tance. This equation should be of the form t = x + yv%, where t is 
the time in milliseconds and L is the seek distance in cylinders. 

c. Calculate the total seek time for each of the schedules in Exercise 
14.2. Determine which schedule is the fastest (has the smallest total 
seek time). 

d. The percentage speedup is the time saved divided by the original time. 
What is the percentage speedup of the fastest schedule over FCFS? 

14.4 Suppose that the disk in Exercise 14.3 rotates at 7,200 RPM. 

a. What is the average rotational latency of this disk drive? 

b. What seek distance can be covered in the time that you found for 
part a? 

14.5 The accelerating seek described in Exercise 14.3 is typical of hard-disk 
drives. By contrast, floppy disks (and many hard disks manufactured 
before the mid-1980s) typically seek at a fixed rate. Suppose that the 
disk in Exercise 14.3 has a constant-rate seek, rather than a constant- 
acceleration seek, so the seek time is of the form t = x + yL, where t is 
the time in milliseconds and L is the seek distance. Suppose that the 
time to seek to an adjacent cylinder is 1 millisecond, as before, and is 0.5 
milliseconds for each additional cylinder. 

a. Write an equation for this seek time as a function of the seek dis- 
tance. 
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b. Using the seek-time function from part a, calculate the total seek 
time for each of the schedules in Exercise 14.2. Is your answer the 
same as it was for Exercise 14.3c? Explain why it is the same or why 
it is different. 

c. What is the percentage speedup of the fastest schedule over FCFS in 
this case? 

14.6 Write a Java program for disk scheduling using the SCAN and C-SCAN 
disk-scheduling algorithms. 

14.7 Compare the performance of C-SCAN and SCAN scheduling, assuming a 
uniform distribution of requests. Consider the average response time 
(the time between the arrival of a request and the completion of that 
request's service), the variation in response time, and the effective band- 
width. How does performance depend on the relative sizes of seek time 
and rotational latency? 

14.8 Is disk scheduling, other than FCFS scheduling, useful in a single-user 
environment? Explain your answer. 

14.9 Explain why SSTF scheduling tends to favor middle cylinders over the 
innermost and outermost cylinders. 

14.10 Requests are not usually uniformly distributed. For example, a cylinder 
containing the file system FAT or inodes can be expected to be accessed 
more frequently than a cylinder that contains only files. Suppose that 
you know that 50 percent of the requests are for a small, fixed number of 
cylinders. 

a. Would any of the scheduling algorithms discussed in this chapter 
be particularly good for this case? Explain your answer. 

b. Propose a disk-scheduling algorithm that gives even better perfor- 
mance by taking advantage of this "hot spot" on the disk. 

c. File systems typically find data blocks via an indirection table, such 
as a FAT in DOS or inodes in UNIX. Describe one or more ways to 
take advantage of this indirection to improve the disk performance. 

14.11 Why is rotational latency usually not considered in disk scheduling? 
How would you modify SSTF, SCAN, and C-SCAN to include latency 
optimization? 

14.12 How would the use of a RAM disk affect your selection of a disk- 
scheduling algorithm? What factors would you need to consider? Do 
the same considerations apply to hard-disk scheduling, given that the file 
system stores recently used blocks in a buffer cache in main memory? 
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14.13 Why is it important to balance file system I/O among the disks and 
controllers on a system in a multitasking environment? 

14.14 What are the tradeoffs involved in rereading code pages from the file 
system, versus using swap space to store them? 

14.15 Is there any way to implement truly stable storage? Explain your answer. 
I 

14.16 The reliability of a hard-disk drive is typically described in terms of a 
quantity called mean time between failures (MTBF).  Although this quantity 
is called a "time," the MTBF actually is measured in drive-hours per 
failure. 

a. If a system contains 1,000 disk drives, each of which has a 750,000 
hour MTBF, which of the following best describes how often a drive 
failure will occur in that disk farm: once per thousand years, once 
per century, once per decade, once per year, once per month, once 
per week, once per day, once per hour, once per minute, or once per 
second? 

b. Mortality statistics indicate that, on the average, a U.S. resident has 
about 1:1,000 chance of dying between ages 20 and 21 years. Deduce 
the MTBF hours for 20 year olds. Convert this figure from hours to 
years. What does this MTBF tell you about the expected lifetime of 
a 20 year old? 

c. The manufacturer guarantees a 1-million hour MTBF for a certain 
model of disk drive. What can you conclude about the number of 
years for which one of these drives is under warranty? 

1 14.17 The term fast wide SCSI-II denotes a SCSI bus that operates at a data rate of 
20 MB per second when it moves a packet of bytes between the host and 
a device. Suppose that a fast wide SCSI-I1 disk drive spins at 7,200 RPM, 

I has a sector size of 512 bytes, and holds 160 sectors per track. 

a. Estimate the sustained transfer rate of this drive in megabytes per 
second. 

b. Suppose that the drive has 7,000 cylinders, 20 tracks per cylinder, a 
head-switch time (from one platter to another) of 0.5 milliseconds, 
and an adjacent-cylinder seek time of 2 milliseconds. Use this 
additional information to give an accurate estimate of the sustained 
transfer rate for a huge transfer. 

c. Suppose that the average seek time for the drive is 8 milliseconds. 
Estimate the I/Os per second and the effective transfer rate for 
a random-access workload that reads individual sectors scattered 
across the disk. 
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d. Calculate the random-access I/Os per second and transfer rate for 
I/O sizes of 4 KB, 8 KB, and 64 KB. 

e. If multiple requests are in the queue, a scheduling algorithm such as 
SCAN should be able to reduce the average seek distance. Suppose 
that a random-access workload is reading 8 KB pages, the average 
queue length is 10, and the scheduling algorithm reduces the aver- 
age seek time to 3 milliseconds. Calculate the I/Os per second and 
the effective transfer rate of the drive. 

14.18 More than one disk drive can be attached to a SCSI bus. In particular, 
a fast wide SCSI-I1 bus (Exercise 14.17) can be connected to at most 
15 disk drives. Recall that this bus has a bandwidth of 20 MB per 
second. At any time, only one packet can be transferred on the bus 
between some disk's internal cache and the host. However, a disk can 
be moving its disk arm while some other disk is transferring a packet 
on the bus. Also, a disk can be transferring data between its magnetic 
platters and its internal cache while some other disk is transferring a 
packet on the bus. Considering the transfer rates that you calculated for 
the various workloads in Exercise 14.17, discuss how many disks can be 
used effectively by one fast wide SCSI-I1 bus. 

14.19 Remapping of bad blocks by sector sparing or sector slipping could 
influence performance. Suppose that the drive in Exercise 14.17 has a 
total of 100 bad sectors at random locations, and that each bad sector 
is mapped to a spare that is located on a different track, but within the 
same cylinder. Estimate the number of I/Os per second and the effective 
transfer rate for a random-access workload consisting of 8 KB reads, with 
a queue length of 1 (that is, the choice of scheduling algorithm is not a 
factor). What is the effect of a bad sector on performance? 

14.20 Discuss the relative advantages and disadvantages of sector sparing and 
sector slipping. 

14.21 The operating system generally treats removable disks as shared file 
systems, but assigns a tape drive to only one application at a time. Give 
three reasons that could explain this difference in treatment of disks and 
tapes. Describe the additional features that an operating system would 
need to support shared file-system access to a tape jukebox. Would the 
applications sharing the tape jukebox need any special properties, or 
could they use the files as though the files were disk-resident? Explain 
your answer. 

14.22 In a disk jukebox, what would be the effect if the number of open files 
was greater than the number of drives in the jukebox? 
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I 14.23 What would be the effects on cost and performance if tape storage had 
the same areal density as disk storage? 

14.24 If magnetic hard disks eventually have the same cost per gigabyte as do 
tapes, will tapes become obsolete, or will they still be needed? Explain 
your answer. 

14.25 You can use simple estimates to compare the cost and performance 
of a terabyte storage system made entirely from disks with one that 
incorporates tertiary storage. Suppose that magnetic disks each hold 10 
GB, cost $1,000, transfer 5 MB per second, and have an average access 
latency of 15 milliseconds. Suppose that a tape library costs $10 per 
gigabyte, transfers 10 MB per second, and has an average access latency 
of 20 seconds. Compute the total cost, the maximum total data rate, 
and the average waiting time for a pure disk system. If you make 
any assumptions about the workload, describe and justify them. Now, 
suppose that 5 percent of the data are frequently used, so they must 
reside on disk, but the other 95 percent are archived in the tape library. 
Further suppose that the disk system handles 95 percent of the requests, 
and the library handles the other 5 percent. What are the total cost, 
the maximum total data rate, and the average waiting time for this 
hierarchical storage system? 

14.26 It is sometimes said that tape is a sequential-access medium, whereas 
magnetic disk is a random-access medium. In fact, the suitability of 
a storage device for random access depends on the transfer size. The 
term streaming transfer rate denotes the data rate for a transfer underway, 
excluding the effect of access latency. By contrast, the effective transfer rate 
is the ratio of total bytes per total seconds, including overhead time such 
as the access latency. 

Suppose that, in a computer, the level-2 cache has an access latency 
of 8 nanoseconds and a streaming transfer rate of 800 MB per second, the 
main memory has an access latency of 60 nanoseconds and a streaming 
transfer rate of 80 MB per second, the magnetic disk has an access latency 
of 15 millisecond and a streaming transfer rate of 5 MB per second, and 
a tape drive has an access latency of 60 seconds and a streaming transfer 
rate of 2 MB per second. 

a. Random access causes the effective transfer rate of a device to 
decrease, because no data are transferred during the access time. 
For the disk described, what is the effective transfer rate if a stream- 
ing transfer of 512 bytes, 8 KB, 1 MB, and 16 MB follows an average 
access? 

b. The utilization of a device is the ratio of effective transfer rate to 
streaming transfer rate. Calculate the utilization of the disk drive 
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for random access that performs transfers in each of the four sizes 
given in part a. 

c. Suppose that a utilization of 25 percent (or higher) is considered 
acceptable. Using the performance figures given, compute the 
smallest transfer size for disk that gives acceptable utilization. 

d. Complete the following sentence: A disk is a random-access device 
for transfers larger than ------ bytes, and is a sequential-access 
device for smaller transfers. 

e. Compute the minimum transfer sizes that give acceptable utiliza- 
tion for cache, memory, and tape. 

f. When is a tape a random-access device, and when is it a sequential- 
access device? 

14.27 Imagine that a holographic storage drive has been invented. Suppose 
that a holographic drive costs $10,000 and has an average access time of 
40 milliseconds. Suppose that it uses a $100 cartridge the size of a CD. 
This cartridge holds 40,000 images, and each image is a square black- 
and-white picture with resolution 6,000 x 6,000 pixels (each pixel stores 1 
bit). Suppose that the drive can read or write one picture in 1 millisecond. 
Answer the following questions. 

a. What would be some good uses for this device? 

b. How would this device affect the 1/0 performance of a computing 
system? 

c. Which other kinds of storage devices, if any, would become obsolete 
as a result of this device being invented? 

14.28 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal 
density of 1 gigabit per square inch. Suppose that a magnetic tape has 
an areal density of 20 megabits per square inch, and is V2 inch wide and 
1,800 feet long. Calculate an estimate of the storage capacities of these 
two kinds of storage cartridges. Suppose that an optical tape exists that 
has the same physical size as the tape, but the same storage density as 
the optical disk. What volume of data could the optical tape hold? What 
would be a marketable price for the optical tape if the magnetic tape cost 
$25? 

14.29 Suppose that we agree that 1 KB is 1,024 bytes, 1 MB is 1,024~ bytes, 
and 1 GB is 1,024~ bytes. This progression continues through terabytes, 
petabytes, and exabytes (1,024~). Several newly proposed scientific 
projects plan to be able to record and store a few exabytes of data during 
the next decade. To answer the following questions, you will need to 
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make a few reasonable assumptions; state the assumptions that you 
make. 

a. How many disk drives would be required to hold 4 exabytes of 
data? 

b. How many magnetic tapes would be required to hold 4 exabytes of 
data? 

c. How many optical tapes would be required to hold 4 exabytes of 
data (Exercise 14.28)? 

d. How many holographic storage cartridges would be required to 
hold 4 exabytes of data (Exercise 14.27)? 

e. How many cubic feet of storage space would each option require? 

14.30 Discuss how an operating system could maintain a free-space list for a 
tape-resident file system. Assume that the tape technology is append- 
only, and that it uses the EOT mark and locate ,  space, and read 
p o s i t  ion commands as described in Section 14.8.2.1. 
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Part Five 

A distributed system is a collection of processors that do not share memory or 
a clock. Instead, each processor has its own local memory, and the processors 
communicate with each other through communication lines such as local- or 
wide-area networks. The processors in a distributed system vary in size and 
function. Such systems may include small handheld or real-time devices, 
personal computers, workstations, and large mainframe computer systems. 

The benefits of a distributed system include user access to the resources 
maintained by the system and therefore computation speedup and improved 
data availability and reliability. A distributed file system is a file-service system 
whose users, servers, and storage devices are dispersed among the sites of a 
distributed system. Accordingly, service activity has to be carried out across 
the network; instead of a single centralized data repository, there are multiple 
and independent storage devices. 

Because a system is distributed, however, it must provide mechanisms for 
process synchronization and communication, for dealing with the deadlock 
problem, and for dealing with failures that are not encountered in a centralized 
system. 
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DISTRIBUTED 
SYSTEM 
STRUCTURES 

A distributed system is a collection of processors that do not share memory or 
a clock. Instead, each processor has its own local memory. The processors com- 
municate with one another through various communication networks, such as 
high-speed buses or telephone lines. In this chapter, we discuss the general 
structure of distributed systems and the networks that interconnect them. We 
contrast the main differences in operating-system design between these sys- 
tems and the centralized systems with which we were concerned previously. 
Detailed discussions are given in Chapters 16 and 17. 

15.1 . Background 

A distributed system is a collection of loosely coupled processors intercon- 
nected by a communication network. From the point of view of a specific 
processor in a distributed system, the rest of the processors and their respective 
resources are remote, whereas its own resources are local. 

The processors in a distributed system may vary in size and function. 
They may include small microprocessors, workstations, minicomputers, and 
large general-purpose computer systems. These processors are referred to by a 
number of names, such as sites, nodes, computers, machines, or hosts, depending 
on the context in which they are mentioned. We mainly use site to indicate the 
location of a machine, and host to refer to a specific system at a site. Generally, 
one host at one site, the server, has a resource that another host at another site, 
the client (or user), would like to use. The purpose of the distributed system is to 




