
Silberschatz, Galvin and Gagne ©20021.1Operating System Concepts

Chapter 1: Introduction

■ What is an Operating System?
■ Mainframe Systems
■ Desktop Systems
■ Multiprocessor Systems
■ Distributed Systems
■ Clustered System
■ Real -Time Systems
■ Handheld Systems
■ Computing Environments

Silberschatz, Galvin and Gagne ©20021.2Operating System Concepts

What is an Operating System?

■ A program that acts as an intermediary between a user of
a computer and the computer hardware.

■ Operating system goals:
✦ Execute user programs and make solving user problems

easier.
✦ Make the computer system convenient to use.

■ Use the computer hardware in an efficient manner.

Silberschatz, Galvin and Gagne ©20021.3Operating System Concepts

Computer System Components

1. Hardware – provides basic computing resources (CPU,
memory, I/O devices).

2. Operating system – controls and coordinates the use of
the hardware among the various application programs for
the various users.

3. Applications programs – define the ways in which the
system resources are used to solve the computing
problems of the users (compilers, database systems,
video games, business programs).

4. Users (people, machines, other computers).

Silberschatz, Galvin and Gagne ©20021.4Operating System Concepts

Abstract View of System Components

Silberschatz, Galvin and Gagne ©20021.5Operating System Concepts

Operating System Definitions

■ Resource allocator – manages and allocates resources.
■ Control program – controls the execution of user

programs and operations of I/O devices .
■ Kernel – the one program running at all times (all else

being application programs).

Silberschatz, Galvin and Gagne ©20021.6Operating System Concepts

Mainframe Systems

■ Reduce setup time by batching similar jobs
■ Automatic job sequencing – automatically transfers

control from one job to another. First rudimentary
operating system.

■ Resident monitor
✦ initial control in monitor

✦ control transfers to job
✦ when job completes control transfers pack to monitor

Silberschatz, Galvin and Gagne ©20021.7Operating System Concepts

Memory Layout for a Simple Batch System

Silberschatz, Galvin and Gagne ©20021.8Operating System Concepts

Multiprogrammed Batch Systems

Several jobs are kept in main memory at the same time, and the
CPU is multiplexed among them.

Silberschatz, Galvin and Gagne ©20021.9Operating System Concepts

OS Features Needed for Multiprogramming

■ I/O routine supplied by the system.
■ Memory management – the system must allocate the

memory to several jobs.
■ CPU scheduling – the system must choose among

several jobs ready to run.
■ Allocation of devices.

Silberschatz, Galvin and Gagne ©20021.10Operating System Concepts

Time-Sharing Systems–Interactive Computing

■ The CPU is multiplexed among several jobs that are kept
in memory and on disk (the CPU is allocated to a job only
if the job is in memory).

■ A job swapped in and out of memory to the disk.
■ On-line communication between the user and the system

is provided; when the operating system finishes the
execution of one command, it seeks the next “control
statement” from the user’s keyboard.

■ On-line system must be available for users to access data
and code.

Silberschatz, Galvin and Gagne ©20021.11Operating System Concepts

Desktop Systems

■ Personal computers – computer system dedicated to a
single user.

■ I/O devices – keyboards, mice, display screens, small
printers.

■ User convenience and responsiveness.
■ Can adopt technology developed for larger operating

system’ often individuals have sole use of computer and
do not need advanced CPU utilization of protection
features.

■ May run several different types of operating systems
(Windows, MacOS, UNIX, Linux)

Silberschatz, Galvin and Gagne ©20021.12Operating System Concepts

Parallel Systems

■ Multiprocessor systems with more than on CPU in close
communication.

■ Tightly coupled system – processors share memory and a
clock; communication usually takes place through the
shared memory.

■ Advantages of parallel system:
✦ Increased throughput

✦ Economical
✦ Increased reliability

✔ graceful degradation

✔ fail-soft systems

Silberschatz, Galvin and Gagne ©20021.13Operating System Concepts

Parallel Systems (Cont.)

■ Symmetric multiprocessing (SMP)
✦ Each processor runs and identical copy of the operating

system.

✦ Many processes can run at once without performance
deterioration.

✦ Most modern operating systems support SMP

■ Asymmetric multiprocessing
✦ Each processor is assigned a specific task; master

processor schedules and allocated work to slave
processors.

✦ More common in extremely large systems

Silberschatz, Galvin and Gagne ©20021.14Operating System Concepts

Symmetric Multiprocessing Architecture

Silberschatz, Galvin and Gagne ©20021.15Operating System Concepts

Distributed Systems

■ Distribute the computation among several physical
processors.

■ Loosely coupled system – each processor has its own
local memory; processors communicate with one another
through various communications lines, such as high-
speed buses or telephone lines.

■ Advantages of distributed systems.
✦ Resources Sharing

✦ Computation speed up – load sharing

✦ Reliability
✦ Communications

Silberschatz, Galvin and Gagne ©20021.16Operating System Concepts

Distributed Systems (cont)

■ Requires networking infrastructure.
■ Local area networks (LAN) or Wide area networks (WAN)
■ May be either client-server or peer-to-peer systems.

Silberschatz, Galvin and Gagne ©20021.17Operating System Concepts

General Structure of Client-Server

Silberschatz, Galvin and Gagne ©20021.18Operating System Concepts

Clustered Systems

■ Clustering allows two or more systems to share storage.
■ Provides high reliability.
■ Asymmetric clustering: one server runs the application

while other servers standby.
■ Symmetric clustering: all N hosts are running the

application.

Silberschatz, Galvin and Gagne ©20021.19Operating System Concepts

Real-Time Systems

■ Often used as a control device in a dedicated application
such as controlling scientific experiments, medical
imaging systems, industrial control systems, and some
display systems.

■ Well-defined fixed-time constraints.
■ Real-Time systems may be either hard or soft real-time.

Silberschatz, Galvin and Gagne ©20021.20Operating System Concepts

Real-Time Systems (Cont.)

■ Hard real-time:
✦ Secondary storage limited or absent, data stored in short

term memory, or read-only memory (ROM)
✦ Conflicts with time-sharing systems, not supported by

general-purpose operating systems.

■ Soft real-time
✦ Limited utility in industrial control of robotics

✦ Useful in applications (multimedia, virtual reality) requiring
advanced operating-system features.

Silberschatz, Galvin and Gagne ©20021.21Operating System Concepts

Handheld Systems

■ Personal Digital Assistants (PDAs)
■ Cellular telephones
■ Issues:

✦ Limited memory

✦ Slow processors
✦ Small display screens.

Silberschatz, Galvin and Gagne ©20021.22Operating System Concepts

Migration of Operating-System Concepts and Features

Silberschatz, Galvin and Gagne ©20021.23Operating System Concepts

Computing Environments

■ Traditional computing
■ Web-Based Computing
■ Embedded Computing

Silberschatz, Galvin and Gagne ©20022.1Operating System Concepts

Chapter 2: Computer-System Structures

■ Computer System Operation
■ I/O Structure
■ Storage Structure
■ Storage Hierarchy
■ Hardware Protection
■ General System Architecture

Silberschatz, Galvin and Gagne ©20022.2Operating System Concepts

Computer-System Architecture

Silberschatz, Galvin and Gagne ©20022.3Operating System Concepts

Computer-System Operation

■ I/O devices and the CPU can execute concurrently.
■ Each device controller is in charge of a particular device

type.
■ Each device controller has a local buffer.
■ CPU moves data from/to main memory to/from local

buffers
■ I/O is from the device to local buffer of controller.
■ Device controller informs CPU that it has finished its

operation by causing an interrupt.

Silberschatz, Galvin and Gagne ©20022.4Operating System Concepts

Common Functions of Interrupts

■ Interrupt transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

■ Interrupt architecture must save the address of the
interrupted instruction.

■ Incoming interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt.

■ A trap is a software-generated interrupt caused either by
an error or a user request.

■ An operating system is interrupt driven.

Silberschatz, Galvin and Gagne ©20022.5Operating System Concepts

Interrupt Handling

■ The operating system preserves the state of the CPU by
storing registers and the program counter.

■ Determines which type of interrupt has occurred:
✦ polling

✦ vectored interrupt system

■ Separate segments of code determine what action should
be taken for each type of interrupt

Silberschatz, Galvin and Gagne ©20022.6Operating System Concepts

Interrupt Time Line For a Single Process Doing Output

Silberschatz, Galvin and Gagne ©20022.7Operating System Concepts

I/O Structure

■ After I/O starts, control returns to user program only upon
I/O completion.

✦ Wait instruction idles the CPU until the next interrupt
✦ Wait loop (contention for memory access).
✦ At most one I/O request is outstanding at a time, no

simultaneous I/O processing.

■ After I/O starts, control returns to user program without
waiting for I/O completion.

✦ System call – request to the operating system to allow user
to wait for I/O completion.

✦ Device-status table contains entry for each I/O device
indicating its type, address, and state.

✦ Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.

Silberschatz, Galvin and Gagne ©20022.8Operating System Concepts

Two I/O Methods

Synchronous Asynchronous

Silberschatz, Galvin and Gagne ©20022.9Operating System Concepts

Device-Status Table

Silberschatz, Galvin and Gagne ©20022.10Operating System Concepts

Direct Memory Access Structure

■ Used for high-speed I/O devices able to transmit
information at close to memory speeds.

■ Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention.

■ Only on interrupt is generated per block, rather than the
one interrupt per byte.

Silberschatz, Galvin and Gagne ©20022.11Operating System Concepts

Storage Structure

■ Main memory – only large storage media that the CPU
can access directly.

■ Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.

■ Magnetic disks – rigid metal or glass platters covered with
magnetic recording material

✦ Disk surface is logically divided into tracks, which are
subdivided into sectors.

✦ The disk controller determines the logical interaction
between the device and the computer.

Silberschatz, Galvin and Gagne ©20022.12Operating System Concepts

Moving-Head Disk Mechanism

Silberschatz, Galvin and Gagne ©20022.13Operating System Concepts

Storage Hierarchy

■ Storage systems organized in hierarchy.
✦ Speed
✦ Cost

✦ Volatility

■ Caching – copying information into faster storage system;
main memory can be viewed as a last cache for
secondary storage.

Silberschatz, Galvin and Gagne ©20022.14Operating System Concepts

Storage-Device Hierarchy

Silberschatz, Galvin and Gagne ©20022.15Operating System Concepts

Caching

■ Use of high-speed memory to hold recently-accessed
data.

■ Requires a cache management policy.
■ Caching introduces another level in storage hierarchy.

This requires data that is simultaneously stored in more
than one level to be consistent.

Silberschatz, Galvin and Gagne ©20022.16Operating System Concepts

Migration of A From Disk to Register

Silberschatz, Galvin and Gagne ©20022.17Operating System Concepts

Hardware Protection

■ Dual-Mode Operation
■ I/O Protection
■ Memory Protection
■ CPU Protection

Silberschatz, Galvin and Gagne ©20022.18Operating System Concepts

Dual-Mode Operation

■ Sharing system resources requires operating system to
ensure that an incorrect program cannot cause other
programs to execute incorrectly.

■ Provide hardware support to differentiate between at least
two modes of operations.
1. User mode – execution done on behalf of a user.

2. Monitor mode (also kernel mode or system mode) –
execution done on behalf of operating system.

Silberschatz, Galvin and Gagne ©20022.19Operating System Concepts

Dual-Mode Operation (Cont.)

■ Mode bit added to computer hardware to indicate the
current mode: monitor (0) or user (1).

■ When an interrupt or fault occurs hardware switches to
monitor mode.

Privileged instructions can be issued only in monitor mode.

monitor user

Interrupt/fault

set user mode

Silberschatz, Galvin and Gagne ©20022.20Operating System Concepts

I/O Protection

■ All I/O instructions are privileged instructions.
■ Must ensure that a user program could never gain control

of the computer in monitor mode (I.e., a user program
that, as part of its execution, stores a new address in the
interrupt vector).

Silberschatz, Galvin and Gagne ©20022.21Operating System Concepts

Use of A System Call to Perform I/O

Silberschatz, Galvin and Gagne ©20022.22Operating System Concepts

Memory Protection

■ Must provide memory protection at least for the interrupt
vector and the interrupt service routines.

■ In order to have memory protection, add two registers
that determine the range of legal addresses a program
may access:

✦ Base register – holds the smallest legal physical memory
address.

✦ Limit register – contains the size of the range

■ Memory outside the defined range is protected.

Silberschatz, Galvin and Gagne ©20022.23Operating System Concepts

Use of A Base and Limit Register

Silberschatz, Galvin and Gagne ©20022.24Operating System Concepts

Hardware Address Protection

Silberschatz, Galvin and Gagne ©20022.25Operating System Concepts

Hardware Protection

■ When executing in monitor mode, the operating system
has unrestricted access to both monitor and user’s
memory.

■ The load instructions for the base and limit registers are
privileged instructions.

Silberschatz, Galvin and Gagne ©20022.26Operating System Concepts

CPU Protection

■ Timer – interrupts computer after specified period to
ensure operating system maintains control.

✦ Timer is decremented every clock tick.
✦ When timer reaches the value 0, an interrupt occurs.

■ Timer commonly used to implement time sharing.
■ Time also used to compute the current time.
■ Load-timer is a privileged instruction.

Silberschatz, Galvin and Gagne ©20022.27Operating System Concepts

Network Structure

■ Local Area Networks (LAN)
■ Wide Area Networks (WAN)

Silberschatz, Galvin and Gagne ©20022.28Operating System Concepts

Local Area Network Structure

Silberschatz, Galvin and Gagne ©20022.29Operating System Concepts

Wide Area Network Structure

Silberschatz, Galvin and Gagne ©20023.1Operating System Concepts

Chapter 3: Operating-System Structures

■ System Components
■ Operating System Services
■ System Calls
■ System Programs
■ System Structure
■ Virtual Machines
■ System Design and Implementation
■ System Generation

Silberschatz, Galvin and Gagne ©20023.2Operating System Concepts

Common System Components

■ Process Management
■ Main Memory Management
■ File Management
■ I/O System Management
■ Secondary Management
■ Networking
■ Protection System
■ Command-Interpreter System

Silberschatz, Galvin and Gagne ©20023.3Operating System Concepts

Process Management

■ A process is a program in execution. A process needs
certain resources, including CPU time, memory, files, and
I/O devices, to accomplish its task.

■ The operating system is responsible for the following
activities in connection with process management.

✦ Process creation and deletion.

✦ process suspension and resumption.
✦ Provision of mechanisms for:

✔ process synchronization

✔ process communication

Silberschatz, Galvin and Gagne ©20023.4Operating System Concepts

Main-Memory Management

■ Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data
shared by the CPU and I/O devices.

■ Main memory is a volatile storage device. It loses its
contents in the case of system failure.

■ The operating system is responsible for the following
activities in connections with memory management:

✦ Keep track of which parts of memory are currently being
used and by whom.

✦ Decide which processes to load when memory space
becomes available.

✦ Allocate and deallocate memory space as needed.

Silberschatz, Galvin and Gagne ©20023.5Operating System Concepts

File Management

■ A file is a collection of related information defined by its
creator. Commonly, files represent programs (both
source and object forms) and data.

■ The operating system is responsible for the following
activities in connections with file management:

✦ File creation and deletion.

✦ Directory creation and deletion.

✦ Support of primitives for manipulating files and directories.
✦ Mapping files onto secondary storage.

✦ File backup on stable (nonvolatile) storage media.

Silberschatz, Galvin and Gagne ©20023.6Operating System Concepts

I/O System Management

■ The I/O system consists of:
✦ A buffer-caching system
✦ A general device-driver interface

✦ Drivers for specific hardware devices

Silberschatz, Galvin and Gagne ©20023.7Operating System Concepts

Secondary-Storage Management

■ Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

■ Most modern computer systems use disks as the
principle on-line storage medium, for both programs and
data.

■ The operating system is responsible for the following
activities in connection with disk management:
✦ Free space management
✦ Storage allocation

✦ Disk scheduling

Silberschatz, Galvin and Gagne ©20023.8Operating System Concepts

Networking (Distributed Systems)

■ A distributed system is a collection processors that do not
share memory or a clock. Each processor has its own
local memory.

■ The processors in the system are connected through a
communication network.

■ Communication takes place using a protocol.
■ A distributed system provides user access to various

system resources.
■ Access to a shared resource allows:

✦ Computation speed-up

✦ Increased data availability
✦ Enhanced reliability

Silberschatz, Galvin and Gagne ©20023.9Operating System Concepts

Protection System

■ Protection refers to a mechanism for controlling access
by programs, processes, or users to both system and
user resources.

■ The protection mechanism must:
✦ distinguish between authorized and unauthorized usage.

✦ specify the controls to be imposed.

✦ provide a means of enforcement.

Silberschatz, Galvin and Gagne ©20023.10Operating System Concepts

Command-Interpreter System

■ Many commands are given to the operating system by
control statements which deal with:

✦ process creation and management
✦ I/O handling

✦ secondary-storage management

✦ main-memory management
✦ file-system access

✦ protection

✦ networking

Silberschatz, Galvin and Gagne ©20023.11Operating System Concepts

Command-Interpreter System (Cont.)

■ The program that reads and interprets control statements
is called variously:

✦ command-line interpreter

✦ shell (in UNIX)

 Its function is to get and execute the next command
statement.

Silberschatz, Galvin and Gagne ©20023.12Operating System Concepts

Operating System Services

■ Program execution – system capability to load a program into
memory and to run it.

■ I/O operations – since user programs cannot execute I/O
operations directly, the operating system must provide some
means to perform I/O.

■ File-system manipulation – program capability to read, write,
create, and delete files.

■ Communications – exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

■ Error detection – ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.

Silberschatz, Galvin and Gagne ©20023.13Operating System Concepts

Additional Operating System Functions

Additional functions exist not for helping the user, but rather
for ensuring efficient system operations.

• Resource allocation – allocating resources to multiple users
or multiple jobs running at the same time.

• Accounting – keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

• Protection – ensuring that all access to system resources is
controlled.

Silberschatz, Galvin and Gagne ©20023.14Operating System Concepts

System Calls

■ System calls provide the interface between a running
program and the operating system.

✦ Generally available as assembly-language instructions.
✦ Languages defined to replace assembly language for

systems programming allow system calls to be made
directly (e.g., C, C++)

■ Three general methods are used to pass parameters
between a running program and the operating system.

✦ Pass parameters in registers.
✦ Store the parameters in a table in memory, and the table

address is passed as a parameter in a register.
✦ Push (store) the parameters onto the stack by the program,

and pop off the stack by operating system.

Silberschatz, Galvin and Gagne ©20023.15Operating System Concepts

Passing of Parameters As A Table

Silberschatz, Galvin and Gagne ©20023.16Operating System Concepts

Types of System Calls

■ Process control
■ File management
■ Device management
■ Information maintenance
■ Communications

Silberschatz, Galvin and Gagne ©20023.17Operating System Concepts

MS-DOS Execution

At System Start-up Running a Program

Silberschatz, Galvin and Gagne ©20023.18Operating System Concepts

UNIX Running Multiple Programs

Silberschatz, Galvin and Gagne ©20023.19Operating System Concepts

Communication Models

Msg Passing Shared Memory

■ Communication may take place using either message
passing or shared memory.

Silberschatz, Galvin and Gagne ©20023.20Operating System Concepts

System Programs

■ System programs provide a convenient environment for
program development and execution. The can be divided
into:

✦ File manipulation
✦ Status information

✦ File modification

✦ Programming language support
✦ Program loading and execution

✦ Communications

✦ Application programs

■ Most users’ view of the operation system is defined by
system programs, not the actual system calls.

Silberschatz, Galvin and Gagne ©20023.21Operating System Concepts

MS-DOS System Structure

■ MS-DOS – written to provide the most functionality in the
least space

✦ not divided into modules
✦ Although MS-DOS has some structure, its interfaces and

levels of functionality are not well separated

Silberschatz, Galvin and Gagne ©20023.22Operating System Concepts

MS-DOS Layer Structure

Silberschatz, Galvin and Gagne ©20023.23Operating System Concepts

UNIX System Structure

■ UNIX – limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts.

✦ Systems programs
✦ The kernel

✔ Consists of everything below the system-call interface
and above the physical hardware

✔ Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level.

Silberschatz, Galvin and Gagne ©20023.24Operating System Concepts

UNIX System Structure

Silberschatz, Galvin and Gagne ©20023.25Operating System Concepts

Layered Approach

■ The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

■ With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers.

Silberschatz, Galvin and Gagne ©20023.26Operating System Concepts

An Operating System Layer

Silberschatz, Galvin and Gagne ©20023.27Operating System Concepts

OS/2 Layer Structure

Silberschatz, Galvin and Gagne ©20023.28Operating System Concepts

Microkernel System Structure

■ Moves as much from the kernel into “user” space.
■ Communication takes place between user modules using

message passing.
■ Benefits:

- easier to extend a microkernel
- easier to port the operating system to new architectures
- more reliable (less code is running in kernel mode)
- more secure

Silberschatz, Galvin and Gagne ©20023.29Operating System Concepts

Windows NT Client-Server Structure

Silberschatz, Galvin and Gagne ©20023.30Operating System Concepts

Virtual Machines

■ A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system
kernel as though they were all hardware.

■ A virtual machine provides an interface identical to the
underlying bare hardware.

■ The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory.

Silberschatz, Galvin and Gagne ©20023.31Operating System Concepts

Virtual Machines (Cont.)

■ The resources of the physical computer are shared to
create the virtual machines.

✦ CPU scheduling can create the appearance that users have
their own processor.

✦ Spooling and a file system can provide virtual card readers
and virtual line printers.

✦ A normal user time-sharing terminal serves as the virtual
machine operator’s console.

Silberschatz, Galvin and Gagne ©20023.32Operating System Concepts

System Models

Non-virtual Machine Virtual Machine

Silberschatz, Galvin and Gagne ©20023.33Operating System Concepts

Advantages/Disadvantages of Virtual Machines

■ The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines. This
isolation, however, permits no direct sharing of resources.

■ A virtual-machine system is a perfect vehicle for
operating-systems research and development. System
development is done on the virtual machine, instead of on
a physical machine and so does not disrupt normal
system operation.

■ The virtual machine concept is difficult to implement due
to the effort required to provide an exact duplicate to the
underlying machine.

Silberschatz, Galvin and Gagne ©20023.34Operating System Concepts

Java Virtual Machine

■ Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

■ JVM consists of
- class loader
- class verifier
- runtime interpreter

■ Just-In-Time (JIT) compilers increase performance

Silberschatz, Galvin and Gagne ©20023.35Operating System Concepts

Java Virtual Machine

Silberschatz, Galvin and Gagne ©20023.36Operating System Concepts

System Design Goals

■ User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast.

■ System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient.

Silberschatz, Galvin and Gagne ©20023.37Operating System Concepts

Mechanisms and Policies

■ Mechanisms determine how to do something, policies
decide what will be done.

■ The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.

Silberschatz, Galvin and Gagne ©20023.38Operating System Concepts

System Implementation

■ Traditionally written in assembly language, operating
systems can now be written in higher-level languages.

■ Code written in a high-level language:
✦ can be written faster.

✦ is more compact.

✦ is easier to understand and debug.

■ An operating system is far easier to port (move to some
other hardware) if it is written in a high-level language.

Silberschatz, Galvin and Gagne ©20023.39Operating System Concepts

System Generation (SYSGEN)

■ Operating systems are designed to run on any of a class
of machines; the system must be configured for each
specific computer site.

■ SYSGEN program obtains information concerning the
specific configuration of the hardware system.

■ Booting – starting a computer by loading the kernel.
■ Bootstrap program – code stored in ROM that is able to

locate the kernel, load it into memory, and start its
execution.

Silberschatz, Galvin and Gagne ©20024.1Operating System Concepts

Chapter 4: Processes

■ Process Concept
■ Process Scheduling
■ Operations on Processes
■ Cooperating Processes
■ Interprocess Communication
■ Communication in Client-Server Systems

Silberschatz, Galvin and Gagne ©20024.2Operating System Concepts

Process Concept

■ An operating system executes a variety of programs:
✦ Batch system – jobs

✦ Time-shared systems – user programs or tasks

■ Textbook uses the terms job and process almost
interchangeably.

■ Process – a program in execution; process execution
must progress in sequential fashion.

■ A process includes:
✦ program counter

✦ stack
✦ data section

Silberschatz, Galvin and Gagne ©20024.3Operating System Concepts

Process State

■ As a process executes, it changes state
✦ new: The process is being created.
✦ running: Instructions are being executed.

✦ waiting: The process is waiting for some event to occur.

✦ ready: The process is waiting to be assigned to a process.
✦ terminated: The process has finished execution.

Silberschatz, Galvin and Gagne ©20024.4Operating System Concepts

Diagram of Process State

Silberschatz, Galvin and Gagne ©20024.5Operating System Concepts

Process Control Block (PCB)

Information associated with each process.
■ Process state
■ Program counter
■ CPU registers
■ CPU scheduling information
■ Memory-management information
■ Accounting information
■ I/O status information

Silberschatz, Galvin and Gagne ©20024.6Operating System Concepts

Process Control Block (PCB)

Silberschatz, Galvin and Gagne ©20024.7Operating System Concepts

CPU Switch From Process to Process

Silberschatz, Galvin and Gagne ©20024.8Operating System Concepts

Process Scheduling Queues

■ Job queue – set of all processes in the system.
■ Ready queue – set of all processes residing in main

memory, ready and waiting to execute.
■ Device queues – set of processes waiting for an I/O

device.
■ Process migration between the various queues.

Silberschatz, Galvin and Gagne ©20024.9Operating System Concepts

Ready Queue And Various I/O Device Queues

Silberschatz, Galvin and Gagne ©20024.10Operating System Concepts

Representation of Process Scheduling

Silberschatz, Galvin and Gagne ©20024.11Operating System Concepts

Schedulers

■ Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

■ Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Silberschatz, Galvin and Gagne ©20024.12Operating System Concepts

Addition of Medium Term Scheduling

Silberschatz, Galvin and Gagne ©20024.13Operating System Concepts

Schedulers (Cont.)

■ Short-term scheduler is invoked very frequently
(milliseconds) � (must be fast).

■ Long-term scheduler is invoked very infrequently
(seconds, minutes) � (may be slow).

■ The long-term scheduler controls the degree of
multiprogramming.

■ Processes can be described as either:
✦ I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

✦ CPU-bound process – spends more time doing
computations; few very long CPU bursts.

Silberschatz, Galvin and Gagne ©20024.14Operating System Concepts

Context Switch

■ When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

■ Context-switch time is overhead; the system does no
useful work while switching.

■ Time dependent on hardware support.

Silberschatz, Galvin and Gagne ©20024.15Operating System Concepts

Process Creation

■ Parent process create children processes, which, in turn
create other processes, forming a tree of processes.

■ Resource sharing
✦ Parent and children share all resources.

✦ Children share subset of parent’s resources.
✦ Parent and child share no resources.

■ Execution
✦ Parent and children execute concurrently.
✦ Parent waits until children terminate.

Silberschatz, Galvin and Gagne ©20024.16Operating System Concepts

Process Creation (Cont.)

■ Address space
✦ Child duplicate of parent.

✦ Child has a program loaded into it.

■ UNIX examples
✦ fork system call creates new process

✦ exec system call used after a fork to replace the process’
memory space with a new program.

Silberschatz, Galvin and Gagne ©20024.17Operating System Concepts

Processes Tree on a UNIX System

Silberschatz, Galvin and Gagne ©20024.18Operating System Concepts

Process Termination

■ Process executes last statement and asks the operating
system to decide it (exit).

✦ Output data from child to parent (via wait).
✦ Process’ resources are deallocated by operating system.

■ Parent may terminate execution of children processes
(abort).

✦ Child has exceeded allocated resources.

✦ Task assigned to child is no longer required.

✦ Parent is exiting.
✔ Operating system does not allow child to continue if its

parent terminates.
✔ Cascading termination.

Silberschatz, Galvin and Gagne ©20024.19Operating System Concepts

Cooperating Processes

■ Independent process cannot affect or be affected by the
execution of another process.

■ Cooperating process can affect or be affected by the
execution of another process

■ Advantages of process cooperation
✦ Information sharing
✦ Computation speed-up

✦ Modularity

✦ Convenience

Silberschatz, Galvin and Gagne ©20024.20Operating System Concepts

Producer-Consumer Problem

■ Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process.

✦ unbounded-buffer places no practical limit on the size of the
buffer.

✦ bounded-buffer assumes that there is a fixed buffer size.

Silberschatz, Galvin and Gagne ©20024.21Operating System Concepts

Bounded-Buffer – Shared-Memory Solution

■ Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

■ Solution is correct, but can only use BUFFER_SIZE-1
elements

Silberschatz, Galvin and Gagne ©20024.22Operating System Concepts

Bounded-Buffer – Producer Process

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne ©20024.23Operating System Concepts

Bounded-Buffer – Consumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne ©20024.24Operating System Concepts

Interprocess Communication (IPC)

■ Mechanism for processes to communicate and to
synchronize their actions.

■ Message system – processes communicate with each
other without resorting to shared variables.

■ IPC facility provides two operations:
✦ send(message) – message size fixed or variable
✦ receive(message)

■ If P and Q wish to communicate, they need to:
✦ establish a communication link between them

✦ exchange messages via send/receive

■ Implementation of communication link
✦ physical (e.g., shared memory, hardware bus)

✦ logical (e.g., logical properties)

Silberschatz, Galvin and Gagne ©20024.25Operating System Concepts

Implementation Questions

■ How are links established?
■ Can a link be associated with more than two processes?
■ How many links can there be between every pair of

communicating processes?
■ What is the capacity of a link?
■ Is the size of a message that the link can accommodate

fixed or variable?
■ Is a link unidirectional or bi-directional?

Silberschatz, Galvin and Gagne ©20024.26Operating System Concepts

Direct Communication

■ Processes must name each other explicitly:
✦ send (P, message) – send a message to process P

✦ receive(Q, message) – receive a message from process Q

■ Properties of communication link
✦ Links are established automatically.

✦ A link is associated with exactly one pair of communicating
processes.

✦ Between each pair there exists exactly one link.

✦ The link may be unidirectional, but is usually bi-directional.

Silberschatz, Galvin and Gagne ©20024.27Operating System Concepts

Indirect Communication

■ Messages are directed and received from mailboxes (also
referred to as ports).

✦ Each mailbox has a unique id.

✦ Processes can communicate only if they share a mailbox.

■ Properties of communication link
✦ Link established only if processes share a common mailbox

✦ A link may be associated with many processes.

✦ Each pair of processes may share several communication
links.

✦ Link may be unidirectional or bi-directional.

Silberschatz, Galvin and Gagne ©20024.28Operating System Concepts

Indirect Communication

■ Operations
✦ create a new mailbox

✦ send and receive messages through mailbox

✦ destroy a mailbox

■ Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

Silberschatz, Galvin and Gagne ©20024.29Operating System Concepts

Indirect Communication

■ Mailbox sharing
✦ P1, P2, and P3 share mailbox A.

✦ P1, sends; P2 and P3 receive.

✦ Who gets the message?

■ Solutions
✦ Allow a link to be associated with at most two processes.

✦ Allow only one process at a time to execute a receive
operation.

✦ Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Silberschatz, Galvin and Gagne ©20024.30Operating System Concepts

Synchronization

■ Message passing may be either blocking or non-blocking.
■ Blocking is considered synchronous
■ Non-blocking is considered asynchronous
■ send and receive primitives may be either blocking or

non-blocking.

Silberschatz, Galvin and Gagne ©20024.31Operating System Concepts

Buffering

■ Queue of messages attached to the link; implemented in
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

Silberschatz, Galvin and Gagne ©20024.32Operating System Concepts

Client-Server Communication

■ Sockets
■ Remote Procedure Calls
■ Remote Method Invocation (Java)

Silberschatz, Galvin and Gagne ©20024.33Operating System Concepts

Sockets

■ A socket is defined as an endpoint for communication.
■ Concatenation of IP address and port
■ The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
■ Communication consists between a pair of sockets.

Silberschatz, Galvin and Gagne ©20024.34Operating System Concepts

Socket Communication

Silberschatz, Galvin and Gagne ©20024.35Operating System Concepts

Remote Procedure Calls

■ Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

■ Stubs – client-side proxy for the actual procedure on the
server.

■ The client-side stub locates the server and marshalls the
parameters.

■ The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on
the server.

Silberschatz, Galvin and Gagne ©20024.36Operating System Concepts

Execution of RPC

Silberschatz, Galvin and Gagne ©20024.37Operating System Concepts

Remote Method Invocation

■ Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

■ RMI allows a Java program on one machine to invoke a
method on a remote object.

Silberschatz, Galvin and Gagne ©20024.38Operating System Concepts

Marshalling Parameters

Silberschatz, Galvin and Gagne ©20025.1Operating System Concepts

Chapter 5: Threads

� Overview

� Multithreading Models

� Threading Issues
� Pthreads

� Solaris 2 Threads

� Windows 2000 Threads

� Linux Threads
� Java Threads

Silberschatz, Galvin and Gagne ©20025.2Operating System Concepts

Single and Multithreaded Processes

Silberschatz, Galvin and Gagne ©20025.3Operating System Concepts

Benefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures

Silberschatz, Galvin and Gagne ©20025.4Operating System Concepts

User Threads

� Thread management done by user-level threads library

� Examples
- POSIX Pthreads

- Mach C-threads

- Solaris threads

Silberschatz, Galvin and Gagne ©20025.5Operating System Concepts

Kernel Threads

� Supported by the Kernel

� Examples
- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux

Silberschatz, Galvin and Gagne ©20025.6Operating System Concepts

Multithreading Models

� Many-to-One

� One-to-One

� Many-to-Many

Silberschatz, Galvin and Gagne ©20025.7Operating System Concepts

Many-to-One

� Many user-level threads mapped to single kernel thread.

� Used on systems that do not support kernel threads.

Silberschatz, Galvin and Gagne ©20025.8Operating System Concepts

Many-to-One Model

Silberschatz, Galvin and Gagne ©20025.9Operating System Concepts

One-to-One

� Each user-level thread maps to kernel thread.

� Examples
- Windows 95/98/NT/2000

- OS/2

Silberschatz, Galvin and Gagne ©20025.10Operating System Concepts

One-to-one Model

Silberschatz, Galvin and Gagne ©20025.11Operating System Concepts

Many-to-Many Model

� Allows many user level threads to be mapped to many
kernel threads.

� Allows the operating system to create a sufficient number
of kernel threads.

� Solaris 2

� Windows NT/2000 with the ThreadFiber package

Silberschatz, Galvin and Gagne ©20025.12Operating System Concepts

Many-to-Many Model

Silberschatz, Galvin and Gagne ©20025.13Operating System Concepts

Threading Issues

� Semantics of fork() and exec() system calls.

� Thread cancellation.

� Signal handling
� Thread pools

� Thread specific data

Silberschatz, Galvin and Gagne ©20025.14Operating System Concepts

Pthreads

� a POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

� API specifies behavior of the thread library,
implementation is up to development of the library.

� Common in UNIX operating systems.

Silberschatz, Galvin and Gagne ©20025.15Operating System Concepts

Solaris 2 Threads

Silberschatz, Galvin and Gagne ©20025.16Operating System Concepts

Solaris Process

Silberschatz, Galvin and Gagne ©20025.17Operating System Concepts

Windows 2000 Threads

� Implements the one-to-one mapping.

� Each thread contains

- a thread id
- register set

- separate user and kernel stacks

- private data storage area

Silberschatz, Galvin and Gagne ©20025.18Operating System Concepts

Linux Threads

� Linux refers to them as tasks rather than threads.

� Thread creation is done through clone() system call.

� Clone() allows a child task to share the address space of
the parent task (process)

Silberschatz, Galvin and Gagne ©20025.19Operating System Concepts

Java Threads

� Java threads may be created by:

� Extending Thread class
� Implementing the Runnable interface

� Java threads are managed by the JVM.

Silberschatz, Galvin and Gagne ©20025.20Operating System Concepts

Java Thread States

Silberschatz, Galvin and Gagne ©20026.1Operating System Concepts

Chapter 6: CPU Scheduling

■ Basic Concepts
■ Scheduling Criteria
■ Scheduling Algorithms
■ Multiple-Processor Scheduling
■ Real-Time Scheduling
■ Algorithm Evaluation

Silberschatz, Galvin and Gagne ©20026.2Operating System Concepts

Basic Concepts

■ Maximum CPU utilization obtained with
multiprogramming

■ CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

■ CPU burst distribution

Silberschatz, Galvin and Gagne ©20026.3Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne ©20026.4Operating System Concepts

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne ©20026.5Operating System Concepts

CPU Scheduler

■ Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

■ CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.

2. Switches from running to ready state.
3. Switches from waiting to ready.

4. Terminates.

■ Scheduling under 1 and 4 is nonpreemptive.
■ All other scheduling is preemptive.

Silberschatz, Galvin and Gagne ©20026.6Operating System Concepts

Dispatcher

■ Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

✦ switching context

✦ switching to user mode

✦ jumping to the proper location in the user program to restart
that program

■ Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

Silberschatz, Galvin and Gagne ©20026.7Operating System Concepts

Scheduling Criteria

■ CPU utilization – keep the CPU as busy as possible
■ Throughput – # of processes that complete their

execution per time unit
■ Turnaround time – amount of time to execute a particular

process
■ Waiting time – amount of time a process has been waiting

in the ready queue
■ Response time – amount of time it takes from when a

request was submitted until the first response is
produced, not output (for time-sharing environment)

Silberschatz, Galvin and Gagne ©20026.8Operating System Concepts

Optimization Criteria

■ Max CPU utilization
■ Max throughput
■ Min turnaround time
■ Min waiting time
■ Min response time

Silberschatz, Galvin and Gagne ©20026.9Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

■ Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

■ Waiting time for P1 = 0; P2 = 24; P3 = 27
■ Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and Gagne ©20026.10Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1 .

■ The Gantt chart for the schedule is:

■ Waiting time for P1 = 6; P2 = 0; P3 = 3
■ Average waiting time: (6 + 0 + 3)/3 = 3
■ Much better than previous case.
■ Convoy effect short process behind long process

P1P3P2

63 300

Silberschatz, Galvin and Gagne ©20026.11Operating System Concepts

Shortest-Job-First (SJR) Scheduling

■ Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

■ Two schemes:
✦ nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.

✦ preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

■ SJF is optimal – gives minimum average waiting time for
a given set of processes.

Silberschatz, Galvin and Gagne ©20026.12Operating System Concepts

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

■ SJF (non-preemptive)

■ Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Silberschatz, Galvin and Gagne ©20026.13Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

■ SJF (preemptive)

■ Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and Gagne ©20026.14Operating System Concepts

Determining Length of Next CPU Burst

■ Can only estimate the length.
■ Can be done by using the length of previous CPU bursts,

using exponential averaging.

:Define4.

10,3.

burstCPUnexttheforvaluepredicted2.

burstCPUoflenghtactual1.

≤≤
=

=

+

αα
τ

1n

th
n nt

() .t nnn ταατ −+== 1
1

Silberschatz, Galvin and Gagne ©20026.15Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne ©20026.16Operating System Concepts

Examples of Exponential Averaging

■ α =0
✦ τn+1 = τn

✦ Recent history does not count.

■ α =1
✦ τn+1 = tn
✦ Only the actual last CPU burst counts.

■ If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

 +(1 - α)j α tn -1 + …

 +(1 - α)n=1 tn τ0

■ Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Silberschatz, Galvin and Gagne ©20026.17Operating System Concepts

Priority Scheduling

■ A priority number (integer) is associated with each
process

■ The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).

✦ Preemptive

✦ nonpreemptive

■ SJF is a priority scheduling where priority is the predicted
next CPU burst time.

■ Problem ≡ Starvation – low priority processes may never
execute.

■ Solution ≡ Aging – as time progresses increase the
priority of the process.

Silberschatz, Galvin and Gagne ©20026.18Operating System Concepts

Round Robin (RR)

■ Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

■ If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

■ Performance
✦ q large � FIFO
✦ q small � q must be large with respect to context switch,

otherwise overhead is too high.

Silberschatz, Galvin and Gagne ©20026.19Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

■ The Gantt chart is:

■ Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and Gagne ©20026.20Operating System Concepts

Time Quantum and Context Switch Time

Silberschatz, Galvin and Gagne ©20026.21Operating System Concepts

Turnaround Time Varies With The Time Quantum

Silberschatz, Galvin and Gagne ©20026.22Operating System Concepts

Multilevel Queue

■ Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

■ Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

■ Scheduling must be done between the queues.
✦ Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
✦ Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

✦ 20% to background in FCFS

Silberschatz, Galvin and Gagne ©20026.23Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne ©20026.24Operating System Concepts

Multilevel Feedback Queue

■ A process can move between the various queues; aging
can be implemented this way.

■ Multilevel-feedback-queue scheduler defined by the
following parameters:

✦ number of queues

✦ scheduling algorithms for each queue
✦ method used to determine when to upgrade a process

✦ method used to determine when to demote a process

✦ method used to determine which queue a process will enter
when that process needs service

Silberschatz, Galvin and Gagne ©20026.25Operating System Concepts

Example of Multilevel Feedback Queue

■ Three queues:
✦ Q0 – time quantum 8 milliseconds

✦ Q1 – time quantum 16 milliseconds

✦ Q2 – FCFS

■ Scheduling
✦ A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

✦ At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

Silberschatz, Galvin and Gagne ©20026.26Operating System Concepts

Multilevel Feedback Queues

Silberschatz, Galvin and Gagne ©20026.27Operating System Concepts

Multiple-Processor Scheduling

■ CPU scheduling more complex when multiple CPUs are
available.

■ Homogeneous processors within a multiprocessor.
■ Load sharing
■ Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need
for data sharing.

Silberschatz, Galvin and Gagne ©20026.28Operating System Concepts

Real-Time Scheduling

■ Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

■ Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

Silberschatz, Galvin and Gagne ©20026.29Operating System Concepts

Dispatch Latency

Silberschatz, Galvin and Gagne ©20026.30Operating System Concepts

Algorithm Evaluation

■ Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

■ Queueing models
■ Implementation

Silberschatz, Galvin and Gagne ©20026.31Operating System Concepts

Evaluation of CPU Schedulers by Simulation

Silberschatz, Galvin and Gagne ©20026.32Operating System Concepts

Solaris 2 Scheduling

Silberschatz, Galvin and Gagne ©20026.33Operating System Concepts

Windows 2000 Priorities

Silberschatz, Galvin and Gagne ©20027.1Operating System Concepts

Chapter 7: Process Synchronization

■ Background
■ The Critical-Section Problem
■ Synchronization Hardware
■ Semaphores
■ Classical Problems of Synchronization
■ Critical Regions
■ Monitors
■ Synchronization in Solaris 2 & Windows 2000

Silberschatz, Galvin and Gagne ©20027.2Operating System Concepts

Background

■ Concurrent access to shared data may result in data
inconsistency.

■ Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

■ Shared-memory solution to bounded-butter problem
(Chapter 4) allows at most n – 1 items in buffer at the
same time. A solution, where all N buffers are used is not
simple.

✦ Suppose that we modify the producer-consumer code by
adding a variable counter, initialized to 0 and incremented
each time a new item is added to the buffer

Silberschatz, Galvin and Gagne ©20027.3Operating System Concepts

Bounded-Buffer

■ Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Silberschatz, Galvin and Gagne ©20027.4Operating System Concepts

Bounded-Buffer

■ Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Silberschatz, Galvin and Gagne ©20027.5Operating System Concepts

Bounded-Buffer

■ Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Silberschatz, Galvin and Gagne ©20027.6Operating System Concepts

Bounded Buffer

■ The statements

counter++;
counter--;

must be performed atomically.

■ Atomic operation means an operation that completes in
its entirety without interruption.

Silberschatz, Galvin and Gagne ©20027.7Operating System Concepts

Bounded Buffer

■ The statement “count++” may be implemented in
machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

■ The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

Silberschatz, Galvin and Gagne ©20027.8Operating System Concepts

Bounded Buffer

■ If both the producer and consumer attempt to update the
buffer concurrently, the assembly language statements
may get interleaved.

■ Interleaving depends upon how the producer and
consumer processes are scheduled.

Silberschatz, Galvin and Gagne ©20027.9Operating System Concepts

Bounded Buffer

■ Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

■ The value of count may be either 4 or 6, where the
correct result should be 5.

Silberschatz, Galvin and Gagne ©20027.10Operating System Concepts

Race Condition

■ Race condition: The situation where several processes
access – and manipulate shared data concurrently. The
final value of the shared data depends upon which
process finishes last.

■ To prevent race conditions, concurrent processes must
be synchronized.

Silberschatz, Galvin and Gagne ©20027.11Operating System Concepts

The Critical-Section Problem

■ n processes all competing to use some shared data
■ Each process has a code segment, called critical section,

in which the shared data is accessed.
■ Problem – ensure that when one process is executing in

its critical section, no other process is allowed to execute
in its critical section.

Silberschatz, Galvin and Gagne ©20027.12Operating System Concepts

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.
� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the n
processes.

Silberschatz, Galvin and Gagne ©20027.13Operating System Concepts

Initial Attempts to Solve Problem

■ Only 2 processes, P0 and P1

■ General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
reminder section

} while (1);
■ Processes may share some common variables to

synchronize their actions.

Silberschatz, Galvin and Gagne ©20027.14Operating System Concepts

Algorithm 1

■ Shared variables:
✦ int turn;

initially turn = 0
✦ turn - i � Pi can enter its critical section

■ Process Pi

do {
while (turn != i) ;

critical section
turn = j;

reminder section
} while (1);

■ Satisfies mutual exclusion, but not progress

Silberschatz, Galvin and Gagne ©20027.15Operating System Concepts

Algorithm 2

■ Shared variables
✦ boolean flag[2];

initially flag [0] = flag [1] = false.
✦ flag [i] = true � Pi ready to enter its critical section

■ Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

■ Satisfies mutual exclusion, but not progress requirement.

Silberschatz, Galvin and Gagne ©20027.16Operating System Concepts

Algorithm 3

■ Combined shared variables of algorithms 1 and 2.
■ Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

■ Meets all three requirements; solves the critical-section
problem for two processes.

Silberschatz, Galvin and Gagne ©20027.17Operating System Concepts

Bakery Algorithm

■ Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical
section.

■ If processes Pi and Pj receive the same number, if i < j,
then Pi is served first; else Pj is served first.

■ The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

Silberschatz, Galvin and Gagne ©20027.18Operating System Concepts

Bakery Algorithm

■ Notation <≡ lexicographical order (ticket #, process id #)
✦ (a,b) < c,d) if a < c or if a = c and b < d

✦ max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0,
…, n – 1

■ Shared data
boolean choosing[n];
int number[n];

 Data structures are initialized to false and 0 respectively

Silberschatz, Galvin and Gagne ©20027.19Operating System Concepts

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Silberschatz, Galvin and Gagne ©20027.20Operating System Concepts

Synchronization Hardware

■ Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}

Silberschatz, Galvin and Gagne ©20027.21Operating System Concepts

Mutual Exclusion with Test-and-Set

■ Shared data:
boolean lock = false;

■ Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Silberschatz, Galvin and Gagne ©20027.22Operating System Concepts

Synchronization Hardware

■ Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

Silberschatz, Galvin and Gagne ©20027.23Operating System Concepts

Mutual Exclusion with Swap

■ Shared data (initialized to false):
boolean lock;
boolean waiting[n];

■ Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

Silberschatz, Galvin and Gagne ©20027.24Operating System Concepts

Semaphores

■ Synchronization tool that does not require busy waiting.
■ Semaphore S – integer variable
■ can only be accessed via two indivisible (atomic)

operations
wait (S):

while S≤≤≤≤ 0 do no-op;
S--;

signal (S):
S++;

Silberschatz, Galvin and Gagne ©20027.25Operating System Concepts

Critical Section of n Processes

■ Shared data:
 semaphore mutex; //initially mutex = 1

■ Process Pi:

do {
 wait(mutex);
 critical section

 signal(mutex);
 remainder section
} while (1);

Silberschatz, Galvin and Gagne ©20027.26Operating System Concepts

Semaphore Implementation

■ Define a semaphore as a record
typedef struct {
 int value;
 struct process *L;
} semaphore;

■ Assume two simple operations:
✦ block suspends the process that invokes it.

✦ wakeup(P) resumes the execution of a blocked process P.

Silberschatz, Galvin and Gagne ©20027.27Operating System Concepts

Implementation

■ Semaphore operations now defined as
wait(S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Silberschatz, Galvin and Gagne ©20027.28Operating System Concepts

Semaphore as a General Synchronization Tool

■ Execute B in Pj only after A executed in Pi

■ Use semaphore flag initialized to 0
■ Code:

Pi Pj

� �

A wait(flag)
signal(flag) B

Silberschatz, Galvin and Gagne ©20027.29Operating System Concepts

Deadlock and Starvation

■ Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.

■ Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

� �

signal(S); signal(Q);

signal(Q) signal(S);

■ Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

Silberschatz, Galvin and Gagne ©20027.30Operating System Concepts

Two Types of Semaphores

■ Counting semaphore – integer value can range over
an unrestricted domain.

■ Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement.

■ Can implement a counting semaphore S as a binary
semaphore.

Silberschatz, Galvin and Gagne ©20027.31Operating System Concepts

Implementing S as a Binary Semaphore

■ Data structures:
binary-semaphore S1, S2;
int C:

■ Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

Silberschatz, Galvin and Gagne ©20027.32Operating System Concepts

Implementing S

■ wait operation
wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

■ signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Silberschatz, Galvin and Gagne ©20027.33Operating System Concepts

Classical Problems of Synchronization

■ Bounded-Buffer Problem

■ Readers and Writers Problem

■ Dining-Philosophers Problem

Silberschatz, Galvin and Gagne ©20027.34Operating System Concepts

Bounded-Buffer Problem

■ Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Silberschatz, Galvin and Gagne ©20027.35Operating System Concepts

Bounded-Buffer Problem Producer Process

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

Silberschatz, Galvin and Gagne ©20027.36Operating System Concepts

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

Silberschatz, Galvin and Gagne ©20027.37Operating System Concepts

Readers-Writers Problem

■ Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

Silberschatz, Galvin and Gagne ©20027.38Operating System Concepts

Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

Silberschatz, Galvin and Gagne ©20027.39Operating System Concepts

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

Silberschatz, Galvin and Gagne ©20027.40Operating System Concepts

Dining-Philosophers Problem

■ Shared data
semaphore chopstick[5];

Initially all values are 1

Silberschatz, Galvin and Gagne ©20027.41Operating System Concepts

Dining-Philosophers Problem

■ Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

Silberschatz, Galvin and Gagne ©20027.42Operating System Concepts

Critical Regions

■ High-level synchronization construct
■ A shared variable v of type T, is declared as:

v: shared T
■ Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

■ While statement S is being executed, no other process
can access variable v.

Silberschatz, Galvin and Gagne ©20027.43Operating System Concepts

Critical Regions

■ Regions referring to the same shared variable exclude
each other in time.

■ When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement
S is executed. If it is false, the process is delayed until B
becomes true and no other process is in the region
associated with v.

Silberschatz, Galvin and Gagne ©20027.44Operating System Concepts

Example – Bounded Buffer

■ Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

Silberschatz, Galvin and Gagne ©20027.45Operating System Concepts

Bounded Buffer Producer Process

■ Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Silberschatz, Galvin and Gagne ©20027.46Operating System Concepts

Bounded Buffer Consumer Process

■ Consumer process removes an item from the shared
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

Silberschatz, Galvin and Gagne ©20027.47Operating System Concepts

Implementation region x when B do S

■ Associate with the shared variable x, the following
variables:

semaphore mutex, first-delay, second-delay;
 int first-count, second-count;

■ Mutually exclusive access to the critical section is
provided by mutex.

■ If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the
first-delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.

Silberschatz, Galvin and Gagne ©20027.48Operating System Concepts

Implementation

■ Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

■ The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.

■ For an arbitrary queuing discipline, a more complicated
implementation is required.

Silberschatz, Galvin and Gagne ©20027.49Operating System Concepts

Monitors

■ High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

 . . .
}
{

initialization code
}

}

Silberschatz, Galvin and Gagne ©20027.50Operating System Concepts

Monitors

■ To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;
■ Condition variable can only be used with the

operations wait and signal.
✦ The operation

x.wait();
means that the process invoking this operation is
suspended until another process invokes

x.signal();
✦ The x.signal operation resumes exactly one suspended

process. If no process is suspended, then the signal
operation has no effect.

Silberschatz, Galvin and Gagne ©20027.51Operating System Concepts

Schematic View of a Monitor

Silberschatz, Galvin and Gagne ©20027.52Operating System Concepts

Monitor With Condition Variables

Silberschatz, Galvin and Gagne ©20027.53Operating System Concepts

Dining Philosophers Example

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Silberschatz, Galvin and Gagne ©20027.54Operating System Concepts

Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

Silberschatz, Galvin and Gagne ©20027.55Operating System Concepts

Dining Philosophers
void test(int i) {

if ((state[(I + 4) % 5] != eating) &&
 (state[i] == hungry) &&
 (state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

Silberschatz, Galvin and Gagne ©20027.56Operating System Concepts

Monitor Implementation Using Semaphores

■ Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

■ Each external procedure F will be replaced by
wait(mutex);
 …
 body of F;
 …
if (next-count > 0)

signal(next)
else

signal(mutex);

■ Mutual exclusion within a monitor is ensured.

Silberschatz, Galvin and Gagne ©20027.57Operating System Concepts

Monitor Implementation

■ For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

■ The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

Silberschatz, Galvin and Gagne ©20027.58Operating System Concepts

Monitor Implementation

■ The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

Silberschatz, Galvin and Gagne ©20027.59Operating System Concepts

Monitor Implementation

■ Conditional-wait construct: x.wait(c);
✦ c – integer expression evaluated when the wait operation is

executed.
✦ value of c (a priority number) stored with the name of the

process that is suspended.
✦ when x.signal is executed, process with smallest

associated priority number is resumed next.

■ Check two conditions to establish correctness of system:
✦ User processes must always make their calls on the monitor

in a correct sequence.
✦ Must ensure that an uncooperative process does not ignore

the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.

Silberschatz, Galvin and Gagne ©20027.60Operating System Concepts

Solaris 2 Synchronization

■ Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

■ Uses adaptive mutexes for efficiency when protecting
data from short code segments.

■ Uses condition variables and readers-writers locks when
longer sections of code need access to data.

■ Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

Silberschatz, Galvin and Gagne ©20027.61Operating System Concepts

Windows 2000 Synchronization

■ Uses interrupt masks to protect access to global
resources on uniprocessor systems.

■ Uses spinlocks on multiprocessor systems.

■ Also provides dispatcher objects which may act as wither
mutexes and semaphores.

■ Dispatcher objects may also provide events. An event
acts much like a condition variable.

Silberschatz, Galvin and Gagne ©20028.1Operating System Concepts

Chapter 8: Deadlocks

■ System Model
■ Deadlock Characterization
■ Methods for Handling Deadlocks
■ Deadlock Prevention
■ Deadlock Avoidance
■ Deadlock Detection
■ Recovery from Deadlock
■ Combined Approach to Deadlock Handling

Silberschatz, Galvin and Gagne ©20028.2Operating System Concepts

The Deadlock Problem

■ A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

■ Example
✦ System has 2 tape drives.

✦ P1 and P2 each hold one tape drive and each needs another
one.

■ Example
✦ semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

Silberschatz, Galvin and Gagne ©20028.3Operating System Concepts

Bridge Crossing Example

■ Traffic only in one direction.
■ Each section of a bridge can be viewed as a resource.
■ If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).
■ Several cars may have to be backed up if a deadlock

occurs.
■ Starvation is possible.

Silberschatz, Galvin and Gagne ©20028.4Operating System Concepts

System Model

■ Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

■ Each resource type Ri has Wi instances.
■ Each process utilizes a resource as follows:

✦ request

✦ use

✦ release

Silberschatz, Galvin and Gagne ©20028.5Operating System Concepts

Deadlock Characterization

■ Mutual exclusion: only one process at a time can use a
resource.

■ Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes.

■ No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

■ Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is
held by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Silberschatz, Galvin and Gagne ©20028.6Operating System Concepts

Resource-Allocation Graph

■ V is partitioned into two types:
✦ P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system.

✦ R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system.

■ request edge – directed edge P1 → Rj

■ assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Silberschatz, Galvin and Gagne ©20028.7Operating System Concepts

Resource-Allocation Graph (Cont.)

■ Process

■ Resource Type with 4 instances

■ Pi requests instance of Rj

■ Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Silberschatz, Galvin and Gagne ©20028.8Operating System Concepts

Example of a Resource Allocation Graph

Silberschatz, Galvin and Gagne ©20028.9Operating System Concepts

Resource Allocation Graph With A Deadlock

Silberschatz, Galvin and Gagne ©20028.10Operating System Concepts

Resource Allocation Graph With A Cycle But No Deadlock

Silberschatz, Galvin and Gagne ©20028.11Operating System Concepts

Basic Facts

■ If graph contains no cycles � no deadlock.

■ If graph contains a cycle �
✦ if only one instance per resource type, then deadlock.

✦ if several instances per resource type, possibility of
deadlock.

Silberschatz, Galvin and Gagne ©20028.12Operating System Concepts

Methods for Handling Deadlocks

■ Ensure that the system will never enter a deadlock state.

■ Allow the system to enter a deadlock state and then
recover.

■ Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

Silberschatz, Galvin and Gagne ©20028.13Operating System Concepts

Deadlock Prevention

■ Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

■ Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources.

✦ Require process to request and be allocated all its
resources before it begins execution, or allow process to
request resources only when the process has none.

✦ Low resource utilization; starvation possible.

Restrain the ways request can be made.

Silberschatz, Galvin and Gagne ©20028.14Operating System Concepts

Deadlock Prevention (Cont.)

■ No Preemption –
✦ If a process that is holding some resources requests

another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

✦ Preempted resources are added to the list of resources for
which the process is waiting.

✦ Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

■ Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

Silberschatz, Galvin and Gagne ©20028.15Operating System Concepts

Deadlock Avoidance

■ Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

■ The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

■ Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori information
available.

Silberschatz, Galvin and Gagne ©20028.16Operating System Concepts

Safe State

■ When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

■ System is in safe state if there exists a safe sequence of all
processes.

■ Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<I.

✦ If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.

✦ When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

✦ When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Silberschatz, Galvin and Gagne ©20028.17Operating System Concepts

Basic Facts

■ If a system is in safe state � no deadlocks.

■ If a system is in unsafe state � possibility of deadlock.

■ Avoidance � ensure that a system will never enter an
unsafe state.

Silberschatz, Galvin and Gagne ©20028.18Operating System Concepts

Safe, Unsafe , Deadlock State

Silberschatz, Galvin and Gagne ©20028.19Operating System Concepts

Resource-Allocation Graph Algorithm

■ Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line.

■ Claim edge converts to request edge when a process
requests a resource.

■ When a resource is released by a process, assignment
edge reconverts to a claim edge.

■ Resources must be claimed a priori in the system.

Silberschatz, Galvin and Gagne ©20028.20Operating System Concepts

Resource-Allocation Graph For Deadlock Avoidance

Silberschatz, Galvin and Gagne ©20028.21Operating System Concepts

Unsafe State In Resource-Allocation Graph

Silberschatz, Galvin and Gagne ©20028.22Operating System Concepts

Banker’s Algorithm

■ Multiple instances.

■ Each process must a priori claim maximum use.

■ When a process requests a resource it may have to wait.

■ When a process gets all its resources it must return them
in a finite amount of time.

Silberschatz, Galvin and Gagne ©20028.23Operating System Concepts

Data Structures for the Banker’s Algorithm

■ Available: Vector of length m. If available [j] = k, there are
k instances of resource type Rj available.

■ Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

■ Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

■ Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Silberschatz, Galvin and Gagne ©20028.24Operating System Concepts

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

Silberschatz, Galvin and Gagne ©20028.25Operating System Concepts

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must
wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available = Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;;

• If safe � the resources are allocated to Pi.
• If unsafe � Pi must wait, and the old resource-allocation

state is restored

Silberschatz, Galvin and Gagne ©20028.26Operating System Concepts

Example of Banker’s Algorithm

■ 5 processes P0 through P4; 3 resource types A
(10 instances),
B (5instances, and C (7 instances).

■ Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Silberschatz, Galvin and Gagne ©20028.27Operating System Concepts

Example (Cont.)

■ The content of the matrix. Need is defined to be Max –
Allocation.

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

■ The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria.

Silberschatz, Galvin and Gagne ©20028.28Operating System Concepts

Example P1 Request (1,0,2) (Cont.)

■ Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) �
true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

■ Executing safety algorithm shows that sequence <P1, P3, P4,
P0, P2> satisfies safety requirement.

■ Can request for (3,3,0) by P4 be granted?
■ Can request for (0,2,0) by P0 be granted?

Silberschatz, Galvin and Gagne ©20028.29Operating System Concepts

Deadlock Detection

■ Allow system to enter deadlock state

■ Detection algorithm

■ Recovery scheme

Silberschatz, Galvin and Gagne ©20028.30Operating System Concepts

Single Instance of Each Resource Type

■ Maintain wait-for graph
✦ Nodes are processes.

✦ Pi → Pj if Pi is waiting for Pj.

■ Periodically invoke an algorithm that searches for a cycle
in the graph.

■ An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of vertices
in the graph.

Silberschatz, Galvin and Gagne ©20028.31Operating System Concepts

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Silberschatz, Galvin and Gagne ©20028.32Operating System Concepts

Several Instances of a Resource Type

■ Available: A vector of length m indicates the number of
available resources of each type.

■ Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

■ Request: An n x m matrix indicates the current request
of each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

Silberschatz, Galvin and Gagne ©20028.33Operating System Concepts

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ≠ 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti ≤ Work

If no such i exists, go to step 4.

Silberschatz, Galvin and Gagne ©20028.34Operating System Concepts

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

Silberschatz, Galvin and Gagne ©20028.35Operating System Concepts

Example of Detection Algorithm

■ Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

■ Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

■ Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true
for all i.

Silberschatz, Galvin and Gagne ©20028.36Operating System Concepts

Example (Cont.)

■ P2 requests an additional instance of type C.
Request

A B C
P0 0 0 0
P1 2 0 1
P2 0 0 1
P3 1 0 0
P4 0 0 2

■ State of system?
✦ Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

✦ Deadlock exists, consisting of processes P1, P2, P3, and P4.

Silberschatz, Galvin and Gagne ©20028.37Operating System Concepts

Detection-Algorithm Usage

■ When, and how often, to invoke depends on:
✦ How often a deadlock is likely to occur?

✦ How many processes will need to be rolled back?

✔ one for each disjoint cycle

■ If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not
be able to tell which of the many deadlocked processes
“caused” the deadlock.

Silberschatz, Galvin and Gagne ©20028.38Operating System Concepts

Recovery from Deadlock: Process Termination

■ Abort all deadlocked processes.

■ Abort one process at a time until the deadlock cycle is
eliminated.

■ In which order should we choose to abort?
✦ Priority of the process.
✦ How long process has computed, and how much longer to

completion.
✦ Resources the process has used.
✦ Resources process needs to complete.
✦ How many processes will need to be terminated.
✦ Is process interactive or batch?

Silberschatz, Galvin and Gagne ©20028.39Operating System Concepts

Recovery from Deadlock: Resource Preemption

■ Selecting a victim – minimize cost.

■ Rollback – return to some safe state, restart process for
that state.

■ Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

Silberschatz, Galvin and Gagne ©20028.40Operating System Concepts

Combined Approach to Deadlock Handling

■ Combine the three basic approaches
✦ prevention

✦ avoidance

✦ detection

 allowing the use of the optimal approach for each of
resources in the system.

■ Partition resources into hierarchically ordered classes.

■ Use most appropriate technique for handling deadlocks
within each class.

Silberschatz, Galvin and Gagne ©20028.41Operating System Concepts

Traffic Deadlock for Exercise 8.4

Silberschatz, Galvin and Gagne ©20029.1Operating System Concepts

Chapter 9: Memory Management

■ Background
■ Swapping
■ Contiguous Allocation
■ Paging
■ Segmentation
■ Segmentation with Paging

Silberschatz, Galvin and Gagne ©20029.2Operating System Concepts

Background

■ Program must be brought into memory and placed within
a process for it to be run.

■ Input queue – collection of processes on the disk that are
waiting to be brought into memory to run the program.

■ User programs go through several steps before being
run.

Silberschatz, Galvin and Gagne ©20029.3Operating System Concepts

Binding of Instructions and Data to Memory

■ Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

■ Load time: Must generate relocatable code if memory
location is not known at compile time.

■ Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).

Address binding of instructions and data to memory addresses can
happen at three different stages.

Silberschatz, Galvin and Gagne ©20029.4Operating System Concepts

Multistep Processing of a User Program

Silberschatz, Galvin and Gagne ©20029.5Operating System Concepts

Logical vs. Physical Address Space

■ The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.

✦ Logical address – generated by the CPU; also referred to as
virtual address.

✦ Physical address – address seen by the memory unit.

■ Logical and physical addresses are the same in compile-
time and load-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

Silberschatz, Galvin and Gagne ©20029.6Operating System Concepts

Memory-Management Unit (MMU)

■ Hardware device that maps virtual to physical address.

■ In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

■ The user program deals with logical addresses; it never
sees the real physical addresses.

Silberschatz, Galvin and Gagne ©20029.7Operating System Concepts

Dynamic relocation using a relocation register

Silberschatz, Galvin and Gagne ©20029.8Operating System Concepts

Dynamic Loading

■ Routine is not loaded until it is called
■ Better memory-space utilization; unused routine is never

loaded.
■ Useful when large amounts of code are needed to handle

infrequently occurring cases.
■ No special support from the operating system is required

implemented through program design.

Silberschatz, Galvin and Gagne ©20029.9Operating System Concepts

Dynamic Linking

■ Linking postponed until execution time.
■ Small piece of code, stub, used to locate the appropriate

memory-resident library routine.
■ Stub replaces itself with the address of the routine, and

executes the routine.
■ Operating system needed to check if routine is in

processes’ memory address.
■ Dynamic linking is particularly useful for libraries.

Silberschatz, Galvin and Gagne ©20029.10Operating System Concepts

Overlays

■ Keep in memory only those instructions and data that are
needed at any given time.

■ Needed when process is larger than amount of memory
allocated to it.

■ Implemented by user, no special support needed from
operating system, programming design of overlay
structure is complex

Silberschatz, Galvin and Gagne ©20029.11Operating System Concepts

Overlays for a Two-Pass Assembler

Silberschatz, Galvin and Gagne ©20029.12Operating System Concepts

Swapping

■ A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution.

■ Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

■ Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

■ Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

■ Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows.

Silberschatz, Galvin and Gagne ©20029.13Operating System Concepts

Schematic View of Swapping

Silberschatz, Galvin and Gagne ©20029.14Operating System Concepts

Contiguous Allocation

■ Main memory usually into two partitions:
✦ Resident operating system, usually held in low memory with

interrupt vector.

✦ User processes then held in high memory.

■ Single-partition allocation
✦ Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code
and data.

✦ Relocation register contains value of smallest physical
address; limit register contains range of logical addresses –
each logical address must be less than the limit register.

Silberschatz, Galvin and Gagne ©20029.15Operating System Concepts

Hardware Support for Relocation and Limit Registers

Silberschatz, Galvin and Gagne ©20029.16Operating System Concepts

Contiguous Allocation (Cont.)

■ Multiple-partition allocation
✦ Hole – block of available memory; holes of various size are

scattered throughout memory.

✦ When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

✦ Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Silberschatz, Galvin and Gagne ©20029.17Operating System Concepts

Dynamic Storage-Allocation Problem

■ First-fit: Allocate the first hole that is big enough.
■ Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.
Produces the smallest leftover hole.

■ Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.

Silberschatz, Galvin and Gagne ©20029.18Operating System Concepts

Fragmentation

■ External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous.

■ Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used.

■ Reduce external fragmentation by compaction
✦ Shuffle memory contents to place all free memory together

in one large block.
✦ Compaction is possible only if relocation is dynamic, and is

done at execution time.
✦ I/O problem

✔ Latch job in memory while it is involved in I/O.
✔ Do I/O only into OS buffers.

Silberschatz, Galvin and Gagne ©20029.19Operating System Concepts

Paging

■ Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available.

■ Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).

■ Divide logical memory into blocks of same size called pages.

■ Keep track of all free frames.

■ To run a program of size n pages, need to find n free frames
and load program.

■ Set up a page table to translate logical to physical addresses.

■ Internal fragmentation.

Silberschatz, Galvin and Gagne ©20029.20Operating System Concepts

Address Translation Scheme

■ Address generated by CPU is divided into:
✦ Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

✦ Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit.

Silberschatz, Galvin and Gagne ©20029.21Operating System Concepts

Address Translation Architecture

Silberschatz, Galvin and Gagne ©20029.22Operating System Concepts

Paging Example

Silberschatz, Galvin and Gagne ©20029.23Operating System Concepts

Paging Example

Silberschatz, Galvin and Gagne ©20029.24Operating System Concepts

Free Frames

Before allocation After allocation

Silberschatz, Galvin and Gagne ©20029.25Operating System Concepts

Implementation of Page Table

■ Page table is kept in main memory.
■ Page-table base register (PTBR) points to the page table.
■ Page-table length register (PRLR) indicates size of the

page table.
■ In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for
the data/instruction.

■ The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Silberschatz, Galvin and Gagne ©20029.26Operating System Concepts

Associative Memory

■ Associative memory – parallel search

Address translation (A´, A´´)
✦ If A´ is in associative register, get frame # out.

✦ Otherwise get frame # from page table in memory

Page # Frame #

Silberschatz, Galvin and Gagne ©20029.27Operating System Concepts

Paging Hardware With TLB

Silberschatz, Galvin and Gagne ©20029.28Operating System Concepts

Effective Access Time

■ Associative Lookup = ε time unit
■ Assume memory cycle time is 1 microsecond
■ Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to
number of associative registers.

■ Hit ratio = α
■ Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

Silberschatz, Galvin and Gagne ©20029.29Operating System Concepts

Memory Protection

■ Memory protection implemented by associating protection
bit with each frame.

■ Valid-invalid bit attached to each entry in the page table:
✦ “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.
✦ “invalid” indicates that the page is not in the process’ logical

address space.

Silberschatz, Galvin and Gagne ©20029.30Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

Silberschatz, Galvin and Gagne ©20029.31Operating System Concepts

Page Table Structure

■ Hierarchical Paging

■ Hashed Page Tables

■ Inverted Page Tables

Silberschatz, Galvin and Gagne ©20029.32Operating System Concepts

Hierarchical Page Tables

■ Break up the logical address space into multiple page
tables.

■ A simple technique is a two-level page table.

Silberschatz, Galvin and Gagne ©20029.33Operating System Concepts

Two-Level Paging Example

■ A logical address (on 32-bit machine with 4K page size) is
divided into:
✦ a page number consisting of 20 bits.
✦ a page offset consisting of 12 bits.

■ Since the page table is paged, the page number is further
divided into:
✦ a 10-bit page number.
✦ a 10-bit page offset.

■ Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

Silberschatz, Galvin and Gagne ©20029.34Operating System Concepts

Two-Level Page-Table Scheme

Silberschatz, Galvin and Gagne ©20029.35Operating System Concepts

Address-Translation Scheme

■ Address-translation scheme for a two-level 32-bit paging
architecture

Silberschatz, Galvin and Gagne ©20029.36Operating System Concepts

Hashed Page Tables

■ Common in address spaces > 32 bits.

■ The virtual page number is hashed into a page table. This
page table contains a chain of elements hashing to the
same location.

■ Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

Silberschatz, Galvin and Gagne ©20029.37Operating System Concepts

Hashed Page Table

Silberschatz, Galvin and Gagne ©20029.38Operating System Concepts

Inverted Page Table

■ One entry for each real page of memory.
■ Entry consists of the virtual address of the page stored in

that real memory location, with information about the
process that owns that page.

■ Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

■ Use hash table to limit the search to one — or at most a
few — page-table entries.

Silberschatz, Galvin and Gagne ©20029.39Operating System Concepts

Inverted Page Table Architecture

Silberschatz, Galvin and Gagne ©20029.40Operating System Concepts

Shared Pages

■ Shared code
✦ One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

✦ Shared code must appear in same location in the logical
address space of all processes.

■ Private code and data
✦ Each process keeps a separate copy of the code and data.

✦ The pages for the private code and data can appear
anywhere in the logical address space.

Silberschatz, Galvin and Gagne ©20029.41Operating System Concepts

Shared Pages Example

Silberschatz, Galvin and Gagne ©20029.42Operating System Concepts

Segmentation

■ Memory-management scheme that supports user view of
memory.

■ A program is a collection of segments. A segment is a logical
unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

Silberschatz, Galvin and Gagne ©20029.43Operating System Concepts

User’s View of a Program

Silberschatz, Galvin and Gagne ©20029.44Operating System Concepts

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Silberschatz, Galvin and Gagne ©20029.45Operating System Concepts

Segmentation Architecture

■ Logical address consists of a two tuple:
<segment-number, offset>,

■ Segment table – maps two-dimensional physical
addresses; each table entry has:

✦ base – contains the starting physical address where the
segments reside in memory.

✦ limit – specifies the length of the segment.

■ Segment-table base register (STBR) points to the
segment table’s location in memory.

■ Segment-table length register (STLR) indicates number of
segments used by a program;
 segment number s is legal if s < STLR.

Silberschatz, Galvin and Gagne ©20029.46Operating System Concepts

Segmentation Architecture (Cont.)

■ Relocation.
✦ dynamic
✦ by segment table

■ Sharing.
✦ shared segments

✦ same segment number

■ Allocation.
✦ first fit/best fit

✦ external fragmentation

Silberschatz, Galvin and Gagne ©20029.47Operating System Concepts

Segmentation Architecture (Cont.)

■ Protection. With each entry in segment table associate:
✦ validation bit = 0 � illegal segment
✦ read/write/execute privileges

■ Protection bits associated with segments; code sharing
occurs at segment level.

■ Since segments vary in length, memory allocation is a
dynamic storage-allocation problem.

■ A segmentation example is shown in the following
diagram

Silberschatz, Galvin and Gagne ©20029.48Operating System Concepts

Segmentation Hardware

Silberschatz, Galvin and Gagne ©20029.49Operating System Concepts

Example of Segmentation

Silberschatz, Galvin and Gagne ©20029.50Operating System Concepts

Sharing of Segments

Silberschatz, Galvin and Gagne ©20029.51Operating System Concepts

Segmentation with Paging – MULTICS

■ The MULTICS system solved problems of external
fragmentation and lengthy search times by paging the
segments.

■ Solution differs from pure segmentation in that the
segment-table entry contains not the base address of the
segment, but rather the base address of a page table for
this segment.

Silberschatz, Galvin and Gagne ©20029.52Operating System Concepts

MULTICS Address Translation Scheme

Silberschatz, Galvin and Gagne ©20029.53Operating System Concepts

Segmentation with Paging – Intel 386

■ As shown in the following diagram, the Intel 386 uses
segmentation with paging for memory management with a
two-level paging scheme.

Silberschatz, Galvin and Gagne ©20029.54Operating System Concepts

Intel 30386 Address Translation

Silberschatz, Galvin and Gagne ©200210.1Operating System Concepts

Chapter 10: Virtual Memory

■ Background
■ Demand Paging
■ Process Creation
■ Page Replacement
■ Allocation of Frames
■ Thrashing
■ Operating System Examples

Silberschatz, Galvin and Gagne ©200210.2Operating System Concepts

Background

■ Virtual memory – separation of user logical memory
from physical memory.

✦ Only part of the program needs to be in memory for
execution.

✦ Logical address space can therefore be much larger than
physical address space.

✦ Allows address spaces to be shared by several processes.

✦ Allows for more efficient process creation.

■ Virtual memory can be implemented via:
✦ Demand paging

✦ Demand segmentation

Silberschatz, Galvin and Gagne ©200210.3Operating System Concepts

Virtual Memory That is Larger Than Physical Memory

Silberschatz, Galvin and Gagne ©200210.4Operating System Concepts

Demand Paging

■ Bring a page into memory only when it is needed.
✦ Less I/O needed

✦ Less memory needed

✦ Faster response
✦ More users

■ Page is needed � reference to it
✦ invalid reference � abort

✦ not-in-memory � bring to memory

Silberschatz, Galvin and Gagne ©200210.5Operating System Concepts

Transfer of a Paged Memory to Contiguous Disk Space

Silberschatz, Galvin and Gagne ©200210.6Operating System Concepts

Valid-Invalid Bit

■ With each page table entry a valid–invalid bit is
associated
(1 � in-memory, 0 � not-in-memory)

■ Initially valid–invalid but is set to 0 on all entries.
■ Example of a page table snapshot.

■ During address translation, if valid–invalid bit in page
table entry is 0 � page fault.

1
1
1
1
0

0
0

�

Frame # valid-invalid bit

page table

Silberschatz, Galvin and Gagne ©200210.7Operating System Concepts

Page Table When Some Pages Are Not in Main Memory

Silberschatz, Galvin and Gagne ©200210.8Operating System Concepts

Page Fault

■ If there is ever a reference to a page, first reference will
trap to
OS � page fault

■ OS looks at another table to decide:
✦ Invalid reference � abort.
✦ Just not in memory.

■ Get empty frame.
■ Swap page into frame.
■ Reset tables, validation bit = 1.
■ Restart instruction: Least Recently Used

✦ block move

✦ auto increment/decrement location

Silberschatz, Galvin and Gagne ©200210.9Operating System Concepts

Steps in Handling a Page Fault

Silberschatz, Galvin and Gagne ©200210.10Operating System Concepts

What happens if there is no free frame?

■ Page replacement – find some page in memory, but not
really in use, swap it out.

✦ algorithm

✦ performance – want an algorithm which will result in
minimum number of page faults.

■ Same page may be brought into memory several times.

Silberschatz, Galvin and Gagne ©200210.11Operating System Concepts

Performance of Demand Paging

■ Page Fault Rate 0 ≤ p ≤ 1.0
✦ if p = 0 no page faults

✦ if p = 1, every reference is a fault

■ Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Silberschatz, Galvin and Gagne ©200210.12Operating System Concepts

Demand Paging Example

■ Memory access time = 1 microsecond

■ 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

■ Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Silberschatz, Galvin and Gagne ©200210.13Operating System Concepts

Process Creation

■ Virtual memory allows other benefits during process
creation:

- Copy-on-Write

- Memory-Mapped Files

Silberschatz, Galvin and Gagne ©200210.14Operating System Concepts

Copy-on-Write

■ Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory.

If either process modifies a shared page, only then is the
page copied.

■ COW allows more efficient process creation as only
modified pages are copied.

■ Free pages are allocated from a pool of zeroed-out
pages.

Silberschatz, Galvin and Gagne ©200210.15Operating System Concepts

Memory-Mapped Files

■ Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory.

■ A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

■ Simplifies file access by treating file I/O through memory rather
than read() write() system calls.

■ Also allows several processes to map the same file allowing the
pages in memory to be shared.

Silberschatz, Galvin and Gagne ©200210.16Operating System Concepts

Memory Mapped Files

Silberschatz, Galvin and Gagne ©200210.17Operating System Concepts

Page Replacement

■ Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

■ Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

■ Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory.

Silberschatz, Galvin and Gagne ©200210.18Operating System Concepts

Need For Page Replacement

Silberschatz, Galvin and Gagne ©200210.19Operating System Concepts

Basic Page Replacement

■ Find the location of the desired page on disk.

■ Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

■ Read the desired page into the (newly) free frame.
Update the page and frame tables.

■ Restart the process.

Silberschatz, Galvin and Gagne ©200210.20Operating System Concepts

Page Replacement

Silberschatz, Galvin and Gagne ©200210.21Operating System Concepts

Page Replacement Algorithms

■ Want lowest page-fault rate.
■ Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the
number of page faults on that string.

■ In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Silberschatz, Galvin and Gagne ©200210.22Operating System Concepts

Graph of Page Faults Versus The Number of Frames

Silberschatz, Galvin and Gagne ©200210.23Operating System Concepts

First-In-First-Out (FIFO) Algorithm

■ Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
■ 3 frames (3 pages can be in memory at a time per

process)

■ 4 frames

■ FIFO Replacement – Belady’s Anomaly
✦ more frames � less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Silberschatz, Galvin and Gagne ©200210.24Operating System Concepts

FIFO Page Replacement

Silberschatz, Galvin and Gagne ©200210.25Operating System Concepts

FIFO Illustrating Belady’s Anamoly

Silberschatz, Galvin and Gagne ©200210.26Operating System Concepts

Optimal Algorithm

■ Replace page that will not be used for longest period of
time.

■ 4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

■ How do you know this?
■ Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

Silberschatz, Galvin and Gagne ©200210.27Operating System Concepts

Optimal Page Replacement

Silberschatz, Galvin and Gagne ©200210.28Operating System Concepts

Least Recently Used (LRU) Algorithm

■ Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

■ Counter implementation
✦ Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter.

✦ When a page needs to be changed, look at the counters to
determine which are to change.

1

2

3

5

4

4 3

5

Silberschatz, Galvin and Gagne ©200210.29Operating System Concepts

LRU Page Replacement

Silberschatz, Galvin and Gagne ©200210.30Operating System Concepts

LRU Algorithm (Cont.)

■ Stack implementation – keep a stack of page numbers in
a double link form:

✦ Page referenced:

✔ move it to the top

✔ requires 6 pointers to be changed
✦ No search for replacement

Silberschatz, Galvin and Gagne ©200210.31Operating System Concepts

Use Of A Stack to Record The Most Recent Page References

Silberschatz, Galvin and Gagne ©200210.32Operating System Concepts

LRU Approximation Algorithms

■ Reference bit
✦ With each page associate a bit, initially = 0
✦ When page is referenced bit set to 1.

✦ Replace the one which is 0 (if one exists). We do not know
the order, however.

■ Second chance
✦ Need reference bit.

✦ Clock replacement.

✦ If page to be replaced (in clock order) has reference bit = 1.
then:

✔ set reference bit 0.
✔ leave page in memory.

✔ replace next page (in clock order), subject to same
rules.

Silberschatz, Galvin and Gagne ©200210.33Operating System Concepts

Second-Chance (clock) Page-Replacement Algorithm

Silberschatz, Galvin and Gagne ©200210.34Operating System Concepts

Counting Algorithms

■ Keep a counter of the number of references that have
been made to each page.

■ LFU Algorithm: replaces page with smallest count.

■ MFU Algorithm: based on the argument that the page
with the smallest count was probably just brought in and
has yet to be used.

Silberschatz, Galvin and Gagne ©200210.35Operating System Concepts

Allocation of Frames

■ Each process needs minimum number of pages.
■ Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
✦ instruction is 6 bytes, might span 2 pages.

✦ 2 pages to handle from.
✦ 2 pages to handle to.

■ Two major allocation schemes.
✦ fixed allocation
✦ priority allocation

Silberschatz, Galvin and Gagne ©200210.36Operating System Concepts

Fixed Allocation

■ Equal allocation – e.g., if 100 frames and 5 processes,
give each 20 pages.

■ Proportional allocation – Allocate according to the size of
process.

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
�=

=

forallocation

framesofnumbertotal

processofsize

5964
137

127

564
137

10

127

10

64

2

1

2

≈×=

≈×=

=
=
=

a

a

s
s
m

i

Silberschatz, Galvin and Gagne ©200210.37Operating System Concepts

Priority Allocation

■ Use a proportional allocation scheme using priorities
rather than size.

■ If process Pi generates a page fault,
✦ select for replacement one of its frames.

✦ select for replacement a frame from a process with lower
priority number.

Silberschatz, Galvin and Gagne ©200210.38Operating System Concepts

Global vs. Local Allocation

■ Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another.

■ Local replacement – each process selects from only its
own set of allocated frames.

Silberschatz, Galvin and Gagne ©200210.39Operating System Concepts

Thrashing

■ If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

✦ low CPU utilization.

✦ operating system thinks that it needs to increase the degree
of multiprogramming.

✦ another process added to the system.

■ Thrashing ≡ a process is busy swapping pages in and
out.

Silberschatz, Galvin and Gagne ©200210.40Operating System Concepts

Thrashing

■ Why does paging work?
Locality model

✦ Process migrates from one locality to another.
✦ Localities may overlap.

■ Why does thrashing occur?
Σ size of locality > total memory size

Silberschatz, Galvin and Gagne ©200210.41Operating System Concepts

Locality In A Memory-Reference Pattern

Silberschatz, Galvin and Gagne ©200210.42Operating System Concepts

Working-Set Model

■ Δ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction

■ WSSi (working set of Process Pi) =
total number of pages referenced in the most recent Δ
(varies in time)

✦ if Δ too small will not encompass entire locality.

✦ if Δ too large will encompass several localities.
✦ if Δ = ∞ � will encompass entire program.

■ D = Σ WSSi ≡ total demand frames
■ if D > m � Thrashing
■ Policy if D > m, then suspend one of the processes.

Silberschatz, Galvin and Gagne ©200210.43Operating System Concepts

Working-set model

Silberschatz, Galvin and Gagne ©200210.44Operating System Concepts

Keeping Track of the Working Set

■ Approximate with interval timer + a reference bit
■ Example: Δ = 10,000

✦ Timer interrupts after every 5000 time units.

✦ Keep in memory 2 bits for each page.
✦ Whenever a timer interrupts copy and sets the values of all

reference bits to 0.

✦ If one of the bits in memory = 1 � page in working set.

■ Why is this not completely accurate?
■ Improvement = 10 bits and interrupt every 1000 time

units.

Silberschatz, Galvin and Gagne ©200210.45Operating System Concepts

Page-Fault Frequency Scheme

■ Establish “acceptable” page-fault rate.
✦ If actual rate too low, process loses frame.
✦ If actual rate too high, process gains frame.

Silberschatz, Galvin and Gagne ©200210.46Operating System Concepts

Other Considerations

■ Prepaging

■ Page size selection
✦ fragmentation

✦ table size
✦ I/O overhead

✦ locality

Silberschatz, Galvin and Gagne ©200210.47Operating System Concepts

Other Considerations (Cont.)

■ TLB Reach - The amount of memory accessible from the
TLB.

■ TLB Reach = (TLB Size) X (Page Size)

■ Ideally, the working set of each process is stored in the
TLB. Otherwise there is a high degree of page faults.

Silberschatz, Galvin and Gagne ©200210.48Operating System Concepts

Increasing the Size of the TLB

■ Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page
size.

■ Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use them
without an increase in fragmentation.

Silberschatz, Galvin and Gagne ©200210.49Operating System Concepts

Other Considerations (Cont.)

■ Program structure
✦ int A[][] = new int[1024][1024];
✦ Each row is stored in one page

✦ Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults

✦ Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

Silberschatz, Galvin and Gagne ©200210.50Operating System Concepts

Other Considerations (Cont.)

■ I/O Interlock – Pages must sometimes be locked into
memory.

■ Consider I/O. Pages that are used for copying a file from
a device must be locked from being selected for eviction
by a page replacement algorithm.

Silberschatz, Galvin and Gagne ©200210.51Operating System Concepts

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne ©200210.52Operating System Concepts

Operating System Examples

■ Windows NT

■ Solaris 2

Silberschatz, Galvin and Gagne ©200210.53Operating System Concepts

Windows NT

■ Uses demand paging with clustering. Clustering brings
in pages surrounding the faulting page.

■ Processes are assigned working set minimum and
working set maximum.

■ Working set minimum is the minimum number of pages
the process is guaranteed to have in memory.

■ A process may be assigned as many pages up to its
working set maximum.

■ When the amount of free memory in the system falls
below a threshold, automatic working set trimming is
performed to restore the amount of free memory.

■ Working set trimming removes pages from processes that
have pages in excess of their working set minimum.

Silberschatz, Galvin and Gagne ©200210.54Operating System Concepts

Solaris 2

■ Maintains a list of free pages to assign faulting processes.

■ Lotsfree – threshold parameter to begin paging.

■ Paging is peformed by pageout process.

■ Pageout scans pages using modified clock algorithm.

■ Scanrate is the rate at which pages are scanned. This
ranged from slowscan to fastscan.

■ Pageout is called more frequently depending upon the
amount of free memory available.

Silberschatz, Galvin and Gagne ©200210.55Operating System Concepts

Solar Page Scanner

